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Data visualization techniques have become important tools for analyzing large 

multidimensional data sets and providing insights with respect to scientific, 

economic, and engineering applications. Typically, these visualization applications 

are modeled and solved using nonlinear optimization techniques. In this dissertation, 

we propose a discretization of the data visualization problem that allows us to 

formulate it as a quadratic assignment problem. This formulation is computationally 

difficult to solve optimally using an exact approach. Consequently, we investigate the 

use of local search techniques, mathematical programming, and genetic algorithms 

for the data visualization problem. The space in which the data points are to be 

embedded can be discretized using an n x n lattice. Conducting a search on this n x n

lattice is computationally ineffective. Consequently, we propose a divide-and-conquer 

approach that refines the lattice at each step. We show that this approach is much 

faster than conducting a search of the entire n x n lattice and, in general, it generates 

higher quality solutions. We envision two uses of our divide-and-conquer heuristics: 

(1) as stand-alone approaches for data visualization and (2) to provide good 

approximate starting solutions for a nonlinear algorithm.  
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Chapter 1: Introduction

The availability of superior instruments, computers and information technology 

has made possible the measuring of physical phenomena with higher precision and in a 

shorter time interval. This has changed not only the sources, nature, and volume of data 

available but also the numerical and graphical tools for data analysis. High volume or 

multidimensional data are frequently generated, captured, and stored in numerous 

operations in almost all spheres of human endeavor and particularly in science and 

business operations. For example, high-energy physics experiments generate data in the 

order of 1 – 10 MBs, about 108 – 109 times a year (Shoshani, 2003). Similar large and 

complex data operations and endeavors cover applications ranging from science, 

engineering, and medicine to commerce and finance (Mackinnon and Glick, 1999). 

In today’s business environment, transaction processing with the aid of computers 

and the use of information technologies such as barcode scanners generate huge volumes 

of data in operations ranging from retailing to banking to stock trading (Mackinnon and 

Glick, 1999). Many companies and organizations gather gigabytes or terabytes of 

business transactions, scientific data, web logs, satellite pictures, and text reports, which 

are large and complex (Morzy and Zakrzewicz, 2003). In essence, massive databases 

growing at unprecedented rates are indeed very common today.

Inherent in such data are important insights into the operations they represent. 

Businesses want to mine retail data to know how to acquire, retain, and increase the 

profitability and lifetime value of a customer (Cabena et al., 1997). Researchers are 

developing the tools to mine available data to discover knowledge that facilitate activities 

such as market research, fraud detection and prevention, the pricing of securities and 
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derivatives, as well as the monitoring of the medical impacts of prescription drugs 

(Mackinnon and Glick, 1999). Consequently, data mining has become difficult to ignore 

and hence an area of intense research. 

Data mining involves the extraction of hidden predictive information from large 

databases. It is a powerful new technology with great potential to help companies focus 

on the most important information in their data warehouses. Data mining tools help 

predict future trends and behaviors, allowing businesses to make proactive, knowledge-

driven decisions. Data mining tools can answer business questions that traditionally were 

too time consuming to resolve. For instance, the type and number of all products in a 

customer’s shopping basket can be recorded and examined, giving insight into the 

customer’s behavior. This enables the shop to draw conclusions for the shop’s 

presentation of its products (Morzy and Zakrzewicz, 2003). 

Data mining is an interdisciplinary field and utilizes techniques and tools from 

fields such as machine learning, pattern recognition, statistics, database, and 

visualization, to address the issue of information extraction or knowledge discovery from 

complex databases (Cabena et al., 1997; Mackinnon and Glick, 1999). Before the advent 

of data mining, researchers focused on problems with data sizes that were at most a few 

hundred to a few thousand cases and had between one and a few dozen variables (Elder 

and Pregido, 1996). The field emerged when it was realized that traditional decision-

support methodologies, which combine simple statistical techniques with executive 

information systems, could not handle large and complex data sets within the time limits 

and operational conditions imposed by today’s business environment (Cabena et al., 

1997).  Enterprises must be able to recognize trends early in rapidly changing 
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environments and implement their ideas as quickly as possible in order to survive and 

strengthen their own positions in an environment of increasing competition (Dorndorf 

and Pesch, 2003).

Today’s data sets are usually large and multidimensional, growing and changing 

with time; consequently, they are usually complex, dynamic, and difficult to visualize. 

Data visualization reveals the relationships and trends that are not evident from the raw 

multidimensional data sets by using mathematical techniques to reduce the number of 

dimensions while preserving the relevant inherent properties. Data visualization rests on 

the premise that a picture is worth a thousand words (Schiffman et al., 1981; Young, 

1987). The practical value of data visualization is based on the fact that it is often easier 

and more informative to look at a picture of the data than to look at the data points 

themselves, particularly when the data set is large (Schiffman et al., 1981). Large and 

multidimensional data sets that require visualization are commonplace today and may be 

encountered in many disciplines ranging from the physical, biological, and behavioral 

sciences to product development, marketing, and advertising (Schiffman et al., 1981).

Popular techniques used to solve data visualization problems include 

multidimensional scaling (MDS) and Sammon maps (SM) (Borg and Groenen, 1997; 

Sammon, 1969; Schiffman et al., 1981; Young, 1987). These techniques solve the data 

visualization problem using nonlinear optimization techniques. A limitation of a 

nonlinear algorithm is the small number of vectors (data points) it can handle (Sammon, 

1969). Even with today’s fast computers, nonlinear optimization techniques are usually 

slow and inefficient for large data sets. Discrete optimization techniques may provide an 

efficient solution to the data visualization problem.



4

The objectives of this dissertation are to:

(1) develop a discrete optimization formulation for the data visualization 

problem;

(2) develop an efficient divide-and-conquer approach to solve the discrete 

data visualization problem;

(3) investigate the use of local search, mathematical programming and 

genetic algorithms in providing accurate or efficient solutions;

(4) compare the divide-and-conquer discrete optimization heuristics with 

nonlinear optimization heuristics for the data visualization problem. 

This dissertation is organized as follows.

In Chapter 1, we give an introduction and present the objectives of the 

dissertation.

In Chapter 2, we give an overview of the existing literature on data mining and 

data visualization. We present background information on quadratic assignment 

problems, local search heuristics, integer programming problems, and genetic algorithms.

In Chapter 3, we present the methodology that we use to formulate the data 

visualization problem as a quadratic assignment problem.

In Chapter 4, we investigate the use of four different local search heuristics, using 

different neighborhoods, to solve the discrete data visualization problem.  

In Chapter 5, we investigate the use of an equivalent integer programming 

formulation to solve the quadratic assignment problem.
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In Chapter 6, we investigate the use of a hybrid genetic algorithm heuristic to 

solve the data visualization problem. We use the results from our local search heuristic as 

the starting solutions for a genetic algorithm procedure. 

In Chapter 7, we compare our local search heuristic to a nonlinear Sammon map 

procedure. We also investigate using the results from our local search heuristic as the 

starting solutions for the nonlinear procedure instead of using random starting solutions.

In Chapter 8, we compare our local search heuristic to a commercial nonlinear 

multidimensional procedure. We conduct experiments to see how well our heuristic 

performs on large data sets.  

In Chapter 9, we give a summary of our results and present recommendations for 

future research.
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Chapter 2: Literature review

Data mining techniques and methods have been developed to reveal relevant 

trends in high volume or multidimensional data to facilitate the making of scientific 

decisions on operational matters (Cabena et al., 1997; Borg and Groenen, 1997). In this 

chapter, we provide an overview of the literature on data visualization and 

multidimensional scaling techniques that may be relevant to the development of discrete 

models for solving the data visualization problem. 

2.1 Data Visualization

Data mining activities include both directed and undirected approaches. Directed 

data mining focuses on one target variable. In undirected data mining, the goal is to 

understand the relationships amongst all of the variables. Data visualization is a key 

component of undirected data mining (Berry and Linoff, 2000).

Data visualization techniques are used to reveal relationships and trends that are 

not evident from raw, multidimensional data sets. They involve the use of mathematical 

techniques to reduce the number of dimensions while preserving the relevant inherent 

properties. The smaller number of dimensions can be easily evaluated by human 

observation (Sammon, 1969). The result renders complex data sets accessible to visual 

exploration and thus makes it easier to see structure not obvious from the raw data (Borg 

and Groenen, 1997). The results are presented in visual form, in two or three dimensions 

to facilitate human visualization (Sammon, 1969). The types of presentations range from 

scatter plots matrices and Chernoff faces to color encoded patterns and schemes for 

viewing hierarchical subsets (Mackinnon and Glick, 1999).
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Applications are numerous and varied, especially in fields such as finance and 

marketing where an abundance of data exists (Deboeck and Kohonen, 1998; Berry and 

Linoff, 2004). Condon et al. (2002) used data visualization techniques to visualize data 

from a college selection problem and Condon et al. (2003) used data visualization to 

analyze the judgments of decision makers. 

Popular techniques used to solve data visualization problems include 

multidimensional scaling (MDS) and Sammon maps (SM) (Borg and Groenen, 1997; 

Sammon, 1969; Young, 1987). Cox et al. (1997) provided examples of some of the 

visualization techniques available today.  Traditionally, data visualization problems are 

solved using nonlinear optimization techniques (Sammon, 1969; Borg and Groenen, 

1997). Sammon (1969) indicated that one of the limitations of a nonlinear algorithm is 

the small number of vectors (data points) it can handle. Even with today’s fast computers, 

nonlinear optimization techniques are usually slow and inefficient for large data sets. 

2.2 Multidimensional Scaling

Today’s data sets are usually large and multidimensional, growing and changing, 

and hence dynamic (Mackinnon and Glick, 1999). Huber (1997) noted that massive 

databases become heterogeneous through opportunistic data collection (of various 

objects, by several observers, at multiple locations and times) and typically come from 

processes where data reduction cannot be built in. In such circumstances, traditional 

statistical techniques do not provide sufficient capacity in discovering knowledge 

inherent in the data. Friedman (1997) and Wegman (1995) discussed what is referred to 

as “the curse of dimensionality” that many algorithms used by statisticians suffer from.
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Multidimensional scaling (MDS) is a set of mathematical techniques used to  

reduce multivariate or multidimentsional data to two or three dimensions to facillitate 

visualization (Kruskal and Wish, 1978). MDS refers to a class of data analysis techniques 

all of which portray the data’s structure in a spatial fashion easily assimilated by the 

relatively untrained human eye (Kruskal and Wish, 1978; Young, 1987). The techniques

are used to construct a geometric representation of the data, usually in a Euclidean space 

of fairly low dimensionality, while preserving some of the most prominent distance 

relationships in the original data set. Kruskal and Wish (1978) are among the pioneers in 

developing and using MDS techniques.

There are a number of different MDS techniques that may be distinguished based 

on the particular type of geometry into which one wants to map the data, the mapping 

function, the algorithm used to find an optimal data representation, and the treatment of 

statistical error in the models (Borg and Groenen, 1997). 

MDS methods have been designed for all types of relational data matrices, 

including symmetric and asymmetric matrices, rectangular and square matrices, matrices 

with or without missing elements, equally and unequally replicated data matrices, two-

way and multi-way matrices and other types of matrices (Torgerson, 1958; Young, 1987).

All MDS programs are iterative, that is, they all take the approach of trying over 

and over again to obtain the best possible solution (Schiffman et al., 1981). As is 

common in iterative processes, the quality of the solution is affected by the starting  

(initial) solution and the stopping criteria, so all MDS techniques involve some special 

way to get the iterations started and stopped. This is achieved by what is called the 

initialization routine and the termination routine.
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2.3 Sammon Map

Sammon (1969) developed an algorithm for the analysis of multivariate data 

along with some experimental results. His algorithm is based on a point mapping of 

vectors from a high-dimensional space to a lower-dimensional space such that the 

inherent data structure is approximately preserved. Mainly mappings to two- and three-

dimensional spaces are considered since the resulting data configuration can be easily 

evaluated by human observations in three or fewer dimensions (Sammon, 1969). 

Sammon (1969) randomly selected the initial configuration for the vectors in the 

new dimension. The inter-point distances for the new dimension were computed and then 

used to define an error, which represented how well the present configuration of the 

points fit the original configuration. The next step in the algorithm was to change the new 

configuration so as to decrease the error. A steepest descent procedure was used to search 

for a minimum error. 

Sammon’s nonlinear mapping algorithm was applied on several data sets in order 

to test and evaluate the utility of the program in detecting and identifying structure in data 

(Sammon, 1969). Sammon reported results for several artificially generated data sets. For 

demonstration purposes, it was useful to work with artificially generated data so that the 

results could be compared with known data structures. Sammon (1969) noted that, for the 

utility of any data analysis technique, it is more convincing when the technique is applied 

to real data as opposed to artificially generated data, presuming of course that the analysis 

results are correct. Therefore, he ran his algorithm on many real data sets and achieved 

highly satisfactory results. 
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MDS and Sammon maps traditionally solve the data visualization problem using 

nonlinear optimization techniques (Sammon, 1969; Borg and Groenen, 1997). A 

limitation of a nonlinear algorithm is the small number of vectors (data points) it can 

handle (Sammon, 1969). Even with today’s fast computers, nonlinear optimization 

techniques are usually slow and inefficient for large data sets. 

Discrete optimization techniques may provide a possible alternative for the data 

visualization problem. Essentially, data visualization problems are assignment problems, 

so that it may help to model the data visualization problem as a quadratic assignment 

problem (QAP). 

2.4 Quadratic Assignment Problem

  Koopmans and Beckman (1957) were the first to introduce the QAP. They used 

it in an economic context to model a plant location problem. The problem involved the 

assignment of a set of n facilities that have certain amounts of flow between them to a set 

of n predetermined locations at certain distances apart in such way that the sum of 

product of flows and their respective distances is minimized. Therefore, the QAP is 

usually described in a facility-location context (Cela, 1998). The terms facility and 

location are used even if there is no occurrence of a facility-location problem.

The QAP has been studied extensively by mathematicians, computer scientists, 

operations researchers, and practitioners (Cela, 1998). Among the applications of the 

QAP are placement problems, scheduling, manufacturing, VLSI design, statistical data 

analysis, and parallel and distributed computing. Currently, the QAP has been applied to 

large variety of applications and areas such as scheduling, wiring problems in electronics, 

parallel and distributed computing, statistical analysis, design of control panels and 
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typewriter keyboards, chemistry, archeology, balancing of turbine runners, and computer 

manufacturing (Burkard, 1984; Finke et al. 1987). 

The QAP has enjoyed great interest mostly because of its wide applicability, but 

partly because of its insurmountable resistance to efficient solution techniques (Bazaraa 

and Sherali, 1980). This lack of success is attributed to its combinatorial nature, that is, 

the exponential growth of feasible binary solutions as a function of the parameter n of the 

problem (Adams and Johnson, 1994). The QAP is widely regarded as one of the most 

difficult combinatorial optimization problems (Ahuja et al., 2000). It belongs to a class of 

problems referred to as NP-hard, where NP stands for nondeterministic polynomial 

(Garey and Johnson, 1979). For such problems, no known algorithms are able to generate 

the best answer in an amount of time that grows only as a polynomial function of the 

number of elements in the problem. Actually, not only is the QAP NP- hard and NP-hard 

to approximate, it is also practically intractable as it is generally considered very difficult 

to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits 

(Cela, 1998). 

We note that remarkable progress in data structures and algorithmic 

developments, as well as major advances in computing technology, have enabled a 

tremendous increase in the size of NP-hard problems that can be solved. Robust solvers 

are now available that solve large-scale linear programming problems and various classes 

of integer programming problems (Hentenryck, 1999). For example, large-scale instances 

of combinatorial problems such as the traveling salesman problem (TSP) with thousands 

of cities can now be solved optimally in practice (Cela, 1998). However, the QAP still 
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remains a challenge. It has been particularly difficult to use exact methods to solve even 

relatively small instances (n ≈ 20) of the QAP, (Fleurent and Ferland, 1994).

Cela (1998) gives a general overview of the most studied aspects of the QAP and 

outlines a number of promising research directions. She states that a QAP of size n can in 

theory be solved by: 

1. Enumerating the n! feasible binary solutions. 

2. Computing the objective function value at each point. 

3. Selecting a solution with the minimum value. 

When n ≥ 15, enumeration is computationally intractable even for special implicit 

procedures designed to effectively eliminate nonoptimal solutions from consideration 

(Adams and Johnson, 1994). Generally problems of size larger than 20 cannot be solved 

to optimality in a reasonable amount of time, while problems of size 15 to 20 are 

considered to be difficult to solve, (Cela, 1998; Li et al., 1994).

Exact algorithms for the QAP include approaches based on dynamic 

programming (Christofides and Benavent, 1989), cutting planes (Bazaraa and Sherali, 

1980) and branch-and-bound (Lawler, 1963). Among these only branch-and-bound 

algorithms are guaranteed to obtain the optimal solution but they generally are unable to 

solve problems of size larger than 20 (Ahuja et al., 2000). 

Recently, theoretical results obtained on the combinatorial structure of the QAP 

polytope have raised new hopes that cutting planes might be successfully used to solve

reasonably sized QAPs (Cela, 1998). Clearly, the design of efficient branch-and-cut 

methods is conditioned by the identification of new valid and possibly facet defining 

inequalities for the QAP polytope and the development of the corresponding separation
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algorithms. Thus, quite a lot of effort may be required before the current size limits of 

solvable QAPs can be significantly improved (Cela, 1998).  

2.4.1 Linearizations of QAP

When dealing with QAPs, it appears that the quadratic form in its objective 

function destroys the hope of finding efficient solution methods (Cela, 1998). A well-

known method to cope with the problematic quadratic form is the linearization of the 

QAP (Kaufman and Broeckx, 1978). Linearization transforms the quadratic QAP 

objective function into an equivalent linear function by introducing a number of new 

variables and constraints (Bazaraa and Sherali, 1980). Numerous QAP linearizations have 

been proposed (Bazaraa and Sherali, 1980; Frieze and Yadegar, 1983; Kaufman and 

Broeckx, 1978). Most QAP linearizations are mixed integer linear problems with a large 

number of variables and equations (Cela, 1998). 

A lot of effort has been put into obtaining compact linearizations, i.e., 

linearizations with relatively few variables and constraints (Cela, 1998). The size of the 

linearization matters particularly in cases where pure enumeration procedures are used to 

solve the problem at hand. The linearization of Kaufman and Broeckx is perhaps the 

smallest QAP linearization in terms of the number of variables and constants. However, 

for large n, even this linearization has a large number of variables and constraints. Under 

these conditions, even powerful tools to cope with linear integer programs such as 

Benders’ decomposition or cutting planes do not help a lot (Cela, 1998). These 

considerations do not matter when the overall problem can be embedded into a 
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continuum, such as when linear programming and assignment problem-type relaxations 

are used (Padberg and Rijal, 1996).

The linearization of Frieze and Yadegar (1983) has turned out to be the 

foundation of many other linearizations. Some of the best existing bounding procedures 

for the QAP have been obtained by building on the linearization of Frieze and Yadegar.

2.4.2 QAP Heuristics 

Since many applications of QAP give rise to problems of size far greater than 20, 

there is a need for good heuristics that can solve large size QAPs (Ahuja et al., 2000). 

Various polynomial time heuristics have been proposed to find good solutions for larger 

QAP instances, which arise for many applications. These heuristics do not always obtain 

the optimal solution, but they do produce good approximate solutions in a reasonable 

amount of time. Although many heuristics for the QAP have been proposed, no dominant 

algorithm has emerged (Tate and Smith, 1995). These heuristics include construction 

methods, local improvement methods, tabu search algorithms, simulated annealing 

approaches, and genetic algorithms (Ahuja, et al., 2000; Tate and Smith, 1995). 

Construction methods basically start with an empty solution and recursively 

assign facilities to locations according to some criteria until all facilities have been 

assigned. Construction methods are considered to be the simplest heuristic approaches to 

the QAP and this simplicity is often associated with a poor quality of resulting results 

(Cela, 1998).

Local improvement methods are classical approaches to solving difficult 

combinatorial optimization problems (Cela, 1998). They belong to the larger class of 

local search methods. Local search methods start with an initial feasible solution and 
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iteratively try to improve the current solution by replacing it with a better feasible 

solution from its neighborhood. Local improvement methods have the advantage of 

providing good solutions in a short amount of time. However, they have the drawback of 

stopping at the first local minimum (Fleurent and Ferland, 1994). Local search methods 

are still the method of choice for NP-hard problems as they provide a robust approach for 

obtaining high-quality solutions to problems of a realistic size in a reasonable amount of 

computing time (Aarts and Lenstra, 1997).

Tabu search is a heuristic method that improves on local search by allowing 

solutions to escape from a poor local minimum (Glover and Laguna, 1997; Skorin-

Kapov, 1990). This method allows climbing moves when no improving neighbor exists. 

A data structure keeps track of the history of the search in order to prevent cycling. 

Simulated annealing approaches are another group of heuristic methods that try to 

overcome the issue of poor local solutions found in hard combinatorial optimization 

problems. This approach is based on an analogy between combinatorial optimization 

problems and statistical mechanics (Wilhelm and Ward, 1987). Feasible solutions of the 

problem correspond to the states of a physical system, while the objective function value 

for a feasible solution corresponds to the energy of the state of the physical system (Cela, 

1998). Simulated annealing is a therefore a general approach that can be applied to any 

combinatorial optimization problem as soon as a neighborhood structure has been 

introduced on the problem’s set of feasible solutions (Burkard and Rendl, 1984). A 

current solution is updated when certain specified conditions are met until a stopping 

ruling is met. Even though tabu search and simulating annealing produce better results 
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than local search methods, they require much more computational effort (Fleurent and 

Ferland, 1996).  

Genetic algorithms (GA’s) are a class of optimization procedures in which 

populations of individual solutions evolve in a manner inspired by evolution and natural 

selection (Fleurent and Ferland, 1996). There is a growing interest in solving problems 

based on principles of evolution and hereditary. Such systems maintain a population of 

potential solutions, they have some selection process based on fitness of individuals, and 

they use genetic operators (Michalewicz, 1996). Genetic algorithms are not overly costly 

in terms of computational effort (Tate and Smith, 1995). Unlike many other search 

algorithms, the lack of explicit memories makes GAs very fast (Rawlins, 1991).

2.5 Local Search

Many combinatorial optimization problems including the QAP are NP-hard and it 

is generally believed that NP-hard problems cannot be solved to optimality within 

polynomially bounded computation times (Aarts and Lenstra, 1997). In combinatorial 

optimization, optimal solutions to NP-hard problems are sought, a task which can be 

prohibitively difficult even for problem instances of relatively small size (Cela, 1998). In 

cases when an optimal solution to the problem is not found, we often find a local optimal 

solution that is good in some sense. For example, instead of looking for the best solution 

among all feasible ones, we may seek a solution that is the best out of a subset of feasible 

solutions. Finding such a solution could intuitively be easier than finding the optimal one 

(Cela, 1998). Formalizing this kind of compromise leads to what are commonly called 

local search approaches (Fleurent and Ferland, 1994).
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Local search (LS) has grown from a simple heuristic idea into a mature field of 

research in combinatorial optimization and this area of discrete mathematics is of great 

practical use and is attracting ever-increasing attention (Aarts and Lenstra, 1997). A 

general conclusion is that LS algorithms can find good solutions for many problems of 

interest in low-order polynomial running times (Aarts and Lenstra, 1997).  

Most LS algorithms have the advantage of being generally applicable and flexible 

(Aarts and Lenstra, 1997).  Roughly speaking, LS starts with an initial solution and then 

continually tries to find better solutions by searching neighborhoods. It only requires a 

specification of solutions, an objective function, a neighborhood function, and an 

efficient method for exploring a neighborhood, all of which can be easily obtained for 

most problems. 

A basic version of LS is iterative improvement (Aarts and Lenstra, 1997). 

Iterative improvement starts with an initial solution and searches its neighborhood for a 

better solution. If such a solution is found, it replaces the current solution, and the search 

continues. Otherwise, the algorithm returns the current solution as the local optimal 

solution. Iterative improvement can mean either first improvement or best improvement. 

The first improvement method searches the neighborhood until a better solution has been 

found and replaces the current solution with it. Best improvement replaces the current 

solution with the best solution in its neighborhood.

Finding efficient neighborhood functions that lead to high-quality local optima 

can be viewed as one of the challenges of LS algorithms. No general rules are available 

for defining good neighborhood structures and appropriate methods for searching through 

them have to be considered separately. The literature presents many examples of 
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neighborhood functions and even for the same problem there are often many different 

possibilities available (Aarts and Lenstra, 1997). 

Another important decision for LS is the choice of a feasible starting solution 

(Cela, 1998). Poor local optimal solutions found in several cases are attributed to bad 

starting solutions. A classical corrective approach to this shortcoming has been to run the 

LS procedure a number of times with different starting solutions and to keep the best 

solution found as the final solution (Aarts and Lenstra, 1997). This approach allows 

better solutions to be obtained in practice (Fleurent and Ferland, 1994).

2.6 Genetic Algorithm 

There are many hard optimization problems, like the QAP, that arise frequently in 

engineering, economics, management, mathematics, and the social sciences and for 

which no reasonably fast algorithms have been developed (Michalewicz, 1996; Schwefel, 

1981). With hard optimization problems, it is often only possible to find an efficient 

algorithm whose solution is approximately optimal. Consequently, there is much interest 

in approximation algorithms that can find near-optimal solutions with reasonable running 

times (Aarts and Lenstra, 1997).

Probabilistic algorithms can be used to solve some hard optimization problems. 

These algorithms do not guarantee the optimal solution, but by randomly choosing 

sufficiently many solutions the probability of error may be made as small as we like 

(Michalewicz, 1996). Genetic algorithms (GAs) are parallel, randomized-search 

optimization heuristics that are based on the biological process of natural selection (Tate 

and Smith, 1995). GAs are based on evolutionary strategies found in nature, that is, 



19

survival of the fittest (Michalewicz, 1996). GAs belong to the class of probabilistic 

algorithms, but they are different from other random algorithms as they combine 

elements of directed search and stochastic search and are therefore more robust than 

existing directed search methods, (Michalewicz, 1996). GAs often find the needle in the 

haystack, even though they use random search strategies (Mackinnon and Glick, 1999).

Genetic algorithms (GA) were first presented by Holland in the early 1970s 

(Holland, 1975). They have since become an important tool in machine learning and 

function optimization (Rawlins, 1991). A GA has a control structure that adapts to the 

problem being solved (Rawlins, 1991). GAs translate the environment and dynamics of a 

combinatorial optimization problem in terms of a coding structure and a stochastic battle 

for fitness amongst rival candidates (Mackinnon and Glick, 1999). GAs have found 

applications in many operations research problems. They have been applied to problems 

in scheduling, as well as in finance and insurance. For example, the European portfolio 

management for banks, OMEGA, utilizes GAs (Mackinnon and Glick, 1999).

Tate and Smith investigate the use of GAs to solve QAPs (Tate and Smith, 1995). 

They present a GA approach to QAPs that uses the problem specific structure. They show 

that the GA finds solutions that are competitive with those of previously known heuristics 

without undue computational overhead. They argue that GAs provide a particularly 

robust method for solving the QAP and its more complex extensions.

Pure GAs have shortcomings for combinatorial optimization problems. While the 

pure GA approach yields good solutions for small problems, it cannot really compete 

with other heuristics, such as simulated annealing, for larger problems (Fleurent and 

Ferland, 1996; Tate and Smith, 1995). Even though the best-known solutions for the most 
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difficult large QAP problems could not be obtained with GAs, the results indicate that the 

GA approach works and can provide good solutions by means different from those used 

by simulated annealing and tabu search, (Tate and Smith, 1995). This suggests the use of 

GAs to complement and improve existing procedures for combinatorial optimization 

problems (Fleurent and Ferland, 1994). Therefore, it is common to hybridize GAs with 

heuristic techniques that already perform well for specific problems (Davis, 1991; 

Fleurent and Ferland, 1994). 

A hybrid procedure that combines genetic operators with existing heuristics is 

proposed by Fleurent and Ferland (1994) to solve the QAP.  They find that genetic 

operators improve the performance of both local search and tabu search. 

A greedy randomized adaptive search procedure (GRASP) for the QAP is given 

by Li et al. (1994). GRASP is an iterative process consisting of two phases, a 

construction phase and a local search phase. The best overall solution is kept as the result. 

Li et al. (1994) discussed aspects of a GRASP implementation for solving the QAP. Their 

algorithm was tested on a board range of problems and produced good-quality solutions 

in a reasonable amount of computation time. 

Ahuja et al. (2000) give a greedy genetic algorithm for solving the QAP. They 

investigate the use of several possible enhancements to GAs. The overall performance of 

the GA for the QAP is found to improve by using greedy methods. Fairly effective 

heuristic algorithms can be obtained by striking the right balance between greedy 

methods that improve the quality of solutions and methods that promote diversity  

(Ahuja et al., 2000).
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A GA manipulates a population of solutions using probabilistic, genetic-like 

operators like pairwise string recombination, called crossover, and string mutation to 

produce new populations with the intent of generating solutions with better objective 

function values (Rawlins, 1991). The members of the population act as a primitive 

memory for the GA and the genetic operators are so chosen that manipulating the 

population often leads the GA away from unpromising areas of search and towards 

promising ones, without the GA having to explicitly remember its trail through the search 

space (Rawlins, 1991).

GAs perform multi-directional searches by maintaining a population of potential 

solutions and repeatedly performing a cycle of operations until some termination 

condition is satisfied. A GA for a particular problem must have the following 

components.

(a) A selection mechanism that selects individual solutions from the 
population, usually giving preference to those with better objective 
function values.

(b) A reproduction or crossover mechanism that generates new feasible 
solutions by combining features from many known solutions.

(c) A mutation mechanism that generates new feasible solutions by randomly 
perturbing a single known solution.

(d) An evaluation mechanism that plays the role of the environment and 
evaluates each solution in the population and gives some measure of its 
fitness.

(e) A culling or replacement mechanism that removes some solutions from 
the population.
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(f) Values for parameters that the GA uses, e.g., population size and 
probabilities of applying genetic operators.  

A GA has a genetic representation for potential solutions to the problem. An 

encoding scheme maps feasible solutions to strings. Traditionally binary representations 

were used for GAs. These binary representations, however, have some drawbacks when 

applied to multidimensional, high-precision numerical problems (Michalewicz, 1996).  

The effectiveness of a crossover operator depends greatly on the encoding scheme used. 

The encoding should be such that the crossover operator preserves high performing 

arrangements of strings within solutions (Ahuja et al., 2000). A GA must include a way 

to create an initial population of potential solutions. The performance of a GA is often 

sensitive to the quality of the initial population.   

Reproducing subsets are selected from the current population. There is a great 

amount of flexibility in the choice of how to select individuals in a population. For 

example, parents may be selected according to their absolute fitness, their rank in the 

current population, or some other criteria (Tate and Smith, 1995). Selection mechanisms 

should allow for better solutions to reproduce more often (Fleurent and Ferland, 1996).  

In addition, there are many different possible crossover and mutation schemes for 

a given problem. Mutation operators are unary transformations that create new 

individuals by a small change in a single individual. Crossover operators are higher order 

transformations that create new individuals by combining parts from several (two or 

more) individuals (Michalewicz, 1996). In most GA implementations, mutation only 

takes place on a newly formed offspring, but mutation and reproduction can also be 

completely independent (Tate and Smith, 1995).  
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Crossover generates new solutions using various reproductive strategies. 

Reproductive sets are usually of size two and the members are chosen probabilistically 

with probabilities weighted by the solution values. In general crossover, the ith symbol of 

an offspring is the ith symbol of one of the members of the reproductive set. The 

crossover operator should be capable of producing a new feasible solution by combining 

good characteristics of both parents (Ahuja, Orlin, and Tiwari, 2000). The offspring 

should be considerable different from both parents. 

Mutation arbitrarily alters parts of a selected solution by a random change with a 

probability equal to the mutation rate. The idea behind the mutation operator is the 

introduction of some extra variability into the population. Mutation is probabilistic and is 

usually independent of the value of the solution. Mutation should increase the diversity in 

the population by introducing random variations in members of the population (Ahuja, 

Orlin, and Tiwari, 2000). 

Replacement or culling replaces some or all of the original population with the 

new solutions. In classical GAs, the complete population is usually replaced at each 

generation whereas in steady-state models, only a few individuals of the population are 

replaced at each generation (Davis, 1991). Steady-state models exhibit very strong elitism 

and are therefore better suited for hybrid schemes (Fleurent and Ferland, 1996). Also, 

steady-state models have been found to be faster than generational reproduction (Ahuja, 

Orlin, and Tiwari, 2000). In most GAs the population size remains constant.

After a number of generations, when no further improvement is observed, the 

program has converged and it is hoped that the best individual represents a near-optimal 
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solution. Often the algorithm is stopped after a fixed number of iterations depending on 

speed and resource criteria (Michalewicz, 1996).
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Chapter 3: Methodology

3.1 Theoretical Development

     Figure 3.1 Lattice structure.

Given a set M of m points and their coordinates in r-space, the data visualization 

problem locates these points in q-space, q < r (usually q = 2 or 3) such that a relevant 

measure of distance is preserved.

In order to apply discrete optimization techniques, we approximate the continuous 

q-space by a lattice N in q-space (see Figure 3.1) in which each cell has a center point. 

