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ABSTRACT

In this thesis we consider certain problems of optimal change detection in which the
task is to decide in a sequential manner which of two probabilistic system descriptions
account for given, observed data. Optimal decisions are defined according to an average
cost criterion which has a penalty which increases with time and a penalty for incorrect
decisions. We consider observation processes of both the diffusion and point process kind.
A main result is a verification-type theorem which permits one to prove the optimality
of candidate decision policies provided one can find a certain function and interval. The
form of the theorem suggests how to go about looking for such a pair. As applications we
consider the sequential detection and disruption problems involving diffusion observations
and give new proofs of the existence of the optimal thresholds as well as a new, simple
algorithm for their computation. In the case of sequential detection between Poisson
processes we solve the so-called overshoot problem exactly for the first time using the same

algorithm.
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Chapter 1

Introduction

In this thesis we consider certain problems of optimal change detection. The
quintessential problem of change detection was first considered by A. Wald
in his generalization of the Neyman—Pearson approach to binary hypothesis
testing based on observations of a stochastic process. In the widely known
Neyman-Pearson problem, one observes a stochastic process which has one
of two distinct probabilistic descriptions and the task is to collect data for
a fixed, finite amount of time, let’s say 7', and then decide which descrip-
tion models the data with the highest probability of detection for a given
maximum probability of false alarm. The solution to this problem takes the
form: at the fixed time T make a binary decision according to whether the
likelihood ratio is above or below a threshold which is precomputed to satisfy
the error constraints.

In the modification made by Wald to this basic problem, the task is to

decide in a random, finite amount of time which description accounts for the



data with a fixed probability of detection and a given maximum probabil-
ity of false alarm [W]. His solution to this problem, the so-called sequential
probability ratio test, was shown to not only satisfy the constraints on the
detection and false alarm probabilities but also to yield an expected data
collection time (averaging with respect to either hypothesis!) which is not
longer than the expected time spent observing the data using any rival test
which achieves the same probabilities of both types. Thus in the Wald for-
mulation 7' becomes a nonnegative random variable and the solution takes
the form: observe the likelihood ratio process in an interval with endpoints
precomputed to satisfy the error constraints, stop collecting data at the ran-
dom time 7' when the likelihood ratio exits this continuation interval and
then make a binary decision according to whether the likelihood exits to the
right or left.

Since Wald’s highly original contribution, much research has focused on
certain difficulties associated with it. One such difficulty is that oftentimes in
practice, particularly in radar applications, one does not have the luxury ol
waiting a random amount of time prior to making a decision. Usually, there
is a maximum length of time allowed for data collection and that’s it. This
leads to the consideration of truncated sequential tests. Another practical
difficulty not fully appreciated in Wald’s day is that by careful choice of a
fixed T, the simpler Neyman—Pearson solution leads to performance which
is often as good as the more complex optimal Wald solution. This situation
is for the most part due to the statistical modeling uncertainties which are
neglected in the optimization.

Another difficulty which has nagged researchers and engineers alike from
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the very beginning has been the overshoot problem. When the underlying
likelihood ratio has continuous sample paths it can only exit the continuation
interval in a continuous manner. Of course, the sample-path continuity of
the likelihood derives from the continuity of the trajectories of the observed
data. If the data come from a jump process then of course the likelihood ratio
will also possess discontinuous sample paths and as a result it may exit the
continuation interval by jumping across the boundary. This discontinuous
behavior manifests itself in the optimization for the continuation interval in
an exceedingly complicated way. Dealing with this complication has been
given a name, the overshoot problem. Typical approaches to the overshoot
problem involve special cases which are well approximated by diffusions. The
favorite “solution” is to neglect the excess over the boundary, but of course
neglecting the excess is no real solution. Other solutions seek to redefine the
problem so that approximate solutions are optimal [K&P-K]. Nevertheless, it
is safe to say that the overshoot problem has never been dealt with head-on
and that prior to the results contained herein, a useful method to compute
the optimal thresholds has never been given.

The Wald problem has also generated alot of research devoted to gener-
alizations which it suggests. One such generalization is the notion of optimal
stopping. As stated, the Wald formulation requires a solution consisting of
two parts: a random stopping time and a random binary decision. His so-
lution however, in essence reduces the problem to only finding the optimal
stopping time in terms of the optimal exit interval, the actual decision there-
fore is a by-product of this recipe. Viewed as such, sequential detection is a

problem of optimal stopping with a solution in the form of a first exit policy.
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Much of the theory of optimal stopping concerns itself with such problems
involving Markov processes for which optimal first exit policies exist. A
particular example of a problem of this type is the disorder or disruption
problem first considered by A. Shiryayev [S]. The disruption problem differs
from the sequential detection problem in that the observed data are initially
generated according to one probabilistic description up until some random
time, and generated thereafter according to a second probabilistic model;
the random time itself comes equipped with its own probabilistic descrip-
tion. In the sequential detection problem by contrast, the observed data are
generated for all time according to one of the known statistical models. We
see therefore that the disruption problem is inherently sequential, there is
no rival Neyman-Pearson approach involving some fixed time 7. Indeed,
Shiryayev argues just this way in defense of the importance of sequential
analysis techniques.

We shall consider a modest generalization to the disruption problem and
call it the change detection problem. The generalization we make is
to allow the disruption time to take values in R U {+oo} instead of just
®. This modesty allows us to give sequential detection and disruption a
unified treatment and to consider each as resulting from a specific choice of
probabilistic model for the time of change. In particular, the probabilistic
model for the time of change in the case of sequential detection is that of
a random variable taking values in {0,+4o00}; in the disruption problem, a
random variable with values in [0,00). Viewed in this manner, one can
argue that the problem of sequential detection is a kind of degenerate change

detection problem. With this interpretation perhaps it is less unexpected
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that in practice the fixed-time Neyman-Pearson approach works as well as
it does by comparison with sequential methods for the detection problem.
We have chosen the Bayesian approach in our consideration of these prob-
lems of change detection. The rationale behind this choice is not so much a
manifestation of a personal philosophy regarding the proper modeling of prior
knowledge, but merely a reflection of the fact that general results obtained
within the Bayesian framework imply the analogous results in the Wald case
by exploiting the extra degree of freedom in the costs to match the error
probabilities [L]. Within this framework we model the observation processes
using semimartingale methods in order to take advantage of powerful filter-
ing results for semimartingales. Moreover, by using martingale methods we
are able to treat diffusion-type processes and jump processes in a unified
manner. Indeed, one of the triumphs of modern filtering theory, as pioneered
by Snyder [Sn] and others, is that martingale methods permit one to han-
dle filtering problems involving both types of noise processes in an abstract
way using a single set of mathematical tools. With respect to problems of
optimal stopping involving jump semimartingales however, this benefit has
never been fully realized. Unfortunately, the triumphant abstraction ob-
tained in filtering theory with the help of the abstract Girsanov theorem in
no way dealt with the overshoot problem. As a result, when it came down
to computing the optimal continuation interval or even proving its existence
and uniqueness, one was left with two different sets of techniques and the
same set of difficulties involving the excess over the boundary. In this thesis
we outline a new approach which complements the abstractions obtained in

filtering theory and allow one to give a unified treatment of the change de-
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tection problem for both types of semimartingales. We employ this approach
to give an exact solution to the overshoot problem in the case of sequential
detection between Poisson processes. We emphasize that the uniformity of
viewpoint afforded by our methods extends all the way from the definition of
the filtering problem through to the computation of the optimal thresholds.

A brief outline of the thesis is as follows. In Chapter 2 we consider
the general theory of Bayesian change detection using martingale methods.
The main result is the Verification Theorem which permits one to prove
optimality results provided one can find a certain function and interval. The
form of this theorem suggests how one should go about looking for such a
pair. In Chapter 3 we consider the change detection problem for diffusion-
type observations. By considering this more familiar case first we are able
to point up the differences with respect to the less familiar point-process
situation. In Chapter 4 we consider the point process case and solve the
overshoot problem exactly for the first time in the case of sequential detection
between Poisson processes. The thesis concludes with a consideration of

future research directions.



Chapter 2

Bayesian Change Detection:

General Theory

2.1 Introduction

In this chapter we consider some general probability theory underlying cer-
tain problems of optimal change detection. In this introduction we impart
the feel of such problems by way of examples. The kinds of changes that we
are concerned with detecting are ones in which a partially observed system
undergoes a fundamental alteration in its dynamics. Loosely speaking, the
prototypical problem can be described as follows. One is given the complete
probabilistic descriptions of two stochastic dynamical systems. For instance,
these two system models may be of the “signal4noise” or “noise-only” type
found in classical Wald sequential detection. An essential ingredient is that

each distinct system, say So and S, comes equipped with one of two distinct



probability measures, say Py and P;. For i = 0,1, P; allows us to assess the
chances of dynamical events involving S;, possibly conditional upon knowl-
edge of some of the ‘output’ of S;. For ‘7’ given, computing probabilities
associated with S; amounts to simple conditional estimation theory. A wrin-
kle appears because although we are indeed given output data, we are not
told that it is simply the output of Sy or S;—in other words we are not
given ‘2’. Instead we are given another probabilistic model describing how
the output can change between Sy and Sy. For instance, in Wald sequential
detection we are told that the output for all time is definitely due to one and
only one of Sp or S;. In the Bayesian approach to the same basic situation,
we are also given a prior probability for, say, the second possibility. Suppos-
ing this prior probability to be 7 € [0, 1], we then construct a new probability
measure, called Bayes’ probability measure, as a convex combination of Fy
and P,

Pe{}i=m Pi{}+(1—m) Pof-}. (2.1)

Equivalently, we may suppose that P.{-|S;} := Pi{-} for i = 0,1. For obvi-
ous reasons, the overall situation in the Bayes’ sequential detection problem is
usually modeled with a two-part formulation: first, a 7-biased coin is flipped
and then the flip determines which of Sy or S; has its output gated to the
observer.

As another example, consider the typical problem of disruption. We are
given a nonnegative random variable modeling a random time and told that
up until this random time the observed output is due to Sy and thereafter

due to S;. Clearly, a coin-flipping formulation does not suffice to capture the



basic ingredients of the disruption problem. The converse however is true.
Indeed, if we suppose that the nonnegative random variable representing the
disruption time takes values on [0,00] and employ a measure which gives
zero probability to (0,00), then the disruption time formulation essentially
mimics a coin-flipping situation in which heads is {0} and tails is {+oc0}. In
this thesis we shall exploit this converse to give a uniform formulation for
both types of change detection problems. In other words, we shall view the
sequential detection problem as a special case of a slightly more general form
of disruption problem which we call change detection.

So far we have outlined in broad strokes the probabilistic set-up of the
observed and unobserved dynamics in the basic problem of simple, binary
Bayesian change detection. The remainder of the problem set-up concerns
how the output data can be used to make decisions concerning which of Sq
or S; is responsible for the output at the time the decision is made, and also,
how the data can be used to determine when to stop and make this decision.
Not surprisingly, this two-part decision-making process “stopping/deciding”
leads us to consider a two-part cost function called Bayes’ cost for which
a minimum is sought. In the type of problems we consider the solution to
this minimization problem yields an on-line decision policy which is simple to
implement and achieves the minimum average penalty amongst all admissible

policies.



The remainder of the chapter has the following outline:

Section 1. PROBABILISTIC FRAMEWORK

In this section we describe the basic set-up for the prior probability
measures and system dynamics filtrations. In this set-up we impose
only two conditions on the family of prior measures—the deeper struc-
ture of this family is not further elaborated upon until Section 7. We
also make preliminary assumptions concerning the nature of the ran-
dom disruption time, we define Bayes’ cost function and characterize
the set of admissible decision policies. We finish with a definition of
Bayes’ optimality and an aside to show that levying penalties for cor-

rect decisions is a complication resulting in no greater generality.

Section 2. OPTIMAL STOPPING

The main point of this section is to show how the two-parameter opti-
mization of Section 1 can be replaced by a single parameter optimiza-
tion over the admissible stopping times alone. In so doing we introduce

II, the a posteriori probability process.

Section 3. CONCAVE RUNNING COST

The purpose here is to impose an additional, modest assumption upon
the structure of Bayes’ cost. This results in a simple proof that the
optimal Bayes’ cost is a concave function of the prior probability, an
extremely useful fact which is fully exploited in Section 5 to help demon-
strate the Bayes’ optimality of a policy of the type described in the

Section 4.
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Section 4. FIRST EXIT POLICIES

In this section we define a special class of decision policies which are
based on the time at which the a posteriori probability process first
exits an interval. Such policies are useful because they are easy to

implement in practice and also yield a tractable analysis in the abstract.

Section 5. SUFFICIENCY AND VERIFICATION

This section is concerned with posing a set of conditions involving a
function and an interval which are sufficient to demonstrate the Bayes’
optimality of the first exit policy based on this interval and also to

uniquely characterize Bayes’ optimal cost computationally.

Section 6. A LIKELIHOOD RATIO

In this section we further specialize our probabilistic models. We also
define a Radon-Nikodym derivative, consider its conditioning upon a

certain stopped o-algebra, and deal with its reciprocal.

Section 7. THE PRIOR MEASURES: A MODEL

Here we fill in the remainder of the general description of the family
of Bayes’ measures, {P; : 0 < 7 < 1}. Indeed, we make assumptions
concerning the properties of Py and P; which are consistent with our
modeling intentions and then define the entire family in terms of /%

and P, alone.
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Section 8. MARTINGALE DYNAMICS OF 11

This final section deals with the consequences of the assumptions posed
in Section 7 and their bearing upon the semimartingale description of

the a posteriori probability process.
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2.2 Probabilistic Framework

On a measurable space (€2, A) we are given a family of probability measures
{P, : 0 < 7 < 1} and two right-continuous filtrations of A, {A:}:;>0 and
{O:}i50, both (A, Pr)—completed for all ¢ > 0 and all 7 € [0,1]. With Ao
denoting the (A, Py )-completed trivial c—algebra on A, we define Op := Ay

and assume that,

O,c A Vi>0. (2.2)

The smaller filtration will serve to model the observable consequences of
unobservable events whose unfolding will in turn be modeled within the ab-
straction of a larger filtration. For reasons that will become clear later P
is called Bayes’ measure on (§2,.4) with prior = in [0,1]. Let O = V50 O..
We make the following assumption concerning the family of Bayes’ measures,
(Al): P{O} = AP {0} + (1 = X) P {O} VO e O,
whenever A, w, #', " in [0, 1] are related by,
T=Ar"+(1-=A)7".

This linearity of the family of Bayes’ measures in the prior index will be
central to our investigations in this chapter.

With this partial characterization of the structure of Bayes’ probability
measures in hand, we also suppose we are given some A;-stopping time v

(upsilon) called the disruption time and assume that,
(A2) : P {v=0}=7 V7el0,1].

We define a point process T = {Y;}s>0 (cap-upsilon) in terms of the disrup-

13



tion time as,

Y, :=1{v <t} Vt=0, (2.3)

so that T is a binary point process which is nondecreasing, right-continuous,
and has a single jump from {0} to {1} at the random timev. In the context of
the general sequential binary decision problem, it is assumed that the single-
jump point process T is not directly observable but that one can observe
some O,—adapted semimartingale with a compensator depending on T as
follows. For all times less than v this observable semimartingale is modeled
as having an A,;-predictable compensator whose statistics are described by
the probability measure Fy, and thereafter by P;. The role of T in this set-up
is to act as a ‘switch process’, switching (only once) between the two alternate
compensator models. One of our first goals will be to formulate a reasonable
method to decide for each instant of time if the switch has occurred, the
decision based solely upon information in O, and made according to some
reasonable cost criterion. Within this formulation, T is said to be O¢-partially
observable. The following proposition concerns the semimartingale nature of

T.

Proposition 2.1 The binary single-jump A,—adapted point process Y has

the semimartingale representation
Y, =Yoo+ K: + M, Vt>0,

where K is its (A, Pr)-predictable, integrable compensator having sample
paths of locally finite variation which are increasing with P,—probability one

and M is an (A, Pr)-martingale. Moreover, K is Pr—integrable.
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Proof: We first show that T — Yy is a class D, corlol (A;, Pr)-submartingale
for then all but the Pr—integrability of K will follow from a celebrated the-
orem due to P.A. Meyer [W&H, p225]. The corlol property follows immedi-
ately from the definition of T. Next note,

BT A > Ed[Ys| As] = T, 0<s<t, (2.4)

because s < t implies T, > T,, Pr~a.s. Hence YT — Tq is an (A, Pr)-
submartingale. To show that T — Yq is class D we need to show that the

collection of random variables L,
L:={Y,— Yo : 7is an A;-stopping time}, (2.5)

is uniformly P,-integrable. This follows trivially because for all X € L
| X | is bounded, but for completeness, recall, £ is a uniformly Pr-integrable

collection of random variables if,
lim sup E.[| X |1{| X | > ¢}] =0. (2.6)
CcC— 00 XEC
For any X € L note that | X | <1 so that,
EXIH{IX |2 < E[I{|X |2 c}]<1{l 2 ¢} Ve20. (2.7)
Hence,
0 < lim sup E,[| X [1{| X | > ¢}] < lim 1{1 > ¢} = 0. (2.8)
C—00 XEE c— o0

Thus, T — Ty is class D.
To show that K = {K;}:>0 is Pr-integrable note that,

E K= E. T, — Y] <1 Vt>0. (2.9)

15



Because 0 = Ky < K, < K,y we see that there exists a random variable
K, such that,

K, — K. Pr-as. (2.10)

Therefore using the Monotone Convergence Theorem we have,
E. K, — E. K (2.11)

so that E, K. <1, i.e., K is P,—integrable. a

In the task of attempting to determine if T has jumped-—which is equiv-
alent to deciding if the Pj—governed compensator is currently modulating
the observed data—consider the set of decision policies: all pairs of ran-
dom variables of the form (7,6), where 7 is some O;—stopping time, written
7 € T(O), and § is some O,-measurable binary random variable, written
§ € B(O,). One may think of é as a guess or decision made at time 7 about
the value of Y, based upon the information content of O,. The decision time
7 itself may be considered as a kind of estimate of the jump time v of the T
process.

Over the set of decision policies define Bayes’ cost function
pa(7,8) = E,r[/ C, ds + £(T,, )], (2.12)
0
where C = {C;}»0 is some nonnegative O;-adapted process satisfying,

t

(C1) : E,r/Csd8<oo Vi>0, Vrelol];
0

(C2) : P,r{/ Cods =co} =1, VYrel0,1],
0

16



and where,

& ifz=1&y=0;

Ez,y):=1{ 0 ifz=y; (2.13)

 ifz=0&y=1,
with 0 < ®, ¢! < oo not both infinite. For a given decision policy (r,6), we
call the integral portion of Bayes’ cost, E.[[y Csds], the expected running
cost of the policy and interpret it loosely as the average cost of not making a
decision until the random time 7. Condition (C1) requiring the running cost
to be integrable for all possible priors works to ensure that there is no fixed,
deterministic time before which any policy must make a decision. Condition
(C2), on the other hand, essentially guarantees that decision policies having
stopping times which are not Pr-a.s. finite have unbounded cost. The por-
tion E,[E(Y,,8)] is called the expected decision cost of the policy with the
obvious interpretation.

At this point we can succinctly state that the main goal of this chapter 1s
to give conditions which are sufficient to guarantee the existence and unique-
ness of a decision policy (7., 8.) which minimizes Bayes’ cost over the set
of all decision policies. From the definition of Bayes’ cost we see that if we
define the simple, deterministic policy (7”',5) as, 7= 0 and § = 1{c! < &},
we get

px(7,6) = min{c®, c'} < oco. (2.14)

Because our goal is to minimize Bayes’ cost, we obviously desire a policy
which does no worse than (7, 5) With this motivation, we make the following

definition.
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Definition 2.1 Let 7,4 denote the subset of O;—stopping times,
Toa = {7 € T(O) : E/ C.ds < oo Ve [0,1]).
4]

We call T4 the set of admissible stopping times. Let A, denote the subset

of O,.-measurable binary random variables,
A, :={6¢€ B(O,) : E[E(Y,,6)] <oo Vmel0,1]}.

Any decision policy, (,8), is said to be admissible if T € T,q and § 1s in A,.
We also define the set of Pr—a.s. finite stopping times,

T:={7re€T(0): P,{tr <0} =1V7re[0,1]}.
O

With 7 and 7.4 so defined, we see condition (C1) guarantees that 7.4 is not
empty while (C2) implies that 7,4 C 7. It is also not too difficult to see that

7.4 is a convex set. We can now give a definition of optimality.

Definition 2.2 An admissible policy, (7., 6.), is said to be Bayesian opti-
mal if

Pr(Tuy 64) = (inaf) px(7,8) Vrelo,1],
where the infimum is over all admissible policies. We define

p(r) = (;}g) px(7,6),

and call it the Bayes’ optimal cost. O

18



From this definition it becomes clear that in assuming ¢® and ¢! are both
nonzero we have removed a trivial case. For if ¢ ¢! = 0 then it follows easily
that p = 0 since the degenerate policy (7.,6,) with 7. =0 and 6, : = 1{c' =
0} is seen to yield the optimal Bayes’ cost. The definition also makes clear
that it is without loss of generality that no cost is levied for correct decisions
in 2.13, i.e., as long as we agree that the cost of a correct decision is less than
the cost of either type of incorrect decision. The reason for this is that any
such problem can be converted into one having a cost of the form 2.13. To see
this write £(T,,8) = £(T,,8; %, c'), emphasizing the dependence of £(Y,, 6)
on ¢® and ¢' and then define £(c% ¢!) := £(Y,, ;% ¢'), deemphasizing the
dependence on T, and §. Let ¢ > 0 denote a cost for correct decisions and

compute,

Ee1{6=T,}] = E.é6Y,+&(1—8)(1-1,)
= - Ee(1-8)T,+e6(1 -7,
= &— E:[E(¢9)], (2.15)

and this gives us,
E (Y, 8,0, ) +El{6=",}] = &+ E:[E( ") —E(E¢e)

= &+ EL[E(&, )]
= ¢4 E.[8(Y,,63,¢Y)], (2.16)

where we have defined & = ¢! —&for 7 = 0,1. Now, since we indeed assume in
this thesis that the penalty for correct decisions is less than the penalty for in-
correct decisions—a not unreasonable assumption—we have ¢ < min{c’,¢'}

and therefore 0 < & for 2 = 0,1. As a result, the final expectation in 2.16 has
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the exact same form as E[E(Y,,6;c% c')]; in other words, a minimization
of 2.16 over (7,8) admissible does not explicitly involve ¢ and is of the form

which our methods are intended to address.
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2.3 Optimal Stopping

In our effort to simplify the minimization of Bayes’ cost, we begin by defining

the (O;, Pr)-conditional probability of the event {Y; =1} as
M:=P{T,=1|0} VYt>0. (2.17)

Note that P,{Ilp = 7} = 1 in view of assumption (A2); for all later times,
a probabilistic description of the dynamical structure of Il is in part charac-

terized by the following.

Proposition 2.2 The conditional probability process, Il = {Il;}i>0, has the

semimartingale representation
M=o+ K +M, Vi>0,

where K denotes its unique (O, P,)-predictable compensator having sample
paths of locally finite variation which are increasing with Pr—probability one

and M is an (Oy, P,)-martingale. Moreover, K is P,—integrable.

Proof: The proof of this proposition is the same as the proof of Proposition
2.1 with the obvious notational changes. 0

From the definition of II note that we may also write

so that II, is the projection of Y; onto O; and therefore we have K, =
E,[K|O;] using the Projection Theorem [W&H, P7.1.3].
We next give a theorem which greatly simplifies the minimization used in

Definition 2.2 to define Bayes’ optimal cost. The theorem makes explicit use
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of the II process to reduce the two-dimensional minimization over all decision
policies (7,8) as posed in Definition 2.2 to a one-dimensional minimization

over all 7 admissible, a considerable and welcome simplification.

Theorem 2.1 (Optimal Stopping) For 7 € Toa define,

pu(7) i = En UO C,ds + e(HT)] ,
with
e(r) : = min{cr, (1 — ™)}
Then,

inf pr(7,8) = inf p=(7);

where the infimum on the left is over all admissible policies.

Proof: Let (7,8) denote some arbitrary admissible policy. Consider the

policy (7,8.) obtained from (1,6) by replacing é with 6. = 6.(11;) given by

1 ifII; = 7
8u 1= (2.19)
0 if I, < =,
where ¢ : = E{-CT; note that 7, = arg max {e(r): 0 <7 < 1}. We will show

that Bayes’ cost for (7,6) is not less than that for (7,6.). Using 2.13 we have,

&(T,,8) = 1{s=0}1{T, =1} + A1{6 =1}1{T, =0}  Pr-as.
(2.20)
By the definition of admissibility we know {8 = ¢} € O- for 7 = 0,1 and
hence,
E1{s=0}1{T,=1}] = E[1{6=0} E[1{Y;=1}|O/]]
= E;[1{§=0}1L] (2
= E.[(1-8)1],

o
o
—
R
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and similarly,

E,1{6 =1} 1{T, = 0}] = E.[6(1 - IL,)). (2.22)

Thus,
B, (E(C.,8)] = Er[(1— &I, +c'8(1 11 8]
> B, [min{’Tl,, ¢! (1 — 1,)}] (2.23)
= Er[e(Ilo)],
so that for all admissible pairs (7,6),

pe(7,8) > Ex [ /0 "C,ds + e(nf)] = (7). (2.24)
On the other hand, 8, is O,—measurable as is clear from 2.19 and so,
pe(r6) = En '/Tc ds + 5(17,5*)]
_ B, / Cods +CTL (L= 8) +¢ (1 - Tl

(2.25)
- E / C, ds + e(IL, )]
= pa(7)
Hence,
02(16) > pal7,62), (2.26)
for all admissible pairs (7,6). This implies
=i 2.9
dnf pa(r) gg}g)pw(f, 6), (2:27)

where the infimum on the right is over all admissible policies. This completes
the proof. a
As a result, the search for an optimal policy is reduced to a search for an

optimal stopping time. Note that according to Definition 2.2 we have shown

p(m) = inf px(7), (2.28)
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and so we shall henceforth call p,(7) Bayes’ cost corresponding to 7 € 7,4.
Another consequence of the Optimal Stopping Theorem is that it shifts the
focus of our attention from the point process T to the conditional probability
process II and it suggests that the properties of the II process deserve closer

investigation.
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2.4 Concave Running Cost

The following proposition describes a useful property enjoyed by Il which it
inherits directly from condition (A1) imposed on P, or, more honestly, this
desirable property strongly inspires our definition of the Pr measure. This
property immediately suggests that an additional assumption be imposed on

the running cost.

Proposition 2.3 Suppose w, «', #” € [0,1) are in the relation
r=An"4+(1-XN)x" for some € 0,1]. (2.29)

Define 1" : = En[Y.|O;] and by analogy I/ for 7 € Toq. Let A’ denole the
Radon-Nikodym derivative of P with respect to P, when both are restricted
to @ and let A" denote the analogous derivative. Then for all 7 € Toq we

have,

I, = AT+ (1 - A)A"IIY  Pr-as.

Proof: From the assumption (Al) regarding the family of Bayes measures

we know that the restriction of P, to O satisfies,

and clearly Py and Ppu are absolutely continuous with respect to P; on O.

Let O € O, and compute,

/ET](’) /po
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— ) / Y, dPy+(1 =X [ T,dPu
[ YedPat(1-0)
= A [ BolT| O] dPu+ (1= ) | B X110} dPrs
= A [ 4P+ (1= ) /H”dP,ru
Jmdp 4+ -n [
- /O[)\A’H’T+( ) A"I1") dP,, (2.31)

i.e., for any 7 € Toq,
M, = B,[1,[O,] = AT + (1 = \) A" 117, (2.32)

except possibly on O,-sets of P,—measure zero. This gives us the result. O

This property of the a posteriori probability suggests that by placing
an additional, modest assumption on the running cost we can still further
simplify the nature of the infimum involved in the search for the optimal
stopping time beyond that which we have achieved so far. Moreover, the
suggested assumption by no means trivializes the kinds of running costs which
can be considered. Thus, before we address further the computation of the
infimum in 2.28, we impose the following assumption upon the running cost.
This assumption will be sufficient to imply that p is a concave function on
(0,1). In particular we assume that the O;—adapted process, C = {Ci}i>o,
does not depend on the prior = € {0,1] and is of the form,

With this understanding we place a third restriction on C:

(C3): C(M)is concave in 11,
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i.e., given any 7,7/, 7", A € [0,1] such that 7 = Az’ 4+ (1L — A) =", (C3) is

taken to mean,
Ct (71') Z )\Ct (7(',) + (1 — A) Ct (7('”) Vit Z O, P,r—a.s. (234)

The next proposition demonstrates that the concavity of both C and e implies

the concavity of p.

Proposition 2.4 Under condition (C3) the Bayes’ optimal cost, p, is con-

cave on (0,1).

