
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

PH.D. THESIS

Simulation-Based Algorithms for Markov Decision Processes

by Ying He
Advisor: Steven I. Marcus and Michael Fu

PhD 2002-9

Simulation-Based Algorithms for Markov

Decision Processes

by

Ying He

Dissertation submitted to the Faculty of the Graduate School of The
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2002

Advisory Committee:

Professor Steven I. Marcus, Chairman/Advisor
Professor Michael C. Fu, Co-advisor
Professor Mark A. Shayman
Professor Robert W. Newcomb
Associate Professor Jeffrey W. Herrmann

c© Copyright by

Ying He

2002

Abstract

Title of Dissertation: Simulation-Based Algorithms for Markov

Decision Processes

Ying He, Doctor of Philosophy, 2002

Dissertation directed by: Professor Steven I. Marcus

Department of Electrical & Computer Engineering

Professor Michael C. Fu

Department of Decision & Information Technologies

Problems of sequential decision making under uncertainty are common in

manufacturing, computer and communication systems, and many such problems

can be formulated as Markov Decision Processes (MDPs). Motivated by a ca-

pacity expansion and allocation problem in semiconductor manufacturing, we

formulate a fab-level decision making problem using a finite-horizon transient

MDP model that can integrate life cycle dynamics of the fab and provide a

trade-off between immediate and future benefits and costs.

However, for large and complicated systems formulated as MDPs, the classi-

cal methodology to compute optimal policies, dynamic programming, suffers

from the so-called “curse of dimensionality” (computational requirement in-

creases exponentially with number of states /controls) and “curse of modeling”

(an explicit model for the cost structure and/or the transition probabilities is

not available).

In problem settings to which our approaches apply, instead of the explicit

transition probabilities, outputs are available from either a simulation model or

from the actual system. Our methodology is first to find the structure of optimal

policies for some special cases, and then to use the structure to construct pa-

rameterized heuristic policies for more general cases and implement simulation-

based algorithms to determine parameters of the heuristic policies. For the

fab-level decision-making problem, we analyze the structure of the optimal pol-

icy for a special “one-machine, two-product” case, and discuss the applicability

of simulation-based algorithms.

We develop several simulation-based algorithms for MDPs to overcome the

difficulties of “curse of dimensionality” and “curse of modeling”, considering both

theoretical and practical issues. First, we develop a simulation-based policy itera-

tion algorithm for average cost problems under a unichain assumption, relaxing

the common recurrent state assumption. Second, for weighted cost problems,

we develop a new two-timescale simulation-based gradient algorithms based on

perturbation analysis, provide a theoretical convergence proof, and compare it

with two recently proposed simulation-based gradient algorithms. Third, we

propose two new Simultaneous Perturbation Stochastic Approximation (SPSA)

algorithms for weighted cost problems and verify their effectiveness via simula-

tion; then, we consider a general SPSA algorithm for function minimization and

show its convergence under a weaker assumption: the function does not have to

be differentiable.

To Yingjiu and my parents ...

ii

Acknowledgements

I wish to sincerely thank my thesis advisors, Dr. Marcus and Dr.

Fu, for their guidance, encouragement and patience over the past

five years. I especially appreciate their advice on how to conduct

research honorably, responsibly, and ethically.

I would also like to thank Dr. Shayman, Dr. Newcomb and Dr.

Hermann, for serving on my dissertation committee with invaluable

comments.

Next, I want to acknowledge all of friends for their help and com-

panionship. Specially, I am grateful to friends in my research group,

Xiaodong Yao, Dr. Shalabh Bhatnagar and Abraham Thomas, for

many illuminating conversations in helping me to formulate my re-

search ideas. I am also indebted to visiting scholars, Dr. Emmanuel

Fernadez-Gaucherand and Dr. Xiren Cao, with whom I collaborated

on parts of my dissertation research.

I would like to thank the Department of Electrical and Computer

Engineering and the Institute for Systems Research for providing me

with Assistantships and Fellowships.

iii

In addition, I own many thanks to my colleagues at GE CRD, where

I worked as a summer intern in 2000. Special thanks go to Dr. Paul

Houpt, Dr. Appa Madiwale, Dr. Bob Bitmead, and Dr. Allan

Connolly.

Finally I want to thank my husband Yingjiu, my parents Binquan

and Haitao, and my sister Rui for their constant encouragement and

support.

This research was supported by a fellowship from General Electric

Corporate Research and Development through the Institute for Sys-

tems Research, by National Science Foundation under Grant DMI-

9713720, and by Semiconductor Research Corporation under Grants

97-FJ-491 and 2001-NJ-877.

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 3

1.3 Related Work . 4

1.4 Contributions . 10

2 Markov Decision Processes 14

2.1 Markov Decision Process Formulation 14

2.2 Fab-Level Decision-Making Problem 19

2.2.1 Fab-Level Decision Making MDP Model 19

2.2.2 Cost Model . 27

2.2.3 Demand Model . 28

2.2.4 Simple Example . 30

2.2.5 “Testbed” Example . 33

3 Simulation-Based Policy Iteration

for Unichain Average Cost Problem 36

3.1 Simulation-Based Policy Iteration 37

v

3.2 Inventory Control Problem . 44

3.3 Discussion . 55

4 Simulation-Based Gradient Algorithms

for Weighted Cost Problems 56

4.1 Weighted Cost Problems . 57

4.2 Two-Timescale Simulation-Based

Gradient Algorithm . 61

4.2.1 A Modified Gradient Estimator and its Decomposition . . 63

4.2.2 Two-Timescale Simulation-Based Gradient Algorithm . . . 65

4.3 Parking Problem . 66

4.4 Numerical Experiments . 70

4.5 Discussion . 76

5 Simultaneous Perturbation Stochastic

Approximation Algorithms 77

5.1 SPSA Algorithms for Weighted Cost Problems 78

5.2 Convergence of SPSA for Nondifferentiable

Convex Function Optimization . 86

5.2.1 Subgradient and Reformulation of the SPSA Algorithm . . 88

5.2.2 Basic Constrained Stochastic Approximation Algorithm . . 90

5.2.3 Convergence of the SPSA algorithm 92

5.3 Discussion . 95

6 Fab-Level Decision-Making Application 96

6.1 Simulation-Based Policy Iteration for a

Simple Example . 97

6.1.1 Problem Setup . 97

6.1.2 Simulation-Based Policy Iteration Algorithm 104

vi

6.1.3 Numerical Experiments . 106

6.2 Structure of Optimal Policy for a

One-Machine, Two-Product Example 111

6.2.1 Problem Setup . 112

6.2.2 Optimality Equation . 114

6.2.3 Properties of Piecewise Linear Convex Functions 116

6.2.4 Optimal policy with deterministic demands 121

6.2.5 Optimal policy with random demands 127

6.3 Discussion . 133

7 Summary and Future Research 138

Appendix 141

Bibliography 155

vii

List of Tables

6.1 Model Specifications . 107

viii

List of Figures

2.1 Fab-Level Decision Making MDP Model 20

2.2 Demand Pattern 1 and Demand Pattern 2 29

2.3 Demand Pattern 3 . 30

3.1 PI Policies and Average Cost . 50

3.2 SBPI Policy Evaluation for Differential Costs 50

3.3 SBPI Policies and Average Cost (TA = 105 LD = 104) 51

3.4 SBPI Policies and Average Cost (TA = 105 LD = 105) 51

3.5 SBPI Policies and Average Cost (TA = 105 LD = 103) 52

3.6 SBPI Policies and Average Cost (TA = 104 LD = 104) 52

3.7 SBPI Policies and Average Cost for Different λ 53

4.1 The Comparison of the Three Algorithms 71

4.2 Expected Cost χ(θ) . 72

4.3 Simulation-Based Regenerative-Update Gradient Algorithm 73

4.4 Simulation-Based Every-Update Gradient Algorithm 74

4.5 Simulation-Based Two-Timescale Gradient Algorithm 75

5.1 SPSA Algorithm . 84

5.2 Two-Timescale SPSA Algorithm 85

6.1 Policy for Simulation-Based Policy Iteration 108

6.2 Cost Function for Simulation-Based Policy Iteration 109

ix

6.3 Policy and Cost Function for Exact Policy Iteration 110

x

Simulation-Based Algorithms for Markov
Decision Processes

Ying He

October 8, 2002

This comment page is not part of the dissertation.

Typeset by LATEX using the dissertation class by Pablo A. Straub, University of

Maryland.

0

Chapter 1

Introduction

1.1 Motivation

Problems of sequential decision making under uncertainty are common in man-

ufacturing, computer and communication systems. Many such systems are very

large and complicated. Consider a semiconductor fabrication facility capable of

producing various wafers. The manufacturing process performed on each wafer

contains a few hundred process steps and involves many types of equipment.

Each piece of equipment can be used for various steps, and any given step can

be executed on various pieces of equipment, perhaps at different rates. The com-

plication is exacerbated by uncertainties such as frequent successive advances in

technology and continual changes in demands for products. Here, decisions can

be made concerning changes in product lines, recruitment of workers, equipment

purchasing and discarding, the addition or deletion of products, process recipe

of a product, lot dispatching, and so forth [1] [2].

Many such decision-making problems can be formulated as Markov Decision

Processes (MDPs) [3] by defining appropriate states, actions (or controls), tran-

sition probabilities, time horizon, and cost criterion. For example, in our IPDPM

(Integrating Product Dynamics and Process Models) project about planning and

1

scheduling of semiconductor manufacturing fabs, we formulate a finite-horizon

transient MDP for the fab-level decision making.

The methodology for solving MDPs is dynamic programming, based on Bell-

man’s “Principle of Optimality”: “An optimal policy has the property that

whatever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first de-

cision” [3]. This principle is often expressed by a system of equations called opti-

mality equations. A finite horizon problem can be solved directly using dynamic

programming, by analyzing a sequence of simpler inductively defined single-stage

problems and solving these problems backward; or it can be solved by being con-

verted into a stochastic shortest path problem, an infinite horizon problem with a

cost-free termination state, by treating time as an extra component of the state.

We will deal with the fab-level decision-making problem using the latter method.

In addition, an infinite horizon problem represents a reasonable approximation

of a finite horizon problem with a very large number of stages. Hence, we will

focus on infinite horizon problems.

Two basic dynamic programming algorithms for solving infinite horizon MDPs

are policy iteration and value iteration. Policy iteration includes a sequence of

policy evaluation and policy improvement at each iteration. For problems with

a total cost criterion, each policy evaluation corresponds to calculating the ex-

pected long-term cost (cost-to-go) from each state by solving linear equations

with the same number of equations as the number of states; for problems with

an average cost criterion, the evaluated costs are the average cost and differential

costs, instead of cost-to-go. Each policy improvement step involves choosing an

action for each state, where the action is “greedy” with respect to the evaluated

costs. Value iteration calculates successively the optimal cost-to-go for total cost

problems, or the optimal average cost and differential costs, by turning the op-

timality equations into update rules; the process continues until the difference

2

between two sequential values of the evaluated costs is within some error bound.

Both policy iteration and value iteration mentioned above apply when an

MDP model has a small or moderate size, measured by the number of states

and number of actions. In many systems, however, MDP models are very large.

For example, the MDP model for the fab-level decision making can have more

than 10100 states and up to 10200 actions for some states just for a medium-sized

fab. When the number of states is very large, there would be heavy storage and

computational burdens due to the large number of cost-to-go functions and the

large size of the transition probability matrix in the MDP model. For policy

iteration, the number of linear equations would be accordingly very large. As

the number of states increases linearly, the computational requirement increases

exponentially, which leads to the so-called “curse of dimensionality”. When

there are a large number of actions available in each state, the “greedy” search

algorithm may lead to another form of “curse of dimensionality”. Value iteration

has a similar problem.

Sometimes, an explicit model for the cost structure and the transition prob-

abilities of the system is not available, in which case both policy iteration and

value iteration cannot apply either. This situation causes the so-called “curse

of modeling”. For example, in our fab-level decision-making problem, the exact

analytic form of transition probabilities for the system is hard to obtain.

1.2 Approach

In order to break the “curse of dimensionality ”and the “curse of modeling”, we

propose approaches based on the following ideas:

• simulation for the above mentioned systems is possible, in which case the

task of evaluating the costs (cost-to-go, or average cost and differential

costs) is transformed into that of estimating those from transitions on

3

simulation sample paths;

• policies can be parameterized.

Namely, we would like to study simulation-based algorithms to solve MDPs

which have three difficulties: large state space, large control space, and an un-

available explicit model for the cost structure and the transition probabilities.

In particular, our methodology is first to use dynamic programming to derive,

or simulation-based dynamic programming to find an optimal policy structure

or heuristic policy structure which can be parameterized, and then to apply

simulation-based algorithms to find the optimal parameters.

Specially, we do the following:

• We show how simulation-based policy iteration algorithms give us knowl-

edge about optimal policy structure, and we use dynamic programming to

derive the structure of optimal policies for a special case of the fab-level

decision-making problem.

• We develop and prove convergence for new simulation-based gradient al-

gorithms, two-timescale and SPSA.

• We discuss implementation issues on applying simulation-based algorithms

to the fab-level decision-making problem.

1.3 Related Work

There are several simulation-based policy iteration algorithms for the stochas-

tic shortest path problem and the discounted cost problem. Some algorithms,

such as Approximate Policy Iteration (API) with temporal-difference learning

[4], require that each policy improvement step not be implemented until the

corresponding approximate cost-to-go function converges. The merits of such

4

algorithms are that the accuracy of the evaluated cost-to-go can be guaranteed

and that the convergence of the evaluated cost-to-go has been proved. However,

these algorithms would be slow since they require weighted cost-to-go function

of each policy converges. To address this difficulty, Optimistic Policy Iteration

(OPI), in which the policy improvement step is implemented before the con-

vergence of the evaluated cost-to-go function, was proposed, and the algorithm

has shown success in some experimental tests, but lacks theoretical support [4]

[5]. Recently, another class of simulation-based policy iteration algorithms, orig-

inating from the machine learning community, the actor-critic algorithms [6] [7]

[8], has drawn much attention. In actor-critic algorithms there is a separate

memory structure that is independent of the value function that explicitly rep-

resents the policy. The policy structure is known as the actor or action network,

since it is used to select actions, and the estimated value function is known as

the critic or critic network, because it criticizes the actions made by the ac-

tor [9]. Konda et al. [6] connected actor-critic with simulation-based policy

iteration, claiming that the need to have the policy evaluation recursion con-

verge before implementing policy improvement is circumvented in actor-critic

type simulation-based policy iteration algorithms by two-time scale stochastic

approximation and providing a convergence proof of actor-critic type simulation-

based policy iteration for the discounted cost problem using the ODE (Ordinary

Differential Equation) method for stochastic approximation [6]. There are two

time scales since the outer loop (actor) operates on a slower scale and thus sees

the inner loop (critic) as essentially equilibrated, while the inner loop sees the

outer one as quasi-static.

For the average cost problem, there are also several simulation-based policy

iteration algorithms similar to those for discounted cost problems or stochastic

shortest path problems mentioned above. However, there are two differences.

The differences originate from the corresponding exact policy iteration steps.

5

First, with average cost problems, the evaluated costs in the policy evaluation

step are the average cost and differential costs, instead of the total costs used

in discounted cost problems or shortest path problems. Second, results and

analyses of simulation-based policy iteration on average cost problems depend

on the chain structure of the transition matrices of Markov chains generated by

stationary policies, whereas those for discounted cost problems or shortest path

problems do not [10] [11].

On the basis of the chain structure, MDPs for average cost problems can

be classified as recurrent, unichain, or multichain [3]. An MDP is recurrent

if the transition matrix corresponding to every deterministic stationary policy

contains a single recurrent class. An MDP is unichain if the transition matrix

corresponding to every deterministic stationary policy contains one single recur-

rent class plus a possibly empty set of transient states, whereas it is multichain

if the transition matrix corresponding to at least one stationary policy consists

of two or more recurrent classes.

For the average cost problem, under the assumption that the MDP is re-

current, Cao [12] proposed two single-path algorithms and provided convergence

conditions; Tsitsiklis and Van Roy [13] extended the temporal-difference learning

algorithm from the discounted cost case to the average cost case; Konda [6] also

gave several actor-critic algorithms, and provided convergence proofs. However,

the recurrence assumption seldom holds in problems of practical interest.

Under the assumption that the MDP is unichain and that there is at least

one common state that is recurrent under all policies, Bertsekas [14] converted

the average cost problem into a stochastic shortest path problem, and provided

a multi-run scheme and corresponding error bound for simulation-based policy

iteration. In this algorithm, the reference state is the same from iteration to

iteration, and the differential costs are obtained by subtracting from the expected

total cost the product of the average cost and expected number of transitions.

6

A simulation-based version of value iteration, often referred to as Q-learning,

updates directly estimates of the Q-factors associated with an optimal policy

[14]. Q-learning for the stochastic shortest path problem and the discounted

cost problem has been analyzed by Watkins et. al. [15] and Tsitsiklis [16].

For the average cost problem, under the unichain plus common recurrent state

assumption, Abounadi et al. proved the convergence of Q-learning using the

ODE method [17].

Simple simulation-based algorithms only involve a lookup table representa-

tion of the cost-to-go (differential costs for the average cost simulation-based

policy iteration algorithm or Q factor for the Q-learning algorithm), in the sense

that a separate variable J(i) is kept in memory for each state i. J(i) can be

calculated for the stochastic shortest path problem for instance, as the sample

mean of the cumulative cost from state i to the termination state. This cost-to-

go can also be evaluated by incremental methods such as the method of temporal

differences.

This lookup table representation is only applicable for moderate size prob-

lems. If a given problem has very large state space, a compact representation of

the cost-to-go function is needed. The cost-to-go approximator can be thought

as a scheme for depicting a high-dimensional cost-to-go vector, J̃µ(i, r), using a

lower-dimensional parameter vector. Developing a cost-to-go approximate rep-

resentation involves choosing an approximate architecture, a certain functional

form involving a number of free parameters, and features, which are meant to

represent the most important characteristics of a given state.

Broadly, approximation architectures can be classified into two main cate-

gories: linear and nonlinear ones. A linear architecture is of the general form

J̃(i, r) =
M∑

m=0

r(m)φm(i),

where r(m), m = 1, . . . , M , are the components of the parameter vector r, and

7

φm are fixed, easily computable functions. A common nonlinear architecture is

a neural network model such as the multilayer perceptron with a single hidden

layer. There are many algorithms to train the parameters, see Chapter 3 of [4]

for details.

It is often the case that the approximation architecture is too complicated

for state representation and some structural pieces are used to represent states.

These structural pieces are called features, which are fed into the approximation

architecture instead of the state itself. Usually, these features are handcrafted,

based on the particular problem. Some example of features include state vari-

ables, heuristic cost-to-go and/or past cost-to-go.

Simulation-based dynamic programming methodologies have been success-

fully applied in several problems. Some of those problems are games, such as

American football, Tetris and backgammon [4]; others are a maintenance re-

pair problem [4], communication problems such as dynamic channel allocation

[4], call admission control [5], a retailer management problem [18], and missile

defense and interceptor allocation problems [19]. The features are problem de-

pendent and in some of the cases, the state vector, various combinations of its

components, a heuristic policy, and the cost-to-go for some sub-optimal solution

have been used as features. Linear architectures as well as more complicated

nonlinear architectures have been applied.

In some cases, the policy is also parameterized, as in [20]. Then, an MDP

problem can be transformed to a problem of finding the optimal parameters min-

imizing only the expected cost functions, and thus can be solved by simulation-

based optimization algorithms, such as stochastic approximation algorithms

based on gradient estimation.

Marbach [20] derived one form of the gradient of the cost function with re-

spect to the parameters for weighted cost problems using perturbation analysis,

and developed two simulation-based gradient algorithms, one that updates pa-

8

rameters at regenerative points and the other that updates parameters at every

time step. The technique, used in the proof of convergence of the algorithm

that updates parameters at regenerative points in [20], updates at every time

step, and is similar to the one presented in [21]. However, [21] assumes that the

transition probabilities are independent of the parameters, which is not the case

in [20]. Other related work on the convergence of stochastic approximation algo-

rithms driven by perturbation analysis can be found in [22] [23] [24]. For more

about gradient estimation via perturbation analysis, see [25] [26] [27]. Here we

develop a two-timescale simulation-based gradient algorithm for weighted cost

problems and prove its convergence. The concept of “two-timescale algorithms”

was introduced by Borkar [28], though this idea of using two timescale stochas-

tic approximation with the faster timescale doing appropriate averaging is not

new [29]. Borkar [28] mentioned that one important instance of two-timescale

is the infinitesimal perturbation analysis based stochastic approximation, which

requires averaging over regeneration periods. Bhatnagar et al. [30] [31] [32] [33]

proposed several Kiefer-Wolfowitz-type two-timescale stochastic approximation

algorithms for average cost problems. For MDPs, Borkar and Konda [34] [6] [7]

also proposed actor-critic algorithms and cast them as two-timescale algorithms

for convergence proofs.

Another type of stochastic algorithm based on gradient estimation is Simulta-

neous Perturbation Stochastic Approximation (SPSA), proposed by Spall [35],

and has been successfully applied to many optimization problems [36]. Like

stochastic approximation algorithms based on finite difference methods, such as

the Kiefer-Wolfowitz-type stochastic approximation algorithm [37], SPSA also

requires no detailed knowledge of the system dynamics. The chief merit of SPSA

is that it requires only two sample estimates to calculate a gradient estimate

of the objective function, regardless of the dimension of the parameter vector.

Convergence of SPSA has been analyzed under various conditions. Much of the

9

literature assumes the function to be three times differentiable [35] [38] [39] [40]

[41] [42] [43], though weaker assumptions are found as well, e.g., [44] [45] [46]

[47] [48]. However, all of them require that the function be at least differen-

tiable. Among the weakest assumptions on the minimized function, Fu and Hill

[45] assume that the function is differentiable and convex, and Chen et al. [44]

assume that the function is differentiable and the gradient satisfies a Lipschitz

condition.

The research literature on production planning and scheduling in semicon-

ductor manufacturing is substantial and has yielded some impressive results [49]

[50]. However, the majority of research on fab-level capacity allocation involves

static optimization (mostly mathematical programming) [1] [51] [52] [53] [54]

[55] [56] or steady-state queueing network models [57], where the objectives and

parameters are stationary over time. On the other hand, in the case of life cycle

dynamics and the effect of transient behavior at the fab-level, there has been

significantly less research.

1.4 Contributions

The main contributions of this thesis are as follows:

First, we propose a Markov Decision Process model for fab-level decision

making.

Second, we develop a simulation-based policy iteration algorithm for average

cost problems under a unichain assumption, relaxing the common recurrent state

assumption.

Third, we correct errors in recently proposed simulation-based gradient al-

gorithms for weighted cost problems, compare them with a new two-timescale

version that we develop, and provide a theoretical convergence proof.

Fourth, we propose two new Simultaneous Perturbation Stochastic Approx-

10

imation (SPSA) algorithms for weighted cost problems and verify their effec-

tiveness via simulation; then, we consider a general SPSA algorithm for function

minimization and show its convergence under a weaker assumption: the function

does not have to be differentiable.

Finally, we analyze the structure of the optimal policy for a special “one-

machine, two-product” case of our fab-level decision-making problem, and dis-

cuss implementation issues on solving the model.

The thesis is organized in the following way:

In Chapter 2 we present the definition of Markov Decision Processes (MDPs)

and describe the fab-level decision-making MDP model. The model employs

an aggregate factory model for describing the state of the fab. Aggregation

avoids excessive computational complexity, since a detailed factory model would

have too many states. A policy will specify, for each possible factory state,

the best actions to implement according to the objective function of the phase.

Such actions include purchasing or discarding equipment, upgrading equipment

and processes, and the allocation of equipment to product lines. Actions have

costs that include the investment and operating cost and possible production

shortages, and benefits that include increased capacity.

In Chapter 3 we develop a simulation-based policy iteration algorithm for

average cost unichain problems and carry out experiments on inventory control

problems. For the average cost problem, results and analyses of policy iter-

ation, as well as simulation-based policy iteration algorithms, depend on the

chain structure of the transition matrices of Markov chains generated by sta-

tionary policies, whereas those for total cost problems do not. On the basis of

the chain structure, MDPs for average cost problems can be classified as recur-

rent, unichain, or multichain [3], with recurrent the strongest and multichain the

weakest. The simulation-based algorithms for the average cost problem studied

11

so far are under either a recurrence assumption or a unichain plus one common

recurrent state assumption [3]. Here we propose a simulation-based policy it-

eration algorithm under a unichain assumption, relaxing the common recurrent

state assumption.

In Chapter 4 we develop a new two-timescale simulation-based gradient al-

gorithm for the weighted cost problem. Here, the weighted cost problem is an

infinite horizon MDP problem with weighted expected total cost criterion, where

the expected total cost is defined in the same way as that in the stochastic short-

est path problem. This problem is first discussed by Marbach [20] (where it is

referred to as the weighted reward-to-go problem), and it is meant to capture

the situation where the decision maker wants to minimize the cost-to-go, given

that the initial state is equal to a specific state with some known probability.

We, as in [20], assume that policies of a given weighted cost problem can be pa-

rameterized. Then the weighted cost problem can be transformed to a problem

of finding the optimal parameters minimizing only the weighted expected cost,

and thus can be solved by stochastic approximation algorithms based on gradi-

ent estimation. Marbach, in [20], derived an expression of the gradient of the

cost function with respect the parameters and developed two simulation-based

gradient algorithms. However, there are errors in those algorithms. We propose

a new two-timescale simulation-based algorithm, correct Marbach’s algorithm,

and compare these three algorithms via numerical experiments on a parking

example.

In Chapter 5 we first describe two Simultaneous Perturbation Stochastic Ap-

proximation (SPSA) algorithms for weighted cost problems, carry out numerical

experiments on the parking problem, and compare them with simulation-based

gradient algorithms discussed in Chapter 4. In our SPSA algorithms, it is not

necessary to have detailed knowledge of the system such as the transition prob-

abilities, whereas such knowledge is required by the algorithms in Chapter 4.

12

Second, we consider a general SPSA algorithm for function minimization and

show that the SPSA algorithm converges under a weaker assumption – the func-

tion does not have to be differentiable.

In Chapter 6 we deal with the fab-level decision-making MDP problem. Our

methodology to solve this problem is first to characterize the structure of opti-

mal policies for some special cases, and then to use the structure to motivate

heuristic policies for more general cases and implement simulation-based algo-

rithms to determine parameters of the heuristic parameterized policies. Some-

times we also use simulation-based policy iteration to obtain prior knowledge

of optimal policies. First, we apply simulation-based policy iteration on a sim-

ple two-machine, two-product example of the fab-level decision-making problem.

Numerical experiments indicate that a near-optimal policy that matches intu-

ition can be obtained within 10 iterations. The resulting policies also give us

some prior knowledge of optimal policies. However, this algorithm can not be

extended to more complicated cases of the fab-level decision-making problem,

since the control space expands very fast. Note that the crucial part of our

methodology is obtaining parameterized near-optimal policies, for which we can

use simulation-based algorithms introduced in Chapter 4 and Chapter 5 to ob-

tain the optimal parameters of the heuristic policy. Hence, in the second part

of this chapter, we focus on deriving the structure of an optimal policy for a

special one-machine, two-product case. Finally, we discuss how to implement

simulation-based algorithms on a testbed example, including reformulation of

the finite horizon problem and parameterizing heuristic policies.

13

Chapter 2

Markov Decision Processes

2.1 Markov Decision Process Formulation

A Markov Decision Process is a framework containing states, actions, costs,

probabilities and the decision horizon for the problem of optimizing a stochastic

discrete-time dynamic system. The dynamic system equation is

xt+1 = ft(xt, ut, wt), t = 0, 1, . . . , T − 1, (2.1)

where t indexes a time epoch; xt is the state of the system; ut is the action to

be chosen at time t; wt is a random disturbance which is characterized by a

conditional probability distribution P (· | xt, ut); and T is the decision horizon.

We denote the set of possible system states by S and the set of allowable actions

in state i ∈ S by U(i). We assume S, U(i), and P (· | xt, ut) do not vary with t.

We further assume that the sets S and U(i) are finite sets, where S consists of

n states denoted by 0, 1, . . . , n− 1.

If, at some time t, the system is in state xt = i and action ut = u is applied,

we incur a stage cost g(xt, ut) = g(i, u), and the system moves to state xt+1 = j

with probability pij(u) = P (xt+1 = j | xt = i, ut = u). pij(u) may be given a

14

priori or may be calculated from the system equation and the known probability

distribution of the random disturbance. g(i, u) is assumed bounded.

Consider the infinite horizon total cost problem, either the discounted

cost problem, where there is a discount factor less than one, or the stochastic

shortest path problem, in which it is assumed that there is a special cost-free

termination state n in the system and the system remains there at no further

cost once it reaches that state. The objective is to minimize over all policies

π = {µ0, µ1, . . .} with µt : S → U, µt(i) ∈ U(i) for i and t, the total expected

cost,

Jπ(i) = lim
T→∞

E

{
T−1∑
t=0

αtg(xt, µt(xt)) | x0 = i

}
. (2.2)

where α is the discount factor with 0 < α ≤ 1, with α = 1 for the stochastic

shortest path problem and 0 < α < 1 for the discounted cost problem.

A stationary policy is an admissible policy of the form π = {µ, µ, . . .}; we

denote it by µ∞.

Under certain assumptions [14], the following hold for the infinite horizon

total cost MDP problem:

• The optimal costs J∗(0), . . . , J∗(n− 1) satisfy optimality equations,

J∗(i) = minu∈U(i)[g(i, u) + α
∑n−1

j=0 pij(u)J∗(j)], i = 0, . . . , n− 1, (2.3)

and in fact they are the unique solution of this equation.

• For any stationary policy µ∞, the costs Jµ(0), . . . , Jµ(n−1) are the unique

solution of the equation

Jµ(i) = [g(i, µ(i)) + α
∑n−1

j=0 pij(u)Jµ(j)], i = 0, . . . , n− 1. (2.4)

One method to solve the optimality equations is policy iteration. Policy

iteration consists of a sequence of policy evaluation and policy improvement at

15

each iteration. At each iteration step k, a stationary policy µk
∞ = {µk, µk, . . .}

is given.

1. Policy evaluation: obtain the corresponding cost-to-go Jµk(i) satisfying

(2.4).

2. Policy improvement: find a stationary policy µk+1, where for all i,

µk+1(i) is such that

g(i, µk+1(i)) + α
n−1∑
j=0

pij(µ
k+1(i))Jµk(j) = min

u∈U(i)
[g(i, u) + α

n−1∑
j=0

pij(u)Jµk(j)].

(2.5)

If Jµk+1 = Jµk for all i, the algorithm terminates; otherwise, the process is

repeated with µk+1 replacing µk.

Under certain assumptions, the policy iteration algorithm terminates in a

finite number of iterations with an optimal stationary policy.

Another method of solving the optimality equations is value iteration. It is

done by using the recursion

Jk+1(i) = minu∈U(i)[g(i, u) +
∑n−1

j=0 pij(u)Jk(j)], i = 0, . . . , n− 1. (2.6)

given any initial conditions J0(0), . . . , J0(n− 1), to compute the sequence Jk(i).

For the infinite horizon average cost problem, the objective is to mini-

mize over all policies π = {µ0, µ1, . . .} with µt : S → U, µt(i) ∈ U(i) for i and t,

the average cost per stage

Jπ(i) = lim
T→∞

1

T
E

{
T−1∑
t=0

g(xt, µt(xt)) | x0 = i

}
. (2.7)

A stationary policy is an admissible policy of the form π = {µ, µ, . . .}; we denote

it by µ∞.

In an average cost MDP, results and analyses depend on the chain structure

corresponding to stationary policies.

16

Under the unichain assumption, the following hold for average cost MDPs [3]

[14]:

• The average cost per stage associated with an initial state i and a station-

ary policy µ∞, Jµ(i), and the optimal average cost from state i, J∗(i), are

independent of the initial state i. We denote these by ηµ and η∗, respec-

tively.

• The optimal average cost η∗ together with some vector h∗ = {h∗(0), . . . ,

h∗(n− 1)} satisfies the optimality equations

η∗ + h∗(i) = minu∈U(i)[g(i, u) +
∑n−1

j=0 pij(u)h∗(j)], i = 0, . . . , n− 1.

(2.8)

Furthermore, if µ(i) attains the minimum in the above equation for all

states, the stationary policy µ∞ is optimal. In addition, we may set h∗(0) =

0 to uniquely determine the vector h∗, which is also called the optimal

differential cost.

• Given a stationary policy µ∞ with corresponding average cost per stage ηµ,

there is a unique vector hµ = {hµ(0), . . . , hµ(n − 1)} such that hµ(0) = 0

and

ηµ + hµ(i) = g(i, µ(i)) +
∑n−1

j=0 pij(µ(i))hµ(j), i = 0, . . . , n− 1. (2.9)

hµ is also called the differential cost associated with a stationary policy

µ∞.

The policy iteration algorithm for the average cost problem is as follows: at

each iteration step k, a stationary policy µk
∞ = {µk, µk, . . .} is given.

1. Policy evaluation: obtain the corresponding average and differential cost

ηk and hk(i) satisfying (2.9).

