
CHOOSING REGULARIZATION PARAMETERS IN ITERATIVEMETHODS FOR ILL-POSED PROBLEMS�MISHA E. KILMERy AND DIANNE P. O'LEARYzAbstract. Numerical solution of ill-posed problems is often accomplished by discretization(projection onto a �nite dimensional subspace) followed by regularization. If the discrete problemhas high dimension, though, typically we compute an approximate solution by projection onto aneven smaller dimensional space, via iterative methods based on Krylov subspaces. In this work wepresent e�cient algorithms that regularize after this second projection rather than before it. Weprove some results on the approximate equivalence of this approach to other forms of regularizationand we present numerical examples.Key words. ill-posed problems, regularization, discrepancy principle, iterative methods, L-curve, Tikhonov, TSVD, projection, Krylov subspace65R30,65F20Running Title: Choosing Regularization Parameters1. Introduction. Linear, discrete ill-posed problems of the formAx = b(1)or minx kAx� bk2; or equivalently, A�Ax = A�b(2)arise, for example, from the discretization of �rst-kind Fredholm integral equationsand occur in a variety of applications. We shall assume that the full-rank matrix Ais m� n, with m � n in (2) and m = n in (1). In discrete ill-posed problems, A is ill-conditioned and there is no gap in the singular value spectrum. Typically, the righthand side b contains noise due to measurement and/or approximation error. Thisnoise, in combination with the ill-conditioning of A, means that the exact solution of(1) or (2) has little relationship to the noise-free solution and is worthless. Instead, weuse a regularization method to determine a solution that approximates the noise-freesolution. Regularizationmethods replace the original operator by a better-conditionedbut related one in order to diminish the e�ects of noise in the data and produce aregularized solution to the original problem. Sometimes this regularized problem istoo large to solve exactly. In that case, we typically compute an approximate solutionby projection onto an even smaller dimensional space, perhaps via iterative methodsbased on Krylov subspaces.The conditioning of the new problem is controlled by one or more regularizationparameters speci�c to the method. A large regularization parameter yields a new well-conditioned problem, but its solution may be far from the noise-free solution sincethe new operator is a poor approximation to A. A small regularization parametergenerally yields a solution very close to the noise-contaminated exact solution of (1)or (2), and hence its distance from the noise-free solution also can be large. Thus,� This work was supported by the National Science Foundation under Grants CCR 95-03126 andCCR-97-32022 and by the Army Research O�ce, MURI Grant DAAG55-97-1-0013.y Dept. of Computer and Electrical Engineering, Northeastern University, Boston, MA 02115(mkilmer@ece.neu.edu)z Dept. of Computer Science and Institute for Advanced Computer Studies, University of Mary-land, College Park, MD 20742 (oleary@cs.umd.edu).1



a key issue in regularization methods is to choose a regularization parameter thatbalances the error due to noise with the error due to regularization.A wise choice of regularization parameter is obviously crucial to obtaining usefulapproximate solutions to ill-posed problems. For problems small enough that a rank-revealing factorization or singular value decomposition of A can be computed, thereare well-studied techniques for computing a good regularization parameter. Thesetechniques include the Discrepancy Principle [8], generalized cross-validation (GCV)[9], and the L-curve [15]. For larger problems treated by iterative methods, though,the parameter choice is much less understood. If regularization is applied to theprojected problem that is generated by the iterative method, then there are essentiallytwo regularization parameters: one for the standard regularization algorithms, suchas Tikhonov or truncated SVD, and one controlling the number of iterations taken.One subtle issue is that the standard regularization parameter that is correct for thediscretized problem may not be the optimal one for the lower-dimensional problemactually solved by the iteration, and this observation leads to the research discussedin this paper. At �rst glance, there can appear to be a lot of work associated withthe selection of a good regularization parameter, and many algorithms proposed inthe literature are needlessly complicated. But by regularizing after projection by theiterative method, so that we are regularizing the lower dimensional problem that isactually being solved, much of this di�culty vanishes.The purpose of this paper is to present parameter selection techniques designedto reduce the regularization work for iterative methods such as Krylov subspace tech-niques. Our paper is organized as follows. In x2, we will give an overview of theregularization methods we will be considering, and we follow up in x3 by surveyingsome methods for choosing the corresponding regularization parameters. In x4, weshow how parameter selection techniques for the original problem can be applied in-stead to a projected problem obtained from an iterative method, greatly reducing thecost without much degradation in the solution. We give experimental results in x5and conclusions and future work in x6.2. Regularization background. In the following we shall assume that b =btrue + e, where btrue denotes the unperturbed data vector and e denotes zero-meanwhite noise. We will also assume that btrue satis�es the discrete Picard condition;that is, the spectral coe�cients of btrue decay faster, on average, than the singularvalues.Under these assumptions, it is easy to see why the exact solution to (1) or (2) ishopelessly contaminated by noise. Let Û�V̂ � denote the singular value decompositionof A, where the columns of Û and V̂ are the singular vectors, and the singular valuesare ordered as �1 � �2 � : : : � �n. Then the solution to (1) or (2) is given byx = nXi=1 û�i b�i v̂i = nXi=1� û�i btrue�i + û�i e�i � v̂i:(3)As a consequence of the white noise assumption, jû�i ej is roughly constant for all i,while the discrete Picard condition guarantees that jû�i btruej decreases with i fasterthan �i does . The matrix A is ill-conditioned, so small singular values magnify thecorresponding coe�cients û�i e in the second sum, and it is this large contribution ofnoise from the approximate null space of A that renders the exact solution x de�nedin (3) worthless. The following regularization methods try in di�erent ways to lessenthe contribution of noise to the solution. For further information on these methods,see, for example, [17]. 2



