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Abstract

This paper presents results obtained for the robust control of discrete time

dynamical systems. The problem is formulated and solved using dynamic pro-

gramming. Both necessary and su�cient conditions in terms of (stationary)

dynamic programming equalities are presented. The output feedback problem

is solved using the concept of an information state, where a decoupling between

estimation and control is obtained.

1 Introduction

This paper is concerned with the robust control of systems modelled as inclusions.
Systems of this type occur, for example in hybrid systems, where an upper logical level
switches between di�erent plant models depending on observed events [16],[9]. Sta-
bility results for such systems based on Lyapunov-like functions have been presented
in [8],[16]. However, no concept of robust performance (in the sense of minimizing
variations in the regulated outputs due to switching between di�erent plant models
and noise), particularly for the output feedback case, exists for such systems.

Another example of systems that can be modelled as inclusions are systems with
bounded parameteric uncertainty. A number of results can be found in the literature
concerned with stabilization and ultimate boundedness of such (linear) systems (e.g.
[5],[20],[23],[17],[19],[6]). At the same time, it has been noted that with standard H1
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control methods, no robust behaviour on H1 performance along with stability can
be guaranteed. This has led to optimal robust H1 control for linear systems [15]
where one tries to obtain optimal guaranteeable H1 performance given uncertainty
about the plant's state space parameters. What is not considered however, is the
in
uence of the parameter variations themselves on the regulated outputs. Under the
assumption that the noise is bounded, the above problem can be reduced to robust
control of inclusions. In this context, both the in
uence of parameter variations, as
well as of exogenous inputs on the regulated output can be considered in a uni�ed
context. Furthermore, we will show that ultimate boundedness of trajectories can
also be established. It should be noted here that the concept of casting dynamical
systems as inclusions is not new. However, previous work has been mainly concerned
with the problem of control synthesis under input constraints [14].

Our work is motivated by recent results obtained in the nonlinear H1 context in
[13]. We will use the dynamic game framework developed in [7],[13]. Furthermore,
to establish the ultimate boundedness of trajectories, we will employ the theory of
dissipative systems [22] to write down a version of the bounded real lemma. The
latter is expressed in terms of a dissipation inequality, which has appeared repeatedly
in papers dealing with nonlinear robust control (e.g.[3],[10],[11],[12],[13],[18],[21]). In
the context of set-valued discrete time dynamical systems, in [1] the authors have
employed dissipativity to identify conditions for the existence of �xed points of set-
valued maps. For the output feedback problem, we will employ the concept of an
information state. The exact form of the information state recursion was derived
from an analogous set-valued stochastic control problem in [4]. Using the concept
of an information state, we are able to obtain a separation between estimation and
control.

Although we will be using concepts from dissipative systems, our �nal necessary and
su�cient conditions for the existence of a solution to the robust control problem will
be expressed in terms of (stationary) dynamic programming equalities. However,
from the proof for the su�cient conditions, it will be clear that the necessary and
su�cient conditions could also be expressed in terms of dissipation inequalities.

In section 2, we present the problem formulation. Section 3 deals with the state
feedback case and section 4 with the output feedback problem. Finally an example
is presented in section 5.
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2 Problem Formulation

The system under consideration (�) is expressed as

�

8><
>:

xk+1 2 F(xk; uk) ; x0 2 X0

yk+1 2 G(xk; uk)
zk+1 = l(xk+1; uk) ; k = 0; 1; : : :

(1)

Here, xk 2 Rn are the states, uk 2 U � Rm are the control inputs, yk 2 Rt are the
measured variables, and zk 2 Rq are the regulated outputs. The following assump-
tions are made on the system �

1. 0 2 X0.

2. F(x; u), G(x; u) are compact for all x 2 Rn and u 2 U .

3. The origin is an equilibrium point for F , G and l. i.e

F(0; 0) 3 0 ; G(0; 0) 3 0 ; l(0; 0) = 0

4. IntF 6= � for all x 2 Rn, u 2 U . i.e. there exists an �� > 0 such that for any
x 2 Rn, u 2 U , B��(r) 2 F(x; u) for some r 2 F(x; u). Here B��(r) is the open
ball of radius �� centered at r.

5. l(�; u) 2 C1(Rn) for all u 2 U and is such that, 9
min > 0, such that

L
 4
=

(
s 2 Rnj9u 2 U s.t.

����� @@xl(s; u)
����� � 


)

is bounded and contains the origin 8
 � 
min.

6. U � Rm is compact.

Some of the notation employed in the paper will be as follows:
j � j denoted the Euclidean norm, k � k denotes the l2 norm, �u

0;k(x) denotes the
truncated forward cone of the point x 2 Rn [1]. In particular

�u
0;k(x)

4
= fx0;kjxj+1 2 F(xj; uj); j = 0; : : : ; k � 1g:

We furthermore de�ne

�u
0;k(x0)

���
l2

4
= fx10;k; x20;k 2 �u

0;k(x0)jx2 � x1 2 l2([0; k];Rn)g
and Xu

k (x0) � Rn as the cross section of the forward cone of x0 at time instant k.

The robust control problem can now be stated as:
Given 
 � 
min, �nd a controller u (= u(x) or u(y) depending on what is measured)
such that the closed loop system �u satis�es the following three conditions:
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1. �u is weakly asymptotically stable, in the sense that for each k, there exists an
�k 2 F(xk; uk) such that, the sequence �k �! 0 as k �!1.

2. �u is ultimately bounded.

3.

sup
r;s2�u(0)j

l2
;r 6=s

kl(r; u)� l(s; u)k
kr � sk � 


3 State Feedback Case

In the state feedback case, the problem is to �nd a controller u 2 S i,e, uk = u(xk),
where u : Rn 7�! U such that the three conditions stated above are satis�ed.