17

2. Policy improvement: find a stationary policy µk+1, where for all i,

µk+1(i) is such that

g(i, µk+1(i)) +
n−1∑
j=0

pij(µ
k+1(i))hk(j) = min

u∈U(i)
[g(i, u) +

n−1∑
j=0

pij(u)hk(j)].

(2.10)

If ηk+1 = ηk and hk+1(i) = hk(i) for all i, the algorithm terminates; otherwise,

the process is repeated with µk+1 replacing µk.

Under the unichain assumption, the policy iteration algorithm terminates

in a finite number of iterations with an optimal stationary policy. See [3] for

multichain problems.

Consider the finite horizon problem, where T is finite. The objective is

to minimize over all policies π = {µ0, µ1, . . . µT−1} with decision rules µt : S →
U, µt(i) ∈ U(i) for i and t, the total expected cost

Jπ(i) = E

{
G(xT) +

T−1∑
t=0

g(xt, µt(xt)) | x0 = i

}
. (2.11)

The optimality equations are given by:

J∗
T (i) = G(i); i = 0, . . . , n− 1

J∗
t (i) = minu∈U(i)

∑n
j=0 pij(u)(g(i, u, j) + J∗

t+1(j)).
(2.12)

Note that the finite horizon problem can be converted into the stochastic

shortest path problem by viewing time as an extra component of the state.

In the reformulation, transitions occur from state-time pairs [i, t] to state-time

pairs [j, t+1] according to the transition probabilities pij(u) of the finite horizon

problem; the termination state corresponds to the end of the horizon; it is reached

in a single transition from any state-time pair of the form [j, T] at a terminal

cost G(j) [4]. The reformulation is as follows:

J∗([i, T]) = G(i); i = 0, . . . , n− 1

J∗([i, t]) = minu∈U([i,t])
∑n

j=0 pij(u)(g(i, u, j) + J∗([j, t + 1])).

(2.13)

18

So potentially, policy iteration or value iteration algorithms for the stochastic

shortest path problem can apply to the finite horizon problem.

2.2 Fab-Level Decision-Making Problem

2.2.1 Fab-Level Decision Making MDP Model

In our IPDPM project, we proposed a Markov Decision Process (MDP) model

for the highest level of the hierarchy that will yield decision support for operating

the fab in each of the phases of its life cycle and include life cycle dynamics [58].

The MDP can include life cycle dynamics such as technology shrink. MDP

models result in policies that utilize the available information in a way that

provides a trade-off between immediate and future benefits and costs, and that

utilizes the fact that observations will be available in the future (cf., e.g., [3],

or [14]). The proposed MDP employs an aggregate factory model for describing

the state of the fab. Aggregation avoids excessive computational complexity,

since a detailed factory model would have too many states. A policy specifies,

for each possible factory state, the best actions to implement according to the

objective function of the phase. Such actions include purchasing (or discarding)

equipment, upgrading equipment/processes, and the allocation of equipment to

product lines. Actions have costs that include the investment and operating cost

and possible production shortages (from the production targets), and benefits

that includes increased capacity (maximum throughput).

The costs, benefits, and the system state are subject to random uncontrollable

events that are both exogenous and endogenous to the fab: equipment may

be delivered late or may fail, the performance of newly-installed equipment is

uncertain, and the market for certain chips may collapse.

The chief components of the MDP model are the following:

19

• the factory state – aggregate summary of factory operations sufficient to

characterize the objectives and potential actions;

• the actions to be taken – higher-level decisions such as the addition of new

process technologies (day-to-day operational decisions such as work order

releases and detailed scheduling are left to lower-level decision models that

follow the chosen policies);

• the objective function – a key feature of the model is that the weights will

differ for each of the life cycle phases;

• sources of uncertainty – characterize the dynamic nature of the system

over the life cycle and hence change over time.

Figure 2.1: Fab-Level Decision Making MDP Model

Our proposed MDP model (see Figure 2.1) for higher level control is one in

which the aggregate factory state is summarized by a vector of capacities X(t) at

20

time epoch t, where the components X(l,i),w(t) represent the capacity (measured,

for example, in wafer starts per day or number of machines) of type w allocated

to product l and operation i (this could be a type of sub-factory manufacturing

a particular product or a type of process). Actions to be taken could be the

decisions to

(i) increase the capacity of type w, possibly by the introduction of new tech-

nology; or

(ii) switch over units of type w capacity from product l and operation i to

product m and operation j (for example, by qualifying tools for a different

process).

Randomness is explicitly modeled by the demand dl(t) for product l. The

dynamics of the model includes the fact that, after the decision is made to

increase capacity, there is a delay, possibly random, in the ability to fully utilize

the increased capacity, and that the capacity may gradually ramp up to the

expected level. The evaluation criteria include a number of factors, including

costs for excess capacity (overage) and capacity shortages (underage), cost of

production, cost of converting capacity from one type of operation to another,

and the cost of increasing capacity. A more precise description of the model is

given below.

We denote by T the duration of the planning horizon and by t the periods

i.e., t ∈ {1, 2, .., T}. Each product is characterized by a sequence of operations,

where an operation is defined as a job to be performed on a wafer. There are

typically many operations that are performed on a wafer before the final product

emerges. Also, an operation may be performed several times on a wafer. For

instance, for a product which requires operations i, j and k to be performed, the

actual sequence of operations before the final product (say P) comes out could

(in the order from left to right) be iijjjkijkk. In what follows, we shall not take

21

into account the particular sequences of operations required for manufacturing

the products. However, we shall take into account the number of operations of

a particular type required for any given type of product. Thus in the example

above, product P requires three i, four j and three k operations to be performed

on it. We shall measure capacity in terms of the number of machines or tools.

Note that in general, machines or tools are capable of performing one or more

types of operations. Thus a machine capable of performing operations i, j and

k could be used for manufacturing all those products which require one or more

of these operations (and in any numbers and combinations of them).

We now introduce more necessary notation for the MDP model. Let Nt

represent the total number of operations associated with all the machines in the

firm, in period t. For simplicity, we shall denote the operations by 1, 2, .., Nt.

Note that Nt depends on t since in any period t, one could decide to purchase

new equipment (machines) which allows a greater number of operations. Let

Xt be the set of all operations in period t, or Xt = {1, .., Nt}. Let 0 represent

‘no operation’. Let Pt be the set of products that the firm produces in period

t, plus the ‘no product’ element 0, i.e., 0 ∈ Pt. Note that Pt set also depends

on t, so that product mixes may change over time. If a machine is idle, we can

say that it is manufacturing product 0, by performing operation 0. We call a

word as any lexicographic ordering of elements of Xt with the first letter 0 in it.

Let Zt represent the set of all possible words. We call the capacity associated

with word w as type w capacity. Specifically, if there is a nonzero capacity

associated with a particular word w̄, it would mean that there exists at least

one machine in the facility which is capable of performing all operations in the

word w̄. Later, we shall also define the set of all feasible words. In the following,

the various quantities are indexed by terms of the type (l, i) and w. These will

be used to indicate the corresponding quantities associated with product l and

operation i on machines of type w. Note that in the tuple (l, i), if either l or i is

22

zero, the other quantity (i or l respectively) will automatically be zero. Also, if a

particular combination of l, i and w is infeasible, all the corresponding quantities

containing (l, i) and w will be assumed to be taking value zero. The following

notation will also be used:

• Tw(t): total type w capacity in period t.

• Bw(t): total amount of new type w capacity bought in period t.

• Dw(t): total amount of old type w capacity discarded in period t.

• Uw(t): total amount of available reserve capacity of type w, in period t.

• X(l,i),w(t): amount of available type w capacity allocated to product l, for

operations of type i ∈ w (l �= 0, i �= 0), in period t.

• Kw: availability factor for type w machines defined as the long-run average

fraction of times that type w machines are available.

• C(l,i),w: number of wafers per unit time of product l produced after type

i operations are performed on machine w, constant for given l, i and w;

C(0,0),w = 0 ∀ w ∈ Zt.

• F(l,i),w: number of type i operations in product l, on machines (capacity)

of type w.

• dl(t): demand for product l, in period t.

• Il(t): inventory for product l, in period t.

• V (l,i),(m,j)
w (t): amount of type w capacity switched over from product l and

operations of type i to product m and operations of type j, in period t, for

i, j ∈ w, l �= 0 and i �= 0.

23

• V (0,0),(m,j)
w (t): amount of available reserve and/or newly bought capacity of

type w allocated to product m and operations of type j ∈ w, in period t.

• V (l,i),(0,0)
w (t): portion of allocated type w capacity for product l and opera-

tions of type i, taken away (sent to reserve or permanently discarded), in

period t.

• Ca
w(x): cost of increasing type w capacity by purchasing x units of new

capacity.

• Cb
w(x): cost of decreasing type w capacity by discarding x units of old

capacity.

• Cc
w(x): cost of switching over x units of type w capacity from one type of

production and/or operation to another.

• Cd
l (y): inventory holding/backlogging cost for y units of product l.

• Ce
w(x): operating cost for x units of type w capacity.

We now define the set of all feasible words At ⊂ Zt as follows. Let A1
�
=

the set of all words with nonzero total capacity associated with them in the first

period of the planning horizon and such that each word is characterized by a

set of equipment that can perform all the operations in it. Also for subsequent

periods (t > 1), let At+1
�
= At ∪ {w �∈ At|Bw(t + 1) > 0}. In what follows, we

shall restrict our attention to the set of all feasible words At, in period t, since

it contains all words which currently have or had in an earlier period nonzero

total capacity associated with them.

Remark: Note that At for t > 1 may also contain words with zero total

capacity associated with them in period t, as a result of discarding capacity in

a previous period. Words of the type 0i ∈ At represent dedicated capacity for

product i. The availability factor Kw for type w machines is required to take into

24

account the effect of breakdowns, periodic maintenance etc. Also for w ∈ At,

the available reserve capacity Uw(t)
�
= KwTw(t)−∑

{(l,i)∈Pt×w|l �=0,i�=0} X(l,i),w(t) is

the capacity available in period t after the various capacity allocations to the

products and operations have been made.

The state vector at time t is given by

X(t) =
[
Tw(t), X(l,i),w(t), Il(t)

]
,

l ∈ Pt\{0}, i ∈ w\{0}, w ∈ At, and the action vector at time t is

U(t) =
[
Bw(t), Dw(t), V (l,i),(m,j)

w (t)
]
,

l, m ∈ Pt, i, j ∈ w, w ∈ At, where it is assumed that V (l,i),(m,j)
w (t) = 0 if (l, i) =

(m, j). At the beginning of a period, the decision maker observes the system

state and chooses an action.

The total cost over the entire planning horizon that we want to minimize is

J = E

[
T−1∑
t=0

g(X(t), U(t))

]

where

g(X(t), U(t)) =
∑

w∈At

(Ca
w(Bw(t)) + Cb

w(Dw(t)))

+
∑

w∈At

∑
{(l,i),(m,j)|l,m∈Pt,i,j∈w,(l,i)�=(m,j)}

Cc
w(V (l,i),(m,j)

w (t))

+
∑
l∈Pt

(Cd
l (Il(t)) +

∑
w∈At

∑
{(l,i)∈Pt×w}

Ce
w(X(l,i),w(t))

We have the following state equations (w ∈ At):

Tw(t + 1) = Tw(t) + Bw(t)−Dw(t), (2.14)

X(l,i),w(t + 1) = X(l,i),w(t)

+
∑

{(m,j)∈Pt×w|(m,j)�=(l,i)}
(V (m,j),(l,i)

w (t)− V (l,i),(m,j)
w (t)), (2.15)

where l ∈ Pt, i ∈ w, l �= 0, i �= 0,

25

Il(t + 1) = Il(t)

+ min
i

 ∑
{w∈At|F(l,i),w>0}

1

F(l,i),w

C(l,i),wX(l,i),w(t)


−dl(t), l ∈ Pt\{0}, (2.16)

The constraints are as follows (w ∈ At):∑
{(m,j)∈Pt×w|(m,j)�=(l,i)}

V (l,i),(m,j)
w (t) ≤ X(l,i),w(t),

i ∈ w, l �= 0, i �= 0, (2.17)∑
{(m,j)∈Pt×w|m�=0,j �=0}

V (0,0),(m,j)
w (t) ≤ Uw(t)

�
= KwTw(t)

− ∑
{(m,j)∈Pt×w|m�=0,j �=0}

X(m,j),w(t), w ∈ At, (2.18)

V (l,i),(m,j)
w (t) ≥ 0, (2.19)

Tw(t), Bw(t) ≥ 0, (2.20)

Tw(t) ≥ Dw(t) ≥ 0. (2.21)

The second term on the RHS of Equation (2.16) is the ‘throughput term’ in

the inventory equation and gives the number of ‘finished wafers’ of product l in

period t; thus, the bottleneck operation for a particular product for the given

state of allocated capacity is essentially the operation(s) yielding the minimum

term (i.e., the arg min) in Equation (2.16). There is no machine work-in-process

inventory explicitly considered (only finished product inventory), as this is meant

to be a higher-level planning model, but the difference between reserve capacity

and excess capacity at a non-bottleneck machine is still captured in the last term

of the cost function, in the form of an operational charge for allocated capacity

(versus no such charge for reserved capacity). In Equation (2.17), the cases

m = 0 and j �= 0 and m �= 0 and j = 0 do not arise, since we have already

mentioned that if either of m or j is 0, the other one is automatically 0. Also,

note that Constraints (2.17) and (2.19) imply X(l,i),w(t) ≥ 0, ∀l ∈ Pt, i ∈ w, and

similarly Constraints (2.18) and (2.19) imply Uw(t) ≥ 0; hence, these two sets of

26

constraints are not included explicitly as separate constraints in our formulation.

2.2.2 Cost Model

The cost structure for our model is given by {Ca
w(x), Cb

w(x), Cc
w(x), Cd

l (y),

Ce
w(x)}, which is designed to capture most cost factors in fab-level decision mak-

ing. Next, we will identify major cost elements in each cost category, propose

ways to estimate them, and discuss various approaches to obtain parametric

values of the cost model.

The cost for additional capacity, Ca
w(x), covers equipment purchase cost,

equipment installation cost, equipment qualification cost, training cost, and nec-

essary new facility cost (e.g., additional clean room). Installation cost is charac-

terized as a certain percentage of total equipment purchase cost. Qualification

costs represent the costs directly involved in the initial processing of wafers to

establish that the equipment is performed within specifications; and the cost

includes the total labor cost involved and the production revenue lost during

the period and the cost of wafer used. Training cost is counted in man-hours

spent on training engineers, maintenance men, and operators. New facility cost

is proportional to the floor space (square feet) of the clean room.

The cost for discarding capacity, Cb
w(x), is equal to the residual value of

the equipment, and can be handled by the so-called straight line depreciation

method in accounting. If a tool is discarded within its life time (also called

depreciation life), the cost for discarding is the original tool cost multiplied by a

ratio which equals (life time - used time)/ life time; otherwise, there is no cost

for discarding.

The switch-over cost, Cc
w(x), also depending on products, is a function of

the tool set-up time and labor change time due to switch over. Note there is no

switch-over cost for batch tools if products are switched among that batch tool

group. And there is no switch-over cost for sending capacity to reserve.

27

Inventory holding cost and backlogging cost are both described in Cd
w(y).

Inventory holding cost is related to inventory quantity, item value and length of

time the inventory is carried. The cost consists of the cost of capital, variable

costs of taxes and insurance on inventories, and the cost involved in storing

inventory. Backlogging cost, in our case, is equal to the product’s contribution

margin, which is the difference between the selling price and unit production

cost. Note that Cd
w(y) can take market dynamics into account.

The operating cost, Ce
w(x) covers the handling cost to load and unload prod-

uct, tool recurring cost, labor cost for operating tools, utility cost, supplies and

consumables cost, and material cost (e.g. mask), etc.

Many of the parametric values of the cost model developed are readily avail-

able or estimated in the accounting departments or other departments in a com-

pany. Labor costs, for instance, are available in the personnel department; tool

purchasing costs can be obtained in the purchasing department. Inventory costs

can be obtained from warehouses. The lost profit due to backlogging is not

known before the total cost and income are calculated, but it can be estimated

from accounting records using regression analysis. Total set-up time for each

piece of equipment is typically obtained from recipes of processes. In addition,

parameters can be obtained from parameters of COO models in industry.

2.2.3 Demand Model

We model the demand in our operational model as stochastic processes and we

consider three demand patterns. It is assumed that there are three products

A, B, and C, in the same product family. For example, CMOS8, CMOS10 and

CMOS12 can be three products in a memory chip product family.

In pattern 1 and pattern 2, we assume that demands are independent among

types of products and over periods. In pattern 3, we assume that demands for

different products are correlated.

28

Demand

Demand

Product B

Product C

Time

Time

Product A

Time

Total Demand

Product A

Product B

Product C

Demand

Demand

Demand

Total Demand

Time Horizon

Time Time

Time

Time

Time

Demand
Average

Average

Average

Average

Average

Average

Average

Average

Time Horizon

Figure 2.2: Demand Pattern 1 and Demand Pattern 2

In pattern 1, we consider a short time period, with about the duration of the

product’s fitup ramp, and assume that the demand for product A is decreasing,

the demand for product B is steady, and the demand for product C is increas-

ing. It is meant to capture the situation that the technology for these products

migrates forward from product A to product C. A special case, in which it is

assumed that all demands have normal distribution and their averages are linear

in time, is shown in Figure 2.2.

In pattern 2, we consider a longer period that ranges from the time when

product A emerges to the time when product C dies out. Demand for each

product has a life time. And the new product up-ramp compensates the down-

ramp of the old product. The slope is not necessarily the same. If the up-ramp

slope always greater than the down-ramp’s, we are dealing with increasing total

29

demand. A special case of pattern 2 with linear demand average is also shown

in Figure 2.2.

Demand

Demand

Demand
Average

Average

Average

Time Horizon

Time

Time

Time

Aggregate demand of product B & C

Aggregate demand of Product A, B, & C

Aggregate demand of product C

Figure 2.3: Demand Pattern 3

In pattern 3, we consider correlated demand among products. Demands are

given as the aggregate demands for products existing in the product family. It

is assumed that the aggregate demands first increase, then become stable, and

finally die out. It is meant to capture the fab life cycle dynamics. A special case

with normal distribution and linear slope is shown in Figure 2.3.

The parameters in the patterns, such as lifetime of products, can be obtained

via consulting with industry colleagues.

2.2.4 Simple Example

In order to get a better understanding of how the model would be specified in

practice, we provide here a very simple example of a fab producing just two prod-

ucts that each have two operations (litho and etch). The example is meant to be

30

illustrative of the notation and the proposed MDP model, especially with regard

to the factory state and capacity expansion/allocation actions. For actual-sized

fabs, the notation would all be handled by a computer, as it would be practically

infeasible to enumerate the various components of the model. Specifically, the

fab will be characterized as follows. There are two products: “A” and “B”; two

operations on each: “litho” and “etch”, distinguished by product; machines –

litho or etch – could be flexible (able to do both A and B operations) or ded-

icated (only able to do either A or B); operation times, which depend on the

product and the machine.

To get a feeling for the computational demands of solving our model, as

well as to gain some insight into the structure of optimal expansion and allo-

cation policies we worked through some numerical runs for the simple example

to illustrate the application of the model for finding the optimal switching pol-

icy between two flexible capacities. The software laboratory SYSCODE [59]–

which implements several algorithmic schemes for solving dynamic programming

models – is used here to obtain the optimal policy.

In these experiments, we also assume the following. During the decision hori-

zon, no machine is purchased, discarded, or sent to reserve, and no maintenance

is required. The only actions are to switch flexible machines between different

products. For each type of machine (litho or etch), no more than one machine

can be switched from one product and/or operation to another in a period.

Products A and B are operated in whole unit and half units, respectively. The

inventory warehouses for products A and B have capacities of 1 and 0.5 units,

respectively. There is a limit on backlogged demand of 1 and 0.5 units for prod-

uct A and B, respectively. Demand exceeding backlogging limits is lost. The

demand process for a given product is independent and identically distributed

from period to period, and demand processes are mutually independent between

products.

31

Under the above assumptions, the state vector of our MDP model takes the

form {X(A,1),013, X(A,2),024, IA, IB}, where the first and second components are,

respectively, the litho and etch capacities allocated to product A, and the third

and fourth components are, respectively, the inventory levels of products A and

B. Note that the capacity allocated to product B is simply the remainder of total

machine capacity for each tool type (litho or etch), because we have assumed

for this simple example that no capacity is ever put into reserve, thus reducing

the dimensionality of the state vector from six dimensions to four components.

Under our assumptions, the components of the state vector take values in the

following sets:

X(A,1),013 = 2−X(B,3),013 ∈ {0, 1, 2},
X(A,2),024 = 2−X(B,4),024 ∈ {0, 1, 2},

IA ∈ {−1, 0, 1},
IB ∈ {−0.5, 0, 0.5},

and thus the total number of possible states is 81. We will define a state group as

the set of states that have the same capacity allocation X(A,1),013 and X(A,2),024,

i.e., they differ only in their product inventory levels.

The action vector has the form {V (A,1),(B,3)
013 , V

(A,2),(B,4)
024 , V

(B,3),(A,1)
013 , V

(B,4),(A,2)
024 },

where the first component is the litho capacity moved from product A to product

B, the second component is the etch capacity moved from product A to product

B, the third component is the litho capacity moved from product B to product A

and the fourth component is the etch capacity moved from product B to product

A. Since switching is a two-way interaction, we will have nine possible actions

as A1 = (1, 0, 1, 0), A2 = (1, 0, 0, 0), A3 = (1, 0, 0, 1), A4 = (0, 0, 1, 0), A5 =

(0, 0, 0, 0), A6 = (0, 0, 0, 1), A7 = (1, 1, 1, 0), A8 = (0, 1, 0, 0), A9 = (0, 1, 0, 1).

A brief summary of our preliminary findings is as follows:

• If one product, say A, is more likely to be short of stock, and it has a

32

higher backlogging penalty, both litho machines and both etch machines

would be allocated to produce product A to avoid high cost. To reach this

“absorbing” machine allocation state group (2,2), usually the switching

actions are taken in one of the following ways:

– Go to the absorbing state group directly if an admissible action exists.

– First go to state group (1,1), which allocates one of each type of

machine to each product, and then go to the absorbing state group

in the next period.

– First go to the state group that is closest to the absorbing state group,

and then go to the absorbing state group.

• Optimal policies that are obtained for various cases match with intuition:

– If some operating cost is much higher than the others, it is likely that

the action leading to this operation will not be performed to avoid

high cost.

– If some switching cost is much higher than others, this switching

action is not likely to be performed.

– For state (1,1,0,0), with one of each type of machine assigned to each

product and zero inventory, when the demands are 1 and 0.5 units for

products A and B, respectively, the optimal policy is the intuitively

obvious one of not switching any capacity, i.e., continuing to run a

“balanced” fab with respect to capacity.

2.2.5 “Testbed” Example

For our model, we have provided a simple example and its computational results

above. Now we would like to provide a more realistic “testbed” example.

33

This example originates from the “testbed” in http: // www. eas. asu. edu

/ masmlab. There are seven data sets with spread sheets for factory, operation,

products, tools, and processes etc. We chose data set 4 since it has seven products

and it represents a medium-sized fab. However, there are no cost parameters in

data set 4. Fortunately, data set 4 is a simple version of ASPEN data in Factory

Explorer, which gives us more information, including the cost parameters.

From the original data set, we know that three of the seven products are

produced using a common process recipe A with 92 steps, and the other four

products are produced using another common process recipe B with 19 steps.

Since there are several reentry process steps, we group some reentries into one

operation. For example, there are 8 clean steps and they are essentially the same

operation. In this way, the 92 process steps in recipe A are aggregated into 31

operations and the 19 process steps in recipe B are aggregated into 11 operation.

So, in this example, the fab is characterized as follows. There are seven

products: “A”, “B” ,“C”, “D”, “E” ,“F” and “G”; 137 operations: 31 operations

on each of “A” “B” and “E”, distinguished by product, and 11 operations on each

of “C”, “D”,“F” and “G”; 31 tools: 3 batch tools flexible among all products,

where switching-over only happens between ABE batch and CDFG batch, batch

8 tools for product A,B, and E, 12 non-batch tools flexible among A,B, and

E, and 8 non-batch tools flexible among all products; operation times, which

depend on the product and the tool.

If we discretize every element in the state vector into 10 values, the cardinality

of the state space is 10175. If we discretize every element in the control vector

into 10 values, the cardinality of the control space is 10291. Hence, the fab-level

decision-making MDP problem suffers from both the “curse of dimensionality”

and the “curse of modeling”.

Obviously, this example cannot be solved by basic MDP algorithms. We

need to seek new approach to solve it, such as the simulation-based dynamic

34

programming algorithms.

Note that this problem not only has a large state space as in other problems,

but it also has a large control space, unlike many problems solved by simulation-

based algorithms. So we need to parameterize the policy or trade off control

state complexity with state space complexity. In addition, it is a finite horizon

problem; therefore we need to convert it into the stochastic shortest path problem

or other form for implementing simulation-based algorithms.

35

Chapter 3

Simulation-Based Policy Iteration

for Unichain Average Cost Problem

In this chapter, we study simulation-based policy iteration algorithms for average

cost problems. Some examples of average cost problems are inventory control

problems and computer and communication networks, where decisions are made

based on throughput rate or average time a job or packet remains in the system

[3].

For the average cost problem, results and analyses of policy iteration, as well

as simulation-based policy iteration algorithms, depend on the chain structure

of the transition matrices of Markov chains generated by stationary policies,

whereas those for total cost problems do not. On the basis of the chain struc-

ture, MDPs for average cost problems can be classified as recurrent, unichain,

or multichain [3], with recurrent the strongest and multichain the weakest. An

MDP is recurrent if the transition matrix corresponding to every deterministic

stationary policy contains a single recurrent class. An MDP is unichain if the

transition matrix corresponding to every deterministic stationary policy contains

one single recurrent class plus a possibly empty set of transient states, whereas

it is multichain if the transition matrix corresponding to at least one stationary

policy consists of two or more recurrent classes. The simulation-based algorithms

36

for the average cost problem studied so far are under either a recurrence assump-

tion or a unichain plus one common recurrent state assumption [3]. Here, we

develop a simulation-based policy iteration algorithm for average cost unichain

problems and carry out experiments on an inventory control problem.

In the proposed algorithm, we evaluate the average cost first and then eval-

uate realization factors [12] (the difference between the differential costs) from

states to a reference state, instead of the differential costs directly. In this way,

our problem is also converted into a stochastic shortest path problem. Using

the realization factors gives us the flexibility of choosing the reference state not

necessarily the same from iteration to iteration, which leads us to remove the

common recurrent state assumption. In addition, we embed the average cost

into the stage cost, where the new stage cost is the original stage cost minus

the average cost, and apply temporal-difference learning scheme for stochastic

shortest path problem in [4]. Thus, the proposed algorithm should be more com-

putationally efficient than the algorithm in [14]. To improve the performance

further, transient states are selected as the initial states for sample paths, and

the inverse of the visit count is chosen as the step size.

In order to illustrate the application of our algorithm to solving average cost

problems under the unichain assumption, we carried out numerical experiments

on a single item inventory control problem. We verified that the MDP model of

this problem is unichain.

3.1 Simulation-Based Policy Iteration

The basic problem we consider in this chapter is the problem of optimizing

a stochastic discrete-time dynamic system with average cost criterion, (refer

chapter 2 for detailed MDP model formulation). The objective is to minimize

over all policies π = {µ0, µ1, . . .} with µt : S → U, µt(i) ∈ U(i) for i and t, the

37

average cost per stage

Jπ(i) = lim
T→∞

1

T
E

{
T−1∑
t=0

g(xt, µt(xt)) | x0 = i

}
. (3.1)

A stationary policy is an admissible policy of the form π = {µ, µ, . . .}; we denote

it by µ∞.

In an average cost MDP, results and analyses depend on the chain structure

corresponding to stationary policies. For simplicity, we consider only unichain

MDPs in this chapter.

One method for solving average cost MDP is Policy Iteration, as introduced

in Chapter 1. Simulation-based Policy Iteration (SBPI) originates from policy

iteration, and the general structure of SBPI is the same as for exact policy

iteration. There are two differences, however [4]:

• Given the current stationary policy µ∞, the corresponding average cost

and differential costs are not computed exactly. Instead, an approximate

average cost η̂µ and approximate differential costs ĥµ(i) are obtained via

simulation. Here, noise from simulation experiments becomes a source of

error.

• Once approximate policy evaluation is completed and η̂µ and ĥµ(i) are

available, we generate a new policy µ̄∞ which is greedy with respect to

η̂µ and ĥµ(i), i.e. satisfying (2.10). The greedy policy can be calculated

exactly, or it can be approximated which introduces a new source of error.

Here we focus on the policy evaluation step since we use the same policy

improvement step as PI. First, we discuss how to approximate the average cost

associated with a stationary policy µ∞ via simulation, which by definition can

be written as

ηµ = lim
T→∞

1

T
E

{
T−1∑
t=0

g(xt, µ(xt))

}
. (3.2)

38

Given a stationary policy, if we run one long sample paths with length T , we

can obtain an approximation of the average cost via simulation as T becomes

large. We may also estimate ηµ iteratively.

Let us discuss how to approximate the differential cost via simulation. Given

a stationary policy µ∞, and assuming the corresponding Markov chain is an

aperiodic chain (this can be relaxed), we also have [3]

hµ(i) = lim
T→∞

E

{
T−1∑
t=0

(g(xt, µt(xt))− ηµ) | x0 = i

}
. (3.3)

We may refer to the average cost (3.2) as the stationary cost, since it represents

cost per stage for a system in steady state. Thus (3.3) allows interpretation of

the differential cost as the expected total difference between the total cost and

the stationary cost. The differential cost is also known as the bias [3] or the

potential [12].

Assume the Markov chain associated with the current stationary policy, start-

ing from state i, encounters state j at time epoch Tij the first time, that is,

Tij = min{t : t ≥ 0, xt = j} (note that Tii = 0, so that Tii is not the recurrent

time of state i); then

hµ(i) = lim
T→∞

E


Tij−1∑
t=0

(g(xt, µt(xt))− ηµ) +
T−1∑
t=Tij

(g(xt, µt(xt))− ηµ) | x0 = i


= E


Tij−1∑
t=0

(g(xt, µt(xt))− ηµ) | x0 = i


+ lim

T→∞
E


T−1∑
t=Tij

(g(xt, µt(xt))− ηµ) | xTij
= j


= bµ(i, j) + hµ(j),

where

bµ(i, j) ≡ E


Tij−1∑
t=0

(g(xt, µt(xt))− ηµ) | x0 = i


are called realization factors [12]. This gives us an idea how to approximate

hµ(i) via simulation.

39

We know that the unichain Markov chain associated with a stationary policy

contains a single recurrent class and a possibly empty set of transient states,

so that each state in the recurrent class is reached in a finite number of steps

from all initial states with a positive probability. If we choose one such state as

reference state r, the differential costs of all other states can be expressed as

hµ(i) = bµ(i, r) + hµ(r). (3.4)

If the reference state is simply state 0, the state having the differential cost

zero, then hµ(i) = bµ(i, r) since we set hµ(0) = 0; if not, we can first approximate

bµ(0, r) via simulation and obtain hµ(i) using hµ(i) = bµ(i, r) − bµ(0, r), since

hµ(r) = −bµ(0, r).

So the task of approximating hµ(i) reduces to approximating bµ(i, r), where

bµ(i, r) ≡ E


Tir−1∑
t=0

(g(xt, µt(xt))− η̂µ) | x0 = i


for each state i. For brevity, we refer to bµ(i, r) as bµ(i).

Now the problem is converted into a stochastic shortest path problem, where

the new stage cost is g(xt, µt(xt)) − η̂µ and the new termination state is the

reference state. Below, we apply the temporal-difference learning scheme for the

stochastic shortest path problem [4] to our problem.

The straightforward way is to generate many independent and identically dis-

tributed (i.i.d.) sample paths starting from state i and ending with the reference

state (used in [14]), and average the corresponding realization factors to obtain

an approximation to bµ(i). While this can be done separately for each state i,

an alternative is to use each sample path to obtain realization factor samples for

all states visited by the sample path by considering the realization factor of the

trajectory portion that starts at each intermediate state.

To formalize the process, suppose we perform a number of simulation runs,

each ending at the reference state r. Consider the lth time the given state i

40

is encountered, and let (i, i1, i2, . . . , iN) be the remainder of the corresponding

trajectory, where iN = r. Let c(i, l) be the corresponding realization factor

of reaching state r, that is, c(i, l) = (g(i, i1) − ηµ) + (g(i1, i2) − ηµ) + . . . +

(g(iN−1, iN)− ηµ).

Then we can estimate bµ(i) by the sample mean

b̂µ(i) =
1

L

L∑
l=1

c(i, l).

We can also iteratively calculate the sample means by using the update formula

b̂l
µ(i) := b̂l−1

µ (i) + γl(c(i, l)− b̂l−1
µ (i)), l = 1, 2, . . . , L, (3.5)

starting with b̂0
µ(i) = 0, where stepsize γl = 1/l.

