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Abstract

We study the large buffer asymptotics of a multiplexer under two different
self-similar traffic inputs, namely the so—called M|G|oo model of Cox and the
fractional Gaussian noise input model. In the former case we show that the
tail probabilities for the buffer content, (in steady-state) decay at most hyper-
bolically. This is to be contrasted with the situation where the input traffic is
fractional Gaussian noise, in which case the tail probabilities display a Weibul-
lian character. Therefore, for a given input rate r;, and Hurst parameter H,
these dissimilar asymptotics would result in vastly differing buffer engineering
practices, which points somewhat to the inadequacy of using H as the sole
parameter to characterize long-range dependence.

1 Introduction

In recent years increasing evidence has accumulated that points to the (asymptot-
ically) self-similar nature of aggregate packet streams in a wide range of currently
working packet networks, e.g., Ethernet LANs [9, 14, 22], VBR traffic [3], WAN traf-
fic [10, 20]. This self-similarity manifests itself most crisply through a long-range
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dependence effect [2, 4] which is characterized by the autocorrelation of the traffic
process obeying a power law (in the lag time). Long-range dependent processes
are inherently non—-Markovian, and have the property that while long—term correla-
tions are individually small, they nevertheless accumulate in the long run to create
scenarios which are drastically different from those produced by more traditional,
typically Markovian in nature, short-range dependent models.

This established presence of long-range dependence over a wide range of time
scales in packet traffic processes is expected to have an impact on queuing perfor-
mance and traffic engineering. In this paper, we seek to gain some insights into
these issue by investigating the effects of long—range dependence on the behavior
of the buffer queue at a multiplexer. More precisely, we consider a discrete-time
single server queue with infinite capacity and constant release rate of ¢ cells/slot, as
a surrogate for a multiplexer, and feed it with a (stationary) traffic stream which
exhibits some (possibly asymptotic) self-similarity; two traffic models are investi-
gated, namely the so—called M|G|oo model of Cox and the fractional Gaussian noise
input model.

In particular, if ¢, denotes the steady-state buffer content (in number of cells)
at the multiplexer, we are interested in tail probabilities P [go, > b] for large b as a
means to estimating buffer overflow probabilities for the corresponding finite buffer
system. Such asymptotics are often the first guiding step to size up the buffer at the
multiplexer in order to guarantee quality of service requirements. We briefly review
our findings under the two sets of traffic assumptions mentioned above.

The M|G|oc model appeared to have been mentioned first by Cox in [4] as
an example of an asymptotically self-similar process. It is obtained by generating
customers according to a (discrete-time) “Poisson” process and by offering them
to an infinite server group under the assumption that the common distribution of
service durations has a heavy tail, say a discrete Pareto distribution with parameter
a, 1 < a < 2. The process that counts the number of busy servers at the beginning
of a time slot is what we refer to as the M|G|oo input model. This process, or
rather its stationary version, is an asymptotically self-similar process with Hurst
parameter H = (3 — «)/2. With the M|G|oo traffic feeding into the multiplexer, we
show that the M|G|oo input induces an asymptotic regime at the buffer in steady
state which is characterized by

P [goo > b] > b~ (172H)(emrin)4o(l) (o) (1.1)

where r;;, denotes the average input rate, i.e., the average number of cells offered per



slot. The derivation of (1.1) is an application of some recent results of Duffield and
O’Connell [7] on the buffer asymptotics of a general single-server queue. Although
we expect (1.1) to hold as an equality, we were unable to establish this fact as of
the writing of this paper. In any case, these asymptotics already indicate that the
tail probabilities P [go > b] display a (negative) power law with exponent o — 1, in
sharp contrast with the geometric decay that is usually observed under Markovian,
thus short-range dependent, input streams. A similar result was reported in [15]
where an aggregate traffic model was constructed by superposing a large number of
on—off sources with Pareto distributed activity periods. In Section 6 we argue that
the limiting model of [15] is nothing else but the M|G|oo model of Cox. However,
the asymptotics of [15] are for a somewhat different model as will be explained in
Section 6.

On the other hand, the fractional Gaussian noise input model, which constitutes
the discrete-time analog of fractional Brownian motion, is perhaps the simplest
of self-similar processes to describe, as it is a zero-mean Gaussian process with
stationary increments and covariance structure (7.1). If the input stream is modeled
as a fractional Gaussian noise process with Hurst parameter H, 0 < H < 1, and
with “drift” r;,, then it can be shown that

C— Tin

2
P [goo > b] = exp (—2% <(—CH£> p20-H) (1 + 0(1))) (b— o) (1.2)

This time the asymptotics of the steady—state buffer follow a Weibull-like distribu-
tion, as was announced [3]. A qualitatively similar result was obtained by Norros
[17] for a continuous-time storage model driven by fractional Brownian motion. The
asymptotics there, as well as (1.2), follow from the results of Duffield and O’Connell
[7].

