ABSTRACT

Title of Dissertation: DISCRETE OPTIMIZATION MODELSIN
DATA VISUALIZATION

Roselyn Mansa Abbiw-Jackson, Ph.D., 2004

Dissertation Directed By: Professor B. Golden, RH Smith School of
Business

Data visualization technigques have become important tools for analyzing large
multidimensional data sets and providing insights with respect to scientific,
economic, and engineering applications. Typically, these visualization applications
are modeled and solved using nonlinear optimization techniques. In this dissertation,
we propose a discretization of the data visualization problem that allows us to
formulate it as a quadratic assignment problem. This formulation is computationally
difficult to solve optimally using an exact approach. Consequently, we investigate the
use of local search techniques, mathematical programming, and genetic algorithms
for the data visualization problem. The space in which the data points are to be
embedded can be discretized using an n x n lattice. Conducting a search onthisnx n
lattice is computationally ineffective. Consequently, we propose a divide-and-conquer
approach that refines the lattice at each step. We show that this approach is much
faster than conducting a search of the entire n x n lattice and, in general, it generates
higher quality solutions. We envision two uses of our divide-and-conquer heuristics:
(1) as stand-alone approaches for data visualization and (2) to provide good

approximate starting solutions for a nonlinear algorithm.

DISCRETE OPTIMIZATION MODELS IN DATA VISUALIZATION

By

Roselyn Mansa Abbiw-Jackson

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2004

Advisory Committee:

Professor Bruce Golden, Chair
Associate Professor Zhi-Long Chen
Associate Professor S. Raghavan
Professor Paul Smith

Professor Edward Wasl|

© Copyright by
Roselyn Mansa Abbiw-Jackson
2004

Dedication

To my family.

Acknowledgements

While working on this dissertation, | have received alot of help, guidance,
and encouragement. | would like to express my appreciation and gratitude to
everyone who directly or indirectly contributed to the completion of this dissertation.

| would like to take this opportunity to express my sincere gratitude and
thanks to Professor Bruce Golden, Associate Professor S. Raghavan, and Professor
Edward Wasl|, for their helpful suggestions and guidance.

Finally, | would like to thank my family for their love and encouragement.

Table of Contents

(D<o (o= 1 Lo o SRR i
ACKNOWIEAGEMENTS......ctieieeiecieie ettt et e s e s neesaeeneesnee e i
TaDIE OFf CONLENTS.......eoiiieiiee et sae et reeneas v
LISt OF TADIES ...citieeiceeee ettt bbb nne s Vi
RS o o 1= TR X
(@4 g7=10] (= g0t I 011 0o [0 Tox £ oo 1
Chapter 2: LITEIatUIrE FEVIEWcoiveeiieiieiiee e see sttt st sae e sneesee e 6
2.1 DAt@ ViSUBIIZATON.oouiieiieriesiieieeeee ettt st 6
22 MUltidimensional SCAlINGccveveiiiiieiee et 7
2.3 SAMMON MBPD ...t s be e sbe e e s be e e sne e sane e e naneas 9
2.4 Quadratic Assignment Problem ... 10
2.4.1LinearizationS Of QAPoooiee et 13
2.4.2 QAP HEUINSHICS ...oeeiiieiiee ettt e 14
2.5 L0CA SEAMCN......coiiiee e 16
2.6 GeNEtiC AIQOMTERM ..o e e 18
Chapter 3: MethOdolOgyccceiierieiecieie e ne s 25
3.1 Theoretical DevElOPMENE.........coiieiieieeee e 25
3.2 Quadratic Assignment Problem (QAP)c..occv e 26
3.3 QAP Formulation of DataVisualization Problem...........cccccceviiiiiiiiecciecnnen, 27
3.4 Test of QAP FOrMUIGLION........c.eeiiiecieciee et s 29
3.5 Elimination of Arbitrary Orientation and Symmetry.........ccccoceveerivncenencennes 30
Chapter 4: LOCal SEAICN.........ccoieeeeeceee e 34
4.1 Local Search TEChNIQUES........couoiieieee e 36
4.1.1 Local Search HEUMSHIC.......ocvieiirieieieesie st 36
4.1.2 Divide-and-Conquer Loca Search HEUNSEIC.......coeeveeienienieie e 37
4.1.3 Divide-and-Conquer Loca Search Heuristicswith Quadrant and
NEIghDOr RESIICLIONScveiiiieieieee et ne s 41
4.2 Results and ANalySiSfOr DACNc.ociiiececccseee et 44
4.3 CONCIUSIONS.ceiuiitieiieie sttt sttt sttt s beete e e nbe et e saeesreenee e 53
Chapter 5: Mathematical Programming..........ccccceeveeeeevenieeseesesieeseesie e see e sneeseeas 54
5.1 Integer Problem FOrmulation............cocoieoniinnieneeeeeee e s 54
5.2 Preliminary Computational RESUITS..........cccveeeieeieeiesiesece e 58
5.3 Integer Programming HEUNSHICS.ooviiiiiiiie e s 62
5.3 L TP HEUMSHIC ..ttt 63
5.3.2 IR HEBUIMSLIC ..ottt st 65
5.3.3TRN HEUMSHIC ..ottt 66
5.3.4 IRNS HEUIMSLIC.covieiiitieiie ettt st 68
5.4 Comparison of DACN and IRNSccoooiieii e 70
5.5 IMProvement HEUMSHICcooveiiiiieeeeeiee e e 78
5.6 CONCIUSIONS.......ciuiiiiiiiiesieste sttt st ettt bbb b 81
Chapter 6: Genetic AlQOrtNML.......coei i 82
6.1 Results and ANalySISTOr GA........cooieieiieie e nae s 84

6.2 CONCIUSIONS.....cueiiieieeiesiee ettt be et s e s re et e aeesbeestesaeesseensesneenreas 99
Chapter 7: Comparing Discrete Local Search to a Nonlinear Optimization Technique

— SAIMMION M3 ...ttt et e e sae e s e e e beeasseesseesseeeabeesaseeaseesaseanneesnneeaseeas 100
8 RS2 100100 0 1 1170 LR SPR PR 100
7.2 COMDINEA HEUISHICS......coueiieeieeiestee ettt 101
7.3 RESUITS. ...ttt bbb 101
7.4 CONCIUSIONS.....couviiiieitieieeeestee it ee sttt be et e st e sbeeee e e e sbeentesneesreense e 120

Chapter 8: Comparing Discrete Local Search to a Nonlinear Optimization Technique

— PIOXSCAL ... et b e b e e ns 122
8.1 Iterative M@ OriZaHION..........ccverieeeeseesieeee e sie e e e sseeae e e sreeeesreesseenaeeneennens 122
8.2 RESUITS AN ANAIYSIS. ..cueiieiiiieieiie ettt st ne s 124
8.3 CONCIUSIONS.......couiiuiiieie sttt 149

Chapter 9: CONCIUSIONS........coiiiiieiieeiesie ettt st sreeee e se e 150
9.1 SUMMArY Of RESUILS.......eeiieiieiecee sttt e e e 150
0.2 FULUIE RESBAICI ...ttt 154

L0152 SO 156

N 0= 3o [QSR 157

N 0= 10 [G = S 210

BiDHOGrapny ..o e 297

3.1.

4.1
4.2
4.3

4.4
4.5
4.6
4.7

4.8

4.9

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

5.9

List of Tables

Results for 10-point problems for QAP and QAPSE.

Local search agorithms.

Results for problem sets originally in two dimensions for LS.
Results for problem sets originally in two dimensions for DAC.
Results for problem sets originally in two dimensions for DACQ.
Results for problem sets originally in two dimensions for DACN.
Characteristics of problem sets.

Results for problem sets 1, 2, and 3 for DACN. These problem sets
areoriginally in three dimensions.

Results for problem sets 4, 5, and 6 for DACN. These problem sets
areoriginaly in four dimensions.

Results for problem sets 7, 8, and 9 for DACN. These problem sets
areoriginaly in five dimensions.

Running times for the IP for problem setswith m=10 and
n =4, 16, and 64.

Running times for the IP for problem setswithm =5, 10, 15, and 20,
andn=4.

Integer programming heuristics.

Results for problem sets originally in two dimensions for IP.
Results for problem sets originally in two dimensions for IR.
Results for problem sets originally in two dimensions for IRN.
Results for problem sets originaly in two dimensions for IRNS.

Results for problem sets 1, 2, and 3 for IRNS. These problem sets are
originally in three dimensions.

Results for problem sets 4, 5, and 6 for IRNS. These problem sets are
originally in four dimensions.

Vi

32

36
37
40

43
43
45

45

48

51

58

61

63

65

67

68

70

74

5.10

511

5.12

5.13

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

7.1

7.2

7.3

Results for problem sets 7, 8, and 9 for IRNS. These problem sets are

originally in five dimensions.

Results for problem sets 1, 2, and 3 for IMP. These problem sets are

originally in three dimensions.

Results for problem sets 4, 5, and 6 for IMP. These problem sets are

originally in four dimensions.

Results for problem sets 7, 8, and 9 for IMP. These problem sets are

originally in five dimensions.
Results for problem sets originally

Results for problem set 1 for HGA
originally in three dimensions.

Results for problem set 2 for HGA.

originally in three dimensions.

Results for problem set 3 for HGA.

originally in three dimensions.

Results for problem set 4 for HGA.

originally in four dimensions.

Results for problem set 5 for HGA.

originally in four dimensions.

Results for problem set 6 for HGA.

originally in four dimensions.

Results for problem set 7 for HGA.

originally in five dimension.

Results for problem set 8 for HGA.

originally in five dimensions.

Results for problem set 8 for HGA.

originally in five dimensions.

in two dimensions for HGA.

. These are the 50-point problems

These are the 100-point problems

These are the 150-point problems

These are the 50-point problems

These are the 100-point problems

These are the 150-point problems

These are the 50-point problems

These are the 100-point problems

These are the 100-point problems

Results for Problem Set 1: 50-point problems originaly in three

dimensions.

Results for Problem Set 2: 100-poi
dimensions.

nt problems originaly in three

Results for Problem Set 4: 50-point problems originally in four

dimensions.

Vii

76

79

79

80
85

87

87

88

92

92

93

96

96

97

102

106

109

74

7.5

7.6

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

Results for Problem Set 5: 100-point problems originally in four
dimensions.

Results for Problem Set 7: 50-point problems originally in five
dimensions.

Results for Problem Set 8: 100-point problems originally in five
dimensions.

Problem ses.

Results for Problem Set 10: 150-point problems originally in three
dimensions.

Results for Problem Set 11: 300-point problems originally in three
dimensions.

Results for Problem Set 12: 500-point problems originally in three
dimensions.

Results for Problem Set 13: 150-point problems originally in four
dimensions.

Results for Problem Set 14: 300-point problems originally in four
dimensions.

Results for Problem Set 15: 500-point problems originally in four
dimensions.

Results for Problem Set 16: 150-point problems originally in five
dimensions.

Results for Problem Set 17: 300-point problems originally in five
dimensions.

Results for Problem Set 18: 500-point problems originally in five
dimensions.

Results for Problem Set 10: 150-point problems originally in three
dimensions with 10 solutions for DACN.

Results for Problem Set 11: 300-point problems originally in three
dimensions with 10 solutions for DACN.

Results for Problem Set 12: 500-point problems originally in three
dimensions with 10 solutions for DACN.

viii

109

115

118
123

125

129

130

131

135

135

137

137

138

143

143

144

8.14

8.15

8.16

8.17

8.18

8.19

8.20

9.1

Results for Problem Set 13: 150-point problems originally in four
dimensions with 10 solutions for DACN.

Results for Problem Set 14: 300-point problems originally in four
dimensions with 10 solutions for DACN.

Results for Problem Set 15: 500-point problems originally in four
dimensions with 10 solutions for DACN.

Results for Problem Set 16: 150-point problems originally in five
dimensions with 10 solutions for DACN.

Results for Problem Set 17: 300-point problems originally in five
dimensions with 10 solutions for DACN.

Results for Problem Set 18: 500-point problems originally in five
dimensions with 10 solutions for DACN.

Results for larger problems originally in 3 dimensions with 10
replications.

Descriptions of heuristic abbreviations.

144

145

145

146

146

147

148

151

31

32

33

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

5.1

5.2

5.3

5.4

5.5

List of Figures

L attice structure.

Four equivalent solutions resulting from arbitrary orientation.
Two equivalent solutions resulting from symmetry.

Lattice of four points.

Lattice with 16 points after the four initial points have been subdivided
into four additional points each.

Neighborhood of alattice point.

Plot for problem 2 from Problem Set 1.
Plot for problem 9 from Problem Set 2.
Plot for problem 4 from Problem Set 3.
Plot for problem 6 from Problem Set 4.
Plot for problem 7 from Problem Set 5.
Plot for problem 5 from Problem Set 6.
Plot for problem 1 from Problem Set 7.
Plot for problem 8 from Problem Set 8.
Plot for problem 10 from Problem Set 9.
Lattice of four points.

Lattice with four initial points and point one subdivided into four
additional points.

Lattice with 16 points after the four initia points have been
subdivided into four additional points each.

Plot for problem 2 from problem set 1.

Plot for problem 9 from problem set 2.

25

30

31

38

38

42

46

46

47

48

49

49

51

52

52

59

59

60

70

71

5.6

5.7

5.8

5.9

5.10

5.11

5.12

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

71

7.2

7.3

74

7.5

7.6

8.1

Plot for problem 4 from problem set 3.
Plot for problem 6 from problem set 4.
Plot for problem 7 from problem set 5.
Plot for problem 5 from problem set 6.
Plot for problem 1 from problem set 7.
Plot for problem 8 from problem set 8.
Plot for problem 10 from problem set 9.
Plot for problem 2 from Problem Set 1.
Plot for problem 9 from problem set 12.
Plot for Problem Set 3: Problem 4.

Plot for Problem Set 4: Problem 6.

Plot for problem 7 from problem set 5.
Plot for problem 5 from problem set 6.
Plot for problem 1 from problem set 7.
Plot for problem 8 from problem set 8.
Plot for problem 10 from problem set 9.
Plots for problem 2 from problem set 1.
Plots for problem 9 from Problem Set 2.
Plots for problem 6 from problem set 4.
Plots for problem 7 from problem set 5.
Plots for problem 1 from problem set 7.
Plots for problem 8 from problem set 8.

Plots for Problem Set 10: Problem 7.

Xi

71

74

75

75

76

77

77

88

89

89

93

94

94

97

98

98

102

106

110

112

115

118

125

8.2 Plots for Problem Set 13: Problem 1. 131

8.3 Plots for Problem Set 16: Problem 3. 139

Xii

Chapter 1: Introduction

The availability of superior instruments, computers and information technology
has made possible the measuring of physical phenomena with higher precision andin a
shorter time interval. This has changed not only the sources, nature, and volume of data
available but also the numerical and graphical tools for data analysis. High volume or
multidimensional data are frequently generated, captured, and stored in numerous
operationsin amost all spheres of human endeavor and particularly in science and
business operations. For example, high-energy physics experiments generate datain the
order of 1 — 10 MBs, about 10° — 10° times a year (Shoshani, 2003). Similar large and
complex data operations and endeavors cover applications ranging from science,
engineering, and medicine to commerce and finance (Mackinnon and Glick, 1999).

In today’ s business environment, transaction processing with the aid of computers
and the use of information technologies such as barcode scanners generate huge volumes
of datain operations ranging from retailing to banking to stock trading (Mackinnon and
Glick, 1999). Many companies and organizations gather gigabytes or terabytes of
business transactions, scientific data, web logs, satellite pictures, and text reports, which
are large and complex (Morzy and Zakrzewicz, 2003). In essence, massive databases
growing at unprecedented rates are indeed very common today.

Inherent in such data are important insights into the operations they represent.
Businesses want to mine retail datato know how to acquire, retain, and increase the
profitability and lifetime value of a customer (Cabenaet al., 1997). Researchers are
devel oping the tools to mine available data to discover knowledge that facilitate activities

such as market research, fraud detection and prevention, the pricing of securities and

derivatives, as well as the monitoring of the medical impacts of prescription drugs
(Mackinnon and Glick, 1999). Consequently, data mining has become difficult to ignore
and hence an area of intense research.

Data mining involves the extraction of hidden predictive information from large
databases. It is a powerful new technology with great potentia to help companies focus
on the most important information in their data warehouses. Data mining tools help
predict future trends and behaviors, allowing businesses to make proactive, knowledge-
driven decisions. Data mining tools can answer business questions that traditionally were
too time consuming to resolve. For instance, the type and number of al productsin a
customer’ s shopping basket can be recorded and examined, giving insight into the
customer’ s behavior. This enables the shop to draw conclusions for the shop’s
presentation of its products (Morzy and Zakrzewicz, 2003).

Datamining is an interdisciplinary field and utilizes techniques and tools from
fields such as machine learning, pattern recognition, statistics, database, and
visualization, to address the issue of information extraction or knowledge discovery from
complex databases (Cabenaet al., 1997; Mackinnon and Glick, 1999). Before the advent
of data mining, researchers focused on problems with data sizes that were at most afew
hundred to afew thousand cases and had between one and afew dozen variables (Elder
and Pregido, 1996). The field emerged when it was realized that traditional decision-
support methodol ogies, which combine simple statistical techniques with executive
information systems, could not handle large and complex data sets within the time limits
and operational conditions imposed by today’ s business environment (Cabena et al.,

1997). Enterprises must be able to recognize trends early in rapidly changing

environments and implement their ideas as quickly as possible in order to survive and
strengthen their own positions in an environment of increasing competition (Dorndorf
and Pesch, 2003).

Today’ s data sets are usually large and multidimensional, growing and changing
with time; consequently, they are usually complex, dynamic, and difficult to visualize.
Datavisualization reveal s the rel ationships and trends that are not evident from the raw
multidimensional data sets by using mathematical techniques to reduce the number of
dimensions while preserving the relevant inherent properties. Data visualization rests on
the premise that a picture is worth athousand words (Schiffman et al., 1981; Y oung,
1987). The practical value of data visualization is based on the fact that it is often easier
and more informative to look at a picture of the data than to look at the data points
themselves, particularly when the data set islarge (Schiffman et al., 1981). Large and
multidimensional data sets that require visualization are commonplace today and may be
encountered in many disciplines ranging from the physical, biological, and behavioral
sciences to product development, marketing, and advertising (Schiffman et al., 1981).

Popular techniques used to solve data visualization problems include
multidimensional scaling (MDS) and Sammon maps (SM) (Borg and Groenen, 1997,
Sammon, 1969; Schiffman et al., 1981; Y oung, 1987). These techniques solve the data
visualization problem using nonlinear optimization techniques. A limitation of a
nonlinear algorithm is the small number of vectors (data points) it can handle (Sammon,
1969). Even with today’ s fast computers, nonlinear optimization techniques are usually
slow and inefficient for large data sets. Discrete optimization techniques may provide an

efficient solution to the data visualization problem.

The objectives of this dissertation are to:

Q) devel op a discrete optimization formulation for the data visualization
problem;
2 develop an efficient divide-and-conquer approach to solve the discrete

data visualization problem;

3 investigate the use of local search, mathematical programming and
genetic agorithms in providing accurate or efficient solutions;

4 compare the divide-and-conquer discrete optimization heuristics with
nonlinear optimization heuristics for the data visualization problem.

This dissertation is organized as follows.

In Chapter 1, we give an introduction and present the objectives of the
dissertation.

In Chapter 2, we give an overview of the existing literature on data mining and
data visualization. We present background information on quadratic assignment
problems, local search heuristics, integer programming problems, and genetic algorithms.

In Chapter 3, we present the methodology that we use to formul ate the data
visualization problem as a quadratic assignment problem.

In Chapter 4, we investigate the use of four different local search heuristics, using
different neighborhoods, to solve the discrete data visualization problem.

In Chapter 5, we investigate the use of an equivalent integer programming

formulation to solve the quadratic assignment problem.

In Chapter 6, we investigate the use of a hybrid genetic algorithm heuristic to
solve the data visualization problem. We use the results from our local search heuristic as
the starting solutions for a genetic algorithm procedure.

In Chapter 7, we compare our local search heuristic to a nonlinear Sammon map
procedure. We also investigate using the results from our local search heuristic as the
starting solutions for the nonlinear procedure instead of using random starting solutions.

In Chapter 8, we compare our local search heuristic to acommercia nonlinear
multidimensional procedure. We conduct experiments to see how well our heuristic
performs on large data sets.

In Chapter 9, we give asummary of our results and present recommendations for

future research.

Chapter 2: Literature review

Data mining techniques and methods have been developed to revea relevant
trends in high volume or multidimensional datato facilitate the making of scientific
decisions on operational matters (Cabenaet a., 1997; Borg and Groenen, 1997). In this
chapter, we provide an overview of the literature on data visualization and
multidimensional scaling technigues that may be relevant to the development of discrete

models for solving the data visualization problem.

2.1 Data Visualization

Data mining activities include both directed and undirected approaches. Directed
data mining focuses on one target variable. In undirected data mining, the goal isto
understand the relationships amongst al of the variables. Datavisualization is akey
component of undirected data mining (Berry and Linoff, 2000).

Data visualization technigques are used to reveal relationships and trends that are
not evident from raw, multidimensional data sets. They involve the use of mathematical
techniques to reduce the number of dimensions while preserving the relevant inherent
properties. The smaller number of dimensions can be easily evaluated by human
observation (Sammon, 1969). The result renders complex data sets accessible to visual
exploration and thus makes it easier to see structure not obvious from the raw data (Borg
and Groenen, 1997). The results are presented in visual form, in two or three dimensions
to facilitate human visualization (Sammon, 1969). The types of presentations range from
scatter plots matrices and Chernoff faces to color encoded patterns and schemes for

viewing hierarchical subsets (Mackinnon and Glick, 1999).

Applications are numerous and varied, especially in fields such as finance and
marketing where an abundance of data exists (Deboeck and Kohonen, 1998; Berry and
Linoff, 2004). Condon et a. (2002) used data visualization techniques to visualize data
from a college selection problem and Condon et al. (2003) used data visuaization to
anayze the judgments of decision makers.

Popular technigques used to solve data visualization problems include
multidimensional scaling (MDS) and Sammon maps (SM) (Borg and Groenen, 1997,
Sammon, 1969; Y oung, 1987). Cox et al. (1997) provided examples of some of the
visualization techniques available today. Traditionaly, data visualization problems are
solved using nonlinear optimization techniques (Sammon, 1969; Borg and Groenen,
1997). Sammon (1969) indicated that one of the limitations of anonlinear algorithm is
the small number of vectors (data points) it can handle. Even with today’ s fast computers,

nonlinear optimization techniques are usually slow and inefficient for large data sets.

2.2 Multidimensional Scaling

Today’ s data sets are usually large and multidimensional, growing and changing,
and hence dynamic (Mackinnon and Glick, 1999). Huber (1997) noted that massive
databases become heterogeneous through opportunistic data collection (of various
objects, by several observers, at multiple locations and times) and typically come from
processes where data reduction cannot be built in. In such circumstances, traditional
statistical techniques do not provide sufficient capacity in discovering knowledge
inherent in the data. Friedman (1997) and Wegman (1995) discussed what is referred to

as “the curse of dimensionality” that many algorithms used by statisticians suffer from.

Multidimensional scaling (MDS) is a set of mathematical techniques used to
reduce multivariate or multidimentsional data to two or three dimensions to facillitate
visualization (Kruskal and Wish, 1978). MDS refersto a class of data analysis techniques
al of which portray the data’ s structure in a spatial fashion easily assimilated by the
relatively untrained human eye (Kruskal and Wish, 1978; Y oung, 1987). The techniques
are used to construct a geometric representation of the data, usually in a Euclidean space
of fairly low dimensionality, while preserving some of the most prominent distance
relationships in the original data set. Kruskal and Wish (1978) are among the pioneersin
developing and using MDS techniques.

There are anumber of different MDS techniques that may be distinguished based
on the particular type of geometry into which one wants to map the data, the mapping
function, the algorithm used to find an optimal data representation, and the treatment of
statistical error in the models (Borg and Groenen, 1997).

MDS methods have been designed for all types of relational data matrices,
including symmetric and asymmetric matrices, rectangular and square matrices, matrices
with or without missing elements, equally and unequally replicated data matrices, two-
way and multi-way matrices and other types of matrices (Torgerson, 1958; Y oung, 1987).

All MDS programs are iterative, that is, they all take the approach of trying over
and over again to obtain the best possible solution (Schiffman et al., 1981). Asis
common in iterative processes, the quality of the solution is affected by the starting
(initial) solution and the stopping criteria, so al MDS techniques involve some specia
way to get the iterations started and stopped. Thisis achieved by what is called the

initialization routine and the termination routine.

2.3 Sammon Map

Sammon (1969) developed an algorithm for the analysis of multivariate data
along with some experimental results. His algorithm is based on a point mapping of
vectors from a high-dimensiona space to alower-dimensional space such that the
inherent data structure is approximately preserved. Mainly mappings to two- and three-
dimensional spaces are considered since the resulting data configuration can be easily
evaluated by human observationsin three or fewer dimensions (Sammon, 1969).

Sammon (1969) randomly selected theinitial configuration for the vectorsin the
new dimension. The inter-point distances for the new dimension were computed and then
used to define an error, which represented how well the present configuration of the
pointsfit the original configuration. The next step in the algorithm was to change the new
configuration so as to decrease the error. A steepest descent procedure was used to search
for aminimum error.

Sammon’ s nonlinear mapping a gorithm was applied on several data setsin order
to test and evaluate the utility of the program in detecting and identifying structure in data
(Sammon, 1969). Sammon reported results for severa artificially generated data sets. For
demonstration purposes, it was useful to work with artificially generated data so that the
results could be compared with known data structures. Sammon (1969) noted that, for the
utility of any data analysis technique, it is more convincing when the techniqueis applied
to real data as opposed to artificialy generated data, presuming of course that the analysis
results are correct. Therefore, he ran his algorithm on many real data sets and achieved

highly satisfactory results.

MDS and Sammon maps traditionally solve the data visualization problem using
nonlinear optimization techniques (Sammon, 1969; Borg and Groenen, 1997). A
limitation of a nonlinear algorithm is the small number of vectors (data points) it can
handle (Sammon, 1969). Even with today’ s fast computers, nonlinear optimization
techniques are usually slow and inefficient for large data sets.

Discrete optimization techniques may provide a possible alternative for the data
visualization problem. Essentially, data visualization problems are assignment problems,
so that it may help to model the data visualization problem as a quadratic assignment

problem (QAP).

2.4 Quadratic Assignment Problem

Koopmans and Beckman (1957) were the first to introduce the QAP. They used
it in an economic context to model a plant location problem. The problem involved the
assignment of aset of n facilities that have certain amounts of flow between them to a set
of n predetermined locations at certain distances apart in such way that the sum of
product of flows and their respective distances is minimized. Therefore, the QAP is
usually described in afacility-location context (Cela, 1998). The terms facility and
location are used even if thereis no occurrence of afacility-location problem.

The QAP has been studied extensively by mathematicians, computer scientists,
operations researchers, and practitioners (Cela, 1998). Among the applications of the
QAP are placement problems, scheduling, manufacturing, VLSI design, statistical data
analysis, and parallel and distributed computing. Currently, the QAP has been applied to
large variety of applications and areas such as scheduling, wiring problems in electronics,

paralel and distributed computing, statistical analysis, design of control panels and

10

typewriter keyboards, chemistry, archeology, balancing of turbine runners, and computer
manufacturing (Burkard, 1984; Finke et a. 1987).

The QAP has enjoyed great interest mostly because of its wide applicability, but
partly because of its insurmountable resistance to efficient solution techniques (Bazaraa
and Sherali, 1980). Thislack of successis attributed to its combinatorial nature, that is,
the exponential growth of feasible binary solutions as a function of the parameter n of the
problem (Adams and Johnson, 1994). The QAP iswidely regarded as one of the most
difficult combinatorial optimization problems (Ahujaet a., 2000). It belongs to a class of
problems referred to as NP-hard, where NP stands for nondeterministic polynomial
(Garey and Johnson, 1979). For such problems, no known algorithms are able to generate
the best answer in an amount of time that grows only as a polynomial function of the
number of elementsin the problem. Actually, not only isthe QAP NP hard and NP-hard
to approximate, it is also practically intractable as it is generally considered very difficult
to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits
(Cela, 1998).

We note that remarkable progress in data structures and algorithmic
developments, as well as major advances in computing technology, have enabled a
tremendous increase in the size of NP-hard problems that can be solved. Robust solvers
are now available that solve large-scale linear programming problems and various classes
of integer programming problems (Hentenryck, 1999). For example, large-scale instances
of combinatoria problems such as the traveling salesman problem (TSP) with thousands

of cities can now be solved optimally in practice (Cela, 1998). However, the QAP still

11

remains a challenge. It has been particularly difficult to use exact methods to solve even
relatively small instances (n =~ 20) of the QAP, (Fleurent and Ferland, 1994).
Cela (1998) gives a general overview of the most studied aspects of the QAP and

outlines a number of promising research directions. She states that a QAP of sizen canin

theory be solved by:
1. Enumerating the n! feasible binary solutions.
2. Computing the objective function value at each point.
3. Selecting a solution with the minimum value.

When n > 15, enumeration is computationally intractable even for special implicit
procedures designed to effectively eliminate nonoptimal solutions from consideration
(Adams and Johnson, 1994). Generally problems of size larger than 20 cannot be solved
to optimality in areasonable amount of time, while problems of size 15 to 20 are
considered to be difficult to solve, (Cela, 1998; Li et a., 1994).

Exact agorithms for the QAP include approaches based on dynamic
programming (Christofides and Benavent, 1989), cutting planes (Bazaraa and Sherali,
1980) and branch-and-bound (Lawler, 1963). Among these only branch-and-bound
algorithms are guaranteed to obtain the optimal solution but they generally are unable to
solve problems of size larger than 20 (Ahujaet a., 2000).

Recently, theoretical results obtained on the combinatoria structure of the QAP
polytope have raised new hopes that cutting planes might be successfully used to solve
reasonably sized QAPs (Cela, 1998). Clearly, the design of efficient branch-and-cut
methods is conditioned by the identification of new valid and possibly facet defining

inequalities for the QAP polytope and the development of the corresponding separation

12

algorithms. Thus, quite alot of effort may be required before the current size limits of

solvable QAPs can be significantly improved (Cela, 1998).

2.4.1 Linearizations of QAP

When dealing with QAPs, it appears that the quadratic form in its objective
function destroys the hope of finding efficient solution methods (Cela, 1998). A well-
known method to cope with the problematic quadratic form is the linearization of the
QAP (Kaufman and Broeckx, 1978). Linearization transforms the quadratic QAP
objective function into an equivalent linear function by introducing a number of new
variables and constraints (Bazaraa and Sherali, 1980). Numerous QAP linearizations have
been proposed (Bazaraa and Sherali, 1980; Frieze and Y adegar, 1983; Kaufman and
Broeckx, 1978). Most QAP linearizations are mixed integer linear problems with alarge
number of variables and equations (Cela, 1998).

A lot of effort has been put into obtaining compact linearizations, i.e.,
linearizations with relatively few variables and constraints (Cela, 1998). The size of the
linearization matters particularly in cases where pure enumeration procedures are used to
solve the problem at hand. The linearization of Kaufman and Broeckx is perhaps the
smallest QAP linearization in terms of the number of variables and constants. However,
for large n, even this linearization has alarge number of variables and constraints. Under
these conditions, even powerful tools to cope with linear integer programs such as
Benders' decomposition or cutting planes do not help alot (Cela, 1998). These

considerations do not matter when the overall problem can be embedded into a

13

continuum, such as when linear programming and assignment problem-type relaxations
are used (Padberg and Rijal, 1996).

The linearization of Frieze and Y adegar (1983) has turned out to be the
foundation of many other linearizations. Some of the best existing bounding procedures

for the QAP have been obtained by building on the linearization of Frieze and Y adegar.

2.4.2 QAP Heuristics

Since many applications of QAP give rise to problems of size far greater than 20,
thereis aneed for good heuristics that can solve large size QAPs (Ahuja et a., 2000).
Various polynomial time heuristics have been proposed to find good solutions for larger
QAP instances, which arise for many applications. These heuristics do not always obtain
the optimal solution, but they do produce good approximate solutionsin a reasonable
amount of time. Although many heuristics for the QAP have been proposed, no dominant
algorithm has emerged (Tate and Smith, 1995). These heuristics include construction
methods, local improvement methods, tabu search agorithms, simulated annealing
approaches, and genetic algorithms (Ahuja, et a., 2000; Tate and Smith, 1995).

Construction methods basically start with an empty solution and recursively
assign facilities to locations according to some criteriauntil al facilities have been
assigned. Construction methods are considered to be the simplest heuristic approaches to
the QAP and this simplicity is often associated with a poor quality of resulting results
(Cela, 1998).

Local improvement methods are classical approaches to solving difficult
combinatoria optimization problems (Cela, 1998). They belong to the larger class of

local search methods. Loca search methods start with an initial feasible solution and

14

iteratively try to improve the current solution by replacing it with a better feasible
solution from its neighborhood. Local improvement methods have the advantage of
providing good solutionsin a short amount of time. However, they have the drawback of
stopping at the first local minimum (Fleurent and Ferland, 1994). Local search methods
are still the method of choice for NP-hard problems as they provide a robust approach for
obtaining high-quality solutions to problems of arealistic size in areasonable amount of
computing time (Aarts and Lenstra, 1997).

Tabu search is a heuristic method that improves on local search by allowing
solutions to escape from a poor local minimum (Glover and Laguna, 1997; Skorin-
Kapov, 1990). This method alows climbing moves when no improving neighbor exists.
A data structure keeps track of the history of the search in order to prevent cycling.

Simulated annealing approaches are another group of heuristic methods that try to
overcome the issue of poor local solutions found in hard combinatorial optimization
problems. This approach is based on an analogy between combinatorial optimization
problems and statistical mechanics (Wilhelm and Ward, 1987). Feasible solutions of the
problem correspond to the states of a physical system, while the objective function value
for afeasible solution corresponds to the energy of the state of the physical system (Cela,
1998). Simulated annealing is atherefore a general approach that can be applied to any
combinatoria optimization problem as soon as a neighborhood structure has been
introduced on the problem’ s set of feasible solutions (Burkard and Rendl, 1984). A
current solution is updated when certain specified conditions are met until a stopping

ruling is met. Even though tabu search and simulating annealing produce better results

15

than local search methods, they require much more computational effort (Fleurent and
Ferland, 1996).

Genetic algorithms (GA’ s) are a class of optimization procedures in which
populations of individua solutions evolve in amanner inspired by evolution and natural
selection (Fleurent and Ferland, 1996). There is a growing interest in solving problems
based on principles of evolution and hereditary. Such systems maintain a population of
potential solutions, they have some selection process based on fitness of individuals, and
they use genetic operators (Michalewicz, 1996). Genetic algorithms are not overly costly
in terms of computational effort (Tate and Smith, 1995). Unlike many other search

algorithms, the lack of explicit memories makes GAs very fast (Rawlins, 1991).

2.5 Local Search

Many combinatorial optimization problems including the QAP are NP-hard and it
isgenerally believed that NP-hard problems cannot be solved to optimality within
polynomially bounded computation times (Aarts and Lenstra, 1997). In combinatorial
optimization, optimal solutions to NP-hard problems are sought, a task which can be
prohibitively difficult even for problem instances of relatively small size (Cela, 1998). In
cases when an optimal solution to the problem is not found, we often find alocal optimal
solution that is good in some sense. For example, instead of looking for the best solution
among all feasible ones, we may seek a solution that is the best out of a subset of feasible
solutions. Finding such a solution could intuitively be easier than finding the optimal one
(Cela, 1998). Formalizing this kind of compromise leads to what are commonly called

local search approaches (Fleurent and Ferland, 1994).

16

Local search (LS) has grown from a simple heuristic ideainto a mature field of
research in combinatorial optimization and this area of discrete mathematicsis of great
practical use and is attracting ever-increasing attention (Aarts and Lenstra, 1997). A
genera conclusion isthat LS agorithms can find good solutions for many problems of
interest in low-order polynomial running times (Aarts and Lenstra, 1997).

Most LS algorithms have the advantage of being generally applicable and flexible
(Aartsand Lenstra, 1997). Roughly speaking, LS starts with an initial solution and then
continually tries to find better solutions by searching neighborhoods. It only requires a
specification of solutions, an objective function, a neighborhood function, and an
efficient method for exploring a neighborhood, all of which can be easily obtained for
most problems.

A basic version of LSisiterative improvement (Aarts and Lenstra, 1997).
Iterative improvement starts with an initial solution and searches its neighborhood for a
better solution. If such asolution isfound, it replaces the current solution, and the search
continues. Otherwise, the algorithm returns the current solution as the local optimal
solution. Iterative improvement can mean either first improvement or best improvement.
The first improvement method searches the neighborhood until a better solution has been
found and replaces the current solution with it. Best improvement replaces the current
solution with the best solution in its neighborhood.

Finding efficient neighborhood functions that lead to high-quality local optima
can be viewed as one of the challenges of LS algorithms. No general rules are available
for defining good neighborhood structures and appropriate methods for searching through

them have to be considered separately. The literature presents many examples of

17

neighborhood functions and even for the same problem there are often many different
possibilities available (Aarts and Lenstra, 1997).

Another important decision for LS is the choice of afeasible starting solution
(Cela, 1998). Poor local optimal solutions found in several cases are attributed to bad
starting solutions. A classical corrective approach to this shortcoming has been to run the
LS procedure a number of times with different starting solutions and to keep the best
solution found as the final solution (Aarts and Lenstra, 1997). This approach allows

better solutions to be obtained in practice (Fleurent and Ferland, 1994).

2.6 Genetic Algorithm

There are many hard optimization problems, like the QAP, that arise frequently in
engineering, economics, management, mathematics, and the social sciences and for
which no reasonably fast algorithms have been developed (Michalewicz, 1996; Schwefel,
1981). With hard optimization problems, it is often only possible to find an efficient
algorithm whose solution is approximately optimal. Consequently, there is much interest
in approximation algorithms that can find near-optimal solutions with reasonable running
times (Aarts and Lenstra, 1997).

Probabilistic algorithms can be used to solve some hard optimization problems.
These algorithms do not guarantee the optimal solution, but by randomly choosing
sufficiently many solutions the probability of error may be made as small aswe like
(Michalewicz, 1996). Genetic algorithms (GAS) are parallel, randomized-search
optimization heuristics that are based on the biological process of natural selection (Tate

and Smith, 1995). GAs are based on evolutionary strategies found in nature, that is,

18

survival of the fittest (Michalewicz, 1996). GAs belong to the class of probabilistic
algorithms, but they are different from other random algorithms as they combine
elements of directed search and stochastic search and are therefore more robust than
existing directed search methods, (Michalewicz, 1996). GAs often find the needlein the
haystack, even though they use random search strategies (Mackinnon and Glick, 1999).

Genetic algorithms (GA) were first presented by Holland in the early 1970s
(Holland, 1975). They have since become an important tool in machine learning and
function optimization (Rawlins, 1991). A GA has a control structure that adapts to the
problem being solved (Rawlins, 1991). GAs translate the environment and dynamics of a
combinatoria optimization problem in terms of a coding structure and a stochastic battle
for fitness amongst rival candidates (Mackinnon and Glick, 1999). GAs have found
applications in many operations research problems. They have been applied to problems
in scheduling, as well as in finance and insurance. For example, the European portfolio
management for banks, OMEGA, utilizes GAs (Mackinnon and Glick, 1999).

Tate and Smith investigate the use of GAsto solve QAPs (Tate and Smith, 1995).
They present a GA approach to QAPs that uses the problem specific structure. They show
that the GA finds solutions that are competitive with those of previously known heuristics
without undue computational overhead. They argue that GAs provide a particularly
robust method for solving the QAP and its more complex extensions.

Pure GAs have shortcomings for combinatorial optimization problems. While the
pure GA approach yields good solutions for small problems, it cannot really compete
with other heuristics, such as simulated annealing, for larger problems (Fleurent and

Ferland, 1996; Tate and Smith, 1995). Even though the best-known solutions for the most

19

difficult large QAP problems could not be obtained with GAs, the results indicate that the
GA approach works and can provide good solutions by means different from those used
by ssimulated annealing and tabu search, (Tate and Smith, 1995). This suggests the use of
GAs to complement and improve existing procedures for combinatorial optimization
problems (Fleurent and Ferland, 1994). Therefore, it is common to hybridize GAs with
heuristic techniques that already perform well for specific problems (Davis, 1991,
Fleurent and Ferland, 1994).

A hybrid procedure that combines genetic operators with existing heuristicsis
proposed by Fleurent and Ferland (1994) to solve the QAP. They find that genetic
operators improve the performance of both local search and tabu search.

A greedy randomized adaptive search procedure (GRASP) for the QAP isgiven
by Li et al. (1994). GRASP is an iterative process consisting of two phases, a
construction phase and alocal search phase. The best overall solution is kept as the result.
Li et al. (1994) discussed aspects of a GRASP implementation for solving the QAP. Their
algorithm was tested on a board range of problems and produced good-quality solutions
in areasonable amount of computation time.

Ahujaet a. (2000) give a greedy genetic algorithm for solving the QAP. They
investigate the use of several possible enhancementsto GAs. The overall performance of
the GA for the QAP is found to improve by using greedy methods. Fairly effective
heuristic algorithms can be obtained by striking the right balance between greedy
methods that improve the quality of solutions and methods that promote diversity

(Ahujaet d., 2000).

20

A GA manipulates a population of solutions using probabilistic, genetic-like
operators like pairwise string recombination, called crossover, and string mutation to
produce new populations with the intent of generating solutions with better objective
function values (Rawlins, 1991). The members of the population act as a primitive
memory for the GA and the genetic operators are so chosen that manipulating the
popul ation often leads the GA away from unpromising areas of search and towards
promising ones, without the GA having to explicitly remember its trail through the search
space (Rawlins, 1991).

GAs perform multi-directional searches by maintaining a population of potential
solutions and repeatedly performing a cycle of operations until some termination
condition is satisfied. A GA for a particular problem must have the following
components.

@ A selection mechanism that selectsindividual solutions from the

population, usually giving preference to those with better objective
function values.