Consider a trajectory (i0, i1, i2, . . . , iN) and let m be an integer between 0 and

N . We note that this trajectory contains the subtrajectory (im, im+1, . . . , iN);

this is a sample path with initial state im and can therefore be used to update

b̂µ(im) according to equation (3.5). This leads to the following algorithm. At

the end of a simulation run that generates the state trajectory (i0, i1, i2, . . . , iN),

for each m = 0, 1, . . . , N − 1, use the formula

b̂µ(im) := b̂µ(im)+γlm((g(im, im+1)−ηµ)+· · ·+(g(iN−1, iN)−ηµ)−b̂µ(im)). (3.6)

Define temporal differences (TD) [4]:

dm = (g(im, im+1)− ηµ) + b̂µ(im+1)− b̂µ(im), m = 0, 1, . . . , N. (3.7)

Note that the mth temporal difference dm becomes known as soon as the transi-

tion from im to im+1 is simulated. Then, following the state transition (im, im+1),

the cost update formula can be rewritten as follows:

b̂µ(i1) := b̂µ(i1) + γl1dm

b̂µ(i2) := b̂µ(i2) + γl2dm

· · ·
b̂µ(im) := b̂µ(im) + γlmdm

(3.8)

41

The preceding implementation of the method for evaluating the cost of a

policy µ∞ is known as TD(1) [4]. A generalization of TD(1) is TD(λ), λ ∈ [0, 1],

which replaces (3.8) by the following:

b̂µ(i1) := b̂µ(i1) + γl1λ
m−1dm

b̂µ(i2) := b̂µ(i2) + γl2λ
m−2dm

· · ·
b̂µ(im) := b̂µ(im) + γlmdm

(3.9)

Note that it is possible to encounter state i multiple times within the same

sample trajectory. We may use the cost samples of all the subtrajectories to

estimate bµ(i), and this is called the every-visit method. However, this estimator

is biased, since these subtrajectories are dependent. In an alternative method

called the first-visit method, we use only the cost sample corresponding to the

first visit to that state in a sample trajectory, in which case the corresponding

estimator is unbiased. It can be shown that the bias of the every-visit method

converges to zero, but there is strong evidence indicating that its mean squared

error eventually becomes larger than the mean squared error of the first-visit

method [4].

There are also some important practical issues in implementing our pro-

posed algorithm. First, we choose transient states as the initial states, because

transient states will be rarely visited starting from a recurrent state, whereas

recurrent states are reached from any transient state. Second, we choose the

inverse of the visit count to a state i as the stepsize γli . The visit count to a

state is the number of times the state is encountered in the sample path.

The SBPI algorithm is as follows:

1. Set k = 0, select an arbitrary stationary policy µk
∞.

2. Policy evaluation:

42

(a) Estimate the average cost η̂k:

(i) Generate one sample trajectory with length TA and arbitrary

initial state (subscript A indicates the “Average Cost”);

(ii) Set the initial estimate η̂k := 0;

(iii) For the lth sample trajectory (i0, i1, . . . , iTA
),

Following the transition (it, it+1), update η̂k by

η̂k := (1− 1/t) η̂k + 1/t g(it, µ
k(it));

(b) Estimate the differential cost ĥk(i):

(i) Determine recurrent states and transient states by Fox-Landi

algorithm;

(ii) Choose one recurrent state as the reference state r;

(iii) Generate LD sample trajectories (subscript D indicates the “Dif-

ferential Cost”),

each starting with a transient state and ending with the first

encountered reference

state r;

(iv) For the lth sample trajectory (i0, i1, . . . , r) and l = 1, . . . , LD,

Following the transition (im, im+1), update b(is), for s = 1, . . . , m,

by

b̂(is) := b̂(is) + γisλ
m−sdm,

where dm and λ are defined before and γis is a stepsize;

(v) If r = 0, ĥk(i) := b̂(i); otherwise, ĥk(i) := b̂(i)− b̂(0).

3. Policy improvement:

Choose a new policy µk+1
∞ that is greedy with respect to the approximate

average cost and differential costs, i.e, according to (2.10).

4. If µk+1
∞ = µk

∞, then stop and set µ∗
∞ = µk

∞; otherwise increment k by 1 and

return to step 2.

43

Next we apply our proposed algorithm to an inventory control problem.

3.2 Inventory Control Problem

We consider a single product inventory control problem, where the system state

is the inventory level and the stages are the review periods. In a given state,

actions correspond to the amount of stock to order. Transition probabilities

depend on the quantity ordered and the random demand during the previous

period. A decision rule specifies the quantity to be ordered as a function of the

stock on hand at the time of review, and a policy consists of a sequence of such

re-stocking functions. The objective is to seek a reordering policy that minimizes

long-run average ordering cost, inventory cost and shortage cost.

Now let us look at an example. Each week, a manager of a warehouse checks

current inventory (stock on hand) of a single product. Based on this information,

he decides whether or not to order additional stock from a supplier. In doing so,

he is faced with a tradeoff between the costs associated with keeping inventory

and the penalties associated with being unable to satisfy customer demand. The

manager’s objective is to minimize the average cost over the decision-making

horizon. [3].

We formulate a basic model for the inventory control problem under the

following assumptions:

• The decision to order additional stock is made at the beginning of each

week and delivery occurs instantaneously, i.e., no lead-time.

• Demand for the product arrives throughout the week but all orders are

filled on the last day of the week.

• If demand exceeds inventory, there is limited backlogging B of unfilled

orders and if more than that, the extra demand is lost.

44

• The cost and the demand distribution do not vary from week to week.

• The product is sold only in whole units.

• The warehouse has capacity of M units.

Let

xt denote the inventory on hand at the beginning of week t,

ut the number of units ordered by the inventory manager in week t,

Dt the random demand in week t.

We assume that the demand has a known probability distribution. The inventory

at week t + 1, xt+1, is related to xt, the inventory at week t, through the system

equation

xt+1 = xt + ut −Dt, (3.10)

but we restrict the back-logging limit to be B (i.e., −B ≤ xt ≤M).

Define the cost at each week as follows:

g(xt, ut) = C · I(ut > 0) + co · ut + ch ·max(0, xt) + cp ·max(0,−xt), (3.11)

where

C = setup cost for placing a order,

co = per unit ordering cost,

ch = holding cost per week per unit of inventory,

cp = shortage cost per week per unit of inventory,

I{·} = the indicator function of the set {·}.

The MDP formulation is defined as follows:

states:

i = xt + B, i ∈ S = {0, 1, 2, . . . , B + M};

actions:

u ∈ U(i) = {0, 1, 2, . . . , M − (i− B)};

45

transition probabilities:

pij(u) =


p(D = i + u− j) if j �= 0;

p(D > i + u) if j = 0;
(3.12)

where D is the generic random variable for Dt.

expected costs:

g(i, u) = C · I(u > 0) + co ·u + ch ·max(0, i−B) + cp ·max(0,−(i−B)). (3.13)

Note that the state is defined as the inventory level offset by B, since the

state is indexed from 0 in our MDP definition.

Now, we provide the details of the application of SBPI to the inventory

problem. We first discuss why it is necessary to check whether our MDP model

is unichain and how to check it.

There are two reasons why we need to check the unichain assumption. First,

if an MDP is not unichain, i.e. multichain, the average cost of a stationary

policy is possibly nonconstant, which means we could use neither policy iteration

nor SBPI under the unichain assumption. A more complicated policy iteration

algorithm for the multichain case is given in [3]. Second, the behavior of the

policy iteration algorithm for a unichain MDP involves a recurrent class plus

transient states, and the recurrent class changes from iteration to iteration, so

the convergence of policy iteration for a unichain MDP depends on differential

costs of both the recurrent class and the transient states. The learning schemes

provided in [12] [13] only guarantee that the differential cost for states in the

recurrent class converges to the true value, in which case, the policy improvement

step may not lead to a better policy. Thus, a scheme that guarantees that the

estimated differential cost for both recurrent states and transient states converges

to the true value is necessary under the unichain assumption. In our algorithm,

it is done by running many sample paths with the initial states being transient

states, which guarantees the transient states are visited frequently enough.

46

The standard procedure to verify whether an MDP is unichain is the Fox-

Landi algorithm [3]. The basic idea is to construct paths through the state space

using the transition probability matrix, producing a labeling and grouping of all

states. It also provides a way to find the recurrent classes and transient states.

However, this algorithm requires O(|S|2) comparisons. An alternative method

is: if we can prove an MDP is unichain by other means, a simple heuristic for

finding the recurrent states and transient states is to run several sample paths in

advance and calculate how often the states have been visited. Those states that

are seldom visited are likely to be transient states and are chosen as initial states

in the implementation of our algorithm. Furthermore, state 0 is a recurrent state

under all policies, so we chose it as the reference state. A necessary and sufficient

condition under which the MDP model is unichain is given in the following.

Lemma 3.2.1 With the transition probabilities defined in (3.12) and Dmax the

maximum value that the random variable D can take, the MDP is unichain if

and only if Dmax ≥ B + M .

Proof: For Dmax ≥ B + M , the probability from any state i to state 0 with any

action u, pi0(u), is positive, so state 0 is recurrent and any other state can reach

this recurrent state 0 in a single step with a positive probability, which means

that each of the other states is either recurrent in the same recurrent class as

state 0 or a transient state. Therefore, the MDP is unichain.

If Dmax < B +M , then we show that the MDP is multichain by constructing

a policy under which there are two recurrent classes. Take the following policy:

µ(i) =


B + M − i, i ≥ B + M −Dmax;

0, otherwise;
(3.14)

Then some nonempty subset of {0, . . . , B + M −Dmax − 1} is recurrent, and

some nonempty subset of {B + M −Dmax, . . . , B + M} is recurrent, and these

47

two sets themselves do not communicate. �

The proof of the lemma shows that in the unichain case the state 0 is reachable

(in one step) from all other states for all policies, so it must be part of the

recurrent set for all policies, giving the following result:

Corollary: For the inventory control problem, the MDP is unichain if and only

if it is unichain with a common recurrent state (namely state 0).

However, if we limit policies to what one might called ”reasonable” mono-

tone ordering policies, µ(i) ≥ µ(i + 1), i.e., you never order less with a lower

inventory level, we can find unichain MDPs in which there is no common re-

current state under all policies. Let us look at an example with D ∈ {0, 1}
and S = {0, 1, 2}. If policies were unrestricted, then by the lemma, the re-

sulting MDP would be multichain, since Dmax < 2. However, under the policy

restriction above, the resulting MDP is in fact unichain, with the allowable

policies given by the following (µ(0), µ(1)) pairs, with µ(2) = 0 due to the ware-

house limit: (0,0), (1,0), (1,1), (2,0), (2,1), which give respective recurrent sets

{0}, {0, 1}, {1, 2}, {0, 1, 2}, {1, 2}, i.e., state 0 is transient under two policies, one

of which is the last policy, which is of the (s, S) form with s = 0 and S = 1. An

(s, S) type policy means that an order is placed only when inventory level falls

below the level s, and that the quantity of the order is placed “up to S”. The

policy that was eliminated by the condition was (0,1), which would have given

two recurrent classes {0} and {1, 2}.
For the inventory control problem, we performed numerical experiments using

SBPI. In our experiments, we consider an example with: B = 50; M = 100;

setup cost C = 100, unit cost co = 1, holding cost ch = 1, and shortage cost cp

= 10. The demands {Dt} are i.i.d. with each sample generated as follows [18]:

• sample from a exponential distribution with a given mean 20;

• round off this value to the closest integer;

48

• restrict the resulting value in a given range from 0 to 250.

Since Dmax = 250 > 150 = B + M , by the lemma the MDP for this example is

unichain.

This problem is not too large, so it can be solved exactly through policy

iteration. From a given arbitrary policy, shown in Fig 3.1a, five policy iterations

were required to determine the optimal policy (policy for iteration 5 in Fig 3.1b).

The optimal average cost is 99.87. The graphical representation makes it obvious

that the optimal policy has some kind of structure, in particular, a (s, S) type

policy. More interestingly, we found that all policies following the initial policy

are of the (s, S) type in this case. Fig 3.1c shows the corresponding s and S

for iteration 2 to 5. An open problem is whether or not this finding is true in

general. The average costs for each iteration are shown in Fig 3.1d.

Implementation of SBPI requires choosing tunable parameters LA, TA, LD,

and λ. Larger LA, TA, and LD provide better accuracy at the cost of additional

computation. In the following experiments, we used LA = 1, TA = 100000,

LD = 10000 and λ = 1.

Because SBPI requires the policy evaluation step to provide a good estimate

of the average cost and differential cost before implementing the policy improve-

ment step, large TA and LD are necessary. This is also related to the visit count

of a state, which is the number of times the state is encounted in the sample

path. This is even more important in unichain problem, because of the presence

of transient states. To see this, Fig 3.2 shows results for an (s, S) type policy

where s = 10 and S =45, and TA = 105, LD = 104, and λ = 1. In this case, the

transient states are the states from 95 to 151. If we look at the visit count shown

in Fig 3.2b, we can see clearly that these states are less frequently visited, and

the differential costs have larger error, as shown in Fig 3.2c. An updated policy

is shown in Fig 3.2d.

The stopping criterion is based on the estimated cost difference between two

49

0 50 100 150 200
0

20

40

60

80

100

120

140
a: Initial Policy

0 50 100 150
0

50

100

150
b: Policies of Iteration 2,3,4,5

state

ac
tio

n

iter. 2
iter. 3
iter. 4
iter. 5

2 3 4 5 6

0

20

40

60

80

100

s

S

iteration

s,
S

c: (s,S) of Iteration 2,3,4,5

1 2 3 4 5

100

120

140

160

180

200

iteration

av
er

ag
e

co
st

d: Average Cost for Each Iteration

Figure 3.1: PI Policies and Average Cost

0 50 100 150
0

50

100

150
a: Policy (10,45)

state

po
lic

y

0 50 100 150
0

2000

4000

6000

8000

10000
b: Visit Count of Policy (10,45)

state

vi
si

te
d

co
un

t

0 50 100 150
−800

−600

−400

−200

0

c: Differential Cost of Policy (10,45)

state

di
ffe

re
nt

ia
l c

os
ts

 SBPI
 PI

0 50 100 150
0

50

100

150
d: Updated Policy

state

po
lic

y

Figure 3.2: SBPI Policy Evaluation for Differential Costs

50

0 50 100 150

0

50

100

150
a: Initial Policy

state

po
lic

y

0 50 100 150

0

50

100

150
b: Policies of Iteration 2 −7

state

po
lic

y

2 4 6 8

0

20

40

60

80

100

s

S

iteration

s,
S

c: (s,S) of Iteration 2 −7

1 2 3 4 5 6 7

100

120

140

160

180

200
d: Average Cost for Iteration 1 −7

iteration

co
st

Figure 3.3: SBPI Policies and Average Cost (TA = 105 LD = 104)

0 50 100 150

0

50

100

150
a: Initial Policy

state

po
lic

y

0 50 100 150

0

50

100

150
b: Policies of Iteration 2 −5

state

po
lic

y

2 3 4 5 6

0

20

40

60

80

100

s

S

iteration

s,
S

c: (s,S) of Iteration 2 −5

1 2 3 4 5

100

120

140

160

180

200
d: Average Cost for Iteration 1 −5

iteration

co
st

Figure 3.4: SBPI Policies and Average Cost (TA = 105 LD = 105)

51

0 50 100 150

0

50

100

150
a: Initial Policy

state

po
lic

y

0 50 100 150

0

50

100

150
b: Policies of Iteration 2 −21

state

po
lic

y

5 10 15 20

0

20

40

60

80

100

s

S

iteration

s,
S

c: (s,S) of Iteration 2 −21

5 10 15 20

100

120

140

160

180

200
d: Average Cost for Iteration 1 −21

iteration

co
st

Figure 3.5: SBPI Policies and Average Cost (TA = 105 LD = 103)

0 50 100 150

0

50

100

150
a: Initial Policy

state

po
lic

y

0 50 100 150

0

50

100

150
b: Policies of Iteration 2 −15

state

po
lic

y

5 10 15

0

20

40

60

80

100

s

S

iteration

s,
S

c: (s,S) of Iteration 2 −15

5 10 15

100

120

140

160

180

200
d: Average Cost for Iteration 1 −15

iteration

co
st

Figure 3.6: SBPI Policies and Average Cost (TA = 104 LD = 104)

52

1 2 3 4 5 6 7

100

150

200

250

300
SBPI, λ = 0.2

iteration
av

er
ag

e
co

st
5 10 15

100

150

200

250

300
SBPI, λ = 0.5

iteration

av
er

ag
e

co
st

5 10 15

100

150

200

250

300
SBPI, λ = 0.9

iteration

av
er

ag
e

co
st

5 10 15 20

100

150

200

250

300
SBPI, λ = 1.0

iteration

av
er

ag
e

co
st

Figure 3.7: SBPI Policies and Average Cost for Different λ

consecutive iterations. The algorithm stops when the difference is less than a

threshold, which was 0.25 in our experiments. A more accurate stopping criterion

could be based on the difference between consecutive policies, but this requires

the definition of a suitable metric on the policy space.

First we consider the SBPI implementation with TD(1), i.e. λ = 1. In order

to determine the setting of the tunable parameters TA and LD, we ran a policy

evaluation step before the SBPI algorithm is run, and compared the variance

and computational time. From the experiments, we determined that TA = 105

and LD = 104 gave suitably accurate results. Fig 3.3 shows the result of the

SBPI implementation with TD(1) for the same case shown for PI in Fig 3.1.

Note that SBPI takes 7 iterations to achieve the near optimal policy, whereas PI

takes only 5 iterations to achieve the optimal policy (refer to Fig 3.1); however,

the average costs associated with them are very close: 102.45 and 99.87. As with

PI, we also found that all SBPI policies iterated after the initial policy are (s,S)

type. In terms of computational time, it takes about 15 minutes for SBPI in a

Sun Ultra 10 to reach the near optimal policy.

53

Next, we investigated the sensitivity of the algorithm to the various tunable

parameters TA, LD and λ. If TA or LD is chosen to be larger, SBPI would

take fewer iterations but longer time overall to reach a near optimal policy. For

example: if LD = 105 with other parameters unchanged, SBPI takes only 5

iterations but about 2 hours to reach a near optimal policy, starting from the

same policy (see Fig 3.4). Compared with the PI implementation, the number

of policy iterations is the same, but the average cost for the near optimal policy,

104.63, is even worse than the previous case.

If TA or LD is chosen to be smaller, the time to obtain a near optimal policy

may be shorten. If LD = 103 with other parameters unchanged, it takes 21

iterations and about 7 minutes to reach the near optimal policy, with an average

cost of 103.29 (refer to Fig 3.5). If TA = 104 with other parameters unchanged,

it takes 15 iterations and about 13 minutes to reach the near optimal policy,

with an average cost of 103.82(refer to Fig 3.6). Using values of TA and LD that

are too small, however, may lead to oscillatory behavior, because the evaluated

average cost and differential cost in the policy evaluation step are not accurate

enough.

The value of λ is related to that of LD, in that smaller λ allows LD to be

tuned smaller. Fig 3.7 shows a comparison of different λ with the same LD = 103.

The result shows that generally the smaller the λ,the better the performance.

However, if λ is too small, the performance deteriorates drastically when the

average cost goes to 500 for each iteration.

The computational experiments led to the following conclusions for the nu-

merical example: Our SBPI algorithm finds a near optimal policy in a few

iterations. For the case we considered, the updated policy becomes an (s, S)

type policy within one iteration, starting from any randomly picked policy. The

performance of SBPI depends on sufficiently good estimates of the differential

costs based on the simulated sample paths, which in turn can be sensitive to the

54

choice of the tunable parameters, trading off computational time for accuracy.

3.3 Discussion

In this chapter, we develop a simulation-based policy iteration algorithm for

average cost unichain MDPs. In this algorithm, 1) the problem is converted

to a stochastic shortest path problem and a reference state can be chosen as

any state recurrent under the current policy, in which case the reference state is

not necessarily the same from iteration to iteration; 2) the realization factors to

a reference state are evaluated, instead of the differential cost being evaluated

directly, by a temporal-difference earning scheme; 3) transient states are selected

as the initial states for sample paths, and the inverse of the visiting count is

chosen as the step size to improve the performance.

There are also other simulatioon-based algorithms for the inventory problem,

such as those based on Perturbation Analysis [60], or Simultaneous Perturbation

Stochastic Approximation, since the optimal policy for this problem is known to

have the (s,S) type structure.

55

Chapter 4

Simulation-Based Gradient Algorithms

for Weighted Cost Problems

In this chapter, we develop a two-timescale simulation-based gradient algorithm

based on perturbation analysis for weighted cost problems, and compare it with

the simulation-based gradient algorithms proposed by Marbach [20]. In our

context, the weighted cost problem is an infinite horizon MDP problem with

weighted expected total cost criterion, where the expected total cost is defined

in the same way as in the stochastic shortest path problem. This problem is first

discussed by Marbach [20] (where it is referred to as the weighted reward-to-go

problem), and it is meant to capture the situation where the decision maker

wants to minimize the cost-to-go, given a known probability distribution on the

initial state. Our fab-level decision making problem is a special case of the

weighted cost problem, where the initial state is known. It has been proved that

the policy that minimizes the expected total cost from all states in the stochastic

shortest path problem also minimizes the weighted expected total cost in the cor-

responding weighted cost problem. Hence, policy iteration, value iteration, and

all simulation-based dynamic programming algorithms for the stochastic short-

est path problem can be transferred to the weighted cost problem. However,

our fab-level decision-making problem has a very large control space. One way

56

to deal with a large control space is to parameterize the policy, but there are

few simulation-based algorithms with parameterized policies for the stochastic

shortest path problem, due to the difficulty that expected costs from all states

need to be minimized with respect to the parameters. Fortunately, if a policy

can be parameterized, the weighted cost problem can be transformed to a prob-

lem of finding the optimal parameters minimizing only the weighted expected

cost, and thus can be solved by stochastic approximation algorithms based on

gradient estimation. Hence, we want to study simulation-based algorithms for

the weighted cost problem.

For the weighted cost problem, Marbach [20] derived one form of the gra-

dient of the cost function with respect to the parameters, and developed two

simulation-based gradient algorithms. After correcting some errors in the algo-

rithms, we compare the corrected algorithms with our two-timescale algorithm.

We carry out numerical experiments on a parking example.

4.1 Weighted Cost Problems

Consider the situation where the decision maker wants to minimize the mean

cost over initial states, knowing that the initial state x0 is equal to a specific

state i ∈ S with probability ξi, where S is the state space. If we denote the cost

to go from an initial state x0 with policy π as Jπ(x0), the mean cost to go over

initial states with policy π is E[Jπ(x0)] =
∑

i∈S ξiJπ(i). In the sense that ξi acts

like a kind of weight, we call the mean cost to go over initial states a weighted

cost to go and denote it by χπ. The corresponding problem of minimizing χπ

is called the weighted cost problem. Our fab-level decision making problem is a

special case of the weighted cost problem, where the initial state is known.

Here, we assume that the weighted cost problem has an infinite horizon. We

also assume that there exists a termination cost-free state i∗ in the system and

57

the system remains there at no further cost once it reaches that state, as in the

stochastic shortest path problem. The objective is to minimize over all policies

π = {µ0, µ1, . . .} with µt : S → U, µt(i) ∈ U(i) for i and t, the weighted expected

total cost,

χπ =
∑
i∈S

ξiJπ(i), (4.1)

where

ξi ≥ 0,
∑

i∈S ξi = 1,

Jπ(i) = E
{∑T−1

t=0 g(xt, µt(xt)) | x0 = i
}

,

T = min{t > 0 | xt = i∗},
U(i) is the set of allowable actions in state i, pij(u) is the one-step transition

probability from state i to j with action u, and g(i, u) is the corresponding stage

cost.

If π is a stationary policy with the form π = {µ, µ, . . .}, the corresponding

weighted cost and expected total cost from state i are denoted as χµ and Jµ(i),

respectively.

If a randomized decision rule µ is considered, which specifies a probability dis-

tribution qµ(i)(u) on the set of actions, the stage cost and transition probabilities

become

g(i, µ(i)) =
∑

u∈U(i) g(i, u)qµ(i)(u),

pij(µ(i)) =
∑

u∈U(i) pij(u)qµ(i)(u).

In order to solve this problem, we need to derive its optimality equations.

Note that the policy minimizing Jµ(i) in the corresponding stochastic shortest

path problem also minimizes χµ in the weighted cost problem, because χ∗ =∑
ξiJ

∗(i) ≤ ∑
ξiJπ(i) = χπ, as J∗(i) ≤ Jπ(i). Hence, policy iteration, value

iteration, and all simulation-based dynamic programming algorithms for the

stochastic shortest path problem can be used for the weighted cost problem.

If the control space of an MDP is very large, the search space would accord-

ingly be large, which requires very long computation time. One way to deal with

58

this difficulty is to parameterize the policy.

If we parameterize the policy by a parameter vector θ ∈ Rp, the parame-

terized stationary policy is π(θ) = {µ, µ, . . .}, with µ : S × Rp → U , and the

corresponding decision rule is µ(i, θ), with its dependence on θ assumed known.

For example, in an inventory control problem, an (s, S) policy is specified as

follows:

µ(i, θ) =


S − i if i < s;

0 if i ≥ s;
(4.2)

where θ = (θ1, θ2) ≡ (s, S). The (s, S) policy means that an order is placed only

when the inventory level falls below the level s, and that the quantity of the

order is placed “up to S”.

A more general example is described in [20], where the policy is a randomized

policy. Let ru(i, θ), be a parameterized function that maps states and actions to

real numbers, and consider the case where the decision maker chooses at state i

action u with probability

qµ(i,θ)(u) =
exp(ru(i, θ))∑

v∈U exp(rv(i, θ))
. (4.3)

Note that qµ(i,θ)(u) ≥ 0 and
∑

u∈U(i) qµ(i,θ)(u) = 1. The function ru(i, θ) can be

thought as a “likelihood” function associated with state i and action u, in the

sense that the action with largest ru(i, θ) is most likely to be chosen at state i.

Under a randomized policy µ(i, θ) characterized by qµ(i,θ)(u), the transition

probabilities are denoted by pij(θ), the one-stage cost at state i is denoted by

gi(θ) and

pij(θ) =
∑

u∈U(i) pij(u)qµ(i,θ)(u),

gi(θ) =
∑

u∈U(i) g(i, u)qµ(i,θ)(u).
(4.4)

Hence, under policy µ(i, θ), the Markov Decision Process we defined earlier

degenerates to a Markov process defined by transition probabilities pij(θ) and

one-stage costs gi(θ), which we call a Markov Cost Process (MCP) depending

on θ. The termination state is i∗, with pi∗i∗(θ) = 1 and gi∗(θ) = 0.

59

Furthermore, the original problem of finding an optimal policy for an MDP

becomes a problem of finding the optimal θ minimizing χ(θ), where

χ(θ) =
∑
i∈S

ξiJi(θ),

Ji(θ) := Jπ(θ)(i) = E

{
T−1∑
t=0

git(θ) | i0 = i

}
, (4.5)

and T = min{t > 0 | it = i∗}.
In order for gradient estimation techniques to be applicable, the following

assumptions on pij(θ) and gi(θ) are necessary.

Assumption 4.1.1 (MCP Parameterization) For all i, j ∈ S, the transi-

tion probability pij(·), and the stage cost gi(·) are bounded, twice differentiable,

and have bounded first and second derivatives. Furthermore, for all states i, j ∈
S, we have

∇pij(θ) = pij(θ)fij(θ),

where the function fij(θ) is bounded and differentiable, with bounded first deriva-

tive.

Let P (θ) be the transition matrix with entries pij(θ), let P = {P (θ) | θ ∈ RK}
be the set of all possible transition matrices, and let P be its closure. It can be

proved that every element P ∈ P is a stochastic matrix (see Lemma 1 in [20]).

Assumption 4.1.2 (MCP Termination) There exists a state i∗ ∈ S, such

that, for every parameter vector θ ∈ RK , we have

gi∗(θ) = 0

and

pi∗i∗(θ) = 1

and for every state i ∈ S and every transition matrix P (·) ∈ P, we have pN
ii∗ > 0,

where N is the number of states in the state space S.

60

4.2 Two-Timescale Simulation-Based

Gradient Algorithm

In this section, we developed a two-timescale simulation-based gradient algo-

rithm for weighted cost problems using gradient estimation techniques.

We begin with defining a new Markov cost process with transition probabil-

ities

pξ,ij(θ) =


pij(θ) if i �= i∗;

ξj if i = i∗,

and one-stage costs gξ,i(θ) = gi(θ), as in [20]. Note that the new Markov cost

process is a renewal process and χ(θ) is equal to the expected cumulative cost

over a regenerative cycle. By using renewal theory, the following expressions for

χ(θ) and its gradient can be obtained [20]:

χ(θ) = Eξ,θ[T]
∑
i∈S

πξ,i(θ)gξ,i(θ), (4.6)

∇χ(θ) = Eξ,θ[T]
∑
i∈S

(∇πξ,i(θ)gξ,i(θ) + πξ,i(θ)∇gξ,i(θ)), (4.7)

where Eξ,θ[T] is the mean recurrence time and πξ,i(θ) is the steady state prob-

ability distribution of being in state i ∈ S. However, for problems with a large

state space, it is generally infeasible to compute this gradient exactly, since this

requires the computation, for every i ∈ S, of the steady state probability πξ,i(θ)

and its gradient ∇πξ,i(θ). One method to deal with this difficulty is to develop a

simulation-based estimator of∇χ(θ) by techniques such as perturbation analysis.

Before we present a particular gradient estimator for ∇χ(θ), we discuss why

we consider two-timescale simulation-based algorithms and how we develop such

algorithms.

Let (i1, i2, . . .) be a sample path of the renewal process, tm be the mth visit to

the recurrent state i∗, and itm , itm+1, . . . , itm+1−1 be the mth regenerative cycle.

61

Suppose F̂ (θ) is an unbiased estimator of ∇χ(θ), a simulation-based gradient

algorithm based on this estimate is:

θm+1 = θm + αmF̂m(θm). (4.8)

where F̂ (θm) is a sample estimate of χ(θm) and the step sizes αm are deter-

ministic, nonnegative, and satisfying
∑∞

m=1 αm = ∞ and
∑∞

m=1 α2
m < ∞. This

algorithm, which we call the regenerative-update simulation-based algorithm, up-

dates at visits to the regenerative state i∗.

And if F̂m(θm) can be reformulated as:

F̂m(θ) =
tm+1−1∑
k=tm

R̂k(θ),

another simulation-based gradient algorithm is given by:

θk+1 = θk + αkR̂k(θk), (4.9)

where the step sizes αk satisfy the same conditions as before. We call such an

algorithm the every-update simulation-based gradient algorithm.

Note that the length of each regenerative cycle is unknown, and may be

very long, which can lead to infrequent updates of θ for the regenerative-update

simulation-based algorithm. On the other hand, if θ is updated at each time

epoch, as in the every-update simulation-based gradient algorithm, θ may change

too frequently which may not be allowed in a real system. Hence, we propose a

general two-timescale simulation-based gradient algorithm as follows:

θl+1 = θl +
nl+1−1∑
k=nl

αkR̂k(θl), (4.10)

where

nl+1 = min{j > nl|
j−1∑
k=nl

αk ≥ βl}, (4.11)

and we assume the following on the two-timescale step sizes αk and βl:

62

Assumption 4.2.1 The step sizes αk and βk are deterministic, nonnegative and

satisfy
∞∑

k=1

αk =∞,
∞∑

k=1

α2
k <∞,

∞∑
k=1

βk =∞,
∞∑

k=1

β2
k <∞,

αk/αk+1 → 1, βk/βk+1 → 1, βk = o(αk).

Next, we discuss a particular gradient estimator for χ(θ).

4.2.1 A Modified Gradient Estimator and its Decompo-

sition

In this section, we review Marbach’s results [20] on the gradient of χ(θ) and the

gradient estimator, and present a modified gradient estimator and a decomposi-

tion of this modified gradient estimator.

By using perturbation analysis, Marbach [20] obtained the following expres-

sions for ∇χ(θ), the gradient of χ(θ):

∇χ(θ) = Eξ,θ[T]
∑
i∈S

πξ,i(θ)(∇gi(θ) +
∑
j∈S

∇pij(θ)Jj(θ)), (4.12)

based on (4.7).

Note that ∇χ(θ) in Eq. (4.12) can be rewritten as [20]:

∇χ(θ) = Eξ,θ[T]
∑
i∈S

πξ,i(θ)

∇gi(θ) +
∑

j∈Si(θ)

pij(θ)

(∇pij(θ)

pij(θ)
Jj(θ)

) , (4.13)

where Si(θ) = {j ∈ S | ∇pij(θ) �= 0}. Let tm be the time epoch that state i∗ is

visited for the mth time and the sequence {itm , itm+1, . . . , itm+1−1} be the mth

regenerative cycle.

Based on Eq. (4.13), Marbach put forward the following estimate for ∇χ(θ):

Fm(θ) =
tm+1−1∑
n=tm

(
J̃in(θ)

∇pin−1in(θ)

pin−1in(θ)
+∇gin(θ)

)
, (4.14)

63

where

J̃in(θ) =


∑tm+1−1

k=n gik(θ) if tm < n ≤ tm+1 − 1,

0 if n = tm.
(4.15)

In the proof of unbiasedness for the estimator given by Eq. (4.14) and Eq.

