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Abstract

We describe a pipelined systolic architecture for implementing Pre-
dictive Tree-Searched Vector Quantization (PTSVQ) for real-time im-
age and speech coding applications. This architecture uses identical
processors for both the encoding and decoding processes. The overall
design is regular and the control is simple. Input data is processed at
a rate of 1 pixel per clock cycle, which allows real-time processing of
images at video rates. We implemented these processors using 1.2pum
CMOS technology. Spice simulations indicate correct operation at 40
MHz. Prototype version of these chips fabricated using 2um CMOS
technology work at 20 MHz.

1This research was supported in part by the National Science Foundation Engineering

Research Center Program, NSFD CD 8803012, and by the Ford Aerospace Corporation,
MIPS contract 121.45.






1 Introduction

Vector Quantization (VQ) is an important data compression technique used
in image coding systems for efficiently compressing images. Most real-time
signal processing applications such as HDTV, transmission of images from
satellites, and storage of images require the handling of enormous amount
of data. Data compression has emerged as an important tool to reduce the
memory storage and bandwidth requirements for these applications{1, 2, 3].

According to Shannon’s rate-distortion theory, the performance of a Vec-
tor Quantizer approaches the rate-distortion bound at a given rate when the
vector dimension is allowed to grow arbitrarily large. VQ provides better
performance than scalar quantization and has been extensively investigated
[2, 3]. However, the computational complexity of V() increases exponentially
with an increase in vector dimension. Most memoryless VQs are designed
for small dimension vectors, because it is difficult to design and implement
VQs for large vector dimensions. On the other hand, VQs with memory
exploit interblock correlation, and hence provide better performance than
memoryless VQs of the same vector dimension.

In the last decade, a considerable amount of work has been done in devel-
oping different VQ schemes with memory, such as Predictive VQ (PVQ)[4,
5, 6, 7, 8] and Finite-State VQ (FSVQ)[9, 10, 11]. Predictive VQ is a class of
VQ with memory which exploits the correlation between neighboring vectors
to achieve better performance for a given bit-rate and vector dimension. The
basic idea of this scheme is to remove the mutual redundancy between adja-

cent vectors and encode only the new information. Memoryless V() does not



take advantage of the inter-vector correlation. PVQ can perform better than
a memoryless VQ of the same rate. Although nonlinear prediction can pro-
vide superior performance, we concentrate on linear prediction in this paper
because of its simplicity and effectiveness [1]. Predictive TSVQ (PTSVQ) is
a PVQ which uses a Tree-Searched VQ (TSVQ) as a building block. PTSVQ
has an O(log N) codebook search complexity and provides an efficient way
to compress the input data.

The computational requirements for real-time video processing are quite
intensive. It is desirable to realize compact high-performance processors that
can achieve a very high throughput. A typical example is to handle images
of size 1024 x 1024 pixels at a rate of 30 frames/sec in real-time. Rapid
advances in VLSI technology make it possible to realize various VQ schemes
using a small chip area at a low cost. In this paper, we present the design and
implementation of efficient VLSI architectures for Predictive VQ to achieve
this goal. These architectures use a Tree-Searched VQ (TSVQ) as a building
block and achieve real-time performance at a low cost. In Section 2, we give
the basic definitions and background of the predictive vector quantization.
In Section 3, we describe the basic architecture of a TSVQ, whereas archi-
tectures suitable for realizing PTSV() are presented in Section 4. A bit-level
systolic architecture and its implementation in VLSI is given for the PTSVQ.



2 Preliminaries

A VQ involves a scheme for mapping an L-dimensional input vector onto
an output or reproduction vector selected from a precomputed set of code-
vectors. It consists of two parts: an encoder and a decoder. The encoder
compares the input vector with every codevector in the codebook and re-
turns the index of the codevector that is the closest approximation of the
input vector under some error measurement criterion. The decoder maps
this index onto its corresponding codevector from the codebook.

The straightforward codebook search process in VQ encoding requires
highly intensive computation; for a codebook of N codevectors, it requires
the evaluation of ©O(N) distortion measures to isolate the desired codevector.
However, if the codebook is structured as a tree, the computational complex-
ity is reduced from O(N) to O(log N) [2, 12, 13, 14, 15, 16, 17, 18]. This
reduction in computational complexity results in a sub-optimal VQ.