As has been reported by several authors [3, 8], it is already apparent from (1.1)-
(1.2) that long-range dependence in the input traffic will indeed induce buffer dy-
namics which are qualitatively very different from those which arise in Markovian
models. However, even a cursory comparison of (1.1) and (1.2) suggests a much
richer range of possibilities even within the class of (asymptotically) self-similar
input models. In fact, for given input rate r;, and Hurst parameter H, these very
dissimilar asymptotics would result in vastly differing buffer engineering practices,
and this points somewhat to the inadequacy of using the Hurst parameter as the

sole parameter to characterize long-range dependence.



Of course, it could be argued at this. point that some (asymptotically) self-
similar input models are more appropriate than others. However, as a quick review
of the existing literature indicate, both fractional Gaussian noise and M|G|oo input
models have provided good fits for diverse applications. The fractional Gaussian
noise input model and its continuous-time analog are convenient mathematically
[1, 7, 17], yet are alleged [8] to provide a reasonably good statistical fit to actual
measurements in data networks. On the other hand, the M|G|oco input model has
been found to match reasonably well some wide area applications [20].

The paper is organized as follows: The queuing model and various preliminaries
are presented in Section 2. Existing results on buffer asymptotics are summarized in
Section 3 for easy reference. We introduce the M|G|oo input model in Section 4, and
the corresponding buffer asymptotics are developed in Section 5; the calculations,
which are fairly involved, are outlined in Section 8. In Section 6 we compare the
material of Sections 4 and 5 with some recent results on aggregate models of on—off
sources. Finally, in Section 7 we obtain the buffer asymptotics when the input is
modeled by a fractional Gaussian noise process.

A few words on the notation used in this paper: We denote the set of non-
negative integers by IN, and the set of all real (resp. non-negative real) numbers
by R (resp. R, ). For any scalar z in IR, we write [z] to denote the integer part or
floor of z. All rvs are defined on some probability triple (Q, F, P), with E denoting
the corresponding expectation operator. Finally two rvs X and Y are said to be
equal in law if they have the same distribution, a fact we denote by X =, Y. Weak
convergence is denoted by =.

2 The model and preliminaries

We map the multiplexer into a discrete—time single server queue with infinite buffer
capacity which operates at a constant rate and in a first—come first-served manner:
Let g; denote the number of cells remaining in the buffer by the end of slot [t — 1, ),
and let by denote the number of new cells which arrive at the start of time slot
[t,t + 1). If the multiplexer output link can transmit ¢ cells/slot, then the buffer

content sequence {q;, t =0,1,...} evolves according to Lindley recursion

g =0; g1 =g+ b1 —C]+, t=0,1,... (2.1)



This system admits a steady—state regime under the following very broad conditions

which are due to Loynes [16].

Proposition 2.1 Assume the IN-valued arrival sequence {bt11, t=0,1,...} to be
stationary and ergodic. If E[bi] < c, then the system is stable in the sense that
gt =t Qoo for some R —valued rv goo-

Throughout, when considering the model (2.1), we shall at a minimum, assume that
the conditions of Proposition 2.1 are satisfied. We shall often write r;, = E[b1] to
stress the fact that E [b)] indeed represents the average input rate into the system.
This will come handy when comparing the effect on the multiplexer of several traffic
streams with a given value for r;;, such that r;, < c.

Recently, there has been considerable interest in estimating the tail probabilities
P [goo > D] for large b, as a means of estimating buffer overflow probabilities for the
corresponding finite buffer system. In the next section we summarize some of these

results as they apply to our setup. These asymptotics make use of the representation
goo =st SUP{S: —ct, t =0,1,...}. (2.2)

with
So = 0; Si=b+...+ b, t=1,2,... (23)

Taking this representation for g. as a point of departure, several authors have
obtained estimates on the tail probabilities by means of large deviations estimates
for the sequence {S; —ct, t =0,1,...}.

To fix the terminology used in this paper, we recall the notion of a Large De-
viations Principle as discussed in [6]: Consider a monotone increasing R-valued
sequence {v;, t = 0,1,...} such that tl_lglo vy = 0o. A sequence of IR-valued rvs
{zy, t=0,1,...} is said to satisfy the Large Deviations Principle under scaling vg

if there exists a lower-semicontinuous function I : R — [0, oo] such that for every

open set G,
1
. < liminf 4
m11612 I(z) < htrgégf o InP [z: € G (2.4)
and for every closed set F,
) :
limsup — InP [z; € G] < — inf I(z). (2.5)
t—oo Ut TEF

Usually it is required that the rate function I be level compact in the sense that the
level sets of I all be compact, i.e., for each r > 0, the set {z € R : I(z) <r}isa
compact subset of R. In that case, the rate function I is said to be good.
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In many situations of interest, the rate function can be expressed as the Legendre—

Fenchel transform A* of another mapping A : R — (—o0, 00], namely

A*(z) =sup{z - A(6)}, z€R. (2.6)
9eRr

The reader is referred to the monograph [6] for additional information on the subject

matter of Large Deviations.