’

Proof: Suppose that 7, 7', 7"/ € [0,1) are in the relation 7 = A7’ +(1—A) 7’
for some A € [0,1]. In Proposition 2.3 we showed,

I, = AT + (1= M) A"IIY  Pras., V7 € Tog, (2.35)

which says that IT is a convex combination of A’Il" and A”II”. However,

from assumption (Al) regarding P, we find,
AN+ (1 -MA"=1 Pr-as., (2.36)

so that II is in fact also a (stochastic) convex combination of II' and I1".

Thus, because the mapping e is concave we get,
e(Tl) > AN e(Il)) + (L = A)A"e(Il}) Vt>0, Pr-as. (2.37)
Hence,

Exle(Il)] = AEL[A e(Tl))] + (1 — A) B [A" e(I17)]
= A E,r/ [G(H;)] -+ (1 - /\) EW//[G(H?)]. (238)
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Likewise, the concavity of C(II) as postulated in (C3) implies,
E, /Ot C.(11,) ds > A Ey /Ot Co(T1) ds + (1 — A) Enn /Ot C(T1") ds.  (2.39)
Combining these results we have,
pr(t) Z Apm(t) + (1= A) pen(t) V20, (2.40)
and therefore,
p=(T) = App(7) + (1 = A) pan(T) V1 e T (2.41)
Finally, we see that,

p(m) = inf pr(r) 2 A inf pw(7)+(1—A) inf por(7)

= M)+ (1= X) p(e), (2.42)
in other words, p, being an infimum of a family of concave functions is nec-
essarily concave. Of course, a simple corollary to the concavity of p on (0,1)
is its continuity there. 0

For the remainder of this thesis the general problem with which we shall

concern ourselves can now be stated rigorously and concisely as:

(P): Find 7. € Toq such that p(7) = inf p(7) = pr(7).

TETad

Although we know that p exists, is nonnegative and finite, and is concave on
(0,1), we do not know if a solution to (P) exists or if it possesses a unique
solution. We know a fair amount about the conditional probability process
I and have used it to simplify the minimization in the definition of p. In

the next section we continue to exploit the properties of II to still further
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simplify the minimization in (P) when certain sufficient conditions are met.
In particular, we introduce the notion of first exit policy based on the notion
of first exit time, a random time at which II first exits some open interval.
This leads us to consider the whereabouts of IT at the time of first exit. Using
these notions, we can give a set of conditions involving a particular interval,
L., which if it exists and satisfies these conditions is suflicient to imply that
the first exit policy based on I, is optimal in that it solves problem (7).
These constraints also serve to characterize a mapping r. : [0,1] — R which
permits one to compute Bayes’ optimal cost provided the mapping exists and

it too meets the set of constraints.
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2.5 First Exit Policies

The next step towards our goal is to transform the minimization problem
described by () into one still more manageable. In attempting to do this, it
becomes clear that a most important subclass of admissible stopping times
are those which are first exit times of the II process from an interval. This is

due both to their simple specification and remarkable optimality properties.

Definition 2.3 Define the collections of continuation intervals,

° :={[0,b): 0<b< 1}
It ={(a,b) : 0<a<b< 1},

and T :=T°UTt. The first exit time of II from 1 € T is an O;-stopping
time defined as
' =inf{t > 0: I, ¢ I}.

We denote by T the collection of all such first exit times; we observe thal
71 is not necessarily an admissible stopping time. For each 1 € I we call

(11, 6.(IL1)) the first exit policy based on 1. O

We emphasize the fact the the collection of continuation intervals T lacks
symmetry because = 1 is always an absorbing boundary for the IT process

whereas m = 0 may or may not be. Indeed,
I |p=1= P{v <t|0,} =P {00} =1 Vi=0. (2.43)
Let 1€ Z and 7 € I. If 7 € T then from the definition of 7,
P {rt< oo} =1 Vrel, (2.44)
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and this means that II eventually exits I, P,—a.s. For instance, if the II
process possesses continuous sample paths then P.{Il,; € 01} = 1 where
01 denotes the boundary of I, i.e., its endpoints. In general however, the II
process may possess jump discontinuities and as a result there is little or no
chance that II lies on the boundary of I at the time of escape. Nevertheless,
when Il exits an interval, questions naturally arise as to its whereabouts at
the time of escape. The following definition provides a means to phrase such

questions.

Definition 2.4 Let I € 7 and Qp : = {Illy € I}. The lI-boundary of I is
defined as,

anI:: U {HTI}.

weN

In words, O 1 comprises all the point values that Il may take on when it exits

I. The Il-closure of 1 is defined as,
[Iln:=1udluonl

It will also be convenient to define the upper and lower II-boundaries of 1 as
Ot1 and D51, respectively, i.e., Onl = OfIUEL, O7INI{ T =0 and 7t € Of1

implies 7+ >« for all # € 01, and vice versa. O

Our plan for solving the minimization over 7,4 in 2.28 is to characterize

an interval I, € Z such that for all = € [0, 1],
pr(T) S pa(T) V7T E T (2.45)

At first glance, 2.45 does not say that 71+ solves problem P because we also

need to show that 71+ is admissible. However, given any 7 € 7,4 a second
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glance at 2.45 shows,
7le
E,,/ Csds < pr(T) < pa(7) <00 Ve [0,1], (2.46)
0

and therefore 71+ € 7T,4.
The following simple proposition characterizes Bayes’ cost for a first exit

policy based on a continuation interval I'in Z for any prior not in L.

Proposition 2.5 Let 1 € I. Then,

pr(T) =e(r) Vw gl

Proof: If 7 is not in I then 71 = 0, Py—a.s. Hence,

p=(T1) = E,,[/OTI Cods + e(Il1))
= FE [0+ e(p)] = e(n), (2.47)

since Pr{llp =7} =1 O
We are also obviously interested in dealing with the quantity p(71) for

[ € T when 7 € L. In order to do this in some generality we need to impose

the following escape condition on the II process:

Either: (E°) P {rl%) <0} =1 Vr€0,b),b<1;

(E)
Or: (EY) P {rP <o} =1 Vr€e(a,b),0<a<bc].

With economy of notation in mind define I, via,

| [0,1) if (E°) holds;
7] 0,1) if (E*) holds,

(2.48)
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and let 7, denote
7° if (E°) holds;
T i= (2.49)
I+ if (E*) holds.
Note that I, & Zoo since I, & Z, however, I, can be expressed as a limit of
intervals all in Z.,. Furthermore, given any increasing sequence of intervals
{L.}n>1 in Ty such that Upsil, = Io, then rln 2 oqle Pooas. for all 7 €

I.. Using this definition of Z., the escape condition can be rewritten more

compactly as,

(E) P{r'<oo}=1 Vrel, Ve,

In terms of our earlier notation the escape condition says that 7! € 7 for all
[ € T, i.e, the I process is guaranteed to escape any admissible interval.
In other words, the absorbing points of the II process are attracting. Under
certain conditions which we shall address later these absorbing points, namely
Jl.., are not only attracting but also unattainable in finite time.

Another consequence of (E) concerning the sample paths of Il is that
when II exits any I € I, there is always another J € Z,, which contains
both I and the exit point. We can can state this more technically by saying
that [I]f is a proper subset of I, for all I in Z,. An important implication

of this fact which we will exploit later on is that,

sup[I]mp < 1 Vi€ 1. (2.50)
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2.6 Sufficiency and Verification

We are now ready to state a set of conditions which are sufficient to imply

that there exists a continuation interval I, € T such that

p(r) = pa(™), (2.51)

which says that the optimal Bayes’ cost is achieved by the first exit policy
based on I,. Define the class of O;—stopping times 7y, by,

T = {7 € Tpg: 7 < 7' Pr—a.s. ¥V €[0,1] for some I € 7, }, (2.52)

i.e., T consists of all those O,—stopping times which are majorized by some
stopping time 71 € 7 with I € Z.
Let I, € T and let r, : {0,1] — R° denote a corlol function. Consider

the following conditions on the pair (r.,L,):

(Vla): Forall T € Ty,
Er[r(TL,) = ()] > —E, / Cods Ve[l
6]

(Vib): B () —r(llo)] = —E, /OTI' Cods Ve [Llm

(V2) : r(r) = e(r) Vr e onl;

(V3) : r(r) < e(r) Vrd oL
and also,

(V4): r. is bounded and continuous on [ L ]n.
The consequences of these conditions are considered in the following series

of simple lemmas.
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Lemma 2.1 Suppose there exists a pair (r., ) satisfying (V1b) and (V4).
Then,
Pl €onL} =1 Vre|[Lln

Proof: Let 7 € [L. )ir; condition (V4) implies that there exists B. finite such
that,
|re(m)] < By < 00. (2.53)

From the definition of [L.]g we know P {Il, € [L]n, 0 <t < 71+ } =1 s0
that,

| Ex[ra(ln) = ru(To)] | < Ex[|ru(ILin) — ru(Ilo) |]
< 2B.. (2.54)
Hence, (V1b) yields,
71«
E,,/ C,ds < 2B, < o, (2.55)
0
and therefore,
71« o]
o0 > E/ C,ds > E,[1{r = oo}/ C, ds). (2.56)
0 0

In view of condition (C2) on the running cost, this last line leads to a con-
tradiction unless Pr{7!* < 0o} = 1. Since 7 in [I, |1 was chosen arbitrarily

this proves the assertion. a
Corollary 2.1 The stopping time 7' is admissible, i.e., T € Tyq.

Proof: Use expression 2.55 above and Proposition 2.5. a
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Lemma 2.2 Suppose there exists a pair (r., L) satisfying (V1b), (V2), and
(V4). Then,
pr(ti) =ru(m) Vr€[L]n

Proof: Let 7 € [I.]n. Using Lemma 2.1 and (V2),

E fr.(I)] = E[1{ILun €0nl}r.(Iln)]
= EW[I{HTI. € on L, }G(HTI:)]
= E[e(ILu)). (2.57)

From (V1b) it therefore follows that,

pe(T) = E,,[/OTI‘ Cods + e(Il1.) ]
= r.(7)+ Esle(Iln) — ro(Iln)]
= r.(xw), (2.58)

and this proves the lemma. 0O

Lemma 2.3 Suppose there ezists a pair (r.,L.) satisfying (V1)~(V4). Then,

p(r) = inf po(7) =rr) V7€ [Lln

T€Tqa

Proof: Fix 7 € [L.]n. Define the sequence of intervals I, for all n > 1 as,

3

[0,2=1) if (E°) holds;

=1y if (E*) holds, (259

—
3~
3
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and note that limI,, = I. For any 7 € 7,4 we have,

pu(rnr) = B[ Cods t e(lp)]
< B[ Cods+elll )]
Eel [ Cods +e(IL,) + el prm) = e(IT,)]
pe(7) + Ex[ (Tl pmm) — e(IL,) . (2.60)

Since 7 A 717 is in T, for all n > 1 from (V1a) we obtain,
rarln
E/ Cyds > Ex[ra(Tlg) — (I, pota) ], (2.61)
0
and therefore,
pr(T AT) 2 (7)) + Ex[ e(Tlprta) — Tu(ILarin)]- (2.62)

The pair (V2)~(V3) yield e(x) — ro(x) > 0 for all 7 € [0,1] so this last line
implies,

pr(T ATI) > (). (2.63)
Combining 2.60 and 2.63 yields,
ro(7) < pr(7) + Exf e(Ilpr1n) — e(I17) ]. (2.64)

We know the escape condition (E) implies 71» 71 P,—a.s. Therefore from

the continuity of e on [0,1] and the Bounded Convergence Theorem we get,

lim Er[e(Ilnn)] = Exl (I nrieo) ]- (2.65)

n—00

Using 2.65 we pass to the limit in 2.64 and obtain,

re(1) < pa(7) + Ex[ (Il arte0) — e(Il,)]. (2.66)
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Since 7 € 7,4 the same argument as in Lemma 2.1 shows that also 7 € T,
ie., P{T < oo} = 1. Thus, it follows directly from the definition of I
that,

Ee(llame) —e(ll;)] = Exl(e(Il) —e(1l;)) 1{rl* <7}]+0
= E[(e(llie) —e(l,)) 1{r"™ < 7 < co}]
= 0. (2.67)

As a result, the expression 2.66 gives,
re(7) < pa(T). (2.68)
Because we chose m € [ L. | arbitrarily 2.68 implies,

inf p.(7)>r.(r) Vre[Lln (2.69)

1€T44

Finally, applying Lemma 2.2 and the corollary to Lemma 2.1 we obtain the

result. O
Corollary 2.2 The mapping r. is nonnegative and continuous on int([ L Jn).

Proof: Apply Proposition 2.4. O

The next lemma is a further characterization of 1,.

Lemma 2.4 Suppose there exists a pair (., L) satisfying (V1)=(V4). Then
the point at which the terminal cost function e attains its mazimum value,

namely w, = c*/(® + ¢'), is contained in I,.

Proof: Pick 7 € int(I.) and choose A € (0,1) to satisfy 7 = Aa. + (1 — A) .

where a, and b, denote the endpoints of I.. From the corollary to Lemma 2.3
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r, is concave on int(1.) (a fortiori) and so,

ro(m) > Ar(a)+ (1 - A) re(by)

= de(a.) + (1= X)e(bs), (2.70)
using condition (V2). Now suppose that 7, < a.; we will derive a contradic-
tion. From this supposition, it is obvious that . ¢ I, irrespective of whether
I, is open or closed at a.. From this and the definition of the mapping e we
can conclude that e is strictly linear on I,. The linearity of e on I, therefore
yields,

e(r) = Ae(as) + (1 — ) e(b), (2.71)
so that combining 2.70 and 2.71 we obtain r.(7) > e(r). Since = € int(L.)
and therefore 7 € dn L., this yields a clear contradiction to (V3) and therefore
it must be true that a, < 7. Similarly, b, < =, implies 7. ¢ 1. since L, is
open at b, and again, we derive a contradiction to (V3). Hence, we insist
that 7. € L. O
The importance of Lemma 2.4 is that it implies that e is strictly linear outside
of I,. The importance of the next and final lemma is that it characterizes p

for all priors not in [L ]m.

Lemma 2.5 Suppose there exists a pair (r.,1,) satisfying (V1)-(V4). Then,

p(r) =e(r)  Vr & [L]n.

Proof: Let 7o € 7,4 denote the stopping time which is identically zero,

7o = 0. Obviously,
0 < p(m) < pr(70) = €(7) Vrelo,1]. (2.72)
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Since e(1) = 0 it then follows that p(1) = 0. Now suppose we choose 7+ €
Of L. so that =+ is in the II—closure of L. and therefore Lemma 2.3 yields
p(rt) = e(r*). TFrom Lemma 2.4 it follows that e is strictly linear on the
interval [xt,1]. It is therefore geometrically obvious that p, bounded above
by e and concave as shown in Proposition 2.4, is also strictly linear on [7%,1]
and in fact equal to e on this interval. This gives us what we want for all
points in the unit interval to the right of [L ]m.

For points in the unit interval to the left of {1, ]i a slightly more delicate
argument works. Either e = 0 or not. If 7. > 0 then ¢(0) = 0 and from
2.72 it follows that p(0) = 0. In this case we can argue as above employing
some 7~ € 97 L.. On the other hand, if 7. = 0 then L. € Zo and we obtain
the result vacuously since there are no points in the unit interval to the right
of [I.]n. Hence, in either case we get what we want. a
Using the results of the previous lemmas we arrive at last at the main result

of this chapter.

Theorem 2.2 (Verification) Suppose there exists a pair (r.,l.) satisfying
(V1)-(V4). Then,
o(7) = pa(r)  ¥re[0,1]

Proof:

From Lemma 2.2 and Proposition 2.5 we have,

pr(T) = () ?fﬁ € [Lln (2.73)
e(r) ifr ¢ [Lln
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Combining Lemma 2.3 and Lemma 2.5 we have,

sy = | ) ir e Ll -
e(r) ifm¢[Lln,

so that,
p(m) = px(71) V= elo,1]. (2.75)

This gives us the result. 0
From (V2) and 2.74 a corollary to the theorem is the following simpler

expression for p,
o) = ro(m) if 7€ L (2.76)
e(r) ifr L.
We see that Theorem 2.2 verifies that the continuation interval I, character-
izes a Bayes’ optimal stopping policy, namely (71+,é,), and also verifies that
the function r, together with I, characterizes Bayes’ risk via 2.76.

The next result states that the pair (r., I.) is essentially unique, i.e., if

there exists another pair, say (s.,J.), satisfying (V1)-(V4) then L. = J. and
ro(r) =s.(r)  Vme[Lln (2.77)

We point out that the possible lack of uniqueness of r, outside of L. is irrele-
vant to any questions concerning the optimal Bayes’ cost or the optimal first
exit policy. For our purposes, only ‘uniqueness’ as above is ‘essential’. We

can now prove the last result of this section.

Theorem 2.3 (Essential Uniqueness) If a pair (r.,1.) exists salisfying
(V1)-(V4) then it is essentially unique.
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Proof: Suppose there exists another pair satisfying these conditions, say
(54,J4). Let Lo = (ax, bs), and J, = (c.,dy). From Lemma 2.4 we know that
I.NJ, # 0. Hence, if a. # c. then either c. € (a.,b.) or a. € (c.,du).
Both possibilities lead to a contradiction. For instance, if c. € (a.,b.) then

according to Lemma 2.3 and condition (V3) there holds,

ples) = rulen) < e(c). (2.78)
But Lemma 2.3 applied to s. implies,

pler) = s(e2) = efca). (2.79)

A similar contradiction is obtained if a. € (c.,dx) and hence, a. = c.. By an
analogous argument, b, # d. is untenable and therefore [. = J. which is half

of essential uniqueness. Applying Lemma 2.3 again now yields,
ro(m) = p(7) = s.(7) V7 e [Lm, (2.80)

which is the other half. O
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2.7 A Likelihood Ratio

In this section we fill in still more detail to the probabilistic framework estab-
lished so far which we will need in the chapters to follow. On the measurable
space (2, A) we assume that in addition to the filtrations {A¢}is0 and {O:} 0
on A we are also given a third filtration {G:}:>0, such that O, C G, C A,
for all t > 0. We take Gg = Ap and let § = Vtzo G:; we assume that G, 1s
completed with respect to P, for all ¢ > 0. The intermediary filtration G,
will serve to model those system dynamics which still remain only partially
observable even with full knowledge of T.

Let P¢ and P{ denote the restrictions of Py and P, to the measurable
space (2,G) and assume that PY and P¢ are mutually absolutely continuous
probability measures; this we indicate by P¢ = P{. Define Lo, to be the
Radon-Nikodym derivative of Pf with respect to P¢ and then define L =
{L;}:>0 according to L; := Eo[Lo]G:). Note that EoL, = FoLs = 1 and
then because Go = Ag we have Ly = Ey[Lo|Ao] = FoLo = 1. Hence the
mapping t — FoL, is right-continuous. Also, L is a G;—martingale and G, is
an (A, Py)-completed, right-continuous filtration of G. Thus, L has a corlol
modification which is the one we agree that L represents. Of course it is also
true that {Lt}tZO is a family of uniformly Py-integrable G,—martingales.

For any G;—stopping time v (nu) the properties of the G—measurable ran-
dom variable L, is understood in terms of the well-defined sub-o-algebra
G, of A and we write L, = Eg[Lo|G,]. When v is more generally some

A;~stopping time, the meaning of the formal symbol L, again rests on the
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meaning of the formal symbol G, which we now define as,
G, ={Aeg\ow)|An{v <t} € G\ U, Yt >0}, (2.81)

where U, conveniently denotes V,¢; o(T,) for all ¢ > 0. It is straightforward
to show that G, so defined is closed with respect to complementation and
countable intersection and therefore is a o—algebra; it is obvious therefore
that G, is a sub—o-algebra of A. Note that if the A;,—stopping time v is in
fact a G,—stopping time then GV o(v) = G and G, VU; = G, so that the more
general definition of G, above reduces to the usual one. The argument that
v is G,~measurable for v an A;-stopping time parallels the same argument
when v is a G,-stopping time; for X some G,—progressive process, the proof
that X, is G,—measurable for v an A;—stopping time is the analog of the
standard proof that X, is G,~measurable for v a G;—stopping time. Given
this definition for G, we can now define L, := Fy[Lo | G, ] which agrees with
our earlier definition when v = ¢, a deterministic “A4;-stopping time”.

In the development below we will need to consider the process L™' :=

{Lt_l}tzo and thus we present the following proposition.

Proposition 2.6 The right-continuous G,~adapted random process L™' is
locally bounded, i.e., there exists an increasing sequence of Gi—stopping times

{on}n>1 with unbounded limit such that the random process (L7, }iso is

bounded.

Proof: Begin by defining,

1
o, :=inf{t >0|L, < -}, (2.82)
n
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and note that the sequence {o,(w)}n>1 is increasing for each w € {1 so that
the imit 0o = limy_eo on exists. We want to show that oo, = oo, Fp-a.s.
To this end note that on the set {¢, < n} that L,, < %: if {o, < n}is
empty it holds vacuously; if it is not empty then for all w in {0, < n} it
follows that Ly, <  because o(w) < oo and L is corlol and therefore
right-continuous a fortiori. Now we take advantage of the fact that L is a
uniformly Py-integrable corlol G;—martingale and Doob’s Optional Sampling

theorem to compute,

Eo[ Lo 1{000 < n}] < Ep[Le{on <n}]
= Ey|Eo[Leo 1{on <n}|Go,]]
= Fo[Ls, 1{on < n}]

n

IN

Hence,

lim Eof Lo 1{00 < n}] =0, (2.84)

so that employing the Lebesgue Dominated Convergence theorem we obtain,

Jim EolLo {00 <n}] = Eo[Lo lim {ow < n}]
= Fo| Lo {00 < o0}, (2.85)

and therefore Ey[ Lo, 1{00 < 00}] = 0. But if we can show that Po{Le >
0} = 1 then this implies that Po{ 00 < 00} = 0 and as a result we get what

we want namely, Po{ 00 = 00 } = 1. Hence, we compute,

Pi{Le =0 =/ Loy dPy = 0, 2.86
1 { } Loe0) 0 (2.86)
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which yields Po{ Loo = 0} = 0 because P§ = P{ and so indeed Lo, > 0,
Py—a.s.

To complete the proof, observe that the A,~adapted process {Lins, }i>0
is bounded away from zero for all n > 1 and hence {L;},, }:>0 is a bounded
random process for all n > 1. Finally, since {0, },>1 is an increasing sequence
of G,~stopping times with limit oo, = 0o, Pp—a.s. we see that L' is a locally

bounded random process. a
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2.8 The Prior Measures: A Model

In this section we focus on the family of Bayes’ probability measures, i.e., the
prior measures { P, : 0 < w < 1}, and distinguish % and P as characterizing
the entire family via certain structural assumptions.

Keeping Proposition 2.6 in mind, for any A,-stopping time v and any
A-measurable random variable X we implicitly define the random measure

Q" on (92, .A) via,
/JEQVX APy = /JEO[L;IXLOO|J(V)] APy VJeo(v),  (2.87)

so that,
Egv X = Eo[L;' XLoo |0(v)]  Po-as. (2.88)

For v = u with u in [0, c0] deterministic we have o(v) = Ao and therefore,

Egu X = BEo L7 X L, (2.89)
and as a result,
Q*{A} = /AL;1 Lo.dPy, VA€A, (2.90)
and also,
Q°{A} = P{A} VAcA (2.91)

By the first half of Tonelli’s theorem we see for all A in A that the mapping
u — Q“{A} is Borel measurable and thus {@* : 0 < u < 1} defines a
transition measure from ([0, oo], B([0, c0])) to (2, A), where B([0, oo]) denotes

the Borel o—algebra on [0, co].
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Because PY = P? the expressions 2.90 and 2.91 combine to give,
Q“{G} = /GL;1 dP, VYGeG, 0<u< . (2.92)
It is then straightforward to show that,

Pl{G} ifu=0
Q{G} =1 [, L7'dP, if0O<u<t VGeG,t>0.  (2.93)

We now turn our attention to the modeling of the A;—stopping time v
from a conditional distribution standpoint with respect to the probability
measures Py and P;. Let F = {Fi};»o denote an O,—predictable, right-

continuous, nondecreasing process satisfying,
=0 and Fo=1, Poas., (2.94)
and impose the following technical condition on F':
(F) : EO/OT(l _F)VdF, <00 VreT.

We describe the (A, Pp)-completed internal history {F:}i>0 of F' according
to,

Fo=0y Fri=o{F:0<s<t}; f——‘\/}'t. (2.95)

t>0
Recalling that v denotes an A,—stopping time taking values in [0, 00}, we
make the following assumptions concerning the distributional description of

v under Py and Py,

(DO) Po{vﬁtlft}=Ft \V/tZO,

48



and,

(D1) P{v=0}=1.

From (DO0) we see that Po{v = 0} = 0. Thus the assumptions (D0) and
(D1) are consistent with the assumption (A2). However, it is our goal in this
section to replace the assumptions (Al) and (A2) pertaining to Pr with the
assumptions (D0) and (D1) concerning only P, and Py and then obtain (Al)
and (A2) from (D0) and (D1) by properly defining Py in terms of Fy and P
for all = in [0, 1]. Moreover, we shall obtain a more detailed characterization
of the family of Bayes’ measures which we shall exploit in the section to

follow. With our stated goal in mind define,
EX: =1 X+(1-m)E L' XL, Vmel0,1], (2.96)

for all A-measurable random variables X. For notational convenience it

makes sense to define an auxiliary measure P via,
P{A} := /AL;1 LodPy VA€ A (2.97)
With this convenient notation we see for all 7 in [0, 1] that,
P {A} =7 P{A} + (1 — ) P{A} VAe A (2.98)
Observe,

P{Q} = /QL;ILOOdPO
- /QEO[L;lLOO|QU]dPO
_ /QL;lEo[Lm|gv]dP0
- /QL,leUdPO
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= PR{Q}
= 1, (2.99)

so that P{Q} =1 and Pr{Q} = 1. Thus both P and P, are indeed proba-
bility measures on (£, .4).

We now demonstrate that (A1) and (A2) follow from (D0), (D1) and the
definition of P, in terms of Py and P,. Clearly, whenever A, 7, =’, 7 in [0, 1]
are related by,

m= A+ (1 =\ 7", (2.100)
our definition of P, yields for any A in A that,

P{A} = D'+ (1= x"|P{A}
+ A=)+ (1 =N -] P{A]}
= ' P{A} + (1 — ') P{A}]
+ (1= [r" P{A} + (1 — 7") P{A}],
= APu{A}+(1-X) Pm{A}, (2.101)

so that (A1) follows a fortiori. In addition, by employing (D0) and (D1) we
have for all 7 in [0, 1] that,

P{v=0} = 7P{v=0}+(1—7)Eo[Lg' 1{v =0} L]
= 714+ (1 —7)Eo[l-1{v =0} Lo ]
= 74+(1—-7)-0
- (2.102)

so that (A2) is also obtained.
We proceed to demonstrate how the definition of the family of Bayes’

measures in terms of Py and Pj in concert with the distributional assumptions
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(D0) and (D1) and the definition of the random measure Q¥ lends desirable
properties to the Bayes’ family. To begin with we note that completion by
Py and P; of any sub-o—algebra of A is sufficient to guarantee its completion
by the family of Bayes’ measures. Moreover, the collection of suppositions
which we have made so far imparts to the family {P; : 0 < = < 1} the
following properties. For any set J in o(v) and any G-measurable, Fo-

integrable random variable X,

Eol1; L' X L] = EollyEo[L;' X Leo|o(v)]]
= Eo[ly Egu[X]]
- EO[1{vev(J)}/QXdQ“]
= Bl Bofi{veu)} [ XdQ'|F]]
- Eo/oool{uev((])}/QXdQ“dFu, (2.103)

and similarly,

E1;X] = Efl{vev(J)}X]
{0 ev())}E [ X 1{v = 0}]
{0 e v(J)} E1 X. (2.104)

As a result it follows for all 7 in [0, 1] that,

B, X] = (1 —W)Eo/ooouu ev(/)} [ X dQ ar,
+71{0 € v(J)} ELX. (2.105)

If J={v <t} then v(J)=[0,¢] and the preceding expression yields,
¢
E,,[l{vgt}X]=WE1X+(1—7r)E0/ /XdQ“dFu, (2.106)
0 Ja
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for all G-measurable X. For J = Q set t = oo in the above to obtain,
EX =B X+(1—7) Eo/oo/QXdQ“dFu. (2.107)
0
Comparing this with the definition of P we see that,

P{G} = E, /0°° Q*{G}dF, VYGeG. (2.108)
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2.9 Martingale Dynamics of II

Under the newly imposed assumptions (Al) and (A2), the results of last
section allow us to give a more detailed semimartingale representation for
the a posteriori probability process. We proceed by first obtaining a more
explicit semimartingale representation for the A;~adapted point process T.
We then project T; onto the observation filtration and so obtain the desired,
more precise semimartingale representation for II.

Recall that with respect to P, the A;—stopping time v at which T jumps
from zero to one has the F,—conditional cumulative distribution function F.

