CHOOSING REGULARIZATION PARAMETERS IN ITERATIVE
METHODS FOR ILL-POSED PROBLEMS*
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Abstract. Numerical solution of ill-posed problems is often accomplished by discretization
(projection onto a finite dimensional subspace) followed by regularization. If the discrete problem
has high dimension, though, typically we compute an approximate solution by projection onto an
even smaller dimensional space, via iterative methods based on Krylov subspaces. In this work we
present efficient algorithms that regularize after this second projection rather than before it. We
prove some results on the approximate equivalence of this approach to other forms of regularization
and we present numerical examples.
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1. Introduction. Linear, discrete ill-posed problems of the form

(1) Ar =1
or
(2) min ||Az — b||2, or equivalently, A*Az = A*b

arise, for example, from the discretization of first-kind Fredholm integral equations
and occur in a variety of applications. We shall assume that the full-rank matrix A
is m x n, with m > nin (2) and m = n in (1). In discrete ill-posed problems, A is ill-
conditioned and there is no gap in the singular value spectrum. Typically, the right
hand side b contains noise due to measurement and/or approximation error. This
noise, in combination with the ill-conditioning of A, means that the exact solution of
(1) or (2) has little relationship to the noise-free solution and is worthless. Instead, we
use a regularization method to determine a solution that approximates the noise-free
solution. Regularization methods replace the original operator by a better-conditioned
but related one in order to diminish the effects of noise in the data and produce a
reqularized solution to the original problem. Sometimes this regularized problem is
too large to solve exactly. In that case, we typically compute an approximate solution
by projection onto an even smaller dimensional space, perhaps via iterative methods
based on Krylov subspaces.

The conditioning of the new problem is controlled by one or more regularization
parameters specific to the method. A large regularization parameter yields a new well-
conditioned problem, but its solution may be far from the noise-free solution since
the new operator is a poor approximation to A. A small regularization parameter
generally yields a solution very close to the noise-contaminated exact solution of (1)
or (2), and hence its distance from the noise-free solution also can be large. Thus,
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a key issue in regularization methods is to choose a regularization parameter that
balances the error due to noise with the error due to regularization.

A wise choice of regularization parameter is obviously crucial to obtaining useful
approximate solutions to ill-posed problems. For problems small enough that a rank-
revealing factorization or singular value decomposition of A can be computed, there
are well-studied techniques for computing a good regularization parameter. These
techniques include the Discrepancy Principle [8], generalized cross-validation (GCV)
[9], and the L-curve [15]. For larger problems treated by iterative methods, though,
the parameter choice is much less understood. If regularization i1s applied to the
projected problem that is generated by the iterative method, then there are essentially
two regularization parameters: one for the standard regularization algorithms, such
as Tikhonov or truncated SVD, and one controlling the number of iterations taken.
One subtle issue is that the standard regularization parameter that is correct for the
discretized problem may not be the optimal one for the lower-dimensional problem
actually solved by the iteration, and this observation leads to the research discussed
in this paper. At first glance, there can appear to be a lot of work associated with
the selection of a good regularization parameter, and many algorithms proposed in
the literature are needlessly complicated. But by regularizing after projection by the
iterative method, so that we are regularizing the lower dimensional problem that is
actually being solved, much of this difficulty vanishes.

The purpose of this paper i1s to present parameter selection techniques designed
to reduce the regularization work for iterative methods such as Krylov subspace tech-
niques. QOur paper is organized as follows. In §2, we will give an overview of the
regularization methods we will be considering, and we follow up in §3 by surveying
some methods for choosing the corresponding regularization parameters. In §4, we
show how parameter selection techniques for the original problem can be applied in-
stead to a projected problem obtained from an iterative method, greatly reducing the
cost without much degradation in the solution. We give experimental results in §5
and conclusions and future work in §6.

2. Regularization background. In the following we shall assume that b =
birue + €, where by denotes the unperturbed data vector and e denotes zero-mean
white noise. We will also assume that b;.,. satisfies the discrete Picard condition,;
that is, the spectral coefficients of b;.,. decay faster, on average, than the singular
values.

Under these assumptions, it is easy to see why the exact solution to (1) or (2) is
hopelessly contaminated by noise. Let USV* denote the singular value decomposition
of A, where the columns of U/ and V are the singular vectors, and the singular values
are ordered as oy > 09 > ... > o,. Then the solution to (1) or (2) is given by

N n ~x% ~ %
ulfb Whipye USe\ .
(3) M L (ziJrz_ .
=1 i i=1 gi gi

As a consequence of the white noise assumption, |@fe| is roughly constant for all ¢,
while the discrete Picard condition guarantees that |tufby..| decreases with ¢ faster
than o; does . The matrix A is ill-conditioned, so small singular values magnify the
corresponding coefficients 4fe in the second sum, and it is this large contribution of
noise from the approximate null space of A that renders the exact solution x defined
in (3) worthless. The following regularization methods try in different ways to lessen
the contribution of noise to the solution. For further information on these methods,
see, for example, [17].




2.1. Tikhonov regularization. One of the most common methods of regular-
ization is Tikhonov regularization [34]. In this method, the problem (1) or (2) is
replaced with the problem of solving

(4) min || Az — b[J5 + A*[| Lz|3

where L denotes a matrix, often chosen to be the identity matrix I or a discrete
derivative operator, and A is a positive scalar regularization parameter. For ease in
notation, we will assume that L = I. Solving (4) is equivalent to solving

(5) (A*A+ XN Dzy = A™D.
In analogy with (3) we have

& g a: birue 0; a;"e N
(6) mzz(o_?ﬁz +O_?+A2)vi.

i=1

In this solution, the contributions from noise components 4 e for values of o; < A are
much smaller than they are in (3), and thus x) can be closer to the noise-free solution
than z is. If X is too large, however, A* A 4+ A2 is very far from the original operator
A*A, and z is very far from &4y, the solution to (2) when e = 0. Conversely, if A
is too small, the singular values of the new operator A*A + A?I are close to those of
A* A; thus z) = z, so small singular values again greatly magnify noise components.