3 Buffer asymptotics

We begin by summarizing recent results on tail probabilities which have been ob-
tained by several authors in varying degrees of generality [11], [13]. These results
pave the way for the definition of the notion of effective bandwidth [12], [21].

We introduce

At(G) =

o | =

InE [exp(8(S; — ct))], #€R (3.1)
for each t = 1,2,...; by Jensen’s inequality it is plain that A¢(6) > 6E [b1].

Proposition 3.1 Assume the IN-valued arrival sequence {bsy1, t =0,1,...} to be

stationary and ergodic, and to satisfy the following conditions:
1. The limit

A(9) = Jim A(6), 9€R (3.2)

exists (possibly as an extended real number);
2. The set © = {0 > 0: A(0) < 0} is non-empty, and

A(f) <00, 6€06,t=1,2,... (3.3)

3. The process {t~1(S;—ct), t = 1,2,...} satisfies the Large Deviations Principle

under scaling t with good rate function A*.

Then )
lim —InP g > b] = —6* (3.4)
b—oo b
where A
6* = sup{f > 0: A(6) < 0} = inf (y) (3.5)
y>0 Yy



It is helpful to reformulate these facts by introducing the auxiliary quantities
1
ALB) = ~InE [exp(0S;)] 6 €R (3.6)

for each t = 1,2, ..., whence A4(6) = A2(8) — cf. Under the assumptions of Propo-
sition 3.1, we find that the limit A,(8) = tl_lglo A2(8) = A(8) + cf exists (possibly as
an extended real number); the set © can be described by © = {6 > 0 : A4(6) < cf}.
Finally, the process {¢t"1S;, ¢t = 1,2,...} satisfies the Large Deviations Principle
with good rate function Af, and the conclusion (3.5) can be expressed as

Aj(c+y)

ko . —_— 3
6* = sup{f > 0: Ap(0) < b} = ;r>1f(; T (3.7)

When applied to input processes with long-range dependence, Proposition 3.1
fails and needs to be modified accordingly. Duffield and O’Connell [7] have recently
generalized this result by allowing two different scalings, one for the law of large
numbers associated with S; and one for exponential decay of rare events. We begin
with two strictly monotone increasing R—valued sequences {vi, t = 1,2,.. .} and

{a¢, t=1,2,...} such that lim; v; = lim¢ a; = o0, and modify (3.1) to read

AO) = vltlnE [exp (evt(st; Ct))] . GER. (3.9)

The inverse of {as, t = 1,2,...} is the mapping a™' : Ry — IN defined by a ) =
sup{k € IN : ax < z} for all z > 0. We also assume that there exist functions
g,h : Ry — Ry such that h is monotone increasing with bliglo h(b) = oo and the
limit ey

P TR
holds. The following is essentially Theorem 2.1 obtained by Duffield and O’Connell
in [7].

=g(y), y>0 (3.9)

Proposition 3.2 Assume the arrival sequence {bs11, t =0,1,...} to be stationary
and ergodic, and to satisfy the following conditions:
1. The limit

A(9) = tl_lglo A(f), 6€R (3.10)
exists;

2. The process {t~1(S;—ct), t = 1,2,...} satisfies the Large Deviations Principle
with good rate function A* under scaling v;.



Then, for each y > 0 we have

1
o > _ e oAk .
hbrg(l)gf 0] InP g > b] > —g(y) %I;];A (x) (3.11)

In general, the rate function A* is only lower—semicontinuous so that

. * A%
%I;EA () =A*(y+), y>0 (3.12)

with A*(y+) denoting the left limit of A* at y; such a left limit exists by the convexity
of A*. In particular, if the rate function A* is continuous on [0, c0), then Proposition
3.2 immediately implies the lower bound
1
im inf —— P .
hbrgélgf 0 InP [go > b] > — (3.13)
with v* given by
7" = inf g(y)A™(y). (3.14)
y>0

In [7], under additional conditions to the ones of Proposition 3.2, the authors
derive a companion upper bound to (3.11)—(3.13). Although, the lower and upper
bounds may in principle not be tight, in many situations they will be, thereby giving
asymptotics of the form

oo 1 o
hg(l)gfm InP [go > b] = —v (3.15)

for some positive constant v*; this constant is usually given by (3.14).
Unfortunately, for one of the cases of interest here, the one described in Section 4,
the conditions, as given in [7], under which the upper bound holds, are not satisfied.