This results in the problem of assigning the m points to n lattice (center) points. We can 

make n as large or as small as the particular data visualization problem requires. A 

problem with points spread out will require a larger grid than one with points clustered 

together. The larger the grid, the more accurate the final result. To ensure that the grid (in 

q-space) scales to a given data set, we find the greatest distance between the pairs of 

points in M. Let this distance be a. Let the greatest distance in the chosen grid be b. Then 
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we multiply all the original distances between points by b/a, so that our grid scales to the 

given problem.

An assignment problem assigns r indivisible entities, called facilities, to r

mutually exclusive locations at a minimum cost. It is assumed that each facility must be 

assigned to exactly one location. Kaufman and Broeckx (1978) give the following 

mathematical formulation of the assignment problem:

1 1

Minimize
r r

ij ij
i j

c x
= =
∑∑ (3.1)

subject to

1

1, 1,...,
r

ij
j

x i l
=

= ∀ =∑ (3.2)

1

1, 1,...,
r

ij
i

x j l
=

= ∀ =∑ (3.3)

(0,1)ijx ∈ (3.4)

where xij equals 1 if facility i is assigned to location j and cij is the cost of assigning 

facility i to location j. The constraints in (3.2) model the fact that each facility must be 

assigned to exactly one location, while the constraints in (3.3) ensure that each location is 

assigned exactly one facility. The objective function is linear and assumes that the 

location of one facility does not affect the cost of locating other facilities.

3.2 Quadratic Assignment Problem (QAP)

In some assignment problems, the location of one facility affects the cost of 

another. This is the case in problems that involve the assignment of pairs of facilities. 

Thus, the assumption that the benefit of assigning a facility to some location does not 
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depend on the locations of other facilities does not adequately address the reality of some 

assignment problems. That is, linear assignment problems cannot handle the complexities 

of the location decisions associated with all assignment problems. For example, the 

benefits of improvements to one location that extend to adjacent locations or the 

detrimental effects such as noise, vibration, and air or water pollution stemming from 

surrounding activities are not addressed by linear assignment problems (Koopmans, 

1957). When the cost is affected by simultaneously making two assignments, the 

objective function can be formulated as a quadratic function of the assignment variables 

xik as follows (Kaufman and Broeckx, 1978):

1 1 1 1

Minimize
r r r r

ijkl ik jl
i j k l

c x x
= = = =
∑∑∑∑ 

where cijkl is the cost of assigning facilities i and j to locations k and l, respectively. This 

problem is commonly known as the Quadratic Assignment Problem  (QAP).

The problem of assigning m points to n lattice points cannot be treated as a linear 

assignment problem because a linear assignment problem assumes that the cost of 

assignment of one point to a lattice point does not depend upon the assignment of the 

other points. However, this is not the case for data visualization problems. We now 

formulate the data visualization problem, i.e., the problem of assigning m points to the n

lattice points, as a quadratic assignment problem. 

3.3 QAP Formulation of Data Visualization Problem

To formulate the data visualization problem as a QAP, let od(i, j) for i, j ∈ M be 

the original distance between two points i and j in r-space and nd(k, l) for k, l∈ N be the 

distance between lattice points k and l in q-space. Let xik be a binary variable that is equal 
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to one if point i∈ M is assigned to lattice point k∈ N and 0 otherwise. The data 

visualization problem as described above can then be formulated as follows:

2Minimize [ ( , ) ( , )] ik jl
i M j M k N l N

j i

od i j nd k l x x
∈ ∈ ∈ ∈

−∑∑∑∑
>

(3.5)

subject to

1,ik
k N

x i M
∈

= ∀ ∈∑ (3.6)

(0,1).ikx ∈ (3.7)

The data visualization problem in (3.5) – (3.7) is known as the multidimensional 

scaling model with raw stress (Borg and Groenen, 1997) or the least squares scaling 

model (Young, 1987).  Any other problem where the objective is a pairwise function of 

the points to be assigned in the data visualization problem can be modeled as a QAP. 

Other choices, which can be considered, include Sammon mapping (Sammon, 1969), 

classical scaling (Borg and Groenen, 1997), and all objective functions for nonmetric 

scaling (Borg and Groenen, 1997). The QAP formulation has mn variables and m

assignment constraints.

The constraints in (3.6) are simple assignment constraints. They require that each 

point in i ∈ M must be assigned to a lattice point k ∈ N indicating that a data 

visualization problem can be formulated and solved as a QAP.  Note that only one set of 

constraints is needed here since there is no restriction on the number of points assigned to 

a lattice point. After any two points i, j∈ M have been assigned to points k,l ∈ N, 

respectively,  the distance between them, denoted by nd(k, l), can be calculated and their 

contribution to the objective function can be determined. The objective function in (3.5) 

penalizes deviations from od(i, j) quadratically. 
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3.4 Test of QAP Formulation

We implemented our QAP formulation in ILOG OPL Studio 3.5.1 (Hentenryck, 

1999) and ran our experiments using Windows 2000 with an 800 MHz Pentium III 

processor and 512 MB of RAM. For our heuristics, we used values of n = 4p, where p = 

1, 2, 3, and 4.

First, we considered a lattice of size four, that is n = 4, and10 different sets of M, 

each with m = 10. We observed that arbitrary orientation resulted in four different 

solutions that were equal (see Figure 3.2). We also observed that symmetry exists 

between the second and third quadrants (see Figure 3.3). Successfully eliminating this 

symmetry will reduce the size of the solution space that the heuristic needs to handle and 

thereby improve the efficiency of our heuristic. 
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3.5 Elimination of Arbitrary Orientation and Symmetry

Figure 3.2 Four equivalent solutions resulting from arbitrary orientation.

In order to eliminate the arbitrary orientation, we fix the first point in M to the 

first quadrant, that is, x11 = 1 (for convenience, we use x11 instead of xA1). For example, in 

Figure 3.2, we consider only the solution in Figure 3.2(d). To eliminate symmetry 

between the second and the third quadrant, we assign the next lowest numbered point that 
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Figure 3.3 Two equivalent solutions resulting from symmetry.

can be assigned to quadrants two or three to quadrant two. So, point two cannot be 

assigned to quadrant three and all other points can only be assigned to quadrant three if a 

lower numbered point has already been assigned to quadrant two. That is, 

23 3 20; , , 3i j
j M
j i

x x x i M i
∈
<

= ≤ ∈ ≥∑  (we point out that we use A = 1, B = 2, C = 3, D = 4, 

and E = 5, in our formulation). In Figure 3.3, we consider only solution 3.3(a). 
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QAP QAPSE

Problem

Objective 
value

Function

Running 
time

(seconds)

Objective 
value

function

Running 
time

(seconds)
1 1785.58 17.21 1785.58 2.33
2 2253.06 22.42 2253.06 6.89
3 2038.34 15.45 2038.34 6.04
4 1848.60 23.60 1848.60 5.32
5 1279.13 13.89 1279.13 3.23
6 1841.48 14.72 1841.48 3.27
7 1848.53 47.78 1848.53    16.71
8 2185.95 12.96 2185.95 2.08
9 2494.98 58.48 2494.98 8.90
10 1183.79 13.50 1183.79 2.78

Average 23.99 5.76

Table 3.1. Results for 10-point problems for QAP and QAPSE.

Our QAP formulation with symmetry elimination constraints (QAPSE) is given 

below.

2Minimize [ ( , ) ( , )] ik jl
i M j M k N l N
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(0,1)ikx ∈ (3.13)
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In Table 3.1, we give the results for the QAP and QAPSE formulations for the 

sets of M of size 10. The average running times for QAP and QAPSE are 23.99 seconds 

and 5.76 seconds, respectively. The results indicate that the formulations give the same 

optimal solution and QAPSE is much faster than QAP. Thus, the symmetry elimination 

constraints greatly reduce the running time of QAP.

Despite recent progress, it is still not possible to solve the QAP formulation 

exactly for the problem sizes of interest here. Recall that only QAPs of size less than 20 

can be solved to optimality (Cela, 1998). Therefore, we investigate the use of equivalent 

integer problems, local search techniques, and genetic algorithms to solve our QAP 

formulation for the data visualization problem.
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Chapter 4: Local Search

There are a number of feasible solutions to a QAP. Finding the best solution is  

difficult and time consuming. As discussed in the previous chapter, discretizing a data 

visualization problem results in a large QAP problem that is very difficult to solve. One 

approach to overcoming this difficulty is to seek a solution that is the best solution in a 

subset of feasible solutions instead of looking for the best solution among all feasible 

solutions. Such a solution is usually referred to as a local optimum and it can be obtained 

by using local search techniques. In this chapter, we develop a local search technique to 

solve our QAP.

Our local search procedure starts with an initial feasible solution that is generated 

randomly. In this case, a solution is a string of numbers of length M where the ith number 

in the string represents the lattice point to which point i ∈ M is assigned. We change the 

assignments of points in M in a solution to better assignments one point at a time, 

keeping all other points fixed. We use a best-improvement algorithm in which the current 

solution is replaced by the best solution in its neighborhood (the neighborhood structure 

is explained below). The process goes though all the points in M and is repeated until a 

stopping condition is satisfied. 

More specifically, the contribution to the objective function of a point i ∈ M is 

calculated for all possible assignments keeping all other points in M fixed at their current 

assignments. That is, we calculate, 2[ ( , ) ( , )] ,jl
j M l N

od i j nd k l x
∈ ∈

−∑∑ for all possible 

assignments of i to a point k∈ N', holding fixed the assignment of the other points j to 
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lattice points l∈ N, where N' is the neighborhood of the assignment of i. We assign point i

to the lattice point that gives the smallest contribution to the objective function. 

Our basic local search procedure is given as follows.

1. Start with a set S of t randomly generated feasible solutions.

2. For each solution s ∈ S, consider the points in M in random order. 
(i) For a point i∈ M under consideration, keep the assignments of all 

points in M except i fixed as they are in solution s.

(ii) Calculate the contribution of point i to the objective function value 
for different lattice assignments k, where k belongs in the 
neighborhood of the assignment of point i in solution s.  Identify 
the lattice assignment k* that minimizes the value of the objective 
function in the neighborhood.  

(iii) Point i is assigned to lattice point k*.

(iv) Repeat steps (i) – (iii), following the order selected for points i∈ M
until there are |M| consecutive iterations with no improvement in 
the objective function value.

3. Calculate the objective function value for each s ∈ S.

4. The best solution is the one with the smallest objective function value. 

We investigated four different discrete local search algorithms. These algorithms 

are described in Table 4.1. We implemented our discrete local search algorithms in the 

C++ programming language. We used Microsoft Visual C++ 6.0 and ran our experiments 

using Windows 2000 with an 800 MHz Pentium III processor and 512 MB RAM. 
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Algorithm Description
LS Local search heuristic
DAC Divide-and-conquer local search heuristic
DACQ Divide-and-conquer local search heuristic with quadrant restrictions
DACN Divide-and-conquer local search heuristic with neighbor restrictions

Table 4.1 Local search algorithms.

4.1 Local Search Techniques

We tested our algorithms on artificially generated data sets. We applied our 

algorithm to several data sets with 50, 100, or 150 points. We set t = 100. The data sets 

were randomly generated from a lattice set of 256 points in two dimensions. For each 

problem size, 10 different problems were generated. To evaluate different versions of our 

local search heuristic, we used problems generated from a two-dimensional lattice, as it is 

easy to compare the quality of the computational results when the original set of points is 

in two dimensions. In this case, the optimal objective function value is known and equal 

to zero.

4.1.1 Local Search Heuristic

Initially, we selected the neighborhood of a point i∈ M, assigned to k∈ N, to be 

all points in N. That is, every lattice point k∈ N is considered as a possible choice for 

assigning i∈ M.

In Table 4.2, we show the results for the experiments for this local search 

heuristic (LS). The frequency column gives the number of solutions (out of 100) that 

converged to the best solution. In nine of the 10 problems of size 50, LS finds the global 
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50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time
(sec)

Best 
solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 0.00 1 87.07 0.00 10 360.30 0.00   7 851.19
2 0.00 2 64.68 0.00   8 414.34 0.00   5 805.37
3 0.00 2 83.32 0.00   8 462.46 0.00   6 913.42
4  62.30 3 73.52 0.00   7 325.42 0.00   9 739.81
5 0.00 1 98.76 0.00   1 519.55 0.00 13 810.72
6 0.00 5 80.09 0.00 12 306.68 0.00 21 702.37
7 0.00 8 74.47 0.00   3 449.00 0.00 23 665.79
8 0.00 4 82.36 0.00   1 429.53 0.00   2 814.69
9 0.00 1 83.91 0.00   4 359.89 0.00 16 889.03
10 0.00 1  100.86 0.00 10 452.81 0.00   8 786.27

Average 82.90 408.00 797.87

Table 4.2 Results for problem sets originally in two dimensions for LS.

optimum. For the 100-point and 150-point problems, LS finds the global optimum in all 

20 problems. The average running times are 82.90 seconds, 408.00 seconds, and 797.87 

seconds for the 50-point, 100-point, and 150-point problems, respectively.

LS allows points to be assigned to all points in the lattice structure. In this case we 

consider 256 lattice points. As the size of M increased, the running time for LS increased 

substantially. 

4.1.2 Divide-and-Conquer Local Search Heuristic

To solve the problem of large running times with LS, we propose a divide-and-

conquer heuristic to reduce the size of the problem that is solved at each stage. Our 

divide-and-conquer heuristic has five steps.  
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Figure 4.1 Lattice of four points.

Figure 4.2 Lattice with 16 points after the four initial points have
                  been subdivided into four additional points each.

1. Start with a lattice of four points (see Figure 4.1).

2. Perform local search (as described above) on points in M using these four 
points; that is, points in M can be assigned to only these four lattice points. 

1 2

3 4
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When local search terminates, the solutions that have been generated have 
points divided into four quadrants.

3. Divide each quadrant into four points (see Figure 4.2).

4. Randomly assign points from each quadrant from the previous assignment 
to one of the four new points. These solutions are the starting solutions for 
local search and local search is performed using the new lattice structure; 
that is, points can be assigned to any of the points in the current lattice 
structure in local search.

5. Continue dividing each point into four points and repeat the previous step 
until a stopping rule is met. We stop at 256 points, unless otherwise 
specified.

For the divide-and-conquer heuristic, the initial feasible solutions are generated 

randomly taking into consideration the symmetry elimination constraints. That is, for the 

initial step of our local search procedure where there are only four lattice points, the 

symmetry constraints are taken into account and the first point is always assigned to the 

first lattice point.

We apply our divide-and-conquer local search heuristic (DAC) to the same 

problem sets we used to test LS. In Table 4.3, we show the results for the experiments for 

DAC. For all 30 problems, DAC finds the global optimum. In two of the ten 100-point 

problems and six of the ten 150-point problems, all solutions generated by DAC were 

optimal (that is, the frequencies were 100%). The average running times for the 50-point 

problems, the 100-point problems, and the 150-point problems are 41.24 seconds, 96.91 

seconds, and 163.14 seconds, respectively.  

In seven of 10 problems for the 50-point problems, DAC finds the optimal 

solution more times than LS. For the 100-point problems, DAC finds the optimal solution 

more times in nine of the 10 problems. In all 150-point problems, DAC finds the optimal 

solution with a higher frequency than LS. Also, in the few problems for which LS has a 
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50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 0.00 69 30.03 0.00 58  136.34 0.00 100 144.81
2 0.00   3 46.57 0.00 92  92.97 0.00   90 192.34
3 0.00   1 39.49 0.00 77  85.80 0.00 100 145.40
4 0.00 52 31.74 0.00  2  102.56 0.00   63 167.16
5 0.00 43 51.04 0.00 91  77.57 0.00 100 149.24
6 0.00 50 34.91 0.00  100  75.59 0.00 100 145.32
7 0.00   5 47.14 0.00 46  124.60 0.00   57 206.28
8 0.00   8 57.23 0.00 10  85.41 0.00 100 160.94
9 0.00   3 44.69 0.00 68  112.42 0.00   90 170.22
10 0.00   1 29.61 0.00  100  75.85 0.00 100 149.65

Average 41.24  96.91 163.14

Table 4.3 Results for problem sets originally in two dimensions for DAC.

higher frequency, the difference in the frequency of optimal solutions generated was 

relatively small. For example, consider problem 4 in the 100-point problems. LS found 

the optimal solution seven times while DAC finds the optimal solution two times. 

Our experiments indicate that DAC generates better results with much smaller 

running times than LS. Furthermore, DAC finds the optimal solution with a greater 

frequency than LS. Thus, the probability that DAC finds the optimal solution is likely to 

be greater than for than LS, especially if the procedure involves fewer starting solutions. 

However, for a 150-point problem with a 256-point lattice, DAC has an average running 

time of 163 seconds. For larger data sets with more lattice points, the running time may 

become very large. This is because DAC allows points to be assigned to any of the lattice 
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points in the current lattice structure. So, as n increases, more lattice points have to be 

considered and this will increase the running time of DAC. 

4.1.3 Divide-and-Conquer Local Search Heuristics with   

Quadrant and Neighbor Restrictions

Next, we suggest two refinements to DAC that reduce running time. We propose 

a divide-and-conquer local search heuristic with quadrant restrictions (DACQ) and a 

divide-and-conquer local search heuristic with neighbor restrictions (DACN). In these 

local search algorithms, there are neighborhood restrictions on the lattice points to which 

points can be assigned. Both algorithms follow the same steps used in DAC. However, 

the points in M are not assigned to all of the lattice points. The neighborhood is restricted 

as follows. 

For DACQ, we restrict a point to the quadrant in which it is assigned initially. 

When a lattice point is divided into four new points, we consider only movements of 

currently assigned points to one of the four new points. Therefore, at each stage of the 

algorithm, only four lattice points are considered for local search. 

For DACN, we restrict a point so that it can be assigned only to a neighbor of the 

lattice point to which it is currently assigned.  A solution s' belongs to the neighborhood 

of a solution s if for any point i ∈ M with an assignment of k ∈ N in s, the assignment of i

in s' is l, where l is any lattice point in N that is next to k, either horizontally, vertically, or 

diagonally (see Figure 4.3). Thus, at each step, a maximum of nine lattice points can be 

considered for local search.  Note that i can stay where it is currently assigned.
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Figure 4.3 Neighborhood of a lattice point.

In Tables 4.4 and 4.5, we show the results for DACQ and DACN for the same 

problems used in the previous experiments. DACQ generates very poor results. It never 

finds the global optimum to any of the 50-point, 100-point, or 150-point problems. On 

the other hand, DACN produces very good results. In nine of 10 problems of size 50 and 

nine of the 10 problems of size 100, DACN finds the global optimum. DACN finds the 

global optimum in all 10 problems of size 150.

The average running times for DACQ are 1.22 seconds, 5.01 seconds, and 11.26 

seconds for the 50-point problems, the 100-point problems, and the 150-point problems, 

respectively. For DACN, the average running times for the 50-point problems, the 100-

point problems, and the 150-point problems are 4.07 seconds, 13.24 seconds, and 27.95 

seconds, respectively. Both heuristics have much lower running times than DAC. 

Considering both solution quality and running time, DACN appears to be the best 

heuristic, when compared to LS, DAC, and DACQ. It gives high-quality solutions in a 

reasonable amount of time. Increasing the size of n does not increase the size of the 

k

l l l

l l

l l l
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50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 1911.54   5 1.20 4154.63   8 4.59 7760.85 17 10.80
2 2062.03   1 1.29 4765.05   6 5.00 12795.7   4 12.67
3 2873.79   1 1.16 7140.47   9 5.05 9190.68 21 10.19
4 4914.27 18 1.20 10587.6   5 4.65 16183.4 10 12.08
5 4323.12   5 1.21 9021.32 32 4.75 13719.6 27 10.61
6 1291.25 14 1.12 4081.64   1 4.74 3768.71 24 9.55
7 2579.19   2 1.21 10244.5   6 5.51 12331.5   9 11.56
8 2008.61   2 1.20 4036.79   8 5.19 9836.29   1 12.59
9 2306.85 15 1.26 6457.58 10 5.42 6439.19   3 11.60
10 1934.54   3 1.37 6400.54   8 5.18 8715.07 17 10.91

Average 1.22 5.01 11.26

Table 4.4 Results for problem sets originally in two dimensions for DACQ.

50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 0.00 70 3.88 0.00 50 13.72 0.00 91 28.00
2 0.00   1 4.25 0.00 91 14.83 0.00 84 32.79
3 131.77 29 4.12 0.00 72 12.98 0.00 99 27.67
4 0.00 52 3.85 631.23  100 11.79 0.00 55 26.54
5 0.00 43 4.49 0.00 91 12.28 0.00 98 26.04
6 0.00 47 3.86 0.00 95 12.71 0.00 93 25.90
7 0.00   5 4.04 0.00 29 13.90 0.00 65 26.80
8 0.00   4 4.50 0.00 13 13.39 0.00 98 28.86
9 0.00 36 4.02 0.00 79 13.57 0.00 88 29.83
10 0.00 2 3.72 0.00 98 13.19 0.00 97 27.04

Average 4.07 13.24 27.95

  Table 4.5 Results for problem sets originally in two dimensions for DACN.
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neighborhood, as in DAC, since a maximum of nine lattice points is considered at each 

stage of the algorithm. This results in a more gradual increase in the running time of 

DACN as a function of n.

4.2 Results and Analysis for DACN 

In this section, we apply DACN to several data sets with 50, 100, and 150 points 

with nonzero global optimal objective function values. The data sets were randomly 

generated from lattice sets in three, four, and five dimensions (e.g., for three dimensions, 

points were generated from a 16 × 16 ×16 lattice; for four dimensions, points were 

generated from a 16 × 16 ×16×16 lattice, and so on). For each combination of dimension 

and size, 10 different problems were generated. The nine problem sets (problem sets 1 to 

9) are described in Table 4.6.

In all our experiments, we use q = 2. In cases where r = q, it is easy to compare 

the quality of the computational results. In this case, the optimal objective function value 

is known and equal to zero. However, for problems where q < r, the optimal value of the 

objective function is unknown and greater than zero. No local criterion exists for deciding 

how good a local optimal solution is as compared to a global one (Cela, 1998). Actually, 

from a complexity point of view, Cela (1998) states that even deciding whether a given 

local solution is a global optimal is an NP-hard problem. 
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Problem Set Dimensions Number of Points
1
2
3
4
5
6
7
8
9

3
3
3
4
4
4
5
5
5

  50
100
150
  50
100
150
  50
100
150

        Table 4.6 Characteristics of problem sets.

50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 20982.0 2 3.93 101459 1 16.59 247553 1 36.80
2 16251.0 1 4.78 105203 3 17.13 265991 1 38.39
3 25871.5 2 4.23 126796 1 15.52 296865 2 33.57
4 22649.6 1 4.38 97143.6 1 12.96 246756 1 33.68
5 27914.8 1 4.49 133668 1 15.19 306127 1 37.46
6 22609.5 1 4.19 101323    17 15.45 244771 3 32.96
7 14946.6 1 4.12 82331.6 5 14.61 263992 6 35.41
8 16103.2 1 4.18 84547.2 7 15.93 231010 1 44.75
9 21778.1 2 4.51 115651 2 17.68 299859 1 37.49
10 26752.2 5 4.50 90984.9 1 16.19 261190 1 35.95

Average 4.33 15.73 36.65

Table 4.7 Results for problem sets 1, 2, and 3 for DACN. These problem sets 
                are originally in three dimensions.



46

Figure 4.4 Plot for problem 2 from Problem Set 1.
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Figure 4.5 Plot for problem 9 from Problem Set 2.
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Figure 4.6 Plot for problem 4 from Problem Set 3.

In Table 4.7, we show the results for problem sets 1, 2, and 3. We do not know 

the global optimal value for these problems and so we cannot compare the results we 

obtained. We observed though that the frequencies for the best solutions are very low. 

The frequencies are all less than 10, expect for problem six of problem set 2, which has a 

frequency of 17. The average running times are 4.33 seconds, 15.73 seconds, and 36.65 

seconds, for problem sets 1, 2, and 3, respectively. In Figure 4.4 we show a plot of the 

final result obtained by DACN for problem two of problem set 1. This plot and all other 

plots in this thesis are produced using Matlab 7.0 (Sigmon and Davis, 2002). In Figures 

4.5 and 4.6, we show the plots for problem nine of problem set 2 and problem four of 

problem set 3, respectively. 
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50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 44880.1 1 4.82 222313 1 18.76 524053 1 48.29
2 41767.4 1 5.34 212677 2 18.04 555620 1 44.65
3 50730.6 2 5.08 245370 1 18.88 572832 1 44.33
4 44550.6 1 5.05 213892 1 17.63 505089 1 42.81
5 48698.9 1 4.99 227596 1 18.36 584245 1 40.61
6 51246.5 1 4.96 226109 1 19.36 510668 1 51.30
7 32953.6 4 4.86 168891 4 18.11 483936 1 41.59
8 45511.4 2 4.81 179716 1 20.20 475717 1 39.45
9 50341.1 1 5.10 241309 1 19.19 572519 1 47.86
10 53649.7 5 4.87 229803 3 18.41 556993 2 41.98

Average 4.99 18.69 44.29

Table 4.8 Results for problem sets 4, 5, and 6 for DACN. These problem sets 
         are originally in four dimensions.
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Figure 4.7 Plot for problem 6 from Problem Set 4.
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         Figure 4.8 Plot for problem 7 from Problem Set 5.
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         Figure 4.9 Plot for problem 5 from Problem Set 6.
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In Table 4.8, we show the results for the data sets originally in four dimensions, 

that is, problem sets 4, 5, and 6. The average running times for the 50-point problems, the 

100-point problems, and the 150-point problems, originally in four dimensions, are 4.99 

seconds, 18.69 seconds, and 44.29 seconds, respectively. In Figure 4.7, we show the plot 

of the final result obtained by DACN for problem six of problem set 4. We show the plot 

for problem seven of problem set five in Figure 4.8 and the plot for problem five of 

problem set six in Figure 4.9.        

In Table 4.9, we show the results for problem sets 7, 8, and 9, (the data sets 

originally in five dimensions). For the 50-point problems, 100-point problems, and 150-

point problems, originally in five dimensions, the average running times are 4.66 

seconds, 17.41 seconds, and 40.27 seconds, respectively. In Figures 4.10, 4.11, and 4.12, 

we show the plots of the final results produced by DACN for problem 1 of problem set 7, 

problem eight of problem set 8, and problem 10 of problem set 9, respectively.      
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50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 75247.8 1 4.57 325175 1 17.81 802908 1 38.22
2 64814.3 1 5.24 333587 1 18.68 841420 1 39.86
3 78566.4 1 4.45 348777 1 17.31 860219 1 41.67
4 75835.4 1 4.74 356028 1 17.25 812147 1 40.28
5 72817.3 1 4.39 329985 1 15.57 813606 2 40.68
6 81840.3 1 4.64 360491 1 18.31 856291 1 40.79
7 64342.7 1 4.46 297337 1 16.99 747779 1 37.02
8 71669.1 1 4.49 305608 1 17.46 753434 1 43.03
9 85219.9 1 4.76 368939 1 16.49 877125 1 39.62
10 78102.9 2 4.82 319882 1 18.24 784065 1 41.53

Average 4.66 17.41 40.27

Table 4.9 Results for problem sets 7, 8, and 9 for DACN. These problem sets 
                are originally in five dimensions.
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       Figure 4.10 Plot for problem 1 from Problem Set 7.
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       Figure 4.11 Plot for problem 8 from Problem Set 8.
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      Figure 4.12 Plot for problem 10 from Problem Set 9.
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4.3 Conclusions

DACN provides an approximate solution to the data visualization problem in a 

small amount of computing time. For the problem sets originally in two-dimensions, 

DACN produces the global optimum in 28 of the 30 problems. For the other problem 

sets, the global optimal solutions are unknown. In the remaining chapters, we will use 

other algorithms on these problem sets and then compare these results to the solutions 

generated by DACN.



54

Chapter 5:  Mathematical Programming

5.1 Integer Problem Formulation

A QAP may be formulated as an equivalent integer program (IP).  In general, the 

equivalent IP for a QAP is much larger than the QAP. However, an IP does not involve 

any complicated quadratic coefficients, which seems to destroy any hope of finding 

efficient solution methods. Also, high-quality commercial solvers are available to solve 

IP, and so the larger IP can be solved faster than the smaller QAP.

Let kl
ijy be a binary variable that is equal to one when i ∈ M is assigned to k ∈ N 

and j ∈ M is assigned to l ∈ N, and zero otherwise. The QAP formulation of DVP can be 

expressed as the following linear integer program (IP):

2Minimize [ ( , ) ( , )] kl
ij

i M j M k N l N
j i

od i j nd k l y
∈ ∈ ∈ ∈

−∑∑∑∑
>

(5.1)

subject to

1,ik
k N

x i M
∈

= ∀ ∈∑ (5.2)

1, , ,kl
ij

k N l N

y i j M j i
∈ ∈

= ∀ ∈∑∑    > (5.3)

, , ,kl
ik ij

l N

x y i j M j i
∈

= ∀ ∈∑   > (5.4)

, , ,lk
ik ji

l N

x y i j M j i
∈

= ∀ ∈∑   < (5.5)

(0,1)ikx ∈ (5.6)

(0,1).kl
ijy ∈ (5.7)
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This IP has 
2( 1)

2

m m n−
y variables and mn x variables. It also has m assignment 

constraints for the x variables, 
( 1)

2

m m −
assignment constraints for the y variables, and 

mn2 other constraints. Thus, there are a total of 
( 1)

1
2

n m
mn

− +   variables and 

2 1
1

2

m
m n

− + +   constraints in the IP formulation.  The IP is much larger than QAP 

which has mn variables and m assignment constraints.

The constraints in (5.2) are for the x variables and are the same as in the QAP. 

These are simple assignment constraints that require each point in M to be assigned to a 

point in N. The constraints in (5.3) are for the y variables and are also assignment 

constraints. These constraints require that a pair of points in M can only be assigned to a 

pair of points in N. The constraints in (5.4) and (5.5) ensure that if a point i ∈ M is not 

assigned to a lattice point k ∈ N (xik = 0), then, for all y variables that include i, point i

cannot be assigned to point k ∈ N ( ).
.that is, 0 .k

iy =

Next, we establish that the QAP and IP formulations are equivalent.

Theorem 

The QAP formulation given in (3.5) – (3.7), and the IP formulation given in (5.1) – (5.7) 

are equivalent.

Proof
The proof has two parts. In the first part, we show that any solution to the IP is 

also a solution to the QAP and vice versa. In the second part, we show that the two 

formulations have the same objective function value.
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Let (x,y) be any feasible solution to the IP formulation. Then (x,y)  satisfies all the 

constraints (5.2) – (5.5) for the IP formulation. In particular, in (5.2), we have 

1, ,ik
k N

x i M
∈

= ∀ ∈∑  which is the same as (3.6) in the QAP formulation. Thus, if (x,y) is a 

feasible solution to the IP, then x is a feasible solution to the QAP formulation. 

Conversely, let x be a feasible solution to the QAP formulation. Let ,kl
ij ik jly x x=

∀ i, j ∈ M, j > i, and ∀ k, l ∈ N. Then x satisfies

1,ik
k N

x i M
∈

= ∀ ∈∑ (5.8)

as it is a solution to the QAP formulation.

From (5.8) 

1, .jl
l N

x j M
∈

= ∀ ∈∑
Hence,

1, ,

1, ,

1, ,

1, , , .

ik jl
k N l N

ik jl
k N l N

kl
ij

k N l N

kl
ij

k N l N

x x i j M

x x i j M

y i j M

y i j M j i

∈ ∈

∈ ∈

∈ ∈

∈ ∈

= ∀ ∈
⇒ = ∀ ∈
⇒ = ∀ ∈
⇒ = ∀ ∈

∑ ∑
∑∑
∑∑
∑∑

 

 >

Also,



57

, , , ,

, , ,

, , ,

, , ,

, , , ,

and , , , , .

kl
ik jl ij

kl
ik jl ij

l N l N

kl
ik lj ij

l N l N

kl
ik ij

l N

kl
ik ij

l N

lk
ik ji

l N

x x y i j M k l N

x x y i j M k N

x x y i j M k N

x y i j M k N

x y i j M i j k N

x y i j M i j k N

∈ ∈

∈ ∈

∈

∈

∈

= ∀ ∈ ∈
⇒ = ∀ ∈ ∈
⇒ = ∀ ∈ ∈
⇒ = ∀ ∈ ∈
⇒ = ∀ ∈ ∈

= ∀ ∈ ∈

∑ ∑
∑ ∑
∑
∑
∑

 <

  >

Thus, if x is a feasible solution to the QAP formulation, then (x,y) is a feasible solution to 

the IP formulation. 

Next, we show that the objective function values are equal. Let (x,y) be any 

feasible solution to the IP formulation. By definition, 1,kl
ijy =  implies that point i is 

assigned to lattice point k, so xik = 1. Also, point j is assigned to lattice point l, so 

xjl = 1. Therefore, if 1,kl
ijy = then xik xjl = 1 On the other hand, 0kl

ijy = means the pair of 

points (i, j) are not assigned to the pair of lattice points (k, l). Therefore, at least one of 

the following holds: xik  = 0 or xjl = 0 when 0,kl
ijy =  so we have xik xjl = 0. Therefore, 

, , , , , .kl
ij ik jly x x i j M j i k l N= ∀ ∈ > ∀ ∈  Hence, the objective function values are equal for 

the two formulations. This completes the proof that the two formulations are equivalent. 