A Predictive VQ is a VQ with memory which has been extensively stud-
ied in recent years [4, 5, 6, 7, 8, 19, 20]. Predictive VQ (PVQ) makes use
of interblock correlation to predict the current input vector based on past
outputs; it then vector quantizes the difference between the actual input and
its predicted value. We concentrate here on the case where the difference is
quantized using a TSVQ. The resulting system is called a Predictive TSVQ
(PTSVQ). As mentioned earlier, TSVQ is a sub-optimal VQ which trades
off computational complexity for performance. It is easily seen that PTSVQ

has a much smaller complexity than PVQ with only a minor performance

degradation [1, 8].
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Figure 1: Scheme of PVQ.



A block diagram of the PVQ system is shown in Fig. 1. Predictive VQ
(PVQ) can be viewed as a straightforward vector extension of the traditional
scalar predictive quantization or Delta Pulse Code Modulation (DPCM). In
the encoder, a predicted vector is formed from the past reconstructed vectors,
&n_1, Tp_2, . An error vector, e,, is generated based on the difference
between the predicted vector &, and the actual input vector @,. This error
vector is quantized using a memoryless VQ. Then, the index is transmitted
over a channel.

In the decoder, this error vector is recovered from the received channel
index by table lookup. The original vector is reconstructed by adding this
error vector to its corresponding predicted vector. A PVQ system [4] can be

formally defined as follows:

1. An encoder v which is a memoryless V(Q that assigns to each error
vector, e, = @, — &,, an index symbol u, from an index set M to

identify the closest codeword in codebook B.

2. A decoder 8 which is a mapping that assigns to each index u,, a vector

in a reproduction codebook 5.

3. A prediction function f which predicts the input vector &, based on the
previous reconstructed inputs, and hence &, = f(Zp-1,&n-2, ). Typ-
ically, only finite order, say p, of prediction is assumed to be used, i.e.

the above expression can be simplified as &, = f(@n-1,&n-2, ", Lnyp).

Given a sequence of input vectors and an initial prediction &, the index

sequence un, reproduction sequence &,, and prediction sequence &,,, for
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n = 1,2,--- are defined recursively as follows:

U = v(€n) =7(Tn — &)

~

£, = Z,+ F(un),

én+1 - f(‘cna Tp-1,*- )
For a linear prediction function of finite order p, &, can be expressed as
P
r, = Z Aimn—ia
1=1

where A; is an L x L predictor matrix for an L-dimensional vector.

3 Overall Architecture

In this section, we describe the mapping of PTSVQ onto a VLSI architecture

for real-time image coding. This system consists of:

1. TSVQ for encoding the difference between the predicted vector and the

input vector into a channel index,

2. Inverse TSVQ (ITSVQ) for decoding the channel index into its corre-

sponding codevector, and

3. Predictor Processor (PP) which computes the residual vector, and ex-

ecutes the prediction process.

The overall architecture of the PTSVQ is shown in Fig. 2. This architec-
ture consists of a Predictor Processor, a linear array of SNP processors which

realize a binary TSVQ, and an Inverse TSVQ (ITSVQ). There are three types
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Figure 2: Architecture for PTSVQ system. PP is the Predictor Processor to perform the
prediction function for the incoming vectors. PP is identical in both the encoder and the
decoder.



of basic building blocks in the system, namely the Predictor Processor (PP),
the Single Node Processor (SNP) used for realizing TSVQ, and the ITSVQ
processor. The ITSVQ chip can be implemented as a table lookup, using
either a ROM or a PLA. The Predictor Processor subtracts the predicted
vector from the input vector, buffers the past vectors, and generates the
predicted vector according to the specified prediction function. Due to the
similarity between the encoding and decoding parts of the PTSVQ), the PP
can be used either as an encoder or as a decoder without additional circuitry.
The SNP performs the distortion computation corresponding to a node of a

binary TSVQ. We now describe each of these blocks in detail.

3.1 Single Node Processor

In a binary TSVQ, the L-dimensional input vector & = (zy,...,zr)T must
be compared with two codevectors at each node. Let ¢; = (¢14,...,¢1,0)7,

T

and ¢; = (cp1,...,¢2,)" represent the two vectors in the codebook of a

given node. The processing performed at each node is reduced to testing the

condition:
d(m7cl) 2 d(m762)) (])
where d is the distortion measure.

