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The notion that children use statistical distributions present in the input to 

acquire various aspects of linguistic knowledge has received considerable recent 

attention. But the roles of learner’s initial state have been largely ignored in those 

studies. What remains unclear is the nature of learner’s contribution. At least two 

possibilities exist.  

One is that all that learners do is to collect and compile accurately predictive 

statistics from the data, and they do not have antecedently specified set of possible 

structures (Elman, et al. 1996; Tomasello 2000). On this view, outcome of the 

learning is solely based on the observed input distributions.  

A second possibility is that learners use statistics to identify particular abstract 

syntactic representations (Miller & Chomsky 1963; Pinker 1984; Yang 2006). On this 

view, children have predetermined linguistic knowledge on possible structures and 

the acquired representations have deductive consequences beyond what can be 

derived from the observed statistical distributions alone.  



  

This dissertation examines how the environment interacts with the structure of 

the learner, and proposes a linking between distributional approach and nativist 

approach to language acquisition. To investigate this more general question, we focus 

on how infants, adults and neural networks acquire the phrase structure of their target 

language.  

This dissertation presents seven experiments, which show that adults and 

infants can project their generalizations to novel structures, while the Simple 

Recurrent Network fails. Moreover, it will be shown that learners’ generalizations go 

beyond the stimuli, but those generalizations are constrained in the same ways that 

natural languages are constrained. This is compatible with the view that statistical 

learning interacts with inherent representational system, but incompatible with the 

view that statistical learning is the sole mechanism by which the existence of phrase 

structure is discovered.  

This provides novel evidence that statistical learning interacts with innate 

constraints on possible representations, and that learners have a deductive power that 

goes beyond the input data. This suggests that statistical learning is used merely as a 

method for mapping the surface string to abstract representation, while innate 

knowledge specifies range of possible grammars and structures.  
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Chapter 1: Introduction 

 

Syntactic knowledge that a child comes to acquire is highly complex. 

Syntactic rules are stated in abstract forms, in that they operate over variables 

(categories and phrases) rather than individual words. In order for a child to learn 

syntactic rules, it is necessary not only to generalize over categories but also to have a 

hierarchical structural representation. And yet, children acquire their native language 

in a relatively short period of time, without explicit teaching, irrespective of the 

language they are learning, and most of all, despite the fact that input data available to 

children seems imperfect and uninformative with respect to the complex syntactic 

patterns that are learned in the end (Chomsky 1975). For example, structure 

dependency of movement rules is argued to be unlearnable from the exposure to data 

(Chomsky 1975; Crain & Nakayama 1987; Crain 1991; Legate & Yang 2002). The 

acquired syntactic knowledge is a grammar that generates sentences that include the 

input data but also exceed them. That is, children’s resultant grammar can produce 

sentences that were not necessarily learnable from exposure. Any approach to 

language acquisition needs to be able to account for this fact.  

These observations led researchers in language acquisition to two different 

types of approaches to language acquisition. One (so-called nativist) approach is that 

children come equipped with the innate knowledge of possible structural 

representations (Chomsky 1959, 1975, 1980, 1981; Fodor 1966; Baker 1979; Pinker 

1984; Crain 1991). It is proposed that much of the resultant syntactic knowledge is 
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not learned from the environment but is already built-in to the learner. This approach 

does not claim that everything is innate. The dimensions that are proposed to be 

innate are those that the input is uninformative for, e.g., formal categories (nounhood, 

verbhood), vocabulary of representations (subjects, complements, constituents) and 

constraints. This limits hypothesis space, which in turn restricts the number of 

possible interpretations of the input data. Under this view, learners look at the data 

and compare it against a class of possible models. One important consequence of this 

approach is it can account for the fact that children’s grammar produces structures 

that they have never encountered before.  

The other type is that the input contains sufficient statistical regularities that 

guide the learner to arrive at the abstract representations (Elman et al. 1996; Bybee 

1998; Tomasello 2000). In this case, learners’ task is to collect and compile 

accurately predictive statistics from the data, and learners would not have 

antecedently specified set of possible models. It is suggested “even in the total 

absence of [reliable] evidence, the stochastic information in data uncontroversially 

available to children is sufficient to allow for learning… [T]he correct generalization 

emerges from the statistical structure of the data” (Lewis & Elman 2002). 

These two approaches are incompatible with each other as stated in the 

traditional terms. However, such nature/nurture distinction is a false dichotomy.   

First, nature alone is not sufficient. It may be that the representational 

vocabulary needs to be inherently known, but that does not entail that the input data is 

irrelevant. For example, child might come with innate knowledge about formal 

categories, but it is not enough to know that “there exists verbs” to figure which word 
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in a given sentence is the verb. There must also be a mechanism for a child to find the 

verbs in the input (Fodor 1966; Pinker 1984; Grimshaw 1981; Chomsky 1981; 

Macnamara 1982). In this sense, the input is not trivial in determining how the 

surface strings map onto abstract representations. Innate knowledge about possible 

abstract representations helps restrict the hypothesis space, but learners still need a 

mechanism to identify which particular abstract representation best fits the surface 

form in any given sentence in the exposure language.  

Second, nurture alone is not sufficient either. Simply showing that the input 

contains sufficient data for a child to learn a certain phenomenon and that the child is 

sensitive to them does not entail that there is no constraint from the learner on the set 

of possible representations. Additionally, there are countless number of distributions a 

learner can track in the input, and without a space of possible representations, it is 

impossible to determine which distributions are the relevant ones to build the 

representations from. Tracking distributions needs to feed into a decision process 

about representations, and having a predetermined space of possible representations 

helps that (Pinker 1984). Therefore, a learner must know in advance which statistical 

distribution they should pay attention to, and for what purpose.  

In this way, both nature and nurture need each other. This dissertation 

proposes a linking between distributional approach and nativist approach to language 

acquisition. We need both nativism and distributional learning from the input, but the 

question is how the two interact, what is innate and what is learned from the input. 

The two might play different roles in language acquisition – innate knowledge 

specifies range of possible grammars and structures, while statistical learning is a 
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method for mapping the surface string to abstract representation. If statistical learning 

was the sole mechanism of acquiring a language, then it can only reproduce the 

statistical distribution of exposure sentences, but if the learner comes with innate 

constraints and knowledge on possible operations and structures, it can go beyond 

simply reproducing the exposure sentences. In any case, this dissertation is an attempt 

to examine how the environment interacts with the structure of the learner.  

The notion that children use statistical distributions present in the input to 

acquire various aspects of linguistic knowledge has received considerable recent 

attention (Saffran, Aslin & Newport 1996a; Redington, Chater & Finch 1998; Maye 

& Gerken 2000; Gomez 2002; Maye, Werker & Gerken 2002; Mintz, Newport & 

Bever 2002; Mintz 2003; Swingley 2005; among others). In specific, it has been 

suggested that distributional information can play a role in the acquisition of 

phonemes (Maye, Werker & Gerken 2002; Maye & Gerken 2000), word 

segmentation (Saffran, et al. 1996a), word categories (Redington, et al. 1998; Mintz 

2003), syntax-like regularities (Gomez & Gerken 1999) and non-adjacent 

dependencies (Gomez 2002; Gomez & Maye 2005). The roles of statistical 

distributions have traditionally been examined by those who put more emphasis on 

the roles of the environment, and the roles of learner’s initial state have been largely 

ignored in those studies. What remains unclear is the nature of learner’s contribution. 

At least two possibilities exist.  

One is that learners use these acquired statistics to create an illusion of 

structure.1 What a learner does is to track the surface distributions and carry forward a 

                                                
1 One possible explanation for why distributions seem to be informative for structure-like 
phenomena could be because many linguistic phenomena are dependent on structure.  
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summary of those distributions (Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & 

Plunkett 1996). According to this view, a learner does not come equipped with 

linguistic symbolic component. Under this view, the learner does not have domain-

specific constraints on possible linguistic structures, but the learning may be restricted 

by constraints on general learning mechanism. As Saffran, Aslin & Newport (1996a) 

suggests, “some aspects of early development may turn out to be best characterized as 

resulting from innately biased statistical learning mechanisms rather than innate 

knowledge.”  

A second possibility is that learners use statistics to identify particular abstract 

syntactic representations (Miller & Chomsky 1963; Yang 2006; Pearl 2007). 

According to this view, the learner may come equipped with antecedently known 

knowledge and the statistical learning interacts with that knowledge by determining 

the questions that the statistical distributions are relevant for answering. Hence, the 

outcome of the learning is a combination of the generalization formed based on the 

observed input and innate knowledge.  

To investigate this more general question, we focus on how infants (and adults 

and networks) acquire the phrase structure (PS) of their target language in this 

dissertation. 

Traditionally in linguistic theory, it has been believed that sentences of human 

language are not simply linear strings of words, but words in a sentence constitute a 

hierarchical phrase structure (Chomsky 1957; Jackendoff 1977). It has been proposed, 

for example, that hierarchical structure is what is responsible for deriving different 
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meanings for the sentence with identical linear order. Imagine a phrase like the 

following. 

  

(1) Fake turkey sandwich  

 

There are two possible meanings for this ambiguous phrase. One is that it is a turkey 

sandwich but is fake. It could be a toy or a plastic model of one, i.e., not edible. The 

other meaning is that it is a sandwich made with fake turkey like Tofurky. So it is 

edible, but may be vegetarian. These two distinct meanings are possible because the 

phrase can have two different structures. 

 

(2)  

 

 

(3)  
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(2) is the tree structure representation for the first meaning where the whole is a fake, 

and (3) is the tree representation for the second meaning where the sandwich is made 

with fake turkey. In this way, the fact that one identical linear string can be 

ambiguous supports that human language sentences have abstract hierarchical 

structure. Furthermore, this hierarchical constituency is what gives rise to recursive 

nature of language. In other words, because we have internal units within units, it is 

possible to achieve infinite creativity, which is a hallmark of natural language. 

To illustrate the roles that constituents play, imagine a sentence like (4). This 

sentence is composed of higher-level groupings, such as [the boy from the creek], 

[from the creek], [the creek], and [met Steven Spielberg], and you can draw a phrase 

structure (PS) tree as in Figure 1. 

 

(4) The boy from the creek met Steven Spielberg  

 

Figure 1: An example phrase structure representation 
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Each of those nodes in the tree forms a grouping called constituents. Notice that the 

constituent [the boy from the creek] contains two other constituents inside of it ([from 

the creek], [the creek]) yielding a nested hierarchical structure. 

Syntactic constituency is important because all operations of the grammar 

make reference to them. Human language is a combinatorial system that operates not 

on linear strings of words but on those units called constituents.  

Here are examples of roles constituents play in the grammar. First, you can 

substitute words with a proform (e.g., pronouns), but whatever being substituted must 

be a constituent. For example, you can replace the NP [the boy from the creek] with a 

pronoun he, and say (5). But you cannot just replace the boy and say (6). 

 

(5) He met Steven Spielberg  

(6) *He from the creek met Steven Spielberg  

 

This is because the two words the boy do not form a constituent by themselves in this 

particular sentence. You can only substitute a syntactic constituent with a proform. 

Even if you know this rule (that only constituents are substituted by a proform), if you 

do not know the constituency of the sentence, you would not know which words can 

be replaced or not.  

Similarly, if you have a sentence like (7), you can replace the VP [met the 

director of E.T] with a proform did so, but not just met the director as in (8).  
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(7) The boy from the creek met the director of E.T. and the girl did so too 

(8) *The boy from the creek met the director of E.T. and the girl did so of 

Notting Hill too 

 

Here, the proform did so must replace the whole VP [met the director of E.T.] and not 

just met the director. The sentence in (7) must mean, “The boy from the creek met the 

director of E.T. and the girl also met the director of E.T.” This is because in (7), the 

words met the direct of E.T. forms a constituent, but the words met the director does 

not form a constituent of their own. Proform substitution only replaces a constituent, 

and it cannot replace a non-constituent. 

Second, only phrasal constituents can undergo movement operations such as 

wh-question and clefting as in (9)-(10).  

 

(9) a. Steven Spielberg met the boy from the creek 

b. Who did Steven Spielberg meet? 

c. *Who from did Steven Spielberg meet the creek? 

 

(10) a. It was the boy from the creek that met Steven Spielberg  

b. *It was the boy that from the creek met Steven Spielberg 

 

In (9)b and (10)a, what is being moved (in addition to being replaced by a wh-word in 

(9)) is the whole NP [the boy from the creek]. On the other hand, in (9)c and (10)b, 

what is being moved is the boy from and the boy, respectively. The sentences in (9)c 
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and (10)b are unacceptable in English because non-constituents are being moved. 

Again, even if you inherently know that only constituents can be moved, if you do not 

know the specific phrase structure for the given sentence, you would not know which 

words you can move. 

Third, some constituents can be optional. In (12), the PP [from the creek] is 

missing, but the sentence is still grammatical. 

 

(11) The boy [from the creek] met Steven Spielberg 

(12) The boy met Steven Spielberg 

 

Fourth, on the category level, the same phrasal type can appear more than 

once in the sentence. For instance in (13), there are two NPs. 

  

(13) NP[The boy from the creek] met NP[Steven Spielberg]  

 

Fifth, the constituents are interchangeable as long as they are of the same 

category. 

 

(14) NP[Steven Spielberg] met NP[the boy from the creek]  

 

In this way, phrasal constituents play a fundamental role in any syntactic 

operation. All syntactic operations refer to and manipulate constituents.2 This fact is 

                                                
2 This, in turn, leaves statistical footprints that could be informative about the syntactic 
structure of sentences for learners to detect.  
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called “structure dependence,” and it is a term for the fact that “the rules operate on 

expressions that are assigned a certain structure in terms of a hierarchy of phrases of 

various types” (Chomsky, 1988; 45). In order to acquire a grammar, all a child has 

access to, as input data is sentences together with possible meanings. A scientist can 

try to discover what grammar a child has acquired or what grammar the child thinks 

generated the sentence by using those constituency tests above that reveal the posited 

structure. One potential problem for a child is the fact that constituency and phrase 

structure are highly abstract notions and the surface form does not come with visible 

labels or brackets to signal the constituency. At first glance, the input seems like 

simply linear sequences of sounds. A child might come with innate knowledge about 

constraints on possible phrase structure representations (e.g., binary branching, nested 

hierarchical structure, endocentricity), which would restrict the representational space 

for possible structures. However, even that does not guarantee that the learner will 

build the correct phrase structure representation. Since words vary from language to 

language, a child has to learn exactly which words go with which words in the 

particular language they are learning in order to arrive at the correct structural 

representation. In other words, it is not enough for a child to know that “there exists 

phrase structure” or that “a sentence is composed of a subject NP and a predicate” to 

figure out the constituency of a sentence. There must also be a mechanism that guides 

the child to the correct phrase structure representation of sentences for a particular 

language (Fodor 1966; Pinker 1984; Grimshaw 1981; Chomsky 1981; Macnamara 

1982). 
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What kind of information might be readily available for a prelinguistic child, 

other than the linear strings of sounds? It has been proposed that prosodic, semantic 

and distributional information of sentences are perceptually available to a child 

(Gleitman & Wanner 1982; Gleitman, Gleitman, Landau & Wanner 1988; Morgan 

1986; Pinker 1984; Grimshaw 1981; Macnamara 1982; Morgan, Meier & Newport 

1989; Saffran 2001; Thompson & Newport 2007, among others). We will review 

studies that investigated infants’ sensitivity to those properties in Chapter 2. Earlier 

research emphasized the necessary role of semantic (Pinker 1984) and/or prosodic 

(Gleitman & Wanner 1982; Gleitman, Gleitman, Landau & Wanner 1988; Morgan 

1986; Peters 1983) cues in driving the acquisition of phrase structure. In a comparison 

of the utility of distributional and linguistic cues, Morgan, Meier & Newport (1987) 

found that adults were able to acquire the constituency of artificial languages only 

when the distributional information was augmented with correlated semantic, 

prosodic or morphological cues. 

Recently, however, Thompson & Newport (2007) suggested that the 

distributional cues in those experiments were simply not strong enough, in and of 

themselves, to be informative. Instead, they showed that adult language learners 

could, indeed, exploit transitional probabilities in acquiring an artificial phrase 

structure grammar. In particular, it has been proposed that “transitional probabilities”, 

which is a statistic that measures the predictiveness of the following element given 

one element, can be used by adults to successfully learn phrasal groupings of words 

(Thompson & Newport 2007) in miniature artificial languages. One problem with the 

artificial grammar used in Thompson & Newport (2007) is that it contained phrases 
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with no internal structure, but internally nested hierarchical structure is a hallmark of 

natural language syntax. Therefore, these findings leave unresolved whether learners 

can detect statistical cues to internally structured phrases.  

 As mentioned above, another question that still remains unclear is what 

exactly is learned via this statistical learning algorithm. Focusing on the phrase-

structure learning problem, one possibility is that learners use the statistics to create 

phrase structure representations from scratch. This view holds that each child has to 

discover the existence of phrase structure and its characteristics on the basis of 

distributional information. Under this view, statistical learning does not interact with 

knowledge that the learners might already have, and the generalizations the learners 

form is entirely based on the observed input. There are two concepts within this view. 

One is that learners have no innate knowledge about possible representations prior to 

the exposure (Tomasello 2000). Then after being exposed to the target language, the 

learner would build and construct the representations. This concept acknowledges 

that what a child ends up with is abstract, but they get there not because of innate 

syntactic competence, but because of other usage-based mechanisms. The other 

concept is that the acquired grammar only has the properties that are derived from the 

observed distributions. Under this view, what the learner ends up with is not an 

abstract structure but only an illusion of one (Elman 1991).  

A second possibility is that learners use the statistics to identify particular 

abstract syntactic representations. According to this view, each child uses the input 

distribution to determine how the particular language maps words to trees of a highly 

restricted character. Under this view, statistical learning interacts with knowledge that 
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learners may already have and the outcome of the learning is based on both the 

observed input and the antecedently known knowledge. Here, the antecedently known 

knowledge implies that the class of possible representations is predetermined (e.g., 

endocentricity, binary branching, proform substitution only replaces constituents and 

not non-constituents, etc.). If the range of possible representations is already known 

to a learner, then all a learner has to do is to select the correct grammar that derives 

the surface strings. Under this selective learning theory, the acquired representations 

have deductive consequences beyond what can be derived from the observed 

statistical distributions alone. Previous studies have failed to explicitly distinguish 

these possibilities and thus neither possibility was explicitly supported by past 

studies.  

 The predictions for these two approaches can be summarized as follows 

(excerpt from Lust, 2006). 

 

(15) Predictions of a purely statistical approach 

i. Learners have a direct relation to input data 

ii. No universal linguistic constraints are predicted (e.g., no structure dependence) 

iii. Only randomly, if at all, attend to parametric variations of language 

iv. Not creative but highly imitative; generalizations should only be based on 

perceived forms or analogy 

v. Learners do not evidence universal language principles or patterns 
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(16) Predictions of an approach in which nativism and statistics interact 

i. Learners have an indirect relation to input data 

ii. Be constrained in language acquisition 

iii. Be structure dependent from the beginning, and attend to the parameters of 

language variation 

iv. Be creative, i.e., go beyond the stimuli, and not simply copy 

v. Not offend universals shown across natural languages  

 

This dissertation presents seven experiments investigating the answers to the 

questions: (a) whether adults, infants and Simple Recurrent Networks (SRN) are 

sensitive to the distributional information as a cue to the hierarchical phrase structure, 

(b) whether adults, infants and SRN can learn the constituency of an artificial 

language without any prosodic or semantic cues, (c) whether the representations are 

part of the learning system prior to the experience, and (d) what the deductive 

consequences of distributional learning are. We show that human adults and infants 

can learn nested hierarchical phrase structure by using statistics alone, while the SRN 

fails. Specifically, it will be shown that the predictions of a nativist approach in (16) 

are borne out, in particular we will show that learners’ generalizations go beyond the 

stimuli and they are not simply copies of the input, but those generalizations are 

constrained in the same ways that natural languages are constrained. More 

specifically, even when the input only contained the information for constituency, the 

learners not only learned the constituent structure but also inferred that non-

constituents cannot be moved. In other words, our experiments suggest that learners 
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show knowledge of the constraint on movement even in the absence of movement in 

the exposure data, which suggests that the learners knew the constraint antecedently. 

Importantly, knowing the constituent structure alone does not give this result. 

These results are compatible with the view that statistical learning interacts 

with inherent representational system, but it is incompatible with the view that 

statistical learning does not interact with innate linguistic knowledge as proposed by 

Saffran et al. (1996a) and Elman (1991), for example. In this dissertation, we propose 

a way in which the innate knowledge and the environment might interact. We suggest 

that innate knowledge supplies a range of possible representations and constraints 

(e.g., constraint on movement rules), while statistical learning is used as a method for 

mapping the surface strings to abstract representations.  

This dissertation is organized as follows. Chapter 2 reviews past findings on 

what types of cues children are sensitive to and might employ when learning phrase 

structure, in particular, prosodic, semantic and distributional information. Chapter 3 

presents the results from the experiments done with adults. Chapter 4 presents 

experiments with infants. Chapter 5 presents SRN simulations. Finally, Chapter 6 

summarizes findings from the dissertation.   
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Chapter 2: An Overview of Previous Research in the 

Acquisition of Phrase Structure 

 

2.1 Prosodic bootstrapping hypothesis 

In this dissertation, we are interested in how children arrive at the correct 

phrase structural representation for their target language. Discovering the relevant 

syntactic units of a language is a fundamental step in language acquisition. All 

grammatical operations make reference to syntactic constituents, such as Noun 

Phrases and Verb Phrases. Without knowing which words in a particular sentence 

form constituents, it is impossible to perform any grammatical operations. Even given 

innate constraints on possible phrase structure representations and knowledge that 

sentences must be represented with nested hierarchy, some learning mechanism must 

be present for the learner to arrive at the correct representation in a particular 

language. In other words, innate knowledge is not sufficient for this task and some 

kind of information in the input is necessary. One of the most obvious information 

sources in the environment is acoustic information. 

It has been suggested that the input speech signal comes with acoustic cues to 

syntactic organization and that children are sensitive to those cues as information 

about the syntactic structure of the sentence. This proposal is known as the prosodic 

bootstrapping hypothesis (Gleitman & Wanner 1982, Gleitman, Gleitman, Landau & 

Wanner 1988, Morgan 1986, Peters 1983). The prosodic bootstrapping hypothesis 
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proposes that acoustic information contains cues to syntactic boundaries that can be 

employed by learners. The majority of research on lexical, phrasal and clausal 

segmentation has been done in the framework of prosodic bootstrapping. Now, it 

might be worthwhile to note that what was intended by the original proposal of 

prosodic bootstrapping (Gleitman & Wanner 1982) was that prosodic information is 

one of many kinds of cues that could be used to discover or construct the phrase 

structure. In this section, we will review past findings to examine whether the 

prosodic bootstrapping is a real possibility for language learners.  

 

2.1.1 Acoustic correlates at syntactic boundaries  

Prosodic phonology (Selkirk 1984, Nespor & Vogel 1986) proposes that 

utterances are hierarchically organized with several layers. The highest constituent of 

prosodic hierarchy is the intonational phrase. An utterance is composed of one or 

more intonational phrases, which roughly corresponds to a clause. An intonational 

phrase is composed of one or more phonological phrases, which in turn is composed 

of one or more prosodic words. A prosodic word consists of one content word and 

some function words. The prosodic hierarchy is illustrated in the figure below.  
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Figure 2: Prosodic hierarchy based on Nespor & Vogel (1986) (from Hicks 2006).  
 

 

 A phonological phrase boundary always corresponds with a syntactic 

boundary. Whenever there is a phonological phrase boundary, there is a syntactic 

phrase boundary there. But the opposite may not be true: a syntactic boundary does 

not always correspond with a phonological phrase boundary. In other words, one 

phonological phrase may consist of more than one syntactic phrase. For example, in 

the sentence S[ NP[the dog] VP[chased NP[the cat]]], the VP chased the cat may form 

one phonological phrase, but it contains another syntactic boundary inside of it, which 

is the boundary for the object NP. 

It has been widely observed that there are acoustic correlates that signal 

syntactic boundaries (Selkirk 1984, Nespor & Vogel 1986). These cues include 

preboundary lengthening (Beckman & Edwards 1990, 1992, Cooper & Paccia-

Cooper 1980, Klatt 1975, Wightman, Shattuck-Hufnagel, Ostendorf & Price 1992), 
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pause duration (Cooper & Paccia-Cooper 1980, Scott 1982), change in pitch 

(Beckman & Pierrehumbert 1986), greater initial strengthening (Fougeron & Keating 

1997, Keating, Cho, Fougeron & Hsu 2003) and reduction of coarticulation between 

phonemes across boundary (Byrd, Kaun, Karayanan & Saltzman 2000, Hardcastle 

1985, Holst & Nolan 1995). Additionally, a phonological phrase typically contains 

one melodic contour. Moreover, the presence of these prosodic cues has been 

confirmed in a number of languages (Barbosa 2002 for Brazilian Portuguese; de 

Pijper & Sanderman 1994 and Quené 1992 for Dutch; Fisher & Tokura 1996b for 

Japanese; Hayes & Lahiri 1991 for Bengali; Keating, Cho, Fougeron & Hsu 2003 for 

English, French, Korean and Taiwanese; Pasdeloup 1990 and Rietveld 1980 for 

French; Wightman et al. 1992 for English).  

The strength of those prosodic cues varies depending on the indicated 

boundaries. The boundaries that are higher on the prosodic hierarchy (i.e., 

intonational phrase) are indicated by stronger prosodic cues (Cooper & Paccia-

Cooper 1980). In particular, there are longer pauses, stronger preboundary 

lengthening and increased intonation at intonational phrase (i.e., clause) boundaries 

than at phonological phrase boundaries (Cho & Keating 1999; Shattuck-Hufnagel & 

Turk 1996).  

Although they may be weaker, there are prosodic cues at phonological phrase 

boundaries, including final lengthening and a single pitch contour (Wightman, 

Shattuck-Hufnagel, Ostendorf & Price 1992), greater initial strengthening (Fougeron 

& Keating 1997, Keating, Cho, Fougeron & Hsu 2003), reduced coarticulation 
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between phonemes that span across the phonological phrase boundary (Byrd, Kaun, 

Narayanan & Saltzman 2000, Hardcastle 1985, Holst & Nolan 1995).  

One potential problem is that not all syntactic boundaries (17) correspond 

with prosodic boundaries (18).  

 

(17) He was / eating an enormous apple  

(18) [He was eating] [an enormous apple] 

 

Often you observe no, or even misleading, prosodic changes at phrase boundaries 

((19) vs. (20)).  

 

(19) [[NP This] [VP is [NP the dog that chased [NP the cat that bit [NP the rat that 

lived in [NP the house that Jack built]]]]]] 

 

(20) This is the dog / that chased the cat / that bit the rat / that lived in the house 

/ that Jack built  

 

(19) is the syntactic bracketing of the sentence, while (20) is how a speaker would 

produce prosodic boundaries. It has been long noted that prosody does not always 

mirror the hierarchical structure of syntax (e.g., Chomsky & Halle 1968). In the 

example above, the major syntactic constituents are the NPs embedded within the 

VPs as in (19). However, speakers tend to produce prosodic boundaries between the 

noun and the relative clause as in (20). If the learners simply take pauses to mean that 
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there is a syntactic boundary at that pause, then the learners would not incorrectly 

parse the sentence. That is because there is a syntactic boundary at the pauses in (20), 

namely the boundary between a noun and a relative clause. However, if the 

conclusion the learners make is that words on both sides of the pause form a 

constituent, then the sentence would not be correctly parsed. For example, the 

learners might conclude that this is the dog and that chased the cat both form 

constituents which is wrong. At this point, we do not know which conclusion (the 

stronger one or the weaker one) the learners might draw. In any case, the problem is 

that learners need to eventually figure out what inferences are licensed by the 

prosodic information.  

 

2.1.2 Infants’ sensitivity to acoustic cues at syntactic boundaries   

 We see that the acoustic cues are present in the input, but are infants sensitive 

to these cues? It has been found that infants as young as 6-months of age are sensitive 

to prosodic cues at clause boundaries (Hirsh-Pasek, Kemler Nelson, Jusczyk, Cassidy, 

Druss & Kennedy 1987, Jusczyk 1989). In Hirsh-Pasek et al. (1987), two sets of 

passages were created. In the “coincident” version, 1-sec pauses were inserted at 

clause boundaries. In the “non-coincident” version, 1-sec pauses were inserted 

between words in the middle of a clause. 7-10 month-old infants listened longer to the 

coincident version. Accordingly, the authors claim that prosodic cues serve as a 

marker of clause boundaries and infants are sensitive to it.  

In order to make sure that the infants were responding to prosody and not 

some other information, Jusczyk (1989) conducted a follow-up study. The samples 
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were low-pass filtered at 400Hz to remove most of the phonetic information. 6 

month-old infants showed a preference for the coincident version, by listening 

significantly longer to it. This suggests that well before their first birthday, infants are 

sensitive to prosody as a marker of clause boundaries.  

So, very young infants seem to be sensitive to the prosodic markings of clause 

boundaries, but what about phrases? Past research have suggested that the prosodic 

cues at phrasal boundaries are weaker than the ones at clausal boundaries (Beckman 

& Edwards 1990; Fisher & Tokura 1996a, 1996b; Gerken et al. 1994). Jusczyk, 

Hirsh-Pasek, Kemler Nelson, Kennedy, Woodward & Piwoz (1992) conducted a 

series of experiments to investigate whether infants are sensitive to the acoustic 

correlates at phrasal boundaries. Two sets of passages were created. In the coincident 

set, 1-sec pauses are inserted right before the predicate, as in (21). In the non-

coincident set, 1-sec pauses were placed right after the verb, as in (22).  

 

(21) Coincident version:  

Did you / spill your cereal? Do you / want to pick it all up? That / looks great. 

You / want to put it back in your little container here?  

 

(22) Non-coincident version:  

Did you spill / your cereal? Do you want / to pick it all up? That looks / great. 

You want / to put it back in your little container here?  
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The idea is that, in the “coincident” sentences, a prosodic cue (in this case, a pause) 

coincided with a syntactic phrase boundary, and everything after the pause is the 

predicate which usually forms a phonological phrase. On the other hand, in the “non-

coincident” version, the pause is always after the verb. The results showed that 9-

month-old infants, but not 6-month-olds, listened longer to the “coincident” samples, 

which had pauses at the major phrase boundaries.  

 In these experiments, the coincident version always had a pause before the 

predicate and the non-coincident version after the verb. Therefore, one might raise 

concerns that there was something special about verbal predicates. In order to check 

this possibility, Jusczyk et al. (1992) created two new sets of passages.  

 

(23) Coincident version:  

Many different kinds of animals / live in the zoo. The dangerous wild animals 

/ stay in cages. Some of the animals / are friendly and like to be petted.  

 

(24) Non-coincident version:  

Many different kinds / of animals live in the zoo. The dangerous / wild 

animals stay in cages. Some / of the animals are friendly and like to be petted.  

 

The coincident version was created by placing 1-sec pauses immediately after subject 

NPs, which commonly form a phonological phrase. In the non-coincident version, 1-

sec pauses were placed somewhere within the subject NPs, which is an unnatural 

place to have a prosodic boundary. The results showed that 9-month-olds listened 
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longer to the coincident version, indicating that the infants are sensitive to the 

prosodic information at phrasal boundaries.  

The findings of Hirsh-Pasek et al. (1987) and Jusczyk et al. (1992) indicate 

that infants are sensitive to acoustic properties of clause and phrase boundaries when 

the prosodic cues are reliably available. But it has not been shown yet that infants 

actually use such sensitivity in processing of fluent speech. Nazzi, Kemler Nelson, 

Jusczyk & Jusczyk. (2000) investigated this issue with clauses. 6-month-old infants 

were familiarized with sequences such as rabbits eat leafy vegetables, and then tested 

with either well-formed “Rabbits eat leafy vegetables” or non-unit “… rabbits eat. 

Leafy vegetables …” Infants listened longer to the passages containing the well-

formed familiar sequence.  

However, Soderstrom, Kemler Nelson & Jusczyk (2005) argue that in Nazzi 

et al. (2000), infants did not have to segment the speech stream based on the prosodic 

cues, since they were presented with already segmented target sequences. Thus, it 

does not tell us whether prosodic cues help infants extract the relevant sequences, 

which is much more similar to what they actually have to do in language acquisition. 