In the IP formulation, the y variables are integer variables (see (5.7)). However, 

the y variables will be integer, if the x variables are integer (Cela, 1998). Therefore, the y

variables can be relaxed to real variables. (5.7) then becomes 0 1.kl
ijy< <
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Problem

Running 
time for 4 

lattice 
points  

(seconds)

Running 
time for 16 

points  
(seconds)

Running 
time for 64 

points  
(seconds)

1 0.50   2.56 295.53
2 0.41 16.79 489.85
3 0.10 12.67 183.92
4 0.56  1.76 563.64
5 0.73 19.34 256.13
6 0.52 23.96 217.87
7 0.87 38.50    5088.29
8 0.59 17.24    1101.91
9 0.72 58.12    7577.17
10 0.50 18.16 195.96

Average 0.55 20.91    1597.03

    Table 5.1 Running times for the IP for problem sets with 
m = 10 and n = 4, 16, and 64.

5.2 Preliminary Computational Results

We implemented our IP formulation in ILOG OPL Studio 3.5.1 (Hentenryck, 

1999) and ran our experiments using Windows 2000 with an 800 MHz Pentium III 

processor and 512 MB of RAM. We tested our formulation on 10 problem sets each of 

size 10. We used values of n equal 4, 16, and 64. 

In Table 5.1, we show the running times for our IP formulation on these problem 

sets. The average running times for n = 4, 16, and 64 are 0.55 seconds, 20.91 seconds, 

and 1597.03 seconds, respectively. It appears that even for problems with a small value 

of m, the running time gets very large as n increases. Therefore, as m and n increase, the 

running time of our IP formulation increases substantially. 
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Figure 5.1 Lattice of four points.

Figure 5.2 Lattice with four initial points and point 
      one subdivided into four additional points.

1 2

3 4

1 2

3 4
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Figure 5.3 Lattice with 16 points after the four initial points have
been subdivided into four additional points each.

Next, we developed a divide-and-conquer heuristic that solves a set of smaller 

problems at each stage instead of one large problem. This gives a more manageable 

problem to solve at each stage. There are five steps to our divide-and-conquer heuristic.

1. Start with a lattice of four points and solve the IP to assign points in M to 
these four lattice points (see Figure 5.1). Points are now divided into four 
quadrants.

2. Divide quadrant one into four points (see Figure 5.2).

3. Assign points in quadrant one from the assignment in step 1 to the four 
new points while keeping assignments to the other quadrants fixed.

4. Repeat Steps 2 and 3 for the other three quadrants (see Figure 5.3).

5. Continue dividing each point into four points and repeat until a stopping 
rule is met. We stop at 256 points. At each stage, only four lattice points 
are considered.
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Problem

Running 
time for 5 

points  
(seconds)

Running 
time for 10 

points  
(seconds)

Running 
time for 15 

points
(seconds)

Running 
time for 20 

points  
(seconds)

1 0.03 0.50 5.97 13.12
2 0.02 0.41 0.33  8.65
3 0.03 0.10 5.96 31.47
4 0.05 0.56 3.84 81.82
5 0.03 0.73 4.67 48.88
6 0.02 0.52 4.77 22.72
7 0.03 0.87 9.69 15.65
8 0.03 0.59 0.30 25.32
9 0.03 0.72 4.57 59.71
10 0.04 0.50 5.97 83.68

Average 0.03 0.55 4.61 39.10

Table 5.2 Running times for the IP for problem sets with 
m = 5, 10, 15, and 20, and n = 4.

We also tested our IP formulation for different sizes of m with n = 4. We use m = 

5, 10, 15, and 20. In Table 5.2, we show the running times for these problems. The 

average running times for m = 5, 10, 15, and 20 are 0.03 seconds, 0.55 seconds, 4.61 

seconds, and 39.10 seconds, respectively. The running time increases substantially as m

increases. 

Next, we developed an algorithm to divide M into several smaller sets and assign 

the points in these sets, one after another, instead of assigning all the points in M at the 

same time. If all the points in M are assigned at once, the solution obtained will most 

probably be more accurate than when we assign the points in smaller sets. However, we 

use smaller sets to reduce the running time. We want these smaller sets to be as large as 
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possible in order to obtain more accurate solutions. Preliminary experiments indicated 

that with respect to size and running time m = 10 gives reasonable results. Based on these 

results, we group points into sets of 10 and then assign one set at a time. After the first set 

has been located, these assignments are kept fixed while the next set of 10 is assigned. 

We continue until all points have been located. Each set of 10 is selected randomly. 

Our IP algorithm for n = 4 is given by the following.

1. Start with 10 points and solve the IP to fix their locations.

2. Keeping the assignments of these located points fixed, select 10 more 
points from the remaining points and solve IP to fix them.

3. Repeat Step 2 until all points are assigned to one of the four lattice points.

5.3 Integer Programming Heuristics

We applied our IP heuristic to several data sets with 50, 100, and 150 points. 

These are the same data sets generated from a lattice of 256 points in two dimensions 

used in our local search experiments.  We used problems generated from a two-

dimensional lattice, because it is easy to compare the quality of the computational results 

when the original set of points is in two dimensions. In this case, the optimal objective 

function value is known and equal to zero. We investigated five IP heuristics and these 

are described in Table 5.3.
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Algorithm Description
IP Integer program heuristic
IR Integer program heuristic

-     Step 1 repeated
IRN Integer program heuristic

- Step 1 repeated
- Points allowed to move to neighboring lattice points

IRNS Integer program heuristic
- Step 1 repeated
- Points allowed to move to neighboring lattice points
- Maximum of 20 points considered in reassigning points 

after Step 2
- After Step 4 points reassigned five points at a time 

IMP Integer program heuristic
- Uses final results from DACN as starting solution
- Reassigns points randomly, five points at a time

Table 5.3 Integer programming heuristics.

5.3.1 IP Heuristic

In Table 5.4, we show the results for the experiments for the IP heuristic (IP) for 

our 50-point, 100-point, and 150-point problem sets. In all 30 problems, IP does not find 

the global optimum. The quality of the results obtained is very poor. The objective 

function values are very large and are not close to the global objective function value of 

zero. The average running times for the 50-point, 100-point, and 150-point problem sets 

are 40.08 seconds, 60.47 seconds, and 82.50 seconds, respectively. These running times 

are much higher than those for our local search experiments. We consider some 

improvements to our IP heuristic that may reduce running time and find an objective 

function value closer to zero.   
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50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)
1 1782.55 38.76 3943.15 60.57 10543.39 81.11
2 1065.33 43.17 4787.36 61.79   9474.23 84.18
3 1582.72 38.58 7555.24 59.69 15425.09 81.19
4 1432.41 40.67 4930.43 59.27 11236.00 81.79
5 1380.65 40.05 4023.72 57.40   8970.13 83.28
6 3486.62 40.86 9526.07 61.84 18000.82 82.60
7 1186.39 35.77 5731.94 61.25 12520.92 81.71
8 2167.78 43.89 7458.12 62.61 14464.60 83.20
9 1331.17 40.13 5125.06 59.12   9418.85 82.55
10   896.44 38.88 4609.96 61.20 10782.77 83.36

Average 40.08 60.47 82.50

Table 5.4 Results for problem sets originally in two dimensions for IP.

We tried different solver options available in ILOG OPL but none yielded 

substantially reduced running times. Since the method used here is an approximation 

approach, we experimented with solving an LP relaxation for Steps 2, 3, and 4, instead of 

solving the IP. Also, we considered solving the problem to within a fixed percentage of 

the optimal objective function value. These attempts did not achieve any noticeable 

reduction in the running time.
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5.3.2 IR Heuristic

50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)
1 1506.81 38.21 3826.07 70.41 4132.63 132.57
2 1065.33 43.32 6073.60 69.28 9213.26   93.50
3 1332.33 40.11 4587.99 71.14 6586.88 105.14
4 1076.72 41.05 2884.42 66.51 9886.35   97.80
5 1216.70 45.10 1496.15 65.31 2863.98   92.93
6 1021.26 41.41 2782.36 71.01 2255.72 105.39
7 1035.80 38.62 5505.76 69.26 9981.09   94.84
8 1946.48 42.16 6387.51 72.64 8029.16 118.57
9 1048.95 43.85 3401.99 65.80 9900.15   94.37
10  639.72 41.36 2166.36 73.12 3530.58 103.08

Average 41.52 69.45 103.82

Table 5.5 Results for problem sets originally in two dimensions for IR.

We observed that the fewer the number of points assigned incorrectly in Step 1, 

the better the final solution. Therefore, to improve the objective function values, we 

propose an IP heuristic with Step 1 repeated a number of times. This heuristic is denoted 

IR. After all points in M have been assigned in Step 1, we randomly free points, 10 at a 

time, and try to assign them with the other m – 10 points fixed at their assigned locations. 

We repeat this until we have a cycle of all m points being reassigned with no change in 

the objective function value.   

In Table 5.5, we show the results for IR on the same data sets we used for IP. For 

all 30 problems, IR does not find the global optimum. For all the 50-point problems 

though, IR produces better results than IP. That is, the objective function values are lower 
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than those for IP. For nine of the ten 100-point problems and nine of the ten 150-point 

problems, IR gives better results than IP. The average running times are 41.52 seconds, 

69.45 seconds, and 103.82 seconds, for the 50-point problems, 100-point problems, and 

150-point problems, respectively. The average running times for IR are all slightly higher 

than those for IP, but we obtain better objective function values with IR.

5.3.3 IRN Heuristic

Even though we obtain better solutions with IR, the quality of the solutions is still 

poor as it does not find the global optimum for any problem. With IR, a point remains in 

the quadrant to which it is originally assigned. If a point is placed in a wrong quadrant at 

any step, this error cannot be corrected and this may contribute significantly to the poor 

performance. To eliminate this, we propose an IP heuristic (IRN) that allows points to 

move to neighboring points after they have been assigned. 

The algorithm for IRN is similar to that for IR. However, after Steps 2, 3, and 4 in 

IRN, points assigned to a box are freed and may be reassigned to neighboring points, 

while points assigned to the other boxes are kept fixed at their current assignments. 

Recall, that each lattice point is divided into four subpoints after each step. A box is made 

up of the four subpoints, from a point in a previous step. After Step 2, one box is made up 

of the four points in quadrant one as shown in Figure 5.2. The neighborhood structure 

here is the same as that described for DACN. We continue to reassign points in boxes 

until there is no improvement in the objective function value after we have gone through 

a cycle with all of the points in M.
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50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)
1     0.00 154.03 2910.35 526.53 0.00 400.92
2 949.31 163.84     0.00 363.21 0.00 498.41
3 645.63 174.37 0.00 211.78 0.00 410.50
4 0.00 128.45 631.23 216.33 1813.38 584.38
5 124.87 136.78 0.00 161.72 0.00 339.82
6 0.00 166.78 0.00 175.80 0.00 422.39
7 567.56 146.79 1391.56 338.25 0.00 458.43
8 844.51 363.34 3466.19 335.73 0.00 427.25
9 618.57 188.31 0.00 210.65 0.00 459.86
10 95.44 139.05 0.00 206.26 0.00 502.32

Average 176.17 274.63 450.43

Table 5.6 Results for problem sets originally in two dimensions for IRN.

We applied IRN to our three two-dimensional data sets. In Table 5.6, we show the 

results for IRN on the 50-point, 100-point, and 150-point problem sets. In all 30 

problems, IRN gives better results than IR. For the 50-point problems, IRN finds the 

global optimum in three of the 10 problems.  In six of 10 problems of size 100 and nine 

of the 10 problems of size 150, IRN finds the global optimum. The average running times 

are 176.17 seconds, 274.63 seconds, and 450.43 seconds for the 50-point, 100-point, and 

150-point problems, respectively. The average running times for IRN are much higher 

than those for IP and IR, but the quality of the solutions is much better.



68

 

5.3.4 IRNS Heuristic

50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)
1     0.00 134.21 3019.37 332.15 0.00 252.12
2 892.27 155.96 0.00 324.33 0.00 310.17
3 645.63 142.71 0.00 196.28 0.00 271.29
4     0.00 113.14 631.23 187.03 1813.38 356.96
5 124.87 109.71 0.00 147.23 0.00 222.55
6 723.83 128.03 0.00 164.00 0.00 249.44
7 567.56 124.21 1391.56 274.62 0.00 297.56
8 673.83 225.41 0.00 206.54 0.00 312.19
9 618.57 141.08 0.00 159.63 0.00 267.90
10   95.44 118.60 0.00 151.66 0.00 273.37

Average 139.31 214.35 281.36

Table 5.7 Results for problem sets originally in two dimensions for IRNS.

After Step 2, when we free up the points assigned to a box, there are only four 

boxes to consider. The number of points assigned to a box can be relatively large when 

the size of m is greater than 50. In our preliminary computational experiments, we 

observed that the best results and running times were obtained when we restricted the 

maximum number of points that can be reassigned to 20.

The presence of empty boxes will result in a situation where time is spent in a box 

only to find that it there are no points assigned to them. After Step 4, there may be many

empty boxes. To eliminate this, we refined the heuristic so that points assigned to boxes 

were not examined after Step 4. We select five points randomly and try to reassign them 

keeping all other points fixed at their current assignments. We then take five points 
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randomly from the remaining m – 5 points and repeat the procedure until all points have 

been reassigned. Five points appears to produce fast running times and good results. 

We apply this heuristic, denoted by IRNS, to our two-dimensional data sets. We 

show the results for these experiments in Table 5.7. IRNS finds the global optimum in 

two of the 10 problems of size 50. IRNS generates a better solution than IRN in two of 

the 50-point problems. For seven of the other 50-point problems, IRNS generates the 

same best solution as IRN. In seven of the 10 problems of size 100, IRNS finds the global 

optimum. IRNS generates a better solution than IRN in one of the 100-point problems. 

For eight of the other 100-point problems, IRNS generates the same best solution as IRN. 

IRNS finds the global optimum in nine of the ten 150-point problems. In all ten 150-point 

problems, IRN and IRNS generate the same solutions. The average running times for the 

50-point, 100-point, and 150-point problems for IRNS are 139.31 seconds, 214.35 

seconds, and 281.36 seconds, respectively. 

IRN and IRNS produce similar results, but IRNS generates these results much 

faster than IRN. 
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5.4 Comparison of DACN and IRNS 

50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Percent 
increase 

over 
DACN 
results

Best 
solution 
obtained

Running 
time 

(seconds)

Percent
increase 

over 
DACN 
results

Best 
solution 
obtained

Running 
time 

(seconds)

Percent 
increase 

over 
DACN 
results

1 21491.62 177.72 2.42 101621.10 442.52 0.16 248055.77 733.37 0.20
2 17157.00 184.29 5.58 106738.70 654.59 1.46 281965.46 451.45 6.01
3 26406.12 161.91 2.07 133297.12 457.75 5.13 306564.78 531.88 3.27
4 23122.98 205.00 2.09 121084.26 337.91 24.64 261537.31 580.15 5.99
5 30227.63 189.27 8.29 133698.21 355.42 0.02 324271.34 717.25 5.93
6 22630.76 158.20 0.09 101322.81 580.17 0.00 244848.28 564.43 0.03
7 15287.25 110.33 2.23  82577.58 261.88 0.30 266101.82 680.56 0.80
8 16684.51 211.40 3.61  85611.87 276.26 1.26 231903.50 505.57 0.39
9 22139.66 236.94 1.66 116188.76 326.45 0.46 300627.86 615.66 0.26

10 28797.60 185.97 7.65  91150.22 320.05 0.18 261777.81 546.30 0.23
Average 182.10 3.57 401.30 3.36 592.66 2.31

Table 5.8 Results for problem sets 1, 2, and 3 for IRNS. These problem sets are 
    originally in three dimensions.
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Figure 5.5 Plot for problem 9 from problem set 2.

1

2

3

4

5

6

7

8

910

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2930

31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

8081

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103 104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Figure 5.6 Plot for problem 4 from problem set 3.
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           We applied IRNS to problem sets 1 to 9 in Table 4.6. In Table 5.8, we show the 

results for problem sets 1, 2, and 3, that is, the data sets originally in three dimensions. 

IRNS produces the same solution as DACN for Problem 6 of the 100-points problems. 

For the other nine problems of size 100, and all 50-point and 150-point problems, DACN 

produces better solutions than IRNS. IRNS produces objective function values that are on 

the average 3.57%, 3.36%, and 2.31%, larger than the objective function values produced 

by DACN for the 50-point problems, 100-point problems, and 150-point problems, 

respectively.

In Figures 5.4, 5.5, and 5.6, we show the plots of the final results for IRNS for 

problem two of problem set 1, problem nine of problem set 2, and problem four of 

problem set 3, respectively. These plots are quite different from the plots produced by 

DACN (see Figures 4.4, 4.5, and 4.6).   

The average running times are 182.10 seconds, 401.30 seconds, and 592.66 

seconds, for the 50-point problems, 100-point problems, and 150-point problems, 

respectively. These running times are much longer than those for our local search 

experiments. For the three-dimensional data sets, DACN produces solutions with lower 

objective function values and much faster times than IRNS.

In Table 5.9, we show the results for the four-dimensional data sets, that is, 

problem sets 4, 5, and 6. For all 30 four-dimensional problems, the results produced by 

IRNS are worse than those produced by DACN. The objective function values produced 

by IRNS are greater than those produced by DACN by an average of 3.12%, 1.61%, and 

4.15%, for the 50-point problems, 100-point problems, and 150-point problems, 

respectively. The average running times for the 50-point, 100-point, and 150-point 
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problems are 216.31 seconds, 459.76 seconds, and 771.41 seconds, respectively. For 

these problem sets, DACN produces better objective function values than IRNS in much 

faster times.

In Figures 5.7, 5.8, and 5.9, respectively, we show the plots of the final results for 

IRNS for problem six of problem set 4, problem seven of problem set 5, and problem five 

of problem set 6, respectively. As expected these plots are different from those produced 

from DACN (see Figures 4.7, 4.8, and 4.9) since the objective function values produced 

by IRNS are different from those produced by DACN. 
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50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Percent 
increase 

over 
DACN 
results

Best 
solution 
obtained

Running 
time 

(seconds)

Percent
increase 

over 
DACN 
results

Best 
solution 
obtained

Running 
time 

(seconds)

Percent 
increase 

over 
DACN 
results

1 47094.86 135.71 4.93 224839.56 423.42 1.14 525050.19 551.05 0.19
2 42963.42 178.16 2.86 213458.02 580.74 0.37 559160.02 759.19 0.64
3 50975.45 272.80 0.48 247202.91 300.85 0.75 585377.67 693.63 2.19
4 44698.41 279.72 0.33 218369.49 575.95 2.09 514418.71 971.90 1.85
5 51032.22 291.84 4.79 228124.29 377.06 0.23 616474.44 688.62 5.52
6 58262.64 165.14  13.69 241455.22 443.61 6.79 541269.10 1169.47 5.99
7 33486.43 208.14 1.62 169025.90 274.87 0.08 489496.21 798.00 1.15
8 46545.88 219.97 2.27 183680.72 810.09 2.21 525759.25 746.29    10.52
9 51218.00 168.82 1.74 244400.01 319.68 1.28 573959.66 540.31 0.25

10 53901.03 242.77 0.47 232392.88 491.32 1.13 630463.38 855.60    13.19
Average 216.31 3.12 459.76 1.61 777.41 4.15

Table 5.9 Results for problem sets 4, 5, and 6 for IRNS. These problem sets are 
     originally in four dimensions
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Figure 5.7 Plot for problem 6 from problem set 4.
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Figure 5.8 Plot for problem 7 from problem set 5.
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50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Percent 
increase 

over 
DACN 
results

Best 
solution 
obtained

Running 
time 

(seconds)

Percent
increase 

over 
DACN 
results

Best 
solution 
obtained

Running 
time 

(seconds)

Percent 
increase 

over 
DACN 
results

1 82272.38 240.02 9.34 333816.59 905.08 2.66 837254.19 899.66 4.28
2 75471.14 259.10  16.44 341377.09 731.34 2.34 909307.80 699.35 8.07
3 80991.64 193.99 3.09 354212.62 568.34 1.56 873020.12 725.03 1.49
4 76126.05 174.75 0.38 367179.84 825.62 3.13 836426.00 1408.30 2.99
5 75144.71 205.47 3.20 347951.62 1151.31 5.44 822921.03 645.31 1.14
6 82056.33 198.77 0.26 372684.06 460.07 3.38 874079.30 745.46 2.08
7 73751.18 149.94  14.62 302035.76 394.86 1.58 751511.17 729.28 0.50
8 86034.34 277.59  20.04 310912.96 419.77 1.74 782511.42 1127.75 3.87
9 86484.18 265.01 1.48 371934.41 397.75 0.81 888507.91 655.37 1.30

10 78393.78 215.79 0.37 321339.57 403.45 0.46 816186.90 1028.75 4.10
Average 218.04 6.92 625.76 2.31 866.43 2.98

Table 5.10 Results for problem sets 7, 8, and 9 for IRNS. These problem sets are 
          originally in five dimensions.
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Figure 5.10 Plot for problem 1 from problem set 7.
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           Figure 5.11 Plot for problem 8 from problem set 8.
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        Figure 5.12 Plot for problem 10 from problem set 9.
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In Table 5.10, we show the results for problem sets 7, 8, and 9, that is, for data 

sets originally in five-dimensions. In all 30 problems, IRNS produces results that are 

worse the results produced by DACN. The objective function values produced by IRNS 

are greater than those produced by DACN by an average of 6.92%, 2.31%, and 2.98%, 

for the 50-point problems, 100-point problems, and 150-point problems, respectively. 

In Figures 5.10, 5.11, and 5.12, we show the plots of the final results for IRNS for 

problem one of problem set 7, problem eight of problem set 8, and problem 10 of 

problem set 9. Again the plots produced by IRNS are different from those produced by 

DACN (see Figures 4.10, 4.11, and 4.12)

The average running times are 218.04 seconds, 625.76 seconds, and 866.43 

seconds for the 50-point problems, 100-point problems, and 150-point problems, 

respectively. DACN again produces better objective function values than IRNS in much 

faster times.

5.5 Improvement Heuristic

We observed that DACN almost always generates good final solutions. We use 

the final solution from DACN as the starting solution in an integer program heuristic. We 

randomly free five points at a time, as we did after Step 4 in IRNS, and reassign these 

points keeping the remaining m – 5 points fixed at their current locations. We then 

randomly select another set of five points and repeat this until all m points have been 

reassigned. We repeat this process until we have a cycle of all m points being reassigned 

with no change in the objective function value. This is referred to as the improvement 

heuristic (IMP). 
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50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)
1 20982.00 16.39 101459.02 24.29 247552.56 39.79
2 16250.96 11.53 105203.22 23.77 265991.16 38.99
3 25871.46 11.43 126796.13 23.78 296864.55 39.07
4 22649.58 11.28 97143.60 23.80 246756.14 38.89
5 27901.62 23.17 133668.46 23.97 306127.24 39.19
6 22609.51 11.82 101322.81 23.38 244770.86 38.33
7 14946.64 11.92 82331.57 24.38 263992.07 39.48
8 16103.25 11.57 84547.23 23.69 231010.09 39.54
9 21778.13 11.76 115650.96 24.11 299858.64 39.02
10 26752.19 12.02 90984.91 23.42 261189.53 39.20

Average 13.29 23.86 39.15

Table 5.11 Results for problem sets 1, 2, and 3 for IMP. These problem sets are 
      originally in three dimensions.

50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)
1 44880.14 11.41 222313.12 24.13 524053.15 39.71
2 41767.38 11.47 212677.13 23.98 555620.19 40.71
3 50730.55 11.42 245369.56 24.57 572831.62 39.53
4 44550.63 11.62 213891.84 24.95 505089.33 40.25
5 48698.86 11.28 227596.04 24.33 584245.47 40.09
6 51246.53 12.56 226109.03 23.72 510667.94 40.45
7 32925.57 11.48 168891.25 24.70 483935.61 40.46
8 45511.42 11.33 179716.50 24.35 475716.73 40.59
9 50341.09 11.46 241308.77 24.16 572518.94 40.73
10 53649.65 11.41 229803.00 24.09 556992.94 39.70

Average 11.54 24.30 40.22

Table 5.12 Results for problem sets 4, 5, and 6 for IMP. These problem sets are 
      originally in four dimensions.
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50-point problems 100-point problems 150-point problems

Problems

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)

Best 
solution 
obtained

Running 
time 

(seconds)
1 75242.43 22.48 325175.37 24.17 802908.30 39.62
2 64814.27 11.86 333587.21 24.73 841420.05 39.86
3 78566.40 11.82 348776.99 24.98 860219.43 40.17
4 75835.44 11.72 356028.47 24.39 812147.00 40.18
5 72817.28 11.35 329984.73 24.76 813605.93 40.33
6 81840.26 11.29 360490.54 24.26 856291.05 39.97
7 64342.71 11.63 297337.37 24.44 747778.81 40.65
8 71669.14 11.71 305608.28 24.48 753433.64 40.69
9 85219.88 11.55 368938.86 24.91 877125.17 40.66
10 78102.88 11.70 319881.60 24.31 784065.03 40.64

Average 12.71 24.54 40.23

Table 5.13 Results for problem sets 7, 8, and 9 for IMP. These problem sets are 
      originally in five dimensions.

We applied IMP to problem sets 1 to 9. In Tables 5.11, 5.12, and 5.13, we show 

IMP’s results. The running times reported for IMP are just those for the mathematical 

programming. They do not contain the running times to run DACN to generate the 

starting solutions. For most of the problems, IMP was not able to improve the solutions 

produced by DACN. IMP improved only two of the 120 problems. For Problem 5 of the 

50-point problems in three dimensions, DACN produced an objective function value of 

27914.8 in 4.49 seconds, while IMP produced an objective function value of 27901.62 in

23.17 seconds. For Problem 1 of the 50-point problems in five dimensions, the objective 

function values produced by DACN and IMP were 75247.8 and 75242.43, respectively. 

DACN’s running time for this problem is 4.57 seconds and IMP’s running time is 22.48 

seconds. The two improvements obtained by IMP are very modest.
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5.6 Conclusions

DACN produces much better objective function values than IRNS. The running 

times for DACN are also much shorter than those of IRNS. DACN is more accurate and 

efficient than IRNS.

DACN produces solutions by reassigning points, one point at a time. On the other 

hand, IMP reassigns five points at a time. We expected that IMP would be able to 

improve the results of DACN. However, that is not what we observed with our 

experiments. It appears that the local search procedure of assigning points one at a time 

works well for the data visualization problem. 
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Chapter 6:  Genetic Algorithm

A technique that is commonly used to find near optimal solutions to QAP is the 

genetic algorithm. Since we obtained reasonable results with DACN, we now propose a 

hybrid heuristic that combines local search with a genetic algorithm. We refer to this 

heuristic as HGA.

HGA builds on DACN by applying genetic algorithms techniques to the final 

solution from DACN. For each generation, we produce mc offspring by performing a 

crossover between the best solution and mc randomly selected solutions from the t current 

solutions. We then randomly select mm solutions from the current t + mc solutions and 

perform mutation on them to produce mm offspring from mutation.  After mutation we 

have t + mc + mm solutions. We select the best t solutions and repeat the procedure until 

some stopping criterion is met.

Our crossover operator is illustrated below. Let B be the best solution and P be a 

randomly chosen solution for crossover. The offspring first inherits all assignments 

common to both B and P. Unassigned sites, that is, those with different assignments in B

and P, are scanned from left to right. The offspring inherits the assignment with a better 

contribution to the objective function value. Let the assignment for point i in B and P be 

kB and kP, respectively. The contribution to the objective function value, that is, 

2[ ( , ) ( , )] ,
j M

od i j nd k l
′∈

−∑  is calculated for i, for k = kB and k = kP, where j∈ M' is the set 

of points with assignments l in the offspring. We assign point i to the lattice point kB or kP

that gives the smallest contribution to the objective function. 

We now consider the following example.
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Let

B: 1 4 2 3 2

P: 1 4 4 3 1.

Since points 1, 2, and 4 are assigned to the same lattice points in both B and P, they have 

the same assignment in the offspring, that is,

O: 1 4 - 3 -. 

To find the assignment to point 3, we find:

cB = [od(3,1) – nd(2,1)]2 + [od(3,2) – nd(2,4)]2 + [od(3,4) – nd(2,3)]2 and 

cP = [od(3,1) – nd(4,1)]2 + [od(3,2) – nd(4,4)]2 + [od(3,4) – nd(4,3)]2 .

If cB < cP, then point 3 is assigned to lattice point 2; otherwise it is assigned to lattice 

point 4. Let’s assume cB < cP, and so point 3 is assigned to lattice point 2 and we have

O: 1 4 2 3 -. 

To find the assignment for point 5, we find

cB = [od(5,1) – nd(2,1)]2 + [od(5,2) – nd(2,4)]2 + [od(5,3) – nd(2,2)]2

    + [od(5,4) – nd(2,3)]2 and 

cP = [od(5,1) – nd(1,1)]2 + [od(5,2) – nd(1,4)]2 + [od(5,3) – nd(1,4)]2

    + [od(5,4) – nd(1,3)]2.

If cB < cP, then point 5 is assigned to lattice point 2; otherwise it is assigned to lattice 

point 1. Let’s assume cP < cB, and so point 5 is assigned to lattice point 1 and we have

O: 1 4 2 3 1.

For mutation, we find the nt lattice points to which the greatest number of points 

are assigned. We remove these nt points from our set of lattice points and reassign the 

points in M to the remaining n – nt lattice points using one pass of local search. For 
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example, consider a problem with n = 4 and nt = 1. Let lattice point 3 be the lattice point 

to which the most points in M are assigned. Then we assign points to only lattice points 1, 

2, and 4. We put back the nt points and apply local search to reassign the points in M to 

all n lattice points. We repeat local search until there are |M| consecutive iterations with 

no improvement in the objective function value.

6.1 Results and Analysis for GA

We implemented our HGA heuristic in the C++ programming language. We used 

Microsoft Visual C++ 6.0 and ran our experiments using Windows 2000 with an 800 

MHz Pentium III processor and 512 MB RAM. From DACN, we have t = 100. We use 

mc = 20, mm = 10, nt = 8, and stop after 10 generations. 

In Table 6.1, we show the results for our HGA heuristic for the 50-point, 100-

point and 150-point problems originally in two dimensions. In nine of 10 problems of 

size 50, DACN finds the global optimum (see Table 4.5). Recall, that these problems are 

originally in two dimensions and so the global optimum is known and is equal to zero. 

For these problems, HGA cannot improve on the best solution obtained by DACN as it is 

the global optimum. It can only increase on the frequency of the number of solutions out 

of 100 that converge to the best solution. The best solution found by DACN for problem 

3 is 131.77. HGA is not able to improve this solution. In all 10 problems, HGA increases 

the frequency of solutions that converge to the best solution obtained. In all 10 problems, 

all 100 solutions for HGA converge to the best solution obtained. 
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50-point problems 100-point problems 150-point problems

Problem
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
Best 

solution Freq

Running 
time

(secs)
1 0.00 100 13.85 0.00 100 45.20 0.00 100 89.41
2 0.00 100 13.65 0.00 100 45.51 0.00 100 92.95
3 131.77 100 13.85 0.00 100 43.60 0.00 100 88.72
4 0.00 100 13.47 631.23 100 43.60 0.00 100 88.21
5 0.00 100 14.17 0.00 100 42.88 0.00 100 85.56
6 0.00 100 13.35 0.00 100 44.07 0.00 100 87.68
7 0.00 100 13.82 0.00 100 44.77 0.00 100 87.53
8 0.00 100 14.14 0.00 100 44.67 0.00 100 88.96
9 0.00 100 13.74 0.00 100 45.01 0.00 100 90.21
10 0.00 100 13.34 0.00 100 44.73 0.00 100 87.30

Average 13.74 44.40 88.65

Table 6.1 Results for problem sets originally in two dimensions for HGA.

In nine of the 10 problems of size 100, DACN finds the global optimum (see 

Table 4.5). The best solution found by DACN for problem 4 is 631.23. All 100 solutions 

generated by DACN converge to this solution. In Table 6.1, we see that HGA finds the 

same best solution for this problem. It is not able to improve on the solution produced by 

DACN. For the remaining nine problems, all 100 solutions produced by HGA converge 

to the optimal solution.

For all 10 problems of size 150, DACN finds the global optimum (see Table 4.5). 

In all 10 problems, HGA increases the frequency of solutions that converge to the best 

solution. All 100 solutions in all 10 problems converge to the best solution obtained.   

The average running times for HGA for the 50-point problems, the 100-point 

problems, and the 150-point problems, originally in two dimensions, are 13.74 seconds, 
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44.40 seconds, and 88.65 seconds, respectively. The running times reported for HGA 

include both the running times for DACN and those for the genetic algorithm techniques. 

For DACN, the average running times for the 50-point problems, the 100-point problems, 

and the 150-point problems are 4.07 seconds, 13.24 seconds, and 27.95 seconds, 

respectively (see Table 4.5). The average running times for DACN are much shorter than 

those for HGA. However, the frequencies for HGA are much larger than those for DACN 

in 29 of the 30 problems in two dimensions. 