4 The M|GI|co input model

In order to model long-range dependence, we make use of a model which appears to
have first been described by Cox [4]: Consider the following discrete-time infinite
server set—up. During time slot [¢,t+ 1), 8,41 new customers arrive into the system.
Customer 4, ¢ = 1,..., B¢41, is presented to its own server and begins service by the
start of slot [t + 1,¢ + 2); its service time has duration oy1;;. Let b; denote the
number of busy servers, or equivalently of customers still present in the system, at
the beginning of slot [¢,¢ + 1), with b denoting the number of busy servers initially
present in the system at ¢ = 0. Under conditions which are now specified, the

process {b;, t =0,1,...} exhibits long-range dependence.



Consider the IN-valued tvs r, {811, t = 0,1,...} and {oy;, t =0,1,...; 1 =
1,2, ...} under the following assumptions: (1) The rvs are mutually independent; (ii)
The rvs {fi+1, t = 0,1,...} are i.i.d. Poisson rvs with parameter A > 0; (iii) The
rvs {0, o, t=0,1,...; i =1,2,...} are i.i.d. with common pmf G on {1,2,...}
— this pmf G will be shortly specified.

The first indication that the rvs {b;, ¢t = 0,1,...} exhibit some form of depen-
dence can already be traced to the fact that these rvs are indeed positively correlated

in a strong sense: For all t = 0,1,..., we write b* = (bo, b1,...,bs).

Proposition 4.1 The rvs {b;, t = 0,1,...} are associated, in that for any t =
0,1,... and any pair of non—-decreasing mappings f,g : IN 1 5 R,

E [f(¢)9(")] 2 B [£(5)] B [o(6")] (4.1)
provided the expectations exist and are finite.
In particular, this fact, which is established in [18], [19], already implies
T'(t,s) = cov b, bs] >0, s,t=0,1,... (4.2)

In what follows we take the pmf G = {g,, 7 = 1,2,...} to be a Pareto distribution
with parameter @, 1 < a < 2, in the sense that

lim Plo > ]

T—00 po

=1. (4.3)

In this paper, for sake of concreteness we shall use

gp=Plo=r]=r%—(r+1)7% r=12,... (4.4)
in which case
Ple>r]=(+1)"% r=0,1,... (4.5)
Simple calculations then show that
oo o0
E[a]=ZP[a>r]=Zr_a<oo. (4.6)
r=0 r=1

while E [0?] = co. The following facts can be shown [4], [5]:

Proposition 4.2 Ifb is a Poisson rv with parameter \E [0}, then the rvs {b;, t =

0,1,...} form a stationary sequence with

L(h) =T, t+h) =AE[(c —h)T], t,h=0,1,... (4.7)



Hence, .

I'(A)=X > n™® h=0,1,... (4.8)
n=h+1

and standard bounding arguments yield

I'(h)

Jim o = Mo —1)7L, (4.9)

Therefore, in the notation of [4], this stationary sequence {b;, t = 0,1,...} is asymp-

totically self-similar with Hurst parameter H given by
1 1
Hzl—i(a—l) =§(3—a). (4.10)

Note that 0.5 < H < 1if 1 < a < 2, whence the process {b;, t =0,1,...} exhibits
long-range dependence [2], [4].
Under the assumptions of Proposition 4.2, each of the rvs {b;, t =0,1,...} isa

Poisson rv with parameter AE [o], whence

rin =E[b)=AE[0], t=0,1,... (4.11)

5 Asymptotics for the M|GI|co input model

We shall now apply Proposition 3.2 to the situation when the recursion is driven by
the M|G|oo model introduced in the previous section. Here, the appropriate scaling
is provided by v; = Int and a; = ¢ for all t = 1,2,..., so that a7 (z) = [z] for all
z > 0. Therefore, v,-1(4,) = In[b/y] and the choice h(b) = Inb yields g(y) = 1 for
all y > 0. In (18], [19], we show the following result: Set

Ab(6) = UllnE [exp(Ovt%)] , 0€R (5.1)

¢

forall t =1,2,..., and note that,
A(0) = A2(0) — 8, OeR. (5.2)

Proposition 5.1 Under the foregoing assumptions, the limit

Ap(9) = lim A2B), feR (5.3)
exists and is given by
AE[o]8 if0<a-1
nfo) = { ABINOHOS (5.4
0o if>a—1.
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An outline of the calculations leading to (5.4) is presented in Section 8. On
observing from (5.2) that ‘

AB) = Ap(6) —cf

_ (AE[o] —¢) 8 ?f@ga—l (5.5)
oo ifé>a-1,
we readily obtain that
A*(z) = sup{6z—A(0)}

fcR

= sup {0z — (AE[o] —c)6}
0<a-1

= (a—1)(z+c—AE[o])", zeR. (5.6)

By the Gartner—Ellis Theorem [6] the process {t~!(S;—ct), t = 1,2, ...} does satisfy
the Large Deviations Principle with good rate function A* under scaling In¢, and
the assumptions of Proposition 3.2 both hold.

