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ABSTRACT

Title of Dissertation: Some Techniques for Analysis and Design of Robust

Controls

Mario Jodorkovsky, Doctor of Philosophy, 1991

Thesis directed by: William S. Levine, Professor

Department of Electrical Engineering

In this thesis we consider issues concerning the robustness of linear time in-
variant systems. We first attempt to gain a better understanding of some of
the problems involved in the robustness assessment of multivariable systems by
analyzing them on a loop by loop basis. Then, we assume norm bounded uncer-
tainty on individual plant elements and explore the robustness of such systems
via eigenvalue methods. We obtain results that sometimes are simpler than those
obtained using the structured singular value approach. Using spectral analysis
and some results from the theory of matrix perturbations we then develop ro-
bustness bounds. The bounds provide geometrical insight into the problem and
also generate expressions in terms of nominal closed loop maps that can be used
for analysis and design.

Another topic covered in this thesis is stability robustness in the presence of
parametric uncertainty. Here, we find a parametrization of all the compensators
that robustly stabilize the perturbed plant. The parametrization is obtained
in terms of the coprime factors of the plants corresponding to extremal values
of the uncertain parameters. Necessary and sufficient conditions for the simul-
taneous stabilizability of a continuum of plants are obtained. The results are
restricted to the single variate case and a complete analysis is carried out for a

single uncertain parameter.






Some Techniques for Analysis and Design of
Robust Controls

By

Mario Jodorkovsky

Dissertation submitted to the Faculty of The Graduate School of
The University of Maryland in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy
1991

Advisory Committee:

Professor William S. Levine, Chairman/Advisor
Professor Robert W. Newcomb

Professor Fawzi P. Emad

Associate Professor Evanghelos Zafiriou
Assistant Professor Wijesuriya P. Dayawansa






© Copyright by
Mario Jodorkovsky
1991






Acknowledgments

I would like to take this opportunity to express my sincere gratitude to my
advisor Professor William S. Levine for his guidance and help throughout the
course of this research. I also wish to acknowledge my debt to him for the

employment that allowed me to pursue my studies.

I would like to extend my thanks to the other members of my dissertation
committee Professors R. W. Newcomb, F. P. Emad, E. Zafiriou and W. P.

Dayawansa.

Last, but not least I thank my wife Marion and my children Debbie and

Ariel for their patience and understanding throughout these years.

ii






Contents

1 Introduction ....... ... iiiiiiiiiii i 1
2 Background ............. e 6
3 Robustness Fundamentals ...................... ... ... ... 31
3.1 Basic Multivariable Stability and Robustness Theorems . . . . . 31
3.2 A Loop by Loop Approach . . . . ... .. .. ... ....... 38
4 Robustness Assessment for Systems with Structured, Element
by Element Complex Uncertainty ......................cciieen... 47
4.1 Introduction . . .. .. .. ... . ... 47
4.2 Uncertainty Description . . .. .. .. ... ... ... ..... 49
4.3 The Structured Singular Value Approach . . . .. ... .. ... 51
4.4 The Maximal Spectral Radius Approach . . ... .. ... ... 59
5 A Perturbation Approach to the Development of Robustness
Bounds ... e 67
5.1 Introduction . . . . .. .. ... ... 68
5.2 Diagonalization Lemmas . . . . . ... .. .. ... ... ... 72

5.3 A Bound on the Maximal Spectral Radius Based on Matrix Norms 78

5.4 A Bound on the Maximal Spectral Radius Based on Spectral
Analysis
5.5 A Practical Application of the Robustness Bound . . ... ... 105

il



6 A Parametrization of all Stabilizing Controllers for Plants with

Parametric Uncertainty ..............cciiiiiiiiiiiiiiiiinnenn. 126
6.1 Introduction . . . . . . . . . . ... .. oo, 126
6.2 Simultaneous Stabilization of Two Plants . . . . . . .. .. ... 130
6.3 Stabilization for All Values of the Uncertain Parameter . . . . . 137
6.4 Generalization to Several Unknown Parameters .. .. .. ... 139
6.5 Geometry of the Closed Loop Maps . . . . .. ... .. ..... 140
6.6 Application Example . . . . .. ... ... 0L 141
7 Summary and Suggestions for Further Research .............. 147
Bibliography ............ . e 150

v



CHAPTER

ONE
INTRODUCTION

The issue of robust control has been extensively studied during the last
two decades. Although the need for mantaining performance in the face of model
uncertainty has long been recognized (and as a matter of fact motivated H.S.
Black’s patent in 1927), most studies prior to 1972 concentrated on single-input-
single-output systems. It soon became clear that, with the exception of a few
very special cases, classical robustness measures for SISO systems cannot be
readily applied to the MIMO case. Many techniques for determining robustness
of MIMO systems have been and continue to be proposed. These range from
Lyapunov based techniques through the recently discovered methods based on
Kharitonov’s theorem. This thesis will mainly be concerned with robustness
measures related to the singular value and the structured singular value.

To cope with structured uncertainty and skewed specifications the singular value
approach requires the use of weighting matrices. When these matrices are used,
the singular value provides only sufficient conditions for robust performance.
Moreover, these sufficient conditions may be extremely conservative. The struc-
tured singular value solves this problem by providing necessary and sufficient
conditions for robust stability and performance. However, with the exception

of a few cases, it cannot be exactly computed. Thus, in practice, only sufficient

conditions are available.



The use of weighting matrices in the singular value approach to account for
uncertainty and performance structure and the computational complexity of the
structured singular value, hinders the capability of the designer to develop the
insight and heuristics required in performance specification, preliminary design,
testing and troubleshooting analysis stages. Insight and heuristics are funda-
mental for a first assessment of design tradeoffs and inherent system limitations.
It is also not unusual that the designer needs to modify specifications and there-
fore fast redesigns are required. The use of pure analytical methods is better
suited for final design stages and is generally done within optimization frame-
works. There is a clear need for simpler, even if less rigorous and precise methods
for analysis and design of robust multivariable systems.

Motivated by these arguments we try in this thesis to analyze the robustness
of multivariable systems in a more intuitive framework. We do this by tackling
the problem from a viewpoint that resembles the scalar, classical approach. In
the first part of the thesis we attempt to obtain a better understanding of the
multivariable robustness issue and to develop a robustness bound which pro-
vides insight into the system. To do this we first try to analyze robustness on
a loop by loop basis. We find that, although such an analysis cannot provide
a complete robustness assessment, it partially explains the inadequacy of clas-
sical robustness tests and the potential lack of robustness properties of design
methods based on diagonal dominance. Moreover the approach helps in un-
derstanding the way that singular values act to assess robustness. Then, we
consider a simple, albeit practical uncertainty representation. We assume that
the model of each individual element of the plant transfer matrix can be uncer-
tain. The individual uncertainties are of the unknown but bounded type. With
this uncertainty representation a simple robustness theorem can be proved and a
partial characterization of the uncertainty which determines the system stability
margin can be obtained. It turns out that this characterization is equivalent to
a known result of the structured singular value. However our approach allows

us to obtain the result in a simpler and more intuitive way.



The main idea behind the development of the robustness bounds is to study the
decrease of the system stability margin each time a new uncertainty is added to
the system. This allows us to detect combinations of uncertainties which most
affect the stability of the system. This recursive approach provides us with a
series of necessary conditions for the bound to be less than the limit allowed
by stability considerations. The approach leads naturally to the use of some re-
sults from the theory of matrix perturbations. A first bound is developed using
only matrix norms. This bound proves to be impractical. However, when the
spectral norm is used it provides a geometrical interpretation which may help in
understanding some problems. A second and more practical bound is developed
using spectral analysis. For certain uncertainty structures this bound allows us
to obtain expressions involving only individual closed loop maps that provide
indications on how these maps should be altered to reduce the robustness bound.

In the second part of this thesis we deal with another aspect of robust control:
Design and analysis in the face of parametric uncertainty. Here, we assume that
the values of some coefficients of the numerator or denominator of a rational
SISO transfer function are only known to lie in some finite, given intervals. The
goal is then to find a parametrization of all stabilizing controllers for this infinite
family of plants. The main motivation for obtaining such a parametrization is
that after stability is guaranteed, the designer can concentrate upon choosing a
controller to meet performance requirements. Some optimal control procedures
such as the Hy and the H,, methods are based on the this parametrization. More-
over, since the parametrization produces all the stabilizing controllers, analysis
of the limiting performance bounds of the system is possible. To tackle this prob-
lem we use the fractional approach. Using coprime factorizations of the plants
corresponding to the extremal values of the uncertain coefficients we first verify
whether the plants are simultaneously stabilizable. Then we find conditions on
the controller parameter which are required for the simultaneous stabilizabil-
ity of the plants. Finally, we obtain necessary and sufficient conditions on the

controller parameter for simultaneous stabilizability of the continuum of plants.



The contributions of this work can be summarized as follows;

1. An improved loop by loop test for robustness assessment of multivariable

systems is proposed.

2. A theorem providing necessary and sufficient conditions for robust stability

is proven.

3. A theorem which partially characterizes perturbations for the computation

of the stability margin is proven.
4. Two robustness bounds are developed.

5. A parametrization of all the compensators that simultaneously stabilize a

continuum of plants is obtained.

The thesis is organized as follows: In Chapter 2 we describe in some detail
the motivations for the development of robustness measures in the frequency do-
main. We mainly concentrate on the eigenvalue, singular value and structured
singular value approaches. In Chapter 3 we present some fundamental stability
and robustness theorems which show how the combination of the Multivariable
Nyquist Theorem and homotopy arguments leads to the use of singular val-
ues for robustness assessment. In the same chapter, we present the loop by
loop approach and a theorem that specifies the minimal amount of frequency
responses that are required to be carried out in a multivariable system for ro-
bustness assessment. In Chapter 4 we discuss some aspects of the element by
element uncertainty representation and then devote the rest of the chapter to
two theorems. The first theorem deals with stability robustness. The second
one characterizes the uncertainty for the calculation of the stability margin. The
theorems are presented in two versions to allow comparison. The structured sin-
gular value version and the maximal spectral radius one. Chapter 5 deals with
the development of robustness bounds. First the bound based on matrix norms

is developed and its geometrical interpretation is presented. Then, the bound
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based on spectral analysis is developed and various lemmas are proved to show
how the bound can be used for rapid robustness assessment. Finally, to illus-
trate the use of the second bound, the robustness at a single frequency of a
loop designed to control the longitudinal dynamics of an airplane is analyzed.
Chapter 6 is entirely devoted to the parametrization of all stabilizing controllers
for plants with parametric uncertainty. The chapter also includes a literature

review and an illustrative example.



CHAPTER

TWO
BACKGROUND

Linear time invariant (LTI) models are undoubtedly the most common
mathematical descriptions of systems used for control analysis and synthesis.
Indeed, small signal analyses of physical systems usually lead to models that
are essentially linear. Moreover, many of these models have parameters whose
rate of change is negligible compared to the bandwidth of the controlled (closed
loop) system. Thus, the system can also be considered to be time invariant, at
least for purposes of controller design.

Inherent to any mathematical description of physical systems and inciden-
tally one of the main reasons for the use of feedback controls, is model uncer-
tainty. Model uncertainty in the framework of LTI systems can be attributed
to parameter variations, aggregation or inability to measure accurately. Feed-
back is often used to balance among several, and possibly conflicting, system
performance requirements in the face of model uncertainty. The extent to which
feedback achieves performance is limited by the change in the system structure
resulting from the application of this particular control scheme. Feedback in-
troduces sensor dynamics and noise and affects the system stability. The real
problem in feedback control is then to mantain stability and performance in the
face of model uncertainty. While for systems with mild performance require-

ments it may be easy to meet the specifications for the entire uncertainty range,



it is often impossible to satisfy high performance specifications with conservative
control designs.

Robustness is a widely used term to express the capability of a system to
maintain stability under model uncertainty. Classical robustness measures for
single input-single output systems are the well known gain and phase margins.
These margins have also been extensively used as performance indicators due
to the close relationship between stability margin, bandwidth, and dynamic
response (see e.g. [1]). Their acceptance has been so wide that they are usually
incorporated into the specifications of control systems [2]. Still, their strict
extension to multivariable systems is possible exclusively on a loop by loop
basis. This assertion can be made clear by attempting to derive the definitions
of gain and phase margin in a multivariable setting. This is done below following
[3] with the addition of homotopy and continuity considerations as in [2].

Consider the nxn open loop perturbed transfer function matrix,
G(s) = G(s)I + A(s)] (2.1)

where G/(s) is the nominal (unperturbed) transfer function matrix and A(s) is
a dimensionally compatible right multiplicative perturbation matrix.

It is assumed that the perturbed transfer matrix G(s) is stabilizable and de-
tectable, and that the nominal closed loop system obtained by closing a unity
gain feedback loop around G(s) is stable.

Subject to the stabilizability and detectability assumptions, the closed loop per-
turbed system is unstable if and only if there exists a complex frequency s* with

Re(s*) > 0 such that,
det{I + G(s*)} = det{I + G(s*)[I + A(s")]} = 0 (2.2)
Now consider the homotopy G : €™"x[0, 1]—C™" between G(s) and G(s)
defined by,
Ci(s,0) = Gls)[1 + e(s)] (23)
Since the roots of a polynomial are continuous functions of its coefficients and

the nominal closed loop system is stable (i.e., all the roots of det[I + G(s)] =0
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are in the open left half plane) it follows from (2.2) and (2.3) that there exists

a real frequency w* and an ¢* in [0, 1] such that,
det{I + G(juw*, €*)} = det{I + G(*)[I + €A(w")]} =0 (2.4)

But the fact that the closed loop nominal system is stable implies that [ +

G(yw*)] is invertible. Therefore (2.4) amounts to the condition,
det{I +[I + G(w")] 'G(yw")e* A(3w*)} = 0 (2.5)

Denoting the nominal closed loop map by Q(s) = [I + G(s)]"'G(s) and the
contracted perturbation by A(s) = €*A(s), condition (2.5) is equivalent to the

existence of an n-vector z # 0 satisfying,

QUuw)A(w")z = —2 (2.6)

Similar results are obtained for other representations of uncertainties (additive,
inverse multiplicative etc.), the only difference being that the closed loop map
@(s) changes.

For SISO systems Q(s) and A(s) are scalars and (2.6) reduces to,

~

A(w*) = —Q7(jw") (2.7)

The definition of gain margin considers real perturbations of the form A(s) =

k—1, k € R so that condition (2.7) amounts to,
k=1-Q7 (") = -G (") (2.8)

i.e., the gain margins are the least £ > 1 and the largest £ <1 for which there
exists a frequency w* satisfying (2.8).

Similarly, considering perturbations of the form A(s) = e™ —1 in (2.7), the
phase margins are defined as the least 0 < § < 180° and the largest —180° <
6 < 0 satisfying,

e = 1= QN (jwr) = —G7 () (2.9)

for some w* in IR.



Expression (2.7) says that the size of the critical perturbation is inversely
proportional to the closed loop transfer function. For this reason, it is a common
practice in control design to roll-off the frequency response characteristics at high

frequencies where the system model is less certain.

From expression (2.6), the difficulties associated with the multivariable gen-
eralization of gain and phase margins are apparent. For each nonzero vector in
the n-dimensional space there may exist disturbances and real frequencies for
which (2.6) is satisfied.

Condition (2.6) reduces to (2.7) when the perturbation matrix has a single
nonzero element, in which case the relevant eigenvector  is an elementary vector
with a 1 in the row corresponding to the column of the nonzero element of A(s)

and zeros everywhere else.

The simplest loop by loop extension of gain and phase margins to multi-
variable systems [4] considers each feedback loop separately. By opening one
feedback loop at a time while keeping the remaining loops closed, the gain and
phase margins are determined for each resulting scalar system. The method is
very appealing from the practical point of view because of its simplicity. How-
ever it suffers from a serious drawback. No simultaneous loop gain or phase
variations are considered. We will present later a well known example of a sys-
tem that exhibits large margins to individual loop gain variations but becomes
unstable for small simultaneous gain variations.

A more advanced stability margin definition, the Diagonal' Multiloop Gain
and Phase Margins [4, 5], can be given by considering Figure 2.1. The diagonal
multiloop gain margin is defined as the pair of real numbers (I,[) defining the
largest interval for which the system in Figure 2.1 is stable for all combinations
of gains satisfying,

I<L<l i=1,2,---,m

1The original definition does not include the word diagonal. It has been added here to
emphasize that it is not a satisfactory definition of MIMO margins.
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Figure 2.1: Configuration for Diagonal Multiloop Gain and Phase Margin
Definition

The diagonal multiloop phase margin is defined anagously.

The diagonal multiloop gain and phase margin definition takes into account
simultaneous gain or phase variations. However only the restricted class of
diagonal uncertainties is considered. We will show later an example of a closed
loop system featuring large margins to diagonal loop variations but arbitrarily
small margins to nondiagonal gain variations.

The above methods for measuring multivariable stability margins are easy
to implement but, obviously, inadequate robustness tests. Such a test still has
practical utility because it will reject many plausible designs that are not robust.
The fact that designs that appear robust by these tests may not be robust
applies to the classical SISO test as well. It turns out that theoretical robustness
assessment based on the Multivariable Nyquist Theorem [6] also fails to check
all possible directions as required by expression (2.6). For these reasons, control
designs based on extensions of scalar techniques such as loop by loop methods
(e.g. see [7]) or the multivariable Nyquist criterion (e.g. the Inverse Nyquist
method [6], the Characteristic Loci method [8], etc.) have been criticized [9, 10,
2, 11] for lacking robustness properties.

Very simple multivariable systems can be devised to illustrate the difficulties

10



in assessing robustness by the aforementioned methods. Consider first an exam-
ple taken from [9] which consists of a system with open loop transfer function

given by,
~100 10(s+1
Gls) = | (s+1) (2.10)
s*+100 | _10(s+1) s—100

The closed loop configuration is depicted in Figure 2.2.

Figure 2.2: Configuration of Doyle’s Example

The open loop poles are at 107 and the closed loop exhibits two poles at —1.
The transfer function between z; and y; with the first loop open is 1/s. The
same open loop transfer function is obtained from 2, to y, when the second
loop is open and the first is closed. The loop by loop stability margins amount
then to infinite (positive) gain margin and 90° phase margin, suggesting a highly
robust system. However it turns out that these figures are misleading. For a

diagonal multiplicative model perturbation L(s) of the form,

ky 0
0 &

L(s) =

the stability regions in the (ki, k2) plane depicted in Figure 2.3 are obtained.
Thus, a small simultaneous variation of the gain in both loops yields instability.
Obviously the multiloop gain margin ideas would capture this lack of robustness.

The inadequacy of the diagonal multiloop gain margin can be illustrated by

11
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Figure 2.3: Stability Regions in the Gain Plane

an example borrowed from [2]. Consider the open loop transfer matrix,

1 1 b2
——8-{-—1 0 1

(2.11)

The characteristic equation of this system is independent of the off-diagonal term
bi2/(s + 1) therefore the multiloop stability margins correspond to two highly
robust decoupled scalar systems. Consider now a non-diagonal perturbation as

shown in Figure 2.4. The perturbed open loop transfer function matrix is given

by,
) 4 b
G(s) = ! 12 (2.12)
s+1\ —5/b, 1

The characteristic equation of the perturbed system does not depend on b, as
before. However a unity gain feedback applied from each output to its corre-
sponding input yields instability. If b,; is large, in which case the unperturbed
system (2.11) is poorly-conditioned, a small perturbation suffices to destabilize
the system. This small stability margin to non-diagonal model perturbations

can neither be detected by the simple loop by loop stability margin test nor

12
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Figure 2.4: Configuration of Lehtomaki’s Example
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by the diagonal multiloop margin test. An analysis based on the Multivariable
Nyquist Criterion will consider the value of the determinant of the return dif-
ference matrix I + G(s) at each frequency along a Nyquist contour. This value
is 1/(s +1)* and is independent of b;;. When evaluated at low frequencies a
value near 1 is obtained. However if the return difference matrix evaluated at

low frequencies (say, s = 0) operates upon the vector z = (1, e)' it yields,

1 b 1 14 bige
[T + G(0)]z = 1 = ' (2.13)
0 1 € €
showing that for large by5, a small € renders I + G(0) almost singular. This
means by (2.6) that a small low frequency error perturbation suffices to cause

closed loop instability and that the direction (1, e)T remained undetected by the

robustness tests based on extensions of scalar techniques.

From the above examples it seems that the fundamental problem of assessing
robustness by extensions of scalar methods is that they rely on the eigenvalues
of the open loop transfer function matrix or equivalently, on the determinant of
the return difference matrix as measures for rank determination and robustness.
Since matrices may not be well conditioned with respect to eigenvalue compu-
tations, eigenvalues are not reliable measures of the distance of a matrix from

singularity [12, 13].

One possible approach to improve the eigenvalue based methods for robust-
ness assessment is to use classical sensitivity theory. Sensitivity theory would
consider not only the magnitude of the eigenvalues as stability measures but also
the magnitude of their derivatives with respect to system parameters. However,
the use of derivatives involves only infinitesimal variations in the model param-
eters. Therefore sensitivity theory is not necessarily meaningful for finite model

variations.

Another approach is to use matrix norms instead of eigenvalues as measures

of stability margins. An explicit characterization of robustness of LTI systems

14



using matrix norms was developed by Doyle [9]. Doyle, perhaps inspired by
fundamental results from the field of numerical linear algebra concerning nu-
merical stability of matrix inversion, used the spectral norm or more generally
the singular value decomposition (SVD). Sandell [14] generalized Doyle’s results
using operator theory in a system input-output stability framework.
An excellent review of the use the SVD in the context of numerical computation
in linear algebra and linear systems appears in [13].

The use of matrix norms as robustness measures arises naturally from the
fact that the spectral radius is a lower bound on any matrix norm [12]. Le., if

A is any complex square matrix then,
p(4) < |4 (2.14)

where p(-) denotes the spectral radius and || - || a matrix norm.
Consider again the perturbed transfer function matrix (2.1) and assume that

G(s) is invertible. Then, expression (2.4) can be rewriten as,

0 = det{I + Gw*)[I + e*A(yw*)]} = det[G(yw*)|det[I + G~ (jw*) + €*A(yw*)]

(2.15)
and therefore condition (2.5) can be replaced by,
det{I + [I + G (jw*)] e AQw*)} = 0 (2.16)
Suppose now that for all w,
p{lI + G (w)] " A(w)} < 1 (2.17)

then, there exists no € < 1 and no w* such that expression (2.16) is satisfied.
Thus (2.17) is a sufficient condition for closed loop stability.
By (2.14) a sufficient condition for (2.17) to be satisfied is that for all w,

1T+ G () AQ)l| < 1 (2.18)

For normg that enjoy the submultiplicative property such as induced norms

or the Frobenius norm /tr(A*A) (also referred to as the Schur norm, or the

15



Hilbert-Schmidt norm), an allowable upper bound on ||A(jw)|| that insures ro-
bust stability can be obtained by restricting the value of an upper bound on

expression (2.18),
I+ G ) AWl <1 Ve (2.19)
Specializing to the spectral norm, one obtains Doyle’s result,
FlAGW)] < gl + G ()] Vw (2.20)

where 7(-) and g(-) denote the maximal and minimal singular values respectively.

It is worth noting that when the uncertainty under consideration is of the
unstructured type [10] i.e., when the uncertainty description consists solely of a

(frequency dependent) upper bound on its norm,
[AGw)]| £ 8(w)  Vw (2.21)

with 6(yw) > 0 a scalar function, then the sufficient condition (2.17) is also
necessary. This follows from the fact that if condition (2.17) is violated then
there always exists an uncertainty matrix in the class defined by (2.21) for which

expression (2.16) holds.

The choice of the SVD for robustness analysis is not incidental. As empha-
sized in [13], the SVD is the only generally reliable method to determine rank
numerically. The norm of the inverse of a matrix is a reasonable measure of
nearness to singularity for square, invertible matrices. For nonsquare matrices,
norms cannot be used to determine how close the matrix is to rank deficiency
without some further complications. The smallest singular value works for any
case.

The SVD also provides qualitative and quantitative information about linear
maps. For instance, the SVD is used for the description of certain subspaces
associated with the maps and for defining angles between the subspaces [13]. It
1s also used to describe the internal structure of linear maps in terms of input-

output gains and directions [15].
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There are other reasons for using the SVD as a measure of the "size” of
a matrix besides its computational convenience. As mentioned in [9] and de-
veloped in full detail in [10, 15, 16, 3], the SVD provides a suitable notion of
multivariable gain. This can be used for defining general feedback properties of
multivariable systems as natural extensions of the scalar case. These feedback
properties consist not only of stability margins but also of other performance
measures such as sensitivity, disturbance rejection, etc..

If G(s) is an nxm transfer function matrix relating the m-dimensional input

vector u(s) to the n-dimensional output vector y(s) through,

y(s) = G(s)u(s) (2.22)

then the ratio of the I, (Euclidean)-norm of the output vector y(s) to the l—

norm of the input vector u(s) at the complex frequency s is given by,

ly(s)lly _ [u ()G ()G(s)u(s) 3
llu(s)ll, uf (s)u(s)

where AH(s) denotes the Hermitian transpose of the matrix A(s) (i.e., A¥(s) =

(2.23)

AT(3), where 3 is the complex conjugate of s).

It turns out that,

alGo)) <[22 < i) (2:24)

which, when evaluated at s = jw, means that the ratio between the output and
input signal power at this frequency is bounded by the minimal and maximal
singular value of the operator respectively.

The maximal and minimal singular values of G(s) are therefore used as multi-
variable gains and performance trade off analysis and synthesis in the face of
model uncertainty can be carried out in a multivariable setting [10] by means of
an upper (maximal singular value of (G(s)) and lower (minimal singular value of
G(s)) gain.

Notice also that esssup,, &[G(s)] is the norm corresponding to the Hardy space
H,,, widely used in modern robust control theory. One of the physical interpre-

tations of this norm is that it is the largest rms value of the output when the

17



input power is bounded by one.

Using singular values as measures of matrix gain enables formulating system

performance specifications in the form,
Flw(w)S(w)] < 1 (2.25)

where S(jw) is a closed loop sensitivity function reflecting the ability of the
system to track signals, reject disturbances etc., and w(jw) is a (frequency de-
pendent ) scalar weighting factor whose inverse determines a desired upper bound
on the norm of the sensitivity function. For instance, if one of the system per-
formance specifications refers to plant output disturbance attenuation, then the
relevant sensitivity function would be S(s) = [I + G(s)]™" and (2.25) may be
expressed as g[l + G(jw)] > |w(jw)|.