Employing a point process representation theorem [B, IIL.T7] we find that,
tAv
T, — / (1— F)"dF, is an (A, Po)-martingale, (2.109)
0

so that we may write,

o B tAv _ -1
M, =T, (1 - F,)"dF,, (2.110)

0

for some (A, Fp)-martingale M. Computing with r <t and A in A, yields,

E1a(M, — Yo)] = 7 Ex[1a(M; — To)) + (1 — 7) Eo[1a(M, — Yo)]
= 0+ (1 — m)Eo[14(M; — 0)]
= (1 — ) Fo[laBo[Mi] A/]]
= (1—7)Eo[laM,]
= 1 E[1a(M, — To)]+ (1 = 7) Eo[la(M, — Yo)]
= B [1a(M, — Yo)], (2.111)

and we conclude that,

/AE,,[Mt—To]AT]dP,r:/A(M,—To)dP,r VAe A,  (2112)
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and therefore M — Yo is an (A:, P )-martingale.
We next exploit the uniqueness of predictable compensators and Propo-

sition 2.1 to make the identifications,
tAv
K, = / (1— F) dF, Vt>0, Pr-as., (2.113)
0
and thence M = M — Yo, Ps-a.s., so that we may therefore write,
tAv
T, =To +/ (1—F,)"dF, + M, (2.114)
0

for the (A, Pr)-martingale M. Because T; = 1{v < t} we can in turn

rewrite this as,
t
T, = To +/ (1=7,)(1 - F)™dF, + M, (2.115)
0
and then,
4
Y, = T0+/ (1=T,_)(1 = F)VdF, + M,, (2.116)
0

since F' has no jumps in common with Y. This provides us with the desired
semimartingale representation for T.

Note that in view of the technical assumption (F) we have,

E, /Ot(l ) (1= F) R, = (1—7)E /Ot(1 _Y)(1 - Fy) " dF,

1
< Eo/ (1-F) ' dF, <co,  (2.117)
0

and Y indeed has the P,-integrable compensator that Proposition 2.1 de-
mands.

We end this section by projecting T; onto the observations. Observe that,
PW{T0:O|OQ}:P7\-{T0:0}:7T, (2118)
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and recall P,{Ily = n} = 1 for all = in [0,1] so that using Proposition 2.1
once again and making a modest modification to the Projection Theorem

[W&H, P7.1.3] we obtain for II; = E.[ Y] O],
i PR
1, = I, +/ (1-1L)(1 - F)'dF, + M, ¥t>0, Pr-as., (2.119)
0

making use of the O,—predictability of F. We recall from Proposition 2.2
that M denotes an (O, Pr)-martingale. In the applications in the chapters
to follow, the precise nature of the observation filtration will be characterized

and this in turn will characterize the structure of M as a stochastic integral.
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Chapter 3

Change Detection: Diffusion
Data

3.1 Introduction

In this chapter we consider the problem of Bayesian optimal change detection
when the observed data are modeled by generalized diffusions. The chapter

has the following outline:

Section 1. SYSTEM DYNAMICS

In this section we make decisions concerning the general dynamics mod-
els for the two underlying systems. One system is modeled as a purely
noisy Brownian motion, the other system is modeled as a general drift
process with the Brownian motion superimposed. We impose technical
conditions on the drift process which will be needed to apply filtering

results and obtain escape properties. We derive a representation for
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the likelihood ratio process using Girsanov’s Theorem and employ this
representation to obtain a martingale description of the observation

process with respect to the prior measure.

Section 2. OBSERVABLE DYNAMICS

The main point of this section is to obtain a martingale description
of the observation process with respect to the prior measure when the
drift is conditioned upon the observation filtration. To do this we work
with the observation process when the drift is smoothed with respect to
this filtration and derive the associated likelihood ratio in which only
the smoothed drift appears. Thus, this section is largely the analog
of the previous but with the drift conditioned upon the observation

history.

Section 3. THE CONDITIONAL PROBABILITY

The purpose here is to derive an explicit semimartingale representation
for the a posteriori probability process by estimating the jump process
for the time of change conditioned with respect to the observations.
This smoothed representation gives us a filter for the underlying jump

state.

Section 4. PRELUDE TO VERIFICATION

In this section we anticipate application of the Verification Theorem
of Chapter 2 and compute a more explicit version of the first verifica-
tion condition taking advantage of our specialization in this chapter to

diffusion data.
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Section 5. SEQUENTIAL DETECTION

This section is concerned with the classical Bayesian problem of se-
quential detection based on observations arising from one of two gen-
eralized diffusions. We show how this detection problem can be recast
as a problem of change detection by properly modeling the jump time
within the framework developed and by proper choice of the Bayes cost.
We also consider the escape properties of the a posteriori probability
process prior to setting up the Stefan problem implied by the Verifica-
tion Theorem. Using a novel approach involving convexity notions and
existence and uniqueness for ODE’s we solve the Stefan problem and
arrive at one of the main results of the chapter: There exists a Bayes’
optimal first exit policy for the problem of sequential drift detection
with energy cost and terminal error penalties. We conclude the section

with an example involving a constant drift diffusion.

Section 6. DISRUPTION

In this section we formulate a general problem of disruption in the
case of diffusion-type data. We reformulate this problem directly as a
generic change detection problem, employing the jump process to model
the disrupted drift. We demonstrate how Bayes’ cost as defined here is
general enough to capture both the panic cost for deciding too soon that
disruption has occurred and also the elapsed energy cost. We examine
the escape properties of the conditional probability process inherited
from the properties of the smoothed drift and set up the Stefan problem

obtained by recourse to the Verification Theorem. The solution to this
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Stefan problem is found using the same method as employed in the case
of sequential detection. The section concludes with a concrete example
involving a constant drift diffusion and an exponentially distributed

disruption time.
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3.2 System Dynamics

As in the previous chapter we are working on the measurable space (£2, A)
equipped with two probability measures Py and P; which induce the family
of Bayes’ measures {P; : 0 < 7w < 1}. We shall draw freely upon our
previous results and notation with only the briefest reminders. In a particular
application, for instance the one here in which we consider diffusion data, 1t
remains to specify the nature of O;, G, and Ay, to calculate L = {L;}s>0, to
make choices specializing the F;~conditional distribution of the disruption
time v, and lastly to specify the cost functions. Once these things are done
we can make use of the results of the last chapter to solve for the optimal
first exit policy.
We begin by supposing that we are given H = {H,}:>0, a corlol random
process on (,.A4) called the drift. Define the drift filtration on A via,
Hi:=\/ o(H,) vt >0, (3.1)
0<s<t
and take this filtration as (A, Py)-completed. We are also given Y = {¥}} >0,
Yy = 0, another corlol random process on (2, .A) called the observation.
Define the observation filtration on A via,
O,:=\ oY;) Vt>0, (3.2)
0<s<t
and take this filtration as (A, Po)-completed. For any A;-adapted process
X = {Xi}i»0 we define the O;~adapted process X = {Xt}tzo via,

Xy =By X:]0,] Vt>0. (3.3)
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We collect the following technical conditions involving the drift process H

and its (O, Py)-smoothing H:

¢
(HO): E,-/ H?ds < o0 Vi>0, i=0,1;
Q
(H1): Ei/ H?ds < 00 VreT, 1=0,1;
0
(H2): Pi{/ Hds =0} =1 i=0,1.
0

Next we define G; := O,V H; and make the following assumptions con-

cerning the dynamics model for the observation process under /4 and Fi:

(DMO) : Y; is a (G, Po)-Wiener martingale;
t

(DM1) : Y; -—/ H,ds is a (G;, P1)-Wiener martingale.
0

Recalling that v denotes a measurable mapping from € to [0, 00}, that

T, := 1{v < t}, and that U; = V,, 0(T;) we define,
.At = gt\/Ut \/./40 Vi> 0, (34)

where Ag denotes the smallest o—algebra containing both the Fy—null sets of

A and the Pi—null sets of A. We have come to our first proposition.

Proposition 3.1 The G;~adapted process L is given by,

t 1 rt
Ltzexp{/o Hdes——Q-/O H’ds}  Yt>0.

Proof: The proof of this representation is well-known and standard but we

include it for completeness and because some of its ingredients are reused in
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succeeding propositions. Applying the Ité rule to the natural logarithm of
the (G,, Po)-martingale L = {L;}s>0 with Ly = 0 we obtain,

¢ 1 rt
log L, :/ LVdL, — 5/ L72d[L, L) Y1 >0, Pyas. (3.5)
0 0
Define X = {X;}t»0 via X : = L' o L where,
t t
L el := / L1 dL, = / L7VdL,  Vi>0. (3.6)
0 0

Because L is a (G;, Po)-martingale and L™! is a (G, Po)-progressive process
which according to Proposition 2.6 is locally bounded, we see that X is a

(Gi, Po)-local martingale. Next note that,

L %e[L,L° = L 'e[L7 oL, L]
= L 'e[L, L7 e L]

= [L'e L, L7 e L[]° = [X, X, (3.7)
ie.,
t
/ LT2d[L, LS = [X,X]S VYt>0, Poas. (3.8)
0
As a result we see that,
1 ,
lOg Lt = Xt - 5 [X, X]?, (39)
and therefore,
1
L; = exp{X; — 3 [X, X]¢}. (3.10)

Since X is a (Gy, Po)-local martingale with X = 0 we can employ the Mar-
tingale Representation Theorem [W&H, P6.7.3] to conclude that X has the

stochastic integral representation,

t
Xt:/ ¢,dY, Vit>0, Pras., (3.11)
0
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for some G-progressive process € = {&},>0 satisfying [ £2ds < oo, Py-a.s.,
for all ¢ > 0. Since < Y, X >,= [V, X]; = J; & ds and because both X
and Y are (G, Po)-local martingales we may apply the abstract Girsanov
Theorem [W&H, P6.7.2] and so conclude that Y— < Y, X > is a (G, 1)~
local martingale. But then employing (DM1) and the fact that predictable

compensators are unique we conclude ¢ = H, Py-a.s., so that,

t ¢
X, = / [TV dL, = / H, dY,, (3.12)
0 0
and therefore,
t 1 rt
L, = exp{/ H,dY, — —/ H%ds}, (3.13)
0 2 Jo
which completes the proof. O

The next proposition which we shall give begins to reveal the role of the
random measure Q¥ on (£2, A), but first we need to prove the following lemma

involving the Q* measure on (Q,G) for any u in [0, co].
Lemma 3.1 For each u € Ry,
Y; — /Ot U, Hyds 1is a (G, Q*)—martingale,
where U denotes the deterministic indicator process U, := 1{u < t}.
Proof: For u € [0, 0], define the auxiliary (G,, Py)-local martingale M*,
M = /Ot U, H,dY, Yi>0, (3.14)
and the (G;, Py)-adapted process LY,
¥ = exp{ MY — %[M“, MY} Vi (3.15)
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A simple calculation shows that,

1 0<t<u<L oo
Ly = (3.16)
L7'L; 0<u<t< oo,
and from this there follows,
Lg = lim Ly = L' L Vu € [0, 0], (3.17)
using [W&H, P6.1.4]. Recalling the definition of Q* we see that,
Q*{G} = /GLZ;O iPy VG EG. (3.18)
Computing under Py we obtain,
t
<Y, M" >,= [Y,M"), = / U, H, ds. (3.19)
0

Thus, applying Girsanov’s Theorem we conclude that ¥Y— < Y, M* > is a

(G:, @¥)-local martingale and this gives us the result. O
This brings us to the following proposition which describes the unobserv-

able dynamics of the Y process on (£2,.A) with respect to the P; measure for

any 7 in [0, 1] fixed.

Proposition 3.2

¢
Y —/ Y, H,ds is an (A, Pr)-martingale VYV € [0,1].
0

Proof: Fix «in [0,1]. Let r < ¢ and pick A in A, satisfying A = J NG with
J € U, and G € G,. Using Fubini’s Theorem we obtain,

t t
E, 14 / Y, H,ds = / B,y 14 H, ds. (3.20)
0 0
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Next employing expression 2.105 and then Fubini’s Theorem twice it follows

that the right-hand side of 3.20 is equal to,

t t e’
WE11A/O Hsds+(1—7r)E0/O/O 1{u€v(Js)}/G H,dQ* dF, ds, (3.21)

where J, denotes the o(v)-measurable set J N {v < s}. Clearly, v(Js) =
[0,s] Nv(J) and therefore 1{u € v(J,)} = U, 1{u € v(J)} where again, U; is
the indicator function 1{u < t}. Thus, the expectation in the second term

equals,
t
EO// /UsHsdQ“dFuds, (3.22)
0 Ju(J)JG

and with two more applications of Fubini’s Theorem this expectation can be

rewritten as,

t t
EO// /UsHsdQ“dFuds:Eo/ //UsHsdsdQ“ dF,. (3.23)
0 Ju(J) JG v(J) JG Jo

Thus far our calculations imply that,

t t t
E,rlA/ Y, H,ds = WE11A/ H,ds + (1 —W)Eo/ // U H, ds dQ"dF,.

0 4] U(J) G JO
(3.24)

Employing 2.105 once again, similar appeals to Fubini yield,
E,rlAY;:ﬂ'EllAY;ﬁ-(l—ﬂ')Eo/( )/ Y,dQ*dF,.  (3.25)
v(J)vG

The next step is to to compute E 14[Y; — f(f Y, H; ds], the difference of
3.24 and 3.25; for notational economy define the A,~adapted process W* =
{W;’}QO via,

Wo = Y, — /Ot Y, Hyds  Vi>0, (3.26)
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and for u in [0, cc] define the G;—adapted process W* = {W;*}:>0 by,
¢
Wr =Y, —/ U,Hyds Yi>0. (3.27)
0

In this notation the goal of the present proposition is to prove that W is an
(A;, Pr)-martingale; note also in this notation Lemma 3.2 says that W* is a

(G, @*)-martingale for all v in [0, c0]. Subtract 3.24 from 3.25 to obtain,
By WY =1 By W0 + (1 — w)Eo/( )/GW;*dQ“ dF,. (3.28)
v(J
Working on the second expectation in 3.28 we compute,
Eo / / WrdQ*dF, = E / Eou[16 W) dF,
u(J) Ja v(J)
- K /(J) Eou[ 16 Egu[W¥ |G, ] dF.
= Bo [ FoullaWy]dF,
° Jon F0 [1c W]
- EO/ /W;‘dQ“dFu, (3.29)
u(J) JG

again, because Lemma 3.2 says that W* is a (G;, @*)—-martingale. Of course
W is a (G;, P1)-martingale so that,
E W2 = B 1{v € v(J)}HeW,

= 1{0 € v(J))} Es1cW)

= Y0 ev(J)} Er[le Ea[W|G: 1]

— 10 € v(J)} Erlg WO

= E1{v € v(J)}1cW?

= E1,W2. (3.30)

Plugging the last two results into 3.28 yields,

Bla WP =7 Byl W0+ (1 - w)Eo/(J) /G W* dQ* dF.,. (3.31)
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But according to 3.28 the right-hand side of 3.31 is precisely E.14 W”. Thus

we have shown,

Ea W =FE 1, W), (3.32)
The conclusion: For any r in [0,¢] and any ¢ > 0,
Eljne WP = Exljne W, VJ €U, and G € G,. (3.33)

We now use the fact that the o-algebra A, = U, VG, is generated by the
sets of the form J N G as in 3.33 to show that 3.33 holds more generally on

all of A,. To be precise, define the 7-system,
M ={Ae A :A=JNGwithJ €U, and G € G, }, (3.34)
and define two measures g, and y; on (2, 4,) as,
1 {A} :=/AW;J dP, YA€ A, (3.35)

and

ue{A) ;:/AW,vda VA€ A,. (3.36)

In this notation 3.33 says,
pr{M} = p{M} VM e M. (3.37)

Because WY and W are Pr—integrable and ) € M, we see that u, and y,
are a fortiori o—finite on the m—system M. These properties of . and u, plus
the fact that o(M) equals A, allows us to apply an extension to Dynkin’s
7-A Theorem [BILL, T10.3] to conclude that,

A} =pid} VA€ A, (3.38)
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As a result we therefore obtain,
/ WY dP, = /AE,r[th | A ]dP, = / WrdP, YA€ A,  (3.39)
A A
so that,
E[W A ] =W Pr-a.s., (3.40)

and in words, W" is an (A;, Pr)-martingale. O
The proposition tells us that the observation process has the semimartin-

gale dynamics

t
Y;:/ Y, H,ds + WY  ¥it>0, (3.41)
0

for some (A, Pr)-martingale W¥ = {W}};>0.
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3.3 Observable Dynamics
Given that the main goal of this section is to show that,
t A
Y, — / II, Hyds is an (O, P;)-martingale, (3.42)
0

it comes as no surprise that this section parallels the previous. We begin

with some new notation. Define the O;—adapted process X = {Xt}tZO via,

This notation complements our earlier definition of X; as E;[ X;| O, ]: the su-
perscribed accent indicating the O;-smoothing and its up/down directional-
ity reminding us that this smoothing is with respect to P, or Py, respectively,
a mnemonic suggested by the relative positions of these two measures in the
symbol for the Radon-Nikodym derivative Lo, as we defined it in Chapter 2.

The following proposition gives us a representation for L.

Proposition 3.3 The O;-adapted process L is given by,

5 t i,
Ltzexp{/o Hdes—%/OHfds} Vi>0.

Proof: The proof of this proposition is the analog of the proof of Proposition
3.1. With X redefined here as X := L~! e L we obtain by a similar argument
that,

Ly = exp{X, — —;—[X, X)¢}. (3.44)
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A slight modification to Proposition 2.6 will show that L= is a locally
bounded (O, Py)-progressive process; it is obvious that L is a (O, Po)-
martingale. Thus, from its definition we see that X is a (O, Fp)-local mar-
tingale with Xo = 0. From the Martingale Representation Theorem [W&H,

P6.7.3] we know that X can be expressed as,
t
X, = / £,.dY, Vi>0, Poas., (3.45)
0

for some O,~progressive process £ = {£;}:>0 satisfying [E€2ds < o0, Po-aus.,
for all ¢ > 0. Applying Girsanov’s Theorem [W&H, P6.7.2] we can conclude
that Y— < Y, X > is an (O, P1)-local martingale. Then by the uniqueness

of predictable compensators we obtain { = H, Py-as., since,
i,
¢ ——/ H,ds 1is an (O, P;)-martingale, (3.46)
0

where 3.46 follows by an easy application of the Projection Theorem [W&H
P7.1.3]. Therefore,

t i ¢,
Xt_—_/ 17 dl, =/ i, dy,, (3.47)
0 0
and finally,
v [N 2N
L= exp{/ i, dy, —1/ a2 ds), (3.48)
0 2 Jo
and the proof is complete. 0

Next, we prove the following lemma involving the Q* measure on ({2, O)

for any u in [0, co].
Lemma 3.2 For each u € R,
Y, - /Ot U, H,ds is an (O, Q*)-martingale,
where U denotes the deterministic indicator process U, := 1{u < t}.
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Proof: From Lemma 3.2 we know that,
¢
Y, — / U, H, ds is a (G;, @*)-martingale. (3.49)
0

Thus, a routine application of the Projection Theorem yields the result. O

This brings us to the following proposition which describes the dynamics
of Y on (2, O) with respect to the P, measure for any fixed = in [0, 1].
Proposition 3.4

t A
Y; —/ I, H,ds is an (Oy, Py)-martingale V= € [0,1].
0

Proof: For 0 < r <t and with O, in the role of G,, the same argument as

in the proof of Proposition 3.2 leads to the implication that,
AEW[I/TQ“WT\/OT]dP,, :/AW:da VAeU,\ O, (3.50)
where for the purposes of this proposition we define,
Wy ::Yt—/ot Y, A,ds V>0, (3.51)

and let W take on the role of W¥ in Proposition 3.2. Hence the analogous
conclusion is reached, i.e., W¥ is an (U Oy, Pr)-martingale. Using this
fact, the quite obvious fact that O is a sub—c-algebra of U,V O,, and the
Projection Theorem [W&H, P7.1.3] yields,

. t N
EWr |0, = Yt—/OE,r[TsIOS]HSds
t N
- Y;—/ 10, A, ds, (3.52)
0
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for all t > 0. Using this result and two applications of the smoothing property

of conditional expectation we compute,

t N ~
BV~ [ Hds|0) = BABIV0]0,)

= Evr[ th l Or]
= E,[EW[W;’ ‘z’{r\/or] | O ]
= EW[W:)|OT]
- v - / 10, f, ds, (3.53)
0
and we see that our claim is indeed true. O

Let’s take this opportunity to summarize the results of this section and
the last. We have given two models for the total dynamics of an observable

process Y under two different probability measures:
Y: is a (Gi, Po)-Wiener martingale, (3.54)

and,

t
Y, — / H,ds is a (G, P1)~-Wiener martingale. (3.55)
0

We interpret each measure as modeling a distinct mode of operation of some
underlying dynamical system on (£, G) which we observe through Y. Under
Py the hidden dynamics are modeled as merely a Brownian motion and they
influence the observations directly. Under P, the hidden dynamics are mod-
eled via H = {Ht}tzo and these dynamics influence the observations through
the typical ‘signal plus noise’ set-up. The Gi—progressive, O;-partially ob-
servable dynamics themselves, H, may arise according to any number of
models, for instance, a memoryless nonlinear transformation of a process

with a linear stochastic differential description.
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For all G in G note that Q°{G} = P,{G} while Q*{G} = F{G}. We
see that the transition measure Q* ‘links’ the two distinct modes of system
dynamics. Indeed, if the time of mode change were deterministic then {Q* :
0 < u < oo} provides us with a tool to answer questions concerning the (still
stochastic) behavior of the underlying system. However, we are interested in
problems where the overall system has observable dynamics which can change
at a random time v from say mode-0 modeled according 3.54 to mode-1, a
different mode in which the observable dynamics are properly modeled using
3.55 above. Moreover, in this problem we assume there is 7-probability
that the system is initially in mode-1 and (1 — 7w )-probability that the jump
time v is positive and distributed according to the Oi—conditional cumulative
distribution function F. On the probability space (2, A, P;) which we have
constructed to model this situation, the observable dynamics have a single

representation—they behave according to,
t
Y, —/ Y, Hsds is an (A, Pr)-martingale, (3.56)
0

which is the conclusion to Proposition 3.2.
To complete our summary, we note that we also have two models for the

projections of the dynamics of Y onto the observations under Fp and Pi:
Y; is an (O, Py)-Wiener martingale, (3.57)

and,

[N
Y, ——/ H,ds 1is an (O, P,)-Wiener martingale. (3.58)
0

Using these projections, in Proposition 3.4 we obtained the analogous par-

itally observable representation for the observation dynamics on (9, A, Pr)
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as,

i N
y — / II, H;ds is an (O, Pr)-martingale. (3.59)
0

This last martingale is the one we need to obtain explicit filtering results
involving the a posteriori probability. We take up this task in the section to
follow.

We end the current section with a result concerning an escape property
of the likelihood ratio process L = {L}QO which follows directly from the

condition (H1) imposed on the drift process at the outset of this chapter.

Proposition 3.5 Under assumption (H1),

P.{sup |logl;| =0} =0 Vn>1, Vr € L.
0<t<n

Proof: Fix = € 1. From Proposition 3.3 we know that the O,~adapted

process log L is given by,
v t o, 1 7t -
1oth=/ Hdes———/ H%ds Vt>0, (3.60)
0 2 Jo
so that computing under P, we obtain (see Proposition 3.4),

5 t 1 . t ..
llog L] = |/(Hs—§)Hfds-|—/ H, dW"|
0 0
t o, t o,
< |1/ i2as| +| [ B, W) (3.61)
2 Jo 0

Hence for all n > 1,

. no, t . —
P.{sup |log L;] = o0} < P,r{/ H?ds + sup | | H,dW,| = oo}
0<t<n 0

0<t<n JO
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¢t s TI7Y
= P.{sup | A H, dW | = oo}, (3.62)

0<t<n
where the last line follows a foritiori from (HI).

Applying Kolmogorov’s inequality we find that,

B [f b, W]’

2

LS TI7V
P.{ sup [/0 H,dW’| > m} < Vm>1, (3.63)

0<t<n m

while the Ité product rule and familiar localization arguments imply,
noa TT7Y 2 7 7V 7 Ti7Y e
E,,[/ Hdes] = B [H oW B oW} =B, [ Hlds.  (364)
0 0
Combining the last two expressions and employing (H1) again we obtain,

A, t_
P {sup | | HydW, =00} < Pi{sup || H,dW,=>m]}
0 0

0<t<n 0<t<n
n orr2
E, [2 H2ds

m?

Ym>1. (3.65)
Passing to the limit above and taking expression 3.62 into account yields,
P.{sup |logl=00}=0 Vn>1, (3.66)
0<t<n

and the proof is complete. a
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3.4 The Conditional Probability

Fix 7= € [0,1]. We conveniently collect some of our results so far to compute

a final, explicit representation for the projection of T, onto O;.

1. From 2.116 we see that the single-jump, binary point process T has the

(A, P;)-semimartingale representation,
t

'n:m+/u—rgu—mrwR+m Vit >0, Pras., (3.67)
0

with To an Ag-measurable binary random variable satisfying £, T =
7, with (1 — T,.) an As—predictable process, and with M an (A, Pr)-

martingale.
2. From Proposition 3.2 the observation process satisfies,
m:ﬂrkm@+vaqu%m. (3.68)
for H some G;—progressive process such that,
&Kﬂ@<mVQ& (3.69)

where WY denotes an (A;, Pr)-Wiener martingale. The bounding in

3.69 follows from assumption (HO) and expression 2.96.

We frame the filter for the projection of T; onto O, in the following

proposition.
Proposition 3.6 The filter for II; = E.[ Y| O] is given by,
¢ t N
I, = H0+/ (1 —1IL)(1 - F,)" dF, +/ M, (1 — L) A, dW"° |
0 0
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forallt >0, Pr—a.s., where W' is an (Oy, P,)-martingale; we recall that by
deﬁmtzon Ht = El[Htl Ot]

Proof: Applying a filtering theorem [W&H, P7.4.1] we obtain,
t t N
I, = EW[T0|OO]+/ E1=T, |0,](1=F,)™" dFs+/ o, dW"’  (3.70)
0 0

for all t > 0, Py—a.s., where W" is some (O, P;)-martingale and where & is

an Oy-progressive process given by
@, : = Er[¢:|O:) + ER[Ti( YTy H — ER[Y: H| Oy])] O4] Vt>0, (3.71)
for some A;—predictable process ¢ satisfying,
(M, W"), = /Ot dods  Vi>0, Pras. (3.72)

Let’s compute ® starting with E,[¢;|O;]. Recall that (M, W") denotes the
predictable compensator of [M,W?], the co-quadratic variation of MW",
Observe that the additive noise W¥ in the observation Y has no jumps and
thus it a fortiori has no jumps in common with M, the zero-mean martingale
driving T which has sample paths of locally finite variation, indeed, each a
single jump from zero to one. Therefore, [M,W"] = (M, W) = 0. Hence
we can take ¢ = 0 so that F,[¢:]O:] = 0.
Next, we use the fact that T2 = T and find,

EW[Tt(Tt Ht - EW[Tt Htl Ot])l Ot] - EW[Tt Htl Ot] (1 - Ht) (373)
As for E.[Y, H;| O], pick any O in O, and using expression 2.106 compute,
¢
BT 1o Hy] = 7Eilo Ht+(1—7r)E0/ /thQ“dFu
o Jo
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4
- FEl[loEl[Ht|Ot]]+(l—W)Eo/ /OLthdPIdFu
0
N t A
- wElloHt+(1—7r)E0//L;lthPldFu
0 JO

N t N
= wElloHt+(1—7r)E0//thQ“dFu
0 JO

= E.[Yi 1o H]

= E,[ll10 H)] (3.74)
and therefore,

EY H|O)=1LH  ¥Yt>0, Pras. (3.75)

Combining these results we obtain,

A

o, =11, (1 - II,) H; Vt>0, Pr-as. (3.76)
Next we observe,
E:1 =Y |0O)=1-1L=1-1I; Vt=>0, Pras., (3.77)
and finally,
E [To|Oo] = Pr{Yo =100} =y Pr-as. (3.78)

Collecting these results and plugging them into 3.70 yields the desired ex-

pression. 0

78



3.5 Prelude to Verification

Letting BC*(I) denote the class of all functions which are twice continuously

differentiable on I € T, as well as bounded there, define

BC*(Z.) = () BC*). (3.79)

IeTeo
An example of a function in this class is the mapping = — #? for = € [0, 1].
Using the filter for IT developed in the last section, we wish to compute the

expectation,

E.[r(IL;) — r(Ilo) ], (3.80)

for all 7 € T, and all mappings r € BC*(Z,,) in anticipation of applying the
Verification Theorem. The main result of this section rests on the next two

lemmas.