(b) A reproduction or crossover mechanism that generates new feasible
solutions by combining features from many known solutions.

(© A mutation mechanism that generates new feasible solutions by randomly
perturbing a single known solution.

(d) An evaluation mechanism that plays the role of the environment and
evaluates each solution in the population and gives some measure of its
fitness.

(e A culling or replacement mechanism that removes some solutions from
the popul ation.

21

() Values for parameters that the GA uses, e.g., population size and

probabilities of applying genetic operators.

A GA has agenetic representation for potential solutions to the problem. An
encoding scheme maps feasible solutions to strings. Traditionally binary representations
were used for GAs. These binary representations, however, have some drawbacks when
applied to multidimensional, high-precision numerica problems (Michaewicz, 1996).
The effectiveness of a crossover operator depends greatly on the encoding scheme used.
The encoding should be such that the crossover operator preserves high performing
arrangements of strings within solutions (Ahujaet a., 2000). A GA must include away
to create an initial population of potential solutions. The performance of a GA is often
sensitive to the quality of theinitial population.

Reproducing subsets are selected from the current population. Thereis agreat
amount of flexibility in the choice of how to select individuals in a population. For
example, parents may be selected according to their absolute fitness, their rank in the
current population, or some other criteria (Tate and Smith, 1995). Selection mechanisms
should alow for better solutions to reproduce more often (Fleurent and Ferland, 1996).

In addition, there are many different possible crossover and mutation schemes for
agiven problem. Mutation operators are unary transformations that create new
individuals by asmall changein asingleindividual. Crossover operators are higher order
transformations that create new individuals by combining parts from severa (two or
more) individuals (Michalewicz, 1996). In most GA implementations, mutation only
takes place on a newly formed offspring, but mutation and reproduction can aso be

completely independent (Tate and Smith, 1995).

22

Crossover generates new solutions using various reproductive strategies.
Reproductive sets are usually of size two and the members are chosen probabilistically
with probabilities weighted by the solution values. In general crossover, the ith symbol of
an offspring is the ith symbol of one of the members of the reproductive set. The
crossover operator should be capable of producing a new feasible solution by combining
good characteristics of both parents (Ahuja, Orlin, and Tiwari, 2000). The offspring
should be considerable different from both parents.

Mutation arbitrarily alters parts of a selected solution by a random change with a
probability equal to the mutation rate. The idea behind the mutation operator isthe
introduction of some extra variability into the population. Mutation is probabilistic and is
usually independent of the value of the solution. Mutation should increase the diversity in
the population by introducing random variations in members of the population (Ahuja,
Orlin, and Tiwari, 2000).

Replacement or culling replaces some or all of the original population with the
new solutions. In classical GAs, the complete population is usually replaced at each
generation whereas in steady-state models, only afew individuals of the population are
replaced at each generation (Davis, 1991). Steady-state models exhibit very strong elitism
and are therefore better suited for hybrid schemes (Fleurent and Ferland, 1996). Also,
steady-state model s have been found to be faster than generational reproduction (Ahuja,
Orlin, and Tiwari, 2000). In most GAs the popul ation size remains constant.

After anumber of generations, when no further improvement is observed, the

program has converged and it is hoped that the best individual represents a near-optimal

23

solution. Often the algorithm is stopped after afixed number of iterations depending on

speed and resource criteria (Michalewicz, 1996).

24

Chapter 3: Methodology

3.1 Theoretical Development

Figure 3.1 Lattice structure.

Given aset M of m points and their coordinates in r-space, the data visualization
problem locates these pointsin g-space, q < r (usualy q = 2 or 3) such that arelevant
measure of distanceis preserved.

In order to apply discrete optimization techniques, we approximate the continuous
g-space by alattice N in g-space (see Figure 3.1) in which each cell has a center point.
Thisresultsin the problem of assigning the m pointsto n lattice (center) points. We can
make n aslarge or as small as the particular data visualization problem requires. A
problem with points spread out will require alarger grid than one with points clustered
together. The larger the grid, the more accurate the final result. To ensure that the grid (in
g-space) scales to a given data set, we find the greatest distance between the pairs of

pointsin M. Let this distance be a. Let the greatest distance in the chosen grid be b. Then

25

we multiply al the original distances between points by b/a, so that our grid scalesto the
given problem.

An assignment problem assigns r indivisible entities, caled facilities, to r
mutually exclusive locations at a minimum cost. It is assumed that each facility must be
assigned to exactly one location. Kaufman and Broeckx (1978) give the following

mathematical formulation of the assignment problem:

r r

Minimize) >’ ¢, (3.2)
i=1 j=1

subject to
> % =1Vi=1.., (3.2)
i=1
D% =1V =1.., (3.3)
i=1

x; €(0,1) (3.4)

where x;; equals 1 if facility i isassigned to location j and ¢ is the cost of assigning
facility i to location j. The constraintsin (3.2) model the fact that each facility must be
assigned to exactly one location, while the constraintsin (3.3) ensure that each location is
assigned exactly one facility. The objective function islinear and assumes that the

location of one facility does not affect the cost of locating other facilities.

3.2 Quadratic Assignment Problem (QAP)

In some assignment problems, the location of one facility affects the cost of
another. Thisisthe case in problems that involve the assignment of pairs of facilities.

Thus, the assumption that the benefit of assigning afacility to some location does not

26

depend on the locations of other facilities does not adequately address the reality of some
assignment problems. That is, linear assignment problems cannot handle the complexities
of the location decisions associated with all assignment problems. For example, the
benefits of improvements to one location that extend to adjacent locations or the
detrimental effects such as noise, vibration, and air or water pollution stemming from
surrounding activities are not addressed by linear assignment problems (Koopmans,
1957). When the cost is affected by simultaneously making two assignments, the
objective function can be formulated as a quadratic function of the assignment variables

Xik as follows (Kaufman and Broeckx, 1978):

Minimize Y > > > % X;

i1 =1 k=l 171
where cjjq isthe cost of assigning facilitiesi and j to locations k and I, respectively. This
problem is commonly known as the Quadratic Assignment Problem (QAP).

The problem of assigning m points to n lattice points cannot be treated as a linear
assignment problem because a linear assignment problem assumes that the cost of
assignment of one point to alattice point does not depend upon the assignment of the
other points. However, thisis not the case for data visualization problems. We now
formulate the data visualization problem, i.e., the problem of assigning m points to the n

lattice points, as a quadratic assignment problem.

3.3 QAP Formulation of Data Visualization Problem

To formulate the data visualization problem as a QAP, let od(i, j) fori,j e M be
the original distance between two pointsi and j in r-space and nd(k, 1) for k, | € N be the

distance between lattice pointsk and | in g-space. Let Xk be abinary variable that is equal

27

tooneif pointi e M isassigned to lattice point ke N and O otherwise. The data

visualization problem as described above can then be formulated as follows:

Minimize 3" 3" 3" 3 [od(, j) - nd (k, 1%, X, (3.5)

ieM jeM keN leN
i

subject to

D % =LVieM (3.6)
keN

X €(0,1). (3.7)

The data visualization problem in (3.5) — (3.7) is known as the multidimensional
scaling model with raw stress (Borg and Groenen, 1997) or the least squares scaling
model (Young, 1987). Any other problem where the objective is a pairwise function of
the pointsto be assigned in the data visualization problem can be modeled as a QAP.
Other choices, which can be considered, include Sammon mapping (Sammon, 1969),
classical scaling (Borg and Groenen, 1997), and all objective functions for nonmetric
scaling (Borg and Groenen, 1997). The QAP formulation has mn variables and m
assignment constraints.

The constraintsin (3.6) are simple assignment constraints. They require that each
pointini € M must be assigned to alattice point k € N indicating that a data
visualization problem can be formulated and solved as a QAP. Note that only one set of
constraints is needed here since there is no restriction on the number of points assigned to
alattice point. After any two pointsi, j € M have been assigned to pointsk,| € N,
respectively, the distance between them, denoted by nd(k, 1), can be calculated and their
contribution to the objective function can be determined. The objective function in (3.5)

penalizes deviations from od(i, j) quadraticaly.

28

3.4 Test of QAP Formulation

We implemented our QAP formulation in ILOG OPL Studio 3.5.1 (Hentenryck,
1999) and ran our experiments using Windows 2000 with an 800 MHz Pentium I11
processor and 512 MB of RAM. For our heuristics, we used values of n = 4°, wherep =
1,2, 3 and 4.

First, we considered a lattice of size four, that isn = 4, and10 different sets of M,
each with m = 10. We observed that arbitrary orientation resulted in four different
solutions that were equal (see Figure 3.2). We aso observed that symmetry exists
between the second and third quadrants (see Figure 3.3). Successfully eliminating this
symmetry will reduce the size of the solution space that the heuristic needs to handle and

thereby improve the efficiency of our heuristic.

29

3.5 Elimination of Arbitrary Orientation and Symmetry

10 C 2.2 10 E Co2
3‘2 4 3° [A)°4
@ (b)
1° E'z 1° D *s

A
B
3'[A) Cey 3 C £ 4
© (d)

Figure 3.2 Four equivalent solutions resulting from arbitrary orientation.

In order to eliminate the arbitrary orientation, we fix the first point in M to the
first quadrant, that is, X33 = 1 (for convenience, we use x;; instead of Xa;). For example, in
Figure 3.2, we consider only the solution in Figure 3.2(d). To eliminate symmetry

between the second and the third quadrant, we assign the next lowest numbered point that

30

102 Eoz 10 '(A\: De-
3* D 4 B'E 4
(@ (b)

Figure 3.3 Two equivalent solutions resulting from symmetry.

can be assigned to quadrants two or three to quadrant two. So, point two cannot be
assigned to quadrant three and all other points can only be assigned to quadrant threeif a

lower numbered point has already been assigned to quadrant two. That is,

Xps =0; X5 < ijz,i e M,i>3 (wepoint out that weuseA=1,B=2,C=3,D =4,
JeM
j<i

and E =5, in our formulation). In Figure 3.3, we consider only solution 3.3(a).

31

QAP QAPSE
Objective Running Objective Running
value time value time
Problem | Function (seconds) function (seconds)
1 1785.58 17.21 1785.58 2.33
2 2253.06 2242 2253.06 6.89
3 2038.34 15.45 2038.34 6.04
4 1848.60 23.60 1848.60 5.32
5 1279.13 13.89 1279.13 3.23
6 1841.48 14.72 1841.48 3.27
7 1848.53 47.78 1848.53 16.71
8 2185.95 12.96 2185.95 2.08
9 2494.98 58.48 2494.98 8.90
10 1183.79 13.50 1183.79 2.78
Average 23.99 5.76

Table 3.1. Results for 10-point problems for QAP and QAPSE.

Our QAP formulation with symmetry elimination constraints (QAPSE) is given

below.
Minimize >~ > > > [od(i, j) —nd(k, I’ x,X; (3.8)
M M ke {eN
subject to
kzxk =1VieM (3.9)
Y
X, =1 (3.10)
X =0 (3.11)
Xs< D X, VieM,i>3 (3.12)
ieM
si
x, € (0,) (3.13)

32

In Table 3.1, we give the results for the QAP and QAPSE formulations for the
sets of M of size 10. The average running times for QAP and QAPSE are 23.99 seconds
and 5.76 seconds, respectively. The results indicate that the formulations give the same
optimal solution and QAPSE is much faster than QAP. Thus, the symmetry elimination
constraints greatly reduce the running time of QAP.

Despite recent progress, it is still not possible to solve the QAP formulation
exactly for the problem sizes of interest here. Recall that only QAPs of size lessthan 20
can be solved to optimality (Cela, 1998). Therefore, we investigate the use of equivalent
integer problems, local search techniques, and genetic agorithms to solve our QAP

formulation for the data visualization problem.

33

Chapter 4: Local Search

There are a number of feasible solutions to a QAP. Finding the best solution is
difficult and time consuming. As discussed in the previous chapter, discretizing a data
visualization problem results in alarge QAP problem that is very difficult to solve. One
approach to overcoming this difficulty is to seek a solution that is the best solutionin a
subset of feasible solutionsinstead of looking for the best solution among all feasible
solutions. Such a solution is usually referred to as alocal optimum and it can be obtained
by using local search techniques. In this chapter, we develop alocal search technique to
solve our QAP.

Our local search procedure starts with an initial feasible solution that is generated
randomly. In this case, a solution is a string of numbers of length M where the ith number
in the string represents the lattice point to which point i € M is assigned. We change the
assignments of pointsin M in asolution to better assignments one point at atime,
keeping all other points fixed. We use a best-improvement algorithm in which the current
solution is replaced by the best solution in its neighborhood (the neighborhood structure
is explained below). The process goes though all the pointsin M and is repeated until a
stopping condition is satisfied.

More specifically, the contribution to the objective function of apointi e M is

calculated for al possible assignments keeping al other pointsin M fixed at their current

assignments. That is, we calculate, Y > [od(i, j)—nd(k,1)]*x; , for al possible

jeM leN

assignments of i to apoint ke N', holding fixed the assignment of the other points| to

lattice points | € N, where N' is the neighborhood of the assignment of i. We assign point i

to the lattice point that gives the smallest contribution to the objective function.

Our basic local search procedureis given as follows.

3.

4.

Start with aset Sof t randomly generated feasible solutions.

For each solution s € S, consider the pointsin M in random order.

(i)

(i)

(iii)
(iv)

For apoint i € M under consideration, keep the assignments of all
pointsin M except i fixed asthey arein solution s.

Calculate the contribution of point i to the objective function value
for different lattice assignments k, where k belongs in the
neighborhood of the assignment of point i in solution s. Identify
the lattice assignment k* that minimizes the value of the objective
function in the neighborhood.

Point i is assigned to lattice point k*.
Repeat steps (i) — (iii), following the order selected for pointsie M

until there are |M| consecutive iterations with no improvement in
the objective function value.

Calculate the objective function valuefor eachs € S,

The best solution is the one with the smallest objective function vaue.

We investigated four different discrete local search algorithms. These agorithms

are described in Table 4.1. We implemented our discrete local search algorithmsin the

C++ programming language. We used Microsoft Visual C++ 6.0 and ran our experiments

using Windows 2000 with an 800 MHz Pentium 111 processor and 512 MB RAM.

35

Algorithm Description

LS Local search heuristic

DAC Divide-and-conqguer local search heuristic

DACQ Divide-and-conquer local search heuristic with quadrant restrictions
DACN Divide-and-conquer local search heuristic with neighbor restrictions

Table 4.1 Local search agorithms.

4.1 Local Search Techniques

We tested our algorithms on artificially generated data sets. We applied our
algorithm to several data sets with 50, 100, or 150 points. We set t = 100. The data sets
were randomly generated from alattice set of 256 pointsin two dimensions. For each
problem size, 10 different problems were generated. To evaluate different versions of our
local search heuristic, we used problems generated from atwo-dimensional lattice, asitis
easy to compare the quality of the computational results when the original set of pointsis
in two dimensions. In this case, the optimal objective function value is known and equal

to zero.

4.1.1 Local Search Heuristic

Initially, we selected the neighborhood of apoint i € M, assigned to ke N, to be
al pointsin N. That is, every lattice point ke N is considered as a possible choice for
assigning i e M.

In Table 4.2, we show the results for the experiments for thislocal search
heuristic (LS). The frequency column gives the number of solutions (out of 100) that

converged to the best solution. In nine of the 10 problems of size 50, LS finds the global

36

50-point problems

100-point problems

150-point problems

Running Running Running
Best time Best time Best time
Problem | solution | Freq | (sec) | solution | Freq | (secs) | solution | Freq | (secs)
1 0.00 1 87.07 0.00 10 | 360.30 0.00 7 | 851.19
2 0.00 2 64.68 0.00 8 | 41434 0.00 5 | 805.37
3 0.00 2 83.32 0.00 8 | 462.46 0.00 6 | 91342
4 62.30 3 73.52 0.00 7 | 32542 0.00 9 | 739.81
5 0.00 1 98.76 0.00 1 | 51955 0.00 13 | 810.72
6 0.00 5 80.09 0.00 12 | 306.68 0.00 21 | 702.37
7 0.00 8 74.47 0.00 3 | 449.00 0.00 23 | 665.79
8 0.00 4 82.36 0.00 1 | 429.53 0.00 2 | 814.69
9 0.00 1 83.91 0.00 4 | 359.89 0.00 16 | 889.03
10 0.00 1 | 100.86 0.00 10 | 45281 0.00 8 | 786.27
Average 82.90 408.00 797.87

Table 4.2 Results for problem sets originally in two dimensions for LS.

optimum. For the 100-point and 150-point problems, LS finds the global optimum in all

20 problems. The average running times are 82.90 seconds, 408.00 seconds, and 797.87

seconds for the 50-point, 100-point, and 150-point problems, respectively.

LS allows points to be assigned to al points in the lattice structure. In this case we

consider 256 lattice points. As the size of M increased, the running time for LS increased

substantially.

4.1.2 Divide-and-Conquer Local Search Heuristic

To solve the problem of large running times with LS, we propose a divide-and-

conguer heuristic to reduce the size of the problem that is solved at each stage. Our

divide-and-conquer heuristic has five steps.

37

Figure 4.1 Lattice of four points.

Figure 4.2 Lattice with 16 points after the four initial points have
been subdivided into four additional points each.

1 Start with alattice of four points (see Figure 4.1).

2. Perform local search (as described above) on pointsin M using these four
points; that is, pointsin M can be assigned to only these four lattice points.

38

When local search terminates, the solutions that have been generated have
points divided into four quadrants.

3. Divide each quadrant into four points (see Figure 4.2).

4, Randomly assign points from each quadrant from the previous assignment
to one of the four new points. These solutions are the starting solutions for
local search and local search is performed using the new lattice structure;
that is, points can be assigned to any of the pointsin the current lattice
structure in local search.

5. Continue dividing each point into four points and repeat the previous step
until astopping ruleis met. We stop at 256 points, unless otherwise
specified.

For the divide-and-conquer heuristic, theinitial feasible solutions are generated
randomly taking into consideration the symmetry elimination constraints. That is, for the
initial step of our local search procedure where there are only four lattice points, the
symmetry constraints are taken into account and the first point is always assigned to the
first lattice point.

We apply our divide-and-conquer local search heuristic (DAC) to the same
problem sets we used to test LS. In Table 4.3, we show the results for the experiments for
DAC. For al 30 problems, DAC finds the global optimum. In two of the ten 100-point
problems and six of the ten 150-point problems, all solutions generated by DAC were
optimal (that is, the frequencies were 100%). The average running times for the 50-point
problems, the 100-point problems, and the 150-point problems are 41.24 seconds, 96.91
seconds, and 163.14 seconds, respectively.

In seven of 10 problems for the 50-point problems, DAC finds the optimal
solution more times than LS. For the 100-point problems, DAC finds the optimal solution

more times in nine of the 10 problems. In all 150-point problems, DAC finds the optimal

solution with a higher frequency than LS. Also, in the few problems for which LS has a

39

50-point problems

100-point problems

150-point problems

Running Running Running
Best time Best time Best time
Problem | solution | Freq | (secs) | solution | Freq | (secs) | solution | Freq | (secs)
1 0.00 69 30.03 0.00 58 | 136.34 0.00 | 100 | 14481
2 0.00 3 46.57 0.00 92 92.97 0.00 90 | 192.34
3 0.00 1 39.49 0.00 77 85.80 0.00 | 100 | 145.40
4 0.00 52 31.74 0.00 2 | 102.56 0.00 63 | 167.16
5 0.00 43 51.04 0.00 91 77.57 0.00 | 100 | 149.24
6 0.00 50 34.91 0.00 100 | 75.59 0.00 | 100 | 145.32
7 0.00 5 47.14 0.00 46 | 124.60 0.00 57 | 206.28
8 0.00 8 57.23 0.00 10 85.41 0.00 | 100 | 160.94
9 0.00 3 44.69 0.00 68 | 11242 0.00 90 | 170.22
10 0.00 1 29.61 0.00 100 | 75.85 0.00 | 100 | 149.65
Average 41.24 96.91 163.14

Table 4.3 Results for problem sets originaly in two dimensions for DAC.

higher frequency, the difference in the frequency of optimal solutions generated was

relatively small. For example, consider problem 4 in the 100-point problems. LS found

the optimal solution seven times while DAC finds the optimal solution two times.

Our experiments indicate that DAC generates better results with much smaller

running times than LS. Furthermore, DAC finds the optimal solution with a greater

frequency than LS. Thus, the probability that DAC finds the optimal solutionislikely to

be greater than for than LS, especiadly if the procedure involves fewer starting solutions.

However, for a 150-point problem with a 256-point lattice, DAC has an average running

time of 163 seconds. For larger data sets with more lattice points, the running time may

become very large. Thisis because DAC allows points to be assigned to any of the lattice

40

points in the current lattice structure. So, as n increases, more lattice points have to be

considered and this will increase the running time of DAC.

4.1.3 Divide-and-Conquer Local Search Heuristics with

Quadrant and Neighbor Restrictions

Next, we suggest two refinements to DAC that reduce running time. We propose
adivide-and-conguer local search heuristic with quadrant restrictions (DACQ) and a
divide-and-conquer local search heuristic with neighbor restrictions (DACN). In these
local search algorithms, there are neighborhood restrictions on the lattice points to which
points can be assigned. Both algorithms follow the same steps used in DAC. However,
the pointsin M are not assigned to all of the lattice points. The neighborhood is restricted
asfollows.

For DACQ, we restrict a point to the quadrant in which it is assigned initially.
When alattice point is divided into four new points, we consider only movements of
currently assigned points to one of the four new points. Therefore, at each stage of the
algorithm, only four lattice points are considered for local search.

For DACN, we restrict a point so that it can be assigned only to a neighbor of the
lattice point to which it is currently assigned. A solution s' belongs to the neighborhood
of asolution sif for any pointi € M with an assignment of k € N in s, the assignment of i
ins isl, wherel isany lattice point in N that is next to k, either horizontally, verticaly, or
diagonally (see Figure 4.3). Thus, at each step, a maximum of nine lattice points can be

considered for local search. Notethat i can stay whereit is currently assigned.

41

Figure 4.3 Neighborhood of a lattice point.

In Tables 4.4 and 4.5, we show the results for DACQ and DACN for the same
problems used in the previous experiments. DACQ generates very poor results. It never
finds the global optimum to any of the 50-point, 100-point, or 150-point problems. On
the other hand, DACN produces very good results. In nine of 10 problems of size 50 and
nine of the 10 problems of size 100, DACN finds the globa optimum. DACN finds the
global optimum in all 10 problems of size 150.

The average running times for DACQ are 1.22 seconds, 5.01 seconds, and 11.26
seconds for the 50-point problems, the 100-point problems, and the 150-point problems,
respectively. For DACN, the average running times for the 50-point problems, the 100-
point problems, and the 150-point problems are 4.07 seconds, 13.24 seconds, and 27.95
seconds, respectively. Both heuristics have much lower running times than DAC.

Considering both solution quality and running time, DACN appears to be the best
heuristic, when compared to LS, DAC, and DACQ. It gives high-quality solutionsin a

reasonable amount of time. Increasing the size of n does not increase the size of the

42

50-point problems 100-point problems 150-point problems
Running Running Running

Best time Best time Best time

Problem | solution | Freq | (secs) | solution | Freq | (secs) | solution | Freq | (secs)
1 191154| 5 120 |415463| 8 459 |7760.85| 17 10.80

2 2062.03| 1 129 | 4765.05| 6 500 |12795.7| 4 12.67

3 2873.79| 1 1.16 | 714047 | 9 505 |9190.68| 21 10.19

4 4914.27 | 18 1.20 |10587.6| 5 465 |161834| 10 12.08

5 432312 5 121 |9021.32 | 32 475 |13719.6 | 27 10.61

6 1291.25 | 14 112 408164, 1 474 | 3768.71| 24 9.55

7 2579.19| 2 121 |102445| 6 551 |123315| 9 11.56

8 200861 | 2 1.20 |4036.79| 8 519 19836.29| 1 12.59

9 2306.85| 15 1.26 |6457.58 | 10 542 |6439.19| 3 11.60

10 193454 | 3 1.37 | 640054 | 8 518 |8715.07| 17 10.91
Average 1.22 5.01 11.26

Table 4.4 Results for problem sets originally in two dimensions for DACQ.

50-point problems 100-point problems 150-point problems
Running Running Running

Best time Best time Best time

Problem | solution | Freq | (secs) | solution | Freq | (secs) | solution | Freq | (secs)
1 0.00| 70 3.88 0.00 | 50 13.72 0.00 91 28.00

2 000| 1 4.25 0.00| 91 14.83 0.00 84 32.79

3 13177 | 29 4.12 0.00| 72 12.98 0.00 99 27.67

4 0.00 | 52 3.85 631.23 | 100 | 11.79 0.00 55 26.54

5 0.00 | 43 4.49 0.00| 91 12.28 0.00 98 26.04

6 0.00 | 47 3.86 0.00| 95 12.71 0.00 93 25.90

7 000| 5 4.04 0.00| 29 13.90 0.00 65 26.80

8 000| 4 4.50 0.00| 13 13.39 0.00 98 28.86

9 0.00| 36 4.02 0.00| 79 13.57 0.00 88 29.83

10 000| 2 3.72 0.00| 98 13.19 0.00 97 27.04
Average 4.07 13.24 27.95

Table 4.5 Results for problem sets originally in two dimensions for DACN.

43

neighborhood, asin DAC, since amaximum of nine lattice pointsis considered at each
stage of the algorithm. This results in amore gradual increase in the running time of

DACN as afunction of n.

4.2 Results and Analysis for DACN

In this section, we apply DACN to severa data sets with 50, 100, and 150 points
with nonzero global optimal objective function values. The data sets were randomly
generated from lattice setsin three, four, and five dimensions (e.g., for three dimensions,
points were generated from a 16 x 16 x 16 lattice; for four dimensions, points were
generated from a 16 x 16 x16x 16 lattice, and so on). For each combination of dimension
and size, 10 different problems were generated. The nine problem sets (problem sets 1 to
9) are described in Table 4.6.

In all our experiments, we use g = 2. In caseswherer = q, it is easy to compare
the quality of the computational results. In this case, the optimal objective function value
isknown and equal to zero. However, for problems where g < r, the optimal value of the
objective function is unknown and greater than zero. No local criterion exists for deciding
how good alocal optimal solution is as compared to aglobal one (Cela, 1998). Actually,
from a complexity point of view, Cela (1998) states that even deciding whether a given

local solution isaglobal optimal isan NP-hard problem.

Problem Set Dimensions | Number of Points
1 3 50
2 3 100
3 3 150
4 4 50
5 4 100
6 4 150
7 5 50
8 5 100
9 5 150

Table 4.6 Characteristics of problem sets.

50-point problems 100-point problems 150-point problems
Running Running Running

Best time Best time Best time

Problem | solution | Freq | (secs) | solution | Freq | (secs) | solution | Freq | (secs)
1 20982.0| 2 393 | 101459 | 1 16.59 | 247553 | 1 36.80

2 16251.0| 1 478 | 105203 | 3 1713 | 265991 | 1 38.39

3 258715| 2 423 | 126796 | 1 1552 | 296865 | 2 33.57

4 22649.6 | 1 438 |971436| 1 1296 | 246756 | 1 33.68

5 279148 | 1 449 | 133668 | 1 1519 | 306127 | 1 37.46

6 22609.5| 1 419 | 101323 | 17| 1545 | 244771 | 3 32.96

7 149466 | 1 412 |823316| 5 1461 | 263992 | 6 35.41

8 16103.2| 1 418 |84547.2| 7 1593 | 231010 | 1 44.75

9 217781 | 2 4.51 115651 | 2 1768 | 299859 | 1 37.49

10 267522 | 5 450 1909849 | 1 16.19 | 261190 | 1 35.95
Average 4.33 15.73 36.65

Table 4.7 Results for problem sets 1, 2, and 3 for DACN. These problem sets
areoriginally in three dimensions.

45

28 49
5
9 14
40 26 27
8 50 3 6 18
18 22 35 39 24 2
10 42 33
47 29 43
25 21 48
31 36 20 17
33 38 15
11 34 44
41 23
4 7 12 45
19
1 30
Figure 4.4 Plot for problem 2 from Problem Set 1.
60 37 53 7
99 49 17 70 86 43 96 25
94 97 6 34 33
41 89 36 23 87 74 69 66 4 29
52 80 26 51 35
67 84 50 46
21 90 57 I8 64 22 65 5
38 61 82 15 59 44 28
40 18 91 62 38
63 16 71 95 1
42 79 88 98 48 96
20 30
73 32 11 47 24 81 76 13 93 68
27 8 77 92 83
72 55 100 78 14
12 85 54 2

Figure 4.5 Plot for problem 9 from Problem Set 2.

46

95 14314559 9 90 79 18 28 41
65 146 50 28 80 35
55 133 88 83 25 4 34 93 33
45 37 22 201 94 43 58 57 5322 105
132 116 23 107 287
36 40 16 124 5 140
82 108 149 8 62 47 134 66 2
138 136 127 102 409 3 87
144 123 13 51 32 139 40 110
31 100 129 42 96 72 112 1 76 12 67
111 69 8% 303 204 78 60 89 148 128
77 120 147 125 150 119 99 142
46 26 75 1083 117 114 106 126 63 21
84 64 98 48 92 T30
73 115 68 118 135 6 70 17
63 38 19 101 98 74

Figure 4.6 Plot for problem 4 from Problem Set 3.

In Table 4.7, we show the results for problem sets 1, 2, and 3. We do not know
the global optimal value for these problems and so we cannot compare the results we
obtained. We observed though that the frequencies for the best solutions are very low.
The frequencies are adl less than 10, expect for problem six of problem set 2, which has a
frequency of 17. The average running times are 4.33 seconds, 15.73 seconds, and 36.65
seconds, for problem sets 1, 2, and 3, respectively. In Figure 4.4 we show a plot of the
final result obtained by DACN for problem two of problem set 1. This plot and all other
plotsin thisthesis are produced using Matlab 7.0 (Sigmon and Davis, 2002). In Figures
4.5 and 4.6, we show the plots for problem nine of problem set 2 and problem four of

problem set 3, respectively.

47

50-point problems 100-point problems 150-point problems
Running Running Running

Best time Best time Best time

Problem | solution | Freq | (secs) | solution | Freq | (secs) | solution | Freq | (secs)
1 44880.1 | 1 482 | 222313 | 1 18.76 | 524053 | 1 48.29

2 417674 | 1 534 | 212677 | 2 18.04 | 555620 | 1 44.65

3 50730.6 | 2 508 | 245370 | 1 18.88 | 572832 | 1 44.33

4 445506 | 1 505 | 213892 | 1 17.63 | 505089 | 1 42.81

5 486989 | 1 499 | 227596 | 1 18.36 | 584245 | 1 40.61

6 512465 | 1 496 | 226109 | 1 19.36 | 510668 | 1 51.30

7 329536 | 4 486 | 168891 | 4 18.11 | 483936 | 1 41.59

8 455114 | 2 481 | 179716 | 1 20.20 | 475717 | 1 39.45

9 50341.1| 1 510 | 241309 | 1 1919 | 572519 | 1 47.86

10 53649.7| 5 487 | 229803 | 3 1841 | 556993 | 2 41.98
Average 4.99 18.69 44.29

Table 4.8 Results for problem sets 4, 5, and 6 for DACN. These problem sets
are originally in four dimensions.

39

42

22

26
41 32

24

45

20

85

14 18
16

27
40

19 36
46
30

28
34

33

13
49

31
29
a7

37

38

21

10

43
15
50

48

17
12
44
11

23

Figure 4.7 Plot for problem 6 from Problem Set 4.

48

80

11

14 81

100

65

35
40

78
97

23

54
50

28
12

94

18

83
87

64

28

32

53

81
43

79
33

48

13

10

66
93
39
30
86

60
49

90

71 41

85

44

57

21

76

51 38
58

45 72

82

37

56
22

16
67

75
33
89
27
98

17

24

70
46

42

36

55

68

62

29

88

99

15
74

26

25

93

20

31

92

34

Figure 4.8 Plot for problem 7 from Problem Set 5.

82

92

8Q
100 &@3
26
62 112
21
90

132

60
25 51

105 1268
984

40 119

10
86 93 125

14 123 36 394
$35
126
73
99 86 14479
53

88
415 117

22

45
7
11072 85 31
66 140
11888 71 111
95 349

12

20

147

167 16

691 17 143

136

139 24

55 5
102 106 59 27

48

90
341

104 77

33 116

113
150 13
837 28 18

35

13314576 97
131 65
74 127

43 23
492 2

96

106

89

134

129

61 54
47
148 67
58
38
37 57

68

91
75
29
508

81
61
78
142

63 146 109

49

30

83

Figure 4.9 Plot for problem 5 from Problem Set 6.

49

In Table 4.8, we show the results for the data sets originally in four dimensions,
that is, problem sets 4, 5, and 6. The average running times for the 50-point problems, the
100-point problems, and the 150-point problems, originally in four dimensions, are 4.99
seconds, 18.69 seconds, and 44.29 seconds, respectively. In Figure 4.7, we show the plot
of the final result obtained by DACN for problem six of problem set 4. We show the plot
for problem seven of problem set five in Figure 4.8 and the plot for problem five of
problem set six in Figure 4.9.

In Table 4.9, we show the results for problem sets 7, 8, and 9, (the data sets
originaly in five dimensions). For the 50-point problems, 100-point problems, and 150-
point problems, originally in five dimensions, the average running times are 4.66
seconds, 17.41 seconds, and 40.27 seconds, respectively. In Figures 4.10, 4.11, and 4.12,
we show the plots of the final results produced by DACN for problem 1 of problem set 7,

problem eight of problem set 8, and problem 10 of problem set 9, respectively.

50

50-point problems 100-point problems 150-point problems
Running Running Running

Best time Best time Best time

Problem | solution | Freq | (secs) | solution | Freq | (secs) | solution | Freq | (secs)
1 752478 | 1 457 | 325175 | 1 17.81 | 802908 | 1 38.22

2 648143 | 1 524 | 333587 | 1 18.68 | 841420 | 1 39.86

3 785664 | 1 445 | 348777 | 1 17.31 | 860219 | 1 41.67

4 758354 | 1 474 | 356028 | 1 1725 | 812147 | 1 40.28

5 728173 | 1 439 |329985 | 1 1557 | 813606 | 2 40.68

6 818403 | 1 464 |360491 | 1 18.31 | 856291 | 1 40.79

7 64342.7| 1 446 | 297337 | 1 1699 | 747779 | 1 37.02

8 71669.1 | 1 449 | 305608 | 1 1746 | 753434 | 1 43.03

9 852199 | 1 476 | 368939 | 1 1649 | 877125 | 1 39.62

10 781029 | 2 482 319882 | 1 18.24 | 784065 | 1 41.53
Average 4.66 17.41 40.27

Table 4.9 Results for problem sets 7, 8, and 9 for DACN. These problem sets
areoriginadly in five dimensions.

40 7
25
44 11
9
22 27
21
38
41 1 35
43
37 26
48
47 23 49
16 46
29
13

30

24

10

45

34

12

33

28

42

14

15 31

50
32

17

19

18

36

39

Figure 4.10 Plot for problem 1 from Problem Set 7.

51

50
34

42

77
98

721

10

22
81

73
80 74

51 92
66 58
14 32 23

69 59
31
27
25
24 18 91 94
52
26 49 42 63
89 36

75
84

30
96
17

85

ar

54
38

46

48

40

100
15

76

64 1

97 43
83
57
95 20
98

53 28

55
62 67
87 82

85

79

78

99

71
88

39

37

16
44
41

29

70
19

60

Figure 4.11 Plot for problem 8 from Problem Set 8.

72

3 79
®a7 69

15
75 33
16 46
149 39
89 43
6 62
60

35

24

818
31

144

87

105

331 36 49 96 44
117 13 65 25

90

113 924 112 27

147

73 88 139 110
58 101

40 138 238 59
4 135 14 86
132 142 126 32
61 47 45 64 17
41 53 608 146

30
29
84
68
77

115

81 82 19 37 97

180 129 130
104
114 %20 121

63

80

137 95

111
74 139
22
10 93 141
106 143
123 71
168 107

5 100
140 20
28 48
9689 125
92
18 55
50
54 128

42

2%

94

56
38
12

99

76
11

26
83

102

122

134

116

57
70

Figure 4.12 Plot for problem 10 from Problem Set 9.

52

4.3 Conclusions

DACN provides an approximate solution to the data visualization problem in a
small amount of computing time. For the problem sets originally in two-dimensions,
DACN produces the global optimum in 28 of the 30 problems. For the other problem
sets, the global optimal solutions are unknown. In the remaining chapters, we will use
other algorithms on these problem sets and then compare these results to the solutions

generated by DACN.

53

Chapter 5: Mathematical Programming

5.1 Integer Problem Formulation

A QAP may be formulated as an equivalent integer program (1P). In genera, the
equivaent IP for a QAP is much larger than the QAP. However, an IP does not involve
any complicated quadratic coefficients, which seems to destroy any hope of finding
efficient solution methods. Also, high-quality commercial solvers are available to solve

IP, and so the larger IP can be solved faster than the smaller QAP.

Let yi'j‘I be abinary variable that isequal to onewheni € Misassignedtok e N

andj € Misassignedtol e N, and zero otherwise. The QAP formulation of DVP can be

expressed as the following linear integer program (1P):

Minimize > > > > [od(i, j)—nd(k,)]?y;’ (5.1)
ieM]EM keN leN
]2
subject to
D % =LVieM (5.2)
keN
SN v =1vi,jeM, |j>i (5.3)
keN leN
X =2 W VijeM, j>i (5.4)
leN
X =D YL Vi jeM, j<i (5.5)
leN
X, €(0,2) (5.6)
y;i (0. (5.7)

m(m-1)n’

ThisIP has y variables and mn x variables. It also has m assignment

(m-1)

. . m . : .
constraints for the x variables, assignment constraints for the y variables, and

mn? other constraints. Thus, there are atotal of mn (1+ WJ variables and

m(1+ n’ +m7—1j constraintsin the IP formulation. The IP is much larger than QAP

which has mn variables and m assignment constraints.

The constraintsin (5.2) are for the x variables and are the same as in the QAP.
These are simple assignment constraints that require each point in M to be assigned to a
point in N. The constraintsin (5.3) are for the y variables and are aso assignment
constraints. These constraints require that a pair of pointsin M can only be assigned to a

pair of pointsin N. The constraintsin (5.4) and (5.5) ensure that if apointi € M isnot

assigned to alattice point k € N (xikx = 0), then, for all y variables that includei, point i
cannot be assigned to point k € N (that is, i =0).

Next, we establish that the QAP and IP formulations are equivalent.
Theorem
The QAP formulation givenin (3.5) — (3.7), and the IP formulation given in (5.1) — (5.7)
are equivalent.
Proof

The proof has two parts. In the first part, we show that any solution to the IPis
also a solution to the QAP and vice versa. In the second part, we show that the two

formulations have the same objective function value.

55

Let (x,y) be any feasible solution to the IP formulation. Then (x,y) satisfiesal the

constraints (5.2) — (5.5) for the IP formulation. In particular, in (5.2), we have

Z X, =1, Vi e M, which isthe same as (3.6) in the QAP formulation. Thus, if (x,y) isa

keN

feasible solution to the IP, then x is afeasible solution to the QAP formulation.

Conversely, let x be afeasible solution to the QAP formulation. Let yi' = x,X;,
Vi,jeM,j>i,and ¥ k | e N. Then x satisfies

> % =L VieM (5.8)

keN

asit isasolution to the QAP formulation.

From (5.8)

D X =L VjeM.

leN

Hence,

D %% =LVi, jeM
keN leN

=Y > %X, =LVi,jeM

keN leN

=Y > yi=1LVijeM

keN leN

=Yy =LVijeM, j>i.

keN leN

Also,

56

XX, =Y\, Vi,jeM,kleN
:inkle =Zyilf'.Vi,jeM,keN

leN leN
:>)ng)(” =Zyi'j",‘7i,j eM,keN
leN leN

:>)gk=2yi'j<',‘7i,jeM,keN

leN

:)QKIZM';',Vi,jeM,i<j,keN

leN

and X, ZZy'j'f,Vi,jeM,i>j,ke N.
leN

Thus, if x isafeasible solution to the QAP formulation, then (x,y) is afeasible solution to
the IP formulation.

Next, we show that the objective function values are equal. Let (x,y) be any
feasible solution to the IP formulation. By definition, yi' =1, impliesthat point i is
assigned to lattice point k, so Xk = 1. Also, point j is assigned to lattice point |, so
X1 = 1. Therefore, if yi' =1,then X X = 1 On the other hand, y;' = 0meansthe pair of
points (i, J) are not assigned to the pair of lattice points (k, 1). Therefore, at |east one of
the following holds: X =0 or x; = 0when yi' =0, sowe have x X = 0. Therefore,

Yi =%.%;,Vi,jeM,j>i,vk,| eN. Hence, the objective function values are equal for

the two formulations. This completes the proof that the two formulations are equival ent.
In the IP formulation, the y variables are integer variables (see (5.7)). However,

they variables will beinteger, if the x variables are integer (Cela, 1998). Therefore, they

variables can be relaxed to real variables. (5.7) then becomes 0 < yi'j‘I <1.

57

Running
timefor 4 Running Running
lattice timefor 16 | timefor 64
points points points
Problem (seconds) (seconds) (seconds)
1 0.50 2.56 295.53
2 0.41 16.79 489.85
3 0.10 12.67 183.92
4 0.56 1.76 563.64
5 0.73 19.34 256.13
6 0.52 23.96 217.87
7 0.87 38.50 5088.29
8 0.59 17.24 1101.91
9 0.72 58.12 7577.17
10 0.50 18.16 195.96
Average 0.55 20.91 1597.03

Table 5.1 Running times for the IP for problem sets with
m=10and n =4, 16, and 64.

5.2 Preliminary Computational Results

We implemented our IP formulation in ILOG OPL Studio 3.5.1 (Hentenryck,
1999) and ran our experiments using Windows 2000 with an 800 MHz Pentium I11
processor and 512 MB of RAM. Wetested our formulation on 10 problem sets each of
size 10. We used values of n equal 4, 16, and 64.