2.2. Truncated SVD. In the truncated SVD method of regularization, the reg-
ularized solution is chosen simply by truncating the expansion in (3) as

n—={ .
ub

(7) m:Z - V5.

i=1

Here the regularization parameter is £, the number of terms to be dropped from the
sum. Observe that if £ is small, very few terms are dropped from the sum, so z,
resembles  in that the effects of noise are large. If £ is too large, however, important
information could be lost; such is the case if @} by > €fe for some ¢ > n — L.

An alternative, yet related, approach to TSVD is an approach introduced by Rust
[31] where the truncation strategy is based on the value of each spectral coefficient
a}b itself. The strategy is to include in the sum (3) only those terms corresponding to
a spectral coefficient 4}b whose magnitude is greater than or equal to some tolerance
p, which can be regarded as the regularization parameter.

2.3. Projection and iterative methods. Solving (5) or (7) can be impractical
if n is large, but fortunately, regularization can be achieved through projection onto
a subspace; see, for example, [7]. The truncated SVD is an example of one such
projection: the solution is constrained to lie in the subspace spanned by the singular
vectors corresponding to the largest n — ¢ singular values. Other projections can be
more economical. In general, we constrain our regularized solution to lie in some
k-dimensional subspace of C”, spanned by the columns of an n x k matrix Q). For

example, we choose x%; = QW y*) where y*) solves
(8) min [|AQ")y — b[|3
yeck
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or equivalently
(9) QM) 47 4QMy = (1) A%,
The idea is that with an appropriately chosen subspace, the operator (Q(k))*A*AQ(k)

will be better conditioned than the original operator and hence that x%; will approx-
imate x;p. well on that subspace.

This projection is often achieved through the use of iterative methods such as con-
jugate gradients, GMRES, QMR, and other Krylov subspace methods. The matrix
Q™) then contains orthonormal columns generated via a Lanczos tridiagonalization or
bidiagonalization process [27, 1]. In this case, Q™) is a basis for some k-dimensional
Krylov subspace (i.e., the subspace K¢(¢, K) spanned by the vectors ¢, Ke, ..., K*~lc
for some matrix K and vector ¢). The regularized solutions x%; are generated iter-
atively as the subspaces are built. Krylov subspace algorithms such as CG, CGLS,
GMRES, and LSQR tend to produce, at early iterations, solutions that resemble 4y,
in the subspace spanned by (right) singular vectors of A corresponding to the largest
singular values. At later iterations, however, these methods start to reconstruct in-
creasing amounts of noise into the solution. This is due to the fact that for large &,
the operator (Q(k))*A*AQ(k) approaches the ill-conditioned operator A*A. There-
fore, the choice of the regularization parameter k, the stopping point for the iteration
and the dimension of the subspace, is very important.!

2.4. Hybrid methods: projection plus regularization. Another important
family of regularization methods, often referred to as hybrid methods [17], was intro-
duced by O’Leary and Simmons [27]. These methods combine a projection method
with a direct regularization method such as TSVD or Tikhonov regularization. The
problem 1s projected onto a particular subspace of dimension k, but typically the
restricted operator in (9) is still ill-conditioned. Therefore, a regularization method
is applied to the projected problem. Since the dimension %k 1s usually small relative
to n, regularization of the restricted problem is much less expensive. Yet, with an
appropriately chosen subspace, the end results can be very similar to those achieved
by applying the same direct regularization technique to the original problem. We will
become more precise about how “similar” the solutions are in §4.5. Because the pro-
jected problems are usually generated iteratively by a Lanczos method, this approach
1s useful when A is sparse or structured in such a way that matrix-vector products
can be handled efficiently with minimal storage.

3. Existing parameter selection methods. In this section, we discuss a sam-
pling of the parameter selection techniques that have been proposed in the literature.
They differ in the amount of a priori information required as well as in the decision
criteria.

3.1. The Discrepancy Principle. If some extra information is available — for
example, an estimate of the variance of the noise vector e — then the regularization
parameter can be chosen rather easily. Morozov’s Discrepancy Principle [25] says that
if 6 is the expected value of |le||2, then the regularization parameter should be chosen
so that the norm of the residual corresponding to the regularized solution z,.4 is 76;
that is,

(10) Arey = bll2 = 75,

1 Usually, small values of the regularization parameter correspond to a closer solution to the noisy
equation, but despite this, we will call k, rather than 1/k, the regularization parameter.
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Fic. 1. Ezample of a typical L-curve. This particular L-curve corresponds to applying Tikhonov
regularization to the problem in Erxample 2

where 7 > 1 is some predetermined real number. Note that as 6 — 0, z,.; — Zirue.
Other methods based on knowledge of the variance are given, for example, in [12, 5].

3.2. Generalized Cross-Validation. The Generalized Cross-Validation (GCV)
parameter selection method does not depend on a priori knowledge about the noise
variance. This idea of Golub, Heath, and Wahba [9] is to find the parameter A that
minimizes the GCV functional

_ i = AA b3
(1) G = (trace(] — AA&))Q’

where A& denotes the matrix that maps the right hand side b onto the regularized

solution z. In Tikhonov regularization, for example, A& 18
(A* A+ XN~ Ax

GCYV chooses a regularization parameter that is not too dependent on any one data
measurement [11, 12.1.3].