The weighted mean-squared error distortion is specified by

dz,¢))=(z—¢;)"W(z —¢;), i=1,2

=9
where W is the weighting matrix. Equation (1) can be expressed as:
(x—c))TW(e—c1)— (2 —c)TW(x~¢c;) >0 (2
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If equation (2) is satisfied, the input vector @ is closer to codeword ¢;. Oth-
erwise x is closer to c1. We expand equation (2) to obtain:

L

YAz} +8 20 3)

j=1
where a = (ay,...,a1) = 2(c; — ¢1)TW, and 8 = ;" We, — cIWe,. For
the special case of the mean-squared error distortion measure, W = I, and
hence aj = 2(cz; — ¢1,j), and B =Tk (¢, — & ).

Instead of using the raw codebook online, we can determine these o and 3
coeflicients off-line and store them in memory chips®. This algorithm is based
on Binary Hyperplane Testing [21]. Directly implementing equation (1) re-
quires 2(L? + L) multiplications, 2(L? — 1) additions and L? + L words of
memory storage, while implementing equation (3) requires only L multipli-
" cations, L additions, and L + 1 words of memory storage.

Several different multiplier designs are available for digital signal process-
ing applications. They offer trade-offs between speed and complexity[22).
Our goal here is to map the architecture down to the bit level such that the
entire system can handle the input image in real-time at a low cost. The
pipelined parallel multiplier developed by McCanny and McWhirter[23] is
best suited for our purpose. It is a bit-level array multiplier such that ad-
dition can be directly incorporated into the multiplication process. Fig. 3

shows an example of a 3 x 3 array multiplier. It performs the operation

a X b+ s. The regularity and simplicity of the basic cell and the absence of

2Some applications use a weighting matrix W{z) that depends on the input vector =.
Equation (3) is still valid in this case, but a preprocessor is needed to compute the o and
0 coefficients in real-time.

10



~~
)
3
o N
S Lo .
AN ” o
j=3
IO‘@‘II‘S = @ +
nqu.. @ O TSN
&5 '\ N} \.\ a/.,/ . e n..v
\ ; LS - L 4 s ~
~rt o———@ - “u o n ~— ©
S o y e . & +
O N & -
N \Q LI \. N \O\ 210\.\ .,na.v T Ww
B s =
-~
7/ ~ ‘\ //.. .\ /. & 7] .
’ N N
o, d// ’ P [} s . 5]
~5 0|||¢@?|| o——- 1
N /s
Vg N & L J //./
4 ~ o ” LRY P ©
-/ AY -+
~e ~ ballo@?li L B
N\
/ L] ¢ N AR
4 “at d ,“// xox ~
INE4 ¢ N 0
- /5‘.@61||.@1’|| -~
w R

Figure 3: Example of a 3 x 3 pipelined parallel multiplier.
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Figure 4: Block diagram of the Single Node Processor (SNP). Coeflicients «; and 3’ are
stored in off-chip memories. The multiplier computes p; = ajz; + 4.

global communication make this multiplier attractive for VLSI implementa-
tion.

Fig. 4 shows a block diagram of the Single Node Processor (SNP). The
SNP performs the computations stated in equation (3). The inner product
of two input sequences of size L are calculated. The SNP’s output is a ‘0’ if
equation (3) is satisfied and a ‘1’ otherwise. We do not need a comparator
unit in the SNP. The most significant bit (MSB) of the accumulated products
directly represents the processor’s output.

The multiplier takes two b-bit numbers ¢; and z;, and a 2b-bit number
B’y and returns a 2b-bit number p; = o;z; + §'. We define f’ = §/L and
add it during each of the L multiplication steps. This can be done without
any additional hardware and eliminates the need for a comparator unit to
compare the accumulated sums with 8. The bits of p; = p; 25, Pj,20-1,.-.,Pjn
are available in a skewed fashion, least significant bit (LSB) first. The latency
of the multiplier depends on the bit position; it is b for the LSB bit p; 1, and



3b for the MSB bit p; 2. The accumulator must have a precision of
n = 2b+ [log L]

bits, to prevent overflow when L 2b-bit n‘umbers are added together. The
output of the multiplier is sign extended by [log L] bits and is directly applied
to the accumulator.

The accumulator consists of a linear array of cells, and operates on skewed

input data [15]. The accumulator computes
L

S = ija
j=1

and returns the sign of S. A Reset signal is generated once every L clock
cycles. Reset is propagated along the array and each cell is reset in turn.
This allows the next set of L numbers to be accumulated immediately after
the last number of the current set is applied to the accumulator. The latency

of the accumulator is n + L clock cycles. Hence, the latency of the SNP is
Lng=b+n+L=36+|'logL1+L (4)

For example, if the word size b = 8, and the vector dimension L = 16, we

have Lsyp = 44 clock cycles.