Lemma 3.3 Let 7 € Ty,. Then,

E,r/TH‘zlflfds<oo V1 € Lo
0

Proof: Fix m € 1, and 7 € Tyy; hence 7 < 7! Pr-a.s. for some I in 7, and
moreover 7 € T since T, C Toq C 7. Using the It6 stochastic integration
formula [W&H, P6.6.2] and Proposition 3.6 yields,

t ~ 1 ~
M2 = / (1—1IL,)2 12 A7 d3+2/ (1=TL,) I, (1— F,)"  dF,+ M, (3.81)
0 0
for all ¢ > 0, P,-a.s. where we have defined M= {Mt}tZO as,
. t N
M, = 2/ (1—10L,) 12 &, dW® ¥t>0. (3.82)
0
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We note that the integrand in the definition of the stochastic integral M is
an O,—progressive and locally bounded process while the integrator, W, is
an (O, Pr)-martingale. Hence, M is an (O, P;)-local martingale and there
exists an increasing sequence of Oi—stopping times, {fin}n>1, converging to
infinity Pr—a.s. and such that {Mt/\un}tzo is an (O, Py)-martingale. As a
result, we can employ a strong version of Doob’s Optional Sampling Theorem
[E, T4.12] to find,

E [Mp,]=0 VYn>1 (3.83)

In addition, the representation in 3.81 in fact holds for any 7 € 7, i.e., for
any Oystopping time which is Pr—a.s. finite [L&S1, p121]. Therefore we may

write,

2 m = TA”" _ . -1
II I = 2 I (1 — Fy)™ dF;

TAUnR

TApn
+/ (1—IL)2 T2 A2 ds + Mo, (3.84)
Taking expectations on both sides gives,

T/\n
E 12, —I] = 2E,r/ (=TT (1 = £,)7 dF,
0

TAUn

+ B, / VI A2 ds, (3.85)
and from this there follows,
TApn -
1> E, / )P TI2 A2 ds > (1 — sup[1]n)2E / 112 2 ds. (3.86)
0
As a result,

TAUn N
E,,/ ’ 12 H%ds < (1 = sup[I]n)~> < oo, (3.87)
0
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since sup[I]n < 1 as guaranteed by (E). Hence, applying the Monotone

Convergence Theorem yields,
E, / 12 /12 ds < (1 — sup[1]n)~2 < oo, (3.88)
0

and the lemma is shown. a
To simplify the notation in the next lemma, for each ¢ > 0 define the
O,—measurable linear stochastic differential operator Do, for all functions

r € C*(I) via,
Do, r(n) = % (1—m)?x?e"(x) H dt + (1 — 7)) r'(n) (1 — )" dFy (3.89)

Lemma 3.4 Let {0,} denote an increasing sequence of Oy—stopping limes

which converge to infinity Pr—a.s. and suppose that r € BC*(T,). Then,

TAOn T
E,/ Do, r(I1,) —> E,,/ Do,r(Tl) V7€ Tm, 7 € L.
0 0

Proof: Fix 7 € I and 7 in 7T,; hence 7 < 71 Pr-a.s. for some [ in Z.

Define,

t ~
X, = / (1 — I0,)? I2+"(11,) A2 ds, (3.90)
0
and
i
Z, = / (1 - 1IL,) ' (II,) (1 — F,) " dF, (3.91)
0
and note that,
t 1
/ Do, r(ll) =5 Xe+ % ¥t20, Pras. (3.92)
0
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We will show that Ex X no, — ExX; and E;Zp,, — ExZ;. Then, because

TACRn 1
E, / Do, T(IL) = 5 ExXonay + ErZoney  Pras, (3.93)
0

the theorem will follow. We rule out a trivial case: if 7 ¢ I then 7' =0, and
7 Ao, = 0 for all n > 1. Thus, both sides of the above expression are zero
for all n > 1 as are the limits.
Part 1.

Let 7 € I; define V := (1 — II)2I12 A2 r(I1) and note,

Xino, = /oo H{s<71A0,}Vids Pr-as. (3.94)
0

Since I € Z,, the condition (E) implies that [I]n is a proper subset of ..
From this and the fact that r € BC*(Z,) it follows that,

r(m) < Bf V=€ [l]nm, (3.95)

for some bound B} which is finite. From the definition of [I]y and the
assumption that 7 € [I]g we know that II; € [I], Pr-a.s., for all 7 in the

stochastic interval [0, 7!]. Then since 7 < 7!, Pr—a.s., we can conclude,
r"(Mopey) < Bf <00 Pr-as., Vn2>1. (3.96)
With this in mind note that

[H{s <7t Ao} V| < s <7}V

< Ys<7}B{ILAL, (3.97)
and also,
/ 1{s <7} B/ H?ds = B} /T M2H%ds < o0 Pr-as., (3.98)
0 0
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where the last bound follows a fortiori from Lemma 3.3. Thus, 3.97 and
3.98 taken together imply that the O,—progressive process { 1{t < 7}V, }:>0
is P,—a.s. Lebesgue integrable on [0,00]. Hence, employing the Lebesgue

Dominated Convergence Theorem with respect to Lebesgue measure we have,
/ Hs<7tAon}Vids — / 1{s <7} Vids Pr-as. (3.99)
0 0
We can also express this as,
TAORn T
/ Vs ds —>/ Vsds Pr—a.s. (3.100)
0 0

Likewise,

TAORp T
1/ V,ds| < / 1V,|ds Py as., (3.101)
0 0
and similarly Lemma 3.3 yields,
EW/TIK|ds§Bf'E,,/TH§ﬁ3ds<oo. (3.102)
0 0

Employing the Lebesgue Dominated Convergence Theorem now with respect

to the Pr—-measure gives,
TATn T
E/ V, ds — E/ V, ds, (3.103)
0 0

and we conclude,

ErXrnon — ExXo. (3.104)

This gives us the first half of what we want for all 7 € 7,,, and 7 € [0, 1].
Part 2.
Let w € I; redefine V := (1 — II) r(IT) (1 — F)~! and note,

ZT/\O‘n :/oo I{SSTAGn}V?dFS P‘,r—aus- (3105)
0
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Arguing as in Part 1 for the second derivative we conclude here for the first

derivative that,
r'(Urpen) < By P—as., Vn>1. (3.106)
for some bound B{ which is finite. With this in mind we obtain,
E, /0 V,dF, < Bl E, /OT(I _F)'dF, < oo Pr-as, (3.107)

where the finiteness follows from technical assumption (F) together with
expression 2.96 and the fact that PZ = PP. Continuing the analog of the

argument in Part 1 yields,
TNAOn T
/ V. dF, —s / V.dF, P.-as., (3.108)
0 0
and then an appeal to the Lebesgue Dominated Convergence Theorem gives,

TNAOn T
E/ V. dF, —» E/ V, dF,, (3.109)
0 0

and we conclude,

ExZrng, — Ex.. (3.110)

Combining the results of Part 1 and Part 2 in the obvious way proves the
lemma. O

We have the following proposition.

Proposition 3.7 Let r € BC*(Z.,). Then,

EL[r(T,) = r(Ily)] = E, /0 Do,r(ll,) V7€ T, 7 € L.
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Proof: Fix © € 1. For r € BC*(Z,,) the 1td formula yields a fortiori,

t

r(11,) — (L) :/ r(11,) dI1, +%/Ot #(T1,) d[11, I1],, (3.111)

0
for all t > 0, P,~a.s. Using Proposition 3.6 we compute the quadratic varia-

tion,
¢ ) TI7V Y FTFV
(IL,T, = /(1 C L)L, A, AW, (1 — T 1A « T,
0
¢ % TI7V TV
- /(1—Hs)2Hfod[W sl
0
t ~
- /(1 CTL)I2A%ds Vit>0, Pas., (3.112)
0
and the stochastic differential,
dll, = (1 — IL,)(1 — )"V dF, + 10, (1 - IL,) f, dW;. (3.113)
Substituting 3.112 and 3.113 into 3.111 we obtain,

r(IL) — r(Tly) = /(:(1 _IL) (1= F) /(IL) dF,
+/t(1 — L) T, A, r(IL) dW

0
1 g ,
+§/ (1= TL,)2 112 2 +(11,) ds,  (3.114)
0

for all t > 0, Py—a.s. With the (O, P;)-local martingale M = {]\%},ZO
defined here as,

~ 3 N ___
i, ::/(1-113) I, 1, #'(IL) dW’ V>0, (3.115)
0

and using the definition of Dp, given in 3.89 we can rewrite 3.114 more

compactly as,
t .
r(IT,) — r(Io) :/ Do, r(Il,) + M, Vt>0, Pras. (3.116)
0
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From Lemma 3.4 we obtain,

lim Ex[r(Tins,) — r(o)] = Ex /O Do, r(11,), (3.117)

n—aco

where again {u,}n>1 denotes a localization sequence for M. Since 7 € T,

there exists I C I such that 7 < 71, P,—a.s. and so,
| r(opp,) | < Jr(I1;) | € B < oo, (3.118)

for some bound B; known to exist since r € BC(Iw) a fortiori. Finally,
employing the Bounded Convergence theorem and an argument paralleling

the one used in Lemma 2.1 yields,
Jim B[ (TTo,)] = Eolr(T1)], (3.119)

and we get what we want in 3.117 on the left-hand side. O
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3.6 Sequential Detection

In this section we will formulate a classical Bayesian sequential binary hy-
pothesis testing or sequential detection problem on the drift of an observed
diffusion-type stochastic process. We will show how it can be recast as a
change detection problem within our framework and then tackled via the
Verification Theorem. Recast in this way, the classical problem of sequen-
tial detection is given a fresh interpretation as a problem of lack-of-change
detection. The Verification Theorem will lead us to consider a type of free-
boundary value or Stefan problem whose solution is addressed using tech-
niques from ODE theory and convex analysis. We will end the section with

an example involving a diffusion with constant drift.

3.6.1 Problem Statement

On a measurable space (Q,G) equipped with two mutually absolutely con-
tinuous probability measures Py and P; we observe a stochastic process
Y = {Y:}:s>0 for which one of the following hypotheses 1s true:
(Noise Only): Y, =W, 0 <t < oo;
(Signal Plus Noise) : Y; = /Ot H,ds + W, 0<t< oo,
where W is a (G;, P;)-standard Wiener martingale for ¢ = 0, 1, and H =
{H,}:50 is a Gi—progressive process satisfying,

t
Ei/ Hds<oo Vt>0,i=0,1. (3.120)
0

Following the Bayesian philosophy, we are told in advance that the (Signal
Plus Noise) hypothesis occurs with prior probability = € [0,1]. We are tasked
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with deciding in a sequential manner which hypothesis is indeed responsible
for what is observed. Decision policies are defined as a pair, (7,6), where
T is a stopping time with respect to the Po—completed observation filtration
O = V<t 0(Y;) and § is a binary random variable representing our decision
and therefore measurable with respect to O,. We are told that the goodness
of any sequential decision policy, (7, ), is judged according to the following

‘elapsed-energy + incorrect decision’ cost criterion,
LR
pr(7,6) = 7rE1[/ cH?ds + P 1{6 =0}]
0
T A
+(1— W)EO[/ cHlds+1{5=1}], (3.121)
0
where ¢, ®, and ¢! are strictly positive and finite. We are asked to minimize

px(7,8) over all decision pairs. We are told to restrict our attention to those

Ostopping times which satisfy,
E,-/ A2ds < oo, i=0,1, (3.122)
0

and in addition we are given the following technical condition on the running

cost:

Pi{/oofffds:oo}zl, i=0,1. (3.123)
0

3.6.2 Problem Reformulation

We now show how the sequential detection problem can be recast as a prob-
lem of change detection on the probability space (2, A, Pr) with = the same
prior as in the previous subsection. Drawing freely upon our earlier results

and notation, the first step is to notice that the (Noise Only) and (Signal Plus
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Noise) hypotheses are captured by the model dynamics (DM0) and (DM1),
respectively. A little consideration shows that the sequential aspect of se-
quential detection can be recovered within the change detection format by
properly specifying the random disruption time v previously characterized
only up to the nature of F' = {F;};»0, its O;—adapted, conditional cumulative
distribution function with respect to the Py—measure. To this end make the

following sequential detection modeling assumption:
(Fsp) : Fy:=1{t = 00} Vte[0,00].

We see that F is a legitimate O;~adapted, conditional cumulative distribu-
tion function on [0,00] = R4 U {oo} satisfying the requirements set down
in Chapter 2: Fy = 0, F is an increasing function on [0, 00} which is deter-
ministic and therefore trivially O;~adapted, F, = 1, and lastly, F' satisfies

condition (F). Under assumption (Fgp) we have therefore,

and Pp{v = oo} = 1. With this choice of F, the Py-measure gives all its
probability to the event { v = oo }; the Pi—measure of course still gives all its
probability to the event {v = 0}. An immediate consequence of this is that

the P-measure defined in 2.97 is precisely the Py—measure and as a result

the P,-measure simplifies to,

P {A} = mP{A}+ (1 —x)P{A}
= 7P {A}+ (1 —7) F{A}, (3.125)

for all 7 in [0,1] and A in A. From this we see,
P{0<v<oo)=1P{0<v<oo}+(1—7)P{0<v < oo} =0, (3.126)
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or, what is equivalent Pr{v=0}=mand P,{v =00} =1~7.
The (Fsp) assumption also has the consequence of simplifying the semi-

martingale representation for T which is obviously now reduced to T¢ = To,
P,-a.s., for all t > 0. Using this fact we have E E(T,,6) = E.E(Yo,6) for

all 7 in 7,4 an 7. From this we compute,

E,£(T,,8) = E.&(To,6)
= 7 EE(Yo,6) + (1 — ) Eo€(Yo,6)
= 7 FE(1,8)+ (1 — ) EE(0,6)
= 7E[P1{§=0}-140]+(1—m)E[0+c 1{§ =1} 1]
= 7E[1{6 =0}]+ (1 —7) Eo[c' 1{6 = 1}]. (3.127)

Next, we choose the running cost C according to,
Coi=cH? Vit>0, (3.128)

and note that C satisfies the cost assumptions (C1), (C2) and (C3): (C1)
and (C2) follow directly from (H1), (H2) and 3.125 while (C3) follows since

C is trivially concave in II. Now compute Bayes’ cost,

pa(7,8) = E,r[/()TCsds—}-S(TT,(S)]
= ® B[ [ C.ds+E(To,6)]
+(1 —w)Eo[/OTCsds—}—é’(To,(S)]
_ wEl[/()Tcﬁfds+c°1{6=O}]
+(1—7r)E0[/OTcI:Is2ds+cll{6:1}]
= pg(1,6). (3.129)
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Hence, this choice of running cost and assumption (Fsp) reduce the
change detection problem as defined in Chapter 2 to a classical Bayes sequen-
tial detection problem. Indeed, when viewed as a change detection problem,
a sequential detection problem is seen to be the extremal case: the lack-
of-change change detection problem. We can therefore solve the sequential
detection problem by solving the optimal stopping problem (7P) of Chapter 2
under the conditions prevailing in the current section. The plan of course is
to solve the optimal stopping problem using a first exit policy found by re-
course to the Verification Theorem. We end this subsection with a convenient
and complete reformulation of the sequential detection problem, taking into
account the nature of the observations, the sequential detection assumption,
and the choice of running cost.

On the probability space (Q, 4, P;) with = € [0,1] given, choose F; =
1{v = oo} so that the jump time v obeys,

Piv=0}=7=1—- P {v=o00}. (3.130)

Since T; = 1{v < t} we note that T, = Yq for all t > 0, Pr-a.s. Thus, there
exist only two possible sample paths upon which Py is concentrated. The

observations are given by,
i
Y, =/ Y, Hyds + WP ¥t>0, (3.131)
0

where the drift H satisfies 3.120, 3.122 and 3.123 in view of the technical
assumptions (HO), (H1), and (H2) imposed in the last section. Due to the

essentially two-valued nature of v we see that,

t
Y, = To/ H,ds+ W Yt>0, (3.132)
0
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Figure 3.1: Terminal cost function. ¢® = ¢! =3 — 1 + 2log 3, 7. = 3.

and therefore,
W 0<t<v=oo; (Noise Only)
Y, = (3.133)
/ "H,ds+W? 0=uv<t<oo. (Signal PlusNoise)

Hence, choosing F' as in (Fsp) captures the classical sequential detection

set-up within the change detection set-up. Bayes’ cost is taken to be,
on(r) = E,r[/or cH? ds + (11,)], (3.134)
with ¢ > 0 and where the terminal cost, e, is given by,
e(r) = min{c’r, ' (1 — )} V= el0,1], (3.135)

with 0 < ¢, ¢! < oo (see Figure 3.1). For this choice of running cost an

admissible stopping time 7 is any O,—stopping time satisfying,

E,,/ Csds = E, /T cH?ds < co. (3.136)
0 0
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Thus, the change detection problem to solve which is equivalent to the se-

quential detection problem is,

(Psp): Find 7, € Toq such that p.(7.) = inf px(7). (3.137)

T€T5q

3.6.3 Escape Properties

The next question to answer is whether problem (Psp) is sufficiently well-
posed that the escape condition (E) is satisfied and then which of (E*) or
(E®) holds. We note that (Fsp) implies that dF; = 0 for all ¢ > 0, P.-a.s., so
that T = Y, and the stochastic differential description of the sample paths
of TI reduces to,

I, = Ilo + /Ot I, (1 - 11,) A, dW". (3.138)
In the Proposition below we show that condition (H2) implies that (I5*)
holds so that T,, = Z% and I, = (0,1) and thus the trajectories of II are

guaranteed to escape any proper subinterval of (0, 1).

Proposition 3.8 Under assumption (H2) the escape condition (E¥) holds,
i.e., given

Pi{/oooﬁfdszoo} -1 =01,
then,

P{rt<oo}=1 Vrel VIeI™.

Proof: Choose any Iin Z% so that I = (a,b) with 0 < @ < b < 1 and suppose

7 € 1. From the It product formula and 3.138 we obtain,

¢ . T U
- =2 [0 (1 1) A, dW 4+ (0T (3.139)
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and we see that the first term on the right is an (O, Pr)-local martingale

with a localization sequence, say {gn}n>1. Using by now familiar arguments

we obtain,
TIA R ~
Ef[1l%,, — T3] = E, [T, Mnu, = Ex / 12 (1 —I1,)? A2 ds. (3.140)
0
Obviously,
EL 12, —I5] < 1. (3.141)

Moreover, since 7 is in I = (a, b) we know that Il ia,, is in [I]n, Pr-a.s., and

therefore,
Ex /OTM“" M2 (1 - IL,)? A%ds > a® (1 — b)*E, /OTIA“" A2ds.  (3.142)
Combining these results yields,
E, /TW" s < = < 0. (3.143)
0 a?(1—1b)?

Using additional familiar arguments we pass to the limit and obtain,

1

Tl
x g2 s < ———— 14
E/o Hss_a2(1-b)2<oo, (3.144)
and thus,
T, [ TN
00 > E/ B2ds > E,[1{r' = oo}/ A2 ds). (3.145)
0 0

This last line yields a contradiction unless P,{r! = oo} = 0 because it is
obvious from (H2) that Pr{ [5° H?ds =00} =1for all 7in L. O
Motivated by this proposition we are justified in searching for I, € I% so

that if we write I, = (a.,b.) then 0 < a, < b, < 1 and moreover, in view
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of Lemma 2.4, we can expect that a, < 7. < b.. Before embarking on our
search for I, however, we consider one more result which is companion to the
last. Indeed, while the last proposition shows (H2) implies that the II process
is guaranteed to escape any interval in Z, in the following proposition we

will show (H1) guarantees that II can only escape L, = (0,1) in infinite time.

Proposition 3.9 Under assumption (H1),

P {rl* =0} =1 V7€ lw.

Proof: TFix r € [, = (0,1). From Proposition 3.5 we have
P.{sup |logli| =00} =0 Vn>1, Vre L. (3.146)
0<t<n

This fact is sufficient to imply that P,{r!* < oo} = 0. Employing the Ité

stochastic integration formula one can show for all = € (0,1) that (see [MS,

App 1)),

. 1—7 1II
L= S —— 3.147
 1-1I ( )
From this it is obvious that,
1 1 .
{1 — §| = 5} = {|log L1 | = o0}, (3.148)
and therefore,
{r < 00} C {|log L1 | = 00}. (3.149)
Hence,
P ' < o0} = P{|log 1| = 00,7 < co}
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P{]log L1 | = 00,Up>1 7 < m}

< ST P{|log Lyt | = 00, 7' < n}
n=1
< ZP { sup llog Ly| = 0o, 7' < n}
n=1
< 3 P{sup Jlog il = oo}
n=1
= 7&1_{%0 i 0 =0, (3.150)
n=1
i.e., Il has no chance of escaping from I, = (0,1) in finite time. O

3.6.4 Verification: A Stefan Problem

For easy reference, we state the verification conditions (V1)-(V4) for problem
(Psp) given in the previous subsection with I, = (0,1), Zoo = I%, and

I, € T*. We also incorporate the proposed running cost given in 3.128:

(Vla): Forallt € Ty,
B fr(L,) = ()] > —E, / cH?ds Vre[L)m

(VID): By () — ()] = —E, / cl?ds Vre[Lln;

(V2): re(m) = e(r) Vr € dnl.;

(V3): re(m) < e(m) V7 & Onls;
and,

(V4) : r, is bounded and continuous on [L]n.

Let us attempt to find r € C%(0, 1), an attempt facilitated by the availabil-
ity of the It6 stochastic integration formula for twice smooth functions and

suggested by the fact that C2(0,1) = BC*(I*) as is easy to show. Taking the
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detection assumption (Fgp) into account, the O;—measurable linear stochas-
tic differential operator Do, defined in 3.89 for all mappings » € C*(0,1)
simplifies to,

1 A
Do, r(7) = 3 (1 —m)2x? HE r'"(7) dt. (3.151)

With this in mind, define the deterministic linear differential operator D

via
1
Dpr(r):= 2 (1 —7)2x%" (), (3.152)
so that Proposition 3.7 states,
Ey[r(I1,) — r(Ilo)] = Ex / "H? Dur(Ily)ds V1 € T, (3.153)
0
Hence, we can rewrite (V1a) as,
E,r/T H? Dy r.(Il,) ds > E, /Tﬁf(—c) ds V7€ T, (3.154)
0 0
and (V1b) as,
- e
E,,/ A2 Dy ro(11,) ds = E,/ B2 (~c) ds. (3.155)
0 0

Thus, to arrange for (V1) it is sufficient that r, satisfy,
Dnprr)=—-c Vre(0,1), (3.156)

since this will give both (V1b) and (V1a) (with equality). As for conditions
(V2)-(V4) we need to compute drl,. We know that since L. satisfies the
escape condition (E) with respect to II then di L. # 0. In this case then,
because the sample paths of the martingale II are Pr—a.s. continuous we see

that dn I, = 91, = {a., b.}, and moreover, [L |n = [a., b.]. Let’s restate the
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verification conditions with these changes. Thus, we seek r, € C*(0,1) and

I. € Tt such that,

(S1): D r.(n) = —c Ve (0,1);
(S2) : Te(T) = e(m) Ve {a.,b};
(S3) : r(m) < e(m) V7 & {ax, bu};
(S4): r. is bounded and continuous on [a.,b.].

Conditions (S1) and (S2) give us a free-boundary-value problem, a so-called
Stefan problem. The functional constraint (S3) serves to uniquely determine
a solution amongst all the solutions to (S1)—(S2). In the next subsection we
will show that (S1)-(S3) has a unique solution pair (r.,l.) which satisfies
(S4) and therefore an appeal to the Verification Theorem will imply that
71+ € T solves problem (Psp).

3.6.5 Convexity Analysis of the Stefan Problem

We now proceed to solve the problem posed by (S1)-(S3). From 3.152 we
know that Dy r for r € C%(0,1) is given by,

Dur(r) = %nl’ (1= )2 (x) Ve (0,1). (3.157)

Fix any a, b € (0,1) satisfying 0 < a < 7, < b < 1 and a < b, define
I = (a,b), and consider the following ODE for r € C?(0,1),

1
572(1—7r)2r"(7r) = —c Vwe(0,1)

r(a) = e(a);
r(b) = e(b). (3.158)



Figure 3.2: Graph of e and r, with I = (%,1—90), c=1.

We emphasize that the choice of a and b satisfying 0 < a < 7. < b < 1 is
motivated by Lemma 2.4. The connection between the above ODE and (S1)-
(S2) should be clear. Under the assumption that ¢, ¢°, and c! are positive
and finite, by elementary ODE theory we know that a unique, nontrivial
solution to (S1)-(S2) exists; call it r,, with r, € C?(0,1) (see Figure 3.2).
From 3.158 it is clear that v’ < 0 and so r; is (strictly) concave. Define
the auxiliary function, s, := r, — e (see Figure 3.3).  Let S denote the
hypograph of s, and let S = Co(S), its convex hull. Since we have assumed
that ¢® and ¢! are positive and finite we see that there is always a ‘kink’ in
s, at m, € (0,1). Therefore S\S # @; in particular we can always choose
that point z. € d(5\S) with m—coordinate m,. Construct the hyperplane
at z, supported by S (see Figure 3.4). Let £, : [0,1] — R denote the line
whose graph is this hyperplane. Since z. ¢ 95, there exist A € (0,1) and
Ty, Yo € 05, with z, < 7, and y. > 7, such that z, = Az, +(1—-A)y.. We have
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Figure 3.3: Graph of s, =7, —e.

Figure 3.4: Graph of £, “supported” by s;.
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Ty = (au,€u(as)), yu = (b, £u(by)) for some a,, b, with 0 < ax < 7e < b <1

for which s,(a.) = ¢i(a,) and s;(b.) = £.(b.). We note that,
L(r) 2 5(7) = n(m) —e(x)  V¥re 1]

and if we define,

then obviously,

Moreover,

ra) = rle)-L

and similarly,

Hence, (r., L) satisfies (S2). In addition note that,

DHT*(TF) = DHT‘X(‘IT) - Dng*(ﬂ') =—c—0= —C,

(3.159)

(3.160)

(3.161)

(3.162)

(3.163)

(3.164)

and therefore r, satisfies (S1) also. Moreover, in view of the strict concavity

of r,, it follows from the definition of r. that these are the only two points

for which the inequality in 3.161 is not strict, i.e.,

r.(x) < e(r) Vr {a.,b),

(3.165)

which gives (S3). Thus, r. as defined in 3.160 and L. : = (a.,b.) solves the

Stefan problem posed by (S1)-(S2) with the functional constraint (S3). The
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convexity analysis also shows that I. € Z%, i.e., L. is a proper subinterval of
I, = (0,1). As pointed out earlier, given (E) the fact that 1. is a proper
subinterval of I, implies that [, ] is also a proper subinterval of I,. Thus
(S4) follows automatically because r, € C*(0,1) implies a fortiori that r. €
BC([1.]n). In addition, the convexity analysis shows that a. < 7. < b..
It only remains to show that the running cost conditions are satisfied. We
consider this point and present the theorem for sequential detection in the

next subsection.

Lo

Figure 3.5: Graph of e and r, with a. =}, b, =
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3.6.6 Main Result

For ease of reference, we redisplay the technical conditions involving the drift

process and its Py—projection onto the observations:

t
(HO): Ei/ H?ds < oo Vi>0, i=0,1;
0
(H1): Ei/ 2 ds < o VreT, i=0,1;
0
(H2): P,{/ Hds=00} =1 i=0,1.
0

We have come to the main result of this section.

Theorem 3.1 Assume that the conditions (H0), (H1),and (H2) hold. In the

problem of sequential detection based on observations of the process,

Wi t>0 if v=o0;
Y, = t

/Hsds+Wt £>0 if v=0,

6]

with average running cost,
E,r/OTCSdS = E,r/OTcI:Is?ds ¢ >0,
and average decision cost,
EE(Y,8)]=E["(1=8)T,+6(1—=71,)]

with 0 < °, ¢! < oo, there exist a,,b, unique with 0 < a, < 7, < b, < 1,
such that the first exit policy (7', 6.) based on the continuation interval 1. =

(@, bs) achieves Bayes’ optimal cost, i.e.,

pr(t) = inf ps(r)  Vme[0,1],

T€Tqa
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where,
prlr) = Bol [ Cods 4 e(L)] V€ [0,1] and 7 € T
0

In addition, there exists r. € C?(0,1), the solution to (S1)-(S54) above, such

that
r(m) if €Ly
pr(TH) = ,
e(r) ifr ¢l
where,
e(r) = min{® =, c' (1 — m)}.
Proof:

In the previous subsection we solved the associated Stefan problem and
showed that there exists a pair (r., L) satisfying (S1)-(S3) for which the
conditions on the cost coefficients guarantee that 0 < a, < 7. < b, < 1.
Therefore we have in fact exhibited a pair (r.,1.), I. € I+ and r. € BC(TY),
which satisfy (V1)-(V3). Moreover, since I, € It we know that [I.]n =
[a,,b.] C (0,1) and therefore (ry,1.) also satisfies (V4) a fortiori in view of
the fact that r, € C%(0,1). Thus, we have found a pair satisfying (V1)~(V4).