2.1. Tikhonov regularization. One of the most common methods of regular-ization is Tikhonov regularization [34]. In this method, the problem (1) or (2) isreplaced with the problem of solvingminx kAx� bk22 + �2kLxk22(4)where L denotes a matrix, often chosen to be the identity matrix I or a discretederivative operator, and � is a positive scalar regularization parameter. For ease innotation, we will assume that L = I. Solving (4) is equivalent to solving(A�A+ �2I)x� = A�b:(5)In analogy with (3) we havex� = nXi=1 ��i û�i btrue�2i + �2 + �i û�i e�2i + �2� v̂i:(6)In this solution, the contributions from noise components û�i e for values of �i < � aremuch smaller than they are in (3), and thus x� can be closer to the noise-free solutionthan x is. If � is too large, however, A�A+ �2I is very far from the original operatorA�A, and x� is very far from xtrue, the solution to (2) when e = 0. Conversely, if �is too small, the singular values of the new operator A�A + �2I are close to those ofA�A; thus x� � x, so small singular values again greatly magnify noise components.2.2. Truncated SVD. In the truncated SVD method of regularization, the reg-ularized solution is chosen simply by truncating the expansion in (3) asx` = n�X̀i=1 û�i b�i v̂i:(7)Here the regularization parameter is `, the number of terms to be dropped from thesum. Observe that if ` is small, very few terms are dropped from the sum, so x`resembles x in that the e�ects of noise are large. If ` is too large, however, importantinformation could be lost; such is the case if û�i btrue � û�i e for some i > n� `.An alternative, yet related, approach to TSVD is an approach introduced by Rust[31] where the truncation strategy is based on the value of each spectral coe�cientû�i b itself. The strategy is to include in the sum (3) only those terms corresponding toa spectral coe�cient û�i b whose magnitude is greater than or equal to some tolerance�, which can be regarded as the regularization parameter.2.3. Projection and iterative methods. Solving (5) or (7) can be impracticalif n is large, but fortunately, regularization can be achieved through projection ontoa subspace; see, for example, [7]. The truncated SVD is an example of one suchprojection: the solution is constrained to lie in the subspace spanned by the singularvectors corresponding to the largest n � ` singular values. Other projections can bemore economical. In general, we constrain our regularized solution to lie in somek-dimensional subspace of Cn, spanned by the columns of an n � k matrix Q(k). Forexample, we choose x(k)reg = Q(k)y(k) where y(k) solvesminy2Ck kAQ(k)y � bk22(8) 3



or equivalently (Q(k))�A�AQ(k)y = (Q(k))�A�b:(9)The idea is that with an appropriately chosen subspace, the operator (Q(k))�A�AQ(k)will be better conditioned than the original operator and hence that x(k)reg will approx-imate xtrue well on that subspace.This projection is often achieved through the use of iterative methods such as con-jugate gradients, GMRES, QMR, and other Krylov subspace methods. The matrixQ(k) then contains orthonormal columns generated via a Lanczos tridiagonalization orbidiagonalization process [27, 1]. In this case, Q(k) is a basis for some k-dimensionalKrylov subspace (i.e., the subspace Kk(c;K) spanned by the vectors c;Kc; : : : ;Kk�1cfor some matrix K and vector c). The regularized solutions x(k)reg are generated iter-atively as the subspaces are built. Krylov subspace algorithms such as CG, CGLS,GMRES, and LSQR tend to produce, at early iterations, solutions that resemble xtruein the subspace spanned by (right) singular vectors of A corresponding to the largestsingular values. At later iterations, however, these methods start to reconstruct in-creasing amounts of noise into the solution. This is due to the fact that for large k,the operator (Q(k))�A�AQ(k) approaches the ill-conditioned operator A�A. There-fore, the choice of the regularization parameter k, the stopping point for the iterationand the dimension of the subspace, is very important.12.4. Hybrid methods: projection plus regularization. Another importantfamily of regularization methods, often referred to as hybrid methods [17], was intro-duced by O'Leary and Simmons [27]. These methods combine a projection methodwith a direct regularization method such as TSVD or Tikhonov regularization. Theproblem is projected onto a particular subspace of dimension k, but typically therestricted operator in (9) is still ill-conditioned. Therefore, a regularization methodis applied to the projected problem. Since the dimension k is usually small relativeto n, regularization of the restricted problem is much less expensive. Yet, with anappropriately chosen subspace, the end results can be very similar to those achievedby applying the same direct regularization technique to the original problem. We willbecome more precise about how \similar" the solutions are in x4.5. Because the pro-jected problems are usually generated iteratively by a Lanczos method, this approachis useful when A is sparse or structured in such a way that matrix-vector productscan be handled e�ciently with minimal storage.3. Existing parameter selection methods. In this section, we discuss a sam-pling of the parameter selection techniques that have been proposed in the literature.They di�er in the amount of a priori information required as well as in the decisioncriteria.3.1. The Discrepancy Principle. If some extra information is available { forexample, an estimate of the variance of the noise vector e { then the regularizationparameter can be chosen rather easily. Morozov's Discrepancy Principle [25] says thatif � is the expected value of kek2, then the regularization parameter should be chosenso that the norm of the residual corresponding to the regularized solution xreg is ��;that is, kAxreg � bk2 = ��;(10)1 Usually, small values of the regularization parameter correspond to a closer solution to the noisyequation, but despite this, we will call k, rather than 1=k, the regularization parameter.4
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2 Fig. 1. Example of a typical L-curve. This particular L-curve corresponds to applying Tikhonovregularization to the problem in Example 2where � > 1 is some predetermined real number. Note that as � ! 0; xreg ! xtrue.Other methods based on knowledge of the variance are given, for example, in [12, 5].3.2. GeneralizedCross-Validation. The Generalized Cross-Validation (GCV)parameter selection method does not depend on a priori knowledge about the noisevariance. This idea of Golub, Heath, and Wahba [9] is to �nd the parameter � thatminimizes the GCV functionalG(�) = k(I �AA]�)bk22(trace(I �AA]�))2 ;(11)where A]� denotes the matrix that maps the right hand side b onto the regularizedsolution x�. In Tikhonov regularization, for example, A]� is(A�A+ �2I)�1A�:GCV chooses a regularization parameter that is not too dependent on any one datameasurement [11, 12.1.3].3.3. The L-Curve. One way to visualize the tradeo� between regularizationerror and error due to noise is to plot the norm of the regularized solution versusthe corresponding residual norm for each of a set of regularization parameter values.The result is the L-curve, introduced by Lawson and popularized by Hansen [15].See Figure 1 for a typical example. As the regularization parameter increases, noiseis damped, so that the norm of the solution decreases while the residual increases.Intuitively, the best regularization parameter should lie on the corner of the L-curve,since for values higher than this, the residual increases without reducing the normof the solution much, while for values smaller than this, the norm of the solutionincreases rapidly without much decrease in residual. In practice, only a few pointson the L-curve are computed and the corner is located by approximate methods,estimating the point of maximum curvature [19].Like GCV, this method of determining a regularization parameter does not de-pend on speci�c knowledge about the noise vector.3.4. Disadvantages of these parameter choice algorithms. The appropri-ate choice of regularization parameter { especially for projection algorithms { is adi�cult problem, and each method has severe 
aws.5