Consequently, the rate function A* being continuous on IR, from the remarks

around (3.14) we conclude that

¥ = inf @A) = inf(a—1)(s+c— AE[])*
= (a—1)(c— rin) ¥
= (a=1)(c—1i,) >0 (5.7)

where in the last step we have used the stability condition r;, = AE [0} < c. Hence,
(3.11) becomes

PR |
llbrg(l)gfm InP g > b] > —(a—1) (c—Tin) . (5.8)

In other words, the buffer overflow probability satisfies
P [goo > b] > b~ (@~ Dlemmin) o) (4 o0) (5.9)

and the decay is therefore at best hyperbolic; this was announced in [15]. Even in
the absence of the complementary upper bound, the calculations given here for the
M|GI|oo input model already suggest that the asymptotic tail probabilities are not
Weibull-like as was suggested in [3].

11



6 Comparison with an aggregate model of on—off sources

In a recent paper [15] an aggregate traffic model was constructed by superposing
a large number of on—off sources with Pareto distributed activity periods. More
precisely, consider M i.i.d. on-off sources such that during any time slot, source ¢,
1 =1,...,M, can be in one of two states, i.e., active or idle. In an active period,
the source generates cells at rate R (bits/slot), while in the idle state the source is
quiescent and does not generate cells. Expressed in numbers of slots, the lengths of
the £ active and idle periods are denoted by Téi) and 9§M’i), £=12,...; the ¢th
active and idle periods combine to form the ¢** cycle which has length Te(i) + HgM’i).
The rvs {Téi),6§M’i)
with (i) the rvs {Téi), =1,2,...,M;¢£=1,2,...} i.i.d. Pareto rvs with parameter
a, as in (4.3), with 1 < a < 2, while (ii) the rvs {OEM’i), =1,2,..., M;¢£=1,2,...}
are finite mean i.i.d. rvs with an arbitrary distribution on {1,2,...} which depends
on M. We write

, =1,2,...,M;£=1,2,...} are assumed mutually independent

o, =E[r] and qf'’ = E[¢)] (6.1)

where 7 (resp. (™)) denotes a generic variable distributed like the i.i.d. rvs {Te(i), =
1,2,...,M;£=1,2,...} (resp. {87, =1,2,...,M;£=1,2,...}).

Under these assumptions, with each source i, ¢ = 1,..., M, we can associate
M.3)

a renewal process w! which counts the cycles of the source i. Alternatively,

the process w(™+) is the renewal process where the beginning of cycles for source ¢
are the renewal points; if a, + agM) < 00, then the renewal process w(*+) can be
constructed to be stationary. Let w(™) denote the process obtained by aggregating
the M independent stationary renewal processes w9 §=1,..., M, and consider
the number ft(M) of periods which become active among these M sources at the
beginning of slot [t,t+1), t =0, 1,.... The aggregate traffic intensity A(M) is given
by

M
M) = ————. (6.2)
ar + agM)
We can think of the aggregate process w™) in the following way: We first label

active periods in non-decreasing order according to the epoch at which they begin;
active periods that begin in the same time slot are ordered according to their source
number. With this labeling, for s = 1,,..., we denote by ws(M) the beginning of
the s active period and by 7,(M) its length.

In [15], the following asymptotic regime was discussed: Assume that the rvs

12



{6(M) M =1,2,...} are chosen so that

lim P[9<M> gt] =0, t=1,2,... (6.3)

Moo

while the aggregate traffic intensity remains unchanged, i.e., XM — X for some

given value A > 0, Then, the convergence
(M 1=01,..} = {& t=0,1,...} (6.4)

takes place, where the rvs {£;, t =0,1,...} form a sequence of i.i.d. rvs which are

distributed according to a Poisson rv with parameter A. Moreover,
(WM, 1,(M)), s =1,2,...} =>u {(ws, 7s), s=1,2,...} (6.5)

where the rvs {wy, s = 1,2,...} are independent of the i.i.d. rvs {75, s =1,2,...}
which are Pareto distributed according to (4.3). Obviously, in the limiting system

we have

&= 1w, =1, t=0,1,... (6.6)

and mapping an active source into a customer, we can interpret ws as the arrival
epoch of the s** customer and the duration 74 of its active period as its service
time, with service being a metaphor for cell generation. Because a source keeps on
generating cells during its activity period, it can be put in one-to-one correspon-
dence with a server dedicated to it. Equipped with this translation, the reader will
readily see that the bivariate sequence {(ws,7s), s = 1,2,...} does indeed describe
the M|G|oo input model of Section 4. This identification of the M|G|oo model of
Cox as the limiting regime of a large number of on-off sources might help explain
its success in modeling packet traffic stream in certain applications [20].