In Table 5.1, we show the running times for our 1P formulation on these problem
sets. The average running times for n = 4, 16, and 64 are 0.55 seconds, 20.91 seconds,
and 1597.03 seconds, respectively. It appears that even for problems with asmall value
of m, the running time gets very large as n increases. Therefore, as mand n increase, the

running time of our IP formulation increases substantially.

58

Figure 5.1 Lattice of four points.

[] []

o
.1 [] <
3° *4

Figure 5.2 Lattice with four initia points and point
one subdivided into four additional points.

59

Figure 5.3 Lattice with 16 points after the four initial points have

been subdivided into four additional points each.

Next, we developed a divide-and-conquer heuristic that solves a set of smaller

problems at each stage instead of one large problem. This gives a more manageable

problem to solve at each stage. There are five steps to our divide-and-conquer heuristic.

1.

Start with alattice of four points and solve the IP to assign pointsin M to
these four lattice points (see Figure 5.1). Points are now divided into four
guadrants.

Divide quadrant one into four points (see Figure 5.2).

Assign points in quadrant one from the assignment in step 1 to the four
new points while keeping assignments to the other quadrants fixed.

Repeat Steps 2 and 3 for the other three quadrants (see Figure 5.3).
Continue dividing each point into four points and repeat until a stopping

ruleis met. We stop at 256 points. At each stage, only four lattice points
are considered.

60

Running Running Running Running
timefor 5 timefor 10 | timefor 15 | timefor 20

points points points points

Problem (seconds) (seconds) (seconds) (seconds)
1 0.03 0.50 5.97 13.12
2 0.02 0.41 0.33 8.65
3 0.03 0.10 5.96 31.47
4 0.05 0.56 3.84 81.82
5 0.03 0.73 4.67 48.88
6 0.02 0.52 4.77 22.72
7 0.03 0.87 9.69 15.65
8 0.03 0.59 0.30 25.32
9 0.03 0.72 4.57 59.71
10 0.04 0.50 597 83.68
Average 0.03 0.55 4.61 39.10

Table 5.2 Running times for the IP for problem sets with
m=15, 10, 15, and 20, and n = 4.

We also tested our IP formulation for different sizes of mwithn=4. Weusem=
5, 10, 15, and 20. In Table 5.2, we show the running times for these problems. The
average running timesfor m=15, 10, 15, and 20 are 0.03 seconds, 0.55 seconds, 4.61
seconds, and 39.10 seconds, respectively. The running time increases substantially asm
increases.

Next, we developed an algorithm to divide M into several smaller sets and assign
the pointsin these sets, one after another, instead of assigning al the pointsin M at the
sametime. If all the pointsin M are assigned at once, the solution obtained will most
probably be more accurate than when we assign the points in smaller sets. However, we

use smaller setsto reduce the running time. We want these smaller setsto be as large as

61

possible in order to obtain more accurate solutions. Preliminary experiments indicated
that with respect to size and running time m = 10 gives reasonabl e results. Based on these
results, we group points into sets of 10 and then assign one set at atime. After the first set
has been located, these assignments are kept fixed while the next set of 10 is assigned.
We continue until all points have been located. Each set of 10 is selected randomly.

Our IP algorithm for n = 4 is given by the following.

1 Start with 10 points and solve the IP to fix their locations.

2. Keeping the assignments of these located points fixed, select 10 more
points from the remaining points and solve IP to fix them.

3. Repeat Step 2 until al points are assigned to one of the four lattice points.

5.3 Integer Programming Heuristics

We applied our IP heuristic to several data sets with 50, 100, and 150 points.
These are the same data sets generated from alattice of 256 pointsin two dimensions
used in our local search experiments. We used problems generated from a two-
dimensional lattice, because it is easy to compare the quality of the computational results
when the original set of pointsisin two dimensions. In this case, the optimal objective
function value is known and equal to zero. We investigated five |P heuristics and these

are described in Table 5.3.

62

Algorithm

Description

IP

Integer program heuristic

IR

Integer program heuristic
- Step 1 repeated

IRN

Integer program heuristic
- Step 1 repeated
- Points allowed to move to neighboring lattice points

IRNS

Integer program heuristic
- Step 1 repeated
- Points alowed to move to neighboring lattice points
- Maximum of 20 points considered in reassigning points
after Step 2
- After Step 4 points reassigned five points at atime

IMP

Integer program heuristic
- Usesfina resultsfrom DACN as starting solution
- Reassigns points randomly, five points at atime

Table 5.3 Integer programming heuristics.

5.3.1 IP Heuristic

In Table 5.4, we show the results for the experiments for the IP heuristic (IP) for
our 50-point, 100-point, and 150-point problem sets. In al 30 problems, IP does not find
the global optimum. The quality of the results obtained is very poor. The objective
function values are very large and are not close to the global objective function value of
zero. The average running times for the 50-point, 100-point, and 150-point problem sets
are 40.08 seconds, 60.47 seconds, and 82.50 seconds, respectively. These running times
are much higher than those for our local search experiments. We consider some

improvements to our IP heuristic that may reduce running time and find an objective

function value closer to zero.

63

50-point problems

100-point problems

150-point problems

Best Running Best Running Best Running
solution time solution time solution time
Problems | obtained | (seconds) | obtained | (seconds) | obtained | (seconds)
1 1782.55 38.76 3943.15 60.57 10543.39 81.11
2 1065.33 43.17 4787.36 61.79 9474.23 84.18
3 1582.72 38.58 7555.24 59.69 15425.09 81.19
4 1432.41 40.67 4930.43 59.27 11236.00 81.79
5 1380.65 40.05 4023.72 57.40 8970.13 83.28
6 3486.62 40.86 9526.07 61.84 18000.82 82.60
7 1186.39 35.77 5731.94 61.25 12520.92 81.71
8 2167.78 43.89 7458.12 62.61 14464.60 83.20
9 1331.17 40.13 5125.06 59.12 9418.85 82.55
10 896.44 38.88 4609.96 61.20 10782.77 83.36
Average 40.08 60.47 82.50

Table 5.4 Results for problem sets originaly in two dimensions for IP.

We tried different solver options available in ILOG OPL but none yielded

substantially reduced running times. Since the method used here is an approximation

approach, we experimented with solving an LP relaxation for Steps 2, 3, and 4, instead of

solving the IP. Also, we considered solving the problem to within afixed percentage of

the optimal objective function value. These attempts did not achieve any noticeable

reduction in the running time.

5.3.2 IR Heuristic

50-point problems 100-point problems 150-point problems
Best Running Best Running Best Running
solution time solution time solution time

Problems | obtained | (seconds) | obtained | (seconds) | obtained | (seconds)
1 1506.81 38.21 3826.07 70.41 4132.63 132.57

2 1065.33 43.32 6073.60 69.28 9213.26 93.50

3 1332.33 40.11 4587.99 71.14 6586.88 105.14

4 1076.72 41.05 2884.42 66.51 9886.35 97.80

5 1216.70 45.10 1496.15 65.31 2863.98 92.93

6 1021.26 41.41 2782.36 71.01 2255.72 105.39

7 1035.80 38.62 5505.76 69.26 9981.09 94.84

8 1946.48 42.16 6387.51 72.64 8029.16 118.57

9 1048.95 43.85 3401.99 65.80 9900.15 94.37
10 639.72 41.36 2166.36 73.12 3530.58 103.08
Average 41.52 69.45 103.82

Table 5.5 Results for problem sets originaly in two dimensions for IR.

We observed that the fewer the number of points assigned incorrectly in Step 1,
the better the final solution. Therefore, to improve the objective function values, we
propose an IP heuristic with Step 1 repeated a number of times. This heuristic is denoted
IR. After all pointsin M have been assigned in Step 1, we randomly free points, 10 at a
time, and try to assign them with the other m— 10 points fixed at their assigned locations.
We repeat this until we have acycle of al m points being reassigned with no change in
the objective function value.

In Table 5.5, we show the results for IR on the same data sets we used for IP. For
all 30 problems, IR does not find the global optimum. For al the 50-point problems

though, IR produces better results than IP. That is, the objective function values are lower

65

than those for IP. For nine of the ten 100-point problems and nine of the ten 150-point
problems, IR gives better results than IP. The average running times are 41.52 seconds,
69.45 seconds, and 103.82 seconds, for the 50-point problems, 100-point problems, and
150-point problems, respectively. The average running times for IR are al slightly higher

than those for 1P, but we obtain better objective function values with IR.

5.3.3 IRN Heuristic

Even though we obtain better solutions with IR, the quality of the solutionsis il
poor as it does not find the global optimum for any problem. With IR, apoint remainsin
the quadrant to which it is originally assigned. If apoint is placed in awrong quadrant at
any step, this error cannot be corrected and this may contribute significantly to the poor
performance. To eiminate this, we propose an IP heuristic (IRN) that allows pointsto
move to neighboring points after they have been assigned.

The algorithm for IRN is similar to that for IR. However, after Steps 2, 3, and 4 in
IRN, points assigned to a box are freed and may be reassigned to neighboring points,
while points assigned to the other boxes are kept fixed at their current assignments.
Recall, that each lattice point is divided into four subpoints after each step. A box is made
up of the four subpoints, from apoint in a previous step. After Step 2, one box is made up
of the four pointsin quadrant one as shown in Figure 5.2. The neighborhood structure
here is the same as that described for DACN. We continue to reassign points in boxes
until there is no improvement in the objective function value after we have gone through

acyclewith al of the pointsin M.

66

50-point problems

100-point problems

150-point problems

Best Running Best Running Best Running
solution time solution time solution time
Problems | obtained (seconds) obtained (seconds) obtained (seconds)
1 0.00 154.03 2910.35 526.53 0.00 400.92
2 949.31 163.84 0.00 363.21 0.00 498.41
3 645.63 174.37 0.00 211.78 0.00 410.50
4 0.00 128.45 631.23 216.33 1813.38 584.38
5 124.87 136.78 0.00 161.72 0.00 339.82
6 0.00 166.78 0.00 175.80 0.00 422.39
7 567.56 146.79 1391.56 338.25 0.00 458.43
8 844.51 363.34 3466.19 335.73 0.00 427.25
9 618.57 188.31 0.00 210.65 0.00 459.86
10 95.44 139.05 0.00 206.26 0.00 502.32
Average 176.17 274.63 450.43

Table 5.6 Results for problem sets originaly in two dimensions for IRN.

We applied IRN to our three two-dimensional data sets. In Table 5.6, we show the

results for IRN on the 50-point, 100-point, and 150-point problem sets. In all 30

problems, IRN gives better results than IR. For the 50-point problems, IRN finds the

global optimum in three of the 10 problems. In six of 10 problems of size 100 and nine

of the 10 problems of size 150, IRN finds the globa optimum. The average running times

are 176.17 seconds, 274.63 seconds, and 450.43 seconds for the 50-point, 100-point, and

150-point problems, respectively. The average running times for IRN are much higher

than those for IP and IR, but the quality of the solutions is much better.

67

5.3.4 IRNS Heuristic

50-point problems 100-point problems 150-point problems
Best Running Best Running Best Running
solution time solution time solution time

Problems | obtained | (seconds) | obtained | (seconds) | obtained | (seconds)
1 0.00 134.21 3019.37 | 332.15 0.00| 25212

2 892.27 155.96 0.00| 324.33 0.00| 310.17

3 645.63 142.71 0.00| 196.28 0.00| 271.29

4 0.00 113.14 631.23 | 187.03 1813.38 | 356.96

5 124.87 109.71 0.00| 147.23 0.00| 22255

6 723.83 128.03 0.00| 164.00 0.00 | 249.44

7 567.56 124.21 1391.56 | 274.62 0.00 | 297.56

8 673.83 225.41 0.00| 206.54 0.00| 31219

9 618.57 141.08 0.00 | 159.63 0.00| 267.90
10 95.44 118.60 0.00| 151.66 0.00| 273.37
Average 139.31 214.35 281.36

Table 5.7 Results for problem sets originaly in two dimensions for IRNS.

After Step 2, when we free up the points assigned to a box, there are only four
boxes to consider. The number of points assigned to abox can be relatively large when
the size of mis greater than 50. In our preliminary computational experiments, we
observed that the best results and running times were obtained when we restricted the
maximum number of points that can be reassigned to 20.

The presence of empty boxes will result in a situation where time is spent in a box
only to find that it there are no points assigned to them. After Step 4, there may be many
empty boxes. To eliminate this, we refined the heuristic so that points assigned to boxes
were not examined after Step 4. We select five points randomly and try to reassign them

keeping all other pointsfixed at their current assignments. We then take five points

68

randomly from the remaining m—>5 points and repeat the procedure until al points have
been reassigned. Five points appears to produce fast running times and good results.

We apply this heuristic, denoted by IRNS, to our two-dimensional data sets. We
show the results for these experimentsin Table 5.7. IRNS finds the global optimum in
two of the 10 problems of size 50. IRNS generates a better solution than IRN in two of
the 50-point problems. For seven of the other 50-point problems, IRNS generates the
same best solution as IRN. In seven of the 10 problems of size 100, IRNS finds the global
optimum. IRNS generates a better solution than IRN in one of the 100-point problems.
For eight of the other 100-point problems, IRNS generates the same best solution as IRN.
IRNS finds the global optimum in nine of the ten 150-point problems. In al ten 150-point
problems, IRN and IRNS generate the same solutions. The average running times for the
50-point, 100-point, and 150-point problems for IRNS are 139.31 seconds, 214.35
seconds, and 281.36 seconds, respectively.

IRN and IRNS produce similar results, but IRNS generates these results much

faster than IRN.

69

5.4 Comparison of DACN and IRNS

50-point problems 100-point problems 150-point problems

Percent Percent Percent

increase increase increase
Best Running over Best Running over Best Running over

solution time DACN solution time DACN solution time DACN

Problems | obtained | (seconds) results obtained | (seconds) | results | obtained | (seconds) results
1 21491.62 | 177.72 242 101621.10 | 442.52 0.16 248055.77 | 733.37 0.20
2 17157.00 | 184.29 5.58 106738.70 | 654.59 1.46 281965.46 | 451.45 6.01
3 26406.12 | 161.91 2.07 133297.12 | 457.75 513 | 306564.78 | 531.88 3.27
4 23122.98 | 205.00 2.09 121084.26 | 337.91 24.64 | 261537.31 | 580.15 5.99
5 30227.63 | 189.27 8.29 133698.21 | 355.42 0.02 | 32427134 | 717.25 5.93
6 22630.76 | 158.20 0.09 101322.81 | 580.17 0.00 244848.28 | 564.43 0.03
7 15287.25 | 110.33 2.23 82577.58 261.88 0.30 266101.82 | 680.56 0.80
8 16684.51 | 211.40 3.61 85611.87 276.26 1.26 231903.50 | 505.57 0.39
9 22139.66 | 236.94 1.66 116188.76 | 326.45 0.46 | 300627.86 | 615.66 0.26
10 28797.60 | 185.97 7.65 91150.22 320.05 0.18 261777.81 | 546.30 0.23
Average 182.10 3.57 401.30 3.36 592.66 231

Table 5.8 Results for problem sets 1, 2, and 3 for IRNS. These problem sets are

originally in three dimensions.

17 48 13 28
33
15 20
1 43 21 6
4 38 49
23 44 43 2 3 14
7 34 42 26
41 36 29 50
30 37 25 24 5
46 39 40
19 28 9
8 28 32
31
10 18
11 a7

Figure 5.4 Plot for problem 2 from problem set 1.

70

28

46

96

44

35

33
25

68

38

29
34

89
93

65

56

14 78 100
92
13 78
30 45
48 98 88
95
62 91
59
22 64 189 57
50
51 84
66 69 74
97 94
43 70
86 33

55

81

15
82

85

31

24

71

18

10
87

17

27
47

42

61

90

26

36

23 89

49 99

12
72
11

20
16

40
38

67
80

37

73
32

63

21

52
41

60

Figure 5.5 Plot for problem 9 from problem set 2.

63
101
381
73
84

46

111

115

26

31

144

74 98 17 71 13021
70 61 536
6 99 64 829
68 935 114 12
118 106 %60 76
48 117 1
98 131 12530 29 32
163 104 112 13 87
120 187 113 72 51 91
7 96 409 8
/00 129 42 102
123
127 136 16
138 108 149 2@ 23 20
7 36 316 39
82 132 45 65

139

62

83
50

142 19 128

148 67

47

110
40

133 5

66

134 137

124
a3

107 22

94

88

55

57

146 S0
88125 34 18 79

86

105 143 41 95

240

122
335
93
86
28
27

Figure 5.6 Plot for problem 4 from problem set 3.

71

We applied IRNS to problem sets 1 to 9 in Table 4.6. In Table 5.8, we show the
results for problem sets 1, 2, and 3, that is, the data sets originally in three dimensions.
IRNS produces the same solution as DACN for Problem 6 of the 100-points problems.
For the other nine problems of size 100, and all 50-point and 150-point problems, DACN
produces better solutions than IRNS. IRNS produces objective function values that are on
the average 3.57%, 3.36%, and 2.31%, larger than the objective function values produced
by DACN for the 50-point problems, 100-point problems, and 150-point problems,
respectively.

In Figures 5.4, 5.5, and 5.6, we show the plots of the final results for IRNS for
problem two of problem set 1, problem nine of problem set 2, and problem four of
problem set 3, respectively. These plots are quite different from the plots produced by
DACN (see Figures 4.4, 4.5, and 4.6).

The average running times are 182.10 seconds, 401.30 seconds, and 592.66
seconds, for the 50-point problems, 100-point problems, and 150-point problems,
respectively. These running times are much longer than those for our local search
experiments. For the three-dimensional data sets, DACN produces solutions with lower
objective function values and much faster times than IRNS.

In Table 5.9, we show the results for the four-dimensiona data sets, that is,
problem sets 4, 5, and 6. For all 30 four-dimensional problems, the results produced by
IRNS are worse than those produced by DACN. The objective function values produced
by IRNS are greater than those produced by DACN by an average of 3.12%, 1.61%, and
4.15%, for the 50-point problems, 100-point problems, and 150-point problems,

respectively. The average running times for the 50-point, 100-point, and 150-point

72

problems are 216.31 seconds, 459.76 seconds, and 771.41 seconds, respectively. For
these problem sets, DACN produces better objective function values than IRNS in much
faster times.

In Figures 5.7, 5.8, and 5.9, respectively, we show the plots of the final results for
IRNS for problem six of problem set 4, problem seven of problem set 5, and problem five
of problem set 6, respectively. As expected these plots are different from those produced
from DACN (see Figures 4.7, 4.8, and 4.9) since the objective function values produced

by IRNS are different from those produced by DACN.

73

50-point problems 100-point problems 150-point problems
Percent Percent Percent
increase increase increase
Best Running over Best Running over Best Running over
solution time DACN solution time DACN solution time DACN
Problems | obtained | (seconds) | results obtained | (seconds) | results obtained | (seconds) results
1 47094.86 135.71 4.93 224839.56 | 423.42 1.14 525050.19 | 551.05 0.19
2 42963.42 178.16 2.86 213458.02 | 580.74 0.37 559160.02 | 759.19 0.64
3 50975.45 272.80 0.48 24720291 | 300.85 0.75 585377.67 | 693.63 2.19
4 44698.41 279.72 0.33 218369.49 | 575.95 2.09 514418.71 | 971.90 1.85
5 51032.22 291.84 4.79 22812429 | 377.06 0.23 616474.44 | 688.62 5.52
6 58262.64 165.14 13.69 24145522 | 443.61 6.79 541269.10 | 1169.47 5.99
7 33486.43 208.14 1.62 169025.90 | 274.87 0.08 489496.21 | 798.00 1.15
8 46545.88 219.97 2.27 183680.72 | 810.09 221 525759.25 | 746.29 10.52
9 51218.00 168.82 1.74 244400.01 | 319.68 1.28 573959.66 | 540.31 0.25
10 53901.03 242.77 0.47 232392.88 | 491.32 1.13 630463.38 | 855.60 13.19
Average 216.31 3.12 459.76 1.61 777.41 4.15

Table 5.9 Results for problem sets 4, 5, and 6 for IRNS. These problem sets are
originally in four dimensions

20

37

45

34

19

29

48

22

28

46

47

39

18

31
49

26
41

33

14

50 13 10

11

32

27 16

43
21

38
3 12

40
24

15

44
17

Figure 5.7 Plot for problem 6 from problem set 4.

74

20
55 88

72
45
58 51
49

53
83
50
40

35

24

38

60

18

69
77 95

19

91
36

67

16

76

48
94

100 54

65

25

17
21

73

23
47
14

2

57

86
39

32

61

26 34 15 92
74 99
82

98 38 4 839

22 85 37

44
30

89 66
43 81
29 96

97 12 28
78 11 63 7

6 80

82

75
41
71
10

31
68
84

44

9(

13
64

Figure 5.8 Plot for problem 7 from problem set 5.

40 119 147 186 97
92 144 107 134 126
44 32 99 116 149 15 16 63 127131869
90 805 53 7 143 27 74 18 101 75
26 56 36 629 64 91
20 510 115 12 77 28 47 909
103 60 121 55 70 137 49 96 58
120 423 45 79 104 122 2
112 988 72 46 4381 6 19 68
100 136 124 602 139 59 83 113 11 29
41 39 850 23 37 57 78 52
86 14 @38 66 117 3 9% 13 148
235 85 31 166 17 88 145 30
132 84 111 24 35 142
82 93 114 128 200 71 33 42 108
62 50 95 10 83 133

Figure 5.9 Plot for problem 5 from problem set 6.

75

50-point problems 100-point problems 150-point problems
Percent Percent Percent
increase increase increase
Best Running over Best Running over Best Running oer

solution time DACN solution time DACN solution time DACN

Problems | obtained | (seconds) | results | obtained | (seconds) | results | obtained | (seconds) results
1 82272.38 240.02 9.34 | 333816.59 | 905.08 2.66 837254.19 | 899.66 4.28
2 75471.14 259.10 16.44 | 341377.09 | 731.34 2.34 909307.80 | 699.35 8.07
3 80991.64 193.99 3.09 | 354212.62 | 568.34 1.56 873020.12 | 725.03 1.49
4 76126.05 174.75 0.38 | 367179.84 | 825.62 3.13 836426.00 | 1408.30 2.99
5 75144.71 205.47 3.20 | 347951.62 | 1151.31 5.44 822921.03 | 645.31 1.14
6 82056.33 198.77 0.26 | 372684.06 | 460.07 3.38 874079.30 | 745.46 2.08
7 73751.18 149.94 14.62 | 302035.76 | 394.86 1.58 751511.17 | 729.28 0.50
8 86034.34 277.59 20.04 | 310912.96 | 419.77 1.74 782511.42 | 1127.75 3.87
9 86484.18 265.01 1.48 | 371934.41 | 397.75 0.81 888507.91 | 655.37 1.30
10 78393.78 215.79 0.37 | 321339.57 | 403.45 0.46 816186.90 | 1028.75 4.10
Average 218.04 6.92 625.76 2.31 866.43 2.98

Table 5.10 Results for problem sets 7, 8, and 9 for IRNS. These problem sets are
originally in five dimensions.

38 21
41

25
44

40

30

11

27
22

37

50 32 33

24 20
10

35 45

49

47 16

28
26

43

48

23

29

36
17

42 19

18

34

46
12

13

14

39

15 31

Figure 5.10 Plot for problem 1 from problem set 7.

76

37
76 74
80
33 68
73 35
21
7 51
50 5
29
85

79

54

38

97

66

14

34

39

75
64

43
83

30

32

10

84

96
58

90

31
69

22

16

99

92

48

13

a0

70
78

46

23 17
59

a7

47
11

81
45

19
84

20 98

86

63

94 52
91
42
26

41
88

28

62

18
24
49
36
89

71

67

87
100
63

55
82

77

60

72

25

15

Figure 5.11 Plot for problem 8 from problem set 8.

134
111

128
55 141
57 85
99 143
145 56
42 74 93
52 139 94
83
21
116 70 22

122

54

9 96
49

25

10 27

106 123
136

71 48

107
76 38

26

102

34 36 131 338

18

68

292

100

525

28

1
13

924

84
98

109

80

37

103 30 77

20
92

65

12 11 44

117 8
90

40
113
14
133

19
59

72 6

33 24
4

438 47
148
g3 88

89

78 150 149
®44 87 39

132

119 126 147 58
86 101 67 14653 135
108 142 81 129
97 115 32

7

110 63 82 130

140
96

137

79
69

104

51
121

16
66
46
31
41

120
214

60

127
43
62

3
105

Figure 5.12 Plot for problem 10 from problem set 9.

77

In Table 5.10, we show the results for problem sets 7, 8, and 9, that is, for data
setsoriginally in five-dimensions. In all 30 problems, IRNS produces results that are
worse the results produced by DACN. The objective function values produced by IRNS
are greater than those produced by DACN by an average of 6.92%, 2.31%, and 2.98%,
for the 50-point problems, 100-point problems, and 150-point problems, respectively.

In Figures 5.10, 5.11, and 5.12, we show the plots of the final results for IRNS for
problem one of problem set 7, problem eight of problem set 8, and problem 10 of
problem set 9. Again the plots produced by IRNS are different from those produced by
DACN (see Figures 4.10, 4.11, and 4.12)

The average running times are 218.04 seconds, 625.76 seconds, and 866.43
seconds for the 50-point problems, 100-point problems, and 150-point problems,
respectively. DACN again produces better objective function values than IRNS in much

faster times.

5.5 Improvement Heuristic

We observed that DACN almost always generates good final solutions. We use
the final solution from DACN as the starting solution in an integer program heuristic. We
randomly free five points at atime, aswe did after Step 4 in IRNS, and reassign these
points keeping the remaining m—5 points fixed at their current locations. We then
randomly select another set of five points and repeat this until all m points have been
reassigned. We repeat this process until we have a cycle of all m points being reassigned
with no change in the objective function value. Thisis referred to as the improvement

heuristic (IMP).

78

50-point problems 100-point problems 150-point problems
Best Running Best Running Best Running
solution time solution time solution time
Problems | obtained | (seconds) obtained (seconds) | obtained | (seconds)
1 20982.00 16.39 101459.02 24.29 247552.56 39.79
2 16250.96 11.53 105203.22 23.77 265991.16 38.99
3 25871.46 11.43 126796.13 23.78 296864.55 39.07
4 22649.58 11.28 97143.60 23.80 246756.14 38.89
5 27901.62 23.17 133668.46 23.97 306127.24 39.19
6 22609.51 11.82 101322.81 23.38 244770.86 38.33
7 14946.64 11.92 82331.57 24.38 263992.07 39.48
8 16103.25 11.57 84547.23 23.69 231010.09 39.54
9 21778.13 11.76 115650.96 24.11 299858.64 39.02
10 26752.19 12.02 90984.91 23.42 261189.53 39.20
Average 13.29 23.86 39.15

Table 5.11 Results for problem sets 1, 2, and 3 for IMP. These problem sets are
originally in three dimensions.

50-point problems 100-point problems 150-point problems
Best Running Best Running Best Running
solution time solution time solution time
Problems | obtained | (seconds) obtained (seconds) | obtained | (seconds)
1 44880.14 11.41 222313.12 24.13 524053.15 39.71
2 41767.38 11.47 212677.13 23.98 555620.19 40.71
3 50730.55 11.42 245369.56 24.57 572831.62 39.53
4 44550.63 11.62 213891.84 24.95 505089.33 40.25
5 48698.86 11.28 227596.04 24.33 584245.47 40.09
6 51246.53 12.56 226109.03 23.72 510667.94 40.45
7 32925.57 11.48 168891.25 24.70 483935.61 40.46
8 45511.42 11.33 179716.50 24.35 475716.73 40.59
9 50341.09 11.46 241308.77 24.16 572518.94 40.73
10 53649.65 1141 229803.00 24.09 556992.94 39.70
Average 11.54 24.30 40.22

Table 5.12 Results for problem sets 4, 5, and 6 for IMP. These problem sets are
originally in four dimensions.

79

50-point problems 100-point problems 150-point problems
Best Running Best Running Best Running
solution time solution time solution time
Problems | obtained | (seconds) obtained (seconds) | obtained | (seconds)
1 75242.43 22.48 325175.37 24.17 802908.30 39.62
2 64814.27 11.86 333587.21 24.73 841420.05 39.86
3 78566.40 11.82 348776.99 24.98 860219.43 40.17
4 75835.44 11.72 356028.47 24.39 812147.00 40.18
5 72817.28 11.35 329984.73 24.76 813605.93 40.33
6 81840.26 11.29 360490.54 24.26 856291.05 39.97
7 64342.71 11.63 297337.37 24.44 747778.81 40.65
8 71669.14 11.71 305608.28 24.48 753433.64 40.69
9 85219.88 11.55 368938.86 24.91 877125.17 40.66
10 78102.88 11.70 319881.60 24.31 784065.03 40.64
Average 12.71 24.54 40.23

Table 5.13 Results for problem sets 7, 8, and 9 for IMP. These problem sets are
originally in five dimensions.

We applied IMP to problem sets 1 t0 9. In Tables 5.11, 5.12, and 5.13, we show

IMP’s results. The running times reported for IMP are just those for the mathematical

programming. They do not contain the running times to run DACN to generate the

starting solutions. For most of the problems, IMP was not able to improve the solutions
produced by DACN. IMP improved only two of the 120 problems. For Problem 5 of the
50-point problemsin three dimensions, DACN produced an objective function value of
27914.8 in 4.49 seconds, while IMP produced an objective function value of 27901.62 in
23.17 seconds. For Problem 1 of the 50-point problemsin five dimensions, the objective
function values produced by DACN and IMP were 75247.8 and 75242.43, respectively.

DACN’s running time for this problem is 4.57 seconds and IMP’ s running time is 22.48

seconds. The two improvements obtained by IMP are very modest.

80

5.6 Conclusions

DACN produces much better objective function values than IRNS. The running
times for DACN are also much shorter than those of IRNS. DACN is more accurate and
efficient than IRNS.

DACN produces solutions by reassigning points, one point at atime. On the other
hand, IMP reassigns five points at atime. We expected that IMP would be able to
improve the results of DACN. However, that is not what we observed with our
experiments. It appears that the local search procedure of assigning points one at atime

works well for the data visualization problem.

81

Chapter 6: Genetic Algorithm

A technique that is commonly used to find near optimal solutionsto QAP isthe
genetic agorithm. Since we obtained reasonabl e results with DACN, we now propose a
hybrid heuristic that combines local search with a genetic algorithm. We refer to this
heuristic as HGA.

HGA builds on DACN by applying genetic algorithms techniques to the final
solution from DACN. For each generation, we produce m offspring by performing a
crossover between the best solution and m, randomly selected solutions from thet current
solutions. We then randomly select my, solutions from the current t + m, solutions and
perform mutation on them to produce my, offspring from mutation. After mutation we
havet + m; + mysolutions. We select the best t solutions and repeat the procedure until
some stopping criterion is met.

Our crossover operator isillustrated below. Let B be the best solution and P be a
randomly chosen solution for crossover. The offspring first inherits all assignments
common to both B and P. Unassigned sites, that is, those with different assignmentsin B
and P, are scanned from left to right. The offspring inherits the assignment with a better
contribution to the objective function value. Let the assignment for point i in B and P be

ks and kp, respectively. The contribution to the objective function value, that is,

z [od(i, j)—nd(k,)]?, iscaculated for i, for k = kg and k = kp, wherej e M' isthe set

jeM’
of points with assignments | in the offspring. We assign point i to the lattice point kg or kp
that gives the smallest contribution to the objective function.

We now consider the following example.

82

B: 1 4 2 3 2
P: 1 4 4 3 1
Since points 1, 2, and 4 are assigned to the same lattice points in both B and P, they have
the same assignment in the offspring, that is,
O: 1 4 - 3 -
To find the assignment to point 3, we find:
cs = [0d(3,1) —nd(2,1)]* + [0d(3,2) — nd(2,4)]? + [0d(3,4) — nd(2,3)]? and
cr = [0d(3,1) — nd(4,1)]* + [0d(3,2) — nd(4,4)]? + [0d(3,4) — nd(4,3)]? .
If cg < cp, then point 3 is assigned to lattice point 2; otherwiseit is assigned to lattice
point 4. Let’s assume Cg < Cp, and so point 3 is assigned to lattice point 2 and we have

o 1 4 2 3 -
To find the assignment for point 5, we find
cs = [0d(5,1) —nd(2,1)]* + [0d(5,2) — nd(2,4)]? + [0d(5,3) — nd(2,2)]?

+ [0d(5,4) — nd(2,3)]? and
cp = [0d(5,1) — nd(1,1)]* + [0d(5,2) — nd(1,4)]? + [0d(5,3) — nd(1,4)]?
+ [0d(5,4) — nd(1,3)].
If cg < cp, then point 5 is assigned to lattice point 2; otherwiseit is assigned to lattice
point 1. Let’s assume Cp < Cg, and so point 5 is assigned to lattice point 1 and we have
O: 1 4 2 3 1
For mutation, we find the n | attice points to which the greatest number of points

are assigned. We remove these n; points from our set of |attice points and reassign the

pointsin M to the remaining n — n; lattice points using one pass of local search. For

83

example, consider a problem with n =4 and n; = 1. Let lattice point 3 be the lattice point
to which the most pointsin M are assigned. Then we assign points to only lattice points 1,
2, and 4. We put back the n; points and apply local search to reassign the pointsin M to
all nlattice points. We repeat local search until there are |M| consecutive iterations with

no improvement in the objective function value.

6.1 Results and Analysis for GA

We implemented our HGA heuristic in the C++ programming language. We used
Microsoft Visual C++ 6.0 and ran our experiments using Windows 2000 with an 800
MHz Pentium 111 processor and 512 MB RAM. From DACN, we havet = 100. We use
m = 20, my = 10, n; = 8, and stop after 10 generations.

In Table 6.1, we show the results for our HGA heuristic for the 50-point, 100-
point and 150-point problems originally in two dimensions. In nine of 10 problems of
size 50, DACN finds the global optimum (see Table 4.5). Recall, that these problems are
originally in two dimensions and so the global optimum is known and is equal to zero.
For these problems, HGA cannot improve on the best solution obtained by DACN asitis
the global optimum. It can only increase on the frequency of the number of solutions out
of 100 that converge to the best solution. The best solution found by DACN for problem
31is131.77. HGA isnot able to improve this solution. In al 10 problems, HGA increases
the frequency of solutions that converge to the best solution obtained. In al 10 problems,

all 100 solutions for HGA converge to the best solution obtai ned.

50-point problems

100-point problems

150-point problems

Running Running Running

Best time Best time Best time

Problem | solution | Freq | (secs) | solution | Freq| (secs) solution | Freq | (secs)
1 0.00 | 100 13.85 0.00 | 100 45.20 0.00 100 | 89.41

2 0.00 | 100 13.65 0.00 | 100 45,51 0.00 100 | 92.95

3 131.77 | 100 13.85 0.00 | 100 43.60 0.00 100 | 88.72

4 0.00 | 100 13.47 631.23 | 100 43.60 0.00 100 | 88.21

5 0.00 | 100 14.17 0.00 | 100 42.88 0.00 100 | 85.56

6 0.00 | 100 13.35 0.00 | 100 44.07 0.00 100 | 87.68

7 0.00 | 100 13.82 0.00 | 100 44.77 0.00 100 | 87.53

8 0.00 | 100 14.14 0.00 | 100 44.67 0.00 100 | 88.96

9 0.00 | 100 13.74 0.00 | 100 45.01 0.00 100 | 90.21

10 0.00 | 100 13.34 0.00 | 100 44.73 0.00 100 | 87.30
Average 13.74 44.40 88.65

Table 6.1 Results for problem sets originaly in two dimensions for HGA.

In nine of the 10 problems of size 100, DACN finds the global optimum (see

Table 4.5). The best solution found by DACN for problem 4 is 631.23. All 100 solutions

generated by DACN converge to this solution. In Table 6.1, we see that HGA finds the

same best solution for this problem. It is not able to improve on the solution produced by

DACN. For the remaining nine problems, all 100 solutions produced by HGA converge

to the optimal solution.

In al 10 problems, HGA increases the frequency of solutions that converge to the best

solution. All 100 solutionsin al 10 problems converge to the best solution obtained.

problems, and the 150-point problems, originaly in two dimensions, are 13.74 seconds,

85

The average running times for HGA for the 50-point problems, the 100-point

For al 10 problems of size 150, DACN finds the global optimum (see Table 4.5).

44.40 seconds, and 88.65 seconds, respectively. The running times reported for HGA
include both the running times for DACN and those for the genetic al gorithm techniques.
For DACN, the average running times for the 50-point problems, the 100-point problems,
and the 150-point problems are 4.07 seconds, 13.24 seconds, and 27.95 seconds,
respectively (see Table 4.5). The average running times for DACN are much shorter than
those for HGA. However, the frequencies for HGA are much larger than those for DACN
in 29 of the 30 problemsin two dimensions.

We also applied HGA to problem sets 1 to 9 in Table 4.6. In Tables 6.2, 6.3, and
6.4, we show the results for problem sets 1, 2, and 3, respectively, that is, the data sets
originally in three dimensions. In Table 6.2, we see that in six of the 10 problems of size
50, HGA produces better solutions than DACN. In the remaining four problems, DACN
and HGA produce the same best solution; however, more solutions converge to the best
solution with HGA. On average, HGA produces solutions that are 0.065 % less than those
produced by DACN for the 50-point problems. In Table 6.3, we see that in five of the 10
problems of size 100, HGA produces better solutions than DACN. In the remaining five
problems, GA does not improve the objective function value produced by DACN, but it
improves the frequencies. On the average, HGA produces solutions that are 0.0717 % less
than those produced by DACN for the 100-point problems. In Table 6.4, we see that
HGA produces the same result for five of the 10 problems of size 150. In four of these
problems, HGA produces better frequencies than DACN. However for problem 1, HGA
and DACN produce the same frequency. In the remaining five problems, HGA finds a
better solution than DACN. For the 150-point problems, HGA produces solutions that are

on the average 0.0509 % | ess than those produced by DACN.

86

Percent

decrease
Running over

Best time DACN

Problem solution | Frequency | (seconds) results
1 20982.0 9 15.23 0.000000
2 16217.7 7 16.66 0.204910
3 25864.3 1 15.87 0.027830
4 22645.7 6 16.31 0.017219
5 27901.6 1 16.60 0.047287
6 22541.3 2 16.45 0.301643
7 14946.6 8 15.59 0.000000
8 16095.6 3 15.67 0.047196
9 21778.1 43 16.43 0.000000
10 26752.2 85 16.36 0.000000
Average 16.12 0.064609

Table 6.2 Results for problem set 1 for HGA. These are the
50-point problems originaly in three dimensions.

Percent

decrease
Running over

Best time DACN

Problem solution | Frequency | (seconds) results
1 101459 13 57.74 0.000000
2 105203 41 56.69 0.000000
3 126677 1 57.00 0.093852
4 97109.3 13 53.49 0.035086
5 133668 42 55.54 0.000000
6 101311 50 55.39 0.011843
7 82283.7 1 54.49 0.058179
8 84547.2 93 56.73 0.000000
9 115651 8 58.77 0.000000
10 90513.7 9 56.71 0.517888
Average 56.26 0.071707

Table 6.3 Results for problem set 2 for HGA. These are the
100-point problems originally in three dimensions.

87

Percent

decrease
Running over

Best time DACN

Problem solution | Frequency | (seconds) results
1 247553 1 117.11 0.000000
2 265991 3 119.93 0.000000
3 296768 1 114.36 0.032675
4 246756 7 112.22 0.000000
5 306124 18 121.17 0.000980
6 243635 2 112.33 0.464107
7 263978 2 116.37 0.005303
8 231010 7 132.62 0.000000
9 299859 25 121.64 0.000000
10 261174 3 117.00 0.006126
Average 118.46 0.050919

Table 6.4 Results for problem set 3 for HGA. These are the

150-point problems originally in three dimensions.

16
27 13

33

48 21

17
15

19

20

44

45

49

14
26

42 2

43

38

34

23

12 7 4

30

50
24 39

29
25
36

37 46

41

28

28

40

31

10 47

11

Figure 6.1 Plot for problem 2 from Problem Set 1.

88

60 37
99

41 89 36
52 80
67
21
38
40
63 16

20
73 32 11

72
12

49 17

23 87
26

90
61

71
42

a7
27

70

82
18

24

85

53

74

84

57
15

81

55

86

59
91

79

76
77

43
94

88

13
92

54

97
69

50
19

30

100

66

64

62

95
98

78

96

51

22

14

34

48

93

89

25
33

35
46

44 28
38

96

68

Figure 6.2 Plot for problem 9 from problem set 12.

74 17

70
6 92

135 48
118

101 98
68 64
19 115
38 73
84
63

142 128

148 67 110
40
98 730 63 99 89 12 139

21

126 119

150 60

106
114
117 12%

75 120

46

78

204 112

76

1

303 72
103 147 8% 96

a2z
26 77 69 129 123
100

66
134

32 87 47

51

13

3

409
102
127
136

62
8

140

124

16

149 10

108

111 31 144 138 82

36

237

105

522 33

57
58

93

34

107 43 4

23

94

201 25

22

83

88
133

41
35

80 28
28
18
50 79
90
9
146 59
145
143

116 37 55 65

132

45

95

Figure 6.3 Plot for Problem Set 3: Problem 4.

89

In Figure 6.1, we show the plot of the final results for HGA for problem two of
problem set 1. The plot of this problem for DACN is shown in Figure 4.4. The plots are
amost the same as is to be expect since the objective function values are amost the
same. It should be noted that Figure 6.1 is areflection of Figure 4.4 in the x-axis. In
Figures 6.2 and 6.3, we show the plots for problem nine of problem set 2 and problem
four of problem set 3, respectively. The plots for these problems are the same as those
produced by DACN (see Figures 4.5 and 4.6) as HGA and DACN produce the same
objective function values for these problems. Note that Figure 6.3 is the reflection of
Figure4.6intheliney = x.

The average running times for HGA for the 50-point problems, the 100-point
problems, and the 150-point problems, originally in three dimensions, are 16.12 seconds,
56.26 seconds, and 118.46 seconds, respectively. For DACN, the average running times
for the 50-point problems, the 100-point problems, and the 150-point problems are
4.33 seconds, 15.73 seconds, and 36.65 seconds, respectively (see Table 4.7). The
average running times for DACN are much shorter than those for HGA. HGA finds better
solutions than DACN in 16 of the 30 problems originally in three dimensions. In 14 of
the remaining 15 problems, HGA produces larger frequencies than DACN.