Basic cost Added CostDisc. GCV L-curveTikhonov O(mn2) O(p(m + n)) O(p(n+m)) O(p(m + n))TSVD O(mn2) O(m) O(m) O(m + n)Rust's TSVD O(mn2) O(m logm) O(m logm) O(m logm)Projection O(qk) 0 O(q) O(q)Table 1Summary of additional 
ops needed to compute the regularization parameter for each fourregularization methods with various parameter selection techniques. Notation:q is the cost of multiplication of a vector by A.p is the number of discrete parameters that must be tried;k is the dimension of the projection.m and n are problem dimensions.The Discrepancy Principle is convergent as the noise goes to zero, but it relies onknowing information that is often unavailable or incorrectly estimated. Even with acorrect estimate of the variance, the solutions tend to be oversmoothed [20, pg. 96](see also the discussion in x6.1 of [15]).One noted di�culty with GCV is that G can have a very 
at minimum, makingit di�cult to determine the optimal � numerically [35].The L-curve is usually more tractable numerically, but its limiting properties arenonideal. The solution estimates fail to converge to the true solution as n !1 [36]or as the error norm goes to zero [6]. All methods that assume no knowledge of theerror norm { including GCV { have this latter property [6].For further discussion and references about parameter choice methods, see [5, 17].The cost of these methods is tabulated in Table 1.3.5. Previous work on parameter choice for hybrid methods. At �rstglance, it appears that for Tikhonov regularization, multiple systems of the form(5) must be solved in order to evaluate candidate values of � for the DiscrepancyPrinciple or the L-curve. Techniques have been suggested in the literature for solvingthese systems using projection methods.Chan and Ng [4], for example, note that the systems involve the closely relatedmatrices matrices C(�) = A�A+�I, and they suggest solving the systems simultane-ously using a Galerkin projection method on a sequence of \seed" systems. Althoughthis is economical in storage, it can be unnecessarily expensive in time because theydo not exploit the fact that for each �xed k, the Krylov subspace Kk(A�b; C(�)) isthe same for all values of �.Frommer and Maass [8] propose two algorithms for approximating the � thatsatis�es the Discrepancy Principle (10). The �rst is a \truncated cg" approach inwhich they use conjugate gradients to solve k systems of the form (5), truncatingthe iterative process early for large � and using previous solutions as starting guessesfor later problems. Like Chan and Ng, this algorithm does not exploit any of theredundancy in generating the Krylov-subspaces for each �i. The second methodthey propose, however, does exploit the redundancy so that the CG iterates for all ksystems can be updated simultaneously with no extra matrix-vector products. Theystop their \shifted cg" algorithm when kAx� � bk2 � �� for one of their � values.Thus the number of matrix-vector products required is twice the number of iterationsfor this particular system to converge. We note that while the algorithms we proposein x4 for �nding a good value of � are based on the same key observation regarding6



the Krylov subspace, our methods will usually require less work than the shifted cgalgorithm.Calvetti, Golub, and Reichel [3] compute upper and lower bounds on the L-curvegenerated by the matrices C(�) using a Lanczos bidiagonalization process. From this,they approximate the best parameter for Tikhonov regularization without projection.In x4, we choose instead to approximate the best parameter for Tikhonov regular-ization on the projected problem, since this is the approximation to the continuousproblem that is actually being used.Kaufman and Neumaier [21] suggest an envelope guided conjugate gradient ap-proach for the Tikhonov L-curve problem. Their method is more complicated than themethods we propose because they maintain nonnegativity constraints on the variables.Substantial work has also been done on TSVD regularization of the projectedproblems. Bj�orck, Grimme, and van Dooren [2] use GCV to determine the truncationpoint for the projected SVD. Their emphasis is on stable ways to maintain an accuratefactorization when many iterations are needed, and they use full reorthogonalizationand implicit restart strategies. O'Leary and Simmons [27] take a somewhat di�erentviewpoint that the problem should be preconditioned appropriately so that a massivenumber of iterations is unnecessary. That viewpoint is echoed in this current work,so we implicitly assume that the problem has been left-preconditioned or \�ltered"[27]. For example, in place of (4), we solveminx kM�1Ax�M�1bk22 + �2kxk22for a square preconditioner M . See [14, 26, 24, 23] for preconditioners appropriate forcertain types of ill-posed problems. Note that we could alternately have consideredright preconditioning, which amounts to solving, in the Tikhonov case,miny k � A�I �M�1y � � b0 � k;for y� then setting x� = M�1y�. Note that either left or right preconditioninge�ectively changes the balance between the two terms in the minimization.4. Regularizing the projected problem. In this section we develop nine ap-proaches to regularization using Krylov methods. Many Krylov methods have beenproposed; for ease of exposition we focus on just two of these: the LSQR algorithmof Paige and Saunders [29] and the GMRES algorithm of Saad and Schultz [33].The LSQR algorithm of Paige and Saunders [29] iteratively computes the bidiag-onalization introduced by Golub and Kahan [10]. Given a vector b, the algorithm isas follows [29, Alg. Bidiag 1]:Compute a scalar �1 and a vector u1 of length one so that �1u1 = b.Similarly, determine �1 and v1 so that �1v1 = ATu1.For i = 1,2,...Let �i+1ui+1 = Avi��iui and �i+1vi+1 = ATui+1��i+1vi,where the non-negative scalars �i+1 and �i+1 are chosenso that ui+1 and vi+1 have length one.End forThe vectors ui; vi are called the left and right Lanczos vectors respectively. Thealgorithm can be rewritten in matrix form by �rst de�ning the matricesUk � [u1; : : : ; uk];Vk � [v1; : : : ; vk];7