We conclude this section with the following clever observation made by Likhanov,
Tsybakov and Georganas in [15]: If attention shifts from the number of cells in
buffer to the number of active sources in buffer, then the corresponding queuing
behavior is described in effect by a discrete-time M|G|1 queue. New customers
(i.e., new sources) arrive according to the discrete-time “Poisson” process {&, t=
0,1,...} and each customer requires a service of duration which is Pareto distributed
according to (4.3); the service discipline is FIFO over the sources but not necessarily
on the cells generated. In particular, let {Ng, & = 1,2,...} denote the process
describing the number of active sources which remain in the buffer at the completion

of successive source transmissions. Its steady—state behavior can be obtained by the
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usual z-transform methods, and yields asymptotics in the form of a power law.
However, it should be stressed that this result, while undoubtedly related to that
obtained in the previous section, does not capture in a straightforward manner the

queuing behavior at the multiplexer in terms of number of cells in buffer, namely
(2.1) under the M|G|oo input.

7 Asymptotics for Fractional Gaussian Noise input

It is of interest to compare these results with that which would be obtained in
the situation when the driving sequence is produced by Fractional Gaussian Noise.
Recall that the R-valued process {n;, t = 1,2,...} is a zero-mean FGN process
with parameter H, 0 < H < 1, if it is a zero-mean Gaussian process with stationary
increments and covariance structure

cov [n =U—2(2H 2M_ |y _ g 2H =1,2 7.1
prsl = (7 = [t =8 [T, st=1,2, (7.1)

We consider the recursion with driving sequence {b;y1, t =0,1,...} given by
bt+1 =N —Ne+Tine t=0,1,... (72)

with the convention ng = 0. This traffic model can be interpreted as the discrete—
time analog of that introduced in continuous—time by Norros in [17]. For all ¢t =
1,2,..., we note that the rv Sy — ct coincides with n; + (i, — ¢)t, and is therefore a

Gaussian rv with mean (r;;, — ¢)t and variance 02t?#. Hence,

Sy — ct)]

1

A(0) = ~ InE [exp(&vt
1

= —hnE [exp(th
Ut

1 292 2 1
= 3 (ﬂ) 2 4 ~2LG(riy — o)t
2 Vt at Ve Q¢

ne + (Zn - c)t)]

1 A
= 50‘2021% (*) + _9(7‘”1 - C), R (73)

ag at

and a direct inspection suggests taking a, = t and v; = $20-H) for all t = 1,2,.. ..
It is easy to check that vg-1(4/c) = [t/c]1=H) | thereby dictating the choice h(b) =
b21=H) and ¢(y) = y=2(~H) for all y > 0. Therefore,

0262
A(B) = Ay(0) = 5 +0(rin—c), R (7.4)
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for all t = 1,2,..., and after some straightforward calculations, we find that

A(z) = sup {0z — A(0)}

—  swp {Oz— (%(72924—9(”” —c))}

<a—1
1
= sup {9(2 — (rin — €)) — —0202}
0<a-—1 2
1 2
= 50—2(2 + (C - Tin)) , z€R. (75)

By the Girtner-Ellis Theorem [6] the process {t7}(S; — ct), t = 1,2,...} satisfies
the Large Deviations Principle with good rate function A* under scaling t20-H)
and the assumptions of Proposition 3.2 both hold.

The rate function A* is continuous on R, and from the remarks around (3.14)

we conclude that

1
* — 3 * — T —2(1—-H) a2
0% ggg(z)A (2) 552 ;I;f)z (z+ (¢ =1in))
_ 1 z+ (c—7in)\°
= 202150 2(1-H)
2
_ L (lemra)? (7.6)
202 Cuy '
where the constant C'y is given by
Cy=HPQ-H)'H. (7.7)
Hence, (3.11) now becomes
2
s 1 1 (c - "'in)H

In fact, for the FGN input model considered here it can be shown that the lower
bound is tight, so that

2
. 1 _ 1 (c— Tin)H
Am sy PP e > 8 = =57 ( Cr ' (7.9)

This can be done by applying the results of [7], or alternatively, by a direct argument
that relies on the Gaussian nature of the rvs involved. The limit (7.9) can be written

in equivalent form as

P g > b = exp | L [ = rim)” e
doo > b] = exp 53 G b (14 0(1)) (b—o00) (7.10)
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and the decay is therefore Weibullian as announced in [3].