In Tables 6.5, 6.6, and 6.7, we show the results for problem sets 4, 5, and 6,
respectively. These are the problem sets originally in four dimensions. In Table 6.5, for
the 50-point problems, HGA gives better solutions than DACN in nine of the 10
problems. For problem 9, both HGA and DACN find a best solution of 50341.1.
However, DACN has afrequency of one while HGA has a frequency of seven. On the

average HGA produces solutions that are 0.070 % less than those produced by DACN,

90

for the 50-point problems. In Table 6.6, in eight of the 100-point problems, HGA givesa
better solution than DACN. For the remaining two problems HGA has a greater
frequency than DACN. On average HGA produces solutions that are 0.0363 % less than
those produced by DACN for the 100-point problems. In Table 6.7, in eight of the 150-
point problems, HGA gives a better result than DACN. For the other two problems, HGA
gives a greater frequency than DACN in problem 10 and the same frequency as DACN in
problem 2. On average HGA produces solutions that are 0.0349 % less than those
produced by DACN for the 150-point problems.

In Figures 6.4, 6.5, and 6.6, we show the plots of the final solutions for HGA for
problem six of problem set 4, problem seven of problem set five, and problem five of
problem set six, respectively. These plots are similar to those produced by DACN for the
same problems asisto be expected (see Figures 4.7, 4.8, and 4.9) since the objective
function values produced by HGA and DACN are almost the same.

The average running times for HGA for the 50-point, 100-point, and 150-point
problems are 15.73 seconds, 53.35 seconds, and 111.54 seconds, respectively. These
running times are much longer than those for DACN, which are 4.99 seconds, 18.69
seconds, and 44.29 seconds, for the 50-point, 100-point, and 150-point problems,
respectively. For 25 of the 30 problems originally in four dimensions, HGA gives better
results than DACN. HGA gives a better frequency than DACN in four of the remaining

problems.

91

Percent

decrease
Running over

Best time DACN

Problem solution | Frequency | (seconds) results
1 443846.2 10 15.31 0.075535
2 41746.7 2 15.77 0.049560
3 50692.6 1 16.11 0.074905
4 44531.1 6 15.87 0.043770
5 48680.0 30 15.80 0.038810
6 51229.6 1 16.00 0.032978
7 32925.6 36 15.70 0.084968
8 45379.2 5 15.48 0.290477
9 50341.1 7 15.68 0.000000
10 53644.6 2 15.53 0.009506
Average 15.73 0.070051

Table 6.5 Results for problem set 4 for HGA. These are the
50-point problems originally in four dimensions.

Percent

decrease
Running over

Best time DACN

Problem solution | Frequency | (seconds) results
1 222313 11 52.97 0.000000
2 212677 24 52.04 0.000000
3 245229 1 54.82 0.057464
4 213861 1 51.63 0.014493
5 227173 5 53.63 0.185856
6 226018 1 54.27 0.040246
7 168886 1 52.29 0.002960
8 179705 3 54.94 0.006121
9 241251 1 53.77 0.024036
10 229729 4 53.17 0.032201
Average 53.35 0.036338

Table 6.6 Results for problem set 5 for HGA. These are the
100-point problems originally in four dimensions.

92

Percent

decrease
Running over

Best time DACN

Problem solution | Frequency | (seconds) results
1 523987 1 115.01 0.012594
2 555620 1 111.25 0.000000
3 572456 2 111.87 0.065639
4 504728 1 109.16 0.071473
5 584229 2 109.91 0.027386
6 510445 1 119.79 0.043668
7 483908 1 106.48 0.005786
8 475337 4 106.33 0.079879
9 572133 1 116.17 0.067421
10 556993 7 109.43 0.000000
Average 111.54 0.034920

Table 6.7 Results for problem set 6 for HGA. These are the
150-point problems originally in four dimensions.

39 45

22

42

41
26 32

20

35

16 14 18

27
40

36
46 19

30
49
28
34

31

47
33 37

38

21
13
10
43
15
50

29
48

17
12
44
11

23

Figure 6.4 Plot for Problem Set 4: Problem 6.

93

55

72
45

83
87

20 88

51
58
49

40

35

7

38

60

53

50

65

69

95

19

36

67

18

100

25
91

16

76

48

94
54

17
21

73

26

57

86

32
23
87
14

30
79

97

34
74

98
22
44

78

15
62
42
27
56

93
89
81

11

89

85

66

29

63

92
99

33

37

96
92
28

80

68

75

41
71
10

31

83 70

82

90

13
64

Figure 6.5 Plot for problem 7 from problem set 5.

83

30

349

20

109 68

146

63
49

71

116

85

B8 140 72
118 66 110 7

119

40

984 126
105

132

9

57

37 96 492

35

142 78 61 81
38 58 67 47

2

77 341 90
95 11133 31 104 24

112

90 21 62

139

45

51
25

60

803

148

23
43

136

22

53

260 80

48

79

144

86

54
61
18
28

27
59

@829 75 91

129

13 113
837 150

5
55

106 12

102

99

134

117 88 394

415

36

128 135 123
73 13064 14

92

89

106
65 97

127 131 76

74

145
16 133

143 167

17

®A1

147
10

125

93

86

82

Figure 6.6 Plot for problem 5 from problem set 6.

94

In Tables 6.8, 6.9, and 6.10, we give the results for the problem sets originally in
five dimensions, that is, problem sets 7, 8, and 9, respectively. In Table 6.8, in seven of
the 50-point problems, HGA gives a better solution than DACN. For the other three
problems, HGA gives a greater frequency than DACN. On average, HGA produces
solutions that are 0.071 % less than those produced by DACN for the 50-point problems.
In Table 6.9, for the 100-point problems, HGA gives better results than DACN inal 10
problems. On average HGA, produces solutions that are 0.0463 % |ess than those
produced by DACN, for the 100-point problems. In Table 6.10, in five of the 150-point
problems, HGA gives better results than DACN. In three of the remaining five problems,
HGA gives greater frequencies than DACN. On average HGA, produces sol utions that
are 0.0281 % less than those produced by DACN for the 150-point problems.

In Figures 6.7, 6.8, and 6.9, we show the plots of the final solutions for HGA for
problem one of problem set 7, problem eight of problem set eight, and problem 10 of
problem set nine, respectively. Figures 6.7 and 6.8 are similar to those produced by
DACN for the same problems asisto be expected (see Figures 4.10 and 4.11) since the
objective function values produced by HGA and DACN are amost the same. The plots
for DACN and HGA are the same as they produce the same objective function value (see

Figure 4.12).

95

Percent

decrease
Running over

Best time DACN

Problem | solution | Frequency | (seconds) | results
1 75011.8 1 16.99 | 0.313630
2 64802.5 6 17.90 | 0.018206
3 78469.3 1 16.99 | 0.123590
4 75825.7 4 1753 | 0.012628
5 72742.6 2 16.66 | 0.102586
6 81785.2 1 1711 | 0.067326
7 64342.7 7 16.90 | 0.000000
8 71669.1 21 16.93 | 0.000000
9 85162.5 3 17.04 | 0.067355
10 78102.9 6 17.59 | 0.000000
Average 17.16 | 0.070532

Table 6.8 Results for problem set 7 for HGA. These are the
50-point problems originally in five dimensions.

Percent

decrease
Running over

Best time DACN

Problem | solution | Frequency | (seconds) | results
1 325164 3 60.20 | 0.003383
2 333538 1 60.45 | 0.014689
3 348745 4 59.66 | 0.009175
4 355959 3 59.33 | 0.019380
5 329939 17 56.98 | 0.013940
6 360454 2 61.83 | 0.012638
7 296948 3 58.91 | 0.130828
8 305507 2 59.36 | 0.033049
9 368775 1 58.45 | 0.044451
10 319291 1 60.84 | 0.184756
Average 59.60 | 0.046392

Table 6.9 Results for problem set 8 for HGA. These are the
100-point problems originally in five dimensions.

96

Percent

decrease
Running over

Best time DACN

Problem | solution | Frequency | (seconds) | results
1 802906 9 120.34 | 0.000249
2 841420 6 124.39 | 0.000000
3 860219 3 126.89 | 0.000000
4 811990 2 124.65 | 0.019331
5 812123 1 126.27 | 0.182275
6 856291 16 124.78 | 0.000000
7 747410 1 121.03 | 0.049346
8 753376 1 126.73 | 0.007698
9 877125 1 124.87 | 0.000000
10 784065 1 126.13 | 0.000000
Average 124.61 | 0.025890

Table 6.10 Results for problem set 9 for HGA. These are the
150-point problems originally in five dimensions.

40 7
25 30 33 50
44 11 32
9 24
22 27 20 28
21 10 17 36
38 35
41 2
1 43 42 45 19 39
37 26 6
48 18 4
8
a7 23 49 34 14
16 46 12
29
13 3 15 31

Figure 6.7 Plot for problem 1 from problem set 7.

97

50
34

43

77
98

21

10

22
81

73

35
51

66 58
14 32
90
69

31

25
24 18 91
52

26 49
89 g4

80
68

23

94

42

74
61

92

59

27

63

75
84

30
96

17

85

a1

54
38

46

48

a0

100

15

76

64

97
83

53

62
87

43

57
95 20

8

28
55
67
a2

85

79

78

99

71
88

39

37

16
44
41

29

70
19

60

Figure 6.8 Plot for problem 8 from problem set 8.

72

3 79
®a7 69

15
75 33
16 46
149 39
89 43
6 62
60

35

24

818
31

144

87

105

331 36
117
90
113
147
73 88
58
40 138 238
4 135

139 110

101

14

49 96 44
13 65 25

924 112 27

59
86

132 142 126 32
61 47 45 64 17

41 53

608 146

30
29
84
68
77

115

81 82 19 37 97

180 129

114 %20 121

130
104

63

80

137 95

74

10

106
123

5

140

2689

18
50

111
138

22
93 141

143

71
168 107

100

20
28 48
125

92

55

54 128

42

2%

94

56
38
12

99

76
11

26
83

102

122

134

116

57

Figure 6.9 Plot for problem 10 from problem set 9.

98

The average running times for HGA are 17.18 seconds, 59.60 seconds, and
124.61 seconds, for the 50-point, 100-point, and 150-point problems. These running
times are longer than those for DACN. The average running times for DACN for the 50-
point, 100-point, and 150-point problems are 4.66 seconds, 17.41 seconds, and
40.27seconds, respectively. HGA gives better resultsin 22 of the 30 problemsin five

dimensions. In six of the remaining eight problems, HGA gives alarger frequency.

6.2 Conclusions

HGA can be used to improve the solutions obtained by DACN. However, the
improvements are very marginal. In addition, the running times of HGA are longer than
those of DACN. When our heuristic is used as a stand-al one approach or a very accurate
solution isrequired, HGA can be used rather than DACN. On the other hand, if our
heuristic is used to produce a starting solution for a nonlinear method or an approximate
solution is required, then DACN should be used rather than HGA for faster computation

times.

99

Chapter 7: Comparing Discrete Local Search to a
Nonlinear Optimization Technigue — Sammon map

In this chapter, we compare the results of DACN to the results generated by a
nonlinear Sammon map (NLSM). The Sammon map objective function is different from
(but similar to) the least squares scaling objective function that we have used in our
experiments so far. However, as stated earlier, we can easily apply our methods to this
objective function. Therefore, we use the Sammon map objective function in our next set
of experiments. This shows how easily we can change the objective function in our
technique.

Our motivation for comparing DACN to NLSM isthreefold. First, since neither
approach generates solutions that are guaranteed to be globally optimal, asimple
comparison is of interest. Second, we seek to ascertain the quality of the discrete
optimization approximation for this continuous optimization problem. Third, we
investigate whether the two techniques (DACN and NLSM) can be combined in order to

obtain superior results.

7.1 Sammon map

The Sammon map procedure is an a gorithm used to analyze multivariate data.
The algorithm is a point mapping from a high dimensional space to alower dimensional
space such that the inherent data structure is preserved approximately (Sammon, 1969).
The Sammon map procedure randomly assigns starting coordinates to the pointsin M. A
stegpest descent procedure is then used to reassign the pointsin order to reduce the
objective function value. The procedure is repeated until a stopping criterion is met. We
point out that the nonlinear (steepest descent) Sammon map procedure does not guarantee

aglobal minimum. The Sammon map objective function is:

100

o 1 [Od(i1j)_nd(k’|)]2)§kxj|
mmlmlze—zzod(i,j)g‘}i%;; o, .

We use the Sammon map procedure of Condon, Golden, and Wasil (2003), as
coded in Mathematica. The stopping criterion is either 100 iterations or when the sum of
the differences in the objective function values of 10 successive iterationsis less than 1%

of the current objective function value, whichever occurs first.

7.2 Combined Heuristics

In NLSM, points can be assigned anywhere in g-space. However, with DACN,
points can be assigned only to the lattice points. Therefore, NLSM islikely to generate
better results than DACN. However, the speed of convergence of nonlinear optimization
techniques is dependent upon the starting solution. In earlier chapters, we observed that
DACN generates good approximate final solutions. This suggests the following heuristic
(COMB). Instead of starting NLSM with arandom solution, we can use the final solution

from DACN as the starting solution.

7.3 Results

We apply DACN with the Sammon map objective function, NLSM and COMB,
to the 50-point and 100-point data sets (problem sets 1, 2, 4, 5, 7, and 8 from Table 4.6).
We do not apply NLSM to the 150-point data sets as the problem size becomes too large
to run in Mathematica.

In Table 7.1, we give the results for 50-point problems generated from alattice in
three dimensions (that is, problem set 1). In problems one, three, and five, DACN gives
better objective function values than NLSM. For the remaining seven problems, NLSM

produces better objective function values than DACN. However, DACN’sresults are

101

DACN NLSM COMB
Running Running Running
Best time Best time Best time
Problem | solution (seconds) solution (seconds) solution (seconds)
1 0.04248 8.20 0.04261 95.08 0.04092 9.76
2 0.03640 9.13 0.03600 74.13 0.03416 12.856
3 0.04841 8.92 0.05220 78.84 0.04691 9.80
4 0.04365 8.49 0.04004 108.39 0.03994 11.32
5 0.05376 7.71 0.05500 68.02 0.05175 11.23
6 0.03665 8.48 0.03335 56.98 0.03334 14.35
7 0.03473 8.18 0.03341 103.20 0.03286 11.33
8 0.03397 8.38 0.03237 74.30 0.03214 12.88
9 0.04010 8.24 0.03842 84.05 0.03808 11.38
10 0.04774 8.41 0.04578 88.44 0.04473 14.60
Average 8.41 83.14 11.95

Table 7.1 Results for Problem Set 1: 50-point problems originally in three dimensions.

32 28

49

14
26

16

18 22 50 3 6 13 27
35 39 24 2
47 10 42 33
40 29 43 21
25 48
31 36 20 17
46 37 38 15
11 34 44
41 23
4 12 45
7 19
1 30
(8) DACN

Figure 7.1 Plots for problem 2 from problem set 1.

102

32

28 49
5
9
14
8 26 16
18 22 50 3 6 13 27
3 39 4,
a7 10 42 33
29
40 43 21
25 48
20
31 36 17
15
11 46 37 38 44
34
41 23
4 124
19
. 30
(b) COMB
11
47
10 31
18 40
1
8 46
2235 37 30
41
28 9
32 39 25 3
29 B 4,
24 23
5 50 42 38 2-52
43
s 3 2 44
14 s 20 s
49
6 19
17
33 48
13
27 16
(c) NLSM

Figure 7.1 (continued).

103

18

a7 10

40

31
11

32

o8 49

26 14

50 3
2235 39 24
42

29 43
25

36
46 37

34
41 23

30

38 44

21
20

27

16

13

33

48

17

19

very close to those for NLSM. COMB gives the best solution to each of the 10 problems.
In Figure 7.1, we show plots of the final results generated by DACN, NLSM, and COMB
for Problem 2. We also show the plot of alinear transformation of the coordinates
produced by NLSM in Figure 7.1(d). The objective function values indicate that the three
figuresfor DACN, COMB, and NLSM, should be similar. Figures 7.1(a) and 7.1(b)
support this. Figure 7.1(c) appears to be different. Thisis due to the arbitrary orientation
of the problem. We, therefore, used a Procrustes rotation in Matlab to trandlate the plot of
NLSM, obtaining Figure 7.1(d). DACN requires that the original points be assigned to

lattice points. COMB and NLSM have no such restriction. Figure 7.1(d) is similar to

(d) Trandlated NLSM
Figure 7.1 (continued).

Figures 7.1(a) and 7.1(d).

104

The average running times for DACN, NLSM, and COMB are 8.41 seconds,
83.14 seconds, and 11.95 seconds, respectively. The running times we report for COMB
are only those for the nonlinear code and do not include the running times for the divide-
and-conquer heuristic. The average running time for COMB is much smaller than that for
NLSM. We do not compare the running times for DACN and NLSM since the codes are
written in different programming languages.

In Table 7.2, we give the results for Problem Set 2. NLSM produces better
objective function values than DACN and COMB produces better objective function
values than NLSM for all 10 problems. The average running times are 36.67 seconds,
454.38 seconds, and 76.68 seconds for DACN, NLSM, and COMB, respectively. The
results are similar to those observed with the first problem set: COMB does better than
NLSM, which does better than DACN. On all 10 problems, COMB has much lower
running times than NLSM. In Figure 7.2, we show plots of the final results generated by
DACN, NLSM, and COMB for Problem 9. We a so show the plot of alinear
transformation of the coordinates produced by NLSM in Figure 7.2(d). Figures7.2(a)
and 7.2(b) are very similar and support the fact that the objective function values
produced by DACN and COMB are close to each other. Arbitrary orientation accounts
for Figure 7.2(c) appearing different from Figures 7.2(a) and 7.2(b). Figure 7.2(d) is
similar to Figures 7.2(a) and 7.2(b) as expected.

105

DACN NLSM COMB
Running Running Running
Best time Best time Best time
Problem | solution | (seconds) | solution | (seconds) | solution | (seconds)
1 0.05051 | 37.06 |0.04975| 784.63 | 0.04869 55.97
2 0.05086 | 38.46 |0.04916| 335.56 | 0.04894 48.03
3 0.05668 | 36.66 |0.05454 | 412.27 |0.05334| 156.57
4 0.04590 | 33.47 |0.04315| 395.07 | 0.04292 62.98
5 0.05877 | 36,55 |0.05839| 421.33 | 0.05643 55.60
6 0.04440 | 36.13 |0.04054| 621.28 | 0.03971 78.90
7 0.04430 | 33.60 |0.04316| 564.12 | 0.04228 55.22
8 0.04297 | 39.38 |0.04088 | 348.70 | 0.04065 63.06
9 0.05387 | 40.57 |0.05291| 315.36 | 0.05162 119.01
10 0.04339 | 34.86 |0.04021| 345.48 | 0.03967 71.48
Average 36.67 454.38 76.68

12
72
33 11
63
16
40
38
21
67
80
99

52
41

60 37

85

27
20

47 24

31

42 71

61 18
90

26
10
87

36
23
89

49 17

55 54

7
76

13
81
88

91
15
82 57 59
84

74

70
33

100 78 14

30
98
95
62

45

19
50

64

51
69

97 94
43

86

39
83
93

68

48 96

22 65 5
29
66 4 34

56

58
44 28

46
35

33

25

(8 DACN
Figure 7.2 Plots for problem 9 from Problem Set 2.

106

Table 7.2 Results for Problem Set 2: 100-point problems originally in three dimensions.

85
2
12 55 14
22 8 > 10078 39
2 o T o3 68
47
2 4y 31 8176 30
73
98
7988, e 48 96
4271 1
63 16 3 58
40 18 91 62 44 28
61 15
38 82 5759 195 6422 .
90 65 46
21 50 35
- 67 26 84 51 29
80 36 10 34
1 . g7 T4 91?769 666 4 33
9
70 43 956 25
37 49 17 537 86
60
(b) COMB
28 46
68 44
383 581 3 3 B o5
93 5 96
2 14 48 65 9
8 22 6 94
100 98 95 64 51 2934
30, 1975 66 56
50 97 69
85 o5 92 13 768 45 o
o g 7 59! %
84
47 24 31 " 18 15 - 74 o 7 53
61
12 42 0
2T 9 90 26 87 17
72 23
1 36 49
3263 16 40 38 67 89
23 21 99 80 52 41
37
60
(c) NLSM

Figure 7.2 (continued).

107

85 5
12
55 14
78 3%
8 68
72 o7 4724 77 92 100 93
13
32 20 g 8176 5008
3 1 %8 95 58
73 44 28
16 4271 13
40 6118 57 19 64 5
5 38 15 675 22 65 46
35
99 % % >0 51 %
80 67 6 84 97 5 33
74 9
29 25
60 52 gg 94 o
41 36 17 70 8643 56
49 7
53

(d) Trandlated NLSM
Figure 7.2 (continued).

In Tables 7.3 and 7.4, we give the results for Problem Sets 4 and 5. For Problem
Set 4, NLSM generates better objective function values than DACN in problems one,
two, and seven. In the remaining seven problems, DACN produces better objective
function values. For Problem Set 5, DACN produces better objective function values than
NLSM except for problems two, six, and eight. For both Problem Sets 4 and 5, COMB
generates the best objective function values. For all 20 problemsin the two problem sets,
COMB generates better results than DACN and NLSM. In Figures 7.3 we show plots of
the final results generated by DACN, NLSM, and COMB for Problem 6 in Problem Set
4. In Figure 7.4, we show plots for Problem 7 in Problem Set 5. We a so show the plots
of alinear transformation of the coordinates produced by NLSM in Figures 7.3(d) and
7.4(d). Since the objective function values produced by the three methods are all close to

each other, we expect the plotsto be similar. Indeed, the plots produced by DACN and

108

DACN NLSM COMB
Running Running Running
Best time Best time Best time
Problem | solution | (seconds) | solution | (seconds) | solution | (seconds)
1 0.06155 7.71 0.06046 103.23 0.06009 9.81
2 0.06409 8.07 0.06306 102.49 0.06237 9.78
3 0.06891 7.53 0.07600 61.61 0.06750 9.71
4 0.06388 7.55 0.06830 91.58 0.06220 9.77
5 0.06986 7.74 0.07355 69.43 0.06813 9.78
6 0.06458 7.54 0.06863 104.54 0.06275 12.89
7 0.05363 7.30 0.05289 69.77 0.05222 9.82
8 0.06796 7.96 0.06853 68.05 0.06625 8.24
9 0.06454 7.67 0.06461 131.58 0.06296 8.07
10 0.07000 8.09 0.07786 75.81 0.06867 8.26
Average 7.712 87.81 9.61

Table 7.3 Results for Problem Set 4: 50-point problems originally in four dimensions.

DACN NLSM COMB

Running Running Running
Best time Best time Best time

Problem | solution | (seconds) | solution | (seconds) | solution | (seconds)
1 0.07539 32.43 0.07731 409.78 0.07388 40.67

2 0.07339 31.52 0.07313 498.60 0.07168 103.85
3 0.08081 32.50 0.08120 447.68 0.07855 47.26
4 0.07280 30.31 0.07368 708.25 0.07073 47.45
5 0.07475 30.81 0.07603 384.84 0.07227 56.06
6 0.07247 34.35 0.07024 482.25 0.07005 55.71
7 0.06424 29.29 0.07641 574.48 0.06262 48.33
8 0.06863 32.61 0.06824 732.20 0.06681 56.45
9 0.07900 32.79 0.08367 363.95 0.07698 47.64
10 0.07505 32.98 0.08129 322.34 0.07336 48.27
Average 31.96 492.44 55.17

Table 7.4 Results for Problem Set 5: 100-point problems originally in four dimensions.

109

17 12 44 11 23
3 48
38 10 43
21 50
13 15 29
25 31 47 37
7 49 4
46 28
36 19 30 34 33
18 14 27
20 35 6 16 40
1 45
22 41 32 24
9
8 39 5 42 26 2
(@ DACN
17
23
12 4y 11
3 48
43
38 ” 10 50
13 15 29
47
37
25 49 31
4
! 46
3 19 30 28 3 33
18 y 7
20 356 16 40
1 45
22 g R
9
8 39 42 26 5
5
(b) COMB

Figure 7.3 Plots for problem 6 from problem set 4.

110

37

1 19
45 30
29 46
. 34
22 35 11
4 5 28 49 13
18 50 10 17
39 33 3
4 36 38
27 14 31 21
26 4 g 12
32 43
16 15
9 20
0 4 . 25
2 24 23
48
(c) NLSM
17 12
44 -
3 38
11 ” 43 25 ,
10 15
13 48
50
36
46 49 31 4
9 20
28 47
29 41 94
34
14 16 40
37 6 18
35 27 - o 2
1
45 22
33 o6
42
6 . 39

(d) Translated NLSM
Figure 7.3 (continued).

111

64 13 90 70

80 7 71 46 31
28 9 96 10 41 82 75 84
12 29 37 68
6 63 81 86 85 89 33 99 92
11 78 43 93 56 27
97 39 44 08 42 62 74
47 61 32 79 30 22 15 34
14 23 33 86 57 3 26 5
54 21 17
100 94 1 48 76 16 25 2
65 50 18 67 36 91 19 69
35 53 51 60 38 95
40 49 24 77
83 58 8 88
87 45 72 55 20
(8) DACN
64 13 90 70
7 46
80 71 31
28 995 10 4 go75 B4
1229 a7 68
66
6 fl?’ 8 "B g %7 33 9 o9
78 43 56 27
97 39 44 98 42 45,74
a7 79 30 15 34
w 123 32 5> 5
3286 57 - 3 -
54 21
94 2
100 s 148 76 6%6 25
55 50 o 3 91 19 69
5160 38 95
40 49 24 "
58 88
83 8
87 45 20
72 55
(b) COMB

Figure 7.4 Plots for problem 7 from problem set 5.

112

87 31
5 99,, 68
69 , 65 g2 02 . 70
3P 3 34 59733 75 40
88 16 48 8 4 0
40 62 27 a
50 73 9
g 95 8% 783 6
1o 52 % 81 %%12
o5 24 121 44 5966 13
20 60 18 g6 39 43 64
2 26 57 28
15 1
77 25 287 97 63 ! 80
a5 B 36 53 54 74 6
38 17,4, 47 78 90
’ 51 61
100 14
(c) NLSM
70
64 13 46 31
80, 12 869 40 %
28 2 75 68
33 92
6 63 11 6651 4 3 99
g3 o
90 89 7 27 82
28 97 43 5685
39 22 42
47 23 30 44 3B
52 62 34
14 61 86 73 48 3 87
74 15 57 5
o1 54 . 16 65
100 17 76 7T
18 S0 oy
o 5 35 69
3853 0 049
5 40
36 25 19 88
58 24 95
72
45 17
20 55
(d) Trandated NLSM

Figure 7.4 (continued).

113

COMB isvery similar. The plots produced by NLSM appear to be different. However,
this difference is caused by the arbitrary orientation of the solutions produced by these
methods. The translated NLSM plots are similar to the plots produced by DACN and
COMB.

In Table 7.3, the average running times for DACN, NLSM, and COMB are 7.72
seconds, 87.81 seconds, and 9.61 seconds, respectively. In Table 7.4, the average running
times are 31.96 seconds, 492.44 seconds, and 55.17 seconds for DACN, NLSM, and
COMB, respectively. Once again, the running times for COMB are much smaller than
those for NLSM.

In Table 7.5, we give results for Problem Set 7. In all 10 problems, DACN
produces a better objective function value than NLSM. COMB generates the best
objective function values in al 10 problems. The average running times for DACN,
NLSM, and COMB are 9.28 seconds, 91.23 seconds, and 7.91 seconds, respectively. In
Figure 7.5, we show the plots of the final results generated by DACN, NLSM, and
COMB for Problem 1. We aso show the plot of alinear transformation of the coordinates
produced by NLSM in Figure 7.5(d). We observe that Figures 7.5(a) and 7.5(b) are very
similar, while Figure 5(c) appears different. This difference is accounted for by the
arbitrary orientation of the solutions produced by the methods. When orientation is taken

into account, Figure 7.5(d) is actually similar to Figures 7.5(a) and 7.5(b).

114

DACN NLSM COMB
Running Running Running
Best time Best time Best time
Problem | solution | (seconds) | solution | (seconds) | solution | (seconds)
1 0.07919 9.40 0.08216 97.28 0.07794 8.32
2 0.07602 9.78 0.08221 | 157.88 0.07479 8.12
3 0.08532 9.29 0.08584 96.38 0.08430 6.72
4 0.08139 9.02 0.09696 96.41 0.08015 8.11
5 0.08254 9.20 0.08845 63.42 0.08153 6.65
6 0.07823 9.52 0.07918 71.04 0.07646 9.75
7 0.07561 9.69 0.08222 95.23 0.07425 8.28
8 0.08371 9.26 0.09750 82.44 0.08249 8.22
9 0.08106 8.57 0.09230 69.98 0.07960 8.23
10 0.08318 9.10 0.08655 82.24 0.08232 6.70
Average 9.28 91.23 7.91

Table 7.5 Results for Problem Set 7: 50-point problems originally in five dimensions.

13

15
31

16
29

23

12

14

34

47
37

26
49
48

45

42

18
19

41

35

43

10

28

17
36

21

22

20

44

27
11

24
33

50
32

40

25

30

Figure 7.5 Plots for problem 1 from problem set 7.

(8) DACN

115

41

47 1 38
16 37 1 40
29 44
13 26
9
23 49 35 ;
48 22
43
3 5 46 27 o5
11
1 4 45 2 5y N
15 42 10
20
31 14 6 33
18 28
19 50
17 32
4 8 39
36
(b) COMB
13
29
3 16
15 5 8
23
31 46 36
1 48 17 %
47 4 37
49 42 43 1
18 41
6 2
10 20 38
45 22 21
40 9 27 19 2 28 4
44
33 11
35
7 25
39 30 32
50
(c) NLSM

Figure 7.5 (continued).

116

16

13 29 23

46

15 14

48

36

17

34

41

37

43
20
42 10

22

38
21

28
24

19 35
27

11

32

30 50
12 9

31 18 45
49 33 25

39

a7
44

40

(d) Translated NLSM
Figure 7.5 (continued).

In Table 7.6, we give the results for Problem Set 8. In seven of the 10 problems
DACN produces a better objective function value than NLSM. COMB generates the best
objective function valuesin al 10 problems. In Figure 7.6, we show the plots of the final
results generated by DACN, NLSM, and COMB for Problem 8. We also show the plot of
alinear transformation of the coordinates produced by NLSM in Figure 7.3(d). The three
plots produced by DACN, NLSM, and COMB, are similar, once arbitrary orientation is
taken into account for in Figure 7.6(d). The average running times for DACN, NLSM,
and COMB, are 36.38 seconds, 583.62 seconds, and 39.25 seconds, respectively.

117

DACN NLSM COMB
Running Running Running
Best time Best time Best time
Problem | solution (seconds) solution (seconds) solution (seconds)
1 0.08559 39.54 0.09744 514.09 0.08405 40.03
2 0.09069 36.55 0.09419 645.05 0.08881 56.09
3 0.09174 36.63 0.09628 505.83 0.09078 31.91
4 0.09118 33.88 0.09377 548.01 0.08995 39.71
5 0.08694 33.64 0.08950 577.65 0.08533 39.58
6 0.08752 40.36 0.08668 420.01 0.08545 48.24
7 0.08531 34.96 0.08760 722.03 0.08412 39.74
8 0.08699 36.00 0.08974 642.65 0.08575 40.29
9 0.09153 34.80 0.09113 584.15 0.09020 32.64
10 0.08703 37.39 0.08618 676.75 0.08591 24.31
Average 36.38 583.62 39.25

Table 7.6 Results for Problem Set 8: 100-point problems originaly in five dimensions.

Figure 7.6 Plots for problem 8 from problem set 8.

118

39 85 29 19 70 37
60 16 79
88 41 44 99 78
87 93 71 57 1
82 56 20 43 64 76
2 55 28 53 95 83 97 38 54
15 62 40 12 48 46 84 75
100 87 47 65 17 96 30 61 74
11 9 59 92 80
42 63 27 13 90 23 68
49 52 94 32 58 35
36 18 91 31 86 66 33 73
89 24 25 69 4 14 51 31
26 22 10 7
98 77 81 34
8 45 72 6 50
(8) DACN

39 85 g 19 70 37

60 16 79

88 41 44 99 78
3 67 9371 57

56 20 43
82 64 76
28 53 95 83 I 4o 54

15 62 40 12 48 45 84 75

7
T 65 17 98 5 61 74
1 9 59 92 80

63 27 13 68

42 %4 90 23
49 52 32 58 35

36 1g 91 31 8 66 33 73

89 24 25 69 4 14 51 5
26 10 7

22
098 77 81

34
45 5, 6 50

(b) COMB

89 26 98
36 77 8
42 49 18 54 81 6
85 52 91 69 7 4
63 94 34
100 11 14
87 47 25 51 21

o 927 0 3 g

8
29 82 53 :?(? 23 865 3533

39

72

60 46

(c) NLSM
Figure 7.6 (continued).

119

37 70

19 79
60 16
41 g4
3 gg 9 78
67 93 71
29 56 20 64
39 , 8 » % 43 97 574
84 75
o B s 83 g5 38
87 12 96 17 46 61 76
g5 ¥ 097 Y 65 30 92 74
11 927 S 80
63 13 23 68
42 94 90 86
32 58
4952, = 66 3533
25
89 18 24 694 14 5 5 72
10
26 22 81 21 73
08 77 7 4534

(d) Translated NLSM
Figure 7.6 (continued).

7.4 Conclusions

For the 3-dimensional data sets (problem sets 1 and 2), NLSM generates better
solutions than DACN, on the average. For the higher dimensional data sets (problem sets
4,5, 7, and 8), DACN produces better solutions than NLSM. DACN can only make
assignments to specific pointsin the lattice space. NLSM can assign points anywherein
the plane. Despite this limitation, DACN generates results that are comparable in quality
to those generated by NLSM. When the final solution from DACN is used as a starting
solution in NLSM —thisisthe COMB heuristic — the final solutions generated by COMB
are always better than the results generated by DACN and NLSM. Also, COMB has

much smaller average running times than NLSM which are, in fact, quite reasonable. The

120

divide-and-conquer approach provides a good approximate solution in a small amount of
computing time. Furthermore, we have demonstrated that this solution is agood starting
solution for the nonlinear method. It significantly speeds up convergence and improves
solution quality. It should be possible to solve relatively large problems using the COMB

heuristic.

121

Chapter 8: Comparing Discrete Local Search to a
Nonlinear Optimization Technique — Proxscal

In this chapter, we compare the results of DACN to the results generated by a
nonlinear multidimensional scaling map (NLIM). We use the majorization technique as
implemented in SPSS Proxscal (Borg and Groenen, 1997; Laudau and Everitt, 2004). The
Proxscal objective function is different (but similar) to the objective functions that we
have used in our experiments so far. However, it is easy for us to change the objective
function in our technique. DACN is modified in this chapter to use the same objective
function used in Proxscal.

In the previous chapter, we compared DACN to a nonlinear Sammon map. We now
compare DACN to another nonlinear map because the Sammon map we used was coded
in Mathematica and we were not able to consider large-size problems (n > 100). Also, the
Sammon map code is an experimental research code. We wanted to see how the

technique we have devel oped compared to a standard algorithm.

8.1 Iterative Majorization

The principle of iterative magjorization is an easy and powerful strategy for
minimization. The general ideaisto replace iteratively the original complicated function
to be minimized by a simpler function. Iterative majorization generates a sequence of
monotonically nonincreasing function values (Borg and Groenen, 1997). So,if afunction

is bounded from below, iterative majorization usualy gives alocal minimum.

122

Problem Set | Dimensions | Number of Points
10 3 150
11 3 300
12 3 500
13 4 150
14 4 300
15 4 500
16 5 150
17 5 300
18 5 500

Table 8.1 Problem sets.

A magjorization algorithm for MDS randomly assigns starting coordinates to the
pointsin M. The majorization technique is used to reassign the pointsin M so that the
objective function value is reduced. The procedure continues until a stopping criterionis
met. For NLIM, we use the majorization algorithm that isimplemented in SPSS Proxscal.

The Proxscal objective function is given by

333 S [od(,) - nd(k,DIEx%X,

ieM jeM keN leN

j>i
Y. > od(, j)?
ieM jeM
J>

Minimize

We applied DACN and NLIM to several data sets with 150, 300, and 500 points.
The data sets were randomly generated from lattice sets in three, four, and five
dimensions. For each combination of dimension and size, 10 different problems were
generated. The nine problem sets (problem sets 10 — 18) are described in Table 8.1.

For these experiments with DACN, we use n = 1024, that is, we stop after Step 5.
However, we aso record the results after Step 4 a'so. DACN4 refersto DACN stopped
after Step 4 while DACNS refersto DACN stopped after Step 5. In addition, we use the

final solution from DACN as the stating solution for a COMB heuristic for NLIM.

123

COMBA4 refers to the combined heuristic with the final solution from Step 4 used as the
starting solution for NLIM and COMBS5 uses the final solution from Step 5 as the starting

solution.

8.2 Results and Analysis

In Table 8.2, we give the results for 150-point problems generated from alattice
in three dimensions (that is, problem set 10). For all 10 problems, DACNS5 generates
better solutions than DACNA4. In seven of the problems, NLIM produces better solutions
than DACNA4. For problem 8, DACNS5 and NLIM, both produce an objective function
value of 0.04849. For problem 4, NLIM produces a better solution than DACNS. For the
remaining elght problems DACNS generates better objective function values than NLIM.
COMB4 and COMBS5 produce better solutions than DACN4, DACNS5, and NLIM in all
10 problems. In problem 4, COMB4 and COMB5 generate the same solution. For
problem 7 and problem 8, COM B4 produces slightly better objective function values than
COMBS. In the remaining seven problems COMB5 generates slightly better solutions
than COMBA4.

In Figure 8.1, we show plots of the final results generated by DACN4, DACNS,
COMB4, COMBS5, and NLIM, for Problem 7. We aso show the plot of alinear
transformation of the coordinates produced by NLIM in Figure 8.1(f). The objective
function values indicate that the figures for DACN4, DACN5, COMB4, COMBS5, and
NLSM, should be similar. Figures 8.1(a), 8.1(b), 8.1(c), and 8.1(d) support this. Figure
8.1(e) appearsto be different. Thisis dueto the arbitrary orientation of the problem. We,
therefore, used a Procrustes rotation in Matlab to translate the plot of NLIM, obtaining

Figure 8.1(f). Figure 8.1(f) is similar to the other figures as expected.

124

DACN4 DACNS NLIM COMB4 | COMB5
Running Running
Best time Best time Best Best Best
Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution
1 0.04795 36.51 | 0.04684 | 101.65 | 0.04688 | 0.04637 | 0.04632
2 0.04760 37.15 | 0.04614 | 112.76 | 0.05252 | 0.04532 | 0.04526
3 0.04999 37.13 | 0.04876 | 116.87 | 0.05376 | 0.04811 | 0.04803
4 0.04006 | 40.24 | 0.03879 | 93.78 | 0.03873 | 0.03829 | 0.03829
5 0.04291 | 40.16 | 0.04154 | 109.15 | 0.04331 | 0.04060 | 0.04058
6 0.04460 35.09 | 0.04305 | 101.46 | 0.04311 | 0.04185 | 0.04166
7 0.04743 | 40.76 | 0.04602 | 108.79 | 0.04697 | 0.04477 | 0.04480
8 0.04984 | 38.60 | 0.04849 | 11251 | 0.04849 | 0.04750 | 0.04753
9 0.04696 36.91 | 0.04559 | 106.19 | 0.04680 | 0.04505 | 0.04499
10 0.04885 | 41.27 | 0.04775 | 126.20 | 0.04846 | 0.04732 | 0.04729
Average 38.38 108.93

Table 8.2 Results for Problem Set 10: 150-point problems originally in three dimensions.

127 63 41 11
88 83 136 8 12 138 122
120 9 68 130 B7 79 100 99 137
B0 128 37 77 141 289
38 116 36 1 938 106 10 149
61 44 560 982 55
82 85 146 21 108 45 29 67 102
267 114 145 @2 63 15 101 95 80 148 30
60 58 89 98 115 75 53 110
104 91 129 126 78 103
28 131 49 B8 76 117 143
4 25 133 140 47 46 32 84 323
609 187 111 235 T34 26 142 105 139
34 31 Bk 39 22 B4 113 52 33
18 112 118 135 69 35 27
40 92 521 544
(8) DACN4

Figure 8.1 Plots for Problem Set 10: Problem 7.

125

3 143 30 55 48 819
33 139 123 102396
52 103 110 19 141
1586 137 11
2735 105
117 5380148 77
142 ~7678 99
113 29 124
12%5 42 37 122 41
524 32 100 138
129 95 63
24 46 45 149
69 6 26 8672 101 12
121 22 115~ 50 79
54 7 49 108 10 5
134 91 15 878
98 21 106 127
92 39 47 89 65
74 737 90 2 57 43
2093 62 94 130
135 125 9714
140 1485 1128 68
133 145 9 136
1186 36
116 83
111 25 114
40 3118 13104 58 4461 70
147 4 82 59
109
112 7 64 60107 38
13 23 88
1716 34 28 120
(b) DACN5
. 11
83 136 127 63
120 9 68 41
5% 130 o8 12 13§55
38 875
116 1128 79 100
36 9 99
g 2 106 37 137
10 149 77
141 119
g7 1 46 p
15% 21
58 Af%gS 5 B 4 188 _ 55
28 104 9 1045 29 1o
13 131 897 115 Y
75 30
4 91 53
64 25 1?2?0 129126 110
16 3% 709k 111 a7 49 &8 7% 103
17 31 1290 32 117
112 766 134 2646 143
118 7339 142 84 123
135 4 0
74 22 113 139
92 ?369 a5 5233
40 1 sa 27
(c) COMB4

Figure 8.1 (continued).