Bk � 26666664 �1�2 �2�3 . . .. . . �k�k+1 37777775 :With ei denoting the ith unit vector, the following relations can be established:b = �1u1 = �1Uk+1e1 ;(12) AVk = Uk+1Bk ;(13) ATUk+1 = VkBTk + �k+1vk+1eTk+1 ;(14) V �k Vk = Ik ; U�k+1Uk+1 = Ik+1 ;(15)where the subscript on I denotes the dimension of the identity.Now suppose we want to solve minx2S kb� Axk2(16)where S denotes the k-dimensional subspace spanned by the �rst k Lanczos vectorsvi. The solution we seek is of the form x(k) = Vky(k) for some vector y(k) of length k.De�ne r(k) = b � Ax(k) to be the corresponding residual. From the relations above,observe that in exact arithmeticr(k) = �1u1 � AVky(k)= Uk+1(�1e1 �Bky(k))Since Uk+1 has, in exact arithmetic, orthonormal columns, we havekr(k)k2 = k�1e1 � Bky(k)k2:(17)Therefore, the projected problem we wish to solve isminy(k) k�1e1 � Bky(k)k2:(18)Solving this minimization problem is equivalent to solving the normal equations in-volving the bidiagonal matrix: B�kBky(k) = �1B�ke1:(19)Typically k is small, so reorthogonalization to combat the e�ects of inexact arithmeticmight or might not be necessary. The matrix Bk may be ill-conditioned because someof its singular values approximate some of the small singular values of A. Thereforesolving the projected problem might not yield a good solution y(k). However, wecan use any of the methods of Section 3 to regularize this projected problem; wediscuss options in detail below. As alluded to in x4, the idea is to generate y(k)reg , theregularized solution to (18), and then to compute a regularized solution to (16) asx(k)reg = Vky(k)reg .If we used the algorithm GMRES instead of LSQR, we would derive similarrelations. Here, though, the U and V matrices are identical and the B matrix isupper Hessenberg rather than bidiagonal. Conjugate gradients would yield similarrelationships.For cost comparisons for these methods, see Tables 1 and 2. Storage comparisonsare given in Tables 3 and 4. 8



4.1. Regularization by projection. As mentioned earlier, if we terminate theiteration after k steps, we have projected the solution onto a k dimensional subspaceand this has a regularizing e�ect that is sometimes su�cient. Determining the bestvalue of k can be accomplished, for instance, by one of our three methods of parameterchoice:1. Discrepancy Principle.In this case, we stop the iteration for the smallest value of k for which krkk ���. Both LSQR and GMRES have recurrence relations for determining krkkusing scalar computations, without computing either rk or xk [29, 32].2. GCV.For the projected problems (see x4.1) de�ned by either LSQR or GMRES,the operator AA] is given by Uk+1BkBykU�k+1where Byk is the pseudo-inverse of the matrix Bk. Thus from (11), the GCVfunctional is [17] G(k) = kr(k)k22(m � k)2 :We note that there are in fact two distinct de�nitions for Byk and hence twode�nitions for the denominator in G(k); for small enough k, the two arecomparable, and the de�nition we use here is less expensive to calculate [18,x7.4].3. L-Curve.To determine the L-curve associated with LSQR or GMRES, estimates ofkrkk2 and kxkk2 are needed for several values of k. Using either algorithm,we can compute krkk2 with only a few scalar calculations. Paige and Saundersgive a similar method for computing kxkk2 [29], but, with GMRES, the costfor computing kxkk2 is O(k2). In using this method or GCV, one must go afew iterations beyond the optimal k in order to verify the optimum [19].4.2. Regularization by projection plus TSVD. If projection alone does notregularize, then we can compute the TSVD regularized solution to the projectedproblem (19). We need the SVD of the (k + 1) � k matrix Bk. This requires O(k3)operations, but can also be computed from the SVD of Bk�1 in O(k2) operations [13].Clearly, we still need to use some type of parameter selection technique to �nd agood value of `(k). First, notice that it is easy to compute the norms of the residualand the solution resulting from neglecting the ` smallest singular values. If �jk is thecomponent of e1 in the direction of the j-th left singular vector of Bk, and if 
j isthe j-th singular value (ordered largest to smallest), then the residual and solution2-norms are�10@ k+1Xj=k�`(k)+1 �2jk1A1=2 and �10@k�`(k)Xj=1 ��jk
j �21A1=2 :(20)Using this fact, we can use any of our three sample methods:1. Discrepancy Principle.Let r(k)` denote the quantity b � Ax(k)` and note that by (13) and orthonor-mality, kr(k)` k2 is equal to the �rst quantity in (20). Therefore, we choose`(k) to be the largest value for which kr(k)` k � ��, if such a value exists.9



2. GCV.Another alternative for choosing `(k) is to use GCV to compute `(k) forthe projected problem. The GCV functional for the kth projected problemis obtained by substituting Bk for A and B]k for A], and substituting theexpression of the residual in (20) for the numerator in (11):Gk(`) = �21Pk+1j=k�`+1 �2jk(`+ 1)2 :3. L-Curve.We now have many L-curves, one for each value of k. The coordinate valuesin (20) form the discrete L-curve for a given k, from which the desired valueof `(k) can be chosen without forming the approximate solutions or residuals.As k increases, the value `(k) chosen by the Discrepancy Principle will be mono-tonically nondecreasing.4.3. Regularizationby projectionplus Rust's TSVD. As in standard TSVD,to use Rust's version of TSVD for regularization of the projected problem requiresthat we compute the SVD of the (k+1)� k matrix Bk. Using the previous notation,Rust's strategy is to set y(k)� = Xi2I(k)� �ik
i q(k)iwhere q(k)j are the right singular vectors of Bk and I(k)� = fi < k + 1 : j�ikj > �g. Wefocus on three ways to determine �:1. Discrepancy Principle.Using the notation from the previous section, the norm of the regularized so-lution is given by �1(Pi 62I(k)� �2ik)1=2 = kr(k)� k2: According to the discrepancyprinciple, we must choose � so that the residual is less than ��. In practice,this would require that the residual be evaluated by sorting the values j�ikjand adding terms in that order until the residual norm is less than ��.2. GCV.Let us denote by card(I(k)� ) the cardinality of the set I(k)� . From (11), it iseasy to show that the GCV functional corresponding to the projected problemfor this regularization technique is given byGk(�) = �21Pi2I(k)� �2ik(k + 1� card(I(k)� ))2 :In practice, for each k we �rst sort the values j�ikj; i = 1; : : : ; k from smallestto largest. Then we de�ne k discrete values �j to be equal to these valueswith �1 being the smallest. We set �0 = 0. Note that because the values of�j ; j = 1; : : : ; k are the sorted magnitudes of the SVD expansion coe�cients,we have Gk(�j) = �21(j�(k+1);kj2 +Pji=1 �2j )(j + 1)2 ; j = 0; : : : ; k:Finally, we take the regularization parameter to be the �j for which Gk(�j)is a minimum. 10