3.3. The L-Curve. One way to visualize the tradeoff between regularization
error and error due to noise i1s to plot the norm of the regularized solution versus
the corresponding residual norm for each of a set of regularization parameter values.
The result is the L-curve, introduced by Lawson and popularized by Hansen [15].
See Figure 1 for a typical example. As the regularization parameter increases, noise
is damped, so that the norm of the solution decreases while the residual increases.
Intuitively, the best regularization parameter should lie on the corner of the L-curve,
since for values higher than this, the residual increases without reducing the norm
of the solution much, while for values smaller than this, the norm of the solution
increases rapidly without much decrease in residual. In practice, only a few points
on the L-curve are computed and the corner is located by approximate methods,
estimating the point of maximum curvature [19].

Like GCV, this method of determining a regularization parameter does not de-
pend on specific knowledge about the noise vector.

3.4. Disadvantages of these parameter choice algorithms. The appropri-
ate choice of regularization parameter — especially for projection algorithms — 1s a
difficult problem, and each method has severe flaws.
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Basic cost Added Cost
Disc. GCV L-curve
Tikhonov O(mn?) | O(p(m+n)) O(p(n+m)) O(p(m+n))
TSVD O(mn?) O(m) O(m) O(m+n)
Rust’s TSVD | O(mn?) O(mlogm) O(mlogm) O(mlogm)
Projection O(qk) 0 O(q) 0(q)
TaBLE 1

Summary of additional flops needed to compute the regularization parameter for each four
regularization methods with various parameter selection techniques. Notation:
q 15 the cost of multiplication of a vector by A.
p 15 the number of discrete parameters that must be tried;
k 1s the dimension of the projection.
m and n are problem dimensions.

The Discrepancy Principle is convergent as the noise goes to zero, but it relies on
knowing information that is often unavailable or incorrectly estimated. Even with a
correct estimate of the variance, the solutions tend to be oversmoothed [20, pg. 96]
(see also the discussion in §6.1 of [15]).

One noted difficulty with GCV is that G can have a very flat minimum, making
it difficult to determine the optimal A numerically [35].

The L-curve is usually more tractable numerically, but its limiting properties are
nonideal. The solution estimates fail to converge to the true solution as n — oo [36]
or as the error norm goes to zero [6]. All methods that assume no knowledge of the
error norm — including GCV — have this latter property [6].

For further discussion and references about parameter choice methods, see [5, 17].
The cost of these methods is tabulated in Table 1.

3.5. Previous work on parameter choice for hybrid methods. At first
glance, it appears that for Tikhonov regularization, multiple systems of the form
(5) must be solved in order to evaluate candidate values of A for the Discrepancy
Principle or the L-curve. Techniques have been suggested in the literature for solving
these systems using projection methods.

Chan and Ng [4], for example, note that the systems involve the closely related
matrices matrices C'(A) = A*A 4+ AI, and they suggest solving the systems simultane-
ously using a Galerkin projection method on a sequence of “seed” systems. Although
this is economical in storage, it can be unnecessarily expensive in time because they
do not exploit the fact that for each fixed k, the Krylov subspace Kj(A*b, C'(X)) is
the same for all values of A.

Frommer and Maass [8] propose two algorithms for approximating the A that
satisfies the Discrepancy Principle (10). The first is a “truncated cg” approach in
which they use conjugate gradients to solve £ systems of the form (5), truncating
the iterative process early for large A and using previous solutions as starting guesses
for later problems. Like Chan and Ng, this algorithm does not exploit any of the
redundancy in generating the Krylov-subspaces for each A;. The second method
they propose, however, does exploit the redundancy so that the CG iterates for all &k
systems can be updated simultaneously with no extra matrix-vector products. They
stop their “shifted cg” algorithm when ||Azy — b||o < 76 for one of their A values.
Thus the number of matrix-vector products required is twice the number of iterations
for this particular system to converge. We note that while the algorithms we propose
in §4 for finding a good value of A are based on the same key observation regarding
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the Krylov subspace, our methods will usually require less work than the shifted cg
algorithm.

Calvetti, Golub, and Reichel [3] compute upper and lower bounds on the L-curve
generated by the matrices C'(A) using a Lanczos bidiagonalization process. From this,
they approximate the best parameter for Tikhonov regularization without projection.
In §4, we choose instead to approximate the best parameter for Tikhonov regular-
ization on the projected problem, since this 1s the approximation to the continuous
problem that is actually being used.

Kaufman and Neumaier [21] suggest an envelope guided conjugate gradient ap-
proach for the Tikhonov L-curve problem. Their method is more complicated than the
methods we propose because they maintain nonnegativity constraints on the variables.

Substantial work has also been done on TSVD regularization of the projected
problems. Bjorck, Grimme, and van Dooren [2] use GCV to determine the truncation
point for the projected SVD. Their emphasis is on stable ways to maintain an accurate
factorization when many iterations are needed, and they use full reorthogonalization
and implicit restart strategies. O’Leary and Simmons [27] take a somewhat different
viewpoint that the problem should be preconditioned appropriately so that a massive
number of iterations is unnecessary. That viewpoint is echoed in this current work,
so we implicitly assume that the problem has been left-preconditioned or “filtered”
[27]. For example, in place of (4), we solve

min||M_1Ax — M_1b||§ + /\2||x||§

for a square preconditioner M. See [14, 26, 24, 23] for preconditioners appropriate for
certain types of ill-posed problems. Note that we could alternately have considered
right preconditioning, which amounts to solving, in the Tikhonov case,

AT b
M —
mindl | 35 | ve= 6 ]

for yy then setting 2y = M~ly,. Note that either left or right preconditioning
effectively changes the balance between the two terms in the minimization.

4. Regularizing the projected problem. In this section we develop nine ap-
proaches to regularization using Krylov methods. Many Krylov methods have been
proposed; for ease of exposition we focus on just two of these: the LSQR algorithm
of Paige and Saunders [29] and the GMRES algorithm of Saad and Schultz [33].