Therefore, Soderstrom et al. (2005) conducted the following experiment.  

 

(25) Familiarization  

i. John doesn’t know what rabbits eat. Leafy vegetables taste so good.  

ii. Rabbits eat leafy vegetables. Taste so good is rarely encountered.  
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(26) Test 

i. Leafy vegetables taste so good. Salad is best with dressing.  

ii. Students like to watch rabbits eat. Leafy vegetables make them chew.  

iii. Squirrels often feed on acorns. Rabbits eat leafy vegetables.  

iv. Mothers must buy leafy vegetables. Taste so good helps their families.  

 

The underlined sequences are “clause straddling” and the italicized ones are “clause 

coincident.” During familiarization, infants heard either (25)i or (25)ii. At test, infants 

heard all four passages in (26). This experimental setup is claimed to be more realistic 

because target sequences are embedded in fluent speech throughout the experiment. 

The results showed that 6-month-old infants listened longer to the test passages that 

contained the sequences that were “clause coincident” (italicized) during 

familiarization. In addition, infants also listened longer to the test passages that 

matched the prosodic structure during familiarization (regardless of coincident or 

straddling). Therefore, the authors conclude that infants are able to use prosodic 

information to recognize the sequences in fluent speech and detect such sequences in 

different fluent speech. In sum, prosodic cues appear to be useful for infants to 

encode and recognize word sequences in fluent speech.  

To investigate the same issue with phrases, Soderstrom et al. (2003) created a 

series of experiments. The following natural speech stimuli were used.  
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(27) At the discount store, new watches for men are simple and stylish. In fact, 

some people # buy the whole supply of them. 

(28) In the field, the old frightened gnu # watches for men and women seeking 

trophies. Today, people by the hole seem scary.  

 

The boldfaced phrases without # are the syntactically well-formed noun phrase (NP) 

target sequences. The boldfaced phrases with # are the syntactic non-unit (NU) target 

sequences. Infants were assigned to either the “watches” condition or “people” 

condition. During the familiarization, infants just heard the boldface target sequences. 

During the test, infants heard the entire passages. 6-month-olds, as well as 9-month-

olds, listened longer to the NP version than the NU version at test. In other words, 

infants preferred to listen to the passage that contained the syntactically well-formed 

familiarized target sequence.  

 In order to examine whether the obtained effect was specific to NPs, the same 

experiment with VPs was carried out.  

 

(29) Inventive people design telephones at home. A fresh idea with promise # 

surprises no-one who words there.  

(30) The director of design # telephones her boss. New developments promise 

surprises for their old buyers.  

 

Again, 6-month-old infants showed a preference for the passages containing the well-

formed VP, by listening longer to it.  
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Even though this result suggests that infants can recognize the familiar 

sequences embedded in the larger passages, Soderstrom et al.’s (2005) criticism also 

applies here. Since infants were familiarized with already-extracted sequences 

(boldface), we do not know whether prosodic information helped infants to segment 

the speech stream. Therefore, a follow-up study one could do is to train infants with 

passages as in (31)-(32) and to test them with (27)-(28).  

 

(31) I got these new watches for men from that store in Montreal. I saw people 

# buy the whole boxful of them.  

(32) Did you know that gnu # watches for men in the field? Especially people 

by the hole are the excellent target for them.  

 

In this way, we can examine whether children use prosodic markers for both 

extracting and recognizing sequences of words in fluent speech.  

In any case, Soderstrom et al.’s (2003) results are the first evidence that 

infants recognize familiar phrases embedded in the fluent speech only when that 

phrase is prosodically well-formed.  This is also the first evidence that infants as 

young as 6-month old are sensitive to the prosodic phrasal grouping.  

As mentioned earlier, the main acoustic correlates at syntactic boundaries are 

preboundary lengthening, pause duration and change in pitch. But these cues do not 

seem to weigh the same. Seidl (2007) showed that pitch is an essential cue for 

successful segmentation of clauses, while neither pause duration nor preboundary 

lengthening was found to be necessary for English-learning 6-month-old infants. The 
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most significant finding was that none of these cues was sufficient on its own. Even 

pitch, which was found to be an essential cue, had to be paired with either pause or 

preboundary lengthening in order for 6-month-old infants to successfully segment 

clauses. This suggests that a combination of at least two acoustic cues is required for 

detecting syntactic boundaries. This finding is relevant to us because it strengthens 

our suggestion that in order to figure out phrase structure of a sentence, infants do not 

just use one kind of cue, but probably a combination of several kinds of cues are used, 

or that at least it is more helpful to have more cues than just one.  

 

2.1.3 Using prosodic cues for lexical access 

In addition to clausal and phrasal segmentation, a number of studies have 

investigated prosody’s effect on lexical segmentation. 3-day-old infants discriminated 

sequences of syllables that contain a word boundary from those that do not, 

suggesting that newborns are sensitive to acoustic correlates at phonological phrase 

boundaries (Christophe, Dupoux, Bertoncini & Mehler 1994, Christophe, Mehler and 

Sebastián-Gallés 2001). However, we should remember that being sensitive to the 

acoustic correlates does not necessarily entail that babies actually use them for the 

purpose of lexical segmentation.  

Gout, Christophe & Morgan (2004) investigated whether infants can use 

phonological phrase boundaries to constrain lexical access online. The stimuli of the 

following kind were created. 
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(33) a. [The scandalous paper] [sways him] [to tell the truth] 

b. [The outstanding pay] [persuades him] [to go to France]  

 

In (33)a, the bisyllable paper is contained within a phonological phrase, whereas in 

(33)b, the same bisyllable pay#per straddles a phonological phrase boundary. One of 

the prosodic differences between the two bisyllables was phrase-final vowel 

lengthening: the vowel [eɪ] in pay#per was longer than in paper, while the vowel [ә] 

in paper was longer than in pay#per. The consonant [p] in pay#per was longer than in 

paper (phrase-initial consonant lengthening). There was a short pause between the 

two syllables in pay#per, but not in paper. During the familiarization phrase, the 

infants were presented with paper-type stimuli, and at test, they were presented with 

both paper- and pay#per-type sentences. It was found that 13-month-old English-

learning infants listened longer to paper-type sentences than to pay#per-type 

sentences, while 10-month-old infants did not show any difference in looking times. 

This shows that 13-month-olds are sensitive to prosodic correlates at phonological 

phrase boundaries and can exploit it in segmenting words from fluent speech. Adults 

also have been shown to use the acoustic cues at phonological phrase boundaries to 

constrain online lexical access (Christophe, Peperkamp, Pallier, Block & Mehler 

2004). These results suggest that both infants and adults use prosodic information to 

help them with segmentation of words.  

Furthermore, Christophe, Nespor, Guasti & Van Ooyen (2003) proposed that 

infants make use of prosodic features to infer the syntactic head parameter. French 

and Turkish both have word-final stress. Syntactically, however, while French is a 
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head-initial language, Turkish is head-final. Therefore, the phonological phrase 

prominence is final in French and initial in Turkish. Thus, regarding the phonological 

properties, the phonological phrase prominence is the only thing that distinguishes the 

two languages. The French and Turkish materials were synthesized and all the 

phonemes were made identical. The only difference between the two materials was 

the phonological phrase prominence. Using the high amplitude sucking paradigm, 6-

12-week-old French infants discriminated the French and Turkish sentences. This 

result suggests that young infants are sensitive to the difference in phonological 

phrase prominence.  

 

2.1.4 Mismatch between syntax and prosody 

As mentioned earlier in this chapter, not all syntactic boundaries are marked 

with a prosodic boundary. Often you observe no, or even sometimes misleading, 

prosodic markers. Can prosodic cues be useful for infants to detect syntactic 

boundaries in those non-isomorphic cases?   

Gerken, Jusczyk & Mandel (1994) investigated this problem. They presented 

infants with one set of passages that had 1-sec pauses inserted immediately after the 

subject (e.g., he / ate four strawberries), while the other set had pauses immediately 

after the verb (e.g. he ate / four strawberries). Half of the 9-month-old infants heard 

passages with lexical subjects (e.g. the caterpillar). The other half heard passages 

with pronoun subjects (e.g. he). Only the infants in the lexical subject condition 

listened longer to the passages with pause after subject than the passages with pause 

after verb. Infants in the pronoun condition showed no preference for either version.  
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What Gerken et al. (1994) show is that when the prosodic boundaries match 

the syntactic boundary, infants are able to detect such cues, as in the lexical subject 

case. However, when the syntactic boundary and prosodic boundaries do not match, 

learners are not able to identify the syntactic boundaries from the prosodic cues. This 

suggests that there must be other cues, in addition to prosody, that infants can employ 

to help them bootstrap the syntactic structure of their language. In this disseration, we 

will investigate whether one type of statistical information, transitional probability, 

can be one of such cues.  

 

2.1.5 Prosodic cues vs. statistical cues  

A number of studies, including ones that are reviewed here, have shown that 

infants can use prosodic cues as one information source about where the word 

boundaries might be (Cutler & Norris 1988, Jusczyk, Houston & Newsome 1999b, 

Morgan 1996). Recently, it has also been shown that infants can use statistical cues 

for word segmentation (Saffran, Aslin & Newport 1996a). For example, the 

transitional probability from one sound to the next within a word (pre-tty) is usually 

higher than that of between words (pretty#baby). Given this, Saffran et al. (1996a) 

tested 8-month-old infants using the familiarization-preference procedure. Infants 

were exposed to auditory arrays of an artificial language for 2 minutes 

(bidakupadotigolabubidaku…). The transitional probability between syllables within 

a (artificial) “word” was 1.0 (e.g., bida) while the TP between syllables across words 

was 0.33 (e.g., kupa). The peaks and dips of the TPs were the only cue to the word 

boundaries, since there was no prosodic information about the word boundaries in the 
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auditory stimuli (e.g., no pauses, no stress changes). At test, the infants were 

presented with two types of test samples: one with “words” from that artificial 

language (e.g., pabiku) and “part-words” (e.g., pigola). The part-words were created 

by joining the last syllable of a word with the first two syllables of another word. The 

8-month-old infants had significantly longer listening time for part-words than words, 

showing a novelty preference. These results indicate that 8-month-old infants are 

sensitive to the distributional information and they can use that information to 

discriminate between words and part-words.  

Saffran, Newport & Aslin (1996b) explored the interaction of prosodic cues 

and statistical cues. A distributional cue (transitional probabilities) was combined 

with a prosodic cue (vowel lengthening). The experiment with adults showed that the 

vowel lengthening alone was not informative and it was informative only when it was 

combined with the distributional cue, which suggests that statistical cue prevailed 

over acoustic cue. However, in that study, the statistical cue and prosodic cue were 

not in conflict with each other. The potential “words” cued by transitional probability 

and the ones cued by vowel lengthening were the same.  

When the two types of cues are in conflict, 8-month-old infants listened 

longer to (prosodically ill-formed) statistical words than (prosodically well-formed) 

statistical part-words (Johnson & Jusczyk 2001). Given that the infants in Saffran et 

al. (1996a) listened longer to part-words showing a novelty effect, we can also 

interpret this result as a novelty effect. In that case, it means that infants treated the 

statistical words as nonwords and prosodic words as real words. This indicates that 

they relied more heavily on stress than transitional probability as a cue. 
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 But was it really novelty effect? What if it was a familiarity effect? In the 

infant literature, when the stimuli are relatively simple and easy for them to learn, 

infants are familiarized soon and they get bored, hence they tend to listen longer to 

the novel items at test (Hunter & Ames 1989, Aslin, Saffran & Newport 1998, 

Echols, Crowhurst & Childers 1997, Saffran et al. 1996a). On the other hand, when 

the stimuli are complex, it takes longer for infants to be familiarized, so they tend to 

listen longer to the familiar items at test (Houston, Santelmann & Jusczyk 2004, 

Jusczyk & Aslin 1995, Jusczyk, Hohne & Bauman 1999a, Jusczyk et al. 1999b, 

Mattys & Jusczyk 2001). Could it be that the stimuli in Johnson & Jusczyk (2001) 

were too complex, therefore infants listened longer to the familiar items? If so, it 

would mean that infants relied more on statistics than prosody.  

To examine this possibility, Johnson & Jusczyk (2001) carried out a follow-up 

study, where the words cued by the statistics and prosody matched. 8-month-old 

infants listened longer to part-words, indicating that they did learn the words and 

showed a novelty preference. This result implies that the materials involving both 

statistical and prosodic cues were not too complex for the infants to learn. Therefore, 

it confirms the account for the previous experiment, which is that infants weigh the 

prosodic cues more heavily than statistical cues when the two cues are in conflict.  

Thiessen & Saffran (2003) investigated infants’ developmental reliance on 

conflicting cues. When the two cues – stress and transitional probability – signaled 

conflicting word boundaries, 6.5- to 7-month-old infants listened longer to the 

(prosodically well-formed) statistical part-words, showing a novelty preference, 

which indicates that they were paying attention not to stress but primarily to statistical 
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information. This suggests that 6.5-7-month-olds weigh statistical cues more heavily 

than stress cues.3 However, a recent study reports that when provided with a list of 

segmented words prior to testing, 7-month-olds can use stress as a cue for lexical 

segmentation, which shows that experience with isolated words facilitates infants’ 

learning of language specific rhythmic patterns (Thiessen & Saffran 2007, Gambell & 

Yang 2005).  

These results let us begin to see a developmental trend of infants’ attention to 

different cues. At around 7.5 months, infants begin to be sensitive to stress patterns 

(Jusczyk et al. 1999b). As a result, at 8-9 months, they start relying more heavily on 

stress cues than statistical cues. This might be because infants at this stage are not 

capable of integrating more than one type of cues (Morgan & Saffran 1995). Morgan 

& Saffran (1995) demonstrated that 6-month-olds were not able to integrate 

sequential and suprasegmental cues, while 9-month-olds were. Thus, it was suggested 

that the ability to integrate multiple kinds of information arises sometime between 6 

and 9 months.  

 

2.1.6 Summary of prosodic bootstrapping 

One of the most obvious information sources for phrase structure available in 

the input is acoustic information. As the prosodic bootstrapping hypothesis proposes, 

prosody can provide information for some syntactic structures. When the prosodic 

cues are reliably available, young infants are sensitive to acoustic markers at as 

                                                
3 Nevertheless, whether infants can really use statistical cues in real life is debatable. Gambell 
& Yang (2005) have shown that speech to young children does not contain reliable TP 
boundaries, because most of the words are monosyllabic.  
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clausal, phrasal and lexical boundaries. However, the inferences about structures that 

are cued by prosody are not sufficient for building complete phrase structure 

representations. For example, when there is a mismatch between phonological and 

syntactic phrases, infants could be misled and misparse the sentence. More 

importantly, even when the learners are sensitive to the acoustic cues at syntactic 

boundaries, that does not entail that learners make the correct inferences about the 

relation between the surface cues and structures that they indicate. So, infants need 

additional information to help them infer the correct phrase structure. In the following 

sections, we will look at possibilities of semantic information and distributional 

information.  

 

 

2.2 Semantic bootstrapping hypothesis  

 Another source of prelinguistic information that can be useful to a child in 

figuring out syntactic structure of a sentence is semantics. Pinker (1984) proposes 

what is called the semantic bootstrapping hypothesis (also based on Pinker 1982, 

Grimshaw 1981, Macnamara 1982). This hypothesis makes use of the fact that a lot 

of the times, nouns refer to physical objects, verbs refer to actions, adjectives refer to 

attributes, subject of a sentence is usually the agent of the action, object of a sentence 

is usually the patient or theme, and so on. In other words, there exist these syntax-

semantics correspondences. It is hypothesized that the concepts such as physical 

objects, actions, attributes, and agent-of-action and patient-of-action are perceptible 

and perceivable information to a child. The main claim of the semantic bootstrapping 
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hypothesis is that, if these notions are perceptible by children, then children can use 

the fact that each of these notions corresponds on numerous occasions to a respective 

grammatical entity, such as nouns, verbs, subjects and objects. Coupled with basic 

notions of phrase structure rules (e.g., that S consists of a subject NP and a VP, VP 

consists of a V and an object NP), children can correctly parse a sentence using this 

syntax-semantics correspondence.  

 Let us see how this works. Imagine a child hears a sentence The dog chased 

the cat. The child uses the syntax-semantics correspondences to identify and label 

each word with its category. Dog and cat are physical objects, so the child would 

label them nouns. Chased is an action, so it will be labeled as a verb. The refers to 

definiteness in discourse, so it will be labeled as a determiner. Thus, we have the 

following result. 

 

 

Figure 3: Labeling the categories 
 

Next task is to group the words into phrases. Grimshaw (1981) and Pinker (1984) 

suggest that the constituents of each phrase (which is universal) is antecedently 

known to a child, and what a child has to learn is the linear order of its constituents 

(which varies cross-linguistically). For example, a child knows inherently that a 

sentence consists of a subject NP and a VP, a subject NP consists of an optional 

determiner and a obligatory noun, a VP consists of an optional object NP and an 
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obligatory verb, and so on. If a child knows that, then they will arrive at the 

intermediate structure below. 

 

 

Figure 4: Forming Noun Phrases 
 

 Now, at this point, nothing prevents a child from incorrectly parsing the 

sentences as follows. 

 

 

Figure 5: An incorrect tree 
 

 

However, if the child can perceive from the discourse that the dog in this sentence is 

the agent of the chasing, and that the cat here is the patient of the chasing, then using 

the syntax-semantics correspondence (i.e., agent = subject, patient = object), the child 
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can infer that the dog must be the subject of the sentence and that the cat must be the 

object of the sentence. If the child figures that out and if they antecedently know that 

the subject NP is the immediate daughter of a sentence, and the object NP is the 

daughter of the VP, they can parse the sentence correctly.  

 

 

Figure 6: Correct phrase structure representation of an example sentence 
 

 

 One obvious problem with the semantic bootstrapping hypothesis is that the 

syntax-semantics correspondence is not perfect and in fact, often does not hold. For 

example, not all nouns denote a physical object (e.g., a thought), not all actions are 

verbs (e.g., the reading, a flight), and not all subjects denote an agent of an action 

(e.g., John received a letter, John sustained an injury). In case of passives, the agent-

subject patient-object relation is reversed (e.g., The pizza was eaten by John). In case 

of topicalization, the subject appears at the end of the sentence (e.g., Eats a lot of 

pizza, that guy). In other words, the syntax-semantics correspondence only holds 

mostly in what is called “basic sentences” which are declarative, simple, affirmative, 

pragmatically neutral and minimally presuppositional (Keenan 1976). 
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These points are well noted by the researchers who proposed the semantic 

bootstrapping hypothesis and here is their solution to this problem. Pinker (1984) 

proposes that at first, a child only utilizes the basic, canonical examples in which the 

syntax-semantics correspondences hold. This could be achieved by either (a) the fact 

that first set of (very early) parental input rarely contains sentences that violates 

syntax-semantics correspondences; (b) the child would filter out and ignore non-

basic, non-canonical examples at first, by using contextual cues such as special 

intonation, extra marking on the verb, presuppositions and interrogative or negative 

illocutionary force of an utterance. This suggestion is supported by a general 

observation that children’s first words that are nouns are universally physical objects, 

children’s first verbs usually denote actions, first adjectives are attributes, subjects are 

usually agent of an action, and objects are usually patients (e.g., Brown 1973, 

Bowerman 1973, Macnamara 1982, Nelson 1973, Slobin 1973).  

It is proposed that a child first uses semantic bootstrapping for the basic 

sentences, and when they encounter non-basic sentences, they use other means to 

parse the sentence, in particular Pinker (1984) proposes a process called structure-

dependent distributional learning. For instance, if a child encounters a sentence like 

The situation justified the measures, since the syntax-semantics correspondence does 

not hold in this sentence, the semantics alone cannot help the child to correctly parse 

it. Pinker (1984) suggests that in this case, the distributional information helps the 

learner. For example, a child would know by now that the is a determiner. And 

because they would also already know that the only phrase a determiner can be a part 

of is a NP. So they deduce that situation and measures must be nouns. Next, although 
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they may not know that the word justified is a verb because it does not denote an 

action, they can notice the –ed ending and if they know that the –ed ending signals 

past tense of verbs, then they can deduce that justified must be a verb. And if they 

know the PS rules of English, they can arrive at the correct parse for the sentence.  

 

 

Figure 7: PS tree of a sentence in which syntax-semantics correspondence does not hold 
 

 

 In sum, similarly to the prosodic bootstrapping, the semantic bootstrapping is 

not sufficient by itself. Pinker (1984) specifically states that the semantic 

bootstrapping hypothesis does not claim that children fail to perform distributional 

analyses. On the contrary, Pinker (1984) claims that distributionally-based analyses 

override semantically-based analyses when the two are in conflict. Previous studies 

have shown that distributional information can aid learners in parsing a sentence 

when it is semantically ambiguous or when the semantics are misleading (Lebeaux & 

Pinker 1981, Katz, Baker & Macnamara 1974, Gelman & Taylor 1983). What is 

claimed by the semantic bootstrapping hypothesis is that semantically-driven analyses 
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interact with distributional analyses and that semantics can help learners determine 

which are the relevant distributional analyses to perform. 

In other words, neither the prosodic or semantic bootstrapping hypotheses are 

in conflict with what I will propose in this dissertation, nor am I claiming that 

statistical distribution is the only cue that the learners use in figuring out the phrase 

structure of a language. All I am claiming is that statistical distribution may be one of 

the many cues to constituency. But are learners actually sensitive to distributional 

information? In the next section, we review previous studies that examined 

effectiveness of statistical cues for infants and adults.  

 

 

2.3 Artificial language experiments  

Recent studies have suggested that statistical distribution might be one of the 

information sources for acquisition of various features of language. For example, it 

has been suggested that distributional information can play a role in the acquisition of 

phonemes (Maye, Werker & Gerken 2002, Maye & Gerken 2000), word 

segmentation (Saffran et al. 1996a, Swingley 2005), word categories (Redington, 

Chater & Finch 1998, Mintz, Newport & Bever 2002, Mintz 2003) and syntax-like 

regularities (Gomez & Gerken 1999). The question then is, can learners use 

distributional information as a cue to constituency? Below, I will review a series of 

artificial language learning studies that investigated how phrasal groupings might be 

learned.  
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2.3.1 Learning constituency through reference 

Morgan and Newport (1981) was the first of a series of studies that 

investigated what cues learners might employ to learn the constituent structure of a 

miniature artificial language. In the artificial language of this study, each word had a 

referent (shaped objects). Adult participants simultaneously heard the spoken 

sentence and saw the corresponding referents on a screen. At test, they were asked to 

judge which of two fragments formed a better group or unit. In each pair, one 

fragment constituted a syntactic phrase in the language, whereas the other fragment 

consisted of adjacent but syntactic non-constituent words. Another test asked asked 

which of the two sentences was preferable. Each pair had structure-preserving and 

structure-destroying transformations of a sentence. In the former, a syntactic 

constituent had undergone movement and in the latter, adjacent but non-constituent 

words had undergone movement. The results showed that only the participants who 

were given the input where the referents were spatially organized consistently with 

the syntactic constituency fully learned the language.4 The participants who were not 

given the syntactically-consistent spatial organization of referents failed at the tests. It 

is claimed that these results show that you can induce a phrase structure tree 

                                                
4 Morgan & Newport (1981) note that it is surprising how well participants performed on the 
transformation test even though the input did not contain any transformation sentences and 
they were not given any criteria for choosing the structure-preserving answers. They state: 
“This is striking evidence that adults, given a brief exposure to a simple language, may be 
capable of developing sophisticated linguistic intuitions and that the acquisition of artificial 
languages by adults may be quite similar to the acquisition of natural languages by children.” 
It is also suggested that “natural language structure is constrained by the acquisition process”, 
rather than the acquisition process being constrained by the linguistic structure. Morgan & 
Newport (1981) does not discuss this issue any further, so it is difficult to comprehend their 
point, but it seems that they are suggesting that learners develop structure-dependent rules 
themselves, instead of learners being equipped with some inherent knowledge. In view of our 
Experiment 2 and our interpretation of its results, it is interesting that we came to different 
conclusions.  
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representation only if you receive an extra (in this case, semantic) cue in addition to 

the distributional cue. However, that might have been due to the fact that, as we will 

see below, the statistical cue in this study was not very reliable. At any rate, these 

results show that perceptual grouping of words facilitates the learning of hierarchical 

phrase structure. 

 

2.3.2 Learning constituency through prosody 

In a subsequent study, Morgan, Meier and Newport (1987) show that 

prosody is a helpful cue when learning phrasal groupings of an artificial language. 

Their claim was that even though distributional cues alone should be logically 

sufficient to deduce the syntactic structure, other redundant cues are necessary for 

successful learning of the language. The same artificial language and test items as 

Morgan & Newport (1981) were used. Only the adult subjects who were given the 

input sentences read with prosody that was consistent with syntactic bracketing fully 

learned the language. These results suggest that prosodic cues that are consistent with 

syntactic bracketing strongly enhance the learning of syntactic structure.  

 

2.3.3 Morphological cues to phrase structure  

Morgan et al. (1987) also claim that grammatical morphology can be a signal 

to phrase structure. In particular, function words are often placed at phrase 

boundaries, either at the beginning or the end of a phrase (Clark & Clark 1977, 

Kimball 1973).  
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 Morgan et al. (1987) tested whether adults can bootstrap phrase structure 

based on morphological cues. The results showed that the adult subjects who were 

given the input sentences with function words at the edges of syntactic phrases 

performed significantly better than subjects who received no such information. This 

suggests that function words placed at phrasal boundaries help enhance the learning 

of syntactic constituency.5  

Another type of morphological cue Morgan et al. (1987) suggest is concord 

morphology. In natural languages, words can agree in case, gender, number or 

definiteness (Morgan et al. 1987). As with the previous experiments, this experiment 

tested whether concord morphology could be a cue to phrasal grouping using an 

artificial language. Adult participants who were given the input that contained 

inflectional morphemes that matched the syntactic bracketing performed the best. 

These results suggest that the presence of concord morphology can significantly 

improve the learning of syntax. One caveat is that it is not always the case that 

agreement happens within a phrase. In case of adjective-noun agreement, for 

example, the agreement occurs within a phrase, but in case of subject-verb agreement, 

for instance, the agreement crosses phrase boundary. So the learners have to know 

that there might be a phrase boundary between agreeing elements.  

 

                                                
5 A similar idea was proposed in Christophe et al. (1997). It was proposed that young infants 
recognize function words early and that can help segmentation and categorization of 
neighboring words (“function word stripping hypothesis”: Christophe et al. 2007, Hicks 
2006). It has further been proposed that recognition of function words can help not only 
lexical but also syntactic (phrasal) segmentation and categorization (Christophe et al. 1997).  
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2.3.4 Cross-sentential cues to phrase structure   

We reviewed studies that investigated what cues learners might employ to 

figure out the constituent structure of a language. The cues the previous studies 

looked at were overt and local in the sense that they were internal to the sentence 

themselves, such as prosody and function words. Morgan, Meier & Newport (1989) 

propose that non-local cues might also be available to the learner for figuring out the 

constituency. These are cross-sentential cues that can only be detected if compared 

with another sentence. They note that a number of transformational rules in natural 

language are structure-dependent. For example, only phrasal constituents can be 

substituted by pro-forms.  

 

(34)  

a. Paul likes to go to the movies and John does so too 

b. *Paul likes to go to the movies and John does so to the concerts  

 

(35)  

a. The man with the glasses is tall 

b. He is tall 

c.       *He with glasses is tall 

 

Similarly, only phrasal constituents can undergo movement.  
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(36)  

a. John likes that girl over there 

b.  That girl over there, John likes  

c.   *That girl, John likes over there  

 

Accordingly, Morgan et al. (1989) created an artificial language that 

incorporated substitution and movement rules. The basic phrase structure rules and 

PS tree are given in (37) and Figure 8.  

 

(37) S  AP + BP + (CP) 

 AP  A + (D) 

 BP       E  
     CP + F 

 CP   C + (D) 

 

 

Figure 8: PS tree of the artificial language in Morgan et al. (1989)   
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Adult subjects were randomly assigned to one of the three input conditions. The input 

of Condition 1 included only the sentences drawn from the base language, which 

involved no substitution. The input of Condition 2, on the other hand, included two 

new transformational rules (38) that allowed for a constituent to be replaced by a 

proform.  

 

(38) a. A + (D)  “ib” 

b. C + (D)  “et”  

 

In the input, the sentences with proforms were shown along with the base sentence as 

in Figure 9. By comparing the two sentences, subjects could figure out that “ib” 

substituted for BIF and PEL, in the example in Figure 9. Condition 3 included a 

transformational rule to allow a constituent to move to the front of the sentence.  

 

(39) AP – BP – (CP)  BP + AP – (CP) 

 

Again, the permuted sentence was shown alongside the base sentence as in Figure 9 

in the input. In the example of Figure 9, by looking at how SOG FAC is moved to the 

front of the sentence, you could figure out that SOG FAC is a constituent.  
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Figure 9: Examples of input stimuli 
 

 

The subjects in Conditions 2 and 3 performed significantly above chance on the 

constituency tests, while subjects in Condition 1 were at chance. These results suggest 

that non-local cues such as substitution or permutation can be a cue to phrase 

structure. One caveat is that the transformed sentence (substituted or permuted) was 

always shown together with the corresponding base sentence, as in Figure 9. This 

made the comparison between the base and transformed sentences obvious. Morgan 

et al. (1989) also ran a pilot follow-up study where the base and transformed 

sentences were shown separately. In this case, the subjects who were exposed to 

transformed sentences in input did not learn any better than the subjects who were 
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only exposed to the base language in input. Morgan et al. (1989) therefore conclude 

that cross-sentential cues such as substitution and permutation serve as a cue to 

phrase structure only when the related sentences are presented side by side. 

Nevertheless, in the current paper, we are going to show that it is possible to learn 

phrase structure on the basis of distributional cues such as permutation and 

substitution, without presenting the related sentences side by side.  

 

2.3.5 Predictive dependencies as a cue to phrase structure  

Saffran (2001) and Saffran, Hauser, Seibel, Kapfhamer, Tsao & Cushman 

(2008) were concerned with a similar question as we are in this dissertation. Given 

the linear strings of words as input, how do children arrive at the hierarchical phrase 

structure representation? In the series of experiments we reviewed above (Morgan & 

Newport 1981, Morgan et al. 1987, 1989), the successful learning of phrase structure 

was achieved only when there were additional correlated cues, such as prosody and 

function words. Saffran (2001) and Saffran et al. (2008) propose that, in addition to 

those supplementary cues, other cues exist within the PS rules themselves, namely the 

dependencies between words. In these experiments, the artificial language used in the 

above experiments (Morgan & Newport 1981, Morgan et al. 1987, 1989) was slightly 

adapted as follows.  

 

(40) S  AP + BP + (CP) 

 AP  A + (D) 
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 BP    E  
  CP + F 

 CP   C + (G) 

 

  

Figure 10: PS tree for the artificial language in Saffran (2001) 

 

The only change was that in the previous grammar, CP consisted of a C and an 

optional D, which was also present in another phrase (i.e. AP), whereas in this 

grammar, CP consists of a C and an optional G, which is not present in other phrases. 

In this way, there were complete dependencies between A and D, and C and G. These 

dependency relations were the crucial predictive pattern in this language. The 

occurrence of a D word invariably predicts the occurrence of an A word, however, the 

occurrence of an A word does not necessarily predict the occurrence of a D word. 

Such unidirectional predictability is observed in natural languages. For example in 

English, whenever there is a determiner (e.g. a, the), there is a noun (a man, the cat), 
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while the existence of a noun does not always indicate the occurrence of a determiner 

(e.g. men, cats). 

 The stimuli were presented auditorily. Adult subjects were divided into three 

groups – two experimental groups and one control group. In one of the experimental 

groups, the intentional condition, subjects were given explicit instruction to learn the 

rules of the nonsense language. In the incidental condition, the primary task was to 

color on the computer while the nonsense language played in the background. On all 

test items, both intentional and incidental groups outperformed the control group.  

Given the success of the incidental condition with adults, Saffran (2001) 

tested children between the ages of 6 and 9 (Mean = 7 years 7 months) on the same 

material. Again, the main task was coloring on the computer. The same test items 

were used. The children in the experimental group significantly outperformed the 

control group, although the effect was smaller compared with the adults’ data.  

Saffran et al. (2008) tested 12-month-old infants on the same artificial 

language, using the head-turn preference procedure. Half of the infants were 

familiarized with the artificial language described in (40) that exhibited predictive 

dependencies. For example, whenever there is a D word, there must be an A word 

preceding it, and whenever there is a G word, there must be a C word in front of it. 