To employ the Verification Theorem and therefore prove the theorem at
hand it remains only to show that (C1), (C2), and (C3) hold since (E) follows
from Proposition 3.8. With the above choice of running cost we see that (C1)

follows a fortiori from (H1) since,

E,,/TCsds :ﬂ'El/TCf{s?dS-}-(l—W)Eo/TcﬁzdS < 0. (3.166)
0 0 0
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Next, it is obvious that (C2) follows from (H2) since ¢ > 0 and thus,

Pﬂ{/oocsdszoo} = rPl{/oocﬁfds}+(1—W)PO{/Oochds}
0 0 0
= 7 1+(1-7)-1=1 (3.167)

Finally, condition (C3) follows since the running cost C is trivially concave in
II. Thus 7™ is the optimal stopping time for this problem and r, characterizes

Bayes’ cost. i

3.6.7 Example

We end this section of the chapter with a concrete example of a sequential
detection problem involving a diffusion with constant drift. We observe a
stochastic process Y = {Y;};>0 for which one of the following hypotheses 1s

true:

(Noise Only) : Y; = W, t>0;
(Signal Plus Noise) : Y; =t+ W, t>0,
where W is a (G;, P;)-standard Wiener martingale for 7 = 0, 1. It is given that
the (Signal Plus Noise) hypothesis occurs with prior probability = € [0, 1].
Define the Bayes’ cost,

pe(7,8) = Ey[cT + L 1{§ = 0}] + (1 — w) EoleT + ¢ 1{§ = 1}], (3.168)

where ¢, ¢®, and ¢! are strictly positive and finite. We are asked to minimize
px(T,6) over all decision pairs for which P;{7 < oo} =1forz=10,1.
We see that this is precisely the form we are equipped to handle as long

as we make the identification H = 1 for then our choice of running cost
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collapses down to

/TCSdS:/Tcﬁsdsz/Tcds:cr. (3.169)
0 0 0

We point out that each of (H0), (H1) and (H2) are trivially satisfied. Thus
we can apply Theorem 3.1 to deduce that an optimal first exit policy exists.
A formula for r, can be found in [S, C4] and [MS, C4]. One can solve for
the optimal interval I, using the convexity approach given here or see [S, C4]
and [MS, C4] for a system of equations to solve. In the symmetric case when
® = ¢! one can show that a, = 1 — b,; in the special symmetric case when

3 (see [MS,

A =c = (3—%+210g3)~c0ne can show that a. = % and b, = s

4
C4]). The graphs in this case for ¢ = 1 are depicted in Iigures 3.1 through
3.5. The graph of p, the Bayes’ optimal risk is given in Figure 3.6 along with
the worst case risk. Figure 3.6 neatly depicts the so-called smooth pasting
property of p and e as discussed in [S, MS]. The convexity analysis given

here provides an elegant alternative to this approach to finding the optimal

risk.
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Figure 3.6: Graph of terminal cost and Bayes’ optimal risk.
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3.7 Disruption

In this section we will formulate the Bayesian disruption problem on the
drift of an observed diffusion-type stochastic process. We will reformulate it
as a change detection problem and solve it by recourse to the Verification
Theorem. As in the last section this will lead us to consider a Stefan problem
with its solution addressed using techniques from ODE theory and convex
analysis. We will conclude the section with an example involving a system
which jumps from a zero-drift diffusion to a positive-drift diffusion with a

random jump time which is exponentially distributed.

3.7.1 Problem Statement

On a probability space (£, A, P;) we observe a stochastic process Y = {Y}:>0
for which,

W, 0<t<uv; (Noise Only)
Y, = (3.170)
t
/ H,ds+ W, 0<wv<t, (Signal Plus Noise)

where W is an (A;, Pr)-standard Wiener martingale, H = {H;};>0 is an

A;~progressive process satisfying,
t
E,r/ Hids <oco V>0, (3.171)
0

and v is an A;-stopping time for which P,{v = 0} = = for some number 7

in [0,1]. In the cases when 7 # 1, Pr{v > 0} > 0, and we are given that
P{v<t|FR}=F Vt>0, (3.172)
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where P{A} := P,{ A|v >0} and with F' = {F}};>0 modeled according to,
t o,
(D) ]%zl—wﬂ—/aﬂ&@»tzma>& (3.173)
0

This defines an O;—measurable conditional cumulative distribution function
for v under the P-measure; of course, O; is the P,—completed observation
filtration Oy = V¢, 0(Ys). We are tasked with guessing as time progresses
whether disruption has occured. A decision policy is defined as any FPr-a.s.
finite O;—stopping time 7. The goodness of any such stopping time is to be

judged according to the ‘elapsed energy excess + panic cost’ penalty criterion,
pr(7) = Brlmax{0, [ "¢ A2 ds}] + Po{r < v}, (3.174)

where ¢ is strictly positive. We are asked to minimize pr(7) over all Pr-a.s.

finite stopping times.

3.7.2 Problem Reformulation

Quite clearly, the distuption problem is the generic change detection problem

with observations,
1
m:/nm@+mfwzm (3.175)
0

and disruption time v having the conditional cumulative distribution function
F as defined in the previous subsection. Note that H, = E [H;|O;] and
P {A} = P,{Alv =0} if 7 <1 and Pi{A} = P,{A}if 7 =1{or all Ain A4
of course we assume that the technical conditions (H0)—-(H2) are in force. To

solve the disruption problem we need only account for the classic two-part
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cost given above within the cost structure for problems of change detection

as defined in Chapter 2. Choosing ¢® = oo and ¢! =1 gives us,

oo ifY,=1andé=0;
E(Y,,6) = (3.176)
1 ifY,=0anddé=1.
We see therefore that this choice of terminal decision cost forces us to choose

§ = 1 or accept infinite cost, thus,

E.£(T,,8) = E.&r,1)
= E [0+ 1{Y,=0}-1]
= E.[1-1{T, =1}]
= 1-E[P{Y,=1]0,}]
= E;[1 -1IL]
= E.[e(Il,)]. (3.177)

On the other hand, the panic cost satisfies

Pir<v} = 1-P{v<1}
= 1-E:[7T/]
= 1— E:[E[Y,]O]]
= B[l -1
= E.[e(Il,)]. (3.178)

0 = 0o and ¢! = 1 capture the panic cost model within

Hence, the choices ¢
the Bayes’ terminal cost set-up. Next we consider the running cost portion
of the penalty criterion for P,—a.s. finite Oy—stopping times 7 € 7. We

compute,

B lmax(0, [ ef?ds)] = Eil1v<r} [ efids]

v
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= E,r[/fcl{vgs}fffds]
- E,r[/TcTsﬁfds]. (3.179)

With the intention of simplifying this last expression define X = {X;}:>0
via,

t A
X, = E,,[/O (T, — L) A2ds|O,] Vt>0. (3.180)

Compute with t > 0 and r < ¢,

t N
B (X |0,] = E,r[/o (T, = IL,) 12 ds | O, ]
t N
- XT+EW[/(T5—HS)Hst|(’)T]
¢ " .
- X,+/ E (T, — IL,) A2 O,]ds,  (3.181)

where the last line follows from a routine Fubini argument. Next observe,
EA[(T, L) H2| O, ] = E.[ E[(T, —1L,)|O,] H}|O;] =0,  (3.182)
for all s > r > 0. Therefore,
E.[X:|0,]=X, 0<r<t, (3.183)

or in words, X is an (O, P;)-martingale. From this it follows using the

strong form of Doob’s Optional Sampling Theorem [E, T4.12] that,
E. X, = E;[X;| O] = Xo =0. (3.184)
We conclude,

E, / Y, {2 ds = E, / M, H2ds VreT. (3.185)
0 0
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With this computation in hand we see that if we choose the nonnegative

running cost C according to,
Co:=cll, H? Vt>0,¢>0. (3.186)
then taking 3.185 and 3.178 into account Bayes’ cost is given by,

pn(r,6) = E,r[/OTCsds-l—S(T,,(S)]
_ E,r[/OTcHSIA{st+E(TT,1)]
- E,,[/OTcTsf{fds—i—e(HT)]
- E,r[max{o,[cﬁz ds}]+ Po{r < v)
= pa(7). (3.187)

Hence, our choices of running cost and terminal cost together with as-
sumption (D) yield a classical disruption problem involving the drift of a
generalized diffusion. To solve this disruption problem it is therefore suf-
ficient to solve the optimal stopping problem (P) of Chapter 2 under the
conditions prevailing in the current section. Again, the plan is the same as
in the sequential detection case: employ the Verification Theorem to charac-
terize the associated Stefan problem and then solve the Stefan problem via
ODE theory and a similar convexity analysis. Bayes’ cost for the disruption

problem is,

pa(7) = Ew[/of eI, B2 ds + e(11,)], (3.188)

with ¢ > 0 and with the terminal cost given by,
e(r) = min{c’7,c' (1 — 7)} = min{oo,1 — 7} =1 —, (3.189)
for all 7 in [0,1] as shown in Figure 3.7. For the choice of running cost C

112



Figure 3.7: Terminal “panic” cost. ¢® = o0, ¢! =1, 7, = 0.

made in 3.186, condition (C1) translates to: 7 admissible is any O,~stopping

time satisfying,
E, /Tcs ds = E, /Tcns i ds < 0. (3.190)
0 0

To summarize, the change detection problem to solve equivalent to the dis-

ruption problem is:

Po: Find 7, € 7,4 such that p.(7.) = inf p.(7). (3.191)

ad

3.7.3 Escape Properties

The next question to answer is whether problem (Pp) is sufficiently well-
posed that the escape condition (E) is satisfied and then which of (E*) or
(E°) holds. We note that (Fp) implies that the stochastic differential dF" is

113



given by,
dF, :exp{——/()taf]fds}aﬁf dt = (1 - F)a A2 dt. (3.192)
From this it follows that,
(1= F) ™" dF, = o H dt, (3.193)
and this specializes the semimartingale representation for T to,
Te= Yo+ /Ota(l —Y,)H?ds + M; ¥t>0, Pras. (3.194)
The filter for II similarly reduces to,
0, = Mo + /Ota(l ~TL,) 2 ds + /Ot M, (1 —T,) A, dW°.  (3.195)

In the Proposition below we show that in this case condition (H2) implies that
(E°) holds so that Zo, = Z° and I, = [0,1), and therefore the trajectories of
IT are guaranteed to escape any subinterval of [0,1) possessing a right-hand

endpoint which is strictly less than one.

Proposition 3.10 Under assumption (H2) the escape condition (E°) holds,
i.e., given

P,-{/ooﬁfjdszoo}:1 i=0,1,
0

then,
Pl < o0} =1 Vrel VieI®
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Proof: Choose any Iin Z° so that I = [0,b) with 0 < b < 1 and suppose
7 € I. From 3.195 we obtain,

t A~ pS—
I, — Ilp = a/ (1—IL,) (2 ds + ., (3.196)

0

where M is an (O, Pr)-local martingale with a localization sequence, say

{#n}n>1. Using by now familiar arguments we obtain,
TIApn ~
Er[Tin,, — o] = aE,r/ (1—11,) 2 ds. (3.197)
0

Obviously,
Er[TLin,, — o] < 1. (3.198)

Because 7 € (0, ), we know that Il;ia,, < b, Pr-a.s., and thus,

TIApn ~ TIApn L
E/ (1—1I0L,) H%ds > (1 - b)E,r/ 02 ds. (3.199)
0 0
Combining these results yields,
g [ ids < 27 3.200
: < . 2
(=D (3:200)

Using additional familiar arguments we pass to the limit and obtain,

-1

T, o
B, ["itds< . 201
| Hids< a=0) < o0 (3.201)
and so,
4 S o L
0 > E,r/ B2ds > E,[1{r = oo}/ A ds). (3.202)
0 0
This last line yields a contradiction unless P.{r! = oo} = 0 since it is

obvious from (H2) that P.{ [~ H2ds = 0o} =1 for all 7 in I. If we now
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define 7, := inf{t > 0 : II; > b} it is easy to see that the same argument
works to show that P{r, < oo} = 1. Hence we conclude that II exits I € 7°
only to the right, P;—-a.s. for all 7 in I. O

Motivated by this proposition we are justified in searching for L. € Z° so
that if we write I, = [0,b,) then 0 < b, < 1. Note how this is in harmony
with Lemma 2.4 since 0 = a, < 7. = 0 < b,. Before embarking on our
search for I, we consider one more result which is companion to the last.
Indeed, while the last proposition shows (H2) implies that the 1I process is
guaranteed to escape any interval in Z, in the following proposition we will

show (1) guarantees that II can only escape I, = [0,1) in infinite time.

Proposition 3.11 Under assumption (H1),

Pﬂ»{TI“’ =0} =1 Vrel,.

Proof: Fix 7 € I, =[0,1). With ¢t > 0 and O € O; we have,

/OthPW - /OP,,{vgtK’)t}dP,,:E,r[l{vgt}lo]
- 7rP1{O}+(1—W)Eo/OtQ“{O}dFu, (3.203)

where the last line follows from 2.106. Working on the integral in the second

term of 3.203 gives,

Eo/ot Q“{O}dF, = E"/ot/oﬁ: dPy dF,

t dQ" o
= d t
E‘O/O /oEO[dPo |(9t] PO dF,
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t dO*
_ EO// Eo[d?? |Ot} dF, dPC
0

_ // EoldQumt] dF, dPy, (3.204)

where the second to last line follows from Fubini’s Theorem. Also we see

that,
dP
P{0}= /O [ ! |Ot} dP,. (3.205)
By previous results we can write,
. [ dP,
L= > .
Eq _dP0|Ot] t>0, (3.206)
and
. s [ dO*
| dP%

Hence combining expressions 3.203 through 3.207 yields,

[ (oo [ L Lar) 2

/OthP,r _ /O<7rLt-|—(1 n) [ B Lidp, o P
_ /(WL +(1—7r)/tL‘1LdF)E o o,| ap

- o t o u t u ™ dP,r 11 ™
(WLt-I—(l—-W)f(fL'l LtdFu)

- /O AR dPr,

(3.208)

where the simplification in the last line results from using Bayes’ Formula

(B, VI.3.L5] which lets us write,

dPp dp, -
E, [EE | Ot} = (E l ]) Pr—as. (3.209)

It is straightforward to show,

dP,
Eo S R /L LidF, + (1 — ) Pe{t < v}, (3.210)
Py
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and we conclude for all O € O, that,

. —1

/thpr:/ _ 7TLt+(1 W)fo L.dF, P,

o) O7rLt+(1—7r)f0L 1].dF, +(1—7T)P{t<v}
(3.211)

and therefore,

7rLt+(1—7r)f0 1LtdF

I, = —
T r Lo+ (1 —m) LI L dF, 4+ (1 — 7) P{t < v}

Pr-as. (3.212)

From this it is clear that,

1
(M = 51 = 5} = {]10g Lyie| = 00}, (3.213)

DN | =

because P,{t < v} > 0 for all t > 0, and therefore,
{r'> < 00} C {|log L1 | = 00}. (3.214)
Hence,

P {m" < o} P{|log L1eo| = 00, 7> < 00}

Po{|10g L1ee | = 00,Up>17™ < n}

< > Pr{|log L11e| = 00,71 < n}
n—l
< ZP { sup |log L;| = oo, 7' < n}
n—'l
< ZP {Osgp |log L] = oo}
n=1 <n
= lim Z 0=0, (3.215)
n=1

where the last equality follows from Proposition 3.5. Thus, II has no chance

of escaping from I, = [0,1) in finite time. O
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3.7.4 Verification: A Stefan Problem

For ease of reference, we state the verification conditions (V1)-(V4) for prob-
lem (Pp) given in the previous subsection with I, = [0,1), Zoo = Z°, and

I. € I° We also incorporate the proposed running cost given in 3.186:

(Vla): Forall T € Ty,
Efr (L) — ()] > —Es / cll, A2ds Ve [L]n;

(VIb):  Bifr(ll) = ()] = —E, / eIl A% ds ¥r € [Ln;

(V2): re(T) = e(m) Vr € onls;

(V3) : ro(T) < e(m) V7 & dnl.;
and,

(V4) : r, is bounded and continuous on [L ]n.

As in the sequential detection case we confine our search for r. to BC*(Z°)
and it is not too difficult to see that BC*(Z°) = C?[0,1), a subset of C*(0,1).
Taking the disruption assumption (Fp) into account, the O;-measurable
linear stochastic differential operator Dp, defined in 3.89 for all mappings
r € C*(0,1) simplifies to,

1

Do,r(r) = a(l-m)r'(r)(1-F)"dF+5(1—n)'x’ HE " (n) dt
= B {a(l—m)r(n) 45 (1) 7r2 P(x)] dt. (3.216)
If we conveniently define,
Dnr(z):=a(l —m)r'(x) + % (1=7)n%r"(x), (3.217)
then Proposition 3.7 can be rewritten as,
EA[r(I1,) — r(Ilo)] = Ex /0 B2 Dyr(IL)ds V7€ Tn (3.218)
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Using this we can rewrite (Vla) as,
E, / A2 Dy r.(IL)ds > E, / B2 (—cIl)ds Y7€Tm,  (3.219)
0 0
and (V1b) as,
The | The
E,r/ A2 Dy ru(IL,) ds = E,,/ A (=cIl,) ds. (3.220)
0 0

Thus, to arrange for both (V1a) (with equality) and (V1b) it is sufficient
that r, satisfy,
Dpron)=—cr V7w e(0,1). (3.221)

To restate conditions (V2), (V3), and (V4) for the specific problem at hand,
we need to compute the II-boundary 1, and the II-closure [L.]n. Since
the sample paths of the submartingale II are Pr—a.s. continuous we know
that,

on 1. C 91, = {a., b.} = {0,b.}, (3.222)

and this gives,

(L] = [ax, b = [0, b, (3.223)

Since I, € Z° Proposition 3.10 implies that Pr{Il,1. = 0} = 0 and therefore
P {1, = b} = 1, i.e,, II always exits I, to the right. From this it follows
that,

onl = {b.}. (3.224)

We are now in a position to restate the verification conditions which take into

account the specifics of the disruption problem. Thus, we seek r, € C?*[0,1)
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and b, € (0,1) such that,

(S1) Dyr.(r) = —c7 Vrel[0,1);
(52) re(m) = e(m) if = by
(S3) : re(m) < e(m) if m # by
(S4): r. is bounded and continuous on [0,b.].

Conditions (S1) and (S2) give us another Stefan problem. The functional
constraints (S3)—(S4) serve to uniquely determine a solution amongst all the
solutions to (S1)~(S2). In the next subsection we will show that (51)-(54)
has a unique solution pair (r.,L.) and therefore by the Verification Theorem

11 € T,q solves problem (Pp).

3.7.5 Convexity Analysis of the Stefan Problem

We now proceed to solve the problem defined by (S1)-(S4). From 3.217 we
know that Drr for r € C%(0,1) is given by,
Dnr(z)=a(l —m)r'(r)+ % (1—7m)?2x?r"(x) Vmre(0,1). (3.225)
Fix any b € (0,1), define I = (0,b), and consider the following ODE for
r e C?0,1),
a(l —m)r'(x) + % (1—7)x*r"(r) = —cr Vwel0,1);

r(b) = e(b) 0<b<1. (3.220)

Thus (S1)-(S2) yield a linear, second-order ODE which is reducible: let
q(7) := r'(x). This yields the family of integral curves satisfying,

a(l =) q(r) + %H(l _m)2g(n) = —er Vre(0,1).  (3.227)
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Conditions (S1) and (S2) offer no help in uniquely specifying a member of
this family; the ODE in 3.226 does not posses a unique solution. However
from (S4) we know that the solution which we seek should also be bounded
and continuous on [0, b). Since,

—cm —a(l —m)g(r)

¢(m) = % 72 (1 — )2

Ve (0,1), (3.228)

we see that there is a vector field separatrix at # = 0. Hence (S4) requires
that we choose this separatrix as the desired solution of the reduced equation
since it is the only member of the family of integral curves which is bounded

in a neighborhood of the origin. Thus, we seek a solution to,

a(l—=)g(n)+ j‘lg_ (1 - )¢ (n) = —cm Vwe[0,1);
g(0) = o. (3.229)

By elementary ODE theory we know that a unique nontrivial solution exists,

call it go. This gives us a solution to the original ODE, call it r,, with
r, € C2[0,1), r/(0) = 0 and I = [0,b); indeed (see Figure 3.8),

rx(7r)=1—b+/b7rq0(p)dp Vreo,1). (3.230)

In anticipation of a convexity analysis similar to that in the last chapter,

consider the following proposition.

Proposition 3.12 For I = [0,b) with 0 < b < 1, the solution r defined

above is strictly concave.

Proof: From 3.228 we see that,

—2c¢m —2a (1 — 7) go(7)
72 (1 — )2
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Figure 3.8: Graph of e and r, with I=1[0,.4) and « =1, c=1.

2c « T
- 7r2(12—7r) RS gy

il

m exp{—2as(m)}[J(r) — K(7)], (3.231)
where s(7) := log(7%) — 1/p,
J(m) = —% exp{2as(m)} qo(7), (3.232)

and
™

K(r):= T exp{2a s(7)}. (3.233)

It is straightforward to show,

Likewise, it is easy to show that,

T

J(m) = K'(x) = 5 J'(w) = _expi2as(m))

}
a_mz <0 vreD  (3:23)
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Figure 3.9: Graph of s, =r, —e.

and therefore since J(0) = 0 = K(0) we obtain,
J(r)— K(r)<0 Vre(0,1). (3.236)

As a result from 3.231 we obtain r/'(7) < 0 for all 7 in (0,1). In other words
r, is strictly concave. O

If we now define s, := r, — e, then from this proposition it follows that
s, is also strictly concave since e is just a line (see Figure 3.9). Thus the
hypograph S of s, is a convex set identical to its own convex hull, S. In
keeping with our discussion following the convexity analysis of the Stefan
problem arising in the sequential detection case, we know that we seek a
support function for S in ker Dp. From the definition of D we see that
its kernel consists of precisely the constant functions. Letting £, denote the

graph of the unique line of support for S in ker D which has zero slope we
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Figure 3.10: Graph of £, “supported” by s,.

define
Te i=1, — L. (3.237)

I

Obviously then,
rm) <e(r) Vmel0,1]. (3.238)

Moreover, if we let b, denote the m-coordinate of the point at which £, is

tangent to S (see Figure 3.10) then,

(b)) = (b)) —4(b)
(

: (3.239)

and (S2) is satisfied. Moreover, in view of the strict concavity of r, it follows

that r. is also strictly concave and therefore b, is the only point at which the
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Figure 3.11: Graph of e and r, with b, = 0.55607.
inequality in 3.238 is not strict, i.e.,
r(m) < e(m) V7 # b, (3.240)

and this of course is (S3). By construction we know that r, satifies (54) and

finally since £, € ker Dy we obtain,
Duru(w) = Dur(n) — Dnlu(r) = —cmr—0=—c Vme[0,1), (3.241)

and hence we also have satisfied (S1). Thus, we can conclude that the pair
(r4,1.), . as defined in 3.237 and L. = [0, b,), satisfies (51)-(54) and therefore
solves the problem posed by (V1)-(V4). As a result we are ready to apply

the Verification Theorem.
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3.7.6 Main Result

For easy reference, we redisplay the technical conditions involving the drift

process and its Pi—projection onto the observations:

i
(HO): E,-/ H2ds < oo Vi>0, i=0,1;
0
(H1): E,-/ H%ds < o0 VreT, 1=0,1,
0
(H2): Pi{/ A?ds =0} =1 i=0,1.
0

We have come to the main result of this section.

Theorem 3.2 Assume that the conditions (H0), (H1),and (H2) hold. In the

problem of disruption based on observations of the process,
i
Y, :/ Y H,ds+ WY >0,
0
with average running cost,
E,r/ Csds:E,r/ I, A2ds ¢ >0,
0 0

and panic cost,

P Ar <v} = E;[1-11,],

there exists b, unique, 0 < b, < 1, such that the first exit policy (7', 6.) based
on the continuation interval 1, = [0,b,) achieves Bayes’ optimal cost, i.e.,
pr(i+) = inf pa(r)  Vmel0,1],

7€T0d

where,
pe(r) = Erl [ Cods +e(l1)] Vr€[0,1] and 7 € Toa.
0
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In addition, there exists r, € C*[0,1), the solution to (S1)-(S4) above, such

ro(m) if w €Ly
p,r(T“):{ (m) ifre

that

e(r) ifr &l
where,

e(m)=1—-m Ve [0,1]. (3.242)

Proof: In the previous subsection we solved the associated Stefan problem
and showed that there exists a pair (r., L) satisfying (S1)—(S4) for which the
conditions on the cost coefficients guarantee that 0 < b, < 1. Therefore we
have in fact exhibited a pair (r,,1.), I. € Z° and r, € C?*[0,1), which satisfy
(V1)-(V4).

To employ the Verification Theorem and therefore prove the theorem at
hand it remains only to show that (C1), (C2), and (C3) hold since (E) follows

from Proposition 3.10. With the above choice of running cost we see that

(C1) follows from (H1) since,

E,r/ C,ds = E,r/TcHs]tAlzds

0 0

< E,,/ chds
0

= 7rE1/ cf]fds—}-(l—w)Eo/ cH? ds < 0.(3.243)
0 0

Since (H1) implies Pr{ f; H2ds < 00} =1 for all ¢ > 0 while (H2) impies
P { [$° H?ds = 00 } = 1, it is obvious that

P,r{/toofjlfds::oo}zl Vit >0, (3.244)
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From this for all n > 1 we obtain,

P,r{/oooCsds<oo} P,r{/ooocﬂsﬁfds<oo}

S P’/r{/oonsﬂ:ds < OO}
< Pr{ inf II, I;des< oo}
n<s<oo t
= P{_jnf II,=0}. (3.245)

Since limy, oo Pr{infncs<oo I, = 0} = 0 we see that,
Pr{/oo Cyds = oo} = 1, (3.246)
0

which is to say that (C2) follows. Finally, condition (C3) follows since the

running cost C is linear in II and hence concave in II. O

3.7.7 Example

We end this section of the chapter with a concrete example of a sequential
detection problem involving a diffusion with constant drift. We observe a
stochastic process Y = {Y;}:>0 which prior to a random jump time v is a

zero-drift diffusion and after the jump is a diffusion with unity drift:

(Before Jump) : Y, = W, t>0;

(After Jump): Y, =t+ W, t>0,
where W is a (Gy, Pr)-standard Wiener martingale. It is given that the jump
occurs at time zero with prior probability = € [0,1] and conditional upon
v > 0 the jump time is exponentially distributed with parameter A > 0.

Define the Bayes’ cost,

px(T) = E,r[max{O,/T cH?ds} ]+ P {r < v}, (3.247)

v
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Figure 3.12: Graph of panic cost and Bayes’ optimal risk.

where ¢ is strictly positive. We are asked to minimize p,(7) over all Pr-a.s.
finite stopping times.

We see that this is precisely the form we are equipped to handle as long
as we make the identification H = 1 for then our choice of running cost

collapses down to
/TCsds:/TcHs[:Ist:c/T I, ds. (3.248)
0 0 0

We point out that each of (H0), (H1) and (H2) are trivially satisfied. Thus
we can apply Theorem 3.2 to deduce that an optimal first exit policy exists.
One can solve for the optimal interval I, using the convexity approach given
here or see [S, C4] for an integral equation to invert. The graphs for o = 1
and ¢ = 1 are depicted in Figures 3.7 through 3.11. The graph of p, the

Bayes’ optimal risk is given in Figure 3.12 along with the worst case risk.
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Chapter 4

Change Detection: Point

Process Data

4.1 Introduction

In this chapter we consider the problem of Bayesian optimal change detection
when the observed data are modeled by a point process. The chapter has

the following outline:

Section 1. SYSTEM DYNAMICS

In this section we make decisions concerning the general dynamics mod-
els for the two underlying systems. One system is modeled as a stan-
dard Poisson process, the other system is modeled as a general intensity
process driving a point process. We impose technical growth conditions
on the intensity process in order to apply filtering results and obtain

the necessary escape properties on the a posteriori probability. We de-
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rive a representation for the likelihood ratio process using Girsanov’s
Theorem and then employ this representation to obtain a martingale

description of the observation process with respect to the prior measure.

Section 2. OBSERVABLE DYNAMICS

The main point of this section is to obtain a martingale description
of the observation process with respect to the prior measure when the
intensity is conditioned upon the observation filtration. To do this we
work with the observation process when the intensity is smoothed with
respect to this filtration and derive the associated likelihood ratio in
which only the smoothed intensity appears. Thus, this section is largely
the analog of the previous but with the intensity conditioned upon the
observation history. Likewise, it parallels Section 3.2 with the intensity

in the role of the drift.

Section 3. THE CONDITIONAL PROBABILITY

The purpose here is to derive an explicit semimartingale representa-
tion for the a posteriori probability process by estimating the jump
process for the time of change conditioned with respect to the obser-
vations. This smoothed representation gives us a filter for the state of

the underlying jump.