3.2 TSVQ architecture

The computations performed by a TSVQ can be viewed as finding a path
from the root to a leaf in a binary tree. While traversing a binary tree, only

one node is encountered at each level. Hence, the computations at each level

13



Figure 5: Traversal of a binary tree of depth d = 4, and its mapping onto a linear array
of processors.

can be performed by a single processor. A tree of depth d can be mapped
onto a linear array of d processors as shown in Fig. 5.

Fig. 6 shows the architecture of a TSVQ using d SNP processors. The
coeflicients necessary for each processor’s computations are stored in mem-
ories and will in general depend on the distortion measure used. Processor
SNP(i) adds the results of its computations to a partial index datapath and
generates a Go signal to initiate processing by processor SNP(i+1). This Go
signal is used to reset the accumulator. The final processor SNP(d-1), re-
turns the complete index u. The memory bandwidth is 36 for each processor.
(Memory bandwidth can be reduced from 36 to b by preloading 8’ into on-
chip registers.) The size of the memory— is different for different processors.
The first processor needs a memory of L + 1 words to store 3’ and the L

components of «;. Processor SNP(i+1) needs twice as much memory as pro-

14
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Figure 6: Systolic architecture for computing TSVQ. Each processor adds its partial index
to the index data-path, and generates a control signal to initiate processing by its neighbor
down the tree. No global control signals are needed.

cessor SNP(i). The last processor needs a memory of 2¢~*(L + 1) words. The

throughput of this scheme is one L-dimensional vector per L clock cycles.

The total latency of the TSVQ is

LTSVQ =dLgnyp = d(b +n+ L)

For a tree of depth d=8, and a vector dimension of L = 16 (which corre-
sponds to a bit-rate of 0.5 bit/pixel), we have LTS'VQ = 352 clock cycles.
This architecture has been implemented using 2um N-well technology; it is
described in detail in[15].

Recently, alternate TSVQ architectures have been reported in the litera-
ture [18, 24]. The scheme in {18] uses a VQ slave processor and a controller
to implement arbitrary depth pruned trees. This architecture has a smaller
throughput than our TSVQ architecture for the same clock rates. For the ex-
ample considered above, this architecture would have a throughput of only 1

pixel every 4.5 clock cycles. In addition, a complicated controller is required

15
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Figure 7: Block diagram of the Predictor Processor.

by this scheme, while no global control signals are needed by our TSVQ ar-
chitecture. A multiplier free architecture was proposed in [24]. However, this
scheme uses a clustering technique that results in an approximate codebook.

Its performance compared to the LBG technique is not known.

3.3 PTSVQ architecture
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In this section, we describe how the PTSV(Q) can be built using a TSVQ
as a building block. A detailed block diagram of the Predictor Processor
is shown in Fig. 7. A pipelined subtractor is used to subtract the values
of the predicted vector from the corresponding input vector. The bit-level
adder/subtractor, shown in Fig. 8, operates on skewed input data in bit-serial
fashion. The result, i.e. the difference or residue vector, is then deskewed
and sent to the TSVQ to generate the channel index. The predicted vector
is delayed by the latency of the TSVQ and the ITSVQ modules. This de-
layed vector is added to the output of the ITSVQ module to generate the
reconstructed vector. This reconstructed vector is then fed into a data buffer
unit. The data buffer unit correctly taps the pixel values from these vectors

for the linear prediction module as explained next.

Image Input Format

For image compression, we consider an input image of size N x M pixels
such that each pixel is represented as a b-bit number. The input image frame
is partitioned into small subblocks each of size k x k. Each input frame
contains % X —A;l subblocks and each subblock can be treated as a vector, «,
of dimension L = k%. Typically, the size of the subblock is 4 x 4 or 8 x 8 pixels.
A sequence of vectors is formed by raster scanning along the consecutive rows

of subblocks. Within each subblock, the pixels are scanned from left to right

and top to bottom as shown in Fig. 9. This sequence of input subblocks can

NM/k?

be treated as a vector-valued random process {@,, },—1
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Linear Predictor Module

For each input vector, €, = (21,2, -,zr)T, the nearest causal neighbors
are T, _n_y, T, N and x,_;. Though different forms of linear prediction
are possible, we choose the following form[8]. Each pixel z;;,¢, 5 =1, -k,

within the vector is predicted using a linear function of past pixels as follows:

~ ! " 14
Tij = Qi Yrg+ i Ykori+ Cig Yoy oor T i Yig—1 T € Yig_1s

where yx—1; and yg; are the nearest pixels in the same column from the
north subblock T, N, yir_y and y/) are the nearest pixels in the west sub-
block «,,_; and y}c’k is the lower right corner pixel of the north-west subblock
T, x_; as shown in Fig. 10. Since Z;; is formed from a linear combina-
tion of pixels yi j, yx—1,;, the quantization of subblock @, cannot be started
until subblocks T, N_y, &, N and @,_, are completely quantized. If the
correlation between subblocks @, and x,_; is ignored, the PTSVQ) system
can be pipelined efficiently. The decrease in performance due to ignoring the
west subblock is small over most rates [8]. Hence, we use a simpler 3-order
prediction function which does not depend on pixels y/,_; and !, in our

PTSVQ architecture. Here, Z; ; is defined as:
Bij = @i Yes + i Yro15 F G Yk ()

The architecture of the 3-order predictor is shown in Fig. 11. The three
values of the pixels and their corresponding coeflicients enter these multipli-
ers simultaneously. Input data is skewed and all internal operations are per-
formed in a bit-skewed word-parallel fashion. The precision of the numbers,

Yk.j» Yk=1,55 Yk g 15 b-bits. The coeflicients a;;, ; ; and ¢;;; have a precision of

20
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Figure 10: Consider the subblock of size 4 x 4. Pixel z; ; is predicted as a linear function
of nearby pixels in adjacent vectors by # ; = ai; - ya; + bij - Y3,; + Cij - Ys.s-
(b + 1) bits. All the multipliers and accumulators used in this architecture
are pipelined at the bit-level. It takes b clock cycles for the multipliers to
generate the first LSB of the product. Since multiplier outputs are already
in skewed format, they can be directly fed into bit-level pipelined adders
without additional skewing registers. The products a;; - yx,; and b;; - yr_1,;
are added by the first adder, then the partial sum and ¢;; - y; ; are added
by the second adder. To maintain full precision in all internal computations,
the second adder takes a (2b + 1)-bit product and a (2b + 2)-bit partial sum
from the first adder to form a (2b + 3)-bit sum. At the last stage, skewing
registers are used to deskew the predicted value. The total latency time for
the linear predictor module is 3b + 3 clock cycles.

The linear predictor needs a memory of 3L words to store the coefficients

a; j, b; j and ¢; ; in equation (5).
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Figure 11: Systolic Architecture for third-order linear predictor. It performs the summa-
tion of three inner products.
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Data Buffer and Control Units

From equation (5), we see that the inputs to the predictor module, v,
Yk-1,i, Yk r> are used repeatedly; both yi; and yx_1,; are used to compute
the different prediction values in the same column and yj , is used for every
pixel in the subblock. A simple circuit with cyclic shift registers, shown in
Fig. 12, is used to handle this task. The last two rows of the image subblock
in the input sequence are latched into buffers. Similarly, the last pixel of the
previous subblock is latched into a single-word buffer. Control signals are
used to ensure that these pixels are applied to the predictor module in the
correct sequence.

The control unit consists of a [2log k]-bit counter and simple combina-
tional circuitry. The counter keeps track of each input vector to indicate
the current pixel position within each incoming vector. Two input control
signals are necessary; MODE indicates if the processor is being used in the
encoder or the decoder, and Synch indicates if the current input is a boundary
subblock.

Three control signals, ctrll, ctrl2 and ctrl3, are internally generated to
switch the multiplexers to update the content of the cyclic buffer. The
counter enables us to fetch the appropriate coefficients from external memory
into the linear predictor module.

The boundary subblocks in the top row and the left column of the in-
put image frame are treated differently. In the Predictor Processor, there are
two switches. Once a boundary subblock is indicated by the Synch input, the

predicted value entering the adder/subtractor is set to zero. The correspond-
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ing vector will pass through the adder/subtractor without modification. For
better performance, these boundary subblocks can be coded using a different
codebook from the one used for the residual vectors. However, this results
in an increase in the size of the memory required. In our architecture, the
boundary conditions of the image and the initialization of the system can be

easily handled.

Timing and delay elements

Due to the presence of the feedback loop in the system, we have to insert
delay elements to synchronize all intermediate computations. For simplicity,
we introduce a notation and then discuss the details about the delay elements.