126

11

83 4136 127 63 41
68
116 1128 79 100

36 99
gt %3 0 37 137
10 149 7y S

2&7 114
14%96
58 £, 2L 168 45

55
15 42 1%%
65 101 29 %

104
2813 131 2998 |10 95 Jag7 102

30
91 6
1 129
72 110
10931:? 111 ffo% 47 49 86 % 103
17 112 32
7166 134 2646 43
7339 142 ga gl
24 1084 12
3544 226 113 139
69 52
54, 3B 38

40 121 gy 2

(d) COMBS5

11

a % 127
1%0 12195 136 83 88
99 87 130 68 _gg

114317 77 37 149 94 1 105 116" 38 120
119 3 43 36

10
84g UG 0s g 65 146 442

138 114
55, 14 A6 188 §8§ 45
el 29
3% 2 10? 55 6@37

01
14858 126" s 913%

110 " ;;ﬁ 1328
091173 34
143 o 03, 12673° 7134 ag2g0 18 763109112 17
13~§231 442 2@ 2 AT 133 19 14
B, ® 71 198
40
(€) NLIM
Figure 8.1 (continued).

127

1
48 119
30 9655
343 32
13 1
33 58123 g4, 110 Qf% 5o 1437
1
2 i 08 7 %
142 75 P n 3 100721 11
126 129 4o g5 32 13%3
12169 28 725 86 104 149
“ 49115 106, 10810 L
92 Vg5, 13 N ol o 875 157
%73 957 94
1336%30 g 480 T 130
40 1186 1@% 128 . 136
7%11 36 68
3 B jos835 114 116 83
14718 , 10
4 & L%
64 109 60, 38
112 13 073 88
1734 120
16

(f) Trandated NLIM
Figure 8.1 (continued).

For problem set 10, that is the 150-point problems originally in three dimensions,
NLIM produces better solutions than DACN4, and DACNS produces better solutions
than NLIM. The COMB heuristics produce the best solutions of all, with COMB5
producing slightly better solutions than COMBA4.

The average running times for DACN4 and DACNS5 are 38.38 seconds and
108.93 seconds, respectively. SPSS does not report the running times for Proxscal.
Proxscal runs much faster than our heuristic. For example, it takes about one second to
generate results for a 150-point problem. It should be noted that NLIM finds one solution,
while DACN finds 100 solutions. Also, Proxscal isacommercial solver and our codeisa

research code.

128

DACN4 DACNS NLIM | COMB4 | COMB5
Running Running
Best time Best time Best Best Best
Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution
1 0.05286 | 146.31 | 0.05166 | 400.13 | 0.05343 | 0.05112 | 0.05107
2 0.05212 | 166.42 | 0.05083 | 396.60 | 0.05263 | 0.05032 | 0.05014
3 0.05233 | 163.77 | 0.05091 | 391.30 | 0.05358 | 0.05011 | 0.05003
4 0.04590 | 165.22 | 0.04468 | 341.98 | 0.05684 | 0.04408 | 0.04402
5 0.05067 | 158.58 | 0.04945 | 369.10 | 0.05618 | 0.04880 | 0.04874
6 0.04938 | 154.63 | 0.04810 | 348.06 | 0.04871 | 0.04737 | 0.04732
7 0.05344 | 136.33 | 0.05212 | 335.28 | 0.06464 | 0.05137 | 0.05128
8 0.05359 | 148.20 | 0.05224 | 361.13 | 0.05303 | 0.05136 | 0.05135
9 0.05282 | 161.02 | 0.05148 | 33240 | 0.05418 | 0.05067 | 0.05055
10 0.05624 | 169.85 | 0.05501 | 374.11 | 0.57780 | 0.05439 | 0.05434
Average 157.03 365.01

Table 8.3 Results for Problem Set 11: 300-point problems originally in three dimensions.

In Table 8.3, we show the results for the 300-point problems originally in three

dimensions, that is, problem set 11. In al 10 problems DACNS5 produces better solutions

than DACN4 asis expected. NLIM produces better objective function values than

DACN4 in problem 6 and problem 8. For the remaining eight problems, DACN4

produces better objective function values than NLIM. For al 10 problems, DACN5

produces better solutions than NLIM. The COMB heuristics produce the best solutions

for al 10 problems. COMBS5 produces slightly better objective function values than

COMBA4.

For the 300-point problems in three dimensions, the average running times are

157.03 seconds and 365.01 seconds, for DACN4 and DACNS, respectively. DACN

produces better solutions than NLIM, and COMB produces the best solutions of all.

DACNS produces better solutions than DACN4 and COMB5 produces slightly better

solutions than COMBA4.

129

DACN4 DACNS NLIM COMB4 | COMB5
Running Running
Best time Best time Best Best Best
Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution
1 0.05572 | 409.95 | 0.05451 | 896.57 | 0.06514 | 0.05396 | 0.05390
2 0.05136 | 498.29 | 0.05013 | 1031.77 | 0.05601 | 0.04956 | 0.04950
3 0.05569 | 422.81 | 0.05456 | 838.92 | 0.05615 | 0.05392 | 0.05385
4 0.05030 | 47321 | 0.04903 | 898.45 | 0.05800 | 0.04839 | 0.04832
5 0.05304 | 437.62 | 0.05179 | 918.22 | 0.05424 | 0.05119 | 0.05114
6 0.05022 | 609.51 | 0.04888 | 1223.60 | 0.04884 | 0.04818 | 0.04806
7 0.05584 | 44229 | 0.05449 | 964.58 | 0.05585 | 0.05399 | 0.05381
8 0.05478 | 389.08 | 0.05343 | 891.31 | 0.05604 | 0.05272 | 0.05262
9 0.05527 | 393.05 | 0.05401 | 844.27 | 0.05703 | 0.05315 | 0.05313
10 0.05433 | 495.94 | 0.05304 | 1026.49 | 0.05884 | 0.05250 | 0.05243
Average 457.18 953.42

Table 8.4 Results for Problem Set 12: 500-point problems originally in three dimensions.

We show the results for the 500-point problems originally in three dimensions,

that is, problem set 12, in Table 8.4. Theresults are similar to those for problem set 11

discussed above. For problem 6, NLIM produces a better objective function value than

DACN4 and DACNS. For the remaining nine problems, DACN4 and DACNS produce

better solutions than NLIM, with DACNS generating better solutions than DACN4. The

COMB heuristics produce the best solutionsin al 10 problems. COMBS5 produces

slightly better solutions than COMB4. The average running times for DACN4 and

DACNS are 457.18 seconds and 953.42 seconds, respectively.

For the problem sets originally in three dimensions, DACNS5 produces better

objective function values than DACN4 as we expected. DACNS5 produces better solutions

than NLIM. For smaller problems NLIM appears to do better than DACN4. Asthe

problem size increases DACN4 does better than NLP. COMB aways produces the best

solutions with COMBS5 producing slightly better solutions than COMB4.

130

DACN4 DACNS NLIM COMB4 | COMB5
Running Running
Best time Best time Best Best Best
Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution
1 0.06958 | 46.99 | 0.06848 | 124.83 | 0.07633 | 0.06805 | 0.06796
2 0.07350 | 4530 | 0.07250 | 12255 | 0.07810 | 0.07217 | 0.07211
3 0.07111 | 48.09 | 0.06964 | 129.50 | 0.07263 | 0.06884 | 0.06861
4 0.06974 | 4199 | 0.06867 | 120.89 | 0.07584 | 0.06814 | 0.06805
5 0.06742 | 4759 | 0.06626 | 127.73 | 0.06706 | 0.06531 | 0.06519
6 0.07253 | 44.67 | 0.07143 | 115.66 | 0.07216 | 0.07087 | 0.07080
7 0.06579 | 46.11 | 0.06453 | 116.41 | 0.06481 | 0.06387 | 0.06375
8 0.06203 | 4556 | 0.06100 | 127.64 | 0.06271 | 0.06058 | 0.06046
9 0.06826 51.88 | 0.06713 | 123.34 | 0.07750 | 0.06639 | 0.06641
10 0.07680 | 49.78 | 0.07579 | 141.99 | 0.08051 | 0.07533 | 0.07527
Average 46.80 125.05

Table 8.5 Results for Problem Set 13: 150-point problems originally in four dimensions.

131

38

&9
23
45
82

65
99
55
133
B2 129
56 38
989 77 91
67
1 112
27
37 29

20
443
146
28

97 39

18 107 13
10 5
54 59
122

4 @34 147 11

46 30

128 14

124 149 121 33
116 7

205
34
898

80

64 906 24

101 25

&850

125
1%4 938

104

109 493
47 83

79

16 32

136 96

126 41
31 94

135

119 132
144 117

142

120 @a
100

87

85

102
50
88

138

43

70 95
840 76
40 63
130 26
78
81 3281 12

111 53
61
52 115
103
75
42

57
145

35
127
90 108 68
60
92
140

(a) DACN4
Figure 8.2 Plots for Problem Set 13: Problem 1.

131

65 133 71 98 1391 37 28
131 69 56 27
38 99 129 77 67 112 29
55 44
1921 45 38 91 20143 146
88 73 124 116 34
18 89
10 4 149 2
97 46 113 7 1082 148
107 54 64
5 12232362 121
39 94 80 101
13 59 30 1283 106 36
125 104 109 147 14
11 24 25
15 1289 119 144
138 47 16 126 3174
150 93 13718 32 117 41 9
135 783 79 132
120 100 70 81
66 87 43 95 40130
85 78 36
142 102 86 63 141
72° 17 5058 76 26 12
127 140
61 103~ 42 90
1152 108
111
68 60
5153 57145 35 92
(b) DACN5S
131
97
38
65 18 39
99 188 107 105 B0
133 5% 105 116 138
71 g9 8o 54 £o 104 120 66, 142
122 2
og 56 129 4 43 19903 102
135
139 77 9‘{3 1474 87 7 1
1 67 46 47 1187 85 5%50 61 =
124 30 83 5215
27 116 14890154% 79 43 443
4 10624 95 42 145
28 146, 239 119
144
89 gog o0 T §0,127 35
148 1261]@O 63 90108
10125 4 26
A& 81 78 140 0
B, 92
(c) COMB4

Figure 8.2 (continued).

132

2 . 10 A

31 25 10
68 88 120 4u26 148
0 33
108° 76 117 680 g
35 127 1o 14496136

132 112 . fgﬁ 34146 08
5]745 42 95 0&4 64 264&

70
16 2
10%° 10 27 148 121 440 116 112
43 30 124

83
1
S LE 14987 ® o gl
1786 11147 48
e 1% b %%4 4 12666 %
720287 10y 1 1? L2

82 69 71
14266 120 45

9338314 5 10 55

99
128 07 a5 12 65

18
39 38

7237

133

8150

97 131

(d) COMB5

1419 132 42 52
3 105 25" 7079 5_1437 100138 39
112

36 8g¢ 12 106 o 128 s> 115 111

143
27 34 6 1%, , 49 33 14 3 139
61 128 134'g3 58 150

91 62 134 17
. 2048 20 11@4 %112313 o o 72

28 éa 117 4?
98 4 18
67 29 445 % 1988

35 g, 69 9 o s

12

() NLIM
Figure 8.2 (continued).

133

35
131 71 28

69 56 67 o5 804 37
38 99 1 117 128

65 7 77 20
10 5 5 463 121 4116 4434
11 12
18 g o1 14y %géf’ S
62 12833 4

104 g3 134 106 112

59
150 66 9]é5 123%1} 750 132 41 m]_
102 103, 187 42 1184 130 148
53 115 1 40
29 33410085 1183295 .44 5

52 gg 75 127 g 140

8 147 87 138 90

145 68
57
92

60

(f) Trandated NLIM
Figure 8.2 (continued).

In Table 8.5, we show the results for problem set 13, that is, the 150-point
problems originally in four dimensions. NLIM produces better solutions than DACN4 in
three of the 10 problems. In all 10 problems, DACNS5 produces better solutions than
DACN4 and NLIM. COMB4 and COMBS5 produce better solutions than DACN4,
DACNS, and NLIM in al 10 problems. For problem 9, COMB4 produces a slightly
better solution than COMBS. In the remaining nine problems, COMB5 produces better
solutions than COMB4. The average running times for DACN4 and DACNS5 are 46.80
seconds and 125.05 seconds, respectively.

In Figure 8.2, we show plots of the final results generated by DACN4, DACNS,
COMB4, COMBS5, and NLIM, Problem 1. We aso show the plot of alinear
transformation of the coordinates produced by NLIM in Figure 8.2(f). Figures 8.2 (a),
8.2(b), 8.2(c), 8.2(d), and 8.2(f) are similar as expected from their similar objective

function values.

134

DACN4 DACNS NLIM COMB4 | COMB5
Running Running
Best time Best time Best Best Best
Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution
1 0.07676 | 244.07 | 0.07570 | 521.36 | 0.08072 | 0.07510 | 0.07504
2 0.07693 | 197.88 | 0.07573 | 483.84 | 0.08157 | 0.07494 | 0.07482
3 0.07320 | 241.75 | 0.07190 | 612.70 | 0.07841 | 0.07113 | 0.07092
4 0.07602 | 191.10 | 0.07496 | 438.09 | 0.07566 | 0.07431 | 0.07424
5 0.07534 | 196.25 | 0.07426 | 442.94 | 0.08930 | 0.07363 | 0.07357
6 0.07551 | 188.58 | 0.07436 | 445.15 | 0.07590 | 0.07370 | 0.07359
7 0.07330 | 21454 | 0.07196 | 552.23 | 0.07720 | 0.07109 | 0.07104
8 0.07371 | 197.77 | 0.07246 | 437.05 | 0.07879 | 0.07165 | 0.07171
9 0.07444 | 181.26 | 0.07327 | 393.39 | 0.07740 | 0.07262 | 0.07249
10 0.07986 | 203.27 | 0.07879 | 489.25 | 0.08452 | 0.07827 | 0.07824
Average 205.65 481.60

Table 8.6 Results for Problem Set 14: 300-point problems originally in four dimensions.

DACN4 DACNS NLIM COMB4 | COMB5

Running Running
Best time Best time Best Best Best

Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution

1 0.08233 | 566.39 | 0.08127 | 1234.63 | 0.08898 | 0.08083 | 0.08076

2 0.07865 | 573.55 | 0.07755 | 1212.13 | 0.07923 | 0.07706 | 0.07694

3 0.07882 | 537.59 | 0.07771 | 1096.30 | 0.08688 | 0.07717 | 0.07706

4 0.07923 | 502.92 | 0.07815 | 1023.73 | 0.08037 | 0.07754 | 0.07746

5 0.07815 | 531.06 | 0.07722 | 1213.91 | 0.08190 | 0.07686 | 0.07677

6 0.07780 | 763.19 | 0.07665 | 1484.77 | 0.07938 | 0.07609 | 0.07594

7 0.07621 | 599.04 | 0.07502 | 1147.43 | 0.08677 | 0.07428 | 0.07422

8 0.08073 | 514.09 | 0.07963 | 1070.72 | 0.08543 | 0.07902 | 0.07898

9 0.07841 | 561.62 | 0.07727 | 1221.12 | 0.08336 | 0.07669 | 0.07662

10 0.08112 | 516.07 | 0.08001 | 1090.98 | 0.08364 | 0.07944 | 0.07930
Average 566.55 1179.57

Table 8.7 Results for Problem Set 15: 500-point problems originally in four dimensions.

135

We show the results for the 300-point problems and the 500-point problems
originally in four dimensionsin Tables 8.6 and 8.7, respectively. In Table 8.6, for
problem 4, NLIM produces a better objective function value than DACNA4. In the
remaining nine problems, DACN4 produces better objective function values than NLIM.
DACNS produces better solutions than DACN4 and NLIM in al 10 problems. The
COMB heuristics produce the best solutions of all. COMB4 produces a better objective
function value than COMBS5 for problem 8. In the remaining nine problems, COMB5
produces better solutions than COMBA4.

For the 500-point problems, DACNS5 produces better solutions than DACN4 in all
10 problems. Both DACN4 and DACNS5 produce better solutions than NLIM inall 10
problems. The COMB heuristics produce the best solutions with COMB5 producing
dlightly better objective function values than COMBA4.

The average running times are 205.65 seconds and 481.60 seconds for DACN4
and DACNS, respectively, for the 300-point problems. For the 500-point problems, the
average running times for DACN4 and DACNS are 566.55 seconds and 1179.57 seconds,
respectively.

The results for the problem sets originally in four dimensions are similar to those
for the problem sets originally in three dimensions. DACNS produces better objective
function values than DACN4. DACNS aways produces better solutions than NLIM.
DACN4 does about the same as NLIM for the 150-point problems. As the problem size
increases, DACNA4 appears to do better than NLIM. COMB aways produces the best
solutions with COMBS5 producing slightly better solutions than COMB4.

136

DACN4 DACNS NLIM COMB4 | COMB5
Running Running
Best time Best time Best Best Best
Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution
1 0.08794 | 4221 | 0.08710 | 117.82 | 0.09525 | 0.08675 | 0.08659
2 0.08600 | 4160 | 0.08504 | 117.71 | 0.08783 | 0.08472 | 0.08457
3 0.08758 | 43.73 | 0.08653 | 116.98 | 0.09199 | 0.08630 | 0.08600
4 0.08676 | 41.36 | 0.08567 | 113.91 | 0.09005 | 0.08532 | 0.08505
5 0.08192 | 4144 | 0.08082 | 112.89 | 0.08199 | 0.07994 | 0.07990
6 0.08140 | 4225 | 0.08047 | 11291 | 0.09506 | 0.08009 | 0.08005
7 0.07984 | 39.93 | 0.07873 | 106.15 | 0.08963 | 0.07845 | 0.07813
8 0.08002 | 40.35 | 0.07914 | 114.11 | 0.08874 | 0.07894 | 0.07880
9 0.08527 39.75 | 0.08431 | 104.30 | 0.09860 | 0.08409 | 0.08396
10 0.08974 | 4390 | 0.08863 | 119.17 | 0.09910 | 0.08852 | 0.08805
Average 41.65 113.60

Table 8.8 Results for Problem Set 16: 150-point problems originally in five dimensions.

DACN4 DACNS NLIM COMB4 | COMB5
Running Running
Best time Best time Best Best Best
Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution
1 0.09145 | 189.34 | 0.09026 | 442.05 | 0.09567 | 0.08994 | 0.08945
2 0.09441 | 180.47 | 0.09338 | 442.72 | 0.10082 | 0.09322 | 0.09271
3 0.08949 | 197.28 | 0.08851 | 489.52 | 0.10114 | 0.08814 | 0.08796
4 0.09292 | 197.99 | 0.09197 | 459.78 | 0.09693 | 0.09159 | 0.09148
5 0.08971 | 182.06 | 0.08861 | 416.43 | 0.08913 | 0.08799 | 0.08784
6 0.08933 | 159.66 | 0.08832 | 352.96 | 0.09426 | 0.08798 | 0.08780
7 0.08814 | 170.52 | 0.08703 | 365.46 | 0.09357 | 0.08642 | 0.08635
8 0.09073 | 188.73 | 0.08971 | 413.96 | 0.09457 | 0.08937 | 0.08924
9 0.08950 | 19451 | 0.08838 | 468.07 | 0.10040 | 0.08788 | 0.08779
10 0.09310 | 197.26 | 0.09216 | 466.11 | 0.09867 | 0.09193 | 0.09184
Average 185.78 431.71

Table 8.9 Results for Problem Set 17: 300-point problems originally in five dimensions.

137

DACN4 DACNS NLIM COMB4 | COMB5

Running Running
Best time Best time Best Best Best

Problem | solution | (seconds) | solution | (seconds) | solution | solution | solution

1 0.09653 | 540.23 | 0.09564 | 1092.88 | 0.10238 | 0.09540 | 0.09537

2 0.09470 | 525.70 | 0.09374 | 1220.85 | 0.09722 | 0.09334 | 0.09321

3 0.09402 | 519.81 | 0.09305 | 1045.87 | 0.10623 | 0.09266 | 0.09255

4 0.09612 | 514.73 | 0.09521 | 1030.91 | 0.09920 | 0.09496 | 0.09487

5 0.09281 | 550.84 | 0.09181 | 1131.11 | 0.10135 | 0.09130 | 0.09118

6 0.09175 | 522.75 | 0.09075 | 1076.01 | 0.10150 | 0.09042 | 0.09026

7 0.09333 | 514.90 | 0.09226 | 1024.48 | 0.10401 | 0.09171 | 0.09162

8 0.09592 | 466.96 | 0.09492 | 986.55 | 0.10012 | 0.09454 | 0.09442

9 0.09421 | 532.36 | 0.09330 | 1100.63 | 0.10032 | 0.09301 | 0.09284

10 0.09382 | 554.03 | 0.09282 | 1149.14 | 0.10260 | 0.09245 | 0.09233
Average 524.23 1085.84

Table 8.10 Results for Problem Set 18: 500-point problems originaly in five dimensions.

In Tables 8.8, 8.9, and 8.10, we show the results for the 150-point problems, 300-

point problems, and 500-point problems, respectively, originally in five dimensions. In

all 30 problems, DACNS produces better objective function values than DACNA4. For

problem 5 of the 300-point problems, NLIM generates a better objective function value
than DACNA4. In the remaining 300-point problems, and all the 150-point problems and
500-point problems, DACN4 generates better solutions than NLIM. COM B4 generates
better solutions than DACNS, while COMB5 generates the best solutions of all,
generating slightly better objective function values than COMBA4.

In Table 8.8, the average running time for the 150-point problems for DACN4
and DACNS are 41.65 seconds and 113.60 seconds, respectively. The average running
times for DACN4 and DACNS for the 300-point problems are 185.78 seconds and
431.71 seconds, respectively. For the 500-point problems, the average running times for
DACN4 and DACNS5 are 524.23 seconds and 1085.84 seconds, respectively.

138

90

35

73

119 121 13
60 97
107 70 95 47
129 84
86
91 %85
34
98
16 40

31
17 127 68

99
78
28

14 143

117 50
116 53 144 148 132
128 104 112
41 137
59 118
88 141
9% 8 830
120 145 83 15
122 140 93
105 103 64
125 58
41
101
138
115

28

29
13 62 102
20 89
12 868
23

149 109

72
79
713 25

43

24
42
61 146

32 38

147 88 67
22 86 136
110 100 55
63 1
183 131 30
139 124 82 2
114 51 81 32
83 75 39
10
106 133
45
52

134
111
99

33

82
126 49 5

65

(8) DACN4

143 127

14

33

8
27 37
74

1 30
9280

121
7718

128
53

116
144 117

35

104
148
11232
113 79
25
72

(b) DACN5

Figure 8.3 Plots for Problem Set 16: Problem 3.

139

43

50 72 24
79 32 [EAP
P i (PLLTELS 146
90 11653 144 150 61 134
35 108 347%% o
17 1 19
187 g 11:?? O@S ! E
121
I o7 88 141 0 gy 2
47 131
60 oo 4756 8 130 1544 1, 124 3
1070 12(145831 &3
114
129 122 64 39 &
29
635 56 084 1493 Zg g 75 10
ot 78 125 41 1027 3 133 g5
34 62 101 106 45
28 B 154013 89 1?’1850
6808 iig 82 5 52
° 31 127 g 126 49
68
127
1 149 109
143
14
(c) COMB4
24
43 - 72 50
38 7 117
20 s g3 e
146 61 104 144 35
53 el
134 111 4136, 691451218 137 4, 128
19 94 4 B%g 7 121
, 110 141 88 o7
8030 2503 44 879920 84 60 13
124 ASTE28 2615 9% 95 _107
81 14 03,33 145 70
139, 40 122 129
27 20 % 103 549 6
3 10 ° oag 4 105 7g 56138
3 125 o1 28
45133 106 138 1081 89622&% 16 34
. s 21gg 0. 98 09
49 82 12 68 157
109 149 Y
143
52 14
(d) COMB5
Figure 8.3 (continued).

140

2 136
84020 53010 33 13

11 103 19
8 76 111
119117121 144 47 1a 81, 133
116 12230, 44 123 48 b2y
194 138 425 131 51
8 ! 180 475 124, 94

80 74
9954 62 101 52
7753 96 66 102 82

31 78,97 20 108135 49°
70 16 3 114 11]52 98
21

34
26 10999,

28
9

45129 127
17
65 14

(&) NLIM

9 28
17 1265 70 90 73

16 31 5377 60
116 119

135
65 2.I.26 9 117

78
13 9

1431487 114 20 $ a2 Y 95118 36

11
og 12 ¥ 10 32%5 4 e 112148

118 132 50
i
142150 123 103 2%15 79 ©

131 58 40 128
48
741 18 1396 2961‘?’10 60 4146 25

94 55 32
52 981 72
{33 1111030 136 868%7 91
38

61 146 1
134 27 2 L
24

(f) Trandlated NLIM
Figure 8.3 (continued).

141

In Figure 8.3, we show plots of the final results generated by DACN4, DACNS,
COMB4, COMB5, and NLIM, Problem 3. We aso show the plot of alinear
transformation of the coordinates produced by NLIM in Figure 8.3(f). Figures 8.3 (a),
8.3(b), 8.3(c), 8.3(d), and 8.3(f) are similar as expected from their similar objective
function values.

Recall, that DACN finds 100 solutions while NLIM finds only one solution. Since
DACN is producing better quality solutions than NLIM but in alonger time we
investigate running DACN with only 10 solutions instead of 100. We a so report the
solution and running time after the points have been assigned to 64 | attice points
(DACNB3) and when this result is used as the starting solution for NLIM (COMB3). We
give the results for these experimentsin Table 8.11 to Table 8.19. The results for with
100 solutions are slightly better than those with only 10 solutions. Thereis a great
improvement in the running times though. The running times using 100 solutions are
about 9.72 times those using only 10 solutions. On the average DACN4 and DACNS il
produce better quality solutions than NLIM. COM B4 and COMBS5 produce the best
results of al. The results from DACN3 are not too good. However, the running times are
very low for DACN3. As the number of points and dimensions increase COMB3 does

better than NLIM.

142

DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.05852 1.89 0.04799 3.82 0.04690 | 10.83 | 0.04688 | 0.05233 | 0.04640 | 0.04635
2 0.05442 2.14 0.04764 | 4.38 0.04615 | 12.23 | 0.05252 | 0.04599 | 0.04533 | 0.04525
3 0.05711 1.66 0.05036 3.44 0.04885 | 10.06 | 0.05376 | 0.05078 | 0.04804 | 0.04797
4 0.05687 1.95 0.04006 | 4.65 0.03879 | 10.25 | 0.03873 | 0.04963 | 0.03833 | 0.03829
5 0.04773 1.82 0.04295 | 4.10 0.04163 | 12.23 | 0.04331 | 0.04075 | 0.04062 | 0.04064
6 0.05010 191 0.04460 | 4.03 0.04306 | 11.99 | 0.04311 | 0.04208 | 0.04185 | 0.04172
7 0.05848 2.03 0.04743 | 4.10 0.04602 | 11.67 | 0.04697 | 0.05248 | 0.04475 | 0.04481
8 0.05496 2.27 0.05000 5.15 0.04862 | 14.42 | 0.04849 | 0.04908 | 0.04755 | 0.04754
9 0.06491 1.96 0.04695 | 4.54 0.04559 | 12.53 | 0.04680 | 0.05743 | 0.04510 | 0.04499
10 0.05668 1.99 0.04886 | 4.07 0.04777 | 11.23 | 0.04846 | 0.04898 | 0.04733 | 0.04729
Average 1.96 4.23 11.74

Table 8.11 Results for Problem Set 10: 150-point problems originally in three dimensions

with 10 solutions for DACN.
DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.06439 8.02 | 005285 | 17.10 | 0.05166 | 41.58 | 0.05343 | 0.05797 | 0.05113 | 0.05107
2 0.06244 | 10.24 | 0.05226 | 18.64 | 0.05085| 39.42 | 0.05263 | 0.05494 | 0.05036 | 0.05021
3 0.05738 | 10.18 | 0.05234 | 1845 | 0.05091 | 46.33 | 0.05358 | 0.05016 | 0.05007 | 0.05003
4 0.05091 | 12.84 | 0.04590 | 21.37 | 0.04469 | 42.12 | 0.05684 | 0.04413 | 0.04407 | 0.04403
5 0.06151 833 | 0.05068 | 1549 | 0.04945| 37.75 | 0.05618 | 0.05543 | 0.04876 | 0.04874
6 0.05450 8.13 | 0.04940 | 1547 | 0.04810 | 41.67 | 0.04871 | 0.04757 | 0.04739 | 0.04732
7 0.06019 860 | 0.05354 | 16.36 | 0.05223 | 41.42 | 0.06464 | 0.05387 | 0.05156 | 0.05156
8 0.05848 9.61 | 0.05370 | 18.28 | 0.05239 | 40.34 | 0.05303 | 0.05201 | 0.05196 | 0.05181
9 0.05772 9.18 | 0.05282 | 20.28 | 0.05148 | 39.86 | 0.05418 | 0.05113 | 0.05067 | 0.05055
10 0.06344 9.66 | 0.05625 | 18.03 | 0.05501 | 41.53 | 0.57780 | 0.05644 | 0.05439 | 0.05434
Average 9.48 17.95 41.20

Table 8.12 Results for Problem Set 11: 300-point problems originally in three dimensions

with 10 solutions for DACN.

143

DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.06468 | 24.93 | 0.05572 | 43.89 | 0.05451 99.58 | 0.06514 | 0.05794 | 0.05397 | 0.05389
2 0.05654 | 27.84 | 0.05137 | 54.88 | 0.05014 | 112.01 | 0.05601 | 0.04961 | 0.04955 | 0.04949
3 0.06048 | 30.18 | 0.05569 | 48.29 | 0.05456 92.47 | 0.05615 | 0.05782 | 0.05392 | 0.05386
4 0.06193 | 29.79 | 0.05031 | 52.62 | 0.04903 94.98 | 0.05800 | 0.05465 | 0.04838 | 0.04833
5 0.05776 | 30.01 | 0.05305| 49.20 | 0.05179 97.81 | 0.05424 | 0.05130 | 0.05120 | 0.05114
6 0.05590 | 37.65 | 0.05022 | 64.61 | 0.04888 | 127.37 | 0.04884 | 0.04798 | 0.04811 | 0.04805
7 0.06104 | 28.22 | 0.05585 | 48.72 | 0.05455| 102.63 | 0.05585 | 0.05428 | 0.05402 | 0.05389
8 0.06011 | 26.91 | 0.05478 | 45.45 | 0.05343 98.57 | 0.05604 | 0.06273 | 0.05272 | 0.05262
9 0.06023 | 24.26 | 0.05528 | 40.88 | 0.05400 89.58 | 0.05703 | 0.05409 | 0.05318 | 0.05313
10 0.06445 | 27.39 | 0.05433 | 52.65 | 0.05305| 109.70 | 0.05884 | 0.05760 | 0.05248 | 0.05243
Average 28.72 50.12 102.47

Table 8.13 Results for Problem Set 12: 500-point problems originally in three dimensions

with 10 solutions for DACN.
DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.07422 1.65 0.06962 3.66 0.06849 | 10.21 | 0.07633 | 0.06820 | 0.06804 | 0.06798
2 0.07904 | 2.15 0.07435 | 4.29 0.07300 | 11.29 | 0.07810 | 0.07304 | 0.07254 | 0.07233
3 0.07576 1.98 0.07128 | 4.55 0.06963 | 12.30 | 0.07263 | 0.06942 | 0.06909 | 0.06863
4 0.07393 1.60 0.06974 3.59 0.06867 | 10.67 | 0.07584 | 0.06825 | 0.06813 | 0.06805
5 0.07268 1.64 0.06762 3.61 0.06634 | 11.43 | 0.06706 | 0.06549 | 0.06534 | 0.06517
6 0.07693 1.72 0.07253 3.60 0.07145 | 10.19 | 0.07216 | 0.07100 | 0.07087 | 0.07079
7 0.07057 1.93 0.06579 3.67 0.06454 | 10.37 | 0.06481 | 0.06447 | 0.06387 | 0.06377
8 0.06651 2.20 0.06203 | 4.36 0.06101 | 13.35 | 0.06271 | 0.06062 | 0.06055 | 0.06049
9 0.07262 211 0.06827 | 4.21 0.06714 | 10.01 | 0.07750 | 0.06639 | 0.06640 | 0.06642
10 0.08136 2.10 0.07687 | 4.97 0.07581 | 12.24 | 0.08051 | 0.07542 | 0.07541 | 0.07532
Average 191 4.05 11.21

Table 8.14 Results for Problem Set 13: 150-point problems originally in four dimensions

with 10 solutions for DACN.

144

DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.08098 893 | 0.07680 | 27.58 | 0.07571| 58.45 | 0.08072 | 0.07543 | 0.07514 | 0.07505
2 0.08139 953 | 007696 | 19.22 | 0.07575| 46.63 | 0.08157 | 0.07507 | 0.07497 | 0.07484
3 0.07805 829 | 007324 | 17.75 | 0.07196 | 55.24 | 0.07841 | 0.07099 | 0.07099 | 0.07099
4 0.08024 9.11 | 0.07603 | 16.88 | 0.07498 | 38.06 | 0.07566 | 0.07441 | 0.07431 | 0.07427
5 0.07947 897 | 007535 | 15.57 | 0.07427 | 40.02 | 0.08930 | 0.07383 | 0.07359 | 0.07358
6 0.07989 798 | 0.07551| 1587 | 0.07436 | 35.74 | 0.07590 | 0.07390 | 0.07371 | 0.07360
7 0.07815 943 | 007336 | 19.34 | 0.07198 | 64.68 | 0.07720 | 0.07123 | 0.07116 | 0.07103
8 0.07844 855 | 0.07373| 15.06 | 0.07251| 33.15 | 0.07879 | 0.07181 | 0.07176 | 0.07173
9 0.07903 | 10.27 | 0.07446 | 16.60 | 0.07329 | 39.65 | 0.07740 | 0.07270 | 0.07262 | 0.07256
10 0.08474 9.77 | 007992 | 19.79 | 0.07888 | 45.10 | 0.08452 | 0.07853 | 0.07833 | 0.07826
Average 9.04 18.37 45.67

Table 8.15 Results for Problem Set 14: 300-point problems originally in four dimensions

with 10 solutions for DACN.
DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.08658 | 25.05 | 0.08239 | 49.45 | 0.08130 | 106.48 | 0.08898 | 0.08095 | 0.08087 | 0.08075
2 0.08309 | 31.94 | 0.07867 | 54.39 | 0.07755| 111.67 | 0.07923 | 0.07711 | 0.07704 | 0.07694
3 0.08340 | 26.77 | 0.07883 | 47.32 | 0.07772 | 105.38 | 0.08688 | 0.07729 | 0.07718 | 0.07707
4 0.08381 | 25.16 | 0.07923 | 45.56 | 0.07816 89.67 | 0.08037 | 0.07760 | 0.07756 | 0.07747
5 0.08233 | 23.61 | 0.07815| 37.44 | 0.07723 91.50 | 0.08190 | 0.07691 | 0.07686 | 0.07677
6 0.08227 | 2848 | 0.07780| 6892 | 0.07664 | 129.27 | 0.07938 | 0.07611 | 0.07609 | 0.07595
7 0.08105| 30.01 | 0.07623 | 55.88 | 0.07506 | 100.38 | 0.08677 | 0.07442 | 0.07430 | 0.07429
8 0.08561 | 24.07 | 0.08093 | 38.16 | 0.07983 84.63 | 0.08543 | 0.07921 | 0.07919 | 0.07915
9 0.08294 | 27.12 | 0.07842 | 4826 | 0.07727 | 122.60 | 0.08336 | 0.07682 | 0.07671 | 0.07662
10 0.08557 | 29.44 | 0.08114 | 47.19 | 0.08001 88.22 | 0.08364 | 0.07951 | 0.07942 | 0.07931
Average 27.17 49.26 102.98

Table 8.16 Results for Problem Set 15: 500-point problems originally in four dimensions

with 10 solutions for DACN.

145

DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.09177 2.64 0.08834 5.07 0.08734 | 13.08 | 0.09525 | 0.08719 | 0.08713 | 0.08703
2 0.09033 2.27 0.08671 | 4.73 0.08572 | 13.07 | 0.08783 | 0.08566 | 0.08543 | 0.08538
3 0.09181 2.49 0.08759 5.16 0.08658 | 15.69 | 0.09199 | 0.08661 | 0.08619 | 0.08606
4 0.09071 2.22 0.08689 | 4.44 0.08583 | 11.64 | 0.09005 | 0.08548 | 0.08539 | 0.08531
5 0.08625 2.27 0.08206 | 4.74 0.08096 | 12.33 | 0.08199 | 0.08031 | 0.08008 | 0.08007
6 0.08538 2.28 0.08140 5.53 0.08048 | 16.94 | 0.09506 | 0.08027 | 0.08010 | 0.08005
7 0.08436 2.07 0.07996 | 4.56 0.07876 | 10.58 | 0.08963 | 0.07857 | 0.07847 | 0.07817
8 0.08427 214 0.08017 | 4.58 0.07919 | 12.07 | 0.08874 | 0.07917 | 0.07895 | 0.07886
9 0.08926 2.20 0.08528 | 4.45 0.08433 | 10.41 | 0.09860 | 0.08418 | 0.08411 | 0.08396
10 0.09376 2.28 0.08991 512 0.08903 | 12.90 | 0.09910 | 0.08892 | 0.08880 | 0.08830
Average 2.29 4.84 12.87

Table 8.17 Results for Problem Set 16: 150-point problems originally in five dimensions

with 10 solutions for DACN.
DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running
Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.09594 | 13.06 | 0.09171| 21.72 | 0.09058 | 45.77 | 0.09567 | 0.08968 | 0.08971 | 0.08964
2 0.09823 | 11.40 | 0.09445| 22,77 | 0.09337 | 50.92 | 0.10082 | 0.09329 | 0.09303 | 0.09269
3 0.09494 | 14.91 | 0.09076 | 26.21 | 0.08981 | 53.32 | 0.10114 | 0.08965 | 0.08947 | 0.08943
4 0.09748 | 1312 | 0.09353 | 21.47 | 0.09263 | 45.28 | 0.09693 | 0.09253 | 0.09231 | 0.09218
5 0.09391 | 1231 | 0.08974 | 2223 | 0.08867 | 52.13 | 0.08913 | 0.08811 | 0.08791 | 0.08784
6 0.09338 9.64 | 0.08935| 16.57 | 0.08834 | 38.90 | 0.09426 | 0.08824 | 0.08793 | 0.08782
7 0.09255 | 10.91 | 0.08813 | 18.88 | 0.08703 | 42.28 | 0.09357 | 0.08653 | 0.08639 | 0.08633
8 0.09485 | 12.32 | 0.09075| 19.16 | 0.08971 | 43.35 | 0.09457 | 0.08944 | 0.08938 | 0.08922
9 0.09408 | 11.88 | 0.08974 | 20.97 | 0.08864 | 42.19 | 0.10040 | 0.08829 | 0.08811 | 0.08801
10 0.09744 | 1296 | 0.09342 | 21.23 | 0.09253 | 44.85 | 0.09867 | 0.09238 | 0.09225 | 0.09217
Average 12.25 21.12 45,90

Table 8.18 Results for Problem Set 17: 300-point problems originally in five dimensions

with 10 solutions for DACN.

146

DACN3 DACN4 DACN5 NLIM | COMB3 | COMB4 | COMB5
Running Running Running

Best time Best time Best time Best Best Best Best
Problem | solution | (secs) | solution | (secs) | solution | (secs) | solution | solution | solution | solution
1 0.10032 | 39.91 | 0.09656 | 58.83 | 0.09566 | 116.99 | 0.10238 | 0.09558 | 0.09547 | 0.09539
2 0.09924 | 40.01 | 0.09513 | 61.09 | 0.09416 | 151.90 | 0.09722 | 0.09408 | 0.09381 | 0.09364
3 0.09805| 33.75 | 0.09409 | 58.69 | 0.09310 | 123.41 | 0.10623 | 0.09286 | 0.09271 | 0.09258
4 0.09999 | 34.97 | 0.09614 | 58.91 | 0.09523 | 120.31 | 0.09920 | 0.09512 | 0.09498 | 0.09488
5 0.09674 | 34.16 | 0.09283 | 52.69 | 0.09182 | 110.58 | 0.10135 | 0.09135 | 0.09129 | 0.09120
6 0.09587 | 33.98 | 0.09185| 56.30 | 0.09091 | 109.63 | 0.10150 | 0.09064 | 0.09059 | 0.09045
7 0.09760 | 34.38 | 0.09334 | 56.97 | 0.09227 99.85 | 0.10401 | 0.09198 | 0.09172 | 0.09161
8 0.09977 | 36.45 | 0.09592 | 59.55 | 0.09492 | 122.30 | 0.10012 | 0.09462 | 0.09454 | 0.09442
9 0.09840 | 35.74 | 0.09427 | 64.90 | 0.09334 | 161.80 | 0.10032 | 0.09320 | 0.09306 | 0.09295
10 0.09790 | 36.58 | 0.09396 | 62.97 | 0.09294 | 122.93 | 0.10260 | 0.09277 | 0.09264 | 0.09247

Average 35.99 59.09 123.97

Table 8.19 Results for Problem Set 18: 500-point problems originaly in five dimensions
with 10 solutions for DACN.

Next, we aso applied DACN3, DACN4, DACNS5, NLIM, and COMB to larger
problems. We randomly generated problems of size 1000, 1250, 1500, 1750, 2000, 2250,
and 2500 (one of each size) from alattice set in three dimensions. For each problem, we
solveit 10 times from 10 randomly generated starting solutions. In Table 8.20, we give
the results for these problems. For al seven problems, DACN4 and DACN5 generate
substantially better solutions (with respect to solution quality) than NLIM. The running
times for DACNS are nearly twice those of DACNA4. The running times of DACN4 are
roughly comparable to those of NLIM. However, as the number of pointsincreases, the
running time of NLIM increases more rapidly than that of DACN4. For the largest
problem, NLIM required nearly twice as much time as DACN4. NLIM produced better
solutions than DACN3, except for one problem. On the other hand, COMB3 clearly
outperforms NLIM. COMB4 and COMB5 always outperform DACNS. As expected,
COMBS outperforms COM B4, which outperforms COMB3.