We also applied HGA to problem sets 1 to 9 in Table 4.6. In Tables 6.2, 6.3, and 

6.4, we show the results for problem sets 1, 2, and 3, respectively, that is, the data sets 

originally in three dimensions.  In Table 6.2, we see that in six of the 10 problems of size 

50, HGA produces better solutions than DACN. In the remaining four problems, DACN 

and HGA produce the same best solution; however, more solutions converge to the best 

solution with HGA. On average, HGA produces solutions that are 0.065 % less than those 

produced by DACN for the 50-point problems. In Table 6.3, we see that in five of the 10 

problems of size 100, HGA produces better solutions than DACN. In the remaining five 

problems, GA does not improve the objective function value produced by DACN, but it 

improves the frequencies. On the average, HGA produces solutions that are 0.0717 % less 

than those produced by DACN for the 100-point problems. In Table 6.4, we see that 

HGA produces the same result for five of the 10 problems of size 150. In four of these 

problems, HGA produces better frequencies than DACN. However for problem 1, HGA 

and DACN produce the same frequency. In the remaining five problems, HGA finds a 

better solution than DACN. For the 150-point problems, HGA produces solutions that are 

on the average 0.0509 % less than those produced by DACN.
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Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 20982.0 9 15.23 0.000000
2 16217.7 7 16.66 0.204910
3 25864.3 1 15.87 0.027830
4 22645.7 6 16.31 0.017219
5 27901.6 1 16.60 0.047287
6 22541.3 2 16.45 0.301643
7 14946.6 8 15.59 0.000000
8 16095.6 3 15.67 0.047196
9 21778.1       43 16.43 0.000000
10 26752.2       85 16.36 0.000000

Average 16.12 0.064609

                   Table 6.2 Results for problem set 1 for HGA. These are the 
                                   50-point problems originally in three dimensions.

Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 101459 13 57.74 0.000000
2 105203 41 56.69 0.000000
3 126677   1 57.00 0.093852
4 97109.3 13 53.49 0.035086
5 133668 42 55.54 0.000000
6 101311 50 55.39 0.011843
7 82283.7   1 54.49 0.058179
8 84547.2 93 56.73 0.000000
9 115651   8 58.77 0.000000
10 90513.7   9 56.71 0.517888

Average 56.26 0.071707

                   Table 6.3 Results for problem set 2 for HGA. These are the 
                                   100-point problems originally in three dimensions.
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Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 247553 1 117.11 0.000000
2 265991 3 119.93 0.000000
3 296768 1 114.36 0.032675
4 246756 7 112.22 0.000000
 5 306124       18 121.17 0.000980
6 243635 2 112.33 0.464107
7 263978 2 116.37 0.005303
8 231010 7 132.62 0.000000
9 299859       25 121.64 0.000000
10 261174 3 117.00 0.006126

Average 118.46 0.050919

                   Table 6.4 Results for problem set 3 for HGA. These are the 
                                   150-point problems originally in three dimensions.
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Figure 6.1 Plot for problem 2 from Problem Set 1.
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Figure 6.2 Plot for problem 9 from problem set 12.
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Figure 6.3 Plot for Problem Set 3: Problem 4.
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In Figure 6.1, we show the plot of the final results for HGA for problem two of 

problem set 1. The plot of this problem for DACN is shown in Figure 4.4. The plots are 

almost the same as is to be expect since the objective function values are almost the 

same. It should be noted that Figure 6.1 is a reflection of Figure 4.4 in the x-axis. In 

Figures 6.2 and 6.3, we show the plots for problem nine of problem set 2 and problem 

four of problem set 3, respectively. The plots for these problems are the same as those 

produced by DACN (see Figures 4.5 and 4.6) as HGA and DACN produce the same 

objective function values for these problems. Note that Figure 6.3 is the reflection of 

Figure 4.6 in the line y = x.

The average running times for HGA for the 50-point problems, the 100-point 

problems, and the 150-point problems, originally in three dimensions, are 16.12 seconds, 

56.26 seconds, and 118.46 seconds, respectively. For DACN, the average running times 

for the 50-point problems, the 100-point problems, and the 150-point problems are 

4.33 seconds, 15.73 seconds, and 36.65 seconds, respectively (see Table 4.7). The 

average running times for DACN are much shorter than those for HGA. HGA finds better 

solutions than DACN in 16 of the 30 problems originally in three dimensions. In 14 of 

the remaining 15 problems, HGA produces larger frequencies than DACN.

In Tables 6.5, 6.6, and 6.7, we show the results for problem sets 4, 5, and 6, 

respectively. These are the problem sets originally in four dimensions. In Table 6.5, for 

the 50-point problems, HGA gives better solutions than DACN in nine of the 10 

problems. For problem 9, both HGA and DACN find a best solution of 50341.1. 

However, DACN has a frequency of one while HGA has a frequency of seven. On the 

average HGA produces solutions that are 0.070 % less than those produced by DACN, 
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for the 50-point problems. In Table 6.6, in eight of the 100-point problems, HGA gives a 

better solution than DACN. For the remaining two problems HGA has a greater 

frequency than DACN. On average HGA produces solutions that are 0.0363 % less than 

those produced by DACN for the 100-point problems. In Table 6.7, in eight of the 150-

point problems, HGA gives a better result than DACN. For the other two problems, HGA 

gives a greater frequency than DACN in problem 10 and the same frequency as DACN in 

problem 2. On average HGA produces solutions that are 0.0349 % less than those 

produced by DACN for the 150-point problems.

In Figures 6.4, 6.5, and 6.6, we show the plots of the final solutions for HGA for 

problem six of problem set 4, problem seven of problem set five, and problem five of 

problem set six, respectively. These plots are similar to those produced by DACN for the 

same problems as is to be expected (see Figures 4.7, 4.8, and 4.9) since the objective 

function values produced by HGA and DACN are almost the same.

The average running times for HGA for the 50-point, 100-point, and 150-point 

problems are 15.73 seconds, 53.35 seconds, and 111.54 seconds, respectively. These 

running times are much longer than those for DACN, which are 4.99 seconds, 18.69 

seconds, and 44.29 seconds, for the 50-point, 100-point, and 150-point problems, 

respectively.  For 25 of the 30 problems originally in four dimensions, HGA gives better 

results than DACN. HGA gives a better frequency than DACN in four of the remaining 

problems.
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Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 44846.2 10 15.31 0.075535
2 41746.7   2 15.77 0.049560
3 50692.6   1 16.11 0.074905
4 44531.1   6 15.87 0.043770
5 48680.0 30 15.80 0.038810
6 51229.6   1 16.00 0.032978
7 32925.6 36 15.70 0.084968
8 45379.2   5 15.48 0.290477
9 50341.1   7 15.68 0.000000
10 53644.6   2 15.53 0.009506

Average 15.73 0.070051

                     Table 6.5 Results for problem set 4 for HGA. These are the 
                                     50-point problems originally in four dimensions.

Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 222313 11 52.97 0.000000
2 212677 24 52.04 0.000000
3 245229   1 54.82 0.057464
4 213861   1 51.63 0.014493
5 227173   5 53.63 0.185856
6 226018   1 54.27 0.040246
7 168886   1 52.29 0.002960
8 179705   3 54.94 0.006121
9 241251   1 53.77 0.024036
10 229729   4 53.17 0.032201

Average 53.35 0.036338

                       Table 6.6 Results for problem set 5 for HGA. These are the 
                                       100-point problems originally in four dimensions.
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Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 523987 1 115.01 0.012594
2 555620 1 111.25 0.000000
3 572456 2 111.87 0.065639
4 504728 1 109.16 0.071473
5 584229 2 109.91 0.027386
6 510445 1 119.79 0.043668
7 483908 1 106.48 0.005786
8 475337 4 106.33 0.079879
9 572133 1 116.17 0.067421
10 556993 7 109.43 0.000000

Average 111.54 0.034920

                      Table 6.7 Results for problem set 6 for HGA. These are the 
                                      150-point problems originally in four dimensions.
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Figure 6.4 Plot for Problem Set 4: Problem 6.
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          Figure 6.5 Plot for problem 7 from problem set 5.
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          Figure 6.6 Plot for problem 5 from problem set 6.
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 In Tables 6.8, 6.9, and 6.10, we give the results for the problem sets originally in 

five dimensions, that is, problem sets 7, 8, and 9, respectively. In Table 6.8, in seven of 

the 50-point problems, HGA gives a better solution than DACN. For the other three 

problems, HGA gives a greater frequency than DACN. On average, HGA produces 

solutions that are 0.071 % less than those produced by DACN for the 50-point problems. 

In Table 6.9, for the 100-point problems, HGA gives better results than DACN in all 10 

problems. On average HGA, produces solutions that are 0.0463 % less than those 

produced by DACN, for the 100-point problems. In Table 6.10, in five of the 150-point 

problems, HGA gives better results than DACN. In three of the remaining five problems, 

HGA gives greater frequencies than DACN. On average HGA, produces solutions that 

are 0.0281 % less than those produced by DACN for the 150-point problems.

In Figures 6.7, 6.8, and 6.9, we show the plots of the final solutions for HGA for 

problem one of problem set 7, problem eight of problem set eight, and problem 10 of 

problem set nine, respectively. Figures 6.7 and 6.8 are similar to those produced by 

DACN for the same problems as is to be expected (see Figures 4.10 and 4.11) since the 

objective function values produced by HGA and DACN are almost the same. The plots 

for DACN and HGA are the same as they produce the same objective function value (see 

Figure 4.12).
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Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 75011.8   1 16.99 0.313630
2 64802.5   6 17.90 0.018206
3 78469.3   1 16.99 0.123590
4 75825.7   4 17.53 0.012628
5 72742.6   2 16.66 0.102586
6 81785.2   1 17.11 0.067326
7 64342.7   7 16.90 0.000000
8 71669.1 21 16.93 0.000000
9 85162.5   3 17.04 0.067355
10 78102.9   6 17.59 0.000000

Average 17.16 0.070532

                            Table 6.8 Results for problem set 7 for HGA. These are the 
                                            50-point problems originally in five dimensions.

Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 325164   3 60.20 0.003383
2 333538   1 60.45 0.014689
3 348745   4 59.66 0.009175
4 355959   3 59.33 0.019380
5 329939 17 56.98 0.013940
6 360454   2 61.83 0.012638
7 296948   3 58.91 0.130828
8 305507   2 59.36 0.033049
9 368775   1 58.45 0.044451
10 319291   1 60.84 0.184756

Average 59.60 0.046392

                             Table 6.9 Results for problem set 8 for HGA. These are the 
                                             100-point problems originally in five dimensions.
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Problem
Best 

solution Frequency

Running 
time

(seconds)

Percent
decrease 

over 
DACN 
results

1 802906   9 120.34 0.000249
2 841420   6 124.39 0.000000
3 860219   3 126.89 0.000000
4 811990   2 124.65 0.019331
5 812123   1 126.27 0.182275
6 856291 16 124.78 0.000000
7 747410   1 121.03 0.049346
8 753376   1 126.73 0.007698
9 877125   1 124.87 0.000000
10 784065   1 126.13 0.000000

Average 124.61 0.025890

                           Table 6.10 Results for problem set 9 for HGA. These are the 
                                 150-point problems originally in five dimensions.
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Figure 6.7 Plot for problem 1 from problem set 7.
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Figure 6.8 Plot for problem 8 from problem set 8.
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Figure 6.9 Plot for problem 10 from problem set 9.
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The average running times for HGA are 17.18 seconds, 59.60 seconds, and 

124.61 seconds, for the 50-point, 100-point, and 150-point problems. These running 

times are longer than those for DACN. The average running times for DACN for the 50-

point, 100-point, and 150-point problems are 4.66 seconds, 17.41 seconds, and 

40.27seconds, respectively. HGA gives better results in 22 of the 30 problems in five 

dimensions. In six of the remaining eight problems, HGA gives a larger frequency.

6.2 Conclusions

HGA can be used to improve the solutions obtained by DACN. However, the 

improvements are very marginal. In addition, the running times of HGA are longer than 

those of DACN. When our heuristic is used as a stand-alone approach or a very accurate 

solution is required, HGA can be used rather than DACN. On the other hand, if our 

heuristic is used to produce a starting solution for a nonlinear method or an approximate 

solution is required, then DACN should be used rather than HGA for faster computation 

times.
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Chapter 7: Comparing Discrete Local Search to a 
Nonlinear Optimization Technique – Sammon map

In this chapter, we compare the results of DACN to the results generated by a 

nonlinear Sammon map (NLSM). The Sammon map objective function is different from 

(but similar to) the least squares scaling objective function that we have used in our 

experiments so far. However, as stated earlier, we can easily apply our methods to this 

objective function. Therefore, we use the Sammon map objective function in our next set 

of experiments. This shows how easily we can change the objective function in our 

technique.

Our motivation for comparing DACN to NLSM is threefold. First, since neither 

approach generates solutions that are guaranteed to be globally optimal, a simple 

comparison is of interest. Second, we seek to ascertain the quality of the discrete 

optimization approximation for this continuous optimization problem. Third, we 

investigate whether the two techniques (DACN and NLSM) can be combined in order to 

obtain superior results.  

7.1 Sammon map

The Sammon map procedure is an algorithm used to analyze multivariate data. 

The algorithm is a point mapping from a high dimensional space to a lower dimensional 

space such that the inherent data structure is preserved approximately (Sammon, 1969). 

The Sammon map procedure randomly assigns starting coordinates to the points in M. A 

steepest descent procedure is then used to reassign the points in order to reduce the 

objective function value. The procedure is repeated until a stopping criterion is met. We 

point out that the nonlinear (steepest descent) Sammon map procedure does not guarantee 

a global minimum. The Sammon map objective function is:
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We use the Sammon map procedure of Condon, Golden, and Wasil (2003), as 

coded in Mathematica. The stopping criterion is either 100 iterations or when the sum of 

the differences in the objective function values of 10 successive iterations is less than 1% 

of the current objective function value, whichever occurs first. 

7.2 Combined Heuristics

In NLSM, points can be assigned anywhere in q-space. However, with DACN, 

points can be assigned only to the lattice points. Therefore, NLSM is likely to generate 

better results than DACN. However, the speed of convergence of nonlinear optimization 

techniques is dependent upon the starting solution. In earlier chapters, we observed that 

DACN generates good approximate final solutions. This suggests the following heuristic 

(COMB). Instead of starting NLSM with a random solution, we can use the final solution 

from DACN as the starting solution. 

7.3 Results

We apply DACN with the Sammon map objective function, NLSM and COMB, 

to the 50-point and 100-point data sets (problem sets 1, 2, 4, 5, 7, and 8 from Table 4.6). 

We do not apply NLSM to the 150-point data sets as the problem size becomes too large 

to run in Mathematica.

In Table 7.1, we give the results for 50-point problems generated from a lattice in 

three dimensions (that is, problem set 1). In problems one, three, and five, DACN gives 

better objective function values than NLSM. For the remaining seven problems, NLSM 

produces better objective function values than DACN. However, DACN’s results are 
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DACN NLSM COMB

Problem
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
1 0.04248 8.20 0.04261 95.08 0.04092 9.76
2 0.03640 9.13 0.03600 74.13 0.03416 12.856
3 0.04841 8.92 0.05220 78.84 0.04691 9.80
4 0.04365 8.49 0.04004   108.39 0.03994 11.32
5 0.05376 7.71 0.05500 68.02 0.05175 11.23
6 0.03665 8.48 0.03335 56.98 0.03334 14.35
7 0.03473 8.18 0.03341   103.20 0.03286 11.33
8 0.03397 8.38 0.03237 74.30 0.03214 12.88
9 0.04010 8.24 0.03842 84.05 0.03808 11.38
10 0.04774 8.41 0.04578 88.44 0.04473 14.60

Average 8.41 83.14 11.95

Table 7.1 Results for Problem Set 1: 50-point problems originally in three dimensions.
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(a) DACN

Figure 7.1 Plots for problem 2 from problem set 1.
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(c) NLSM
Figure 7.1 (continued).
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(d) Translated NLSM
Figure 7.1 (continued).

very close to those for NLSM. COMB gives the best solution to each of the 10 problems.  

In Figure 7.1, we show plots of the final results generated by DACN, NLSM, and COMB 

for Problem 2. We also show the plot of a linear transformation of the coordinates 

produced by NLSM in Figure 7.1(d). The objective function values indicate that the three 

figures for DACN, COMB, and NLSM, should be similar. Figures 7.1(a) and 7.1(b) 

support this. Figure 7.1(c) appears to be different. This is due to the arbitrary orientation 

of the problem. We, therefore, used a Procrustes rotation in Matlab to translate the plot of 

NLSM, obtaining Figure 7.1(d). DACN requires that the original points be assigned to 

lattice points. COMB and NLSM have no such restriction. Figure 7.1(d) is similar to 

Figures 7.1(a) and 7.1(d). 
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The average running times for DACN, NLSM, and COMB are 8.41 seconds, 

83.14 seconds, and 11.95 seconds, respectively. The running times we report for COMB 

are only those for the nonlinear code and do not include the running times for the divide-

and-conquer heuristic. The average running time for COMB is much smaller than that for 

NLSM. We do not compare the running times for DACN and NLSM since the codes are 

written in different programming languages. 

In Table 7.2, we give the results for Problem Set 2. NLSM produces better 

objective function values than DACN and COMB produces better objective function 

values than NLSM for all 10 problems. The average running times are 36.67 seconds, 

454.38 seconds, and 76.68 seconds for DACN, NLSM, and COMB, respectively. The 

results are similar to those observed with the first problem set: COMB does better than 

NLSM, which does better than DACN.  On all 10 problems, COMB has much lower 

running times than NLSM. In Figure 7.2, we show plots of the final results generated by 

DACN, NLSM, and COMB for Problem 9. We also show the plot of a linear 

transformation of the coordinates produced by NLSM in Figure 7.2(d).  Figures 7.2(a) 

and 7.2(b) are very similar and support the fact that the objective function values 

produced by DACN and COMB are close to each other. Arbitrary orientation accounts 

for Figure 7.2(c) appearing different from Figures 7.2(a) and 7.2(b). Figure 7.2(d) is 

similar to Figures 7.2(a) and 7.2(b) as expected. 
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DACN NLSM COMB

Problem
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
1 0.05051 37.06 0.04975 784.63 0.04869 55.97
2 0.05086 38.46 0.04916 335.56 0.04894 48.03
3 0.05668 36.66 0.05454 412.27 0.05334    156.57
4 0.04590 33.47 0.04315 395.07 0.04292 62.98
5 0.05877 36.55 0.05839 421.33 0.05643 55.60
6 0.04440 36.13 0.04054 621.28 0.03971 78.90
7 0.04430 33.60 0.04316 564.12 0.04228 55.22
8 0.04297 39.38 0.04088 348.70 0.04065 63.06
9 0.05387 40.57 0.05291 315.36 0.05162     119.01
10 0.04339 34.86 0.04021 345.48 0.03967 71.48

Average 36.67 454.38 76.68

Table 7.2 Results for Problem Set 2: 100-point problems originally in three dimensions.
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(a) DACN
Figure 7.2 Plots for problem 9 from Problem Set 2.
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(c) NLSM
Figure 7.2 (continued).
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(d) Translated NLSM
Figure 7.2 (continued).

In Tables 7.3 and 7.4, we give the results for Problem Sets 4 and 5. For Problem 

Set 4, NLSM generates better objective function values than DACN in problems one, 

two, and seven. In the remaining seven problems, DACN produces better objective 

function values. For Problem Set 5, DACN produces better objective function values than 

NLSM except for problems two, six, and eight. For both Problem Sets 4 and 5, COMB 

generates the best objective function values. For all 20 problems in the two problem sets, 

COMB generates better results than DACN and NLSM. In Figures 7.3 we show plots of 

the final results generated by DACN, NLSM, and COMB for Problem 6 in Problem Set 

4. In Figure 7.4, we show plots for Problem 7 in Problem Set 5. We also show the plots 

of a linear transformation of the coordinates produced by NLSM in Figures 7.3(d) and 

7.4(d). Since the objective function values produced by the three methods are all close to 

each other, we expect the plots to be similar. Indeed, the plots produced by DACN and 
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DACN NLSM COMB

Problem
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
1 0.06155 7.71 0.06046 103.23 0.06009 9.81
2 0.06409 8.07 0.06306 102.49 0.06237 9.78
3 0.06891 7.53 0.07600   61.61 0.06750 9.71
4 0.06388 7.55 0.06830   91.58 0.06220 9.77
5 0.06986 7.74 0.07355   69.43 0.06813 9.78
6 0.06458 7.54 0.06863 104.54 0.06275 12.89
7 0.05363 7.30 0.05289   69.77 0.05222 9.82
8 0.06796 7.96 0.06853   68.05 0.06625 8.24
9 0.06454 7.67 0.06461 131.58 0.06296 8.07
10 0.07000 8.09 0.07786   75.81 0.06867 8.26

Average 7.712   87.81 9.61

      Table 7.3 Results for Problem Set 4: 50-point problems originally in four dimensions.

DACN NLSM COMB

Problem
Best 

solution 

Running 
time

(seconds)
Best

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
1 0.07539 32.43 0.07731 409.78 0.07388 40.67
2 0.07339 31.52 0.07313 498.60 0.07168     103.85
3 0.08081 32.50 0.08120 447.68 0.07855 47.26
4 0.07280 30.31 0.07368 708.25 0.07073 47.45
5 0.07475 30.81 0.07603 384.84 0.07227 56.06
6 0.07247 34.35 0.07024 482.25 0.07005 55.71
7 0.06424 29.29 0.07641 574.48 0.06262 48.33
8 0.06863 32.61 0.06824 732.20 0.06681 56.45
9 0.07900 32.79 0.08367 363.95 0.07698 47.64
10 0.07505 32.98 0.08129 322.34 0.07336 48.27

Average 31.96 492.44 55.17

    Table 7.4 Results for Problem Set 5: 100-point problems originally in four dimensions.
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(a) DACN
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(b) COMB
Figure 7.3 Plots for problem 6 from problem set 4.
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(c) NLSM
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(d) Translated NLSM
Figure 7.3 (continued).
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(b) COMB
Figure 7.4 Plots for problem 7 from problem set 5.
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(c) NLSM
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(d) Translated NLSM
            Figure 7.4 (continued).
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COMB is very similar. The plots produced by NLSM appear to be different. However, 

this difference is caused by the arbitrary orientation of the solutions produced by these 

methods. The translated NLSM plots are similar to the plots produced by DACN and 

COMB.  

In Table 7.3, the average running times for DACN, NLSM, and COMB are 7.72 

seconds, 87.81 seconds, and 9.61 seconds, respectively. In Table 7.4, the average running 

times are 31.96 seconds, 492.44 seconds, and 55.17 seconds for DACN, NLSM, and 

COMB, respectively. Once again, the running times for COMB are much smaller than 

those for NLSM. 

In Table 7.5, we give results for Problem Set 7. In all 10 problems, DACN 

produces a better objective function value than NLSM. COMB generates the best 

objective function values in all 10 problems. The average running times for DACN, 

NLSM, and COMB are 9.28 seconds, 91.23 seconds, and 7.91 seconds, respectively. In 

Figure 7.5, we show the plots of the final results generated by DACN, NLSM, and 

COMB for Problem 1. We also show the plot of a linear transformation of the coordinates 

produced by NLSM in Figure 7.5(d). We observe that Figures 7.5(a) and 7.5(b) are very 

similar, while Figure 5(c) appears different. This difference is accounted for by the 

arbitrary orientation of the solutions produced by the methods. When orientation is taken 

into account, Figure 7.5(d) is actually similar to Figures 7.5(a) and 7.5(b).
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DACN NLSM COMB

Problem
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
1 0.07919 9.40 0.08216 97.28 0.07794 8.32
2 0.07602 9.78 0.08221   157.88 0.07479 8.12
3 0.08532 9.29 0.08584 96.38 0.08430 6.72
4 0.08139 9.02 0.09696 96.41 0.08015 8.11
5 0.08254 9.20 0.08845 63.42 0.08153 6.65
6 0.07823 9.52 0.07918 71.04 0.07646 9.75
7 0.07561 9.69 0.08222 95.23 0.07425 8.28
8 0.08371 9.26 0.09750 82.44 0.08249 8.22
9 0.08106 8.57 0.09230 69.98 0.07960 8.23
10 0.08318 9.10 0.08655 82.24 0.08232 6.70

Average 9.28 91.23 7.91

      Table 7.5 Results for Problem Set 7: 50-point problems originally in five dimensions.
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(a) DACN
Figure 7.5 Plots for problem 1 from problem set 7.
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(c) NLSM
Figure 7.5 (continued).
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(d) Translated NLSM
Figure 7.5 (continued).

In Table 7.6, we give the results for Problem Set 8. In seven of the 10 problems 

DACN produces a better objective function value than NLSM. COMB generates the best 

objective function values in all 10 problems. In Figure 7.6, we show the plots of the final 

results generated by DACN, NLSM, and COMB for Problem 8. We also show the plot of 

a linear transformation of the coordinates produced by NLSM in Figure 7.3(d). The three 

plots produced by DACN, NLSM, and COMB, are similar, once arbitrary orientation is 

taken into account for in Figure 7.6(d). The average running times for DACN, NLSM, 

and COMB, are 36.38 seconds, 583.62 seconds, and 39.25 seconds, respectively. 
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DACN NLSM COMB

Problem
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
Best 

solution 

Running 
time

(seconds)
1 0.08559 39.54 0.09744 514.09 0.08405 40.03
2 0.09069 36.55 0.09419 645.05 0.08881 56.09
3 0.09174 36.63 0.09628 505.83 0.09078 31.91
4 0.09118 33.88 0.09377 548.01 0.08995 39.71
5 0.08694 33.64 0.08950 577.65 0.08533 39.58
6 0.08752 40.36 0.08668 420.01 0.08545 48.24
7 0.08531 34.96 0.08760 722.03 0.08412 39.74
8 0.08699 36.00 0.08974 642.65 0.08575 40.29
9 0.09153 34.80 0.09113 584.15 0.09020 32.64
10 0.08703 37.39 0.08618 676.75 0.08591 24.31

Average 36.38 583.62 39.25

   Table 7.6 Results for Problem Set 8: 100-point problems originally in five dimensions.
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(a) DACN
Figure 7.6 Plots for problem 8 from problem set 8.
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(b) COMB
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(c) NLSM
Figure 7.6 (continued).
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(d) Translated NLSM
Figure 7.6 (continued).

7.4 Conclusions

For the 3-dimensional data sets (problem sets 1 and 2), NLSM generates better 

solutions than DACN, on the average. For the higher dimensional data sets (problem sets 

4, 5, 7, and 8), DACN produces better solutions than NLSM. DACN can only make 

assignments to specific points in the lattice space. NLSM can assign points anywhere in 

the plane. Despite this limitation, DACN generates results that are comparable in quality 

to those generated by NLSM. When the final solution from DACN is used as a starting 

solution in NLSM – this is the COMB heuristic – the final solutions generated by COMB 

are always better than the results generated by DACN and NLSM. Also, COMB has 

much smaller average running times than NLSM which are, in fact, quite reasonable. The 
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divide-and-conquer approach provides a good approximate solution in a small amount of 

computing time. Furthermore, we have demonstrated that this solution is a good starting 

solution for the nonlinear method. It significantly speeds up convergence and improves 

solution quality. It should be possible to solve relatively large problems using the COMB 

heuristic.
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Chapter 8: Comparing Discrete Local Search to a 
Nonlinear Optimization Technique – Proxscal

In this chapter, we compare the results of DACN to the results generated by a 

nonlinear multidimensional scaling map (NLIM). We use the majorization technique as 

implemented in SPSS Proxscal (Borg and Groenen, 1997; Laudau and Everitt, 2004). The 

Proxscal objective function is different (but similar) to the objective functions that we 

have used in our experiments so far. However, it is easy for us to change the objective 

function in our technique. DACN is modified in this chapter to use the same objective 

function used in Proxscal.

In the previous chapter, we compared DACN to a nonlinear Sammon map. We now 

compare DACN to another nonlinear map because the Sammon map we used was coded 

in Mathematica and we were not able to consider large-size problems (n > 100). Also, the 

Sammon map code is an experimental research code. We wanted to see how the 

technique we have developed compared to a standard algorithm.

8.1 Iterative Majorization

The principle of iterative majorization is an easy and powerful strategy for 

minimization. The general idea is to replace iteratively the original complicated function 

to be minimized by a simpler function. Iterative majorization generates a sequence of 

monotonically nonincreasing function values (Borg and Groenen, 1997). So,if a function 

is bounded from below, iterative majorization usually gives a local minimum. 
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Problem Set Dimensions Number of Points
10
11
12
13
14
15
16
17
18

3
3
3
4
4
4
5
5
5

150
300
500
150
300
500
150
300
500

Table 8.1 Problem sets.

A majorization algorithm for MDS randomly assigns starting coordinates to the 

points in M. The majorization technique is used to reassign the points in M so that the 

objective function value is reduced. The procedure continues until a stopping criterion is 

met.  For NLIM, we use the majorization algorithm that is implemented in SPSS Proxscal.

The Proxscal objective function is given by

2

2

[ ( , ) ( , )]

Minimize
( , )

ik jl
i M j M k N l N

j i

i M j M
j i

od i j nd k l x x

od i j

∈ ∈ ∈ ∈

∈ ∈
>

−∑∑∑∑
∑∑

> .

We applied DACN and NLIM to several data sets with 150, 300, and 500 points. 

The data sets were randomly generated from lattice sets in three, four, and five 

dimensions.  For each combination of dimension and size, 10 different problems were 

generated. The nine problem sets (problem sets 10 – 18) are described in Table 8.1. 

For these experiments with DACN, we use n = 1024, that is, we stop after Step 5. 

However, we also record the results after Step 4 also. DACN4 refers to DACN stopped 

after Step 4 while DACN5 refers to DACN stopped after Step 5. In addition, we use the 

final solution from DACN as the stating solution for a COMB heuristic for NLIM. 
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COMB4 refers to the combined heuristic with the final solution from Step 4 used as the 

starting solution for NLIM and COMB5 uses the final solution from Step 5 as the starting 

solution.  

8.2 Results and Analysis

In Table 8.2, we give the results for 150-point problems generated from a lattice 

in three dimensions (that is, problem set 10). For all 10 problems, DACN5 generates 

better solutions than DACN4. In seven of the problems, NLIM produces better solutions 

than DACN4. For problem 8, DACN5 and NLIM, both produce an objective function 

value of 0.04849. For problem 4, NLIM produces a better solution than DACN5. For the 

remaining eight problems DACN5 generates better objective function values than NLIM. 

COMB4 and COMB5 produce better solutions than DACN4, DACN5, and NLIM in all 

10 problems. In problem 4, COMB4 and COMB5 generate the same solution. For 

problem 7 and problem 8, COMB4 produces slightly better objective function values than 

COMB5. In the remaining seven problems COMB5 generates slightly better solutions 

than COMB4.

In Figure 8.1, we show plots of the final results generated by DACN4, DACN5, 

COMB4, COMB5, and NLIM, for Problem 7. We also show the plot of a linear 

transformation of the coordinates produced by NLIM in Figure 8.1(f). The objective 

function values indicate that the figures for DACN4, DACN5, COMB4, COMB5, and 

NLSM, should be similar. Figures 8.1(a), 8.1(b), 8.1(c), and 8.1(d) support this. Figure 

8.1(e) appears to be different. This is due to the arbitrary orientation of the problem. We, 

therefore, used a Procrustes rotation in Matlab to translate the plot of NLIM, obtaining 

Figure 8.1(f). Figure 8.1(f) is similar to the other figures as expected. 
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DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.04795 36.51 0.04684 101.65 0.04688 0.04637 0.04632
2 0.04760 37.15 0.04614 112.76 0.05252 0.04532 0.04526
3 0.04999 37.13 0.04876 116.87 0.05376 0.04811 0.04803
4 0.04006 40.24 0.03879 93.78 0.03873 0.03829 0.03829
5 0.04291 40.16 0.04154 109.15 0.04331 0.04060 0.04058
6 0.04460 35.09 0.04305 101.46 0.04311 0.04185 0.04166
7 0.04743 40.76 0.04602 108.79 0.04697 0.04477 0.04480
8 0.04984 38.60 0.04849 112.51 0.04849 0.04750 0.04753
9 0.04696 36.91 0.04559 106.19 0.04680 0.04505 0.04499
10 0.04885 41.27 0.04775 126.20 0.04846 0.04732 0.04729

Average 38.38 108.93

Table 8.2 Results for Problem Set 10: 150-point problems originally in three dimensions.
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(a) DACN4
Figure 8.1 Plots for Problem Set 10: Problem 7.
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(b) DACN5
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(c) COMB4
    Figure 8.1 (continued).
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(d) COMB5
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(e) NLIM
 Figure 8.1 (continued).
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(f) Translated NLIM
Figure 8.1 (continued).

For problem set 10, that is the 150-point problems originally in three dimensions, 

NLIM produces better solutions than DACN4, and DACN5 produces better solutions 

than NLIM. The COMB heuristics produce the best solutions of all, with COMB5 

producing slightly better solutions than COMB4. 

The average running times for DACN4 and DACN5 are 38.38 seconds and 

108.93 seconds, respectively. SPSS does not report the running times for Proxscal. 

Proxscal runs much faster than our heuristic. For example, it takes about one second to 

generate results for a 150-point problem. It should be noted that NLIM finds one solution, 

while DACN finds 100 solutions. Also, Proxscal is a commercial solver and our code is a 

research code. 
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DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.05286 146.31 0.05166 400.13 0.05343 0.05112 0.05107
2 0.05212 166.42 0.05083 396.60 0.05263 0.05032 0.05014
3 0.05233 163.77 0.05091 391.30 0.05358 0.05011 0.05003
4 0.04590 165.22 0.04468 341.98 0.05684 0.04408 0.04402
5 0.05067 158.58 0.04945 369.10 0.05618 0.04880 0.04874
6 0.04938 154.63 0.04810 348.06 0.04871 0.04737 0.04732
7 0.05344 136.33 0.05212 335.28 0.06464 0.05137 0.05128
8 0.05359 148.20 0.05224 361.13 0.05303 0.05136 0.05135
9 0.05282 161.02 0.05148 332.40 0.05418 0.05067 0.05055
10 0.05624 169.85 0.05501 374.11 0.57780 0.05439 0.05434

Average 157.03 365.01

Table 8.3 Results for Problem Set 11: 300-point problems originally in three dimensions.