Section 4. PRELUDE TO VERIFICATION

This section is in anticipation of the application of the Verification
Theorem of Chapter 2 and thus its purpose is to compute a more ex-

plicit version of the first verification condition taking advantage of our
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specialization in this chapter to point process data.

Section 5. SEQUENTIAL DETECTION

This section is concerned with the classical Bayesian problem of se-
quential detection when the observations arise from one of two point
processes. We show how this detection problem can be recast as a prob-
lem of change detection by properly modeling the jump time within
the framework developed and by proper choice of the Bayes cost. We
also consider the escape properties of the a posteriori probability pro-
cess prior to setting up the Stefan problem implied by the Verification
Theorem. Using a novel approach suggested by the convexity notions
employed in Chapter 3 and the theory of functional-differential equa-
tions, we solve the Stefan problem and arrive at the one of the main
results of the chapter: There exists Bayes’ optimal first exit policy for
the problem of sequential detection with elapsed energy cost and termi-
nal error penalties. We conclude the section with an example involving

a constant intensity Poisson process.
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4.2 System Dynamics

As in Chapter 2 we are working on the measurable space (§2, 4) equipped
with two probability measures P, and P; which induce the family of Bayes’
measures {Pr : 0 < 7 < 1}. In this chapter we consider the general problem
of change detection when the underlying dynamics give rise to point process
data. Mathematically speaking, the methods of modern martingale analysis
make this chapter largely a rewrite of the last. We shall draw freely upon
the results and notations of Chapter 2 and Chapter 3 with only the briefest
reminders. As in Chapter 3 it remains to specify the nature of O, G;, and
Ay, to calculate L = {L;}s»0, to make choices specializing the Fi—conditional
distribution F of the disruption time v, and lastly to specify the running cost
and terminal cost functions. Once these things are done we can make use ol
the Verification Theorem to solve for the optimal first exit policy.

We begin by supposing that we are given J = {J;}:>0, a continuous ran-
dom process on (£2,.4) called the jump intensity ( or simply the intensity
so as not to confuse it with the compensator of the jump process T) for which
log J is a nonnegative process. Define the intensity filtration on A via,

Jo=V o(Js) V>0, (4.1)

0<s<t
and take this filtration as (A, Py)-completed. We are also given N = {N;}:>o,
No = 0, a P,—nonexplosive point process on (£2,.4) called the observation.

Define the observation filtration on A via,

0=\ o(IV,) Vt>0, (4.2)



and take this filtration as (A, Py)-completed. For any A;~adapted process
X = {X;}i»0 we recall that the O,~adapted process X = {X}i50 is defined
via,

X, = E[X:|0,] Vt>o0. (4.3)
We collect the following technical conditions involving the intensity process

J and its (O, P1)-smoothing J:

t
(J0): Ei [ Jds < oo V>0, i=0,1
0
t .
(1) Bi [ Jids< oo V>0, i=0,1;
0
(12): PA[ (Jo-1)?ds=o00} =1 i=0,1.
0

Next we define G; := O,V J; and note that J being both G;—adapted and
(left) continuous is therefore also Gi—predictable. We make the following as-
sumptions concerning the dynamics model for the observation process under

Py and Fi:
(DMO) : N; is a (Gi, Po)—Poisson counting process;
¢
(DM1): N, — / J,ds s a (Gi, P,)-martingale.
0

Recalling that v denotes a measurable mapping from § to [0, cc], that

T, := 1{v < t}, and that U; = V,<, 0(T:) we define,
=G VU N\ A V>0, (4.4)

where A denotes the smallest o—algebra containing both the Fy—null sets of

A and the Py-null sets of .A. We have come to our first proposition.

Proposition 4.1 The G;-adapted process L is given by,

t t
L= exp{/o log J, dN, — /0 (J, —1)ds} Vt>0, Po-as.
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Proof: The proof of this representation is well-known and standard but
as in Chapter 3 we include it for completeness and because some of its in-
gredients are reused in succeeding propositions. Applying the generalized
It6 rule [W&H, P6.6.2] to the natural logarithm of the (G;, Pp)-martingale
L = {L:}1>0 with Lo = 0 we obtain,

t 1 st AL, AL,
loth:/OL;_ldLs—§/0L;Qd[L,L]§+Z[log<1+L )_L ]

s<t
(4.5)
for all t > 0, Py—a.s. Define X = {X,}:>0 via,
¢
Xii=L1e L, :/ L2YdL,  Vt>0, (4.6)
0
and note that,
AL
AX, =~ Y= L7'AL, Vt>0. (4.7)
fem

Because L is a (Gi, Po)-martingale and {L;!}is0 is a (Gi, Po)-predictable
process which according to Proposition 2.6 is locally bounded, we see that
X is a (G, Py)-local martingale with Xo = 0 and therefore we may employ
the Martingale Representation Theorem [W&H, P6.7.3] to conclude that X

has the stochastic integral representation (let n; := N, — t),
t
Xe= [&dn, V20, Pras, (4.8)
0

for some G,—predictable process £ = {£;}:>0 satisfying [; |£,]ds < oo, Po-a.s.,
for all ¢ > 0. From this it follows that,

L2e[L, L =[L e L L7 e L]°=[X,X]°=0, (4.9)
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ie.,

t
/ L*d[LLE=0 ¥t>0, Pras. (4.10)
0

Combining 4.5, 4.7 and 4.10 gives,

log Ly = X; + ) _[log (1 + AX,) — AX,], (4.11)
s<t
and therefore,
Li = exp{X; + D _ [log (1 + AX,) — AX,]}. (4.12)
s<t

It only remains to compute an (O;, Py)-representation for £ to obtain the

result. Since < 7, X >=[n, X] = [X,n] = £ o [n,7] we see that,
t
<, X >i=€ennli=¢Eo[N,N], = [) £, ds. (4.13)

Because both X and 75 are (G, Po)-local martingales we may apply the ab-
stract Girsanov Theorem [W&H, P6.7.2] and so conclude that n— <7, X >

is a (Gy, P1)-local martingale. But then notice,

t
me <0, X > = Nt—t—/gsds
0

- N, /ot(gs +1)ds, (4.14)

so that employing (DM1) and the fact that predictable compensators are
unique implies J; = & + 1 for all t > 0, Fy—a.s. Hence,

t t
X, = /0 £ dn, = /0 (J, — 1) dys, (4.15)
and from this we see,
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Plugging these expressions into 4.5 yields,

Lo = exp{ [ (Js = 1) dn + 5 llog (1 + (J = DAN,) = (s = ) AN]).
= (4.17)
To simplify this last expression note that,
;us “1)AN, = 3 (J-1)= /Ot(,]s ~1)dN,, (4.13)
= AN;=1
and therefore,
¢ t
szg(Js —~1)AN, = /0 (Jy = 1) dns + /0 (J, —1)ds. (4.19)

Also observe that,

i
Slog(1+ (J, —)AN,) = 3 1ong=/ log J, dN. (4.20)
s<t s<t 0
- AN;=1

From these expressions we obtain,

4 it
L, =exp{/0 longst—/o(Js—l)ds}, (4.21)

which completes the proof. O

The next proposition which we shall give mirrors Proposition 3.2 in that
it exploits the random measure Q¥ as a device to obtain a martingale de-
scription for the system dynamics with respect to the P.—measure on (€2, A).

We begin with the following lemma, the logical companion to Lemma 3.2.
Lemma 4.1 For each u € [0, 00],

N — /Ot Uy (J; —1)ds is a (G, Q*)-martingale,
where U denotes the deterministic indicator process U, := 1{u < t}.
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Proof: For u € [0, 0] define the auxiliary (G:, Fo)-local martingale M,
t
MY = / U, (J,—1)dn, ¥t>0, (4.22)
0
and the (G, Po)—-adapted process L,

LY = exp{M} + ) [log(1+ AM}) — AM]}  Vi>0. (4.23)

s<t

Computing under F, we obtain,
¢
<7, M* >= [, M"], :/ U, (J, — 1) ds. (4.24)
0

From Girsanov’s Theorem we know that n— < 5, M* > is a (G;, @*)-local
martingale and this gives us the result. 0
We now give the proposition describing the unobservable dynamics of the

N process on (9, A) with respect to the P, measure for any 7 in [0, 1] fixed.
Proposition 4.2

¢
N, — / [, Js+(1=Ts) 1] ds is an (A, Pr)-martingale V7 € [0, 1].
0

Proof: Fix 7 in [0,1]. Define the A;~adapted process n¥ = {n} }:>0 via,

nY =y — /Ot T,(J,—1)ds V¥t>0, (4.25)
and for u in [0, co] define the G;~adapted process n* = {1} }i>0 by,

Dt o=y — /Ot U,(J,—1)ds ¥t>0. (4.26)

Our immediate goal is to prove that ¥ is an (A¢, Pr)-martingale; note in this

notation that Lemma 4.2 says n* is a (G, @Q*)-martingale for all u in [0, co].
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With 7 here in the role of ¥ in Proposition 3.2 and similarly (J — 1), n", n*
in the roles of H, WV, W¢, respectively, the same logical argument employed
in Proposition 3.2 to show that W is an (A, Pr)-martingale works here to
show that,

Efn? | A =0y Vrel0,t],t>0, Pras, (4.27)

and in words, 7V is an (A, Pr)-martingale. This tells us that n has the

semimartingale dynamics
t

m:/ Y, (J,—1)ds+q°  Vt>0, (4.28)
0

for the (A;, Pr)-martingale n” = {7} }:>0. Since n; = N, — 1 for all ¢ > 0 this

gives us the result. a
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4.3 Observable Dynamics

The main goal of this section is to show that,
t A
Ny — / [Hs cJs+ (1 =10,) - 1] ds is an (O, P;)-martingale.  (4.29)
0
Recall for all ¢ > 0 that the O,—adapted process X = {Xt}tzo is given by,
X, = Eo[ X;| O;]. The following proposition gives us a representation for L.

Proposition 4.3 The O;—adapted process L is given by,

v t A L2N
L= exp{/0 log Js— dN, —/0 (Js —1)ds} Vit >0.

Proof: The proof of this proposition is the analog of the proofs of both
Proposition 4.1 and Proposition 3.3. With X defined here as X := [7le L

we obtain by similar arguments that,

L = exp{X, + > _[log (1 + AX,) — AX,]}, (4.30)

s<t

with X expressible as,
¢
Xt:/ ¢.dn, V>0, Pras., (4.31)
0

for some O,-predictable process ¢ = {{}:>0 satisfying [ |¢]ds < oo, Po-
a.s., for all t > 0. Applying Girsanov’s Theorem [W&H, P6.7.2] we likewise
conclude that n— < 1, X > is an (O, P1)-local martingale and therefore by
the uniqueness of predictable compensators we obtain & = J,_ — 1, for all

t > 0, Py—a.s. Therefore,
t ., . t .
X, =/ 1-tdl, =/(Js_ ~1)dn,, (4.32)
0 0
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and this completes the proof. O

Next we prove the following logical analog to Lemma 3.2 and Lemma 4.2.
Lemma 4.2 For each u € [0, 00},
e — /Ot Us (js —1)ds is an (O, Q*)-martingale,
where U denotes the deterministic indicator process U, 1= 1{u < t}.
Proof: From Lemma 4.2 we know that,
Ny — /Ot Us (Js — 1)ds is a (Gi, @Q*)-martingale. (4.33)

Thus, a routine application of the Projection Theorem yields the result. O
This brings us to the following proposition which describes the dynamics

of N on (2, ©) with respect to the P, measure for any fixed = in [0, 1].
Proposition 4.4

t A
N, —/ [Hs s+ (1 =1I5) - 1] ds is an (O, Pr)-martingale V= € [0,1].
0

Proof: If we define,
t A
7Y = m—/ T, (J, —1)ds Vt>0, (4.34)
0

then proof of this proposition follows the same argument as Proposition 3.4
with 7V in the role of W, a

Let’s take this opportunity to summarize the results of this section and
the last. We have given two models for the total dynamics of the observable

process N under two different probability measures:
N; is a (G:, Po)-Poisson counting process, (4.35)
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and,

t
N; — / Jsds is a (Gi, Pr)-martingale. (4.36)
0

As in Chapter 3 we interpret each measure as modeling a distinct mode of
operation of some underlying dynamical system on (2, G)—the difference in
this chapter is that we partially observe these underlying dynamics through
a counting process rather than a diffusion. Under Fy the hidden dynamics
are modeled as merely a Poisson process which influence the observations
directly. Under P, the hidden dynamics are modeled via J = {J;}:>0 and
these dynamics influence the observations through the ‘signal plus noise’ set-
up. The G,—progressive, O;—partially observable dynamics themselves, J,
may arise according to any number of models, for instance, a memoryless
nonlinear transformation of a process with a linear stochastic differential
description.

For all G in G note that Q°{G} = P,{G} while Q°{G} = Fy{G} and once
again we see that the transition measure Q* ‘links’ the two distinct modes
of system dynamics. Indeed, if the time of mode change were deterministic
then {Q* : 0 < u < oo} provides us with a tool to answer questions con-
cerning the (still stochastic) behavior of the underlying system. However, we
are interested in problems where the overall system has observable dynamics
which can change at a random time v from say mode-0 modeled accord-
ing 4.35 to mode-1, a different mode in which the observable dynamics are
properly modeled using 4.36 above. Moreover, in this problem we assume
there is w-probability that the system is initially in mode-1 and (1 — 7))~
probability that the jump time v is positive and distributed according to the
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O,—conditional cumulative distribution function F'. On the probability space
(9, A, P;) which we have constructed in Chapter 2 to model this situation,
the observable dynamics have a single representation—they behave according

to,
¢
Ny — / Y, -Jo+(1—=7"s)-1] ds is an (A, Pr)-martingale,  (4.37)
0
which is the conclusion to Proposition 4.2.

To complete our summary, we note that we also have two models for the

partially-observed dynamics of N under both Fy and P;:
N; is an (O, Py)-Poisson process, (4.38)
and,
t .
N, ——/ Jsds is an (O, P;)-martingale. (4.39)
0

Using these representations, in Proposition 4.4 we obtained the analogous

partially-observable representation for the dynamics on (£2, A, Pr) as,
t A
N, — / M- J,+ (1 —T0)-1] ds is an (O, P)-martingale.  (4.40)
0

This last martingale is the one we need in this chapter to obtain explicit
filtering results involving the a posteriori probability. We take up this task
in the section to follow.

We end the current section with a result concerning an escape property
of the likelihood ratio process L = {Lt}tZO which follows directly from the

condition (J1) imposed on the drift process at the outset of this chapter.
Proposition 4.5 Under assumption (J1),

P.{sup |logl;| =00} =0 Vn>1, Vr€l..
0<t<n
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Proof: Fix n € I. From Proposition 4.3 we know that the O,~adapted

process log L is given by,

log L = /Ot log J,_ dN, — /Ot(js “1)ds Vt>0, (4.41)
so that computing under P, we obtain (see Proposition 4.4),

|log L¢| < |/Oi(js_ —1)dN, + /Ot[l + (J, — 1)) ds, (4.42)

using the simple inequalities logz < ¢ — 1 < 2? and the fact that dN is a

positive (random) measure. Hence for all n > 1,

P sup |log Li| = 00} < P,r{/n(js_—l)st
0<t<n 0
+/0 [+ (J, - 1)?] ds = oo}
_ noo. B noo. _ 9 _
. P,r{/on(Js_ 1)st+/0 (J, = 1)?ds = oo}
- P,,{/ (J,- —1)dN, = oo}
0
< P,,{/ (Joo —1)dN, > m} Ym>1, (4.43)
0

where the second to last line follows a fortiori from (J1). It is not difficult
to show that (J — 1) @ NV, is a right-continuous (O, Pr)-submartingale and
therefore we may apply a basic submartingale inequality [L&S1, T3.2] to the
right-hand side of 4.43 and find,

Ex [ (J,~ —1)dN,
m

P.{ sup |log L;| = 00} < Vm > 1. (4.44)
0<tLn

Employing Proposition 4.4 we obtain
E, /"(J;_ —1)dN, = E/ (1410, (J, = 1)](J, = 1)ds
0 0
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:E/J——lds+E/ (J, - 1)?
< n+2E/(J—1)

- 0

Combining the last two expressions and then (J1) again yields,

neT o 1)2
Pr { sup IIOth|—oo}< lim n+2E; [(J, —1)*ds

m—00 m

=0,

and therefore,

P{sup |logLi| =c0} =0 Vn>1,
0<t<n

which completes the proof.
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4.4 The Conditional Probability

Fix 7 € [0,1]. We conveniently collect some of the results obtained so far
to compute a more explicit representation for the projection of T, onto O,

taking the point process nature of the observations into account.

1. From 2.116 we know that the single-jump, binary point process T has

the (A, Pr)-semimartingale representation,
t
Y, =T, +/ (1=T,)(1 = F) " dF,+ M, ¥t>0, Pras., (4.48)
0

with YTy an Ap-measurable binary random variable satisfying £, Ty =
7, with (1 — T,_) an As—predictable process, and with M an (A, Pr)-

martingale.
2. From Proposition 4.2 the observation process satisfies,
N, = /Ot Ty Jy+ (1="y)-1]ds+q0 Vt>0, Pras.  (4.49)
for J some G,—predictable process such that,
E,r/Othd3<oo Vit >0, (4.50)

where n¥ denotes an (A;, P;)-martingale. The bounding in 4.50 follows

from assumption (J0) and expression 2.96.
The following proposition gives the filter for the projection of T; onto O;.

Proposition 4.6 The filter for I, = E.[T;|O;] is given by,

t I, J}--1 .
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for all t > 0, Py~a.s., where ¥ is an (O, P;)-martingale; we recall that by
definition J, = Ey[J,] O;].

Proof: Define,

so that we may write,
¢
N, = / Aods 477 Vi 0. (4.52)
0

Applying a filtering theorem [W&H, P7.4.1] to compute II = E,[T]|O] we
obtain,
¢ ¢
I, = 1, +/ (1-1IL,) (1 — F,)" dF, +/ o, di (4.53)
0 0
for all t > 0, P,-a.s., where 7V is some (O, Pr)—martingale and where @ is

an Oy-progressive process given by

Er[’rt( A¢ — Evr[/\t | Otm Ot]

®, = E,]4,|O , 4.54
t [¢i| t] + Eﬂ.[)\t | Ot] ( )
for all t > 0 and for some A;—predictable process ¢ satisfying,
¢
(M, 7"}, = / dods V>0, Pras. (4.55)
0

Let’s compute ® starting with E,[¢;|O;]. Recall that (M,n") denotes the
predictable compensator of [M,n¥], the co-quadratic variation of Mn”. Ob-
serve that the additive noise 7" in the observation N has no jumps in common
with M, the zero-mean martingale driving T which quite obviously has sam-
ple paths of locally finite variation. Therefore, [M,n"] = (M,n") = 0. Hence
we can take ¢ = 0 so that F.[¢:|O:] = 0.
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Next, use the fact that T2 =T and YT(1 — T) = 0 to find,

E,r['ft /\t I Ot] - Er[Tt(Tt . Jt + (1 - Tt) . 1) | Ot]
EL[ Y. J| O] (4.56)

To compute E.[Y;J;| Oy, pick any O in O, and use expression 2.106 to

obtain,

i
E.[YiloJ] = rEllth+(1-—7r)E0//JtdQ“dFu
0 JO
{
— wEl[loEl[Jt|(’)t]]+(1—7r)E0/ /OLgljthldFu
0
~ t ~
- ﬂ'Ellth+(1—7r)E0/0 /()L;lJthldFu

A i a
- wEllth+(1—7r)E0//JtdQ“dFu
0 JO

= E7r [Tt 1O jt]

= B[l 10 JJ, (4.57)
and therefore,

E Y J|O0)=1,J, Vt>0, Pras. (4.58)

From this we see that,
Eﬂ[Tt /\t | Ot} = Ht jt Yt Z 0, Pw—a.s., (459)
and also,

EW[At‘Ot] - EW[Tt'Jt-I—(l—Tt)‘llOt]
== Htjt+(1—Ht)1
= 1+410(J,—1) Vt>0, Pras. (4.60)
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Combining these results yields,

_ (1 =) I, (J, — 1)

t ~ Vt Z 0, P,r—a.s., (461)
1+ I(J, — 1)
and plugging this into 4.53 yields the desired expression. O

An easy consequence of this proposition is the following equivalent repre-
sentation for the a posteriori probability process which cleanly separates out

the jumps,

M —T, = /;(1—n)(1— -1 4F, — /1— L (J, = 1) ds

) s— (Js~_1)
’ Z T+ (1) o2

AN,=1
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4.5 Prelude to Verification

For I € T, define PC*(I) to be the class of piecewise continuous functions
which are right-continuous on I except at most a countable number of isolated
points and which lose their right-continuity at these isolated points only in

the following way: if r(n+) # r(7w—) then,
r(r) =r(r+) < r(r—). (4.63)

Let BC'*(I) denote the subclass of functions in PC*(I) which are bounded on
I as well as once right-continuously differentiable there except at a countable

number of isolated points. Now define,

BC™(T,) := () BCY(D). (4.64)

IeZ

Simple examples of functions in BC'*(Z,) are,

1 for0<7< %;
r(w) = (4.65)
0 for % <7<,
and,
T for 0 <7< %;
r(m) = (4.66)
1—7x for -;— <7r <1,

and also the product of these two mappings. In the next section we shall
be interested in a particular function r, € BC'*(Zy). Using the filter for
I developed in the last section our goal is to compute the expectation,
E.[r(II;) = r(Ilo) ], for all 7 € 7y and all mappings r € BC'*(Z,) in antic-
ipation of applying the Verification Theorem. To simplify the notation, for
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each t > 0 define the O,—measurable linear stochastic differential operator

Do, for all functions r € C'*(I) via,

Do, r(x) = |—(1—=)nr'(x)
U, +1
U — —
+ (W +7)[r <\Ia — 7) = r(m)]] (e = 1)
+ (1 —7)r'(r)(1 = F)"1dF,  (4.67)
where,

U= (Jo — 1)1 V>0, (4.68)

Observe that,

U, +1
< < > |66

0 goyTSL  Vre 120, (4.69)

and therefore this ratio is always in the domain of r € C'*(L).

For 1 € I, r € PCt(1) and ¢ > 0 we define J™(II) to be the sum of the
jumps in the r(II) process which are due solely to the discontinuities of r,
ie.,

JI(I) =) (7)) = ()] Ve 0. (4.70)

s<t

The following proposition is the analog of Proposition 3.7 but with the
partially-observed drift structure of II in the diffusion case of Chapter 3
replaced here by the partially-observed intensity structure of II in the point

process case€.

Proposition 4.7 Let r € BC'*(Z,) and suppose that Do,r(7) < 0, Pr-a.s.
forall w € 1o, and t > 0. Then,

Er[r(IL,) — r(Ilo)] = Ey /0 Do, r(Il) + JI(II) V7 € T, 7 € L.
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Proof: Fix © € I. For r € BC'*(Z,,) the generalized It6 formula yields
(see Appendix A),
t
r(I1;) — (o) :/0 r(IL,) dITE + S[r(I1T7) — r(11,_)], (4.71)
s<t
which we can rewrite as,

r(Ile) —r(Ilo) = /Ot r/(I,) diT, 4+ S [r(I17) — r(I,=) — r'(IL,_)ALL |, (4.72)

s<t

for all t > 0, P,—a.s. Using Proposition 4.6 we compute the stochastic

differential,

dHt = (]. —Ht) (1 —Ft)_l dFt+
== (1 - Ht) (1 - Ft)_l dFt
+ M (1 — ) (W + 10 )~ dy (4.73)

A 7!

M (1= T,_) (Jm — 1)
14 M- (Jew — 1)

and the stochastic difference,

AHt == Ht_ (1 — Ht._) (\I]t + Ht_)_l AT]—;}
= Ht_ (1 —Ht_)(\lft—l—Ht_)_l ANi (474)

We can now employ 4.74 to compute the last term of the sum in 4.72,

Sor(IL) AL, = D0/ (Ten) M (1= T2 ) (0, + 0 ) ™H AN,

s<t s<t

Hs—(l_HS—) ’
L g, . "

s<t
AN,=1

T, (1-T0,.) , r
/0 v, i, )i i

and using Proposition 4.4 we can rewrite 4.75 as,

! _ tHS_ (1_H3—) / v
Y (i) AL = [ =g L an;
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t1, (1 - 1I,) .
_t A ——m:—r (Hs) {1 + Hs(Js — ].)] ds
= [P0 L (1= o) (W, 4 I2) ™
0

i
_ / PL) L, (1 — L) U s, (4.76)
0
Substituting 4.73 and 4.76 into 4.72 and then simplifying the result we obtain,

r(Il) — r(llo) = /Ot(l —IL) (1 — F,)~Y/(IL,) dFy
—/Ot I, (1 = L) ' (IT,) U ds
+ 3 [r(17) = r(IL-) ] (4.77)

s<t
It only remains to compute the sum in 4.77. The total stochastic difference

of r(IT) can be decomposed as,
r(I1;) — r(I,=) = r(I1,) — r(Il-) + (7)) — r(IL) Pr-a.s. (4.78)
From 4.74 we find,

I, = Il + All

= [T+ e + (1= T-) AN (W + 1) 7 T
U, + AN, + (1 = AN))
1I._ 4.79
( U, + 11, ‘ ( )

and therefore using 4.79 we can compute,

S lr(IL) = r(l-)) = ;[r I, )] AN,
- = Y (M- + ALL) — r(T,-))
AN_S;
= 3 (g ) -t
N ;
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/ v (\P‘I’:Ht_ s_) — r(I,_)]dN,. (4.80)

Plugging 4.80 into 4.77 gives,

p(iL) (o) = [ (1 1L,)(1 = F)™ /(L) dF,
—/tn (1—I0L)r'(IL,) U7 ds

+/ (\I}\D:HLH )_r(ns_)] N,

+2_[r(I7) = r(Il,)], (4.81)

s<t
for all ¢t > 0, Py—a.s. Making use of the definition of Do, given in 4.67 and
the definition of J"(II) we can use Proposition 4.4 once again to rewrite 4.81

more compactly as,
t ~
r(I1,) — r(Io) :/ Do, r(IL) + JI(I1) + M, Vt>0, Pras., (4.82)
0
where M = {Mt}tZO is defined here as,

3 tof W41
= —l,_ ]| = _ v > 0. .
i, /O[r(wsHIS_ 11, ) r(IL,_)] d7° Yt >0 (4.83)

Next we will show that {Mtl\r}tZO defined by,
U, +1
Mins :—/ {s <7}[r (—+tn— Hs_) —r(Il,2)]dny Vt>0, (4.84)

is an (O, Pr)-local martingale. To do this it is only necessary to show
that the integrand in 4.84 is (O, Py)-predictable and locally bounded. The

predictability is clear. Since 7 < 71 we see that Il;1 € [I]n and therefore,

r(Il,.) < Bi< oo Pr-as., V7 € L, (4.85)
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for some B; known to exist since r € BC'*(Z,,). Similarly,

V.41
T, )< s, . 48
T(‘I’T+HT—H )_BI P,-as., Vrel (4.86)

This last bound follows from 4.79 if we keep in mind that even when AN, =1

so that II jumps at 7 we have,

v, +1 -
HT = (m) HT_, (48()
and therefore,
U, +1 o
<m> Hq-_ € [I]H P,,—a.s. (468)

Thus, the integrand in expression 4.84 is in fact Pr-a.s. bounded. As a

result MMT is an (O, Pr)-local martingale with a localization sequence, say

{#n}n>1 so that,
EM, p,=0 VYn>1 (4.89)

In view of expression 4.82 this gives for all n > 1,
B[ r(Tuyr) = (1)) = By [ Do, r(IL) + Ec T, (1), (490)
which if we take the definition of J7(II) into account can be rewritten,
Eo[r(Wnes) = r(Tl0)] = By [ Do, r(IL) + Ex Jj,pe (I, (1:9)

Making use of the Monotone Convergence Theorem we obtain,

AT T
im E, [ Do, r(Il,) = Ex / Do, r(ILy), (4.92)
n—00 0 0
and also,
lim Er Jj (1) = E, J7_(II). (4.93)
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As a result,
lim Ey[r(Inr-) = r(Tlo)] = B, /0 " Do, r(Il,) + E, J7_(II).  (4.94)

Employing the Bounded Convergence Theorem and an argument paralleling

the one used in Lemma 2.1 we find,

lim By [r(ITnr-)] = Eo[r(IT,0)], (4.95)
so that 4.94 yields,
BL[r(TL,2) = (o)) = By [ Do, r(IL) + Ex J;_(T0). (4.96)

Finally, from this last expression we obtain,
E.[r(IL,) = r(Ily)] = Ex / " Do, r(IL,) + Ex J7(I1), (4.97)
0

as promised. g
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4.6 Sequential Detection

In this section we will formulate a classical Bayesian sequential binary hy-
pothesis testing or sequential detection problem on the intensity of an ob-
served point process process. We will show how it can be recast as a change
detection problem within our framework and then tackled via the Verification
Theorem. Recast in this way, the classical problem of sequential detection
is given a fresh interpretation as a problem of Jack-of-change detection. The
Verification Theorem will lead us to consider a type of free-boundary value or
Stefan problem whose solution is addressed using techniques from the theory
of functional differential equations and a generalized convex analysis. We

will end the section with an example involving a Poisson process.