Such predictive dependencies only occurred within a phrase, thus giving rise to the 

TP peaks and dips at phrase boundaries. This condition was called “predictive” 

condition. The other half of the infants were familiarized to a “non-predictive” 

language. The non-predictive language lacked the aforementioned predictive 

dependency within a phrase. In this language, any word in a phrase could be optional, 



 

 53 
 

thus the occurrence of a word in a phrase did not predict the occurrence of another 

word. The 12-month-old infants in Saffran et al. (2008) listened longer to the 

ungrammatical test sentences than the grammatical test sentences, but only in the 

predictive condition and not in the non-predictive condition. 

 

 

Figure 11: Results from the infant experiment in Saffran et al. (2008) 
 

 

 Saffran (2001) and Saffran et al. (2008) argue that these results suggest that 

the predictive dependencies within phrases alone are sufficient for learners to detect 

the phrasal units. When the presence of one element predicts the presence of another, 

phrases are easily detected. However, the languages learned by the subjects in these 

experiments could be represented by finite state grammars like the following.  
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Figure 12: FSA of the predictive language in Saffran (2001) 
 

 

Figure 13: FSA of the predictive language in Saffran et al. (2008) 
 

 

For example in Saffran (2001), in the fragment test, subjects chose CG over FC, and 

CGF over GFC. It is claimed that it was because learners formed a hierarchical 

phrase structure representation as in Figure 10. But subjects could have chosen CG 

over FC, simply because there was a strong backward dependency between C and G, 

but not between F and C. This kind of probabilistic FSA could explain the learning in 

Saffran (2001). Similarly, since the artificial languages in Saffran et al. (2008) can 

also be represented by a finite state grammar like in Figure 13, it has not yet been 

shown that infants learned a hierarchical phrase structure. All that the infants learned 

could be an FSA like above, which indicates that what they learned is the linear order 
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of words in this artificial language. This is because the grammatical test sentences 

obeyed the linear order of the language, whereas the ungrammatical test sentences 

violated the linear order. Furthermore, the ungrammatical test sentences involved 

novel structures that were never seen by the infants, whereas the grammatical test 

sentences involved the structures that were already exhibited in the familiarization 

period. Although the actual word strings were new, at the category level, the 

grammatical test sentences were not new, so it is impossible to conclude that the 

infants in Saffran et al. (2008) were extending their generalizations to a novel 

structure. If one of the test sentences is completely novel and ungrammatical, and the 

other has a very familiar structure, it is not surprising that infants were able to 

distinguish the two. If the test items included a transformational test like the ones in 

Morgan et al. (1989), it would have been a more powerful assessment for the 

subjects’ knowledge of constituency, and of their deductive power.  

 

2.3.6 Transitional probability as a cue to phrase structure 

In Saffran et al. (1996a), it was shown that 8-month-old infants can detect 

word boundaries based on the transitional probabilities calculated over syllables. 

Transitional probability is the degree to which one element predicts the following 

element. The forward and backward transitional probabilities are calculated as 

follows.  
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(41) Forward transitional probability 

€ 

Probability of Y | X =
frequency of XY
frequency of X

 

 

(42) Backward transitional probability  

€ 

Probability of X | Y =
frequency of XY
frequency of Y

 

 

In a recent study, Thompson & Newport (2007) investigated whether learners 

can use such TPs, calculated over words, to discover phrasal boundaries in an 

artificial language. Now, one might wonder whether the transitional probability was 

at work in the above studies we just reviewed. Thompson & Newport calculated both 

forward and backward TPs between word classes in those studies. In Morgan & 

Newport (1981) and Morgan et al. (1987, 1989), neither forward nor backward TPs 

were informative as to the location of phrase boundaries. That is, the TP was neither 

higher within phrases nor lower across phrases. Even though the grammars in those 

studies exhibited key features such as optionality, repetition, substitution and 

movement, other factors such as optionality of elements within single phrases worked 

against them. For example, in the PS rules of Saffran (2001) in (40), the D word is 

optional within AP, whereas the A word is obligatory. This makes the backward TP 

between A and D always 1.0 (because whenever there is a D, there is an A). This is 

good, since A and D form a constituent. However, since D is optional, the forward TP 

between A and D is 0.5. It means that half the time A is directly followed by an 

element that is from another constituent. This kind of optionality within a single 
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constituent made the whole TP pattern uninformative. This means that no previous 

literature has shown whether the transitional probability can signal phrasal 

boundaries.  

Accordingly, Thompson & Newport (2007) created a miniature artificial 

language that was made up of word classes, A, B, C, D, E, and F. Each word class 

had three lexical items. The words were further grouped into phrasal units [AB], [CD] 

and [EF]. If all the sentences in the language were canonical sentences as in (43), then 

both the TP within phrases (e.g. AB) and the TP across phrasal boundaries (e.g. BC) 

would be 1.0. 

 

(43) A B C D E F 

 

However, natural language has ways in which sentences differ from canonical ones. 

First, some phrases can be optional as follows.  

 

(44) a. The box on the counter is red 

b. The box is red 

 

In the case of this artificial language, imagine that the phrase CD is optional and is 

dropped half of the time.  

 

(45) A B E F  
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Now, the TP between phrases (e.g. BC) is 0.5, while within phrases is still 1.0. 

Second, some phrases appear more than once in a sentence. 

  

(46) [NP The cat] chased [NP the mouse] 

 

Imagine that the phrase AB appears twice, provided that we are computing TPs over 

word categories.  

 

(47) A B C D E F A B  

 

In (47), the TP between phrases (e.g. BC) is reduced to 0.5, while within phrases is 

kept constant. Third, some phrases undergo movement.  

 

(48) a. [The cat] chased [the mouse] 

b. [The mouse] is chased by [the cat] 

 

Imagine that the phrase EF moves to the front half of the time.  

 

(49) E F A B C D 

 

Again, the TP across the phrase boundary (e.g. DE) is reduced to 0.5, while that of 

within phrases is still 1.0. In this way, because the rules of syntax manipulate 

constituents, there is a statistical byproduct of these manipulations, which are TP 
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peaks, and dips within and across phrases, respectively. The three key features taken 

up in Thompson & Newport (2007) are optionality, repetition and movement.  

A female speaker read the sentences aloud with a list intonation. Adult 

subjects were divided into an experimental group and a control group. The input to 

the experimental condition incorporated either one of the three key features – 

optionality, repetition and movement of phrasal constituents – or all the three. These 

manipulations served to create TP peaks within phrases and TP dips between phrases. 

The input to the control condition also incorporated the three features, only in this 

case, any adjacent elements were allowed to be optional, repeated and moved. This 

served to flatten the TP peaks and dips. These manipulations resulted in the TP 

patterns in Table 1.  

 

Table 1: TPs when all three key features were incorporated (Thompson & Newport 2007) 

 A-B B-C C-D D-E E-F 
Experimental Condition 1.00 0.33 1.00 0.22 1.00 
Control Condition  0.67 0.71 0.58 0.59 0.47 
 

 

 The experiment extended for 5 days. Each day, subjects were exposed to the 

auditory input for 20 mins. Tests were administered on Days 1 and 5. The phrase test 

consisted of pairs of words, one of which was a phrasal constituent in the language 

(e.g. AB) and the other was a legal sequence in the language but not a constituent 

(e.g. BC). The task was a forced-choice on a computer and the subjects were told to 

choose the sequence that sounded “more like a group or unit from the language.”  



 

 60 
 

The adult subjects in the experimental condition chose the constituents over 

non-constituents significantly more often as early as Day 1 and on Day 5 (the testing 

was administered only on Days 1 and 5). The control group performed at chance. The 

effect was much larger when all the three key features were incorporated in the input 

(Figure 14) than when only one of the features was used, for example, when only the 

optionality was included (Figure 15).  

 

 

Figure 14: Results of the Phrase Test on Day 1 (left) and Day 5 (right), with all features 
incorporated (Thompson & Newport 2007) 
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Figure 15: Results of the Phrase Test on Day 1 (left) and Day 5 (right), when incorporating only 
the optionality (Thompson & Newport 2007) 
 

 

Based on these results, Thompson & Newport (2007) conclude that the 

subjects successfully learned the phrasal groupings based on the TP statistics and that 

distributional information can help learning of phrase structure. However, one could 

ask whether it was really the transitional probability that was in play, or some 

frequency effect. Subjects could have been choosing a word sequence over another 

simply because it appeared more frequently together than the other one. Thompson & 

Newport (2007) examined this and found no positive correlation between the right 

answers and the co-occurrence frequency. To illustrate, imagine the phrase test 

consisted of a pair SOT FAL and FAL SIB, and that the right answer (the syntactic 

constituent) is FAL SIB. In the presentation set, the sequence SOT FAL (the wrong 
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answer) appeared four times more frequently than FAL SIB. This shows that there 

was no frequency effect.  

 What Thompson & Newport (2007) showed is that the computation of 

transitional probability statistics can help learners with phrasal segmentation. 

However, what was learned in that study was phrasal bracketing that had a flat 

structure as in Figure 16, not a hierarchical structure.  

 

          

Figure 16: Sentence structure used in Thompson & Newport (2007) 
 

 

But, having the correct hierarchical phrase structure is crucial for any later syntactic 

or semantic development. Then, can the transitional probability also be a cue to the 

hierarchical phrase structure?  

 

2.4 The present experiments  

Above, we reviewed studies that showed that learners can use various cues to 

learn artificial languages. Generally in artificial language studies, words are not 

associated with particular meanings. One question then is whether phrase structure 

can be learned independent of semantics. If the meanings of the words in a sentence 
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are given, at least some parts of the phrase structure should be attained for free. For 

example, if you have a sentence like (50),  

 

(50) That boy likes this little puppy  

 

and if you knew the meaning of “this little puppy”, since these three words together 

denote a single object, you will naturally consider them as a unit. However, this 

mechanism does not seem to work for the VP. Without knowing whether this 

language is an SVO or OVS language, you cannot tell whether the object of the verb 

“likes” is “that boy” or “this little puppy”. In this way, even though knowing the 

meanings of words would be helpful for building the structure, it is unlikely that you 

can learn the meanings of most words without learning the syntactic structure first. 

Therefore, we propose that there must be some way to acquire phrase structure that 

does not require prior acquisition of the word meanings. This paper examines one 

such mechanism.  

One issue that has not been brought up in previous artificial language studies 

is whether the statistical learning mechanism interacts with anything other than the 

input the learners receive. Here, we present three possibilities. We realize that these 

three possibilities might be extremes of a spectrum and that there is probably a range 

of possibilities in between. However, we will present those three for the sake of 

brevity and clarity of the argument.  

One possibility is that what is learned through statistical learning is solely 

based on the input signal (in this case, distributional information), and that statistical 
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learning does not interact with other constraints that the learners might already have. 

We will call this first possibility “Limited” Hypothesis. Second possibility is that 

what is learned through statistical learning is not limited to what is observed in the 

input, but the generalizations the learners form are bounded by some constraints in a 

predictable way. We will call this “Beyond and Constrained” Hypothesis. According 

to this hypothesis, statistical learning interacts with knowledge that was not obtained 

from the observed input. An example of being “constrained in a predictable way” 

would be movement of a constituent which is a natural rule in languages. In other 

words, under this view, the generalizations the learners form are compatible with 

what is possible in natural languages. Finally, a third possibility is that learners 

generalize beyond what they see in the input, but their generalizations are not 

necessarily constrained in a predictable way. We will call this third possibility 

“Beyond and Unconstrained” Hypothesis. This view would predict that the 

generalizations the learners form can go beyond the observed input and do not 

necessarily have to be compatible with what is allowed in natural languages. An 

example of this might be something like movement of a non-constituent, which is 

unnatural in natural languages, but if a learner is unconstrained, this is a logical 

possibility.  

In order to find out which of these hypotheses’ predictions would be borne 

out, we conducted seven original experiments with human adult subjects, infants and 

computational network simulations.  
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Chapter 3: Adult Experiments 

 

In this chapter, we present two experiments with adult participants that 

investigated whether the representations are part of the learning system prior to the 

experience, and what the deductive consequences of distributional learning are. We 

look into whether statistical learning interacts with antecedently known constraints, or 

whether learners create an illusion of structure entirely based on observed input alone. 

By manipulating what is included or excluded from the exposure set, we can control 

to see whether certain information is necessary in the input for a learner to deduce the 

target structure or not. If adults cannot generalize beyond the received input, then it 

would suggest that the deductive power of a learner is limited to the observed 

distributions, whereas if adults can generalize beyond the input, then it would suggest 

that the acquired representations have deductive consequences beyond what can be 

derived from the observed statistical distributions alone.  

A more immediate question in this chapter is, given that previous studies 

(Thompson & Newport 2007) have only shown that transitional probabilities serve as 

a cue to phrasal groupings, whether the statistical cues to the multiply embedded 

hierarchical structures can be detected by learners. In addition, these experiments ask 

whether adults can learn the constituency of an artificial language without any 

prosodic or semantic cues. 
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3.1 Experiment 1 (Adult 1) 

3.1.1 Description of the linguistic systems  

Two miniature artificial languages – Grammar 1 and Grammar 2 – were 

created. While the artificial language in Thompson & Newport (2007) contained 

phrases with a flat structure as in Figure 17, the artificial language in Morgan & 

Newport (1981), Morgan et al. (1987, 1989) and Saffran (2001) did contain phrases 

with internal hierarchical structures. Thus, that language was adapted here as our 

Grammar 1.  

 

          

Figure 17: Sentence structure used in Thompson & Newport (2007) 
 

 

The control group in Thompson & Newport (2007) failed to learn the phrasal 

bracketing. But was this because the transitional probabilities were not an informative 

cue for the phrase structure, and so there was no statistical cue? In the control 

condition in Thompson & Newport (2007), not only constituents but also non-

constituents could undergo operations such as movement, substitution, repetition and 

optionality. This led to lack of TP peaks in dips in the control familiarization set (e.g., 

mean of TPs within a phrase = 0.57, mean of TPs across phrases = 0.65). In this way, 

the TPs were not an informative cue for phrase boundaries. On the other hand, one 
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could argue that the failure to learn in the control group could be due to the fact that 

learners could not find any grammar that would generate the sentences. Since the 

presented sentences were so random in that both constituents and non-constituents 

were operated on, there was no single grammar that could generate all the sentences. 

Such lack of grammar may have caused the control subjects to fail. In our 

experiments, we wanted to avoid this confound of causes. Therefore, we created a 

second grammar, Grammar 2, to serve as our control. In this way, both groups 

(people who hear Grammar 1 as input and people who hear Grammar 2 as input) 

would have a grammar that can generate the sentences. So failure to learn the 

language would not be due to lack of grammar that generates the sentences.  

The two grammars share the identical word classes and lexical items, which 

were adapted from Thompson & Newport (2007). Each word class contained three 

nonsense lexical items.  

 

Table 2: Nonsense words assigned to each word class 
Word Class A B C D E F 
 KOF HOX JES SOT FAL KER 
 DAZ NEB  REL ZOR TAF  NAV 
 MER LEV  TID LUM RUD SIB 
 

The basic phrase structure rules and phrase structure trees for Grammar 1 and 

Grammar 2 are given below.  

 

(51) PS rules for Grammar 1 

S’ → S + (CP) 

S → AP + EP 
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AP →    A + B 
               ib 

EP →    CP + E 
              F 

CP →    C + D 
              et 

 

 

Figure 18: PS trees of the basic sentence in Grammar 1 
 

 

Figure 19: PS tree in Grammar 1 showing optionality and repetition 
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Figure 20: PS trees in Grammar 1 showing substitution 
 

 

(52) PS rules for Grammar 2 

S’ → S + (BP) 

S → AP + DP 

AP →     A + BP 
                F 

DP →     D + E 
                ib 

BP →     B + C 
                et 
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Figure 21: PS tree of the basic sentence in Grammar 2 
 
 

 

Figure 22: PS tree in Grammar 2 showing optionality and repetition 
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Figure 23: PS trees in Grammar 2 showing substitution 
 
 

 

Grammars 1 and 2 are maximally similar and minimally different – 

contrasting only in constituent structure. In particular, the canonical sentences in both 

grammars are identical – A B C D E. The only difference is the phrase structure. For 

example, while AB is a constituent in Grammar 1, it is not in Grammar 2. CD is a 

constituent in Grammar 1 but not in Grammar 2. On the other hand, BC and DE are 

both constituents in Grammar 2 whereas they are not in Grammar 1.  

In addition, the grammars also display nested hierarchical structure. In 

Grammar 1, a phrasal unit EP consists of an E word and another phrase CP, which in 

turn consists of C and D. The whole EP can also contain just an F word. Likewise in 

Grammar 2, the phrase AP contains an A word plus a BP, which contains B and C 

words. The whole AP can simply be represented by an F word.  

These grammars incorporate the manipulations featured in Thompson & 

Newport (2007) such as repetition and optionality. The optional CP in Grammar 1 

and BP in Grammar 2 bring about the repetition and optionality. Take Grammar 1 as 

an example. The basic sentence structure of Grammar 1 is ABCDE. If all the 
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sentences in the language had the structure canonical sentences as in ABCDE, then 

the TPs would not be a very informative cue for constituency, because both the TP 

within phrases (e.g., AB) and the TP across phrasal boundaries (e.g., BC) would be 

1.0. Natural language has ways in which sentences differ from canonical ones, 

however. First, some constituents can be optional as follows.  

 

(53) a. The boy [from the creek] met Steven Spielberg 

b. The boy met Steven Spielberg 

 

In the case of Grammar 1, imagine that the phrase CD is optional and is dropped half 

of the time as in (55), and there are two types of sentences in this language. 

 

(54) A B C D E  

(55) A B E 

 

Now, the forward TP between phrases (e.g., BC) is 0.5, while within phrases (e.g., 

AB) is still 1.0. Second, some constituents (at the category level) appear more than 

once in a sentence and can be repeated. 

  

(56) [NP The boy from the creek] met [NP Steven Spielberg] 

 

Imagine that the phrase AB appears twice in Grammar 1, provided that we are 

computing TPs over word categories.  
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(57) A B C D E A B  

 

Now, the backward TP between phrases (e.g., BC) is reduced to 0.5, while TP within 

phrases (e.g., AB) is still kept constant. In this way, repetition and optionality in 

natural languages create TP peaks and dips that serve as informative cues to phrase 

structure. 

The artificial grammars used in our experiments also display another feature 

observed in natural languages, which is substitution of a phrasal constituent by a 

proform, just like in Morgan et al. (1989). For example in Grammar 1, the constituent 

AP, which usually consists of A and B words, can also be replaced with a pronoun-

like element ib. Similarly, the CP in Grammar 1, which normally consists of C and D 

words, can be substituted by a profrom et. The proforms are borrowed from Morgan 

et al. (1989). In Grammar 2, the same proforms et and ib substitute for different 

constituents, BP and DP respectively. Substitution creates TP peaks and dips too. For 

example in Grammar 1, the constituent CD can be replaced by a proform et, as in 

(59). 

 

(58) A B C D E  

(59) A B et E 
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If there are these two types of sentences in the input, then the TP across phrases is 

lower (e.g., BC = 0.5) than TP within phrases (e.g., AB = 1.0). This makes TP pattern 

very informative . 

Finally, the grammars also incorporate movement rules just like the ones in 

Morgan et al. (1989). The movement operation is be captured by the addition of 

following optional phrase structure rules.  

 

(60) Optional PS rules added for Grammar 1 

S’ → EP + S 

S → AP 

 

 

Figure 24: PS trees involving movement in Grammar 1 
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Figure 25: PS trees involving movement and substitution in Grammar 1 
 

 

(61) Optional PS rules added for Grammar 2 

S’ → DP + S 

S → AP 

 

 

Figure 26: PS trees involving movement in Grammar 2 
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Figure 27: PS trees involving movement and substitution in Grammar 2 
 

 

In Grammar 1, the EP can be moved to the front, while in Grammar 2, the DP can be 

moved. Again, this creates peaks and dips in TP that signal phrase boundaries. 

Imagine you have following two types of sentences in Grammar 1 input. 

 

(62) A B C D E  

(63) C D E A B 

 

Now the TP across phrases (e.g., BC) is 0.5, but TP within phrases (e.g., AB) is 1.0. 

In this way, these grammars included four types of manipulations which (a) 

made certain constituents optional, (b) allowed for the repetition of certain 

constituents, (c) substituted proforms for certain constituents and (d) moved certain 

constituents. Incorporating all these manipulations resulted in the higher TPs between 

words within phrases compared with the TPs across phrases. Within a phrase, the TP 
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is always 1.00. The patterns of TP based on all the possible sentences generated by 

the grammars are given in tables below. 

 

Table 3: Transitional probabilities for all sentences in Grammar 1 
 A-B B-C C-D D-E 
Forward TP 1.00 0.81 1.00 0.51 
Backward TP 1.00 0.45 1.00 0.90 
 

Table 4: Transitional probabilities for all sentences in Grammar 2 
 A-B B-C C-D D-E 
Forward TP 0.90 1.00 0.21 1.00 
Backward TP 0.51 1.00 0.42 1.00 
 

 

3.1.2 Method  

Participants 

Forty-four native speakers of English participated in Experiment 1. The 

participants were undergraduate students at the University of Maryland, gave 

informed consent prior to participating and received monetary compensation. 

Twenty-two participants were randomly assigned to hear Grammar 1 during the 

familiarization and the other 22 were assigned to Grammar 2.  

 

Material 

Both Grammars 1 and 2 generate finite languages without recursion that 

generate a total number of 7260 possible sentences each. 80 sentences were picked as 

the presentation set. Two sentences (2.5%) were the canonical sentence type 

(ABCDE) in both grammars. The TP patterns of the presentation set are given below. 
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All 80 sentences were randomized. The sentence types and 80 sentences that 

appeared in the presentation set are shown in Appendix A.  

 

Table 5: Transitional probabilities for 80 input sentences in Grammar 1 
 A-B B-C C-D D-E 
Forward TP 1.00 0.24 1.00 0.25 
Backward TP 1.00 0.19 1.00 0.34 
 

Table 6: Transitional probabilities for 80 input sentences in Grammar 2 
 A-B B-C C-D D-E 
Forward TP 0.33 1.00 0.15 1.00 
Backward TP 0.18 1.00 0.16 1.00 
 

 

Recording  

Each word token was individually recorded into a Marantz PMD660 portable 

solid state recorder with a head-mounted Sennheiser HMD 280-13 microphone. A 

female speaker, who was blind to the nature of the experiment, read each word token 

in a list intonation. The recorded audio files were transferred into the Audacity sound 

editor. The words were concatenated into sentences with a 30 ms inter-word interval. 

The sentences lacked any prosodic cues to phrase boundaries. All the 80 sentences 

were then transferred into Psyscope 1.2.5 PPC program (Version X B45Dep) and 

concatenated with an intersentence interval (isi) of 1400 ms. The recorded block of 80 

sentences lasted approximately 6 min. The 80 sentences were then randomized and 

repeated 6 times in a random order to form an input sound file of approx. 36 min 

duration. A sample sound file is available at 

http://ling.umd.edu/~eri/expt1_sound_sample.wav.  
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Procedure  

The experiment was administered individually using a Psyscope 1.2.5 PPC 

program inside a small soundproof room with an iMac and Sennheiser HD 580 

precision headphones. Given the success of the incidental condition in Saffran (2001), 

a similar procedure was adopted. Participants were asked to draw using colored 

pencils and paper, while listening to a nonsense language. They were told nothing 

about the structure of the language. They were informed that they would be tested on 

the nonsense language later, but not told about the aspects of the language that would 

be tested.  

Participants were randomly assigned to either Grammar 1 or Grammar 2. The 

participants assigned to Grammar 1 heard the Grammar 1 input sentences during the 

familiarization. The Grammar 2 participants heard the Grammar 2 input sentences. 

Each participant heard the 80 sentences six times during the 36-min familiarization 

period. The 80 familiarization sentences were randomized each time by the Psyscope 

program. They then went through a practice period, where they were asked three 

practice questions, to familiarize themselves with the question-answering process. All 

the tests were forced-choice tests. Both Grammar 1 and Grammar 2 subjects received 

the identical 56 test items. There were 4 types of test items: Fragment test, Movement 

test, Substitution test and Movement-plus-substitution test, all of which are described 

in detail below. All the test items were randomized each time in the Psyscope 

program. Participants saw the following instruction on the computer screen.  
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(64) “In each trial, you will hear a pair of word-sequences - 1 and 2.   

Your task is to respond, as accurately as you can, which of the two 

sequences belongs to the artificial language you just heard.  

Press F if the 1st sequence belongs to the language. 

Press J if the 2nd sequence belongs to the language.”  

 

Fragment Test 

The Fragment Test was designed to assess the extent to which participants 

represented the input language in terms of phrasal groupings. The test was forced-

choice and consisted of 16 items, 4 items testing each of the four fragment types. 

Each trial consisted of two fragments, one that was a phrasal constituent in the input 

language and the other that was often a legal sequence but not a constituent in the 

input language. The four fragment types that were tested are given in (65). The first 

two types are 2-member fragments and the last two are 3-member fragments.  

 

(65) Fragment test 

 Grammatical in Grammar 1 Grammatical in Grammar 2 
1 AB BC 
2 CD DE 
3 CDE ABC 
4 ABF FDE 
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Figure 28: Grammar 1 (AB vs. BC) 
 

 

Figure 29: Grammar 2 (AB vs. BC) 
 

A constituent in Grammar 1 (e.g. AB) is not a constituent in Grammar 2. Similarly, a 

non-constituent in Grammar 1 (e.g. BC) is a constituent in Grammar 2, as in the 

figures above. Consequently, the correct answer for Grammar 1 was always the 

incorrect answer for the Grammar 2 condition, and vice versa. Each fragment type 

contained 4 items. All the test items are given in Appendix C.  
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If the participants learn that the 2-member fragment (e.g. CD) is a constituent 

and that the 3-member fragment (e.g. CDE) is also a constituent, then, they must have 

learned a nested hierarchical structure as in Figure 30.  

 

 

Figure 30: Internally nested hierarchical structure 
 

To ensure that the performance on this test is a result of phrasal knowledge 

rather than frequency effects, we controlled the frequencies with which both groups 

of fragments appeared in the input. Specifically, none of the test items appeared in the 

input. Thus, the frequency with which both groups occurred was 0. They were all 

novel sequences. In this way, if learners attended only to sequential frequency, they 

would perform at chance. If their performance exceeds chance, it would indicate that 

they formed a higher-order phrasal representation.  

The test items were concatenated using the same individual word token 

recordings as the input sentences. The pairs were presented with 1400 ms of silence 

between them. The test items were randomized each time and the correct answer was 

the first or the second equally often.  
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Movement Test 

The Movement Test was designed to assess the extent to which participants 

allowed phrasal constituents to undergo a movement operation as opposed to non-

constituents. This test was modeled on the transformational constituent test in Morgan 

& Newport (1981) and Morgan et al. (1987, 1989). The test was forced-choice and 

consisted of 16 items, 4 items testing each of the four sentence types. Each trial 

consisted of two sentences, one in which a constituent of the input language had been 

subjected to movement, and the other one in which a non-constituent of the input 

language had been subjected to movement, as in figures below. The correct answer 

for the Grammar 1 condition was always the incorrect answer for the Grammar 2 

condition, and vice versa. The four sentence types that were tested are given in (66). 

All the test items are given in Appendix C. Again, none of the test sentences occurred 

during familiarization.  

 

 

Figure 31: Grammar 1 (CDEAB vs. DEABC) 
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Figure 32: Grammar 2 (CDEAB vs. DEABC) 
 

 

 

(66) Movement test 

 Grammatical in Grammar 1 Grammatical in Grammar 2 
1 CDEAB DEABC 
2 FAB DEF 
3 CDEABCD DEABCBC 
4 FABCD DEFBC 
 

 

Substitution Test 

The Substitution Test was designed to assess the extent to which participants 

allowed phrasal constituents to be replaced by proforms ib and et. The test was 

forced-choice and consisted of 12 items, 4 items testing each of the three sentence 

types. Each trial consisted of two sentences, one in which a constituent of the input 

language was substituted for by a proform, and the other in which a non-constituent 

of the input language was substituted by a proform, as in Figure 33-Figure 34. The 
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correct answer for the Grammar 1 condition was always the incorrect answer for the 

Grammar 2 condition, and vice versa. The three sentence types that were tested are 

given in (67). All the test items are given in Appendix C. None of the test sentences 

occurred during familiarization.  

 

 

Figure 33: Grammar 1 (ib CDE vs. ABC ib) 
 

 

Figure 34: Grammar 2 (ib CDE vs. ABC ib) 
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(67) Substitution test 

 Grammatical in Grammar 1 Grammatical in Grammar 2 
1 ib CDE ABC ib 
2 AB et E A et DE 
3 ib et E A et ib 
 

 

Movement-plus-substitution Test 

The Movement-plus-substitution Test was designed to assess the extent to 

which participants allowed phrasal constituents to be replaced by proforms, ib and et, 

and undergo movement. The test was forced-choice and consisted of 12 items, 4 

items testing each of the three sentence types. Each trial consisted of two sentences, 

one in which a constituent of the input language was substituted for by a proform and 

moved, the other in which a non-constituent of the input language was substituted by 

a proform and moved, as in Figure 35-Figure 36. The correct answer for the Grammar 

1 condition was always the incorrect answer for the Grammar 2 condition, and vice 

versa. The three sentence types that were tested are given in (68). All the test items 

are given in Appendix C. None of the test sentences occurred during familiarization.  

 



 

 87 
 

 

Figure 35: Grammar 1 (CDE ib) 
 

 

Figure 36: Grammar 2 (ib ABC) 
 

 

(68) Movement-plus-Substitution test 

 Grammatical in Grammar 1 Grammatical in Grammar 2 
1 CDE ib ib ABC 
2 et EAB DEA et 
3 et E ib ib A et 
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3.1.3 Hypotheses and predictions  

 

Limited Hypothesis 

We considered two distinct theories of learning. One was a learning theory in 

which the deductive power of a learner is limited to the observed distributions. Under 

this theory, learners do not come with a pre-determined set of possible structures or 

rules, and what learners do is to track the distributions and build an illusion of a 

structure entirely based on them, without any preconception of what is and what is 

not a possible structure. This learning theory can be expressed as a more concrete 

hypothesis with respect to our experiments, which is that when learners get certain 

input, they make generalizations based on only the input they get. We will call this 

“Limited” Hypothesis. According to this hypothesis, learners do not allow new 

structures that were not displayed in the input. 

 

Beyond and Constrained Hypothesis 

Another learning theory we considered is that a learner already knows an 

antecedently-specified range of possible representations, and statistics is merely used 

as a source of information that helps a learner select the correct grammar that derives 

the matching surface strings. Under this selective learning theory, the acquired 

representations have deductive consequences beyond what can be derived from the 

observed statistical distributions alone. This theory can be expressed as a more 

concrete hypothesis, which states that learners generalize beyond the input but the 

generalizations they form are bounded by some constraints in a predictable way. We 
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will call this “Beyond and Constrained” Hypothesis. This hypothesis proposes that 

learners’ generalization extends to novel structures, as long as they are compatible 

with antecedently known constraints. An example of an antecedently known 

constraint would be something like movement of a constituent which is a natural rule 

in languages. 

 

Beyond and Unconstrained Hypothesis 

A third possibility is that learners generalize beyond what they see in the input 

but their generalizations are not necessarily constrained in a predictable way. We will 

call this third hypothesis “Beyond and Unconstrained” Hypothesis. An example of 

this might be something like movement of a non-constituent, which is unnatural in 

natural languages, but if a learner is unconstrained, this is a logical possibility.  

 

 

Table 7: Table of hypotheses 
 Deductive power of learner Nature of predetermined 

representations 
Limited Hypothesis Limited to observed 

distributions 
None 

Beyond and 
Constrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Limited by constraints 
found in natural language 

Beyond and 
Unconstrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Unlimited by constraints 
found in natural language 

 

 

In order to simplify the argument, let us take the case of the movement test to 

talk about predictions that the above hypotheses make. In this experiment, the 
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familiarization input the participants receive includes movement sentences. And at 

test, they have a choice between a sentence which moved a constituent in their 

language and a sentence which moved a non-constituent. The structure of “correct” 

answer was already seen in the input although the actual strings of words of the test 

sentences were novel. And the structure of the “incorrect” answer was not seen in the 

input. Limited Hypothesis would predict that learners will correctly choose the 

consistent answer, since that has the structure that they have seen. According to this 

hypothesis, they do not allow new structures that they did not see in the input.  