The LSQR algorithm of Paige and Saunders [29] iteratively computes the bidiag-
onalization introduced by Golub and Kahan [10]. Given a vector b, the algorithm is
as follows [29, Alg. Bidiag 1]:

Compute a scalar 47 and a vector u; of length one so that fyu; = b.
Similarly, determine oy and vq so that aqv; = ATuy.
Fori=1,2,..
Let Bip1uip1 = Avi—oju; and ap1vi41 = AT wipr —Bipvs,
where the non-negative scalars o;41 and ;41 are chosen
so that w; 41 and v;41 have length one.

End for

The vectors u;, v; are called the left and right Lanczos vectors respectively. The
algorithm can be rewritten in matrix form by first defining the matrices

U = [uy, ..., ug]; Vi = [v1, ..., v];
7



g

B2 s
By, = Ji2

o
Br+1

With e; denoting the ith unit vector, the following relations can be established:

(12) b = prur = bUgyaen,

(13) AVy = Upt1 By,

(14) ATUpyr = ViBE + appivegietp
(15) ViVe =1, Ups1Uk41 = g4,

where the subscript on I denotes the dimension of the identity.
Now suppose we want to solve

(16) min b — Azl

where & denotes the k-dimensional subspace spanned by the first & Lanczos vectors
v;. The solution we seek is of the form #(*) = Vy%) for some vector y*) of length k.
Define #*) = b — Az(*) to be the corresponding residual. From the relations above,
observe that in exact arithmetic

r) = Bruy — Aka(k)
= Upp1(Brer — Bey™)

Since Uy has, in exact arithmetic, orthonormal columns, we have
(17) 1Pl = (1Brer = Bry™[l2.
Therefore, the projected problem we wish to solve 1s

(18) min ||B1eq — Bry™||o.
y (%)

Solving this minimization problem is equivalent to solving the normal equations in-
volving the bidiagonal matrix:

(19) B;Bry™) = B Bje,.

Typically k is small, so reorthogonalization to combat the effects of inexact arithmetic
might or might not be necessary. The matrix By may be ill-conditioned because some
of its singular values approximate some of the small singular values of A. Therefore
solving the projected problem might not yield a good solution y*). However, we
can use any of the methods of Section 3 to regularize this projected problem; we
discuss options in detail below. As alluded to in §4, the idea is to generate yy;),, the
regularized solution to (18), and then to compute a regularized solution to (16) as
) — Viglh)

If we used the algorithm GMRES instead of LSQR, we would derive similar
relations. Here, though, the U and V matrices are identical and the B matrix is
upper Hessenberg rather than bidiagonal. Conjugate gradients would yield similar
relationships.

For cost comparisons for these methods, see Tables 1 and 2. Storage comparisons
are given in Tables 3 and 4.



4.1. Regularization by projection. As mentioned earlier, if we terminate the
iteration after k steps, we have projected the solution onto a k£ dimensional subspace
and this has a regularizing effect that is sometimes sufficient. Determining the best
value of k can be accomplished, for instance, by one of our three methods of parameter
choice:

1. Discrepancy Principle.
In this case, we stop the iteration for the smallest value of & for which ||r;]] <
76. Both LSQR and GMRES have recurrence relations for determining ||rz||
using scalar computations, without computing either rj or ay [29, 32].

2. GCV.
For the projected problems (see §4.1) defined by either LSQR or GMRES,
the operator AA! is given by

U1 By BLU 4

where B;L is the pseudo-inverse of the matrix Bj. Thus from (11), the GCV
functional is [17]

1113

G = (g

We note that there are in fact two distinct definitions for B;L and hence two
definitions for the denominator in G(k); for small enough &, the two are
comparable, and the definition we use here is less expensive to calculate [18,
§7.4].
3. L-Curve.

To determine the L-curve associated with LSQR or GMRES, estimates of
[|7£]|2 and ||zx||2 are needed for several values of k. Using either algorithm,
we can compute ||rg||2 with only a few scalar calculations. Paige and Saunders
give a similar method for computing [|zx||2 [29], but, with GMRES, the cost
for computing ||zx||2 is O(k?). In using this method or GCV, one must go a
few iterations beyond the optimal k in order to verify the optimum [19].

4.2. Regularization by projection plus TSVD. If projection alone does not
regularize, then we can compute the TSVD regularized solution to the projected
problem (19). We need the SVD of the (k + 1) x k matrix Bg. This requires O(k?)
operations, but can also be computed from the SVD of Bj,_; in O(k?) operations [13].

Clearly, we still need to use some type of parameter selection technique to find a
good value of ¢(k). First, notice that it is easy to compute the norms of the residual
and the solution resulting from neglecting the £ smallest singular values. If & is the
component of e; in the direction of the j-th left singular vector of By, and if v; is
the j-th singular value (ordered largest to smallest), then the residual and solution
2-norms are

k41 1/2 k—t(k) e\ 1/2
e a| Y G] e X (%)
j=k—e(k)+1 j=1 i

Using this fact, we can use any of our three sample methods:
1. Discrepancy Principle.
Let rék) denote the quantity b — Axﬁk) and note that by (13) and orthonor-
mality, ||r§k)||2 is equal to the first quantity in (20). Therefore, we choose
L(k) to be the largest value for which ||r§k)|| < 716, if such a value exists.
9



2. GCV.
Another alternative for choosing £(k) is to use GCV to compute £(k) for
the projected problem. The GCV functional for the kth projected problem
is obtained by substituting By for A and BlﬁC for A", and substituting the
expression of the residual in (20) for the numerator in (11):

2 xk+1 2
il = A

3. L-Curve.
We now have many L-curves, one for each value of k. The coordinate values
in (20) form the discrete L-curve for a given k, from which the desired value
of £(k) can be chosen without forming the approximate solutions or residuals.
As k increases, the value £(k) chosen by the Discrepancy Principle will be mono-
tonically nondecreasing.