From now on, and for simplicity of exposition, we consider only the sensitivity
function corresponding to plant output disturbance rejection.

Remembering that the closed loop map Q(s) = [T+ G(s)]7'G(s) and assum-
ing that the uncertainty description is given by (2.21), then by (2.18) we obtain
that,

FQ(w)A(w)] < 1 VwelR (2.26)

is a necessary and sufficient condition for robust stability.

Control design however is concerned not only with maintaining stability but
also with maintaining performance in the face of model uncertainty. Thus, a
good design achieves performance robustness as well as stability robustness.
Following Stein and Doyle [17] we have that robust performance is attained if

(2.25) is satisfied for the entire family of perturbed transfer matrices (2.1) i.e.
i,
F{w(w)[I + G(w)) ™} = F{w(w)[I + G(w)(I + A(w))] '} =
F{[I + QUuw)A(w)] " 'w(yw) S (w)} < 1 (2.27)
Since by (2.26) 7[Q(jw)A(jw)] < 1 then,
[l + Q) A(w)] " w(jw)S(jw)} <
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alw(jw)S(w)T{[I + QUw)A(w)] '} =
olw(w)S(w)] . _3lw(w)S(w)]
all + Q(u)A(w)] ~ 1 -3[Q(w)A(w)]

and by (2.27) and (2.28) we obtain that a sufficient condition for robust perfor-

(2.28)

mance is that,

alw(w)S(w)] <1 -7(Q(w)A(w)] (2.29)
which means that the nominal performance specification (2.25) must be tight-
ened up to account for uncertainty in the model.
Suppose now that for some frequency w a singular value decomposition of the
closed loop map is given by Q = ULV with U and V unitary and ¥ a diago-
nal matrix containing the singular values of (). Also consider the perturbation

matrix A = —aVU#H with 0 < o < 6. Then, A satisfies (2.21) and moreover,

Fl(I+QA) =71 — aUTUM) =F[U( - aX)U"] =
1-ag(Q)=1-2(QA) (2.30)

Now, if (2.27) is satisfied then,

F(wS) = (I + QA)I + QA)"'wS] <
(I + QA)YF((I + QA) 'wS] <F(I + QA) (2.31)

and by (2.30) and (2.31) we obtain that a necessary condition for robust perfor-

mance is that,
alw(iw)S(w)] < 1 = a[Q(w)A(w)] (2.32)
The sufficient and necessary conditions for robust performance (2.29) and
(2.32) respectively coalesce into a single condition for SISO systems and for

MIMO systems whose closed loop map Q(jw) is spacially round for all frequen-

cies. Spacially round maps are defined as maps satisfying,

_TQ(w)]
“OU) = Zotey = !

Despite the nice properties of the singular values and in general the relia-

(2.33)

bility of some matrix norms as measures of the distance of an operator from
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rank deficiency, it must be clear that conceptually their application results in
ignoring many aspects of multivariable systems. A single number at each fre-
quency is used to characterize a matrix (see expressions (2.19) and (2.21)) and
as such it cannot fully reflect the structural properties of multivariable systems.
Moreover, defining performance specifications as in (2.25) does not allow the in-
clusion of spatial direction information regarding errors, external disturbances,
commands, etc.. This may give rise to a high degree of conservatism since sta-
bility conditions or other performance measures derived by this method apply
equally to a large family of radically different systems. Moreover, performance
conditions are restricted to apply equally in all directions.

One way to alleviate this problem [17] is to incorporate structure and direc-
tionality information into the system by means of weighting matrices. Instead
of the description (2.1) of the perturbed open loop transfer function matrix, a

generalized unstructured right multiplicative perturbation is used yielding,
G(s) = G(s)lI + W' (s)A(s)Wi(s)] (2.34)

where W, and W, are stable and minimum phase operators, invertible at almost
every complex frequency s, and A has norm less than unity.
Weighting matrices are also incorporated into the performance specifications.

Thus, instead of (2.27) the generalized performance objective is,
H{We ()l + GO T Wi ()} <1 Yw (2.35)

where W, and W, are also stable, minimum phase and invertible matrices.
With the generalized uncertainty description (2.34) and performance index (2.35)

a necessary and sufficient condition for robust stability is given by,
AW, (w)QUw)W, (jw)] <1 Vw (2-36)
Moreover since,
W+ GI7'Wit = WoT + G + Wi AW 'Wit =
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WA+ O+ + G 'GW AW}t =
W (I + QW' AW,) 1 SW;t =
(W, W) I+ (W, QWA (W W )(WeSWi)

then, in contrast with (2.29) a sufficient condition for robust performance is,

1 — G[W, (w)Q(w) W (yw)]

TIWe(3) S()Wa™ ()] < —— e S o)

(2.37)

It turns out that expression (2.37) is the least conservative sufficient condition
for robust performance which can be established via singular values. This results
from the fact that the tightest possible singular value bound on W,[I+G]"'W;*
for all unity norm bounded A is &[W,SW;x[W,W:1]/(1 — a[W,QW,']). For
some design situations (2.36) becomes a necessary condition as well.

Whenever the system specifications are not spacially round the condition num-
ber k[W,W; '] may be large and consequently the bound (2.37) will be small.
Thus for some skewed design specifications, much tighter (often unachievable)
nominal performance is required to assure robust performance. Since (2.37)
is the tightest bound that can be produced using singular values we conclude
that the use of singular values may lead to very conservative designs even when
weights are incorporated into the design parameters and objectives to account

for perturbation structure and performance specification directionality.

A more realistic and less conservative description of uncertainty is to assign
to each element of the plant a (possibly different) upper bound. ILe., if A,

denotes the ¢j-th element of A then the plant uncertainty description is given
by the bounds,
1A (w)| < 6ij(w) (2.38)

with 8;;(w) > 0. Alternatively, denoting by |A| the matrix A with all its elements
A;; replaced by their absolute values |A;;| and by A the matrix with elements
6;;, then (2.38) can be written as,

|A(w)] < A(w) (2.39)
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where the inequality applies element by element. This element by element or
multidimensional uncertainty description has been used in [18, 19, 20] to derive
sufficient conditions for robust stability using nonnegative and M-matrices.

A well known fact in matrix theory is that the spectral radius of a square matrix

A is given by,

p(A) = lim [|AF|M/* (2.40)
where || - || is any submultiplicative matrix norm (see e.g. [12]). Also, by the
definition of the spectral norm || - ||, we have that,

Al < |B] = [|All. < [| Bl (2.41)

for any complex matrices A and B of the same dimensions. Moreover, since ||-||2

is an absolute norm then,

All2 = [l Alll2 (2.42)

Thus, if |A| < B we obtain by (2.41) and (2.42) that,
LA™ 3™ < A1 < (1B (2.43)
Letting m — oo in (2.43) we obtain by (2.40),
p(A) < p(lA]) < p(B) (2.44)
From (2.44) it follows that,
PlQ(Uw)AGW)] < p[|QUW)A(W)I] £ plIQ(u)IAGW)] = plIQ(w)IA]  (2.45)
Then if Q = (I + G™")™" the condition,

pllQUW)IA] <1 (2.46)

is by (2.17) sufficient for insuring stability. Since the matrix [Q(jw)|A is noneg-
ative, then p[|Q(yw)|A] is its Perron root, which enjoys many computational
advantages. Using M-matrices and taking advantage of their numerous equiva-

lent characterizations [21] other sufficient conditions can be derived [18].
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Condition (2.46) may be extremely conservative as well. However due to
the uncertainty description (2.39) upon which it is based it generally yields less

conservative results than the singular value approach [19].

The use of different matrix norms and matrix measures to reduce conser-
vatism was investigated by Barrett [22]. In this work, a hierarchy of robustness
tests which utilize more and more information about the uncertainty is defined.
Weighted norms based on equivalent transformations are also used to further
reduce conservatism. However no systematic method for choosing the weights

and the norms is provided.

The work by Lehtomaki et al. [23, 24] introduces various possible structures
for the modeling error matrix and also incorporates partial structure knowledge
into the stability conditions. This is done by means of robustness tests which

rule out uncertainty directions which are known not to occur.

The introduction of completely structured uncertainty into robustness tests
based on singular values is first found in the works of Safonov [25] and Doyle
[26]. The starting and fundamental point of their work is, as already used in
an earlier work by Safonov and Athans [27] in the context of LQG, the trans-
formation of the plant with structured uncertainty into one characterized by a
(block) diagonal uncertainty structure. This particular structure enables many
algebraic manipulations (for example, matrices with the same block diagonal
structure always commute). Once the system has a block diagonal uncertainty
structure, robustness measures based on the multivariable Nyquist necessary and
sufficient condition are defined. By definition, the robustness measures provide
necessary and sufficient conditions for robust stability. The ease of algebraic
manipulation coupled with the assumption of complex uncertainty provide the
robustness measures with several properties that are eventually used to aid in

their computation.

A simple procedure to bring the system to a block diagonal uncertainty form

is reported in [28]. Assuming for simplicity that the uncertainties are of the
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additive type only, with the matrix A; denoting the uncertainty in the transfer
matrix Py, the procedure consists of deriving all the transfer function matrices
M;; defined by the relationship r; = M;;z;, where z; is a vector of signals injected
at the output of P; and r; is the vector of signals measured at the input of F;.
The transfer function matrices are computed with all the loops closed and with
no uncertainties. The loop signals used for the determination of M;; are depicted

in Figure 2.5 where the transfer matrices P; and P; are shown explicitly. The

Rest of unperturbed system

T; R

Y

Unperturbed closed
loop system

Figure 2.5: Determination of the matrices M,;

matrix M = {M;;} represents all the interactions of the feedback loop with its
uncertainties and the equivalent system representation exhibits a block diagonal
uncertainty structure Ay = diag[Aq, Aa, ..., Ay] as depicted in Figure 2.6.
When the element by element type of uncertainty is considered, a more
formal procedure for bringing the system into diagonal uncertainty structure is

suggested by Daniel et al. [29]. The original structured, nondiagonal uncertainty
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Figure 2.6: System with Block Diagonal Uncertainty Structure

matrix A = {A;;} is written as,

T

n n2
A=Y Ajeie;T =3 A(Ex (B2 ) (2.47)
k=1

ij=1

where ¢; is the n-elementary vector with a 1 in the i-th position and zeros
everywhere else, (F;) is the k-th column of an n x n? matrix £y and (E2T)kT
is the k-th row of an n? x n matrix E;. Ay, (E;)x and (EZT);CT may be chosen
as Ap = Ayjy (B =e;and (B )y =ejfork=(G—1n+j i,7=1,2,..,n
so that,

A = ElAdEZ

with (2.48)
Ad = di(lg[Al, Ag, aesy An2]

If an element of A is zero then the corresponding dyad in the sum (2.47) is
dropped and the dimensions of E;, Ay and F, are reduced accordingly. The
transformation (2.48) can be utilized to define a new system M with diagonal
uncertainty structure A, and with the same set of nonzero eigenvalues as the
original system. To see this notice that by using (2.48), the determinant of the

return difference matrix of the original system can be written as,
det(I + QA) = det(I + QE1AgE;) = det(I + E2QFEr1Aq) (2.49)

Therefore the new system is obtained by defining M = E;QL,. Clearly the new

system may be of much larger dimension than the original one. For example
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in the extreme case where A;; # 0 for all 4,5 € [1,n] then M has dimension

n®xn-.

In [25] Safonov defines the multiloop stability margin (MSM) &, (w) for each

frequency as,
km(w) = AnreliAn{k € [0,00] : det(I — kAM) =0} (2.50)

where each uncertainty element A; € A belongs to a certain domain D;.
According to the definition (2.50) of the MSM, robustness is assured if and only
if (1/km)A,.,... € Di Viand Vw. If the uncertainty elements are norm bounded,
suitable (frequency dependent) scaling matrices can be used to normalize the
bounds. Since these matrices can be absorbed into the interconnection structure
M then the necessary and sufficient condition for robust stability amounts to
kp(w) > 1 Vw.

In [30] an algorithm based on a mapping theorem by Zadeh and Desoer [31] is
proposed for the exact computation of the MSM for the case of real domains

D;e R =1,2,...,n. The algorithm can also be used for certain types of

complex uncertainties.

In [26], Doyle defines the 2n-tuple of positive integers,

K= (ml,mz,...,mn, 117127---7171,) (251)
and also the integer,
N =) mjl (2.52)
J=1

to describe the structure of the block diagonal uncertainty matrix. If M({)
denotes the algebra of complex I x [ matrices then the block uncertainty matrix
with structure corresponding to K in (2.51) is given by,

mi mQ Mmn
Ad(6) = {diag(Ay, A1, ..., A1, Doy Agy oy Agy ooy A1, Ay Ay oy )
t A; € M(L;) and F(A;) £ 86 foreach j=1,2,...,n} (2.53)
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With the above notation Doyle defines the structured singular value (SSV)

0 if no A € Ay(oo) solves det(l + MA) =
wM) =

(minAeAd(oo){'a‘(A) : det(I+ MA) = 0})_1 otherwise
(2.54)

or equivalently, u(M) is the positive real number such that,

det(I+ MA)#0 VA € Ay6)
if and only if (2.55)
S(Mp <1
Notice that the definition of the SSV makes u a function of K. Thus, in this
thesis, Doyle’s definition will be used with the notation ux(M).

Assuming as in the MSM case above that the perturbations are normalized, then

by (2.55) robust stability is attained if and only if,
sup uc(M) < 1 (2.56)

For the same uncertainty structure, the MSM and the SSV represent equiv-

alent robustness measures and they are related by,
(M) = k™ (M) (2.57)

It is readily verified from (2.53) that in the extremal cases wheren =1, [; =1
and n =1, my = 1 then, ux(M) = p(M) and px(M) = (M) respectively.
The definition of the SSV does not provide means for its computation. Moreover,
except for a few special cases there exists no method for the exact computation
of ux(M). Bounds were developed to compute it. From the definition (2.54)

the following bounds are implied,
p(M) < pc(M) <7 (M) (2.58)

However the gap between the bounds (2.58) may be arbitrarily large. Better

bounds are obtained by defining a set I consisting of all unitary matrices U (i.e.
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UUH = UFU = I) with structure X and a set D comprising all positive real

diagonal matrices with underlying structure K i.e.,

mi mp Mn

o —X < p
U= {dlag(Ul,Ul,....,U],Uz,Uz,...,UQ,...,Un,Un,...,Un
U € O 5 U0, = Iy}
and (2.59)

D= {diag(dlfll,dglll, o sl Ity dp 11y, - -,dmnIl,,) ; d; € (0, OO)}

where I; denotes the j X j identity matrix.
With these definitions the improved bounds are given by [26],

max p(MU) < pxc(M) < inf 5(DMD™) (2.60)

A main result in [26] concerning the computation of the SSV is that the left
hand inequality in (2.60) is actually an equality. In the same paper Doyle also
proves that when there are three or fewer nonrepeated uncertainty blocks i.e.,
n < 3 and m; = 1 Vj, the right hand inequality in (2.60) is an equality as well.

More properties of p as a matrix function can be found in [26, 28, 32, 33].

Based on the interpretation of modeling errors appearing in [4] and the ability
of the SSV to deal with simultaneous, block structured uncertainties Doyle et al.
[28] suggest the introduction of fictitious uncertainties at different locations in
the loop to meet performance requirements. The addition of these uncertainties
along with stability requirements enforces performance specifications. Thus, in
contrast with the limitations of the singular value approach described earlier,
the SSV provides necessary and sufficient conditions for robust stability and for

robust performance as well.

Despite the theoretical capability of the SSV to provide a framework for
nonconservative control design, its computation is so difficult that to date it has
been rarely used.

As already reported in [26], the use of the lower bound in (2.60) for the compu-

tation of y is not convenient since the optimization problem involves nonglobal
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maxima. In [34], Fan and Tits suggest a new expression for the SSV which has
the form of a smooth optimization problem with smooth constraints. The result
of this reformulation of u is a fast lower bound procedure for its computation.
However, the algorithm does not guarantee that u is achieved. Another com-
putation scheme for lower bounds based on a power algorithm can be found in
[35].

Alternatively, as mentioned in [26], the upper bound in (2.60) could be used
for obtaining an approximation of u. The advantage of using the upper bound
is that since G(eP Me~P) is convex in D and the mapping e? — D is monotone.
Then, @(DM D) has only global minima. Some work related to the proof of
the convexity of 7(eP? Me~P) appears in [36, 32, 37]. In [26] Doyle proposed a
procedure based on descent directions to compute the upper bound and in [38]
Fan and Tits studied an alternative upper bound for p based on the generalized
numerical range.

In practice, as suggested in [39] it is desirable to use both upper and lower bounds
for p since, by computing the upper bound, it may be easier to recognize whether
the lower bound local maxima are global or not.

A nice geometric framework for the computation of g in the case of element
by element uncertainties was proposed by Kouvaritakis and Latchman [40]. In
this paper it is shown that a necessary and sufficient condition for p(MA) =
(M) (A) is that the (normalized) right and left singular vectors corresponding
to the maximal singular value of M are aligned to the left and right singular
vectors corresponding to the maximal singular value of A. In a paper by Daniel
et al. [29] it is shown that the above alignment, referred to as the major principal
direction alignment (MPDA) is attainable by similarity scaling, irrespective of
the number of uncertainty blocks, in the case where the maximal singular value
of DM D! remains distinct for all D. However it should be emphasized that
this case is not generic [34].

It is important to note that in the development of the bounds (2.58) and

(2.60) a key assumption is that the uncertainties are complex. It turns out that
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for the mized real parametric and complex uncertainty case these bounds are no
longer true. Other bounds exist for this case [41]. However their computation
is much more difficult compared to the pure complex case. The computation
of an upper bound has been studied in [41] based on the minimization of the
eigenvalues of an Hermitian matrix. In [42] a lower bound is computed by solving
a real eigenvalue maximization problem using a power algorithm.

The framework of the SSV has been further extended by incorporating phase

information into the uncertainty. Some preliminary results are reported in [43].
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CHAPTER

THREE
ROBUSTNESS FUNDAMENTALS

In this chapter we present some fundamental theorems regarding the
robustness of multivariable systems. In the first section a simple version of
the Multivariable Nyquist Theorem is stated and Lehtomaki’s Fundamental Ro-
bustness Theorem, which introduces the use of homotopies, is stated and proved.
Then, we show how these theorems lead to practical robustness tests based on
singular values. We explore a loop by loop approach for assessing robustness
of multivariable systems in the second section. The approach explains, in very
basic and intuitive terms, reasons for the inadequacy of some classical stability
margin measures and for the potential lack of robustness of synthesis methods
based on diagonal dominance. The approach also helps understand the fact that
singular value based methods provide a complete albeit potentially conservative

robustness assessment.

3.1 Basic Multivariable Stability and Robust-
ness Theorems

Consider the multivariable, linear time invariant feedback system of Fig-

ure 3.1 where P(s) = [pij(s)] is the n; X n, transfer function matrix of the plant

31



Figure 3.1: Multivariable LTI Feedback System

model and C(s) = [¢;;(s)] is the n, X n; transfer function matrix of the compen-

sator.

Let the triple (A, B, F) with A € R™™", B € R™™ and F € IR"*" be a state
space realization of the open loop transfer matrix G(s) = P(s)C(s). Le.,if L(A)
denotes the spectrum of A then, G(s) = F(sI — A)7!'B for all s € C — L(A).
The system open loop and closed loop characteristic polynomials ¢,(s) and
#a(s) respectively are given by,
Boi(8) = det(sI — A)
and (3.1)
da(s) = det(s] — A+ BF)

Using the formulas for the determinant of block matrices (see e.g. [44]) we have,

F I - det(sI — A)det[I + F(sI — A)"'B] Vse€ C— L(A)
(3.2)

dt(sl—-—A —B) {det(sI—A+BF) Vsed
€ =

Combining (3.1) and (3.2) one obtains,

det[] + G(s)] = det[I + P(s)C(s)] = Zig VseC—L(A) (3.3)

Thus, the determinant of the return difference matrix equals the ratio between

the closed loop and open loop characteristic polynomials. This result is basic for
the proof of the Multivariable Nyquist Theorem and Lehtomaki’s Fundamental

Robustness Theorem.
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To state a version of the Multivariable Nyquist Theorem we denote by
N(Q, f(s),C) the number of clockwise encirclements of the point Q by the locus
of f(s), as s traverses clockwise around the closed contour C in the complex
plane and by p the number of closed right half plane zeros of @, (s).

Let T'r be the (standard) Nyquist contour depicted in Figure 3.2. T'r encloses
all the closed right half plane zeros of ¢y(s) and avoids the imaginary zeros of

Po1(s) by identations (to the left) of radius 1/R. Then, a simple version of the

Ims

T AN

I'r

Res

Figure 3.2: The Contour I'g

Multivariable Nyquist Theorem [2, 4] can be stated as follows,

Theorem 3.1 The system of Figure 3.1 is closed loop asymptotically stable
(i.e., all the roots of ¢o(s) = 0 are in the open left half complex plane) if and
only if,

N(0,det[I + G(s)],Tr) = —p (3.4)

for all R sufficiently large. o
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As mentioned in [2, 4], Theorem 3.1 does not require any controllability or
observability assumptions to test for internal stability. This follows from the fact
that the roots under consideration are the zeros of ¢, (s) which are (A, B, F)
invariants. Notice also that, in contrast with the SISO case, the dependence of
det[I 4+ G(s)] on the compensator C(s) implicit in G(s) may not be simple, and
may not be easily depicted with a frequency plot. This makes the Multivariable
Nyquist Theorem difficult to use.

To deal with robustness consider the closed loop system of Figure 3.1 with
a perturbed plant P(s). Let (A, B, F) be a realization of the perturbed open
loop transfer matrix é(s) = C(s)P(s). Then the perturbed system open loop

and closed loop characteristic polynomials are given by,

boi(s) = det(sI — A)
and (3.5)
Ba(s) = det(sI — A + BF)

In principle, Theorem 3.1 could be applied individually to G(s) and é(s) to
test for stability of the nominal and perturbed systems. However such a test, in
addition to requiring a complete description of the model perturbation, is only
applicable to cases where the perturbations belong to a small, discrete set. More
realistic robustness tests would allow finding a whole family of perturbations
with some common characteristic, for which the closed loop system remains
stable. They would also require only a partial characterization of the model
uncertainty as in general the knowledge of the perturbation is very limited.

A theorem, fundamental for the development of realistic methods for robustness
assessment is Lehtomaki’s Fundamental Robustness Theorem [2, 4, 23, 24, 45].

The theorem uses the concept of homotopy which will be now defined.

Definitions [45]: Let f : X — Y be a function from X to Y and let § C X
be a subset of X. Then the restriction of f to S, f|S : S — Y is the function
defined by (f]|S)(z) = f(z) Vz € S.
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Let f,g: X — Y be continuous maps and let x denote the Cartesian product.
Then, a homotopy in Y between f and g is a continuous map H : X x[0,1] - Y
such that H|X x {0} = f and H|X x {1} = g¢. If such a homotopy exists, then

f and g are homotopic in Y.

Consider now the contour of Figure 3.2 and assume that a homotopy Gp :
I'r x [0,1] — C™*™ between G|I'r and é]I‘R exists. Then, Lehtomaki’s Fun-

damental Robustness Theorem is the following,

Theorem 3.2 The polynomial ch,(s) has no closed right half plane zeros and
hence the perturbed feedback system is stable if the following conditions hold,

1. ¢oi(s) and oi(s) have the same number of closed right half plane zeros.
2. If for some w, € R qzoz(]wo) =0 then ¢(jw,) = 0.
3. ¢u(s) has no closed right half plane zeros.

4. det[I+GRr(s,t)] # 0 for all (s,t) € Tr x[0,1], and all R sufficiently large.

Proof: By virtue of condition (2) and the identation construction of T'g, for any
t € [0,1] and for all R sufficiently large the contour Tz will enclose all closed
right half plane zeros of ¢,(s) and ¢,;(s). From Theorem 3.1 and condition (3)
we conclude that,

N(0,det[I + Gr(s,0)],Tg) = —p (3.6)
where p is the number of closed right half plane zeros of ¢.i(s) (and also of ¢,i(s)
by condition (1)).

Suppose now that as t is varied continuously from zero to one, the number
of encirclements N (0, det[I + Gr(s,t)],T'r) changes. Since det[I + GRr(s,t)] is
a continuous function in s and ¢ in I'g x [0, 1], its locus on I'g forms a closed

bounded contour in the complex Plane for any t € [07 1]. The only way to cha,nse
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the number of encirclements of the critical point (0,0) is for the locus to pass

through the critical point for some t € [0, 1]. That is, for some ¢, € [0, 1],
det[I + Gg(s,t,)] =0 for some s € T'p (3.7)

Condition (4 ) eliminates the possibility that det[T+Gg(s,t,)] = 0. This prevents
N(0,det[I + Ggr(s,t)],Tr) from changing as ¢ is varied from zero to one and
thus it must be true that it remains constant at —p for all {. This implies that
N(0,det[I + Gr(s,1)] = N(0, det[I +G(s)] = —p and thus by condition (1) and
Theorem 3.1, ¢(s) has no closed right half plane zeros. o

Condition (2) of Theorem 3.2 may be relaxed by employing a modified
Nyquist contour. A less restrictive version of the theorem can be found in

[45].

The idea behind Theorem 3.2 is that of continuously deforming the Nyquist
plot corresponding to G(s) into the actual system G(s) without changing the
number of encirclements of the critical point. This idea turns out to be funda-
mental to the applicability of singular values as tools for multivariable robustness
assessment. To illustrate this, consider the simple case of a system whose open
loop transfer function matrix G(s) is perturbed by stable additive model per-
turbations A(s) as depicted in Figure 3.3. In order to apply Theorem 3.2 we
first define the homotopy,

Gr(s,t) = G(s) + tA(s) (3.8)

which trivially satisfies Gr(s,0) = G(s) and Ggr(s,1) = G(s) = G(s) + A(s).
Denote by &(:) and g(-) the functions which take maximal and minimal sin-
gular values respectively. Then, a direct application of Theorem 3.2, which
leads naturally to the use of singular values as tools for multivariable robustness

assessment, is given by the following theorem [4, 23, 24, 46, 47],

Theorem 3.3 The closed loop characteristic polynomial ¢~Scl(3) of the perturbed
system of Figure 3.3 has no zeros in the closed right half plane if the following

conditions hold,
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Figure 3.3: System with Additive Model Perturbations

1. Conditions (1), (2) and (3) of Theorem 3.2 hold.

2. gl + G(s)] > F[A(s)] for all s € T'g.