Beyond and Constrained Hypothesis would also predict that the learners will 

correctly choose the correct answer, since the consistent test item moved a constituent 

which is a natural operation in language. On the other hand, the participants would 

reject the incorrect answer, since it moved a non-constituent which is an impossible 

operation in natural languages.  

Lastly, Beyond and Unconstrained Hypothesis would predict that the learners 

might allow both test sentences, since they can allow something that they did not see 

in the input and they are not bounded by a constraint that says you cannot move a 

non-constituent. It is possible that the generalization the learners form based on the 

input they get would be that you can move any two neighboring elements. For 

example, if you heard Grammar 1 as input, and if the generalization you make from 

that is you can move any two neighboring elements, then both test items CDEAB and 

DEABC would be licit, since both have neighboring two words moved. 

Consequently, at test, the participants would not choose one test item over the other, 

so the performance should be at chance. 
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In this way, the first two hypotheses (Limited Hypothesis and Beyond and 

Constrained Hypothesis) predict the same outcome, although the outcome would be 

caused by different reasons. The only hypothesis that make a unique prediction in this 

experiment is Beyond and Unconstrained Hypothesis.  

 

Table 8: Predictions for Experiment 1 
 Views Predictions 
Limited Hypothesis Only the consistent test 

sentences are grammatical  
Adults will choose 
consistent answers 

Beyond and Constrained 
Hypothesis 

Only the consistent test 
sentences are grammatical 

Adults will choose 
consistent answers 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Adults will perform at 
chance 

 

 

3.1.4 Results and discussion  

The question that we were interested in in Experiment 1 was whether 

participants can learn the hierarchical phrase structure representation on the basis of 

transitional probability. If the subjects did acquire their input grammars, the Grammar 

1 subjects should have learned constituency consistent with Grammar 1. On the other 

hand, the Grammar 2 subjects should have learned constituency consistent with 

Grammar 2, which is incompatible with the Grammar 1 constituency, since the two 

grammars have inconsistent constituent structures. In each trial for every test, one of 

the pair was the correct answer for Grammar 1, while the other was the correct 

answer for Grammar 2. Thus, if subjects learned the constituency, we predict that 

subjects in Grammar 1 would choose the correct answer for Grammar 1 significantly 

more often than the subjects in Grammar 2. Below, we report the percentage of times 
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Grammar 1 subjects chose the Grammar 1-compatible answers in contrast with the 

percentage of times Grammar 2 subjects chose the Grammar 1-compatible answers.  

 

Grammar 1 vs. Grammar 2 

Fragment Test 

The participants in Grammar 1 chose the Grammar 1-consistent answers for 

the 2-member fragment tests 56% of the time, while the participants in Grammar 2 

chose them 46% of the time. This difference was significant in a one-tailed 

independent samples t-test: t(42) = 1.81, p = 0.039. The one-tailed significance value 

is reported, because we have a specific directional prediction: we predicted that if 

subjects learned their input grammar, they would choose the answers that are 

compatible with their learned grammar. As for the 3-member fragment tests, the 

participants in Grammar 1 did not choose the Grammar 1-consistent answers (mean = 

44%) significantly more often than the Grammar 2 participants (mean = 48%): t(42) = 

-0.637, p = 0.26.  

 

Movement Test 

 As for the Movement Test, the Grammar 1 participants did choose the 

Grammar 1-consistent answers (mean = 55%) significantly more often than the 

Grammar 2 participants (mean = 47%): t(42) = 1.84, p = 0.037.  
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Substitution Test 

On average, the participants in the Grammar 1 condition chose the Grammar 

1-compatible answers (mean = 54%) more often than the participants in the Grammar 

2 condition (mean = 48%). However, this difference did not reach significance in a 

one-tailed independent samples t-test: t(42) = 1.30, p = 0.10.  

 

Movement-plus-substitution Test 

On the Movement-plus-substitution Test, the Grammar 1 subjects chose the 

Grammar 1-compatible answers (mean = 50%) more often than the Grammar 2 

subjects (mean = 44%). This difference was marginally significant: t(42) = 1.64, p = 

0.054.  

 



 

 94 
 

 

Figure 37: Experiment 1 results. Comparison between Grammar 1 vs. Grammar 2 

* 

* 

* 



 

 95 
 

 

 

Against chance 

The next analysis tested the experimental groups’ performance against chance. 

If subjects did learn their input grammars, regardless of which grammar they were 

exposed to, they should have chosen answers consistent with their corresponding 

grammar, significantly more than chance. Hence for the next set of analyses, we 

collapsed together the data of the Grammars 1 and 2. 

 

Overall Result 

 On the whole, subjects in both experimental groups (Grammars 1 and 2) chose 

the corresponding consistent sentence over the inconsistent sentence significantly 

more than chance, in a one-tailed independent samples t-test (mean = 53%, standard 

error = 0.01, t(86) = 2.48, p = 0.0075). Below, we report results from individual tests. 

 

Fragment Test 

The participants in both Grammar 1 and Grammar 2 chose the corresponding 

consistent 2-member fragments significantly more often than chance (mean = 55%, 

SE = 0.028, t(86) = 1.83, p = 0.036). As for the 3-member fragments, the participants 

did not choose the consistent answers significantly more often than chance (mean = 

48%, SE = 0.027, t(86) = -0.628, p = 0.27).  

 

Movement Test 
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 As for the Movement Test, the participants chose the consistent answers 

significantly more often than chance (mean = 54%, SE = 0.021, t(86) = 1.85, p = 

0.034).  

 

Substitution Test 

On average, the participants performed at chance (mean = 53%, SE = 0.025, 

t(86) = 1.31, p = 0.097).  

 

Movement-plus-substitution Test 

On the Movement-plus-substitution Test, the participants chose the consistent 

answers (mean = 53%, SE = 0.019) more often than chance. The difference between 

subjects’ performance and chance was marginally significant: t(86) = 1.60, p = 0.057. 
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Figure 38: Experiment 1 results. Comparison against chance 

* 

* 

* 
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Discussion  

The results of the 2-member Fragment Test, Movement Test and Movement-

plus-substitution Test show a significant difference between the two input groups. 

The participants who heard Grammar 1 as input chose the Grammar 1-consistent 

answers significantly more often than the participants who heard Grammar 2 during 

familiarization. Put another way, participants in both groups chose the answers that 

were consistent with their input grammar significantly more often than chance. On 

the other hand, we did not observe any learning on the 3-member Fragment test and 

Substitution Test. This implies that participants could not learn 3-member fragments 

and what the proforms stood for, based on 36-min exposure to the artificial language.  

Nevertheless, the fact that participants succeeded on the 2-member Fragment 

Test tells us that they formed the correct phrasal groupings based on the input of 36 

min of exposure. Subjects in the Grammar 1 condition chose AB and CD, which are 

constituents in Grammar 1, to be consistent with their learned grammar, over BC and 

DE, which are not constituents in Grammar 1. Similarly on the Movement-plus-

substitution Test, subjects in Grammar 2 preferred BC and DE, which are constituents 

in Grammar 2, to be substituted by proforms and moved, to AB and CD, which are 

not constituents in Grammar 2, to be substituted and moved.  

On Movement Test, subjects seem to have chosen the sentences in which 

constituents in their learned grammar were moved over the sentences in which non-
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constituents were moved. For example, from a canonical sentence ABCDE, the 

Grammar 1 subjects seem to have allowed CDE to move (as in CDEAB), but not DE 

to move (as in DEABC). In Grammar 1, CDE is a constituent whereas DE is not. 

Recall that the result of the Fragment Test suggested that the Grammar 1 subjects 

seem to know that CD is a constituent. If they know that CDE and CD are 

constituents, but not DE, that means that they formed a structural representation in 

Figure 30, where CDE has a nested hierarchical structure with an embedded 

constituent CD.  

 

 

Figure 30: Internally nested structure 

 

 Moreover, these results are not due to frequency effects, because none of the 

test items appeared in the input. Therefore, the TP between words in the tests (e.g. 

KOF HOX, DAZ NEB) were always 0. In order to arrive at the correct answer, 

participants had to, first, have categorized lexical items into word classes (e.g. KOF, 

DAZ = A, HOX, NEB = B), then compute the relevant statistics (e.g. TP between 

AB). 
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 One objection to our conclusions may be that the adults did not really have a 

hierarchical tree representation like we argue, but that the subjects were simply 

noticing the chunks of constituents in the consistent (grammatical) test sentences. 

That is, in the consistent test sample, “good” transitions exist, meaning transitions 

from a category to another category that has been observed (i.e., constituents), 

whereas in the inconsistent test sample, “bad” transitions exist, meaning the transition 

from a category to another category that was not observed in the data (i.e., non-

constituents). One could argue that the results in this experiment could be attained if 

the participants were merely noticing the “good chunks” (constituents) versus “bad 

chunks” (non-constituents). While this is a relevant concern, it cannot have been the 

case. Take a look at the movement test sentences that were used. 

 

(69) Movement test 

 Grammatical in Grammar 1 Grammatical in Grammar 2 
1 CDEAB DEABC 
2 CDEABCD DEABCBC 
3 FAB DEF 
4 FABCD DEFBC 
 

 

In the first test sentence type (CDEAB vs. DEABC), there are two good chunks in 

CDEAB if the familiarization language was Grammar 1, namely CD and AB. If your 

familiarization language was Grammar 2, then there are two good chunks in DEABC, 

namely DE and BC. What is important, however, is that there are good chunks of one 

grammar in the other grammar’s consistent test sentences. Put another way, the 

inconsistent test sample in your grammar contains good chunks in your grammar too. 
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For instance, if your grammar was Grammar 1, there is a good chunk (i.e., AB) in the 

G2-consistent answer. If your grammar was Grammar 2, there is a good chunk (i.e., 

DE) in the G1-consistent answer. This is illustrated in Figure 39 below. Solid lines 

represent good chunks (i.e., constituents) in G1, and dotted lines represent 

constituents in G2. 

 

 

Figure 39: Number of “good chunks” vs. “bad chunks” 
Solid line represents good chunks for G1 and dotted line represents good chunks for G2 
 

 

In the second test sentence type (CDEABCD vs. DEABCBC), there are three good 

chunks of G1 in the G1-consistent test sentence (CDEABCD), namely CD, AB and 

CD, but there still is one good G1 chunk in the G2-consistent test sentence 
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(DEABCBC), namely AB. If you were familiarized in G2, there are three good 

chunks in the G2-consistent answer (DE, BC, BC), but there are two good chunks in 

the G1-consistent answer too (DE, BC). 

In this way, since there always are good chunks in the “wrong” answer too, 

simply noticing good chunks does not grant you the correct answer. One might argue 

that the number of good chunks is always higher in the correct answer than in the 

incorrect answer. There are two and three good G1 chunks in the G1-consistent 

answers, while there is only one good G1 chunk in the G2-consistent answers. As for 

G2, there are two and three good G2 chunks in the G2-consistent answers, while there 

are one and two good G2 chunks in the G1-consistent answer. If the number of good 

chunks makes a difference, then there should be a difference in participants’ 

performance within the consistent answers too, because there are only two good 

chunks in the first test type (CDEAB and DEABC) in both grammars, while there are 

three good chunks in the second test type (CDEABCD and DEABCBC). However, 

this difference in participants’ performance on the first movement test type (CDEAB 

and DEABC) and the second type (CDEABCD and DEABCBC) was not significant 

in the independent-samples t-test (mean = 53%, 59%, respectively; t(42) = -0.942, p = 

0.352). 

One might look at the third test type (FAB vs. DEF) in Figure 39 and argue 

that in that particular test, there is no good chunk in the wrong answer, and as a result, 

you can choose the correct answer by merely noticing the good chunks. This is a valid 

concern. If this is the case, one would expect participants to perform better at this test 

type than at first (CDEAB vs. DEABC) and second test types (CDEABCD vs. 
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DEABCBC), because while the third test type does not contain good chunks in the 

wrong answers, the first and second test types do. Nevertheless, the participants’ 

performance on the third test type (FAB vs. DEF) was not significantly different from 

the performance on the first type (mean = 49%, 53%, respectively; t(42) = -0.768, p = 

0.447) or the second type (mean = 49%, 59%, respectively; t(42) = -1.581, p = 0.121) 

in independent-samples t-tests. 

In sum, we can now reject the hypothesis that the participants’ success was 

due to a greater number of good transitions in the consistent test sentences than the 

number of good transitions in the inconsistent sentences. Simply detecting the good 

chunks in the consistent test sentences cannot have achieved the results of this 

experiment. If it was not the number of good transitions that differentiated the correct 

and incorrect test sentences, then what was it? The difference is what is being moved. 

In the consistent test sentences, constituents are moved, while in the inconsistent test 

sentences, non-constituents are moved. Hence, our conclusion that that was the 

distinguishing factor still holds. 

 It is worth noting that the learning achieved here is not as robust as previous 

studies. For instance, the experimental group in Thompson & Newport (2007) 

achieved almost 80% accuracy as early as Day 1, after only 20 min of exposure. On 

the other hand, the highest success rate in our Experiment 1 was 55%. There are two 

responses to this observation. First, the artificial language in Thompson & Newport 

(2007) was much simpler than our artificial languages. The canonical sentence was 

ABCDEF with a flat structure like the following: 
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Figure 40: Phrase structure in Thompson & Newport (2007) 
 

 

The constituents were AB, CD and EF and such grouping is very intuitive. If you are 

given a sentence with 6 words, it seems very natural and obvious to divide them into 

3 groups of two. In fact, even the control group, who were not given any statistical 

cue, scored well above chance, achieving 60% accuracy on Day 1 and almost 80% 

accuracy on Day 5, as in Figure 15. Thompson & Newport (2007) speculate that 

perhaps that was because native English-speaking participants had tendency to break 

up input strings into binary groupings or to impose trochaic foot structure even when 

there was no prosodic information.  

In contrast, our grammars are much more complex and display nested 

hierarchy. Since our canonical sentence is a 5-word string (ABCDE), it is impossible 

to impose a binary grouping. Therefore, the low success rates in this study could be 

due to the complexity of our grammars.  

Second, our familiarization period was relatively short compared with 

previous studies. In Saffran (2001), it was 30 min for 2 days, accumulating a total of 

60 min of exposure. In Thompson & Newport (2007), it was 20 min for 5 consecutive 

days, accumulating a total of 100 min of exposure. In our experiment, it was 36 min 

and just one day. As a result, the task was very hard and this could have led to the 
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large error rates.6 In any case, our main finding is that, even though the performance 

in this experiment was not as robust as previous literature, our participants did 

perform significantly above chance on 3 of 5 tests. 

The results of Experiment 1 offer an answer to one of our questions, which 

was whether the TP can be a cue to not only the phrasal groupings but also 

hierarchical constituent structure. And the answer seems to be positive. By including 

features of natural languages such as optionality, repetition, substitution and 

movement, there emerge TP peaks and dips. We found that not only can learners infer 

phrasal groupings on the basis of such statistical pattern, but they can also infer 

nested hierarchical structure.  

In Experiment 1, the Movement Test yielded a significant effect of learning. 

The subjects chose the sentences where a constituent had undergone movement over 

sentences where a non-constituent had undergone movement. Going back to our three 

hypotheses, the results from this experiment indicate that the predictions made by 

Beyond and Unconstrained Hypothesis were not borne out, since this hypothesis 

predicted that the performance on the movement test would be at chance. On the 

other hand, the predictions made by both Limited Hypothesis and Beyond and 

Constrained Hypothesis were borne out, because the learners correctly chose the 

consistent answer. However, the results of this experiment do not differentiate these 

two hypotheses, since both hypotheses predicted the identical outcome.  

 

                                                
6 We are considering a follow-up study where the familiarization last for 2 or 3 days to boost 
the learning. If the limited familiarization time was causing the low success rate, increasing 
the familiarization period (and sleeping) should lower the error rates.  
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Table 9: Predictions and outcomes for Experiment 1 
 Views Predictions Outcome 
Limited Hypothesis Only the consistent test 

sentences are 
grammatical  

Adults will choose 
consistent answers 

✓ 

Beyond and 
Constrained 
Hypothesis 

Only the consistent test 
sentences are 
grammatical 

Adults will choose 
consistent answers 

✓ 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Adults will perform 
at chance 

✗ 

 

 

The Limited Hypothesis is the view that the deductive power of a learner is 

limited to the observed distributions, and statistical learning does not interact with 

innate constraints. Beyond and Constrained Hypothesis, on the other hand, is the view 

that the acquired representations have deductive consequences beyond what can be 

derived from the observed statistical distributions. The results of Experiment 1 do not 

support one or the other of these two views. But given that this is the critical question 

in this dissertation, we would want to find a way to tell them apart. 

One might argue that the success of the movement test, for example, in this 

experiment was due to the abundance of movement sentences in the input, and that 

subjects were simply choosing the ones that they were most familiar with. In fact, the 

presentation set in this experiment did include a large number of sentences that had 

undergone movement operation. In the Grammar 1 input, 40% (32/80) of the whole 

presentation set was movement sentences. In Grammar 2, it was 48% (38/80). 

If we remove all the sentences generated via movement (and substitution by 

proform) rules and the participants still succeed at the movement test, it would 

indicate that the participants were not merely compiling predictive statistics from the 
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data, because the correct “answer” does not appear in the exposure set. It would imply 

that participants were acting on the knowledge that was not available in the input, 

specifically the knowledge that you cannot move a non-constituent. Accordingly, in 

Experiment 2, we will remove all the sentences generated via movement rules and 

substitution rules and we will test them on movement and substitution tests, in the 

hope of being able to tell apart the two hypotheses. In this way, we should be able to 

tease apart the two hypotheses because they would make different predictions. This 

way, we hope to explore whether the representations are part of the learning system 

prior to the experience, and what the deductive consequences of distributional 

learning are.  

 

 

3.2 Experiment 2 (Adult 2) 

 

Experiment 2 tries to answer one of our main questions of this dissertation, 

which is what the deductive consequences of distributional learning are. In this 

experiment, we remove all the sentences generated by movement (and substitution by 

proforms) rules from the input and examine whether subjects can succeed under such 

condition. There are two possible outcomes. Under a learning theory where the 

deductive power of a learner is limited to the observed distributions, learners should 

not allow new structures that were not displayed in the input. Therefore, learners 

would consider both consistent and inconsistent test samples to be ungrammatical, 

since both samples involve novel structures. According to this view, learners do not 
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come with a pre-determined set of possible structures or rules, in this case, learners 

would not know in advance that you can only move constituents. So, the subjects 

would fail to choose the correct test sentences in which constituents are moved. If this 

were the case, it would suggest that what learners do is to track the distributions and 

build an illusion of a structure entirely based on them, without any preconception of 

what is and what is not a possible structure.  

On the other hand, under a learning theory where a learner already knows an 

antecedently-specified range of possible representations, statistics is merely used as a 

source of information that helps a learner select the correct grammar that derives the 

matching surface strings. Under this selective learning theory, the acquired 

representations have deductive consequences beyond what can be derived from the 

observed statistical distributions alone. On this view, another possible outcome is that 

the subjects succeed in this condition, and they can correctly choose the test sentences 

in which constituents are moved, over test sentences in which non-constituents are 

moved. If so, it would suggest that learners’ generalization extends to novel 

structures, as long as they are compatible with antecedently known constraints.  

 

 

3.2.1 Description of the linguistic systems  

The same artificial grammars, Grammar 1 and Grammar 2, were used. The 

only difference was that all examples generated via movement and substitution-with-

proform rules were excluded from the familiarization. Just like in Experiment 1, 80 

sentences were picked as the presentation set. Three sentences (3.8%) were the 
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canonical sentence type (ABCDE) in both grammars. There were four sentence types, 

which is shown below. 

 

(70) Familiarization sentence types in Experiment 2 

Grammar 1 Grammar 2 
A B F         (9) A B C D E        (3) 
A B C D E     (3) F D E             (10) 
A B C D E C D  (19) A B C D E B C    (16) 
A B F C D (49) F D E B C        (51) 
 
 

While the input lacked movement rules, it still included other manipulations such as 

repetition and optionality. These features contributed to make the TPs between words 

within phrases higher than the TPs across phrases. The resulting TP patterns of the 

presentation set are given below. All 80 sentences were randomized. The sentence 

types and 80 sentences that appeared in the presentation set are shown in Appendix B.  

 

Table 10: Transitional probabilities for 80 input sentences in Grammar 1 
 A-B B-C C-D D-E 
Forward TP 1.00 0.28 1.00 0.24 
Backward TP 1.00 0.24 1.00 1.00 
 

Table 11: Transitional probabilities for 80 input sentences in Grammar 2 
 A-B B-C C-D D-E 
Forward TP 1.00 1.00 0.22 1.00 
Backward TP 0.22 1.00 0.24 1.00 
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3.2.2 Method  

Participants 

Forty-four native speakers of English participated in Experiment 2 as subjects. 

The participants were undergraduate students at the University of Maryland, gave 

informed consent prior to participating and received monetary compensation. 

Twenty-two participants were randomly assigned to hear Grammar 1 during the 

familiarization and the other 22 were assigned to Grammar 2. 

 

Recording, Procedure, Tests 

The recording and the procedure for Experiment 2 were identical to those for 

Experiment 1. Participants were exposed to the presentation set of 80 sentences six 

times, for a total of 36 min of exposure. The administered tests were identical to the 

ones in Experiment 1.  

 

3.2.3 Hypotheses and predictions 

Recall that while the results of Experiment 1 were not compatible with the 

Beyond and Unconstrained Hypothesis, they were compatible with both Limited 

Hypothesis and Beyond and Constrained Hypothesis. This was mostly because all of 

the test structures were included in the familiarization. In this experiment, we remove 

all the sentences generated by movement and substitution rules, which means that the 

test sentences have novel structures that were not seen in the input. Now the three 

hypotheses make distinct predictions. 
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For convenience’ sake, let us take the case of the movement test to discuss 

different hypotheses and predictions. According to the first hypothesis, which we call 

the “Limited” Hypothesis, learners do not generalize beyond what was observed in 

the input. So at test, when they see two novel structures – one that moved a 

constituent and one that moved a non-constituent – they would consider both to be 

illicit, because neither was seen in the input. Thus, the performance should be at 

chance.  

According to the second hypothesis (“Beyond and Constrained Hypothesis”), 

learners can generalize beyond the observed input, but their generalizations are 

restricted in principled way. For instance, learners might have the knowledge that you 

cannot move a non-constituent in natural languages. If this were the case, on the 

movement test, the participants would allow the consistent test sentence in which a 

constituent was moved, but they would not allow the inconsistent test sentence in 

which a non-constituent was moved, because while the former is a possible 

movement, the latter is an impossible operation in language. Thus, the participants 

should show a preference towards the consistent test items over the inconsistent test 

items.  

According to the third hypothesis (“Beyond and Unconstrained Hypothesis”), 

learners’ generalizations could go beyond what was observed in the input and those 

generalizations do not have to be constrained by some principles. For example, one 

generalization the learners could form is that you can move any neighboring 

elements. If this were the case, on the movement test, learners might allow both test 

structures even though they are both novel, because both test sentences move 
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neighboring words. If so, both test sentences would be licit for the learners and the 

performance at test would be at chance, that is, the learners would not choose one 

over the other.  

In this way, the three hypotheses make distinct predictions. Both “Limited” 

and “Beyond and Unconstrained” Hypotheses predict that the performance on the 

movement test would be at chance although for different reasons. The only 

hypothesis that predicts a different outcome is Beyond and Constrained Hypothesis, 

which predicts that learners would choose the consistent test sample over the 

inconsistent test sample.  

 

Table 12: Predictions for Experiment 2 
 Views Predictions 
Limited Hypothesis Both test sentences are 

ungrammatical  
Adults will perform at 
chance 

Beyond and Constrained 
Hypothesis 

Only the consistent test 
sentences are grammatical 

Adults will choose 
consistent answers 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Adults will perform at 
chance 

 

 

3.2.4 Results and discussion  

Our question in Experiment 2 was whether removing the movement sentences 

from the familiarization would nonetheless license the inference that only constituents 

can be moved.  
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Grammar 1 vs. Grammar 2 

Fragment Test 

On the 2-member fragment test, the participants in Grammar 1 did not choose 

the Grammar 1-consistent answers (mean = 53%) reliably more than participants in 

Grammar 2 (mean = 50%) in a one-tailed independent samples t-test: t(42) = 0.689, p 

= 0.248. On the 3-member fragment tests, the participants in the Grammar 1 condition 

did not choose the Grammar 1-compatible answers (mean = 47%) significantly more 

often than the participants in the Grammar 2 condition (mean = 44%, t(42) = 0.654, p 

= 0.259) either.  

 

Movement Test 

 As for the Movement Test, the Grammar 1 participants did choose the 

Grammar 1-consistent answers (mean = 61%) significantly more often than the 

Grammar 2 participants (mean = 44%): t(42) = 3.675, p = 0.0005.  

 

Substitution Test 

On the Substitution Test, the participants in Grammar 1 did not choose the 

Grammar 1-consistent answers (mean = 47%) more often than the Grammar 2 

participants (mean = 52%): t(42) = -0.868, p = 0.196.  
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Movement-plus-substitution Test 

On the Movement-plus-substitution Test, the Grammar 1 subjects chose the 

Grammar 1-compatible answers (mean = 49%) less often than the Grammar 2 

subjects (mean = 56%) in a one-tailed t-test: t(42) = -1.925, p = 0.031.  
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Figure 41: Experiment 2 results. Comparison between Grammar 1 vs. Grammar 2 

* 
* 
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Against chance 

The next analysis tested the experimental groups’ performance against chance. 

If subjects learned their input grammars, they should have chosen answers consistent 

with their corresponding grammar more often than chance, no matter which grammar 

they were exposed to. Thus for the next set of analyses, we collapsed together the 

data from the two grammars. 

 

Overall Result 

 On the whole, subjects in both groups (Grammars 1 and 2) did not choose the 

corresponding consistent sentence over the inconsistent sentence significantly more 

than chance (mean = 51%, SE = 0.01. One-tailed independent samples t-test: t(86) = 

0.928, p = 0.178). Below, we report results from individual tests. 

 

Fragment Test 

On average, the participants in both Grammar 1 and Grammar 2 did not 

choose the corresponding consistent 2-member fragments reliably more often than 

chance (mean = 52%, SE = 0.025, t(86) = 0.693, p = 0.245). Similarly, for the 3-

member fragments, the participants did not choose the consistent answers reliably 

more often than chance (mean = 51%, SE = 0.023, t(86) = 0.626, p = 0.267).  
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Movement Test 

 As for the Movement Test, the participants chose the consistent answers more 

often than chance, and this difference was highly reliable (mean = 58%, SE = 0.022, 

t(86) = 3.674, p < 0.001). 7 

 

Substitution Test 

The participants did not choose the corresponding consistent sentences more 

often than chance (mean = 48%, SE = 0.026, t(86) = -0.878, p = 0.192).  

 

Movement-plus-substitution Test 

On the Movement-plus-substitution Test, the participants did not choose the 

consistent answers significantly more often than chance (mean = 46%, SE = 0.019) 

t(86) = -1.91, p = 0.03). 

 

  

                                                
7 At first glance, the participants in Experiment 2 appear to have performed better on the 
Movement Test (mean = 58%) than the participants in Experiment 1 (mean = 54%). However, 
this difference was not significant (t(86) = -1.44, p = 0.153) in an independent samples t-test.  
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Figure 42: Experiment 2 results. Comparison against chance 

* 
* 
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Discussion  

Except for the Substitution Test and Movement-plus-substitution Test, there 

was a general trend for choosing the input-consistent answers in all tests. The effect 

was highly reliable in the Movement Test. This result is especially striking because 

the performance of participants was most successful on the tests that involved 

movement, even though there was no movement sentences in the input. This confirms 

that the participants’ success on the Movement Test in Experiment 1 was not due to 

the abundance of movement sentences in the familiarization. Even when the input 

lacked movement sentences, adults chose the sentences in which constituents 

underwent movement as “grammatical” sentences in the artificial language.  

 In contrast with the results of the Movement test, participants did not 

successfully learn that only constituents can be replaced by a proform. This could be 

due to the fact that substitution rules were not introduced during the familiarization in 

Experiment 2. Since the proforms were excluded from the input, the participants saw 

them for the first time during the test. As a result, that probably confused the 

participants. It is interesting that in the absence of movement and substitution rules in 

the input, people can infer that only constituents can be moved, but not that only 

constituents can be substituted. There could be several reasons for such asymmetry. 

One possibility is that, while you do not need input to infer that only constituents can 

be moved, but you need sufficient information to infer that only constituents can be 

replaced by proforms. In other words, although the constraints on movement and 
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substitution may be innate and universal, you need some kind of input as a trigger to 

set the constraint on substitution to work, but you do not need any trigger to set off 

the movement rule. This line of possibility is certainly compatible with the results of 

Experiment 2. Another possibility is that learning substitution rules requires some 

kind of reference. For example, when replacing red bottle with “one” in a sentence 

like, The boy likes the red bottle and the girl likes that one, you have to know that 

“one” refers to red bottle. However, in an artificial language learning experiment, no 

semantic information that corresponds with the sentences is given. When learning that 

DAZ HOX is replaced by a proform ib, you do not even know what “DAZ HOX” 

refers to. All you have is the distributional information that DAZ and HOX often 

appear together. This suggests that statistical information that signals constituency is 

not adequate for deducing that only constituents can be substituted. It might be that it 

also requires semantic information for the referent of the proform. The current 

experiments do not answer these questions, but nonetheless, it is worth noting that we 

found a contrast between movement-rule learning and substitution-rule learning.  

Going back to our three hypotheses, the results of the movement test in 

Experiment 2 are only compatible with Beyond and Constrained Hypothesis, since 

this was the only hypothesis that predicted this outcome. The other two hypotheses 

(Limited Hypothesis and Beyond and Unconstrained Hypothesis) predicted that the 

learners would not choose one test sentence over the other and that the performance 

would be at chance. However, the results show that the adults preferred the consistent 

test samples to the inconsistent test samples.  
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Table 13: Predictions and outcomes for Experiment 2 
 Views Predictions Outcome 
Limited Hypothesis Both test sentences are 

ungrammatical  
Adults will perform 
at chance 

✗ 

Beyond and 
Constrained 
Hypothesis 

Only the consistent test 
sentences are grammatical 

Adults will choose 
consistent answers 

✓ 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Adults will perform 
at chance 

✗ 

 

 

The information about constituency was contained in the input, but the 

participants in Experiment 2 were not given any movement sentences in the input. In 

that situation, why should the participants choose the sentences that moved 

constituents over the sentences that moved non-constituents? If the generalization you 

form is entirely based on the input, both test structures should be equally illicit, since 

both are new. If the generalization you form is not restricted to what was observed in 

the input, then you might equally allow both test structures, since both moved 

neighboring elements. But that is not what happened. What happened was that the 

participants chose the new structures in which constituents, but not non-constituents, 

were moved. Since the information that constituents can be moved was not included 

in the input, the inference must have come from some constraints that were known to 

the learners. And that is what was predicted by the Beyond and Constrained 

Hypothesis. In other words, the generalizations that were formed by the learners 

based on the input in Experiment 2 were not restricted to just the input, but they were 

restricted in a way that is predictable considering what is possible and what is 

impossible in natural languages. More specifically, the participants seem to have 
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behaved in the way that was compatible with possible operations in natural 

languages.  

Here, let us consider and examine alternative accounts for the results obtained 

in this experiment. First alternative account can be dubbed something like “strange 

first word” account. If you look at the sentence types of the Movement test in (71), 

you see that all the Grammar 2-compatible test sentences begin with a D word.  

 

(71) Movement test 

 Grammatical in Grammar 1 Grammatical in Grammar 2 
1 CDEAB DEABC 
2 FAB DEF 
3 CDEABCD DEABCBC 
4 FABCD DEFBC 
 

 

In contrast, none of the Grammar 1-compatible test sentences begin with a D word. 

This is due to the fact that CD is a constituent in Grammar 1. Since this study did not 

have optionality of an element within a single phrase, C and D always appear 

together, which is why no sentence began with a D word in the input of Grammar 1. 