147

DACN3 DACN4 DACN5 NLIM COMB3 COMBA4 COMB5
Running Running Running Running Running Running Running
Number Best time Best time Best time Best time Best time Best time Best time
of points | solution (secs) solution (secs) solution (secs) solution (secs) solution (secs) solution (secs) solution (secs)
1000 0.06154 | 11366 | 0.05650 | 160.04 | 0.05525 | 318.34 | 0.05954 180 0.05492 80 0.05468 50 0.05462 60
1250 0.06184 | 197.07 | 0.05703 | 342,55 | 0.05584 | 552.22 | 0.05920 230 0.05547 130 0.05533 100 0.05526 110
1500 0.06107 | 301.82 | 0.05620 | 466.36 | 0.05497 | 820.67 | 0.06227 410 0.05462 220 0.05444 140 0.05438 180
1750 0.06193 | 407.13 | 0.05704 | 573.25 | 0.05583 | 1009.59 | 0.06190 680 0.05547 495 0.05531 360 0.05524 410
2000 0.06210 | 494.62 | 0.05726 | 703.11 | 0.05607 | 1324.95 | 0.06171 1170 0.05564 830 0.05557 720 0.05551 770
2250 0.06237 | 720.02 | 0.05752 | 1079.74 | 0.05634 | 1856.91 | 0.06189 1620 0.05590 1120 0.05583 1170 0.05577 1210
2500 0.06257 | 811.88 | 0.05765 | 1439.35 | 0.05645 | 2921.63 | 0.06160 2655 0.05600 1930 0.05594 2110 0.05588 2020

Table 8.20 Resultsfor larger problems originally in 3 dimensions with 10 replications.

148

8.3 Conclusions

Even though NLIM can assign points anywhere in the plane and DACN can
only make assignments to specific pointsin the | attice space, DACN generates results
that are comparable in quality to those generated by NLIM. DACN4 and DACNS
generate solutions that are better than those of NLIM. DACNDS gives better solutions
than DACN4, but DACNS5' s running times are about twice as large. When the fina
solution from DACN is used as a starting solution in NLIM —thisisthe COMB
heuristic —the final solutions generated by COMB4 and COMBS5 are always better
than the results generated by DACN and NLIM. COMB3 beats NLIM by awide
margin and requires asimilar amount of computational effort. COMB5 generate the
best solutions, but takes longer. The divide-and-conquer approach provides a good
approximate solution. Furthermore, we have demonstrated that this solution is a good
starting solution for the nonlinear method. Taking both solution quality and running
time into account, we might recommend either DACN4 or DACNS followed by

COMBS3 for solving large data visualization problems.

149

Chapter 9: Conclusions

9.1 Summary of Results

Datavisualization applications are typically modeled and solved using
nonlinear optimization techniques. In this dissertation, we proposed a discretization of
the data visualization problem that allowed us to formulate it as a quadratic
assignment problem. However, this formulation was computationally difficult to
solve optimally with an exact approach. Consequently, we investigated the use of
heuristics to solve our formulation. The space in which the data points are to be
embedded was discretized using an n x n lattice. Conducting alocal search on thisn x
n | attice was computationally inefficient. We proposed a divide-and-conquer
approach that refined the lattice at each step. In Table 9.1 we give a description of the
heuristic abbreviations used in this dissertation.

In Chapter 1, we gave an introduction and presented the objectives of the
dissertation.

In Chapter 2, we gave an overview of the existing literature on data mining
and data visualization. We presented background information on quadratic
assignment problems, local search heuristics, integer programming problems, and
genetic agorithms.

In Chapter 3, we presented the methodol ogy that we used to formulate the

data visualization problem as a quadratic assignment problem.

150

Description

Heuristic
LS Local search heuristic
DAC Divide-and-conqguer local search heuristic

DACQ | Divide-and-conquer local search heuristic with quadrant restrictions

DACN Divide-and-conquer local search heuristic with neighbor restrictions

IP Integer program heuristic

IR IP with Step 1 repeated

IRN IR with points allowed to move to neighboring points

IRNS IRN with a maximum of 20 points considered in reassigning points
after Step 2 and 5 points reassigned at atime after Step 4

IMP Improvement heuristic

HGA Hybrid genetic agorithm

Table 9.1 Descriptions of heuristic abbreviations.

In Chapter 4, we developed alocal search technique to solve our QAP and
investigated four different discrete local search algorithms. Considering both solution
quality and running time, DACN appeared to be the best heuristic, when compared to
LS, DAC, and DACQ. DACN provided an approximate solution to the data
visualization problem in a reasonable amount of computing time.

In Chapter 5, we gave an IP for the data visualization problem and proved it
was equivalent to our QAP formulation. We devel oped a divide-and-conquer
heuristic that solved a set of smaller problems at each stage instead of one large
problem and showed that it gave a more manageable problem to solve at each stage.
We found that DACN was more accurate and efficient than IRNS. DACN produced
much better objective function values than IRNS. The running times for DACN were
also much shorter than those of IRNS. In addition, we observed that that the |ocal
search procedure of assigning points one at atime worked well for the data

visualization problem. Even though DACN produced solutions by reassigning points,

151

one point a atime, IMP, which reassigns five points a atime, did not improve the
results of DACN.

In Chapter 6, we developed a hybrid heuristic (HGA) that combined local
search with a genetic algorithm by applying genetic algorithms techniques to the final
solution from DACN. We found that HGA improved the solutions produced by
DACN. However, the improvements were very small. In addition, the running times
of HGA were longer than those of DACN. We recommended that, when our heuristic
is used as a stand-alone approach or avery accurate solution is required, HGA should
be used rather than DACN. On the other hand, if our heuristic is used to produce a
starting solution for anonlinear method or an approximate solution is required, then
DACN should be used rather than HGA for faster computation times.

In Chapter 7, we compared the results of DACN to the results generated by a
nonlinear Sammon map (NLSM). DACN can only make assignments to specific
pointsin the lattice space. NLSM can assign points anywhere in the plane. Despite
this limitation, DACN generated results that were comparable in quality to those
generated by NLSM. When the final solution from DACN was used as a starting
solution in NLSM —that isthe COMB heuristic — the final solutions generated by
COMB were aways better than the results generated by DACN and NLSM. The
running times for COMB were much smaller than those for NLSM and were, in fact,
quite reasonable.

In Chapter 8, we compared the results of DACN to the results generated by a
commercia nonlinear multidimensional scaling map (NLIM). We used the

maj orization technique as implemented in SPSS Proxscal. We solved DACN with 10

152

solutions instead of 100 solutions used in our other experiments. We applied DACN,
NLIM, and COMB to larger problem sets, ranging in size from 1000 to 2500.
DACN4 and DACNS5 generated solutions that were better than those of NLIM.
DACNS gave better solutions than DACNA4, but DACNS’ s running times were about
twice aslarge. COMB aways produced better results than those generated by DACN
and NLIM. COMB3 beat NLIM by awide margin and required a similar amount of
computational effort. COMBS5 generated the best solutions, but took longer. Taking
both solution quality and running time into account, we recommend either DACNA4 or
DACN3 followed by COMB3 for solving large data visualization problems.

We summarize the research contributions of this dissertation as follows:

The data visualization problem can be formulated as a QAP.

* Wedemonstrated that discrete optimization and a divide-and-conquer local
search heuristic can be applied to continuous optimization problems arising in
data visualization.

* DACN can only make assignments to specific pointsin the lattice space but
NLSM and NLIM can assign points anywhere in the plane. Despite this
limitation, DACN generated results that are comparable in quality to those
generated by NLSM and NLIM (and superior for large problems).

* When thefinal solution from DACN is used as a starting solution in NLSM

and NLIM —thisisthe COMB heuristic — the final solutions generated by

COMB are dways better than the results generated by DACN, NLSM, and

NLIM.

153

* Therunning times for COMB (alone) are much smaller than those for NLSM
and NLIM, and are, in fact, quite reasonable.

* Thedivide-and-conquer approach provides a good approximate solution in a
small amount of computing time. Furthermore, we have shown that this
solution is a good starting solution for the nonlinear method.

e Taking both solution quality and running time into account, we recommend
either using DACN4 or DACNS3 followed by COMB3 for solving large data

visualization problems.

9.2 Future Research

There are several opportunities for future work on this topic. For example, in
this dissertation, the lattice structure was made uniform over the entire rectangular
grid. This need not be so. Where thereis a higher density of points, the lattice can be
made finer. Where there are fewer points, the lattice can be made coarser.

Different lattice structures can aso be considered. For instance, we can
investigate keeping the previous lattice point and considering five lattice points at
each stage, instead of only considering the four new lattice points. It may be that the
point was best assigned to the previous lattice point and not to one of the four new
lattice points.

Thereis aso an opportunity to investigate other well-known heuristics like
simulated annealing and tabu search to seeif they can provide good solutions to the

QAP formulation for the data visualization problem.

154

In this dissertation, we used randomly generated data sets from a uniformly
distributed data set. We can consider other data sets. For instance, we can generate a
two-dimensional data set either randomly or using a known function. We can then
transform this datainto a higher dimensiona data set. We can do this, for example, by
finding linear combinations of the coordinates in two-dimensions and adding some
noise. The noise should have a small variance so that the original structure in the data
is not destroyed. With this type of data we can compare the final solution obtained

with the original solution.

155

LS
DAC

DACQ

DACN

IR
IRN

IRNS

IMP

HGA

Glossary

Local Search heuristic
Divide-and-conquer local search heuristic

Divide-and-conquer local search heuristic with quadrant
restrictions

Divide-and-conquer local search heuristic with neighbor
restrictions

Integer program heuristic
IP with Step 1 repeated
IR with points allowed to move to neighboring lattice points

IRN with a maximum of 20 points considered in reassigning
points after Step 2 and 5 points reassigned at atime after Step 4

Improvement heuristic

Hybrid genetic agorithm

156

Appendix A

Source code for DACN and HGA

#include "ModelOne.h"

#include "ModelFive.h"

#include "RecipeRandGenl mpl.h"

#include " ConstraintK nutStrRandomGenerator.h"
#include "ODMatrixGen.h"

#include " ObjectiveVaueCalculator.h"

#include "CommandLinel nterpreter.h"

RecipeRandGenl mpl gRanGen(-1L);
ConstraintK nutStrRandomGenerator gK nutRanGen(gRanGen);

int main(int argc, char** argv)
{

try {
CommandLinel nterpreter cmdl;

cmdl.Parse(argc, argv);
ODMatrixGen odMatGen(cmdl.PointsMatrixFile().c_str());

M odel Five<Constrai ntK nutStrRandomGenerator, IntMatrix, ObjV alueCal cul ator>
gModel Five(gK nutRanGen, odM atGen,
(cmdl.OutputFileName()).c_str(),
cmdl.NoL atticePoints(), cmdl.NoPoints(), cmdl.SampleSize(),
(cmdl.PointsMatrixFile()).c_str());

gModelFive.Model ();
catch(...)
{

fprintf(stderr, " An exception was thrown; check your input parameters');
exit(-1);
}

return O;

157

#include "CommandLinel nterpreter.h"
#include <cstdio>

void CommandLinel nterpreter::Parse(int argc, char** argv)

{
if(argc>1)
for(int index = 1; index < argc; ++index)
{
if(strlen(argv[index])==2 & & (argv[index][0]=="-' || argv[index][0]==""))
{

char key= argv[index][1];

key = toupper(key);

switch(key)

{

case'N":
lattice = atoi(argv[++index]);
break;

case'M":
points = atoi(argv[++index]);
break;

case'S
sampleSize = atoi(argv[++index]);
break;

case'O
outputFileName = argv[++index];
break;

case'l":
pointsMatrixFile = argv[++index];
break;

default:
fprintf(stderr, "Invalid usage\n");
fprintf(stderr, "Usage: localsearch [-n # lattice point] [-m

points] "

"[-s sample size] [-o output file] [-i input point
matrix file]\n");

break;
exit(-1);
} }
elseif(strlen(argv[index]) > 2 & & (argv[index][0] =="-'| argv[index][0] ==

1)
{

char key = argv[index][1];
key = toupper(key);
char buffer[512];
strepy(buffer, argv[index] + 2);
switch(key)
{

case'N":

lattice_ = atoi (buffer);
break;

case'M":
points = atoi(buffer);

158

points] "

matrix file]\n");

cae'S’:

case'O":

case'l":

defaullt:

break;

sampleSize = atoi(buffer);
index++;

break;

outputFileName _ = buffer;
break;

pointsMatrixFile = buffer;
break;

fprintf(stderr, "Invalid usage\n");
fprintf(stderr, "Usage: localsearch [-n # lattice point] [-m

"[-s sample size] [-o output file] [-i input point

break;
exit(-1);

printf("Invalid usage\n");
printf("Usage: localsearch [-n # lattice point] [-m # points] "

exit(-1);

"[-s sample size] [-o output file] [-i input point

fprintf(stderr, "WARNING: using the following default parameters: \n\tNo lattice

}
else
{
matrix file]\n");
}
}
}
else
points = %d"

%s\n\t"

3,1,1,331,1};",

}

"\n\tNo of points = %d\n\tSample size = %d\n\tOutput file name =

"No input matirx file using,\n\t\t xcoorm[M] ={1, 3,1, 3, 9, 11,
9,11, 25,27,25,27, 29,31,29, 31, 13,15,13 15"
"\n\t\tycoorm[M] ={31, 31, 29, 29, 29,29, 31,31,3,3,1,1, 3,

lattice , points_, sampleSize , outputFileName .c_str());

159

#include " Constrai ntK nutStrRandomGenerator.h"

#include <ctime>
#include <list>

void ConstraintK nutStrRandomGenerator::generate(std: :vector<std::string>& ranVec,
int howMany, int size, int
lowerValue, int upperValue)
{
/I we assume that the upperValue will not be more than 999
if(franVec.empty())
ranVec.clear();

const BUF = 20;

char element[BUF];

int bufLen=3* (size + 1);

char* pltem = new char[bufLen];
std::list<int> positions;

for (int cnt = 0; cnt < howMany; ++cnt)

{

if (! positions.empty()) positions.clear();
for(int pos = 0; pos < size; ++pos)
{
/I put positions here to be allocated
positions.push_back(pos);

for(int cnt = O; cnt < bufLen; ++cnt)

{

pltem[cnt] = 'X;

}

pltem[2] ='1"; // position 1 should always be 1
/I terminate the string

pltem[bufLen- 1] ="0;

pltem[bufLen - 2] ="0;

pltem[bufLen - 3] ="0;

positions.remove(0);

/I assign position for lattice point 2
int pointElem2 = 1 + static_cast<int>(((size - 2) * ran() + 0.1));
pltem[3 * pointElem2 + 2] ='2;

/I remove from positions
positions.remove(pointElem?2);

for(inti =2; 1 <size; ++i)
{
int pointElem,;
int latticeElem = lowerValue +
static_cast<int>(((upperValue - lowerValue) * ran() + 0.1));

160

if(!positions.empty())

bool found = true;
do
{
found = true;
pointElem = positions.front();
positions.pop_front();
if(latticeElem == 3 & & pointElem == 1)
{ Il ensure that pt 2 is not assigned to latice point 3
positions.push_back(pointElem);
if(positions.size() == 1)

latticeElem = lowerValue +
static_cast<int>(((upperValue
- lowerValue) * ran() + 0.1));
}

found = false;
}
} while(!found);
memset(element,0,sizeof (char) * BUF);

_itoa(latticeElem, element, 10);
int len = strlen(element);

switch(len)

{

case 1
pltem[3 * pointElem + 2] = element[0];
break;

case 2:
pltem[3 * pointElem + 1] = element[0];
pltem[3 * pointElem + 2] = element[1];
break;

case 3:
pltem[3 * pointElem] = element[Q];
pltem[3 * pointElem + 1] = element[1];
pltem[3 * pointElem + 2] = element[2];

default:
fprintf(stderr, "Error latticeElement %d is greater than

999", latticeElem);

exit(-1);

} /1 switch

} Il for
ranVec.push_back(pltem);
} Il for
if(pltem) delete[] pltem;

} /1 CongtraintK nutStrRandomGenerator::generate
#include "KnutIntRandomGenerator.h"

void KnutlntRandomGenerator::generate(std::vector<int>& ranVec,

161

int howMany, int size, int
lowerValue, int upperValue)

{
if('ranVec.empty())
ranVec.clear();

const BUF = 20;
char element[BUF];
for (int cnt = 0; cnt < howMany; ++cnt)

{

for(inti = 0; i < size; ++i)
{

int elem = lowerValue +

static_cast<int>(((upperValue - lowerValue) * ran() + 0.1));
memset(element,0,sizeof (char) * BUF);
ranVec.push_back(elem);

}

} /1 KnutintRandomGenerator::generate

162

#include "KnutStrRandomGenerator.h"
#include <ctime>

void KnutStrRandomGenerator::generate(std::vector<std::string>& ranVec,
int howMany, int size, int
lowerValue, int upperValue)
{
if(franVec.empty())
ranVec.clear();

const BUF = 20;
const char SEPERATOR = 'X';
char element[BUF;
for (int cnt = 0; cnt < howMany; ++cnt)
{
std::string item;
for(inti =0; i < size; ++i)
{
int elem = lowerValue +
static_cast<int>(((upperValue - lowerValue) * ran() + 0.1));
memset(element,0,sizeof (char) * BUF);
_itoa(elem, element, 10);

Il insert x as a seperator between the numbers
item += SEPERATOR,;
item += element;

ranVec.push_back(item);
}

} /1 KnutStrRandomGenerator::generate

#include "Loca SearchModeler.h"

void Loca SearchModeler::Model ()
{
Generatel nitial Sol ution();
PerformLocal Search();
CalculateObjectiveValue();
/IGeneratel nitial Solution();

163

#include "NDMatrixGen.h"
#include <iterator>
#include <math.h>

/In=4
int xcoornd [] = {8, 24, 8, 24};
int ycoornd [] = {24, 24, 8, 8};

/In=16
static int xcoorn16 [
static int ycoorn16 [

1={4,12, 4,12, 20,28, 20, 28, 4,12,4,12, 20, 28, 20, 28};

1=1{28, 28, 20, 20, 28, 28, 20, 20, 12,12, 4, 4, 12,12, 4, 4};

/In=64

static int xcoorn64 [] ={2, 6, 2, 6, 10,14, 10,14, 2,6,2,6, 10, 14, 10, 14, 18, 22, 18, 22, 26, 30,
26, 30, 18, 22, 18, 22, 26, 30, 26, 30, 2,6, 2,6, 10,14, 10, 14, 2, 6, 2,6, 10, 14, 10, 14, 18, 22,
18, 22, 26, 30, 26, 30, 18, 22,18, 22, 26, 30, 26, 30};

gtatic int ycoorn64 [] = {30, 30, 26, 26, 30, 30, 26, 26, 22, 22, 18, 18, 22,22, 18, 18, 30, 30, 26, 26,
30, 30, 26, 26, 22, 22, 18, 18, 22, 22, 18, 18, 14, 14, 10, 10, 14, 14, 10, 10, 6,6, 2, 2, 6, 6, 2, 2, 14,
14, 10, 10, 14, 14,10, 10, 6,6, 2,2, 6,6, 2, 2};

/In =256
staticint xcoorn256 [] ={1,3,1,3, 57,57, 1,3,1,3, 57,57, 911,911, 13,15,13,15, 9,
11,9,11, 13,15,13,15, 1,3,1,3, 5,7,5,7, 1,3,1,3, 5,7,5,7, 9,11,9, 11, 13,15,13,15, 9,
11, 9,11, 13,15, 13, 15,

17,19,17,19, 21,23, 21,23, 17,19,17,19, 21,23,21,23, 25,27,25, 27, 29, 31,2931,
25,27,25,27, 29,31,29,631, 17,19,17,19, 21,23,21,23, 17,19,17,19, 21,23, 21,23, 25,
27,25,27, 29, 31,2931, 25,27, 25,27, 29, 31,29, 31,

1,3,1,3, 57,57, 1,3,1,3, 57,57, 911,9,11, 13,15,13,15, 96 11,9,11, 13,15,
13,15, 1,3,1,3, 57,57, 1,3,1,3, 57,57, 911,911, 13,15,13,15, 9,611,911, 13,15,
13, 15,

17,19,17,19, 21, 23,21, 23, 17,19,17,19, 21,23,21,23, 25,27,25, 27, 29, 31, 29, 31,
25,27,25,27, 29,31,29,31, 17,19,17,19, 21,23,21,23, 17,19, 17,19, 21,23, 21,23, 25,
27,25,27, 29,31,29,31, 25,27,25,27, 29,31,29,31};

static int ycoorn256 [] = {31, 31, 29, 29, 31, 31, 29, 29, 27,27, 25,25, 27,27,25,25, 31, 31, 29,
29, 31,31,29,29, 27,27,25,25, 27,27,25,25 23,23,21,21, 23,23,21,21, 19,19, 17,17,
19,19,17,17, 23,23,21,21, 23,23,21,21, 19,19,17,17, 19, 19,17, 17,

31,31, 29,29, 31,31, 29,29, 27,27,25,25, 27,27,25,25, 31,31, 29,29, 31, 31, 29, 29,
27,27,25,25, 27,27,25,25, 23,23,21,21, 23,23,21,21, 19,19, 17,17, 19,19, 17,17, 23,
23,21,21, 23,23,21,21, 19,19,17,17, 19,19, 17,17,

15, 15, 13, 13, 15, 15,13,13, 11,11,9,9, 11,11,9,9, 15, 15, 13, 13, 15,
11,9,9, 11,11,9,9, 7,7,5,5, 7,7,5/5, 3,3,1,1, 3,3,1,1, 7,7,55, 7,7,
3,3,1,1,

15, 15, 13, 13, 15, 15, 13,13, 11,11,9,9, 11,11,9,9, 15,1
11,9,9, 11,11,9,9, 7,7,5,5, 7,7,55 3,3,1,1, 3,311
3,3,1,1};

5
7

~NP
o
oW
~N
Np
o
o
w
w
L
L

NDMatrixGen::NDMatrixGen() : type (0)
{

matrixContainer_.insert(IntPointerPairMap::value_type(4, IntPointerPair(xcoorn4,
ycoornd)));

matrixContainer_.insert(IntPointerPairMap::value_type(16, IntPointerPair(xcoornl6,
ycoornl6)));

164

matrixContainer_.insert(IntPointerPairMap::value_type(64, IntPointerPair(xcoorn64,
ycoorn64)));

matrixContainer_.insert(IntPointerPairMap::value _type(256, IntPointerPair(xcoorn256,
ycoorn256)));

} // NDMatrixGen::NDMatrixGen

void NDMatrixGen::Generate(int size)

{
if(type_&& type ==size)
return;
if(l(size==4| size== 16 || Size == 64 || size == 256))
{ /I wrong input so wipe out everything from the matrix because
/I one would be tempted to use it
type_=0;
ndMatrix_.clear();
}
else
{
if('\ndMatrix_.empty()) ndMatrix_.clear();
int value = 0;
IntPointerPairMap::iterator iter = matrixContainer_.find(size);
if(iter I= matrixContainer_.end())
{
IntPointerPair vectorPair = (*iter).second,;
for (inti =0;i < size; ++i)
{
IntVec vec;
ndMatrix_.push_back(vec);
for (intj =0;j < size; ++))
value = ((vectorPair.first)[i] - (vectorPair.first)[j]) *
((vectorPair.first)[i] - (vectorPair.first)[j]) -
((vectorPair.second)[i] - (vectorPair.second)[j]) *
((vectorPair.second)[i] - (vectorPair.second)[j]);
if(value > 0) value = sgrt((double)value);
ndMatrix_[i].push_back(value);
} Il for
} Il for
}
}
}

165

#include " ObjectiveVaueCalculator.h"
#include <cassert>

#include <map>

#include <algorithm>

bool long_int_cmp (const LNGINTPAIR& first, const LNGINTPAIR& second)
{

return (first.first < second.first) ? true : false;

}

void ObjValueCalculator::ExtractValues(const OBJV String& inStr, OBJIntVec& outVec)

{
assert(inStr.size() % 3 == 0); // ensure that string isvalid

if(inStr.size() % 3'!=0)
throw 1;

if(loutVec.empty()) outVec.clear();

/I extract values form string
char buffer[4];

int size = inStr.size();
char* ptr = const_cast<char*>(inStr.c_str());
intindex = 0;
for(; index <size && ptr!I="\0" && ptr ; ptr += 3, index += 3) // 3 = # representing a
position
{
memset(buffer, 0, 4 * sizeof(char));
strnepy(buffer, ptr, 3);
OBJV String digit;
for(inti = O; buffer[i] !=0; ++i)

if (isdigit(buffer[i]))

¢ digit += buffer[i];
} Il for
i{f(!digit.empty())

outVec.push_back(atoi(digit.c_str()));

} Il for

} /1 ObjVaueCalculator::ExtractValues

void ObjValueCalculator::Cal culatObjectiveValue
(

unsigned int pos,
const OBJV String& str,
IntMatrix& odMat,

166

#f 0

#endif

IntMatrix& ndMat,
LNINTPAIRVEC& objectiveFunctionList

OBJIntVec strVeg;
ExtractValues(str, strVec);

if (objectiveFunctionList.empty())
objectiveFunctionList.clear();

/I we are interested in the following summation:;

Il we have avector C =(c[I] | =0, strVec.size() - 1

[/l for each value of i (ie pos),

/I we calculate sum over k(sum over j(ODi,j] - ND[k, c[j]1)), j>i,
/lk=0,..,ndMat.size() - 1

unsigned int strVecSize = strVec.size();
unsigned int ndSize = ndMat.size(); // to be removed

for(int k = 0; k < ndMat.size(); ++k)
{
LNGINTPAIR sum(0, k);
for(intj = pos+ 1; j <strVec.size(); ++j)

long value = (odMat[pos])[j] - (ndMat[K])[strVec[j]];
value *= valug;
sum.first += value;

}

objectiveFunctionList.push_back(sum);

/I test output

for(LNINTPAIRVEC::iterator iter = objectiveFunctionList.begin();
iter 1= objectiveFunctionList.end(); ++iter)
{

}

printf("value[%d] = %d\n", (*iter).second, (*iter).first);

} // ObjVaueCalculator::CalculatObjectiveValue

/I calculates the objective value for the positon

/I pos

LNGINTPAIR ObjValueCalculator::Cal culatObj ectiveValue

(

unsigned int pos,

167

const OBJVString& dtr,
IntMatrix& odMat,
IntMatrix& ndMat

LNINTPAIRVEC objectiveFunctionList;
CalculatObjectiveVaue(pos, str, odMat, ndMat, objectiveFunctionList);

assert(! objectiveFunctionList.empty()); // check to make sure that we do not get empty vector

LNGINTPAIR minValue(*std::min_element(objectiveFunctionList.begin(),
objectiveFunctionList.end(), long_int_cmp));

/I sinceint hte calulateObjective function we started k from 0 we have
/ to increase its value by one to account for the actual value

minV alue.second++;

return minValue;

/*
OBJIntVec strVec;
ExtractValues(str, strVec);

LNINTPAIRVEC objectiveFunctionList;

/I we are interested in the following summation:

/I we have avector C =(c[l] | =0, strVec.size() - 1

Il for each value of i (ie pos),

/I we calculate sum over k(sum over j(ODi,j] - ND[k, c[j]11)), j>i,
/lk=0,...,ndMat.size() - 1

unsigned int strVecSize = strVec.size();
unsigned int ndSize = ndMat.size(); // to be removed

for(int k = 0; k < ndMat.size(); ++k)

{
LNGINTPAIR sum(0, k);

for(intj = pos+ 1;j < strVec.size(); ++j)

long value = (odMat[pos])[j] - (ndMat[K])[strVec[j]];
value *= value;
sum.first += value;

}
objectiveFunctionList.push_back(sum);

assert(! objectiveFunctionList.empty()); // check to make sure that we do not get empty vector

168

LNGINTPAIR minValue(*std::min_element(objectiveFunctionList.begin(),
objectiveFunctionList.end(), long_int_cmp));

#f 0
/I test output
for(LNINTPAIRVEC::iterator iter = objectiveFunctionList.begin();
iter 1= objectiveFunctionList.end(); ++iter)
{
printf("value[%d] = %d\n", (*iter).second, (*iter).first);
}
#endif

/I since we started k from O we have to increase its value
/I by one to account for the actual value
minV alue.second++;

return minValue;
*/

} // ObjValueCalculator::Cal culatObjectiveValue

LNGINTPAIR ObjValueCalculator::CalculatObjectiveValue

(
unsigned int pos,
const OBJV String& str,
IntMatrix& odMat,
IntMatrix& ndMat,
INTSET& relLPts

)

LNINTPAIRVEC objectiveFunctionList;
CalculatObjectiveVaue(pos, str, odMat, ndMat, objectiveFunctionList);

int size = objectiveFunctionList.size();
LNINTPAIRVEC modifiedObjectiveFunctionList;
INTSET::iterator setlterEnd = relLPts.end();

for(inti=0; i < size; ++i)

if (rel L Pts.find(objectiveFunctionList[i].second) != setlterEnd)
{

}

modi fiedObj ectiveFunctionList.push_back(objectiveFunctionList[i]);

}

assert(!modifiedObjectiveFunctionList.empty()); // check to make sure that we do not get
empty vector

LNGINTPAIR minValue(* std::min_element(modifiedObjectiveFunctionList.begin(),
modifiedObjectiveFunctionList.end(), long_int_cmp));

/I since in the calulateObjective function we started k from 0, we have

169

/ to increase its value by one to account for the actual value
minValue.second++;
return minValue;

} // ObjValueCalculator::Cal culatObjectiveValue

/I calculates the final objective value for the string
long ObjValueCal culator::Cal culatObjectiveVa ue

(
const OBJV String& dtr,
IntMatrix& odMat,
IntMatrix& ndMat

)

{

OBJIntVec strintVec;
ExtractValues(str, strintVec);

LNGVEC objectiveFunctionList;

unsigned int strVecSize = strintVec.size();
long sum=0;

for(inti =0; i < strVecSize; ++i)

{
for(intj =i+ 1; j < strVecSize; ++)
{
int k = strintVec[i] - 1; // -1 to reflect the fact
int | =strintVec[j] - 1; // that we start from zero
long value = (odMat[i])[j] - (ndMat[Kk])[I];
value *= value;
sum += value;
}
}
return sum;

} // ObjValueCalculator::Cal culatObjectiveVal ue

170

#include "ODMatrixGen.h"
#include <iterator>
#include <math.h>
#include <fstream>

ODMatrixGen::ODMatrixGen(const char* fileName) : generated_(false)

if(fileName)
{
if(stremp(fileName, ") == 0)
Generate();
}
else
fileName_ = fileName;
Generate(true);
}
}
else
{
fileName _="";
Generate();
}

ODMatrixGen::ODMatrixGen(std::string& fileName) : generated (false)

if('fileName.empty())

{
fileName_ = fileName;
Generate(true);

}

else

{
fileName ="";
Generate();

}

void ODMatrixGen::Generate()
{

intxcoorm[] ={1,3,1,3, 9,11,9,11, 25,27,25,27, 29,631, 29,31, 13,15, 13, 15};
int ycoorm[] ={31, 31, 29,29, 29,29, 31,31,3,3,1,1, 3,3,1,1,3,3,1,1};
int size = sizeof(xcoorm) / sizeof(&xcoorm[0]);

int value = 0;
for (inti =0;i < size; ++i)
{

IntVec vec;

odMatrix_.push_back(vec);

171

} Il for

for (intj = 0; j < size; ++j)

value = (xcoorm[i] - xcoorm[j]) * (xcoorm[i] - xcoorm([j]) -
(ycoorm[i] - ycoorm([j]) * (ycoorm[i] - ycoorm(j]);

if(value > 0) value = sgrt((double)value);

odMatrix_Ji].push_back(value);

} /Il for

generated = true;

void ODMatrixGen::Generate(bool bFromFile)

1

if(bFromFile)

{

std::ifstream fileStream(fileName_.c_str());
if('fileStream.is_open())

{

fileStream.open(fileName_.c_str());
}
if('fileStream.is_open())

throw 1;
fileStream.setmode(filebuf::text);

int xcoord;
int ycoord;

IntVec xcoordVec;
IntVec ycoordVec;

while(!fileStream.eof ()

fileStream >> xcoord;
xcoordV ec.push_back(xcoord);

fileStream >> ycoord;
ycoordVec.push_back(ycoord);

}
fileStream.close();

if (xcoordV ec.empty() || ycoordVec.empty()) throw 1;
if(xcoordVec.size() != ycoordVec.size()) throw 1;

/ITDB
int value = 0;
int size = xcoordVec.size();

for (inti =0;i < size; ++i)

{

172

IntVec vec;
odMatrix_.push_back(vec);
for (intj = 0; j < size; ++j)

value = (xcoordVec]i] - xcoordVec[j]) * (xcoordVec]i] -

xcoordVec[j]) -
(ycoordVec]i] - ycoordVec|j]) * (ycoordVec[i] -
ycoordVec[j]);
if(value > 0) value = sgrt((double)value);
odMatrix_[i].push_back(value);
} Il for
} Il for
generated = true;
}
else
{
Generate();
}
}

173

#include "RandGenlmpl.h"

#define MBIG 1000000000
#define MSEED 161803398
#defineMZ 0

#define FAC (1.0/MBIG)

float RandGenl mpl::ran(long *idum)

{

static int inext,inextp;
static long ma[56];
static int iff=0;

long mj,mk;

intiiik;

if (*idum<0]iff ==0){
iff=1;
mj=MSEED-(*idum < 0 ?-*idum : *idum);
mj %= MBIG;
ma[55]=mj;
mk=1;
for (i=1;i<=54;i++) {
ii=(21*i) % 55;
ma[ii]=mk;
mk=mj-mk;
if (mk <MZ) mk += MBIG,;
mj=ma[ii];
}
for (k=1;k<=4;k++)
for (i=1;i<=55;i++) {
ma[i] -= ma[1+(i+30) % 55];
if (mai] <MZ) ma[i] += MBIG;
}
inext=0;
inextp=31,
*idum=1,
}
if (++inext == 56) inext=1;
if (++inextp == 56) inextp=1;
mj=ma[inext]-ma[inextp];
if (m <MZ) mj += MBIG;
ma[inext]=mj;
return mj*FAC;

} // RandGenlmpl::ran

#undef MBIG

#undef MSEED

#undef MZ

#undef FAC

/* (C) Copr. 1986-92 Numerical Recipes Software $2'9M)!].)!-01a. */

174

#include "RestrictionsAllocator.h"

RestrictionsAllocator::~RestrictionsAllocator()

{

if('restrictors_.empty())

{
RESTRICTTORMAP::iterator iter = restrictors_.begin();
RESTRICTTORMAP::iterator iterEnd = restrictors_.end();
for(; iter 1= iterEnd; ++iter)
delete (*iter).second,;
(*iter).second = 0;
}
}

INTSET& RestrictionsAllocator::FindSet(int size)

{

I filter

if(size > 64) throw 1; //only for lattice point up to 64
if(restrictors_.empty()) return Allocate(size);
RESTRICTTORMAP::iterator iter = restrictors_.find(size);
if(iter == redtrictors_.end())

{

}

return * ((*iter).second);

return Allocate(size);

void RestrictionsAllocator::Filter(INTSET& object)

{

INTSET::iterator iter = object.begin();
INTSET::iterator iterEnd = object.end();
IntVec buffer;

for(; iter 1= iterEnd; ++iter)

{ if(*iter > maxLatticeValue)
buffer.push_back(*iter);
}
if (buffer.empty())
{ int bufSize = buffer.size();
;or(i nti=0;i < bufSize; ++i)

}

object.erase(buffer[i]);

175

INTSET& RestrictionsAllocator::Allocate(int size)
{

INTSET* value = new INTSET;
if('value) throw 1;

value->insert(size); // make sure that the point is part of it

switch(size)
{
case 1
{
value->insert(2);
value->insert(3);
value->insert(4);
}
break;
case 2:
{
value->insert(1);
value->insert(3);
value->insert(4);
value->insert(5);
value->insert(7);
}
break;
case 3:
{
value->insert(1);
value->insert(2);
value->insert(4);
value->insert(9);
value->insert(10);
}
break;
case 4.
{
value->insert(1);
value->insert(2);
value->insert(5);
value->insert(3);
value->insert(7);
value->insert(9);
value->insert(10);
value->insert(13);
}
break;
case 5:
{

value->insert(2);
value->insert(6);
value->insert(4);
value->insert(7);

176

case 6:

case 7.

case 9:

case 10:

break;

break;

break;

break;

break;

value->insert(8);

value->insert(5);
value->insert(17);
value->insert(7);
value->insert(8);
value->insert(19);

value->insert(2);
value->insert(5);
value->insert(6);
value->insert(4);
value->insert(8);
value->insert(10);
value->insert(13);
value->insert(14);

value->insert(5);
value->insert(6);
value->insert(17);
value->insert(7);
value->insert(19);
value->insert(13);
value->insert(14);
value->insert(25);

value->insert(3);
value->insert(4);
value->insert(10);
value->insert(11);
value->insert(12);

value->insert(3);
value->insert(4);
value->insert(7);
value->insert(9);
value->insert(13);
value->insert(11);
value->insert(12);
value->insert(15);

177

break;
case 11.

value->insert(9);

value->insert(10);
value->insert(12);
value->insert(33);
value->insert(34);

break;
case 12:

value->insert(9);

value->insert(10);
value->insert(13);
value->insert(11);
value->insert(15);
value->insert(33);
value->insert(34);
value->insert(37);

break;
case 13:

value->insert(4);
value->insert(7);
value->insert(8);
value->insert(10);
value->insert(14);
value->insert(12);
value->insert(15);
value->insert(16);

break;
case 14.

value->insert(7);

value->insert(8);

value->insert(19);
value->insert(13);
value->insert(25);
value->insert(15);
value->insert(16);
value->insert(27);

break;
case 15:

value->insert(10);
value->insert(13);
value->insert(14);
value->insert(12);
value->insert(16);
value->insert(34);
value->insert(37);
value->insert(38);

178

break;
case 16:
{
value->insert(13);
value->insert(14);
value->insert(25);
value->insert(15);
value->insert(27);
value->insert(37);
value->insert(38);
value->insert(49);
}
break;
case17:
{
value->insert(6);
value->insert(18);
value->insert(8);
value->insert(19);
value->insert(20);
}
break;
case 18:
{
value->insert(17);
value->insert(21);
value->insert(19);
value->insert(20);
value->insert(23);
}
break;
case 19:
{
value->insert(6);
value->insert(17);
value->insert(18);
value->insert(8);
value->insert(20);
value->insert(14);
value->insert(25);
value->insert(26);
}
break;
case 20:
{
value->insert(17);
value->insert(18);
value->insert(21);
value->insert(19);
value->insert(23);
value->insert(25);
value->insert(26);
value->insert(29);
}
break;

179

case 21.