(4.15) (Proposition 4 in [20]), it is claimed that Ji∗(θ) = 0. However, this claim

does not match the definition of Ji(θ) given by Eq. (4.5). In fact,

Ji∗(θ) = E

{
T−1∑
t=0

git(θ) | i0 = i∗
}

(4.16)

by definition, which suggests that Ji∗(θ) can be estimated by the cumulative cost

over a regenerative cycle. As a result, the proof of unbiasedness is incorrect.

In place of Marbach’s estimator, we propose the following:

F̄m(θ) =
tm+1−1∑
n=tm

(
J̃in+1(θ)

∇pinin+1(θ)

pinin+1(θ)
+∇gin(θ)

)
, (4.17)

where

J̃in(θ) =


∑tm+1−1

k=n gik(θ), if tm < n ≤ tm+1 − 1,∑tm+1−1
k=tm gik(θ), if n = tm+1.

(4.18)

Comparing the two estimators with Eq. (4.13), we argue that the corrected

estimator corresponds better to Eq. (4.13), since i and j in Eq. (4.13) are

consistent with in and in+1 in Eq. (4.17), respectively, and J̃itm+1
(θ) in Eq. (4.18)

matches the definition of Ji∗(θ), which is the cumulative cost over a regenerative

cycle. Since the cumulative cost over the next regenerative cycle is not available

at tm+1, in our estimator the current regenerative cycle from tm to tm+1 − 1 is

used for J̃itm+1
(θ) estimating, instead of the next regenerative cycle from tm+1

to tm+2 − 1 suggested by Eq. (4.13). Using the corrected estimator, we can

otherwise follow proof of Proposition 4 in [20] to prove that our estimator (4.17)

is an unbiased estimate of the gradient.

Note that we can decompose (4.17) as

F̄m(θ) =
tm+1−1∑
n=tm

(
J̃in+1(θ)

∇pinin+1(θ)

pinin+1(θ)
+∇gin(θ)

)

64

=
∑tm+1−2

n=tm

∇pinin+1
(θ)

pinin+1
(θ)

∑tm+1−1
k=n+1 gik(θ) +

∇pitm+1−1itm+1
(θ)

pitm+1−1itm+1
(θ)

J̃itm+1
(θ) +

∑tm+1−1
n=tm ∇gin(θ)

=
∑tm+1−1

h=tm+1

∇pih−1ih
(θ)

pih−1ih
(θ)

∑tm+1−1
k=h gik(θ) +

∇pitm+1−1itm+1
(θ)

pitm+1−1itm+1
(θ)

J̃itm+1
(θ) +

∑tm+1−1
n=tm ∇gin(θ)

=
∑tm+1−1

k=tm+1 gik(θ)
∑k

h=tm+1

∇pih−1ih
(θ)

pih−1ih
(θ)

+
∇pitm+1−1itm+1

(θ)

pitm+1−1itm+1
(θ)

J̃itm+1
(θ) +

∑tm+1−1
n=tm ∇gin(θ)

=
∑tm+1−1

k=tm+1

(
∇gik(θ) + gik(θ)

∑k
h=tm+1

∇pih−1ih
(θ)

pih−1ih
(θ)

)
+

∇pitm+1−1itm+1
(θ)

pitm+1−1itm+1
(θ)

∑tm+1−1
h=tm gih(θ)

=
∑tm+1−1

k=tm+1

(
∇gik(θ) + gik(θ)zk +

∇pikik+1
(θ)

pikik+1
(θ)

(Lk + gik(θ))I{k=tm+1−1}
)

where I{·} is the indicator function,

zk+1 =


0, if ik+1 = i∗;

zk +
∇pikik+1

(θ)

pikik+1
(θ)

otherwise,
(4.19)

and

Lk+1 =


0, if ik+1 = i∗;

Lk + gik(θ), otherwise.
(4.20)

Note that at k = tm, both ∇gik(θ) and gik(θ) are zero. Hence, R̂k(θ) in

Equations (4.9) (4.10) can be substituted by

R(xk, θ) = ∇gik(θ) + gik(θ)zk +
∇pikik+1

(θ)

pikik+1
(θ)

(Lk + gik(θ))I{ik+1=i∗}, (4.21)

where xk = (ik, zk, Lk).

4.2.2 Two-Timescale Simulation-Based Gradient Algorithm

Now we present our special two-timescale simulation-based gradient algorithm,

which updates at some given time epoch nl, defined by two-timescale step sizes

αk and βl. In this algorithm, the parameter θl is updated as follows:

θl+1 = θl +
nl+1−1∑
k=nl

αk

(
∇gik(θl) + gik(θl)zk +

∇pikik+1
(θl)

pikik+1
(θl)

(Lk + gik(θl))I{ik+1=i∗}

)
,

(4.22)

where nl satisfies (4.11), and zk and Lk are given by (4.19) and (4.20), respec-

tively. Note that zk and Lk are updated at every time k, which is a faster

timescale; θl is updated at time nl, which is a slower timescale.

To prove its convergence, we make additional assumptions as in [20].

65

Assumption 4.2.2 The step sizes αk are non-increasing. Furthermore, there

exist a positive integer p and a positive scalar A such that

n+t∑
k=n

(αn − αk) ≤ Atpα2
n,

for all positive integers n and t.

Assumption 4.2.3 (MCP Strong Termination) There exist a state i∗ ∈ S

and a positive integer N0, such that, for every parameter vector θ ∈ RK , we

have gi∗(θ) = 0, and Pi∗i∗(θ) = 1, and, for every state i ∈ S and every collection

{P1, . . . , PN0} of N0 matrices in the set P, we have Qii∗ > 0, where the matrix

Q is given by Q = P1 · · ·PN0 .

We have the following convergence result for the two-timescale simulation-

based gradient algorithm.

Proposition 4.2.1 Let Assumptions 4.1.1, 4.2.1, 4.2.2, and 4.2.3 hold, and

let {θl} be the sequence of parameter vectors generated by the two-timescale

simulation-based gradient algorithm (4.22). Then, {χ(θl)} converges and

lim
l→∞
‖ ∇χ(θl) ‖= 0

with probability 1.

Proof: See Appendix.

4.3 Parking Problem

This case study involves a well-known academic example which has been used

in [4] to demonstrate the approximate policy iteration method. Here we adopt

this example to illustrate the simulation-based gradient algorithms presented in

the last two sections.

66

A driver is looking for a low-priced parking space on the way to his desti-

nation. The parking area contains N spaces. The driver starts at space N and

crosses the parking spaces from space s to space s−1, s = N , N −1, . . ., 1. The

destination is parking space 0. Each parking space is empty with probability

p independently of whether other parking spaces are empty or not. The driver

can spot whether a parking space is empty only when he reaches it, and then,

if it is empty, he makes a decision whether or not to park in that space. If he

parks in space s, s = N , N − 1, . . ., 1, he incurs a cost c(s) > 0. If he reaches

the destination without having parked, he must park in the destination’s garage,

which is expensive, and costs C > 0. The objective is to find the optimal parking

policy.

In [4], this problem is formulated as a stochastic shortest path problem with

termination state i∗. In addition to the termination state, state 0 corresponds to

reaching the expensive garage, state (s, F) (s = 1, . . . , N) corresponds to space

s being empty (“free”), and state (s, F̄) (s = 1, . . . , N) corresponds to space s

being not empty (“not free”). Two possible actions, up and un, represent the

actions “park” and “do not park”, respectively.

An MDP formulation for this stochastic shortest path problem follows.

States:

i ∈ S = {0, i∗, (s, F), (s, F̄)}, for all s.

Actions:

u(i) = U(i) =



{un, up}, i = (s, F), for all s.

{un}, i = (s, F̄), for all s.

{up}, i = 0,

∅, i = i∗.

Transition probabilities:

p(s,F)i∗(up) = 1, for all s,

p(1,j)0(un) = 1, j ∈ {F, F̄},

67

p(s,j)(s−1,F)(un) = p, s = 2, . . . , N, j ∈ {F, F̄},
p(s,j)(s−1,F̄)(un) = 1− p, s = 2, . . . , N, j ∈ {F, F̄},

pii∗(up) = 1, i ∈ {0, i∗}, u ∈ U(i).

One-stage cost:

g((s, F), up) = c(s), for all s,

g((s, j), un) = 0, for all s, j ∈ {F, F̄},
g(0, up) = C,

g(i∗, u) = 0.

Objective function:

The objective is to minimize over all policies π = {µ0, µ1, . . .} with µt : S →
U, µt(i) ∈ U(i) for i and t, the total cost from state i,

Jπ(i) = E

{
T−1∑
t=0

g(xt, µt(xt)) | x0 = i

}
, (4.23)

where T is defined as in Eq. (4.5).

The optimality equations for this stochastic shortest path problem are [4]:

J∗(s) = p min{c(s), J∗(s− 1)}+ (1− p)J∗(s− 1), s = 1, . . . , N,

J∗(0) = C.
(4.24)

An optimal policy has the form:

µ∗(s) =


up, if space s is free and c(s) ≤ J∗(s− 1),

un, otherwise.

Furthermore, if c(s) is monotonically increasing in s, there is an integer s∗

such that it is optimal to park at space s if and only if s is free and s ≤ s∗,

since J∗(s) is monotonically nonincreasing in s [4]. Thus, the optimal policy is a

threshold policy, i.e., to park at the first available space after a threshold space

is reached.

68

This parking problem can also be formulated as a weighted cost problem. The

difference between the weighted cost formulation and the stochastic shortest path

formulation is Eq. (4.1) in place of Eq. (4.23). In addition, the optimal policy

for the weighted cost problem is the same as that of the stochastic shortest path

problem, a threshold policy.

Following Eq. (4.3), we can parameterize the policy for the weighted cost

problem as a randomized policy:

qµ((s,F),θ)(un) =
1

1 + exp(θ − s)

qµ((s,F),θ)(up) = 1− qµ((s,F),θ)(un),

where θ is the threshold and the problem is converted to finding the optimal θ.

Under the randomized policy and using Eq. (4.4), the transition probabilities

are:

p(s,F)j(θ) = p(s,F)j(up) qµ((s,F),θ)(up) + p(s,F)j(up) qµ((s,F),θ)(un),

p(s,F̄)j(θ) = p(s,F̄)j(un),

p0i∗(θ) = p0i∗(up),

pi∗j(θ) = pi∗j(u);

and the corresponding one-stage costs are:

g(s,F)(θ) = g((s, F), up) qµ((s,F),θ)(up) + g((s, F), un) qµ((s,F),θ)(un),

g(s,F̄)(θ) = g((s, F̄), un),

g0(θ) = g(0, up),

gi∗(θ) = g(i∗, u).

The objective function is: χ(θ) = ξ1J(N,F)(θ) + ξ2J(N,F̄)(θ), where ξ1 = p, ξ2 =

1− p, and Ji(θ) is defined as in Eq. (4.5).

Now, given a fixed θ̄, the state sequence i0(θ̄),. . .,iT (θ̄) generated according to

the above transition probabilities and one-stage costs is a Markov cost process.

69

However, for the simulation-based gradient algorithms, we need to define a new

Markov cost process with new transition probabilities

pξ,ij(θ) =


pij(θ) if i �= i∗;

ξj if i = i∗,

and new one-stage costs gξ,i(θ) = gi(θ).

The new Markov cost process is a renewal process. So we need only one

single sample path when we apply simulation-based gradient algorithms, where

the initial state is i∗.

4.4 Numerical Experiments

We now compare the three algorithms on the parking problem: the two-timescale

algorithm [given by Eq. (4.22)], the (corrected) regenerative-update simulation-

based gradient algorithm [Eq. (4.8) with F̄m(θm) given by Eq. (4.17) in place

of F̂m(θm)], and the (corrected) every-update simulation-based gradient algo-

rithm [Eq. (4.9) with Rk(xk, θk) given by (4.21) in place of R̂k(θk)]. Note that

the convergence of the latter two algorithms can be proved following the same

arguments as in the proofs of Proposition 5 and Proposition 14 in [20].

The three algorithms are different in the manner of estimating gradients and

updating θ, which is shown in Figure 4.1.

In our numerical experiments, we consider the same case as in [4] where

p = 0.05, c(s) = s, C = 100, N = 200.

The optimal policy for this case is to park in the first available space after

the parking space 35 is reached. Fig. 4.2 shows the expected cost χ(θ) as a

function of threshold θ. The optimal cost χ(θ∗) = 35.7639 when θ∗ = 35.

All three algorithms were implemented in C, and experiments were conducted

on a Sun Microsystems ULTRA10 running Solaris 2.6 operating system. For all

70

Figure 4.1: The Comparison of the Three Algorithms

the experiments, we selected initial parameter θ0 = 100, for which χ(θ0) =

81.7045. For each result, we simulated four sample paths using independent

seeds and show the mean and standard deviation of θ. When we implemented

these three algorithms, we used step sizes αj = a jc (where j is the updates

index) and βl = b ld (required for the two-timescale algorithm), where a, b, c,

and d are tunable positive parameters. We also set n0 = 1 for the two-timescale

algorithm.

regenerative-update algorithm

Since we dealt with a renewal process, we only needed to simulate one single

sample path starting from state i∗. At every time epoch n, we calculated the

one-stage cost differential ∇gin(θm), transition probability pinin+1(θm), transition

71

0 20 40 60 80 100 120 140 160 180 200
20

40

60

80

100

120

140

160

180

200

θ

co
st

expected cost χ(θ)

Figure 4.2: Expected Cost χ(θ)

probability differential ∇pinin+1(θm), and cumulative costs J̃in+1(θm), where time

epoch n is in the mth regenerative cycle. At the end of the mth regenerative

cycle, we computed the gradient estimate using Eq. (4.17) and updated θm.

First we consider the regenerative-update algorithm implementation with

fixed a and c. Figures 4.3(a) and 4.3(b) show how θm and χ̂(θm) converge to

a near-optimal value, with a = 2.0 and c = 0.662. Note that we plot the

progressions as a function of time epochs rather than as a function of iterative

(regenerative) updates to facilitate comparison with the other algorithms. At

time epoch n, θn,1 to θn,4 are four samples, their mean is θ̄n = (
∑4

i=1 θn,i)/4,

and their sample standard deviation (std) is calculated by
√∑4

i=1(θn,i − θ̄n)2/3.

The trajectories shown in Figure 4.3(a) (or b) are the mean, the mean plus

the standard deviation, the mean minus standard deviation, and the optimal

value of θn (or χ(θn)). Note that θ converges to a value with near-optimal cost

within 1, 000, 000 time epochs. After that, θn improves more slowly, with some

small oscillations. The final value θ5,000,000 = 37.34±1.82 and χ(θ5,000,000) =

35.89±0.16.

72

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs
θ

a: θ with (a = 2, c = .662)

mean
mean − std
mean + std
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

co
st

b: evaluated cost with (a = 2, c = .662)

mean
mean − std
mean + std
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

θ

c: different a

(2, .662)
(4, .662)
(1, .662)
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

θ

d: different c

(2, .662)
(2, .602)
(2, .722)
optimal

Figure 4.3: Simulation-Based Regenerative-Update Gradient Algorithm

Next, we investigated the sensitivity of this algorithm to a and c. From Fig.

4.3(c), we can observe that too small a value of a leads to slow convergence, but

larger values cause overshoots. In contrast, Fig. 4.3(d) indicates the effect is

opposite for c, i.e., too large a value leads to slow convergence, whereas small

values can result in fluctuations. This type of sensitivity is typical of stochastic

approximation algorithms.

Note that implementation of the regenerative-update algorithm requires stor-

age of the accumulated costs J̃in+1(θ) for all time epochs in a regenerative cycle

before estimating the gradient estimate. If the expected length of a regener-

ative cycle is large, the storage requirements of this algorithm might make it

impractical.

every-update algorithm

Implementation of the every-update algorithm requires calculation at each time

epoch k of the one-stage cost gik(θk), one-stage cost differential ∇gik(θk), tran-

sition probability pikik+1
(θk), and transition probability differential ∇pikik+1

(θk),

73

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs
θ

a: θ with (a = 20, c = .602)

mean
mean − std
mean + std
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

co
st

b: evaluated cost with (a = 20, c = .602)

mean
mean − std
mean + std
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

θ

c: different a

(20, .602)
(40, .602)
(10, .602)
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

θ

d: different c

(20, .602)
(20, .542)
(20, .662)
optimal

Figure 4.4: Simulation-Based Every-Update Gradient Algorithm

and then updating θk, Lk and zk using (4.9), (4.20), and (4.19). At the end of

each regenerative cycle, Lk and zk must be reset.

With a = 20.0 and c = 0.662, Fig. 4.4(a) and 4.4(b) show how θk and χ̂(θk)

converge to the optimal value. Again, θk is near-optimal within about 1, 000, 000

time epochs, converging more slowly to the optimal after that, with θ5,000,000 =

37.12±0.70 and χ(θ5,000,000) = 35.82±0.08. Sensitivity analysis of this algorithm

w.r.t. a and c, as seen in Fig. 4.4(c) and 4.4(d), is basically the same as for the

regenerative-update algorithm.

two-timescale algorithm

Implementation of the two-timescale algorithm is similar to the implementation

of the every-update algorithm, the main difference being that θ is updated at a

slower scale, instead of at every time epoch. The number of time epochs before

the next update of θ is characterized by nl (see Eq. (4.11)) where l is the number

of updates so far. At each time epoch k of the θl update, the quantities gik(θl),

∇gik(θl), pikik+1
(θl), ∇pikik+1

(θl) must be calculated, and Lk and zk updated. At

74

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs
θ

a: θ with (a=20, b=22, c=.602, d=.447)

mean
mean − std
mean + std
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

co
st

b: evaluated cost with (a=20, b=22, c=.602, d=.447)

mean
mean − std
mean + std
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

θ

c: different a or b

(20, 22, .602, .447)
(40, 44, .602, .447)
(20, 44, .602, .447)
optimal

1 2 3 4 5

x 10
6

30

40

50

60

70

80

90

100

time epochs

θ

d: different c or d

(20, 22, .602, .447)
(20, 22, .505, .375)
(20, 22, .602, .375)
optimal

Figure 4.5: Simulation-Based Two-Timescale Gradient Algorithm

the end of each regenerative cycle, Lk and zk are reset.

From Fig. 4.5(a) and 4.5(b), we can see how θl and χ̂(θl) converge to a

near-optimal value, with a = 20, b = 22, c = 0.602, and d = 0.447. Again,

θl proceeds rapidly to near optimality within 1, 000, 000 time epochs, with final

value θ5,000,000 = 36.62±1.35 and χ(θ5,000,000) = 35.83±0.09.

Next, we investigated the sensitivity of this algorithm to a, b, c and d. We

can see the influence of both a and b is similar to that of a in the regenerative-

update algorithm from Fig. 4.5(c), and the influence of both c and d is similar

to that of c in the regenerative-update algorithm from 4.5(d). Note that b and d

affect the convergence behavior of the two-timescale algorithm only through nl.

Comparing these three algorithms, only the the regenerative-update algo-

rithm’s implementation requires storing interim values. Comparing the every-

update algorithm and the two-timescale algorithm, the former requires more

computations since it updates θ at each time epoch, but the latter contains

more tunable parameters.

75

4.5 Discussion

In this chapter, we proposed a new two-timescale simulation-based algorithm

based on perturbation analysis for weighted cost problems, and compared it

with two simulation-based algorithms proposed by Marbach [20] via numerical

experiments on a parking example. Implementation of the regenerative-update

algorithm requires storing interim values before each regenerative point. The

numerical experiments show that the performance of the two-timescale algorithm

is close to that of the every-update algorithm. However, in some situations when

we need frequent estimation but infrequent control, the two-timescale algorithm

is a better choice than the every-update algorithm.

Note that all the three algorithms mentioned in this chapter need information

about transition probabilities and gradient of stage costs and sometimes may not

be applicable, in which situation SPSA algorithms discussed in the next chapter

may be better choices. However, when algorithms based on perturbation analysis

are applicable, they will outperform SPSA algorithms.

76

Chapter 5

Simultaneous Perturbation Stochastic

Approximation Algorithms

In this chapter, we first describe two Simultaneous Perturbation Stochastic Ap-

proximation (SPSA) algorithms for weighted cost problems and carry out nu-

merical experiments on the parking problem, comparing them with simulation-

based gradient algorithms discussed in Chapter 4. Second, we consider a general

SPSA algorithm for function minimization and show that the SPSA algorithm

converges under a weaker assumption – the function does not have to be differ-

entiable.

The simulation-based gradient algorithms for weighted cost problems in Chap-

ter 4 require explicit model information about the transition probabilities. The

SPSA algorithms proposed in this chapter do not use this information. One of

the SPSA algorithms for weighted cost problems is a special case of the SPSA

algorithm proposed by Spall [35]; the other is extended from two-timescale SPSA

for average cost problems proposed by Bhatnagar et al. [32] [33]. We will de-

scribe these two algorithms in Section 5.1.

Convergence of SPSA has been analyzed under various conditions. Much of

the literature assumes the function be three times differentiable [35] [38] [39] [40]

[41] [42] [43], though weaker assumptions are found as well, e.g. [44] [45] [46] [47]

77

[48]. However, all of them require that the function be at least differentiable.

Among the weakest assumptions on the minimized function, Fu and Hill [45]

assume that the function is differentiable and convex; Chen et al. [44] assume

that the function is differentiable and the gradient satisfies a Lipschitz condition.

In the fab-level decision-making problem presented in Chapter 2, we found that

the one-step cost function is continuous and convex with respect to the action,

but is nondifferentiable, so that the problem of finding the one-step optimal

action requires minimizing a continuous and convex function. So the question

is: does the SPSA algorithm converge in this setting? The answer is affirmative,

and the details will be presented in Section 5.2.

Gerencsér et al. [61] have discussed non-smooth optimization. However, they

approximate the non-smooth function by a smooth enough function, and then

optimize the smooth function by SPSA. Thus, they take an indirect approach.

5.1 SPSA Algorithms for Weighted Cost Prob-

lems

In Chapter 4, we discussed simulation-based gradient algorithms for weighted

cost problems, provided that explicit information about the transition proba-

bilities is given. However, in many situations, this is not the case, but SPSA

algorithms can be easily applied. As in Section 4.1, we parameterize the policy

by a parameter vector θ ∈ Rp, so the original problem of finding an optimal

policy for an MDP becomes one of finding the optimal θ minimizing χ(θ), where

χ(θ) =
∑
i∈S

ξiJi(θ),

and

Ji(θ) = E

{
T−1∑
t=0

git(θ) | i0 = i

}
.

78

The parameterized stationary policy is π(θ) = {µ, µ, . . .}, with µ : S ×Rp → U ,

and the corresponding decision rule is µ(i, θ), with its dependence on θ assumed

known.

First, as in Chapter 4, we define a new Markov process with new transition

probabilities

pξ,ij(θ) =


pij(θ) if i �= i∗;

ξj if i = i∗,

and new one-stage costs gξ,i(θ) = gi(θ). The new Markov process is a renewal

process. Then,

χ(θ) = E{
tn+1−1∑
t=tn

git(θ)},

where {itn , itn+1, . . . , itn+1−1} is the nth renewal cycle. Note that χ(θ) can be

interpreted as the expected cost over a single renewal cycle.

SPSA algorithm

Let {∆m} be a sequence of mutually independent column vectors with zero-

mean i.i.d. random components (∆m,i, i = 1, . . . , p), and let cm be a positive

gain sequence that goes to zero. An SPSA algorithm for weighted cost problems

is:

θm+1 = θm + αm[∆−1
m]

y+
m − y−

m

2cm
, (5.1)

where

y+
m =

∑tm+1−1
t=tm git(θm + cm∆m),

y−
m =

∑tm+1−1
t=tm git(θm − cm∆m),

and {αm} is a sequence of step sizes. Note that y±
m are sample estimates of

χ(θm ± cm∆m).

SPSA was proposed by Spall [35] and has been implemented in many prob-

lems [36]. Like stochastic approximation algorithms based on finite difference

methods, SPSA is also a Kiefer-Wolfowitz-type stochastic approximation algo-

rithm [37], requiring no detailed knowledge of the system dynamics. The chief

79

merit of SPSA is that it requires only two sample estimates to calculate a gradient

estimate of the objective function, regardless of the dimension of the parameter

vector.

The convergence of SPSA can be proved under appropriate assumptions

placed on the following : 1) the objective function χ(θ); 2) the step size αm;

3) bias and variance of the gradient estimate [45]. For 1) and 2), we have χ(θ)

continuously differentiable under Assumption 4.1.1 and {αm} are deterministic,

nonnegative, and satisfy
∑∞

m=1 αm =∞ and
∑∞

m=1 α2
m <∞, as in Chapter 4.

For 3), first define
Gm := [∆−1

m]
y+

m − y−
m

2cm

, (5.2)

bm := E[Gm | θm]−∇χ(θm), (5.3)

em := Gm −E[Gm | θm], (5.4)

where Gm is the gradient estimate, bm is the bias of the estimate, and em is the

noise term.

Lemma 5.1.1 If ∆m has bounded second moments and E[|∆−1
m |] is uniformly

bounded, then bm → 0 with probability 1.

Proof: E
[
[∆−1

m]y+
m−y−

m

2cm

]
=

E

[
[∆−1

m]

∑tm+1−1
t=tm git(θm + cm∆m)−∑tm+1−1

t=tm git(θm − cm∆m)

2cm

]

= E


E


[∆−1

m]

∑tm+1−1
t=tm git(θm + cm∆m)

−∑tm+1−1
t=tm git(θm − cm∆m

2cm
| ∆m





= E


[∆−1

m]

E[
∑tm+1−1

t=tm git(θm + cm∆m) | ∆m]

− E[
∑tm+1−1

t=tm git(θm − cm∆m) | ∆m]

2cm



80

= E

[
[∆−1

m]
E[χ(θm + cm∆m) | ∆m]− E[χ(θm − cm∆m) | ∆m]

2cm

]

= E


[∆−1

m]

(E[χ(θm)] + cm∆T
m∇χ(θm) + O(|cm|2|∆m|2)

− (E[χ(θm)]− cm∆T
m∇χ(θm) + O(|cm|2|∆m|2)
2cm


= E

[
[∆−1

m]
(2cm∆T

m∇χ(θm) + O(|cm|2|∆m|2)
2cm

]
= E

[
[∆−1

m]∆T
m∇χ(θm) + O(|cm||∆m|2)

]
= ∇χ(θm) + E

[
([∆−1

m]∆T
m − I)

]
∇χ(θm) + E[O(|cm||∆m|2)]

= ∇χ(θm) + O(|cm|).

Hence,

bm = E[Gm | θm]−∇χ(θm) = O(|cm|).

Since cm is a positive gain sequence that goes to zero, bm → 0 with probability

1. �

Lemma 5.1.2 Suppose E[|∆−1
m |2] is uniformly bounded, and y±

m have uniformly

bounded second moments. Then, E[eT
mem] is O(c−2

m).

Proof:

E[eT
mem] =

E

([∆−1
m]

y+
m − y−

m

2cm
−E

[
[∆−1

m]
y+

m − y−
m

2cm

])T (
[∆−1

m]
y+

m − y−
m

2cm
−E

[
[∆−1

m]
y+

m − y−
m

2cm

])

= E

(y+
m − y−

m

2cm

)2

[∆−1
m]T [∆−1

m]

 + E

[
E2

[(
y+

m − y−
m

2cm

)]
[∆−1

m]T [∆−1
m]

]

−2E

[(
y+

m − y−
m

2cm

)
E

[(
y+

m − y−
m

2cm

)]
[∆−1

m]T [∆−1
m]

]
≤ BE[|∆−1

m |2](c−2
m)

= O(c−2
m).

81

�

Before we present the main convergence result for (5.1), we cite a general

convergence result by L’Ecuyer et al. [62] as follows:

Proposition 5.1.1 Consider a problem of finding the optimal parameter vector

θ to minimize J(θ) = E[L(θ, ω)], where L(θ, ω) are measurements. Suppose a

gradient stochastic algorithm has the form: θm+1 = θm + αmG̃m(θm), where αm

is the step size satisfying
∑∞

m=1 αm =∞. Assume

1) J(θ) is differentiable for each θ, and either convex or unimodal,

2) b̃m → 0 with probability 1, and

3)
∑∞

m=1 E[ẽT
mẽm]α2

m <∞ with probability 1, where definitions of b̃m and ẽm

are similar to (5.3) and (5.4) respectively except for the “̃”. Then, θm → θ∗ with

probability 1,

Here is the main convergence result for (5.1):

Proposition 5.1.2 Suppose χ(θ) is differentiable for each θ, and either con-

vex or unimodal,
∑∞

m=1 αm = ∞,
∑∞

m=1(
αm

cm
)2 < ∞, and E[|∆−1

m |] is uniformly

bounded. Then, for the SPSA algorithm (5.1), θm → θ∗ with probability 1.

Proof: By Lemma 5.1.1, Lemma 5.1.2, and
∑∞

m=1(
αm

cm
)2 < ∞, we have bm → 0

with probability 1, and
∑∞

m=1 E[eT
mem]α2

m < ∞. Then, the result follows by

Proposition 5.1.1. �

Remark: The condition that the function be differentiable will be relaxed

in the next section.

There is another way to deal with the weighted cost problem. First, let us

define a different new Markov process with a The objective function becomes:

χ(θ) = E

 T−1∑
t=−1

g(xt, µ(xt, θ)) | x−1 = z

 , (5.5)

where T = min{t > 0 | xt = n}.

82

With this new formulation, we propose an SPSA algorithm with the form

(5.1) but the two measurements being

ȳ+
m =

∑T−1
t=−1 git(θm + cm∆m),

ȳ−
m =

∑T−1
t=−1 git(θm − cm∆m),

with i−1 = z and T = min{t > 0 | it = i∗}.
In this new algorithm, we treat ξi as a transition probability and simulate

two sample paths ended with termination state i∗. Results similar to Lemma

5.1.1, Lemma 5.1.2 and Proposition 5.1.2 can be obtained.

Two-Timescale SPSA algorithm

Two-timescale SPSA algorithm is proposed by Bhatnagar et al. on average cost

problems[32]. Here we extend it to the weighted cost problem, and leave the

proof of its convergence for the weighted cost problem as a future research.

Let {∆l} be a sequence of mutually independent column vectors with zero-

mean i.i.d. random components (∆l,i, i = 1, . . . , p), and let c be a given positive

constant. The two-timescale SPSA algorithm is:

θl+1 = θl +
nl+1−1∑
t=nl

αt[∆
−1
l]

git(θl + c∆l)− git(θl − c∆l)

2c
, (5.6)

where nl+1 = min{j > nl|∑j−1
k=nl

αk ≥ βl}, and αt and βl are step sizes.

Now we perform numerical experiments using SPSA algorithms on the same

parking problem as in Chapter 4 and compare them with simulation-based gra-

dient algorithms in Chapter 4.

Numerical Experiments

As in Chapter 4, the two SPSA algorithms are implemented in C and experiments

are conducted on a Sun Microsystems ULTRA10. For all the experiments, we

also select the same initial θ̂ = 100 and χ(θ̂) = 81.7045. Cost performances

83

2 4 6 8 10

x 10
6

30

40

50

60

70

80

90

100

time epochs
θ

a: θ with (a
s
=2,A

s
=1,α=0.602,c

s
=10,γ=0.101)

mean
mean − std
mean + std
optimal

2 4 6 8 10

x 10
6

30

40

50

60

70

80

90

100

time epochs

co
st

b: evaluated cost with (a
s
=2,A

s
=1,α=0.602,c

s
=10,γ=0.101)

mean
mean − std
mean + std
optimal

Figure 5.1: SPSA Algorithm

are evaluated by averaging results from 33 independently seeded 1000 renewal

cycles replications. We also use four sample paths and show means and confident

intervals.

SPSA algorithm

When we implement the proposed SPSA algorithm for weighted cost problems,

we calculate two perturbed one-stage costs git(θm ± cm∆m) at every time epoch

t in the renewal cycle m, and compute a gradient estimate using (5.1) as well as

update θm at the end of mth renewal cycle.

As with the gradient algorithms presented in Chapter 4, the choice of the

step size αm and gain sequences cm is also crucial to the performance of SPSA

algorithms. In [63], Spall provides a guideline on how to select gain sequences

(and step sizes). Following the guideline, we implement SPSA algorithm for

the parking problem using αm = as (As + m + 1)α, with (as = 2, As = 1,

α = 0.602),and cm = cs (m + 1)γ with (cs = 10, γ = 0.101). We also chose

∆m,i using a Bernoulli distribution with probability of 1/2 for each ±1 outcome.

Fig. 5.1(a)&(b) show how θm and χ̂(θm) converge to near optimal values, with

x label is still time epochs t.

Note that θm converges fast to a value with evaluated cost close to optimal

one within 106 iterates. After that, θm only makes slow improvement with small

oscillation. θm at t = 107 is 36.05 and the evaluated cost is 35.85.