3. L-Curve.As with standard TSVD, we now have one L-curve for each value of k. For�xed k, if we de�ne the �j ; j = 0; : : : ; k as we did for GCV above and wereorder the 
i in the same way that the j�ikj were reordered when sorted,then we havekx(k)�j k22 = �21 kXi=j+1��i
i�2 ; kr(k)�j k22 = �21(j�(k+1);kj2 + jXi=1 �2j ) j = 0; : : : ; k:When these solution and residual norms are plotted against each other asfunctions of �, the value of �j corresponding to the corner is selected as theregularization parameter.4.4. Regularization by projection plus Tikhonov. Finally, let us considerusing Tikhonov regularization to regularize the projected problem (18) for some inte-ger k. Thus, for a given regularization parameter �, we would like to solveminy k�1e1 � Bkyk22 + �2kyk22;(21)or, equivalently, miny k � �1e10 �� � Bk�I � yk2:(22)The solution y(k)� to either formulation satis�es(B�kBk + �2I)y(k)� = �1B�ke1:(23)Using (13) and (15), we see that y(k)� also satis�es(V �k A�AVk + �2I)y(k)� = V �k A�b:(24)Therefore, y(k)� = argminyk � A�I �Vky � � b0 �k2:Using x(k)� = Vky(k)� , we havex(k)� = argminx2SkAx� bk22 + �2kxk22:Thus as k ! n, the backprojected regularized solution x(k)� approaches the solutionto (4).We need to address how to choose a suitable value of �.1. Discrepancy Principle.Note that in exact arithmetic, we haver(k)� = b� Ax(k)� = U�k+1(�1e1 �Bky(k)� ):(25)Hence kBky(k)� � �1e1k2 = kr(k)� k2. Therefore, to use the Discrepancy Princi-ple requires we choose � so that kr(k)� k2 � ��, with p discrete trial values �j .For a given k, we take � to be the largest value �j for which kr(k)� k2 < ��, ifit exists; if not, we increase k and test again.11



2. GCV.Let us de�ne (Bk)y� to be the operator mapping the right hand side of theprojected problem onto the regularized solution of the projected problem:(Bk)y� = (B�kBk + �2I)�1B�k:Given the SVD of Bk as above, the denominator in the GCV functionalde�ned for the projected problem (refer to (11)) is0@k + 1� kXj=1 
2j
2j + �21A2 :The numerator is simply kr(k)� k22. For values of k� n, it is feasible to computethe singular values of Bk.3. L-Curve.The L-curve is comprised of the points (kBky(k)� ��1e1k2; ky(k)� k2). But using(25) and the orthonormality of the columns of Vk, we see these points areprecisely (kr(k)� k2; kx(k)� k2). For p discrete values of �, �i; 1 � i � p, thequantities kr(k)�i k2 and kx(k)�i k2 can be obtained by updating their respectiveestimates at the (k � 1)st iteration.24.5. Correspondence between Direct Regularization and ProjectionPlus Regularization. In this section, we argue why the projection plus regular-ization approaches can be expected to yield regularized solutions nearly equivalent tothe direct regularization counterpart. The following theorem establishes the desiredresult for the case of Tikhonov vs. projection plus Tikhonov.Theorem 4.1. Fix � > 0 and de�ne x(k)� to be the kth iterate of conjugategradients applied to the Tikhonov problem(A�A + �2I)x = A�b:Let y(k)� be the exact solution to the regularized projected problem(B�kBk + �2I)y = B�k(�e1)where Bk; Vk are derived from the original problemA�A = A�b, and set z(k)� = Vky(k)� .Then z(k)� = x(k)� .Proof: By the discussion at the beginning of x4.4 and equations (23) and (24), itfollows that y(k)� solves V �k (A�A+ �2I)Vky = V �k A�b:Now the columns of Vk are the Lanczos vectors with respect to the matrix A�A andright-hand side A�b. But these are the same as the Lanczos vectors generated withrespect to the matrixA�A+�2I and right-hand side A�b. Therefore Vky(k)� is preciselythe kth iterate of conjugate gradients applied to (A�A + �2I)x = A�b [11, pg. 495].Hence z(k)� = x(k)� . 22 The technical details of the approach are found in [28, pp. 197-198], from which we obtainkr(k)� k =qk�r(k)� k2 + �2kx(k)� k2. The implementation details for estimating kx(k)� k and k�r(k)� k weretaken from the Paige and Saunders algorithm at http://www.netlib.org/linalg/lsqr.12



Projection plus { Disc. GCV L-curveTikhonov O(pk) O(k3) O(pk)TSVD O(k3) O(k3) O(k3)Rust's O(k3) O(k3) O(k3)Table 2Summary of 
ops for projection plus inner regularization with various parameter selectiontechniques, in addition to the O(qk) 
ops required for projection itself. Here k is the number ofiterations (ie. the size of the projection) taken and p is the number of discrete parameters that mustbe tried.Let us turn to the case of TSVD regularization applied to the original problemvs. the projection plus TSVD approach. Direct computation convinces us that thetwo methods compute the same regularized solution if k = n and arithmetic is exact.An approximate result holds in exact arithmetic when we take k iterations, withn � ` = j < k < n. Let the singular value decomposition of Bk be denoted byBk = Zk�kQTk and de�ne the s � j matrix Ws;j asWs;j = � I0 � :Then the regularized solution obtained from the TSVD regularization of the projectedproblem is x(k)reg = Vk(QkWk;j��1k;1WTk+1;jZTk UTk b);where �k;1 denotes the leading j � j principle submatrix of �k. If k is taken to beenough larger than j so that VkQkWk;j � V̂ Wn;j, WTk+1;jZTk UTk+1 � WTn;jÛT and�k;1 � �1 with �1 the leading principle submatrix of �, then we expect x(k)reg to be agood approximation to x`. This is made more precise in the following theorem.Theorem 4.2. Let k > j such that(VkQkWk;j) = V̂1 + E1 with kE1k � �1 � 1;(Uk+1ZkWk+1;j) = Û1 + E2 with kE2k � �2 � 1;where V̂1 and Û1 contain the �rst j columns of V̂ and Û respectively. Let D =diag(d1; : : : ; dj) satisfy �k;1 = �1 +D with jdij � �3 � 1:Then kx(k)reg � x`k � max1�i�j 1�i + di � �3�j + 3max(�1; �2)� kbk:Proof: Using the representations x` = V̂1��11 ÛT1 b and x(k)reg = (V̂1+E1)��1k;1(ÛT1 +ET2 )b, we obtainkx(k)reg � x`k � (k��1k;1 � ��11 k+ k��1k;1k kE2k+ kE1k k��1k;1k+ kE1k k��1k;1k kE2k)kbk ;and the conclusion follows from bounding each term. 2Note that typically �j � �n so that 1=�j is not too large. For some resultsrelating to the value of k necessary for the hypothesis of the theorem to hold, theinterested reader is referred to theory of the Kaniel-Paige and Saad [30, x12.4].13