{
value->insert(18);
value->insert(22);
value->insert(20);
value->insert(23);
value->insert(24);
}
break;
case 22:
{
value->insert(21);
value->insert(23);
value->insert(24);
}
break;
case 23:
{
value->insert(18);
value->insert(21);
value->insert(22);
value->insert(20);
value->insert(24);
value->insert(26);
value->insert(29);
value->insert(30);
}
break;
case 24:
{
value->insert(21);
value->insert(22);
value->insert(23);
value->insert(29);
value->insert(30);
}
break;
case 25:
{
value->insert(8);
value->insert(19);
value->insert(20);
value->insert(14);
value->insert(26);
value->insert(16);
value->insert(27);
value->insert(28);
}
break;
case 26:
{

value->insert(19);
value->insert(20);
value->insert(23);
value->insert(25);
value->insert(29);

180

value->insert(27);
value->insert(28);
value->insert(31);

}
break;
case 27:
{
value->insert(14);
value->insert(25);
value->insert(26);
value->insert(16);
value->insert(28);
value->insert(38);
value->insert(49);
value->insert(50);
}
break;
case 28:
{
value->insert(25);
value->insert(26);
value->insert(29);
value->insert(27);
value->insert(31);
value->insert(49);
value->insert(50);
value->insert(53);
}
break;
case 29:
{
value->insert(20);
value->insert(23);
value->insert(24);
value->insert(26);
value->insert(30);
value->insert(28);
value->insert(31);
value->insert(32);
}
break;
case 30:
{
value->insert(23);
value->insert(24);
value->insert(29);
value->insert(31);
value->insert(32);
}
break;
case 31:
{

value->insert(26);
value->insert(29);
value->insert(30);
value->insert(28);

181

case 32:

case 33:

case 34:

case 35:

case 36:

break;

break;

break;

break;

break;

value->insert(32);
value->insert(50);
value->insert(53);
value->insert(54);

value->insert(29);
value->insert(30);
value->insert(31);
value->insert(53);
value->insert(54);

value->insert(11);
value->insert(12);
value->insert(34);
value->insert(35);
value->insert(36);

value->insert(11);
value->insert(12);
value->insert(15);
value->insert(33);
value->insert(37);
value->insert(35);
value->insert(36);
value->insert(39);

value->insert(33);
value->insert(34);
value->insert(36);
value->insert(41);
value->insert(42);

value->insert(33);
value->insert(34);
value->insert(37);
value->insert(35);
value->insert(39);
value->insert(41);
value->insert(42);
value->insert(45);

182

case 37:

case 38:

case 39:

case 40:

case 41

break;

break;

break;

break;

break;

value->insert(12);
value->insert(15);
value->insert(16);
value->insert(34);
value->insert(38);
value->insert(36);
value->insert(39);
value->insert(40);

value->insert(15);
value->insert(16);
value->insert(27);
value->insert(37);
value->insert(49);
value->insert(39);
value->insert(40);
value->insert(51);

value->insert(34);
value->insert(35);
value->insert(38);
value->insert(36);
value->insert(40);
value->insert(42);
value->insert(45);
value->insert(46);

value->insert(37);
value->insert(38);
value->insert(49);
value->insert(39);
value->insert(51);
value->insert(45);
value->insert(46);
value->insert(57);

value->insert(35);
value->insert(36);
value->insert(42);
value->insert(43);
value->insert(44);

183

case 42:

case 43:

case 45:

case 46:

case 47:

break;

break;

break;

break;

break;

value->insert(35);
value->insert(36);
value->insert(39);
value->insert(41);
value->insert(45);
value->insert(43);
value->insert(44);
value->insert(47);

value->insert(41);
value->insert(42);
value->insert(44);

value->insert(41);
value->insert(42);
value->insert(45);
value->insert(43);
value->insert(47);

value->insert(36);
value->insert(39);
value->insert(40);
value->insert(42);
value->insert(46);
value->insert(44);
value->insert(47);
value->insert(48);

value->insert(39);
value->insert(40);
value->insert(51);
value->insert(45);
value->insert(57);
value->insert(47);
value->insert(48);
value->insert(59);

184

value->insert(42);
value->insert(45);
value->insert(46);
value->insert(44);
value->insert(48);

}
break;
case 48:
{
value->insert(45);
value->insert(46);
value->insert(57);
value->insert(47);
value->insert(59);
}
break;
case 49:
{
value->insert(16);
value->insert(27);
value->insert(28);
value->insert(38);
value->insert(50);
value->insert(40);
value->insert(51);
value->insert(52);
}
break;
case 50:
{
value->insert(27);
value->insert(28);
value->insert(31);
value->insert(49);
value->insert(53);
value->insert(51);
value->insert(52);
value->insert(55);
}
break;
case 51:
{
value->insert(38);
value->insert(49);
value->insert(50);
value->insert(40);
value->insert(52);
value->insert(46);
value->insert(57);
value->insert(58);
}
break;
case 52:
{

value->insert(49);
value->insert(50);

185

value->insert(53);
value->insert(51);
value->insert(55);
value->insert(57);
value->insert(58);
value->insert(61);

}
break;
case 53:
{
value->insert(28);
value->insert(31);
value->insert(32);
value->insert(50);
value->insert(54);
value->insert(52);
value->insert(55);
value->insert(56);
}
break;
case 54:
{
value->insert(31);
value->insert(32);
value->insert(53);
value->insert(55);
value->insert(56);
}
break;
case 55:
{
value->insert(50);
value->insert(53);
value->insert(54);
value->insert(52);
value->insert(56);
value->insert(58);
value->insert(61);
value->insert(62);
}
break;
case 56:
{
value->insert(53);
value->insert(54);
value->insert(55);
value->insert(61);
value->insert(62);
}
break;
case 57:
{

value->insert(40);
value->insert(51);
value->insert(52);
value->insert(46);

186

value->insert(58);
value->insert(48);
value->insert(59);
value->insert(60);

}
break;
case 58:
{
value->insert(51);
value->insert(52);
value->insert(55);
value->insert(57);
value->insert(61);
value->insert(59);
value->insert(60);
value->insert(63);
}
break;
case 59:
{
value->insert(46);
value->insert(57);
value->insert(58);
value->insert(48);
value->insert(60);
}
break;
case 60:
{
value->insert(57);
value->insert(58);
value->insert(61);
value->insert(59);
value->insert(63);
}
break;
case 61:
{
value->insert(52);
value->insert(55);
value->insert(56);
value->insert(58);
value->insert(62);
value->insert(60);
value->insert(63);
value->insert(64);
}
break;
case 62:
{
value->insert(55);
value->insert(56);
value->insert(61);
value->insert(63);
value->insert(64);
}

187

break;

case 63:
{
value->insert(58);
value->insert(61);
value->insert(62);
value->insert(60);
value->insert(64);
}
break;
case 64:
{
value->insert(61);
value->insert(62);
value->insert(63);
}
break;
}

/I make sure that values do not exceed
/I the number of lattice
Filter(*value);

restrictors _.insert(RESTRICTTORMAP::value_type(size, value));
return *value;

188

#f 1defined COMMAND_LINE_INTERPRETER__HH)
#define COMMAND_LINE_INTERPRETER__HH

#include <string>

class CommandLinel nterpreter

{

public:
CommandLinelnterpreter() :
lattice (4), points (10), sampleSize (100), outputFileName ("out.log") {}
void Parse(int argc, char** argv);

int NoL atticePoints() { return lattice ;}

int NoPoints() { return points ; }

int SampleSize() { return sampleSize ; }

std::string& OutputFileName() { return outputFileName ; }
std::string& PointsMatrixFile() { return pointsMatrixFile ; }

private:
int lattice ;
int points ;
int sampleSize ;
std::string outputFileName_;
std::string pointsMatrixFile ;

#endif

189

#f 1defined(MANSAH__CONST_KNUTSTRRAND_GEN__HH)
#define MANSAH__CONST_KNUTSTRRAND_GEN__HH

#include <string>
#include "RandGenlmpl.h"
#include"RandomGenerator.h"

class ConstraintK nutStrRandomGenerator : public RandomGenerator<std::string>

{
public:
explicit Constraintk nutStrRandomGenerator(RandGenlmpl & randGen)
: RandomGenerator<std::string>(randGen) { }
void generate(std::vector<std::string>& ranVec, int howMany, int size,
int lowerValue, int upperValue);
b

#endif // ConstraintK nutStrRandomGenerator

190

#f 1defined(MATRIX_CALCULATOR__HH)
#define MATRIX_CALCULATOR__HH

typedef std:vector<int> IntVector;
typedef std::vector<IntVector> IntMatrix;

class DistanceM atrixCal cul aor

{
public:
IntMatrix& CalculateODDistMatrix(int size)
IntMatrix& CalculateODDistMatrix(int size);
private:
IntMatrix odMatrix_;
IntMatrix ndMatrix_;
|3
#endif

191

#f 1defined (KNUT_INT_RAND_GEN__H)
#define KNUT_INT_RAND_GEN__H

#include <string>
#include "RandGenlmpl.h"
#include'RandomGenerator.h"

class KnutlntRandomGenerator : public RandomGenerator<int>
{
public:
explicit KnutlntRandomGenerator(RandGenlmpl& randGen)
: RandomGenerator<int>(randGen) { }
void generate(std::vector<int>& ranVec, int howMany, int size,
int lowerValue, int upperValue);

#endif

#f 1defined(MANSAH__KNUT_RAND_GEN__HH)
#define MANSAH__KNUT_RAND_GEN__HH

#include <string>
#include'RandGenlmpl.h"

class KnutRandomGenerator : public RandGenlmpl

{

public:
KnutRandomGenerator(long seed) : RandGenl mpl(seed) { }
float ran() { return RandGenlmpl::ran(); }

|3

#endif

192

#f 1defined(MANSAH__KNUTSTRRAND_GEN__HH)
#define MANSAH__KNUTSTRRAND_GEN__HH

#include <string>
#include "RandGenl mpl.h"
#include'RandomGenerator.h"

class KnutStrRandomGenerator : public RandomGenerator<std::string>
{
public:
explicit KnutStrRandomGenerator(RandGenl mpl& randGen)
: RandomGenerator<std::string>(randGen) { }
void generate(std::vector<std::string>& ranVec, int howMany, int size,
int lowerValue, int upperValue);

#endif

#f 1defined (LOCAL_SEARCH_MODELER__H)
#define LOCAL_SEARCH_MODELER_H

class Local SearchM odel er

{

public :
Local SearchModeler() { }
virtual ~Local SearchModeler() { }
void Model();

protected:
virtual void Generatel nitialSolution() = 0;
virtual void CalculateObjectiveValue() = 0;
virtual void PerformLocal Search() = 0;

private:
Local SearchM odeler(Local SearchModeler& other); // not defined to prevent copying
Local SearchModeler& operator=(Local SearchModeler& other); // not defined to gnment

#endif

193

#f 1defined (LOCAL_SEARCH_MODELER__H)
#define LOCAL_SEARCH_MODELER_H

class Local SearchModel er

{

public :
Local SearchModeler() { }
virtual ~Local SearchModeler() { }
void Model();

protected:
virtual void Generatel nitialSolution() = 0;
virtual void CalculateObjectiveValue() = 0;
virtual void PerformLocal Search() = 0;

private:
L ocal SearchM odeler(Local SearchModeler& other); // not defined to prevent copying
Local SearchModeler& operator=(Local SearchModeler& other); // not defined to gnment

#endif

#if |defined(MATRIX__H)
#define MATRIX__H

#include "Utility.h"

template <typename T>
class Matrix
{
public:
Matrix() { }
virtual ~Matrix() { }

virtual int columns() = 0;
virtual int rows() = 0;
virtual T& GetMatrix() = 0;

#endif

194

#f 1defined(MODEL_FIVE__H)
#define MODEL_FIVE__H

#include "L oca SearchModeler.h"
#include "Matrix.h"

#include <vector>

#inclde <cassert>

#include "ModelOne.h"
#include "RestrictionsAllocator.h"

template <typename T1, typename T2, typename ObjectCalc>
class ModelFive : public Local SearchModeler, private ObjectCalc

{
typedef std::string MOD5STR,;
public:
ModelFive
T1& ranGen, Matrix<T2>& odMat, const char* outFile = "out.log",
int lattice = 4, int points = 10,
int sample = 100, const char* inMatrixFile=0
):
randomGenerator_(ranGen), mPointSize (points), nLatticeSize (lattice),
sample _(sample), odMat_(odMat), outPutFile (outFile ? outFile:
"out.log"),
matrixFile (inMatrixFile ? inMatrixFile : ")
{}
~ModelFive() { }
private:

T1& randomGenerator_;
int mPointSize ;

int nLatticeSize ;

int sample_;

std::string outPutFile ;
std::string matrixFile_;
StrVec solutionVec ;
Matrix<T2>& odMat_;

// from Local SearchM odel er
void Generatel nitial Solution();
void CalculateObjectiveVal ue();
void PerformL ocal Search();

void Recreatel ntString(MOD5STR& str, IntVec& intVec);
void ExtractIntegersFromString(IntVec& intVec, const MOD5STR& str);

void printResult(int mode = std::ios::out, char* msg = 0)

{
}

printContai nerResult(solutionVec_, mode , msg);

195

}: // MODEL_FIVE__H

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::Generatel nitial Sol ution()

{

/I generating the initial solution using model one

RecipeRandGenl mpl gRanGen(-1L);

ConstraintK nutStrRandomGenerator gK nutRanGen(gRanGen);

ODMatrixGen odMatGen(matrixFile .c_str());

M odel One<Constrai ntK nutStrRandomGenerator, |ntMatrix, ObjV alueCal culator>
model One(gK nutRanGen, odMatGen, outPutFile .c_str(),
nLatticeSize , mPointSize , sample_, matrixFile .c_str());

model One.Model ();
StrVec& initSol = model One.GetSolution();

/I now we have theinitia solution from model one we have to proceed to do the rest
solutionVec_.swap(initSol);

} /1l Generatelnitial Solution

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::CalculateObjectiveValue()

// nothing to be done here
} // CalculateObjectiveValue

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::PerformLocal Search()

{

NDMatrixGen ndM at;
ndMat.GetMatrix(nL atticeSize);

IntVec strElemAsIntVec;
RestrictionsAllocator resAlloc(nL atticeSize);

for(inti = 0; i < solutionVec_.size(); ++i)

{
ExtractIntegersFromString(strElemAsi ntV ec, solutionVec_Ji]);

for(intj = 1;] < strElemAsIntVec.size(); ++j)

LNGINTPAIR objValuepair = CalculatObjectiveValue(j, solutionVec [i],
odMat_.GetMatrix(),
ndMat.GetMatrix(),
resAlloc.FindSet(strElemAsI ntVec[j]));

/I assign poisition value with result to change string
strElemAsIntVec[j] = objValuepair.second;

196

RecreatelntString(solutionVec_[i], strElemAsIntVec);
}

/I print the local serach result

printResult(std::ios::app, "MODEL V: Results After Local Search");

/I calculate new overall objective function.
LNGVEC objValueVec;
for(unsigned int cnt = O; cnt < solutionVec .size(); ++cnt)

objValueVec.push_back(CalculatObjectiveVa ue(solutionVec [cnt],
odMat_.GetMatrix(), ndMat.GetMatrix()));

printContainerResult(objValueVec, std::ios::app, "MODEL V: Results of Objective Values');

} /1 PerformLocal Search

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::ExtractintegersFromString(IntVec& intVec, const
MODS5STR& str)
{
if('intVec.empty()) intVec.clear();
unsigned int strSize = str.size();
MODS5STR buffer;
bool hadAnElement = false;
bool extractBuffer = falseg;
for(unsigned int cnt = O; cnt < strSize; ++cnt)

if(str[ent] =X
buffer += str[cnt];
hadAnElement = true;

}
else if(hadAnElement)

{
int value = atoi(buffer.c_str());

intVec.push_back(value);

hadAnElement = falsg;

if(Ibuffer.empty()) buffer ="";
} Il for

// record the last value
intVec.push_back(atoi(buffer.c_str()));

} /1 ExtractintegersFromString

template <typename T1, typename T2, typename ObjectCalc>
vl Model Five<T1, T2, ObjectCalc>::Recreatel ntString(MOD5STR& str, IntVec& intVec)

197

IntVec::iterator iter = intVec.begin();
IntVec::iterator iterEnd = intVec.end();

const char BUFSIZE = 10;

char bufferfBUFSI ZE];
MODS5STR newStr;
for(; iter 1= iterEnd; ++iter)
{
memset(buffer, 0, sizeof(char) * BUFSIZE);
if(*iter < 10)
sprintf(buffer, "xx%d", *iter);
elseif(*iter < 100)
sprintf(buffer, "x%d", *iter);
elseif(*iter < 1000)
sprintf(buffer, "%d", *iter);
else
throw 1; // error
assert(strlen(buffer) < 4); // we can take only up to 999
if(strlen(buffer) > 3) throw 1;
newStr += buffer;
}
str = newSitr;

} // RecreatelntString

#endif

198

#f 1defined(MODEL_ONE__H)
#define MODEL_ONE__H

#include "Utility.h"

#include "L oca SearchModeler.h"
#include "Matrix.h"

#include <vector>

#include <cassert>

#include "NDMatrixGen.h"

template <typename T1, typename T2, typename ObjectCalc>
class ModelOne : public Local SearchModeler, private ObjectCalc

{
typedef std::string MOD1STR,;

public:
ModelOne

T1& ranGen, Matrix<T2>& odMat, const char* outFile = "out.log",
int lattice = 4, int points = 10,
int sample = 100, const char* inMatrixFile =0

randomGenerator_(ranGen), mPointSize (points), nLatticeSize (lattice),
sample_(sample), odMat_(odMat), outPutFile (outFile ? outFile:
"out.log"),
matrixFile (inMatrixFile ? inMatrixFile : "")

{}

~ModelOne() { }
StrVec& GetSolution() { return solutionVec_; }

private:

T1& randomGenerator_;
int mPointSize ;

int nLatticeSize ;

int sample_;

std::string outPutFile ;
std::string matrixFile_;
StrVec solutionVec ;
Matrix<T2>& odMat_;

/I for objective value
DoubleVec objectiveVector_;

void Generatel nitial Solution();
void CalculateObjectiveVal ue();
void PerformL ocal Search();

void printResult(int mode = std::ios::out, char* msg = 0)

{
}

printContai nerResult(solutionVec_, mode , msg);

void Recreatel ntString(MOD1STR& str, IntVec& intVec);

199

void ExtractIntegersFromString(IntVec& intVec, const MOD1STR& str);

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::Generatel nitial Sol ution()

{
randomGenerator_.generate(solutionVec_, 100, mPointSize , 1, nLatticeSize);
char buffer[512];
sprintf(buffer, "MODEL I: Results Initial Solution;\n\t # lattice points = %d"
"\t# of points = %d\tSample size = %d", nLatticeSize , mPaintSize , sample);
printResult(std::ios::out, buffer);
1 printResult(std::ios::out, "MODEL I: Initial Solution");

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::Cal culateObjectiveV alue()

{

/*
if('objectiveVector_.empty()) objectiveVector_.clear();
char[4] buffer;

StrVec::iterator iter = solutionVec_::begin();
StrVec::iterator iterEnd = solutionVec_::end();
std::string::iterator striter;

std::string::iterator striterEnd,;

/I extract values form string
for(; iter 1= iterEnd; ++iter)

{
std::vector<int> latticeValues;

char* ptr = (*iter)[0];
for(; ptr !=0; ptr + 3) // 3 = # representing a position
memset(buffer, 0, 4 * sizeof(char));
strncpy(buffer, ptr, 3);
std::string digit;
for(inti = 0; buffer[i] !=0; ++i)
if(isdigit(buffer[i])
{
digit += buffer[i];
} I for
if(!digit.empty())
{

latticeValues.push_back(atoi(digit.c_str()));

200

assert(latticeVaues.size() == mPointSize); // check point

/I now calculate the objective value
for(intj = 0; j < mPointSize_; ++j)

} Il for

/*
M
for(inti =1; i <mPointSize_; ++i)

{ for (intj =i+ 1;j <mPointSize_; ++j)
{
intl=j;
intk=i;
double value = od[i,j] - nd[k,I];
value *= value;
}
objectiveVector_.push back(value);
}
*/
}

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCal c>::Extractl ntegersFromString(IntVec& intVec, const
MOD1STR& str)
{
if('intVec.empty()) intVec.clear();
unsigned int strSize = str.size();
MODI1STR buffer;
bool hadAnElement = falsg;
bool extractBuffer = false;
for(unsigned int cnt = O; cnt < strSize; ++cnt)

if(strlent] '="x")

buffer += str[cnt];
hadAnElement = true;

}
else if(hadAnElement)

{
int value = atoi(buffer.c_str());

intVec.push_back(value);
hadAnElement = falsg;
if(buffer.empty()) buffer ="";

} Il for

201

/I record the last value
intVec.push_back(atoi(buffer.c_str()));

} /1 ExtractintegersFromString

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::RecreatelntString(MOD1STR& str, IntVec& intVec)

{

IntVec::iterator iter = intVec.begin();
IntVec::iterator iterEnd = intVec.end();

const char BUFSIZE = 10;

char bufferfBUFSIZE];
MODI1STR newsStr;
for(; iter 1= iterEnd; ++iter)
{
memset(buffer, 0, sizeof(char) * BUFSIZE);
if(*iter < 10)
sprintf(buffer, "xx%d", *iter);
elseif(*iter < 100)
sprintf(buffer, "x%d", *iter);
elseif(*iter < 1000)
sprintf(buffer, "%d", *iter);
else
throw 1; // error
assert(strlen(buffer) < 4); // we can take only up to 999
if(strlen(buffer) > 3) throw 1;
newStr += buffer;
}
str = newStr;

} // RecreatelntString

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::PerformLocal Search()

{

NDMatrixGen ndMat;
ndMat.GetMatrix(nL atticeSize);
IntVec strElemAsIntVec;

for(inti = 0; i < solutionVec_.size(); ++i)

{

Extractl ntegersFromString(strElemAs! ntVec, solutionVec_[i]);
for(intj = 1; j < strElemAsIntVec.size(); ++)

LNGINTPAIR objVauepair = CalculatObjectiveValue(j, solutionVec [i],
odMat_.GetMatrix(),

ndMat.GetMatrix());

202

/I assign poisition value with result to change string
strElemAsIntVec[j] = objValuepair.second;

}

Recreatel ntString(solutionVec_Ji], strElemAsIntVec);
}

/I print the local serach result
char buffer[512];
sprintf(buffer, "MODEL |: Results After Local Search;\n\t # lattice points = %d"
"\t# of points = %d\tSample size = %d", nLatticeSize , mPaintSize , sample);
printResult(std::ios::app, buffer);

1 printResult(std::ios::app, "MODEL |: Results After Local Search");

/I calculate new overall objective function.
LNGVEC objValueVec;
for(unsigned int cnt = O; cnt < solutionVec_.size(); ++cnt)

objVaueVec.push_back(CalculatObjectiveVa ue(solutionVec [cnt],
odMat_.GetMatrix(), ndMat.GetMatrix()));

}

printContainerResult(objValueVec, std::ios::app, "MODEL |: Results of Objective Values');

/*

template <typename T1, typename T2, typename ObjectCalc>

void ModelOne<T1, T2, ObjectCalc>::printResult(int mode, char* msg)
{

std::of stream outStream(" out.log”, mode);

if(msg)
outStream << msg << std::endl;

StrVec::iterator iter = solutionVec_.begin();
StrVec::iterator iterEnd = solutionVec_.end();
for(inti = 1; iter |= iterEnd; ++iter, ++i)

{

outStream << (*iter) <<" ";

if(1%5 == 0) outStream << std::endl;
}
outStream << std::endl;
outStream << std::endl;

203

#endif

#f 1defined(ND_MATRIX_GEN__H)
#define ND_MATRIX_GEN__H

#include "matrix.h"
#inclde <map>

classNDMatrixGen : public Matrix<IntMatrix>

{
public:
typedef std::pair<int*, int*> IntPointerPair;
typedef std::map<int, IntPointerPair> IntPointerPairMap;
public:
NDMatrixGen();
~NDMatrixGen() { }
int columns() { return ndMatrix_.empty() ? 0 : ndMatrix_[0].size(); }
int rows() { return ndMatrix_.size(); }
IntMatrix& GetMatrix() { return ndMatrix_; }
IntMatrix& GetMatrix(int size) { Generate(size); return ndMatrix_; }
private:
int type_;
IntPointerPairM ap matrixContainer_;
IntMatrix ndMatrix_;
void Generate(int size);
1
#endif

204

#f 1defined(MANSAH__OBJ VALUE_CALC__HH)
#define MANSAH__OBJ VALUE_CALC__HH

#include "Utility.h"
#include <string>
#include <vector>
#include <set>
#include "Matrix.h"

class ObjValueCalculator
{
typedef std::string OBJV String;
typedef std::vector<int> OBJIntVec;
typedef std::vector<LNGINTPAIR> LNINTPAIRVEC;

public:
LNGINTPAIR CalculatObjectiveValue
(
unsigned int pos,
const OBJV String& str,
IntMatrix& odMat,
IntMatrix& ndMat

LNGINTPAIR CalculatObjectiveValue
(
unsigned int pos,
const OBJV String& str,
IntMatrix& odMat,
IntMatrix& ndMat,
INTSET& relLPts

long CalculatObjectiveValue
(
const OBJV String& str,
IntMatrix& odMat,
IntMatrix& ndMat

private:
void ExtractValues(const OBJV String& inStr, OBJIntVec& outVec);

void CalculatObjectiveValue
(
unsigned int pos,
const OBJV String& str,
IntMatrix& odMat,
IntMatrix& ndMat,
LNINTPAIRVEC& objectiveFunctionList

205

#endif

#f 1defined(OD_MATRIX_GEN__H)
#define OD_MATRIX_GEN__H

#include "matrix.h"
#include <string>

class ODMatrixGen : public Matrix<IntMatrix>

{
public:
~ODMatrixGen() { }
explicit ODMatrixGen(const char* fileName);
explicit ODMatrixGen(std::string& fileName);
int columns() { if(!generated) Generate();
if(lodMatrix_.empty()) { return odMatrix_[0].siz&();} elsereturn 0; }
int rows() { if('generated_) Generate(); return odMatrix_.size(); }
IntMatrix& GetMatrix() { return odMatrix_; }
private:
bool generated_;
IntMatrix odMatrix_;
std::string fileName _;
void Generate();
void Generate(bool fromFile);
h
#endif

206

#f 1defined(MANSAH__RAND_GEN__IMP__HH)
#define MANSAH__RAND_GEN__IMP__HH

#include <string>
#include <ctime>

class RandGenlmpl
{
public:
explicit RandGenlmpl(long idum) : idum_(idum) { } // use -ve valueto initialize
RandGenlmpl() { idum_ =time(0); idum_ = -idum_;} // for true random
virtual float ran() = 0 { return ran(&idum); }
virtual ~RandGenlmpl() { }

private :

long idum_;
float RandGenlmpl::ran(long *idum);

#endif

#f 1defined(MANSAH__RAND_GEN__HH)
#define MANSAH__RAND_GEN__HH

#include <vector>
class RandGenlmpl;

template < class T>
class RandomGenerator

{
public:
virtual void generate(std::vector<T>& ranVec, int howMany, int size,
int lowerValue, int upperVaue) =0;
RandomGenerator(RandGenlmpl& randGen) : randGen_(randGen) { }
virtual ~RandomGenerator() { }
protected:
float ran() { return randGen_.ran(); }
private:
RandGenlmpl& randGen_;
b
#endif

207

#f 1defined(MANSAH__RECIPE_RAND_GEN__IMP__HH)
#define MANSAH__RECIPE_RAND_GEN__IMP__HH

#include "RandGenlmpl.h"

class RecipeRandGenlmpl : public RandGenlmpl
{

public:
explicit RecipeRandGenl mpl(long idum) : RandGenl mpl (idum) { }
RecipeRandGenlmpl() { }
float ran() { return RandGenlmpl::ran(); }

#endif

#f 1defined(MANSAH_RESTICTIONS ALLOCATOR__HH)
#define MANSAH_RESTICTIONS ALLOCATOR__HH

#include " ObjectiveVaueCalculator.h"
#include <map>

class RestrictionsAllocator
{

typedef std::map<int, INTSET*, std::less<int> > RESTRICTTORMAP,
public:

}

explicit RestrictionsAllocator(int maxLatticeValue) : maxLatticeValue (maxLatticeValue) {

RestrictionsAllocator() : maxLatticeVaue (4) { }
~RestrictionsAllocator();

INTSET& FindSet(int size);
private:
int maxLatticeValue ;
RESTRICTTORMAP restrictors ;
INTSET& Allocate(int size);
void Filter(INTSET& object);
}: /I MANSAH_RESTICTIONS ALLOCATOR__HH

#endif

208

#if 1defined(UTILITY__MANSA__HH)
#define UTILITY__MANSA__HH
#include <vector>

#include <set>

#include <fstream>

typedef std::vector<int> IntVec;
typedef std::vector<IntVec> IntMatrix;

typedef std::vector<std::string> StrVec;
typedef std::vector<double> DoubleVec;

typedef std::vector<double> DBLVEC,;
typedef std::pair<long, int> LNGINTPAIR;
typedef std::vector<long> LNGVEC;

typedef std::set<int, std::less<int> > INTSET;

template <class T>
void printContainerResult(T& list, int mode = std::ios::out, char* msg = 0)

{

std::of stream outStream(" out.log”, mode);

if(msg)
outStream << msg << std::endl;

T:iterator iter = list.begin();
T:iterator iterEnd = list.end();
for(inti = 1; iter != iterEnd; ++iter, ++i)

{

outStream << (*iter) << " ";

if(i%5 == 0) outStream << std::end:
}

outStream << std::endl;
outStream << std::endl;

} /1 printContainerResult

#endif

209

Appendix B

Source code of IRNS

Model timer ("easy.mod"); // calculates running time

timer.solve();

float+ begintime := timer.getTime();

data "l atticepoints256.dat”; // file containing latticepoints

data " SM4-1504-5.dat"; // file containing original points

enum points ... ; // original points

int+ xcoorm[points] :
int+ ycoorm[points] :
int+ zcoorm[points] :

... ; Il x-coordinates of original points
... ; I y-coordinates of original points

float+ od[i in points, j in points] := sgrt((xcoorm[i] - xcoorm([j])* (xcoorm[i] - xcoorm[j]) + (ycoorm(i]
- ycoorm[j])* (ycoorm[i] - ycoorm[j]) + (zcoorm[i] - zcoorm[j])* (zcoorm[i] - zcoorm[j]));
/I distance matrix for original points

enum latticepoints ... ; // latticepoints

int+ xcoorn[latticepoints] :
int+ ycoorn[latticepoints] :

... ; Il y-coordinates of latticepoints
... ; Il y-coordinates of latticepoints

setof (latticepoints) N1 := ... ; // subsets of latticepoints used at different steps of the model

setof (latticepoints) N21 :
setof (latticepoints) N22 :
setof (latticepoints) N23 :
setof (latticepoints) N24 :

setof (latticepoints) N31 :
setof (latticepoints) N32 :
setof (latticepoints) N33 :
setof (latticepoints) N34
setof (latticepoints) N35
setof (latti cepoints) N36
setof (latticepoints) N37 :
setof (latticepoints) N38 :
setof (latticepoints) N39 :

setof (latticepoints) N310 :
setof (latticepoints) N311 :
setof (latticepoints) N312 :
setof (latticepoints) N313 :
setof (latticepoints) N314 :
setof (latticepoints) N315 :
setof (latticepoints) N316 :

210

setof (latticepoints) N41 :
setof (latticepoints) N42 :
setof (latti cepoints) N43
setof (latti cepoints) N44
setof (latti cepoints) N45
setof (latti cepoints) N46
setof (latti cepoints) N47
setof (latticepoints) N48 :
setof (latti cepoints) N49 :
setof (latticepoints) N410 :
setof (latticepoints) N411 :
setof (latti cepoints) N412
setof (latti cepoints) N413
setof (latticepoints) N414
setof (latti cepoints) N415
setof (latticepoints) N416
setof (latticepoints) N417
setof (latticepoints) N418
setof (latticepoints) N419
setof (latti cepoints) N420
setof (latti cepoints) N421
setof (latti cepoints) N422
setof (latti cepoints) N423
setof (latti cepoints) N424
setof (latti cepoints) N425
setof (latti cepoints) N426
setof (latti cepoints) N427
setof (latti cepoints) N428
setof (latti cepoints) N429
setof (latti cepoints) N430
setof (latti cepoints) N431
setof (latti cepoints) N432
setof (latti cepoints) N433
setof (latti cepoints) N434
setof (latti cepoints) N435
setof (latti cepoints) N436
setof (latti cepoints) N437
setof (latti cepoints) N438
setof (latti cepoints) N439
setof (latti cepoints) N440
setof (latticepoints) N441
setof (latti cepoints) N442
setof (latti cepoints) N443
setof (latti cepoints) N444
setof (latti cepoints) N445
setof (latti cepoints) N446
setof (latti cepoints) N447
setof (latti cepoints) N448
setof (latti cepoints) N449
setof (latti cepoints) N450
setof (latti cepoints) N451
setof (latti cepoints) N452
setof (latti cepoints) N453
setof (latti cepoints) N454
setof (latti cepoints) N455 :

211

setof (latti cepoints) N456 :
setof (latti cepoints) N457 :
setof (latti cepoints) N458
setof (latti cepoints) N459
setof (latti cepoints) N460
setof (latti cepoints) N461
setof (latti cepoints) N462
setof (latti cepoints) N463 :
setof (latti cepoints) N464 :

float+ Nd[i in latticepoints, j in latticepoints] := sgrt(1.5* ((xcoorn[i] - xcoorn[j])* (xcoorn[i] -
xcoorn[j]) + (ycoorn[i] - ycoorn[j])* (ycoorn[i] - ycoorn[j])));

/I distance matrix for latticepoints

latticepoints Assignment[points]; // stores assignment for points

/I The following sets are used to divide the set of points to be assigned into sets of 10
setof (points) Q; // contains the point with the smallest order

setof (points) S; // contains the 10 points to be assigned

setof (points) R; // contains points that are yet to be assigned

int minimum,; // the order of the point with the least order

int counter ;= 0; // counter for deciding which model to usein step 1

float+ OB := 0; // objective value

float+ OB1 := 0; // objective value after step 1
float+ OB2 :=0; // step 1 stops when OB1 = OB2

setof (points) Opoints := {k | k in points}; // set of al original points

setof (points) M := { i |i in points}; // set of pointsto be assigned at a particular time
setof (latticepoints) N := {j |j in N1}; // latticepoints to be used at at a particular time
setof (points) Mb; // points kept constant in step 1

setof (latticepoints) Na; // subset of N to which points can be assigned
setof (points) Ma; // points kept constant in all other steps

setof (latticepoints) NNJi in points] :={}; // neighboring lattice points for point i

foral(i in points)

Assignment][i] ;= latpt_one_one;
Model mathprograml ("step31.mod") editMode; // model for initial run of step 1
Model mathprogramla ("step31la.mod") editMode; // model for all other runs of step 1
llstep 1
Mb:={};
R :={i|i in points};

repeat {

212

S:={}h
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
counter := counter + 1,
M :={i|iinS};
if counter = 1 then {
mathprograml.solve();
/I cout << "objective value after step 1'is: " << mathprograml.objectiveValue() << endl;
/I cout<<" Timefor step 1is: " << mathprograml.getTime() << endl;
forall(j in N){

foral (i in M : mathprogram1.X[i,j] = 1)
Assignment][i] :=j;
}

mathprograml.reset();
}

if counter > 1 then {
mathprogramla.solve();
/I cout << "objective value after step 1" is: " << mathprogramla.objectiveValue() << endl;
/I cout <<" Timefor step 1is: " << mathprogramla.getTime() << endl;
forall(j in N){
foral (i in M : mathprogramla.X[i,j] = 1)
Assignment][i] :=j;
}

mathprogramla.reset();
}

Mb := Mb union M;
} until card(R) = 0;
OB2 := sum (ordered i, in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);

213

cout << "The objective function after step 1is. " << OB2 << end|;

/Istep 1 isrepeated until solution converges

repeat {
OB1:=0B2;
OB2:=0;

counter := 0;

R :={i|iinpoints};
repeat {
S:={};
repeat {
minimum ;= min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
counter := counter + 1,
M :={iliinS};
Mb := Opoints diff M;
mathprogramla.solve();
forall(j in N){
foral (i in M : mathprogramla.X[i,j] = 1)
Assignment][i] :=j;
}
mathprogramla.reset();
} until card(R) =0;
OB2 := sum (ordered i,j in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);

} until OB1 = OB2;

214

OB :=0B1;
cout << "The objective function after step 1is. " << OB << endl;

Model mathprogram?2 ("step32a.mod") editM ode;

Il step 2

M :={ i i inpoints: Assignment[i] = latpt_one_one};
N :={j|j inN21};
Na:={k|kinN: (4 <=ord(k) <8)};
R:={iliinM};

if card(M) >= 1 then {
repeat {
S={k

repeat {
minimum := min (i in R) ord(i);

Q:={iliinR: ord(i) = minimum};
S:=SunionQ;

R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();
cout << "objective value after step 2ais: " << mathprogram2.objectiveValue() << endl

1
/I cout <<" Timefor step 2ais: " << mathprogram2.getTime() << endl;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;
}
mathprogram?2.reset();

} until card(R) = 0;
}
:={ i [i in points: Assignment[i] = latpt_two_one};

= (i I} inN22};

M
N :={j
Na:={k|kinN: (8<=ord(k) < 12)};

215

Ma := Opoints diff M;
R:={i]iinM};

if card(M) >= 1 then{
repeat {

S:={}

repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;

} until card(S) >= 10V card(R) = 0;

M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();

foral (j in Na) {
foral (iinM : mathprogramZ.X[i,j] =1

Assignment][i] :=j;

}

/I cout << "objective value after step 2bis: " << mathprogram?2.objectiveVaue() << endl;

/I cout <<" Timefor step 2bis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} } until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_three one};
N:={j|j inN23};
Na:={k|kinN: (12 <= ord(k) < 16)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={k

repeat {

216

minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;

} until card(S) >= 10V card(R) = 0;

M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();

forall (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 2cis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 2cis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i [i in points : Assignment[i] = latpt_four_one};
N :={j|jinN24};
Na:={k|kinN: (16 <= ord(k) < 20)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={k
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;

} until card(S) >= 10V card(R) = 0;

217

M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (iinM : mathprogramZ.X[i,j] =1

Assignment][i] :=j;

}

/I cout << "objective value after step 2d is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 2d is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

OB2 := sum (ordered i, in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);

cout << "The objective function after step 2 is. " << OB2 << end|;

Model mathprogram3 ("step32b.mod") editMode;

/I local search

repeat {
OB1:=0B2;
OB2:=0;

M :={i]|iinpoints: Assignment[i] = latpt_one two \/ Assignment[i] = latpt_two_two V
Assignment][i] = latpt_three_two VAssignment[i] = latpt_four_two};
Ma := Opoints diff M;

N :={j|jinN24};
Na:={};
R:={i|iinM};

if card(M) >= 1 then {

foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
8) V (xcoorn[j] = xcoorn[Assignment][i]] + 8))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 8) V
(ycoorn[j] = ycoorn[Assignment[i]] + 8))};

foral (i in M)
Na:= Naunion NN[i];

repeat {

218

S:={}h
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >=20V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram3.solve();
forall(j in NaY{
foral (i in M : mathprogram3.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram3.reset();

} until card(R) = 0;
}

M :={i|iinpoints: Assignment[i] = latpt_five two V Assignment[i] = latpt_six_two V
Assignment][i] = latpt_seven two VAssignment[i] = latpt_eight_two};
Ma := Opoints diff M;

N :={j|jinN24};
Na:={};
R:={i|iinM};

if card (M) >= 1 then {
foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
8) V (xcoorn[j] = xcoorn[Assignment][i]] + 8))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 8) V
(ycoorn[j] = ycoorn[Assignment[i]] + 8))};

foral (i in M)
Na:= Naunion NN[i];

repeat {
S={k

repeat {

219

minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:= R diff Q;
} until card(S) >=20V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram3.solve();
forall(j in NaY{
foral (i in M : mathprogram3.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram3.reset();
} until card(R) = 0;
}

M :={i|iinpoints: Assignment[i] = latpt_nine_two V Assignment[i] = latpt_ten_two V
Assignment][i] = latpt_eleven_two VVAssignment[i] = latpt_twelve two};
Ma := Opoints diff M;

N :={j|jinN24};
Na:={};
R:={i]iinM};

if card(M) >= 1 then {
foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
8) V (xcoorn[j] = xcoorn[Assignment[i]] + 8))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 8) V
(ycoorn[j] = ycoorn[Assignment[i]] + 8))};

foral (i in M)
Na:= Naunion NN[iJ;

repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i|iinR: ord(i) = minimum};

S:=Sunion Q;

220

R:=Rdiff Q;
} until card(S) >=20V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram3.solve();

forall(j in NaY{
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram3.reset();
} until card(R) = 0;
}

M :={i|iinpoints: Assignment[i] = latpt_thirteen two \/ Assignment[i] = latpt_fourteen_two V
Assignment][i] = latpt_fifteen_two VAssignment[i] = latpt_sixteen two};
Ma := Opoints diff M;

N:={j|jinN24};
Na:={};
R:={i|iinM};

if card(M) >= 1 then{
foral (i in M)
NNI[i] :={jl in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment[i]] - 8)
V/ (xcoorn[j] = xcoorn[Assignment][i]] + 8))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 8) V
(ycoorn[j] = ycoorn[Assignment[i]] + 8))};

foral (i in M)
Na:= Naunion NN[iJ;

repeat {

S:={}

repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R := R diff Q;

} until card(S) >= 20V card(R) = O;

M :={iliinS};

221

Ma := Opoints diff M;
mathprogram3.solve();
forall(j in NaY{

foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;
}

mathprogram3.reset();
} until card(R) = 0;
}

OB2 := sum (ordered i, in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);
} until OB1 = OB2;

cout << "The objective function after step 2 is. " << OB2 << end|;

/] step 3

M :={ i [i in points : Assignment{i] = latpt_one_two};
N:={j|jinN31};

Na:={k | kinN: (20 <= ord(k) < 24)};
R:={i]iinM};

if card(M) >= 1 then {
repeat {

S={}

repeat {
minimum := min (i in R) ord(i);
Q:={iliinR:ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;

} until card(S) >= 10V card(R) = 0;

M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();

/I cout << "objective value after step 3ais: " << mathprogram2.objectiveValue() << endl;

222

/Il cout <<" Timefor step 3ais: " << mathprogram2.getTime() << endl;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_two_two};
N:={j|j inN32};
Na:={k|kinN: (24 <=ord(k) < 28)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 3bis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 3bis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;

223

M :={i i inpoints: Assignment[i] = latpt_three two};
N :={j|jinN33};
Na:={k|kinN: (28 <= ord(k) < 32)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}
/I cout << "objective value after step 3cis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 3cis: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_four_two};
N:={j |jinN34};

Na:={k|kinN: (32 <=ord(k) < 36)};

Ma := Opoints diff M;

R:={i|iinM};

if card(M) >= 1 then{

224

repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 3d is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 3dis: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_five two};

N :={j|jin N35};
Na:={k|kinN: (36 <= ord(k) < 40)};
R:={i|iinM};

if card(M) >= 1 then {
repeat {
S={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;

R:=Rdiff Q;

225

} until card(S) >= 10V card(R) = 0;

M :={i|iinS};

Ma := Opoints diff M;

mathprogram?2.solve();
/I cout << "objective value after step 3eis: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 3eis: " << mathprogram2.getTime() << endl;

foral (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={i|iinpoints: Assignment[i] = latpt_six_two};
N :={j|jin N36};
Na:={k|kinN: (40 <=ord(k) < 44)};
Ma := Opoints diff M;
R:={i]iinM};
if card(M) >=1 then {
repeat {
S={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

226

Assignment[i] :=j;

}

/I cout << "objective value after step 3f is: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 3f is: " << mathprogram2.getTime() << end!;
mathprogram2.reset();

} } until card(R) =0;

M :={ i i inpoints: Assignment[i] = latpt_seven_two};
N:={j |jinN37};
Na:={k|kinN: (44 <= ord(k) < 48)};
Ma := Opoints diff M;
R:={i]iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iin S};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;
}
/I cout << "objective value after step 3gis: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 3gis: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

227

M :={i i inpoints: Assignment[i] = latpt_eight_two};
N:={j|j inN38};
Na:={k|kinN: (48 <= ord(k) < 52)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;
}
/I cout << "objective value after step 3his: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 3his: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_nine_two};

N :={j|jinN39};
Na:={k|kinN: (52 <= ord(k) <56)};
R:={i|iinM};

if card(M) >= 1 then{

repeat {

228

S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 3i is: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 3i is: " << mathprogram2.getTime() << end!;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_ten two};
N :={j|j in N310};
Na:={k|kinN: (56 <= ord(k) < 60)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;

R:=Rdiff Q;

229

} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 3j is: " << mathprogram?2.objectiveValue() << endl;

/I cout<<" Timefor step 3j is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) = 0;

M :={i i in points: Assignment[i] = latpt_eleven two};
N :={j|jinN311};
Na:={k|kinN: (60 <= ord(k) < 64)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();

forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

230

Assignment[i] :=j;

}

/I cout << "objective value after step 3k is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 3k is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_twelve two};
N :={j|j inN312};
Na:={k|kinN: (64 <=ord(k) < 68)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;
}
/I cout << "objective value after step 3l is: " << mathprogram2.objectiveVaue() << endl;