84

2 4 6 8 10

x 10
6

30

40

50

60

70

80

90

100

time epochs
θ

a: θ with (a
w

=15,α=0.60,b
w

=17,β=0.40,c=1)

mean
mean − std
mean + std
optimal

2 4 6 8 10

x 10
6

30

40

50

60

70

80

90

100

time epochs

co
st

b: evaluated cost with (a
w

=15,α=0.60,b
w

=17,β=0.40,c=1)

mean
mean − std
mean + std
optimal

Figure 5.2: Two-Timescale SPSA Algorithm

If we compare the result with the regenerative-update algorithm, we found

that both converge to near optimal values, with the variance of the θ result-

ing from the regenerative-update algorithm decreases and the variance of the θ

resulting from the SPSA algorithm keeps at a small value.

Two-Timescale SPSA algorithm

When we implement the proposed two-timescale SPSA algorithm for weighted

cost problems, we still calculate two perturbed one-stage costs git(θl ± c∆l) at

every time epoch t, with each component of ∆l chosen according to a Bernoulli

distribution. However, we update θl using (5.6) only when we reach the end of

the current nl. Then we compute nl+1 for the next update.

As in [32], we chose αt = aw tα, βl = bw lβ. However, the choice of the

coefficients of the step sizes and gain c is by trial and error. Fig. 5.2(a)&(b)

show convergence to the optimal value with a selected setting (aw = 15,α = 0.60,

bw = 17, β = 0.40, c = 1).

Compared to the SPSA algorithm, the two-timescale SPSA algorithm leads

to a result with even bigger variance. It may be improved by choosing bet-

ter step sizes and gain. However, for the two-timescale SPSA algorithm, it is

not necessary to know when i∗ is reached, which is an advantage to the SPSA

algorithm.

85

5.2 Convergence of SPSA for Nondifferentiable

Convex Function Optimization

In this section, we consider function minimization and show that the SPSA

algorithm converges for nondifferentiable convex functions, which is especially

important when the function is not differentiable at the minimizing point. First,

similar to [48], we decompose the SPSA algorithm into four terms: a subgradient

term, a bias term, a random direction noise term and an observation noise term.

In our setting, the subgradient term replaces the gradient term in [48], since

we assume that the function does not have to be differentiable. Hence, we

need to show the asymptotic behavior of the algorithm follows a differential

inclusion instead of an ordinary differentiable equation. Kushner and Yin [64]

state a theorem (Theorem 5.6.2) for convergence of a Kiefer-Wolfowitz algorithm

in a nondifferentiable setting. However, this theorem is not general enough to

cover our SPSA algorithm. We will prove a more general theorem to establish

convergence of SPSA.

The general approach for proving convergence for these types of algorithms

requires showing that the bias term vanishes asymptotically. In the differentiable

case, a Taylor series expansion or the mean value theorem is used to establish

this. These tools are not applicable in our more general setting, but we are able

to use convex analysis for this task. For the random direction noise term, we

use a similar argument as in [48] to show the noise goes to zero with probability

1, except that now the term is a function of the subgradient instead of the

gradient. For the observation noise term, the conditions for general Kiefer-

Wolfowitz algorithms given in [64, pp. 113 - 114] are used, and we also show it

goes to zero with probability 1. For more conditions on the observation noise

term, see [48].

To be more specific, we want to minimize the function E[F (θ, χ)] = f(θ)

86

over the parameter θ ∈ H ⊂ Rr , where f(·) is continuous and convex, χ is a

random vector and H is the feasible region of θ. Let θk denote the kth estimate

of the minimum, and let ∆k be an independent sequence of column random

vectors with ∆k = [∆k,1, . . . , ∆k,r]
T . ∆k,1, . . . , ∆k,r are not necessary mutually

independent. The two-sided SPSA algorithm to update θk is as follows:

θk+1 = ΠH

(
θk − αk[∆

−1
k]

F+
k − F−

k

2ck

)
, (5.7)

where ΠH is a projection on H , F±
k are observations taken at parameter values

θk ± ck∆k, ck is a positive sequence converging to zero, αk is the step size, and

[∆−1
k] is defined as [∆−1

k] := [∆−1
k,1, . . . , ∆

−1
k,r]

T .

Write the observation in the form

F±
k = f(θk ± ck∆k) + φ±

k ,

where φ±
k are observation “noises”, and define

Gk :=
f(θk + ck∆k)− f(θk − ck∆k)

2ck

. (5.8)

Then the algorithm (5.7) can be written as:

θk+1 = ΠH

(
θk − αk[∆

−1
k]Gk + αk[∆

−1
k]

φ−
k − φ+

k

2ck

)
. (5.9)

The convergence of the SPSA algorithm (5.7) has been proved under various

conditions [36]. One of the weakest conditions is that f(·) be differentiable and

convex [45]. Under this condition instead of the condition that f(·) is continuous

and convex, we can use a Taylor series expansion or the mean value theorem

to get f(θk ± ck∆k) = f(θk) ± ck∆
T
k∇f(θk) + O(|ck|2|∆k|2). Therefore, Gk =

∆T
k∇f(θk) + O(|ck||∆k|2), which means Gk can be approximated by ∆T

k∇f(θk).

Then, suppose H = Rr, the algorithm (5.9) can be written as:

θk+1 = θk − αk∇f(θk) + αk(I − [∆−1
k]∆T

k)∇f(θk) + αk[∆
−1
k]

φ−
k − φ+

k

2ck
,

87

where a standard argument of the ODE method implies that the trajectory of

θk follows the ODE

θ̇ = −∇f(θ).

In our context, however, we only assume that f(·) is continuous and convex

– ∇f(·) may not exist at some points, so a Taylor series expansion or the mean

value theorem is not applicable. Instead, using convex analysis we show that Gk

is close to the product of ∆T
k and a subgradient of f(·).

5.2.1 Subgradient and Reformulation of the SPSA Algo-

rithm

First, we introduce some definitions and preliminary results on convex analysis,

with more details in [65].

Let h be a real-valued convex function on Rr; a vector sg(x) is a subgradient

of h at a point x if h(z) ≥ h(x) + (z − x)T sg(x), ∀z. The set of all subgradients

of h at x is called the subdifferential of h at x and is denoted by ∂h(x) [65, p.

214]. If h is a convex function, the set ∂h(x) is a convex set, which means that

λz1 + (1− λ)z2 ∈ ∂h(x) if z1 ∈ ∂h(x), z2 ∈ ∂h(x) and 0 ≤ λ ≤ 1.

The one-sided directional derivative of h at x with respect to a vector y is

defined to be the limit

h′(x; y) = lim
λ↓0

h(x + λy)− h(x)

λ
. (5.10)

According to Theorem 23.1 in [65, p. 213], if h is a convex function, h′(x; y)

exists for each y. Furthermore, according to Theorem 23.4 in [65, p. 217], at

each point x, the subdifferential ∂h(x) is a non-empty closed bounded convex

set, and for each vector y the directional derivative h′(x; y) is the maximum of

the inner products 〈sg(x), y〉 as sg(x) ranges over ∂h(x). Denote the set of sg(x)

on which h′(x; y) attains its maximum by ∂hy(x). Thus, for all sgy(x) ∈ ∂hy(x)

88

and sg(x) ∈ ∂h(x),

h′(x; y) = yTsgy(x) ≥ yTsg(x).

Now let us discuss the relationship between Gk defined by (5.8) and subgra-

dients.

Lemma 5.2.1 Consider the algorithm (5.7), assume f(·) is a continuous and

convex function, and limk→∞ ck = 0. Then ∀ε > 0, ∃ s̃g(θk) ∈ ∂f(θk) and finite

K, such that

|Gk −∆T
k s̃g(θk)| < ε, ∀k ≥ K.

Proof: Since f(·) is a continuous and convex function, both f ′(θk; ∆k) and

f ′(θk;−∆k) exist. By (5.10) and limk→∞ ck = 0, ∀ε > 0, ∃ K <∞ such that for

all k ≥ K,

|f ′(θk; ∆k)− f(θk + ck∆k)− f(θk)

ck
| < ε,

|f ′(θk;−∆k)− f(θk − ck∆k)− f(θk)

ck

| < ε.

Since Gk = (f(θk + ck∆k)− f(θk − ck∆k))/(2ck),

|Gk − 1

2
(f ′(θk; ∆k)− f ′(θk;−∆k))| < ε. (5.11)

In addition, for f ′(θk; ∆k), there exists sg∆k
(θk) ∈ ∂f∆k

(θk) such that

f ′(θk; ∆k) = ∆T
k sg∆k

(θk). (5.12)

Similarly, for f ′(θk;−∆k), there exists sg−∆k
(θk) ∈ ∂f−∆k

(θk) such that

f ′(θk;−∆k) = (−∆k)
T sg−∆k

(θk). (5.13)

Combining (5.11), (5.12) and (5.13), we conclude that ∀ ε > 0, ∃ finite K

and sg∆k
(θk), sg−∆k

(θk) ∈ ∂f(θk) such that

|Gk −∆T
k (

1

2
sg∆k

(θk) +
1

2
sg−∆k

(θk))| < ε, k ≥ K. (5.14)

89

Note that ∂f(θk) is a convex set, so s̃g(θk) := 1
2
sg∆k

(θk) + 1
2
sg−∆k

(θk) ∈
∂f(θk), and |Gk −∆T

k s̃g(θk)| < ε. �

Define δk = ∆T
k s̃g(θk) − Gk. The SPSA algorithm (5.9) can be decomposed

as

θk+1 = ΠH

(
θk − αks̃g(θk) + αk(I − [∆−1

k]∆T
k)s̃g(θk) + αk[∆

−1
k]δk + αk[∆

−1
k]

φ−
k − φ+

k

2ck

)
.

(5.15)

Suppose H = Rr, and if we can prove that the third, fourth, and fifth terms

inside of the projection go to zero as k goes to infinity, the trajectory of θk

would follow the differential inclusion [64, p. 16]

θ̇ ∈ −∂f(θ).

According to [65, p. 264], the necessary and sufficient condition for a given

x to belong to the minimum set of f (the set of points where the minimum of f

is attained) is that 0 ∈ ∂f(x).

5.2.2 Basic Constrained Stochastic Approximation Algo-

rithm

Kushner and Yin [64, p. 124] state a theorem (Theorem 5.6.2) for convergence

of a Kiefer-Wolfowitz algorithm in a nondifferentiable setting. However, this

theorem is not general enough to cover the SPSA algorithm given by (5.15). So,

we establish a more general theorem.

Note that the SPSA algorithm given by (5.15) is a special case of the stochas-

tic approximation algorithm:

θk+1 = ΠH(θk + αk s̃f(θk) + αk bk + αk ek) (5.16)

= θk + αk s̃f(θk) + αk bk + αk ek + αk Zk, (5.17)

where Zk is the reflection term, bk is the bias term, ek is the noise term, and

90

s̃f(θk) can be any element of −∂f(θk). Similar to (5.15), we need to show that

bk, ek and Zk go to zero.

As in [64, p.90], let m(t) denote the unique value of k such that tk ≤ t < tk+1

for t ≥ 0, and set m(t) = 0 for t < 0, where the time scale tk is defined as follows:

t0 = 0, tk =
∑k−1

i=0 αi.

Define the shifted continuous-time interpolation θk(t) of θk as follows:

θk(t) = θk +
m(t+tk)−1∑

i=k

αis̃f(θi) +
m(t+tk)−1∑

i=k

αibi +
m(t+tk)−1∑

i=k

αiei +
m(t+tk)−1∑

i=k

αiZi.

(5.18)

Define Bk(t) =
∑m(t+tk)−1

i=k αibi, and define Mk(t) and Zk(t) similarly, with

ek and Zk respectively in place of bk. Since θk(t) is piecewise constant, we can

rewrite (5.18) as

θk(t) = θk +
∫ t

0
s̃f(θk(s))ds + Bk(t) + Mk(t) + Zk(t) + ρk(t), (5.19)

where ρk(t) =
∫ t
tm(t+tk)

s̃f(θm(t+tk)(s))ds ≤ αm(t+tk)|s̃f(θm(t+tk))|. Note that ρk(t)

is due to the replacement of the first summation in (5.18) by an integral, and

ρk(t) = 0 at the jump times tk of the interpolated process, and ρk(t)→ 0, since

αk goes to zero as k goes to infinity.

We use similar conditions as for Theorem 5.3.1 in [64, pp. 88-108], which are

listed as follows:

(5.A.1) αk → 0,
∑

αk =∞;

(5.A.2) the feasible region H is a hyperrectangle. In other words, there are

numbers ai < bi, i = 1, . . . , r, such that H = {x : ai ≤ xi ≤ bi};

(5.A.3) for some positive number T1, limk→∞ sup|t|≤T1
|Bk(t)| = 0 w.p. 1;

(5.A.4) for some positive number T2, limk→∞ sup|t|≤T2
|Mk(t)| = 0 w.p. 1.

For x ∈ H satisfying (5.A.2), define the set C(x) as follows. For x ∈ H0, the

interior of H , C(x) contains only the zero element; for x ∈ ∂H , the boundary of

91

H , let C(x) be the infinite convex cone generated by the outer normals at x of

the faces on which x lies [64, p. 77].

Proposition 5.2.1 For the algorithm given by (5.17), assume s̃f(θk) is uni-

formly bounded and (5.A.1)-(5.A.4). Suppose that f(·) is continuous and convex,

but not constant. Consider the differential inclusion

θ̇ ∈ −∂f(θ) + z, z(t) ∈ −C(θ(t)), (5.20)

and let SH denote the set of stationary points of (5.20), i.e. points in H where

0 ∈ −∂f(θ) + z. Then, for almost all ω, {θk(ω)} converges to a point in SH ,

which attains the minimum of f .

Proof: see Appendix. �

5.2.3 Convergence of the SPSA algorithm

In this section, we prove convergence of the SPSA algorithm given by (5.15)

using Proposition 5.2.1.

We first rewrite the SPSA algorithm given by (5.15) as follows:

θk+1 = θk−αks̃g(θk)+αk[∆
−1
k]δk+αk(I−[∆−1

k]∆T
k)s̃g(θk)+αk[∆

−1
k]

φ−
k − φ+

k

2ck

+αk Z̃k,

(5.21)

where Z̃k is the reflection term.

Note that the counterparts of bk and ek in (5.17) are [∆−1
k]δk and er,k + eo,k,

respectively, where the latter quantity is decomposed into a random direction

noise term er,k := (I − [∆−1
k]∆T

k)s̃g(θk) and an observation noise term eo,k :=

[∆−1
k

]

2ck
(φ−

k − φ+
k).

Lemma 5.2.2 Assume 1) E[
∆k,i

∆k,j
| ∆0, . . . , ∆k−1, θ0, . . . , θk−1] = 0, i �= j; 2)

s̃g(θk) is uniformly bounded by a finite B. Then, er,k = (I − [∆−1
k]∆T

k)s̃g(θk) is

a martingale difference.

92

Proof: Using a similar argument as in [48], define MB
k =

∑k
l=0(I−[∆−1

l]∆T
l)s̃g(θl),

so er,k = MB
k −MB

k−1.

E[MB
k+1 |Ml, l ≤ k] = E[MB

k + (I − [∆−1
k+1]∆

T
k+1)s̃g(θk+1) |Ml, l ≤ k]

= MB
k + E[er,k+1 |Ml, l ≤ k],

and the absolute value of E[er,k+1 |Ml, l ≤ k]

|E[er,k+1 |Ml, l ≤ k]| ≤ |B| · |E[(I − [∆−1
k+1]∆

T
k+1)1̄ |Ml, l ≤ k]|

= |B| · E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣





0
∆k+1,1

∆k+1,2
. . .

∆k+1,1

∆k+1,r

∆k+1,2

∆k+1,1
0 . . .

∆k+1,2

∆k+1,r

...
...

...

∆k+1,r

∆k+1,
. . .

∆k+1,r

∆k+1,2
0


1̄ |Ml, l ≤ k



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where 1̄ is a column vector with each element being 1. Thus, er,k is a martingale

difference. �

Lemma 5.2.3 Assume ∆k is independent of θk, θk−1 . . . , θ0. Then φ−
k −φ+

k is a

martingale difference.

Proof: We know E[F (θk ± ck∆k, χk) | θk, ∆k] = f(θk ± ck∆k) since E[F (θ, χ) |
θ] = f(θ). Thus, E[φ−

k − φ+
k | θk, ∆k] = 0.

Note that φ−
k − φ+

k depends on φ−
k−1− φ+

k−1, . . . , φ
−
0 − φ+

0 only via θk and ∆k.

So

E[φ−
k − φ+

k | θk, ∆k, φ
−
k−1 − φ+

k−1, . . . , φ
−
0 − φ+

0] = E[φ−
k − φ+

k | θk, ∆k] = 0,

which implies that E[φ−
k − φ+

k | φ−
k−1− φ+

k−1, . . . , φ
−
0 − φ+

0] = 0, i.e., φ−
k − φ+

k is a

martingale difference. �

For the observation noise term eo,k, we assume the following conditions [64,

pp. 109-113]:

(5.B.1) φ−
k − φ+

k is a martingale difference;

93

(5.B.2) For each µ > 0,
∑

k e−µc2
k
/αk <∞;

(5.B.3) For some T > 0, there is a c1(T) <∞ such that for all k,

sup
k≤i<m(tk+T)

αi/c
2
i

αk/c
2
k

≤ c1(T);

(5.B.4) There is a K < ∞ such that for a small γ, all k, and each component

(φ−
k − φ+

k)j of (φ−
k − φ+

k),

Eke
γ(φ−

k
−φ+

k
)j ≤ eγ2K/2.

Lemma 5.2.4 Assume (5.A.1), (5.B.1) - (5.B.4) and assume that [∆−1
k] is uni-

formly bounded. Then, for some positive T , limk→∞ sup|t|≤T |Mo,k(t)| = 0 w.p.

1, where Mo,k(t) :=
∑m(t+tk)−1

i=k αieo,i.

Proof: Define M̃k(t) :=
∑m(t+tk)−1

i=k
αi

2ci
(φ−

i − φ+
i). By (5.A.1) and (5.B.1) -

(5.B.4), there exists a positive T such that limk→∞ sup|t|≤T |M̃k(t)| = 0 w.p.

1, following the same argument as the one in the proof of Theorem 5.3.2 and

Theorem 5.3.3 in [64, pp. 108-110].

Suppose [∆−1
k] is uniformly bounded by D, then |Mo,k(t)| ≤ D|M̃k(t)|.

Thus, limk→∞ sup|t|≤T1
|Mo,k(t)| = 0 w.p. 1. �

Proposition 5.2.2 Consider the SPSA algorithm (5.15), where s̃g(θk) is uni-

formly bounded and s̃g(θk) ∈ ∂f(θk). Assume (5.A.1)-(5.A.2), (5.B.2)-(5.B.4),

and assume that ∆k is bounded, [∆−1
k] is uniformly bounded, ∆k is independent

of θk, θk−1 . . . , θ0, and E[
∆k,i

∆k,j
| ∆0, . . . , ∆k−1, θ0, . . . , θk−1] = 0 for i �= j. Suppose

that f(·) is continuous and convex, but not constant. Consider the differential

inclusion

θ̇ ∈ −∂f(θ) + z, z(t) ∈ −C(θ(t)), (5.22)

and let SH denote the set of stationary points of (5.22), i.e. points in H where

0 ∈ −∂f(θ) + z. Then, for almost all ω, {θk(ω)} converges to a point in SH ,

which attains the minimum of f .

94

Proof: Since [∆−1
k] are uniformly bounded and limk→∞ δk = 0 by Lemma 5.2.1,

limk→∞[∆−1
k]δk = 0, which implies that (5.A.3) holds.

By Lemma 5.2.3, (5.B.1) holds. By Lemma 5.2.4, limk→∞ sup|t|≤T |Mo,k(t)| =
0 w.p. 1. So (5.A.4) holds for eo,k.

Since ∆k is bounded and both s̃g(θk) and [∆−1
k] are uniformly bounded,

E|er,k|2 < ∞. Using the martingale convergence theorem and Lemma 5.2.2, we

get limk→∞ sup|t|≤T |M r,k(t)| = 0 w.p. 1, where M r,k(t) :=
∑m(t+tk)−1

i=k αier,i. So

(5.A.4) holds for er,k.

So all conditions of Proposition 5.2.1 are satisfied, and all its conclusions

hold. �

5.3 Discussion

In this chapter, we developed two SPSA algorithms for weighted cost problems

and carried out numerical experiments. Compared to the simulation-based algo-

rithms in Chapter 4, the SPSA algorithms are easy to use and general applicable,

though less efficient.

Then we used convex analysis to establish convergence of constrained SPSA

for the setting in which the objective function is not necessarily differentiable.

The analysis can be extended to SPSA algorithms with nondifferentiable con-

straints, as well as other stochastic approximation algorithms for nondifferen-

tiable function optimization. In particular, we intend to consider global opti-

mization of nondifferentiable functions along the lines of [41].

95

Chapter 6

Fab-Level Decision-Making Application

In this chapter, we tackle the fab-level decision making MDP problem presented

in Chapter 2. From its “testbed” example of Section 2.2.5, we have seen that the

fab-level decision making MDP problem suffers from both “curse of dimensional-

ity” and “curse of modeling”. In order to solve such problems, our methodology

is first to derive the structure of optimal policies for some special cases, then to

use this structure to construct parameterized heuristic policies for more general

cases and implement simulation-based algorithms to determine parameters of

the heuristic policies. Sometimes, we also use simulation-based policy iteration

to gain insight of optimal policies.

First, in Section 6.1, we present a simple example of the fab-level decision

making problem, and apply simulation-based policy iteration to this example.

Numerical experiments indicate that a near-optimal policy, which matches intu-

ition, can often be obtained within ten iterations. The resulting policies also give

us some insight of optimal policies. However, this algorithm cannot be extended

to more complicated examples of the fab-level decision making problem, since

the control space explodes very quickly.

The crucial part of our methodology is to find classes of parameterized policies

that are near optimal. Then, we can use simulation-based algorithms introduced

in Chapter 4 and Chapter 5 to estimate the optimal parameters of the heuristic

96

policy. Hence, in the second part of this chapter, we focus on deriving the

structure of an optimal policy for a special one-machine, two-product case. Note

that the resulting policies do not depend on how elements in the states and the

control vectors are discretized.

Finally, we discuss how to implement simulation-based algorithms on the

testbed example, including reformulation of the finite horizon problem to a

weighted cost-to-go problem, and parameterization of the structural optimal

policies for the one-machine, two-product case and several more complex cases.

6.1 Simulation-Based Policy Iteration for a

Simple Example

In order to get a better understanding of how the MDP model of the fab-

level decision-making problem would be specified in practice and how to use

simulation-based algorithms to obtain some insight into an optimal policy, we

provide here a very simple example of a fab with just two machines and pro-

ducing two products that each have two operations (litho an etch). We will cast

the simple example as an infinite horizon discounted cost problem, and apply

simulation-based policy iteration to this problem.

6.1.1 Problem Setup

Similar to the one-machine, two-product example, in this two-machine, two-

product example, the fab is characterized as follows:

• two products: “A” and “B”;

• two operations on each: “litho” and “etch”, distinguished by product;

• two machines – litho or etch – could be flexible (able to do the respective

97

operation on both products A and B) or dedicated (only able to do the

respective operation on one of A or B);

• operation times, which depend on the product and the machine.

We begin by defining products, operations, and machines.

Products l are chosen from the set

Pt = {0, A, B},

where 0 corresponds to ‘no product’.

Operations i are chosen from the set Xt = {1, 2, 3, 4},Nt = 4, where

1 ←→ lithoA,

2 ←→ etchA,

3 ←→ lithoB,

4 ←→ etchB.

Thus, operations 1 and 2 correspond to operations on product A, whereas oper-

ations 3 and 4 correspond to operations on product B.

Machines are words w chosen from the set Zt :

01 = machine dedicated to lithoA operation,

02 = machine dedicated to etchA operation,

03 = machine dedicated to lithoB operation,

04 = machine dedicated to etchB operation,

013 = flexible litho machine,

024 = flexible etch machine,

∪ {012, 034, 014, 023, 0123, 0124, 0134, 0234, 01234},

98

where 0 corresponds to ‘no operation’ and the last set’s elements do not corre-

spond to feasible machines in the real model.

Other model input (system) parameters that must be defined are C(l,i),w and

F(l,i),w, which essentially specify the operation times for a particular product on

a particular machine.

F(l,i),w =


1 (A, 1), 013; (A, 2), 024; (B, 3), 013; (B, 4), 024;

(A, 1), 01; (A, 2), 02; (B, 3), 03; (B, 4), 04;

0 otherwise,

i.e., all products require a single operation on the appropriate machine.

C(l,i),w =



1 (A, 1), 013; (A, 2), 024;

0.5 (B, 3), 013; (B, 4), 024;

1.2 (A, 1), 01; (A, 2), 02;

0.6 (B, 3), 03; (B, 4), 04;

0 otherwise,

i.e., a flexible etch or litho machine completes one operation on product A in an

hour, product B takes twice as long on both operations, and a flexible machine is

20% slower than a dedicated one (e.g., 60 minutes versus 50 minutes for product

A).

For simplicity, we will take Kw = 1 for all w, i.e., availability is 100% for all

machines.

Assumptions

Following [66], the following assumptions are made:

• During the decision horizon, no machine is purchased, discarded, or sent

to reserve, and no maintenance is required. The only actions are to switch

flexible machines between different products.

99

• For each type of machine (litho or etch), no more than one machine can

be switched from one product and/or operation to another in a period.

• Products A and B are operated in whole unit and half units, respectively.

• The inventory warehouses for products A and B have capacities of 1 and

0.5 units, respectively.

• There is a limit on backlogged demand of 1 and 0.5 units for product A

and B, respectively. Demand exceeding backlogging limits is lost.

• The demand process for a given product is independent and identically

distributed from period to period, and demand processes are mutually

independent between products.

States

Under the above assumptions, the state vector of our MDP model takes the form

X(t) = {(X(A,1),013(t), X(A,2),024(t), IA(t), IB(t)},

where the first and second components are, respectively, the litho and etch ca-

pacities allocated to product A, and the third and fourth components are, respec-

tively, the inventory levels of products A and B. Note that the capacity allocated

to product B is simply the remainder of total machine capacity for each machine

type (litho or etch), because we have assumed for this two-machine, two product

example that no capacity is ever put into reserve, thus reducing the dimension-

ality of the state vector from six dimensions to four components. Under our

assumptions, the components of the state vector take values in the following

sets:

X(A,1),013(t) = 2−X(B,3),013(t) ∈ {0, 1, 2},
X(A,2),024(t) = 2−X(B,4),024(t) ∈ {0, 1, 2},

100

IA ∈ {−1, 0, 1},
IB ∈ {−0.5, 0, 0.5},

and thus the total number of possible states is 81 and the throughput for each

product is given as follows:

TPA(t) = min
{
X(A,1),013(t), X(A,2),024(t)

}
,

TPB(t) = 0.5 min
{
X(B,3),013(t), X(B,4),024(t)

}
,

where the argmin gives the bottleneck operation for the product (1 or 2 for A;

3 or 4 for B).

Note that for our problem, states can be divided into state groups, which

are defined as the sets of those states that have the same capacity allocation for

both X(A,1),013(t) and X(A,2),024(t). In other words, if two states differ only in

their product inventory levels, we say they belong to the same state group.

Actions

For the action vector, we have two formulations. One formulation corresponds

to the action vector with four-dimensional form

{V (A,1),(B,3)
013 (t), V

(A,2),(B,4)
024 (t), V

(B,3),(A,1)
013 (t), V

(B,4),(A,2)
024 (t)},

where the first component is the litho capacity moved from product A to product

B, the second component is the etch capacity moved from product A to product

B, the third component is the litho capacity moved from product B to product A,

and the fourth component is the etch capacity moved from product B to product

A. In this formulation, V (l,i),(m,j)
w (t) = 0, if some type w capacity is switched over

from product m and operations of type j to product l and operations of type i.

Given that we consider only allocation and not expansion, and do not allow

capacity to be sent to reserve, the action vector can be reduced to the two-

101

dimensional form

U(t) = (V
(A,1),(B,3)
013 , V

(A,2),(B,4)
024),

which is the other formulation, since the amount of capacity moved from A to

B is the negative of that moved from B to A:

V
(A,1),(B,3)
013 (t) = −V

(B,3),(A,1)
013 (t) ∈ {−1, 0, 1},

V
(A,2),(B,4)
024 (t) = −V

(B,4),(A,2)
024 (t) ∈ {−1, 0, 1}.

We will label the resulting nine possible actions as follows: A1=(-1,-1), A2=(-

1,0), A3=(-1,+1), A4=(0,+1), A5=(0,0), A6=(0,+1), A7=(+1,-1), A8(+1,0),

A9=(+1,+1). However, note that for a given state group, not all actions are

admissible.

We have the following state equations:

X(A,1),013(t + 1) = X(A,1),013(t)− V
(A,1),(B,3)
013 (t), (6.1)

X(A,2),024(t + 1) = X(A,2),024(t)− V
(A,2),(B,4)
024 (t), (6.2)

IA(t + 1) = IA(t) + TPA(t)− dA(t), (6.3)

IB(t + 1) = IB(t) + TPB(t)− dB(t). (6.4)

Demand Distribution and Transition Probability

The demands for product A and B are modeled as Bernoulli process, in which

demand for product A can only be 1 or 2 units and demand for product B can

only be 0.5 and 1 unit. The probabilities of demand for product A to be 1 and

of demand for product B to be 0.5 are denoted as pA and pB.

For each action, we first build a state group transition probability matrices

involving only state elements in the form of X(A,j),w(t), based on state equations

(6.1) and (6.2). It is not difficult to see that each entry of state group transition

probability matrices is either zero or one.

102

To get a complete transition probability matrices, we fill in each entry of the

state group matrices: each entry with value zero is replaced by a zero matrix;

and each entry with value one is replaced by a joint transition probability matrix

P (A, B), which only involves the state elements Il(t).

P (A, B) is constructed as follows. Knowing demand distributions, we first

build marginal transition probability matrices P (A) and P (B) (3× 3) for each

product A and B for different throughputs, based on the state equations (6.3)

and (6.4), respectively. Then, we build P (A, B) (9 × 9) with regard to each

throughput pairs:

P (A, B) = P (A)⊗ P (B)

where ⊗ is the kronecker product. Suppose X and Y are two matrices, the result

of X ⊗ Y is a large matrix formed by taking all possible products between the

elements of X and those of Y. For example, if X is 2 by 3, then X ⊗ Y is X(1, 1) ∗ Y X(1, 2) ∗ Y X(1, 3) ∗ Y

X(2, 1) ∗ Y X(2, 2) ∗ Y X(2, 3) ∗ Y

 .

Cost Structure

Here we only consider a linear cost structure. So the inventory cost and back-

logging cost are proportional to the inventory level; the operation cost is propor-

tional to the allocated capacity for different products on different machines; the

switch-over cost is proportional to the switched capacity, which is also an action

variable.

Correspondingly, the parameters are unit inventory cost and backlogging cost

for both products A and B; unit operating cost on the litho machine for product

A, on the litho machine for product B, on the etch machine for product A, and

on the etch machine for product B; and the unit switch-over cost on both litho

and etch machines.

103

Objective Function

We formulate the two-machine, two-product example as a discounted cost prob-

lem, where the objective function is:

Jπ(i) = lim
T→∞

E

{
T−1∑
t=0

αtg(X(t), µt(X(t))) | X(0) = i

}
. (6.5)

where α ∈ (0, 1) is the discount factor.

6.1.2 Simulation-Based Policy Iteration Algorithm

The simulation-based policy iteration algorithm for the two-machine, two-product

example is as follows:

1. Set k = 0, select an arbitrary stationary policy µk.

2. Policy evaluation: Calculate approximate cost-to-go function J̃µ(i, r),

where r is a vector of tunable parameters:

(i) Generate M(i) sample trajectories with length T for each initial state

i, where the mth sample path starting with state i is denoted by c(i, m);

(ii) solve

min
r

∑
i

M(i)∑
m=1

(J̃(i, r)− c(i, m))2, (6.6)

to obtain the parameter vector r̄ for calculating the approximation J̃µ(i, r̄)

of the cost function.

3. Policy improvement:

Choose a new policy µk+1 that is greedy with respect to the approximate

cost-to-go,

µk+1(i) = argminu∈U(i)

n∑
j=0

pij(u)(g(i, u, j) + αJ̃(j, r̄)), i = 0, . . . , n− 1,

4. If µk+1 = µk, then stop and set µ∗ = µk; otherwise increment k by 1 and

return to step 2.

104

The above simulation-based policy iteration algorithm presented closely fol-

lows approximate policy iteration in [4].

For the approximate cost-to-go function J̃µ(i, r), first we need to choose an

approximation architecture, that is, a certain functional form involving a number

of free parameters. Broadly, approximation architectures can be classified into

two main categories: linear and nonlinear. A linear architecture is of the general

form

J̃(i, r) =
K∑

k=0

r(k)φk(i),

where r(k),k = 1, . . . , K, are the components of the parameter vector r, and φk

are fixed, easily computable functions. A common nonlinear architecture is a

multilayer perceptron [4] with a single hidden layer which has the following form

J̃(i, r) =
K∑

k=0

r(k)σ(
L∑

l=1

r(k, l)xl(i)),

where r(k, l) and r(k) are coefficients for the input layer and output layer, re-

spectively; σ(·) is a sigmoidal function such as the logistic function

σ(ξ) =
1

1 + e−ξ
.