Proof: From (3.8) it follows that,
I + Gg(s,t) =1+ G(s)+tA(s) (3.9)

If for some frequency s and some ¢, I + Gg(s,t) in (3.9) is rank defficient, then
there must exist an n,~vector z with ||z|| = 1 (where || - || denotes the Euclidean

norm) such that,

[l +G(s)+tA(s)]z =0 (3.10)

From (3.10), the definition of singular values, and since ¢t € [0,1] it then follows
that,

o[I+G(s)] < [T +G(s)]z]l = tA(s)e]l < HA(s)]] < [[A(s)] = TlA(s)] (3.11)
Therefore (3.11) implies that if,
all + G(s)] > 7[A(s)] forall s €Tlr (3.12)

then expression (3.9) is nonsingular for all s € I'y and all ¢ € [0,1]. Thus,

condition (4) of Theorem 3.2 is satisfied and the theorem is proven. e
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Theorem 3.3 assures stability of the closed loop system for all possible sta-
ble, additive perturbations whose norm is bounded by condition (2). It is not
difficult to see that for perturbations which have arbitrary structure (referred
to as unstructured perturbations) and that are characterized only by a bound
on their norm, the conditions of Theorem 3.3 are not just sufficient but also

necessary. This topic will be further discussed in the next chapter.

3.2 A Loop by Loop Approach

In Section 3.1 we presented three basic theorems regarding the stability and
robustness of multivariable systems. The robustness theorems assumed model
perturbations for which the open loop unperturbed and actual transfer matrices
G(s) = C(s)P(s) and G(s) = C(s)p(s) respectively are homotopic in C™*"™°.
The robustness test consisted in checking the condition det[I + Gg(s,t)] # 0 for
all (s,t) € Trx[0,1] and all R sufficiently large, where the map Gr was defined
to be a homotopy between G|T'r and G|Tz.

This section is aimed at obtaining further insight into the structure of mul-
tivariable systems, at examining some practical means to test for robustness,
and at better understanding the role of the singular values in the robustness
assessment of these systems. We will try to accomplish this by exploring the
possibility of assessing robustness on a loop by loop basis.

Throughout this section, the explicit dependence of the various maps on the
complex variable s will be dropped for notational convenience.

First, we show a compensator matrix representation which allows us to display
the loop locations where the feedback paths are to be opened for loop by loop
analysis.

Consider again the system of Figure 3.1. The closed loop map between the

input vector w and the output vector y is given by,

y =PI+ CP)'w (3.13)
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The signals at the outputs of the individual compensator elements may be dis-
played by decomposing the compensator matrix as the product of two matrices

C = Cy-C}, with Cy an (n;n,) X n; matrix of the form,

. A T oA . ) .
Ci=(Cy ... Cy,) C; = diagle;] j=1,2,---,n; ©€[l,n,)
and C; a n, X (n;n,) matrix of the form,
n; times ni times

Cy = blockdiag(T1 -+ 1, ---, 11 --- 1)

-

nino times

With this decomposition of the compensator matrix, the feedback system looks

as depicted in Figure 3.4, where the output z; of C; is the signal after the

w__ M P(s) y

Ca(s) fe 21 Ca(s)

Figure 3.4: Feedback Loop with Compensator Decomposition

component ¢;; of the compensator C(s). To illustrate this, a detailed decom-
position of C(s) for a 2 x 2 plant is shown in Figure 3.5. For this example the

corresponding matrices C; and C; are given by,

1 cn 0
212 _ 0 C12 Y —C U
= =01
221 ¢y 0 Y2 Y2
222 0 c2
1 211
T 1100 Z12 C 212
ra] \001 1) 2 | oo
222 222
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Y 212 C12 /™
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222 €9

Figure 3.5: Decomposition of Compensator Matrix
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To facilitate analysis of the system when the loop is opened after one of the

compensator elements we will use the following notation,

cmn the matrix C = [¢;;] with all its elements replaced by zeros except

the mn element.

Chu the matrix C = [¢;;] with its kI element replaced by a zero.

hi; transfer function between w; and y; with the loop open at z;;.

e; elementary column vector with a 1 in the jth place and zero everywhere
else.

T the set of all index pairs ij, ¢ € [1,ni], 7 € [1,n,).

With this notation the transfer function between the input vector component

w; and the output vector component y; when the loop is open at z;; is given by,
h,’j = 6jTP(I + C,']'P)“lei (3.14)

Recall that the stability and the robustness theorems of Section 3.1 were based
on the determinant of the return difference matrix of the system. Using ex-
pression (3.14) we can express the determinant of the system return difference
matrix in terms of transfer functions obtained when one of the loops is opened,

as shown in the following Lemma,

Lemma 3.1 For any indez pair ij € T,

det(I + CP) = (1 + cijh,'j)det(f + CijP) (3.15)
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Proof For any index pair ij € T we can write C' = C;; + C* therefore,

det(I + CP) = det(I + C;jP + CYP) =
det[I + CP(I + C;; P)~')det(I + C;; P) (3.16)

But the matrix C¥P(I + C;;P)™! has at most rank 1 and moreover can be

written as c¢;je;e;T P(I + Ci;P)~!. Therefore,

det[I + CYP(I + Cy;P)™ ] =
det[[+ c,-je,-ejTP(I + CijP)—l] =14+ C,'jejTP(] —+ C,'jP)”le,' (3.17)

and from (3.14), (3.15) and (3.17) the result follows. e

Lemma 3.1 allows us to state the following theorem which provides necessary
and sufficient conditions for loop by loop robustness analysis of multivariable

systems,

Theorem 3.4 A necessary and sufficient condition for det(I+ CP) # 0 is that
0 # |1 4 cijhij| < oo for all index pairsij € T.

Proof Necessity follows directly from Lemma 3.1. To prove sufficiency suppose
0 # |1 + cijhij| < oo for all pairs ij € 7, and det(I + CP) = 0. By Lemma 3.1
this implies that det(I 4+ C;; P) = 0 for all pairs 5 € 7.

It is simpler to show contradiction in the above hypothesis by using Mason’s
rule for the loop transmittance. Recall (see e.g. [1]) that by Mason’s rule the
transfer function 7 between an input-output pair is given by,

_ > TeAg

T'==x

(3.18)

where,
Tr is the transmittance of the k-th forward path between the input and the
output,
A is the graph determinant given by A = 1 — 30 + Sl — - -+, with § the

product of the transmittances of ¢ nontouching loops and,
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Ay is the cofactor of T i.e., the determinant of the remaining subgraph when

the path which produces T} is removed.

Now consider an index pair ¢j € T and the transfer function T' = h;;. Notice
that A = det(I + Cy;P). Assuming c;; < oo, in order for |1 + ¢;;h;;| to be finite
it is required by (3.18) that Az = 0 for all k since by hypothesis A = 0. This
in turn implies, by the definition of Ay, that there exist two sub-graphs, say
L, and L, with L, containing the input w; and the output y;, such that there
is no closed path which passes through both of them and such that the graph
determinant of Ly, A(Lg) = 0.

Repeating the same arguments for the sub-graphs L, and any index pair be-
longing to it we conclude inductively that there exist an index pair, say k¢ € T

such that,

|1+ ckehre| = |1 + creper| =0 (3.19)

in contradiction with the hypothesis. o

From Theorem 3.4 we conclude that the roots of the determinant of the re-
turn difference matrix of a multivariable system consisting of a n; x n, plant
and a n, X n; compensator are a subset of the roots of the return difference
scalar functions corresponding to n; - n, single variable loops. Therefore, the
application of Theorem 3.2 on a loop by loop basis requires testing n; - n, scalar
functions (at most) along the Nyquist contour for robustness assessment. In-
tuitively, the theorem expresses the fact that the system may be composed of
various subsystems with no closed paths between them. Thus, in order to as-
sess robustness, each one of the subsystems should be tested. As an extreme
example, consider a square n X n multivariable system consisting of n individual
single input-single output subsytems with no connection between them.

As an illustration of Theorem 3.4, we will consider again the example used
in Chapter 2 to show the inadequacy of the multiloop gain margin. The closed

loop system is depicted in Figure 3.6. The system block diagram of Figure 3.6
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Figure 3.6: Loop by Loop Classical Stability Margins Example

can be easily transformed into one of the forms of Figure 3.5 by considering

Figure 3.5 with the following transfer functions,

pu(s) = (s +1)7" pia(s) = bra(s + 1) c(s) =1 e(s) =0

p2(s) =0 pa2(s) = (s +1)7! c21(8) =0 c2a(s) =1

Opening the loop at z;; and measuring the transfer function hy; = y;/wy or
doing the same for hyy = yy/w, with the loop opened at z;; yields extremely
high margins, in accordance to the results obtained by the multiloop stability
margin test of Chapter 2. However, Theorem 3.4 dictates that more loops have
to be checked to correctly assess robustness. Thus, if the loop is opened at
Z91 while assuming some nonzero cy;(s), and the transfer function hy; between
the input w; and the output y; is evaluated, then the following characteristic

equation is obtained,

1 + C21(S)h21(8) =0 <<= 32 + 2s + c21(5)b128 + €21 (5)b12 + 4=0 (320)
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From (3.20) it is easily seen that if b, is large then a small model perturbation
equivalent to a compensator coupling term of the form c¢;; = —2/b;, suffices
to destabilize the system. For such a disturbance, the characteristic equation
(3.20) will exhibit a root at s = 0.

In practice, the robustness assessment for the above example will be obtained

by carrying out 4 frequency responses, to cover all possible input-output pairs.

Theorem 3.4 shows that one of the requirements for a complete robustness
assessment is the consideration of n; X n, stability margins. This explains in a
formal but simple way one of the reasons for the lack of robustness properties
of control design methods based on diagonal dominance. As these methods
are based on shaping the characteristic loci of the diagonal maps only, they
fail to consider all the loops as required by the theorem. For the same reason,
classical multivariable stability margin measures such as the loop by loop gain
and phase margins or the diagonal multiloop gain and phase margins mentioned

in Chapter 2 do not provide a complete robustness assessment.

Theorem 3.4 helps also to understand the way the singular value operates to
provide a complete robustness assessment. According to the theorem, some un-
certainty directions may remain undetected by Nyquist based tests if the closed
loop system including uncertainties (which will be represented in the homotopy
of the actual test), contains subsystems with no closed path connection between
them. However from the homotopy (3.8) defined for Theorem 3.3 and from Fig-
ure 3.3, we realize that all norm bounded matrices A are taken into account
and therefore all possible loops are considered. As the singular value test of
Theorem 3.3 provides sufficient conditions for expression (3.9) to be nonsingular
all possible directions are detected and therefore the test not only satisfies the
requirements of Theorem 3.4 but also considers all possible combinations of
simultaneous uncertainty.

As mentioned in Chapter 2, the fact that the singular value approach detects

all uncertainty directions makes it potentially very conservative. For systems
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exhibiting highly structured uncertainty the singular value may lead to overde-
sign. The use of weighting matrices on the uncertainty matrix may alleviate the
problem. However if the system specifications are skewed robust performance
may not be achievable. For these reasons we consider, in the next chapter, an

alternative framework that allows us to consider structured uncertainty.
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CHAPTER

OUR

ROBUSTNESS ASSESSMENT FOR SYSTEMS WITH
STRUCTURED, ELEMENT BY ELEMENT
COMPLEX UNCERTAINTY

This chapter deals with necessary and sufficient conditions for robust
stability of multivariable systems in the face of structured uncertainty. Two
approaches are presented. The first involves the use of the Structured Singular
Value and deals with general block complex uncertainty. The second uses basic
eigenvalue arguments and considers only element by element complex uncer-
tainty. The second approach simplifies the proofs of some robustness theorems

for the element by element uncertainty case.

4.1 Introduction

The Structured Singular Value (SSV) [26] has proven to be a powerful sys-
tem theoretic tool. Originally devised for the robustness analysis of multivari-
able LTI systems with structured uncertainties, it may be identified as a general
linear algebra tool for the analysis of linear fractional matrix perturbation prob-
lems [32].

The general idea behind the SSV, as described in detail in Chapter 2, is to give
the matrix representing the uncertainty a specific structure (block diagonal).
Then a singular value analysis on the transformed system is performed. The

block diagonal structure enables matrix manipulations which are basic for the

47



proofs of the SSV properties.

However, it seems that as an analysis tool the SSV is too general to fit
the spirit of this thesis. That is, the SSV is not appropiate for the analysis of
multivariable systems in the vein of classical, scalar techniques. To allow such
analysis, it is first required to restrict the type of uncertainty to one that resem-
bles scalar perturbations. Then, it is worth considering more fundamental tools
for stability analysis.

It is expected that the simpler uncertainty representation and the more basic
analysis tools will lead to more intuitive and simpler proofs of robustness theo-
rems. It is also hoped that this simpler approach will assist in finding practical

means to assess robustness. This issue will be discussed in the next chapter.

This chapter is essentially devoted to two theorems. The first is a robust-
ness theorem for systems with structured uncertainty. The second is a theorem
which shows how to compute the stability margin obtained from the first theo-
rem. Alternatively, the second theorem may be thought of as providing a partial
characterization of the uncertainty defining the stability margin.

The theorems will be presented in two versions. The first version, correspond-
ing to the SSV approach, will be presented in Section 4.3 along with proofs of
some properties of the SSV. The uncertainty considered in this section will be of
general block structure. However, to apply the SSV it will be first necessary to
transform the system into one with block diagonal uncertainty structure. This
results in general in a system of high dimensions. In Section 4.4, the theorems
will be stated and proved using the basic eigenvalue (or maximal spectral ra-
dius) approach. However in this section, the uncertainty will be restricted to be
of the element by element type. With this approach no prior transformation of
the system is required for analysis.

In Section 4.2 some characteristics and some limitations of the element by ele-

ment complex uncertainty representation are discussed.
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4.2 Uncertainty Description

One possible way to describe uncertainty in the mathematical model of a
plant is to assign individual perturbations to each one of the plant elements.
Depending on the nature of the uncertainty, the individual perturbations may
be modelled as either multiplicative or additive. Multiplicative perturbations
are perhaps the most common type of uncertainty since they represent relative
model errors. If p;;(s), the nominal 7j element of the plant P(s), is subjected to

a multiplicative perturbation A;;(s), then the actual plant element is,

Bij(s) = pij(s)[L + Aij(s)] (4.1)

Denoting by || - ||e the infinity operator norm and assuming that both the per-
turbation matrix and the plant A(s), P(s) € RH,, then from (4.1) we obtain,

15:5(5) = Pig (s)lloo = lIPis()Aij(s)lloo < IPis(s)llocllAijs)lloe  (4.2)

Le., multiplicative perturbations are suitable for describing frequency dependent

model errors which are proportional to the nominal plant element magnitude.

Additive perturbations, although less commonly used, are also necessary.
For instance, consider the case where the nominal plant element is zero but a
model perturbation exists. Then, only additive perturbations can be used. For
the case of an additive, individual plant perturbation, the actual plant element
is,

Pij(s) = pij(s) + Ayi(s) (4.3)

Notice that (4.1) can also be written as,

Pij(s) = pii (s)[1 + Aij(s)] = pij(s) + Aij(s) (4.4)
where A,-j(s) = pij(s)Aij(s). As the nominal plant model is perfectly known,
multiplicative perturbations can be represented as additive ones. Thus, additive
perturbations are the most general. For this reason, these additive perturbations

will be assumed from now on.
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As mentioned in Chapter 2, the element by element type of perturbation has
been extensively used [25, 18, 19, 48, 40] as a natural way to represent struc-
tured uncertainty. In [25] Safonov used it to represent uncertainty only in the
diagonal plant elements. In [19] Lunze suggested the use of multidimensional
uncertainty description to cope with the conservatism inherent in the use of the
unstructured singular value for robustness assessment. In [48] Kouvaritakis and
Latchman showed that the set of element by element structured perturbations
is a proper subset of the set containing the class of unstructured perturbations.
Although the element by element perturbation assignment is a most general
method to describe model uncertainty when the perturbations are characterized
only by a bound on their norm, a certain degree of conservatism is introduced by
the current methods of robustness analysis. For example, it is not very uncom-
mon that model uncertainty exists in a sensor. To represent sensor uncertainty
on a plant-element-by-element basis, it is necessary to assign independent un-
certainty to each one of the elements whose output is measured by the sensor.
For illustration, consider the case where the model of the sensor measuring the
first output of a 2 x 2 plant P(s) is uncertain. This may be represented as a left

multiplicative perturbation A(s) on the plant P(s) of the form,

All(s) 0
0 0

A(s) =

The perturbed plant P(s) is therefore given by,

[1+ Au(s)lpia(s) [L4 An(s)]pra(s)
P21(s) pa2(s)

P(s) = [I + A(s)|P(s) = (4.5)

The current methods for robustness analysis (and also those used in this
work) compute the magnitude and phase of the individual uncertainties in the
plant elements which cause the closed loop system to be as close as possible to
instability at each frequency. In general, different magnitudes and phases of the
individual uncertainties are obtained. However, as the uncertainty source is a

single one, it should be represented by only one magnitude and phase pair (as
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in (4.5)). Thus, the results may be pessimistic. The same arguments apply to
actuator uncertainty.

A way to circumvent this problem is obviously to allow uncertainty representa-
tion by multiplicative matrix perturbations. In this case however, the method
used for robustness analysis must be able to handle multiplicative uncertainty
representation. For example, the framework for robustness analysis used by the
SSV (i.e., transforming the system into an equivalent one with block diagonal

uncertainty structure) allows for matrix multiplicative uncertainty.

In the following two sections it will be assumed that some of the plant indi-
vidual transfer functions are uncertain. No considerations regarding the source
of the uncertainty will be made. Therefore we will not address the conservatism
mentioned before. Only a bound on the norms of the uncertainties will be as-
sumed. Thus, the phases of the uncertainties will be unrestricted. This type of
uncertainty, known as complex uncertainty, arises when the model (in contrast

to the model parameters) is uncertain.

4.3 The Structured Singular Value Approach

In Chapter 2, two procedures for bringing uncertain feedback systems into
a form where the uncertainty matrix is block diagonal were outlined. The first
procedure [28] dealt with general block diagonal forms while the second [29]
specialized to element by element uncertainties. This block diagonal uncertainty
matrix structure is the basis for Doyle’s generalization of the singular value
approach to assess robustness in the face of structured uncertainty.
Two main assumptions will be made in the robustness analysis of this chapter.
First, it will be assumed that the elements of the perturbation matrix belong to
IRH,, i.e., the uncertainty can be modelled as a linear time invariant proper and
stable system. The second assumption is that the compensator, whose design
was based on the unperturbed plant model, renders the nominal closed loop

system stable.
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The transformed system can be represented in a block diagram as depicted in
Figure 2.6 where the matrix M(s) € IRHe, whose elements are closed loop
maps, represents all the interactions of the feedback loop with its uncertainties
and A4(s) € RH,, is a block diagonal uncertainty matrix. The matrix M (s)
is a generalized version of the closed loop map @(s) of Chapter 2. While the
map @(s) corresponds to perturbations at a single location in the loop, the
matrix M (s) corresponds to perturbations at arbitrary locations in the loop. The
stability assumptions on the nominal closed loop system and on the perturbation
elements make the Multivariable Nyquist Theorem easy to apply. It suffices to
verify that the determinant of the return difference matrix I + M(s)A4(s) does
not vanish along the Nyquist contour, for any permissible perturbation.

The description of the uncertainty matrix of Figure 2.6 is given in Chapter 2
by expressions (2.51), (2.52) and (2.53). Notice that the common upper bound
6 on the individual uncertainties in (2.53) can be always obtained by suitably
scaling the matrix M(s).

The definition of the structured singular value, also given in Chapter 2, will be
repeated here for convenience.

Given K, the structured singular value (SSV) ux(M) is defined as [26],

0 if no A € Ay(o0) solves det(I + MA) =0
”’C(M) = -1
(minAeAd(oo){E(A) : det(I+ MA) = 0}) otherwise
(4.6)

The definition of the SSV in (4.6) is not limited to matrices arising from feed-
back systems but applies to general complex matrices. In the context of ro-
bustness analysis it is understood that the definition holds for the matrices
evaluated at each point in an appropiate Nyquist contour. Assuming that
limso ||M(8)A(s)|| = 0 for each permissible A(s) then, in the Multivariable
Nyquist Theorem, only the portion of the contour I'g on the imaginary axis has
to be considered. In what follows we will assume that this is the case. Therefore
definition (4.6) will hold for all w € RR.

As a function mapping square matrices to the real line the SSV enjoys several
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properties [26, 28, 32, 49]. Some of them were mentioned in Chapter 2. Here we
will present and prove only those which are required for the proofs of the Sta-
bility Robustness Theorem (or the Small g Theorem) and a theorem regarding
the attainability of a lower bound of the SSV. This will be done in the form of
a few lemmas.

The proofs of the first two lemmas are based on inclusion properties of uncer-

tainty matrix sets with different block structure.

Lemma 4.1 Denote by p(M), T(M) and px(M) the spectral radius, the mazi-
mal singular value and the structured singular value of the complex square matrix

M with underlying uncertainty structure K. Then,

p(M) < pc(M) < (M) (4.7)

Proof: Consider the perturbation set A = {61} (this corresponds in (2.53) to
an uncertainty structure Ky withmy =n,my=...=m, =0and /; = 1). Then
A € A satisfies det(I + MA) = det(I + §M) = 0 if and only if § = —A~'(M)

where ) is an eigenvalue of M. The largest eigenvalue yields the smallest ¢. Le.,
A€ A = pux,(M) = p(M) (4.8)

Now suppose the perturbations are not necessarily diagonal but belong to the
general set of complex matrices A = {A € C¥*} (in (2.53) this means an
uncertainty structure Ky with my =1, [; = N, where N is given by (2.52)). If
(A) < 7 1(M) then, ¥(MA) < 1 and by (4.6) px,(M) < a(M). Moreover,
if we consider a singular value decomposition M = YXU" where U and Y
are unitary, then the perturbation A = §e~"*UYH with v € R is in A and
the matrix MA = §e Y XY# is normal. As a normal matrix, MA satisfies
p(MA) = 3(MA). By choosing § = '(M) and an appropiate v such that
Amaz(MA) = —1 we obtain det(I + MA) = 0. Therefore by (4.6) pr, (M) >
51(A) = 6! = 5(M). Hence pic,(M) > 7(M). Combining both results yields,

A€ A = px,(M) = (M) (4.9)
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Now consider a general block diagonal matrix complex perturbation set Ay with

underlying structure K. Clearly,
Aca,cA (4.10)
By (4.10) and the definition of the SSV (4.6) we obtain,
pic, (M) < pxe(M) < pu, (M)

Therefore by (4.8) and (4.9) the result (4.7) follows. o

Lemma 4.2 With the notation of Lemma 4.1 consider two complex square ma-
trices A and B of the same dimensions. Let K and K denote the structures

corresponding to the matriz perturbation sets A and AA respectively. Then,

pe(AB) <5 (A)ug(B) (4.11)

Proof: Suppose that the matrices A; and A, with structure K satisty,

pe(AB) = =) (4.12)
and
pr(B) = S0 A) A12 Y (4.13)

From the definition (4.6) of the SSV, expressions (4.12) and (4.13) mean that

A; and A, A are the matrices of largest spectral norm satisfying,
det(I + ABA,) =0 (4.14)

and

det(I + BA2A) = 0 (4.15)

Since A, B and A, are square matrices of the same dimensions, expression (4.15)
is equivalent to,

det(I + ABAy) = 0 (4.16)
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From (4.12) and (4.16) we have,

1 < 1
(A1) ~ 7(Ay)
Combining (4.12), (4.13) and (4.17) we obtain,

1 1 1 1 1 1
.EZZ)‘I%(AB) = 5(A) . =7 < =) . (0) < F(AaA) = ug(B)

and the Lemma is proven. e

(4.17)

Consider now the sets ¢ and D defined by (2.59). Then we have the following

lemma,

Lemma 4.3 Let the sets U and D be as in (2.59). Then, with the notation of

Lemma 4.1 the structured singular value of the matriz M is bounded by,

I -1
max p(MU) < puc(M) < inf 5(DMD™) (4.18)

Proof: Clearly the matrices D € D and A € A4(6) commute. Thus, det(I +
MA) = det(I + MD*DA) = det(I + MD*AD) = det(I + DMD™'A)
and pc(M) = pc(DMD™1). By Lemma 4.1 it then follows that ux(M) <
(DM D) and the upper bound in (4.18) holds.

To prove the lower bound notice that since U € U is unitary then det(I+MA) =
0 if and only if det(T+ MUU®A) = 0. Also, UFA € Ay(6) and 5(UHA) = 7(A).
Therefore px(MU) = ux(M) and by Lemma 4.1 p(MU) < pxc(M). o

Using the results of the above lemmas the Structured Singular Value Sta-
bility Robustness Theorem or Small u Theorem can be proved [28, 49]. For

convenience we assume that the matrix M and the perturbations have been

scaled so that § = 1 in (2.53).

Theorem 4.1 The system of Figure 2.6 remains stable for all perturbations

A € Ay(1) with structure K if and only if,

pro = sup px[M(Ge)] <1 (4.10)
welR
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Proof: By Lemmas 4.1 and 4.2 and since (A) < 1 we have,

sup p[A(w)M(g)] < sup puclAp) M(j)] <
sup p[M()] - TA(w)] < pe <1

So if g, < 1 then p[A(Jw)M(yw)] < 1 for all A € Ay(1) and for all w in
the Nyquist contour (in this case assumed to be the indented imaginary axis
only). Since M(s),A(s) € RH, then by the Multivariable Nyquist Theorem
the system remains stable.
Conversely, suppose g, > 1. That is, there exists a real frequency w, such
that pux[M(yw,)] > 1. Then, by the definition (4.6) of the SSV, there exists a
perturbation A, € A(oo) such that det[I+ M (jw,)A,(jw,)] = 0 and T[A(jw,)] <
1. That is, the system is unstable and A, € Ay(1). o

As remarked in Chapter 2 and in contrast with the singular value case,
the definition of the SSV does not provide means for its computation. Thus,
the relationship between the SSV and its computable bounds (4.18) should be
examined. It turns out that when the uncertainties are assumed complex then,
the SSV equals its lower bound. Moreover, when the number of uncertainty
blocks is n < 3, then the SSV equals its upper bound as well.