4.6.1 Problem Statement

On a measurable space (©,G) equipped with two mutually absolutely con-
tinuous probability measures P, and P; we observe a counting process N =

2 }i>0 for which one of the following hypotheses 1s true:
Ni}iso | hich f the following h h i
(Noise Only): N; = / 1ds+n; 0<t< ooy
(Signal Plus Noise) : N, = / Jods + 0<t< oo,

where 7 is a (G, P;)-martingale for ¢ = 0,1, and J = {Ji}is0 1s a G-

progressive process which is strictly greater than unity and satisfies,
11
Ei/ Jods <o Vt>0,i=0,1. (4.95)
0

Following the Bayesian philosophy, we are told in advance that the (Signal
Plus Noise) hypothesis occurs with prior probability = € [0,1]. We are tasked
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with deciding in a sequential manner which hypothesis is indeed responsible
for what is observed. Decision policies are defined as a pair, (7,6), where
T is a stopping time with respect to the Po—completed observation filtration
O = V<t 0(N;) and 6 is a binary random variable representing our decision
and therefore measurable with respect to O,. We are told that the goodness
of any sequential decision policy, (7,§), is judged according to the following

‘elapsed-energy + incorrect decision’ cost criterion,

pe(1,8) = wEl[/ ¢(Jy = 1)ds + °1{6 = 0}]
0
+(1—7) Eo[/ c(Jy —1)ds + 1 1{6 = 1}], (4.99)
0
where ¢, ¢, and ¢! are strictly positive and finite. We are asked to minimize

pr(T,8) over all decision pairs. We are told to restrict our attention to those

Ostopping times which satisfy,
Ei/ (J, —1)2ds < 00, i=0,1, (4.100)
0

and in addition we are given the following technical condition on the running

cost:

Pi{/ooo(js—lfds:oo}:l, i=0,1. (4.101)

4.6.2 Problem Reformulation

We now show how the sequential detection problem can be recast as a prob-
lem of change detection on the probability space (£2, A, Pr) with 7 the same
prior as in the previous subsection. Drawing freely upon our earlier results

and notation, the first step is to notice that the (Noise Only) and (Signal
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Plus Noise) hypotheses are captured by the model dynamics (DMO) and
(DM1), respectively, just as in the diffusion case. As expected then, a little
consideration shows that the sequential aspect of sequential detection can
be recovered within the change detection format by properly specifying the
random disruption time v previously characterized only up to the nature of
F = {F}i50, its O;-adapted, conditional cumulative distribution function
with respect to the Pp-measure. To this end make the following sequential

detection modeling assumption:
(Fsp) : F,:=1{t = 0} Vte 0,00

We see that F is a legitimate O;—adapted, conditional cumulative distribution
function on [0,00] = R4 U {oo} satisfying the requirements set down in

Chapter 2. Under assumption (Fsp) we have therefore,

and Po{v = oo} = 1. With this choice of F, the Po-measure gives all its
probability to the event { v = 0o }; the P—measure of course still gives all its
probability to the event { v = 0}. An immediate consequence of this is that
the P-measure defined in 2.97 is precisely the Py-measure and as a result

the P,-measure simplifies to,

P.{A} = wP{A}+(1—1)P{A}
= 7P {A}+ (1 — 1) Po{A}, (4.103)

for all 7 in [0,1] and A in A. From this we see,
P{0<v<oo}=1P{0<v<oo}+(1—7)FPo{0 <v <oo}=0, (4.104)
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or, what is equivalent Pr{v =0} =7 and Pr{v =0} =1—.
The (Fsp) assumption also has the consequence of simplifying the semi-

martingale representation for Y which is obviously now reduced to T; = To,
P,-a.s., for all t > 0. Using this fact we have E E(T,,6) = E.E(To,6) for

all 7 in 7,4. From this we compute,

EE(Y,,8) = E.&(Yo,)
= 7 F1&(To,8) + (1 — ) Eo&(To, 6)
= 7 EE(1,8) + (1 — ) Ex&(0,6)
= 7E[P1{6§=0}-140]+(1—m)Ep[0+c' 1{6 =1} 1]
= 7B [P1{§=0}]+ (1 —7)Eo[c'1{6 =1}]. (4.105)

Next, we choose the running cost C according to,

A

and note that C satisfies the cost assumptions (C1), (C2) and (C3): (C1)
and (C2) follow directly from (J1), (J2) and 4.103 while (C3) follows since C

is trivially concave in II. Now compute Bayes’ cost,

pe(r,6) = Eal [ Cods+E(T,,6)]
- WEI[/OTcsders(ro,a)]
+(1—W)E0[LTCsds+5(To,5)]
— WEl[/()TC(jS—1)d8+col{520}]
+(1—w)EO[/OTc(js—l)ds+c11{5:1}]
= p(7,0). (4.107)
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Hence, this choice of running cost and assumption (Fsp) reduce the
change detection problem as defined in Chapter 2 to a classical Bayes sequen-
tial detection problem. Indeed, when viewed as a change detection problem,
a sequential detection problem is seen to be the extremal case: the lack-
of-change change detection problem. We can therefore solve the sequential
detection problem by solving the optimal stopping problem (P) of Chapter 2
under the conditions prevailing in the current section. The plan of course is
to solve the optimal stopping problem using a first exit policy found by re-
course to the Verification Theorem. We end this subsection with a convenient
and complete reformulation of the sequential detection problem, taking into
account the nature of the observations, the sequential detection assumption,
and the choice of running cost.

On the probability space (2, A, P;) with = € [0,1] given, choose F; =
1{v = oo} so that the jump time v obeys,

P{v=0}=7n=1— P{v =00} (4.108)

Since T; = 1{v < t} we note that YT; = T for all t > 0, Pr—a.s. Thus, there
exist only two possible sample paths upon which P is concentrated. The

observations are given by,
t
Nt=/[(1—Ts)-1+Ts-Js]ds+n;’ Vit >0, (4.109)
0

where the intensity J satisfies 4.98, 4.100 and 4.101 in view of the technical
assumptions (J0), (J1), and (J2) imposed in the last section. Due to the

essentially two-valued nature of v we see that,

t
Nt:(l—To)H—To/ Jods+q0  Vt>0, (4.110)
0
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Figure 4.1: Terminal cost function. ¢® =2, =5 =2

and therefore,

t+ny 0<t<v=o00; (Noise Only)
N, = (4.111)
¢
/ Jods+7n7 0=0v<t<oo. (Signal Plus Noise)
0

Hence, choosing F' as in (Fsp) captures the classical sequential detection

set-up within the change detection set-up. Bayes’ cost is taken to be,
pr(7) = E,r[/OT ¢(Js = 1) ds + e(11,) ], (4.112)
with ¢ > 0 and where the terminal cost, e, is given by,
e(r) = min{’r, (1 —x)} Vwel0,1], (4.113)

with 0 < ¢! < oo (see Figure 4.1). For this choice of running cost an

admissible stopping time 7 is any O;—stopping time satisfying,

E,r/TCst:E,r/Tc(js—l)ds<oo. (4.114)
0 0

163



Thus, the change detection problem to solve which is equivalent to the se-

quential detection problem is,

(Psp): Find 7, € 7,4 such that p(7.) = ler%f px (7). (4.115)
T&iad

4.6.3 Escape Properties

The next question to answer is whether problem (Psp) is sufficiently well-
posed that the escape condition (E) is satisfied and then which of (E¥) or
(E°) holds. We note that (Fsp) implies that dF; =0 for all t > 0, P;—a.s., so
that T = Y, and the stochastic differential description of the sample paths

of II reduces to,

t(1 =1, ), (Joo = 1)
I, =1 = dm;, . 4.116
=T+ [, (4.116)

~

Recalling that U is defined to be the predictable version of (J —1)~" we can

rewrite this as,

(1 —TI,) I,
II; =11 /————— Y. 4.117
t 0+ o \I’s—f-Hs_ dﬁs ( ()

In Proposition 4.8 below we show that condition (J2) implies that (E*) holds
so that T, = I+ and I, = (0,1) and thus the trajectories of I are guaranteed

to escape any proper subinterval of (0,1).

Proposition 4.8 Under assumption (J2) the escape condition (E¥) holds,
i.e., given

Pi{/ (Jo=1)Pds=o0}=1 i=0,1,
0

then,
P {r' < oo} =1 Vrel, VieI® .
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Proof: Choose any Iin Z+ so that I = (a,b) with 0 < @ < b < 1 and suppose

7 € 1. Define the mapping R according to,

R(r):= l_i; V€ [0,1]. (4.118)

From Proposition 4.7 and 4.116 we obtain,

AT2(7T _ 1)\2
E,[R(lLx) - R(Tlo)] = E, [ UHC At Ve N (4.119)
o (1-1I,)
Obviously,
=% > E.[ R(Il1) — R(Io) ], (4.120)
and likewise,
1 H2(j _1)2 a? B
B, [ =S ds > B, [T~ 1) ds. 1121
o (1-1II,) LT a0 (J ) ds ( )
Moreover it is clear that,
1. 71 .
Eﬂ/ (J, = 1) ds > En[1{r* = oo}/ (J, — 1)2ds]. (4.122)
0 0
Combining these results yields,
o . 1—a)b
L[ 1{r! = s —1)2ds] < (1-a)b . 12
E.[1{r oo}/o (=17 ds) € =z < (4.123)

This last line yields a contradiction unless P,{7! = oo} = 0 because it is
obvious from (J2) that Pr{ [°(J, = 1)?ds = co} =1 for all 7 in L 0
Motivated by this proposition we are justified in searching for I, € I
so that if we write I, = (a.,b.) then 0 < a. < b, < 1 and moreover, in

view of Lemma 2.4, we expect that a, < 7. < b.. Before embarking on our
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search for I, however, we consider one more result which is companion to the
last. Indeed, while the last proposition shows (J2) implies that the II process
is guaranteed to escape any interval in Z, in finite time, in the following
proposition we will show (J1) guarantees that II can only escape lo, = (0, 1)

in infinite time.

Proposition 4.9 Under assumption (J1),

P,.—{TI°° =0} =1 V7 el

Proof: Fix 7 € I, = (0,1). From Proposition 4.5 we have
P.{sup |logLi| =00} =0 Vn>1, V7€ L. (4.124)
0<t<n

This fact is sufficient to imply that P,{r!* < co} = 0. Employing the Ito

stochastic integration formula one can show for all = € (0,1) that (see [MS,

App 1)),

s l—7 1II
L= —_— 4.12
x 1-1I ( 5)
From this it is obvious that,
1 1 .
(M = 31 = 3} = {llog L] = 0}, (£.126)
and therefore,
{r* < 00} C {|log L11ee| = 00} (4.127)
Hence,
P {r'> <0} = Pr{|log 1| = 00,7 < 00}
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Pr{|log Lyiee| = 00, Upz1{'™ < n}}

< Y Po{|log Liie| = oo, 71 < n}
n—l
< ZP { sup |log L¢| = 00, 7= < n}
n=1
< ZP { sup. |loth| = oo}
n=1
= lim Z 0=0, (4.128)
n=1
i.e., IT has no chance of escaping from I, = (0, 1) in finite time. o

4.6.4 Verification: A Stefan Problem

For easy reference, we state the verification conditions (V1)-(V4) for problem
(Psp) given in the previous subsection with I = (0,1), Too = I%, and

I, € Z+. We also incorporate the proposed running cost given in 4.106:

(Vla): Forallt € Ty,
Efr(IL) = ()] > —Ex / c(J—1)ds Ve [Lln;

(V1b): E r.(Il) —r(Ilg)] = —E; /Th J,—1)ds ¥r ¢ [Llm

(V2): ru() = () V€ Onls;

(V3): r.(7) < e(m) Vr & Onls;
and,

(V4): r. is bounded and continuous on [L]n.

Let us attempt to find r € BC'1(0,1), an attempt facilitated by the
availability of the generalized It6 stochastic integration formula given in
Appendix A. Taking the detection assumption (Fsp) into account, the Oy-

measurable linear stochastic differential operator Do, defined in 4.67 for all
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mappings r € BC'1(0,1) simplifies to,

Do, r(r) = [—(l —m)nr'(n)

R

v, +

) - r(w)]]\llt_l dt. (4.129)

With this in mind, for each t > 0 define another stochastic linear differential

operator Dy, via

U, +1
\I;t—i‘ﬂ'

D, r(x) = —(1 — 7)1 r'(x) + (¥, + W)[r( w) _r(r)], (4.130)

so that for all 7 in 7, Proposition 4.7 states,
E[r(IL) = r(Ilo)] = B, /0 U1 Dy, r(IL,) ds + J2(I1). (4.131)
Hence, we can rewrite (Vla) as,
E, /OT(J; — 1) Dy, r(I,) ds + J2(I1) > E, /0 (—e(J,— 1)) ds, (4.132)
and (V1b) as
E, / J,—1) Dy, r(Il,) ds + Jo, (II) = E, /0 (—e(ds - 1)) ds. (4.133)

We note that
JI()>0  VreBC™*(0,1), (4.134)

and if r, € BC'*(0,1) exists satisfying (V4) then,
T () =0. (4.135)
Therefore, to arrange for (V1) it is sufficient that r, satisfy,

Dy, ru(r)=—c V>0, Pras, V7€ (0,1), (4.136)
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provided (V4) is also satisfied.

Here we see that we have arrived at a major difference between the point
process case and the diffusion case. In the last expression the left-hand side
is stochastic while the right-hand side is deterministic—simply factoring out
the drift term does not lead to a deterministic Stefan problem as it did in
the diffusion case. The only easy way around this state of affairs is less than
satisfactory, but not exactly trivial either, and that is to assume that J and
therefore J is a constant rate. With this choice the conditions on J, namely

(J0)—(J2), reduce to J > 1. We therefore make the following assumption,
J=u"+1, (4.137)

for some u > 0so that J > 1 and ¥, = u for all ¢ > 0. With this simplification
the stochastic differential operator Dy, becomes deterministic. As in the
diffusion case we will let D denote the deterministic differential operator,

namely,

u+1
u+7

As for conditions (V2)—-(V4) we need to compute dn L. We know that since

Dpr(r):=-(1 —7r)7rr'(7r)+(u+7r)[r( 7r) —r(x)]. (4.138)

I, satisfies the escape condition (E) with respect to II then On L. # 0. In this
case then, because the sample paths of the martingale II are Pr-a.s. only

right-continuous we see that,
o7 L = {a.}, (4.139)

while due to the possibility of jumping across b,

u 41

+ —
A

b.). (4.140)
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Hence,

1
B Ly = {av, [br, +b b))}, (4.141)
and,
u+1
[LIn = [ar, 2 bo) (4.142)

Let’s restate the verification conditions with these changes. Thus, we seek

r« € BC'1(0,1) and L, € TT,

(S1): Dp r.(m) = —c Ve (0,1);

(S2) : re(m) = e(r) Ve {a.,[b., 255 )15
(S3) : T (T) < e(r) Vr & {a., [b., 25- b))
(S4): r. is bounded and continuous on [a., 5 b.).

Conditions (S1) and (S2) give us another free-boundary-value problem, a
functional-differential variant of the ordinary differential Stefan problems
(2nd order) considered in the last chapter. The functional constraints (S3)
and (S4) serve to uniquely determine a solution amongst all the solutions
o (S1)-(S2). In the next subsection we will show that (S1)-(52) has a
unique solution pair (., L) which satisfies (S3)-(S4) and therefore an appeal
to the Verification Theorem will imply that 71+ € 7 solves problem (Psp).
The proof of the existence and uniqueness is carried out with convexity-like

notions having the same flavor as those employed in the diffusion case.
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4.6.5 Analysis of the Stefan Problem

We now proceed to solve the problem posed by (S1)-(S4). From 3.152 we
know that Dy r for r € C'*(0,1) is given by,

u+1
U+

Dpr(z) = —7(l —m)r'(7) + (u + 7) [r ( 7r> - r(r)] Vre(0,1),

(4.143)
where the derivative r’ is of course computed from the right. For notational

convenience define the advance operator A, via,
u-+1
U+
Fix any a, b € (0,1) satisfying 0 < @ < 7 < b < 1 and a < b, define

A, 7= T 0<7<l. (4.144)

I = (a,b), and consider the following functional-differential equation (FDE)
for r € BC'*(0,1),

—n(l=m)r'(r) + (u+ 7) [r (Auw) —r(7)] = —c Vxe(0,1);
r(r) = e(r) Vx € lb Aub);
r(a) = e(a). (4.145)

We emphasize that the choice of a and b satisfying 0 < a < 7 < b < 1is
motivated by Lemma 2.4. The connection between the above FDE and (S1)-
(S2) should be clear. Under the assumption that c, ®, and ¢! are positive
and finite, it follows from elementary FDE theory (see [MS]) that a unique,
nontrivial solution to (S1)~(S2) exists; call it r;, with r, € BC' (0,1) (see
Figure 4.2). Define the auxiliary function, s, := r, — e (see Figure 4.3). To
maintain the analogy with the diffusion problems we define the generalized

hyperplane £, “supported” by s, to be that function in ker Dy,
kerDp := {r € BC'*(0,1) : Dur =0}, (4.146)
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Figure 4.2: Graph of e and r, with I = (%, 1%), c=3,u=1

Figure 4.3: Graph of s, =71, —e.
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Figure 4.4: Graph of £, “supported” by s,.

for which,
L () > s,(m) V= elo,1], (4.147)

and

Lo(m) = s,(m) V7 eonl (4.148)

The construction of this “hyperplane” is carried out in Appendix B and is
depicted in Figure 4.4 and Figure 4.5. Now we can define the two numbers
a, and b, via,

ay = sup{m < e : bu(w) = 5,(7) }, (4.149)

and

b, :=inf{m > 7. : Lu(7) = s,(7) }. (4.150)

Since these sets are compact while s, and £, are continuous on (0, A, b), we

see that s,(a.) = £(a.) and s;(b.) = £i(b.) and by definition 0 < a. < 7 <
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Figure 4.5: Graph of Z..
b, < 1. Hence, if we define,
ro(7) =1 (7) — Lu(7), (4.151)

then obviously,

ro(m) < e(w) Vrel[0,1], (4.152)

and moreover,

ra(as) = m(a) - bfa)
= e(a) + (r,(a.) — e(a.)) = L(ax)

= e(a.) + 8,(ax) — lu(a.) = e(a.). (4.153)
Similarly, one can show,
ru(b.) = e(b.), (4.154)
and in fact,
r(m) =e(r) V7€ [b, Aubs). (4.155)
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Hence, (7., L) satisfies (S2). In addition note that,
Dnpr.(r) = Dnry(r) — Dnlu(7) = —c — 0 = —c, (4.156)

and therefore r, satisfies (S1) also. Moreover, in view of the strict concavity
of r, on (0,b.), and its behavior on [A, b, 1) (see Appendix C), it follows
that the inequality in 4.152 is strict off of On L., i.e.,

ro(7) < e(r) V7 & {an, [bay Au b)), (4.157)

and this gives (S3). Thus, r. as defined in 4.151 and I. : = (a.,b.) solves
the Stefan problem posed by (S1)-(S2) with the functional constraint (S3).
The “convexity analysis” above also shows that I. € 7%, i.e., I, is a proper
subinterval of I, = (0,1). As pointed out earlier, given (E) the fact that L.
is a proper subinterval of I, implies that [L, i is also a proper subinterval
of I, and indeed [a.,.A,b.) C (0,1). Condition (54) is obtained since r, €
BC([L.]n). In addition, our analysis shows that a. < 7. < b.. It only remains
to show that the running cost conditions are satisfied. We consider this point

and present the theorem for sequential detection in the next subsection.

4.6.6 Main Result

Consider the following technical conditions involving the intensity process

and its P;—projection onto the observations:

i
(J0): E,-/Jsds<oo Vi>0, i=0,1;
0
(J1): Ei/ J2ds < oo VreT, i=0,1;
0
(J2): P,-{/ Jds =0} =1 i=0,1.
0

We have come to the main result of this section.
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Theorem 4.1 Assume that the conditions (J0), (J1),and (J2) hold. In the

problem of sequential detection based on observations of the process,

t
/\O/OJsds—Fm t>0 if v=oc;

Nt“' 1
/\1/Jsds+nt t>0 if v=0,
0

with A\! > A\° > 0 and with average running cost,
E,r/OTCsds = E,r/Ochsds c> 0,
and average decision cost,
EE(T, 8] =E [ (1-8)T,+c'6(1—T,)]

with 0 < °, ¢! < oo, there exist a.,b, unique with 0 < a, < 7 < b < 1,
such that the first exit policy (71+,6.) based on the continuation interval L. =

(@, b.) achieves Bayes’ optimal cost, i.e.,
pr(re) = inf pe(r)  Wre (o1,

T€Tqa

where,
pu(7) = E,r[/f Cods +e(IL,)] Vrel0,1] and 7 € Tou.
0

In addition, there exists r, € C1*(0,1), the solution to (S1)-(54) above, such

ro(m) ifw €L
pw(T")={ ) yme

that

e(r) ifn ¢l
where,

e(r) = min{’ 7, (1 — m)}.
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Proof:

In the previous subsection we solved an associated Stefan problem for
which it was shown that there exists a pair (r., L) satisfying (S1)-(54). This
Stefan problem grew out of a binary hypothesis testing problem comparing
an intensity process J against a unity intensity. The reader may check that
it is only the ratios of the intensity that matter and here that ratio is i—é

Thus the same results apply if we interpret u as

/\0

With these changes, the results of the last subsection serve to demonstrate
the existence of a pair (., 1.), . € I* and r. € BC(Z*), which satisfy (V1)-
(V4). Moreover, [L]n = [ax, Auby) is a strict subset of (0,1) and therefore
(V4) is also obtained.

To employ the Verification Theorem and therefore prove the theorem at
hand it remains only to show that (C1), (C2), and (C3) hold since (E) follows
from Proposition 4.8. With the above choice of running cost we see that (C1)

follows a fortiori from (J1) since,
E,r/TCsds = ’K‘E1/chsd8 +(1- W)Eo/TstdS < oo. (4.159)
0 0 0
Next, it is obvious that (C2) follows from (J2) since ¢ > 0 and thus,

P,,{/OooCsdszoo} = WPl{/()ooc.jsds}+(1—7T)P0{/Ooocjsds}
— rl4(l-m)-1=1 (4.160)

Finally, condition (C3) follows since the running cost C is trivially concave in
. Thus 7' is the optimal stopping time for this problem and r, characterizes

Bayes’ cost. 0
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4.6.7 Example

We end this section of the chapter with a concrete example of a sequential
detection problem involving a Poisson process with one of two constant rates.
We observe a Poisson counting process N = {N;}i»0 for which one of the

following hypotheses is true:

(Unit Rate) : Ny =t+n t>0;
(Higher Rate) : Ny = At 4+, t >0,

where 7 is a (G, P;)-martingale for ¢ = 0, 1 and A > 1. It is given that the
(Higher Rate) hypothesis occurs with prior probability 7 € [0, 1]. Define the

Bayes’ cost,
pr(7,8) =7 EylcT + P1{6 =0} ]+ (1 — 7) Eole + ' 1{6 = 1}], (4.161)

where ¢, ¢, and ¢! are strictly positive and finite. We are asked to minimize
pr(7,8) over all decision pairs for which P;{r < oo} =1for:=10,1.
We see that this is precisely the form we are equipped to handle and our

choice of running cost collapses down to
/ Csds = cr. (4.162)
0

We point out that each of (J0), (J1) and (J2) are trivially satisfied. Thus
we can apply Theorem 3.1 to deduce that an optimal first exit policy exists.
One can solve for the optimal pair (r.,1.) using the “convexity” approach
given above. The graphs in this case for ¢ = 1 and A = 2 are depicted in
Figures 3.1 through 3.5. The graph of p, the Bayes’ optimal risk is given

in Figure 3.6 along with the worst case risk. Figure 3.6 neatly shows quite
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clearly that the so-called smooth pasting property of p and e as discussed in

the literature is not obtained for the Poisson process case.
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0.2 0.4 0.6 0.8 '\L\1
_1'..

Figure 4.6: Graph of e and r, with a, ~ 0.60445, b, ~ 0.76627.

Figure 4.7: Graph of terminal cost and Bayes’ optimal risk.
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Chapter 5

Conclusion

In this thesis we considered problems of change detection under Bayesian
assumptions for the costs and prior information. Our data streams were
modeled using semimartingales so that we could employ modern martingale
filtering results. We considered sequential detection problems and disruption
problems in a unified framework using the simple device of allowing the
time of change to take on possibly infinite values and defining its general
probability model on this larger set.

We circumscribed a set of conditions, called the verification conditions
which permit one to verify the optimality of a proposed threshold policy. We
showed that under certain modeling assumptions made with respect to the
observed data and performance costs that the verification conditions reduce
the problem of searching for an optimal first exit problem to solving a kind
of free boundary value problem. We showed how to solve this kind of Stefan

problem in three problems of change detection using the same abstract ap-
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proach. This approach was likened to a kind of convex analysis involving the
notion of generalized hyperplane. Whether the validity of this viewpoint will
be borne out by future investigations remains to be seen, but the authors feel
strongly that the viewpoint deserves merit. The major difficulty to achieving
a complete notion of generalized convexity along the lines of [BECK] turned
out to be the lack of continuity generic to the solutions of the FDEs which
have been called the bugbear of the subject [MHAD]. This notwithstand-
ing, using the results contained herein, the actual solutions for the optimal
thresholds are now easily obtained with roughly the same amount of work
in the jump process case as in the diffusion case. Computationally at least
therefore, our work goes a long way towards taming the animal. Moreover,
the methods employed here are sufficiently general to allow one to compute
the optimal thresholds in examples which we did not consider. This is made
possible by the discovery of the algorithm for computing the optimal con-
tinuation interval which relies on the sequence of approximating generalized
hyperplanes. This algorithm, which has the same specification irrespective
of whether the noise is impulsive or not, amounts to an efficient method to
compute the optimal thresholds, a task which has always been considered
impractical and next to impossible. Much of the thesis was devoted to show-
ing that it also provides the basis for an abstract theory powerful enough to

prove that optimal first exit policies exist and can be characterized.
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Appendix A

Some Integration Formulas

In this appendix we give some generalizations to Lebesgue-Stieltjes integra-
tion formulas. In the lemma below the formula given is the same as the usual
one under a modest relaxation of continuity of the derivative of the compos-

ing function. We will denote by X° the continuous part of X, namely,

X{:=X, - [X,—X,_] Vt>0, (A.1)
s<t
where,
Xeo:= lings vVt > 0. (A.2)

Lemma A.1 Let {X;}:>0 denote a real-valued corlol function of bounded
variation. Let F : ® — R be continuous with a piecewise-continuous deriva-
tive having at most a finite number of discontinuities'. Then,

F(X)=F(Xo) + [ (X dXE + SIF(X.) — F(X.0)] Vi 0.

s<t

10r, a countable set of isolated discontinuities, i.e., with no accumulation point.
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Proof: Suppose F' has a single jump discontinuity in its derivative at = € R;
for convenience we can take x = 0. We know that we can approximate I
with a sequence of continuously differentiable functions {/}}n>1 such that
F,, converges uniformly to F on ® and F, converges in L' to F'. Since F), is
continuously differentiable for all n > 1 we may apply the usual Lebesgue-

Stieltjes formula [E, L13.2] to obtain,

Fo(X) — Fa(Xo) :/()tF;(Xs)dX;+Z[Fn(Xs)—Fn(XS_)] Vi>0. (A.3)

s<t
The limit on the left-hand side is obviously F(X;) — F(Xo). As for the
right-hand side, begin by writing,
/ F(X,)dXE = / FI(X,)dXE, — / FI(X,)dXS,  (A4)

where X¢, X§ denote the positive and negative variation of X°, respectively.