It is often the case that the approximation architecture is too complicated

for state representation, and one considers the use of some structural pieces

to represent states. These structural pieces are called features, which are fed

into the approximation architecture instead of the state itself. Usually, these

features are handcrafted, based on the particular problem. Some example of

features include state variables, heuristic cost-to-go and/or past cost-to-go.

Since we are dealing with an infinite horizon problem, and simulation can

only run for a finite number of steps, we need to make sure that the cost of the

finite approximation is close enough to that of the infinite horizon cost. In fact,

if we choose T as the sample length, the error between the expected value of the

resulting sample cost-to-go and Jµ is within GαT

(1−α)
, where G is an upper bound

105

on |g(i, u, j)|. So, if we specify the error requirement, the choice of T follows.

With T set to be sufficiently large, the effects of using a finite trajectory can

be made arbitrarily small. We can choose M(i) by balancing exploration and

exploitation.

One set of computational methods for the least squares problem (6.6) is to

simulate a number of trajectories, collect the results, formulate the least squares

problem and then solve it in batch mode.

Another way to solve the least square problem is the incremental gradient

method. Given a sample state trajectory (i0, i1, . . . , iN) generated using the

policy µ, the parameter vector r is updated by

r := r − γ
N−1∑
k=0

∇J̃(ik, r)(J̃(ik, r)−
N−1∑
m=k

g(im, µ(im), im+1)),

where γ is a stepsize. A key advantage of incremental algorithms is that they

allow us to decide whether or not to simulate more trajectories, depending on

the quality of the results obtained so far.

6.1.3 Numerical Experiments

To illustrate the effectiveness of simulation-based policy iteration, a case study

is provided.

The simulation-based policy iteration is implemented as follows:

• Linear architecture is chosen for cost-to-go approximation architecture.

• Features are state variables {(X(A,1),013(t), X(A,2),024(t), IA(t), IB(t)} and

their squares, plus φ1(x) = 1; there are nine features.

• For the sample paths, random variates are constructed using the inverse

transform method [67]; the simulation length and number of replication

are chosen to be 100 and 20, balancing between accuracy and simulation

speed.

106

Model specifications
DA = 1 0.4
DA = 2 0.6

DB = 0.5 0.7
DB = 1 0.3

unit inventory cost for product A 2
unit inventory cost for product B 1
unit backlog cost for product A 10
unit backlog cost for product B 5

unit operating cost on litho machine for product A 0.2
unit operating cost on litho machine for product B 0.2
unit operating cost on etch machine for product A 0.1
unit operating cost on etch machine for product B 0.1

unit switch cost on litho machine 3
unit switch cost on etch machine 3

discounted factor 0.95

Table 6.1: Model Specifications

• Batch mode least squares is adopted.

The example simulated has the specifications shown in Table 6.1.

Starting with an initial policy (see the policy in the first iteration of Figure

6.1, which is an arbitrarily chosen admissible policy), after 7 iterations the pro-

gram terminates with a near optimal policy. See Figures 6.1 and 6.2 for the

policy trajectories, respectively, and cost trajectories at each iteration.

Compared to exact policy iteration for the same case shown in Figure 6.3,

there are several interesting points:

• Simulation-based policy iteration takes 7 iterations to obtain its optimal

policy, whereas exact policy iteration takes only 4 iterations to obtain the

optimal policy.

• The near optimal policy is different from the optimal policy. Even if we

use the optimal policy as the initial policy, simulation-based policy itera-

tion still converges to the near optimal policy. This is due to the feature

107

20 40 60 80
0

2

4

6

8

10

po
lic

y
policy for approximate policy iteration, iteration 1

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for approximate policy iteration, iteration 2

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for approximate policy iteration, iteration 3

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for approximate policy iteration, iteration 4

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for approximate policy iteration, iteration 5

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for approximate policy iteration, iteration 6

20 40 60 80
0

2

4

6

8

10

state

po
lic

y

policy for approximate policy iteration, iteration 7

20 40 60 80
0

2

4

6

8

10

state

po
lic

y

policy for approximate policy iteration, iteration 8

Figure 6.1: Policy for Simulation-Based Policy Iteration

108

20 40 60 80
100

150

200

250

300

350

di
sc

ou
nt

ed
 c

os
t f

or
 1

00
 s

te
ps

cost for approximate policy iteration, iteration 1

20 40 60 80
100

150

200

250

300

350

di
sc

ou
nt

ed
 c

os
t f

or
 1

00
 s

te
ps

cost for approximate policy iteration, iteration 2

20 40 60 80
100

150

200

250

300

350

di
sc

ou
nt

ed
 c

os
t f

or
 1

00
 s

te
ps

cost for approximate policy iteration, iteration 3

20 40 60 80
100

150

200

250

300

350

di
sc

ou
nt

ed
 c

os
t f

or
 1

00
 s

te
ps

cost for approximate policy iteration, iteration 4

20 40 60 80
100

150

200

250

300

350

di
sc

ou
nt

ed
 c

os
t f

or
 1

00
 s

te
ps

cost for approximate policy iteration, iteration 5

20 40 60 80
100

150

200

250

300

350

di
sc

ou
nt

ed
 c

os
t f

or
 1

00
 s

te
ps

cost for approximate policy iteration, iteration 6

20 40 60 80
100

150

200

250

300

350

state

di
sc

ou
nt

ed
 c

os
t f

or
 1

00
 s

te
ps

cost for approximate policy iteration, iteration 7

20 40 60 80
100

150

200

250

300

350

state

op
tim

al
 d

is
co

un
te

d
co

st

optimal cost from policy iteration

Figure 6.2: Cost Function for Simulation-Based Policy Iteration

109

20 40 60 80
0

2

4

6

8

10
po

lic
y

policy for exact policy iteration, iteration 1

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for exact policy iteration, iteration 2

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for exact policy iteration, iteration 3

20 40 60 80
0

2

4

6

8

10

po
lic

y

policy for exact policy iteration, iteration 4

20 40 60 80
100

150

200

250

300

350

co
st

cost for exact policy iteration, iteration 1

20 40 60 80
100

150

200

250

300

350

co
st

cost for exact policy iteration, iteration 2

20 40 60 80
100

150

200

250

300

350

state

co
st

cost for exact policy iteration, iteration 3

20 40 60 80
100

150

200

250

300

350

state

co
st

cost for exact policy iteration, iteration 4

Figure 6.3: Policy and Cost Function for Exact Policy Iteration

110

approximation.

• Although the paths to the optimal policy are different for simulation-based

policy iteration and policy iteration, there are some similarities. It appears

that simulation-based policy iteration improves slower than exact policy

iteration, with the same trend.

• The cost-to-go of approximate policy iteration stalls at some policy for

three steps, which cause the delay.

6.2 Structure of Optimal Policy for a

One-Machine, Two-Product Example

In this section, we show how to find the structure of an optimal policy for a

one-machine, two-product example of the fab-level decision-making problem.

In Chapter 4 and 5, we developed several simulation-based algorithms and

carried out numerical experiments on a parking example. However, for the park-

ing example, we know the structure of an optimal policy, whereas this is not

the case for the fab-level decision-making MDP. Hence, we first need to find the

optimal policy structure or heuristic policy structure before we apply simulation-

based algorithms.

For MDP problems, there are a few cases whose optimal policy structures

are known: the parking problem used in Chapter 4 and Chapter 5, the one

product inventory control problem with (s, S) optimal policy, and some simple

maintenance problems with threshold type optimal policies, etc. As for many

other cases, it is difficult to find the structures of optimal policies. In the case

of the fab-level MDP problem, we can interpret it as a combination of capacity

allocation and multiproduct inventory control problem, so it is even harder to

obtain a simple structure of optimal policies. Here, we only try to derive the

111

structure of an optimal policy for a one-machine, two-product case. In fact, even

for such small example, we can only get results for some special cases.

We use the backwards induction method of dynamic programming to derive

the structure of an optimal policy for the one-machine, two-product example.

Assuming the cost structure to be linear and demands to be deterministic, and

under some constraints, we can show that the function to be minimized at each

stage of dynamic programming is piecewise linear convex. Then, using proper-

ties of piecewise linear convex functions, we divide the state space into several

partitions, obtain an optimal policies for the partitions, and combine the optimal

policy for each partition to form an optimal policy for entire state space. We

illustrate the details for time T − 1 and T − 2, present results of some scenarios,

and verify policy optimality by numerical experiments.

If demands are stochastic, we can show that the function to be minimized

at each stage of dynamic programming is convex. Using the properties of con-

vex functions, we can also obtain an optimal policy for some special cases. For

some other cases, if demands can only take a finite number of values, we can ob-

tain sub-optimal policy based on results from the deterministic cases. However,

for more complicated stochastic cases, constructing near-optimal policies with

simple structure is still a subject of ongoing research.

6.2.1 Problem Setup

Here, we consider a special case of the fab-level decision-making problem with

two products, one machine and no capacity expansion or discard. Specifically,

this problem can be characterized as follows:

• two products: “A” and “B”;

• one machine, say etch machine, a flexible machine which is able to perform

both A and B operations;

112

• two operations: “etchA” and “etchB”;

• assume no capacity expansion or discard, and no sending from or to reser-

vation;

• linear cost structure;

• demands for products are mutually independent, and are independent over

time.

We begin by defining products, operations, and machines.

Products l are chosen from the set Pt = {0, A, B}, where 0 corresponds to ‘no

product’.

Operations i are chosen from the set Xt = {1, 2},Nt = 2, where

1 ←→ etchA,

2 ←→ etchB.

Machines are words w chosen from the set Zt = {01, 02, 012}, where

01 = machine dedicated to etchA operation,

02 = machine dedicated to etchB operation,

012 = flexible etch machine,

and 0 corresponds to ‘no operation’.

Other model input parameters that must be defined are C(l,i),w and F(l,i),w.

Here we use production rates P(l,i),w = C(l,i),w/F(l,i),w for brevity.

The state vector at time t is

X(t) = {X(A,1),012(t), X(B,2),012(t), IA(t), IB(t)},

and the action vector at time t is

U(t) = {V (A,1),(B,2)
012 (t)}.

113

For simplicity, we will drop “012” and use “A → B” to replace “(A, 1), (B, 2)”

henceforth. Note that V (A→B)(t) = −V (B→A)(t).

The total cost we want to minimize is

J0 = E [
∑T

t=1 { Cc
A→B max(0, V (A→B)(t)) + Cc

B→A max(0,−V (A→B)(t))

+ Ce
1,A(X(A,1)(t)) + Ce

2,B(X(B,2)(t))

+ (Cd
A,inv max(0, IA(t)) + (Cd

A,back max(0,−IA(t))

+ (Cd
B,inv max(0, IB(t)) + (Cd

B,back max(0,−IB(t)) }].

(6.7)

We have the following state equations:

X(A,1)(t + 1) = X(A,1)(t)− V (A→B)(t), (6.8)

X(B,2)(t + 1) = X(B,2)(t) + V (A→B)(t), (6.9)

IA(t + 1) = IA(t) + X(A,1)(t)P(A,1) − dA(t), (6.10)

IB(t + 1) = IB(t) + X(B,2)(t)P(B,2) − dB(t). (6.11)

The constraints are as follows:

X(A,1)(t) ≥ 0, (6.12)

X(B,2)(t) ≥ 0, (6.13)

V (A→B)(t) ≥ −X(B,2)(t), (6.14)

V (A→B)(t) ≤ X(A,1)(t). (6.15)

6.2.2 Optimality Equation

In order to derive the Optimality Equation for this Markov decision process, we

break J0 into two parts:

J0 = J + Jc,

where

J = E

[
T−1∑
t=1

gt(X(t), U(t)) + gT (U(T))

]
,

114

with

gt(X(t), U(t)) = Cc
A→B max(0, V (A→B)(t)) + Cc

B→A max(0,−V (A→B)(t))

+ Ce
1,A(X(A,1)(t)− V (A→B)(t)) + Ce

2,B(X(B,2)(t) + V (A→B)(t))

+ Cd
A,inv max(0, IA(t) + 2X(A,1)(t)P(A,1) − V (A→B)(t)P(A,1) − dA(t)− dA(t + 1))

+ Cd
A,back max(0,−IA(t)− 2X(A,1)(t)P(A,1) + V (A→B)(t)P(A,1) + dA(t) + dA(t + 1))

+ Cd
B,inv max(0, IB(t)) + 2X(B,2)(t)P(B,2) + V (A→B)(t)P(B,1) − dB(t)− dB(t + 1))

+ Cd
B,back max(0,−IB(t))− 2X(B,2)(t)P(B,2) − V (A→B)(t)P(B,1) + dB(t) + dB(t + 1)),

t = 1, . . . , T − 2,

gT−1(X(T − 1), U(T − 1)) =

Cc
A→B max(0, V (A→B)(T − 1)) + Cc

B→A max(0,−V (A→B)(T − 1))

+Ce
1,A(X(A,1)(T − 1)− V (A→B)(T − 1)) + Ce

2,B(X(B,2)(T − 1) + V (A→B)(T − 1)),

gT (U(T)) = Cc
A→B max(0, V (A→B)(T)) + Cc

B→A max(0,−V (A→B)(T)),

and

Jc = Ce
1,A X(A,1)(1) + Ce

2,B X(B,2)(1)

+ Cd
A,inv max(0, IA(1)) + Cd

A,back max(0,−IA(1))

+ Cd
B,inv max(0, IB(1)) + (Cd

B,back max(0,−IB(1))

+ EdA(1) [Cd
A,inv max(0, IA(1) + X(A,1)(1)P(A,1) − dA(1)) +

Cd
A,back max(0,−IA(1)−X(A,1)(1)P(A,1) + dA(1))]

+ EdB(1) [Cd
B,inv max(0, IB(1) + X(B,2)(1)P(B,2) − dB(1)) +

Cd
B,back max(0,−IB(1)−X(B,2)(1)P(B,2) + dB(1))].

Note that gT−1(X(T − 1), U(T − 1)) contains no inventory and backlog costs

and gT (U(T)) only consists of switching costs. Because Jc is independent of the

control policy, the problem of minimizing J0 is equivalent to that of minimizing

J .

115

By applying the backwards induction method of dynamic programming, we

get the Optimality Equation

J∗
T = min

U(T)
{gT (U(T))},

J∗
t (X(t)) = min

U(t)
{Qt(X(t), U(t))},

t = 1, . . . , T − 1,

where

QT−1(X(T − 1), U(T − 1)) = gT−1(X(T − 1), U(T − 1)) + J∗
T ,

Qt(X(t), U(t)) = EdA(t),dA(t+1),dB(t),dB(t+1)

[
gt(X(t), U(t)) | X(t), U(t))

]
+J∗

t+1({X(A,1)(t)− V (A→B)(t), X(B,2)(t) + V (A→B)(t),

IA(t) + X(A,1)(t)P(A,1) − dA(t), IB(t) + X(B,2)(t)P(B,2) − dB(t)}),
t = 1, . . . , T − 2.

J∗
t (X(t)) is the optimal cost-to-go up to time t, and Qt(X(t), U(t)) is known as

the Q-factor at time t corresponding to (X(t), U(t)).

At time T , gT (·) is convex with respect to U(T), and obviously, the optimal

policy at time T is µ∗
T = 0 and J∗

T = 0.

At time T − 1, QT−1(X(T − 1), U(T − 1)) = gT−1(X(T − 1), U(T − 1)) since

J∗
T = 0. We can show that QT−1(X(T − 1), U(T − 1)) is piecewise linear and

convex with respect to U(T − 1).

Before we present the optimal policy at time T − 1, we first discuss some

properties of piecewise linear convex functions.

6.2.3 Properties of Piecewise Linear Convex Functions

A piecewise linear function f : I = [a, b]→ R with N linear pieces can be defined

in the following way:

116

f(x) = ui + Ji(x− ni), x ∈ [ni, ni+1), i = 0, . . . , N − 1

f(b) = uN−1 + JN−1(b− nN−1),
(6.16)

where a = n0 < n1 < . . . < nN = b are called partition points, following the

definition of partition points of a piecewise constant function in [68], Ji, i =

0, . . . , N−1, are called slopes, and Ji = Ji+1 only when ui+1 �= ui +Ji(ni+1−ni).

Then, the function f(x) is determined by the triplets {ui, Ji, ni}. The form

(6.16) is referred to as the standard form of f(x).

If f(x) is also convex, then piecewise linearity ensures that f(x) is continuous

on [a, b], and the left derivative f
′
−(x) and right derivative f

′
+(x), defined by

limδ>0
f(x)−f(x−δ)

δ
and limδ>0

f(x+δ)−f(x)
δ

respectively, exist and are increasing [69].

Note that f
′
−(ni) = Ji−1 for i = 1, . . . , N and f

′
+(ni) = Ji for i = 0, . . . , N − 1,

so Ji is increasing with i. In addition, Ji �= Ji+1, as ui+1 = ui + Ji(ni+1 − ni)

from continuity of f(x). so, Ji is strictly increasing with i.

Because f(x) is continuous on [a, b], by the extreme value theorem, f(x)

attains a minimum value. Given a point x0 ∈ [a, b], suppose that there is some

δ1 > 0 such that f(x) ≥ f(x0) for all x ∈ [a, b] such that |x− x0| < δ1, then we

said at point x0 a local minimum value of f(x) is attained. Due to convexity of

f(x), at point x0, a global minimum value of f(x) is also attained. We call such a

point x0 a minimizer for f(x), and denote the smallest of all possible minimizers

on [a, b] as x∗. In words, the minimum is achieved at a partition point.

It is straightforward to show that

x∗ =



a if J0 > 0,

ni if Ji = 0,

ni+1 if Ji < 0 < Ji+1,

b if JN−1 < 0.

(6.17)

Note that when Ji = 0 ∀i, ni is the smallest of [ni, ni+1) in which all points are

minimizers for f(x).

117

Lemma 6.2.1 Given the standard form of piecewise linear convex function f(x)

in (6.16), there exists i∗ such that ni∗ = x∗. For a particular {Ji} sequence, i∗

is unique.

This lemma directly follows from (6.17).

If the {Ji} sequence is known, i∗ can be obtained directly by (6.17).

In many cases, however, the {Ji} sequence is not available. But we can still

obtain a minimizer for f(x) by minimizing f(x) over the set of partition points

S = {n0, . . . , nN}, according to (6.17). Usually, the set S can be constructed

using some known sets. For example, f(x) is defined as a linear combination

λ1f1(x)+ . . .+λdfd(x) of piecewise linear convex functions f1(x), . . . , fd(x) with

non-negative coefficients λ1, . . . , λd, where f1(x), . . . , fd(x) are called basis func-

tions of f(x). We can show that f(x) is still piecewise linear convex, and Sf is a

subset of the union of Sfi, where Sf is the set of partition points of f(x), and Sfi

is the set of partition points of fi(x). In this case, a minimizer can be obtained

by minimizing f(x) over Sf , without the knowledge of the {Ji} sequence.

Let us consider a non-standard form of the piecewise linear convex function

f(x). Suppose {q0, . . . , qK} is a set of K points on [a, b] such that it contains

all partition points and a = q0 < . . . < qK = b. Then the non-standard form of

f(x) is as follows:

f(x) = vk + Lk(x− qk), x ∈ [qk, qk+1), k = 0, . . . , K − 1,

f(b) = vK−1 + LK−1(b− qK−1),
(6.18)

where qk, k = 0, . . . , K, are called pseudo partition points, and Lk, k = 0, . . . , K−
1, are called pseudo slopes. It is not necessary that Lk �= Lk+1 when vk+1 =

vk + Lk(qk+1 − qk).

118

Similar to (6.17), we have

x∗ =



a if L0 > 0,

qk if Lk = 0 and Lk−1 < 0 (if exists),

qk+1 if Lk < 0 < Lk+1,

b if LK−1 < 0.

(6.19)

Lemma 6.2.2 Given the non-standard form of piecewise linear convex function

f(x) in (6.18), there exists k∗ such that qk∗ = x∗. For a particular {Lk} sequence,

k∗ is unique.

This lemma directly follows from (6.19).

Now we consider a function g(ȳ, x) with ȳ = (y1, . . . , yK) ∈ Dȳ, a(ȳ) ≤ x ≤
b(ȳ), where Dȳ is the domain of ȳ, and the function has the following properties:

(6.A.1) for all ȳa ∈ Dȳ, g(ȳa, x) is a piecewise linear convex function with respect

to x, and can be written in the standard form:

g(ȳa, x) = ui(ȳa) + Ji(ȳa)(x− ni(ȳa)), x ∈ [ni(ȳa), ni+1(ȳa)), i = 0, . . . , N(ȳa)− 1,

g(ȳa, b(ȳa)) = uN(ȳa)−1(ȳa) + JN(ȳa)−1(ȳa)(b(ȳa)− nN(ȳa)−1(ȳa)),

(6.20)

where a(ȳa) = n0(ȳa) < n1(ȳa) < . . . < nN(ȳa) = b(ȳa);

(6.A.2) there exists a set of functions {q0(ȳ), . . . , qM(ȳ)} such that for all ȳa ∈
Dȳ, the set of partition points of g(ȳa, x), {n0(ȳa), . . . , nN(ȳa)ȳa} is a subset of

{q0(ȳa), . . . , qM(ȳa)}. Functions qk(ȳ), k = 0, . . . , M , are referred to as pseudo

partition functions.

We want to discover some properties of a minimizer argminxg(ȳ, x). The

smallest of all possible minimizers is denoted as χ∗(ȳ). Note that for a given

ȳa ∈ Dȳ, there exists i∗ ∈ 0, . . . , Na such that χ∗(ȳa) = na,i∗ , from the piecewise

linear convex property.

Note that for all ȳa ∈ Dȳ, a(ȳa) ≤ qk(ȳa) ≤ b(ȳa) ∀ k = 0, . . . , M , so, without

loss of generality, we set q0(ȳ) = a(ȳ) and qM(ȳ) = b(ȳ). For the rest of pseudo

119

partition functions, qk(ȳa), k = 1, . . . , M − 1, their order depends on the value

of ȳ, so there are (M − 1)! permutations of {q0(ȳ), . . . , qM(ȳ)}. For ȳa, ȳb ∈ Dȳ,

if the order of qk(ȳa), is the same as the order of qk(ȳb) k = 1, . . . , M − 1, we say

ȳa and ȳb belong to the same partition of Dȳ.

For the mth permutation of {q0(ȳ), . . . , qM(ȳ)}, m ∈ {1, . . . , (M − 1)!}, we

reorder them into Qm = {qm
0 (ȳ), . . . , qm

M(ȳ)} with qm
k (ȳ) increasing with i. The

set of all ȳb satifying qm
0 (ȳb) ≤ . . . ≤ qm

M(ȳb), denoted as Dm, is one of (M − 1)!

partitions of Dȳ.

We are going to show that, for a given partition, the form of minimizers is

the same for all ȳ in this partition.

By (6.A.1) and (6.A.2), for all ȳb ∈ Dm, we have non-standard forms of

g(ȳb, x) as follows:

g(ȳb, x) = vm
k (ȳb) + Lm

k (ȳb)(x− qm
k (ȳb)), x ∈ [qm

k (ȳb), q
m
k+1(ȳb)), k = 0, . . . , M − 1,

g(ȳb, b(ȳb)) = vm
M−1(ȳb) + Lm

M−1(ȳb)(b(ȳb)− qm
M−1(ȳb)),

(6.21)

and we assume (6.A.3) for the mth permutation Qm, Lm
k (ȳb) is the same, say

Lm
k , for all ȳb ∈ Dm, m = 1, . . . , (M − 1)!. Lm

k is called the kth pseudo slope for

permutation Qm.

Lemma 6.2.3 Consider the function g(ȳ, x) and assume (6.A.1) - (6.A.3), for

a permutation Qm and the corresponding partition Dm, then there exists a unique

k∗ ∈ {0, . . . , M}, χ∗(ȳb) = qm
k∗(ȳb) for all ȳb ∈ Dm.

Because the {Lm
k (ȳb)} sequence is the same for all ȳb ∈ Dm, by Lemma 6.2.2 the

conclusion follows.

120

6.2.4 Optimal policy with deterministic demands

It is straightforward to show that QT−1(X(T −1), U(T −1)) is a piecewise linear

and convex function with pseudo partition functions

{q0(X(T −1)), q1(X(T −1)), q2(X(T −1))} = {−X(B,2)(T −1), 0, X(A,1)(T −1)}

and pseudo slopes

{LT−1,1, LT−1,2} = {−(Ce
1,A − Ce

2,B + Cc
B→A),−(Ce

1,A − Ce
2,B − Cc

A→B)},

and (A.1) - (A.3) are satisfied.

By applying Lemma 6.2.3 directly, an optimal policy at time T − 1 is:

µ∗
T−1(X(T − 1)) =


X(A,1)(T − 1) LT−1,2 < 0,

0 LT−1,1 < 0 ≤ LT−1,2,

−X(B,2)(T − 1) LT−1,1 ≥ 0.

(6.22)

This optimal policy result at time T − 1 can be paraphrased as:

• if the unit operating cost for product A minus that for product B is greater

than the unit switching cost from A to B, the optimal policy is to switch

as much capacity from A to B as possible;

• if the unit operating cost for product B minus that for product A is greater

than the unit switching cost from B to A, the optimal policy is to switch

as much capacity from A to B as possible;

• if in between, do not switch any capacity at all.

In addition,

J∗
T−1(X(T − 1)) = QT−1(X(T − 1), µ∗

T−1(X(T − 1)))

= Cmix
A,T−1X(A,1)(T − 1) + Cmix

B,T−1X(B,2)(T − 1)

121

with

{Cmix
A,T−1, C

mix
B,T−1} =


{Ce

2,B + Cc
A→B, Ce

2,B}, LT−1,2 ≤ 0,

{Ce
1,A, Ce

2,B}, LT−1,1 < 0 < LT−1,2,

{Ce
1,A, Ce

1,A + Cc
B→A}, LT−1,1 ≥ 0.

At time T −2, if demands are deterministic, the Q-factor (subscript ‘d’ refers

to deterministic) is given by

Qd,T−2(X(T − 2), U(T − 2))

= gT−2(X(T − 2), U(T − 2))

+ J∗
T−1({X(A,1)(T − 2)− V (A→B)(T − 2), X(B,2)(T − 2) + V (A→B)(T − 2),

IA(T − 2) + X(A,1)(T − 2)P(A,1) − dA(T − 2),

IB(T − 2) + X(B,2)(T − 2)P(B,2) − dB(T − 2)}),

and, since Qd,T−2(Xa(T−2), U(T−2)) is a linear combination with non-negative

coefficients of several piecewise linear convex functions, we can show the following

remark is true.

Remark 6.2.1 Qd,T−2(X(T−2), U(T−2)) is a piecewise linear convex function

with respect to its second argument, with pseudo partition functions {−XB(T −
2), 0, SA,T−2(X(T − 2)), SB,T−2(X(T − 2)), XA(T − 2)} assuming −XB(T − 2) ≤
SA,T−2(X(T−2)) ≤ XA(T−2) and −XB(T−2) ≤ SB,T−2(X(T−2)) ≤ XA(T−2),

where

SA,T−2(X(T −2)) = 2X(A,1)(T −2)+(IA(T −2)−dA(T −2)−dA(T −1))/P(A,1),

SB,T−2(X(T−2)) = −2X(B,2)(T−2)−(IB(T−2)−dB(T−2)−dB(T−1))/P(B,2),

and with pseudo slopes {LT−2,1, LT−2,2, LT−2,3, LT−2,4, LT−2,5, LT−2,6, LT−2,7, LT−2,8},

122

where

LT−2,1 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B − Cc
B→A

−P(A,1)C
d
A,inv − P(B,2)C

d
B,back,

LT−2,2 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B − Cc
B→A

−P(A,1)C
d
A,inv + P(B,2)C

d
B,inv,

LT−2,3 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B − Cc
B→A

+P(A,1)C
d
A,back − P(B,2)C

d
B,back,

LT−2,4 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B − Cc
B→A

+P(A,1)C
d
A,back + P(B,2)C

d
B,inv,

LT−2,5 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B + Cc
A→B

−P(A,1)C
d
A,inv − P(B,2)C

d
B,back,

LT−2,6 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B + Cc
A→B

−P(A,1)C
d
A,inv + P(B,2)C

d
B,inv,

LT−2,7 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B + Cc
A→B

+P(A,1)C
d
A,back − P(B,2)C

d
B,back,

LT−2,8 = −Cmix
A,T−1 + Cmix

B,T−1 − Ce
1,A + Ce

2,B + Cc
A→B

+P(A,1)C
d
A,back + P(B,2)C

d
B,inv.

Among the eight pseudo slopes, LT−2,1 is always the smallest, LT−2,8 is always the

largest, and the others lie somewhere in between these two values, but their order

depends on particular problems. We obtain an optimal policy by partitioning

into cases. For example, in the case where

P(A,1)C
d
A,back + P(A,1)C

d
A,inv ≥ P(B,2)C

d
B,back + P(B,2)C

d
B,inv,

and

Cc
A→B + Cc

B→A ≥ P(A,1)C
d
A,back + P(A,1)C

d
A,inv + P(B,2)C

d
B,back + P(B,2)C

d
B,inv,

the eight pseudo slopes can be sorted in increasing order as

{LT−2,1, LT−2,2, LT−2,3, LT−2,4, LT−2,5, LT−2,6, LT−2,7, LT−2,8},

123

and using the procedure given later, we obtain the following optimal policy:

µ∗
T−2(X(T − 2)) =



X(A,1)(T − 2) LT−2,8 < 0

max(0, SA,T−2(·)), SB,T−2(·)) LT−2,7 < 0 ≤ LT−2,8

max(0, SA,T−2(·)) LT−2,6 < 0 ≤ LT−2,7

I{SA,T−2(·)≥0}

med(0, SA,T−2(·), SB,T−2(·)) LT−2,5 < 0 ≤ LT−2,6

0 LT−2,4 < 0 ≤ LT−2,5

I{SA,T−2(·)≤0}

med(0, SA,T−2(·), SB,T−2(·)) LT−2,3 < 0 ≤ LT−2,4

min(0, SA,T−2(·)) LT−2,2 < 0 ≤ LT−2,3

min(0, SA,T−2(·), SB,T−2(·)) LT−2,1 < 0 ≤ LT−2,2

−X(B,2)(T − 2) LT−2,1 ≥ 0,

(6.23)

where med(·, ·, ·) represents the median function.

Consider the optimal policy when LT−2,8 < 0. We assume that LT−1,1 < 0 ≤
LT−1,2; then −LT−2,8 = 2Ce

1,A−2Ce
2,B−Cc

A→B−P(A,1)C
d
A,back−P(B,2)C

d
B,inv. The

optimal policy, µ∗
T−2(X(T−2)) = X(A,1)(T−2) if LT−2,8 < 0, can be explained as:

if twice the unit operating cost for A minus that for B is greater than the sum of

the unit switching cost from A to B, the unit inventory cost for B and the backlog

cost for A, then switch as much as possible from A to B, since the benefit from

switching as much as possible due to the operating cost difference would cover

the sum of the increased inventory cost for B, the increased backlog cost for A,

and the increased switching cost. This situation, along with the situation where

LT−2,1 ≥ 0, is the situation when the unit operating cost difference dominates.

Next, if twice the unit operating cost for A minus that for B is less than

sum of the unit switching cost from A to B, the unit inventory cost for B, and

the backlog cost for A, i.e., −LT−2,8 ≤ 0, the benefit from switching as much as

possible would not compensate for the total loss from the increased inventory

124

cost for B, the increased backlog cost for A, and the increased switching cost. So

it is better to switch a little less from A to B. How much is the best depends on

the unit cost balance. As unit operating cost difference decreases, the amount of

switching from A to B goes down, until at some point, switching cost dominates

operating cost, inventory and backlog cost, i.e., LT−2,4 < 0 ≤ LT−2,5, the optimal

policy is to avoid switching at all.

There are a total of 12 cases, for which we can uniquely sort out pseudo

slopes and determine µ∗
T−2(X(T − 2)).

Now we present the procedure for developing the structure of an optimal

policy for the one-machine, two-product example with deterministic demands as

follows:

Step 0 Initially, we have J∗
T = 0, and set t = T − 1.

Step 1 Unfold the expression of Qt(X(t), U(t)), where

Qt(X(t), U(t)) = gt(X(t), U(t))

+ J∗
t+1({X(A,1)(t)− V (A→B)(t), X(B,2)(t) + V (A→B)(t),

IA(t) + X(A,1)(t)P(A,1) − dA(t), IB(t) + X(B,2)(t)P(B,2) − dB(t)}).
(6.24)

Step 2 Verify that Qt(X(t), U(t)) is piecewise linear convex.

Step 3 Construct a set of pseudo partition functions by observing unfolded

Qt(X(t), U(t)).

Step 4 Identify possible partitions and determine the relative order of pseudo

partition functions.

Step 5 For the mth partition, minimize Qt(Xb(t), U(t)) over the pseudo parti-

tion points

{q0,t(Xb(t)), . . . , qM,t(Xb(t))}

125

for an arbitraily chosen Xb(t) ∈ DX(t). Suppose Qt(Xb(t), q
m
k∗

m,t(Xb(t)) give

the smallest value, then qm
k∗

m,t(·) is the optimal policy for mth partition.