In Table 8.3, we show the results for the 300-point problems originally in three 

dimensions, that is, problem set 11. In all 10 problems DACN5 produces better solutions 

than DACN4 as is expected. NLIM produces better objective function values than 

DACN4 in problem 6 and problem 8. For the remaining eight problems, DACN4 

produces better objective function values than NLIM. For all 10 problems, DACN5 

produces better solutions than NLIM. The COMB heuristics produce the best solutions 

for all 10 problems. COMB5 produces slightly better objective function values than 

COMB4. 

For the 300-point problems in three dimensions, the average running times are 

157.03 seconds and 365.01 seconds, for DACN4 and DACN5, respectively. DACN 

produces better solutions than NLIM, and COMB produces the best solutions of all. 

DACN5 produces better solutions than DACN4 and COMB5 produces slightly better 

solutions than COMB4.
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DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.05572 409.95 0.05451 896.57 0.06514 0.05396 0.05390
2 0.05136 498.29 0.05013 1031.77 0.05601 0.04956 0.04950
3 0.05569 422.81 0.05456 838.92 0.05615 0.05392 0.05385
4 0.05030 473.21 0.04903 898.45 0.05800 0.04839 0.04832
5 0.05304 437.62 0.05179 918.22 0.05424 0.05119 0.05114
6 0.05022 609.51 0.04888 1223.60 0.04884 0.04818 0.04806
7 0.05584 442.29 0.05449 964.58 0.05585 0.05399 0.05381
8 0.05478 389.08 0.05343 891.31 0.05604 0.05272 0.05262
9 0.05527 393.05 0.05401 844.27 0.05703 0.05315 0.05313
10 0.05433 495.94 0.05304 1026.49 0.05884 0.05250 0.05243

Average 457.18 953.42

Table 8.4 Results for Problem Set 12: 500-point problems originally in three dimensions.

We show the results for the 500-point problems originally in three dimensions, 

that is, problem set 12, in Table 8.4.  The results are similar to those for problem set 11 

discussed above. For problem 6, NLIM produces a better objective function value than 

DACN4 and DACN5. For the remaining nine problems, DACN4 and DACN5 produce 

better solutions than NLIM, with DACN5 generating better solutions than DACN4. The 

COMB heuristics produce the best solutions in all 10 problems. COMB5 produces 

slightly better solutions than COMB4. The average running times for DACN4 and 

DACN5 are 457.18 seconds and 953.42 seconds, respectively.

For the problem sets originally in three dimensions, DACN5 produces better 

objective function values than DACN4 as we expected. DACN5 produces better solutions 

than NLIM. For smaller problems NLIM appears to do better than DACN4. As the 

problem size increases DACN4 does better than NLP. COMB always produces the best 

solutions with COMB5 producing slightly better solutions than COMB4.   
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DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.06958 46.99 0.06848 124.83 0.07633 0.06805 0.06796
2 0.07350 45.30 0.07250 122.55 0.07810 0.07217 0.07211
3 0.07111 48.09 0.06964 129.50 0.07263 0.06884 0.06861
4 0.06974 41.99 0.06867 120.89 0.07584 0.06814 0.06805
5 0.06742 47.59 0.06626 127.73 0.06706 0.06531 0.06519
6 0.07253 44.67 0.07143 115.66 0.07216 0.07087 0.07080
7 0.06579 46.11 0.06453 116.41 0.06481 0.06387 0.06375
8 0.06203 45.56 0.06100 127.64 0.06271 0.06058 0.06046
9 0.06826 51.88 0.06713 123.34 0.07750 0.06639 0.06641
10 0.07680 49.78 0.07579 141.99 0.08051 0.07533 0.07527

Average 46.80 125.05

Table 8.5 Results for Problem Set 13: 150-point problems originally in four dimensions.
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(a) DACN4
Figure 8.2 Plots for Problem Set 13: Problem 1.
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    Figure 8.2 (continued).



133

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25
26

27

2829

30

31

32 33

34
35

36

37

38
39

40
41

42

43

44

45

4647

48
49

5051

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83

84

85
86

87

88

89
90

91

92

93

9495

96

97

98

99

100

101

102

103

104

105106

107

108

109

110

111

112113

114

115

116

117

118

119

120

121

122123

124

125

126

127

128

129

130

131

132

133

134135

136

137

138

139

140
141

142

143

144

145

146

147

148

149

150

(d) COMB5
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   Figure 8.2 (continued).
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(f) Translated NLIM
Figure 8.2 (continued).

In Table 8.5, we show the results for problem set 13, that is, the 150-point 

problems originally in four dimensions. NLIM produces better solutions than DACN4 in 

three of the 10 problems. In all 10 problems, DACN5 produces better solutions than 

DACN4 and NLIM. COMB4 and COMB5 produce better solutions than DACN4, 

DACN5, and NLIM in all 10 problems. For problem 9, COMB4 produces a slightly 

better solution than COMB5. In the remaining nine problems, COMB5 produces better 

solutions than COMB4. The average running times for DACN4 and DACN5 are 46.80 

seconds and 125.05 seconds, respectively.

In Figure 8.2, we show plots of the final results generated by DACN4, DACN5, 

COMB4, COMB5, and NLIM, Problem 1. We also show the plot of a linear 

transformation of the coordinates produced by NLIM in Figure 8.2(f). Figures 8.2 (a), 

8.2(b), 8.2(c), 8.2(d), and 8.2(f) are similar as expected from their similar objective 

function values. 
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DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.07676 244.07 0.07570 521.36 0.08072 0.07510 0.07504
2 0.07693 197.88 0.07573 483.84 0.08157 0.07494 0.07482
3 0.07320 241.75 0.07190 612.70 0.07841 0.07113 0.07092
4 0.07602 191.10 0.07496 438.09 0.07566 0.07431 0.07424
5 0.07534 196.25 0.07426 442.94 0.08930 0.07363 0.07357
6 0.07551 188.58 0.07436 445.15 0.07590 0.07370 0.07359
7 0.07330 214.54 0.07196 552.23 0.07720 0.07109 0.07104
8 0.07371 197.77 0.07246 437.05 0.07879 0.07165 0.07171
9 0.07444 181.26 0.07327 393.39 0.07740 0.07262 0.07249
10 0.07986 203.27 0.07879 489.25 0.08452 0.07827 0.07824

Average 205.65 481.60

Table 8.6 Results for Problem Set 14: 300-point problems originally in four dimensions.

DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.08233 566.39 0.08127 1234.63 0.08898 0.08083 0.08076
2 0.07865 573.55 0.07755 1212.13 0.07923 0.07706 0.07694
3 0.07882 537.59 0.07771 1096.30 0.08688 0.07717 0.07706
4 0.07923 502.92 0.07815 1023.73 0.08037 0.07754 0.07746
5 0.07815 531.06 0.07722 1213.91 0.08190 0.07686 0.07677
6 0.07780 763.19 0.07665 1484.77 0.07938 0.07609 0.07594
7 0.07621 599.04 0.07502 1147.43 0.08677 0.07428 0.07422
8 0.08073 514.09 0.07963 1070.72 0.08543 0.07902 0.07898
9 0.07841 561.62 0.07727 1221.12 0.08336 0.07669 0.07662
10 0.08112 516.07 0.08001 1090.98 0.08364 0.07944 0.07930

Average 566.55 1179.57

Table 8.7 Results for Problem Set 15: 500-point problems originally in four dimensions.
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We show the results for the 300-point problems and the 500-point problems 

originally in four dimensions in Tables 8.6 and 8.7, respectively. In Table 8.6, for 

problem 4, NLIM produces a better objective function value than DACN4. In the 

remaining nine problems, DACN4 produces better objective function values than NLIM. 

DACN5 produces better solutions than DACN4 and NLIM in all 10 problems. The 

COMB heuristics produce the best solutions of all. COMB4 produces a better objective 

function value than COMB5 for problem 8. In the remaining nine problems, COMB5 

produces better solutions than COMB4.

For the 500-point problems, DACN5 produces better solutions than DACN4 in all 

10 problems. Both DACN4 and DACN5 produce better solutions than NLIM in all 10 

problems. The COMB heuristics produce the best solutions with COMB5 producing 

slightly better objective function values than COMB4.      

The average running times are 205.65 seconds and 481.60 seconds for DACN4 

and DACN5, respectively, for the 300-point problems. For the 500-point problems, the 

average running times for DACN4 and DACN5 are 566.55 seconds and 1179.57 seconds, 

respectively. 

The results for the problem sets originally in four dimensions are similar to those 

for the problem sets originally in three dimensions. DACN5 produces better objective 

function values than DACN4. DACN5 always produces better solutions than NLIM. 

DACN4 does about the same as NLIM for the 150-point problems. As the problem size 

increases, DACN4 appears to do better than NLIM. COMB always produces the best 

solutions with COMB5 producing slightly better solutions than COMB4.
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DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.08794 42.21 0.08710 117.82 0.09525 0.08675 0.08659
2 0.08600 41.60 0.08504 117.71 0.08783 0.08472 0.08457
3 0.08758 43.73 0.08653 116.98 0.09199 0.08630 0.08600
4 0.08676 41.36 0.08567 113.91 0.09005 0.08532 0.08505
5 0.08192 41.44 0.08082 112.89 0.08199 0.07994 0.07990
6 0.08140 42.25 0.08047 112.91 0.09506 0.08009 0.08005
7 0.07984 39.93 0.07873 106.15 0.08963 0.07845 0.07813
8 0.08002 40.35 0.07914 114.11 0.08874 0.07894 0.07880
9 0.08527 39.75 0.08431 104.30 0.09860 0.08409 0.08396
10 0.08974 43.90 0.08863 119.17 0.09910 0.08852 0.08805

Average 41.65 113.60

Table 8.8 Results for Problem Set 16: 150-point problems originally in five dimensions.

DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.09145 189.34 0.09026 442.05 0.09567 0.08994 0.08945
2 0.09441 180.47 0.09338 442.72 0.10082 0.09322 0.09271
3 0.08949 197.28 0.08851 489.52 0.10114 0.08814 0.08796
4 0.09292 197.99 0.09197 459.78 0.09693 0.09159 0.09148
5 0.08971 182.06 0.08861 416.43 0.08913 0.08799 0.08784
6 0.08933 159.66 0.08832 352.96 0.09426 0.08798 0.08780
7 0.08814 170.52 0.08703 365.46 0.09357 0.08642 0.08635
8 0.09073 188.73 0.08971 413.96 0.09457 0.08937 0.08924
9 0.08950 194.51 0.08838 468.07 0.10040 0.08788 0.08779
10 0.09310 197.26 0.09216 466.11 0.09867 0.09193 0.09184

Average 185.78 431.71

Table 8.9 Results for Problem Set 17: 300-point problems originally in five dimensions.
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DACN4 DACN5 NLIM COMB4 COMB5

Problem
Best 

solution

Running 
time

(seconds)
Best 

solution

Running 
time

(seconds)
Best 

solution
Best 

solution
Best 

solution
1 0.09653 540.23 0.09564 1092.88 0.10238 0.09540 0.09537
2 0.09470 525.70 0.09374 1220.85 0.09722 0.09334 0.09321
3 0.09402 519.81 0.09305 1045.87 0.10623 0.09266 0.09255
4 0.09612 514.73 0.09521 1030.91 0.09920 0.09496 0.09487
5 0.09281 550.84 0.09181 1131.11 0.10135 0.09130 0.09118
6 0.09175 522.75 0.09075 1076.01 0.10150 0.09042 0.09026
7 0.09333 514.90 0.09226 1024.48 0.10401 0.09171 0.09162
8 0.09592 466.96 0.09492 986.55 0.10012 0.09454 0.09442
9 0.09421 532.36 0.09330 1100.63 0.10032 0.09301 0.09284
10 0.09382 554.03 0.09282 1149.14 0.10260 0.09245 0.09233

Average 524.23 1085.84

Table 8.10 Results for Problem Set 18: 500-point problems originally in five dimensions.

In Tables 8.8, 8.9, and 8.10, we show the results for the 150-point problems, 300-

point problems, and 500-point problems, respectively, originally in five dimensions. In 

all 30 problems, DACN5 produces better objective function values than DACN4. For 

problem 5 of the 300-point problems, NLIM generates a better objective function value 

than DACN4. In the remaining 300-point problems, and all the 150-point problems and 

500-point problems, DACN4 generates better solutions than NLIM. COMB4 generates 

better solutions than DACN5, while COMB5 generates the best solutions of all, 

generating slightly better objective function values than COMB4.

In Table 8.8, the average running time for the 150-point problems for DACN4 

and DACN5 are 41.65 seconds and 113.60 seconds, respectively. The average running 

times for DACN4 and DACN5 for the 300-point problems are 185.78 seconds and 

431.71 seconds, respectively. For the 500-point problems, the average running times for 

DACN4 and DACN5 are 524.23 seconds and 1085.84 seconds, respectively.
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(b) DACN5
Figure 8.3 Plots for Problem Set 16: Problem 3.
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(c) COMB4
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(d) COMB5
    Figure 8.3 (continued).
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(e) NLIM
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(f) Translated NLIM
Figure 8.3 (continued).
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In Figure 8.3, we show plots of the final results generated by DACN4, DACN5, 

COMB4, COMB5, and NLIM, Problem 3. We also show the plot of a linear 

transformation of the coordinates produced by NLIM in Figure 8.3(f). Figures 8.3 (a), 

8.3(b), 8.3(c), 8.3(d), and 8.3(f) are similar as expected from their similar objective 

function values.

Recall, that DACN finds 100 solutions while NLIM finds only one solution. Since 

DACN is producing better quality solutions than NLIM but in a longer time we 

investigate running DACN with only 10 solutions instead of 100. We also report the 

solution and running time after the points have been assigned to 64 lattice points 

(DACN3) and when this result is used as the starting solution for NLIM (COMB3). We 

give the results for these experiments in Table 8.11 to Table 8.19. The results for with 

100 solutions are slightly better than those with only 10 solutions. There is a great 

improvement in the running times though. The running times using 100 solutions are 

about 9.72 times those using only 10 solutions. On the average DACN4 and DACN5 still 

produce better quality solutions than NLIM. COMB4 and COMB5 produce the best 

results of all. The results from DACN3 are not too good. However, the running times are 

very low for DACN3. As the number of points and dimensions increase COMB3 does 

better than NLIM. 
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DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.05852 1.89 0.04799 3.82 0.04690 10.83 0.04688 0.05233 0.04640 0.04635
2 0.05442 2.14 0.04764 4.38 0.04615 12.23 0.05252 0.04599 0.04533 0.04525
3 0.05711 1.66 0.05036 3.44 0.04885 10.06 0.05376 0.05078 0.04804 0.04797
4 0.05687 1.95 0.04006 4.65 0.03879 10.25 0.03873 0.04963 0.03833 0.03829
5 0.04773 1.82 0.04295 4.10 0.04163 12.23 0.04331 0.04075 0.04062 0.04064
6 0.05010 1.91 0.04460 4.03 0.04306 11.99 0.04311 0.04208 0.04185 0.04172
7 0.05848 2.03 0.04743 4.10 0.04602 11.67 0.04697 0.05248 0.04475 0.04481
8 0.05496 2.27 0.05000 5.15 0.04862 14.42 0.04849 0.04908 0.04755 0.04754
9 0.06491 1.96 0.04695 4.54 0.04559 12.53 0.04680 0.05743 0.04510 0.04499

10 0.05668 1.99 0.04886 4.07 0.04777 11.23 0.04846 0.04898 0.04733 0.04729
Average 1.96 4.23 11.74

Table 8.11 Results for Problem Set 10: 150-point problems originally in three dimensions 
      with 10 solutions for DACN.

DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.06439   8.02 0.05285 17.10 0.05166 41.58 0.05343 0.05797 0.05113 0.05107
2 0.06244 10.24 0.05226 18.64 0.05085 39.42 0.05263 0.05494 0.05036 0.05021
3 0.05738 10.18 0.05234 18.45 0.05091 46.33 0.05358 0.05016 0.05007 0.05003
4 0.05091 12.84 0.04590 21.37 0.04469 42.12 0.05684 0.04413 0.04407 0.04403
5 0.06151   8.33 0.05068 15.49 0.04945 37.75 0.05618 0.05543 0.04876 0.04874
6 0.05450   8.13 0.04940 15.47 0.04810 41.67 0.04871 0.04757 0.04739 0.04732
7 0.06019   8.60 0.05354 16.36 0.05223 41.42 0.06464 0.05387 0.05156 0.05156
8 0.05848   9.61 0.05370 18.28 0.05239 40.34 0.05303 0.05201 0.05196 0.05181
9 0.05772   9.18 0.05282 20.28 0.05148 39.86 0.05418 0.05113 0.05067 0.05055

10 0.06344   9.66 0.05625 18.03 0.05501 41.53 0.57780 0.05644 0.05439 0.05434
Average   9.48 17.95 41.20

Table 8.12 Results for Problem Set 11: 300-point problems originally in three dimensions 
      with 10 solutions for DACN.
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DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.06468 24.93 0.05572 43.89 0.05451   99.58 0.06514 0.05794 0.05397 0.05389
2 0.05654 27.84 0.05137 54.88 0.05014 112.01 0.05601 0.04961 0.04955 0.04949
3 0.06048 30.18 0.05569 48.29 0.05456   92.47 0.05615 0.05782 0.05392 0.05386
4 0.06193 29.79 0.05031 52.62 0.04903   94.98 0.05800 0.05465 0.04838 0.04833
5 0.05776 30.01 0.05305 49.20 0.05179   97.81 0.05424 0.05130 0.05120 0.05114
6 0.05590 37.65 0.05022 64.61 0.04888 127.37 0.04884 0.04798 0.04811 0.04805
7 0.06104 28.22 0.05585 48.72 0.05455 102.63 0.05585 0.05428 0.05402 0.05389
8 0.06011 26.91 0.05478 45.45 0.05343   98.57 0.05604 0.06273 0.05272 0.05262
9 0.06023 24.26 0.05528 40.88 0.05400   89.58 0.05703 0.05409 0.05318 0.05313

10 0.06445 27.39 0.05433 52.65 0.05305 109.70 0.05884 0.05760 0.05248 0.05243
Average 28.72 50.12 102.47

Table 8.13 Results for Problem Set 12: 500-point problems originally in three dimensions 
      with 10 solutions for DACN.

DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.07422 1.65 0.06962 3.66 0.06849 10.21 0.07633 0.06820 0.06804 0.06798
2 0.07904 2.15 0.07435 4.29 0.07300 11.29 0.07810 0.07304 0.07254 0.07233
3 0.07576 1.98 0.07128 4.55 0.06963 12.30 0.07263 0.06942 0.06909 0.06863
4 0.07393 1.60 0.06974 3.59 0.06867 10.67 0.07584 0.06825 0.06813 0.06805
5 0.07268 1.64 0.06762 3.61 0.06634 11.43 0.06706 0.06549 0.06534 0.06517
6 0.07693 1.72 0.07253 3.60 0.07145 10.19 0.07216 0.07100 0.07087 0.07079
7 0.07057 1.93 0.06579 3.67 0.06454 10.37 0.06481 0.06447 0.06387 0.06377
8 0.06651 2.20 0.06203 4.36 0.06101 13.35 0.06271 0.06062 0.06055 0.06049
9 0.07262 2.11 0.06827 4.21 0.06714 10.01 0.07750 0.06639 0.06640 0.06642

10 0.08136 2.10 0.07687 4.97 0.07581 12.24 0.08051 0.07542 0.07541 0.07532
Average 1.91 4.05 11.21

Table 8.14 Results for Problem Set 13: 150-point problems originally in four dimensions 
      with 10 solutions for DACN.
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DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.08098   8.93 0.07680 27.58 0.07571 58.45 0.08072 0.07543 0.07514 0.07505
2 0.08139   9.53 0.07696 19.22 0.07575 46.63 0.08157 0.07507 0.07497 0.07484
3 0.07805   8.29 0.07324 17.75 0.07196 55.24 0.07841 0.07099 0.07099 0.07099
4 0.08024   9.11 0.07603 16.88 0.07498 38.06 0.07566 0.07441 0.07431 0.07427
5 0.07947   8.97 0.07535 15.57 0.07427 40.02 0.08930 0.07383 0.07359 0.07358
6 0.07989   7.98 0.07551 15.87 0.07436 35.74 0.07590 0.07390 0.07371 0.07360
7 0.07815   9.43 0.07336 19.34 0.07198 64.68 0.07720 0.07123 0.07116 0.07103
8 0.07844   8.55 0.07373 15.06 0.07251 33.15 0.07879 0.07181 0.07176 0.07173
9 0.07903 10.27 0.07446 16.60 0.07329 39.65 0.07740 0.07270 0.07262 0.07256

10 0.08474   9.77 0.07992 19.79 0.07888 45.10 0.08452 0.07853 0.07833 0.07826
Average   9.04 18.37 45.67

Table 8.15 Results for Problem Set 14: 300-point problems originally in four dimensions 
      with 10 solutions for DACN.

DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.08658 25.05 0.08239 49.45 0.08130 106.48 0.08898 0.08095 0.08087 0.08075
2 0.08309 31.94 0.07867 54.39 0.07755 111.67 0.07923 0.07711 0.07704 0.07694
3 0.08340 26.77 0.07883 47.32 0.07772 105.38 0.08688 0.07729 0.07718 0.07707
4 0.08381 25.16 0.07923 45.56 0.07816   89.67 0.08037 0.07760 0.07756 0.07747
5 0.08233 23.61 0.07815 37.44 0.07723   91.50 0.08190 0.07691 0.07686 0.07677
6 0.08227 28.48 0.07780 68.92 0.07664 129.27 0.07938 0.07611 0.07609 0.07595
7 0.08105 30.01 0.07623 55.88 0.07506 100.38 0.08677 0.07442 0.07430 0.07429
8 0.08561 24.07 0.08093 38.16 0.07983   84.63 0.08543 0.07921 0.07919 0.07915
9 0.08294 27.12 0.07842 48.26 0.07727 122.60 0.08336 0.07682 0.07671 0.07662

10 0.08557 29.44 0.08114 47.19 0.08001   88.22 0.08364 0.07951 0.07942 0.07931
Average 27.17 49.26 102.98

Table 8.16 Results for Problem Set 15: 500-point problems originally in four dimensions 
      with 10 solutions for DACN.
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DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.09177 2.64 0.08834 5.07 0.08734 13.08 0.09525 0.08719 0.08713 0.08703
2 0.09033 2.27 0.08671 4.73 0.08572 13.07 0.08783 0.08566 0.08543 0.08538
3 0.09181 2.49 0.08759 5.16 0.08658 15.69 0.09199 0.08661 0.08619 0.08606
4 0.09071 2.22 0.08689 4.44 0.08583 11.64 0.09005 0.08548 0.08539 0.08531
5 0.08625 2.27 0.08206 4.74 0.08096 12.33 0.08199 0.08031 0.08008 0.08007
6 0.08538 2.28 0.08140 5.53 0.08048 16.94 0.09506 0.08027 0.08010 0.08005
7 0.08436 2.07 0.07996 4.56 0.07876 10.58 0.08963 0.07857 0.07847 0.07817
8 0.08427 2.14 0.08017 4.58 0.07919 12.07 0.08874 0.07917 0.07895 0.07886
9 0.08926 2.20 0.08528 4.45 0.08433 10.41 0.09860 0.08418 0.08411 0.08396

10 0.09376 2.28 0.08991 5.12 0.08903 12.90 0.09910 0.08892 0.08880 0.08830
Average 2.29 4.84 12.87

Table 8.17 Results for Problem Set 16: 150-point problems originally in five dimensions 
      with 10 solutions for DACN.

DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.09594 13.06 0.09171 21.72 0.09058 45.77 0.09567 0.08968 0.08971 0.08964
2 0.09823 11.40 0.09445 22.77 0.09337 50.92 0.10082 0.09329 0.09303 0.09269
3 0.09494 14.91 0.09076 26.21 0.08981 53.32 0.10114 0.08965 0.08947 0.08943
4 0.09748 13.12 0.09353 21.47 0.09263 45.28 0.09693 0.09253 0.09231 0.09218
5 0.09391 12.31 0.08974 22.23 0.08867 52.13 0.08913 0.08811 0.08791 0.08784
6 0.09338   9.64 0.08935 16.57 0.08834 38.90 0.09426 0.08824 0.08793 0.08782
7 0.09255 10.91 0.08813 18.88 0.08703 42.28 0.09357 0.08653 0.08639 0.08633
8 0.09485 12.32 0.09075 19.16 0.08971 43.35 0.09457 0.08944 0.08938 0.08922
9 0.09408 11.88 0.08974 20.97 0.08864 42.19 0.10040 0.08829 0.08811 0.08801

10 0.09744 12.96 0.09342 21.23 0.09253 44.85 0.09867 0.09238 0.09225 0.09217
Average 12.25 21.12 45.90

Table 8.18 Results for Problem Set 17: 300-point problems originally in five dimensions 
      with 10 solutions for DACN.
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DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Problem
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution
Best 

solution
Best 

solution
Best 

solution
1 0.10032 39.91 0.09656 58.83 0.09566 116.99 0.10238 0.09558 0.09547 0.09539
2 0.09924 40.01 0.09513 61.09 0.09416 151.90 0.09722 0.09408 0.09381 0.09364
3 0.09805 33.75 0.09409 58.69 0.09310 123.41 0.10623 0.09286 0.09271 0.09258
4 0.09999 34.97 0.09614 58.91 0.09523 120.31 0.09920 0.09512 0.09498 0.09488
5 0.09674 34.16 0.09283 52.69 0.09182 110.58 0.10135 0.09135 0.09129 0.09120
6 0.09587 33.98 0.09185 56.30 0.09091 109.63 0.10150 0.09064 0.09059 0.09045
7 0.09760 34.38 0.09334 56.97 0.09227   99.85 0.10401 0.09198 0.09172 0.09161
8 0.09977 36.45 0.09592 59.55 0.09492 122.30 0.10012 0.09462 0.09454 0.09442
9 0.09840 35.74 0.09427 64.90 0.09334 161.80 0.10032 0.09320 0.09306 0.09295

10 0.09790 36.58 0.09396 62.97 0.09294 122.93 0.10260 0.09277 0.09264 0.09247
Average 35.99 59.09 123.97

Table 8.19 Results for Problem Set 18: 500-point problems originally in five dimensions 
      with 10 solutions for DACN. 

Next, we also applied DACN3, DACN4, DACN5, NLIM, and COMB to larger 

problems. We randomly generated problems of size 1000, 1250, 1500, 1750, 2000, 2250, 

and 2500 (one of each size) from a lattice set in three dimensions. For each problem, we 

solve it 10 times from 10 randomly generated starting solutions. In Table 8.20, we give 

the results for these problems. For all seven problems, DACN4 and DACN5 generate 

substantially better solutions (with respect to solution quality) than NLIM. The running 

times for DACN5 are nearly twice those of DACN4. The running times of DACN4 are 

roughly comparable to those of NLIM. However, as the number of points increases, the 

running time of NLIM increases more rapidly than that of DACN4. For the largest 

problem, NLIM required nearly twice as much time as DACN4. NLIM produced better 

solutions than DACN3, except for one problem. On the other hand, COMB3 clearly 

outperforms NLIM. COMB4 and COMB5 always outperform DACN5. As expected, 

COMB5 outperforms COMB4, which outperforms COMB3.   
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DACN3 DACN4 DACN5 NLIM COMB3 COMB4 COMB5

Number 
of points

Best 
solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
Best 

solution

Running 
time

(secs)
1000 0.06154 113.66 0.05650   160.04 0.05525   318.34 0.05954   180 0.05492   80 0.05468  50 0.05462        60
1250 0.06184 197.07 0.05703   342.55  0.05584   552.22 0.05920   230 0.05547   130 0.05533 100 0.05526  110
1500 0.06107 301.82 0.05620   466.36 0.05497   820.67 0.06227   410 0.05462   220 0.05444 140 0.05438  180
1750 0.06193 407.13 0.05704   573.25 0.05583 1009.59 0.06190   680 0.05547   495 0.05531 360 0.05524  410
2000 0.06210 494.62 0.05726   703.11 0.05607 1324.95 0.06171 1170 0.05564   830 0.05557 720 0.05551      770
2250 0.06237 720.02 0.05752 1079.74 0.05634 1856.91 0.06189 1620 0.05590 1120 0.05583 1170 0.05577    1210
2500 0.06257 811.88 0.05765 1439.35 0.05645 2921.63 0.06160 2655 0.05600 1930 0.05594 2110 0.05588    2020

Table 8.20  Results for larger problems originally in 3 dimensions with 10 replications.
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8.3 Conclusions

Even though NLIM can assign points anywhere in the plane and DACN can 

only make assignments to specific points in the lattice space, DACN generates results 

that are comparable in quality to those generated by NLIM. DACN4 and DACN5 

generate solutions that are better than those of NLIM. DACN5 gives better solutions 

than DACN4, but DACN5’s running times are about twice as large. When the final 

solution from DACN is used as a starting solution in NLIM – this is the COMB 

heuristic – the final solutions generated by COMB4 and COMB5 are always better 

than the results generated by DACN and NLIM. COMB3 beats NLIM by a wide 

margin and requires a similar amount of computational effort. COMB5 generate the 

best solutions, but takes longer. The divide-and-conquer approach provides a good 

approximate solution. Furthermore, we have demonstrated that this solution is a good 

starting solution for the nonlinear method. Taking both solution quality and running 

time into account, we might recommend either DACN4 or DACN3 followed by 

COMB3 for solving large data visualization problems.
.
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Chapter 9: Conclusions

9.1 Summary of Results

Data visualization applications are typically modeled and solved using 

nonlinear optimization techniques. In this dissertation, we proposed a discretization of 

the data visualization problem that allowed us to formulate it as a quadratic 

assignment problem. However, this formulation was computationally difficult to 

solve optimally with an exact approach. Consequently, we investigated the use of 

heuristics to solve our formulation. The space in which the data points are to be 

embedded was discretized using an n x n lattice. Conducting a local search on this n x

n lattice was computationally inefficient. We proposed a divide-and-conquer 

approach that refined the lattice at each step. In Table 9.1 we give a description of the 

heuristic abbreviations used in this dissertation.

In Chapter 1, we gave an introduction and presented the objectives of the 

dissertation.

In Chapter 2, we gave an overview of the existing literature on data mining 

and data visualization. We presented background information on quadratic 

assignment problems, local search heuristics, integer programming problems, and 

genetic algorithms.

In Chapter 3, we presented the methodology that we used to formulate the 

data visualization problem as a quadratic assignment problem.
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Heuristic
Description

LS Local search heuristic
DAC Divide-and-conquer local search heuristic
DACQ Divide-and-conquer local search heuristic with quadrant restrictions
DACN Divide-and-conquer local search heuristic with neighbor restrictions
IP Integer program heuristic
IR IP with Step 1 repeated
IRN IR with points allowed to move to neighboring points
IRNS IRN with a maximum of 20 points considered in reassigning points 

after Step 2 and 5 points reassigned at a time after Step 4
IMP Improvement heuristic
HGA Hybrid genetic algorithm

Table 9.1 Descriptions of heuristic abbreviations.

In Chapter 4, we developed a local search technique to solve our QAP and 

investigated four different discrete local search algorithms. Considering both solution 

quality and running time, DACN appeared to be the best heuristic, when compared to 

LS, DAC, and DACQ. DACN provided an approximate solution to the data 

visualization problem in a reasonable amount of computing time. 

In Chapter 5, we gave an IP for the data visualization problem and proved it 

was equivalent to our QAP formulation. We developed a divide-and-conquer 

heuristic that solved a set of smaller problems at each stage instead of one large 

problem and showed that it gave a more manageable problem to solve at each stage. 

We found that DACN was more accurate and efficient than IRNS. DACN produced 

much better objective function values than IRNS. The running times for DACN were 

also much shorter than those of IRNS. In addition, we observed that that the local 

search procedure of assigning points one at a time worked well for the data 

visualization problem.  Even though DACN produced solutions by reassigning points, 



152

one point at a time, IMP, which reassigns five points at a time, did not improve the 

results of DACN. 

In Chapter 6, we developed a hybrid heuristic (HGA) that combined local 

search with a genetic algorithm by applying genetic algorithms techniques to the final 

solution from DACN. We found that HGA improved the solutions produced by 

DACN. However, the improvements were very small. In addition, the running times 

of HGA were longer than those of DACN. We recommended that, when our heuristic 

is used as a stand-alone approach or a very accurate solution is required, HGA should 

be used rather than DACN. On the other hand, if our heuristic is used to produce a 

starting solution for a nonlinear method or an approximate solution is required, then 

DACN should be used rather than HGA for faster computation times.

In Chapter 7, we compared the results of DACN to the results generated by a 

nonlinear Sammon map (NLSM). DACN can only make assignments to specific 

points in the lattice space. NLSM can assign points anywhere in the plane. Despite 

this limitation, DACN generated results that were comparable in quality to those 

generated by NLSM. When the final solution from DACN was used as a starting 

solution in NLSM – that is the COMB heuristic – the final solutions generated by 

COMB were always better than the results generated by DACN and NLSM. The 

running times for COMB were much smaller than those for NLSM and were, in fact, 

quite reasonable. 