4.3. Regularization by projection plus Rust’s TSVD. Asinstandard TSVD,
to use Rust’s version of TSVD for regularization of the projected problem requires
that we compute the SVD of the (k + 1) x k matrix Bj,. Using the previous notation,
Rust’s strategy is to set

ik (k
g =3 i—ZqZ( )
iez(®)
where q](»k) are the right singular vectors of By and I[(,k) ={i<k+1:[&]>p} We
focus on three ways to determine p:
1. Discrepancy Principle.
Using the notation from the previous section, the norm of the regularized so-
lution is given by Bl(zing,” €212 E)k)H?'
principle, we must choose p so that the residual is less than 76. In practice,
this would require that the residual be evaluated by sorting the values ||
and adding terms in that order until the residual norm is less than 76.
2. GCV.
Let us denote by card(IE,k)) the cardinality of the set I[(,k). From (11), it is
easy to show that the GCV functional corresponding to the projected problem
for this regularization technique is given by

6% Ziel’,(,k) €22k
(k41— card(Z5)))2

=||r According to the discrepancy

Gr(p) =

In practice, for each k we first sort the values |&;|, i = 1,..., k from smallest
to largest. Then we define £ discrete values p; to be equal to these values
with p1 being the smallest. We set pg = 0. Note that because the values of
pj,J=1,... k are the sorted magnitudes of the SVD expansion coefficients,
we have

€+ nl* + 02, 02
(j+1)? ’

Finally, we take the regularization parameter to be the p; for which Gj(p;)
Is a minimum.

Gr(pj) = i=0,... k.
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3. L-Curve.
As with standard TSVD, we now have one L-curve for each value of k. For
fixed k, if we define the p;,57 = 0,...,k as we did for GCV above and we
reorder the 4; in the same way that the || were reordered when sorted,
then we have

k 2 J
Pi .
&S5 = 67 > (‘) PSNE = B (ke P+ D e =0, k.
=1

i=j+1 N '*

When these solution and residual norms are plotted against each other as
functions of p, the value of p; corresponding to the corner is selected as the
regularization parameter.

4.4. Regularization by projection plus Tikhonov. Finally, let us consider
using Tikhonov regularization to regularize the projected problem (18) for some inte-
ger k. Thus, for a given regularization parameter A, we would like to solve

(21) Hbin||ﬁ161 — Brylls + X*|vll3,

or, equivalently,
. e B
(22) i [ A )= 5 |l

(

The solution ykk) to either formulation satisfies

(23) (BiBi + NIyl = g Bres.
Using (13) and (15), we see that yg\k) also satisfies

(24) (Vi A" AV, + AT = v a%b.
Therefore,

) A b
yg\k) — argmmyH [ AT ] Vey — [ 0 ] [|2.

Using J:()\k) = kag\k), we have

x()\k) = argmin g || Az — b||3 + A?[|z||3.

Thus as & — n, the backprojected regularized solution J:()\k) approaches the solution
to (4).
We need to address how to choose a suitable value of A.
1. Discrepancy Principle.

Note that in exact arithmetic, we have
(25) i =b— Axl = Uf (Brer — Br).

Hence ||Bky§\k) — Bierllz = ||rg\k)||2. Therefore, to use the Discrepancy Princi-
ple requires we choose A so that ||r>\k |2 < 78, with p discrete trial values A;.

For a given k, we take A to be the largest value A; for which ||7°§\k)||2 < 76, if
it exists; if not, we increase k and test again.
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2. GCV.
Let us define (Bk)l\ to be the operator mapping the right hand side of the
projected problem onto the regularized solution of the projected problem:

(Bo)l = (Bi By + A°1)7' By,

Given the SVD of B as above, the denominator in the GCV functional
defined for the projected problem (refer to (11)) is

2
k

22
J
k+1_277]2+v

ji=1

The numerator is simply ||r§\k)||% For values of k < n, it is feasible to compute
the singular values of By.
3. L-Curve.

The L-curve is comprised of the points (||Bky§\k) — frer]|z, ||y§\k)||2) But using
(25) and the orthonormality of the columns of Vi, we see these points are
precisely (||r§\k)||2,||x(>\k)||2) For p discrete values of A, A;;1 < ¢ < p, the
quantities ||r§\]i)||2 and ||x(>\]i)||2 can be obtained by updating their respective
estimates at the (k — 1)st iteration.?

4.5. Correspondence between Direct Regularization and Projection
Plus Regularization. In this section, we argue why the projection plus regular-
ization approaches can be expected to yield regularized solutions nearly equivalent to
the direct regularization counterpart. The following theorem establishes the desired
result for the case of Tikhonov vs. projection plus Tikhonov.

THEOREM 4.1. Fix A > 0 and define J:()\k) to be the kth iterate of conjugate
gradients applied to the Tikhonov problem

(A"A + N 1)z = A*b.

(k)

Let yy ' be the exact solution to the regularized projected problem

(Bi B + XI)y = By (Be1)

where By, Vi are derived from the original problem A* A = A*b, and set zg\k) =V yg\k).
(k) _ (k)
Then z,/ =z,
Proof: By the discussion at the beginning of §4.4 and equations (23) and (24), it
follows that yg\k) solves

ViE(A* A+ N D)Vey = ViEA®D.