One could argue that participants’ success was due to such serial position effects. The 

participants who heard Grammar 1 during the familiarization might know that the 

Grammar 2 test sentences are not from the language they were familiarized to, simply 

because no sentence had begun with a D. The results of Experiment 2 would be 

undermined if participants were simply noting such linear pattern. It would mean that 

participants rejected the incorrect sentences not because non-constituents underwent 



 

 123 
 

movement, but because they never saw a sentence begin or end with a particular word 

class.  

This is a valid objection; however, this cannot have been the case. That is 

because the Grammar 1-compatible test sentences did not appear in the 

familiarization either. The Grammar 1-compatible movement test sentences start with 

either C or F. See the list of familiarization sentence types of Experiment 2 in (72). 

 

(72) Familiarization sentence types in Experiment 2 

Grammar 1 Grammar 2 
A B F         A B C D E        
A B C D E     F D E             
A B C D E C D  A B C D E B C    
A B F C D F D E B C        
 
 

No input sentence of Grammar 1 in this experiment starts with C or F. Therefore for 

the participants who had been familiarized with Grammar 1, both groups of test 

sentences (G1-compatible and G2-compatible) are equally unfamiliar and unseen. 

Even if they kept track of the serial positions of some elements, it would not help, 

since neither test sentence type appeared in the input. Hence, we can back up our 

interpretation of the results, which is that participants chose the sentences that moved 

constituents instead of non-constituents.  

Similarly, the G2-compatible movement test sentences all begin with a D 

word, while the G1-compatible test sentences begin with a C or F word. This is 

because DE and BC are constituents in Grammar 2, so no sentence in G2 starts with a 

C, since C is always preceded by B. So, one could argue that, if you were familiarized 
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with Grammar 2, you could have chosen the correct answer by simply choosing the 

test sentences that start with D, instead of C. This objection is a valid concern, but it 

cannot have been the case. That is because none of the familiarization sentences in 

Grammar 2 started with a D word either (see (72)), because no movement sentences 

were included in the input in this experiment. Interestingly, however, some 

familiarization sentences of Grammar 2 actually start with F. And half of the G1-

compatible test sentences start with F. Therefore, if you were only paying attention to 

the first word, you could actually be misled, and choose the wrong answers instead. 

But this was not attested. The participants who heard G2 as input did not perform 

significantly worse on the second and fourth test types (in which the G1-compatible 

answers start with F) (mean = 42%) than the first and third test types (mean = 46%; 

paired-samples t-test: t(21) = 0.668, p = 0.511). In this way, we can reject the 

alternative account that subjects were merely taking note of the good and bad first 

words. 

Second alternative account is similar to the first alternative, but it can be 

dubbed “strange last word”. If you look at the sentence types of the Movement test in 

(71), you see that most of the Grammar 2-compatible test sentences end in a C word. 

In contrast, none of the Grammar 1-compatible test sentences ends in a C word. This 

is due to the fact that CD is a constituent in Grammar 1. Since this study did not have 

optionality of an element within a single phrase, C and D always appear together, 

which is why no sentence ends with a C word in the input of Grammar 1. One could 

argue that participants succeeded by simply noticing that ending a sentence with a C 

word is strange in Grammar 1, thus rejecting test sentences that ended with a C word. 
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This is a relevant concern, but it cannot have been the case either. Notice that one of 

the G2-compatible test sentences ends with F. It should also be noted that in the 

familiarization set, none of the input sentences of Grammar 2 ends with an F word, 

while some of the Grammar 1 input sentences end with F (see (72)). If the 

participants were simply paying attention to good and bad last words, then this could 

be misleading. The participants who heard Grammar 1 as input could be misled to 

think that the G2-compatible test sentence DEF is the correct answer, since they have 

seen sentences ending with F. If this is the case, then it would predict that participants 

perform better at test sentences ending with a C word than test sentences ending with 

F, because rejecting test sentences that end with C would be easier than rejecting test 

sentences that end with F. Nevertheless, this prediction was not borne out. The 

participants in Experiment 2 who heard Grammar 1 during the familiarization phase 

did not perform significantly better or worse on the second test type (FAB vs. DEF) 

(mean = 57%) than the first type (CDEAB vs. DEABC) (mean = 59%; t(21) = -0.326, 

p = 0.747), third type (CDEABCD vs. DEABCBC) (mean = 69%; t(21) = -1.498, p = 

0.149) or fourth type (FABCD vs. DEFBC) (mean = 57%; t(21) = 0, p = 1.0), in 

paired-samples t-tests. In sum, we can reject the alternative hypothesis that 

participants succeeded by simply paying attention to good and bad last words.  

 Third alternative account can be dubbed “number of good chunks”, which is 

the hypothesis that the subjects were simply noticing the chunks of constituents in the 

consistent (grammatical) test sentences, and that they did not have a hierarchical tree 

representation like we argue. It could be that in the consistent test sample, “good” 

transitions exist, meaning transitions from a category to another category that have 
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been observed (i.e., constituents), whereas in the inconsistent test sample, “bad” 

transitions exist, meaning the transition from a category to another category that was 

not observed in the data (i.e., non-constituents). One could argue that the results in 

this experiment could be achieved if the participants were merely noticing the “good 

chunks” (constituents) versus “bad chunks” (non-constituents). While this is a 

relevant concern, it cannot have been the case. Take a look again at the movement 

test sentences that were used. 

 

(73) Movement test 

 Grammatical in Grammar 1 Grammatical in Grammar 2 
1 CDEAB DEABC 
2 CDEABCD DEABCBC 
3 FAB DEF 
4 FABCD DEFBC 
 

 

In the first test sentence type (CDEAB vs. DEABC), there are two good chunks in 

CDEAB if the familiarization language was Grammar 1, namely CD and AB. If your 

familiarization language was Grammar 2, then there are two good chunks in DEABC, 

namely DE and BC. What is important, however, is that there are good chunks of one 

grammar in the other grammar’s consistent test sentences. Put another way, the 

inconsistent test sample in your grammar contains good chunks of your grammar too. 

For instance, if your grammar was Grammar 1, there is a good chunk (i.e., AB) in the 

G2-consistent answer. If your grammar was Grammar 2, there is a good chunk (i.e., 

DE) in the G1-consistent answer. This is illustrated in Figure 43 below. Solid lines 
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represent good chunks (i.e., constituents) in G1, and dotted lines represent 

constituents in G2. 

 

 

Figure 43: Number of “good chunks” vs. “bad chunks”. Solid line represents good chunks for G1 
and dotted line represents good chunks for G2 
 

 

In the second test sentence type (CDEABCD vs. DEABCBC), there are three good 

chunks of G1 in the G1-consistent test sentence (CDEABCD), namely CD, AB and 

CD, but there still is one good G1 chunk in the G2-consistent test sentence 

(DEABCBC), namely AB. If you were familiarized in G2, there are three good 

chunks in the G2-consistent answer (DE, BC, BC), but there are two good chunks in 

the G1-consistent answer too (DE, BC). 
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In this way, since there always are good chunks in the “wrong” answer too, 

simply noticing good chunks does not grant you the correct answer. One might argue 

that the number of good chunks is always higher in the correct answer than in the 

incorrect answer. There are two and three good G1 chunks in the G1-consistent 

answers, while there is only one good G1 chunk in the G2-consistent answers. As for 

G2, there are two and three good G2 chunks in the G2-consistent answers, while there 

are one and two good G2 chunks in the G1-consistent answer. If the number of good 

chunks makes a difference, then there should be a difference in participants’ 

performance within the consistent answers too, because there are only two good 

chunks in the first test type (CDEAB and DEABC) in both grammars, while there are 

three good chunks in the second test type (CDEABCD and DEABCBC). However, 

this difference in participants’ performance on the first movement test type (CDEAB 

and DEABC) and the second type (CDEABCD and DEABCBC) was not significant 

in the independent-samples t-test (mean = 59%, 60%, respectively; t(42) = -0.193, p = 

0.848). 

One might look at the third test type (FAB vs. DEF) in Figure 43 and argue 

that in that particular test, there is no good chunk in the wrong answer, and as a result, 

you can choose the correct answer by merely noticing the good chunks. This is a 

relevant concern. If this is the case, one would expect participants to perform better at 

this test type than at first (CDEAB vs. DEABC) and second test types (CDEABCD 

vs. DEABCBC), because while the third test type does not contain good chunks in the 

wrong answers, the first and second test types do. Nevertheless, the participants’ 

performance on the third test type (FAB vs. DEF) was not significantly different from 
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the performance on the first type (mean = 58%, 59%, respectively; t(42) = -0.107, p = 

0.916) or the second type (mean = 58%, 60%, respectively; t(42) = -0.298, p = 0.767). 

In sum, we can reject the third alternative account that the participants’ 

success was due to a greater number of good transitions in the consistent test 

sentences than the number of good transitions in the inconsistent sentences. Simply 

detecting the good chunks in the consistent test sentences cannot have achieved the 

results of this experiment. The critical factor that helped the participants distinguish 

the consistent and inconsistent test samples must have been that, in the consistent test 

sentences, constituents are moved, while in the inconsistent test sentences, non-

constituents are moved. And the results of this experiment are compatible with this 

conclusion.  

 The results of Experiment 2 are only compatible with the idea that the role of 

a learner is to identify the mapping between the surface forms and one of a range of 

possible grammars that generated them. On this approach, the role of the statistics is 

to drive inferences about which grammar out of the set of possible grammars is 

responsible for the input data. More specifically, only grammars that allow movement 

of a constituent but not of non-constituents are considered as a possibility and 

grammars that move non-constituents must not have been an option. Otherwise, it is 

impossible to explain why the subjects were able to identify the correct answers in the 

absence of movement sentences in the input. It is worth noting here that constituency 

alone does not give this result. Constituency is a necessary condition to drive this 

result, and yet, it alone does not imply that non-constituents cannot be moved. For 

example, the following type of finite-state automata could generate the familiarization 
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sentences, and together with some kind of probabilistic table, the FSA could learn 

constituency.   

 

 

Figure 44: FSA for familiarization sentences of Grammar 1 in Experiment 2 
 

 

 

Figure 45: FSA for familiarization sentences of Grammar 2 in Experiment 2 
 

 

However, even having a representation of constituency is not sufficient to achieve the 

results of Experiment 2. If you only have FSA like above, you cannot choose the 

correct consistent answers at test. For example, it is impossible to choose between 

CDEAB vs. DEABC, sentences you have never seen before. One might argue that 

with probabilistic FSA, you can simply choose the one with a greater number of good 

transitions. But we already discussed above that this does not work. What is needed in 

order to choose the correct answer is the knowledge that you can only move 
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constituents. The fact that the participants in our experiment seemed to know that 

without being told that constraint suggests that they already knew that prior to the 

exposure. The results from this experiment are compatible with the view that this 

constraint is linguistic in nature. In any case, the constraint could not have been 

formed by simply being exposed to the artificial language during the experiment, thus 

must have been contributed by the learners themselves.  

Experiment 2 was an attempt to answer one of our main questions of this 

dissertation, which is what the deductive consequences of distributional learning are 

The results of Experiment 2 suggest that learners’ acquired representations have 

deductive consequences beyond what can be derived from the observed statistical 

distributions alone. This implies that statistics are merely used as a source of 

information that helps a learner select the correct grammar that derives the matching 

surface strings. Furthermore, it also suggests that the representations the learners form 

are limited in the same ways that natural language is constrained.  
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Chapter 4: Infant Experiments 

 

 

In this chapter, we extend our investigation to testing infants. In the classic 

artificial language phrase structure learning studies (Morgan and Newport 1981; 

Morgan, Meier and Newport 1987; Morgan et al. 1989) and in Thompson and 

Newport (2007), only adults have been tested. Saffran et al. (2008) tested infants, but 

we argued in Chapter 2 that what the infants acquired could have been a finite-state 

grammar as in Figure 13, and not necessarily a hierarchical phrase structure. The 

results of Saffran et al. (2008) could have been achieved by infants simply learning 

the linear order of word categories.  

 

 

Figure 46: FSA of the predictive language in Saffran et al. (2008) 
 

 

In other words, whether infants can learn the hierarchical phrase structure of an 

artificial language is yet to be shown. To this end, we tested infants to see whether 

they can learn on the basis of statistical information. 
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We concluded in Experiment 2 that the adults knew that only constituents are 

allowed to move prior to the exposure. Nonetheless, one could potentially argue that 

the fact that adults succeeded on the movement test in the absence of movement in 

the input is because they already knew a natural language. And natural languages 

only allow movement of constituents. So one could argue that adults extended that 

knowledge in learning the artificial language. In order to examine this possibility, we 

tested infants. If our results from Experiments 1 and 2 model what happens in 

language acquisition, infants might perform the same way as adults did. Experiment 3 

is the first of a series of infant experiments and it is a replication of our Experiment 1.  

We chose to test mainly 18-month-old infants in this dissertation because this 

is around the age that infants begin to show their knowledge of syntax. Gomez & 

Gerken (1999) showed that, by the age of 12 months, infants are sensitive to 

statistical distributions in an artificial language generated by a finite state grammar. 

By 14-months of age, infants begin to demonstrate sensitivity to properties of their 

native language syntax (Hirsch-Pasek & Golinkoff 1996), even though infants at this 

age are hardly producing two- or three-word sentences themselves. Finally, 

Santelmann & Jusczyk (1998) showed that 18-month-old infants are sensitive to non-

adjacent morpho-syntactic dependencies, but not 15-month-olds. Additionally, 

Gomez (2002) also showed that by 18 months, infants are able to detect non-adjacent 

dependencies in an artificial language. We chose to test 18-month-old infants because 

we supposed that although they are not producing “sentences”, they are able to 

comprehend and sensitive to syntactic and statistical characteristics of language.  
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4.1 Experiment 3 (Infant 1) 

 

4.1.1 Method  

Participants 

Infants were recruited via a mailing list. Fourteen infants, approximately 18 

months of age were tested (age range: 17 months 15 days to 19 months 9 days; mean: 

18 months 17 days). Eight additional infants were tested but excluded from analyses 

for the following reasons: crying (n = 4), inattentiveness (n = 3) and equipment 

failure (n = 1). The infants were randomly divided between two familiarization 

conditions. Half of the infants (n = 7) heard Grammar 1 as input during the 

familiarization period and the other half (n = 7) heard Grammar 2. Parental consent 

was obtained prior to testing, in accordance with the NIH standards for the ethical 

treatment of human subjects. 

 

Material 

The artificial languages used in this experiment were identical to the ones in 

Experiments 1 and 2. Just like in Experiment 1, the familiarization input included 

movement. The only difference was that 30 sentences, instead of 80 sentences, were 

picked as the presentation set. Two sentences (6.7%) were the canonical sentence 

type (ABCDE) in both grammars. The TP patterns of the presentation set are given in 

tables below. The sentence types and 30 sentences that appeared in the presentation 

set are shown in Appendix D.  
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Table 14: Transitional probabilities for 30 input sentences in Grammar 1 

 A-B B-C C-D D-E 
Forward TP 1.00 0.19 1.00 0.24 
Backward TP 1.00 0.24 1.00 0.26 
 

 

Table 15: Transitional probabilities for 30 input sentences in Grammar 2 

 A-B B-C C-D D-E 
Forward TP 0.28 1.00 0.17 1.00 
Backward TP 0.21 1.00 0.15 1.00 
 

 

Following Gomez & Gerken (1999), the 30 sentences were randomly grouped 

into six sets of 5 (henceforth “samples”). Using the same word tokens recorded for 

Experiments 1 and 2, the five sentences of each sample were concatenated in the 

Audacity sound editor with an isi of 1000 ms in a random order. Each familiarization 

sample was approximately 18 s in duration.  

Given its success in Experiments 1 and 2 and given the short attention span of 

infants, only the Movement Test was used here. In particular, CDEAB vs. DEABC 

was used. The test consisted of 4 items, which are shown below.  
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(74) Movement test 

Grammatical in Grammar 1 Grammatical in Grammar 2  
Type Sentences Type Sentences 

Movement 
test 

1 CDEABCD JES SOT FAL 
KOF HOX 

DEABCBC SOT FAL KOF 
HOX JES 

 2  REL ZOR TAF 
DAZ NEB 

 ZOR TAF DAZ 
NEB REL 

 3  TID LUM RUD 
MER LEV 

 LUM RUD MER 
LEV TID 

 4  TID ZOR RUD 
MER NEB 

 ZOR RUD MER 
NEB TID 

 
 

Two random orders were generated for each type (i.e., CDEAB and DEABC), 

resulting in four test samples (two Grammar 1-consistent and two Grammar 2-

consistent). The test sentences were concatenated in the same way as the presentation 

set in the Audacity sound editor with an isi of 1000 ms. Each test sample was 

approximately 14.6 s in duration.  

 

Procedure  

We used the head-turn preference procedure (Jusczyk & Aslin 1995, Kemler 

Nelson, Jusczyk, Mandel, Myers, Turk & Gerken 1995). Each infant was held on 

their parent’s lap. The parent was seated in a chair in the center of the test booth. 

Throughout the experiment, the parent listened to music on an iPod over Sennheiser 

PXC 250 noise canceling headphones with Sennheiser NoiseGard. There was a TV 

screen in the center front of the room and two flashing lights on each side of the 

sidewalls. There was also a loudspeaker under each sidelight.  

In order to familiarize the infant with the head-turn procedure, the experiment 

began with a practice music trial. Each trial began by showing a colorful picture on 
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the TV screen in the front. When the infant looked at the TV screen, the picture 

disappeared and one of the sidelights began to flash. The side of the flashing light was 

determined randomly by a computer program each time. When the infant made a head 

turn of at least 30° in the direction of the flashing sidelight, the audio sample began to 

play and continued until its completion or until the infant failed to maintain the 30° 

head turn for 2 consecutive seconds. If the infant turned away briefly, but looked back 

again within 2 s, although the time spent looking away was not included in the count, 

the audio continued playing. The light kept flashing whenever a sample was playing. 

When the sample completed or the infant looked away for more than 2 s, the audio 

and the flashing light stopped and the centering picture appeared on the TV again. 

And the same procedure was repeated. 

A camera placed on top of the TV videotaped the infant. The experimenter 

watched the infant on a TV screen in the adjacent control room, but they could not 

hear any audio. The experimenter recorded the actions of the infant by pressing the 

buttons (center, right, left or away) using the computer program. Since the computer 

program randomly picked which sample to play each time and the experimenter could 

not hear any audio, they were always blind as to which sample was playing on a 

particular trial.  

The practice music trial lasted about 1 min. The familiarization phase began 

right after the music trial. During the familiarization, the maximum amount of time an 

infant was allowed to keep looking at a particular side was 40 s (“maximum block 

length”). The six acquisition samples were played in a random non-repeating order 

each time. If the infant kept looking past the length of a sample (18 s), another sample 
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started without a break. If the infant looked away for more than 2 consecutive 

seconds, the language sample terminated even if this meant truncating a string in 

midstream. In that case, the same sample was played from where it was cut off in the 

next trial. Every infant accumulated a minimum of 70 s familiarization (“switch 

criterion”) before going on to the test phase. This amounts to approximately 19.5 

sentences. 

During the test phase, the four test samples were played in a random non-

repeating order. Here, the maximum block length was 90 s. The four samples were 

divided into two groups – Group 1 (Grammar 1-consistent) and Group 2 (Grammar 2-

consistent). During the test, there was no minimum length a child had to accumulate 

(i.e. no switch criterion), instead, Group 1 was played once and Group 2 was played 

once. Half of the infants heard Group 1 first and the other half heard Group 2 first. If 

the infant kept looking past the length of a sample (14.6 s), another sample from the 

same group started without a break. Unlike the acquisition phase, if the infant looked 

away for more than 2 consecutive seconds, that particular sample terminated and was 

never played again.  

The cycle of a familiarization phase and a test phase were repeated up to 3 

times. The procedure for the first cycle is as stated above. The second and third cycles 

were shorter in length in that the switch criterion was 35 s instead of 70 s. The test 

phase remained the same. If the infant got fussy or started crying, the experiment was 

stopped. If it stopped before it got to the test phase of the first cycle, that infant’s data 

was not included in the analysis. If it stopped after the first test or second test phase, 
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the data was included up to that point. Therefore, among the included infants, the 

accumulated familiarization time could vary approximately from 70 s to 140 s.  

 

4.1.2 Hypotheses and predictions  

Unlike the adult experiments, because we cannot ask infants whether they 

think the test sentence is grammatical in the artificial language, what we have as a 

measure is looking times to the two test samples. Here, let us review our three 

hypotheses.  

 

Table 16: Table of hypotheses 

 Deductive power of learner Nature of predetermined 
representations 

Limited Hypothesis Limited to observed 
distributions 

None 

Beyond and 
Constrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Limited by constraints 
found in natural language 

Beyond and 
Unconstrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Unlimited by constraints 
found in natural language 

 

 

The first hypothesis, Limited Hypothesis is the most conservative hypothesis out of 

the three, since the generalization that is formed from the input is solely based on 

what was observed. In case of the movement test, the infants would assume that you 

can only move something that you have seen moved in the input. For example, if you 

had heard Grammar 1 during the familiarization, you have seen structures ABCDE 

and CDEAB among others. At the test phase, when you are presented with two 
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sentences (CDEAB vs. DEABC), you would be able to tease them apart, because one 

of them (CDEAB) you have already seen and the other one has a structure that was 

never seen before.  

Hypothesis Two – Beyond and Constrained Hypothesis: The generalization 

the infants form is that you can move more than just what you saw moved in the input 

but it has to be a constituent in the artificial language. You cannot move non-

constituents. Under this hypothesis, infants would be able to tell apart the two test 

samples, since one moves a constituent while the other moves a non-constituent. This 

hypothesis predicts the same outcome as predicted by Limited Hypothesis but for 

different reasons. This hypothesis presupposes antecedently known knowledge, 

whereas the Limited Hypothesis does not involve such knowledge.  

Hypothesis Three – Beyond and Unconstrained Hypothesis: What infants 

learn from the input is that you can move any neighboring words. If this is the case, 

both test samples would be allowed since both have neighboring words moved to the 

front (CDE and DE). So at test, infants would equally listen to the two test samples.  

All of these three hypotheses are compatible with the input data that infants 

receive. Out of the three hypotheses, the only one that predicts a different outcome 

from the other two is Beyond and Unconstrained Hypothesis. The predictions of each 

hypothesis are summarized in the table below.  
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Table 17: Predictions for Experiment 3 

 Views Predictions 
Limited Hypothesis Only the observed test 

sentences are grammatical  
Infants will show a 
difference in looking times 

Beyond and 
Constrained Hypothesis 

Only the consistent test 
sentences are grammatical 

Infants will show a 
difference in looking times 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Infants will not show a 
difference in looking times 

 

 

4.1.3 Results and discussion  

The time that each infant oriented to the loudspeaker on each trial was 

recorded. Infants accumulated an average of 114.08 s acquisition time during the 

familiarization phase (range: 70.84 – 195.77 s). Four infants completed 3 cycles, 

another four infants completed 2 cycles and the rest did not complete more than 1 

cycle due to fussiness. Means of infants’ looking times during the test phase were 

computed separately for Group 1 and Group 2. For the infants who heard Grammar 1 

during the familiarization, samples in Group 1 were consistent with their learned 

grammar. Likewise, for infants who heard Grammar 2 as input, Group 2 was 

consistent with their input grammar. Consequently, for Grammar 1 infants, we coded 

the looking times to Group 1 as “consistent” and the looking times to Group 2 as 

“inconsistent”. For Grammar 2 infants, looking times to Group 1 was coded 

“inconsistent” and looking times to Group 2 was coded “consistent”.  

We first provide the data from just the first trial, since everyone completed the 

first trial, whereas not everyone completed the other two trials. The mean looking 

time at either side during the test was 6.79 s. The standard deviation was 7.14 s. The 
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data from the infants whose looking time during the test phase was over 2.5 standard 

deviations from the mean was not included in the analyses. This eliminated the trial 

from one infant who looked at a side for over 37 s. The remaining infants in both 

conditions looked longer to the group that was inconsistent with their input grammar 

(mean = 8.50 s) than the group that was consistent with the input grammar (mean = 

4.12 s). This difference was significant in a two-tailed Paired Samples t-test (t(12) = -

2.423, p = 0.032, r = 0.57) and in a two-tailed Wilcoxon Signed Ranks test (Z = -2.20, 

p = 0.028). 11 out of 13 infants had longer average looking times for the inconsistent 

samples, which is significant by Sign Test (p = 0.0225).  

 

 

 

Figure 47: Experiment 3 results of the first trial 
 

 

* 
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Now we provide the results from all trials. For infants who completed more 

than one trial, the looking times were averaged. The mean looking time at either side 

during the test was 8.63 s (SD = 10.43). Again, the data from the infants whose 

looking time during the test phase was over 2.5 standard deviations from the mean 

was not included in the analyses. This eliminated three trials of two infants. The 

results show that infants in both conditions looked longer to the inconsistent samples 

(mean = 8.64 s) than the group that was consistent with the input grammar (mean = 

4.62 s). This difference was significant in a two-tailed Paired Samples t-test (t(13) = -

2.541, p = 0.025, r = 0.58) and in a two-tailed Wilcoxon Signed Ranks test (Z = -2.23, 

p = 0.026). 11 out of 14 infants had longer average looking times for the inconsistent 

samples.  

 

 

 

Figure 48: Experiment 3 results of all trials 

* 
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Specifically, Grammar 1 infants listened longer to test sentences of the type 

DEABC (inconsistent) that they have never seen before than to CDEAB (consistent) 

which was already familiar to them. In the latter, CDE, which is a constituent in 

Grammar 1 is moved to the front of the sentence, while in the former, DE, which is 

not a constituent in Grammar 1 is moved. And vice versa for the infants in the 

Grammar 2 condition. This result suggests that infants showed a novelty preference. 

The purpose of Experiment 3 was to determine whether infants can learn the 

phrase structure on the basis of statistical information. After only 114 s (less than 2 

min) of exposure, infants distinguished samples that were consistent with their input 

grammar from those that were inconsistent with their input grammar, as reflected by 

significantly longer looking times to the inconsistent samples. Moreover, the fact that 

infants showed a novelty preference by listening longer to the inconsistent samples 

than the consistent sample at test tells us that they were familiarized with the artificial 

language very quickly and, by the time they got to the test phase, that the infants 

already had a well-established representation of the grammar so that new instances 

that were consistent with the grammar were not as interesting as new instances that 

were inconsistent with their established representation. Finally, the results of 

Experiment 3 indicate that 18-month-old infants can learn the phrase structure of an 

artificial language on the basis of statistical distribution without any prosodic or 

semantic information. This supports our claim that statistics can be one of the 

information sources for bootstrapping phrase structure. 
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One alternative account for this result could be that the infants did not really 

have a hierarchical tree representation like we argue, but that they were simply 

noticing the chunks of constituents in the consistent (grammatical) test sentences. 

That is, in the consistent test sample, “good” transitions exist, meaning transitions 

from a category to another category that has been observed (i.e., constituents), 

whereas in the inconsistent test sample, “bad” transitions exist, meaning the transition 

from a category to another category that was not observed in the data (i.e., non-

constituents). One could argue that the results in this experiment could be attained if 

the participants were merely noticing the “good chunks” (constituents) versus “bad 

chunks” (non-constituents). While this is a relevant concern, it cannot have been the 

case. Take a look at the movement test sentences that we used. 

 

(75) Movement test 

Grammatical in Grammar 1 Grammatical in Grammar 2 
CDEAB DEABC 
 

 

There are two good chunks in CDEAB if the familiarization language was Grammar 

1, namely CD and AB. If your familiarization language was Grammar 2, then there 

are two good chunks in DEABC, namely DE and BC. What is important, however, is 

that there are good chunks of one grammar in the other grammar’s consistent test 

sentences as well. Put another way, the inconsistent test sample in your grammar 

always contains good chunks of your grammar too. For instance, if you were 

familiarized with Grammar 1, there is a good chunk (i.e., AB) in the G2-consistent 
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answer, too. If you were familiarized with Grammar 2, there is a good chunk (i.e., 

DE) in the G1-consistent answer. This is illustrated in Figure 39 below. Solid lines 

represent good chunks (i.e., constituents) in G1, and dotted lines represent 

constituents in G2. In this way, simply noticing the “chunks” would not achieve the 

results of this experiment, thus we can reject that alternative account.  

 

 

Figure 49: Number of “good chunks” vs. “bad chunks” 
Solid line represents good chunks for G1 and dotted line represents good chunks for G2 
 

 

Going back to our three hypotheses, the results from Experiment 3 are 

compatible with both Limited Hypothesis and Beyond and Constrained Hypothesis, 

but not Beyond and Unconstrained Hypothesis.  
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Table 18: Predictions and outcomes for Experiment 3 

 Views Predictions Outcome 
Limited Hypothesis Only the observed test 

sentences are 
grammatical  

Infants will show a 
difference in looking 
times 

✓ 

Beyond and 
Constrained 
Hypothesis 

Only the consistent test 
sentences are 
grammatical 

Infants will show a 
difference in looking 
times 

✓ 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Infants will not show a 
difference in looking 
times 

✗ 

 

 

Only the Beyond and Unconstrained Hypothesis predicted that infants would show no 

difference in looking times to the two test samples, however the infants did show a 

significant difference in looking times. Both Limited Hypothesis and Beyond and 

Constrained Hypothesis predicted this outcome, so at this point, we cannot determine 

which of these two hypotheses might be correct. The “consistent” test sample had a 

familiar structure to the infants and it had a moved constituent. The “inconsistent” test 

sample had an unfamiliar structure and it had a moved non-constituent. This is why 

the two hypotheses (Limited Hypothesis and Beyond and Constrained Hypothesis) 

predict the identical outcome. In the following experiments, we hope to tease these 

two hypotheses apart by having a different kind of test items. 
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4.2 Experiment 4 (Infant 2) 

 

Experiment 4 is an attempt to replicate Experiment 3 (Infant 1) with 12-

month-old infants instead of 18-month-olds. Given that by the age of 12 months, 

infants are sensitive to statistical distributions in an artificial language generated by a 

finite state grammar (Gomez & Gerken, 1999; Saffran et al., 2008), we wanted to see 

whether infants younger than 18 months are also sensitive to the distributional 

information signaling the hierarchical phrase structure. 

 

4.2.1 Method 

Participants 

Fifteen infants, approximately 12 months of age were tested (age range: 11;29 

– 13;13; mean: 12;22). Eighteen additional infants were tested but excluded from 

analyses for the following reasons: fidgeted and did not complete test (n = 16) and 

equipment failure (n = 2). The infants were randomly divided between two 

familiarization conditions. Half of the infants (n = 8) heard Grammar 1 as input 

during the familiarization period and the other half (n = 7) heard Grammar 2. Parental 

consent was obtained prior to testing, in accordance with the NIH standards for the 

ethical treatment of human subjects. 
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Material and procedure  

The material (familiarization and test items) and the procedure (head-turn 

preference procedure) used in this experiment were identical to Experiment 3 (Infant 

1). 

 

4.2.2 Results and discussion  

The time that each infant oriented to the loudspeaker on each trial was 

recorded. Infants accumulated an average of 131.18 s of acquisition time during the 

familiarization phase (range: 78.78 – 183.41 s). Nine infants completed 3 cycles and 

six infants completed 2 cycles.  

For the infants who heard Grammar 1 during the familiarization, we coded the 

looking times to test items that were G1-consistent as “consistent” and the looking 

times to test items that were G2-consistent as “inconsistent”. Likewise, for infants 

who heard Grammar 2 during the familiarization, looking times to G2-consistent test 

items were coded “consistent” and looking times to G1-consistent test items were 

coded “inconsistent”.  

 We first provide the data from just the first trial, since everyone completed the 

first trial. The mean looking time at either side during the test was 7.99 s. The 

standard deviation was 7.53 s. The data from the infants whose looking time during 

the test phase was over 2.5 standard deviations from the mean was not included in the 

analyses. This eliminated the trial from two infants who looked at a side for over 30 s. 

The remaining thirteen infants looked at the “consistent” sample for the average of 

4.64 s and the “inconsistent” sample for the average of 6.40 s. This difference was not 
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significant in a two-tailed paired samples t-test (t(12) = -1.484, r = 0.39, p = 0.164). 9 

out of 13 infants had longer average looking times for the inconsistent samples. 