In Chapter 8, we compared the results of DACN to the results generated by a 

commercial nonlinear multidimensional scaling map (NLIM). We used the 

majorization technique as implemented in SPSS Proxscal. We solved DACN with 10 
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solutions instead of 100 solutions used in our other experiments. We applied DACN, 

NLIM, and COMB to larger problem sets, ranging in size from 1000 to 2500. 

DACN4 and DACN5 generated solutions that were better than those of NLIM. 

DACN5 gave better solutions than DACN4, but DACN5’s running times were about 

twice as large. COMB always produced better results than those generated by DACN 

and NLIM. COMB3 beat NLIM by a wide margin and required a similar amount of 

computational effort. COMB5 generated the best solutions, but took longer. Taking 

both solution quality and running time into account, we recommend either DACN4 or 

DACN3 followed by COMB3 for solving large data visualization problems.

We summarize the research contributions of this dissertation as follows:

•  The data visualization problem can be formulated as a QAP.

• We demonstrated that discrete optimization and a divide-and-conquer local 

search heuristic can be applied to continuous optimization problems arising in 

data visualization.

• DACN can only make assignments to specific points in the lattice space but 

NLSM and NLIM can assign points anywhere in the plane. Despite this 

limitation, DACN generated results that are comparable in quality to those

generated by NLSM and NLIM (and superior for large problems).

• When the final solution from DACN is used as a starting solution in NLSM 

and NLIM – this is the COMB heuristic – the final solutions generated by 

COMB are always better than the results generated by DACN, NLSM, and 

NLIM. 
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• The running times for COMB (alone) are much smaller than those for NLSM 

and NLIM, and are, in fact, quite reasonable. 

• The divide-and-conquer approach provides a good approximate solution in a 

small amount of computing time. Furthermore, we have shown that this 

solution is a good starting solution for the nonlinear method. 

• Taking both solution quality and running time into account, we recommend 

either using DACN4 or DACN3 followed by COMB3 for solving large data 

visualization problems.

9.2 Future Research

There are several opportunities for future work on this topic. For example, in 

this dissertation, the lattice structure was made uniform over the entire rectangular 

grid. This need not be so. Where there is a higher density of points, the lattice can be 

made finer. Where there are fewer points, the lattice can be made coarser.

Different lattice structures can also be considered. For instance, we can 

investigate keeping the previous lattice point and considering five lattice points at 

each stage, instead of only considering the four new lattice points. It may be that the 

point was best assigned to the previous lattice point and not to one of the four new 

lattice points. 

There is also an opportunity to investigate other well-known heuristics like 

simulated annealing and tabu search to see if they can provide good solutions to the 

QAP formulation for the data visualization problem.     
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In this dissertation, we used randomly generated data sets from a uniformly 

distributed data set. We can consider other data sets. For instance, we can generate a 

two-dimensional data set either randomly or using a known function. We can then 

transform this data into a higher dimensional data set. We can do this, for example, by 

finding linear combinations of the coordinates in two-dimensions and adding some 

noise. The noise should have a small variance so that the original structure in the data 

is not destroyed. With this type of data we can compare the final solution obtained 

with the original solution. 
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Glossary

LS - Local Search heuristic

DAC - Divide-and-conquer local search heuristic

DACQ - Divide-and-conquer local search heuristic with quadrant
restrictions

 DACN - Divide-and-conquer local search heuristic with neighbor 
restrictions

IP - Integer program heuristic

IR - IP with Step 1 repeated

IRN - IR with points allowed to move to neighboring lattice points

IRNS - IRN with a maximum of 20 points considered in reassigning 
points after Step 2 and 5 points reassigned at a time after Step 4

IMP - Improvement heuristic   

HGA - Hybrid genetic algorithm
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Appendix A

Source code for DACN and HGA

#include "ModelOne.h"
#include "ModelFive.h"
#include "RecipeRandGenImpl.h"
#include "ConstraintKnutStrRandomGenerator.h"
#include "ODMatrixGen.h"
#include "ObjectiveValueCalculator.h"
#include "CommandLineInterpreter.h"

RecipeRandGenImpl gRanGen(-1L);
ConstraintKnutStrRandomGenerator gKnutRanGen(gRanGen);

int main(int argc, char** argv)
{

try {
CommandLineInterpreter cmdl;
cmdl.Parse(argc, argv);

ODMatrixGen odMatGen(cmdl.PointsMatrixFile().c_str());

ModelFive<ConstraintKnutStrRandomGenerator, IntMatrix, ObjValueCalculator> 
gModelFive(gKnutRanGen, odMatGen, 

(cmdl.OutputFileName()).c_str(),
cmdl.NoLatticePoints(), cmdl.NoPoints(), cmdl.SampleSize(),
(cmdl.PointsMatrixFile()).c_str());

gModelFive.Model();
}
catch(...)
{

fprintf(stderr, "An exception was thrown; check your input parameters");
exit(-1);

}

return 0;
}
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#include "CommandLineInterpreter.h"
#include <cstdio>

void CommandLineInterpreter::Parse(int argc, char** argv)
{

if(argc>1)
{

for(int index = 1; index < argc; ++index)
    {

if(strlen(argv[index])==2 && (argv[index][0]=='-' || argv[index][0]=='/'))
{

char key= argv[index][1];
key = toupper(key);
switch(key)
{
case 'N':

lattice_ = atoi(argv[++index]);
break;

case 'M':
points_ = atoi(argv[++index]);
break;

case 'S':
sampleSize_ = atoi(argv[++index]);
break;

case 'O':
outputFileName_ = argv[++index];
break;

case 'I':
pointsMatrixFile_ = argv[++index];
break;

default:
fprintf(stderr, "Invalid usage\n");
fprintf(stderr, "Usage: localsearch [-n # lattice point ] [-m 

# points] "
   "[-s sample size] [-o output file] [-i input point 

matrix file]\n");
break;
exit(-1);

}
}
else if(strlen(argv[index]) > 2 && (argv[index][0] == '-' || argv[index][0] == 

'/'))
{

char key  = argv[index][1];
key = toupper(key);
char buffer[512];
strcpy(buffer, argv[index] + 2);
switch(key)
{
case 'N':

lattice_ = atoi(buffer);
break;

case 'M':
points_ = atoi(buffer);
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break;
case 'S':

sampleSize_ = atoi(buffer);
index++;
break;

case 'O':
outputFileName_ = buffer;
break;

case 'I':
pointsMatrixFile_ = buffer;
break;

default:
fprintf(stderr, "Invalid usage\n");
fprintf(stderr, "Usage: localsearch [-n # lattice point ] [-m 

# points] "
   "[-s sample size] [-o output file] [-i input point 

matrix file]\n");
break;
exit(-1);

}
}
else
{

printf("Invalid usage\n");
printf("Usage: localsearch [-n # lattice point ] [-m # points] "

   "[-s sample size] [-o output file] [-i input point 
matrix file]\n");

exit(-1);
}

    }
}
else
{

fprintf(stderr, "WARNING: using the following default parameters: \n\tNo lattice 
points = %d"

"\n\tNo of points = %d\n\tSample size = %d\n\tOutput file name = 
%s\n\t"

"No input matirx file using,\n\t\t xcoorm[M] = {1, 3, 1, 3,   9, 11, 
9, 11,   25, 27, 25, 27,   29, 31, 29, 31,    13, 15, 13, 15}"

"\n\t\tycoorm[M] = {31, 31, 29, 29,  29, 29,  31, 31, 3, 3, 1, 1,    3, 
3, 1, 1, 3, 3, 1, 1};",

lattice_, points_, sampleSize_, outputFileName_.c_str());
}

}
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#include "ConstraintKnutStrRandomGenerator.h"

#include <ctime>
#include <list>

void ConstraintKnutStrRandomGenerator::generate(std::vector<std::string>& ranVec, 
int howMany, int size, int 

lowerValue, int upperValue)
{

// we assume that the upperValue  will not be more than 999
if(!ranVec.empty())

ranVec.clear();

const BUF = 20;
char element[BUF];
int bufLen = 3 * (size + 1);
char* pItem = new char[bufLen];
std::list<int> positions;

for (int cnt = 0; cnt < howMany; ++cnt)
{

if(!positions.empty()) positions.clear();
for(int pos = 0; pos < size; ++pos)
{

// put positions here to be allocated
positions.push_back(pos);

}

for(int cnt = 0; cnt < bufLen; ++cnt)
{

pItem[cnt] = 'x';
}
pItem[2] = '1'; // position 1 should always be 1

// terminate the string
pItem[bufLen - 1 ] = '\0';
pItem[bufLen - 2 ] = '\0';
pItem[bufLen - 3 ] = '\0';

positions.remove(0);

// assign position for lattice point 2
int pointElem2 = 1 + static_cast<int>(( (size - 2) * ran() + 0.1));
pItem[3 * pointElem2 + 2] = '2';

// remove from positions
positions.remove(pointElem2);

for(int i = 2; i < size; ++i)
{

int pointElem;
int latticeElem = lowerValue + 

static_cast<int>(( (upperValue - lowerValue) * ran() + 0.1));
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if(!positions.empty())
{

bool found = true;
do
{

found = true;
pointElem = positions.front();
positions.pop_front();
if(latticeElem == 3 && pointElem == 1)
{ // ensure that pt 2 is not assigned to latice point 3

positions.push_back(pointElem);
if(positions.size() == 1)
{

latticeElem = lowerValue + 
static_cast<int>(( (upperValue 

- lowerValue) * ran() + 0.1));
}
found = false;

}
} while(!found);

memset(element,0,sizeof(char) * BUF);
_itoa( latticeElem, element, 10);
int len = strlen(element);

switch(len)
{
case 1:

pItem[3 * pointElem + 2] = element[0];
break;

case 2:
pItem[3 * pointElem + 1] = element[0];
pItem[3 * pointElem + 2] = element[1];
break;

case 3:
pItem[3 * pointElem] = element[0];
pItem[3 * pointElem + 1] = element[1];
pItem[3 * pointElem + 2] = element[2];

default:
fprintf(stderr, "Error latticeElement %d is greater than 

999", latticeElem);
exit(-1);

} // switch

}
} // for
ranVec.push_back(pItem);

} // for

if(pItem) delete [] pItem; 

} // ConstraintKnutStrRandomGenerator::generate
#include "KnutIntRandomGenerator.h"

void KnutIntRandomGenerator::generate(std::vector<int>& ranVec, 
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int howMany, int size, int 
lowerValue, int upperValue)
{

if(!ranVec.empty())
ranVec.clear();

const BUF = 20;
char element[BUF];
for (int cnt = 0; cnt < howMany; ++cnt)
{

for(int i = 0; i < size; ++i)
{

int elem = lowerValue + 
static_cast<int>(( (upperValue - lowerValue) * ran() + 0.1));

memset(element,0,sizeof(char) * BUF);
ranVec.push_back(elem);

}
}

} // KnutIntRandomGenerator::generate
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#include "KnutStrRandomGenerator.h"
#include <ctime>

void KnutStrRandomGenerator::generate(std::vector<std::string>& ranVec, 
int howMany, int size, int 

lowerValue, int upperValue)
{

if(!ranVec.empty())
ranVec.clear();

const BUF = 20;
const char SEPERATOR = 'x';
char element[BUF];
for (int cnt = 0; cnt < howMany; ++cnt)
{

std::string item;
for(int i = 0; i < size; ++i)
{

int elem = lowerValue + 
static_cast<int>(( (upperValue - lowerValue) * ran() + 0.1));

memset(element,0,sizeof(char) * BUF);
_itoa( elem, element, 10);

// insert x as a seperator between the numbers
item += SEPERATOR;
item += element;

}
ranVec.push_back(item);

}

} // KnutStrRandomGenerator::generate

#include "LocalSearchModeler.h"

void LocalSearchModeler::Model()
{

GenerateInitialSolution();
PerformLocalSearch();
CalculateObjectiveValue();
//GenerateInitialSolution();
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#include "NDMatrixGen.h"
#include <iterator>
#include <math.h>

//n= 4
int xcoorn4 [] = {8, 24, 8, 24};
int ycoorn4 [] = {24, 24, 8, 8};

//n = 16
static int xcoorn16 [] = { 4, 12,  4, 12,  20, 28, 20, 28,   4, 12, 4, 12,  20, 28, 20, 28};
static int ycoorn16 [] = {28, 28, 20, 20,  28, 28, 20, 20,  12, 12, 4,  4,  12, 12,  4,  4};

//n = 64
static int xcoorn64 [] = {2,  6,  2,  6,   10, 14, 10, 14,   2, 6, 2, 6,  10, 14, 10, 14,  18, 22, 18, 22,  26, 30, 
26, 30,  18, 22, 18, 22,  26, 30, 26, 30,   2, 6, 2, 6,  10, 14, 10, 14,  2, 6, 2, 6,  10, 14, 10, 14,   18, 22, 
18, 22,  26, 30, 26, 30,  18, 22, 18, 22,   26, 30, 26, 30};
static int ycoorn64 [] = {30, 30, 26, 26,  30, 30, 26, 26,  22, 22, 18, 18,   22, 22, 18, 18,  30, 30, 26, 26,  
30, 30, 26, 26,  22, 22, 18, 18,  22, 22, 18, 18,  14, 14, 10, 10,  14, 14, 10, 10,  6, 6, 2, 2,  6, 6, 2, 2,  14, 
14, 10, 10,  14, 14, 10, 10,  6, 6, 2, 2,   6, 6, 2, 2};

//n = 256
static int xcoorn256 [] = {1, 3, 1, 3,   5, 7, 5, 7,  1, 3, 1, 3,   5, 7, 5, 7,   9, 11, 9, 11,   13, 15, 13, 15,   9, 
11, 9, 11,   13, 15, 13, 15,  1, 3, 1, 3,   5, 7, 5, 7,  1, 3, 1, 3,   5, 7, 5, 7,   9, 11, 9, 11,   13, 15, 13, 15,   9, 
11, 9, 11,   13, 15, 13, 15,  
          17, 19, 17, 19,  21, 23, 21, 23,   17, 19, 17, 19,   21, 23, 21, 23,   25, 27, 25, 27,   29, 31, 29, 31,   
25, 27, 25, 27,   29, 31, 29, 31,   17, 19, 17, 19,  21, 23, 21, 23,   17, 19, 17, 19,   21, 23, 21, 23,   25, 
27, 25, 27,   29, 31, 29, 31,   25, 27, 25, 27,   29, 31, 29, 31,
          1, 3, 1, 3,   5, 7, 5, 7,  1, 3, 1, 3,   5, 7, 5, 7,   9, 11, 9, 11,   13, 15, 13, 15,   9, 11, 9, 11,   13, 15, 
13, 15,  1, 3, 1, 3,   5, 7, 5, 7,  1, 3, 1, 3,   5, 7, 5, 7,   9, 11, 9, 11,   13, 15, 13, 15,   9, 11, 9, 11,   13, 15, 
13, 15,  
          17, 19, 17, 19,  21, 23, 21, 23,   17, 19, 17, 19,   21, 23, 21, 23,   25, 27, 25, 27,   29, 31, 29, 31,   
25, 27, 25, 27,   29, 31, 29, 31,   17, 19, 17, 19,  21, 23, 21, 23,   17, 19, 17, 19,   21, 23, 21, 23,   25, 
27, 25, 27,   29, 31, 29, 31,   25, 27, 25, 27,   29, 31, 29, 31};

static int ycoorn256 [] = {31, 31, 29, 29,  31, 31, 29, 29,   27, 27, 25, 25,   27, 27, 25, 25,  31, 31, 29, 
29,  31, 31, 29, 29,   27, 27, 25, 25,   27, 27, 25, 25,   23, 23, 21, 21,   23, 23, 21, 21,  19, 19, 17, 17,   
19, 19, 17, 17,    23, 23, 21, 21,   23, 23, 21, 21,  19, 19, 17, 17,   19, 19, 17, 17, 
          31, 31, 29, 29,  31, 31, 29, 29,   27, 27, 25, 25,   27, 27, 25, 25,  31, 31, 29, 29,  31, 31, 29, 29,   
27, 27, 25, 25,   27, 27, 25, 25,   23, 23, 21, 21,   23, 23, 21, 21,  19, 19, 17, 17,   19, 19, 17, 17,    23, 
23, 21, 21,   23, 23, 21, 21,  19, 19, 17, 17,   19, 19, 17, 17, 
          15, 15, 13, 13,   15, 15, 13, 13,   11, 11, 9, 9,  11, 11, 9, 9,  15, 15, 13, 13,   15, 15, 13, 13,   11, 
11, 9, 9,  11, 11, 9, 9,   7, 7, 5, 5,    7, 7, 5, 5,   3, 3, 1, 1,    3, 3, 1, 1,   7, 7, 5, 5,    7, 7, 5, 5,   3, 3, 1, 1,    
3, 3, 1, 1, 
          15, 15, 13, 13,  15, 15, 13, 13,   11, 11, 9, 9,  11, 11, 9, 9,  15, 15, 13, 13,   15, 15, 13, 13,   11, 
11, 9, 9,  11, 11, 9, 9,   7, 7, 5, 5,    7, 7, 5, 5,   3, 3, 1, 1,    3, 3, 1, 1,   7, 7, 5, 5,    7, 7, 5, 5,   3, 3, 1, 1,    
3, 3, 1, 1};

NDMatrixGen::NDMatrixGen() : type_(0)
{

matrixContainer_.insert(IntPointerPairMap::value_type(4, IntPointerPair(xcoorn4, 
ycoorn4)));

matrixContainer_.insert(IntPointerPairMap::value_type(16, IntPointerPair(xcoorn16, 
ycoorn16)));
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matrixContainer_.insert(IntPointerPairMap::value_type(64, IntPointerPair(xcoorn64, 
ycoorn64)));

matrixContainer_.insert(IntPointerPairMap::value_type(256, IntPointerPair(xcoorn256, 
ycoorn256)));

} // NDMatrixGen::NDMatrixGen

void NDMatrixGen::Generate(int size) 
{ 

if(type_ && type_ == size) 
return;

if(!(size == 4 || size == 16 || size == 64 || size == 256))
{ // wrong input so wipe out everything from the matrix because 
  // one would be tempted to use it

type_ = 0;
ndMatrix_.clear();

}
else
{

if(!ndMatrix_.empty()) ndMatrix_.clear();
int value = 0;
IntPointerPairMap::iterator iter = matrixContainer_.find(size);
if(iter != matrixContainer_.end())
{

IntPointerPair vectorPair = (*iter).second;
for (int i = 0; i < size; ++i)
{

IntVec vec;
ndMatrix_.push_back(vec);
for (int j = 0; j < size; ++j)
{

value = ((vectorPair.first)[i] - (vectorPair.first)[j]) * 
((vectorPair.first)[i] - (vectorPair.first)[j]) -

    ((vectorPair.second)[i] - (vectorPair.second)[j]) * 
((vectorPair.second)[i] - (vectorPair.second)[j]);

if(value > 0) value = sqrt((double)value);
ndMatrix_[i].push_back(value); 

} // for
} // for

}

}

}
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#include "ObjectiveValueCalculator.h"
#include <cassert>
#include <map>
#include <algorithm>

bool long_int_cmp (const LNGINTPAIR& first, const LNGINTPAIR& second )
{

return (first.first < second.first) ? true : false;

}

void ObjValueCalculator::ExtractValues(const OBJVString& inStr, OBJIntVec& outVec)
{

assert(inStr.size() % 3 == 0); // ensure that string is valid

if(inStr.size() % 3 != 0)
throw 1;

if(!outVec.empty()) outVec.clear();

// extract values form string
char buffer[4];

int size = inStr.size();
char* ptr = const_cast<char*>(inStr.c_str());
int index = 0;
for(;  index < size && ptr != '\0'  && ptr ; ptr += 3, index += 3) // 3 = # representing a 

position
{

memset(buffer, 0, 4 * sizeof(char));
strncpy(buffer, ptr, 3);
OBJVString digit;
for(int i = 0; buffer[i] != 0; ++i)
{

if(isdigit(buffer[i]))
{

digit += buffer[i];
}

} // for

if(!digit.empty()) 
{

outVec.push_back(atoi(digit.c_str()));
}

} // for

} // ObjValueCalculator::ExtractValues

void ObjValueCalculator::CalculatObjectiveValue
(

unsigned int pos,
const OBJVString& str, 
IntMatrix& odMat,
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IntMatrix& ndMat,
LNINTPAIRVEC& objectiveFunctionList

)
{

OBJIntVec strVec;
ExtractValues(str, strVec);

if(!objectiveFunctionList.empty()) 
objectiveFunctionList.clear();

// we are interested in the following summation:
// we have a vector C =(c[l] l = 0, strVec.size() - 1
// for each value of i (ie pos), 
// we calculate sum over k( sum over j(OD[i,j] - ND[k, c[j]])), j>i, 
// k = 0,...,ndMat.size() - 1

unsigned int strVecSize = strVec.size();

unsigned int ndSize = ndMat.size(); // to be removed

for(int k = 0; k < ndMat.size(); ++k)
{

LNGINTPAIR sum(0, k);
for(int j = pos + 1; j < strVec.size(); ++j)
{

long value = (odMat[pos])[j] - (ndMat[k])[strVec[j]];
value *= value;
sum.first += value;

}
objectiveFunctionList.push_back(sum);

}

#if 0
// test output

for(LNINTPAIRVEC::iterator iter = objectiveFunctionList.begin();
iter != objectiveFunctionList.end(); ++iter)
{

printf("value[%d] = %d\n", (*iter).second, (*iter).first);
}

#endif

} // ObjValueCalculator::CalculatObjectiveValue

// calculates the objective value for the positon
// pos
LNGINTPAIR ObjValueCalculator::CalculatObjectiveValue

(
unsigned int pos,
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const OBJVString& str, 
IntMatrix& odMat,
IntMatrix& ndMat

)
{

LNINTPAIRVEC objectiveFunctionList;
CalculatObjectiveValue(pos, str, odMat, ndMat, objectiveFunctionList);

assert(!objectiveFunctionList.empty()); // check to make sure that we do not get empty vector

LNGINTPAIR minValue(*std::min_element(objectiveFunctionList.begin(), 
objectiveFunctionList.end(), long_int_cmp));

// since int hte calulateObjective function we started k from 0 we have 
// to increase its value by one to account for the actual value

minValue.second++;

return minValue;

/*
OBJIntVec strVec;
ExtractValues(str, strVec);

LNINTPAIRVEC objectiveFunctionList;

// we are interested in the following summation:
// we have a vector C =(c[l] l = 0, strVec.size() - 1
// for each value of i (ie pos), 
// we calculate sum over k( sum over j(OD[i,j] - ND[k, c[j]])), j>i, 
// k = 0,...,ndMat.size() - 1

unsigned int strVecSize = strVec.size();

unsigned int ndSize = ndMat.size(); // to be removed

for(int k = 0; k < ndMat.size(); ++k)
{

LNGINTPAIR sum(0, k);
for(int j = pos + 1; j < strVec.size(); ++j)
{

long value = (odMat[pos])[j] - (ndMat[k])[strVec[j]];
value *= value;
sum.first += value;

}
objectiveFunctionList.push_back(sum);

}

assert(!objectiveFunctionList.empty()); // check to make sure that we do not get empty vector
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LNGINTPAIR minValue(*std::min_element(objectiveFunctionList.begin(), 
objectiveFunctionList.end(), long_int_cmp));

#if 0
// test output

for(LNINTPAIRVEC::iterator iter = objectiveFunctionList.begin();
iter != objectiveFunctionList.end(); ++iter)
{

printf("value[%d] = %d\n", (*iter).second, (*iter).first);
}

#endif

// since we started k from 0 we have to increase its value
// by one to account for the actual value
minValue.second++;

return minValue;
*/

} // ObjValueCalculator::CalculatObjectiveValue

LNGINTPAIR ObjValueCalculator::CalculatObjectiveValue
(

unsigned int pos,
const OBJVString& str, 
IntMatrix& odMat,
IntMatrix& ndMat,
INTSET& relLPts

)
{

LNINTPAIRVEC objectiveFunctionList;
CalculatObjectiveValue(pos, str, odMat, ndMat, objectiveFunctionList);

int size = objectiveFunctionList.size();
LNINTPAIRVEC modifiedObjectiveFunctionList;
INTSET::iterator setIterEnd = relLPts.end();

for(int i=0; i < size; ++i)
{

if(relLPts.find(objectiveFunctionList[i].second) != setIterEnd)
{

modifiedObjectiveFunctionList.push_back(objectiveFunctionList[i]);
}

}

assert(!modifiedObjectiveFunctionList.empty()); // check to make sure that we do not get 
empty vector

LNGINTPAIR minValue(*std::min_element(modifiedObjectiveFunctionList.begin(), 
modifiedObjectiveFunctionList.end(), long_int_cmp));

// since in the calulateObjective function we started k from 0, we have 
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// to increase its value by one to account for the actual value

minValue.second++;

return minValue;

} // ObjValueCalculator::CalculatObjectiveValue

// calculates the final objective value for the string
long ObjValueCalculator::CalculatObjectiveValue
(

const OBJVString& str, 
IntMatrix& odMat,
IntMatrix& ndMat

)
{

OBJIntVec strIntVec;
ExtractValues(str, strIntVec);

LNGVEC objectiveFunctionList;

unsigned int strVecSize = strIntVec.size();
long sum = 0;

for(int i = 0; i < strVecSize; ++i)
{

for(int j = i + 1; j < strVecSize; ++j)
{

int k = strIntVec[i] - 1; // -1 to reflect the fact 
int l = strIntVec[j] - 1; // that we start from zero

long value = (odMat[i])[j] - (ndMat[k])[l];
value *= value;
sum += value;

}
}

return sum;
} // ObjValueCalculator::CalculatObjectiveValue
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#include "ODMatrixGen.h"
#include <iterator>
#include <math.h>
#include <fstream>

ODMatrixGen::ODMatrixGen(const char* fileName) : generated_(false) 
{ 

if(fileName)
{

if(strcmp(fileName, "") == 0)
{

Generate();
}
else
{

fileName_ = fileName; 
Generate(true);

}
}
else 
{ 

fileName_ = ""; 
Generate();

} 
}

ODMatrixGen::ODMatrixGen(std::string& fileName) : generated_(false) 
{ 

if(!fileName.empty()) 
{

fileName_ = fileName; 
Generate(true);

}
else 
{ 

fileName_ = ""; 
Generate();

} 
}

void ODMatrixGen::Generate() 
{ 

int xcoorm[] = {1, 3, 1, 3,   9, 11, 9, 11,   25, 27, 25, 27,   29, 31, 29, 31,    13, 15, 13, 15};
int ycoorm[] = {31, 31, 29, 29,  29, 29,  31, 31, 3, 3, 1, 1,    3, 3, 1, 1, 3, 3, 1, 1};
int size = sizeof(xcoorm) / sizeof(&xcoorm[0]);

int value = 0;
for (int i = 0; i < size; ++i)
{

IntVec vec;
odMatrix_.push_back(vec);
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for (int j = 0; j < size; ++j)
{

value = (xcoorm[i] - xcoorm[j]) * (xcoorm[i] - xcoorm[j]) -
    (ycoorm[i] - ycoorm[j]) * (ycoorm[i] - ycoorm[j]);

if(value > 0) value = sqrt((double)value);
odMatrix_[i].push_back(value);

} // for
} // for

generated_ = true;

}

void ODMatrixGen::Generate(bool bFromFile)
{

if(bFromFile)
{

std::ifstream fileStream(fileName_.c_str());
if(!fileStream.is_open())
{

fileStream.open(fileName_.c_str());
}

if(!fileStream.is_open())
throw 1;

// fileStream.setmode(filebuf::text);

int xcoord;
int ycoord;

IntVec xcoordVec;
IntVec ycoordVec;

while(!fileStream.eof())
{

fileStream >> xcoord;
xcoordVec.push_back(xcoord);

fileStream >> ycoord;
ycoordVec.push_back(ycoord);

}

fileStream.close();

if(xcoordVec.empty() || ycoordVec.empty()) throw 1;
if(xcoordVec.size() != ycoordVec.size()) throw 1;

//TDB

int value = 0;
int size = xcoordVec.size();
for (int i = 0; i < size; ++i)
{
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IntVec vec;
odMatrix_.push_back(vec);
for (int j = 0; j < size; ++j)
{

value = (xcoordVec[i] - xcoordVec[j]) * (xcoordVec[i] -
xcoordVec[j]) -

 (ycoordVec[i] - ycoordVec[j]) * (ycoordVec[i] -
ycoordVec[j]);

if(value > 0) value = sqrt((double)value);
odMatrix_[i].push_back(value);

} // for
} // for

generated_ = true;

}
else
{

Generate();
}

}
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#include "RandGenImpl.h"

#define MBIG 1000000000
#define MSEED 161803398
#define MZ 0
#define FAC (1.0/MBIG)

float RandGenImpl::ran(long *idum)
{

static int inext,inextp;
static long ma[56];
static int iff=0;
long mj,mk;
int i,ii,k;

if (*idum < 0 || iff == 0) {
iff=1;
mj=MSEED-(*idum < 0 ? -*idum : *idum);
mj %= MBIG;
ma[55]=mj;
mk=1;
for (i=1;i<=54;i++) {

ii=(21*i) % 55;
ma[ii]=mk;
mk=mj-mk;
if (mk < MZ) mk += MBIG;
mj=ma[ii];

}
for (k=1;k<=4;k++)

for (i=1;i<=55;i++) {
ma[i] -= ma[1+(i+30) % 55];
if (ma[i] < MZ) ma[i] += MBIG;

}
inext=0;
inextp=31;
*idum=1;

}
if (++inext == 56) inext=1;
if (++inextp == 56) inextp=1;
mj=ma[inext]-ma[inextp];
if (mj < MZ) mj += MBIG;
ma[inext]=mj;
return mj*FAC;

}  // RandGenImpl::ran

#undef MBIG
#undef MSEED
#undef MZ
#undef FAC
/* (C) Copr. 1986-92 Numerical Recipes Software $2'9M)!].)!-01a. */



175

#include "RestrictionsAllocator.h"

RestrictionsAllocator::~RestrictionsAllocator()
{

if(!restrictors_.empty())
{

RESTRICTTORMAP::iterator iter = restrictors_.begin();
RESTRICTTORMAP::iterator iterEnd = restrictors_.end();
for(; iter != iterEnd; ++iter)
{

delete (*iter).second;
(*iter).second = 0;

}
}

}

INTSET& RestrictionsAllocator::FindSet(int size)
{

if( size > 64) throw 1; //only for lattice point up to 64

if(restrictors_.empty()) return Allocate(size);

RESTRICTTORMAP::iterator iter = restrictors_.find(size);
if(iter == restrictors_.end())
{

return Allocate(size);
}

return *((*iter).second);
}

// filter 
void RestrictionsAllocator::Filter(INTSET& object)
{

INTSET::iterator iter = object.begin();
INTSET::iterator iterEnd = object.end();
IntVec buffer;
for(; iter != iterEnd; ++iter)
{

if(*iter > maxLatticeValue_) 
{

buffer.push_back(*iter);
}

}

if(!buffer.empty())
{

int bufSize = buffer.size();
for(int i = 0; i < bufSize; ++i)
{

object.erase(buffer[i]);
}

}
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}

INTSET& RestrictionsAllocator::Allocate(int size)
{

INTSET* value = new INTSET;
if(!value) throw 1;

value->insert(size); // make sure that the point is part of it

switch(size)
{
case 1:

{
value->insert(2);
value->insert(3);
value->insert(4);

}
break;

case 2:
{

value->insert(1);
value->insert(3);
value->insert(4);
value->insert(5);
value->insert(7);

}
break;

case 3:
{

value->insert(1);
value->insert(2);
value->insert(4);
value->insert(9);
value->insert(10);

}
break;

case 4:
{

value->insert(1);
value->insert(2);
value->insert(5);
value->insert(3);
value->insert(7);
value->insert(9);
value->insert(10);
value->insert(13);

}
break;

case 5:
{

value->insert(2);
value->insert(6);
value->insert(4);
value->insert(7);
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value->insert(8);
}
break;

case 6:
{

value->insert(5);
value->insert(17);
value->insert(7);
value->insert(8);
value->insert(19);

}
break;

case 7:
{

value->insert(2);
value->insert(5);
value->insert(6);
value->insert(4);
value->insert(8);
value->insert(10);
value->insert(13);
value->insert(14);

}
break;

case 8:
{

value->insert(5);
value->insert(6);
value->insert(17);
value->insert(7);
value->insert(19);
value->insert(13);
value->insert(14);
value->insert(25);

}
break;

case 9:
{

value->insert(3);
value->insert(4);
value->insert(10);
value->insert(11);
value->insert(12);

}
break;

case 10:
{

value->insert(3);
value->insert(4);
value->insert(7);
value->insert(9);
value->insert(13);
value->insert(11);
value->insert(12);
value->insert(15);

}
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break;
case 11:

{
value->insert(9);
value->insert(10);
value->insert(12);
value->insert(33);
value->insert(34);

}
break;

case 12:
{

value->insert(9);
value->insert(10);
value->insert(13);
value->insert(11);
value->insert(15);
value->insert(33);
value->insert(34);
value->insert(37);

}
break;

case 13:
{

value->insert(4);
value->insert(7);
value->insert(8);
value->insert(10);
value->insert(14);
value->insert(12);
value->insert(15);
value->insert(16);