/I cout <<" Timefor step 3l is: " << mathprogram2.getTime() << endl;

mathprogram?2.reset();
} until card(R) = 0;

231

M :={ i i inpoints: Assignment[i] = latpt_thirteen_two};
N :={j|jin N313};
Na:={k|kinN: (68 <=ord(k) <72)};
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 3mis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 3mis: " << mathprogram2.getTime() << endl;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fourteen_two};
N :={j|j in N314};
Na:={k|kinN: (72 <=ord(k) < 76)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {

S:={};

232

repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 3nis: " << mathprogram2.objectiveVaue() << endl;

/I cout <<" Timefor step 3nis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} } until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_fifteen two};
N :={j |j in N315};
Na:={k|kinN: (76 <= ord(k) < 80)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;

R:= Rdiff Q;

233

} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 3ois: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 30is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={i i in points: Assignment[i] = latpt_sixteen two};
N :={j|jin N316};
Na:={k | kin N: (80 <= ord(k) < 84)};
Ma := Opoints diff M;
R:={i]iinM};
if card(M) >=1 then {
repeat {
S={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();

forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

234

Assignment[i] :=j;

}
/I cout << "objective value after step 3pis: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 3pis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

OB2 := sum (ordered i, in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);

cout << "The objective function after step 3is. " << OB2 << end|;

/I local search

repeat {
OB1:=0B2;
OB2:=0;

M :={i|iinpoints: Assignment[i] = latpt_one threeVV Assignment[i] = latpt_two_threeV
Assignment][i] = latpt_three three\/ Assignment[i] = latpt_four_three};

Ma := Opoints diff M;

N :={j|j inN316};

Na:={};

if card(M) >= 1 then{

foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[i];

mathprogram3.solve();

forall(j in NaX{
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_five three\V Assignment[i] = latpt_six_threeV
Assignment][i] = latpt_seven three \/Assignment][i] = latpt_eight_three};
Ma := Opoints diff M;

235

N :={j|jin N316};
Na:={};

if card (M) >= 1 then {
foral (i in M)

NNT[i] :={jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[iJ;

mathprogram3.solve();

forall(j in Na){
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_nine_three\/ Assignment[i] = latpt_ten_threeV
Assignment][i] = latpt_eleven_three VAssignment[i] = latpt_twelve_three};

Ma := Opoints diff M;

N :={j|jinN316};

Na:={};

if card(M) >= 1 then {

foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[i];

mathprogram3.solve();

forall(j in NaX{
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_thirteen_three \V Assignment[i] = latpt_fourteen_three V/
Assignment][i] = latpt_fifteen_three \V Assignment[i] = latpt_sixteen three};

236

Ma := Opoints diff M;
N :={j|jinN316};
Na:={};

if card(M) >= 1 then{

foral (i in M)
NNT[i] :={jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[iJ;

mathprogram3.solve();

forall(j in Na){
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram3.reset();

}

M :={i|iinpoints: Assignment[i] = latpt_seventeen_three\/ Assignment[i] = latpt_eighteen_three
\/ Assignment[i] = latpt_nineteen_three VAssignment[i] = latpt_twenty_three};

Ma := Opoints diff M;

N :={j|jinN316};

Na:={};

if card(M) >= 1 then {

foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V

(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[i];

mathprogram3.solve();
forall(j in NaX{

foral (i in M : mathprogram3.X[i,j] = 1)
Assignment[i] :=j;
}

mathprogram3.reset();

237

M :={i|iinpoints: Assignment[i] = latpt_twentyone threeVV Assignment[i] =
latpt_twentytwo_three \V Assignment[i] = latpt_twentythree three VAssignment][i] =
latpt_twentyfour_three};

Ma := Opoints diff M;

N :={j|j inN316};

Na:={};

if card (M) >= 1 then {
foral (i in M)

NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[i];

mathprogram3.solve();

foral(j in NaX{
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment[i] :=j;

}

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_twentyfive three\/ Assignment[i] =
latpt_twentysix_three \V Assignment[i] = latpt_twentyseven_three VAssignment[i] =
latpt_twentyeight three} ;

Ma := Opoints diff M;

N :={j|j in N316};

Na:={};

if card(M) >= 1 then {

foral (i in M)
NN[i] :={jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) VV
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[iJ;

mathprogram3.solve();
forall(j in Na){
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram3.reset();

238

M :={ i |iinpoints: Assignment[i] = latpt_twentynine_three\/ Assignment[i] = latpt_thirty_threeV
Assignment][i] = latpt_thirtyone_three VAssignment[i] = latpt_thirtytwo_three};

Ma := Opoints diff M;

N :={j|jinN316};

Na:={};

if card(M) >= 1 then {

foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment[i]] - 4)
V/ (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[il;

mathprogram3.solve();

forall(j in Na){
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;
}

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_thirtythree three\V Assignment][i] =
latpt_thirtyfour_three \V Assignment[i] = latpt_thirtyfive_three VAssignment[i] =
latpt_thirtysix_three} ;

Ma := Opoints diff M;

N :={j|j in N316};

Na:={};

if card(M) >= 1 then {

foral (i in M)
NNT[i] :={jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[iJ;

mathprogram3.solve();
foral(j in Na){

foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;
}

mathprogram3.reset();

239

M :={i|iinpoints: Assignment[i] = latpt_thirtyseven threeV Assignment[i] =
latpt_thirtyeight_three \V Assignment[i] = latpt_thirtynine_three VAssignment[i] = latpt_forty_three};

Ma := Opoints diff M;

N :={j|j inN316};

Na:={};

if card (M) >=1 then {
foral (i in M)

NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[i];

mathprogram3.solve();

forall(j in NaX{
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment[i] :=j;

}

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_fortyone three\V Assignment[i] = latpt_fortytwo_threeV
Assignment][i] = latpt_fortythree three VAssignment[i] = latpt_fortyfour_three};

Ma := Opoints diff M;

N :={j|jinN316};

Na:={};

if card(M) >= 1 then{

foral (i in M)
NNI[i] :={jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[iJ;

mathprogram3.solve();
forall(j in Na){
foral (i in M : mathprogram3.X[i,j] = 1)

Assignment][i] :=j;

}

240

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_fortyfive threeV Assignment[i] = latpt_fortysix_three
Assignment][i] = latpt_fortyseven_three VAssignment[i] = latpt_fortyeight_three};

Ma := Opoints diff M;

N :={j|j inN316};

Na:={};

if card(M) >= 1 then {

foral (i in M)
NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment[i]] - 4)
V/ (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) VV
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[il;

mathprogram3.solve();

forall(j in Na){
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;
}

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_fortynine_three\V Assignment[i] = latpt_fifty threeV
Assignment][i] = latpt_fiftyone_three VAssignment[i] = latpt_fiftytwo_three};

Ma := Opoints diff M;

N :={j|jinN316};

Na:={};

if card(M) >= 1 then{

foral (i in M)
NNT[i] :={jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[iJ;

mathprogram3.solve();
foral(j in Na){

foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;
}

241

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_fiftythree threeVV Assignment[i] = latpt_fiftyfour_three
V Assignment[i] = latpt_fiftyfive three VAssignment[i] = latpt_fiftysix_three};

Ma := Opoints diff M;

N :={j|j inN316};

Na:={};

if card (M) >=1 then {
foral (i in M)

NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) VV
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[i];

mathprogram3.solve();

foral(j in NaX{
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram3.reset();
}

M :={i]|iinpoints: Assignment[i] = latpt_fiftyseven threeVV Assignment[i] = latpt_fiftyeight three
\ Assignment[i] = latpt_fiftynine_three VAssignment][i] = latpt_sixty three};

Ma := Opoints diff M;

N :={j|jinN316};

Na:={};

if card(M) >= 1 then{

foral (i in M)
NNT[i] :={jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment][i]] -
4) V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) V
(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[iJ;

mathprogram3.solve();
forall(j in Na){

foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;

242

mathprogram3.reset();
}

M :={i|iinpoints: Assignment[i] = latpt_sixtyone three\/ Assignment[i] = latpt_sixtytwo_threeV
Assignment][i] = latpt_sixtythree three \/Assignment][i] = latpt_sixtyfour_three};

Ma := Opoints diff M;

N :={j|j inN316};

Na:={};

if card(M) >= 1 then {

foral (i in M)

NNTJi] :={jli in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn[j] = xcoorn[Assignment[i]] - 4)
V (xcoorn[j] = xcoorn[Assignment[i]] + 4))
& ((ycoorn[j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 4) VV

(ycoorn[j] = ycoorn[Assignment[i]] + 4))};

foral (i in M)
Na:= Naunion NN[il;

mathprogram3.solve();
forall(j in Na){

foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;
}

mathprogram3.reset();
}

OB2 := sum (ordered i, in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);
} until OB1 = OB2;

cout << "The objective function after step 3is. " << OB2 << end|;
/] step 4

M :={ i i inpoints: Assignment[i] = latpt_one_three};

N :={j |jin N41};
Na:={k |kin N: (84 <= ord(k) < 88)};
R:={i|iinM};

if card(M) >= 1 then{
repeat {
S={k

repeat {

243

minimum := min (i in R) ord(i);

Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;

R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;

M :={iliinS};
Ma := Opoints diff M;

mathprogram?2.solve();
cout << "objective value after step 4ais: " << mathprogram2.objectiveVaue() << endl;

1
cout << " Timefor step 4ais: " << mathprogram2.getTime() << endl;

1

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;
}
mathprogram2.reset();

} until card(R) = 0;
}
{ iiinpoints: Assignment[i] = latpt_two_three};

M :
N :={j|jinN42};
Na:={k|kinN: (88 <=ord(k) <92)};

Ma := Opoints diff M;
R:={iliinM};

if card(M) >= 1 then{
repeat {
S:={};

repeat {
minimum := min (i in R) ord(i);

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;

R:= R diff Q;
} until card(S) >= 10V card(R) = 0;

244

M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (iinM : mathprogramZ.X[i,j] =1

Assignment][i] :=j;

}

/I cout << "objective value after step 4bis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4bis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;

}
M :={i i inpoints: Assignment[i] = latpt_three_three};
N:={j|jin N43};

Na:={k|kinN: (92 <= ord(k) < 96)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}

245

/I cout << "objective value after step 4cis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4cis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_four_three};
N :={j|]j in N44};
Na:={k|kinN: (96 <= ord(k) < 100)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;
}
/I cout << "objective value after step 4d is: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 4d is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={i i inpoints: Assignment[i] = latpt_five three};

246

N :={j |j in N45};
Na:= {k | kin N: (100 <= ord(k) < 104)};

R:={i|iin M};
if card(M) >= 1 then {
repest {
S:={}
repeat {
minimum := min (i in R) ord(i);

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;

R:= R diff Q;
} until card(S) >= 10V card(R) = 0;

M :={iliinS};
Ma := Opoints diff M;

mathprogram?2.solve();
cout << "objective value after step 4eis: " << mathprogram2.objectiveVaue() << endl;

1
cout << " Timefor step 4eis: " << mathprogram2.getTime() << endl;

1

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;
}
mathprogram2.reset();

} until card(R) = 0;
}
{ iiinpoints: Assignment[i] = latpt_six_three};

M :
N :={j |j in N46};
Na:={k|kinN: (104 <= ord(k) < 108)};

Ma := Opoints diff M;
R:={iliinM};

if card(M) >= 1 then{
repeat {
S={k

repeat {
247

minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4f is: " << mathprogram?2.objectiveValue() << end!;

/I cout <<" Timefor step 4f is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_seven_three};
N :={j |j in N47};
Na:={k|kinN: (108 <= ord(k) < 112)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then{
repeat {
S={k
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;

} until card(S) >= 10V card(R) = 0;

248

M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (iinM : mathprogramZ.X[i,j] =1

Assignment][i] :=j;

}

/I cout << "objective value after step 4gis: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 4gis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i [i in points: Assignment[i] = latpt_eight_three};
N :={j|jinN48};
Na:={k|kinN: (112 <= ord(k) < 116)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR:ord(i) = minimum};
S:=Sunion Q;
R:= R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;

249

/I cout << "objective value after step 4his: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 4his: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_nine_three};

N :={j [jin N49};
Na:={k | kinN: (116 <= ord(k) < 120)};
R:={i|iin M};

if card(M) >= 1 then{
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 4i is: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 4i is: " << mathprogram2.getTime() << endl;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}
mathprogram?2.reset();
} until card(R) = 0;

}

M :={i]iinpoints: Assignment[i] = latpt_ten three};
N :={j |j in N410};

250

Na:={k|kinN: (120 <= ord(k) < 124)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then{
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (iinM : mathprogramZ.X[i,j] =1

Assignment][i] :=j;

}

/I cout << "objective value after step 4j is: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 4j is: " << mathprogram2.getTime() << end!;
mathprogram2.reset();

} } until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_eleven three};
N :={j |j in N411};
Na:={k|kinN: (124 <= ord(k) < 128)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then{
repeat {
S:={};

repeat {

251

minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;

} until card(S) >= 10V card(R) = 0;

M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();

forall (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4k is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4k is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i [i in points : Assignment[i] = latpt_twelve_three};
N :={j|j in N412};
Na:={k|kinN: (128 <= ord(k) < 132)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR:ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;

} until card(S) >= 10V card(R) = 0;

252

M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 4l is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4l is: " << mathprogram2.getTime() << end!;
mathprogram?2.reset();
} until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_thirteen_three};
N :={j |jin N413};
Na:={k|kinN: (132 <= ord(k) < 136)};
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 4mis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4mis: " << mathprogram2.getTime() << endl;
foral (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;

253

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fourteen_three};
N :={j|jin N414};
Na:={k |kinN: (136 <= ord(k) < 140)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R := R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4nis: " << mathprogram2.objectiveVaue() << endl;

/I cout <<" Timefor step 4nis: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;
}
M :={ i [i in points : Assignment[i] = latpt_fifteen_three};
N :={j |j in N415};
Na:={k|kinN: (140 <= ord(k) < 144)};

254

Ma := Opoints diff M;
R:={i]iinM};

if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (iinM : mathprogramZ.X[i,j] =1

Assignment][i] :=j;

}

/I cout << "objective value after step 4ois: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 40is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={i|i inpoints: Assignment[i] = latpt_sixteen three};
N :={j |j in N416};
Na:={k|kinN: (144 <= ord(k) < 148)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then{

repeat {

S:={};

repeat {

255

minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;

} until card(S) >= 10V card(R) = 0;

M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();

forall (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step dpis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4pis: " << mathprogram2.getTime() << endl;

mathprogram?2.reset();
} until card(R) = 0;

M :={ i |i in points: Assignment[i] = latpt_seventeen_three};
N :={j |j in N417};
Na:={k | kinN: (148 <= ord(k) < 152)};
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;

M :={i|iinS};

256

1
1

Ma := Opoints diff M;

mathprogram?2.solve();
cout << "objective value after step 4al is: " << mathprogram?2.objectiveVaue() << endl;

cout << " Timefor step 4al is: " << mathprogram2.getTime() << endl;

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}

mathprogram2.reset();

} until card(R) = 0;
}
M :={i]i inpoints: Assignment[i] = latpt_eighteen three};
N :={j |j in N418};
Na:={k |kinN: (152 <= ord(k) < 156)};

Ma := Opoints diff M;
R:={i]liinM};

if card(M) >= 1 then {
repeat {
S:={};

repeat {
minimum := min (i in R) ord(i);

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;

R:= R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}

/I cout << "objective value after step 4bl is: " << mathprogram?2.objectiveValue() << endl;

257

/I cout <<" Timefor step 4blis: " << mathprogram2.getTime() << endl;
mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_nineteen three};
N :={j |j in N419};
Na:={k|kinN: (156 <= ord(k) < 160)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={k
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R := R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iin S};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}
/I cout << "objective value after step 4clis: " << mathprogram2.objectiveValue() << endl;
/I cout <<" Timefor step 4clis: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={i i in points: Assignment[i] = latpt_twenty_three};
N :={j |j in N420};

Na:={k|kinN: (160 <= ord(k) < 164)};

Ma := Opoints diff M;

258

R:={iliinM};
if card(M) >= 1 then{
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
} Assignment][i] :=j;

/I cout << "objective value after step 4d1is: " << mathprogram?2.objectiveVaue() << endl;

/I cout<<" Timefor step 4dlis: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_twentyone three};
N:={j|jin N421};
Na:={k |kinN: (164 <= ord(k) < 168)};
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={k
repeat {

minimum := min (i in R) ord(i);

259

Q:={iliinR: ord(i) = minimum};

S:=SunionQ;

}

1

1

R:= Rdiff Q;
until card(S) >= 10V card(R) = 0;

M :={iliinS};
Ma := Opoints diff M;

mathprogram?2.solve();
cout << "objective value after step 4el is: " << mathprogram?2.objectiveVaue() << endl;

cout << " Timefor step 4el is: " << mathprogram2.getTime() << endl;

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;
}
mathprogram2.reset();

} until card(R) = 0;
}

{ i]i inpoints: Assignment[i] = latpt_twentytwo_three}

M =
N :={j |j in N422};
Na:={k |kinN: (168 <= ord(k) < 172)};

Ma := Opoints diff M;
R:={i]liinM};

if card(M) >= 1 then {
repeat {
S:={};

repeat {
minimum := min (i in R) ord(i);

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;

R:= R diff Q;
} until card(S) >= 10V card(R) = 0;

M :={i|iinS};

260

Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4f1 is: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 4f1is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) = 0;

M :={i]i inpoints: Assignment[i] = latpt_twentythree three};
N :={j |j in N423};
Na:={k|kinN: (172 <= ord(k) < 176)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={k
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4gl is: " << mathprogram?2.objectiveValue() << endl;

261

/I cout<<" Timefor step 4glis: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_twentyfour_three};
N :={j |j in N424};
Na:={k|kinN: (176 <= ord(k) < 180)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then{
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}
/I cout << "objective value after step 4hlis: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 4hlis: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;
}
M :={i]i inpoints: Assignment[i] = latpt_twentyfive three};
N :={j |j in N425};
Na:={k |kinN: (180 <= ord(k) < 184)};

262

R:={i]iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;

R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;

M :={i|iinS};
Ma := Opoints diff M;

mathprogram?2.solve();
cout << "objective value after step 4il is: " << mathprogram?2.objectiveValue() << endl;

1
cout << " Timefor step 4ilis: " << mathprogram2.getTime() << endl;

1

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;
}
mathprogram2.reset();

} until card(R) = 0;
}

{ i]iinpoints: Assignment[i] = latpt_twentysix_three};

M =
N :={j |j in N426};
Na:={k |kinN: (184 <= ord(k) < 188)};

Ma := Opoints diff M;
R:={iliinM};

if card(M) >= 1 then {
repeat {
S={k

repeat {
minimum := min (i in R) ord(i);

263

Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4j1is: " << mathprogram?2.objectiveVaue() << endl;

/I cout<<" Timefor step 4j1is:" << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) = 0;

M :={i]i inpoints: Assignment[i] = latpt_twentyseven three};
N :={j |j in N427};
Na:={k|kinN: (188 <= ord(k) < 192)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={k
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;

M :={i|iinS};

264

Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4kl is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4klis: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={i]iinpoints: Assignment[i] = latpt_twentyeight_three};
N :={j|jin N428};
Na:={k|kinN: (192 <= ord(k) < 196)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=SunionQ;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}

/I cout << "objective value after step 4l1is: " << mathprogram2.objectiveValue() << endl;

265

/I cout <<" Timefor step 4l1is:" << mathprogram2.getTime() << endl;

mathprogram?2.reset();
} until card(R) = 0;

}

M =
N :={j |j in N429};
Na:={k |kinN: (196 <= ord(k) < 200)};

{ i]iinpoints: Assignment[i] = latpt_twentynine_three};
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;

R:= R diff Q;
} until card(S) >= 10V card(R) = 0;

M :={i|iinS};
Ma := Opoints diff M;

mathprogram?2.solve();
cout << "objective value after step 4mlis: " << mathprogram?2.objectiveVaue() << endl;

1
cout << " Timefor step 4mlis: " << mathprogram2.getTime() << endl;

1

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;
}
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_thirty three}
N :={j |j in N430};
Na:={k|kinN: (200 <= ord(k) < 204)};
Ma := Opoints diff M;
R:={iliinM};

266

if card(M) >= 1 then {
repeat {

S:={}

repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= R diff Q;

} until card(S) >= 10V card(R) = 0;

M :={i|iinS};

Ma := Opoints diff M;

mathprogram?2.solve();

foral (j in Na) {
foral (iinM : mathprogramZ.X[i,j] =1

Assignment][i] :=j;

}

/I cout << "objective value after step 4nlis: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 4nlis: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) =0;

M :={i i inpoints: Assignment[i] = latpt_thirtyone_three};
N :={j |j in N431};
Na:={k |k inN: (204 <= ord(k) < 208)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {

repeat {

S:={};

repeat {

minimum := min (i in R) ord(i);

267

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 401 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 40l is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i [i in points : Assignment[i] = latpt_thirtytwo_three};
N :={j|jin N432};
Na:={k | kinN: (208 <= ord(k) < 212)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR:ord(i) = minimum};
S:=Sunion Q;
R:= R diff Q;
} until card(S) >= 10V card(R) = 0;

M :={i|iinS};

268

Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}
/I cout << "objective value after step 4plis: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4plis: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={i|i inpoints: Assignment[i] = latpt_thirtythree three};
N :={j |j in N433};
Na:={k|kinN: (212 <=ord(k) < 216)};
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 4a2 is: " << mathprogram2.objectiveValue() << endl;
/I cout <<" Timefor step 4a2 is: " << mathprogram2.getTime() << end!;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram2.reset();

269

} until card(R) = 0;

}
M :={i i inpoints: Assignment[i] = latpt_thirtyfour_three};
N :={j |j in N434};

Na:={k|kinN: (216 <= ord(k) < 220)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4b2 is: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 4b2 is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} } until card(R) =0;

M :={i|i inpoints: Assignment[i] = latpt_thirtyfive three};
N :={j |j in N435};

Na:={k|kinN: (220 <= ord(k) < 224)};

Ma := Opoints diff M;

R:={i|iinM};

270

if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4c2 is: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 4c2 is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_thirtysix_three};
N :={j |j in N436};
Na:={k |k inN: (224 <= ord(k) < 228)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S={k
repeat {

minimum := min (i in R) ord(i);

271

Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4d2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4d2 is: " << mathprogram2.getTime() << end|;

mathprogram2.reset();
} until card(R) = 0;

M :={ i [i in points : Assignment[i] = latpt_thirtyseven three};
N :={j |j in N437};
Na:={k|kinN: (228 <= ord(k) < 232)};
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;

mathprogram?2.solve();

272

I

1

}

M :
N :

N
M
R

if

1

1

cout << "objective value after step 4e2 is: " << mathprogram2.objectiveValue() << endl;
cout << " Timefor step 4e2 is: " << mathprogram2.getTime() << endl;

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram2.reset();

} until card(R) = 0;

{ i]iinpoints: Assignment[i] = latpt_thirtyeight_three};
{j] in N438};

a:={k|kinN: (232 <=ord(k) <236)};

a:= Opoints diff M;

={iliinM};

card(M) >= 1 then{
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

cout << "objective value after step 4f2is: " << mathprogram2.objectiveVaue() << endl;
cout << " Time for step 4f2 is: " << mathprogram2.getTime() << endl;

mathprogram2.reset();

273

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_thirtynine_three};
N :={j |j in N439};
Na:={k |k inN: (236 <= ord(k) < 240)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;
}
/I cout << "objective value after step 492 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 492 is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_forty three};
N :={j |j in N440};

Na:={k | kin N: (240 <= ord(k) < 244)};

Ma := Opoints diff M;

R:={iliinM};

274

if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:= R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}
/I cout << "objective value after step 4h2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4h2is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={ i |i inpoints : Assignment[i] = latpt_fortyone_three};
N:={j|j in N441};
Na:={k | kin N: (244 <= ord(K) < 248)};
R:{III in M},
if card(M) >=1 then {
repeat {
S:={};
repeat {

minimum := min (i in R) ord(i);

Q:={iliinR:ord(i) = minimum};

275

S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 4i2 is: " << mathprogram2.objectiveValue() << endl;
/I cout <<" Timefor step 4i2is: " << mathprogram2.getTime() << endl;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fortytwo_three};
N :={j |j inN442};
Na:={k|kinN: (248 <= ord(k) < 252)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;

mathprogram?2.solve();

276

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;

}

/I cout << "objective value after step 4j2 is: " << mathprogram?2.objectiveVaue() << endl;

/I cout <<" Timefor step 4j2is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) =0;

M :={ i i inpoints: Assignment[i] = latpt_fortythree three};
N :={j |j in N443};
Na:={k |k inN: (252 <= ord(k) < 256)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 4k2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4k2 is: " << mathprogram2.getTime() << endl;

mathprogram2.reset();

277

} until card(R) = 0;

}
M :={i i inpoints: Assignment[i] = latpt_fortyfour_three};
N :={j |j in N444};

Na:={k |k inN: (256 <= ord(k) < 260)};
Ma := Opoints diff M;
R:={iliinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R := R diff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;
}
/I cout << "objective value after step 412 is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 412 is: " << mathprogram?2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;

M :={i]i inpoints: Assignment[i] = latpt_fortyfive three};
N :={j |j in N445};

Na:={k|kinN: (260 <=ord(k) < 264)};

R:={i|iinM};

if card(M) >= 1 then{

278

repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 4m2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4m2 is: " << mathprogram2.getTime() << endl;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fortysix_three};
N :={j |j in N446};
Na:={k|kinN: (264 <= ord(k) < 268)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};

S:=Sunion Q;

279

R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4n2 is: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 4n2is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} } until card(R) =0;

M :={i i inpoints: Assignment[i] = latpt_fortyseven three};
N :={j [in N447};
Na:={k|kinN: (268 <= ord(k) < 272)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;

mathprogram?2.solve();

280

forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;

}

/I cout << "objective value after step 402 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 402 is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fortyeight three};
N :={j |j in N448};
Na:={k|kinN: (272 <= ord(k) < 276)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R :=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 4p2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4p2is: " << mathprogram2.getTime() << endl;

mathprogram2.reset();

281

} until card(R) = 0;

M :={i i inpoints: Assignment[i] = latpt_fortynine _three};
N :={j |j in N449};
Na:={k|kinN: (276 <= ord(k) < 280)};
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 4a3is: " << mathprogram2.objectiveValue() << endl;
/I cout <<" Timefor step 4a3is: " << mathprogram2.getTime() << end!;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fifty three};
N :={j |j in N450};

Na:={k|kinN: (280 <= ord(k) < 284)};

Ma := Opoints diff M;

R:={i|iinM};

if card(M) >= 1 then{

repeat {

282

S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 4b2 is: " << mathprogram?2.objectiveValue() << endl;

/I cout <<" Timefor step 4b2 is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) =0;

M :={ i i inpoints: Assignment[i] = latpt_fiftyone three};
N :={j|j in N451};
Na:={k|kinN: (284 <= ord(k) < 288)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};

S:=SunionQ;

283

R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 4c2 is: " << mathprogram2.objectiveVaue() << endl;
/I cout <<" Timefor step 4c2 is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fiftytwo_three};
N :={j|jinN452};
Na:={k |k inN: (288 <= ord(k) < 292)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;

mathprogram?2.solve();

284

forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;

}

/I cout << "objective value after step 4d2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4d2 is: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;

M :={i i inpoints: Assignment[i] = latpt_fiftythree three};
N :={j |j in N453};
Na:={k|kinN: (292 <=ord(k) < 296)};
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
/I cout << "objective value after step 4e2 is: " << mathprogram2.objectiveValue() << endl;
/I cout <<" Timefor step 4e2 is: " << mathprogram2.getTime() << end!;
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

mathprogram?2.reset();

} until card(R) = 0;

285

M :={i|iinpoints: Assignment[i] = latpt_fiftyfour_three};
N :={j |j in N454};
Na:={k|kinN: (296 <= ord(k) < 300)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4f2 is: " << mathprogram?2.objectiveValueg() << endl;

/I cout <<" Timefor step 4f2 is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} } until card(R) =0;

M :={ i i inpoints: Assignment[i] = latpt_fiftyfive three};
N :={j |j in N455};

Na:={k |k inN: (300 <= ord(k) < 304)};

Ma := Opoints diff M;

R:={i|iinM};

if card(M) >= 1 then{

repeat {

286

S:={}h
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 492 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 492 is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_fiftysix_three};
N :={j |j in N456};
Na:={k|kinN: (304 <= ord(k) < 308)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};

S:=Sunion Q;

287

R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4h2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4h2 is: " << mathprogram2.getTime() << endl;

mathprogram2.reset();
} until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_fiftyseven_three};
N :={j |jin N457};
Na:={k | kin N: (308 <= ord(k) < 312)};
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR:ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();

/I cout << "objective value after step 4i2 is: " << mathprogram?2.objectiveVaue() << endl;

288

I

}

M :
N :

N
M
R

if

I

1

cout <<" Timefor step 4i2is: " << mathprogram2.getTime() << endl;

foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment][i] :=j;

}

mathprogram2.reset();

} until card(R) = 0;

{ iiinpoints: Assignment[i] = latpt_fiftyeight three};
{j] in N458};

a:={k|kinN: (312 <=ord(k) < 316)};

a:= Opoints diff M;

={i]iinM};

card(M) >= 1 then {
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

cout << "objective value after step 4j2 is: " << mathprogram2.objectiveValue() << endl;
cout << " Timefor step 4j2 is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} until card(R) = 0;

289

M :={ i i inpoints: Assignment[i] = latpt_fiftynine three};
N :={j |j in N459};
Na:={k|kinN: (316 <= ord(k) < 320)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;
}
/I cout << "objective value after step 4k2 is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4k2 is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

M :={ i i inpoints: Assignment[i] = latpt_sixty three};
N :={j |j in N460};

Na:={k|kinN: (320 <= ord(k) < 324)};

Ma := Opoints diff M;

R:={i|iinM};

if card(M) >= 1 then{

290

repeat {
S:={}
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 412 is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 412 is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();
} until card(R) = 0;

M :={ i |i in points : Assignment[i] = latpt_sixtyone_three};
N :={j |j in N461};
Na:={k [kinN: (324 <= ord(k) < 328)},
R:={i|iinM};
if card(M) >= 1 then {
repest {
S:={}
repest {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=Sunion Q;

R:= R diff Q;

291

} until card(S) >= 10V card(R) = 0;

M :={iliinS};

Ma := Opoints diff M;

mathprogram?2.solve();
/I cout << "objective value after step 4m2 is: " << mathprogram?2.objectiveValue() << endl;
/I cout <<" Timefor step 4m2 is: " << mathprogram2.getTime() << endl;

foral (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

mathprogram2.reset();
} until card(R) = 0;
}

M :={ i |i in points: Assignment[i] = latpt_sixtytwo_three};
N :={j|jinN462};
Na:={k | kinN: (328 <= ord(k) < 332)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then {
repeat {
S={}
repeat {
minimum := min (i in R) ord(i);
Q:={iliinR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliinS};
Ma := Opoints diff M;
mathprogram?2.solve();
foral (j in Na) {

foral (i in M : mathprogram2.X[i,j] = 1)
Assignment[i] :=j;

292

}

/I cout << "objective value after step 4n2 is: " << mathprogram?2.objectiveVaue() << endl;

/I cout <<" Timefor step 4n2is: " << mathprogram2.getTime() << endl;
mathprogram2.reset();

} } until card(R) = 0;

M :={ i i inpoints: Assignment[i] = latpt_sixtythree three};
N:={j|jin N463};
Na:={k|kinN: (332 <= ord(k) < 336)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={iliin&};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j in Na) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment[i] :=j;

}

/I cout << "objective value after step 402 is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 402 is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

293

M :={i i inpoints: Assignment[i] = latpt_sixtyfour_three};
N :={j|jinN464};
Na:={k | kinN: (336 <= ord(k) < 340)};
Ma := Opoints diff M;
R:={i|iinM};
if card(M) >= 1 then{
repeat {
S:={};
repeat {
minimum := min (i in R) ord(i);
Q:={i]iinR: ord(i) = minimum};
S:=SunionQ;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma := Opoints diff M;
mathprogram?2.solve();
forall (j inNa) {
foral (i in M : mathprogram2.X[i,j] = 1)

Assignment][i] :=j;

}

/I cout << "objective value after step 4p2 is: " << mathprogram?2.objectiveVaue() << endl;
/I cout <<" Timefor step 4p2is: " << mathprogram2.getTime() << endl;
mathprogram?2.reset();

} until card(R) = 0;
}

OB2 := sum (ordered i, in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);

cout << "The objective function after step 4 is. " << OB2 << end|;

/I local search

repeat {

294

OB1:=0B2;
OB2:=0;

counter :=0;

R:={i|i in points};
repeat {
S:={};
Na:={};
repeat {
minimum := min (i in R) ord(i);
Q:={ili inR: ord(i) = minimum};
S:=Sunion Q;
R:=Rdiff Q;
} until card(S) >= 10V card(R) = 0;
M :={i|iinS};
Ma.:= Opoints diff M;
forall (i in M)
NN[i] := {jlj in N : ((xcoorn[j] = xcoorn[Assignment[i]]) V (xcoorn{j] = xcoorn[Assignment[i]] -
2) V (xcoorn[j] = xcoorn[Assignment[i]] + 2))
& ((ycoorn(j] = ycoorn[Assignment[i]]) V (ycoorn[j] = ycoorn[Assignment[i]] - 2) V
(ycoorn[j] = ycoorn[Assignment[i]] + 2))};

foral (i in M)
Na:= Naunion NN[il;

/I cout<<"M ={";
/I fordl (iinM){

/I cout<<i<<"";
Iy

/I cout <<"}" << endl;
/I cout<<" Na={";
/I foral (j in Na) {

/I cout<<j<<"";
Iy

295

/I cout << endl;
mathprogram3.solve();
/I cout<<" Timefor step 1is: " << mathprogram3.getTime() << end!;
forall(j in Na){
foral (i in M : mathprogram3.X[i,j] = 1)
Assignment][i] :=j;
}
mathprogram3.reset();
} until card(R) = 0;
OB2 := sum (ordered i, in points)
(od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment][i],Assignment[j]]);
} until OB1 = OB2;

cout << "Thefinal objective functionis: " << OB2 << endl;

cout <<" Therunning timeis. " << timer.getTime() - begintime << endl;
foral (i in points)
cout << sgrt(1.5) * xcoorn[Assignment[i]] <<" " << sgrt(1.5) * ycoorn[Assignment[i]] << endl;
cout << endl;
foral (j in points)
cout << sgrt(1.5) * xcoorn[Assignment[j]] << endl;
cout << endl;
foral (k in points)

cout << sgrt(1.5) * ycoorn[Assignment[k]] << end!;

296

Bibliography

E. Aartsand J. K. Lenstra (editors), Local Search in Combinatorial Optimization,
Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley &
Sons, West Sussex, England, 1997

W. P. Adams and T. Johnson. Improved linear programming based lower bounds for
the quadratic assignment problem, in Quadratic Assignment and Related Problems,
P. Pardalos and H. Wolkowicz (editors), DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 16, 43 — 75, 1994.

R. K. Ahuja, J. B. Orlin, and A. Tiwari, A greedy genetic algorithm for the quadratic
assignment problem, Computers & Operations Research 27, 917 — 934, 2000.

M. Berry and G. Linoff, Mastering Data Mining, John Wiley & Sons, New Y ork,
2000.

M. Berry and G. Linoff, Data Mining Techniques. For Marketing, Sales, and
Customer Relationship Management, John Wiley & Sons, New Y ork, 2004.

M. S. Bazaraa and H. D. Sherali, Benders' partitioning scheme applied to a new
formulation of the quadratic assignment problem, Naval Research Logistics Quarterly
27,29 —41,1980.

|. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and Applications,
Springer, New Y ork, 1997.

R.E. Burkard and F. Rendl, A thermodynamically motivated simulation procedure for
combinatoria optimization problems, European Journal of Operational Research 17,
169 — 174, 1984.

R.E. Burkard, Quadratic assignment problems, European Journal of Operationa
Research 15, 283 — 289, 1984.

P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi, Discovering Data
Mining: From Concept to Implementation, Prentice Hall, Upper Saddle River, New
Jersey, 1997.

E. Cela, The Quadratic Assignment Problem: Theory and Algorithms, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.

N. Christofides and E. Benavent, An exact algorithm for the quadratic assignment
problem, Oper. Res. 37, 760 — 768, 1989.

297

E. Condon, B. Golden, S. Lele, S. Raghavan, and E. Wasil, “A visualization method
based on adjacency data,” Decision Support Systems 33, 349 — 362, 2002.

E. Condon, B. Golden, and E. Wasil, “Visualizing group decisions in the analytic
hierarchy process,” Computers & Operations Research 30, 1435 — 1445, 2003.

K.C. Cox, S. G. Eick, G. J. Wills, and R. J. Brachman, “Visua data mining:
recognizing telephone calling fraud,” Data Mining and Knowledge Discovery 1, 225
—231, 1997.

L. Davis, Handbook of Genetic Algorithm, Van Nostrand Rienhold, New Y ork, 1991.

G. Deboeck and T. Kohonen (editors), Visual Explorationsin Finance, Springer,
London, 1998.

U. Dorndorf and E. Pesch. Data Warehouses, in Handbook on Data Management in
Information Systems, J. Blazewicz, W. Kubiak, T. Morzy, and M. Rusinkiewicz
(editors),

Inter national Handbooks on Information Systems, 387 — 430, Springer, New Y ork,
2003.

J. Elder and D. Pregibon, A statistical perspective on knowledge discovery in
databases, in Advances in Knowledge Discovery and Data Mining, U.M. Fayyad et al.
(editors),

83 —-116, AAAI/MIT Press, California, 1996.

G. Finke, R.E. Burkard, and F. Rendl, Quadratic assignment problems, Annals of
Discrete Mathematics 31, 61 — 82, 1987.

C. Fleurent and J.A. Ferland, Genetic hybrids for the quadratic assignment problem,
in Quadratic Assignment and Related Problems, P. Pardalos and H. Wolkowicz
(editors), DIMACS Series in Discrete Mathematics and Theoretical Computer Science
16,

173 - 187, 1994,

C. Fleurent and J.A. Ferland, Genetic and hybrid agorithms for graph coloring,
Annals of Operations Research 63, 437 — 461, 1996.

J.H. Friedman, On bias, variance, 0/1-loss, and the curse-of-dimensionality, Data
Mining and Knowledge Discovery 1, 55 — 78, 1997.

A. M. Frieze and J. Y adegar, On the quadratic assignment problem, Discrete Applied
Mathematics 5, 89 — 98, 1983.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Co., San Francisco, 1979.

298

F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, Boston,
Massachusetts, 1997.

P. V. Hentenryck, The OPL Optimization Programming Language, MIT Press,
Cambridge, Massachusetts, 1999.

J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, 1975.

P. J. Huber, From large to huge: a statistician’s reactionsto KDD & DM. Proc. Third
International Conference on Knowledge Discovery and Data Mining, 304 — 308,
AAAI Press, Cdlifornia, 1997.

L. Kaufman and F. Broeckx, An algorithm for the quadratic assignment problem
using Benders' decomposition, European Journal of Operational Research 2, 209 —
211, 1978.

T. C. Koopmans and M. J. Beckmann, Assignment problems and the location of
economic activities, Econometrica 25, 53 — 76, 1957

J. B. Kruskal and M. Wish, Multidimensional Scaling, Sage, Beverly Hills,
California, 1978.

E. L. Lawler, The quadratic assignment problem. Manag. Sci. 9, 586 — 599, 1963.

Y. Li, P. M. Pardalos, and M. G. C. Resende, A Greedy Randomized Adaptive Search
Procedure for the Quadratic Assignment Problem, DIMACS Seriesin Discrete
Mathematics and Theoretical Computer Science, 16, 237 — 261, 1994.

M. J. Mackinnon and N. Glick, Data Mining and Knowledge Discovery in Databases-
Anoverview, Austral. & New Zealand J. Satist. 41, 255 — 275, 1999.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Springer, Berlin, 1996.

T. Morzy and M. Zakrzewicz, Data Mining, in Handbook on Data Management in
Information Systems, J. Blazewicz, W. Kubiak, T. Morzy, and M. Rusinkiewicz
(editors), International Handbooks on Information Systems, 487 — 566, Springer, New
Y ork, 2003.

M. W. Padberg and M. P. Rijal, Location, Scheduling, Design and Integer
Programming, Kluwer Academic Publishers, Boston, 1996.

299

G. Rawlins (editor), Foundations of Genetic Algorithms, First Workshop on the
Foundations of Genetic Algorithms and Classifier Systems, Morgan Kaufmann
Publishers, San Mateo, California, 1991.

J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Transactions
on Computers 18, 401 — 409, 1969.

S. S. Schiffman, M. L. Reynolds, and F. W. Y oung, Introduction to Multidimensional
Scaling; Theory, Methods, and Applications, Academic Press, Orlando, Florida, 1981.

H. P. Schwefel, Numerical Optimization for Computer Models, John Wiley,
Chichester,UK, 1981.

A. Shoshani, Multidimensionality in Statistical, OLAP, and Scientific Databases, in
Multidimensional Databases. Problems and Solutions, M. Rafanelli(editor), 46 — 68,
Idea Group Publishing, Hershey, Pennsylvania, 2003.

J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, ORSA
Journal on Computing 2, 33 — 45, 1990.

D. M. Tateand A. E. Smith, A genetic approach to the quadratic assignment problem,
Computers & Operations Research 22, 73 — 83, 1995.

E. Wegman, Huge data sets and the frontiers of computational feasibility, J. Comput.
Graphical Statist. 4, 281 — 295, 1995.

W. S. Torgerson, Theory and Methods of Scaling, John Wiley, New Y ork, 1958.

M.R. Wilhelm and T.L. Ward, Solving quadratic assignment problems by simulated
annealing, IEEE Trans. 19, 107 — 119, 1987.

F. W. Young, Multidimensional Scaling: History, Theory and Applications, Lawrence
Erlbaum Associates, London, England, 1987.

300