  

 

Figure 50: Experiment 4 results of the first trial 
 

 

Now we provide the results from all trials. For infants who completed more 

than one trial, the looking times were averaged. The mean looking time at either side 

during the test was 8.42 s (SD = 9.70). Again, the data from the infants whose 

looking time during the test phase was over 2.5 standard deviations from the mean 

was not included in the analyses. This eliminated one trial of an infant. The results 

show that infants looked to the consistent samples for the average of 6.36 s, and to the 

inconsistent samples for the average of 7.06 s. This difference was not significant in a 

two-tailed Paired Samples t-test (t(14) = -0.49, r = 0.13, p = 0.631). 9 out of 15 

infants had longer average looking times for the inconsistent samples.  
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Figure 51: Experiment 4 results of all trials 
 

 

This experiment tried to replicate Experiment 3 (first infant experiment), 

using the same stimuli and procedure, with 12-month-old infants, however, the results 

were inconclusive. On average, the 12-month-olds had a slight tendency to look 

longer at the inconsistent samples just like the 18-month-olds, but the difference did 

not reach statistical significance. There could be a few possible causes for this null 

result.  

First possibility is that we did not run enough subjects, and had we run more 

infants, the difference might have reached significance. A power analysis revealed 

that in order to achieve a power of 0.8, we need to run 76 subjects in total. Thus, it is 

possible that if we run more subjects, we will obtain an effect.  

Second possibility is that the head-turn preference procedure might not have 

been suited for the infants of this age. We did lose more than half of the infants we 

ran because they were too fidgety and did not pay attention. It could have been that 
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the artificial languages used in our study were too boring or too complex for them to 

stay attentive. However, given the fact that past research (Gomez & Gerken 1999; 

Shady 1996; Saffran et al. 2008) was successfully conducted using this method 

indicates that this probably was not the biggest issue.  

Third, the stimuli could have been too complex and it might have been 

impossible for 12-month-olds to track this type of distributional information. The 

only cue to the structure was varying transitional probabilities between words within 

phrases and across phrases. Past studies have showen that much younger infants (8 

months) are capable of tracking transitional probabilities between syllables to learn 

word boundaries (Saffran et al. 1996a). In Saffran et al. (1996a), however, all that the 

infants had to do was figure out the word boundaries – there was no hierarchy 

involved in the input or the test items. All they had to do was track the linear 

distribution. Similarly, although the 12-month-olds successfully learned the syntactic 

system of an artificial language in Gomez & Gerken (1999) and Saffran et al. (2008), 

the artificial languages in those past studies did not necessarily involve hierarchy – 

the system could have been learned through tracking the linear word order. In both 

Gomez & Gerken (1999) and Saffran et al. (2008), the experimental results could 

have been achieved by infants learning finite state grammars. The infants in those 

studies did not need to have had a hierarchical representation of structure. On the 

other hand in our study, not only do infants have to track the distributions, they also 

have to build or map the abstract hierarchical phrase structure based on them. It could 

have been that the 12-month-old infants were too young to do that mapping, because 

their computational capacities do not yet allow them to make inferences from this 
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type of statistics. What we speculate is that 12-month-olds require more exposure to 

allow them to draw relevant syntactic conclusions.  

 

 

4.3 Experiment 5 (Infant 3) 

 

In the previous infant experiments in this dissertation, the familiarization input 

included sentences created via movement rules. And at test, they were given two 

kinds of sentences – sentences in which a constituent in the input grammar was 

moved and sentences in which a non-constituent was moved. We are calling these 

consistent and inconsistent test samples respectively. The infants had seen the 

structure of the consistent test sentences in the input, although the exact word 

sequences were new. And the results of the first infant experiment indicate that the 

18-month-olds could at least differentiate the consistent and inconsistent test samples. 

However, because the structure of the consistent test items was already seen during 

the familiarization, it does not tell us whether infants can extend what they have 

learned to novel structures. More specifically, the results of Experiment 3 (Infant 1) 

were compatible with both Limited Hypothesis and Beyond and Constrained 

Hypothesis, since both predicted the identical outcome. This was because the 

“consistent” test sample in Experiment 3 (Infant 1) had a familiar structure to the 

infants and it had a moved constituent. The “inconsistent” test sample had an 

unfamiliar structure and it had a moved non-constituent. The Limited Hypothesis is 

the view that the deductive power of a learner is limited to the observed distributions, 
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and statistical learning does not interact with innate constraints. Beyond and 

Constrained Hypothesis, on the other hand, is the view that the acquired 

representations have deductive consequences beyond what can be derived from the 

observed statistical distributions. The results of Experiment 3 (Infant 1) do not 

support one or the other of the two. But given that this is the critical question in this 

dissertation, we would want to find a way to tell them apart. 

In this experiment, we will use something the infants have not seen in the 

input as test sentences. In particular, the input will include movement of some 

constituents, but during the test phase, we will present sentences that move different 

constituents than in the familiarization. If all they learn is entirely based on the input, 

they might not be able to differentiate the two test samples, because neither structure 

was seen in the input. On the other hand, if they could generalize beyond what was 

observed, then they may be able to differentiate what is linguistically possible, but 

novel, and what is linguistically impossible and novel. 

 

4.3.1 Method  

Participants 

 Twenty-four infants, approximately 18 months of age were tested (age range: 

17 months 6 days to 19 months 18 days; mean: 18 months 28 days). Seven additional 

infants were tested but excluded from analyses because of fussiness (n = 5) and 

equipment failure (n = 2). Parental consent was obtained prior to testing, in 

accordance with the NIH standards for the ethical treatment of human subjects. 
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Material 

The artificial language and words used in this experiment were identical to 

Grammar 2 in the preceding infant experiments in this study. We only used Grammar 

2 in this experiment and not Grammar 1. The reasons for this will be explained in the 

following section where we talk about test sentences. The TP patterns of the 

presentation set are given in the table below.  

 

Table 19: Transitional probabilities for 30 input sentences in Experiment 5 

 A-B B-C C-D D-E 
Forward TP 0.28 1.00 0.17 1.00 
Backward TP 0.21 1.00 0.15 1.00 
 

Just like in previous infant experiments, the familiarization input included 

operations on constituents seen in natural languages like optionality, repetition, 

substitution by a pro-form, and most importantly, movement. However, only one 

constituent was moved in the familiarization set, namely DE. No other constituents 

were moved in the input. The following are PS trees for sentences in the artificial 

grammar used in this experiment with and without movement. 
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Figure 52: PS tree for a familiarization sentence without movement      
   

 

 

Figure 53: PS tree for a familiarization sentence with movement 
 

 

Test items 

Notice that the movement rules in the familiarization front the constituent DE 

to the front (Figure 53). At test, we moved a different constituent (and non-

constituent) to the front. Test sentences are: BCADE and CDABE. The test consisted 
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of 4 test items, which are shown below. None of the word sequences in all the test 

items appear in the familiarization set.  

 

(76) Test sentences in Experiment 5 

Grammatical Ungrammatical 
Type Sentences Type Sentences 

HOX JES KOF SOT FAL JES SOT KOF HOX FAL 
NEB REL DAZ ZOR TAF REL ZOR DAZ NEB TAF 
LEV TID MER LUM RUD TID LUM MER LEV RUD 

BCADE 

NEB TID MER ZOR RUD 

CDABE 

TID ZOR MER NEB RUD 
 

 

 

Figure 54: “Consistent” test sample 
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Figure 55: “Inconsistent” test sample  
 

 

In the test sentence of the structure BCADE, what is moved to the front is BC, 

which is a constituent in this artificial language. Since movement of a constituent is a 

possible rule in natural languages, this test sentence is consistent with constraints of 

natural language, and we will call this the “consistent” test sample. On the other hand, 

in the test sentence of the structure CDABE, what is moved is CD, which is not a 

constituent in this language. Because movement of a non-constituent is an impossible 

rule in natural languages, this test sentence violates constraints of natural languages, 

and we call this the “inconsistent” test sample.  

The test sentences were concatenated in the same way as the presentation set 

in the Audacity sound editor with an isi of 1000 ms. Each test sample was 

approximately 12.7 s in duration.  
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It should also be pointed out that in this experiment, we used only one 

artificial language (which is identical to Grammar 2 in previous experiments in this 

dissertation). The reason for this is because we needed a grammar in which two 

different constituents can be moved to the front. In Grammar 2 (the grammar used in 

this experiment), the canonical sentence is [[A[BC]][DE]]. There are two separate 

constituents that can be moved around – BC and DE. We needed to have two distinct 

constituents to be moved to the front, so that in the familiarization set, we can have 

one of them to move to the front, and at test, we can move the other constituent to 

move to the front.  

In Grammar 1, the canonical sentence is [AB][[CD]E]. In this grammar, CD 

(and CDE) can be moved to the front, but AB cannot. More specifically, you could 

move AB to the front, but it will not make any difference in terms of linear sound 

sequences and it is impossible to let the participants know that we intended to have 

moved AB to the front. That is why we did not use Grammar 1 in this experiment.  

 

Procedure  

 A slightly modified version of the head-turn preference procedure (Jusczyk & 

Aslin 1995, Kemler Nelson, et al. 1995) was used for this experiment. The difference 

between this and the other procedure is that in this procedure, the familiarization 

period was fixed (2 min) with a silent movie playing on the TV screen. This is the 

same procedure as the one reported in Gerken (2004, 2006), Gerken, Wilson & Lewis 

(2005) and Gerken & Bolt (2008).  
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The reason we changed to this procedure is because we noticed when we ran 

previous experiments that a number of infants could not pay long enough attention to 

fully participate in the head-turn procedure during the familiarization. In regular 

head-turn preference experiments, infants must actively participate in the head-turn 

looking task even during the familiarization period, because the familiarization audio 

plays only when the infants look at the flashing light. Therefore, even though there is 

a minimum amount of familiarization time that all infants must accumulate, in a way, 

the familiarization phase is infant-controlled, and how much input they get depends 

on how attentive they are. Because of this, we noticed that a number of infants were 

not attentive enough to accumulate required amount of input and we were losing a lot 

of subjects this way.  

In the procedure for this experiment, each infant was held on their parent’s 

lap, while the parent was seated in a chair in the center of the testing booth. 

Throughout the experiment, the parent listened to music on an iPod over Sennheiser 

PXC 250 noise canceling headphones with Sennheiser NoiseGard. There was a TV 

screen in the center front of the room. During the familiarization period, infants 

watched a silent movie, while the audio input of the artificial language played 

continuously from the speakers for 2 solid minutes. The video used in this experiment 

was of dogs flying in slow motion. This way, every infant received an equal amount 

of familiarization time (2 min). 

After the familiarization phase, the test phase began. The test phase was 

basically the same as that of regular head-turn procedure. The only difference was 

that instead of flashing lights on sidewalls, the TV screen was used as the attention 
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getter. The test phase began by showing a colorful picture on the TV screen in the 

front. When the infant looked at the TV screen, the audio of one of the test samples 

started to play from the speakers, and continued until the infant failed to maintain the 

look at the TV screen for 2 consecutive seconds. If the infant turned away briefly, but 

looked back again within 2 s, although the time spent looking away was not included 

in the count, the audio continued playing. The colorful picture remained on the TV 

screen whenever a sample was playing. When the infant looked away for more than 2 

s, the audio stopped and the TV went blank. Then, the colorful picture appeared on 

the TV again and the same procedure was repeated for the other test sample. Which 

test sample (consistent or inconsistent with the input grammar) played first was 

randomly determined by a computer program each time.  

A camera placed on top of the TV videotaped the infant. The experimenter 

watched the infant on a TV screen in the adjacent control room, but they could not 

hear any audio. The experimenter recorded the actions of the infant by pressing the 

buttons (look or away) using the computer program. Since the computer program 

randomly picked which sample to play each time and the experimenter could not hear 

any audio, they were always blind as to which sample was playing on a particular 

trial. 

 

4.3.2 Hypotheses and predictions 

There are a few possible outcomes in this experiment. Hypothesis One 

(Limited Hypothesis): The most conservative hypothesis would be that the 

generalization that is formed from the input is solely based on what was observed. 
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You can only move something that you have seen moved in the input. Specifically in 

this case, what infants learn from the familiarization input is that you can only move 

the constituent DE in this artificial language, and nothing else. Under this hypothesis, 

then both test samples would be considered illicit, because both have something that 

is not DE moved (BC and CD).  

Hypothesis Two (Beyond and Constrained Hypothesis): A less conservative 

hypothesis would be that it involves a more abstract generalization that goes beyond 

what was observed in the input. For instance, it might be hypothesized that what 

infants learn from this familiarization is that you can move constituents in the 

artificial language, but not non-constituents, which is compatible with the input they 

get. Under this hypothesis, infants would consider the “consistent” test sample to be 

licit, while the “inconsistent” test sample would be illicit. This is the hypothesis that 

is most compatible with what natural languages are like. That is because natural 

languages allow movement of a constituent but not of a non-constituent.  

Hypothesis Three (Beyond and Unconstrained Hypothesis): What infants 

learn from the input is that you can move any two neighboring words. This 

hypothesis is also compatible with the input data they receive. If this were the case, 

both test samples would be allowed since both have two neighboring words moved to 

the front (BC and CD). This is the most liberal hypothesis out of the three hypotheses 

in that it maximally allows what you can move. The three hypotheses are summarized 

in the table below. 
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Table 20: Table of hypotheses 

 Deductive power of learner Nature of predetermined 
representations 

Limited Hypothesis Limited to observed 
distributions 

None 

Beyond and 
Constrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Limited by constraints 
found in natural language 

Beyond and 
Unconstrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Unlimited by constraints 
found in natural language 

 

 

Because we cannot ask infants whether they think the test sentence is 

acceptable or grammatical in the artificial language or not, what we have as a 

measure is looking times to the two test samples. If Limited Hypothesis is correct, we 

should see no difference in looking times to the consistent or inconsistent samples, 

because both would be considered ungrammatical by the infants.  

If Beyond and Constrained Hypothesis is true, we would see a difference in 

looking times although we do not have a prediction as to which sample the infants 

would look longer at. One possibility is that they would look longer at the consistent 

test sample, because they think that is the “grammatical” sentence and it is compatible 

with the input grammar. On the other hand, they might look longer at the inconsistent 

test sample because that is the “ungrammatical” sentence which violates the structure 

of the input grammar.  Notice that both types of test samples are “novel” in this 

experiment, because both test samples involve a new structure that was not included 

in the input. Therefore, we cannot simply predict that the infants would show a 

novelty preference. 
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If Beyond and Unconstrained Hypothesis is correct, the infants should show 

no difference in looking times, since both test samples would be considered licit. So 

only if Beyond and Constrained Hypothesis is correct should we see a difference in 

infants’ looking times. The predictions for each hypothesis are summarized in the 

following table.  

 

Table 21: Predictions for Experiment 5 

 Views Predictions 
Limited Hypothesis Both test sentences are 

ungrammatical 
Infants will not show a 
difference in looking 
times 

Beyond and 
Constrained Hypothesis 

Only the consistent test 
sentences are grammatical 

Infants will show a 
difference in looking 
times 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Infants will not show a 
difference in looking 
times 

 

 

4.3.3 Results and discussion  

The time that each infant oriented to the loudspeaker on each trial was 

recorded. All infants accumulated 2 min of acquisition time during the familiarization 

phase.  

There were two types of test sentences – BCADE and CDABE. BCADE 

involved movement of a novel constituent, so we will call it the “consistent” test 

sample in the following analyses. CDABE involved movement of a non-constituent, 

so this will be called the “inconsistent” test sample. 
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First, we report the results in terms of raw looking times. The mean looking 

time at either test sample was 17.66 s (SD = 19.73 s). The data from the infants 

whose looking time during the test phase was over 2.5 standard deviations from the 

mean was not included in the analyses. This eliminated trials from two infants who 

listened to a test sample for over 67 s. The remaining 22 infants, on average, looked 

longer to the inconsistent test sample (mean = 18.97 s) than the consistent test sample 

(mean = 10.16 s). This difference was significant in a two-tailed Paired Samples t-test 

(t(21) = -2.489, p = 0.021, r = 0.48) and in a two-tailed Wilcoxon Signed Ranks test 

(Z = -2.451, p = 0.014). 17 out of 22 infants had longer average looking times for the 

inconsistent samples. This difference was significant in Sign Test (p = 0.017). 

 

 

Figure 56: Experiment 5 results. Mean looking time (s) 
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 Next, we report the proportion of looking time to each test sample. This is 

because we found a major tendency of infants looking to the first sample presented to 

them during the test phase much longer than the second sample presented to them, 

regardless of their consistency to the input grammar (consistent or inconsistent). In 

particular, infants listened to the first test item on average for 22.26 s and to the 

second test item for 13.07 s (two-tailed Paired Samples t-test: t(23) = 1.784, p = 

0.088; two-tailed Wilcoxon Signed Ranks test: Z = -1.943, p = 0.052). 

This tendency to look at the first sample presented to them longer is quite 

natural considering the setup. The infants first watch a silent movie for 2 minutes 

(while the artificial language plays from the speakers), then on the TV, a bright, 

colorful picture comes up which infants see for the first time. In this situation, it is 

expected that the infants get interested in the new picture and look at it for a long time 

the first time they see it.  

To avoid this tendency to influence the data of the results, we took the mean 

of each infant’s looking times to the first and second test items, then we calculated the 

looking times to the first and second test items as a proportion over the mean. The 

data from the infants whose looking time during the test phase was over 2.5 standard 

deviations from the mean was not included in the analyses. This eliminated trials 

from two infants who listened to a test sample for over 67 s. The remaining 22 

infants, on average, looked longer to the inconsistent test sample (mean = 1.267) than 

the consistent test sample (mean = 0.733). This difference was significant in a two-

tailed Paired Samples t-test (t(21) = -3.226, p = 0.004, r = 0.58) and in a two-tailed 

Wilcoxon Signed Ranks test (Z = -2.711, p = 0.007). 17 out of 22 infants had longer 
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average looking times for the inconsistent samples. This difference was significant in 

Sign Test (p = 0.017). 

 

 

Figure 57: Experiment 5 results. Proportion of looking time over mean 
 

 

The results show that 18-month-old infants looked longer at the inconsistent 

test sample, even with the consideration for the effect of longer look time towards the 

first test item. These results suggest that the distributional information can be used to 

cue phrase structure and that the infants can distinguish sentences which moved novel 

constituents vs. sentences which moved novel non-constituents. 

Notice that the term “novelty” preference is not exactly accurate here, because 

both test samples were novel, and even the “consistent” test sample was never 

observed previously. More specifically, both test types involved a structure that was 
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not seen in the input (see Figure 54 and Figure 55 above). In this experiment, the 

familiarization set included sentences derived via a movement rule, but only one 

constituent, namely DE, was moved in the input (DEABC). The “consistent” test item 

(BCADE) was derived by movement of a constituent in the input language, but that 

constituent had never been moved in the input. So the structure was still novel. The 

“inconsistent” test item (CDABE) was derived by movement of a non-constituent in 

the artificial language. The results indicate that infants could distinguish the two types 

of test samples and they were not simply choosing what they had seen before, but at 

the very least, they were doing something new.   

Furthermore, it should be noted here that this result could not have been 

obtained by a finite state grammar. The familiarization language in this experiment 

could be expressed by an FSA like the following. 

 

 

Figure 58: FSA for familiarization sentences in Experiment 5 
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However, if you only have the FSA like the one above, it is impossible to tell apart 

the two test sentences – BCADE and CDABE. Neither test structure (consistent or 

inconsistent) is represented in this FSA. Therefore, the infants must have had a phrase 

structure representation of the artificial language in order for them to succeed.  

In terms of our three hypotheses, the predictions of the Limited Hypothesis 

and Beyond and Unconstrained Hypothesis were not borne out, since both hypotheses 

predicted no difference in infants’ looking times. This suggests that the generalization 

the infants formed based on the received input is not that you can only move the 

constituent DE in this language. Furthermore, the generalization formed cannot be 

that you can move any two neighboring words either. The results of this experiment 

are only compatible with Beyond and Constrained Hypothesis, which predicted that 

infants would show a difference in looking times between the two test samples. This 

suggests that the generalization the infants formed was you can move any constituent 

in the language but you cannot move non-constituents. This is the only conclusion 

that is compatible with the results of this experiment. 

 

Table 22: Predictions and outcomes for Experiment 5 

 Views Predictions Outcome 
Limited Hypothesis Both test sentences are 

ungrammatical 
Infants will not show 
a difference in 
looking times 

✗ 

Beyond and 
Constrained 
Hypothesis 

Only the consistent test 
sentences are 
grammatical 

Infants will show a 
difference in looking 
times 

✓ 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Infants will not show 
a difference in 
looking times 

✗ 
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In other words, at least at the end of the experiment, the infants knew that 

moving constituents is a possible operation in language, but not moving non-

constituents. If the infants have such general knowledge that moving constituents is 

allowed, they could extend that knowledge to allow movement of new constituents. 

But what is still unclear is where this knowledge came from. It could be that children 

knew this even before the familiarization period, or it could be that infants learned 

this general rule during the experiment. We will attempt to answer this question in 

our next experiment. More specifically, we will remove all the movement sentences 

from the familiarization input and test infants on the movement test (movement of a 

constituent vs. non-constituent). If the knowledge that you can only move a 

constituent is innate, then we would expect children to succeed at the task, whereas if 

the knowledge was acquired during the experiment and if the input information was 

necessary, then we would expect children to fail in the next experiment.  

 

 

4.4 Experiment 6 (Infant 4) 

 

The results of Experiment 5 (Infant 3) supported the Beyond and Constrained 

Hypothesis which indicates that infants formed a generalization that you can move a 

new element as long as it is a constituent. What is still unclear is that where that 

knowledge came from. Did infants form that generalization based on the knowledge 

they acquired during the 2-minute exposure to the artificial language? Or did they 

have that knowledge prior to the experiment? In this experiment, we will try to 
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answer this question by removing all the movement sentences (just as we did in 

Experiment 2 (Adult 2)) and test them on movement test.  

There are a few possible outcomes. First possibility comes from a view that 

the input signal contains sufficient statistical regularities that guide the learner to 

arrive at the abstract representations (Elman et al. 1996; Bybee 1998; Tomasello 

2000). On this view, a learner does not come with preexisting linguistic symbolic 

component, and learners’ task is to collect and compile accurately predictive statistics 

from the data, thus the outcome of the learning is solely based on the observed input 

distributions. If this were the case, it is necessary to observe some constituent moving 

in the input to learn that you can move a constituent; consequently, we would expect 

infants to not be able to distinguish two test samples in this experiment.  

Second possibility comes from a view that learners use statistics to simply 

identify particular abstract syntactic representations (Miller & Chomsky 1963; Yang 

2006; Pearl 2007). On this view, the learner may come equipped with antecedent 

knowledge about possible linguistic structures and representations, and statistical 

learning interacts with that knowledge. Under this selective learning theory, the 

acquired representations have deductive consequences beyond what can be derived 

from the observed statistical distributions alone. If this were the case, it would not be 

necessary to have observed movement to learn that you can only move a constituent, 

then we would expect infants to be able to differentiate the two test samples.  
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4.4.1 Method  

Participants 

 Thirty-one infants, approximately 18 months of age were tested (age range: 17 

months 3 days to 19 months 13 days; mean: 18 months 10 days). Fourteen additional 

infants were tested but excluded from analyses because of fussiness (n = 11), crying 

(n = 2) and inattentiveness (n = 1). Parental consent was obtained prior to testing, in 

accordance with the NIH standards for the ethical treatment of human subjects. 

 

Material 

The same artificial grammars and words as in the previous experiments in this 

dissertation (Grammar 1 and Grammar 2) were used. The only difference was that all 

examples generated via movement rules were excluded from the familiarization. Just 

like in Experiment 3 (Infant 1), 30 sentences were picked as the presentation set. 

While the input lacked movement rules, it still included other manipulations such as 

repetition, optionality and substitution (by something other than pro-forms). In the 

Grammar 1 presentation set, one sentence (3.3%) was the canonical sentence type 

(ABCDE), three sentences (10%) involved substitution (ABF; i.e., the constituent 

CDE was replaced by F), six sentences (20%) involved repetition (ABCDECD) and 

twenty sentences (66.7%) involved both substitution and repetition (ABFCD; i.e., the 

constituent CDE was replaced by F and a constituent CD was added on the end). In 

the Grammar 2 presentation set, five sentences (16.7%) involved substitution (FDE; 

i.e., the constituent ABC was replaced by F), four sentences (13.3%) involved 

repetition (ABCDEBC) and twenty-one sentences (70%) involved both substitution 
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and repetition (FDEBC; i.e., the constituent ABC was replaced by F and a constituent 

BC was added on the end). These features contributed to make the TPs between 

words within phrases higher than the TPs across phrases. The resulting TP patterns of 

the presentation set are given below. All 30 sentences were randomized. The sentence 

types and 30 sentences that appeared in the presentation set are shown in Appendix E.  

 

Table 23: Transitional probabilities for 30 input sentences in Grammar 1 

 A-B B-C C-D D-E 
Forward TP 1.00 0.23 1.00 0.21 
Backward TP 1.00 0.21 1.00 1.00 
 

Table 24: Transitional probabilities for 30 input sentences in Grammar 2 

 A-B B-C C-D D-E 
Forward TP 1.00 1.00 0.14 1.00 
Backward TP 0.14 1.00 0.13 1.00 
 

 

Following Gomez & Gerken (1999), the 30 sentences were randomly grouped 

into six sets of 5 (henceforth “samples”). Using the same word tokens recorded for 

previous experiments, the five sentences of each sample were concatenated in the 

Audacity sound editor with an isi of 1000 ms in a random order. Each familiarization 

sample was approximately 17 s in duration.  

The test sentences were identical to the ones in Experiment 3 (Infant 1). That 

is, only the movement test was used here as well, namely CDEAB vs. DEABC. The 

test consisted of 4 items, which are shown below.  
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(77) Movement test 

Grammatical in Grammar 1 Grammatical in Grammar 2  
Type Sentences Type Sentences 

Movement 
test 

1 CDEAB JES SOT FAL KOF 
HOX 

DEABC SOT FAL KOF 
HOX JES 

 2  REL ZOR TAF DAZ 
NEB 

 ZOR TAF DAZ 
NEB REL 

 3  TID LUM RUD 
MER LEV 

 LUM RUD MER 
LEV TID 

 4  TID ZOR RUD 
MER NEB 

 ZOR RUD MER 
NEB TID 

 
 

Two random orders were generated for each type (i.e., CDEAB and DEABC), 

resulting in four test samples (two Grammar 1-consistent and two Grammar 2-

consistent). The test sentences were concatenated in the same way as the presentation 

set in the Audacity sound editor with an isi of 1000 ms. Each test sample was 

approximately 14.6 s in duration.  

It should be noted here that the exposure sentences could be generated by 

finite state grammars, like the following.  

 

 

Figure 59: FSA for familiarization sentences of Grammar 1 in Experiment 6 
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Figure 60: FSA for familiarization sentences of Grammar 2 in Experiment 6 
 

 

But it should also be noted that these FSAs cannot generate the test sentences. Both 

types of test sentences (grammatical or ungrammatical) cannot be generated by those 

FSAs.  

 

Procedure  

 The procedure we used in this experiment was identical to Experiment 5 

(Infant 3) with fixed familiarization period. It was a slightly modified version of the 

head-turn preference procedure (Gerken 2004, 2006; Gerken, Wilson & Lewis 2005; 

Gerken & Bolt 2008) in that during the familiarization phase, the audio stimuli played 

continuously for 2 minutes while a silent movie (with moving laser lights) played on 

the TV screen. The main difference between this procedure and the regular head-turn 

procedure is that the familiarization phase is not infant-controlled here. The reason 

for this is so we would not lose so much data due to lack of attention and interest of 

the infants during the familiarization phase. The infants participate in the head turning 

only in the test phase, which was identical to the regular head-turn preference 

procedure.  
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4.4.2 Hypotheses and predictions 

Let us review our three hypotheses. Hypothesis One (Limited Hypothesis): 

The generalization that the infants form is entirely based on the observed input, and 

the learners are not equipped with preexisting linguistic knowledge about possible 

structures (Elman et al. 1996; Bybee 1998; Tomasello 2000). 

Hypothesis Two (Beyond and Constrained Hypothesis): A learner is equipped 

with preexisting knowledge about possible structures, and statistics is merely used as 

a source of information that helps a learner select the correct grammar that derives the 

matching surface strings. Under this selective learning theory, the acquired 

representations have deductive consequences beyond what can be derived from the 

observed statistical distributions alone. This hypothesis proposes that learners’ 

generalization extends to novel structures, as long as they are compatible with 

antecedently known constraints. An example of an antecedently known constraint 

would be something like movement of a constituent, which is a natural rule in 

languages. 

Hypothesis Three (Beyond and Unconstrained Hypothesis): Learners 

generalize beyond what they see in the input but their generalizations are not 

necessarily constrained in a predictable way. An example of this might be something 

like movement of a non-constituent, which is unnatural in natural languages, but if a 

learner is unconstrained, this is a logical possibility. The three hypotheses are 

summarized in the table below. 
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Table 25: Table of hypotheses 

 Deductive power of learner Nature of predetermined 
representations 

Limited Hypothesis Limited to observed 
distributions 

None 

Beyond and 
Constrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Limited by constraints 
found in natural language 

Beyond and 
Unconstrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Unlimited by constraints 
found in natural language 

 

 

In this experiment, we removed all the sentences generated by movement 

rules from the familiarization set, which means that the test sentences have novel 

structures that were not seen in the input. According to the Limited Hypothesis, 

learners do not generalize beyond what was observed in the input. So at test, when 

they see two novel structures – one that moved a constituent and one that moved a 

non-constituent – they would consider both to be illicit, because neither was seen in 

the input. Thus, the performance should be at chance.  

According to Beyond and Constrained Hypothesis, learners generalize beyond 

the observed input, but their generalizations are restricted in a principled way. For 

instance, learners might have the knowledge that you cannot move a non-constituent 

in language. If this is the case, on the movement test, the participants would allow the 

“consistent” test sentence in which a constituent was moved, but they would not 

allow the “inconsistent” test sentence in which a non-constituent was moved, because 

while the former is a possible movement, the latter is an impossible operation in 

language.  
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According to Beyond and Unconstrained Hypothesis, learners’ generalizations 

could go beyond what was observed in the input and those generalizations do not 

have to be constrained in a principled way. For example, one generalization the 

learners could form is that you can move any neighboring elements. If this is the case, 

on the movement test, learners might allow both test structures even though they are 

both novel, because both test sentences move neighboring words. If so, both test 

sentences would be licit for the learners and the performance at test would be at 

chance, that is, the learners would not choose one over the other. 

Because we cannot ask infants whether they consider the test sentence to be 

grammatical or acceptable, what we measure is their looking times toward each test 

type. If Limited Hypothesis was correct, we should see no difference in looking times 

to the consistent or inconsistent samples, because both would be considered 

ungrammatical by the infants.  

If Beyond and Constrained Hypothesis is correct, we would see a difference in 

looking times although we do not have a particular prediction as to which sample the 

infants would look longer at. One possibility is that they would look longer at the 

consistent test sample, because they think that is the “grammatical” sentence and it is 

compatible with the input grammar. On the other hand, they might look longer at the 

inconsistent test sample because that is the “ungrammatical” sentence which violates 

the structure of the input grammar. In Experiment 3 (Infant 1), the infants showed a 

novelty preference and looked longer at the “inconsistent” test sample. We suggested 

that that could have been due to the fact that infants were familiarized by the input 

and by the time of the test phase, they were already bored, so they preferred to listen 
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to the new, more surprising sentences. However, this could have been due to the fact 

that in Experiment 3 (Infant 1), the structures of the “consistent” test sentences had 

already appeared in the familiarization phase, which strengthens the possibility that 

the infants were bored with the familiar structures and were more intrigued by the 

new structures. In this experiment, however, both test structures are novel, so the 

infants might not behave the same way they did in Experiment 3.   

If Beyond and Unconstrained Hypothesis is correct, the infants should show 

no difference in looking times, since both test samples would be considered licit. So 

only if Beyond and Constrained Hypothesis is correct, we should see a difference in 

infants’ looking times. The predictions of each hypothesis are summarized in the 

following table.  

 

Table 26: Predictions for Experiment 6 

 Views Predictions 
Limited Hypothesis Both test sentences are 

ungrammatical 
Infants will not show a 
difference in looking 
times 

Beyond and 
Constrained Hypothesis 

Only the consistent test 
sentences are grammatical 

Infants will show a 
difference in looking 
times 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Infants will not show a 
difference in looking 
times 

 

  

4.4.3 Results and discussion  

The time that each infant oriented to the loudspeaker on each trial was 

recorded. All infants accumulated 2 min of acquisition time during the familiarization 
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phase. Just like in Experiment 3 (Infant 1), for the infants who heard Grammar 1 

during the familiarization, we coded the looking times to “grammatical in G1” test 

sample as “consistent” and the looking times to “grammatical in G2” as 

“inconsistent”. Likewise, for infants who were familiarized with Grammar 2, looking 

times to grammatical-in-G2 test sample were coded “consistent” and looking times to 

grammatical-in-G1 test sample were coded “inconsistent”.  