Using the Bounded Convergence theorem we have for each : = 1,2,

lim / F!(X,)dX¢, = / CP(X,)dxe,, (A.5)
and hence there follows,
lim / F'(X,)dX¢ = / F'(X,)dX¢. (A.6)
As for the summation, define,
B(F,X,1): = sup{|F'(@)] :0 < |a] < sup |X.] }. (A7)

Letting [z]+ denote max{0, £z} we see that,

Z[Fn(Xs) - Fn(Xs—)]:l: S B(Fna X’t) E[Xs - Xs—-]ﬂ:: (AS)

s<t s<t
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and clearly,
B(F,,X,t) < B(F,— F,X,t)+ B(F, X,t) Vt>0. (A.9)

Also, since the set {z € R : 0 < |z] < sup,;|X,|} is bounded for all ¢ > 0
and since the convergence of F! to F' is uniform almost everywhere, for any

€ > 0 we can find n large enough such that,
B(F, — F, X,t) =sup{|F.(z) — F'(z)| : 0 < |z] <sup [X,[} < 1. (A.10)
s<1
Therefore, letting B; : = 1 + B(F, X, 1) we see that for large enough n,
D Fa(Xs) — Fu(Xs2))z < By > IXs — X,-| < oo, (A.11)
s<t s<t
and so by the Monotone Convergence theorem,
lim SIF(X) — (X, e = SIF(X) = F(X,)le <o0. (A1)
s<t s<t

As a result,

Jim D[R (X0) = (X)) = IP(X) = Pl
i i ~ SIF(X,) - F(X,-))-

s<t

= Y [F(X,) = F(X,)) (A.13)

s<t
Thus, taking limits in A.3 gives us the result for F' having a single disconti-
nuity in its derivative. The general case simply follows by linearity. O
In the next lemma and its corollary we consider a degenerate Lebesgue-
Stieltjes integration formula for the case where the derivative of the compos-

ing function is zero almost everywhere.

185



Lemma A.2 Let {X;}:>0 denote a real-valued corlol function and let Dy
denote the set of points at which X is not continuous. Assume that X is

decreasing on Dx, nondecreasing off of Dx, and that Dx is finite. Suppose

F(@::{O z <0

1 z2>0.

that F is given by,

Then {F(X:)}i>0 is corlol and obeys the formula,
F(X) = F(Xo) + YIF(X,) - F(X0)] V20,
s<t

where,

F(z7) :=lmF(y).

Proof: It is helpful to consider Table A.1. The first two rows of the table
identify the zero-crossings of X which affect F'(X). According to these two
entries we may write for all £ > 0,
SIF(X,) - F(X) =2 1{X,=0=X,_} - 1{X, <0< X,_}]. (A.14)
s<t s<t
The third and fourth rows of the table delineate the “not-quite” zero-crossings
of X which have no effect on F'(X). The last two rows are those discontinu-

ities of X which quite obviously have no effect on the trajectories of F'(X).

Let’s check the formula. Assume that F(Xo) = 0; the argument for
F(Xo) = 1 is entirely symmetric. Observe, F'(Xo) = 0 implies Xo < 0. If
X, < 0 for all s < t then A.14 is identically zero and F(X;) = 0 = F(Xo)
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t>0 F(Xy) | F(X) | F(Xy) - F(XD)
X <0< Xi 0 1 -1
Xi=0=X,_ 1 0 1
X <0=X, 0 0 0
X, =0< X;_ 1 1 0
X< X <0 0 0 0
0< Xy < Xim 1 1 0

Table A.1l: Zero-crossing behavior of I

verifies the formula. So suppose instead that X; > 0 for some s < t. Either
X; > 0 or not. Consider X; < 0. Then X; < 0 < X, and F(X;) = 0 which
says that X must have zero-crossed an even number of times: an odd number
of times, say n > 1, in a continuous manner and the same odd number of

times discontinuously. Thus we see that F'(X) again obeys the formula since,

F(X:) = F(Xo)+ > [F(X,)— F(X;)]

s<t
= 0+ X, =0=X,_} - > X, <0< X,_}
s<t s<t
= n—n=20. (A15)

Now consider the remaining case X; > 0 for which F(X;) = 1. Here, X
has zero-crossed an odd number of times: n times continuously and n — 1

times by jumping. Once again F'(X) obeys the formula since,

F(X) = FX)+Y 1{X,=0=X,_} -3 1{X, <0< X,_}

= 0+n—(n—-1)=1. (A.16)
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Consequently, it follows that F(X) satisfies the formula in general and we
can now employ it to show that F/(X) is corlol. That F'(X) has limits on the

left is clear. To see that it is also continuous on the right note that,

lim F(X,) = F(Xo)+1i§?Z[F(Xs)"F(Xs_—)]

ult

= F(X)+lim _2; [F(X)) - F(X;)]
= F(X)+lim 3 [1{X.=0= X} = X, <0< X, }]
- Ry, (A1)

and this completes the proof.

Corollary A.1 Suppose F : ® — R is right-continuous and piecewise con-
stant. Let Dp denote the points at which F is discontinuous. If Dp 1is

countable and has no accumulation point then,

F(X,) = F(Xo) + > [F(X,)— F(X;_)] Vt>0.

s<t

Proof: Write Dr = {1, z2,...} and denote the jump sizes via,

Jni= F(z,) — F(z,;) Vn2>1. (A.18)
This implies that,
F(z)=) jul{zn <z} VzeR, (A.19)
n=1

and of course there are no convergence technicalities since the summation 1s

in fact finite due to our assumptions concerning Dp. Now define,
Fo.(z):=1{z, <z} VzeR, (A.20)
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so that from the lemma we obtain (by a simple translation of the origin),

Fo(X,) = Fa(Xo) + IFu(X,) = Fa(X2) (A.21)

<t

Plugging this into the above yields,

F(Xy)

(e o]

> jn Fu(X0)

n=1
0

> Jn
n=1

> in (o) + S g [Eu(X.) = Fu(X2)]

n=1 s<t

Fu(Xo) + D _[Fa(Xs) — Fu(X[2)]

s<t

F(Xo)+ [ wl Jn Fu(Xs) — gjljn Fn(X;)]

s<t tn=

F(Xo)+ Y_[F(X,) — F(X.)], (A.22)

s<t

i.e., we get what we want by exploiting linearity. a

In the next proposition we combine the previous lemmas to give an in-

tegration formula which is a modest generalization of the usual Lebesgue-

Stieltjes formula.

Proposition A.1 Let {X;}i>o denote a real-valued corlol function as in

Lemma A.2 and let F : ® — R be a right-continuous function with a

piecewise-constant (right) derivative F', both F' and F' possessing a finite

number of discontinuities. Then,

F(X) = F(Xo) + [ P(X)dXE+ SIF(X) - F(XZ)] Vi o.

s<t
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Proof: Define the function,
Fi(z):= ) [F(w)—- F(w™)] YzeR, (A.23)
w<z
which is seen to satisfy the hypotheses of Lemma A.2 (right-continuous, finite
number of positive jumps). Now if we define F; := F' — Fi, then F; satisfies
the hypotheses of Lemma A.1 (corlol, continuous, F" piecewise continuous).

Therefore, applying Lemma A.1 to F; gives,

Fy(X,) = FQ(X0)+/0t B, X4 IR(X) - BAXD)] V120, (A20)
and applying Lemma A.2 to F} yields,
R(X) = Fi(Xo) + TIR() = B (A.25)
Hence, because ' = Fy + F; these res-ults give,
F(X) = P(X0)+ | F(X) dXE+ T () = Fy(Xoo) = RO (420
Clearly,
/ "FIX)dXE=0 Vi>0, (A.27)

and also
X))+ RA(X ) =FRX.)+RR(X_)=FX_) vt=0. (A.28)
Substitute these two expressions into the previous and simplify to obtain,

F(X) = F(Xo) + [ F(X,)dXs + IF(X) - F(X)] V20, (A29)

s<t

and this is the result. O
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Before ending this appendix we include another proposition which is com-
panion to the previous. It considers the case where F' is still right-continuous
but X instead has positive jumps and is otherwise decreasing. In this case
the formula can be changed slightly in order to work, but it fails to hold
on a set of measure zero. Moreover, due to the “incompatible” continuity
handedness of F' and X we cannot conclude that F(X) is corlol, indeed,
in general it is neither right-continuous nor left-continuous although it does

possess limits on both the left and right. We start as before with a lemma.

Lemma A.3 Let {X;}:iy0 denote a real-valued corlol function and let Dy
denote the set of points at which X is not continuous. Assume that X 1is
increasing on Dy, nonincreasing off of Dx and Dx is finite. Suppose I is
right-continuous and piecewise constant. Let Dp denote the points at which
F is discontinuous. If Dp is countable and has no accumulation point then,
F(X,) = F(Xo) + 2_[F(Xs) = F(X)] Vt=20,
s<t

except on the finite set {t > 0: X,- < 0= X,}.

Proof: For simplicity we can argue with F(z) = 1{0 < z} as in Lemma A.2.

Consider the analogous table, Table A.2. From this table it follows that,

STF(z;) — F(X) =Y [1{Xe- <0< X} —1{X,- =0= X, }]. (A.30)

s<t s<t
We can now repeat the arguments of Lemma A.2 and its corollary to prove

the claim. 0
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t>0 F(X7) | F(Xeo) | F(X7) — F(Xe-)
Xi- =0=X, 0 1 -1
Xi- <0< X, 1 0 1
Xi- < Xy <0 0 0 0
Xi- =0< X, 1 1 0
X;i- < 0=2X, 0 0 0
0 < Xi- < X; 1 1 0

Table A.2: Zero-crossing behavior of F

As for F(X) not being corlol in the lemma above note that when X;_ =

0 = X,, i.e., when X crosses the origin continuously (downward) we have,
F(Xy) = li%lF(Xs) =1#0= liglF(Xs). (A.31)

So, F(X) cannot be right-continuous. On the other hand, if X;- <0 < X,
then,

F(Xy) = liElF(Xs) =1#£0= liglF(Xs). (A.32)
So, F(X) is not left-continuous either. Even more pathologically, if X;_ <

0 = X;, then FI(X;) =1 but,

im F(X,) = 0 = lim F(X,). (A.33)

st sit

Note that from a stochastic viewpoint, for instance when X is some count-
ing process, things are typically arranged so that the event {X;_ <0 = X}
has zero probability. Such events can be handled so that F'(X) can usually
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be replaced by a stochastically equivalent left- or right-continuous version
by employing a standard process modification argument. Therefore when we
compose F' with a stochastic process of locally finite variation and bounded
mean, the deterministic requirement that X possess a finite number of dis-
continuities is replaced by an assumption that X is non-ezxplosive. In this
way the results carry over via simple pathwise arguments. We can now state

the final result of the appendix.

Proposition A.2 Let {X;}:>0 denote a real-valued corlol function as in
Lemma A.8 and let F : ® — R be a right-continuous function with «a
piecewise-constant derivative F', both F and F' possessing a finite number
of discontinuities. Then,
t
F(X:) = F(Xo) + / F(X,)dX + SIF(XD) - F(X,.)] ¥t>0,
0 s<t

except on the finite set {t > 0: X,_ < 0= X,}.

Proof: Use the same arguments as in Proposition A.1. a
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Appendix B

Construction of the

Generalized Hyperplane

The purpose of this appendix is to prove the existence and uniqueness of
the generalized hyperplane associated with the computation of the optimal
thresholds in the detection problem for the jump process case. The proof
consists of a limiting argument involving a sequence of (generalized) approx-
imating hyperplanes. It is somewhat constructive in the sense that it suggests
a practical algorithm for computing the optimal thresholds.

Recall the problem posed by (S1)-(S2) (see Chapter 4, Section 5). Define

the linear functional-differential operator D, for all r € C**(0,1) via,
D,r(r)i= —7(1 = m)r'(z) + (u+ 7) [r (Auw) — r(7)]. (B.1)

The derivative r' is understood as taken from the right and,

1
Ay () ::Z:: s 0<w<1l,u>0. (B.2)
T
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With a, b € (0,1) satisfying 0 < a < 7. < b < 1 and a < b, the problem in-
volves the following functional-differential equation (FDE) for r € C'*(0,1),

D,r(r)=-c V7re(0,1), (B.3)

together with the equality constraints,

r(r) = e(x) Vmeb Aub). (B.4)

The unique solution to this FDE is given explicitly in Appendix C which for

convenience we repeat here,
r(m;a,b) = ex(n) + d(7; b) + D(m; b) + K (a,b) H(m;0) Vx € (0,1), (B.5)

with u, e1, d, D, K and H given also in Appendix C. The reader can verify
that B.5 satisfies B.3, in fact for any 0 < ¢ < b < 1. In what follows we
shall give a recipe for choosing a sequence of continuation intervals (an, b,),
n =0,1,..., with endpoints satisfying 0 < an < 7. < b, <1 and a, < by,
which converge to the optimal continuation interval (a.,b.). Equivalently,
this will define a sequence of functions r, which converge pointwise to r,, the
solution to (S1)—(S4) for the jump case.

An important ingredient in our recipe is the gap function defined for

a € (0,1) via,

G(w;a) :=limr(z;a,7) — e () O<a<m<l (B.6)

zln

The gap function with respect to any a € (0,1) gives us for each 7 € (a,1)
the height of the discontinuity in r(-;a, ) at . It is shown in Appendix C
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Figure B.1: Graph of e and ro with ® =2, ¢! = 5; A =1, \! =2, ¢ = and

—_ 3 — 9
@0 = 150 bo = 10°

that G(-;a) is a continuous function for all @ € (0,1) and that,

li{nG(W; a) <0, (B.7)
while,
liglG(r;a) > 0. (B.8)

Hence, for any a € (0,1) there exists b = b(a) € (a,1) such that,
G(b;a) = 0. (B.9)

This property of the gap function will be exploited at key steps in the con-

vergence argument below.
STEP 1. Pick ao € (0,7.) and bg € (7, 1). Let rq denote r(-; ao, bo); for a
graph of rg see I'igure B.1.
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By definition r¢ crosses the terminal cost function ‘triangle’ e at ag. In
general there will be two distinct crossover points to the left of m., ay and @y,
at which r¢ crosses e; obviously ag € {ag,@o}. If there is only one crossover
point, i.e., ag = @o then skip to the last step of the argument. Otherwise

assume g, < @o. Before proceeding we need the following lemma.
Lemma B.1 Fiz b € (0,1) and consider L € ker D, such that,
L(r)=0 Vx> b. (B.10)

Suppose L has a continuous derivative on (0, A;b) and is positive at A7'b.

Then L is positive and decreasing on (0,b), i.e.,

L'(r) <0< L(x) V7 <b. (B.11)

Proof: Let B denote the point to the left of b for which A, B = b; therefore
we may write B = A_b for simpler notation in the proof. Since L € ker D,

we have,

U+

ity

[L(Au7) — L(7)] Ve (0,1), (B.12)

so that the assumption L = 0 on [b,1) leads to,

o= [

Integrating this ODE yields,

]L(r) V€ [B,b). (B.13)

Lix) = LB)exp{ ]

ds} Y el[B,b). (B.14)
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Hence L(B) > 0 implies L is positive on [B,b). As a result,
L'(r)<0< L(x) V= el[A]'b,D). (B.15)

The remainder of the proof is an induction argument. Pick n > 1 and

suppose,

L'(x) <0 < L(r) V7 e[A;"b,b). (B.16)

Thus,
L'(A;™b) <0, (B.17)

so that by the continuity of L’ on (0,.A;"b) there exists a smallest mo €
[A-""1b, A=™b) such that,

L'(r)<0  Vme(m,A")). (B.18)
From expression B.12 we obtain,
L(m) > L(Ay7mo) V7 € (7, A,"D), (B.19)
and thence by continuity,
L(mo) > L(Aymo). (B.20)
In fact, since L is strictly decreasing on (7o, A;"b) we have,
L(mo) > L(Aymo). (B.21)
Now by the upper inequality B.16 of the induction hypothesis this leads to,

L(mo) > 0, (B.22)
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and using B.12 again,
L'(m) < 0. (B.23)

As a result we must conclude that 7o = A" 'b and then,
L'(r)<0< L(r) VYmel[A" b, A;"D). (B.24)
A final appeal to B.16 gives,
L'(r) <0< L(x) Ve [A;""b,b). (B.25)

Since any 7 € (0,b) is contained in a semi-open interval of this form for some

n > 1 the lemma is established. a
With this lemma in hand we may proceed.

STEP 2. Pick a; € (ag,ao) and define,

Ly(7) := [%—1—)—} H(r; bo) 0<m<l. (B.26)

It is not too difficult to show for any b € (0,1) that H(-,b) is in ker D, and
also that it satisfies the hypotheses of the lemma above. As a result L; as
defined above also satisfies these hypotheses. Now define Ry via Ry := ro—L;.
The graph of L; together with ro — e is given in Figure B.2. For a graph of
ro and R; together with e see Figure B.3.

Observe that R; lies strictly below g on (0, bp) because Lemma B.1 en-
sures that L, is positive. Moreover, given the fact that L; is in ker D, it

follows from the existence and uniqueness properties of the FDE that,

Ri(7) =r(m;ay,00) Vme(0,1). (B.27)
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Figure B.2: Graph of ro — e and L; with a; = 3.

Figure B.3: Graph of rg and FR;.
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Figure B.4: Graph of the gap function for a; = 5%, by = b(a;) =~ 0.8355.

Again, in general R; will cross e in two places say A and A; see Figure B.3.
Without loss of generality we may supose that a; = A. It follows obviously

from the positivity of L; that
0<A—A<d— g (B.28)

In the next step we employ the gap function G which was defined in B.6.
STEP 3. Define b; € (a;,1) to be the solution to G(7;a1) = 0 (see Fig-
ure B.4) and let v denote r(-; a1, b1).

By definition r; is guaranteed to cross e at a;. For a graph of r; together
with R; see Figure B.5; a graph of the initial approximation r is displayed
with r; in Figure B.6. What is crucial to the success of the present argument
is that r lies entirely beneath ro on at least (A, A). This is because it is our
intent to show that (a;,a1) C (ag,d) where @, and @; denote the crossover

points for r; which lie to the left of 7.. In fact, what appears to be true is
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Figure B.5: Graph of R; and r;.

Figure B.6: Graph of ry and ryq.

202

=



the stronger fact that r; lies entirely beneath Ry on (A4, A). However, a proof
of either of these hypotheses has not yet been obtained. Instead, we content
ourselves with a more complicated argument, namely choose by as close as
possible to the solution to G(=;a;) = 0 so that the upper crossover point of
r, remains less that or equal to @. Since the crossover points of the solution
to the FDE depend continuously on the initial data (see Appendix C) this
can always be done. In doing so we see that we have at least reduced the

gap by a positive amount and are ensured that,
0 S a] - Ql < EO - _@0. (B.29)

We can now iterate the entire process defining a,, and @,, R,, b,, and r,

in the obvious way. In doing so we are guaranteed that,
0<a, —a, <Gp-1 — @G,y VYn=>1 (B.30)

Hence we may define,

a, := lim @, = lim q,, (B.31)

n—oo n—o0

and then take b, as the solution to G(7;a.). Lastly, define r, via

ro(r) i=r(r;a.,b) V7€ (0,1). (B.32)
The function r, satisfies the FDE by definition but also satisfies,

re(m) < e(r) Ve (0,b)\ {al}, (B.33)

as is clear from the construction of a.. Of course r, equals e at a. and on

[b., A,b,) since it is a solution of the FDE. For values above A,b., 7 is also

203



0.21
0.15¢
S ~—
0.1
0.05¢
0.2 0.4 0.6 0.8 1

Figure B.7: Graph of ..

strictly beneath e since this is a general property of every solution to the
FDE as shown in Appendix C. Finally, we define ¢, uniquely according to
¢, :=ry — r, and this is precisely the generalization to the hyperplane in the
diffusion case which we seek. The graph of £, for particular values of ap and
by is displayed by itself in Figure B.7 and with r¢ — e in Figure B.8.  For
completeness the graph of r, is depicted in Figure B.9.
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Figure B.8: Graph of ¢, and ro — e.

Figure B.9: Graph of e and r, with a, =~ 0.4750 and b. = 0.8325.
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Appendix C

Auxiliary Results

The purpose of this appendix is to set down some of the formulas used in
Chapter 4 and Appendix B and to give arguments for the various existence,
uniqueness and continuity properties of which we have had occasion to make
use. To get things off the ground suppose that X : (0,1) —  is given both

continuous and monotone such that
X(r)=-X(1-m) Ve (0,1). (C.1)
Then if we define « via,
v(a,b) :== X(b) — X(a) 0<a,b<l, (C.2)

this implies that + is a continuous mapping of the (open) unit square such
that y(a,-) : (0,1) — R is nondecreasing for a € (0,1) fixed, and for which
v(-,b) : (0,1) — R is nonincreasing for b € (0,1) fixed. In addition it implies
that,

v(a,b) =y(1 = b,1 —a) Va,be (0,1). (C.3)
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Next consider the trick floor function | - | : &+ Z defined as,

o] = { |z] if |z < x; (C.4)

lz] =1 if |z] =,
where |-| denotes the usual floor function. The adjective trick is suggestive
of an obvious extension to Knuth’s picturesque appellation floor function
namely, a floor function with a ‘trapdoor’. Another way to view | - | is as a
left-continuous version of the right-continuous floor function. Having defined

these objects we go on to define,

I_'y(a,,b)_|_ (_1)n
H(a,b;0) = o a"[y(a,b) —n]"  0<a,b<l, (C.5)
n=0 :

for @ > 0 and,

|_'y(a,b)_|—l n (_1)m
D(a,b; e, B) := Z o™ Z —~ ™ [v(a,b) —n —1]" 0<a,b<1,
n=0 .
(C.6)

m=0

for both « and 3 positive.

With these quantities in hand we can now give a complete and concise
definition of the solution family {r(-;a,b) : 0 < a < b < 1} for the Stefan
problem arising in the Poisson process case. This description can be found
with minor notation changes in [MS] and [B&M]. In particular for all a,b

such that 0 < a < b < 1 define,
r(r;a,b) := er(r) + d(m; b) + D(m;b) + K(a,b) H(m;b) 0<w<1, (C.7)
with e1, d, D, K, and H defined as follows. The function d is given by,
d(m;b) = C (N1 =7)+2°) (Ny(m) +1) 0<mb<1, (C.8)
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where Ny(7) := | y(7,b) | and (see C.1 and C.2),
X(m):= log[l_ ]/logiz, Czc)\l/\o;)\l)\o,
for ¢ > 0 and 0 < A° < Al. The function e; is given by
ea(m)=c(1-7) Vrelol1],c >0.
As for H(m;b), it equals,
H(m;b):= A (1 —7) Ho(m;8) + M7 Hy(m;b) 0<m,b<1,
where refering to C.5 we write,
Hi(m;b) := e XOH(m, bsm¢7) i=0,1,
with,

Xlog &5
Al )\O

i=0,1.

i i=
Refering to C.6 we define,
D;(7;b) := —Ce" XO-XM-DD(r,b;e™,15) i=0,1,
and then D is expressible as,
D(7;b) := A (1 — 7) Do(m; b) + X7 Dy(m;0) 0 < m,b< 1.

Finally, K is defined via,
eo(m) — [e1(m) + d(a; b) + D(a; b)]

K(a,b) :=
with eg given by,
eo(m) =7 Vmelo1], & >0.
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(C.14)
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Note that the risk ‘triangle’ e equals e = €® A ¢!, the minimum of €° and €.
In all of these expressions we employ the conventions that an empty sum is
zero and 0° = 1.

Writing r(7; a, b) more simply as r(r) and letting ' denote the derivative

taken from the right, the reader may show that,
r(a) =eo(a) Va€(0,b),0<b< 1. (C.18)

If one defines the advance operator A, by

1
Ar=2T1r  0<r<1, u>0, (C.19)
u-+T

then one can also show,
r(r) =e(r) VmelbAb), 0<b<1. (C.20)

It is called an advance operator since A,b > b for all b € (0,1). For our

purposes we shall take u as,

AO

Finally one can show that,
—7(1 =)' (7) + (u+ ) [r(Aur) = (7)) = —c V7€ (0,1), (C.22)

i.e., r as defined above satisfies a functional-differential equation of the ad-
vance type. In fact it is shown in [MS] that r is the unique solution to this
problem which is continuous on (0, b) for any b € (0,1) and ¢ > 0. The con-
tinuity of this solution family is obtained by its construction but it can also

be demonstrated directly by assessing the continuity of its constituent parts.
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Indeed, one can show directly that the homogeneous part of the solution
H(-;b) is continuous on (0,b) for 0 < b < 1. Essentially such a demonstra-
tion reduces to the consideration of the continuity of H(-,b;a) on (0,b) for
b€ (0,1) and o > 0. It is not difficult to see that any loss of continuity of
H can only occur at those a, b for which «(a, d) is an integer. It is precisely
at these values however that the next term in the sum starts off at zero.
Hence the homogeneous part is continuous. Analogously, demonstrating the
continuity of the particular solution reduces to the consideration of d(-;b)
and D(-;b). Likewise, any discontinuous behavior is confined to those points
at which v = 0. Examination of those points shows that both d(-;b) and
D(-;b) are discontinuous there but have simple jumps of equal magnitude
and opposite sign. Hence, the sum of the two is continuous. To summarize
the argument, we are guaranteed that H(-;b) and d(-; b)+ D(- ; b) are contin-
uous on (0, ) for 0 < b < 1. Now, by exploiting the symmetry inherent in the
definition of 4 as is manifest by expression C.3 it should come as no surprise
that H(a;-) and d(a;-) + D(a;-) are continuous on (a,1) for 0 < a < 1.
Next we turn our attention to the gap function G which we defined in

Appendix B as,
G(m;a):= rl_igl_ r(z;a,m) — e(w) O0<a<m<l. (C.23)
From this definition it is not difficult to show that,
G(m;a) = A7)+ K(a,7)H(r) 0<a<mw<I, (C.24)
where K is defined above, A is given by,

M) := A1 = 7))+ A\ox 0< 7w <1, (C.25)
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and H is given by
H(x):= A (1 —7)e XM 4 )0 e X(m) 0<7m<l. (C.26)

From expression C.24 we see that the continuity of G(-,a) on (a,1) for
a € (0,1) given rests on the continuity of K under the same conditions.
From our argument above we see that this continuity is guaranteed. Another
implication which follows straightforwardly from C.24 is that

lim G(r;a) = eo(a) — e1(a), (C.27)

7r—->a+

so that G(at;a) < 0 whenever a < m,; we remind the reader that 7. is the
abscissa of the apex of the risk triangle. A third easily verified implication
is that

71r1_r'ri G(m;a) = \° >0, (C.28)

for any a € (0,1). Combining these results we see that given any a € (0, 7.)
there exists b = b(a) in (a, 1) such that G(b;a) = 0.

A fact which we employed in Appendix B is that the crossover points a
and @ depend continuously on b. This can be shown in a general way by
making the usual Lipshitz continuity arguments as in ODE theory which
in our case reduces to the C'(0,1) properties of the mapping defining the
derivative in the FDE (see [MS]). A direct proof follows easily from our
continuity arguments above since for e < b—a and 0 < 7 < b < 1 we can

write,

r(m;a,bte) = e;(w)+[d(7; bxe)+ D(x; bxe) |+ K (a, bte) H(m; bxe). (C.29)
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We also claimed in Appendix B that r is strictly beneath e for all # > b.

This follows quite easily since
r(m) = e1(m) + A(7) (No(7) + 1) Vrelbl), (C.30)
and as is evident from its definition,

Ny(r) < =1 ¥pi€[b1). (C.31)

The last bit of tidying up concerns the concavity properties of a given
solution r to the FDE given at the begining of this appendix. This house-

keeping is contained in the following proposition.

Proposition C.1 Suppose that r is piecewise twice continuously differen-
tiable and,

D,r(r)=-c VYwe€(0,1). (C.32)
Then r is piecewise concave, the pieces defined by the breakpoints of its deriva-

tive.

Proof:

Let I denote an interval such that r € C%(I). The proof will proceed by
a contrapositive argument. Since r € C?(I) then if r is not concave on I it
must be true that there is some small open interval, say U, upon which r” is

strictly positive. With II as in Section 4.5 define,
7V :=inf{t > 0: 11, ¢ U}, (C.33)

and suppose m € U so that P,{Ilp € U} = 1. Since r is strictly convex on U

we have,

Exlr (o)) 2 r(Ex[ILv]) = r(n) (C.34)
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where the inequality is an application of Jensen’s Inequality and the equality
follows from the fact that II is a uniformly integrable martingale. On the
other hand, since r is supposed to satisfy the FDE condition for ¢ > 0 we

have,

D,r(r) <0. (C.35)

From our previous results we have,

E.[r(ILv) —r(lly)] = Ex OT Do r(IL) ds + E, J7u(ID)

= E, A D, r(Il,) ds, (C.36)
so that C.35 and C.36 combine to yield,
E.[r(ILv) —r(Ilp)] < 0. (C.37)
From this last expression we obtain therefore,
Er[r ()] < Effr(Il)] = r(7), (C.38)

which is a direct contradiction to expression C.34. Hence the hypothesized
interval U does not exist and r must be concave on I. Since this is true for
any I upon which r is C? the result is shown. 0O

The proposition gives us what we need since it was shown in [MS] that
every solution to the FDE is piecewise twice continuously differentiable a
fortiori. Moreover, employing the Corollary to Theorem 1.2.1 in [MS] implies
that r. is twice continuously differentiable on (0,.4;" ), once continuously
differentiable on (0, b) and continuous on (0, A, b). These facts taken together

yield r, concave on (0,4, b).
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