8 Outline of the proof of Proposition 5.1

For the M|GI|oco input model, with a; = ¢ and v; = Int, we want to evaluate
Ay(0) as given by (5.3) for all 8 in R. The point of departure of our calculations is
the key decomposition

by =0+, t=1,2,... (8.1)

where the rvs b§°) and bﬁa) describe the contributions to the number of customers

in the system at the beginning of slot [t,t+1) from those initially present (at t = 0)
and from the new arrivals, respectively. In fact, with the notation of Section 4 the

v b§°) can be expressed as
b
b =3 100 > 1] (8.2)
i=1

where the i.i.d. rvs {09, 2 = 1,2,...} are independent of the rv b which is Poisson
distributed with parameter AE [o]. The rvs bgo) and bga) being independent, we find
that

1 1
AY0) = AP0 + —A7(6), 0eR (8.3)
t t
for all t =1,2,... where we have set
] .-
A0 =InE |exp(@0 3 60)|, 6eR (8.4)
L s=1 p
and i , i
A®(0) =InE [exp(0 S 5)|, 6eR (8.5)
L s=1

In 18], [19], tedious calculations lead the authors to the following expressions.

Lemma 8.1 Foreacht=1,2,..., we have the expressions
A9(6) = —~AE[0] (1 — E [exp(f min (¢, 0 — 1))]) (8.6)
and
AD0) = —AE[(t - 0)"(1 — expfc) + min (t,0)]
+x(1- e—")_1 E [exp(6 min(t, o)) — 1] (8.7)

for all 6 in R.
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The proof of Lemma 8.1 is omitted in the interest of brevity. The conclusions of
Lemma 8.1 are valid regardless of the pmf G assumed for 0. To proceed further, we
specify G to be as described in (4.4). Using this choice in (8.6)-(8.7) leads to great

simplifications in the expressions as we shall now see: For each B > 0, we define
¢
Fg(t,0) =Y r P, 6eR (8.8)
r=1
for all t = 1,2,...; the identity
¢
S (P -0+ 1)) &7 = Fp(t,0)(1— ™) + 1 - e"(t + )f, 6ecR (89)
r=1

can be easily confirmed by simple algebra. Making use of this elementary fact we

readily obtain the following relations from Lemma 8.1:
Lemma 8.2 For eacht =1,2,..., the expression
A (0) = AE[0] (1~ ™) (e Fu(t,6) + ¢"P [0 > 1] - 1) (8.10)

holds for all 8 in R.

Proof. Substituting (4.4) into (8.6), we see that

AP(9) = -AE[o] (1 - E[exp(6 min (¢, 0 — 1))])
= —)E][o] <1 —ef Et: gre™ + P lo > t])
r=1
= XE[o](1—e®) (e Fa(t,0) + " Plo > 1] - 1)
where in the last step we have used (8.9) with 8 = a. [ |
Lemma 8.3 For eacht = 1,2,..., the expression
A (8) = M1 — &™) (¢t +1)Fa(t,6) = Far(t,6)) (8.11)

holds for all 8 in R.
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Proof. This time, substitution of (4.4) into (8.7) yields
A§“)(9) = —AE[(t—0)" (1 —exp(f0)) + min (¢,0)]
+A (1 - e_e)_lE [exp(f min(t, o)) — 1]

t
= —At+ A Z(t —r)gre™

r=1

t
+A (1 - e_e) (;;1 g’ + Po > t] e — 1> .

Using (8.9) into this last expression and simplifying, we readily obtain the desired
result. |

It is now time to substitute in (8.10)—(8.11) for 8 by 6; = 9—;’*&, and to take note
of the fact that

.1 —ef
tl_lglo 5~ 1. (8.12)
This elementary fact already allows us to conclude to the asymptotic equivalences

©) g (a)
A L p0g) ana 2B @), sem (s13)

Ut Ut
where for all t = 1,2,... and 0 in IR, we have defined

LO8,) = 5§E (0] (™P [0 > 1] + e Fia (£,0) — 1) (8.14)

and

0

| >

L(0;) = 27 ((t + 1) Fa(t, 6:) — Fa—1(t,60)). (8.15)

(
.13), we have

oo T+

In short, combining (8.3) and (
AY(Oy) ~ Li(6,) + LD (8,), O€eR. (8.16)

The next step consists in getting some insight into the asymptotic behavior of
Lgo) (6¢) and LE“) (6:), through that of F,(t,0;) and Fo_1(t,6;), as t = oo. This is
the content of the next two lemmas; their proofs are given in the Appendix.