Basic cost Added CostDisc. GCV L-curveTikhonov O(q̂) O(1) O(p) O(p)TSVD O(q̂) O(1) O(m) O(m)Rust's TSVD O(q̂) O(m) O(m) O(m)Projection O(kn) O(1) O(k) O(k)Table 3Summary of additional storage for each of four regularization methods under each of threeparameter selection techniques. The original matrix is m � n with q nonzeros, p is the number ofdiscrete parameters that must be tried, k iterations are used in projection, and the factorizations areassumed to take q̂ storage.Projection plus { Disc. GCV L-curveTikhonov O(1) O(p) O(p)TSVD O(1) O(k) O(k)Rust's TSVD O(k) O(k + p) O(k + p)Table 4Summary of storage, not including storage for the matrix, for projection plus inner regular-ization approach, various parameter selection techniques. Here p denotes the number of discreteparameters tried. Each of these regularization methods also requires us to save the basis V or elseregenerate it in order to reconstruct x.5. Numerical results. In this section, we present two numerical examples. Allexperiments were carried out using Matlab and Hansen's Regularization Tools [16],with IEEE double precision 
oating point arithmetic. Since the exact, noise-freesolutions were known in both examples, we evaluated the methods using the two-norm di�erence between the regularized solutions and the exact solutions. In bothexamples when we applied Rust's method to the original problem, the �i were takento be the magnitudes of the spectral coe�cients of b sorted in increasing order.5.1. Example 1. The 200�200 matrixA and true solution xtrue for this examplewere generated using the function baart in Hansen's Regularization Toolbox. Wegenerated btrue = Axtrue and then computed the noisy vector b as b+ e, where e wasgenerated using the Matlab randn function and was scaled so that the noise level,kekkbtruek , was 10�3. The condition number of A was on the order of 1019.Many values of � were tested: log10 � = �6;�5:9; : : : ;�2. Table 5 displays thevalues of the regularization parameters chosen when the three parameter selectiontechniques were applied together with one of the four regularization methods on theoriginal problem. Since kek2 = 5:3761E�4, we set �� that de�nes the discrepancyprinciple as the very close approximation 5:5E�4.The last column in the table gives the value of the parameter that yielded aregularized solution with the minimum relative error when compared against the truesolution. The relative error values for regularized solutions corresponding to theparameters in Table 5 are given in Table 6. Note that using GCV to determine aregularization parameter for Rust's TSVD resulted in an extremely noisy solutionwith huge error.The corners of the L-curves for the Tikhonov, projection, and TSVD methodswere determined using Hansen's lcorner function, with the modi�cation that pointscorresponding to solution norms greater than 106 for the TSVD methods were not14



Disc. GCV L-curve optimalTikhonov � 1:259E�3 1:995E�4 2:512E�4 5:012E�5TSVD ` 197 197 196 196Rust's TSVD � 1:223E�4 9:645E�7 1:223E�4 1:259E�4 or 1:223E�4Projection k 4 4 6 6Table 5Example 1: parameter values selected for each method.Disc. GCV L-curve optimalTikhonov .1330 .1110 .1084 .0648TSVD .1663 .1213 .1663 .1213Rust's TSVD .1213 7E+14 .1213 .1213Projection .1134 .1207 .1134 .1134Table 6Example 1: comparison of kxtrue � xregk2=kxtruek2 for each of 4 regularization methods onthe original problem, where the regularization method was chosen using methods indicated.considered (otherwise, a false corner resulted).Next, we projected using LSQR and then regularized the projected problem withone of the three regularization methods considered. For each of the three methods,we computed regularization parameters for the projected problem using Discrepancy,GCV, and L-curve, then computed the corresponding regularized solutions; the pa-rameters that were selected in each case at iterations 10 and 40 are given in Tables 7and 9 respectively. As before, the lcorner routine was used to determine the cornersof the respective L-curves.Comparing Table 6 and 8, we observe that computing the regularized solutionvia projection plus Tikhonov for projection size of 10 using either the DiscrepancyPrinciple or the L-curve to �nd the regularization parameter gives results as good as ifthose techniques had been used with Tikhonov on the original problem to determinea regularized solution. Similar statements can be made for projection plus TSVDand projection plus Rust's TSVD. We should also note that for Tikhonov, with andwithout projection, none of the errors in the tables is optimal; that is, no parameterselection techniques ever gave the parameter for which the error was minimal.5.2. Example 2. The 255 � 255 matrix A for this example was a symmetricToeplitz matrix with bandwidth 16 and exponential decay across the band.3 Thetrue solution vector xtrue is displayed as the top picture in Figure 2. We generatedbtrue = Axtrue and then computed the noisy vector b as b+ e, where e was generatedusing the Matlab randn function and was scaled so that the noise level, kekkbtruek , was10�3. The vector b is shown in the bottom of Figure 2. The condition number of Awas 1:65� 107.We generated our discrete �i using log10 � = �5;�4:9; : : : ;�1. The norm of thenoise vector was 7:16E�2, so we took the value of �� that de�nes the discrepancyprinciple to be 8:00E�2.In this example, it took 61 iterations for LSQR to reach a minimum relative er-ror of 9:48E�2, and several more iterations were needed for the L-curve method to3 It was generated using the Matlab command A = (1=(2 � pi � sigma)) � toeplitz(t); wheresigma = 5 and t = [exp(�([0 : band� 1]:^ 2)=(2 � sigma ^ 2)); zeros(1; N � band)] with band = 16.15