}
break;

case 14:
{

value->insert(7);
value->insert(8);
value->insert(19);
value->insert(13);
value->insert(25);
value->insert(15);
value->insert(16);
value->insert(27);

}
break;

case 15:
{

value->insert(10);
value->insert(13);
value->insert(14);
value->insert(12);
value->insert(16);
value->insert(34);
value->insert(37);
value->insert(38);
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}
break;

case 16:
{

value->insert(13);
value->insert(14);
value->insert(25);
value->insert(15);
value->insert(27);
value->insert(37);
value->insert(38);
value->insert(49);

}
break;

case 17:
{

value->insert(6);
value->insert(18);
value->insert(8);
value->insert(19);
value->insert(20);

}
break;

case 18:
{

value->insert(17);
value->insert(21);
value->insert(19);
value->insert(20);
value->insert(23);

}
break;

case 19:
{

value->insert(6);
value->insert(17);
value->insert(18);
value->insert(8);
value->insert(20);
value->insert(14);
value->insert(25);
value->insert(26);

}
break;

case 20:
{

value->insert(17);
value->insert(18);
value->insert(21);
value->insert(19);
value->insert(23);
value->insert(25);
value->insert(26);
value->insert(29);

}
break;
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case 21:
{

value->insert(18);
value->insert(22);
value->insert(20);
value->insert(23);
value->insert(24);

}
break;

case 22:
{

value->insert(21);
value->insert(23);
value->insert(24);

}
break;

case 23:
{

value->insert(18);
value->insert(21);
value->insert(22);
value->insert(20);
value->insert(24);
value->insert(26);
value->insert(29);
value->insert(30);

}
break;

case 24:
{

value->insert(21);
value->insert(22);
value->insert(23);
value->insert(29);
value->insert(30);

}
break;

case 25:
{

value->insert(8);
value->insert(19);
value->insert(20);
value->insert(14);
value->insert(26);
value->insert(16);
value->insert(27);
value->insert(28);

}
break;

case 26:
{

value->insert(19);
value->insert(20);
value->insert(23);
value->insert(25);
value->insert(29);
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value->insert(27);
value->insert(28);
value->insert(31);

}
break;

case 27:
{

value->insert(14);
value->insert(25);
value->insert(26);
value->insert(16);
value->insert(28);
value->insert(38);
value->insert(49);
value->insert(50);

}
break;

case 28:
{

value->insert(25);
value->insert(26);
value->insert(29);
value->insert(27);
value->insert(31);
value->insert(49);
value->insert(50);
value->insert(53);

}
break;

case 29:
{

value->insert(20);
value->insert(23);
value->insert(24);
value->insert(26);
value->insert(30);
value->insert(28);
value->insert(31);
value->insert(32);

}
break;

case 30:
{

value->insert(23);
value->insert(24);
value->insert(29);
value->insert(31);
value->insert(32);

}
break;

case 31:
{

value->insert(26);
value->insert(29);
value->insert(30);
value->insert(28);
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value->insert(32);
value->insert(50);
value->insert(53);
value->insert(54);

}
break;

case 32:
{

value->insert(29);
value->insert(30);
value->insert(31);
value->insert(53);
value->insert(54);

}
break;

case 33:
{

value->insert(11);
value->insert(12);
value->insert(34);
value->insert(35);
value->insert(36);

}
break;

case 34:
{

value->insert(11);
value->insert(12);
value->insert(15);
value->insert(33);
value->insert(37);
value->insert(35);
value->insert(36);
value->insert(39);

}
break;

case 35:
{

value->insert(33);
value->insert(34);
value->insert(36);
value->insert(41);
value->insert(42);

}
break;

case 36:
{

value->insert(33);
value->insert(34);
value->insert(37);
value->insert(35);
value->insert(39);
value->insert(41);
value->insert(42);
value->insert(45);

}
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break;
case 37:

{
value->insert(12);
value->insert(15);
value->insert(16);
value->insert(34);
value->insert(38);
value->insert(36);
value->insert(39);
value->insert(40);

}
break;

case 38:
{

value->insert(15);
value->insert(16);
value->insert(27);
value->insert(37);
value->insert(49);
value->insert(39);
value->insert(40);
value->insert(51);

}
break;

case 39:
{

value->insert(34);
value->insert(35);
value->insert(38);
value->insert(36);
value->insert(40);
value->insert(42);
value->insert(45);
value->insert(46);

}
break;

case 40:
{

value->insert(37);
value->insert(38);
value->insert(49);
value->insert(39);
value->insert(51);
value->insert(45);
value->insert(46);
value->insert(57);

}
break;

case 41:
{

value->insert(35);
value->insert(36);
value->insert(42);
value->insert(43);
value->insert(44);
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}
break;

case 42:
{

value->insert(35);
value->insert(36);
value->insert(39);
value->insert(41);
value->insert(45);
value->insert(43);
value->insert(44);
value->insert(47);

}
break;

case 43:
{

value->insert(41);
value->insert(42);
value->insert(44);

}
break;

case 44:
{

value->insert(41);
value->insert(42);
value->insert(45);
value->insert(43);
value->insert(47);

}
break;

case 45:
{

value->insert(36);
value->insert(39);
value->insert(40);
value->insert(42);
value->insert(46);
value->insert(44);
value->insert(47);
value->insert(48);

}
break;

case 46:
{

value->insert(39);
value->insert(40);
value->insert(51);
value->insert(45);
value->insert(57);
value->insert(47);
value->insert(48);
value->insert(59);

}
break;

case 47:
{
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value->insert(42);
value->insert(45);
value->insert(46);
value->insert(44);
value->insert(48);

}
break;

case 48:
{

value->insert(45);
value->insert(46);
value->insert(57);
value->insert(47);
value->insert(59);

}
break;

case 49:
{

value->insert(16);
value->insert(27);
value->insert(28);
value->insert(38);
value->insert(50);
value->insert(40);
value->insert(51);
value->insert(52);

}
break;

case 50:
{

value->insert(27);
value->insert(28);
value->insert(31);
value->insert(49);
value->insert(53);
value->insert(51);
value->insert(52);
value->insert(55);

}
break;

case 51:
{

value->insert(38);
value->insert(49);
value->insert(50);
value->insert(40);
value->insert(52);
value->insert(46);
value->insert(57);
value->insert(58);

}
break;

case 52:
{

value->insert(49);
value->insert(50);
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value->insert(53);
value->insert(51);
value->insert(55);
value->insert(57);
value->insert(58);
value->insert(61);

}
break;

case 53:
{

value->insert(28);
value->insert(31);
value->insert(32);
value->insert(50);
value->insert(54);
value->insert(52);
value->insert(55);
value->insert(56);

}
break;

case 54:
{

value->insert(31);
value->insert(32);
value->insert(53);
value->insert(55);
value->insert(56);

}
break;

case 55:
{

value->insert(50);
value->insert(53);
value->insert(54);
value->insert(52);
value->insert(56);
value->insert(58);
value->insert(61);
value->insert(62);

}
break;

case 56:
{

value->insert(53);
value->insert(54);
value->insert(55);
value->insert(61);
value->insert(62);

}
break;

case 57:
{

value->insert(40);
value->insert(51);
value->insert(52);
value->insert(46);
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value->insert(58);
value->insert(48);
value->insert(59);
value->insert(60);

}
break;

case 58:
{

value->insert(51);
value->insert(52);
value->insert(55);
value->insert(57);
value->insert(61);
value->insert(59);
value->insert(60);
value->insert(63);

}
break;

case 59:
{

value->insert(46);
value->insert(57);
value->insert(58);
value->insert(48);
value->insert(60);

}
break;

case 60:
{

value->insert(57);
value->insert(58);
value->insert(61);
value->insert(59);
value->insert(63);

}
break;

case 61:
{

value->insert(52);
value->insert(55);
value->insert(56);
value->insert(58);
value->insert(62);
value->insert(60);
value->insert(63);
value->insert(64);

}
break;

case 62:
{

value->insert(55);
value->insert(56);
value->insert(61);
value->insert(63);
value->insert(64);

}
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break;
case 63:

{
value->insert(58);
value->insert(61);
value->insert(62);
value->insert(60);
value->insert(64);

}
break;

case 64:
{

value->insert(61);
value->insert(62);
value->insert(63);

}
break;

}

// make sure that values do not exceed
// the number of lattice
Filter(*value);

restrictors_.insert(RESTRICTTORMAP::value_type(size, value));
return *value;

}
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#if !defined(COMMAND_LINE_INTERPRETER__HH)
#define COMMAND_LINE_INTERPRETER__HH

#include <string>

class CommandLineInterpreter
{

public:
CommandLineInterpreter() :
  lattice_(4), points_(10), sampleSize_(100), outputFileName_("out.log") {}
void Parse(int argc, char** argv);

int NoLatticePoints() { return lattice_; }
int NoPoints() { return points_; }
int SampleSize() { return sampleSize_; }
std::string& OutputFileName() { return outputFileName_; }
std::string& PointsMatrixFile() { return pointsMatrixFile_; }

private:
int lattice_;
int points_;
int sampleSize_;
std::string outputFileName_;
std::string pointsMatrixFile_;

};

#endif
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 #if !defined(MANSAH__CONST_KNUTSTRRAND_GEN__HH)
#define MANSAH__CONST_KNUTSTRRAND_GEN__HH

#include <string>
#include "RandGenImpl.h"
#include"RandomGenerator.h"

class ConstraintKnutStrRandomGenerator : public RandomGenerator<std::string>
{
public:

explicit ConstraintKnutStrRandomGenerator(RandGenImpl& randGen)
: RandomGenerator<std::string>(randGen) { }

void generate(std::vector<std::string>& ranVec, int howMany, int size,
   int lowerValue, int upperValue);

};

#endif // ConstraintKnutStrRandomGenerator
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#if !defined(MATRIX_CALCULATOR__HH)
#define MATRIX_CALCULATOR__HH

typedef std:vector<int> IntVector;
typedef std::vector<IntVector> IntMatrix;

class DistanceMatrixCalculaor
{
public:

IntMatrix& CalculateODDistMatrix(int size)
IntMatrix& CalculateODDistMatrix(int size);

private:
IntMatrix odMatrix_;
IntMatrix ndMatrix_;

};

#endif
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#if !defined (KNUT_INT_RAND_GEN__H)
#define KNUT_INT_RAND_GEN__H

#include <string>
#include "RandGenImpl.h"
#include"RandomGenerator.h"

class KnutIntRandomGenerator : public RandomGenerator<int>
{
public:

explicit KnutIntRandomGenerator(RandGenImpl& randGen)
: RandomGenerator<int>(randGen) { }

void generate(std::vector<int>& ranVec, int howMany, int size,
   int lowerValue, int upperValue);

};

#endif 

#if !defined(MANSAH__KNUT_RAND_GEN__HH)
#define MANSAH__KNUT_RAND_GEN__HH

#include <string>
#include"RandGenImpl.h"

class KnutRandomGenerator : public RandGenImpl
{
public:

KnutRandomGenerator(long seed) : RandGenImpl(seed) { }
float ran() { return RandGenImpl::ran(); }

};

#endif
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#if !defined(MANSAH__KNUTSTRRAND_GEN__HH)
#define MANSAH__KNUTSTRRAND_GEN__HH

#include <string>
#include "RandGenImpl.h"
#include"RandomGenerator.h"

class KnutStrRandomGenerator : public RandomGenerator<std::string>
{
public:

explicit KnutStrRandomGenerator(RandGenImpl& randGen)
: RandomGenerator<std::string>(randGen) { }

void generate(std::vector<std::string>& ranVec, int howMany, int size,
   int lowerValue, int upperValue);

};

#endif

#if !defined (LOCAL_SEARCH_MODELER__H)
#define LOCAL_SEARCH_MODELER__H

class LocalSearchModeler
{
public :

LocalSearchModeler() { }
virtual ~LocalSearchModeler() { }
void Model();

protected:
virtual void GenerateInitialSolution() = 0;
virtual void CalculateObjectiveValue() = 0;
virtual void PerformLocalSearch() = 0;

private:
LocalSearchModeler(LocalSearchModeler& other); // not defined to prevent copying
LocalSearchModeler& operator=(LocalSearchModeler& other); // not defined to  assignment

};

#endif
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#if !defined (LOCAL_SEARCH_MODELER__H)
#define LOCAL_SEARCH_MODELER__H

class LocalSearchModeler
{
public :

LocalSearchModeler() { }
virtual ~LocalSearchModeler() { }
void Model();

protected:
virtual void GenerateInitialSolution() = 0;
virtual void CalculateObjectiveValue() = 0;
virtual void PerformLocalSearch() = 0;

private:
LocalSearchModeler(LocalSearchModeler& other); // not defined to prevent copying
LocalSearchModeler& operator=(LocalSearchModeler& other); // not defined to  assignment

};

#endif

#if !defined(MATRIX__H)
#define MATRIX__H

#include "Utility.h"

template <typename T>
class Matrix
{
public:

Matrix() { }
virtual ~Matrix() { }

virtual int columns() = 0;
virtual int rows() = 0;
virtual T& GetMatrix() = 0;

};

#endif
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#if !defined(MODEL_FIVE__H)
#define MODEL_FIVE__H

#include "LocalSearchModeler.h"
#include "Matrix.h"
#include <vector>
#include <cassert>

#include "ModelOne.h"
#include "RestrictionsAllocator.h"

template <typename T1, typename T2, typename ObjectCalc>
class ModelFive : public LocalSearchModeler, private ObjectCalc
{

typedef std::string MOD5STR;

public:
ModelFive

(
 T1& ranGen, Matrix<T2>& odMat, const char* outFile = "out.log", 

int lattice = 4, int points = 10, 
int sample = 100, const char* inMatrixFile = 0

) : 
randomGenerator_(ranGen), mPointSize_(points), nLatticeSize_(lattice), 

sample_(sample), odMat_(odMat), outPutFile_(outFile ? outFile : 
"out.log"),

matrixFile_(inMatrixFile ? inMatrixFile : "") 
{ }

~ModelFive() { }

private:

T1& randomGenerator_;
int mPointSize_;
int nLatticeSize_;
int sample_;
std::string outPutFile_;
std::string matrixFile_;
StrVec solutionVec_;
Matrix<T2>& odMat_;

// from LocalSearchModeler
void GenerateInitialSolution();
void CalculateObjectiveValue();
void PerformLocalSearch();

void RecreateIntString(MOD5STR& str, IntVec& intVec);
void ExtractIntegersFromString(IntVec& intVec, const MOD5STR& str);

void printResult(int mode = std::ios::out, char* msg = 0)
{

printContainerResult(solutionVec_, mode , msg);
}
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}; // MODEL_FIVE__H

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::GenerateInitialSolution()
{

// generating the initial solution using model one
RecipeRandGenImpl gRanGen(-1L);
ConstraintKnutStrRandomGenerator gKnutRanGen(gRanGen);
ODMatrixGen odMatGen(matrixFile_.c_str()); 
ModelOne<ConstraintKnutStrRandomGenerator, IntMatrix, ObjValueCalculator> 

modelOne(gKnutRanGen, odMatGen, outPutFile_.c_str(), 
nLatticeSize_, mPointSize_, sample_, matrixFile_.c_str());

modelOne.Model();
StrVec& initSol = modelOne.GetSolution();

// now we have the initial solution from model one we have to proceed to do the rest
solutionVec_.swap(initSol);

} /// GenerateInitialSolution

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::CalculateObjectiveValue()
{
 // nothing to be done here
} // CalculateObjectiveValue

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::PerformLocalSearch()
{

NDMatrixGen ndMat;
ndMat.GetMatrix(nLatticeSize_);
IntVec strElemAsIntVec;
RestrictionsAllocator resAlloc(nLatticeSize_);

for(int i = 0; i < solutionVec_.size(); ++i)
{

ExtractIntegersFromString(strElemAsIntVec, solutionVec_[i]);
for(int j = 1; j < strElemAsIntVec.size(); ++j)
{

LNGINTPAIR objValuepair = CalculatObjectiveValue(j, solutionVec_[i], 
odMat_.GetMatrix(), 

ndMat.GetMatrix(), 

resAlloc.FindSet(strElemAsIntVec[j]));

// assign poisition value with result to change string
strElemAsIntVec[j] = objValuepair.second;

}
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RecreateIntString(solutionVec_[i], strElemAsIntVec);
}

// print the local serach result

printResult(std::ios::app, "MODEL V: Results After Local Search");

// calculate new overall objective function.
LNGVEC objValueVec;
for(unsigned int cnt = 0; cnt < solutionVec_.size(); ++cnt)
{

objValueVec.push_back(CalculatObjectiveValue(solutionVec_[cnt],
odMat_.GetMatrix(), ndMat.GetMatrix()));

}

printContainerResult(objValueVec, std::ios::app, "MODEL V: Results of Objective Values");

} // PerformLocalSearch

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::ExtractIntegersFromString(IntVec& intVec, const 
MOD5STR& str)
{

if(!intVec.empty()) intVec.clear();
unsigned int strSize = str.size();
MOD5STR buffer;
bool hadAnElement = false;
bool extractBuffer = false;
for(unsigned int cnt = 0; cnt < strSize; ++cnt)
{

if(str[cnt] != 'x')
{

buffer += str[cnt];
hadAnElement = true;

}
else if(hadAnElement)
{

int value = atoi(buffer.c_str());
intVec.push_back(value);
hadAnElement =  false;
if(!buffer.empty()) buffer = "";

}
} // for

// record the last value
intVec.push_back(atoi(buffer.c_str()));

} // ExtractIntegersFromString

template <typename T1, typename T2, typename ObjectCalc>
void ModelFive<T1, T2, ObjectCalc>::RecreateIntString(MOD5STR& str, IntVec& intVec)
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{
IntVec::iterator iter = intVec.begin();
IntVec::iterator iterEnd = intVec.end();

const char BUFSIZE = 10;
char buffer[BUFSIZE];
MOD5STR newStr;

for(; iter != iterEnd; ++iter)
{

memset(buffer, 0, sizeof(char) * BUFSIZE);
if(*iter < 10)

sprintf(buffer, "xx%d", *iter);
else if(*iter < 100)

sprintf(buffer, "x%d", *iter);
else if(*iter < 1000)

sprintf(buffer, "%d", *iter);
else

throw 1; // error

assert(strlen(buffer) < 4); // we can take only up to 999
if(strlen(buffer) > 3) throw 1;

newStr += buffer;
}

str = newStr;

} // RecreateIntString

#endif
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#if !defined(MODEL_ONE__H)
#define MODEL_ONE__H

#include "Utility.h"
#include "LocalSearchModeler.h"
#include "Matrix.h"
#include <vector>
#include <cassert>
#include "NDMatrixGen.h"

template <typename T1, typename T2, typename ObjectCalc>
class ModelOne : public LocalSearchModeler, private ObjectCalc
{

typedef std::string MOD1STR;

public:
ModelOne

(
   T1& ranGen, Matrix<T2>& odMat, const char* outFile = "out.log", 

int lattice = 4, int points = 10, 
int sample = 100, const char* inMatrixFile = 0

) : 
randomGenerator_(ranGen), mPointSize_(points), nLatticeSize_(lattice), 

sample_(sample), odMat_(odMat), outPutFile_(outFile ? outFile : 
"out.log"),

matrixFile_(inMatrixFile ? inMatrixFile : "") 
{ }

~ModelOne() { }
StrVec& GetSolution() { return solutionVec_; }

private:

T1& randomGenerator_;
int mPointSize_;
int nLatticeSize_;
int sample_;
std::string outPutFile_;
std::string matrixFile_;
StrVec solutionVec_;
Matrix<T2>& odMat_;

// for objective value
DoubleVec objectiveVector_;

void GenerateInitialSolution();
void CalculateObjectiveValue();
void PerformLocalSearch();

void printResult(int mode = std::ios::out, char* msg = 0)
{

printContainerResult(solutionVec_, mode , msg);
}

void RecreateIntString(MOD1STR& str, IntVec& intVec);
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void ExtractIntegersFromString(IntVec& intVec, const MOD1STR& str);

};

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::GenerateInitialSolution()
{

randomGenerator_.generate(solutionVec_, 100, mPointSize_, 1, nLatticeSize_);

char buffer[512];
sprintf(buffer, "MODEL I: Results Initial Solution;\n\t # lattice points = %d"

"\t# of points = %d\tSample size = %d", nLatticeSize_, mPointSize_, sample_);
printResult(std::ios::out, buffer);

// printResult(std::ios::out, "MODEL I: Initial Solution");
}

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::CalculateObjectiveValue()
{

/*
if(!objectiveVector_.empty()) objectiveVector_.clear();
char[4] buffer;

StrVec::iterator iter = solutionVec_::begin();
StrVec::iterator iterEnd = solutionVec_::end();
std::string::iterator strIter;
std::string::iterator strIterEnd;

// extract values form string
for(; iter != iterEnd; ++iter)
{

std::vector<int> latticeValues;
char* ptr = (*iter)[0];
for(; ptr != 0; ptr + 3) // 3 = # representing a position
{

memset(buffer, 0, 4 * sizeof(char));
strncpy(buffer, ptr, 3);
std::string digit;
for( int i = 0; buffer[i] != 0; ++i)
{

if(isdigit(buffer[i])
{

digit += buffer[i];
}

} // for

if(!digit.empty()) 
{

latticeValues.push_back(atoi(digit.c_str()));
}

}
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assert(latticeValues.size() == mPointSize_); // check point 

// now calculate the objective value
for(int j = 0; j < mPointSize_; ++j)
{

}
} // for

/*
///////////////////////////////
for(int i = 1; i < mPointSize_; ++i)
{

for (int j = i + 1; j < mPointSize_; ++j)
{

int l = j;
int k = i;
double value = od[i,j] - nd[k,l];
value *= value;

}

objectiveVector_.push_back(value);
}

*/

}

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::ExtractIntegersFromString(IntVec& intVec, const 
MOD1STR& str)
{

if(!intVec.empty()) intVec.clear();
unsigned int strSize = str.size();
MOD1STR buffer;
bool hadAnElement = false;
bool extractBuffer = false;
for(unsigned int cnt = 0; cnt < strSize; ++cnt)
{

if(str[cnt] != 'x')
{

buffer += str[cnt];
hadAnElement = true;

}
else if(hadAnElement)
{

int value = atoi(buffer.c_str());
intVec.push_back(value);
hadAnElement =  false;
if(!buffer.empty()) buffer = "";

}
} // for
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// record the last value
intVec.push_back(atoi(buffer.c_str()));

} // ExtractIntegersFromString

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::RecreateIntString(MOD1STR& str, IntVec& intVec)
{

IntVec::iterator iter = intVec.begin();
IntVec::iterator iterEnd = intVec.end();

const char BUFSIZE = 10;
char buffer[BUFSIZE];
MOD1STR newStr;

for(; iter != iterEnd; ++iter)
{

memset(buffer, 0, sizeof(char) * BUFSIZE);
if(*iter < 10)

sprintf(buffer, "xx%d", *iter);
else if(*iter < 100)

sprintf(buffer, "x%d", *iter);
else if(*iter < 1000)

sprintf(buffer, "%d", *iter);
else

throw 1; // error

assert(strlen(buffer) < 4); // we can take only up to 999
if(strlen(buffer) > 3) throw 1;

newStr += buffer;
}

str = newStr;

} // RecreateIntString

template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::PerformLocalSearch()
{

NDMatrixGen ndMat;
ndMat.GetMatrix(nLatticeSize_);
IntVec strElemAsIntVec;

for(int i = 0; i < solutionVec_.size(); ++i)
{

ExtractIntegersFromString(strElemAsIntVec, solutionVec_[i]);
for(int j = 1; j < strElemAsIntVec.size(); ++j)
{

LNGINTPAIR objValuepair = CalculatObjectiveValue(j, solutionVec_[i], 
odMat_.GetMatrix(), 

ndMat.GetMatrix() );
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// assign poisition value with result to change string
strElemAsIntVec[j] = objValuepair.second;

}

RecreateIntString(solutionVec_[i], strElemAsIntVec);
}

// print the local serach result
char buffer[512];
sprintf(buffer, "MODEL I: Results After Local Search;\n\t # lattice points = %d"

"\t# of points = %d\tSample size = %d", nLatticeSize_, mPointSize_, sample_);
printResult(std::ios::app, buffer);

// printResult(std::ios::app, "MODEL I: Results After Local Search");

// calculate new overall objective function.
LNGVEC objValueVec;
for(unsigned int cnt = 0; cnt < solutionVec_.size(); ++cnt)
{

objValueVec.push_back(CalculatObjectiveValue(solutionVec_[cnt],
odMat_.GetMatrix(), ndMat.GetMatrix()));

}

printContainerResult(objValueVec, std::ios::app, "MODEL I: Results of Objective Values");

}

/*
template <typename T1, typename T2, typename ObjectCalc>
void ModelOne<T1, T2, ObjectCalc>::printResult(int mode, char* msg)
{

std::ofstream outStream("out.log", mode);

if(msg)
outStream << msg << std::endl;

StrVec::iterator iter = solutionVec_.begin();
    StrVec::iterator iterEnd = solutionVec_.end();

for(int i = 1; iter != iterEnd; ++iter, ++i)
{

outStream << (*iter) << " ";
if(i%5 == 0) outStream << std::endl;

}
outStream << std::endl; 
outStream << std::endl;

}
*/
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#endif

#if !defined(ND_MATRIX_GEN__H)
#define ND_MATRIX_GEN__H

#include "matrix.h"
#include <map>

class NDMatrixGen : public Matrix<IntMatrix>
{
public:

typedef std::pair<int*, int*> IntPointerPair;
typedef std::map<int, IntPointerPair> IntPointerPairMap;

public:
NDMatrixGen();
~NDMatrixGen() { }

int columns() { return ndMatrix_.empty() ? 0 : ndMatrix_[0].size(); }
int rows() { return ndMatrix_.size(); }
IntMatrix& GetMatrix() { return ndMatrix_; }
IntMatrix& GetMatrix(int size) { Generate(size); return ndMatrix_; }

private:

int type_;
IntPointerPairMap matrixContainer_;
IntMatrix ndMatrix_;

void Generate(int size);

};

#endif
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#if !defined(MANSAH__OBJ_VALUE_CALC__HH)
#define MANSAH__OBJ_VALUE_CALC__HH

#include "Utility.h"
#include <string>
#include <vector>
#include <set>
#include "Matrix.h"

class ObjValueCalculator
{

typedef std::string OBJVString;
typedef std::vector<int> OBJIntVec;
typedef std::vector<LNGINTPAIR> LNINTPAIRVEC;

public:
LNGINTPAIR CalculatObjectiveValue

(
unsigned int pos,
const OBJVString& str, 
IntMatrix& odMat,
IntMatrix& ndMat

);

LNGINTPAIR CalculatObjectiveValue
(

unsigned int pos,
const OBJVString& str, 
IntMatrix& odMat,
IntMatrix& ndMat,
INTSET& relLPts

);

long CalculatObjectiveValue
(

const OBJVString& str, 
IntMatrix& odMat,
IntMatrix& ndMat

);

private:
void ExtractValues(const OBJVString& inStr, OBJIntVec& outVec);

void CalculatObjectiveValue
(

unsigned int pos,
const OBJVString& str, 
IntMatrix& odMat,
IntMatrix& ndMat,
LNINTPAIRVEC& objectiveFunctionList

);



206

};

#endif

#if !defined(OD_MATRIX_GEN__H)
#define OD_MATRIX_GEN__H

#include "matrix.h"
#include <string>

class ODMatrixGen : public Matrix<IntMatrix>
{
public:

~ODMatrixGen() { }
explicit ODMatrixGen(const char* fileName);
explicit ODMatrixGen(std::string& fileName); 

int columns() { if(!generated_) Generate();
if(!odMatrix_.empty()) { return odMatrix_[0].size();} else return 0; }
int rows() { if(!generated_) Generate(); return odMatrix_.size(); }
IntMatrix& GetMatrix() { return odMatrix_; }

private:
bool generated_;
IntMatrix odMatrix_;
std::string fileName_;
void Generate();
void Generate(bool fromFile);

};

#endif
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#if !defined(MANSAH__RAND_GEN__IMP__HH)
#define MANSAH__RAND_GEN__IMP__HH

#include <string>
#include <ctime>

class RandGenImpl
{
public:

explicit RandGenImpl(long idum) : idum_(idum) { } // use -ve value to initialize
RandGenImpl() { idum_ = time(0); idum_ = -idum_;} // for true random
virtual float ran() = 0 { return ran(&idum_); }
virtual ~RandGenImpl() { }

private :
long idum_;
float RandGenImpl::ran(long *idum);

};

#endif

#if !defined(MANSAH__RAND_GEN__HH)
#define MANSAH__RAND_GEN__HH

#include <vector>

class RandGenImpl;
template < class T>
class RandomGenerator
{
public:

virtual void generate( std::vector<T>& ranVec, int howMany, int size, 
int lowerValue, int upperValue ) = 0;

RandomGenerator(RandGenImpl& randGen) : randGen_(randGen) { }
virtual ~RandomGenerator() { }

protected:
float ran() { return randGen_.ran(); }

private:
RandGenImpl& randGen_; 

};

#endif
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#if !defined(MANSAH__RECIPE_RAND_GEN__IMP__HH)
#define MANSAH__RECIPE_RAND_GEN__IMP__HH

#include "RandGenImpl.h"

class RecipeRandGenImpl : public RandGenImpl
{

public:
explicit RecipeRandGenImpl(long idum) : RandGenImpl(idum) { }
RecipeRandGenImpl() { }
float ran() { return RandGenImpl::ran(); }

};

#endif

#if !defined(MANSAH_RESTICTIONS_ALLOCATOR__HH)
#define MANSAH_RESTICTIONS_ALLOCATOR__HH

#include "ObjectiveValueCalculator.h"
#include <map>

class RestrictionsAllocator 
{

typedef std::map<int, INTSET*, std::less<int> > RESTRICTTORMAP;

public:
explicit RestrictionsAllocator(int maxLatticeValue) : maxLatticeValue_(maxLatticeValue) { 

}
RestrictionsAllocator() : maxLatticeValue_(4) { }
~RestrictionsAllocator();

INTSET& FindSet(int size);

private:
int maxLatticeValue_;
RESTRICTTORMAP restrictors_;

INTSET& Allocate(int size);
void Filter(INTSET& object);

}; // MANSAH_RESTICTIONS_ALLOCATOR__HH

#endif
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#if !defined(UTILITY__MANSA__HH)
#define UTILITY__MANSA__HH
#include <vector>
#include <set>
#include <fstream>

typedef std::vector<int> IntVec;
typedef std::vector<IntVec> IntMatrix;

typedef std::vector<std::string> StrVec;
typedef std::vector<double> DoubleVec;

typedef std::vector<double> DBLVEC;
typedef std::pair<long, int> LNGINTPAIR;
typedef std::vector<long> LNGVEC;
typedef std::set<int, std::less<int> > INTSET;

template <class T>
void printContainerResult(T& list, int mode = std::ios::out, char* msg = 0)
{

std::ofstream outStream("out.log", mode);

if(msg)
outStream << msg << std::endl;

T::iterator iter = list.begin();
T::iterator iterEnd = list.end();
for(int i = 1; iter != iterEnd; ++iter, ++i)
{

outStream << (*iter) << " ";
if(i%5 == 0) outStream << std::endl;

}
outStream << std::endl; 
outStream << std::endl;