Repeat this step for all partitions.

Step 6 Combine optimal policies for all partitions to obtain µ∗
t (X(t)) for the

whole state space.

Step 7 Calculate J∗
t (X(t)) = Qt(X(t), µ∗

t (X(t))).

Step 8 If t = 1, stop; else t = t− 1, go to Step 1.

When we use this procedure to derive the structure of an optimal policy for

the one-machine, two-product example, step 1 and step 7 can be executed using

the MATHEMATICA software. The following three scenarios show optimal

policies have a threshold-like structure, given unit costs and production rates.

Note that we do not need to know the pseudo slopes when applying the above

procedure. The resulting optimal policies using this procedure are consistent

with those from linear programming, by using the CPLEX software.

Scenario 1: Cc
A→B = 428, Cc

B→A = 438,Ce
1,A = 856, Ce

2,B = 931, Cd
A,inv =

0.375, Cd
A,back = 3.75, Cd

B,inv = 0.488, Cd
B,back = 3.25, P(A,1) = 50, P(B,2) = 50

and T = 4.

Using the above procedure, we obtain µ∗
4 = 0, µ∗

3 = 0, µ∗
2 = 0 and

µ∗
1 = I{RA,1(·)>QA,1(·)}I{RB,1(·)>QA,1(·)}I{RA,1(·)>QB,1(·)}I{RB,1(·)>QA,1(·)}

second(RA,1(·), RB,1(·), QA,1(·), QB,1(·))
+ (1− I{RA,1(·)>QA,1(·)}I{RB,1(·)>QA,1(·)}I{RA,1(·)>QB,1(·)}I{RB,1(·)>QA,1(·)})

third(RA,1(·), RB,1(·), QA,1(·), QB,1(·)),

where second(· · · , . . . , · · ·) is the second smallest of all its arguments and

third(· · · , . . . , · · ·) is defined similarly,

RA,1(X(1)) = 2X(A,1)(1) + (IA(1)− dA(1)− dA(2))/P(A,1),

126

RB,1(X(1)) = −2X(B,2)(1)− (IB(1)− dB(1)− dB(2))/P(B,2), ,

QA,1(X(1)) = (3P(A,1)X(A,1)(1) + IA(1)− dA(1)− dA(2)− dA(3))/(2P(A,1)),

QB,1(X(1)) = (−3P(B,2)X(B,2)(1)− IB(1) + dB(1) + dB(2) + dB(3))/(2P(B,2)).

Scenario 2: Cc
A→B = 428, Cc

B→A = 438,Ce
1,A = 856, Ce

2,B = 931, Cd
A,inv = 1.25,

Cd
A,back = 12.5, Cd

B,inv = 0.78, Cd
B,back = 5.2, P(A,1) = 50, P(B,2) = 50 and T = 4.

Using the above procedure, we obtain µ∗
4 = 0, µ∗

3 = 0, µ∗
2 = min(0, SA,2(·)) and

µ∗
1 = I{QA,1(·)<min(0,RA,1(·))}min(0, QA,1(·))

+ I{QA,1(·)≥min(0,RA,1(·))}second(0, RA,1(·), QA,1(·), QB,1(·)).

Scenario 3: Cc
A→B = 428, Cc

B→A = 438,Ce
1,A = 856, Ce

2,B = 931, Cd
A,inv = 5,

Cd
A,back = 50, Cd

B,inv = 5.85, Cd
B,back = 39, P(A,1) = 50, P(B,2) = 50 and T = 4.

Using the above procedure, we obtain µ∗
4 = 0, µ∗

3 = 0,

µ∗
2 = min(0, SA,2(·)) + I{SA,2(·)>0ISB,2(·)>0}min(SA,2(·), SB,2(·)) and

µ∗
1 = I{RA,1(·)>QA,1(·)}I{RB,1(·)>QA,1(·)}I{RA,1(·)>QB,1(·)}I{RB,1(·)>QA,1(·)}

(I{RA,1(·)>0}RA,1(·) + I{RA,1(·)<0}second(0, RA,1(·), RB,1(·), QA,1(·), QB,1(·)))
+ (1− I{RA,1(·)>QA,1(·)}I{RB,1(·)>QA,1(·)}I{RA,1(·)>QB,1(·)}I{RB,1(·)>QA,1(·)})

second(RA,1(·), RB,1(·), QA,1(·)).

6.2.5 Optimal policy with random demands

Note that the optimal policy at time T − 1 with random demands is the same

as that with deterministic demands.

At time t = 1, . . . , T − 2, if demands are random,

Qt(X(t), U(t)) = EdA(t),dA(t+1),dB(t),dB(t+1)

[
gt(X(t), U(t)) | X(t), U(t)

]
+ J∗

t+1(X(A,1)(t)− V (A→B)(t), X(B,2)(t) + V (A→B)(t),

IA(t) + X(A,1)(t)P(A,1) − dA(t), IB(t) + X(B,2)(t)P(B,2) − dB(t)).

127

If ξ is a random variable with c.d.f. Fξ(·), we know that

Eξ[p ·max(0, y − ξ)] = p ·
∫ y

−∞
Fξ(ω) d(ω),

Eξ[r ·max(0, ξ − y)] = r ·
∫ −y

−∞
(1− Fξ(−ω)) d(−ω).

Therefore, Qt(X(t), U(t)) =

Cc
A→B max(0, V (A→B)(t)) + Cc

B→A max(0,−V (A→B)(t))

+ Ce
1,A(X(A,1)(t)− V (A→B)(t)) + Ce

2,B(X(B,2)(t) + V (A→B)(t))

+ Cd
A,inv

∫ IA(t)+2X(A,1)(t)P(A,1)−V (A→B)P(A,1)

−∞
FdA(t)+dA(t+1)(ω) dω,

+ Cd
A,back

∫ −IA(t)−2X(A,1)(t)P(A,1)+V (A→B)(t)P(A,1)

−∞
(1− FdA(t)+dA(t+1)(−ω)) d(−ω),

+ Cd
B,inv

∫ IB(t))+2X(B,2)(t)P(B,2)+V (A→B)(t)P(B,1)

−∞
FdB(t)+dB(t+1)(ω) dω

+ Cd
B,back

∫ −IB(t))−2X(B,2)(t)P(B,2)−V (A→B)(t)P(B,1)

−∞
(1− FdB(t)+dB(t+1)(−ω)) d(−ω)

+ J∗
t+1(X(A,1)(t)− V (A→B)(t), X(B,2)(t) + V (A→B)(t),

IA(t) + X(A,1)(t)P(A,1) − dA(t), IB(t) + X(B,2)(t)P(B,2) − dB(t)),

t = 1, . . . , T − 2.

At time T − 2, if demands are random,

QT−2(X(T − 2), U(T − 2)) =

Cc
A→B max(0, V (A→B)(t)) + Cc

B→A max(0,−V (A→B)(t))

+ Ce
1,A(X(A,1)(t)− V (A→B)(t)) + Ce

2,B(X(B,2)(t) + V (A→B)(t))

+ Cd
A,inv

∫ IA(T−2)+2X(A,1)(T−2)P(A,1)−V (A→B)(T−2)P(A,1)

−∞
FdA(T−2)+dA(T−1)(ω) dω,

+ Cd
A,back

∫ −IA(T−2)−2X(A,1)(T−2)P(A,1)+V (A→B)(T−2)P(A,1)

−∞
(1− FdA(T−2)+dA(T−1)(−ω)) d(−ω),

+ Cd
B,inv

∫ IB(T−2))+2X(B,2)(T−2)P(B,2)+V (A→B)(T−2)P(B,1)

−∞
FdB(T−2)+dB(T−1)(ω) dω

128

+ Cd
B,back

∫ −IB(T−2))−2X(B,2)(T−2)P(B,2)−V (A→B)(T−2)P(B,1)

−∞
(1− FdB(T−2)+dB(t+1)(−ω)) d(−ω)

+ Cmix
A,T−1(X(A,1)(T − 2)− V (A→B)(T − 2))

+ Cmix
B,T−1(X(B,2)(T − 2) + V (A→B)(T − 2)).

Remark 6.2.2 QT−2(X(T − 2), U(T − 2)) has the following properties:

1. QT−2(X(T − 2), U(T − 2)) is a convex function with respect to its second

argument;

2. hT−2(X(T − 2), U(T − 2)) ≡ ∂QT−2(X(T − 2), U(T − 2)) = hr
T−2(X(T − 2), U(T − 2)), V (A→B)(T − 2) ≥ 0,

hl
T−2(X(T − 2), U(T − 2)), V (A→B)(T − 2) < 0,

where hr
T−2(·) :=

Cc
A→B − Ce

1,A + Ce
2,B + Cd

A,back − Cd
B,back − Cmix

A,T−1 + Cmix
B,T−1

−(Cd
A,inv + Cd

A,back)

· FdA(T−1)+dA(T−2)(IA(T − 2) + 2X(A,1)(T − 2)P(A,1) − V (A→B)(T − 2)P(A,1))

+(Cd
B,inv + Cd

B,back)

· FdB(T−1)+dB(T−2)(IB(T − 2) + 2X(B,2)(T − 2)P(B,2) + V (A→B)(T − 2)P(B,2)),

and hl
T−2(·) :=

−Cc
B→A − Ce

1,A + Ce
2,B + Cd

A,back − Cd
B,back − Cmix

A,T−1 + Cmix
B,T−1

−(Cd
A,inv + Cd

A,back)

· FdA(T−1)+dA(T−2)(IA(T − 2) + 2X(A,1)(T − 2)P(A,1) − V (A→B)(T − 2)P(A,1))

+(Cd
B,inv + Cd

B,back)

· FdB(T−1)+dB(T−2)(IB(T − 2) + 2X(B,2)(T − 2)P(B,2) + V (A→B)(T − 2)P(B,2)).

The convexity property leads to the following result:

• if hT−2(·) < 0 for all V (A→B)(T − 2), µ∗
T−2(X(T − 2)) = X(A,1)(T − 2);

129

• if hT−2(·) > 0 for all V (A→B)(T − 2), µ∗
T−2(X(T − 2)) = −X(B,2)(T − 2);

• if hl
T−2(·) < 0 for all V (A→B)(T−2) < 0 and hr

T−2(·) > 0 for all V (A→B)(T−
2) > 0, µ∗

T−2(X(T − 2)) = 0,

which is the counterpart of the following in the deterministic demand case:

• situation 1: if LT−2,8 < 0, µ∗
T−2(X(T − 2)) = X(A,1)(T − 2);

• situation 2: if LT−2,1 > 0, µ∗
T−2(X(T − 2)) = −X(B,2)(T − 2);

• situation 3: if LT−2,4 < 0 < LT−2,5, µ∗
T−2(X(T − 2)) = 0.

If the demands for product A and B can only take a finite number of val-

ues, then both the c.d.f. of the demand F{·}(·) and QT−2(·) are piecewise lin-

ear convex functions, which means we can use the previous results for piece-

wise linear convex functions. For example, if it is assumed that dA(T − 1) +

dA(T − 2) can only take values wA,1, . . . , wA,rA
with probabilities pA,1, . . . , pA,rA

and that dB(T − 1) + dB(T − 2) can only take values wB,1, . . . , wB,rB
with

probabilities pB,1, . . . , pA,rA
, the pseudo partition functions for QT−2(·) would

be {0, Si
A,T−2(X(T − 2)), Sj

B,T−2(X(T − 2))}, where

Si
A,T−2(X(T − 2)) = 2X(A,1)(T − 2) + (IA(T − 2)− wA,i)/P(A,1), i = 1, . . . , rA

and

Sj
B,T−2(X(T−2)) = (−2X(B,2)(T−2)−(IB(T−2)−wB,j)/P(B,2), j = 1, . . . , rB,

and the pseudo slopes depend on pA,i, pB,i and unit cost parameters. By the

result for piecewise linear convex functions, we can obtain the structure of an

optimal policy.

In some cases, if FdA(T−1)+dA(T−2)(·) and FdB(T−1)+dB(T−2)(·) are “far away”

from each other for all states, we can obtain similar results as in the deterministic

cases. Define

ŜA,T−2(X(T−2)) = 2X(A,1)(T−2)+IA(T−2)/P(A,1)−F−1
dA(T−1)+dA(T−2)(0)/P(A,1),

130

ŜB,T−2(X(T−2)) = −2X(B,2)(T−2)−IB(T−2)/P(B,2)+F−1
dB(T−1)+dB(T−2)(0)/P(B,2).

An optimal policy µ∗
T−2(X(T − 2)) would be a function of ŜA,T−2(X(T − 2)),

ŜB,T−2(X(T − 2)) for different state partitions as in Eq. (6.23). In the case

that both FdA(T−1)+dA(T−2)(·) and FdB(T−1)+dB(T−2)(·) are normal distributions

with means µA, µB and variances σ2
A,σ2

B, respectively, FdA(T−1)+dA(T−2)(·) and

FdB(T−1)+dB(T−2)(·) are “far away” from each other if

2UB[X(A,1)(T − 2)] + (UB[IA(T − 2)]− dA(T − 1)− dA(T − 2))/P(A,1) + 3σA <

−2UB[X(B,2)(T − 2)]− (UB[IB(T − 2)]− dB(T − 1)− dB(T − 2)/P(B,2) − 3σB,

or

2LB[X(A,1)(T − 2)] + (LB[IA(T − 2)]− dA(T − 1)− dA(T − 2))/P(A,1) − 3σA >

−2LB[X(B,2)(T − 2)]− (LB[IB(T − 2)]− dB(T − 1)− dB(T − 2)/P(B,2) + 3σB,

where LB[·] and UB[·] are lower bound and upper bound functions. For gen-

eral distributions, the “far away” can be characterized by the metrics, such

as Hellinger distance of two random variables X and Y defined as follows:

H(X, Y) = (1 − A(X, Y))1/2, where A(X, Y) =
∫
(f(x)g(x))1/2dx with f(x)

and g(x) being the p.d.f. of X and Y , respectively.

At time t = 1, . . . , T − 3, when demands are stochastic, we have results for

some special cases in which optimal policy is to switch as much as possible or

not to switch at all. We first denote:

Lt,lb := −Ce
1,A + Ce

2,B − (T − t− 1)[P(A,1)C
d
A,inv + P(B,2)C

d
B,back],

Lt,ub := −Ce
1,A + Ce

2,B + (T − t− 1)[P(A,1)C
d
A,back + P(B,2)C

d
B,inv],

Lt,um := Cc
A→B − Cmix

A,T−1 + Cmix
B,T−1 − Ce

1,A + Ce
2,B

−(T − t− 1)[P(A,1)C
d
A,inv + P(B,2)C

d
B,back],

Lt,lm := −Cc
B→A − Cmix

A,T−1 + Cmix
B,T−1 − Ce

1,A + Ce
2,B

+(T − t− 1)[P(A,1)C
d
A,back + P(B,2)C

d
B,inv],

131

t = 1, . . . , T − 3.

One result of an optimal policy at time t = 1, . . . , T − 3 is:

• situation 1: if Lt,ub < 0 and LT−2,8 < 0, µ∗
t (X(t)) = X(A,1)(t);

• situation 2: if Lt,lb ≥ 0 and LT−2,1 ≥ 0, µ∗
t (X(t)) = −X(B,2)(t);

• situation 3: if Lt,lm < 0 < Lt,um and LT−2,4 < 0 ≤ LT−2,5, µ∗
t (X(t)) = 0.

For example, the optimal policy in situation 1 can be paraphrased as: “If the

unit operating cost for A minus that for B is greater than the cumulative unit

backlog cost for A plus the cumulative unit inventory cost for B until the last

stage, then the optimal policy for each stage until the last stage is to switch as

much capacity from A to B as much as possible”.

This optimal policy has the following intuitive desirable properties:

• the larger the unit operating cost for A relative to the unit operating cost

for B, the more likely it will be to switch capacity from A to B to avoid

larger operating costs;

• the smaller the unit backlog cost for A, the more likely it will be to switch

capacity from A to B, since there will be a lower penalty for not meeting

demand for product A;

• the smaller the unit inventory cost for B, the more likely it will be to switch

capacity from A to B, since a lower storage cost is incurred for producing

more product B;

• the effect of the holding and backlog costs on the switching decision di-

minishes as the end of the planning horizon is approached.

The optimal policy in situation 2 is analogous to that in situation 1.

132

The optimal policy condition in situation 3 involves Cmix
A,T−1 and Cmix

B,T−1. We

assume that LT−1,1 < 0 ≤ LT−1,2; then

Lτ,um = Cc
A→B−2Ce

1,A +2Ce
2,B− (T −τ −1)P(A,1)C

d
A,inv− (T −τ −1)P(B,2)C

d
B,back

and

Lτ,lm = −Cc
B→A−2Ce

1,A+2Ce
2,B +(T−τ−1)P(A,1)C

d
A,back+(T−τ−1)P(B,2)C

d
B,inv.

The optimal policy can be paraphrased as: “if the sum of the unit switching

cost from A to B and twice the unit operating cost for B minus that for A

is greater than the sum of the cumulative unit inventory cost for A and the

cumulative unit backlog cost for B until the last stage, and if the sum of the unit

switching cost from B to A and twice the unit operating cost for A minus that

for B is greater that the sum of the cumulative unit inventory cost for B and

the cumulative unit backlog cost for A until the last stage, then do not switch

at all.”

6.3 Discussion

In this chapter, we first presented a case study of fab-level decision making using

simulation-based policy iteration. From the simulation results, it is observed that

the simulation-based policy iteration can lead to a near optimal policy with only

nine features, linear approximation architecture and batch mode least squares

solver. The resulting policies also give us some prior knowledge of optimal poli-

cies. However, this algorithm can not be extended to more complicated cases of

the fab-level decision-making problem, since the control space expands very fast.

Then, we analyzed the structure of the optimal policy for a special one-

machine, two-product case of our fab-level decision-making problem. Specially,

we presented a procedure for developing the structure of an optimal policy for

133

the one-machine, two-product case with deterministic demands. The resulting

optimal policies for three experimental scenarios using this procedure are con-

sistent with those from linear programming. Note that our resulting policies

are policies with structure. For the special one-machine, two-product case with

random demands, there are also corresponding results.

However, we have not yet applied simulation-based algorithms directly to

the testbed example, next we discuss some general implementation issues of

applying simulation-based algorithms to the fab-level decision-making problem,

including how to reformulate a finite horizon MDP problem into into a weighted

cost MDP problem and how to construct a parameterized heuristic policy based

on the structure of an optimal policy for the special case.

Model Reformulation

Note that our fab-level decision-making problem is a finite horizon problem; we

will convert this finite horizon problem into a weighted cost problem by viewing

time as an additional component of the state. Then, we can use the simulation-

based algorithms introduced in Chapter 4 and Chapter 5.

In the reformulation, transitions occur from state-time pairs [i, t] to state-

time pairs [j, t + 1] according to the transition probabilities pij(u) of the finite

horizon problem; the termination state corresponds to the end of the horizon; it

is reached in a single transition from any state-time pair of the form [j, T] at a

terminal cost G(j) [4]. The reformulation is as follows:

J∗([i, T]) = G(i); i = 0, . . . , n− 1

J∗([i, t]) = minu∈U([i,t])

∑n−1
j=0 pij(u)(g(i, u, j) + J∗([j, t + 1])).

(6.25)

Note that, in our fab-level decision-making formulation in Chapter 2, the

original state is X(t), whereas the new augmented state is (X(t), t).

134

Parameterizing Policy

We intend to use simulation-based algorithms to solve our fab-level decision-

making problem. One crucial part to implement simulation-based algorithms is

to develop a scheme to parameterize the policy. We propose two heuristics. The

first one involves dividing the original problem into several local problems, each

of which relates to only one type of machine. According to (2.16), only bottle-

neck operations, the operations minimizing throughputs for products, affect the

inventory level of products. Therefore, if a machine with word w, defined by a

sequence of operations, does not involve any bottleneck operation, the expan-

sion and allocation of this machine’s capacity can be done locally. We call such

a machine a non-bottleneck machine (N-machine). For example, in the simple

two-machine, two-product example, the flexible machine with w = 013 is an N-

machine if neither operation 1 nor operation 3 is a bottleneck operation. Given

a machine w, the local state is X(w) = (X(l,i),w, T(w)), where (l, i) ∈ Pt × w, and

the local objective function is

E

[
T−1∑
t=0

[g(w)(X(t), U(t))]

]
,

where

g(w)(X(t), U(t)) = (Ca
w(Bw(t)) + Cb

w(Dw(t)))

+
∑

{(l,i),(m,j)}
Cc

w(V (l,i),(m,j)
w (t)) +

∑
{(l,i)}

Ce
w(X(l,i),w(t)) .

We can solve these local MDP problems for all w, N-machine or not analyt-

ically, using similar procedures as in Section 6.2. We call the resulting policy a

local non-bottleneck policy (LN-policy).

On the other hand, if a machine is utilized by bottleneck operations for all

products in each period, the original problem can also be solved locally. We call

such a machine a bottleneck machine (B-machine). In this case, the local state

is X(w) = (X(l,i),w, T(w), I(l)), where (l, i) ∈ Pt × w and l ∈ Pt, and the local

135

objective function is

E

[
T−1∑
t=0

[g(w)(X(t), U(t))]

]
,

where

g(w)(X(t), U(t)) = (Ca
w(Bw(t)) + Cb

w(Dw(t)))

+
∑

{(l,i),(m,j)}
Cc

w(V (l,i),(m,j)
w (t)) +

∑
{(l,i)}

Ce
w(X(l,i),w(t)) +

∑
l

(Cd
l (Il(t)) .

We solve these local MDP problems for all w, B-machine or not, and the resulting

policy is called a local bottleneck policy (LB-policy).

After we solve the above local problems for each machine, we obtain two sets

of policies (LN-policy and LB-policy) for each machine. The proposed heuristic

policy will choose these resulting LN-policies or LB-policies with some prob-

abilities depending on machine types (N-machine, B-machine, or neither) and

operations types (bottleneck operation or not) in each period. The probabilities

can be viewed as parameters to represent the policy, and the parameters can be

learned by using simulation-based algorithms in Chapter 4 and Chapter 5.

The second way to parameterize the policy involves decomposing the orig-

inal problem into two problems: an inventory control problem and a capacity

expansion and allocation problem, and solve them sequentially. The connections

between these two problems are the throughputs in the state equations and the

cost model in the objective function. The idea is to first solve the inventory con-

trol problem with a new objective function depending on the inventory levels and

the desired throughputs, and then construct capacity expansion and allocation

policies based on the desired throughputs by only considering the capacity ex-

pansion and allocation problem with another new objective function depending

on total capacities and capacities allocated to different operations and different

products. The obtained policy from the inventory control problem, a sequence

of the desired throughouts, can be parameterized using results from inventory

control literature. For example, if the objective function of the inventory control

136

problem has no set-up costs for the desired throughputs, a heuristic policy for the

lower level can be a generalized base-stock type policy, since the optimal policy

for a multi-product inventory control problem under appropriate assumptions is

of this type [70]. The policy for the capacity expansion and allocation problem,

a sequence of buying, discarding and switching actions, can be parameterized

following heuristic policies in the literature [51] [52].

137

Chapter 7

Summary and Future Research

Summary

This thesis considers developing simulation-based algorithms for sequential de-

cision making problems under uncertainty which formulated as Markov Decision

Processes.

Motivated by a capacity expansion and allocation problem in semiconductor

manufacturing, we formulated a fab-level decision making problem using a finite-

horizon transient MDP model that can integrate life cycle dynamics of the fab

and provide a trade-off between immediate and future benefits and costs.

In order to overcome the so-called “curse of dimensionality” and “curse of

modeling” associating with the classical MDP solving methodology, we consid-

ered a two-step methodology, which first finds the structure of optimal policies

for some special cases, in order to construct parameterized heuristic policies for

more general cases, and then uses simulation-based algorithms to determine pa-

rameters of the heuristic policies. We analyzed the structure of the optimal policy

for a special “one-machine, two-product” case for the fab-level decision-making

problem, and discussed applicability of simulation-based algorithms.

We developed several simulation-based algorithms for MDPs to overcome

138

the difficulties of “curse of dimensionality” and “curse of modeling”, considering

both theoretical and practical issues.

For average cost problems, we developed a simulation-based policy iteration

(SBPI) algorithm under a unichain assumption, relaxing the common recurrent

state assumption. Note that SBPI algorithms can tackle “curse of dimensional-

ity” with respect to state space but not control space, which has been illustrated

in Section 6.1.

For weighted cost problems, we developed a new two-timescale simulation-

based gradient algorithms based on perturbation analysis, provided a theoretical

convergence proof, and compared it with two recently proposed simulation-based

gradient algorithms. Simulation-based algorithms based on perturbation anal-

ysis need information about transition probabilities, gradient of stage costs, so

sometimes they are not applicable, in which cases SPSA algorithms may be

better choices. However, when they are applicable, they will lead to better per-

formances than those of SPSA algorithms. Then, we proposed two new Simulta-

neous Perturbation Stochastic Approximation (SPSA) algorithms for weighted

cost problems and verified their effectiveness via simulation. Note that SPSA

algorithms only need two sample performance measures for each gradient esti-

mate, so it is generally applicable, and easy to use. However, SPSA algorithms

converge slower than algorithms based on perturbation analysis when the latter

are applicable.

We also considered a general SPSA algorithm for function minimization and

showed its convergence under a weaker assumption: the function does not have

to be differentiable.

Future Research

There are many opportunities to expand beyond the research presented here.

139

In [71], performance sensitivity formulas are derived for semi-Markov decision

processes. These results pave the way for developing simulation-based gradient

algorithms based on perturbation analysis for semi-Markov decision processes.

Another line of possible future research is the theoretical analysis of gen-

eral two-timescale simulation-based algorithms, especially global optimization

by two-timescale simulation-based algorithms along the lines of [41] [72] [73],

and convergence rate analysis of two-timescale algorithms following [74] [28].

As pointed out in Chapter 5, the analysis of SPSA algorithms can be extended

to SPSA algorithms with nondifferentiable constraints or correlated noise, as well

as to other stochastic approximation algorithms for nondifferentiable function

optimization.

For the fab-level decision-making problem, future work includes continuing

to construct near-optimal policies with simple structure, to study implementa-

tion issues, and to carry out numerical experiments and data analysis for more

complicated cases than thoses discussed in Chapter 6.

140

Appendix

Proof of Proposition 4.2.1

Consider a sequence {φ0, φ1, . . .} of parameters generated by the following iter-

ation:

φk+1 = φk + αkR(xk, φn(k)) (8.1)

where

n(k) = max{nl|k ≥ nl},

R(xk, φn(k)) = ∇gik(φn(k))+gik(φn(k))zk+
∇pikik+1

(φn(k))

pikik+1
(φn(k))

(Lk+gik(φn(k)))I{ik+1=i∗},

(8.2)

and

zk+1 =


0, if ik+1 = i∗;

zk +
∇pikik+1

(φn(k))

pikik+1
(φn(k))

, otherwise.
(8.3)

Then, at time nl, φnl
= θl since

φnl+1
= φnl

+
nl+1−1∑
k=nl

αkR(xk, φnl
), (8.4)

which implies that {θ0, θ1, . . .} is a subsequence of {φ0, φ1, . . .}.
Consider the sequence of states (i0, i1, . . .) visited during the execution of the

algorithm. Let tm be the mth time that the state i∗ is visited in this sequence.

We then have

φtm+1 = φtm +
∑tm+1−1

k=tm αkR(xk, φn(k))

= φtm + α̃m
∇χ(φtm)
Eπ̄,φtm

[T]
+ εm,

(8.5)

141

where

α̃m =
tm+1−1∑
k=tm

αk,

and

εm =
tm+1−1∑
k=tm

αk(R(xk, φn(k))− ∇χ(φtm)

Eπ̄,φtm
[T]

).

∇χ(θ) is the gradient of the weighted cost χ(θ) with respect to θ and Eπ̄,θ[T] =

Eπ̄,θ[T | i0 = i∗] is the mean recurrent time.

We will take the following steps to prove Proposition 4.2.1:

• show that the series
∑

m εm converges;

• show that χ(φm) converges;

• show that χ(φk) converges;

• show that χ(θl) converges with the observation that {θ0, θ1, . . .} is a sub-

sequence of {φ0, φ1, . . .}.

Preliminary Results

Lemma 8.0.1 Suppose Assumption 4.1.1 and 4.1.2 hold. Then χ(θ) is bounded,

twice differentialable, and has bounded first and second derivatives.

This lemma can be proved following the same argument in the proof of Lemma

2 in [20].

Lemma 8.0.2 Suppose Assumption 4.1.1, 4.2.2, 4.2.3, and 4.2.1 hold, and let

(i0, i1, . . .) be the sequence of states visited during the execution of the two-

timescale algorithm, then there exists a constant C and an integer M0, such

142

that for all m and k, M0 ≤ m ≤ k,

‖ R(xk, φn(k)) ‖ ≤ C(tm+1 − tm), k ∈ {tm, . . . , tm+1 − 1},

‖ φn(k) − φtm ‖ ≤
 Cβlm+1(tvm+1 − tvm), tm ≤ k < nlm+1,

Cαtm(tm+1 − tm)2, nlm+1 ≤ k < tm+1;

‖ R(xk, φn(k))− R(xk, φtm) ‖ ≤


Cβlm+1(tvm+1 − tvm)2, tm ≤ k < nlm+1,

Cαtm(tm+1 − tm)3, nlm+1 ≤ k < tm+1;

where nlm = max{nl | tm > nl} and vm = max{j | tj+1−tj , j = m, m+1, . . . , m}
with m = {d | nlm > td}.

Proof: For k ∈ {tm, . . . , tm+1−1}, by Assumption 4.1.1,
∇pikik+1

(φn(k))

pikik+1
(φn(k))

is bounded,

say by Bp. Therefore, there exists a constant Cz, such that

‖ zk ‖≤ Cz(tm+1 − tm).

In addition, by Assumption 4.1.1, gi(θ) and ∇gi(θ) are bounded, say by Bg and

Bn. Since (tm+1 − tm) ≥ 1, there exists a constant CR, such that

‖ R(xk, φn(k)) ‖

=
∥∥∥∥∇gik(φn(k)) + gik(φn(k))zk +

∇pikik+1
(φn(k))

pikik+1
(φn(k))

(Lk + gik(φn(k)))I{ik+1=i∗}
∥∥∥∥

≤ ‖ ∇gik(φn(k)) ‖ +|gik(φn(k))| ‖ zk ‖
+

∥∥∥∥∇pitm+1−1itm+1
(φn(tm+1))

pitm+1−1itm+1
(φn(tm+1))

(Ltm+1−1 + gitm+1−1(φn(tm+1−1)))

∥∥∥∥
≤ ‖ ∇gik(φn(k)) ‖ +|gik(φn(k))|Cz(tm+1 − tm)

+
∣∣∣∣∇pitm+1−1itm+1

(φn(tm+1−1))

pitm+1−1itm+1
(φn(tm+1−1))

∣∣∣∣ ‖ Ltm+1−1 + gitm+1−1(φn(tm+1−1)) ‖
≤ ‖ ∇gik(φn(k)) ‖ +|gik(φn(k))|Cz(tm+1 − tm)

+ Bp ‖ ∑tm+1−1
k=tm gik(φn(tm+1−1)) ‖

≤ Bn + BgCz(tm+1 − tm) + BpBg(tm+1 − tm)

≤ CR(tm+1 − tm).

Using this result, ‖ R(xj, φn(j)) ‖≤ CR(tvm+1 − tvm) for j ∈ {nlm , . . . , tm − 1}.
Furthermore, for k ∈ {tm, . . . , tm+1 − 1},

143

• if tm ≤ k < nlm+1,

‖ φn(k) − φtm ‖ = ‖ φnlm
− φtm ‖

= ‖ ∑tm−1
j=nlm

αjR(xj , φnlm
) ‖

≤ ∑tm−1
j=nlm

‖ αjR(xj , φnlm
) ‖

≤ CR(tvm+1 − tvm)
∑tm−1

j=nlm
αj

≤ βlmCR(tvm+1 − tvm),

Note that the difference between φn(k) and φtm depends on cumulative

αR(·) from nlm to tm − 1. For all j ∈ {nlm, . . . , tm − 1}, there are Nu

recurrence cycles with j ∈ {tui
, . . . , tui+1 − 1} and i = {1, . . . , Nu}.

• if nlm+1 ≤ k < tm+1,

‖ φn(k) − φtm ‖ = ‖ ∑n(k)−1
j=tm αjR(xj, φnj

) ‖
≤ ∑n(k)−1

j=tm ‖ αjR(xj , φnj
) ‖

≤ CR(tm+1 − tm)
∑n(k)−1

j=tm αj

≤ CRαtm(tm+1 − tm)2.

Therefore,

‖ φn(k) − φtm ‖ ≤


Cβlm+1(tvm+1 − tvm), tm ≤ k < nlm+1,

Cαtm(tm+1 − tm)2, nlm+1 ≤ k < tm+1.

Finally, by Assumption 4.1.1, there exists a constant L, such that for all θ, θ′,

‖ ∇gi(θ)−∇gi(θ
′) ‖≤ L ‖ θ − θ′ ‖, ‖ gi(θ)− gi(θ

′) ‖≤ L ‖ θ − θ′ ‖ .