Disc. GCV L-curve optimalTikhonov �(k) 1:259E�3 1:995E�3 1:995E�4 5:012E�5TSVD `(k) 2 3 2 2Rust's TSVD �(k) 1:679E�4 1:773E�4 1:679E�5 1:679E�5Table 7Example 1, iteration 10: regularization parameters selected for projection plus Tikhonov,TSVD, and Rust's TSVD. Disc. GCV L-curve optimalTikhonov .1330 .1486 .1084 .0648TSVD .1663 .3451 .1663 .1213Rust's TSVD .1213 .1663 .1213 .1213Table 8Example 1, iteration 10: comparison of kxtrue�xregk2=kxtruek2 for projection plus Tikhonov,TSVD, and Rust's TSVD. Disc. GCV L-curve optimalTikhonov �(k) 1:259E�3 1:995E�3 1:995E�4 5:012E�5TSVD `(k) 10 13 8 9Rust's TSVD �(k) 9:201E�5 1:225E�4 9:201E�5 9:201E�5Table 9Example 1, iteration 40: regularization parameters selected for projection plus Tikhonov,TSVD, and Rust's TSVD. Disc. GCV L-curve optimalTikhonov .1330 .1486 .1084 .0648TSVD .1679 .1986 .1206 .1165Rust's TSVD .1162 .1162 .1162 .1162Table 10Example 1, iteration 40: comparison of kxtrue�xregk2=kxtruek2 for projection plus Tikhonov,TSVD, and Rust's TSVD.
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Disc. GCV L-curve optimalTikhonov � 1:259E�2 1:259E�2 1:995E�3 3:9811E�3TSVD ` 216 254 201 201Rust's TSVD � 2:183E�2 2:586E�6 1:477E�2 1:527E�2Projection k 2 18 5 5Table 11Example 2: parameter values selected for each method. The projection was performed on a leftpreconditioned system. Disc. GCV L-curve optimalTikhonov 9:909E�2 9:909E�2 1:050E�2 9:394E�2TSVD 1:102E�1 8:121E�1 9:074E�2 9:0744E�2Rust's TSVD 1:025E�1 22:67 1:011E�1 1:011E�1Projection 1:030E�1 9:85E�2 1:15E�1 9:479E�2Table 12Example 2: comparison of kxtrue � xregk2=kxtruek2 for each of 4 regularization methods onthe original problem.estimate a stopping parameter. Likewise, the dimension k of the projected problemhad to be around 60 to obtain good results with the projection-plus-regularization ap-proaches, and much larger than 60 for the L-curve applied to the projected, Tikhonovregularized problem to give a good estimate of the corner with respect to the Tikhonovregularized original problem. Therefore, for the projection based techniques, we choseto work with a left preconditioned system (refer to the discussion at the end of x 3.5).Our preconditioner was chosen as in [22] where the parameter de�ning the precondi-tioner was taken to be m = 50.The values of the regularization parameters chosen when the three parameterselection techniques were applied together with one of the four regularization methodson the original problem are given in Table 11. The last column in the table gives thevalue of the parameter that gave a regularized solution with the minimum relativeerror over the range of discrete values tested, with respect to the true solution. Therelative errors that resulted from computing solutions according to the parameters inTable 11 are in Table 12. We note that GCV with TSVD and Rust's TSVD wereine�ective.The corners of the L-curves for the Tikhonov, projection, and TSVD methodswere determined using Hansen's lcorner function, with the modi�cation that pointscorresponding to the largest solution norms for the TSVD methods were not consid-ered (otherwise, a false corner was detected by the lcorner routine).Next, we projected using LSQR (note that since the matrix and preconditionerwere symmetric, we could have used MINRES as in [22]) and then regularized theprojected problem with one of the three methods considered. For each of the threemethods, we computed regularization parameters for the projected problem using Dis-crepancy, GCV, and L-curve, then computed the corresponding regularized solutions;the parameters that were selected in each case at iterations 15 and 25 are given in Ta-bles 13 and 15, respectively. The relative errors of the regularized solutions generatedaccordingly are given in Tables 14 and 16.Again, we used the lcorner routine to determine the corners of the respectiveL-curves, except in the case of Rust's TSVD method. In the latter case, there was17



Disc. GCV L-curve optimalTikhonov �(k) 2:512E�2 1:585E�2 1:9953E�3 3:981E�3TSVD `(k) 5 5 4 1Rust's TSVD �(k) 3:558E�2 3:558E�2 3:558E�2 3:558E�2Table 13Example 2, iteration 15: regularization parameters selected for projection plus Tikhonov,TSVD, and Rust's TSVD. Disc. GCV L-curve optimalTikhonov 1:0001E�1 9:9511E�2 1:061E�1 9:530E�2TSVD 9:595E�1 9:595E�1 1:004E�1 9:357E�2Rust's TSVD 1:004E�1 1:004E�1 1:004E�1 1:004E�1Table 14Example 2, iteration 15: comparison of kxtrue�xregk2=kxtruek2 for projection plus Tikhonov,TSVD, and Rust's TSVD.always a very sharp corner that could be picked out visually.Comparing Table 11 with Tables 13 and 15, we see that the parameter chosenby applying the L-curve method to projected-plus-Tikhonov problem was the sameparameter chosen by applying the L-curve to the original problem. Moreover, a com-parison of Table 12 with Tables 14 and 16 shows that relative errors of the regularizedsolutions computed accordingly are comparable to applying Tikhonov to the origi-nal problem with that same parameter. Similar results are shown for the other cases,with the exception that the discrepancy principle did not work well for the projection-plus-TSVD problems, and GCV was not e�ective for the projected problems whenk = 25.6. Conclusions. In this work we have given methods for determining the reg-ularization parameter and regularized solution to the original problem based on reg-ularizing a projected problem. The proposed approach of applying regularizationand parameter selection techniques to a projected problem is economical in timeand storage. We presented results that in fact the regularized solution obtained bybackprojecting the TSVD or Tikhonov solution to the projected problem is almostequivalent to applying TSVD or Tikhonov to the original problem, where \almost"depends on the size of k. The examples indicate the practicality of the method, andillustrate that our regularized solutions are usually as good as those computed usingthe original system and can be computed in a fraction of the time, using a fraction ofthe storage. We note that similar approaches are valid using other Krylov subspacemethods for computing the projected problem.In this work, we did not address potential problems from loss of orthogonalityas the iterations progress. In this discussion, we did, however, assume that either kwas naturally very small compared to n or that preconditioning had been applied toenforce this condition. Possibly for this reason, we found that for modest k, round-o�did not appear to degrade either the LSQR estimates of the residual and solutionnorms or the computed regularized solution in the following sense: the regularizationparameters chosen via the projection-regularization and the corresponding regularizedsolutions were comparable to those chosen and generated for the original discretizedproblem.For the Tikhonov approach in this paper, we have assumed that the regularization18