The prove that the SSV equals its lower bound requires a lemma concerning the
solutions of a polynomial in several variables. Denote by || - ||cc the usual infinity
norm on CF ie., if z € C* then ||z[l0 = maxick |2:]. Also, if p: C* — Cis a
polynomial, let 3 denote the norm of the solution of p(z) = 0 with minimum
Il |0 norm i.e., 8 = min{||z||c : p(z) = 0}. Then, the required lemma [26, 32]
is,

Lemma 4.4 Let p be a polynomial from C¥ — C. Then, there exists a z € C*
such that p(z) = 0 and |z;| = B for each i.

Proof: The proof is based on the fact that the polynomial p(z) can always be

decomposed as,

n
p(z) = Zpi(zla‘z% ooy Br—1yRr41y- - .,Zk)Z:.
o
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where the p; are polynomials in k¥ — 1 variables (all the variables except z).
Let 2 be a minimizing solution i.e., p(2) = 0 and ||2]lc = B. Denote also by p;
the polynomial p; evaluated at # (notice that p; does not depend on 2,).

If |2;| = B for all i, then # satisfies the lemma. Assume then that one of the

components of 2, say 2,, satisfies 2, < . Three situations must be considered:

1. p; = 0 for all 5. Then, p(2) = 0 regardless of the value of 2,. By choos-

ing 2, = 3, the lemma is satisfied.

2. po # 0, but p; = 0 for ¢ > 1. Clearly in this case p(£) # 0. Therefore

this situation is not possible.

3. p; # 0 for some indices ¢ > 1. In this case Z, can be viewed as a zero
of the nontrivial polynomial ¢(z,) = 3", p;2.. Consider now an € > 0 such that
|2,| + € < B. By continuity of the roots of a polynomial, an > 0 can always
be found such that if |(; — 2;

with |z, — 2,| < € such that,

< n for all indices except r, then there exists a z,

Zpi(Ch .. -,Cr—l,Cr.H, .. .,Ck)ii =0
1=0

In particular the variables (; can be chosen such that for each ¢, |(;

< |2
Thus, the vector ¢ = ((1,.--,Crats Zr, Grty -+ > Ch)T € CF satisfies p(¢) = 0
however ||¢|lcc < B. This contradicts the definition of 3. Hence this situation
cannot occur, implying that p; = 0 for all ¢ > 1. From case (2), po = 0 as well

so that 2, may be chosen to satisfy |2,| = 8. Therefore the lemma is proven.

Using Lemma 4.4, the equality between the structured singular value and its

lower bound can now be proven [26, 32] by means of the following theorem,

Theorem 4.2 Let A have a given block structure K and let U be as in (2.59).
Then,
= 4.2
max p(UM) = pc(M) (4.20)
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Proof: The case p(M) = 0 is trivial. So assume p(M) > 0. Let A be a
minimizing solution in the definition (4.6) of the SSV. Le., det(I + MA) =0
and 7(A) = pg'(M). Suppose that a singular value decomposition is carried out
for each block that makes up A. The process will generate matrices VY € U
and a diagonal ) satisfying,

det(I+ MVEYH) =0
Define a matrix,
Y = diag(z1,29,...,2,) with € C i=1,2,...,n

Then, det(I+ MV EYH) can be viewed as a polynomial in the diagonal elements
of ¥. By hypothesis, a minimum norm root of this polynomial has an infinity
norm of 4 = pg'(M). Let ¥ be the diagonal matrix whose diagonal elements
have equal magnitude . By Lemma 4.4 det(I + MVEYH) = 0. The matrix
can be written as ¥ = 4V for some ¥ € Y. With this notation we have,

det(I + yYMVIYH) =0

therefore, p(MVUYH) > 1/y = pux(M). Since VUYH € U, by Lemma 4.3 the

reverse inequality also holds. Therefore the theorem is proven. e

4.4 The Maximal Spectral Radius Approach

In Section 4.3 the structured singular value was defined, some of its prop-
erties were presented and two fundamental theorems were stated and proved.
The first theorem provided necessary and sufficient conditions, in terms of the
SSV, for robust stability of systems with norm bounded uncertainty. The sec-
ond theorem showed that for complex uncertainty, the SSV equals a computable

expression based on the spectral radius.
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In this section we consider the same issues as in Section 4.3. However, we
tackle them from a more fundamental viewpoint: the eigenvalue approach. As
we will show, the application of basic eigenvalue arguments is possible due to the
element by element nature of the perturbations and also since the uncertainty is
assumed complex. The proofs here are not based on a specific structure of the
uncertainty (as in the SSV approach where the block diagonal structure of the
perturbation is critical for the proofs). Therefore there is no need to bring the
system into the form of Figure 2.6. Moreover, the proofs are simpler and more

intuitive than those based on the SSV.

In Section 4.2 we described the element by element (also referred to as mul-
tidimensional) uncertainty type. By appropiate scaling of the plant model, the
individual uncertainties A;;(s) can be normalized so that [|A;(s)]|e < 1, where
| - l|loo denotes the infinity operator norm. A perturbation matrix is then char-
acterized only by its structure i.e., by the location of its nonzero entries. To

characterize the uncertainty we then use the following definition:

An n; X n, indicator matrix T = {t;;} is a matrix whose entries are either
tij = 0 or t;; = 1. An n; X n, perturbation matrix A = {A;;} has indicator T
if and only if the only elements of the uncertainty matrix with nonzero bounds

are those corresponding to the nonzero entries of T'.

To denote the number of uncertain elements of a plant we also define:

The cardinality of the indicator matrix, denoted by o(T), is the number of

nonzero entries of 7.

Consider now the nominally stable, perturbed, multivariable closed loop sys-
tem depicted in Figure 4.1, with P(s) an n; x n, plant, C(s) an n, X n; dynamic
compensator and A(s) an n; X n, stable perturbation matrix with indicator T

and bounded elements ||A;j(s)||cc £ 1. As mentioned before it is assumed that
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P(S) —

C(s)

Figure 4.1: Perturbed Multivariable System

the normalized bounds on the perturbation elements are obtained after appropi-

ate scaling i.e., the plant P(s) includes normalization factors.

Consider also the following definitions,

Qs) = CEI + P(s)C(s)]™
A(s) ¥ {A(s) : A(s) is stable, has indicator T and [[A;(s)]|eo < 1}

~ def

pa(w) = max p[A(jw)Q(w)]

A€A

As in Section 4.2 we assume that lims_,., ||@(s)A(s)|| = 0 for each permissible
A(s) so that when applying the Multivariable Nyquist Theorem to the system
in Figure 4.1, only the portion of the Nyquist contour I'r on the imaginary axis

will be considered.

Now we state the robust stability theorem,

Theorem 4.3 Consider the system of Figure 4.1. Assume that the unperturbed
closed loop system is asymptotically stable. Then the closed loop system remains

asymptotically stable for all model perturbations A(s) € A(s) if and only if
prlw) <1 VwelR (4.21)
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Proof Applying the Multivariable Nyquist Theorem at the output of the per-
turbation matrix under the assumptions of a stable nominal closed loop system
and stable perturbations, each member in the family of perturbed systems is

asymptotically stable if and only if,
det[I + Aw)Q(w)]#£0 VYweR VAeA (4.22)

But det[] + A(jw)Q(jw)] = 0 is equivalent to the existence of a vector z(w) # 0
such that [I+A()w)Q(yw)]z(w) = 0 or equivalently, if A(-) denotes an eigenvalue
then there exists one with value AJA(yw)@Q(yw)] = —1. Thus, from expression

(4.22) we conclude that the perturbed system is stable if and only if,
MAGW) Q) # -1 VYweR VAeA (4.23)

Noting that p[A(Jw)Q(w)] < 1 => AMA(Qw)Q(yw)] # —1, the sufficiency of
(4.21) is apparent since by definition,

PlAGW)Q(w)] < px(w) <1

To show necessity suppose that there exists a frequency w* € R and a pertur-

bation A* € A for which,
pa(w*) = plA*(w)Q(w")] 2 1
and consider the perturbation matrix,
A(s) = aA*(s)e™™

with 0 < a <1 and y € IR arbitrary. Clearly A is admissible i.e., A(s) € A(s)

and since eigenvalues are homogeneous there exists an @ = a* such that,
pIA(WM)Qw)] = pla”A%(w")Q(w")] = 1

Denoting by M., the eigenvalue corresponding to the spectral radius, a 4 can

always be found which yields,
Amaglo AT (W) Q(w*)] = —1
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Therefore (4.23) is violated and (4.21) is also necessary. o

Remarks:

1. The assumption of stable perturbations is made for simplicity and from
the fact that most uncertainties are indeed stable. However the stability
theorem can be modified to allow certain unstable perturbations by using

homotopy arguments (cf. Chapter 3).

2. The sufficient conditions in Theorem 4.3 can also be easily obtained by
a straigthforward application of the Small Gain Theorem. Notice that
the necessary conditions are strongly based on the assumption of complex

uncertainty.

Theorem 4.3 provides the necessary and sufficient condition
max p[A(w)Q(w)] <1 VweR
A€A

for robust stability. By computing

Pa(w) = plA"(w)Q(w)] = max p|A(w)Q(1w)] (4.24)

at each frequency w a measure of robustness of the system is obtained. The
smaller the value of (4.24) is at each frequency, the more robust is the system.
For each fixed frequency it is then necessary to find the worst permissible per-
turbation A* € A such that (4.24) is attained.

Another viewpoint is possible. Since design usually involves trade-offs it will
usually be true that improving robustness degrades performance. If the de-
signer has a very accurate measure of the uncertainty bounds then pz(w) can
be allowed to get close to one as long as it remains less than one.

From now on we will consider (4.24) at a fixed frequency. Therefore the depen-

dence of the various functions and matrices on the frequency will be omitted.

The following theorem provides a partial characterization of the worst permis-

sible, complex and element by element bounded uncertainty.
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Theorem 4.4 From among all the uncertainty matrices A* € A satisfying
(4.24) there is always one with |A};| = 1 for all index pairs ij corresponding

to the nonzero entries of the indicator T'.

Proof Suppose first that the cardinality o(7T) = 1. Then the matrix AQ has
rank 1, at most, and therefore has no more than one nonzero eigenvalue. Let 3
be the index pair corresponding to the nonzero entry of the indicator T'. If for
some |A;j| > 0 all the eigenvalues of AQ are zero, then for any |A;;| > 0 all the
eigenvalues are zero and a solution to (4.24) is obtained with |A;;| = 1. Assume

that there exists a nonzero eigenvalue A. Then,
det(A] — AQ) = 0 < det(I — %Q) =0 (4.25)

and from (4.25) an eigenvalue of maximal modulus is obtained for |A;;| = 1.
To see this more clearly notice that if e; denotes the n;-vector with a 1 in the
¢-th row and zeros everywhere else, e; is the n,-vector with a 1 in the j-th row
and zeros everywhere else and ¢;; is the ji-th element of the matrix Q then, for
the case a(T) =1 when some eigenvalue )\ is not zero we have,

det(I — ——Q) det(I — ” ) = det(I — e;)=1-— ”:\Q‘qu‘ (4.26)

and by (4.26) since ¢;; # 0 or all the eigenvalues of AQ would be zero, the

unique nonzero eigenvalue of AQ) is,
A =Ajgji (4.27)

Suppose now that o(T) = k4 1 with £ > 0 an integer and that A}, is a
permissible perturbation satisfying (4.24). Assume further that there exists an
element of Aj,,, say the ij-th element, such that |A%| < 1. By the element
by element nature of the uncertainties, the perturbation matrix Aj,; can be
expressed as,

f= A+ A (4.28)

where the matrices A and A, are permissible, correspond to the indicators T

and Ty with cardinalities a(T}x) = k and «a(T7) = 1 respectively and the only
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nonzero element of A; is A,

(the ¢j-th element of A%, ).
Denote by A;,, the eigenvalue corresponding to the spectral radius of A; Q.

A%41 solves the polynomial equation,
0 = det( Mgy ] — D541Q) = det(Mp I — AkQ — A1Q) (4.29)

and assuming momentarily that Af,, is not an eigenvalue of A;Q then (4.29)

can be written as,
0 = det(I — AMQ[Mey1 I — ArQ) N det (Mo I — AxQ) (4.30)

Since we have assumed that det(A;,,] — ArQ@) # 0 and since A; has rank 1
expression (4.30) yields,

0 = det(I — AQNprd — DkQ)™) =1 — Ajjel Q(Aiy ] — AkQ)les  (4.31)

with e; and e; defined as before.

From (4.31) and since A;; # 0 we obtain,

1
A,’j

e QNipr] — AkQ) e = (4.32)

Denote by Ax the eigenvalues of AxQ and consider the function f : € — R
defined as f(A) = |eJQ(A] — AxQ) "e;|. The function f()A) has the following

properties,

P1 limy_,, f(A) = o0

P2 limpj—o f(A) =0

P3 f()) is continuous in A except at its isolated singularities.

Property P3 follows from the fact that the operator valued function (AI —
AxQ)™! is meromorphic in € [50].

By the properties of the function f and owing to the fact that there is no
restriction on the phase of A;;, there exists a 5‘Z+1 and a A satisfying expression

(4.32) such that [Af,;]| > |Af,,] and |Ai;| = 1. Thus, A, does not satisfy (4.24)
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in contradiction with the assumption. The same argument applied to the other
elements of the uncertainty matrix proves the assertion.

It remains to consider the case where A* is also an eigenvalue of A(Q) and
therefore no conclusions can be drawn from expressions (4.30) and (4.31). But
this case occurs when the eigenvalue A* of A} ;@ is inherited from A.Q i.e.,
there exists an eigenvector z common to A}, ;@ and Ax@Q which is also an

eigenvector corresponding to a zero eigenvalue of A;Q namely,
1 @r = AQr + A1Qz = A Qx = X'z (4.33)

and the perturbation A; may be replaced by one with |A;;| = 1 without violating
(4.24). o

By Theorem 4.4, we can always find perturbation matrices that solve the

optimization problem (4.24) and whose nonzero elements have the form,
Ay=ef  0<0y<2r (4.34)
By defining the following sets,
TE {kl:ty =1}
and (4.35)
Or ¥ {0y : kl € T; 0< 6y < 21)

and by virtue of (4.34), the maximization problem (4.24) can be reformulated

as,

pa(w) = p[A*(Jw)Q(w)] = max p[A(Jw)Q(jw)] (4.36)

0r1€O1

Notice that when the perturbation matrix A is diagonal, without any zero
diagonal element, or when the system is transformed to such a form (as required
by the SSV approach) then the optimization problem (4.36) can be restated as
a maximization one over the set of diagonal unitary matrices. IL.e., the same
result as in Theorem 4.2 is obtained. Thus, for the case of element by element
uncertainty, an alternative and perhaps simpler proof of the equality between

the SSV and its lower bound is obtained.
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CHAPTER

FIVE

A PERTURBATION APPROACH TO THE
DEVELOPMENT OF ROBUSTNESS
BOUNDS

In this chapter we develop bounds upon the Maximal Spectral Radius
for the purpose of making it’s application practical. The bounds are intended
to assure stability robustness while providing insight into the system. The ap-
proach used is based on perturbation methods and computes the decrease of the
system stability margin each time an additional model uncertainty is assumed.
In this way, recursive bounds are obtained which generate necessary conditions
for maintaining the bound within its allowed limits at each recursion step . The
last step also provides sufficient conditions. The evaluation of the first bound de-
veloped relies entirely on matrix norms. This bound provides geometrical insight
into the robustness problem. The second bound, based on spectral analysis, en-
ables the study of certain subspaces associated with the matrices involved. The
analysis of these subspaces renders robustness conditions in the form of expres-
sions comprising only individual closed loop maps. The expressions may assist
in preliminary control design or may be incorporated into design specifications.
An application example concerning the control of the longitudinal dynamics of

an aircraft is also presented.
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5.1 Introduction

In Chapter 4 , Theorems 4.3-4.4, we showed that the evaluation of the
stability margin of multivariable systems whose models are characterized by
element by element, norm bounded uncertainties requires the computation of the
uncertainty phases which yield the maximal value of p(AQ). This computation
has to be carried out at each frequency along the punctured imaginary axis. In
general, the relationships between the closed loop individual maps ¢;; and the
individual uncertainties A arising from the expression for p(AQ) are extremely
complex. Thus, little insight is obtained on how the closed loop maps may be
altered to meet system specifications while maintaining stability.

An exception occurs when the uncertainty matrix has a single nonzero column
or row. We call this, for the obvious reason, a rank one perturbation matrix.
Recall that an indicator matrix T' = {¢;;} is a matrix whose entries are either
zero or one and that the only elements with nonzero bounds of the uncertainty
matrix A = {A;;} with indicator T are those corresponding to the nonzero
entries of T'. Recall also that the set of indeces corresponding to the nonzero
entries of T is denoted by T ie., T = {kl: 13 =1}.

The following theorem characterizes the maximal spectral radius for the above

type of rank one perturbation matrices,

Theorem 5.1 Consider a system characterized by a perturbation indicator ma-
tric T = {t;;} with a single nonzero column (row). Suppose that the nonzero
column (row) is the k-th (I-th) one. Then,

pa = maxp(AQ) = Z [ E |gitl)

A€ inkeT jiljeT

b

Proof The proof will be carried out for the column case. The row case is
treated similarly.

By Theorem 4.4 the nonzero elements of the perturbation matrix A can be
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assumed to be of the form €%, ij € T and the maximal spectral radius problem

can be formulated as,

Pa = max p(AQ)

where O7 & {0, 11k € T; 0 < 0 < 2x}.
Denoting by A.x = (Ayx Agk ... Anx)T the column of the matrix A containing
nonzero elements (of the form A = €*) and by gr. = (gx1 k2 --- an;) the

k-th row of () we have that the unique nonzero eigenvalue of AQ) is given by,
det(Al — AQ) = det(M] — Aggr.) =0 <= A = q. A
The above expression implies,
Pi = max WA= Jmax Z qrie’* = > lgwil

0ix €01 K€ L ikeT iikel

and the assertion is proved. e

Combining Theorems 4.3 and 5.1 we obtain the following result. For systems
with indicators having a single nonzero column or row, necessary and sufficient
conditions for robust stability amount to maintaining the sum of the absolute
values of certain individual closed loop maps less than one. Clearly, this simple
condition can be easily incorporated into closed loop specifications and used in
control design.

Notice that a special case of the rank one indicator is the single uncertainty case.

For cases where the indicator matrix has rank greater than one, little insight
is obtained from the expressions resulting from the maximal spectral radius
computation. To overcome this problem the designer may appeal to design
frameworks which integrate optimal control methods with robustness tools. For
example, the p-synthesis design framework [39] encompasses H,, optimization
and the structured singular value. These design frameworks however are best
used in final design stages or as a first stage in very complicated problems, where
insight is not otherwise attainable. Clearly, other situations such as preliminary

system evaluation, specification definition, preliminary design, troubleshooting
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analysis etc., require frameworks much closer to classical control methods, based
mainly on a combination of insight and engineering skills. Notice that in these
cases one is less concerned with the conservatism of the results than with the

understanding of the system.

This chapter is aimed at developing a method that uses the maximal spec-
tral radius to ensure stability robustness of multivariable systems and to obtain
insight into the system. The main idea is to analyze the decrease of the stability
margin each time a new uncertainty is added to the system. This perturbation
approach enables the detection of subsystems which, when subjected to model
uncertainty, most affect the system stability margin. It also enables the study
of how the interaction of different model perturbations affects stability. The
method leads recursively to an upper bound upon the maximal spectral radius.
Each recursion step generates necessary conditions to mantain the bound under
the limit allowed by stability considerations. The necessary conditions appear
as expressions relating individual closed loop maps. The information obtained
from these conditions can therefore be incorporated into design specifications.
We will not address here the question of the conservativeness of the bound. Our
main interest is to obtain expressions that can be utilized in preliminary design
stages without requiring the solution of an optimization problem. Notice how-
ever that as the method developed here is concerned with structured uncertainty
we may expect in many cases less conservative results than those obtained by

the singular value approach.

The chapter is organized as follows:

Section 5.2 deals with the diagonalizability of the matrices AQ. The diago-
nalizability of these matrices is a basic requirement for the development of the
bounds. It is shown that these matrices are generically diagonalizable. We then
use the genericity of the results to assume that the matrices have been (infinites-

imaly) perturbed so that they become similar to diagonal matrices.
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Since the idea of adding one perturbation at a time strongly resembles a ma-
trix perturbation problem we devote Section 5.3 to develop a bound upon the
maximal spectral radius based solely on matrix norms. The bound shows that
as the eigenvectors of certain matrices deviate from orthogonality, the system
becomes prone to instability under model perturbations. However, the informa-
tion obtained is too general to allow analysis. The bound seems to be useful, as
is the singular value analysis, only for spatially round systems. A geometrical
interpretation of the bound which arises naturally when the spectral norm is
used is also shown.

In Section 5.4 we develop a procedure which leads to an upper bound on the
maximal spectral radius, based on spectral analysis. The bound, in a way that
resembles the structured singular value, distinguishes between the invariant sub-
spaces of the matrix AQ corresponding to the zero and nonzero eigenvalues.
The nonzero eigenvalues yield an expression that still requires the solution of an
optimization problem for its computation. However the dimensionality of the
problem reduces to the size of the nonzero rows (or columns) of the uncertainty
matrix. The expressions resulting from the zero eigenvalue do not depend on
the uncertainty matrix. Therefore in addition to being trivial to compute they
display a clear relationship between individual closed loop maps and the sta-
bility bound. Necessary and sufficient conditions for the bound to be small are
then generated without any computational requirements.

Finally, in Section 5.5, a practical application of the bound developed in Sec-
tion 5.4 is shown by analyzing the robustness of a loop designed by the Charac-

teristic Locus method to control the vertical plane dynamics of an aircraft.

Let (-,+) denote the usual (Euclidean) inner product in C" and let A be a
matrix in C™*".

The following notation will be used throughout this chapter,

R(A) = {Az : x € C"} the range space of A.
N(A) ={z € C": Az = 0} the null space of A.
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R*+(A) is the orthogonal complement of R(A).
N1(A) is the orthogonal complement of N'(A).

AT is the adjoint of A (i.e., the matrix satisfying (Az,y) = (z, AH¥y)
Vz € C",Vy € C™).

rank(A) is the dimension of R(A).

5.2 Diagonalization Lemmas

A fundamental requirement in the development of bounds on the maximal
spectral radius by the perturbation methods of this chapter is the diagonal-
izability of the matrices A@Q). In this section we show that generically, these
matrices are diagonalizable. The isolated frequencies where the matrices may
not be diagonalizable correspond to branch points of characteristic functions
of the transfer matrix AQ. By the Extended Principle of the Argument [51]
used in the Multivariable Nyquist Theorem [52], these points must be avoided
by the Nyquist contour I'p. Hence, the above frequencies are of no interest in
subsequent analyses and can be disregarded. At all other points in the complex
plane, genericity allows us to assume infinitesimal perturbations on the matrices
to make them diagonalizable.

As matrices of rank one play a crucial role in all the developments we consider
them in some detail. Consider first a general complex square matrix of rank
one. The following lemma proves that rank one matrices can be represented by

a dyad.

Lemma 5.1 Consider a matriz A € C". Then rank(A) < 1 if and only if

there exist two vectors a,b € C" such that,

A=ab¥ (5.1)
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Proof: First notice that rank(A) = 0 if and only if A = 0. Therefore for this
case the assertion holds trivially.

Suppose rank(A) = 1. Then R(A) spans a one dimensional subspace. Let
a € C" be a basis for R(A). Then any vector y € R(A) can be expressed as
y = c(y)a with ¢(y) € €. Consider now the elementary basis {e1,e2,...,e,} of
C™, where ¢; € C" has a 1 in the i-th place and zero everywhere else. Then A

can be written,
A= (Ael A62 v Aen) = (Zla, B2a e Zna) — abH

with b= (by by ... b,)T € C™.
Conversely, assume that A = ab¥. Then for each y € C™ we have Ay = abfly =

c(y)a with c(y) = by € €. That is, A spans a one dimensional subspace.
Therefore rank(A) =1. o

A second lemma is concerned with the diagonalizability of matrices of rank one.

Lemma 5.2 Suppose the matrizr A € C**" is of rank one and has a nonzero

eigenvalue. Then A is diagonalizable by similarity transformation.

Proof: A matrix is diagonalizable by similarity transformation if and only if
its Jordan blocks have order 1. Since A has rank 1, by Lemma 5.1 there exist
two vectors a,b € C” such that A = ab”.

Denote a = (a1 az ... a,)T and b = (b by ... b,)T. Then A has exactly two
distinct eigenvalues: zero (of algebraic multiplicity n — 1) and Y™, a;b; which
by hypothesis is nonzero. Since A has two distinct eigenvalues its minimal
polynomial has order of at least 2. Consider now the second order polynomial,

p(A) = A(A = aiby)
i=1
It can be easily verified that p()) annihilates A. Therefore it must be its minimal

polynomial and therefore the Jordan blocks of A have order 1. o

Consider now a matrix A € C"*" of rank k < n. This matrix has k linearly

independent rows (and columns). Therefore, the other n —k rows can be written
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as a linear combination of these. This means that A can be expressed as a sum
of k matrices of rank one. Lemma 5.2 may be applied now to each one of the
matrices in the sum. We then conclude that a matrix A € C™*" of rank k£ may

always be written in a dyadic expansion of the form,
k
A=Y a@p®F
=1
where ¢, 50 € C" i =1,...,k.

A fourth lemma deals with the relationship between the rank of a matrix
and the dimension of its null space. Recall that an eigenvalue is nondefective if

its algebraic and geometric multiplicities are the same.

Lemma 5.3 Suppose that the algebraic multiplicity of the zero eigenvalue of
a rank deficient matriz M € C™" equals n minus the number of its linearly

independent rows. Then, the zero eigenvalue is nondefective.

Proof: By definition, the invariant subspace corresponding to an eigenvalue A
of M is N(A\I — M). Therefore the invariant subspace corresponding to the zero
eigenvalue of M is N (M) and its geometric multiplicity is dim{AN(M)}. Since
any closed subspace M of a Hilbert space is complemented by M1 [53, page
205] then,

N(M) e Nt (M) = Cc™" (5.2)

where @ denotes direct sum. From (5.2) we obtain,
dim{N (M)} + dim{N*+ (M)} =n (5.3)

But N1(M) = R(MH) and dim{R(MH)} = dim{R(M)} = rank(M), there-
fore by (5.3),
dim{N (M)} =n — rank(M) (5.4)

Thus the geometric multiplicity of the zero eigenvalue of M is n — rank(M)

which by assumption is equal to the algebraic multiplicity of the zero eigenvalue.
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Therefore the algebraic and geometric multiplicities of the zero eigenvalue are

the same. That is, it is nondefective.e®

Now we define the notion of genericity,

Definition Let X denote a topological space. Then a property P of an element

z € X is generic if the following statements are true:

1. If = has the property P, then there exists a neighborhood of z such that
every point in this neighborhood also has the property P.