Now the columns of Vj are the Lanczos vectors with respect to the matrix A*A and
right-hand side A*b. But these are the same as the Lanczos vectors generated with
respect to the matrix A* A4+ 21 and right-hand side A*6. Therefore kag\k) 1s precisely
the kth iterate of conjugate gradients applied to (A*A + A1)z = A*b [11, pg. 495].
Hence zg\k) = J:()\k). a

2 The technical details of the approach are found in [28, pp. 197-198], from which we obtain

||7’(>\k)|| = \/HF()\IC)H2 + /\2||ac(>\k)||2. The implementation details for estimating ||ac(>\k)|| and ||77(>\k)|| were
taken from the Paige and Saunders algorithm at http://www.netlib.org/linalg/lsqr.
12



Projection plus — | Disc. GCV  L-curve

Tikhonov O(pk) O(K%)  O(pk)

TSVD Ok3) O3 O(k3)

Rust’s Ok3) O3 O(k3)
TABLE 2

Summary of flops for projection plus inner regularization with various parameter selection
techniques, in addition to the O(qk) flops required for projection itself. Here k is the number of
iterations (ie. the size of the projection) taken and p is the number of discrete parameters that must
be tried.

Let us turn to the case of TSVD regularization applied to the original problem
vs. the projection plus TSVD approach. Direct computation convinces us that the
two methods compute the same regularized solution if & = n and arithmetic is exact.
An approximate result holds in exact arithmetic when we take k iterations, with
n—{ =j <k < n. Let the singular value decomposition of By be denoted by
By = ZkaQ{ and define the s x j matrix W, ; as

1
wa=[1].

Then the regularized solution obtained from the TSVD regularization of the projected
problem is

) = Vi @eWi T AW ;20 UT D),

reg
where I', ; denotes the leading j x j principle submatrix of I'y. If k is taken to be
enough larger than j so that V;Q,W;; =~ VWTW', I/VkT_I_l]»ZkTUkT_I_1 ~ WHTJ»UT and
I'z 1 & Xy with X5 the leading principle submatrix of X, then we expect x%; to be a
good approximation to ;. This is made more precise in the following theorem.
THEOREM 4.2. Let k > j such that

(ViQrWi ;) = Vi + Ey with ||E1]] < 6, < 1;

(Uks1 ZkWiy1 ;) = Ur + Eo with ||Eo|| < 65 < 1;
where V; and U, contain the first j columns of V oand U respectively. Let D =
diag(dy, ..., d;) satisfy
I'p1=2%14+ D with |d;] <83 < 1.
Then

5
(-3 + 3maX(61,62)) 116]].

gj

(k) _ <
lyey — well < max ———
Proof: Using the representations x; = f/lEl_lﬁlTb and x%; = (Vl —|—E1)F;11([71T +
ETYb, we obtain

ey = el < QITES = ST TG STl + 1E TS+ 12T =D

reg

and the conclusion follows from bounding each term. O

Note that typically ¢; > o0, so that 1/0; is not too large. For some results
relating to the value of k necessary for the hypothesis of the theorem to hold, the
interested reader is referred to theory of the Kaniel-Paige and Saad [30, §12.4].

13



Basic cost Added Cost
Disc. GCV  L-curve
Tikhonov 0(¢) O(l)  O(p) O(p)
TSVD 0(g) O(l) O(m) O(m)
Rust’s TSVD 0(¢) O(m) O(m) O(m)
Projection O(kn) O(l) O(k) O(k)
TABLE 3

Summary of additional storage for each of four regularization methods under each of three
parameter selection techniques. The original matriz is m X n with g nonzeros, p is the number of
discrete parameters that must be tried, k iterations are used in projection, and the factorizations are
assumed to take § storage.

Projection plus — | Disc. GCV L-curve

Tikhonov O(1) O(p) O(p)

TSVD O(1) O(k) O(k)

Rust’s TSVD Ok) O(k+p) Olk+p)
TABLE 4

Summary of storage, not including storage for the matriz, for projection plus inner regular-
1zation approach, various parameter selection techmiques. Here p denotes the number of discrete
parameters tried. Each of these regularization methods also requires us to save the basis V or else
regenerate 1t in order to reconstruct x.

5. Numerical results. In this section, we present two numerical examples. All
experiments were carried out using Matlab and Hansen’s Regularization Tools [16],
with IEEE double precision floating point arithmetic. Since the exact, noise-free
solutions were known in both examples, we evaluated the methods using the two-
norm difference between the regularized solutions and the exact solutions. In both
examples when we applied Rust’s method to the original problem, the p; were taken
to be the magnitudes of the spectral coefficients of b sorted in increasing order.

5.1. Example 1. The 200x200 matrix A and true solution @y, for this example
were generated using the function baart in Hansen’s Regularization Toolbox. We
generated by . = Azypye and then computed the noisy vector b as b+ e, where e was
generated using the Matlab randn function and was scaled so that the noise level,
”—bq%le—”, was 1073, The condition number of A was on the order of 10'7.

Many values of A were tested: log,, A = —6,—5.9,...,—2. Table 5 displays the
values of the regularization parameters chosen when the three parameter selection
techniques were applied together with one of the four regularization methods on the
original problem. Since ||e||2 = 5.3761E—4, we set 76 that defines the discrepancy
principle as the very close approximation 5.5E—4.

The last column in the table gives the value of the parameter that yielded a
regularized solution with the minimum relative error when compared against the true
solution. The relative error values for regularized solutions corresponding to the
parameters in Table 5 are given in Table 6. Note that using GCV to determine a
regularization parameter for Rust’s TSVD resulted in an extremely noisy solution
with huge error.

The corners of the L-curves for the Tikhonov, projection, and TSVD methods
were determined using Hansen’s 1corner function, with the modification that points
corresponding to solution norms greater than 10° for the TSVD methods were not

14



Disc. GCV L-curve optimal
Tikhonov A 1.259E—-3 1.995E—4 2.512E—4 5.012E-5
TSVD ¢ 197 197 196 196
Rust’s TSVD p | 1.223E—4  9.645E—7 1.223E—4 | 1.259E—4 or 1.223E—4
Projection k 4 4 6 6
TABLE 5

Ezample 1: parameter values selected for each method.