} // printContainerResult

#endif
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Appendix B

Source code of IRNS

Model timer ("easy.mod"); // calculates running time

timer.solve();

float+ begintime := timer.getTime();

data "latticepoints256.dat"; // file containing latticepoints 

data "SM4-1504-5.dat"; // file containing original points

enum points ... ; // original points

int+ xcoorm[points] := ... ; // x-coordinates of original points
int+ ycoorm[points] := ... ; // y-coordinates of original points
int+ zcoorm[points] := ... ;

float+ od[i in points, j in points] := sqrt((xcoorm[i] - xcoorm[j])*(xcoorm[i] - xcoorm[j]) + (ycoorm[i] 
- ycoorm[j])*(ycoorm[i] - ycoorm[j]) + (zcoorm[i] - zcoorm[j])*(zcoorm[i] - zcoorm[j]));
// distance matrix for original points

enum latticepoints ... ; // latticepoints

int+ xcoorn[latticepoints] := ... ; // y-coordinates of latticepoints
int+ ycoorn[latticepoints] := ... ; // y-coordinates of latticepoints

setof(latticepoints) N1 := ... ; // subsets of latticepoints used at different steps of the model 

setof(latticepoints) N21 := ... ;
setof(latticepoints) N22 := ... ;  
setof(latticepoints) N23 := ... ;  
setof(latticepoints) N24 := ... ;  

setof(latticepoints) N31 := ... ;  
setof(latticepoints) N32 := ... ;  
setof(latticepoints) N33 := ... ;  
setof(latticepoints) N34 := ... ;  
setof(latticepoints) N35 := ... ;  
setof(latticepoints) N36 := ... ;  
setof(latticepoints) N37 := ... ;  
setof(latticepoints) N38 := ... ;  
setof(latticepoints) N39 := ... ;  
setof(latticepoints) N310 := ... ;  
setof(latticepoints) N311 := ... ;  
setof(latticepoints) N312 := ... ;  
setof(latticepoints) N313 := ... ;  
setof(latticepoints) N314 := ... ;  
setof(latticepoints) N315 := ... ;  
setof(latticepoints) N316 := ... ;
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setof(latticepoints) N41 := ... ;  
setof(latticepoints) N42 := ... ;  
setof(latticepoints) N43 := ... ;  
setof(latticepoints) N44 := ... ;  
setof(latticepoints) N45 := ... ;  
setof(latticepoints) N46 := ... ;  
setof(latticepoints) N47 := ... ;  
setof(latticepoints) N48 := ... ;  
setof(latticepoints) N49 := ... ;  
setof(latticepoints) N410 := ... ;  
setof(latticepoints) N411 := ... ;  
setof(latticepoints) N412 := ... ;  
setof(latticepoints) N413 := ... ;  
setof(latticepoints) N414 := ... ;  
setof(latticepoints) N415 := ... ;  
setof(latticepoints) N416 := ... ;
setof(latticepoints) N417 := ... ;  
setof(latticepoints) N418 := ... ;  
setof(latticepoints) N419 := ... ;  
setof(latticepoints) N420 := ... ;  
setof(latticepoints) N421 := ... ;  
setof(latticepoints) N422 := ... ;  
setof(latticepoints) N423 := ... ;  
setof(latticepoints) N424 := ... ;  
setof(latticepoints) N425 := ... ;  
setof(latticepoints) N426 := ... ;  
setof(latticepoints) N427 := ... ;  
setof(latticepoints) N428 := ... ;  
setof(latticepoints) N429 := ... ;  
setof(latticepoints) N430 := ... ;  
setof(latticepoints) N431 := ... ;  
setof(latticepoints) N432 := ... ;
setof(latticepoints) N433 := ... ;  
setof(latticepoints) N434 := ... ;  
setof(latticepoints) N435 := ... ;  
setof(latticepoints) N436 := ... ;  
setof(latticepoints) N437 := ... ;  
setof(latticepoints) N438 := ... ;  
setof(latticepoints) N439 := ... ;  
setof(latticepoints) N440 := ... ;  
setof(latticepoints) N441 := ... ;  
setof(latticepoints) N442 := ... ; 
setof(latticepoints) N443 := ... ;  
setof(latticepoints) N444 := ... ;  
setof(latticepoints) N445 := ... ;  
setof(latticepoints) N446 := ... ;  
setof(latticepoints) N447 := ... ;  
setof(latticepoints) N448 := ... ;
setof(latticepoints) N449 := ... ;
setof(latticepoints) N450 := ... ;  
setof(latticepoints) N451 := ... ;  
setof(latticepoints) N452 := ... ;  
setof(latticepoints) N453 := ... ;  
setof(latticepoints) N454 := ... ;  
setof(latticepoints) N455 := ... ;  
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setof(latticepoints) N456 := ... ;  
setof(latticepoints) N457 := ... ;  
setof(latticepoints) N458 := ... ;  
setof(latticepoints) N459 := ... ;  
setof(latticepoints) N460 := ... ;  
setof(latticepoints) N461 := ... ;  
setof(latticepoints) N462 := ... ;  
setof(latticepoints) N463 := ... ;  
setof(latticepoints) N464 := ... ;

float+ Nd[i in latticepoints, j in latticepoints] := sqrt(1.5*((xcoorn[i] - xcoorn[j])*(xcoorn[i] -
xcoorn[j]) + (ycoorn[i] - ycoorn[j])*(ycoorn[i] - ycoorn[j])));
// distance matrix for latticepoints

latticepoints Assignment[points]; // stores assignment for points 

// The following sets are used to divide the set of points to be assigned into sets of 10

setof(points) Q; // contains the point with the smallest order
setof(points) S; // contains the 10 points to be assigned
setof(points) R; // contains points that are yet to be assigned 
int minimum; // the order of the point with the least order
int counter := 0; // counter for deciding which model to use in step 1

float+ OB := 0; // objective value

float+ OB1 := 0; // objective value after step 1
float+ OB2 := 0; // step 1 stops when OB1 = OB2

setof(points) Opoints := {k | k in points}; // set of all original points 
setof(points) M :=  { i | i in points}; // set of points to be assigned at a particular time
setof(latticepoints) N := {j | j in N1}; // latticepoints to be used at at a particular time

setof(points) Mb; // points kept constant in step 1
setof(latticepoints) Na; // subset of N to which points can be assigned 
setof(points) Ma; // points kept constant in all other steps

setof(latticepoints) NN[i in points] := {}; // neighboring lattice points for point i 

forall(i in points)

   Assignment[i] := latpt_one_one;

Model mathprogram1 ("step31.mod") editMode; // model for initial run of step 1

Model mathprogram1a ("step31a.mod") editMode; // model for all other runs of step 1

//step 1

Mb := {};

R := {i| i in points};

repeat {
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   S := {};

   repeat {

      minimum := min (i in R) ord(i);

      Q := {i| i in R : ord(i) = minimum};

      S := S union Q;

      R := R diff Q;

   } until card(S) >= 10 \/ card(R) = 0;

   counter := counter + 1;

   M := {i| i in S};

   if counter = 1 then {

      mathprogram1.solve();  

//    cout << "objective value after step 1' is : " << mathprogram1.objectiveValue() << endl;

//    cout << " Time for step 1 is : " << mathprogram1.getTime() << endl;

   forall(j in N){
      forall (i in M : mathprogram1.X[i,j] = 1)
         Assignment[i] := j;
   }

      mathprogram1.reset(); 
   }

   if counter > 1 then {

      mathprogram1a.solve();  

//    cout << "objective value after step 1'' is : " << mathprogram1a.objectiveValue() << endl;

//    cout << " Time for step 1 is : " << mathprogram1a.getTime() << endl;

   forall(j in N){
      forall (i in M : mathprogram1a.X[i,j] = 1)
         Assignment[i] := j;
   }
     mathprogram1a.reset(); 
   }

   Mb :=  Mb union M;  

} until card(R) = 0;

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);
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cout << "The objective function after step 1 is: " << OB2 << endl;

//step 1 is repeated until solution converges

repeat {

OB1 := OB2;

OB2 := 0;

counter := 0;

R := {i| i in points};

repeat {

   S := {};

   repeat {

      minimum := min (i in R) ord(i);

      Q := {i| i in R : ord(i) = minimum};

      S := S union Q;

      R := R diff Q;

   } until card(S) >= 10 \/ card(R) = 0;

   counter := counter + 1;

   M := {i| i in S};

   Mb := Opoints diff M;

   mathprogram1a.solve();

   forall(j in N){
      forall (i in M : mathprogram1a.X[i,j] = 1)
         Assignment[i] := j;
   }

   mathprogram1a.reset(); 

} until card(R) = 0;

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);

} until OB1 = OB2;
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OB := OB1;

cout << "The objective function after step 1 is: " << OB << endl;

Model mathprogram2 ("step32a.mod") editMode; 

// step 2

M := { i |i in points : Assignment[i] = latpt_one_one};
N := {j | j in N21};
Na := {k | k in N: ( 4 <= ord(k) < 8)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

       R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 2a is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 2a is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_two_one};
N := {j | j in N22};
Na := {k | k in N: ( 8 <= ord(k) < 12)};
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Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 2b is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 2b is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_three_one};
N := {j | j in N23};
Na := {k | k in N: (12 <= ord(k) < 16)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {
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         minimum := min (i in R) ord(i);

 Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 2c is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 2c is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_four_one};
N := {j | j in N24};
Na := {k | k in N: (16 <= ord(k) < 20)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;
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      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)

  Assignment[i] := j;        
      }

//    cout << "objective value after step 2d is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 2d is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);

cout << "The objective function after step 2 is: " << OB2 << endl;

Model mathprogram3 ("step32b.mod") editMode;

// local search

repeat {

   OB1 := OB2;

   OB2 := 0; 

   M := { i | i in points : Assignment[i] = latpt_one_two \/ Assignment[i] = latpt_two_two \/ 
Assignment[i] = latpt_three_two \/Assignment[i] = latpt_four_two};
   Ma := Opoints diff M;
   N := {j | j in N24};
   Na := {};   
   R := { i | i in M};

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
8) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 8))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 8) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 8))};

      forall (i in M)
         Na := Na union NN[i];

      repeat {
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       S := {};

         repeat {

            minimum := min (i in R) ord(i);

            Q := {i| i in R : ord(i) = minimum};

            S := S union Q;

            R := R diff Q;

         } until card(S) >= 20 \/ card(R) = 0;

         M := {i| i in S};

         Ma := Opoints diff M; 

         mathprogram3.solve();

         forall(j in Na){
            forall (i in M : mathprogram3.X[i,j] = 1)
               Assignment[i] := j;

    }

         mathprogram3.reset();

      } until card(R) = 0; 
   }   

   M := { i | i in points : Assignment[i] = latpt_five_two \/ Assignment[i] = latpt_six_two \/ 
Assignment[i] = latpt_seven_two \/Assignment[i] = latpt_eight_two};
   Ma := Opoints diff M;
   N := {j | j in N24};
   Na := {};
   R := { i | i in M};

   if card (M) >= 1 then {

      forall (i in M)

         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
8) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 8))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 8) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 8))};

      forall (i in M)
         Na := Na union NN[i]; 

repeat {

         S := {};

         repeat {
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            minimum := min (i in R) ord(i);

            Q := {i| i in R : ord(i) = minimum};

            S := S union Q;

            R := R diff Q;

         } until card(S) >= 20 \/ card(R) = 0;

         M := {i| i in S};

         Ma := Opoints diff M;

         mathprogram3.solve();

         forall(j in Na){
            forall (i in M : mathprogram3.X[i,j] = 1)
               Assignment[i] := j;
         }

         mathprogram3.reset(); 
      } until card(R) = 0;
   }   

   M := { i | i in points : Assignment[i] = latpt_nine_two \/ Assignment[i] = latpt_ten_two \/ 
Assignment[i] = latpt_eleven_two \/Assignment[i] = latpt_twelve_two};
   Ma := Opoints diff M;
   N := {j | j in N24};
   Na := {};
   R := { i | i in M};

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
8) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 8))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 8) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 8))};

      forall (i in M)
         Na := Na union NN[i];

      repeat {

         S := {};

         repeat {

            minimum := min (i in R) ord(i);

            Q := {i| i in R : ord(i) = minimum};

            S := S union Q;
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            R := R diff Q;

         } until card(S) >= 20 \/ card(R) = 0;

         M := {i| i in S};

         Ma := Opoints diff M; 

         mathprogram3.solve();

         forall(j in Na){
            forall (i in M : mathprogram3.X[i,j] = 1)

        Assignment[i] := j;
         }

         mathprogram3.reset();
      } until card(R) = 0; 
   }   

   M := { i | i in points : Assignment[i] = latpt_thirteen_two \/ Assignment[i] = latpt_fourteen_two \/ 
Assignment[i] = latpt_fifteen_two \/Assignment[i] = latpt_sixteen_two};
   Ma := Opoints diff M;
   N := {j | j in N24};
   Na := {};
   R := { i | i in M};

   if card(M) >= 1 then {

   forall (i in M)
      NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] - 8) 
\/ (xcoorn[j] =  xcoorn[Assignment[i]] + 8))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 8) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 8))};

   forall (i in M)
      Na := Na union NN[i]; 

   repeat {

         S := {};

         repeat {

            minimum := min (i in R) ord(i);

            Q := {i| i in R : ord(i) = minimum};

            S := S union Q;

            R := R diff Q;

         } until card(S) >= 20 \/ card(R) = 0;

         M := {i| i in S};
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         Ma := Opoints diff M;

         mathprogram3.solve();

         forall(j in Na){
            forall (i in M : mathprogram3.X[i,j] = 1)

         Assignment[i] := j;
         }

         mathprogram3.reset();
      } until card(R) = 0; 
   }

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);

} until OB1 = OB2;

cout << "The objective function after step 2 is: " << OB2 << endl;

// step 3

M := { i |i in points : Assignment[i] = latpt_one_two};
N := {j | j in N31};
Na := {k | k in N: ( 20 <= ord(k) < 24)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 3a is : " << mathprogram2.objectiveValue() << endl;
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//    cout << " Time for step 3a is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_two_two};
N := {j | j in N32};
Na := {k | k in N: ( 24 <= ord(k) < 28)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3b is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3b is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}
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M := { i |i in points : Assignment[i] = latpt_three_two};
N := {j | j in N33};
Na := {k | k in N: (28 <= ord(k) < 32)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3c is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3c is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_four_two};
N := {j | j in N34};
Na := {k | k in N: (32 <= ord(k) < 36)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {
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   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3d is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3d is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_five_two};
N := {j | j in N35};
Na := {k | k in N: ( 36 <= ord(k) < 40)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;
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      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 3e is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3e is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_six_two};
N := {j | j in N36};
Na := {k | k in N: ( 40 <= ord(k) < 44)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
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            Assignment[i] := j;        
      }

//    cout << "objective value after step 3f is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3f is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_seven_two};
N := {j | j in N37};
Na := {k | k in N: (44 <= ord(k) < 48)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

 S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3g is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3g is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}
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M := { i |i in points : Assignment[i] = latpt_eight_two};
N := {j | j in N38};
Na := {k | k in N: (48 <= ord(k) < 52)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

       Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3h is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3h is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_nine_two};
N := {j | j in N39};
Na := {k | k in N: ( 52 <= ord(k) < 56)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {
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      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 3i is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3i is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_ten_two};
N := {j | j in N310};
Na := {k | k in N: ( 56 <= ord(k) < 60)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

      minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;



230

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3j is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3j is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_eleven_two};
N := {j | j in N311};
Na := {k | k in N: (60 <= ord(k) < 64)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
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            Assignment[i] := j;        
      }

//    cout << "objective value after step 3k is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3k is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twelve_two};
N := {j | j in N312};
Na := {k | k in N: (64 <= ord(k) < 68)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3l is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3l is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}
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M := { i |i in points : Assignment[i] = latpt_thirteen_two};
N := {j | j in N313};
Na := {k | k in N: ( 68 <= ord(k) < 72)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 3m is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3m is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fourteen_two};
N := {j | j in N314};
Na := {k | k in N: ( 72 <= ord(k) < 76)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};
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      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 3n is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3n is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fifteen_two};
N := {j | j in N315};
Na := {k | k in N: (76 <= ord(k) < 80)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;
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      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;      
      }

//    cout << "objective value after step 3o is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3o is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_sixteen_two};
N := {j | j in N316};
Na := {k | k in N: (80 <= ord(k) < 84)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

     Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
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            Assignment[i] := j;        
      }

//    cout << "objective value after step 3p is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 3p is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);

cout << "The objective function after step 3 is: " << OB2 << endl;

// local search

repeat {

   OB1 := OB2;

   OB2 := 0; 

   M := { i | i in points : Assignment[i] = latpt_one_three \/ Assignment[i] = latpt_two_three \/ 
Assignment[i] = latpt_three_three \/ Assignment[i] = latpt_four_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};   

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_five_three \/ Assignment[i] = latpt_six_three \/ 
Assignment[i] = latpt_seven_three \/Assignment[i] = latpt_eight_three};
   Ma := Opoints diff M;
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   N := {j | j in N316};
   Na := {};

   if card (M) >= 1 then {

      forall (i in M)

         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;

  }

      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_nine_three \/ Assignment[i] = latpt_ten_three \/ 
Assignment[i] = latpt_eleven_three \/Assignment[i] = latpt_twelve_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_thirteen_three \/ Assignment[i] = latpt_fourteen_three \/ 
Assignment[i] = latpt_fifteen_three \/ Assignment[i] = latpt_sixteen_three};



237

   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 

   }

   M := { i | i in points : Assignment[i] = latpt_seventeen_three \/ Assignment[i] = latpt_eighteen_three 
\/ Assignment[i] = latpt_nineteen_three \/Assignment[i] = latpt_twenty_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};   

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 

   }   
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   M := { i | i in points : Assignment[i] = latpt_twentyone_three \/ Assignment[i] = 
latpt_twentytwo_three \/ Assignment[i] = latpt_twentythree_three \/Assignment[i] = 
latpt_twentyfour_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card (M) >= 1 then {

      forall (i in M)

         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))

  & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_twentyfive_three \/ Assignment[i] = 
latpt_twentysix_three \/ Assignment[i] = latpt_twentyseven_three \/Assignment[i] = 
latpt_twentyeight_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 
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   }   

   M := { i | i in points : Assignment[i] = latpt_twentynine_three \/ Assignment[i] = latpt_thirty_three \/ 
Assignment[i] = latpt_thirtyone_three \/Assignment[i] = latpt_thirtytwo_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

   forall (i in M)
      NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] - 4) 
\/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

   forall (i in M)
      Na := Na union NN[i]; 

   mathprogram3.solve();

   forall(j in Na){
      forall (i in M : mathprogram3.X[i,j] = 1)
         Assignment[i] := j;
   }

   mathprogram3.reset(); 
   }

   M := { i | i in points : Assignment[i] = latpt_thirtythree_three \/ Assignment[i] = 
latpt_thirtyfour_three \/ Assignment[i] = latpt_thirtyfive_three \/Assignment[i] = 
latpt_thirtysix_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};   

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 
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   }   

   M := { i | i in points : Assignment[i] = latpt_thirtyseven_three \/ Assignment[i] = 
latpt_thirtyeight_three \/ Assignment[i] = latpt_thirtynine_three \/Assignment[i] = latpt_forty_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card (M) >= 1 then {

      forall (i in M)

         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_fortyone_three \/ Assignment[i] = latpt_fortytwo_three \/ 
Assignment[i] = latpt_fortythree_three \/Assignment[i] = latpt_fortyfour_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }
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      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_fortyfive_three \/ Assignment[i] = latpt_fortysix_three \/ 
Assignment[i] = latpt_fortyseven_three \/Assignment[i] = latpt_fortyeight_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

   forall (i in M)
      NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] - 4) 
\/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

   forall (i in M)
      Na := Na union NN[i]; 

   mathprogram3.solve();

   forall(j in Na){
      forall (i in M : mathprogram3.X[i,j] = 1)
         Assignment[i] := j;
   }

   mathprogram3.reset(); 
   }

   M := { i | i in points : Assignment[i] = latpt_fortynine_three \/ Assignment[i] = latpt_fifty_three \/ 
Assignment[i] = latpt_fiftyone_three \/Assignment[i] = latpt_fiftytwo_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};   

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))

                      & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }
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      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_fiftythree_three \/ Assignment[i] = latpt_fiftyfour_three 
\/ Assignment[i] = latpt_fiftyfive_three \/Assignment[i] = latpt_fiftysix_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card (M) >= 1 then {

      forall (i in M)

         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;
      }

      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_fiftyseven_three \/ Assignment[i] = latpt_fiftyeight_three 
\/ Assignment[i] = latpt_fiftynine_three \/Assignment[i] = latpt_sixty_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

      forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
4) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

      forall (i in M)
         Na := Na union NN[i]; 

      mathprogram3.solve();

      forall(j in Na){
         forall (i in M : mathprogram3.X[i,j] = 1)
            Assignment[i] := j;

    }
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      mathprogram3.reset(); 
   }   

   M := { i | i in points : Assignment[i] = latpt_sixtyone_three \/ Assignment[i] = latpt_sixtytwo_three \/ 
Assignment[i] = latpt_sixtythree_three \/Assignment[i] = latpt_sixtyfour_three};
   Ma := Opoints diff M;
   N := {j | j in N316};
   Na := {};

   if card(M) >= 1 then {

   forall (i in M)
      NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] - 4) 
\/ (xcoorn[j] =  xcoorn[Assignment[i]] + 4))

            & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 4) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 4))};

   forall (i in M)
      Na := Na union NN[i]; 

   mathprogram3.solve();

   forall(j in Na){
      forall (i in M : mathprogram3.X[i,j] = 1)
         Assignment[i] := j;
   }

   mathprogram3.reset(); 
   }

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);

} until OB1 = OB2;

cout << "The objective function after step 3 is: " << OB2 << endl;

// step 4

M := { i |i in points : Assignment[i] = latpt_one_three};
N := {j | j in N41};
Na := {k | k in N: ( 84 <= ord(k) < 88)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {
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         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4a is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4a is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_two_three};
N := {j | j in N42};
Na := {k | k in N: ( 88 <= ord(k) < 92)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;
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      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4b is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4b is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_three_three};
N := {j | j in N43};
Na := {k | k in N: (92 <= ord(k) < 96)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }
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//    cout << "objective value after step 4c is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4c is : " << mathprogram2.getTime() << endl;

    mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_four_three};
N := {j | j in N44};
Na := {k | k in N: (96 <= ord(k) < 100)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4d is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4d is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_five_three};
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N := {j | j in N45};
Na := {k | k in N: ( 100 <= ord(k) < 104)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

  Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4e is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4e is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_six_three};
N := {j | j in N46};
Na := {k | k in N: ( 104 <= ord(k) < 108)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {
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         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4f is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4f is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_seven_three};
N := {j | j in N47};
Na := {k | k in N: (108 <= ord(k) < 112)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;
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      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4g is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4g is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_eight_three};
N := {j | j in N48};
Na := {k | k in N: (112 <= ord(k) < 116)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }
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//    cout << "objective value after step 4h is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4h is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_nine_three};
N := {j | j in N49};
Na := {k | k in N: ( 116 <= ord(k) < 120)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

      R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4i is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4i is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_ten_three};
N := {j | j in N410};
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Na := {k | k in N: ( 120 <= ord(k) < 124)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

  repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4j is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4j is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_eleven_three};
N := {j | j in N411};
Na := {k | k in N: (124 <= ord(k) < 128)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {
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         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4k is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4k is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twelve_three};
N := {j | j in N412};
Na := {k | k in N: (128 <= ord(k) < 132)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;
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      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4l is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4l is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirteen_three};
N := {j | j in N413};
Na := {k | k in N: ( 132 <= ord(k) < 136)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4m is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4m is : " << mathprogram2.getTime() << endl;

 forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
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      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fourteen_three};
N := {j | j in N414};
Na := {k | k in N: ( 136 <= ord(k) < 140)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

  Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4n is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4n is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fifteen_three};
N := {j | j in N415};
Na := {k | k in N: (140 <= ord(k) < 144)};
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Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4o is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4o is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_sixteen_three};
N := {j | j in N416};
Na := {k | k in N: (144 <= ord(k) < 148)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

 S := {};

      repeat {
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         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4p is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4p is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_seventeen_three};
N := {j | j in N417};
Na := {k | k in N: ( 148 <= ord(k) < 152)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};
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      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4a1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4a1 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)

    Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_eighteen_three};
N := {j | j in N418};
Na := {k | k in N: ( 152 <= ord(k) < 156)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4b1 is : " << mathprogram2.objectiveValue() << endl;
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//    cout << " Time for step 4b1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_nineteen_three};
N := {j | j in N419};
Na := {k | k in N: (156 <= ord(k) < 160)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4c1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4c1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twenty_three};
N := {j | j in N420};
Na := {k | k in N: (160 <= ord(k) < 164)};
Ma := Opoints diff M;
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R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4d1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4d1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentyone_three};
N := {j | j in N421};
Na := {k | k in N: ( 164 <= ord(k) < 168)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);
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         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4e1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4e1 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentytwo_three};
N := {j | j in N422};
Na := {k | k in N: ( 168 <= ord(k) < 172)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};
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      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4f1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4f1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentythree_three};
N := {j | j in N423};
Na := {k | k in N: (172 <= ord(k) < 176)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4g1 is : " << mathprogram2.objectiveValue() << endl;
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//    cout << " Time for step 4g1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentyfour_three};
N := {j | j in N424};
Na := {k | k in N: (176 <= ord(k) < 180)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4h1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4h1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentyfive_three};
N := {j | j in N425};
Na := {k | k in N: ( 180 <= ord(k) < 184)};
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R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4i1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4i1 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentysix_three};
N := {j | j in N426};
Na := {k | k in N: ( 184 <= ord(k) < 188)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);
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         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

 Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4j1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4j1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentyseven_three};
N := {j | j in N427};
Na := {k | k in N: (188 <= ord(k) < 192)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};
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      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4k1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4k1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentyeight_three};
N := {j | j in N428};
Na := {k | k in N: (192 <= ord(k) < 196)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

  R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4l1 is : " << mathprogram2.objectiveValue() << endl;
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//    cout << " Time for step 4l1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_twentynine_three};
N := {j | j in N429};
Na := {k | k in N: ( 196 <= ord(k) < 200)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4m1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4m1 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
     forall (i in M : mathprogram2.X[i,j] = 1)

            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirty_three};
N := {j | j in N430};
Na := {k | k in N: ( 200 <= ord(k) < 204)};
Ma := Opoints diff M;
R := {i| i in M};
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if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

 forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4n1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4n1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtyone_three};
N := {j | j in N431};
Na := {k | k in N: (204 <= ord(k) < 208)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);
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         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4o1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4o1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtytwo_three};
N := {j | j in N432};
Na := {k | k in N: (208 <= ord(k) < 212)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

  repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

    M := {i| i in S};
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      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4p1 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4p1 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtythree_three};
N := {j | j in N433};
Na := {k | k in N: ( 212 <= ord(k) < 216)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4a2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4a2 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 
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   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtyfour_three};
N := {j | j in N434};
Na := {k | k in N: ( 216 <= ord(k) < 220)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4b2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4b2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtyfive_three};
N := {j | j in N435};
Na := {k | k in N: (220 <= ord(k) < 224)};
Ma := Opoints diff M;
R := {i| i in M};



271

if card(M) >= 1 then {

   repeat {

  S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4c2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4c2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtysix_three};
N := {j | j in N436};
Na := {k | k in N: (224 <= ord(k) < 228)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);
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         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

  mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4d2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4d2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtyseven_three};
N := {j | j in N437};
Na := {k | k in N: ( 228 <= ord(k) < 232)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();
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//    cout << "objective value after step 4e2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4e2 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

 } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtyeight_three};
N := {j | j in N438};
Na := {k | k in N: ( 232 <= ord(k) < 236)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4f2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4f2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
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   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_thirtynine_three};
N := {j | j in N439};
Na := {k | k in N: (236 <= ord(k) < 240)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4g2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4g2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_forty_three};
N := {j | j in N440};
Na := {k | k in N: (240 <= ord(k) < 244)};
Ma := Opoints diff M;

R := {i| i in M};
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if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4h2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4h2 is : " << mathprogram2.getTime() << endl;

     mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortyone_three};
N := {j | j in N441};
Na := {k | k in N: ( 244 <= ord(k) < 248)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};
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         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4i2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4i2 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortytwo_three};
N := {j | j in N442};
Na := {k | k in N: ( 248 <= ord(k) < 252)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();
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      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4j2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4j2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortythree_three};
N := {j | j in N443};
Na := {k | k in N: (252 <= ord(k) < 256)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4k2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4k2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
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   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortyfour_three};
N := {j | j in N444};
Na := {k | k in N: (256 <= ord(k) < 260)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;       
      }

//    cout << "objective value after step 4l2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4l2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortyfive_three};
N := {j | j in N445};
Na := {k | k in N: ( 260 <= ord(k) < 264)};
R := {i| i in M};

if card(M) >= 1 then {
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   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4m2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4m2 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortysix_three};
N := {j | j in N446};
Na := {k | k in N: ( 264 <= ord(k) < 268)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;
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         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4n2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4n2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortyseven_three};
N := {j | j in N447};
Na := {k | k in N: (268 <= ord(k) < 272)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();
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   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4o2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4o2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortyeight_three};
N := {j | j in N448};
Na := {k | k in N: (272 <= ord(k) < 276)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4p2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4p2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
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   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fortynine_three};
N := {j | j in N449};
Na := {k | k in N: ( 276 <= ord(k) < 280)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4a3 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4a3 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;       
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fifty_three};
N := {j | j in N450};
Na := {k | k in N: ( 280 <= ord(k) < 284)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {
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      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4b2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4b2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fiftyone_three};
N := {j | j in N451};
Na := {k | k in N: (284 <= ord(k) < 288)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;
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         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4c2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4c2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fiftytwo_three};
N := {j | j in N452};
Na := {k | k in N: (288 <= ord(k) < 292)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();
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   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4d2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4d2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fiftythree_three};
N := {j | j in N453};
Na := {k | k in N: ( 292 <= ord(k) < 296)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4e2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4e2 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}
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M := { i |i in points : Assignment[i] = latpt_fiftyfour_three};
N := {j | j in N454};
Na := {k | k in N: ( 296 <= ord(k) < 300)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

    M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4f2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4f2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fiftyfive_three};
N := {j | j in N455};
Na := {k | k in N: (300 <= ord(k) < 304)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {
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   S := {};

      repeat {

         minimum := min (i in R) ord(i);

       Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4g2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4g2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fiftysix_three};
N := {j | j in N456};
Na := {k | k in N: (304 <= ord(k) < 308)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;
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         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4h2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4h2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fiftyseven_three};
N := {j | j in N457};
Na := {k | k in N: ( 308 <= ord(k) < 312)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4i2 is : " << mathprogram2.objectiveValue() << endl;
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//    cout << " Time for step 4i2 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_fiftyeight_three};
N := {j | j in N458};
Na := {k | k in N: ( 312 <= ord(k) < 316)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4j2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4j2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 

   } until card(R) = 0;
}
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M := { i |i in points : Assignment[i] = latpt_fiftynine_three};
N := {j | j in N459};
Na := {k | k in N: (316 <= ord(k) < 320)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

  S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4k2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4k2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_sixty_three};
N := {j | j in N460};
Na := {k | k in N: (320 <= ord(k) < 324)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {
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   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4l2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4l2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_sixtyone_three};
N := {j | j in N461};
Na := {k | k in N: ( 324 <= ord(k) < 328)};
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;



292

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

//    cout << "objective value after step 4m2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4m2 is : " << mathprogram2.getTime() << endl;

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

      mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_sixtytwo_three};
N := {j | j in N462};
Na := {k | k in N: ( 328 <= ord(k) < 332)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

      forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
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      }

//    cout << "objective value after step 4n2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4n2 is : " << mathprogram2.getTime() << endl;

    mathprogram2.reset(); 

   } until card(R) = 0;
}

M := { i |i in points : Assignment[i] = latpt_sixtythree_three};
N := {j | j in N463};
Na := {k | k in N: (332 <= ord(k) < 336)};
Ma := Opoints diff M;
R := {i| i in M};

if card(M) >= 1 then {

   repeat {

   S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4o2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4o2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset(); 
   } until card(R) = 0;
}
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M := { i |i in points : Assignment[i] = latpt_sixtyfour_three};
N := {j | j in N464};
Na := {k | k in N: (336 <= ord(k) < 340)};
Ma := Opoints diff M;

R := {i| i in M};

if card(M) >= 1 then {

   repeat {

      S := {};

      repeat {

         minimum := min (i in R) ord(i);

         Q := {i| i in R : ord(i) = minimum};

         S := S union Q;

         R := R diff Q;

      } until card(S) >= 10 \/ card(R) = 0;

      M := {i| i in S};

      Ma := Opoints diff M;

      mathprogram2.solve();

   forall (j in Na) {
         forall (i in M : mathprogram2.X[i,j] = 1)
            Assignment[i] := j;        
      }

//    cout << "objective value after step 4p2 is : " << mathprogram2.objectiveValue() << endl;

//    cout << " Time for step 4p2 is : " << mathprogram2.getTime() << endl;

      mathprogram2.reset();
   } until card(R) = 0;
}

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);

cout << "The objective function after step 4 is: " << OB2 << endl;

// local search

repeat {
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OB1 := OB2;

OB2 := 0;

counter := 0;

R := {i| i in points};

repeat {

   S := {};

   Na := {};

   repeat {

      minimum := min (i in R) ord(i);

      Q := {i| i in R : ord(i) = minimum};

      S := S union Q;

      R := R diff Q;

   } until card(S) >= 10 \/ card(R) = 0;

   M := {i| i in S};

   Ma := Opoints diff M;

   forall (i in M)
         NN[i] := {j|j in N : ((xcoorn[j] = xcoorn[Assignment[i]]) \/ (xcoorn[j] = xcoorn[Assignment[i]] -
2) \/ (xcoorn[j] =  xcoorn[Assignment[i]] + 2))
                        & ((ycoorn[j] = ycoorn[Assignment[i]]) \/ (ycoorn[j] = ycoorn[Assignment[i]] - 2) \/ 
(ycoorn[j] =  ycoorn[Assignment[i]] + 2))};

   forall (i in M)
      Na := Na union NN[i];

//   cout << "M = {";   

//   forall (i in M ) {

//      cout << i << " " ;
//   }

//   cout << "}" << endl;

//   cout << " Na = { ";   

//   forall (j in Na) {

//      cout << j << " " ; 
//   } 



296

//   cout << endl;

   mathprogram3.solve();

//   cout << " Time for step 1 is : " << mathprogram3.getTime() << endl;

   forall(j in Na){
      forall (i in M : mathprogram3.X[i,j] = 1)
         Assignment[i] := j;
   }

   mathprogram3.reset(); 

} until card(R) = 0;

OB2 := sum (ordered i,j in points)
      (od[i,j] - Nd[Assignment[i],Assignment[j]]) * (od[i,j] - Nd[Assignment[i],Assignment[j]]);

} until OB1 = OB2;

cout << "The final objective function is: " << OB2 << endl;

cout <<" The running time is: " << timer.getTime() - begintime << endl;

forall (i in points) 

   cout << sqrt(1.5) * xcoorn[Assignment[i]] << "    " << sqrt(1.5) * ycoorn[Assignment[i]] << endl;

cout << endl;

forall (j in points)

   cout << sqrt(1.5) * xcoorn[Assignment[j]]  << endl;

cout << endl;

forall (k in points)

   cout << sqrt(1.5) * ycoorn[Assignment[k]] << endl;
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