2. If z does not have the property P then every neighborhood of z contains
an element that has the property P.

In the following Lemmas we consider the topological space €™*" with a

topology induced by any matrix norm || - ||.

Lemma 5.4 Let A be a matriz in C"*". Then the property A has distinct

eigenvalues is generic.

Proof: Suppose first that A has distinct eigenvalues. Since norms and eigen-
values are continuous functions of the matrix entries [12] there always exists a
6 > 0 such that for each matrix E € C™*" with || E|| < § the eigenvalues of the

matrix A+ E remain distinct. Thus, statement (1) of the definition of genericity

holds.
Now suppose that A has repeated eigenvalues. Let § € €™*" be a nonsingular

matrix satisfying,

A=S8JS!
where J is the Jordan form of A. Consider also the perturbation matrix,
F=SApS™' with Ap=diag(e,€,...,¢€)

Clearly, for any § > 0 we can always choose ¢; ¢ = 1,...,n such that the

eigenvalues of A + F are distinct and ||F|| = ||SAFS~|| < ||S|||AF|IIST| < 6.
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Thus, statement (2) of the definition of genericity also holds and the lemma is

proven. e

Lemma 5.5 Consider the same topological space as in Lemma 5.4. Let B be a

matriz in C**". Then B is generically nonsingular.

Proof: The proof is similar to that of Lemma 5.4. If B is nonsingular or
equivalently has no zero eigenvalues, by the continuity property of norms and
eigenvalues we can always find a neighborhood of B composed of matrices with
nonzero eigenvalues. Conversely, if B is singular, we can show using its Jor-
dan form that a perturbation matrix F' of arbitrary norm such that B + F' is

nonsingular always exists. o

The following lemma is concerned with the diagonalizability of the matrix
AQ. For convenience and without losing generality, we will assume that the
number of nonzero columns of A(s) is larger than or equal to the number of
its nonzero rows. Otherwise, the lemma and all the subsequent analysis can be

carried out for the matrices QA with the obvious changes.
Lemma 5.6 The matriz M(s) = A(3)Q(s) is generically diagonalizable.

Proof Since the input-output pairs of the plant P(s) can be arbitrarily num-
bered, we may assume without loss of generality that the first m rows of M(s)
correspond to the nonzero rows of the indicator 7' and the remaining n; — m

rows are zero. Therefore M(s) can be decomposed as,

3

Ml(S) M2(3) }m (55)
0 0 } niom

M(s) =

The eigenvalues of M(s) are the solutions of the characteristic equation,
det[A(s)] — M(s)] =0 (5.6)
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and since the matrix A(s)I — M(s) is block diagonal, expression (5.6) can be
written as,

A (s)det[A(s)T — My(s)] = 0 (5.7)

First, consider the matrix M(s) evaluated at a fixed frequency s*. By
Lemma 5.5, the submatrix M;(s*) is generically of full rank. Therefore, the alge-
braic multiplicity of the zero eigenvalue of M(s*) is (generically) n;—rank{M(s*)}.
By Lemma 5.3 we conclude that the zero eigenvalue of M(s*) is nondefective.
Moreover, it is well known (see e.g. [12, page 47]) that distinct eigenvalues
necessarily yield linearly independent eigenvectors. Applying Lemma 5.4 we
conclude that as M;(s*) has generically distinct eigenvalues the matrix M(s*)
is diagonalizable.

It remains to show that as s varies the matrix M(s) remains diagonalizable.
If the matrix A(s) is of normal rank one, then M(s) will also be of normal rank
one and by virtue of Lemma 5.2, M(s) is diagonalizable for all frequencies in
the punctured s plane.

When A(s) is of normal rank greater than one we prove that AQ is diagonaliz-
able almost everywhere by following the development of characteristic functions
in [52]. Note that from expression (5.7) one obtains a characteristic equation

that can be expressed in the general form,

det[A(s)] — My(s)] = fi(A, 8) fa(A,8) ... fi(A,8) =0 (5.8)

where {fi(A,s) ¢ = 1,2,...,k} are polynomials irreducible over the field of

rational functions in s. Each one of the irreducible factors in (5.8) has the form,
Fi(A,8) = AT(s) + apn ()M 7H(s) + ..o+ aimi(s) i=1,2,...,k (5.9)

where m; is the degree of the i-th irreducible polynomial and the coefficients
{a;;(s) 1=1,2,...,k j=1,2,...,m;} are rational functions in s. Denoting by
bio(s) the least common denominator of the coefficients {a;;(s) j =1,2,...,m;}

in expression (5.9), the characteristic equation (5.8) yields,
b(s, As) = bio(8)AT () + bir ()X (5) A bomy(s) =0 i = 1,2,..., k (5.10)
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where now the coefficients {b;;(s) i =1,2,...,k j=1,2,...,m;} are polyno-
mials in s. Each function X;(s) ¢ =1,2,...,k defined by (5.10) is an algebraic
function [55].

For complex polynomials such as b(s, A;) in (5.10), a scalar valued function of its
coefficients and the coeflicients of the derivative of the polynomial with respect
to the independent variable s is defined. This function, denoted by D(:) is re-
ferred to as the discriminant of the polynomial [55, 52, 56]. Bliss [55] and Barnett
[56] showed that a polynomial has multiple roots if and only if its discriminant
is zero. Bliss also showed that the discriminant of a polynomial vanishes at a
finite number of points in the complex plane. Applying these arguments to the
polynomials (5.10) we obtain algebraic functions A;(s) that when evaluated at
each frequency s in the complex plane yield distinct eigenvalues except for a set
of frequencies of measure zero. Thus, M;(s) has distinct eigenvalues. Moreover,
it can be also shown [52] that characteristic functions have zero solutions only
at a finite number of points in the complex plane. Therefore, M;(s) has full
normal rank and by Lemma 5.3 the zero eigenvalue of M(s) is nondefective.

This completes the proof. e

In the sequel we will assume that the frequencies where the various matrices
are evaluated do not correspond to branch points of characteristic functions of

A(s)Q(s) and that if necessary, the matrices have been infinitesimaly perturbed

so that AQ is diagonalizable.

5.3 A Bound on the Maximal Spectral Radius
Based on Matrix Norms

In this section we develop an upper bound for the maximal spectral radius
pi based on a perturbation approach using only matrix norms. The bound is
developed for a fixed frequency. Therefore the explicit dependence of the varioug

matrices and functions on the frequency will be dropped. Also, as mentioned at
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the end of Section 5.2, all the matrices of the form AQ are assumed diagonaliz-
able.

We start with a basic matrix perturbation theorem. Let A be a complex square
matrix and A = A + E a perturbation of A, where E is an arbitrary complex
matrix dimensionally compatible to A. Denote by £(A) the spectrum of A. Re-
call also that a consistent matrix norm is one that enjoys the submultiplicative

property. Then we have the following theorem by Bauer and Fike [57],

Theorem 5.2 Let B be nonsingular and let || - || be a consistent matriz norm.

If)e E(/i) is not an eigenvalue of A, then

1B~Y(A~X)7'B|I™ < |BTEB|| (5.11)

Proof: Write,

BY(A—A)B=B(A- )+ E]B =
B Y A-M)B{I+[BY(A—-X)B]"'[B'EB]} (5.12)

Since the matrix A — Al is singular then by (5.12) one obtains,
L <B™H(A=ADBI(BTEB]| < | B (A~ A)7'B|||BT'EB]
which is equivalent to (5.11). e

Now consider the decomposition,

AQ =AaQ+AQ (5.13)

Assuming that no eigenvalues of A, are inherited from A,_;@, Theorem 5.2

can be applied to the matrix A,_;@Q perturbed by A;Q in (5.13) yielding,
1(Ar2Q = 2D < [|A4Q)|

or by taking inverses,
1(Ar2Q = XD 2 |4 Q)™ (5.14)
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By the assumptions, the matrix A,_;@Q is diagonalizable by similarity transfor-

mation. Therefore there exists a nonsingular matrix Z and a diagonal matrix

A,—1 similar to A,_1Q such that,
AraQ=2ZA 1271 (5.15)
Substituting (5.15) into (5.14) yields,

1(Ar1@ = XD = [(ZAr1 27 = A1) 7Y =
1Z(Arey = A1) 270 2 | AQN (5.16)

Define the condition number of a nonsingular matrix A with respect to the norm
|1l as k(A) = ||Al|[|A7|. Then by (5.16) and the consistency of the norm || - ||

we have,
[(Area = ADTH 2 W22 AN = s7HZ AN (5:17)
Suppose momentarily that ) is positive, real and satisfies A > p(A,_1Q). Then,
I(Ares =MD < A= p(Ara@)] 7 (5.18)
From (5.17) and (5.18) one obtains,
D= o8 @) 2 s (D) MQ
or equivalently,
A< p(ArQ) + /(2)|AQ) (5.19)
Recall from Chapter 4 that the maximal spectral radius was defined as,

AAQ) = max p(AQ)
A€A

where A denotes the set of permissible perturbations in the class defined by the

indicator matrix 7. Using this definition the bound (5.19) can be modified to,

A< H(AQ) + K(Z)]|AQ| (5.20)
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Since the perturbations under consideration are complex, the matrix A, can
always be rotated (by multiplying it by e’ for some ¢ € R), without affecting
the eigenvectors and the absolute values of the eigenvalues of A,Q. Therefore,
without loss of generality, the eigenvalue of A,Q) with the largest absolute value
can be assumed positive real. Hence (5.20) can be specialized to the spectral

radius and we can write,

p(A,Q) < H(Ar1Q) + £(2)[|Ar Q| (5.21)
By (5.21) the maximal spectral radius for the system with r uncertainties is
therefore bounded by,

H(AQ) < H(A1Q)+ sup IMQIK(Z) = sup IMQl sup k(2)  (5.22)

Areh Ar_1€A Ar€A
Since matrix norms are real valued continuous functions and the set A is com-
pact, the suprema in (5.22) is attained. Therefore, if A;; is the unique nonzero
element of the matrix A; and denoting by Qa,; the matrix whose ¢-th row is
the j-th row of the matrix @) and all its other elements are zero then, expression
(5.22) can be written,

AAQ) < p(A1Q) + || Qal matxA k(Z) (5.23)

et
Expression (5.23) was obtained assuming A > p(A,_;Q) in (5.18). Clearly if
X is the eigenvalue of A,Q corresponding to the maximal spectral radius then
) > p(A,—1Q). The case )= P(A,-1Q) occurs when the maximal spectral ra-
dius of A,Q is inherited from A,_1Q i.e., p(AQ) = p(Ar-1Q).

From expression (5.23) we learn that each time a new model perturbation is
added to the system, the maximal spectral radius may be increased by an amount
amplified by the condition number of the matrix of eigenvectors of A,_;(). No-
tice that the condition number of the matrix of eigenvectors of a matrix is
independent of the condition number of the matrix itself. Thus, it is possible
to have a perfectly conditioned matrix A,_;) with an ill conditioned matrix of

eigenvectors.
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It is interesting to have some geometrical interpretation of the bound (5.23).
It turns out that when the spectral norm is used, an interpretation can be
obtained through the singular values.
We first cite two theorems [58, 12] concerning Hermitian matrices which will
be required for understanding the geometry of the bound. Recall that an r x r
principal submatrix of an n X n matrix A is a matrix obtained by deleting
n —r rows and their corresponding columns from the matrix A. Also, label the
eigenvalues of an Hermitian matrix according to increasing size \; < X3 < ... <
A

The theorems are as follows,

Theorem 5.3 (The Inclusion Principle) Let A € C"*" be an Hermitian
matriz, let r be an integer with 1 < r < n, and let A, denote any r X r principal

submatriz of A. Then, for each integer k such that 1 < k < r we have,

Ae(A) < Me(Ar) < Apgn—r(A)

Proof: A proof based on the Courant-Fischer minimax properties of the eigen-

values of Hermitian matrices can be found in [12]. e

Theorem 5.4 (Poincaré Separation Theorem) Let A € C**" be Hermi-
tian. Let r be a given integer with 1 < r < n, and let uy,...,u, € C" be r
given orthonormal vectors. Let B, € C™*" be the matriz whose tj-th element is

uf Au;. If the eigenvalues of A and B, are arranged in increasing order then,

/\k(A) S /\k(Br) S /\k+n—r(A) k’ = 1,2, ..., T

Proof [12]: Choose n—r additional vectors u, 41, ..., un so that an orthonormal
set {uy,us, ..., u,} is obtained. Define the matrix U = (uy uy --- uy) € cnxn,

The matrix U is unitary, therefore U¥ AU has the same eigenvalues as A. The
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matrix B, is a principal submatrix of U¥ AU obtained by deleting the last n —r

rows and columns. By Theorem 5.3 the assertion follows. e

Following [12] we now show a development which leads to an inequality by
Wielandt. The inequality will provide the geometrical interpretation for the
upper bound.

Consider a nonsingular matrix A € €**" whose singular values are oy > --+ >
o, > 0. Denote B = AAY and let z,y € C" be any pair of orthonormal
vectors. Define C = (z y)¥ B(z y) € €**? and denote the eigenvalues of C by

0 < 71 £ 7,. By the Poincaré Separation Theorem 5.4 we have,
o2<y <y <ol (5.24)

It is not difficult to verify the following relationships,

y__ eByl? _ (2"Bz)(y"By) — 2" By’

(z#Bz)(y"By)  («¥Bwx +y# By)? — (a¥ Bz — y" By)?

_ 4det(C) _ i

~ (trC)? = (¥ Bz —y"By)?  (m +7)? — (2H Be — yH By)?

47172
> — 5.25
T (mt)? (5:25)
From (5.25) we obtain,
(ol
(z"Bz)(y"By) = (m+7)? \m/m+1

The upper bound in (5.26) is a monotonically increasing function of vo/y;. More-
over, from (5.24) we have that v5/v1 < 0?/02 = «*(A), where &(-) denotes the
spectral condition number. Hence from (5.26) we have,

) < (Zg n i) = (%ﬁ;—ﬂ) (5.21)

Defining the angle 6 in the first quadrant by cot(8/2) = « yields,
#2(A)—1  cot?(6/2) — 1

= = 0 5.28
R2(A) + 1 cot?(0/2) +1 (5.28)
From (5.27) and (5.28) we obtain,
|zH By? 2
< 5.29
BB < ! 529
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To state Wielandt’s inequality denote the usual (Euclidean) inner product in C"

by (-,-) and the Euclidean norm by || - ||. Then we have the following theorem
[12],

Theorem 5.5 (Wielandt Inequality) Let A € C™*" be a given nonsingular

matriz with spectral condition number k, and define the angle 0 in the first

quadrant by cot(8/2) = k. Then,
(A, Ay)] < cos )] Azlal| Ayl (5.30)

for every pair of orthogonal vectors x,y € C". Moreover, there exrists an or-

thonormal pair of vectors z,y € C" for which equality holds in (5.30).

Proof: Expression (5.30) is obtained by simply substituting B = A¥ A in (5.29).
Now consider two orthonormal eigenvectors of B, uy,u, € C" corresponding to
the eigenvalues of and o2 respectively (these vectors always exist since B is
Hermitian). Define z = (u; + u,)/V/2 and y = (u; — un)/v2. Then {z,y} is an

orthonormal set satisfying
Bz = y¥By = (624 062)/2 and z"By= (0} —02)/2
For this case, equality is attained in (5.27) and the result is proven. e

Wielandt’s inequality provides an attainable upper bound for the spectral
condition number of a matrix. Thus, §(A) may be geometrically interpreted
as the minimal angle between Az and Ay as x and y range over all possible

orthonormal pairs of vectors.

To see how Wielandt’s inequality gives a geometrical interpretation to the
bound (5.23), let us first consider the case where the plant includes a single un-
certain element p;; = p;; + A;; and it is required to assess how an additional un-
certainty would affect stability. Recall that the dimensions of the plant transfer
matrix P and of the compensator transfer matrix C' are n; xn, and n, X n; respec-

tively. Consequently, the dimensions of the closed loop map @ = C(I + PC )71
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are n, X n;.
The new perturbation affects the bound upon the maximal spectral radius (5.23)
through an amplification &(Z), where Z is the similarity transformation matrix

which diagonalizes,

0 0 0 )
0 cee 0 0
AT—IQ = Aqul ‘e A”qﬁ - A”an' (531)
0 ... 0 et 0
\ 0 cee 0 .. 0

where we have kept the notation A,_; to avoid confusion with the perturba-
tion matrix A;. We have denoted @ = {gu} and in (5.31) the only nonzero
row is the i-th row. By the results of Section 5.2 the matrix A,_;@Q in (5.31)
has (generically) a single nonzero eigenvalue A,;q;; whose corresponding eigen-
vector is the n;-elementary vector e;. Moreover, the matrix A,_;Q is generi-
cally diagonalizable therefore there exist n; — 1 eigenvectors spanning N (A,_1Q)
which together with e; form a linearly independent set of vectors. Denote by
z® = (2P g ... g)T k=1,...,n; — 1 the eigenvectors corresponding to
the zero eigenvalue and by ¢®" the i-th row of A,_1Q. Then, the eigenvectors

corresponding to the zero eigenvalue satisfy,
gD 2®) = qjlmgk) + quxgk) 4+ 4 an'.:cgf) =0 k=1,...,n;,—1 (5.32)

The dimension of the subspace span{q(, e;} is at most 2. Therefore we can
always choose the n;—2 (say) first eigenvectors z() z? ... (=2 corresponding
to the zero eigenvalue such that the subspace span{¢?,e;} is orthogonal to the
subspace spanned by these eigenvectors and moreover the eigenvectors form an

orthogonal set i.e.,
span{q¥,e;} L span{z® 22 ... (-2}
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and (5.33)
a® 1 2O kle[l,n] k#l

To form the similarity transformation matrix Z it remains to choose one addi-
tional eigenvector £(™~1) corresponding to the zero eigenvalue. This eigenvector
must satisfy (5.32) and also be linearly independent of e; and the eigenvectors
(2@ 2 ... -2y,

Suppose we choose z(%=1) 1 span{z™ z® ... £(*=D}  Then, disregard-
ing the trivial case where the dimension of span{q(),e;} is one (and there-
fore A,_1Q is diagonal) we have that since the subspaces span{q¥, e;} and
span{z® z? ... z(n-2} are complementary then (1) € span{q, e;}.
Now consider the standard basis {e; ey,..., e, } for €. Considering each pair
of vectors from this basis as pairs of orthogonal vectors in the application of
Theorem 5.5 to the matrix Z, we obtain that the angle 8 is not larger than the
smaller angle between the columns of the matrix Z. From the construction of
Z we conclude that the smallest angle between its columns is the angle between
(=1 and e; or for this simple case, the angle complementary to the angle be-
tween ¢ and e;. Thus, the smallest the angle between ¢(*) and e;, the closer to
one is the condition number of Z.

In the extreme case mentioned before where the dimension of the subspace
span{q®, e;} is one, then § = 7/2 and therefore k(Z) = 1 as expected (since
Z=1).

The generalization of the geometric interpretation for the case where a per-
turbation is added to a system that already has more than a single uncertain
element involves the consideration of the angle between subspaces of higher
dimensions. In addition, these subspaces rotate with the phases of the uncer-
tainties. Specifically suppose that the matrix A,_;@ has (in contrast to (5.31)) r
nonzero rows denoted by Ag() Ayg®, ... A,¢(. By the results of Section 5.2
this matrix has r nonzero eigenvalues to which correspond a set of linearly in-

dependent eigenvectors, say {y) y@, ... y(W}. By the same construction of

89



the matrix Z as in the simpler case of two uncertainties we conclude that an
upper bound for the angle # can be obtained by computing the angle between
the subspaces span{A;q™ Ay¢®, ... A,qM} and span{y® y@,...,y™M} (for
the definition and computation of the angles between subspaces see [59]). Notice
that since all the vectors depend now on the uncertainty phases the angle be-
tween the subspaces depends also on these phases, the maximal spectral radius
problem can be stated as one of finding the uncertainty phases which yield the

largest angle.

As a final remark in this section note that the similarity transformation
matrix Z in (5.23) is by no means unique since A,_1@ has repeated eigenval-
ues. Hence, a smaller upper bound (5.23) may be obtained by finding a set of

eigenvectors of A,_1@ that minimizes (Z).

5.4 A Bound on the Maximal Spectral Radius
Based on Spectral Analysis

The bound on the maximal spectral radius based on matrix norms devel-
oped in Section 5.3 reflects some fundamental results of matrix perturbation
theory. The results state that large deviations (in some sense) of a matrix from
normality may result in high susceptibility of its eigenvalues to perturbations of
individual elements of the matrix. The bound also has a geometrical interpreta-
tion in terms of the angle between certain subspaces, when the spectral norm is
used. However it is clear that these results are more conceptual than practical
since it is difficult to obtain directly from expression (5.23) relationships between
the individual closed loop maps that can be used to minimize the bound.

In this section we want to take advantage of the special structure of the matrices
A,_1Q to develop a bound upon the maximal spectral radius which potentially
provides direct information for its minimization.

Each time an additional perturbation is added to the system a nonzero row
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vector is generated. The matrix A,_;@ is converted to A,Q by either the re-
placement of a zero row by the vector or by adding this vector to an existing
nonzero row. We will show that the projection of the vector on the null space
of A,_1Q provides valuable information in terms of the individual closed loop
maps regarding the minimization of a bound on the maximal spectral radius.
The information appears in the form of algebraic expressions which are indepen-
dent of the elements of the uncertainty matrix. To actually compute the bound
it is still required to evaluate the condition number of a matrix which depends
on the uncertainties. However the matrix is of much lower dimensions that the

one corresponding to the bound based solely on matrix norms.

Consider a system whose uncertainty structure is defined by the indicator
T with cardinality «(7T") = r. As in the last section the matrix A,Q can be

decomposed as,

AQ = A,Q + AQ (5.34)

and we can consider the matrix A,_;@ as being perturbed by the rank one
matrix A;Q. Since we are dealing with the maximal spectral radius, we can
apply Theorem 4.4 or alternatively consider equations (4.34)-(4.36) to restrict
the elements of the uncertainty to be of unit magnitude. Thus, the elements of
the n; X n, matrix Ay in (5.34) are all zero with the exception of the lk entry
which is given by A; = €%, The matrix A;Q has therefore all its rows zero

except for the I-th row which is (et gy ePikqp, - ek g, ).

One way to deal with the maximal spectral radius of an operator A is to
study its spectrum using the operator-valued function A — R4(A) referred to

as the resolvent of A and defined by [50],
Ra(A) =(A=I)"!

Note that each eigenvalue of A is a singularity of R4(A).

The resolvent has been used to study the effect of one dimensional perturbations

on the spectrum of symmetric operators acting on infinite- dimensional Hilbert
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spaces [60]. Following a similar procedure to that in [60] we now show a devel-
opment which leads to an algebraic equation relating the spectrum of A,Q to
the spectrum of A,_;Q. The equation will eventually be used to obtain a bound
upon the maximal spectral radius.

Denote by the resolvent of Ay Q by Ri. Recalling that Ay is n; X n, and @ is
no, X n; we have that if v and v are two n;-dimensional vectors satisfying R,u = v

then by (5.34),
u=RTo=A.Qu—v=(A_1Q+A1Q)v— v
Therefore,
(A,—-lQ - )\I)’U =Uu— A]Q’U (535)

From the results of Section 5.2 we know that the matrix A;Q is generically of

rank one. Therefore it is diagonalizable. That is, there exists a nonsingular
matrix S such that,

AQ = SA, S (5.36)

where A; has all its elements zero except for one in the main diagonal which
is gre’®* . Without loss of generality we may assume that the columns of the
matrix S are ordered such that the unique nonzero element of A; is in the [I-th
place.

Notice that since A;Q) has only one nonzero row the similarity transformation
matrix S does not depend on the uncertainty angle 8;; but only on the elements
of the k-th row of Q.

Substituting (5.36) into (5.35) yields,

(A21Q — M =u— SA S (5.37)

By premultiplying (5.37) by S~! we obtain,
(S7'A,1QSS = A8 o =5u— A SN (5.38)
Defining the vectors & = S~1v and & = S~lu, expression (5.38) can be written,
(S7IA,1QS = A)d = i — Ayd (5.39)
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Let (-,-) denote the usual (Euclidean) inner product in €™ and let ¢; denote the
elementary n;-vector with a 1 in the I-th place and zeros everywhere else. Since
the only nonzero element of A; is given by gne’®* and it is located in the lI-th

place then, the vector A19 may be written in the form,
Alﬁ = e’o"‘qkl(el,'f))el

Denoting
Ry = (57'A,1QS8 — AI)7! (5.40)

and premultiplying (5.39) by R._; we obtain,

U= R,.__lil — 6‘70”‘(]“(61, 'D)Rr—-lel (5.41)

Forming the inner product of (5.41) with e; gives,

-

(e1,9) = (er, Rro1@t) — e qy{er, D) {er, Ro_yer) (5.42)

and from (5.42) we obtain,

fer,8) = —— 1) (5.43)
1 + e gi{er, Rr—y€1)

Now define R, = S7'R,S = (S7'A,QS — AI)~!. Then (5.41) and (5.43) yield,

. . B X
RT’LAL =70 = Rr—lﬂ — e”o’qul (61, luA) RT_161 (544)
1 4 e qy{e;, R,_1€1)

The eigenvalues of A,Q) are the singularities of R, or equivalently of R,. Except
for those inherited from R,_;, the singularities of R, are by (5.44) the solutions
of,

d(A) =1+ e quler, R_1e) = 0 (5.45)

We now concentrate on the singularities of R, not inherited from R,_; or in
other words, on the solutions of equation (5.45). The case of inherited eigenval-
ues will be dwelt upon later.

By the results of Section 5.2, there exists generically a nonsingular matrix Z
such that,
A 1Q = ZA,1 271 (5.46)
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where A,_; is diagonal and similar to A,_1Q.

Notice that in contrast to the case r < 2, when r > 2 the elements of the matrix
7 depend on the elements of the uncertainty matrix A,_;. For this reason,
the computation of the maximal spectral radius (or for block uncertainties, the
structured singular value) involves the solution of an optimization problem where
the optimization variables are the phases of the uncertainties.