Disc. GCV L-curve optimalTikhonov �(k) 2:512E�2 1:259E�2 1:995E�3 3:982E�3TSVD `(k) 9 9 8 3Rust's TSVD �(k) 4:828E�2 7:806E�3 4:828E�2 4:828E�2Table 15Example 2, iteration 25: regularization parameters selected for projection plus Tikhonov,TSVD, and Rust's TSVD. Disc. GCV L-curve optimalTikhonov 1:000E�1 9:909E�2 1:061E�1 9:530E�2TSVD 9:164E�1 9:595E�1 1:004E�1 9:145E�2Rust's TSVD 1:004E�1 2.728 1:004E�1 1:004E�1Table 16Example 2, iteration 25: comparison of kxtrue�xregk2=kxtruek2 for projection plus Tikhonov,TSVD, and Rust's TSVD.operator L was the identity or was related to the preconditioning operator; this allowedus to e�ciently compute kr(k)� k and kx(k)� k for multiple values of � e�ciently for each k.If L is not the identity but is invertible, we can �rst implicitly transform the problemto \standard form" [17]. With �A = AL�1, �x = Lx, we can solve the equivalent systemmin�x = k �A�x� bk22 + �2k�xk22:Then the projection plus regularization schemes may be applied to this transformedproblem. Clearly the projection based schemes will be useful as long as solving systemsinvolving L can be done e�ciently. REFERENCES[1] �A. Bj�orck, A bidiagonalization algorithm for solving large and sparse ill-posed systems oflinear equations, BIT, 28 (1988), pp. 659{670.[2] �A. Bj�orck, E. Grimme, and P. V. Dooren, An implicit shift bidiagonalization algorithm forill-posed systems, BIT, 34 (1994), pp. 510{534.[3] D. Calvetti, G. Golub, and L. Reichel, Estimation of the L-curve via Lanczos bidiagonal-ization, Tech. Report SCCM-97-12, Scienti�cComputing and ComputationalMathematicsProgram, Computer Science Depart., Stanford University, 1997.[4] T. Chan and M. Ng, Galerkin projection method for solving multiple linear systems, Tech.Report 96-31, Computational and Applied Mathematics Dept., UCLA, Los Angeles, CA,1996.[5] L. Desbat and D. Girard, The `minimum reconstruction error' choice of regularization pa-rameters: Some more e�cient methods and their application to deconvolution problems,SIAM J. Sci. Comput., 16 (1995), pp. 1387{1403.[6] H. W. Engl and W. Grever, Using the L-curve for determining optimal regularization pa-rameters, Numer. Math., 69 (1994), pp. 25{31.[7] H. E. Fleming, Equivalence of regularization and truncated iteration in the solution of ill-posedimage reconstruction problems, Lin. Alg. and Applics., 130 (1990), pp. 133{150.[8] A. Frommer and P. Maass, Fast CG-based methods for Tikhonov-Phillips regularization,SIAM J. Sci. Comput., (to appear).[9] G. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosinga good ridge parameter, Technometrics, 21 (1979), pp. 215{223.[10] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,SIAM J. Numer. Anal., 2(Series B) (1965), pp. 205{224.19



[11] G. Golub and C. V. Loan, Matrix Computations, The Johns Hopkins University Press, Bal-timore, MD, 1989.[12] W. Groetsch, Theory of Tikhonov Regularization for Fredholm equations of the First Kind,Pitman Publishing Limited, 1984.[13] M. Gu and S. Eisenstat, A stable and fast algorithm for updating the singular value decom-position, Tech. Report RR-939, Yale University, Department of Computer Science, NewHaven, CT, 1993.[14] M. Hanke, J. Nagy, and R. Plemmons, Preconditioned iterative regularization for ill-posedproblems, Numerical Linear Algebra and Sci. Computing, (1993), pp. 141{163. L. Reichel,A. Ruttan, and R. S. Varga, editors.[15] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Review,34 (1992), pp. 561{580.[16] P. C. Hansen, Regularization tools: a Matlab package for analysis and solution of discreteill-posed problems, Numer. Algo., 6 (1994), pp. 1{35.[17] , Rank-De�cient and Discrete Ill-Posed Problems, SIAM Press, Philadelphia, 1998.[18] , Rank De�cient and Discrete Ill-Posed Problems, PhD thesis, Technical University ofDenmark, July 1995. UNIC Report UNIC-95-07.[19] P. C. Hansen and D. P. O'Leary, The use of the L-curve in the regularization of discreteill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487{1503.[20] B. Hofmann, Regularization for Applied Inverse and Ill-Posed Problems, Teubner-TexteMathe., Teubner, Leipzig, 1986.[21] L. Kaufman and A. Neumaier, Regularization of ill-posed problems by envelope guided con-jugate gradients, Journal of Computational and Graphical Statistics, (1997).[22] M. Kilmer, Symmetric Cauchy-like preconditioners for the regularized solution of 1-d ill-posedproblems, Tech. Report CS-TR-3851, University of Maryland, College Park, 1997.[23] , Cauchy-like preconditioners for 2-dimensional ill-posed problems, SIAM J. MatrixAnal., (1998). to appear.[24] M. Kilmer and D. P. O'Leary, Pivoted Cauchy-like preconditioners for regularized solutionof ill-posed problems, SIAM J. Sci. Stat. Comput., (1998). to appear.[25] V. A. Morozov, On the solution of functional equations by the method of regularization, SovietMath. Dokl., 7 (1966), pp. 414{417. cited in [17].[26] J. Nagy, R. Plemmons, and T. Torgersen, Iterative image restoration using approximateinverse preconditioning, IEEE Trans. Image Proc., 5 (96), pp. 1151{1163.[27] D. P. O'Leary and J. A. Simmons, A bidiagonalization-regularization procedure for large scalediscretization of ill-posed problems, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 474{489.[28] C. C. Paige and M. A. Saunders, Algorithm 583, LSQR: Sparse linear equations and leastsquares problems, ACM Transactions on Mathematical Software, 8 (1982), pp. 43{71.[29] , LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans-actions on Mathematical Software, 8 (1982), pp. 43{71.[30] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cli�s, NJ,1980.[31] B. W. Rust, Truncating the singular value decomposition for ill-posed problems, Tech. ReportNISTIR 6131, Mathematical and Computational Sciences Division, National Institute ofStandards and Technology, Gaithersburg, MD, 1998.[32] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,1996.[33] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solvingnonsymmetric linear systems, SIAM J.Sci. Stat. Comput., 7 (1986), pp. 856{869.[34] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Wiley, New York, 1977.[35] J. M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci. Stat.Comput., 4 (1983), pp. 164{176.[36] C. R. Vogel, Non-convergence of the L-curve regularization parameter selection method, In-verse Problems, 12 (1996), pp. 535{547.20