Let Ly, L,, L, and Lg be the latency times through a subtractor, an adder,
a VQ encoder, and a VQ decoder respectively. Let Lpp be the latency time
of the linear predictor module and the data buffer unit, and let Lt to be
the minimum time needed to compute the corresponding predicted value for
the subblock in the next row after a block of pixels are fed in. The term Lt
includes the processing time along the data path including the subtractor,
TSVQ, ITSVQ, the adder, data buffer unit and the linear predictor module,
ie.

Lr=Ls+Ly+Lg+ Lo+ Lrp.

Let Ls be the input separation time between two adjacent subblocks in the
same column. The space-time diagram shown in Fig. 13 depicts the physical
meaning of the above terms and the relative timing between them.

We notice, from Fig. 13, that as long as the latency time Ly is no larger
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Figure 13: Space-time diagram of the PTSVQ system. The relative latency is shown at
some interesting points.

26



than the separation time Lg, this architecture will achieve real-time perfor-
mance. In order to synchronize the predicted vector and its corresponding
input vector, the delay elements in the feedback loop must satisfy the follow-

ing timing constraints:
Li+Ly+ Lg+ Lo+ Lrp+ Laz = Ls,

and

Lo+ L,+Lg= Lg,

where Lg; and Ly, are the delay times associated with the delay elements in
the path.

Consider, for example, the case of an image of size 512 X 512 pixels where
each subblock is of size 4 x 4 pixels. Then Lg is 512 x 4 = 2048 cycles. In a
TSVQ of vector dimension 16 and depth 8, Lg and L, are 1 and 384 cycles
respectively; Lrp is 42 cycles and includes three pipelined multiplications,
two additions and a few data skew elements; L, is equal to 9 cycles. Hence,

Ly and Lgy are 394 and 1601 respectively.

4 VLSI Implementation and Testing

In this section, we describe the VLSI implementation of the chips necessary
to build a PTSVQ system using 1.2um CMOS technology. We designed
these chips using Magic, Irsim, Spice and GDT tools. Spice simulations
indicate that these chips can run at frequencies up to 40 MHz. We fabricated
prototype version of these chips using 2um CMOS N-Well process, and tested
these prototype chips at 20 MHz.
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4.1 SNP chips

We designed a Single Node Processor using 1.2um CMOS N-Well technology.
The processor contains 25,000 transistors on a 4.8mm X 5.5mm die and has
84 pins. We performed logic and timing simulations at 40 MHz on this chip.
A prototype version of this chip fabricated using 2um CMOS process works
at a frequency of 20 MHz [15].

4.2 Predictor Processor

We partitioned the predictor processor into different submodules for ease of

implementation.

1. Front end processor. 1t consists of a pipelined subtractor with skewing
and deskewing elements. This module contains 1,650 transistors on a
1.3mm x 1.3mm die using 1.2um technology. Figure 14 shows a plot
of this chip. A prototype version of this chip using 2um technology
worked at 20 MHz.

2. Controller and Buffer. It includes a pipelined adder with skewing and
deskewing elements, the control circuit and the buffer unit. This mod-
ule contains 4,000 transistors on a 2.8mm X 4.1mm chip using 1.2um
technology. Figure 15 shows a plot of this chip. A prototype version of
this chip fabricated using 2um process worked at 20 MHz.

3. Predictor. 1t consists of the Linear Predictor Module (LPM). This

module contains 36,000 transistors on a 4.7mm X 5.5mm die. Figure 16
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Figure 15: Plot of the controller of size 2.8mm x 4.1mm.
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shows a plot of this chip. A prototype version of this chip fabricated
using 2pum process worked at 20 MHz.

5 Discussion

A new Predictive TSVQ architecture is presented for real-time video coding
applications. Pipelined arithmetic components are used to speed up the
computation and to provide for regularity in design. This high throughput
architecture is suitable for implementing a fully pipelined real-time PTSVQ
system. This architecture has been implemented as a VLSI chip set using
1.2um CMOS technology. Identical processors are used for both the encoding
and decoding components. Spice simulations indicate correct operation at
40 MHz. For a typical real-time image processing system with 30 frames/sec
and 1024 x 1024 pixels/frame, the input pixel rate is 31.5 Mpixels/sec. This
architecture is capable of processing 40Mpixels/sec and can handle the above
case in real-time. We fabricated prototype versions of these chips using 2um
CMOS technology. These prototype chips work at 20 MHz. Our architecture

can be extended easily to handle other classes of VQ with memory such as

Trellis VQ.
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Figure 16: Plot of the predictor of size 7.9mm X 3.2mm
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