Using (5.40) and (5.46) we can write,

Ry =(5718,.1QS — M) = (S71ZA, 12718 = M) =
STZ(Ar_y — ADTIZ7IS = W(A,q = AW (5.47)

where we have defined the matrix W = §71Z.
Substituting (5.47) into (5.45) yields,

$(A) =14 ™ qule, W(A,y — X)W er) =
1+ e qu(WHer, (A — AD)T'W™her) = 0 (5.48)

where W# is the adjoint (the Hermitian transpose) of W.
By (5.48) we conclude that the eigenvalues of A,Q that are not inherited from
A,_1Q must satisfy the equation,

ek g (WHey, (M — Apm) ' Wle)) =11 (5.49)

Now let by @, = (xy @9 ... zny)T denote the I-th column of W~! and w;. =

(wip wyg ... wiy,) the I-th row of W. Then, equation (5.49) can be written as,
e/ grw (A — Ayo1)"leg =1 (5.50)

or equivalently, if {\;,Az,..., A} are the diagonal elements of A,_; ordered

according to expression (5.46),

Mgy Ty =1 (5.51)
=1 — A

Suppose that the number of nonzero rows of the matrix A,_; is m. Clearly,

m < r—1 with equality holding if and only if the perturbation matrix is diagonal.
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The matrix A,_;@) has therefore m nonzero eigenvalues and n; — m zero ones.
Without loss of generality we may assume that the columns of the matrix Z in
(5.46) are ordered such that A4y = Apye = ... Ay, = 0. Then the sum in (5.51)
can be decomposed into,
i=1 i j=m+1

with A\; 20 ¢ =1,2,...,m.

Expression (5.52) provides a relationship between the distinct spectra of A,Q
and A,_;Q. It shows that the part of the spectrum of A,Q not inherited from
A,_1@Q is obtained from the solution of an algebraic equation whose order is at

most the order of the minimal polynomial of the matrix.

It may be possible that the part of the spectrum of A,Q inherited from
A,_1Q contains the eigenvalue corresponding to the spectral radius of A,Q.
This situation is reflected in (5.52) by having wj;z;; = 0 where 7 is the index
corresponding to the eigenvalue A; of A,_;@Q) of maximal modulus. However we
will not consider this case separately since, as will become clear later, the bound
on the maximal spectral radius to be developed in this section does not require
it. An illustration of such a situation will be presented in the example at the

end of this section.

It turns out that owing to the special structure of the matrices involved, by
studying the geometry of certain subspaces associated with the matrices, some
properties of expression (5.52) can be found. These properties play an important
role in the development of a bound for the maximal spectral radius. For the

sake of clarity the properties will be stated in the form of a series of lemmas.

The first lemma reveals a special feature of the similarity transformation
inverse matrix S~! resulting from the fact that the only nonzero element of the
matrix Ay is Ay. This feature will be widely used in further developments.
Recall that in (5.36) we assumed that the columns of the matrix S were ordered

such that the unique nonzero element of A; is in the /l-th place. Under this
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assumption, and if ¢i. denotes the k-th row of the matrix @, then we have the

following result,

Lemma 5.7 The l-th row of the similarity transformation inverse matriz S~}

in (5.36) is given by aq. where a € C is a normalization factor.

Proof According to the decomposition of the matrix A,Q in (5.34), the [-th
row of S71 is the left (or row) eigenvector corresponding to the unique nonzero
eigenvalue of A;(Q. This eigenvalue is given by e?*¢q. Moreover the unique
nonzero row of the matrix A;Q is (e’ gy ¥ gy --- ek qpy,). Therefore, if
t. = (tn tiz -+ tim,;) denotes the left eigenvector of A;@) corresponding to the

nonzero eigenvalue, then each one of its components satisfies,

01k

0 .
e’ qr; = gty 1 =1,2,...,n

Hence t;; = aqy; 1 =1,2,...,n; with o € €. Since SS™! = I, the normalization
factor « satisfies (t/7,s,;) = 1 where s, is the right (column) eigenvector of A;Q

corresponding to the nonzero eigenvalue. o

The next lemma provides a simplification for expression (5.52) by choosing

an appropiate basis for the null space of the matrix A,_,1Q).

Lemma 5.8 The similarity transformation matriz Z in (5.46) can be chosen

such that in (5.52) w; =0 fori=m+2,m+3,...,n,.

Proof The right invariant subspace corresponding to the zero eigenvalue of the
matrix A,_;Q 18 N(A,_;Q). By virtue of the basic assumptions we have that
dim{N (Ar1Q)} = ni —m.

Now, choose a basis {@m+1, Pmt2y--->Pn;} for N(A,_1Q) with the following
property: if the projection Y%, . (g, ¢:)¢: of ¢F. into N(A,_1Q) is nonzero
then the basis forms an orthogonal set and one of the basis vectors, say ¢mi1,

is the projection itself i.e.,

g

bmsr = D (qi, i) (5.53)

i=m+1
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If the projection of ¢, into N(A,_;1Q) is zero then choose an arbitrary (not
necessarily orthogonal) basis.

Notice that since we are dealing with finite dimensional spaces the existence of
orthogonal bases is assured [12, 53].

Since the basis vectors {¢mi1, Pmt2y-..,Pn; } are eigenvectors corresponding to
the zero eigenvalue of A,_1@Q they can be assigned as the last n; — m columns
of the similarity transformation matrix Z. By Lemma 5.7 the I-th row of §~1
is aq. with @ € € a normalization constant. Therefore for each of the cases
above the last n; — (m + 1) elements of the I-th row of W = S§7!Z are zero i.e.,

Wim42) = Wi(m+43) - - - = Win; = 0 and the lemma is proven. e

Lemma 5.8 merely expresses the fact that at least n;—(m+1) zero eigenvalues
of A,_1Q) are inherited by A,Q. When the projection of q;{, into N (A,_1Q) is
nonzero then exactly n; — (m + 1) zero eigenvalues are inherited and expression

(5.52) can be written in simplified form,

TN WETH . Wim41) T (m
eJOqukI {Z ;\w-l_w)‘l + I +1i\ ( +1)I} =1 (554)

1=1

When the above projection is zero then all the n; —m zero eigenvalues of A,_;Q
are inherited by A,Q. In this case wym4+1) = 0 as well and expression (5.54)
is further simplified leading to an algebraic equation of order m at most. The

circumstances leading to this case will be examined later on.

As mentioned before, when r > 2 the elements of the similarity transfor-
mation matrix Z depend on the elements of the uncertainty matrix A,_; and
consequently, the computation of the maximal spectral radius (or the structured
singular value) becomes difficult. It turns out that for certain perturbation
structures, a careful examination of the left and right invariant subspaces corre-
sponding to the zero eigenvalue of the matrix A,_;Q leads to a useful property
which some coeflicients of expression (5.54) have. First, we consider a theorem
from [57] concerning the characterization of invariant subspaces that is required

for proving the result.
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Theorem 5.6 Let the columns of X form a linearly independent set and let the
columns of Y span R(X). Then R(X) is an invariant subspace of A if and
only if,

YHAX =0 (5.55)

In this case R(Y) is an invariant subspace of AH.

Proof: By definition, R(X) is an invariant subspace of A if and only if AR(X) C
R(X). But,
AR(X) C R(X) <= AR(X) L RY(X)
< R(AX) L R(Y)
<~ YHAX =0
which establishes (5.55). Writing (5.55) in the form XH A”Y | we see that R(Y)

must be an invariant subspace of AY. e

Denote now by T; the indicator of the uncertainty matrix A;. Using the
genericity arguments of Section 5.2 and Theorem 5.6 we can prove the following

lemma,

Lemma 5.9 Assume that the number of nonzero rows and columns of the indi-
cator matriz T,_y is the same. Then there exist bases for the right and the left
tnvariant subspaces corresponding to the zero eigenvalue of A,_1Q which depend

only on the elements of the matriz T,_,Q).

Proof Form a matrix Q as follows. If the :-th row of A,_; is zero then the i-th
row of Q is also zero. All the other rows of Q are identical to the corresponding

rows of (). By the special structure of T,_; we have that,
N(Q) C N(A,-1Q) (5.56)

Since the matrix A,_; is assumed to have no more zero columns than zero rows

it follows by the genericity arguments of Section 5.2 that,

A

dim{N(Q)} = dim{N(A,1Q)} = ni —m (5.57)
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Combining (5.56)-(5.57) yields M(A,_1Q) = N(Q). Therefore there exist bases
for the right invariant subspace corresponding to the zero eigenvalue of A,_;Q
which depend only on the elements of the matrix Q or equivalently, on the
elements of the matrix 7,_1Q).

To prove the claim for the left invariant subspace notice that if the columns of
a matrix X form a basis for N (Q) then QX = 0 and therefore by Theorem 5.6
any matrix Y whose columns span RL(X) is a left invariant subspace of Q. As
X depends only on the elements of T,_;(), the matrix Y depends only on these
elements as well. Moreover R(X) and R(Y) are orthogonal complements in
@ ni=m)x(ni=m) therefore the left invariant subspaces corresponding to the zero

eigenvalue of ) and A,_;(Q are the same and the lemma is proven. e

From Lemma 5.9 we conclude that when the number of nonzero columns
and rows of T,_; is the same the matrices Z (Z~') can be chosen such that
the columns (rows) corresponding to the zero eigenvalue of A,_;() depend only
on the elements of T,_;(). Since the matrices S and S~! do not depend on
the phase of the elements of the uncertainty matrix A; then, the last n; — m
components of the vectors z.; and w} depend only on elements of the closed
loop map @. Thus, the coeflicient of 1/X in (5.52) or in (5.54) is a function of
the elements of the closed loop map matrix @ only. This result is crucial for
obtaining conditions on the individual closed loop maps to minimize the value

of an upper bound on the maximal spectral radius.

As mentioned before, there exist circumstances where the coefficient of 1/X
in (5.54) is zero. This corresponds to the case when the whole null space of
A,_1Q is inherited by A,Q. The following lemma describes a common situation

where this happens.

Lemma 5.10 Suppose that the decomposition of the uncertainty matriz A, =
A,_1 + A is such that the column of A,_; corresponding to the nonzero column

of Ay is also nonzero (i.e., if Ay is the single nonzero element of A, then there
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exists an element Ayx in A,_y with n # | which is also nonzero). In this case,

N(AT—IQ) = N(ArQ)

Proof The number of nonzero rows of A,Q is not less than the number of

nonzero rows of A,_;. Therefore by the genericity assumptions,

dim{N(A,Q)} < dim{N(A,-1Q)} (5.58)
Consider now a set of vectors {dmi1, Pm+2,- - - P, } such that for each nonzero
row jof A,_y andforeachi=m+1,m+2,...,n,, (qf_", #;) = 0. Since we are

assuming that the rank of A,_; is determined by its number of rows and by the
genericity arguments, the above set of vectors form a basis for N(A,_;@Q). This
basis also satisfies {(g//,¢;) =0 1 =m+1,m+2,...,n;, therefore any vector in
N(A,_1Q) is an eigenvector of A,Q = A,_1Q + A;Q corresponding to the zero
eigenvalue i.e.,

N(Ar1Q) € N(A,Q) (5.59)
By (5.58) and (5.59) we obtain M(A,_1Q) = N (A,Q) therefore the assertion is

proven. e

Under the hypotheses of Lemma 5.10, expression (5.54) reduces to,

eﬂetqul Z ;01137;\1 =1 (560)
i=1 4

Now we proceed to develop a bound on the maximal spectral radius. The

bound is obtained by manipulating expression (5.54) as follows,

E

Z Wi T 51

j=m+1

m

Z .’I/'zl A E U)ijl
z: —-m-l—l

wy;
Y315

=1

1= |qu|

|le| {

- lez
lgx
| Z e

>4

Z Wi; T 51

j=m+1

IAI

}_

[wiz zzl
qull {Z I |)\ | I/\I Z Wy T 51

j=m+1

} (5.61)

96



Consider now an uncertainty matrix A* satisfying p(AXQ) = p(A,Q). By (5.61)

} (5.62)

the spectral radius of AXQ) satisfies,

Z Wi; ;1

= |wisz |
1< |qu
| ’{§p(A:Q)—IA| B

j=m+1
where in (5.62) the eigenvalues \; and the coefficients wy;,zq ¢ =1,2,...,m
correspond to the uncertainty A¥_; = Ay — A},
By definition we have,
p(A1Q) > p(AX_ Q)2 N i=1,2,...,m (5.63)

and since obviously p(A,Q) > H(A,-1Q) expressions (5.62) and (5.63) yield,
1

lg'qk"{ﬁ(ArQ)w( e P RS rwe) } (564

From now on, without loss of generality we assume, as in Lemma 5.6, that

Z Wi 51

j=m+1

the first m rows of A,_1Q correspond to the nonzero rows of the topology T.

Then, we can partition the n; X n, matrix A,_; as follows,

Ay A
A= "0 77 (5.65)
0 0

where Ay is m x m and A, is m X (n, — m).

A conformal partition of the closed loop n, X n; matrix ¢ will result in,

o[ @ Qz) (5.6
Qs Qs

where the dimensions of the submatrices @y, @2, @3 and @4 are m X m, m X
(ni —m), (n, — m) x m and (n, — m) X (n; — m) respectively.

Combining (5.65) and (5.66) yields the following partition on the n; X n; matrix
A,1Q,

(0.67)

A A A A
Ay @ — ( 1Q1'g 2@3 1Q2-g on )
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From (5.67) we obtain that the corresponding conformal partitions of the simi-

larity transformation n; X n; matrices Z and its inverse V = Z~! are,

Zy 7 i W
7 11 412 V= 1 Vi2 (5.68)
Zn Zny Var Voo

where Ziy is m X m, Z13 is m X (n; — m), Zy; is (n; — m) X m and Zy; is
(n,’ — m) X (ni — m)

It is easy to see by analyzing the structure of the eigenvectors corresponding
to the nonzero eigenvalues of the matrix A,_;@ in (5.67) that both matrices Z

and V in (5.68) are block upper triangular i.e., Zg; = Vo = 0.

Recall from (5.49) that the eigenvalues of A,Q that are not inherited from

A,_10Q) satisfy the equation,
ek qu(WHe, (A — Army) ' Wle)) = 1 (5.69)

where W = S§-1Z. The [-th column of S is the eigenvector corresponding to
the unique nonzero eigenvalue of A;Q). This eigenvector if, normalized, is e;.

Consequently by Lemma, 5.7, the I-th row of S~! is

f, = (L Bz Tkns (5.70)
qrt qkl qrl

Using (5.70) we may write expression (5.69) as,
ek qu(ZHE (M= A, ) Z 7)) =11 (5.71)

From expression (5.71) and partitions (5.68) we conclude that the coefficient

> lwizal in (5.64) is given by,

Z Iwuwill = |{1.Z11”V1261| l(572)
i=1
where ;. denotes the row vector #;. truncated to its first m components and |a|

denotes the vector a whose components a; have been replaced by |a;]|.
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Since ZV = I it follows that Vi = —Z;3! Z13Vag and Vi = Z5;'. Therefore from
(5.72) we obtain,
3 lwizal = |E.Zn|[Vizen| < [E1]|Z11||Vazen| =
=1
6121|253 ZazVasen| < Bl 2| 257 | Z12 255 ea] <

[

| Zu || Zi W1 212255 exl| = 6(Za) ||| Z12 253 e (5.73)

where || - || denotes any matrix norm induced by an absolute vector norm [12,
pages 310, 365].
In a similar way the coefficient IZ?;mH wljfl?jli in (5.64) can be expressed in

terms of the partition (5.68) as,

e Z Z1225;
Z Wi s = |t1. 12 Z2—2161| - |t1. 1272 €1 (5.74)
j=m+1 22 1
Combining (5.64) (5.73) and (5.74) we obtain,
p(Zu) |81 212235 ea| 1 ZnaZy
1 < qu| . . + = 1. e 5.75
i Sme) - e et el G

As a consequence of Lemma 5.9 the similarity transformation matrices may
be chosen such that the coefficients wy,z;y 7 =m+ 1,m + 2,...,n; depend
only on (some of) the elements of the closed loop map matrix Q. In terms
of the partitions (5.68) this means that the eigenvectors of the matrix A,_1Q
may be chosen such that the submatrices Z;5 and Z,, do not depend on the
uncertainties. However the coefficients wy; and z;; ¢ = 1,2,...,m or equivalently

the submatrices Zy; and Z3; depend in general on the uncertainty matrix.

Expression (5.75) provides a relationship between the maximal spectral ra-
dius (or the structured singular value for the case of complex, element by ele-
ment uncertainty) corresponding to the r — 1 and r uncertainties cases. This
relationship generates recursively an upper bound for the stability margin. Each
recursion step provides necessary conditions for the upper bound to assure ro-

bust stability. The last step corresponds to the bound and therefore generates
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also sufficient conditions. The whole set of conditions can then be used to im-
pose values upon the individual closed loop maps that will guarantee robust
stability.

Notice that a lower bound is also obtained from (5.75). However it is trivial (i.e.

it is nonpositive).

To illustrate the series of conditions generated by expression (5.75) we will
consider a 3 X 3 closed loop map . The analysis will be carried for a few steps.
At each step a new uncertainty will be added to the system. The only restriction
concerning the addition of uncertainties is that the number of nonzero columns
and rows of the uncertainty matrix should be always kept equal (except for the
last step). This restriction, which results from the assumptions of Lemma 5.9,
requires a careful numbering of the plant input-output pairs. Some uncertainty
structures however may require the introduction of small, fictituous uncertainty
elements in order to comply with the assumption of Lemma 5.9.

In the example it will be understood that for robust stability all the conditions
obtained should hold for each frequency in an appropiately indented Nyquist
contour.

The closed loop map will be represented by the matrix,

qQuu Q12 Q13
Q=] ¢ g @3 (5.76)
g3t q32 Q33
where each ¢;; is a complex scalar.

Step 1: r = 1. The uncertainty matrix is given by,

Ay 000
Ar=] 0 00 (5.77)
0 00

In the single uncertainty case the matrix A;@ has only one nonzero eigenvalue

therefore,

A(A1Q) = [Anqui| = |qu] (5.78)
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and the condition for robustness is given by,
|q11| <1 (579)

Clearly in this case the bound is tight and condition (5.79) is necessary and

sufficient as well.

Step 2: r=2. The uncertainty matrix is,

Ay 000
A2 = 0 AQQ 0 (5.80)
0 0 0

and A,_y is given by (5.77), (here we keep the notation A,_; to avoid confusion

with the perturbation matrix A;). By Lemma 5.7 the second row of the matrix

S~ s,
1

ly. = _( q21 922 423 ) (5-81)
q22

To compute Z;, and Z,; we have to find two vectors that span N(A,-1Q). One

choice is the vectors (—qi2 q11 0)T and (0 — 13 q12)T. Therefore the matrix Z

looks,
x —qz 0
Z=10 qu —qs (5.82)
0 0 di2

where x is used here to denote a complex number that we do not need to compute
right now. Note that in this case Z;; = x.

From (5.82) we obtain,

_ 1
Zl2Z221 =—( —gun —qs ) (5.83)
qn
Substituting (5.81) and (5.83) into (5.74) yields,
> wiyzs| = Il — Inin (5.84)
j=m+1 q11922
Since Zy; is a scalar then &(Z;;) = 1. Moreover it is easy to verify that,
liall = |2 lZuZital = |7 (5.85)
q22 q11
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therefore substituting (5.85) into (5.73) we obtain,

m
Z lwiizq| =

=1

q12921

(5.86)
q11922

The result of Step 1 and expressions (5.84) and (5.86) can now be substituted
into (5.68) to yield,

d12921
711922

1 q12921
— 87
ﬁ(AzQ) - |f1111 (AzQ) l1 911922 } (5 )

Notice that when g¢12¢21 = 0 expression (5.87) yields p(A2Q) < |g22|. The other

1S|Q22|{ +f3

eigenvalue is inherited from Step 1 therefore the maximal spectral radius bound
is given by max{|q11], |g22|}

In the case where ¢11¢22 = ¢12¢21 then again one of the eigenvalues is inherited
from Step 1 (the zero eigenvalue) and the maximal spectral radius bound is

given by the unique solution of (5.87) which is p(A2Q) < |qu1| + |g22]-

Step 3: The uncertainty matrix is,

All A12 0
As=] 0 Ay 0 (5.88)
0 0 0

and A,_y = A, is given by (5.80). The first row of S~! is given by,
1
421

t. = ( g21 q22 Q23 ) (5-89)

To find a basis for N(A;Q) it suffices by Lemma 5.9 to find a vector z =

a1 qiz Q13 |,
2=0
( 921 922 q23 )

(213 223 233)T such that,

By choosing z33 = —1 we obtain,
Z13 G22G13 — 124923
1
Z - —
93 11922 — G12G21 G11G93 ~ Ga1G13
233 —q11922 + q12921
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The above vector is the third column of the matrix Z which looks,

X X z213

Z=]| X X 29 (5.90)
0 0 Z33

Notice that Z;, is the 2 x 2 leading principal submatrix in (5.90).

By Lemma 5.10 we know that 372 ., wi;z; = 0. Substituting (5.89) and (5.90)
into (5.73) yields,

m

1 922913 — 912923

Z lwiiza| = &(Z11) (1 QEZ) _ (5.91)
i1 q21 911922 — 12921 q11923 — 921G13
Finally, the bound is obtained by substituting (5.91) into (5.68),
<l sox )
= A(AQ) - A2
1 422G13 — 12923
”(1 ‘122/(121)” ” (5-92)

d11922 — 12921 911923 — 921913

Summary of Conditions:

1. According to expression (5.79) a necessary condition for the robustness
bound to be small is that |g1:] < 1. This is the well known necessary and
sufficient condition for robustness against individual perturbations. Sim-
ilar robustness conditions against individual perturbations in other plant
elements follow from the bounds corresponding to simultaneous perturba-

tions.

2. From expression (5.87) we conclude that as the ratio |¢12¢21/q11¢22] de-
creases, the bound for the maximal spectral radius p(A2Q) gets smaller.
In the extremal case where the ratio is zero the bound is p(A.Q) <

max{|q11], |g22|} i.e. we also require |go2| < 1.

3. From expression (5.92) we infer that we can obtain a small robustness

bound by keeping |g21| small, the condition number of the matrix Zi,
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which is the matrix of eigenvectors of

An 0 Q11 q12
0 Ay g21 Q22

as close to 1 as possible and the minors of Q corresponding to the rows
(1,2) and columns (1,3) and (2,3) small. The actual values depend on the
specific application. Notice that the smaller the norms of the elements

q12 and ¢,;, the closer the matrix Z;; is to normal. Therefore, the closer

k(Z11) is to 1.

5.5 A Practical Application of the Robustness
Bound

In this section we illustrate the use of the recursive bound developed in
Section 5.4 by assessing at a single frequency the robustness of a loop designed
to control the vertical dynamics of an aircraft. The model to be used is a three
input, three output and five state linearized model at datum flight conditions.
The model can be found in [61, 62, 49].

The inputs are denoted by,

Y spoiler angle, measured in tenths of a degree,

a, forward acceleration due to engine thrust, in m/sec?,
6 elevator angle, in degrees,

whereas the notation for the states is,

h altitude relative to some reference point, in meters,
v, forward speed, in m/sec,

6 pitch angle, in degrees,

0 pitch rate, in deg/sec,
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h vertical speed, in m/sec.

The outputs to be controlled are the first three states h, v, and 8.

For almost all aircraft and in most flight conditions, the longitudinal dynam-
ics exhibit two characteristic modes. The first mode is characterized by a short
period and a relatively high damping factor. This first mode is referred to as
the short period mode. The second mode, referred to as the phugoid mode has
a long period relative to the first mode and very light damping. The phugoid
mode is even unstable sometimes.

The short period mode transient response consists of variations in the angle of
attack, in the vertical acceleration and in the pitch angle of the aircraft. The
forward velocity however experiences little change.

The phugoid mode transient is characterized by almost no change in the angle
of attack. However the pitch angle, the vertical acceleration and the forward
velocity vary.

The vertical acceleration amplitudes in the phugoid mode are only slightly larger
than in the short period mode. However, due to the large differences in the fre-
quencies, the altitude excursions at the phugoid frequency are much higher than
those at the short period frequency.

As pointed out in [63], the phugoid mode can be thought of as an exchange of
potential and kinetic energy. The aircraft makes a sinusoidal flight path in the
vertical plane. When going from the highest to the lowest point in the path, the
aircraft picks up speed, lift is therefore increased and the flight path is curved

until the aircraft starts climbing again and the velocity decreases.
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A state space description (A, B, C) of the aircraft model (there is no direct

input-output transmission) is given by [61, 62, 49],

(0 o o )

(0 0 1.132 0 —1.000
0 —0.0538 —0.1712 0  0.0705
A=lo o0 0 1.000 0
0 00485 0  —0.855 —1.013
| 0 —02000 0  1.0532 —0.6859

—-0.120 1.000 0 1 00060
0 0 0 C=101000
4.4190 0 —1.665 00100

1.575 0 —0.0732 )

From the state space description we obtain the following elements p;;(s) of the

plant transfer matrix P(s) = C(sI — A)~!B,

pu(s) =
p1a(s) =
p13(s) =
pn(s) =
pa(s) =
p2s(s) =
pai(s) =
paa(s) =

pa3(s) =

h(s —1.6(s + 1.4)(s — 0.66)(s — 0.055)

——

¥(s) s(s2+2-06-13-5+1.32)(s2+2-0.096 - 0.18 - 5 + 0.182)
) 0.3(s*+2-0.38 - 1.13 - s + 1.13%)

(s) s(s2+2-06-1.3-s+1.3%)(s>+2-0.096-0.18 - s + 0.18?)

0.07(s — 4.5)(s + 3.6)(s + 0.017)

 5(s24+2-06-1.3-5+1.32)(s2+2-0.096 - 0.18 - s + 0.182)

v4(8) —0.12(s + 0.47)(s2 +2-0.035 - 2.1 - s + 2.1%)

P(s)  (s2+2-0.6-1.3-541.32)(s24+2-0.096-0.18 - s + 0.182)

ve(s) s
az(s)  (s2+2-0.096-0.18 - s + 0.182)
va(s) —0.005(s — 31)(s + 1.12)

(s)  (s24+2-06-1.3-5+1.32)(s2+2-0.096-0.18 - s + 0.18?)
0(s) 4.42(s + 0.26)(s + 0.12)
P(s)  (s2+2-0.6-1.3-5+1.32)(s2+2-0.096 - 0.18 - s + 0.182)
(s) 0.048(s + 6.76)
az(s)  (s2+2-0.6-1.3-s+41.32)(s2+2-0.096 - 0.18 - s + 0.182)
o(s) —1.66(s + 0.6)(s + 0.09)
6(s)  (s*+2:0.6+1.3+8+41.32)(s*+2.0.096-0.18 . s 4 0.18%)

(5.93)
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From (5.93) we realize that the short period and the phugoid modes are
characterized by the frequencies w,, = 1.3 rad/sec (0.2 Hz) and w, = 0.18
rad/sec (0.0286 Hz) and damping factors (;, = 0.6 and (, = 0.096 respectively.