Disc. GCV  L-curve | optimal
Tikhonov 1330 1110 1084 .0648
TSVD 1663 1213 1663 1213
Rust’s TSVD | .1213 7E+14 1213 1213
Projection A134 1207 1134 1134
TABLE 6

Example 1: comparison of ||Tirue — Tregll2/||Ttruellz for each of 4 regularization methods on
the original problem, where the regularization method was chosen using methods indicated.

considered (otherwise, a false corner resulted).

Next, we projected using LSQR. and then regularized the projected problem with
one of the three regularization methods considered. For each of the three methods,
we computed regularization parameters for the projected problem using Discrepancy,
GCV, and L-curve, then computed the corresponding regularized solutions; the pa-
rameters that were selected in each case at iterations 10 and 40 are given in Tables 7
and 9 respectively. As before, the lcorner routine was used to determine the corners
of the respective L-curves.

Comparing Table 6 and 8, we observe that computing the regularized solution
via projection plus Tikhonov for projection size of 10 using either the Discrepancy
Principle or the L-curve to find the regularization parameter gives results as good as if
those techniques had been used with Tikhonov on the original problem to determine
a regularized solution. Similar statements can be made for projection plus TSVD
and projection plus Rust’s TSVD. We should also note that for Tikhonov, with and
without projection, none of the errors in the tables is optimal; that is, no parameter
selection techniques ever gave the parameter for which the error was minimal.

5.2. Example 2. The 255 x 255 matrix A for this example was a symmetric
Toeplitz matrix with bandwidth 16 and exponential decay across the band.® The
true solution vector ;. is displayed as the top picture in Figure 2. We generated
birue = AZyrye and then computed the noisy vector b as b+ e, where e was generated
using the Matlab randn function and was scaled so that the noise level, ”—blﬂ%e—”, was

1073, The vector b is shown in the bottom of Figure 2. The condition number of A
was 1.65 x 107.

We generated our discrete A; using logg A = —b,—4.9,...,—1. The norm of the
noise vector was 7.16E—2, so we took the value of 76 that defines the discrepancy
principle to be 8.00E—2.

In this example, it took 61 iterations for LSQR to reach a minimum relative er-
ror of 9.48E—2, and several more iterations were needed for the L-curve method to

3 It was generated using the Matlab command A = (1/(2 * pi x sigma)) * toeplitz(t), where
sigma = 5 and ¢t = [exp(— ([0 : band — 1]. A 2)/(2 x sigma A 2)),zeros(1, N — band)] with band = 16.
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Disc. GCV L-curve optimal
Tikhonov A(k) 1.259E-3 1.995E—-3 1.995E—4 | 5.012E-5
TSVD (k) 2 3 2 2
Rust’s TSVD p(k) | 1.679E—4 1.773E—4 1.679E-5 | 1.679E—H
TABLE 7

Ezample 1, iteration 10:

TSVD, and Rust’s TSVD.

regularization parameters selected for projection plus Tikhonow,

Disc. GCV  L-curve | optimal
Tikhonov 1330 1486 1084 .0648
TSVD 1663 3451 1663 1213
Rust’s TSVD | .1213 .1663 1213 1213
TABLE 8

Ezample 1, iteration 10: comparison of ||true — Tregl|2/||truell2 for projection plus Tikhonow,

TSVD, and Rust’s TSVD.

Ezample 1, iteration 40:
TSVD, and Rust’s TSVD.

Disc. GCV L-curve optimal
Tikhonov A(k) 1.259E-3 1.995E—-3 1.995E—4 | 5.012E-5
TSVD (k) 10 13 8 9
Rust’s TSVD p(k) | 9.201E-5 1.225E—4 9.201E-5 | 9.201E-5
TABLE 9

regularization parameters selected for projection plus Tikhonow,

Disc. GCV  L-curve | optimal
Tikhonov 1330 1486 1084 .0648
TSVD 1679 1986 1206 1165
Rust’s TSVD | .1162 .1162 1162 1162
TaBLE 10

Ezample 1, iteration 40: comparison of ||true — Tregl|2/||truell2 for projection plus Tikhonow,

TSVD, and Rust’s TSVD.
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Disc. GCV L-curve optimal
Tikhonov A 1.259E—-2  1.259E—-2 1.995E—-3 | 3.9811E-3
TSVD ¢ 216 254 201 201
Rust’s TSVD p | 2.183E—-2 2.586E—6 1.477E—2 | 1.52TE-2
Projection k 2 18 5 5
TaBLE 11

Ezample 2: parameter values selected for each method. The projection was performed on a left
preconditioned system.

Disc. GCV L-curve optimal
Tikhonov 9.909E—2 9.909E—2 1.050E—2 | 9.394E—2
TSVD 1.102E—-1 8.121E—1 9.074E-2 | 9.0744FE—2

Rust’s TSVD | 1.025E—-1 22.67 1.011E-1 | 1.011E-1
Projection 1.030E—-1 9.85E-2 1.15bE-1 9.479E—-2

TABLE 12
Ezample 2: comparison of ||Tirue — Tregll2/||Ttruellz for each of 4 regularization methods on
the ortginal problem.

estimate a stopping parameter. Likewise, the dimension k of the projected problem
had to be around 60 to obtain good results with the projection-plus-regularization ap-
proaches, and much larger than 60 for the L-curve applied to the projected, Tikhonov
regularized problem to give a good estimate of the corner with respect to the Tikhonov
regularized original problem. Therefore, for the projection based techniques, we chose
to work with a left preconditioned system (refer to the discussion at the end of § 3.5).
Our preconditioner was chosen as in [22] where the parameter defining the precondi-
tioner was taken to be m = 50.