We report the results in terms of raw looking times. The mean looking time at 

either test sample was 13.5 s (SD = 11.3 s). The data from the infants whose looking 

time during the test phase was over 3 standard deviations from the mean was not 

included in the analyses. This eliminated trials from two infants who listened to a test 

sample for over 47 s. In addition, the data from the infants whose looking time during 

the test phase was shorter than 3 s was also excluded from the analyses, on the 

reasoning that less than 3 s is not an adequate amount of time to hear enough 

sentences to make a decision about the structure of the artificial language. This 

eliminated trials from four infants. The remaining 25 infants, on average, looked 

longer to the consistent test sample (mean = 15.08 s) than the inconsistent test sample 

(mean = 10.70 s). This difference was significant in a two-tailed Paired Samples t-test 

(t(24) = 2.096, p = 0.047, r = 0.39). 15 out of 25 infants had longer average looking 

times for the consistent samples.  

 



 

 181 
 

 

Figure 61: Experiment 6 results 
 

 

The results show that 18-month-old infants looked longer at the consistent test 

sample than to the inconsistent test sample. These results suggest that the infants are 

sensitive to the transitional probabilities as a cue to the hierarchical phrase structure 

and that the infants can distinguish sentences that moved constituents vs. sentences 

that moved non-constituents in the input grammar. Just like in Experiment 5 (Infant 

3), the term “novelty preference” is not appropriate here either because both test 

samples involved novel structures. In this experiment, the infants listened longer to 

the consistent sample, but even the consistent test sample involved a structure the 

infants had never seen before.  

If we were to speculate about reasons for this result, one could argue that the 

infants listened longer to the consistent test sample because that was the grammatical 
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sentence in the artificial grammar. On the other hand, in the previous experiments 

(Experiments 3 & 5), the infants listened significantly longer at the inconsistent test 

samples, meaning they listened longer at the ungrammatical sentences. This 

experiment is the only experiment in this dissertation in which the infants showed a 

longer looking time to the consistent test sample. One thing that is different between 

this experiment and all the other infant experiments is that since the input lacked 

movement and substitution by proforms sentences, the number of sentence types of 

the input was much smaller than in other experiments. For example, in Experiment 3 

(Infant 1) and Experiment 5 (Infant 3), there were 15 sentence types in the input, 

whereas in this experiment, there were only 4 sentence types in Grammar 1 input and 

only 3 sentence types in Grammar 2 input. Therefore, it is possible that infants in 

previous experiments were bored with their artificial grammar by the time that the 

familiarization period ended, but the infants in this experiment were more interested 

in seeing the different sentence types of their grammar.  

Another possible reason for infants looking longer at the consistent sample is 

that, unlike previous experiments, even the consistent test structures were novel 

sample in this experiment. In Experiment 3 (Infant 1), the actual word strings of test 

sentences were novel, but the structures were not. But in this experiment, even the 

structures of grammatical test sentences were new, so that could be why infants were 

more interested in them.  

Recall that the exposure sentences in this experiment could be generated by 

finite state grammars as in Figure 59 and Figure 60. Importantly, however, the results 

of this experiment could not have been obtained by those finite state grammars. That 
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is because those FSAs cannot generate the test sentences. If you only have the FSAs 

like the ones above, it is impossible to tell apart the two test structures – BCADE and 

CDABE. Neither test structure (consistent or inconsistent) is represented in this FSA. 

Therefore, the infants must have had a phrase structure representation of the artificial 

language in order for them to succeed. To the best of my knowledge, this is the first 

study showing infants learning of a hierarchical phrase structure instead of a finite 

state grammar.  

One alternative account for this result could be that the infants did not really 

have a hierarchical tree representation like we argue, but that they were simply 

noticing the chunks of constituents in the consistent (grammatical) test sentences. 

That is, in the consistent test sample, “good” transitions exist, meaning transitions 

from a category to another category that has been observed (i.e., constituents), 

whereas in the inconsistent test sample, “bad” transitions exist, meaning the transition 

from a category to another category that was not observed in the data (i.e., non-

constituents). One could argue that the results in this experiment could be attained if 

the participants were merely noticing the “good chunks” (constituents) versus “bad 

chunks” (non-constituents). While this is a relevant concern, it cannot have been the 

case. Take a look at the movement test sentences that we used. 

 

(78) Movement test 

Grammatical in Grammar 1 Grammatical in Grammar 2 
CDEAB DEABC 
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There are two good chunks in CDEAB if the familiarization language was Grammar 

1, namely CD and AB. If your familiarization language was Grammar 2, then there 

are two good chunks in DEABC, namely DE and BC. What is important, however, is 

that there are good chunks of one grammar in the other grammar’s consistent test 

sentences as well. Put another way, the inconsistent test sample in your grammar 

always contains good chunks of your grammar too. For instance, if you were 

familiarized with Grammar 1, there is a good chunk (i.e., AB) in the G2-consistent 

answer, too. If you were familiarized with Grammar 2, there is a good chunk (i.e., 

DE) in the G1-consistent answer. This is illustrated in Figure 39 below. Solid lines 

represent good chunks (i.e., constituents) in G1, and dotted lines represent 

constituents in G2.  

 

 

Figure 62: Number of “good chunks” vs. “bad chunks” 
Solid line represents good chunks for G1 and dotted line represents good chunks for G2 
 

 

In this way, simply noticing the “chunks” would not achieve the results of this 

experiment, thus we can reject that alternative account. Furthermore, even if you did 

notice “good chunks” (constituents), that knowledge alone cannot give this result. 

Simply having hierarchical structure and constituency does not give rise to the 
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asymmetry between moved constituents and moved non-constituents. You also need 

to know that only movement of constituents is possible and not non-constituents. In 

sum, you need two things to achieve the results in this experiment. One, you need to 

know constituency in the given sentence, and two, you need to have had a preexisting 

knowledge that moving non-constituents is an impossible rule.  

In terms of the three hypotheses, again only the predictions of Beyond and 

Constrained Hypothesis were borne out. Both Limited Hypothesis and Beyond and 

Unconstrained Hypothesis predicted that the infants would show no difference in 

looking times, so neither of their predictions were borne out. Beyond and Constrained 

Hypothesis was the only hypothesis that predicted a difference in infants’ looking 

times between the two test samples. This suggests that the generalization the infants 

form is not limited to what they saw during the familiarization and that the infants 

form a generalization that goes beyond the observed input. It also suggests that the 

generalization the infants form is not unconstrained in that they did not hypothesize 

that you can move any neighboring elements. The fact that the infants showed a 

difference in looking times (regardless of which one they listened longer to) indicate 

that they could at least distinguish the test samples that moved constituents vs. test 

samples that moved non-constituents. If statistical learning interacts with nothing but 

the presented distributional information, both test samples would be considered illicit, 

since both are new. The infants must have had a prior knowledge to help them 

distinguish the two test samples. But if that prior knowledge was that you can move 

any neighboring elements (which is not the case in natural language), then the infants 

would not have been able to distinguish the two test samples either, because both test 
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samples moved neighboring elements. One natural conclusion is that the infants knew 

that constituents can be moved, but not non-constituents, which is the case in natural 

language. And this is what was predicted by Beyond and Constrained Hypothesis, 

which states that infants’ generalization is not restricted to the input distributions, but 

it interacts with innate knowledge on what is a possible operation and what is an 

impossible operation in natural language.  

 

Table 27: Predictions and outcomes for Experiment 6 

 Views Predictions Outcome 
Limited Hypothesis Both test sentences are 

ungrammatical 
Infants will not show 
a difference in 
looking times 

✗ 

Beyond and 
Constrained 
Hypothesis 

Only the consistent test 
sentences are 
grammatical 

Infants will show a 
difference in looking 
times 

✓ 

Beyond and 
Unconstrained 
Hypothesis 

Both test sentences are 
grammatical 

Infants will not show 
a difference in 
looking times 

✗ 

 

 

A question that was left unanswered by Experiment 5 (Infant 3) was where 

such knowledge came from. Was that knowledge known prior to the experiment or 

was it learned based on the familiarization set in the experiment? The results of this 

experiment suggest that it could not have been learned during the experiment because 

there were no movement sentences in the input in this experiment. In addition, simply 

representing constituency or simply having a hierarchical structure does not provide 

any information about what can and cannot be moved. The fact that infants were able 

to distinguish the two test structures that were both novel suggest that 18-month-old 

infants already have knowledge of structure dependent nature of movement. Hence, 
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this supports the view that learners come equipped with antecedent knowledge about 

possible linguistic structures and that the learners have deductive power that goes 

beyond what can be derived from the observed statistical distributions.  
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Chapter 5: Experiment 7 (Simple Recurrent Network 

Simulations) 

 

In this chapter, we will present a series of neural network simulations with 

Simple Recurrent Networks (SRN) on the artificial language learning task. SRNs 

have been proposed to be able to learn a number of different aspects of human 

language, including syntax (Elman, et al. 1996; Elman 1991, 1993, Rohde & Plaut 

1999). Recall that the results of Experiment 2 (Adult 2) and Experiment 6 (Infant 4) 

showed that even in the absence of movement sentences in the input, human adults 

and infants still could distinguish sentences in which constituents were moved vs. 

sentences in which non-constituents were moved. In other words, adults and infants 

were able to generalize beyond the observed input. From these results, we inferred 

that that knowledge must have been known antecedently because it could not have 

arisen from the input. Therefore, it would be interesting to see if learners can form the 

same generalization in the absence of such innate knowledge.  

As Elman (1991) states: 

 

“[In the connectionist approach], tasks must be devised in which the 

abstract linguistic representations do not play an explicit role. The 

model’s inputs and output targets are limited to variables which are 

directly observable in the environment. This is a more naturalistic 

approach in the sense that the model learns to use surface linguistic 
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forms for communicative purposes rather than to do linguistic 

analysis… The value of this approach is that it need not depend on 

preexisintg preconceptions about what the abstract linguistic 

representations are. Instead, the connectionist model can be seen as a 

mechanism for gaining new theoretical insight.” 

 

Connectionism is an approach that tries to explain language acquisition without 

children having abstract linguistic knowledge (Elman et al. 1996). Simple Recurrent 

Network is a computational model that is claimed to reflect cognitive processing. 

SRNs have no inherent assumption about linguistic representation or structure, and 

yet, SRNs are proposed to successfully acquire language without innate, linguistic 

specific mechanisms (Rohde & Plaut 1999). We carried out the network simulations 

because we were interested in whether SRNs could learn to generalize beyond input, 

and whether structure could really follow from experience alone. 

 

5.1. Method 

We used the simulation software called LENS (Rohde 1999) for all the 

simulations reported below.  

 

The architecture of the network 

Simple Recurrent Network of the type proposed in Elman (1990) was used in 

these simulations. The basic structure of the network is shown in Figure 63, and the 

structure of the specific network used in our simulations is shown in Figure 64. 
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Figure 63: Basic structure of an Elman network, reprinted from Lewis & Elman (2001). 
 

 

 

Figure 64: Structure of the network used in the simulaitons 
 

 

The network had four layers: an input layer, a hidden layer, a context layer 

and an output layer. Our input and output layers consisted of 21 nodes each. The 

hidden and context layers consisted of 35 nodes each. The input, hidden and output 
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layers are feed-forward layers that are connected uni-directionally as in Figure 63. 

The hidden layer and the context layer are connected bi-directionally. That is, the 

activations of the hidden layer at one time step are copied into the context layer, 

which then can feed into the hidden layer as inputs at the next time step. In this way, 

the context layer works as a one-step state memory.  

The activation levels of hidden and output nodes are computed as the sum of 

all the activations values of every unit, squashed by the logistic function. The training 

was done by adjusting the weights to minimize the sum of squared error between the 

word predicted by the network and the target next word, using the back-propagation 

learning procedure, similarly to what is reported in Elman (1991) and Rohde & Plaut 

(1999). The network’s task at test was to correctly predict the next word. 

The input grammars for the network were identical to Grammar 1 and 

Grammar 2 that were used for the adult and infant experiments. In particular, the 

same 80 sentences that were used for adult experiments were chosen here as input. 

Either Grammar 1 or Grammar 2 was fed as input. During the training of the network, 

one word was presented at a time. One epoch of 80 sentences were used during the 

training of the network, and the criteria for terminating learning was going through 

those 80 sentences. We chose the criteria of 80 sentences because those were the 

identical 80 sentences as the ones used in our adult experiments.  

There were four input conditions: in the first condition, the network was 

trained on Grammar 1 as input and the input included movement sentences (just like 

in Experiment 1 (Adult 1)). We will call this condition G1-Train-Mvmt. In the second 

condition, the network was fed Grammar 2 and the input included movement 
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sentences (G2-Train-Mvmt). The TP patterns of the input for these two conditions are 

given below.  

 

Table 28: Transitional probabilities for 80 input sentences in G1-Train-Mvmt 

 A-B B-C C-D D-E 
Forward TP 1.00 0.24 1.00 0.25 
Backward TP 1.00 0.19 1.00 0.34 
 

Table 29: Transitional probabilities for 80 input sentences in G2-Train-Mvmt 

 A-B B-C C-D D-E 
Forward TP 0.33 1.00 0.15 1.00 
Backward TP 0.18 1.00 0.16 1.00 
 

 

In the third condition, the network was fed Grammar 1 as input but the input lacked 

any movement sentences (just like in Experiment 2 (Adult 2)). We will call this 

condition G1-Train-NoMvmt. Similarly, in the fourth condition, the network was fed 

Grammar 2 as input but the input lacked movement sentences (G2-Train-NoMvmt). 

The TP patterns of those conditions are listed below. 

 

Table 30: Transitional probabilities for 80 input sentences in G1-Train-NoMvmt 

 A-B B-C C-D D-E 
Forward TP 1.00 0.28 1.00 0.24 
Backward TP 1.00 0.24 1.00 1.00 
 

Table 31: Transitional probabilities for 80 input sentences in G2-Train-NoMvmt 

 A-B B-C C-D D-E 
Forward TP 1.00 1.00 0.22 1.00 
Backward TP 0.22 1.00 0.24 1.00 
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At test, we presented the movement test sentences (the same 16 sentences 

used for the movement test in Experiments 1 and 2 (Adult1 & 2)).  

 
Grammatical in Grammar 1 Grammatical in Grammar 2  
Types Sentences Types Sentences 

Movement 
test 

1 CDEAB JES SOT FAL 
KOF HOX 

DEABC SOT FAL KOF 
HOX JES 

 2  REL ZOR TAF 
DAZ NEB 

 ZOR TAF DAZ 
NEB REL 

 3  TID LUM RUD 
MER LEV 

 LUM RUD MER 
LEV TID 

 4  TID ZOR RUD 
MER NEB 

 ZOR RUD MER 
NEB TID 

      
 5 FAB KER KOF HOX DEF SOT FAL KER 
 6  NAV DAZ NEB  ZOR TAF NAV 
 7  SIB MER LEV  LUM RUD SIB 
 8  NAV MER NEB  ZOR RUD NAV 
      
 9 CDEABCD JES SOT FAL 

KOF HOX JES 
SOT 

DEABCBC SOT FAL KOF 
HOX JES HOX 
JES 

 10  REL ZOR TAF 
DAZ NEB REL 
ZOR 

 ZOR TAF DAZ 
NEB REL NEB 
REL 

 11  TID LUM RUD 
MER LEV TID 
LUM 

 LUM RUD MER 
LEV TID LEV 
TID 

 12  TID ZOR RUD 
MER NEB TID 
ZOR 

 ZOR RUD MER 
NEB TID NEB 
TID 

      
 13 FABCD KER KOF HOX 

JES SOT 
DEFBC SOT FAL KER 

HOX JES 
 14  NAV DAZ NEB 

REL ZOR 
 ZOR TAF NAV 

NEB REL 
 15  SIB MER LEV 

TID LUM 
 LUM RUD SIB 

LEV TID 
 16  NAV MER NEB 

TID ZOR 
 ZOR RUD NAV 

NEB TID 
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We presented the network with 16 movement test sentences that are grammatical in 

Grammar 1 and further 16 movement sentences that are grammatical in Grammar 2, 

regardless of the input grammar and input condition. That is, no matter which 

grammar the network was fed as input (G1 or G2), both test types (G1-compatible or 

G2-compatible) were used for all the simulations. The network gets 16 test sentences 

as input, and they produce probability of the following word as output. The prediction 

was that if the network did learn the artificial language, it should assign higher 

probabilities to the test sentences that are consistent with their input grammar. 

 

5.2. Results and discussion 

We carried out a whole set of simulations with a range of training parameters, 

since we were unsure which parameter setting worked the best. The two parameters 

we varied are the batch size and the learning rate, because we had no a priori 

prediction as to which setting of these parameters would achieve the optimal learning. 

A batch size is the number of examples the network processes before it updates the 

weights of the links during the training. For example, a batch size of 10 means that 

the network updates weights of the links each time it process 10 examples. In this 

experiment, the batch size was varied from 19 to 59 with an interval of 10 (i.e., 19, 

29, 39, 49, 59). Learning rate is the scale of how radical that weight change is. Bigger 

learning rate indicates that the weight change can be dramatic, while a small learning 

rate means the weight changes are small. The learning rate here was varied from 

0.001 to 0.009 with an interval of 0.002 (i.e., 0.001, 0.003, 0.005, 0.007, 0.009). 
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Although these values seem smaller than what is generally used, they are close to the 

learning rate of 0.01 used in Lewis & Elman (2001). Additionally, smaller learning 

rates than ours have been used before, as in the learning rates ranging between 0.004 

and 0.0003, reported in Rohde & Plaut (1999). In sum, we carried out 25 (5 x 5) 

different simulations for each condition, thus 100 (25 x 4) simulations altogether. 

It should also be noted that in each simulation, we carried out 10 runs with the 

same parameter setting. The network outputs the probability of each word in test 

sentences. First, we took the product of the probabilities of all the words in each test 

sentence. Then we took the average probability of those 16 test sentences. Since it is 

the product of the probabilities, the numbers were extremely small, we therefore 

computed the log of those numbers, for all 10 runs. We then took the average of those 

10 runs, giving an average probability for G1 test sentences and G2 test sentences. 

We then took the ratio of those two numbers (G1/G2), which is the dependent 

variable used in the analyses below. 

In omnibus ANCOVA (ratio ~ batch size * learning rate * input condition), 

the covariate, batch size, was not significantly related to the ratio of probabilities 

(F(1, 99) = 0.032, p = 0.858), neither was the covariate, learning rate (F(1, 99) = 0.03, 

p = 0.955). There was no interaction of the batch size and the learning rate either 

(F(1, 99) = 0.184, p = 0.669). This suggests that varying the batch size or the learning 

rate did not have an effect on the output probabilities the network produced. The only 

effect that was significant was the main effect for input condition (F(3, 99) = 3.361, p 

= 0.022). 
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In a one-way ANOVA (ratio ~ input condition), there was a significant effect 

of input condition on the ratio of probabilities (F(3, 99) = 3.431, p = 0.02). Post-hoc 

tests revealed that the only pair that differed significantly from each other was G1-

Train-Mvmt condition and G2-Train-Mvmt condition (Tukey HSD: p = 0.023; 

Bonferroni: p = 0.026). This effect is driven by the high ratio of the G2-Train-Mvmt 

condition (Mean = 1.026; Figure 65).  

 

 

Figure 65: Overall mean ratio by condition 
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Figure 66: Simulation results of G1-Train-Mvmt condition 
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Figure 67: Simulation results of G1-Train-No Mvmt condition 
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Figure 68: Simulation results of G2-Train-Mvmt condition 
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Figure 69: Simulation results of G2-Train-No Mvmt condition 
 

  

G1-Train conditions 

Looking within each combination of batch size and learning (i.e., each point 

in the above graphs), none of the simulations in the G1-Train-Mvmt condition and 

G1-Train-No Mvmt condition yielded a significant difference for the probabilities for 

G1 test sentences and G2 test sentences. In other words, in the simulations in which 

the network received G1 as input, the mean probabilities the network assigned for G1 

test sentences were never significantly higher than the mean probabilities the network 

assigned for G2 test sentences, regardless of whether the input contained movement 

sentences or not (for an example, see Figure 70). That is, the SRN failed to learn the 

artificial language syntax completely when they received G1 as input. Note that since 
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these numbers are log probabilities, a larger negative log number indicates a larger 

probability (i.e., -4.3 signifies a larger probability than -4.45). 

 

 

Figure 70: G1-Train condition simulations with batch size 39 and learning rate 0.009 
 

 

G2-Train conditions 

When the SRN received G2 with movement sentences as input (i.e., G2-Train-

Mvmt condition; Figure 68), there were three settings of the two parameters in which 

the network achieved a successful learning. There are the three settings that achieved 

the most successful learning in the condition that included movement. Therefore, by 

choosing these settings for the following comparisons, we are giving the model the 

best chance to succeed. Importantly, however, the No-Movement counterparts (i.e., 
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G2-Train-No Mvmt condition; Figure 69) of all of these three settings failed to learn 

the artificial grammar.  

Specifically, in one combination with the batch size of 49 and the learning rate 

of 0.009 (Figure 71), in the G2-Train-Mvmt condition, the mean log probabilities for 

G2 test sentences (Mean = -4.220) were significantly higher than the mean log 

probabilities for G1 test sentences (Mean = -4.527) in a two-tailed Paired Samples t-

test (t(9) = -2.651, p = 0.026). On the other hand, with the same setting in G2-Train-

No Mvmt condition, the mean log probabilities for G2 test sentences (Mean = -4.546) 

were not significantly higher than the mean log probabilities for G1 test sentences 

(Mean = -4.640) in a two-tailed Paired Samples t-test (t(9) = -1.401, p = 0.195). Note 

again that since these numbers are log probabilities, a larger negative log number 

indicates a larger probability (e.g., -4.2 signifies a larger probability than -4.5). 
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Figure 71: G2-Train condition simulations with batch size 49 and learning rate 0.009 
 

 

With another setting of the batch size 19 and the learning rate 0.007, in the 

G2-Train-Mvmt condition, the mean log probabilities for G2 test sentences (Mean = -

4.251) were significantly higher than the mean log probabilities for G1 test sentences 

(Mean = -4.560) in a two-tailed Paired Samples t-test (t(9) = -2.872, p = 0.018). But 

again, with the same setting in G2-Train-No Mvmt condition, the mean log 

probabilities for G2 test sentences (Mean = -4.450) were not significantly higher than 

the mean log probabilities for G1 test sentences (Mean = -4.637) in a two-tailed 

Paired Samples t-test (t(9) = -2.149, p = 0.060).  

With the combination of batch size 59 and learning rate 0.009, in the G2-

Train-Mvmt condition, the mean log probabilities for G2 test sentences (Mean = -
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4.276) were significantly higher than the mean log probabilities for G1 test sentences 

(Mean = -4.534) in a two-tailed Paired Samples t-test (t(9) = -2.799, p = 0.021). With 

the same setting in G2-Train-No Mvmt condition, however, the mean log 

probabilities for G2 test sentences (Mean = -4.583) were not significantly higher than 

the mean log probabilities for G1 test sentences (Mean = -4.722) in a two-tailed 

Paired Samples t-test (t(9) = -1.177, p = 0.269).  

In sum, all the parameter settings with which the network successfully learned 

the artificial grammar in the condition where the input included movement, the 

network with the identical settings failed to learn when the input lacked movement 

sentences. Even though we gave the models best chance to succeed by choosing the 

most successful settings, the model with the same settings still failed to learn in the 

No Movement condition. Furthermore, the opposite was also true. That is, the setting 

that achieved the most successful learning in the No Movement condition did not 

achieve a successful learning in the Movement condition counterpart. We will look at 

this analysis below.  

There was only one setting in which the network was successful even when 

the input lacked movement sentences. That was combination of batch size 29 and 

learning rate 0.003 in the G2-Train-No Mvmt condition (Figure 72), and the mean log 

probabilities for G2 test sentences (Mean = -4.434) were significantly higher than the 

mean log probabilities for G1 test sentences (Mean = -4.729) in a two-tailed Paired 

Samples t-test (t(9) = -2.642, p = 0.027). However, with the same setting in the G2-

Train-Mvmt condition, the network failed to learn the artificial language. The the 

mean log probabilities for G2 test sentences (Mean = -4.327) were not significantly 
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higher than the mean log probabilities for G1 test sentences (Mean = -4.340) in a two-

tailed Paired Samples t-test (t(9) = -0.141, p = 0.891). 

 

 

Figure 72: G2-Train condition simulations with batch size 29 and learning rate 0.003 
 

 

To summarize, with the settings at which the SRN successfully learned the 

grammar with movement sentences in the input, it failed to learn when the input did 

not include movement. This indicates that based on the peaks and dips in the 

transitional probabilities, the SRN correctly figured out the constituency of the 

sentences, thus successfully predicting the consistent grammar at test in the 

movement-in-the-input cases. But, since SRNs do not have any assumption about 

what kind of structure is linguistically valid or what kind of operation is allowed (e.g., 
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movement of constituents), when the input lacks movement, they failed to predict 

upcoming words at test. This suggests that networks cannot extend what they learned 

from the environment to novel structures, and that the generalization they form does 

not go beyond the observed input. This result strengthens our claim from Experiment 

6 (Infant 4) that infants’ knowledge that only constituents can be moved was known 

antecedently.  

However, we also have results of the SRN seemingly succeeding in learning 

the artificial language when the input lacked movement sentences. But in this case, 

the network failed to learn the language when the input included movement. This 

result is harder to interpret, since it is unclear why the network can assign high 

probabilities to the consistent but never-seen-before structures while it fails to assign 

high probabilities to the consistent structures they have seen before. In the latter case, 

it should be so easy to distinguish the consistent and inconsistent grammars that we 

can only conclude that the network must not have learned the grammar at all in this 

case.  

In any case, what is clear is that the neural networks do not act the same way 

as human infants do in our experiments. Human infants were able to distinguish the 

two different artificial languages with or without movement sentences in the input. 

The results from the simulations do not reflect how infants performed in our 

experiments. Infants were successful regardless of whether the input included 

movement or not. Because we have a single case where the network correctly 

assigned higher probabilities to the consistent test sentences than to the inconsistent 

ones when the input lacked movement, it is difficult to conclude, but what we suggest 
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from these simulations is that human infants must have some knowledge that the 

networks do not have, which helped the infants generalize beyond the input when 

faced with the unseen structures.  
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Chapter 6: Conclusions 

 

Traditionally in language acquisition, nativism and empiricism have been 

characterized as two opposing views that do not need each other. But we suggested 

that both nature and nurture need each other. The question is how the two interact, 

what is innate and what is learned from the input. The two might play different roles 

in language acquisition – innate knowledge specifies range of possible grammars and 

structures, while statistical learning is a method for mapping the surface string to 

abstract representation. This dissertation was examined how the environment interacts 

with the structure of the learner.  

The main questions in this dissertation were what the deductive consequences 

of distributional learning are, and whether the representations are part of the learning 

system prior to the experience. Is statistical learning entirely a product of tracking and 

summarizing the surface distributions? Or is it an interaction of tracking the 

distributions and innate knowledge that the learners already have? In order to 

investigate these questions, this dissertation focused on the acquisition of phrase 

structure as a case study.  

Hierarchical representation is a hallmark of natural language syntax and 

phrasal constituency plays a fundamental role in any syntactic operation, since all 

syntactic operations refer to and manipulate it. A child might come with innate 

knowledge that “there exists phrase structure” or “a VP consists of a verb and an 
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optional NP” but that is not sufficient. That knowledge alone does not prevent a child 

from having an incorrect tree representation of a sentence, as in Figure 73.  

 

 

Figure 73: An incorrect tree 
 

 

Since words, word order and grammatical rules differ from language to language, 

there must also be a mechanism that guides the child to the correct phrase structure 

representation of sentences for a particular language (Fodor 1966; Pinker 1984; 

Grimshaw 1981; Chomsky 1981; Macnamara 1982). A difficulty is constituency and 

phrase structure are highly abstract notions and the input to a child does not come 

marked with obvious labels or brackets signaling the constituency. Several different 

kinds of information were proposed to be perceptually available to a prelinguistic 

learner, including prosody (Gleitman & Wanner 1982; Gleitman, Gleitman, Landau 

& Wanner 1988; Morgan 1986), meaning (Pinker 1984; Grimshaw 1981; Macnamara 

1982) and distribution (Morgan, Meier & Newport 1989; Saffran 2001; Thompson & 

Newport 2007). 
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In Chapter 2, we reviewed past studies that investigated infants’ sensitivity to 

the prosodic, semantic and distributional information as a cue to syntactic structures. 

We saw that infants are in fact sensitive to these cues, but also that none of these cues 

is completely sufficient on its own. For example, there are cases where there exists a 

mismatch between phonological and syntactic phrases and between syntax and 

semantics. In those cases, learners could be misled and misparse the sentence. What 

we propose is that infants make use of a combination of all these cues. And one 

particular type of cue we investigated in this dissertation was distributional 

information. 

 Thompson & Newport (2007) showed that adults can learn the phrase 

structure of a miniature artificial language on the basis of transitional probability 

patterns. What has not been shown in Thompson & Newport (2007), however, is 

whether transitional probability can signal hierarchically nested structures. So our 

more specific question in this dissertation was: can infants infer hierarchical phrase 

structure on the basis of statistical distribution?  

We can summarize our research questions as follows:  

 

(79) What are the deductive consequences of distributional learning?  

(80) Are representations a part of the learning system prior to the experience? 

(81) Is statistical learning entirely a product of tracking and summarizing the 

surface distributions? Or is it an interaction of tracking the distributions and 

innate knowledge that the learners already have? 

(82) Can infants learn internally nested hierarchical phrase structure on the basis 
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of statistical distribution? 

(83) Can infants learn phrase structure of an artificial language without any 

prosodic or semantic information? 

 

To answer those questions, we designed and carried out seven original 

experiments. We created two minimally different artificial languages that differed 

only in constituency. These two grammars (Grammar 1 and Grammar 2) were used 

throughout all seven experiments.  

 

 

Figure 74: PS tree of the basic Grammar 1 sentence 
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Figure 75: PS tree of the basic Grammar 2 sentence  
 

 

In the experiments, the participants listened to either Grammar 1 or Grammar 

2 during the familiarization/training period. At test, they were presented with two 

types of test sentence. One type was called the “consistent” sample and these were the 

test sentences that are grammatical in their input grammar. The other was called the 

“inconsistent” sample and they were the test sentences that are ungrammatical in their 

input grammar. One of the tests was movement test, whose consistent test sample had 

a constituent in the input language moved to the front, while the inconsistent test 

sample in the movement test would have a non-constituent moved to the front. What 

we were looking for was which test sample the participants would choose, listen 

longer to, or assign higher probabilities to (in case of network simulations).  

There were three kinds of familiarization set. One had all kinds of sentences 

generated by all the operations, including movement and substitution rules 

(Experiment 1, Experiment 3, Experiment 4, Experiment 7). The other kind excluded 

sentences generated by some operations, such as movement and substitution by 
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proforms (Experiment 2, Experiment 6, Experiment 7). The final type included 

movement sentences but the structure of the movement sentences in the input and 

movement sentences of the test were different (Experiment 5).  

Three specific hypotheses were presented for these experiments. Hypothesis 

One (Limited Hypothesis): The generalization that the infants form is entirely based 

on the observed input, and the learners are not equipped with preexisting linguistic 

knowledge about possible structures (Elman et al. 1996; Bybee 1998; Tomasello 

2000). This hypothesis corresponds to the purely statistical learning theory.   

Hypothesis Two (Beyond and Constrained Hypothesis): A learner is equipped 

with preexisting knowledge about possible structures, and statistics are merely used 

as a source of information that helps a learner select the correct grammar that derives 

the matching surface strings. Under this selective learning theory, the acquired 

representations have deductive consequences beyond what can be derived from the 

observed statistical distributions alone. This hypothesis proposes that learners’ 

generalization extends to novel structures, as long as they are compatible with 

antecedently known constraints. An example of an antecedently known constraint 

would be something like movement of a constituent, which is a natural rule in 

languages. 