The control design to be tested, taken from [49], is based on the Character-
istic Locus method [8]. The Characteristic Locus method consists basically of
constructing a compensator which, for the frequency region of interest, approxi-
mately commutes with the plant. As two commuting matrices share the same set
of eigenvectors, it is not difficult to see that the eigenvalues of the system formed
by the series connection of the plant and the compensator are the product of
the plant and compensator eigenvalues. Thus, such a compensator enables the
designer to individually shape the eigenvalues or characteristic functions of the
plant.

Since the eigenvectors of the plant generally have elements which are not rational
functions of s, it is impractical to attempt to build a compensator that com-
mutes exactly with the plant. The Characteristic Locus method then assumes
that the eigenvectors of the plant do not change too fast with frequency and
builds a series of approximately commutative controllers at selected frequencies.
In addition to this, a constant gain compensator is generally also designed to
reduce interaction at high frequencies (where the gains of the plant are low).

The complete compensator is then realized by combining all the designs.

The design shown in [49] consists of a combination of three compensators:
a high frequency decoupling compensator K}, a middle frequency compensator
K,,(s) = UM(s)V and a low frequency compensator K;(s). The compensator

matrices are,

—71.535 0.0036 —3.669
Kn=] —85375 9.9984 —0.5376
—189.44 —0.0065 —69.378
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0.2426 —0.2077 —0.0016 2.1937 0.0031 0.5587

U=1] —-0.0087 0.0079 0.9999 V= —-1.39 —0.0017 0.6491
0.6151 0.9656 0.0010 0.0278 1.0 0.0014
m(s) 0 0
0.0933s + 0.2175
Ms)=1 0 ms) 0 (8) = 009335 71
0 0 1
1 0 0
, 14 2s
]X[(S)Z 95 0
0 01

The complete compensator C(s) is therefore given by,

C(s) = KnUM(s)V K (s)

Frequency response plots of the individual elements g;;(s) of the closed loop

transfer matrix C(s)[/+ P(s)C(s)]™! (which as shown in Chapter 4 is the closed

loop map corresponding to the case of additive perturbations) are shown in

Figure 5.1. Notice that the units of the various individual closed loop maps
are, qui-[(deg/m) - 1071], q12-[(deg/m/[sec) - 1071], qus- [(deg/deg) - 107%], ga1-
[1/sec®], qua=[1/sec], qus—[m/sec? /deg], ga1— [deg/m), gao— [deg/m/sec] and gss-

[deg/deg].
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Figure 5.1: Frequency Responses of the Elements of C(s)[I + P(s)C(s)]™}

To analyze the closed loop transient response, a digital simulation of the
system was implemented using Grumman’s PROTOBLOCK. This is a program
that creates a graphic environment for MATLAB and ACSL. A general block
diagram of the simulated system is depicted in Figure 5.2. where k., v, and 6.

are the altitude, forward speed and pitch angle commands respectively.

Figure 5.3 depictes the response of the outputs 4, v, and 8 of the unperturbed
system to a unit step in the input commands A, v,, and ..

Figure 5.4 shows again the response of the output h to a unit step in the input
h. but now the plot extends up to 500 seconds and the vertical axis has a high
resolution scale. Notice that after approximately 10 seconds all the transients

have died out and the system remains in steady state.
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Figure 5.3: Responses of h (solid line), v, (dashed line) and 6 (dotted line)

to unit step inputs in (a) ke (b) vy and (c) 8.. The system is
unperturbed.
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Figure 5.4: Long term transient response of h to a unit step input in .. The
system model is unperturbed.

The application of the robustness bound will be carried out at a single fre-
quency and under the assumption that only the diagonal elements of the plant
matrix are uncertain. A frequency will be chosen where the system exhibits
potential for robustness problems. According to the robustness analysis ap-
pearing in [64], under certain coupling conditions the robustness of a feedback
system with an ill conditioned plant may be poor with respect to simultaneous
model perturbations. This situation is possible even for systems exhibiting large
stability margins against individual perturbations. Therefore, we will choose a
frequency for which the plant is ill conditioned.

A plot of the spectral condition number of the plant (5.93) is depicted in Fig-
ure 5.5. The numbers shown in the plot of Figure 5.5 suggest an extremely
ill conditioned plant. However care must be exercised when interpreting these
numbers since the condition number depends on the units chosen. |

We will choose the frequency of the phugoid mode w, = 0.18 rad/sec since at

this frequency the relative condition number is the highest.

The model perturbations to be considered here will be of the element by
element multiplicative type. Le., if the 7j element of the plant is perturbed then

its transfer function p;; will be represented by,
Pii(s) = pi;(s)[1 + nij(s)] (5.94)

112



300

250

200+

150

Condition Number

100

50

0 I 1 L4 1 3.3 ) N W S U Y Y | 1 | S T O W I I 3
10! 109 10t 102

frequency [rad/sec]
Figure 5.5: Plant Spectral Condition Numbers

where p;;(s) is the nominal element and 7;;(s) is a proper and stable, norm
bounded transfer function. Notice that as mentioned in Section 2 of Chapter 4
this type of uncertainty can be alternatively represented as an additive pertur-
bations by writing,

Pij(s) = pij(s) + Aii(s) (5.95)
with Ai;(s) = pi;(s)mi;(s).

The robustness analysis will be performed in several steps. In the first step
we will compute the maximal magnitude of additive uncertainty allowed by the
design in each one of the individual diagonal plant elements (without consider-
ing simultaneous uncertainties). In the second step, we will devise some models
for the uncertainties in the plant elements using real rational proper and stable
functions. In this step it will be assumed that only individual model perturba-
tions were considered in the design process and that some margins were left to
account for possible simultaneous perturbations. In all the other steps, we will
compute robustness margins at the frequency of the phugoid mode predicted
by the bound on the maximal spectral radius and we will compare them with

simulation results.
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Figure 5.6: Additive Perturbation Bounds

Stepl: In this step we first compute, for each diagonal element of the plant, the
maximal additive perturbation for which the closed loop system remains stable.
To do this assume that the additive perturbation matrix has all its elements zero
except the element in the 7i-th place. Assume also that the z¢-th perturbation
element is a proper and stable real rational function denoted by A;(s). The
nonzero element of the perturbation matrix can be normalized to unity by con-
sidering the modified closed loop map Q(s) = |Au(s)|Q(s). By Theorems 4.3
and 5.1 we obtain that robust stability requires that p; = max,cz p(AQ) =

|Asi||gis] = 1gis) < 1. Therefore the maximal individual perturbation is bounded

by,
1

lgii(s)]

Plots of the additive perturbation bounds (5.96) as a function of frequency are

|Aii(3)'mam < (5.96)

depicted in Figure 5.6.
The bounds (5.96) can be translated into bounds on the individual nonzero

plant elements multiplicative perturbations (5.94) by using the relationship

mi(8) = Aui(s)/pii(s).

114



Step 2: In this step we will assume models for the individual multiplicative
perturbations.

From (5.96) we have that, at each complex frequency s, the maximal individual
multiplicative uncertainty allowed by the design is given by,

(s _ |A,','(S)|maz — 1
|3 () lmac |pii(s)] |g:i(s)pii(s)]

We will denote the actual individual multiplicative perturbations by fi;(s), i =

(5.97)

1,2,3. The perturbation models will be chosen so that they satisfy |fi;(s)] <
7::(8)|maz = 1/|gii(s)pii(s)] and have the form,

vps+1
ii(s) = kii———Ba
fils) = ki 2 L Bgo)
with (5.98)
1 1 v
ki~ —min ——— and k;— =1
T 2 weR |gi(w)pii(w)] Tii

In (5.98), Bii(s) is a stable all pass transfer function used to determine the un-
certainty phase at a desired frequency. The parameters of B;;(s) can be varied
to find, at the frequency where the analysis is being performed, the uncertainty
phase which yields the worst stability margin. This reflects the fact that since
we are assuming complex perturbations the phase is unrestricted.

The choice of k;; in (5.98) provides at least 6 db stability margin against in-
dividual perturbations at all frequencies. This is the margin left to cope with
simultaneous uncertainty effects. The relationship between the gain and the
ratio between the time constants produces relative errors at high frequencies up
to 100%. This choice is based on the fact that the higher the frequency the less
the model is certain.

Table 5.1 shows the uncertainty parameters chosen,

Figure 5.7 depicts plots of the magnitude of the maximal multiplicative per-
turbations |7i;|me. along with the uncertainty models (5.98) evaluated with the
parameters of Table 5.1. Notice that since the perturbations are multiplicative

they are dimensionless. From Figure 5.7 it is apparent that the phugoid mode
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| Index Pair | k | v | T |
11 0.04 1 0.04
22 0.1 1 0.1
33 0.035 1 0.035

Table 5.1: Perturbation Parameters
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Figure 5.7: Multiplicative Perturbations and Uncertainty Models
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determines the dc gains of the uncertainty models.
The values of the all pass function parameters are not relevant here. We will

consider them later in the simulation stages.

In the sequel we will deal with robustness analysis at the frequency of the
phugoid mode only. Therefore all matrices and functions will be evaluated at

this frequency.

Step 3: In this step we analyze by means of the bound developed in Section 5.4
the robustness of the system at the phugoid frequency w, when the only uncer-
tain elements in the plant are the diagonal elements p11, p22, and pss. First, we
normalize the uncertainty by making a transformation on the matrix of closed
loop maps @ such that the uncertainty elements at w, will be of magnitude one.
From (5.95) we know that the multiplicative perturbations fi;, faz and f33 on
the diagonal elements can be expressed as additive perturbations Ayy, Ayz and
Asz by computing,
Ai=pufu 1=12,3

Consider now a diagonal invertible matrix W of the form,

1/|pisful 0 0
W= 0 1/|p22 f22 0
0 0 1/|pss fas|

Since we can always write,

plAQ] = p[WT'WAQ] =
pIWAQW ] = p[AQ]

where Q = QW and A = WA then the computation of the maximal spectral
radius may be carried out considering perturbation matrices A with elements of

unit magnitude and a modified closed loop map Q
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At the phugoid frequency the matrix @) is given by,

0.080e=7740°  0.200e73-5°°  0.5200e7140°
Q=] 0.005¢8150° (.190e7%0° (.140¢~755"
0.120e™7%%6°  0.580¢%5°°  0.710e~7>*

and the weighting matrix W is,

0175 0 0
W= 0 0393 0
0 0 1.565

The matrix Q is therefore given by,

0.470e777°"  0.530e°5°"  0.3300e7"4°
Q=QW™=| 0.020e815° (.476¢690° (.088¢=7-66° (5.99)
0.680e7586°  1.470e%0°  0.450e~7%4°

The maximal spectral radii corresponding to individual uncertainties in the
diagonal elements of the plant are given by the diagonal elements of the matrix
Qin (5.99). As expected from our choice of uncertainty models the margins are

approximately 6 db.

To compute the bound on the maximal spectral radius corresponding to the
case of two simultaneous uncertainties we use @ in (5.99) as the matrix of closed
loop maps for the evaluation of expression (5.75) or expression (5.87) with the
appropiate index pairs. Denoting by p;; the bound on the maximal spectral
radius when the plant elements p;; and p;; are uncertain we obtain the following
results,

pra=0615  p13=1.045 oy =0.955 (5.100)

From the bounds (5.100) we conclude that the control design yields a fairly
robust system at the frequency corresponding to the phugoid mode, against si-
multaneous uncertainties of the form (5.98) in the plant elements py; and poa.

When only a multiplicative uncertainty 7y;(s) in the element p;; exists, the
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system stability margin amounts to 1/0.47 = 2.13 or 6.56 db. By adding a
second uncertainty in the element p,z, the margin bound is reduced only to
1/0.615 = 1.63 or 4.22 db.

The situation is much worse for the case of simultaneous uncertainty in the ele-
ments py2 and p3z and even worse when the uncertainty appears simultaneously
in the elements p;; and pss. In the former case the stability margin bound is
reduced from 1/0.47 = 2.13 (6.56 db) to 1/0.955 = 1.047 (0.043 db) so that
the system may be very close to instability. In the latter case the addition of
a second uncertainty yields a negative stability margin bound (-0.38 db) which

means that the system may be unstable.

Step 4: In this step we verify by means of digital simulation how conservative
the results predicted by the bounds (5.100) are. The simulations were performed
using the configuration of Figure 5.2 with perturbations of the form (5.98) with
the parameters of Table 5.1. The all pass functions in (5.98) were chosen to yield
the smallest possible stability margins at the phugoid frequency. This functions
were determined by exhaustive simulation search.

For the case of perturbations in the plant elements p;; and p; the all pass
functions are,

0.18 —s s —0.23

Bll(S) = m and BQQ(S) = m

Figure 5.8 depicts the same responses to step commands as in Figure 5.3 but now
with the plant elements p;; and p,; perturbed. A comparison between Figures
5.3 and 5.8 can be done to see how the perturbations in the plant elements
p11 and pyp affect the closed loop fast modes of large residue. In general the
response in (a) becomes more oscillatory, in (b) more damped and the response
in (c) changes very slightly. However we are not dealing here with these fast
modes. Only the phugoid mode is under consideration. The phugoid mode has
a very long relative period and a small closed loop residue. Therefore to observe
it we need to let the faster modes decay and also use a high resolution scale

in the plots. Figure 5.9 shows the phugoid mode decay of each of the outputs
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elements p,; and po2 are perturbed.
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Figure 5.9: Transient response time of (a) A, (b) v, and (¢) 6 in response
to unit steps in their corresponding commands. py; and poo
are perturbed.

in response to a step in the corresponding command. The decaying oscillation
obtained matches the result predicted by the bound on the maximal spectral

radius (a stability margin of 4.22 db at this frequency).

When the system is subjected to perturbations in the plant elements py, and
P33, the all pass functions yielding the smallest stability margins at the phugoid

frequency are,

s —0.23 s —0.25

Pl =Toas o Bel) =505

The long term response of the system to step inputs is shown in Figure 5.10.
From Figure 5.10 we conclude that the system remains stable for the perturba-

tions in the elements p;; and ps3. However comparing the responses to those
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Figure 5.10: Transient response time of (a) k, (b) v, and (c) 6 in response

to unit steps in their corresponding commands. p;; and pss
are perturbed.
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Figure 5.11: Transient response time of (a) &, (b) v, and (c) 6 in response
to unit steps in their corresponding commands. p;; and ps3
are perturbed.

corresponding to perturbations in the plant elements p1; and pqy (Figure 5.9) we
notice that the system is less damped. The oscillation at the phugoid frequency

decays in a slower manner. This qualitative conclusion is also predictable from

the bounds (5.100).

The all pass functions calculated for the case where the plant elements pyy

and ps3 are subjected to perturbations are,

8.46 — s s? —8.48s 4+ 0.17

Bn(S) = _846 T and BSS(S) = _—82 + R.48s + 0.17

The response of the system to step inputs is shown in Figure 5.11. As predicted
by the bound p;3 in (5.100), the closed loop system has turned unstable. The
phugoid mode oscillates with a slowly growing amplitude as expected from the

small negative stability margin.
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Expression (5.75) may be used to define a new set of specifications upon the
closed loop maps at the phugoid frequency to guarantee robust stability against

simultaneous perturbations.

Despite the fact that in the particular example above the bound on the
maximal spectral radius succeded in predicting the behavior of the closed loop
system in the face of uncertainty it is clear that in other cases the predictions
may be much more conservative. Moreover, when the number of uncertainties
is greater than two and the perturbation matrix has rank greater than one
the computation of the condition number in (5.75) makes the evaluation of the
bound more cumbersome and the result more conservative. However, as pointed
out earlier, the main use of the bound is in obtaininig expressions involving the
individual closed loop maps which provide indications of how the maps should

be altered to improve the robustness of the system.
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CHAPTER

SIX

A PARAMETRIZATION OF ALL STABILIZING

CONTROLLERS FOR PLANTS WITH
PARAMETRIC UNCERTAINTY

In this chapter we obtain a parametrization of all (internally) stabilizing
controllers for rational SISO plants characterized by uncertainty in the coefhi-
cients of the numerator and denominator polynomials. The parametrization has
a rational function as the free variable. The case of a single uncertain coeffi-
cient is analyzed and necessary and sufficient conditions for robust stability are
derived. The results suggest the possibility of using this approach for synthesis
of controllers for uncertain plants. The conditions in the multiparameter un-
certainty case require more advanced tools for stability verification. A simple,

illustrative example is provided. Most of the results of this chapter can be found

in [65].

6.1 Introduction

A particular class of model uncertainty, which frequently arises in control
design practice, consists of one or more parameters whose values are only known
to lie in some finite interval. Due to this uncertainty, the controlled system
should satisfy the system specifications for all values of the uncertain parameters.
Thus, the control design goal is to achieve robust stability as well as robust

performance. For a variety of reasons, which may arise from either practical or
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theoretical considerations, the control system may be required to consist of a
single, fixed controller.

One possible approach to this problem is to define a set of nominal values of
the uncertain parameters and to consider deviations from these nominal values as
model perturbations. Most of the methods for analysis and synthesis of control
systems are based on this deviation from nominal, or perturbation approach.
These methods can be roughly divided into frequency domain methods and
parameter space methods. Comprehensive surveys of the frequency domain and
parameter space methods can be found in Dorato [66] and Siljak [67] respectively.

Another possible approach would be to consider each combination of the
uncertain parameters as defining a different plant. If the uncertain parameters
take values only in discrete sets then a finite number of plants may be consid-
ered. This would be the case of systems characterized by multiple modes of
operation or of plants linearized at several equilibria. However, if one of the pa-
rameter values lies on a continuous interval, we are faced with an uncountably
infinite number of plants. The control design aim is therefore to find a common
stabilizing compensator for all the plants. This approach has been termed the
Simultaneous Stabilization Problem and was first adopted for stabilizing systems
at different modes of operation (including failure modes), with a single compen-
sator. Both, the SISO and the MIMO cases appear in the literature. Some
works on the subject are found in Vidyasagar and Viswanadham [68], Saeks et
al [69], Saeks and Murray [70] Vidyasagar [71], Debowski and Kurylowicz [72],
Emre [73], Ghosh and Byrnes [74], etc.. Nevertheless, the Simultaneous Stabi-
lization Problem has been addressed mainly for a finite number of plants. For
an infinite number of plants, Barmish and Wei [75], Wei and Barmish [76], Wei
and Yedavalli [77] and Kwakernaak [78], have obtained conditions for simulta-
neous stabilization by a single compensator for certain classes of SISO plants,
as well as some generalizations to the MIMO case. In [77], the problem of ro-
bust stabilizability of plants with both unstructured and parameter uncertainty

is considered. In [79], using interpolation and conformal mapping techniques,
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Tannenbaum has demonstrated a procedure for finding a stable compensator
which stabilizes a SISO plant with uncertainty in the gain factor.

While all the above studies deal with the problem of finding a single compen-
sator for simultaneous stabilization, very little attention has been paid to the
problem of finding the set of all controllers which robustly stabilize a plant with
uncertainty in its coefficients. The utility of knowing this set and of having a
simple parametrization for its elements is apparent: Since stability is guaranteed
for all values of the uncertain parameters one can concentrate upon choosing a
controller which yields the required system performance. Methods for finding
the controller parameters which optimize some system measures may be devised.
For instance, some of the H,, sensitivity minimization procedures are based on
such a parametrization. An additional use of the parametrization is in analysis
of control systems. The limiting performance bounds of a given plant may be
found by searching over the set of all stabilizing compensators.

This chapter is concerned with a parametrization of all stabilizing controllers
for SISO plants having uncertain coefficients taking values in given intervals. As
a first attempt, a complete analysis has been carried out for the case of a single
uncertain coeflicient. This relatively simple case enables us to obtain insight into
the different problems involved in this approach and to estimate the feasibility
of further generalizations and applications.

The control configuration considered here is depicted in Figure 6.1, where

Uz

Figure 6.1: Control Configuration
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the plant P(s) is modelled by the real rational and proper transfer function,

n(s) st as" 4.t am15+ an
= = 6.1
Pls) d(s) K "+ bsm 4+ bgs+ by (6.1)

We assume that m < n, only one coefficient is uncertain, and its value is known
to lie in a given interval. There are three cases to be considered:

Case 1: one numerator coefficient is uncertain i.e., there is an ¢ € [1,m] such
that a; € [, @]

Case 2: one denominator coefficient is uncertain i.e., there is a j € [1,n] such
that b; € [b;,b;].

Case 3: the gain is uncertain i.e., K € [K, K.

The first issue to be considered in this chapter is the conditions for stabiliz-
ability of two plants—those corresponding to the extremal values of the uncertain
coeflicient. It turns out that numerous classes of pairs of plants admit simulta-
neous stabilization [69], [71]. The set of all compensators which simultaneously
stabilize the plants corresponding to the extremal values of the uncertain coef-
ficient will be obtained. The set is parametrized by a function which must be a
unit in the ring of stable and proper real rational functions (that is, a function
which is chosen from a collection of functions having all their poles and zeros in
the open left half plane and all of which have the same number of finite poles and
zeros) and has to satisfy certain interpolation and degree conditions. Next, we
will derive necessary and sufficient conditions on the controller free parameter
for simultaneous stabilization of the plant at all values of the uncertain plant
coefficient. The conditions require that a certain characteristic equation based
on the controller parameter be Hurwitz for all positive values of a gain. This
condition amounts to a simple Root-Locus type test.

The chapter is organized as follows: Section 6.2 deals with the simultaneous
stabilization of the pair of plants corresponding to the extremal values of the
uncertain plant coefficient. The section closely follows the paper of Saeks et
al. [69] and presents the parametrization of all stabilizing controllers along

with the conditions on the controller free parameter. Section 6.3 is entirely

128



devoted to the development of necessary and sufficient conditions for robust
stabilization. Section 6.4 shows some results of the multiparameter uncertainty
case and points out some of the difficulties encountered in this generalization.
Section 6.5 depicts the geometry of the closed loop maps which are obtained with
the controller parametrization. It is shown that by choosing specific coefficient
values, the closed loop maps can be made affine in the controller parameter, as
required in some of the H,, methods. Section 6.6 presents a simple example

which illustrates the ideas of the preceding sections.

6.2 Simultaneous Stabilization of Two Plants

Denote the plant by P(s,a) with « representing a coefficient about which
all that is known is that it lies in the interval [, @] and s being the usual
complex variable. For fixed a = &, P(s,&) is a standard transfer function. We
assume throughout that P(s,a) is SISO. Our goal in this section is to obtain
the parametrized set of all controllers that simultaneously stabilize the plants
P(s,a) and P(s,@).

We assume that P(s,a) and P(s,@) are simultaneously stabilizable, i.e.,
there exists at least one common implementable compensator C(s) which sta-
bilizes both plants.

The compensator C(s) is implementable if it is proper, i.e., analytic at s = oo.

Several theorems dealing with conditions for simultaneous stabilizability of
plants can be found in [69], [72], [71]. In [71] it is shown that the problem
of simultaneously stabilizing [ + 1 multivariable plants is equivalent to that
of simultaneously stabilizing [ plants with a stable compensator. Moreover,
provided that the plants have at least [ + 1 inputs or outputs, the collection of
I + 1 plants is generically simultaneously stabilizable.

For the SISO case simple conditions for simultaneous stabilization exist and
large classes of plants satisfy these conditions. For illustration, consider the class

of plants which are either stable (but possibly nonminimum phase) or minimum
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phase (but possibly unstable). To show that any two plants in one of the above
categories are always simultaneously stabilizable we use two theorems from [69]

and [72] repeated here for convenience in a unified form.

Theorem 6.1 Let P(s) and P(s) be distinct SISO plants with coprime frac-

tional representations over RH,

P(s) = Ny(s)D5'(s)  P(s) = Ny(s)D(s)

p

Then there exists a compensator that simultaneously stabilizes both plants if and
only if either,

(i) Ds(s) and Dy(s) are coprime and P(s) and P(s) taken together have
an even number of poles between every pair of positive real azis zeros of
N;3(8)Dj3(s) — Ns(s)Ds(s).

(ii) Nj(s) and Nj(s) are coprime and P(s) and P(s) taken together have
an even number of zeros between every pair of positive real aris zeros of

Ni(s)Dj(s) — Np(s)Dj(s). @

For stable plants, Dj(s) and Dj(s) are coprime over RH, and there are no
poles in the right half complex plane. Thus condition (i) of theorem 6.1 is
satisfied. Analogously for minimum phase plants, N;(s) and N;(s) are coprime,
there are no zeros in the right half complex plane and therefore condition (ii) of
Theorem 6.1 is trivially satisfied. In the sequel we will make reference to this

class of plants for further illustrations.