Lemma 8.4 For each § > 0, the asymptotics

F, if @ <
hm;ﬁﬂﬂz{o ifo<p

. (8.17)
t=oo 1 oo If8>p

hold.
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Lemma 8.5 The convergence

.1 Elo] if6<a-1
lim = ((t + 1) Fo(t,0:) — Fa_1(t,6;)) = - 8.18
Jim = (4 + DFalt,60) ~ Fac1(£,60) {oo NS (8.18)
holds.
Lemma, 8.4 can be rephrased as saying that
0 ifo<a
lim L (,) = = 8.19
t—l>oot(t) {oo £0>a ( )
whereas Lemmas 8.4 and 8.5 together imply
ME foe<a-1
lim L{®(9,) = ] H0<a (8.20)
t—00 00 ifd>a—-1

and the desired conclusion (5.3) follows via (8.16).

9 Appendix — Proofs

In both proofs, I' denotes an element of (0,1) to be selected suitably during the
discussion.
Proof of Lemma 8.4. Two cases naturally emerge, namely § < 8 and 6 > 3.
a. Assume 6 < 3: Write §; = g% for all t = 1,2,.... In view of the inequalities

0 < Fg(t,0y) < Fg(t,B), 0<B,t=12,... (9.1)
the first part of Lemma 8.4 will be established, provided we show
Fp(t
lim sup Pyt 5e) <0. (9.2)
t—o00 t

With this in mind we compute an upper bound for Fg(t, 5;), as follows:

(I't] t
Fg(t,Bt) = Zr‘ﬁeﬂ_vtﬂ—k > rBeME
r=1 r=["t+1
BTt [Ft] t Bugr
< e ¢ Zr_5+([I‘t]+1)_ﬁ Z et
r=1 r=[Tt]+1

v (Tt
< eﬂ_%@ (1-{—/ m_ﬂdfc>
1
t—([Tt]+1)

Bug((Ce)+1)
X

VT

¥

+ ([P +1)Pe e

r=0
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Simplifying, dividing by t and letting ¢ go to infinity readily yield

lim sup Fs(t, 8) < lim sup -—[i—tm_1 (9.3)

t—o0 t—00 -1

and (9.2) is obtained if we select T in the interval (0, min(87!,1)).
b. Assume 6 > (3: Again, splitting the expression of interest as before, we see

by easy bounding arguments that

[T
buyr 9ur
Fg(t,0,) = Zr et + Z
r=[It]+1
t Buypr
> Z rPe 4
r=[T't}+1
011[ t+1
!Ft/ —ﬂda:
[Tt +1
I't]+1y— _
I G il (R o
=t - . (9.4)

Dividing by t on both sides of (9.4) and then taking lim inf give

ﬂr—ﬂ+1—1
-1~

Under the constralnt f > (B we can always select I" in the interval (% 1), thereby

1 Y o
htrgéglf ZFﬂ(t’et) > htrgégft (9.5)

leading to htrg égf ng(t, 6;) = o0 [ |

Proof of Lemma 8.5. As before two cases need to be considered separately:
a. Assume § < o — 1: Lemma 8.4 (with 8 = a — 1), already implies the

asymptotic equivalence

((t + 1) Fa(t, 0) — Fa—1(t,64)) ~ Fa(t,64) (9.6)

o | =

Next, we observe that
Fo(t,0;) —E[o] = Zr"a )20, t=1,2,... (9.7)

and we shall show shortly that

limsup F,(t,6;) — E[o] <0. (9.8)

t—00
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It will then be plain that tl_i)m F,(t,6;) = E[o], and combining this fact with (9.6)
xX .
we readily get the first part of Lemma 8.5.
To establish (9.8) we begin by noting that

(T't] ¢
0 U T ver
Fa(t,et) - E[O'] < ﬂ ’r‘_a'Heg_:L + E ’r‘_a(eg—tL 3 1)
r=1 r=[Tt]+1
S %e9vttl‘t (1 n /[Ft] m_a+1d$)
¢ 1
t+1 v
+ (rg+1)° / (€™~ 1)dz.
[Tt]+1

Simplifying and taking the limsup on both sides of the inequality readily give (9.8).
b. Assume a — 1 < 6: We note that

t t
(t+ D)Fa(t,0) — Far(t,8) = Siroe ™ (t+1) =Y rote
r=1 r=1
[r¢] o
= Zr_ae i (t+1-—r1)
r=1
t
+ > r%et (t+1-1))
r=1+[T't]
[T¢]
> Er—ae t (t+1—7)
r=1
[Ft] Buyr
> (t+1-Teh(r S e
r=1

Letting ¢ go to infinity in the above, we conclude that

lim inf % ((t + 1)Fu(t,6,) — Far(,61))

t—00
[-egl-e 1
> limi v = Lyre _ 1y —
> htrgg)lf o 1-T+ t)(t 1) =00
for any value of I' in the interval (251, 1). [ ]
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