The values of the regularization parameters chosen when the three parameter
selection techniques were applied together with one of the four regularization methods
on the original problem are given in Table 11. The last column in the table gives the
value of the parameter that gave a regularized solution with the minimum relative
error over the range of discrete values tested, with respect to the true solution. The
relative errors that resulted from computing solutions according to the parameters in
Table 11 are in Table 12. We note that GCV with TSVD and Rust’s TSVD were
ineffective.

The corners of the L-curves for the Tikhonov, projection, and TSVD methods
were determined using Hansen’s 1corner function, with the modification that points
corresponding to the largest solution norms for the TSVD methods were not consid-
ered (otherwise, a false corner was detected by the lcorner routine).

Next, we projected using LSQR (note that since the matrix and preconditioner
were symmetric, we could have used MINRES as in [22]) and then regularized the
projected problem with one of the three methods considered. For each of the three
methods, we computed regularization parameters for the projected problem using Dis-
crepancy, GCV, and L-curve, then computed the corresponding regularized solutions;
the parameters that were selected in each case at iterations 15 and 25 are given in Ta-
bles 13 and 15, respectively. The relative errors of the regularized solutions generated
accordingly are given in Tables 14 and 16.

Again, we used the lcorner routine to determine the corners of the respective
L-curves, except in the case of Rust’s TSVD method. In the latter case, there was
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Ezample 2, iteration 15:

TSVD, and Rust’s TSVD.

Disc. GCV L-curve optimal
Tikhonov A(k) 2.512E—2 1.585E—2 1.9953E—3 | 3.981E—3
TSVD (k) 5 5 4 1
Rust’s TSVD p(k) | 3.558E—2 3.558E—2  3.558E—2 | 3.558E—2
TaBLE 13

regularization parameters selected for projection plus Tikhonow,

Disc. GCV L-curve optimal

Tikhonov 1.0001E-1 9.9511E—2 1.061E—1 | 9.530E—2

TSVD 9.595E—1 9.595E—1 1.004E—1 | 9.357E—2

Rust’s TSVD | 1.004E—1 1.004E—-1 1.004E—1 | 1.004E—1
TaBLE 14

Ezample 2, iteration 15: comparison of ||Ttrue — Tregl|2/||truell2 for projection plus Tikhonowv,

TSVD, and Rust’s TSVD.

always a very sharp corner that could be picked out visually.

Comparing Table 11 with Tables 13 and 15, we see that the parameter chosen
by applying the L-curve method to projected-plus-Tikhonov problem was the same
parameter chosen by applying the L-curve to the original problem. Moreover, a com-
parison of Table 12 with Tables 14 and 16 shows that relative errors of the regularized
solutions computed accordingly are comparable to applying Tikhonov to the origi-
nal problem with that same parameter. Similar results are shown for the other cases,
with the exception that the discrepancy principle did not work well for the projection-
plus-TSVD problems, and GCV was not effective for the projected problems when
k= 25.

6. Conclusions. In this work we have given methods for determining the reg-
ularization parameter and regularized solution to the original problem based on reg-
ularizing a projected problem. The proposed approach of applying regularization
and parameter selection techniques to a projected problem is economical in time
and storage. We presented results that in fact the regularized solution obtained by
backprojecting the TSVD or Tikhonov solution to the projected problem is almost
equivalent to applying TSVD or Tikhonov to the original problem, where “almost”
depends on the size of k. The examples indicate the practicality of the method, and
illustrate that our regularized solutions are usually as good as those computed using
the original system and can be computed in a fraction of the time, using a fraction of
the storage. We note that similar approaches are valid using other Krylov subspace
methods for computing the projected problem.

In this work, we did not address potential problems from loss of orthogonality
as the iterations progress. In this discussion, we did, however, assume that either &
was naturally very small compared to n or that preconditioning had been applied to
enforce this condition. Possibly for this reason, we found that for modest &, round-off
did not appear to degrade either the LSQR estimates of the residual and solution
norms or the computed regularized solution in the following sense: the regularization
parameters chosen via the projection-regularization and the corresponding regularized
solutions were comparable to those chosen and generated for the original discretized
problem.

For the Tikhonov approach in this paper, we have assumed that the regularization
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Disc. GCV L-curve optimal
Tikhonov A(k) 2.512E—2 1.259E—2 1.995E—3 | 3.982E-3
TSVD (k) 9 9 8 3
Rust’s TSVD p(k) | 4.828E—2 7.806E—3 4.828E—2 | 4.828E—2
TaBLE 15

FEzample 2, iteration 25: regularization parameters selected for projection plus Tikhonow,

TSVD, and Rust’s TSVD.

Disc. GCV L-curve optimal

Tikhonov 1.000E—1 9.909E—2 1.061E—1 | 9.530E—2

TSVD 9.164E—1 9.595E—1 1.004E—1 | 9.145E-2

Rust’s TSVD | 1.004E—-1 2.728 1.004E—-1 | 1.004E-1
TABLE 16

Ezample 2, iteration 25: comparison of ||true — Tregl|2/||Ttruell2 for projection plus Tikhonow,

TSVD, and Rust’s TSVD.

operator L was the identity or was related to the preconditioning operator; this allowed

us to efficiently compute ||r§\k)|| and ||a:(>\k)|| for multiple values of A efficiently for each k.
If L is not the identity but is invertible, we can first implicitly transform the problem
to “standard form” [17]. With A = AL™! # = Lz, we can solve the equivalent system

ming = || A% — b])2 + A2||7]|2.

Then the projection plus regularization schemes may be applied to this transformed
problem. Clearly the projection based schemes will be useful as long as solving systems
involving L can be done efficiently.
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