A coprime factorization of P(s, ) is given by,

P(s,a) = Ny(s,a)D;(s,a) X(s,a)Np(s,a) + Y (s,a)Dy(s, ) =1
N,(s,0),Dy(s,), X(s,0),Y(s,a) € RH, (6.2)

and the set of all controllers that stabilize P(s, ) for fixed « is given by [71},
X(s,a) + R(s,a)D,(s,a)
C = paresd .
)= {cte) = R
R(s,a) € RHy; Y(s,a) — R(s,a)Ny(s,a) &£ 0} (6.3)
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A controller C(s,a, @) will simultaneously stabilize P(s,a) and P(s,@) if and
only if,

C(s,a,@) € C(s,a) N C(s,a) (6.4)
Any controller C(s, a, @) satisfying (6.4) may be written in coprime fractional

representation based on either P(s,a) or P(s,@), i.e.,

C(s,a,@) = NC(S,Q)Dc—l (s,0)
or (6.5)

with N(s,-), De(s,-) € RH,, coprime. Clearly (6.5) implies that there exists a
unit M(s) = m,(s)mz'(s) € RHe (also M~'(s) € RH,,) such that,

N(s,a) = N.(s,@)M(s) D.(s,a) = D.(s,a)M(s) (6.6)

Expressions (6.6) enable us to express the controller parameters Ry(s,a) and
Rx(s,a) corresponding to C(s,a) and C(s, @) respectively as a function of the

unit M(s). Combining (6.3) and (6.6) yields,

X(s,0) + R(s,a)D,(s,a) = [X(s,@) + R(s, @) Dy(s, @) M(s)
and (6.7)
Y(s,a) — R(s,a)Np(s,a) = [Y(s,a) — R(s,@)N,(s,@)]M(s)

From expressions (6.7), and using the commutativity of the functions (this is a

SISO problem), we obtain,

R(s,a) = X(s,a)N,(s,@) + Y(s,a)D,(s,@) — M(s)
o N,(5,2)D,(5,8) — Dy(s,2) Ny (5, @)

(6.8)

The unit M(s) in (6.8) has to be such that R(s,a) € IRHs, but otherwise is a
free parameter. Assuming temporarily that such a unit exists we can substitute

R(s,a) in (6.8) into expression (6.3) evaluated at o = a to obtain,
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— M(s)D,(s,a) — Dy(s,a)
N,p(s,@) — M(s)N,y(s,q)’

Clsva.) = {015

M(s),M7'(s) € RHy; M(s) # x:gz:z;} (6.9)

Expression (6.9) represents the set of all compensators, parametrized by the unit
M(s), which simultaneously stabilize P(s,a) and P(s,@).
To derive the conditions on M(s) such that R(s,a) € RH,, we consider the

following fractional coprime representation of the plant P(s, a),

n(s, @) )
p(s)

with n(s,a) equal to the numerator and d(s, @) the denominator in (6.1). p(s)

Ny(s,a) = D,(s,a) = (6.10)

is any strictly Hurwitz polynomial satisfying 6[p(s)] = é[d(s)] where 8[-] denotes
the degree of a polynomial. Using the Bezout identity in (6.2) and the fact that

we are dealing with scalars we can rewrite (6.8) as,

R(s,a) =
X(s,2)[No(s, @) Dy(s, @) — Np(s, ) Dp(s,@)] + Dy(s, @) — Dy(s,0) M(s)
DP(Sv-Oi)[NP(sv Q)DP(S’E) - DP(Sag)NP(Sv—d)]

or (6.11)

R(s,a) =
Y (5, 2)[Ny(5,2)Dy(5,) — Ny, @)Dy (5, 2)] + Ny(s,) — Ny, ) M(s)
Ny(s,@)[Ny(s, ) Dp(s, @) — Dp(s, @) Ny(s, @)]

Substituting (6.10) into expressions (6.11) yields,
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R(s,a) =

p(S)X(s,g)[n(s,a)d(s,g) — n(s,a)d(s,@)] + [d(s, @) — d(s, ) M(s)]p(s)
d(s,a)[n(s,a)d(s,@) — d(s,a)n(s,@)]
or (6.12)
R(Sag) =

p(S)Y(S,Q.)[n(S,Q)d(S,a) —n(s,@)d(s,a)] + [n(s, @) — n(s,a) M(s)]p(s)
n(s, a)[n(s,a)d(s,@) — d(s,a)n(s,a)]

Now we consider individually each of the possible uncertain coefficients.
Case 1: a =a;, 1€ [l,m]

In this case we have,

n(s,a) =n(s,a;); d(s,a) =d(s) and n(s,a@)—n(s,a;) = Ks™ (@ — a;)
(6.13)
and substituting (6.13) into (6.12) yields,

p(s) KX (s,a;)s™ " (@ — a;) + [L = M(s)]p(s)
d(s) Ksm—i(g; — @;)

R(s,a;) = (6.14)

Denoting X(s,a;) = z.(s,a;)z;'(s,a;) we obtain the conditions on M(s) for

R(s,a;) to be stable from (6.14),
ma(s) = ma(s) = s"7q(s) (6.15)
with ¢(s) a polynomial satisfying
Kz, (5", a;)ma(s™)[@ — a;] + q(s")za(s™, ;)p(s™) = 0

for all s* with Real (s*) > 0 such that d(s*) = 0 (including multiplicities).
Stability conditions like (6.15) will be referred to as interpolation conditions [69].
For R(s,a;) to be proper we must extend its stability properties to the extended

right half complex plane. This is accomplished by imposing degree conditions

on M(s) in (6.14),
8[ma(s)] — 6[mn(s) —ma(s)] 2 n—m+1 (6.16)
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Case 2: a=b;, j€][l,n]

In this case we have,
n(s,a) = n(s); d(s,a)=d(s,b;) and d(s,b;)—d(s,b;) = s"7(b;—b;) (6.17)

Substituting (6.17) into (6.12) gives,

p(s) Y(s,b;)s" (b — b;) + [1 — M(s)]p(s)
n(s) sm=i(b; — b;)

R(s,b;) = (6.18)

Denoting Y (s,a) = yn(s,a)y7' (s, a), the interpolation conditions that follow
from (6.18) are,

mn(s) — mg(s) = s" 7 q(s) (6.19)
with ¢(s) a polynomial satisfying,

yn (5™, @)ma(s*)[b; — b;] + ¢(s)ya(s™, 2)p(s”) = 0
for all s* with Real (s*) > 0 such that n(s*) = 0 (including multiplicities).
The degree condition is,

8[ma(s)] — é[mn(s) —ma(s)] >n—m+ (6.20)

Case 3: a=K

In this case we have,
n(s,a) =n(s,K); d(s,a)=d(s)
and (6.21)

n(s,K)—n(s,K) = (K- K)(s™+a1s™ ' +...+ am-15+ an)

Substituting (6.21) into (6.12) yields,

_p(s) X (s, K)(K — K)n(s,K) + [1 — M(s)]p(s)K

R(s,K) = = = 6.22
(. K) =35 (K — K)n(s, K) (6.22)
From (6.22) we obtain the interpolation conditions,

() = mals) = a(s) (6.23)
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with ¢(s) a polynomial satisfying
za (8", K)n(s™, K)ma(s™)[K — K] + Kq(s")za(s™, K)p(s”) = 0

for all s* with Real (s*) > 0 such that n(s*)d(s*) = 0 (including multiplicities).

The degree condition amounts to,
8[ma(s)] — 8[mn(s) —ma(s)] > n—m (6.24)

Since we have assumed simultaneous stabilizability of P(s,a) and P(s,@),
the existence of at least one unit M(s) satisfying the interpolation and degree
conditions is guaranteed.

One more condition on M(s) is required for also assuring properness of the
compensator i.e., C(00, @, @) < co. Since the numerator and the denominator
of C(s) in (6.9) are coprime, they cannot be zero simultaneously at s = oo.
Therefore the requirement for properness is,

Np(oo, @)

M(eo) # FH (6.25)

Condition (6.25) is irrelevant when the plant is strictly proper i.e., P(oo, @) = 0.
In this case Ny(00,a) = 0 and Y(oo,e) # 0 since N,(s,a) and Y(s,a) are
coprime, therefore C(c0,a) < oo in (6.3).

For illustration consider two strictly proper and stable plants P(s,q;) and
P(s,@;). A wise choice for p(s) in (6.10) is p(s) = d(s). This leads to N,(s,a;) =
P(s,a;); Dy(s,a;) =1; X(s,a;) =0; Y(s,a;) = 1. Expression (6.14) simplifies

to,
_ [T = M(s)ld(s)

- Ksmi(g - @)

R(s,a;) (6.26)

Since X(s,a;) = 0 we have z,(s,a;) = 0 and we may choose z4(s,a;) = 1.

Therefore the interpolation conditions (6.15) reduce to,
mn(8) ~ my(s) = s™ *q(s) with ¢(s) an arbitrary polynomial (6.27)

The degree conditions on M(s) are given by (6.16). Since the plants are strictly

proper the stabilizing controllers will be implementable.
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As a final remark in this section note that by writing M(s) in a polynomial
fractional representation,

-1
My ($) . o8 + 218" T ..t 2pm1Ss T

M(s) = —
() ma(s)  yos™ +y1s™ 4 ...+ Ym-15 + Ym

(6.28)

interpolation conditions for particular cases can be translated to requirements

on the coefficients of (6.28). For example, (6.27) becomes,
ma(s) — ma(s) = s™q(s) <> y; =z forall j > i+ 1 (6.29)
For all cases, the degree conditions translate to,
8[ma(s)] — 6[ma(s) —ma(s)] 2 b <= y; =x; forall j <L -1 (6.30)

with £ < m.

6.3 Stabilization for All Values of the Uncer-

tain Parameter

So far we have shown a parametrization of all the controllers that simul-
taneously stabilize P(s,a) and P(s,@). Simultaneous stabilizability imposes
certain interpolation and degree conditions upon the controller parameter M (s)
which also must be a unit in IRH.,. For proper but not strictly proper plants an
additional condition on M (o0) is required for insuring properness of the com-
pensators.

Our goal in this section is to extend the results of Section 6.2 to simultaneous
stabilization of an infinite set of plants P(s,a) with o € [a,@]. As expected,
further conditions on the controller parameter M(s) are required. However,
it turns out these conditions are mild and easy to verify. We summarize the

additional conditions for robust stability in the following theorem.

Theorem 6.2 Consider the family of rational proper plants (6.1). Assume that

one of the coefficients a is only known to lie in a given interval [a,@]. Consider
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also the set of all proper controllers (6.9) that simultaneously stabilize P(s,q)
and P(s,@), parametrized by a unit M(s) satisfying the interpolation, degree and
properness conditions. Then, the controllers stabilize P(s,a) for all « € [a,@]

if and only tif, the characteristic equation,
14+n-M(s)=0 (6.31)
is strictly Hurwitz for all n > 0.

Proof: Let N (s,o) = X(s,a) + R(s,a)D,(s,a) and D.(s,a) = Y(s,a) —
R(s,a)Ny(s,a). Then, by (6.3), (6.4), (6.5) and (6.6), the set of all proper

compensators that simultaneously stabilize P(s,a) and P(s, @) is given by
C(s) = Ne(s,2) - D' (s, ) (6.32)

where, N,(s,a) and D,(s,a) are coprime, R(s,a) is given by (6.8) with M(s) a
unit in RH,, satisfying all the assumptions. It is well known [69], [71] that for
C(s) in (6.32) to internally stabilize P(s,a) = Np(s,a)D; (s, a) with Ny(s, a)

and D,(s,a) coprime, a necessary and sufficient condition is that,
U(s,a) = Ne(s, a)Np(s, @) + De(s,a) Dy(s, ) (6.33)

is a unit in RH,, for all o« € [, @]. Replacing the expressions for N.(s, ) and

D.(s, ) with R(s,a) given by (6.8) in (6.33) yields,

U(s,@) = {Dy(5, @) Ny(5,@) — Dp(8, @) Ny(s, )} {M (8)[ Dy (s, ) Np(s, ) —
Dp(s,a)Ny(s,a)] + [Dp(s, @) Ny(s, @) — Dp(s,@)Ny(s, a)]} (6.34)

For a = a;, 7 € [1,m] we substitute (6.10) and (6.13) into (6.34) to obtain,

a; — a; a; — g; .
U(s,a;) = = 1+ = M(s)] (6.35)
a; — g, a; — a;
Denoting 7 = (a; — ¢;)(@; — a;)~', we realize that as a; varies in the inter-

val [a;,@;], n takes all values in the interval [0,00]. Therefore from (6.35), an

equivalent condition for U(s, a;) to be a unit in RH, for all a; € [a;, @] is,
1+n-M(s)=0
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strictly Hurwitz for all n > 0.

Using the same arguments, the other two cases lead to the same condition. e

When dealing with a single controller which is known to stabilize P(s,a) and
P(s,@) a Root-Locus plot of the system with o as the parameter will provide
the answer to whether the compensator also stabilizes P(s,a) for all values
of o € [@,@]. In the case of all stabilizing controllers a similar Root-Locus
condition imposed upon the unit M(s) is obtained through (6.31). Since M(s)
is a unit, condition (6.31) is satisfied by numerous families of functions, e.g.,
units that are also passive (positive) functions, functions whose imaginary part
does not change sign at all frequencies, functions which exhibit certain pole-zero

interlacing properties, etc..

6.4 Generalization to Several Unknown Pa-

rameters

So far uncertainty in only one parameter has been considered. For various
classes of plants the results seem to be simple enough to be used in control
optimization procedures (especially when the interpolation conditions are not
too restrictive). It turns out that a further generalization of the results can be
obtained, at the expense of the simplicity of the conditions on the controller free
parameter.

To illustrate the multiparameter case we will consider a particular class of
plants mentioned in Section 6.2. The class consists of plants (6.1) which are
stable (but possibly nonminimum phase) and that have a vector a of unknown
parameters composed of elements {a;,7: € T} with T = {7;¢ € [1,m]}, such
that n(s) = n(s,a). By Theorem 6.1, every pair of plants from this class is
simultaneously stabilizable. As in Section 6.2 we choose p(s) = d(s) in the

coprime representation (6.10) so as to obtain,
Ny(s,a) = Pls,a); Dy(s)=1; X(s)=0; Y(s)=1 (6.36)
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To obtain interpolation and degree conditions on the unit M(s) we first note
that,

n(s,a) —n(s,a) = K _[a — a;]s™ (6.37)
i€l
Therefore expression (6.26) will be,

[1 — M(s)]d(s)

= , (6.38
He2) = s — a o (6:39
1€
From (6.38) the interpolation conditions are,
mn(s*) —ma(s*) =0 (6.39)

for all s* with Real (s*) > 0 such that 3[a@; —a;]s*"~ = 0 (including multiplic-
€T
ities).

The degree conditions are,
8[ma(s)] — 6[ma(s) — mu(s)] > n—m +¢* (6.40)

with ¢* = min{z;7 € T}.
To obtain the conditions for robust stabilization we substitute (6.36) and (6.37)
into (6.34) to obtain,
M(s) e — a)s™ 7 + T [@ — ai]s™
i€T €1
> [a@ — a;)s™

i€l

U(s,a) = (6.41)

For U(s,a) to be a unit, both, the numerator and the denominator of (6.41)
must be strictly Hurwitz. While the roots of the denominator polynomial are
easily calculated, the stability of the numerator polynomial has to be verified
for all possible combinations of the uncertain parameter values. Perhaps some

version of Kharitonov’s Theorem [80] can be used to check condition (6.41).

6.5 Geometry of the Closed Loop Maps

The set of closed loop maps which can be achieved by means of the stabi-

lizing controllers (6.9) exhibits a very simple geometry. By properly choosing a
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specific value of the unknown parameter of the plant for which control design
will be carried out, closed loop maps will be affine in the controller parameter.
This simple geometry is used in H,, design procedures to transform a minimizing
problem into a model matching one [81].

Consider the compensators (6.9) and the plant P(s,a). It is straightforward
to show that the closed loop transfer matrix H(s) between the input vector
(u1 u9)T and the output vector (e; ez)T in Figure 6.1 is given by,

) ( 1+ P(s,)C(s)]”*  —P(s, @) +C(s)P(s, )] ) 6.2

C)1+Ps, )OI [T+ Cls)P(s, )]
Substituting (6.2) and (6.9) into (6.42) yields,

H(s) =1/U(s, )

IR

(%@MWNﬁ%WWW$,H—M@ﬂ%@@—M@Mﬁmu
D, (5,0)[M(3)Dy(5,0) — Dyl(s,@)]  Dy(s, @)[Ny(s, @) — M(s)Ny(s,0)]
(6.43)

where U(s, a) is given by expression (6.34). Since by (6.34) U(s,a) = 1, substi-
tuting @ = @ in (6.43) leads to closed loop maps affine in the controller parameter
M(s). The same conclusions are obtained when considering the maps from the

inputs to the outputs (y; y2)” and when the maps are evaluated at o = @.

6.6 Application Example

The ideas presented in this chapter will be illustrated by means of a design
example. The example is intentionally simple to avoid calculations which may
obscure the main ideas. However, it represents a realistic design case.

Consider an aerodynamic surface whose angle of attack is controlled by
means of a suitable actuator-sensor pair. The surface is exposed to various aero-
dynamic conditions which cause the location of its center of pressure to change.
However for all flight conditions the location of the center of pressure relative

to the axis of rotation is such that the surface is aerodynamically unstable.
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Under several simplifying assumptions, the equation of motion of the surface
is,
Ja(t) =T(t) + ka(t) (6.44)

with

o —the surface angle of attack
J —the surface moment of inertia about its axis of rotation
T —torque exerted by the actuator

k —aerodynamic moment coefficient

The aerodynamic moment coefficient k is proportional to the distance be-
tween the center of pressure and the axis of rotation (z.,), the air density (p)
and the square of the wind velocity (v?). At various flight conditions, z.,, p and
v are such that k may lie anywhere within the range of values [k, k] = [1,10].
However the rate of change of the aerodynamic conditions is so slow that for
control purposes the coeflicients are assumed constant.

A single controller is to be designed so that the following specifications will

be met for every flight condition,

(i) Tracking errors after sinusoidal inputs in the frequency range [0, 1] rad/sec

should be less than 5%.

(i) Gain and phase margins should be at least 6db and about 40° respectively.

A block diagram of the closed loop system is depicted in Figure 6.2.
Applying the Laplace Transform to equation (6.44) and assuming for sim-
plicity J = 1, the family of plants to be controlled is obtained,

P(s, k) = TES) =5 (6.45)

The range of k is determined by its known variation values and the required

minimal gain margins. Therefore,
k € [ky, k) = [0.5k, 2&] = [0.5, 20] (6.46)
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ae(s) el os) LLGLM] 1/ds [9(s)] 1/s |_als),

Figure 6.2: Surface’s Closed Loop System

Notice that the k-span is 1:40.

By Theorem 6.1, any pair of distinct plants of the form (6.45) are simul-
taneously stabilizable. A fractional coprime representation of the plants (6.45)
is,

P(s,k) = N,(s)D; (s, k)

p

with (6.47)
Cn(s) 1 o ds k) sk
B S e S M T ey

where p(s) is any stable polynomial with é[p(s)] = 2.

The parametrized controllers for robust stabilization are obtained by substitut-
ing (6.47) into (6.9),

_ M(8)[s? — ki) — [s? — ko]
Cls) = 1 — M(s)

(6.48)

For simultaneous stabilization of P(s, /Acl) and P(s, 1}2) with a proper controller,
M(s) has also to satisfy the interpolation and degree conditions (6.19) and
(6.20). Since for the plants (6.45) n(s) =1 and y = n = 2, the only requirement

resulting from these conditions is,
8[ma(s)] — 6[mn(s) — mq(s)] = 2 (6.49)

Necessary and sufficient conditions for simultaneous stabilization of all plants

P(s,k) k ¢ [k, k) are given by Theorem 6.2. Le., it is required that the
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characteristic equation corresponding to,
14+7-M(s)=0 (6.50)

is strictly Hurwitz for all n > 0.

To summarize, if we can find a unit M(s) satisfying (6.49) and (6.50), then
the C(s) given by (6.48) will stabilize P(s, k) for all k € [ky, ks].

This is as far as the results of the chapter can take us. To illustrate their
utility we next use them in designing a controller for this uncertain plant.
One possible approach to the design problem is to minimize a constrained

sensitivity function of the form,

Sw(s) = ;((SS)) + W(s)z;((?) = [1+ C(s)P()]™* + W(s)C(s)[1 + C(s)P(s)] ™
(6.51)

so as to obtain an implementable controller which stabilizes the set of plants

(6.45) for all k € [0.5, 20] and leads to closed loop systems satisfying specifications
(i) and (ii). Closed loop stability is guaranteed provided the controller is of the
form (6.48) with M(s) # 1 a unit in IRH,, satisfying (6.49) and (6.50).

In (6.51), W(s) represents a (frequency dependent) weighting factor between the
closed loop sensitivity function and the control effort. This weight determines
the bandwidth and the low frequency gains of the loop required for tracking as
well as the phase margin of the system. W(s) may also be devised to make the
system robust against high frequency unstructured model uncertainties. This
will be the case if, beyond crossover, the weight imposes fast frequency roll-off

on the open loop system.

In the process of optimal control design one would define the weight W (s)
in (6.51) according to the system specifications and then apply a particular
algorithm to choose a controller C'(s) which minimizes some norm of Sy (s). In
our case we would expect such an algorithm to choose from among all units
M(s) # 1 in RH,, satisfying (6.49) and (6.50) one which minimizes (6.51) in

some sense. However there exists no algorithm yet for doing this. Therefore,
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for illustration purposes we will design the system as follows: First, we will
assume that a complete decoupling between the input a.(s) and the weighted
output e(s) + W(s)T(s) is possible i.e., Sw(s) = 0 may be attained for all
complex frequencies s. Second, we will choose a weight W (s) which together
with the complete decoupling condition results in a controller producing closed
loop systems satisfying specifications (z) and (z¢). Finally we will verify that the
corresponding controller parameter M(s) is a unit in RH,, satisfying conditions
(6.49) and (6.50) i.e., the controller indeed stabilizes the set of all plants (6.45)
with k& € [0.5,20].

Before proceeding with the design we show an interesting feature resulting
from the complete decoupling assumption for general (scalar) plants and perfor-
mance measure (6.51). The set of all stabilizing controllers for a general scalar
plant with coprime representation (6.2) is given by (6.3). Substituting (6.2) and
(6.3) into the constrained sensitivity function (6.51) yields,

Sw(s) = {Y(s) + W(s)X(s) - R(s)[N(s) = W(s)D(&)]}D(s)  (6.52)

For complete decoupling between the inputs a.(s) and the weighted output
e(s) + W (s)T'(s) it is required that Sw(s) = 0 for all complex frequencies s. By
(6.52) this is attained when the controller parameter,
Y(s)+ W(s)X(s)
N(s) — W(s)D(s)
is in IRHe. Substituting (6.53) into the expression for all stabilizing controllers
(6.3) gives,

R(s) = (6.53)

C(s) =—

7o) (6.54)

Therefore the weighting function yields the same controller for all plants that
admit a coprime factorization for which R(s) € RH, in (6.53).

In the case of simultaneous stabilization we need Sw(s) in (6.51) or (6.52)
to be affine in the unit M(s). By the results of Section 6.5 this is attained for
a = a. Equating (6.48) and (6.54) gives,

M(s) = W(s)(s? — kp) — 1
W(s)(s? — ki) —1

(6.55)
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With the controller (6.54), the sensitivity function S(s) = e(s)/a.(s) for the
family of plants (6.45) is given by,

1 __W(s)(s*— k) 5
56) = 157, K)C(s)  W(s)(s2—k) -1 (6.56)

To meet the sensitivity requirements corresponding to specification () we im-
pose,

W (jw)(w? + k) rad

|S(w)| = W)@ T F) 1 <005 welo,1]

kel1,100 (6.57)

sec’
Taking |W (yw)(w? + k)| < 1 in the above frequency range and considering the

worst case, k = 10, we obtain from (6.57),

rad

|W(jw)] = 0.005 w e [0,1] (6.58)

sec

Suppose now |W(jw)| = 0.005 for all real frequencies w. Then we can evaluate
the magnitude of the system’s open loop transfer function as a function of the

parameter k,

1
~0.005(w? + k)
Letting |P(jw,k)C(jw)] = 1 in (6.59) we obtain the range of the crossover

|P(jw, k)C(jw)l (6.59)

frequencies w,,,. (k),

d
weo (k) € [13.78,14.1] = k€ [1,10] (6.60)

sec
From (6.60) we realize that the open loop crossover frequency range is very
small. This enables us to add some dynamics to the weighting function W(s)
to improve the poor phase margin that is obtained by setting W (s) = constant.

To satisfy specification (i¢) we choose,

5/200 + 1
_ 0 +1 6.61
Wls) = =005 (6.61)
Substituting (6.61) and into (6.55) gives,
8% 4+ 200s% 4+ 2739s + 36000
() = 2007 + 27585 + 39900 (6.62)
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It can be easily checked that M(s) in (6.62) is a unit in RH.. With the aid of
the alternative degree condition (6.30) we may also verify that (6.49) is satisfied.
Moreover, it is not difficult to check that the condition for robust stability (6.50)
is also satified. Thus, the controller C(s) = —1/W(s) robustly stabilizes the
family of plants (6.45) with k € [ky, k5] = [0.5,20]. Due to our choice of W(s),
specifications (7) and (i7) are satisfied for all k € [k, k] = [1,10].
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CHAPTER

SEVEN

SUMMARY AND SUGGESTIONS
FOR FURTHER RESEARCH

In this thesis we have studied some issues in robust control. First we have
explored a loop by loop approach for robustness assessment. We have found that
this approach can partially explain the inadequacy of some robustness tests, the
potential lack of robustness of designs based on diagonal dominance, and the way
singular values operate to provide a complete robustness assessment. We believe
that this approach should be further explored since clearly it is fundamental for
understanding relationships between directionality and robustness and also for
devising practical methods for measuring multivariable stability margins. The
development of robust control design methods based on a loop by loop approach
is also highly desirable especially for systems with a small number of inputs and
outputs (such as those found in aerospace applications). Second, we have con-
sidered norm bounded structured uncertainty. We have used an approach which
is oriented to provide a better understanding of the subject and to facilitate ro-
bustness analysis and design at several stages of systems’ development. We have
used a relatively simple representation of uncertainty and basic analysis tools.
We have tackled the problem using a perturbation approach which allows us to
exploit properties of matrices of rank one. We have shown that using this ap-

proach simpler and more intuitive proofs of robustness theorems can sometimes
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be obtained and that some practical, recursive robustness bounds can be devel-
oped. Due to the simple representation of uncertainty considered, we have been
able to perform analysis using the original system structure. There is no need to
transform the system, as analysis in the structured singular value framework re-
quires, into diagonal uncertainty form. Thus, the dimensionality of the problem
does not increase. It will be interesting to try this approach for other represen-
tations of uncertainty. This may lead to simpler proofs of other results of the
structured singular value. The explicit derivation of the analytical expressions
involving only individual closed loop maps which result from the bounds on the
maximal spectral radius should also be carried out. These expressions should
be obtained for cases involving several simultaneous uncertainties. One way to
do this is by using symbolic manipulation routines. The use of the perturbation
approach for the exact computation of the maximal spectral radius, at least
for some cases, should also be investigated. Finally, ways of incorporating the
robustness information provided by the bounds into control design procedures
should be explored.

A second issue that has been considered in this thesis is the parametrization of
all stabilizing controllers for plants with uncertain parameters. We have used
the fractional approach to study this problem. The single uncertain parameter
SISO case has been covered completely. Also, the complications expected in the
multiparameter case have been mentioned. A complete analysis for the multipa-
rameter case still needs to be carried out and the generalization of the method
for MIMO systems should be explored. Finally, it remains to find how to modify
optimization routines so that they take into account the constraints imposed by

the simultaneous stabilizability conditions on the controller parameter.
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