144

Therefore, ‖ R(xk, φn(k))− R(xk, φtm) ‖

≤ ‖ ∇gi(φn(k))−∇gi(φtm) ‖
+ ‖ gi(φn(k))− gi(φtm) ‖‖ zk ‖
+

∥∥∥∥∇pikik+1
(φn(k))

pikik+1
(φn(k))

(Lk + gik(φn(k)))I{ik+1=i∗}
∥∥∥∥

+

∥∥∥∥∇pikik+1
(φtm))

pikik+1
(φtm)

(Lk + gik(φtm))I{ik+1=i∗}
∥∥∥∥

≤ L ‖ φn(k) − φtm ‖ +L ‖ φn(k) − φtm ‖ Cz(tm+1 − tm)

+

∣∣∣∣∇pitm+1−1itm+1
(φn(tm+1−1))

pitm+1−1itm+1
(φn(tm+1−1))

∣∣∣∣ ‖ ∑tm+1+1
k=tm gik(φn(tm+1−1)) ‖

+

∣∣∣∣∇pitm+1−1itm+1
(φtm)

pitm+1−1itm+1
(φtm)

∣∣∣∣ ‖ ∑tm+1+1
k=tm gik(φtm) ‖

≤ L ‖ φn(k) − φtm ‖ (1 + Cz(tm+1 − tm))

+ 2BpBg(tm+1 − tm)

≤
 2LCzCRβlm+1(tvm+1 − tvm)2, tm ≤ k < nlm+1,

2LCzCRαtm(tm+1 − tm)3, nlm+1 ≤ k < tm+1,

+ 2BpBg(tm+1 − tm)

≤


Cxβlm+1(tvm+1 − tvm)2, tm ≤ k < nlm+1,

Cyαtm(tm+1 − tm)3, nlm+1 ≤ k < tm+1. �

Lemma 8.0.3 Suppose Assumption 4.1.1 and 4.2.3 hold. Let (i0, i1, . . .) be the

sequence of states visited during the execution of the two-timescale algorithm,

and let tm be the mth time that the state i∗ is visited in this sequence, then for

every integer s > 0 there exists a constant Ds such that

E[(tm+1 − tm)2] ≤ Ds.

The proof of this lemma is given in [20].

Lemma 8.0.4 Suppose Assumption 4.1.1 and 4.1.2 hold. Let (i0, i1, . . .) be the

sequence of states visited during the execution of the two-timescale algorithm,

and let tm be the mth time that the state i∗ is visited in this sequence, then,

(a) for any positive integer s,

E

[∞∑
m=1

α2
tm(tm+1 − tm)s

]
<∞,

145

and

E

[∞∑
m=1

αtmβnlm
(tvm+1 − tvm)s

]
<∞;

(b) we have
∞∑

m=1

α̃tm =∞,
∞∑

m=1

α̃2
tm <∞,

with probability 1.

Proof: (We use a similar argument as the one in the proof of Lemma 14 in [20]).

(a) Because αtm is Fm measurable, where Fm = {φ0, i0, i1, . . . , itm} and stands

for the history of the algorithm up to and including time tm, and by Lemma 8.0.3,

we have

E
[
α2

tm(tm+1 − tm)s
]

= E
[
α2

tmE[(tm+1 − tm)s | Fm]
]
≤ E

[
α2

tm

]
Ds.

Therefore,

E

[∞∑
m=1

α2
tm(tm+1 − tm)s

]
≤ Ds

∞∑
k=1

α2
k <∞.

Using a similar argument,

E

[∞∑
m=1

αtmβnlm
(tvm+1 − tvm)s

]
≤ Ds

∞∑
k=1

αkβk ≤ Ds(
∞∑

k=1

α2
k

∞∑
k=1

β2
k)

1/2 <∞

(b) By Assumption 4.2.1, we have

∞∑
m=1

α̃m =
∞∑

k=1

αk =∞.

Moreover, by Assumption 4.2.2, stepsize αk is non-increasing, so we have

α̃2
m ≤ α2

tm(tm+1 − tm)2.

Using (a),
∑∞

m=1 α̃2
m has finite expectation and is therefore finite with probability

1. �

146

Summability of εm

In this section, we would like to show that εm is summable where

εm =
tm+1−1∑
k=tm

αk(R(xk, φn(k))− ∇χ(φtm)

Eπ̄,φtm
[T]

).

Given the time tm at which i∗ is visited for the mth time, define a “frozen”

augmented state xF = {iFk , zF
k } which evolves the same way as xk except that

φn(k) is held fixed at φtm until the next visit at i∗. In addition, we let tFm+1 =

min{k > tm | iFk = i∗}, and define zF
k+1 as

zF
k =


0, if iFk+1 = i∗;

zF
k+1 +

∇p
iF
k

iF
k+1

(φtm)

p
iF
k

iF
k+1

(φtm)
otherwise.

and we can use similar argument in Lemma 8.0.2 to prove the following lemma:

Lemma 8.0.5 Let Assumption 4.1.1 and 4.1.2 hold, and let (i0, i1, . . .) be the

sequence of states visited during the execution of the two-timescale algorithm.

Then there exists a constant C and

‖ R(xF
k , φtm) ‖≤ C(tFm+1 − tm), k ∈ {tm, . . . , tm+1 − 1}.

Using the definition of xF
m+1 and tFm+1, we rewrite the noise term εm as

εm = ε(1)
m + ε(2)

m + ε(3)
m + ε(4)

m + ε(5)
m ,

where

ε(1)
m =

∑tm+1−1
k=tm (αk − αtm) ∇χ(φtm)

Eπ̄,φtm
[T]

,

ε(2)
m = αtm

∑tFm+1−1

k=tm (R(xF
k , φtm)− ∇χ(φtm)

Eπ̄,φtm
[T]

),

ε(3)
m = αtm

∑tm+1−1
k=tm (R(xk, φtm)− ∇χ(φtm)

Eπ̄,φtm
[T]

)

−αtm

∑tFm+1−1

k=tm (R(xF
k , φn(k))− ∇χ(φtm)

Eπ̄,φtm
[T]

),

ε(4)
m = αtm

∑tm+1−1
k=tm (R(xk, φn(k))− R(xk, φtm)),

ε(5)
m =

∑tm+1−1
k=tm (αk − αtm)(R(xk, φn(k))).

147

We will show that each one of the series
∑

ε(n)
m , n = 1, . . . , 5, converges with

probability 1.

Lemma 8.0.6 The series
∑

ε(1)
m converges with probability 1.

Proof: (This lemma can be proved following the same argument as the one in

the proof of Lemma 16 in [20]).

Let B be the bound of ∇χ(φtm), which exists according to Lemma 2 in [20],

and Eπ̄,φtm
[T] ≥ 1. Then use Assumption 4.2.2, we have

ε(1)
m =

∑tm+1−1
k=tm (αk − αtm) ∇χ(φtm)

Eπ̄,φtm
[T]

≤ ∑tm+1−1
k=tm (αk − αtm) ‖ ∇χ(φtm)

Eπ̄,φtm
[T]
‖

≤ B
∑tm+1−1

k=tm (αk − αtm)

≤ BA(tm+1 − tm)pα2
tm .

Then by Lemma 8.0.4(a), the infinite sum
∑

ε(1)
m has finite expectation, and

therefore converges with probability 1. �

Lemma 8.0.7 The series
∑

ε(2)
m converges with probability 1.

Proof: (This lemma can be proved using a similar argument as the one in the

proof of Lemma 17 in [20]). The basic idea is to prove
∑

ε(2)
m is a martingale

with bounded variance. �

Lemma 8.0.8 The series
∑

ε(3)
m converges with probability 1.

Proof: (we use a similar argument as the one in the proof of Lemma 18 in [20]).

By Assumption 4.1.1, there exists a constant L, such that for θ, θ′ ∈ RK , and

all state i, j ∈ S

|Pij(θ)− Pij(θ
′)| ≤‖ θ − θ′ ‖ .

By Lemma 8.0.2, there exists a constant C, such that for all m ≥ 0, and

k = tm, . . . , tm+1, we have

‖ φn(k) − φtm ‖ ≤


Cβlm+1(tvm+1 − tvm), tm ≤ k < nlm+1,

Cαtm(tm+1 − tm)2, nlm+1 ≤ k < tm+1.

148

It follows that

P (iFk+1 �= ik+1 | iFk = ik) ≤
∑

i,j∈S

|Pij(φk)− Pij(φtm)|

≤ B ‖ φn(k) − φtm ‖

≤


Dβlm+1(tvm+1 − tvm), tm ≤ k < nlm+1,

Dαtm(tm+1 − tm)2, nlm+1 ≤ k < tm+1;

for some constant B and D.

We define Em to be:

Em = {xF
k �= xkfor some k = tm, . . . , tm+1}.

Using previous result, we have

P (Em | tm, tm+1) ≤


D
∑tm+1−1

k=tm βlm+1(tvm+1 − tvm), tm ≤ k < nlm+1,

D
∑tm+1−1

k=tm αtm(tm+1 − tm)2, nlm+1 ≤ k < tm+1;

≤


Dβlm+1(tvm+1 − tvm)2, tm ≤ k < nlm+1,

Dαtm(tm+1 − tm)3, nlm+1 ≤ k < tm+1.

In addition, if the event Em does not occur, then ε(3)
m = 0. Therefore,

E[‖ ε(3)
m ‖| tm, tm+1] = P (Em | tm, tm+1)E[‖ ε(3)

m ‖| tm, tm+1, Em]

Let B be the bound of ∇χ(φtm), which exists according to Lemma 2 in [20],

and Eπ̄,φtm
[T] ≥ 1. Then use Assumption 4.2.2, we have

ε(3)
m = αtm

∑tm+1−1
k=tm (R(xk, φtm)− ∇χ(φtm)

Eπ̄,φtm
[T]

)

−αtm

∑tFm+1−1

k=tm (R(xF
k , φn(k))− ∇χ(φtm)

Eπ̄,φtm
[T]

),

≤ αtm

∑tm+1−1
k=tm

[
‖ R(xk, φtm ‖ − ‖ ∇χ(φtm)

Eπ̄,φtm
[T]
‖
]

+αtm

∑tFm+1−1

k=tm

[
‖ R(xF

k , φn(k) ‖ − ‖ ∇χ(φtm)
Eπ̄,φtm

[T]
‖
]
,

≤ αtm

∑tm+1−1
k=tm [C ′(tm+1 − tm) + B] + αtm

∑tFm+1−1

k=tm [C ′(tFm+1 − tm) + B]

≤ αtmC((tm+1 − tm)2 + (tFm+1 − tm)2),

149

for some constant C and C ′. Thus,

E[‖ ε(3)
m ‖| tm, tm+1, Em] ≤ γtmC

(
(tm+1 − tm)2 + E[(tFm+1 − tm)2 | tm, tm+1, Em]

)
.

By the same argument used to prove Lemma 13 in [20], there exists a constant

D2

E[(tFm+1 − tm)2 | tm, tm+1, Em] ≤ 2E[(tFm+1 − tm)2 | tm+1, Em] + 2(tm+1 − tm)2

≤ D2 + 2(tm+1 − tm)2.

Since (tm+1 − tm) ≥ 1,

E[(tFm+1 − tm)2 | tm, tm+1, Em] ≤ C(tm+1 − tm)2,

for some constant C.

E[‖ ε(3)
m ‖| tm, tm+1, Em] ≤ Cγtm(tm+1 − tm)2,

and

E[‖ ε(3)
m ‖| tm, tm+1] ≤


DCαtmβlm+1(tvm+1 − tvm)4, tm ≤ k < nlm+1,

DCα2
tm(tm+1 − tm)5, nlm+1 ≤ k < tm+1;

Then by Lemma 8.0.4(a), the infinite sum
∑

ε(3)
m has finite expectation, and

therefore converges with probability 1. �

Lemma 8.0.9 The series
∑

ε(4)
m converges with probability 1.

Proof: (we use a similar argument as the one in the proof of Lemma 19 in [20]).

By Lemma 8.0.2, we have

ε(4)
m = αtm

∑tm+1−1
k=tm (R(xk, φn(k))− R(xk, φtm))

≤ αtm

∑tm+1−1
k=tm ‖ R(xk, φn(k))− R(xk, φtm) ‖

≤
 Cαtmβlm+1(tvm+1 − tvm)2, tm ≤ k < nlm+1,

Cα2
tm(tm+1 − tm)3, nlm+1 ≤ k < tm+1.

By Lemma 8.0.4(a), the infinite sum
∑

ε(4)
m has finite expectation. Therefore,

it converges with probability 1. �

150

Lemma 8.0.10 The series
∑

ε(5)
m converges with probability 1.

Proof: (Use a similar argument as the one in the proof of Lemma 20 in [20]).

By Lemma 8.0.2 and Assumption 4.2.2, we have

ε(5)
m =

∑tm+1−1
k=tm (αk − αtm)(R(xk, φn(k)))

≤ ‖ (R(xk, φn(k))) ‖ ∑tm+1−1
k=tm (αk − αtm)

≤ ACα2
tm(tm+1 − tm)p+1,

for some constants A and C, and for some positive integer p.

By Lemma 8.0.4(a), the infinite sum
∑

ε(5)
m has finite expectation. Therefore,

it converges with probability 1. �

Converges of χ(φk) and ∇(φk)

Lemma 8.0.11 Suppose Assumption 4.1.1, 4.1.2, and 4.2.1 hold, we can show

that
∞∑

m=0

α̃m

Eπ̄,φtm
[T]

=∞,

∞∑
m=0

(
α̃m

Eπ̄,φtm
[T]

)2 <∞.

The proof of this lemma is given in [20] (Lemma 21).

This lemma says that the iteration of Eq.(8.5) is a gradient algorithm with

step sizes αm are deterministic, nonnegative, and satisfying
∑∞

m=1 αm = ∞ and∑∞
m=1 α2

m <∞. By the same argument used to prove the Proposition 1 [20], we

have

lim
m→∞ ‖ ∇χ(φtm) ‖= 0

with probability 1.

By Lemma 8.0.2 and Lemma 8.0.4, for every ε > 0, there exists an integer

m0, such that for all m ≥ m0, and all integers k ∈ {tm, . . . , tm+1}, we have

‖ φk − φtm ‖≤ ε.

151

By Lemma 8.0.1, there exists a constant L such that for all θ, θ′ ∈ RK , we

have

|χ(φk)− χ(φtm)| ≤ L ‖ φk − φtm ‖, ‖ ∇χ(φk)−∇χ(φtm) ‖≤‖ φk)− φtm ‖ .

Therefore, for every ε > 0, there exists an integer m0, such that for all

m ≥ m0, and all integers k ∈ {tm, . . . , tm+1}, we have

|χ(θ)− χ(θ′)| ≤ ε, ‖ ∇χ(θ)−∇χ(θ′) ‖≤ ε.

It follows that

lim
k→∞

‖ ∇χ(φk) ‖= 0

with probability 1.

Finally, χ(θl) converges because {θ0, θ1, . . .} is a subsequence of {φ0, φ1, . . .}.

152

Proof of Proposition 5.2.1

Define Gk(t) =
∫ t
0 s̃f(θk(s))ds, and let B be the bound of s̃f(θk(s)), which exists

due to the boundedness of ∂f(θ). Then, for each T and ε > 0, there is a δ which

satisfies 0 < δ < ε/B, such that for all k, sup0<t−s<δ,|t|<T |Gk(t) − Gk(s)| ≤
sup0<t−s<δ,|t|<T

∫ s
t s̃f(θk(u))du < ε, which means Gk(·) is equicontinuous.

By (A.3) and (A.4), there is a null set O such that for sample points ω /∈ O,

Mk(ω, ·) and Bk(ω, ·) go to zero uniformly on each bounded interval in (−∞,∞)

as k →∞. Hence, Mk(·) and Bk(·) are equicontinuous and their limits are zero.

By the same argument as in the proof of Theorem 5.2.1 in [64, pp. 96-97],

Zk(·) is equicontinuous.

θk(·) is equicontinuous since Mk(·), Bk(·),Gk(·) and Zk(·) are equicontinuous.

Let ω /∈ O and let kj denote a subsequence such that

{θkj(ω, ·), Gkj(ω, ·)}

converges, and denote the limit by (θ(ω, ·), G(ω, ·)). The existence of such sub-

sequences is guaranteed by Arzela-Ascoli theorem.

Since f is convex, according to Corollary 24.5.1 [65, p. 234], ∀ε > 0, ∃ δ > 0,

if |θkj (ω, s)− θ(ω, s)| < δ, then −∂f(θkj (ω, s)) ⊂ Nε(−∂f(θ(ω, s))), where Nε(·)
means ε-neighborhood.

Furthermore, since limj→∞ θkj(ω, s) = θ(ω, s) for fixed ω and s, ∀ε > 0, ∃ fi-

nite J , if j ≥ J , −∂f(θkj (ω, s)) ⊂ Nε(−∂f(θ(ω, s))), i.e. for each s̃f(θkj(ω, s)) ∈
−∂f(θkj (ω, s)) and ε > 0, there is finite J and g̃(ω, s) ∈ −∂f(θ(ω, s)) such that

if j ≥ J , |s̃f(θkj (ω, s))− g̃(ω, s)| < ε.

Since s̃f(·) and g̃(ω, ·) are bounded functions on [0, t], by the Lebesgue dom-

inated convergence theorem,

lim
j→∞

∫ t

0
s̃f(θkj(ω, s))ds =

∫ t

0
g̃(ω, s)ds,

which means G(ω, t) =
∫ t
0 g̃(ω, s)ds.

153

Thus, we can write θ(ω, t) = θ(ω, 0) +
∫ t
0 g̃(ω, s)ds + Z(ω, t), where g̃(ω, s) ∈

−∂f(θ(ω, s)).

Using a similar argument as in [64, p. 97], Z(ω, t) =
∫

z(ω, s)ds, where

z(ω, s) ∈ −C(θ(ω, s)) for almost all s.

Hence, the limit θ(ω, ·) of any convergent subsequence satisfies the differential

inclusion (5.20).

Note that SH is the set of stationary points of (5.20) in H . Following a

similar argument as in the proof of Theorem 5.2.1 [64, pp. 95-99], we can show

that {θk(ω)} visits SH infinite often, SH is asymptotically stable in the sense of

Lyapunov due to the convexity of f , and thus {θk(ω)} converges to SH w. p. 1.

Since f is a convex function and H is a non-empty convex set, by Theorem 27.4

in [65, pp. 270-271], any point in SH attains the minimum of f relative to H . �

154

Bibliography

[1] S. Bermon, G. Feigin, and S. Hood, “Capacity analysis of complex manufac-

turing facilities,” in Proc. of the 34th Conference on Decision and Control,

New Orleans, LA, 1995, pp. 1935–1940.

[2] M. Zweben and M. S. Fox, Intelligent Scheduling, Morgan Kaufmann

Publishers, Inc., San Francisco, California, 1994.

[3] M. L. Puterman, Markov Decision Processes, John Wiley & Sons, Inc.,

New York, 1994.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena

Scientific, Belmont, 1996.

[5] P. Marbach, O. Mihatsch, and J. N. Tsitsiklis, “Call admission control and

routing in integrated services networks using neuro-dynamic programming,”

IEEE Journal on Selected Areas in Communications, vol. 18, no. 2, pp. 197–

208, February 2000.

[6] V. R. Konda and V. S. Borkar, “Actor-critic-type learning algorithms for

Markov decision processes,” SIAM Journal on Control and Optimization,

vol. 38, pp. 94–123, November/December 1999.

[7] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances

in Neural Information Processing Systems 12, S. A. Solla, T. K. Leen, and

K.-R. Muller, Eds., Denver, Colorado, 1999, pp. 1008–1014.

155

[8] R. S. Sutton, D. McAllester, S. P. Singh, and Y. Mansour, “Policy gradi-

ent methods for reinforcement learning with function approximation,” in

Advances in Neural Information Processing Systems 12, S. A. Solla, T. K.

Leen, and K.-R. Muller, Eds., Denver, Colorado, 1999, pp. 1057–1063.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning, The MIT Press,

Cambridge, 1998.

[10] Y. He, M. C. Fu, and S. I. Marcus, “A simulation-based policy itera-

tion algorithm for average cost unichain Markov decision processes,” in

Computing Tools for Modeling, Optimization and Simulation - Interfaces in

Computer Science and Operations Research, M. Laguna and J. L. Gonzalez-

Velarde, Eds., Boston/Dordrecht/London, 2000, pp. 161–182, Kluwer Aca-

demic Publishers.

[11] Y. He, M. C. Fu, and S. I. Marcus, “Simulation-based algorithms for average

cost Markov decision processes,” Tech. Rep., University of Maryland at

College Park, 1999, ISR Technical Report, TR-99-56.

[12] X.-R. Cao, “Single sample path based optimization of Markov chains,”

Journal of Optimization Theory and Applications, vol. 100, no. 3, pp. 527–

548, March 1999.

[13] J. N. Tsitsiklis and B. Van Roy, “Average cost temporal-difference learn-

ing,” Automatica, vol. 35, no. 11, pp. 1799–1808, November 1999.

[14] D. P. Bertsekas, Dynamic Programming and Optimal Control Vol 1 & 2,

Athena Scientific, Belmont, 1995.

[15] C. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp.

279–292, May 1992.

156

[16] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,”

Machine learning, vol. 16, pp. 185–202, September 1994.

[17] J. Abounadi, D. P. Bertsekas, and V. S. Borkar, “Learning algorithms for

Markov decision processes with average cost,” SIAM Journal on Control

and Optimization, vol. 40, no. 3, pp. 681–698, 2001.

[18] B. Van Roy, D. P. Bertsekas, P. Lee, and J. N. Tsitsiklis, “A neuro-dynamic

programming approach to retailer inventory management,” Tech. Rep.,

Unica Technologies, 1997, Lincoln, MA.

[19] D. P. Bertsekas, M. L. Homer, D. A. Logan, S. D. Patek, and N. R.

Sandell, “Missile defense and interceptor allocation by neuro-dynamic pro-

gramming,” IEEE Transactions on Systems, Man and Cybernetics - A, vol.

30, no. 1, pp. 42–51, January 2000.

[20] P. Marbach, Simulation-Based Optimization of Markov Decision Processes,

Ph.D. thesis, Massachusetts Institute of Technology, 1998.

[21] E. K. P. Chong and P. J. Ramadge, “Stochastic optimization of regenerative

systems using infinitesimal perturbation analysis,” IEEE Transactions on

Automatic Control, vol. 39, no. 7, pp. 1400–1410, July 1994.

[22] M. C. Fu, “Convergence of a stochastic approximation algorithm for the

GI/G/1 queue using infinitesimal perturbation analysis,” Journal of Opti-

mization Theory and Applications, vol. 65, no. 1, pp. 149–160, April 1990.

[23] P. L’Ecuyer and P. W. Glynn, “Stochastic optimization by simulation:

convergence proof for the GI/G/1 queue in steady-state,” Management

Science, vol. 40, no. 11, pp. 1562–1578, November 1994.

[24] E. K. P. Chong and P. J. Ramadge, “Optimization of queues using a in-

finitesimal perturbation analysis-based stochastic algorithm with general

157

update times,” SIAM Journal on Control and Optimization, vol. 31, no. 3,

pp. 698–732, May 1993.

[25] Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic

Systems, Kluwer Academic Publishers, Boston/Dordrecht/London, 1991.

[26] P. Glasserman, Gradient Estimation Via Perturbation Analysis, Kluwer

Academic Publishers, Boston/Dordrecht/London, 1991.

[27] M. C. Fu and J.-Q. Hu, Conditional Monte Carlo: Gradient Esti-

mation and Optimization Applications, Kluwer Academic Publishers,

Boston/Dordrecht/London, 1997.

[28] V. S. Borkar, “Stochastic approximation with two time scales,” Systems

and Control Letters, vol. 29, no. 5, pp. 291–294, February 1997.

[29] A. Ruszczyński and W. Syski, “Stochastic approximation method with

gradient averaging for unconstrained problems,” IEEE Transactions on

Automatic Control, vol. 28, no. 12, pp. 1097–1105, December 1983.

[30] S. Bhatnagar and V. S. Borkar, “A two timescale stochastic approximation

scheme for simulation-based parametric optimization,” Probability in the

Engineering and Information Sciences, vol. 12, pp. 519–531, 1998.

[31] S. Bhatnagar and V. S. Borkar, “Multiscale stochastic approximation for

parametric optimization of hidden Markov models,” Probability in the En-

gineering and Information Sciences, vol. 11, pp. 509–522, 1997.

[32] S. Bhatnagar, M. C. Fu, S. I. Marcus, and P. J. Fard, “Optimal struc-

tured feedback policies for abr flow control using two timescale SPSA,”

IEEE/ACM Transactions on Networking, vol. 9, no. 4, pp. 479–491, Au-

gust 2001.

158

[33] S. Bhatnagar, M. C. Fu, S. I. Marcus, and S. Bhatnagar, “Two timescale al-

gorithms for simulation optimization of hidden markov models,” IIE Trans-

actions, vol. 33, no. 3, pp. 245–258, March 2001.

[34] V. S. Borkar and V. R. Konda, “The actor critic algorithm as multi-time

scale stochastic approximation,” Sadhana, vol. 22, pp. 525–43, August 1997.

[35] J. C. Spall, “Multivariate stochastic approximation using a simultaneous

perturbation gradient approximation,” IEEE Transactions on Automatic

Control, vol. 37, no. 3, pp. 332–341, March 1992.

[36] J. C. Spall, “An overview of the simultaneous perturbation method for

efficient optimization,” Johns Hopkins APL Technical Digest, vol. 19, no.

4, pp. 482–492, 1998.

[37] H. J. Kushner and D. C. Clark, Stochastic Approximation Methods for

Constrained and Unconstrained systems, Springer-Verlag, New York, 1978.

[38] J. Dippon and J. Renz, “Weighted means in stochastic approximation of

minima,” SIAM Journal on Control and Optimization, vol. 35, no. 5, pp.

1811–1827, September 1997.

[39] L. Gerencsér, “Convergence rate of moments in stochastic approxima-

tion with simultaneous perturbation gradient approximation and resetting,”

IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 894–905, May

1999.

[40] N. L. Kleinman, J. C. Spall, and D. Q. Naiman, “Simulation-based opti-

mization with stochastic approximation using common random numbers,”

Management Science, vol. 45, no. 11, pp. 1570–1578, November 1999.

159

[41] J. L. Maryak and D. C. Chin, “Stochastic approximation for global random

optimization,” in Proceedings of the American Control Conference, Chicago,

IL, 2000, pp. 3294–3298.

[42] J. C. Spall, “A one-measurement form of simultaneous perturbation stochas-

tic approximation,” Automatica, vol. 33, no. 1, pp. 109–112, January 1997.

[43] J. C. Spall, “Adaptive stochastic approximation by the simultaneous per-

turbation method,” IEEE Transactions on Automatic Control, vol. 45, no.

10, pp. 1839–1853, October 2000.

[44] H. F. Chen, T. E. Duncan, and B. Pasik-Duncan, “A stochastic approxima-

tion algorithm with random differences,” in Proceedings of the 13th IFAC

World Congress, San Francisco, California, 1996, vol. H, pp. 493–496.

[45] M. C. Fu and S. D. Hill, “Optimization of discrete event systems via simul-

taneous perturbation stochastic approximation,” IIE Transactions, vol. 29,

no. 3, pp. 233–243, March 1997.

[46] P. Sadegh, “Constrained optimization via stochastic approximation with a

simultaneous perturbation gradient approximation,” Automatica, vol. 33,

no. 5, pp. 889–892, May 1997.

[47] J. C. Spall and J. A. Cristion, “Model-free control of nonlinear stochastic

systems with discrete-time measurements,” IEEE Transactions on Auto-

matic Control, vol. 43, no. 9, pp. 1198–1210, September 1998.

[48] I. J. Wang and E. K. P. Chong, “A deterministic analysis of stochastic ap-

proximation with randomized directions,” IEEE Transactions on Automatic

Control, vol. 43, no. 12, pp. 1745–1749, December 1998.

[49] R. Uzsoy, C.-Y. Lee, and L.A. Martin-Vega, “A review of production plan-

ning and scheduling models in the semiconductor industry, Part I: System

160

characterization, performance evaluation and production planning,” IIE

Transactions, vol. 24, no. 4, pp. 47–60, September 1992.

[50] R. Uzsoy, C.-Y. Lee, and L.A. Martin-Vega, “A review of production plan-

ning and scheduling models in the semiconductor industry, Part II: Shop-

floor control,” IIE Transactions, vol. 26, no. 5, pp. 44–55, September 1994.

[51] S. Li and D. Tirupati, “Dynamic capacity expansion problem with multiple

products: technology selection and timing of capacity additions,” Opera-

tions Research, vol. 42, no. 5, pp. 958–976, September/October 1994.

[52] S. Li and D. Tirupati, “Technology choice with stochastic demands and dy-

namic capacity allocation: A two-product analysis,” Journal of Operations

Management, vol. 12, pp. 239–258, June 1995.

[53] S. Li and D. Tirupati, “Impact of product mix flexibility and allocation

policies on technology,” Computers Ops. Research, vol. 24, no. 7, pp. 611–

626, July 1997.

[54] M. Swaminathan, “Tool capacity planning for semiconductor fabrication

facilities under demand uncertainty,” European Journal of Operational Re-

search, vol. 120, no. 3, pp. 545–558, February 2000.

[55] A. Angelus, E. L. Porteus, and S. C. Wood, “Optimal sizing and tim-

ing expansions with implications for modular semiconductor wafer fabs,”

preprint, Strategic Decision Group, Inc., 1997.

[56] G. E. Feigin, K. Katircioglu, and D. D. Yao, “Capacity allocation in semi-

conductor fabrication,” in Proc. of the 38th Conference on Decision and

Control, Pheonix, Arizona, 1999, pp. 1364–1369.

161

[57] D. P. Connors, G. E. Feigin, and D. D. Yao, “A queueing network model

for semiconductor manufacturing,” IEEE Transactions on Semiconductor

Manufacturing, vol. 9, no. 3, pp. 412–427, August 1996.

[58] S. Bhatnagar, M. C. Fu, S. I. Marcus, and Y. He, “Markov decision processes

for semiconductor fab-level decision making,” in Proc. of the IFAC 14th

Triennial World Congress, Beijing, P. R. China, 1999, pp. 145–150.

[59] E. Fernadez-Gaucherand, J. Choi, and D. Gerhart, “SYSCODE: Stochas-

tic Systems Control and Decision Algorithms Software Laboratory, FOR-

TRAN and MATLAB versions,” The University of Arizona, (cimar-

ron.sie.arizona.edu /modeling /modeling.html), 1998.

[60] M. C. Fu, “Sample path derivatives for (s,S) inventory systems,” Operations

Research, vol. 42, no. 2, pp. 351–364, 1994.

[61] L. Gerencsér, G. Kozmann, and Z. Vágó, “SPSA for non-smooth opti-

mization with application in ecg analysis,” in Proceedings of the IEEE

Conference on Decision and Control, Tampa, Florida, 1998, pp. 3907–3908.

[62] P. L’Ecuyer, N. Giroux, and P. W. Glynn, “Stochastic optimization by

simulation: numerical experiments with a simple queue in steady-state,”

Management Science, vol. 40, no. 10, pp. 1245–1261, October 1994.

[63] J. C. Spall, “Implementation of the simultaneous perturbation algorithm for

stochastic optimization,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 34, no. 3, pp. 817–823, July 1998.

[64] H. J. Kushner and G. George Yin, Stochastic Approximation Algorithms

and Applications, Springer-Verlag, New York, 1997.

[65] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton,

New Jersey, 1970.

162

[66] S. Bhatnagar, E. Fernandez-Gaucherand, M. C. Fu, Y. He, and S. I. Marcus,

“A Markov decision process capacity expansion and allocation,” in Proc. of

the 38th Conference on Decision and Control, Phoenix, Arizona, 1999, pp.

1156–1161.

[67] A. M. Law and W. D. Kelton, Simulation Modeling & Analysis, McGraw -

Hill, Inc., New York, 1991.

[68] P. M. Fitzpatrick, Advanced Calculus - A course in mathematical analysis,

PWS Publishing Company, 1996.

[69] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New

York and London, 1973.

[70] D. Beyer, S. P. Sethi, and R. Sridhar, “Stochastic multi-product inven-

tory models with limited storage,” Journal of Optimization Theory and

Applications, vol. 111, no. 3, pp. 553–588, December 2001.

[71] X.-R. Cao, “Semi-Markov decision problems and performance sensitivity

analysis,” preprint, 2002.

[72] H. J. Kushner, “Asymptotic global behavior for stochastic approximation

and diffusions with slowly decreasing noise effects: Global minimization via

monto carlo,” SIAM Journal on Applied Mathematics, vol. 47, pp. 169–185,

February 1987.

[73] S. B. Gelfand and S. K. Mitter, “Recursive stochastic algorithms for global

optimization in Rd,” SIAM Journal on Control and Optimization, vol. 29,

no. 5, pp. 999–1018, September 1991.

[74] G. Yin, “Rates of convergence for a class of global stochastic optimization

algorithms,” SIAM Journal on Optimization, vol. 10, no. 1, pp. 99–120,

1999.

163