Hypothesis Three (Beyond and Unconstrained Hypothesis): Learners 

generalize beyond what they see in the input but their generalizations are not 

necessarily constrained in a predictable way. An example of this might be something 

like movement of a non-constituent, which is unnatural in natural languages, but if a 
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learner is unconstrained, this is a logical possibility. The three hypotheses are 

summarized in the table below. 

 

Table 32: Table of hypotheses 

 Deductive power of learner Nature of predetermined 
representations 

Limited Hypothesis Limited to observed 
distributions 

None 

Beyond and 
Constrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Limited by constraints 
found in natural language 

Beyond and 
Unconstrained 
Hypothesis 

Beyond what can be 
derived from observed 
distributions 

Unlimited by constraints 
found in natural language 

 

 

General predictions for the purely statistical approach (Limited Hypothesis) and the 

approach in which statistics interacts with innate knowledge (Beyond and 

Constrained Hypothesis) are listed below (Except from Lust, 2006). 

 

(84) Predictions of a purely statistical approach 

i. Learners have a direct relation to input data 

ii. No universal linguistic constraints are predicted (e.g., no structure dependence) 

iii. Only randomly, if at all, attend to parametric variations of language 

iv. Not creative but highly imitative; generalizations should only be based on 

perceived forms or analogy 

v. Learners do not evidence universal language principles or patterns 
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(85) Predictions of an approach in which nativism and statistics interact 

i. Learners have an indirect relation to input data 

ii. Be constrained in language acquisition 

iii. Be structure dependent from the beginning, and attend to the parameters of 

language variation 

iv. Be creative, i.e., go beyond the stimuli, and not simply copy 

v. Not offend universals shown across natural languages  

 

 The results of Experiment 1 and Experiment 3 (where the input included 

movement sentences) supported predictions made by both Limited Hypothesis and 

Beyond and Constrained Hypothesis, while rejecting the predictions made by Beyond 

and Unconstrained Hypothesis. From these results, we can rule out Beyond and 

Unconstrained Hypothesis, and we can be confident that a learner does not make a 

generalization that is impossible in natural languages, even if that generalization is 

compatible with the input data. The results of Experiment 5 (in which the exposure 

data included movement of one constituent and the subjects were tested on movement 

of a different constituent) revealed that Limited Hypothesis as well as Beyond and 

Unconstrained Hypothesis cannot be correct. The results of Experiment 5 indicate 

that the generalization the infants form is not entirely based on the statistical 

distribution observed, but it goes beyond that, and that it must be a combination of the 

observed input and the knowledge of some constraints. This further supports Beyond 

and Constrained Hypothesis. What was left unclear was where such knowledge came 

from – whether infants learned the constraint during the familiarization or whether 
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infants already knew it. The results of Experiment 2, Experiment 6 and Experiment 7 

(in which the exposure data lacked movement sentences) support the idea that the 

infants already knew the constraint that you can only move constituents prior to the 

experiment, but the neural networks do not.  

 In other words, the predictions made by an approach that combines statistical 

learning with innate knowledge were born out.  

 

(86) Predictions of an approach in which nativism and statistics interact 

i. Learners have an indirect relation to input data 

 Learners learned the input data, but were also able to generalize the 

knowledge that was beyond the input data. 

ii. Be constrained in language acquisition 

 The learners’ generalization were constrained, not unconstrained, even 

when the input data were compatible with the unconstrained hypothesis. 

iii. Be structure dependent from the beginning, and attend to the parameters of 

language variation 

 Learners knew that you can only move constituents and not non-

constituents. What learners learned can only be described in a phrase 

structural representation, and cannot be attributed to learning of linear 

order or some other low-level regularities.  

iv. Be creative, i.e., go beyond the stimuli, and not simply copy 

 The generalizations the learners formed went beyond the stimuli, in that 

the learners knew movement of a constituent is possible, but movement 
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of a non-constituent is impossible even in the absence of any movement 

in the stimuli. 

v. Not offend universals shown across natural languages  

 In all natural languages, movement of a non-constituent is not a possible 

rule. Learners in our experiments adhered to this. 

 

Now, we can answer our research questions. 

 

(87) What are the deductive consequences of distributional learning?  

 Learners have a deductive power that goes beyond the input data. 

(88) Are representations a part of the learning system prior to the experience? 

 Learners have a preexisting knowledge about what is and is not possible 

in movement rules. This knowledge cannot have been learned 

discovered from the exposure data, therefore it must have been known 

prior to the experiment.  

(89) Is statistical learning entirely a product of tracking and summarizing the 

surface distributions? Or is it an interaction of tracking the distributions and 

innate knowledge that the learners already have? 

 The results of these experiments cannot have been explained if the 

learning is solely based on tracking and summarizing the surface 

distributions. They can only be explained if the statistical learning 

interacts with preexisting linguistic knowledge of the learner. 

(90) Can infants learn internally nested hierarchical phrase structure on the basis 
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of statistical distribution? 

 The results confirm that transitional probabilities can be a cue to not 

only phrasal groupings but also nested constituent structure. The only 

cue to constituency in the artificial languages was transitional 

probabilities. Participants were sensitive to the distributional 

information that signaled internally nested structure. 

(91) Can infants learn phrase structure of an artificial language without any 

prosodic or semantic information? 

 Artificial languages in these experiments lacked prosodic and semantic 

cues to phrasal boundaries. And yet, the participants were able to learn 

the structure of a sentence without relying on prosody or meanings.  

 

To sum up, the current findings suggest that, in addition to cues such as 

prosody, morphology and semantics, transitional probability is another additional cue 

to phrase structure. The experimental results in this dissertation suggest that the 

transitional probability can be a cue to not only the phrasal bracketing but also 

hierarchical constituent structure. More importantly, the results of Experiments 2 and 

6 showed that movement in the input is not required to learn that only constituents 

can undergo movement. Crucially, knowing the constituency of the language alone 

does not guarantee that you know only constituents can be moved. That is, the 

constraint on movement does not automatically follow from constituent structure. 

And our experiments showed that even when the learners were only given the 

evidence for constituent structure, they still knew that only constituents can be 
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moved. In other words, they did not need to have seen movement in the input to know 

the constraint on movement, which suggests that they knew the constraint already.  

Finally, these results suggest that learners can project what they have learned 

based on the distributional information to novel structures they have not yet seen. 

Importantly, however, such projection to new structures occurred only within and not 

outside the realms of what is allowed in natural language. This provides novel 

evidence that statistical learning interacts with innate constraints on possible 

representations and rules. In particular, we wish to have shown a way in which the 

two (innate knowledge and statistical learning) interact. If learning was only based on 

the statistical distributions, it might help you correctly identify constituent structure of 

sentences, but it does not ensure the constraint on movement. Thus, we suggest that 

statistics are used only as a path into inherently known abstract representations. The 

learners have a deductive power that goes beyond the input stimuli, which suggests 

that statistical learning is used merely as a method for mapping the surface string to 

abstract representation, and that learners are constrained by innate knowledge that 

specifies range of possible grammars and structures.  
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Appendices 

 

Appendix A: Familiarization sentences for Experiment 1 (Adult 1) and Experiment 7 

(SRN Simulations) 

Sentence types (numbers in parentheses indicate number of times used in the 
familiarization)  
 
Grammar 1  Grammar 2  
et E  ib C D (3) A B C D E et (2) 
A B C D E et (1) A  et D E (2) 
C D E  ib (1) D E F B C (11) 
A B C D E (2) A B C D E (2) 
F A B C D (4) D E F et (3) 
A B  et E et (2) ib F et (1) 
ib  et E et (2) ib A et B C (1) 
A B  et E (2) ib A B C B C (1) 
ib  et E C D (2) D E F (2) 
F  ib (1) A B C D E B C (7) 
A B  et E C D (13) ib A et (1) 
ib F C D (5) F D E et (1) 
et E  ib (1) D E A et et (1) 
C D E A B et (2) ib F B C (2) 
A B C D EC D (1) D E A B C B C (1) 
et E A B (2) D E A et B C (12) 
F  ib C D (2) ib F (1) 
A B F (2) A  et D E B C (6) 
F  ib  et (1) A  et D E et (2) 
ib F (1) D E A et (1) 
F A B (2) F  ib B C (3) 
C D E  ib et (1) F D E B C (16) 
C D E  ib C D (2) A  et ib et (1) 
C D E A B (4)   
ib C D E C D (3)   
A B F C D (11)   
et E  ib et (1)   
A B F  et (1)   
et E A B C D (5)   
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Familiarization sentences  
 
Grammar 1 Grammar 2 
DAZ HOX REL LUM FAL DAZ HOX REL LUM FAL 
DAZ HOX REL LUM TAF DAZ HOX REL LUM TAF 
 et TAF  ib TID SOT LUM FAL MER  et LEV JES 
 et FAL  ib JES LUM LUM TAF NAV NEB JES 
KOF LEV  et RUD TID SOT SOT RUD DAZ  et 
DAZ HOX NAV  ib KOF  et HOX REL 
NAV  ib TID SOT NAV LUM TAF LEV REL 
TID SOT TAF  ib JES LUM NAV SOT RUD HOX REL 
SIB MER HOX SOT RUD DAZ  et HOX TID 
KOF LEV  et RUD  et SOT RUD DAZ  et  et 
DAZ LEV NAV  et NAV ZOR FAL LEV JES 
NAV  ib  et  ib KER LEV REL 
TID SOT TAF  ib  et LUM TAF DAZ  et LEV JES 
 et RUD MER HOX REL LUM SOT TAF NAV 
DAZ HOX NAV TID SOT ZOR FAL KOF  et HOX TID 
 ib KER TID SOT SOT RUD SIB HOX REL 
SIB DAZ HOX SIB LUM TAF LEV JES 
DAZ LEV NAV ZOR FAL NAV LEV REL 
 ib NAV JES LUM SOT TAF NAV  et 
KOF LEV JES ZOR FAL  et ZOR FAL KER LEV JES 
MER HOX TID SOT RUD REL LUM DAZ LEV JES ZOR FAL LEV REL 
JES ZOR FAL MER HOX  et SOT TAF MER  et HOX REL 
MER HOX NAV JES LUM KOF  et LUM FAL 
 et RUD MER HOX REL SOT MER  et ZOR FAL 
MER HOX  et FAL SOT TAF KER HOX REL 
REL LUM TAF  ib JES ZOR  ib KER 
DAZ HOX  et FAL SOT RUD MER  et LEV JES 
KOF NEB  et TAF REL SOT  ib MER  et 
KOF NEB  et TAF JES LUM ZOR FAL NAV 
 ib  et TAF REL SOT DAZ LEV JES ZOR FAL HOX REL 
NAV  ib REL SOT SIB ZOR FAL  et 
 et TAF KOF LEV LUM TAF KOF  et NEB JES 
 et FAL KOF NEB JES ZOR DAZ  et LUM FAL HOX TID 
REL SOT RUD  ib KER ZOR FAL HOX REL 
DAZ HOX  et FAL REL LUM NAV LUM FAL LEV REL 
 ib TID SOT RUD REL SOT NAV SOT TAF LEV REL 
REL SOT TAF KOF NEB MER HOX TID SOT RUD HOX REL 
DAZ LEV NAV TID SOT LUM TAF KOF  et LEV JES 
REL LUM FAL KOF LEV ZOR FAL NAV LEV JES 
KOF LEV  et TAF REL LUM MER  et ZOR FAL LEV REL 
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DAZ LEV SIB JES LUM LUM FAL DAZ  et LEV JES 
 ib JES LUM FAL TID SOT SIB  ib HOX REL 
KER DAZ HOX REL LUM  ib NAV HOX TID 
NAV DAZ LEV REL SOT SIB ZOR FAL LEV REL 
REL SOT TAF KOF NEB  et ZOR FAL SIB HOX REL 
NAV  ib  ib MER HOX TID HOX REL 
 ib  et FAL REL SOT KER SOT RUD HOX REL 
MER HOX SIB JES LUM MER HOX TID SOT TAF LEV REL 
DAZ LEV  et TAF TID SOT KOF  et LUM TAF NEB JES 
DAZ LEV SIB REL LUM ZOR FAL KER NEB JES 
MER HOX  et RUD TID SOT SIB LUM FAL LEV REL 
 et TAF DAZ LEV KOF  et SOT RUD  et 
DAZ LEV NAV JES LUM ZOR FAL NAV NEB JES 
 et RUD  ib REL SOT ZOR FAL DAZ  et LEV REL 
REL SOT TAF DAZ LEV SOT TAF KER  et 
KOF NEB  et TAF  et LUM FAL DAZ  et HOX TID 
KER MER HOX REL LUM DAZ  et ZOR FAL HOX REL 
DAZ HOX NAV REL SOT DAZ HOX TID SOT TAF LEV JES 
 ib KER REL SOT SOT RUD KER NEB JES 
 et FAL  ib  et KOF LEV REL LUM TAF HOX REL 
DAZ LEV  et FAL JES ZOR DAZ  et LUM TAF HOX REL 
 et TAF  ib LUM TAF MER  et LEV REL 
 ib SIB MER  et LUM TAF  et 
DAZ LEV  et FAL TID SOT NAV SOT TAF HOX TID 
 et RUD KOF LEV JES ZOR LUM FAL NAV HOX TID 
 et TAF MER HOX TID SOT DAZ HOX REL SOT TAF LEV JES 
DAZ HOX KER REL LUM KOF LEV REL SOT TAF  et 
 ib KER JES LUM  ib SIB  et 
KER DAZ LEV REL SOT ZOR FAL DAZ LEV REL HOX REL 
DAZ HOX  et TAF JES LUM NAV SOT TAF LEV JES 
DAZ HOX KER REL SOT NAV LUM FAL LEV JES 
 ib  et TAF  et MER  et LUM FAL NEB JES 
DAZ LEV KER TID SOT MER HOX REL SOT RUD  et 
 ib JES LUM TAF JES LUM MER  et  ib  et 
 ib  et RUD  et SIB LUM TAF HOX REL 
DAZ LEV  et RUD REL SOT KER  ib LEV JES 
 ib NAV REL LUM SOT RUD SIB  et 
KOF NEB  et FAL REL LUM KER SOT TAF LEV REL 
JES ZOR FAL DAZ LEV NAV  ib LEV REL 
DAZ LEV  et FAL REL LUM KER SOT RUD HOX TID 
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Appendix B: Familiarization sentences for Experiment 2 (Adult 2) and Experiment 7 

(SRN Simulations) 

Sentence types (numbers in parentheses indicate number of times used in the 
familiarization)  
 
Grammar 1 Grammar 2 
A B F         (9) A B C D E        (3) 
A B C D E     (3) F D E             (10) 
A B C D E C D  (19) A B C D E B C    (16) 
A B F C D (49) F D E B C        (51) 
 
 
Familiarization sentences 
 
Grammar 1 Grammar 2 
DAZ HOX SIB JES LUM KER LUM TAF HOX TID 
DAZ LEV SIB REL LUM KER SOT TAF HOX REL 
MER HOX KER JES LUM NAV ZOR FAL HOX TID 
DAZ LEV KER REL LUM NAV SOT RUD NEB JES 
KOF LEV KER NAV SOT TAF LEV JES 
MER HOX KER REL SOT NAV LUM TAF HOX TID 
KOF NEB KER SIB SOT TAF 
MER HOX SIB TID SOT NAV ZOR FAL 
DAZ LEV SIB REL SOT NAV LUM FAL NEB JES 
MER HOX KER TID SOT KER ZOR FAL LEV REL 
DAZ HOX SIB TID SOT SIB SOT TAF NEB JES 
KOF NEB NAV JES LUM KER ZOR FAL HOX REL 
KOF NEB JES LUM TAF JES LUM SIB SOT RUD HOX TID 
KOF NEB KER JES ZOR SIB LUM FAL LEV REL 
KOF NEB SIB JES LUM KER ZOR FAL 
DAZ HOX KER REL LUM NAV SOT RUD LEV JES 
DAZ LEV SIB JES LUM KER SOT RUD NEB JES 
DAZ LEV KER SIB SOT RUD LEV REL 
DAZ HOX TID SOT TAF REL LUM KER LUM TAF NEB JES 
KOF NEB KER REL SOT SIB ZOR FAL LEV REL 
DAZ LEV REL SOT TAF REL SOT NAV LUM FAL HOX REL 
KOF NEB SIB REL SOT KER SOT TAF LEV REL 
DAZ HOX KER DAZ LEV REL LUM TAF 
MER HOX KER JES ZOR NAV LUM FAL 
MER HOX TID SOT TAF JES ZOR KER LUM TAF HOX REL 
KOF NEB NAV TID SOT SIB SOT TAF HOX REL 
DAZ HOX KER REL SOT SIB SOT RUD LEV JES 
DAZ LEV KER JES LUM DAZ LEV JES LUM FAL NEB JES 
MER HOX SIB JES ZOR NAV LUM FAL LEV REL 
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KOF LEV NAV JES ZOR KER LUM TAF LEV JES 
DAZ LEV REL LUM TAF TID SOT KER ZOR FAL HOX TID 
DAZ HOX KER JES ZOR KER LUM FAL LEV JES 
KOF LEV SIB TID SOT SIB LUM FAL LEV JES 
KOF LEV KER JES ZOR NAV SOT TAF 
MER HOX TID SOT TAF REL SOT SIB LUM TAF NEB JES 
MER HOX NAV TID SOT SIB SOT TAF LEV JES 
KOF NEB NAV REL LUM KER LUM FAL HOX TID 
DAZ HOX REL LUM TAF JES LUM NAV LUM TAF HOX REL 
DAZ LEV SIB TID SOT MER HOX REL LUM TAF HOX REL 
KOF LEV REL LUM TAF KOF LEV JES LUM FAL HOX TID 
MER HOX NAV JES LUM KER LUM FAL NEB JES 
DAZ LEV KER TID SOT DAZ HOX TID SOT RUD HOX TID 
DAZ HOX KER TID SOT KOF NEB JES LUM FAL HOX TID 
MER HOX SIB REL LUM KER SOT RUD HOX TID 
KOF NEB SIB REL LUM KER SOT TAF 
KOF NEB SIB TID SOT KER SOT RUD HOX REL 
DAZ HOX REL SOT TAF SIB LUM FAL HOX REL 
DAZ HOX SIB REL LUM KER SOT RUD LEV REL 
KOF LEV SIB REL SOT SIB LUM TAF HOX TID 
KOF LEV NAV NAV ZOR FAL LEV JES 
MER HOX NAV JES ZOR DAZ LEV REL SOT TAF LEV JES 
MER HOX TID SOT RUD SIB ZOR FAL HOX REL 
DAZ LEV NAV REL SOT SIB LUM TAF LEV REL 
DAZ LEV NAV JES LUM DAZ HOX REL SOT TAF LEV JES 
KOF LEV KER REL SOT SIB SOT RUD NEB JES 
DAZ HOX NAV NAV SOT RUD HOX REL 
DAZ LEV NAV JES ZOR NAV SOT TAF HOX TID 
KOF LEV NAV REL SOT KER ZOR FAL LEV JES 
KOF NEB KER REL LUM DAZ LEV REL SOT RUD LEV JES 
KOF NEB JES ZOR FAL TID SOT DAZ HOX TID SOT RUD HOX REL 
KOF LEV KER JES LUM SIB ZOR FAL 
DAZ HOX REL SOT TAF JES LUM SIB LUM FAL 
DAZ LEV KER REL SOT MER HOX REL SOT RUD HOX TID 
MER HOX SIB NAV SOT RUD LEV REL 
MER HOX SIB REL SOT KER ZOR FAL NEB JES 
DAZ LEV REL LUM TAF JES ZOR NAV LUM TAF LEV REL 
KOF NEB JES LUM FAL JES ZOR KOF LEV REL LUM FAL 
KOF NEB JES LUM FAL TID SOT KER LUM FAL 
MER HOX NAV REL SOT KOF LEV REL LUM TAF 
DAZ LEV REL SOT RUD REL LUM KOF NEB JES LUM FAL HOX REL 
DAZ LEV JES LUM TAF REL LUM KOF LEV JES LUM TAF HOX REL 
KOF LEV NAV TID SOT NAV LUM TAF LEV JES 
DAZ LEV REL SOT RUD REL SOT DAZ LEV JES ZOR FAL HOX REL 
DAZ HOX SIB DAZ LEV JES LUM TAF NEB JES 
KOF LEV KER TID SOT KER SOT RUD LEV JES 
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KOF LEV SIB SIB SOT RUD 
DAZ HOX REL LUM FAL JES ZOR NAV ZOR FAL NEB JES 
MER HOX TID SOT RUD REL LUM NAV LUM TAF NEB JES 
KOF LEV REL LUM FAL TID SOT MER HOX REL LUM TAF NEB JES 
MER HOX REL LUM FAL JES LUM KOF LEV REL LUM FAL LEV JES 
 
 

Appendix C: Test items for Experiments 1 & 2 (Adult 1 & 2)  

 
Grammatical in Grammar 1 Grammatical in Grammar 2  
Types Sentences Types Sentences 

Fragment test 1 AB KOF HOX BC NEB REL 
 2  DAZ NEB  LEV TID 
 3  MER LEV  HOX JES 
 4  MER NEB  NEB TID 
      
 5 CD JES SOT DE SOT FAL 
 6  REL ZOR  ZOR TAF 
 7  TID LUM  LUM RUD 
 8  TID ZOR  ZOR RUD 
      
 9 CDE JES SOT FAL ABC KOF HOX JES 
 10  REL ZOR TAF  DAZ NEB 

REL 
 11  TID LUM 

RUD 
 MER LEV TID 

 12  TID ZOR RUD  MER NEB TID 
      
 13 ABF KOF HOX 

KER 
FDE KER SOT FAL 

 14  DAZ NEB 
NAV 

 NAV ZOR 
TAF 

 15  MER LEV SIB  SIB LUM 
RUD 

 16  MER NEB 
NAV 

 NAV ZOR 
RUD 

      
Movement test 17 CDEAB JES SOT FAL 

KOF HOX 
DEABC SOT FAL KOF 

HOX JES 
 18  REL ZOR TAF 

DAZ NEB 
 ZOR TAF 

DAZ NEB 
REL 

 19  TID LUM 
RUD MER 

 LUM RUD 
MER LEV TID 
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LEV 
 20  TID ZOR RUD 

MER NEB 
 ZOR RUD 

MER NEB TID 
      
 21 FAB KER KOF 

HOX 
DEF SOT FAL KER 

 22  NAV DAZ 
NEB 

 ZOR TAF 
NAV 

 23  SIB MER LEV  LUM RUD 
SIB 

 24  NAV MER 
NEB 

 ZOR RUD 
NAV 

      
 25 CDEABCD JES SOT FAL 

KOF HOX JES 
SOT 

DEABCBC SOT FAL KOF 
HOX JES 
HOX JES 

 26  REL ZOR TAF 
DAZ NEB 
REL ZOR 

 ZOR TAF 
DAZ NEB 
REL NEB REL 

 27  TID LUM 
RUD MER 
LEV TID LUM 

 LUM RUD 
MER LEV TID 
LEV TID 

 28  TID ZOR RUD 
MER NEB TID 
ZOR 

 ZOR RUD 
MER NEB TID 
NEB TID 

      
 29 FABCD KER KOF 

HOX JES SOT 
DEFBC SOT FAL KER 

HOX JES 
 30  NAV DAZ 

NEB REL ZOR 
 ZOR TAF 

NAV NEB 
REL 

 31  SIB MER LEV 
TID LUM 

 LUM RUD 
SIB LEV TID 

 32  NAV MER 
NEB TID ZOR 

 ZOR RUD 
NAV NEB TID 

      
Substitution test 33 ib CDE ib JES SOT 

FAL 
ABC ib KOF HOX JES 

ib 
 34  ib REL ZOR 

TAF 
 DAZ NEB 

REL ib 
 35  ib TID LUM 

RUD 
 MER LEV TID 

ib 
 36  ib TID ZOR 

RUD 
 MER NEB TID 

ib 
      
 37 AB et E KOF HOX et A et DE KOF et SOT 
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FAL FAL 
 38  DAZ NEB et 

TAF 
 DAZ et ZOR 

TAF 
 39  MER LEV et 

RUD 
 MER et LUM 

RUD 
 40  MER NEB et 

RUD 
 MER et ZOR 

RUD 
      
 41 ib et E ib et FAL A et ib KOF et ib  
 42  ib et TAF  DAZ et ib  
 43  ib et RUD  MER et ib  
 44  ib et RUD  MER et ib  
      
Movement-plus-
substitution test 

45 CDE ib JES SOT FAL 
ib 

ib ABC ib KOF HOX 
JES 

 46  REL ZOR TAF 
ib 

 ib DAZ NEB 
REL 

 47  TID LUM 
RUD ib 

 ib MER LEV 
TID 

 48  TID ZOR RUD 
ib 

 ib MER NEB 
TID 

      
 49 et EAB et FAL KOF 

HOX 
DEA et SOT FAL KOF 

et 
 50  et TAF DAZ 

NEB 
 ZOR TAF 

DAZ et 
 51  et RUD MER 

LEV 
 LUM RUD 

MER et 
 52  et RUD MER 

NEB  
 ZOR RUD 

MER et 
      
 53 et E ib et FAL ib ib A et ib KOF et 
 54  et TAF ib  ib DAZ et 
 55  et RUD ib  ib MER et 
 56  et RUD ib  ib MER et 
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Appendix D: Familiarization sentences for Experiments 3, 4 & 5 (Infant 1, 2 & 3) 

Sentence types (numbers in parentheses indicate number of times used in the 
familiarization)  
 
Grammar 1 Grammar 2 
A B F              (2) F D E            (2) 
 ib  et E C D      (1) A  et D E B C     (8) 
C D E A B  et      (1) A  et D E         (1) 
 et E  ib C D      (1) D E F B C          (1) 
A B  et E C D      (6) A B C D E         (2) 
A B C D E          (2) A  et D E  et      (1) 
F A B C D          (2) D E F              (3) 
C D E  ib C D      (1) F  ib B C         (1) 
F A B              (1)  ib F B C         (1) 
A B F C D          (4) A B C D E B C     (1) 
 et E A B          (3) F D E B C         (4) 
 ib F  et          (1) A B C D E  et    (1) 
F A B  et          (1)  ib A  et B C      (1) 
C D E A B C D     (1) D E A B C  et     (1) 
A B  et E         (3) D E A  et B C     (2) 
 
 
Familiarization sentences  
 
Grammar 1 Grammar 2 
DAZ HOX REL LUM FAL DAZ HOX REL LUM FAL 
DAZ HOX REL LUM TAF DAZ HOX REL LUM TAF 
DAZ HOX  et FAL JES LUM MER  et SOT TAF NEB JES 
 et RUD DAZ HOX NAV ZOR FAL 
KOF LEV  et FAL REL SOT KOF  et SOT RUD LEV REL 
MER HOX  et TAF MER HOX REL SOT RUD NEB JES 
KOF LEV SIB JES ZOR NAV ZOR FAL HOX REL 
KOF LEV KER REL SOT SOT TAF KER 
DAZ LEV  et TAF LUM FAL DAZ  et LEV JES 
KOF NEB  et FAL JES ZOR KER  ib LEV JES 
 et FAL DAZ LEV DAZ LEV REL LUM FAL  et 
 et FAL KOF LEV SIB SOT TAF HOX TID 
 ib  et TAF JES LUM SIB ZOR FAL NEB JES 
DAZ HOX NAV JES ZOR DAZ  et LUM TAF LEV JES 
DAZ LEV SIB KOF  et LUM TAF NEB JES 
KOF LEV  et RUD JES ZOR ZOR FAL NAV NEB JES 
DAZ HOX NAV JES LUM SOT TAF MER HOX REL  et 
JES LUM FAL DAZ LEV JES LUM KOF  et LUM FAL HOX REL 
KOF NEB  et TAF MER  et SOT RUD 
 ib KER  et KOF  et SOT TAF  et 
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 et FAL  ib JES ZOR  ib MER  et NEB JES 
SIB MER HOX  et MER  et LUM FAL LEV REL 
MER HOX  et FAL REL LUM LUM TAF MER  et LEV REL 
KER DAZ HOX REL SOT KOF  et LUM FAL LEV JES 
SIB KOF LEV JES LUM SOT TAF NAV 
REL LUM FAL KOF NEB  et SIB SOT RUD HOX TID 
JES LUM FAL  ib REL SOT MER  et SOT RUD NEB JES 
KER KOF LEV NAV SOT TAF 
KOF NEB NAV  ib KER NEB JES 
KOF LEV  et TAF JES ZOR SOT RUD KER 
 
 

Appendix E: Familiarization sentences for Experiments 6 (Infant 4) 

Sentence types (numbers in parentheses indicate number of times used in the 
familiarization)  
 
Grammar 1 Grammar 2 
A B C D E        (1) F D E             (5) 
A B F (3) A B C D E B C  (4) 
A B C D E C D (6) F D E B C      (21) 
A B F C D   (20)           
 
 
Familiarization sentences  
 
Grammar 1 Grammar 2 
KOF LEV NAV TID SOT SIB LUM TAF HOX TID 
KOF NEB SIB JES ZOR KER LUM FAL 
MER HOX SIB REL SOT SIB LUM FAL HOX TID 
KOF LEV SIB TID SOT SIB SOT RUD 
DAZ HOX SIB JES LUM NAV SOT TAF HOX REL 
MER HOX REL SOT RUD NAV SOT TAF NEB JES 
DAZ HOX KER REL LUM SIB LUM TAF LEV JES 
DAZ HOX SIB REL SOT KER LUM FAL NEB JES 
MER HOX KER KOF NEB JES LUM TAF NEB JES 
KOF LEV NAV REL LUM KER SOT TAF LEV JES 
DAZ LEV SIB JES ZOR SIB LUM FAL 
DAZ HOX NAV TID SOT KER ZOR FAL HOX TID 
DAZ HOX REL LUM TAF REL 
LUM 

DAZ LEV JES LUM FAL LEV REL 

KOF LEV KER JES LUM NAV SOT TAF LEV REL 
MER HOX SIB JES LUM KER ZOR FAL 
MER HOX TID SOT RUD REL LUM SIB LUM TAF LEV REL 
DAZ HOX REL LUM FAL JES LUM NAV SOT RUD LEV JES 
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MER HOX REL SOT RUD JES LUM KER LUM FAL LEV REL 
DAZ LEV REL SOT RUD JES ZOR KER LUM FAL HOX REL 
KOF LEV KER REL SOT SIB SOT TAF LEV REL 
MER HOX SIB JES ZOR NAV ZOR FAL LEV REL 
DAZ HOX KER NAV LUM FAL 
KOF NEB NAV REL LUM KER LUM TAF HOX REL 
DAZ HOX SIB TID SOT KER LUM TAF NEB JES 
KOF LEV NAV JES ZOR SIB ZOR FAL NEB JES 
KOF NEB KER KOF LEV REL LUM FAL LEV REL 
KOF LEV NAV REL SOT KOF NEB JES LUM TAF LEV JES 
MER HOX KER REL SOT NAV ZOR FAL NEB JES 
KOF NEB NAV REL SOT NAV ZOR FAL LEV JES 
DAZ HOX REL SOT RUD JES ZOR KER SOT RUD HOX TID 
 
 

Appendix F: Test items for Experiments 3, 4 & 6 (Infant 1, 2 & 4) 

 
Grammatical in Grammar 1 Grammatical in Grammar 2  
Type Sentences Type Sentences 

Movement 
test 

1 CDEAB JES SOT FAL KOF 
HOX 

DEABC SOT FAL KOF 
HOX JES 

 2  REL ZOR TAF DAZ 
NEB 

 ZOR TAF DAZ 
NEB REL 

 3  TID LUM RUD 
MER LEV 

 LUM RUD MER 
LEV TID 

 4  TID ZOR RUD 
MER NEB 

 ZOR RUD MER 
NEB TID 

 

Appendix G: Test items for Experiments 5 (Infant 3) 

 
Grammatical in Grammar 1 Grammatical in Grammar 2  
Type Sentences Type Sentences 

Movement 
test 

1 BCADE HOX JES KOF SOT 
FAL 

CDABE JES SOT KOF HOX 
FAL 

 2  NEB REL DAZ 
ZOR TAF 

 REL ZOR DAZ 
NEB TAF 

 3  LEV TID MER 
LUM RUD 

 TID LUM MER 
LEV RUD 

 4  NEB TID MER ZOR 
RUD 

 TID ZOR MER NEB 
RUD 
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