3.1 Finite Time Case

For the �nite time case, conditions 1 and 2 are not required. Condition 3 is equivalent
to the existence of a �nite �u

K(x0), �
u
K(0) = 0 such that

K�1X
i=0

j l(ri+1; ui)� l(si+1; ui) j2� 
2
K�1X
i=0

j ri+1 � si+1 j2 +�u
K(x0);

(2)
8K � 1; 8r; s 2 �u

0;K(x0); 8x0 2 X0

3.2 Dynamic Game

Here, the robust control problem is converted into an equivalent dynamic game. For
u 2 Sk;K�1 and �x 2 Xk(x0), where Xk(x0) is the set of states that the system can
achieve at time k if it were started form x0, de�ne

J�x;k(u) = sup
r;s2�u

k;K
(�x)
f
K�1X
i=k

(j l(ri+1; ui)� l(si+1; ui) j2 �
2 j ri+1 � si+1 j2)g (3)

Clearly
J�x;k(u) � 0:

Now, the �nite gain property can be expressed as below
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Lemma 1 �u
�x is �nite gain on [k,K] if and only if there exists a �nite �u

K(�x), �
u
K(0) =

0 such that
J�x;j(u) � �u

K(�x); j 2 [k;K]; 8�x 2 X0 (4)

The problem is hence reduced to �nding a u� 2 Sk;K�1 which minimizes J�x;k.

3.3 Solution to the Finite Time State Feedback Robust

Control Problem

We can solve the above using dynamic programming. De�ne

Vk(�x) = inf
u2Sk;K�1

sup
r;s2�u

k;K
(�x)
f
K�1X
i=k

j l(ri+1; ui)� l(si+1; ui) j2 �
2 j ri+1 � si+1 j2g (5)

The corresponding dynamic programming equation is

Vk(x) = infu2U supr;s2F(x;u)fj l(r; u)� l(s; u) j2 �
2 j r � s j2 +Vk+1(r)g
VK(x) = 0

(6)

Note that we have abused notation, and here u is a vector instead of a function as in
equation 5.

Theorem 1 (Necessity) Assume that u� 2 S0;K�1 solves the �nite time state feedback
robust control problem. Then, there exists a solution V to the dynamic programming
equation (6) such that Vk(x) � 0, Vk(0) = 0, k 2 [0; K � 1], x 2 X0.

Proof:

For x 2 X0, k 2 [0; K � 1] de�ne

Vk(x) = inf
u2Sk;K�1

Jx;k(u)

Then, we have
0 � Vk(x) � �u�

K (x); k 2 [0; K � 1]; x 2 X0

Thus, Vk is �nite on X0, and by dynamic programming, V satis�es equation 6. Also,
since �u�

K (0) = 0, Vk(0) = 0.

2
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Theorem 2 (Su�ciency) Assume that there exists a solution V to the dynamic pro-
gramming equation (6), such that Vk(x) � 0, Vk(0) = 0, k 2 [0; K � 1], x 2 X0. Let
u� 2 Sk;K�1 be a control policy such that u�k achieves the minimum in equation (6) for
k = 0; : : : ; K�1. Then u� solves the �nite time state feedback robust control problem.

Proof: Dynamic programming arguments imply that for a given x 2 X0

V0(x) = Jx;0(u
�) = inf

u2S0;K�1

Jx;0(u)

Thus u� is an optimal policy for the game and lemma 1 is satis�ed with u = u�, where
we obtain �u

K(x) = V0(x).

2

3.4 In�nite Time Case

Here, we are interested in the limit as K �! 1. Invoking stationarity equation (6)
becomes

V (x) = inf
u2U

sup
r;s2F(x;u)

fV (s)+ j l(r; u)� l(s; u) j2 �
2 j r � s j2g (7)

3.5 The Dissipation Inequality

We say that the system ��u is �nite gain dissipative if there exists a function V (x)
(called the storage function), such that V (x) � 0, V (0) = 0, and it satis�es the
dissipation inequality

V (x) � sup
r;s2F(x;�u(x))

fV (s)� 
2 j r � s j2 + j l(r; �u(x))� l(s; �u(x)) j2g (8)

8x 2 X �u
k (x0); 8k � 0; 8x0 2 X0

where �u(x) is the control value for state x.

Theorem 3 Let u 2 S. The system �u is �nite gain if and only if it is �nite gain
dissipative.
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Proof:

(i) Assume �u is �nite gain dissipative. Then equation (8) implies

V (x0) � V (rk)� 
2
k�1X
i=0

j ri+1 � si+1 j2 +
k�1X
i=0

j l(ri+1; ui)� l(si+1; ui) j2;

8k > 0; 8r; s 2 �u(x0)

This implies

V (x0) + 
2
k�1X
i=0

j ri+1 � si+1 j2� V (rk) +
k�1X
i=0

j l(ri+1; ui)� l(si+1; ui) j2

Since V � 0 for all x 2 Xu
k (x0), this implies

k�1X
i=0

j l(ri+1; ui)� l(si+1; ui) j2� 
2
k�1X
i=0

j ri+1 � si+1 j2 +V (x0)

Thus �u is �nite gain.

(ii) Assume �u is �nite gain. For any x0 2 X0 and k � 0, de�ne for x 2 Xu
k (x0)

~V u
k;j(x; x0) = sup

r;s2�u(x)
f
j�1X
i=0

j l(ri+1; ui)� l(si+1; ui) j2 �
2 j ri+1 � si+1 j2g

Then we have for any x 2 Xu
k (x0)

0 � ~V u
k;j(x; x0) � �u(x0); 8j � 0

Furthermore
~V u
k;j+1(x; x0) � ~V u

k;j(x; x0) ; 8x 2 Xu
k (x0)

Furthermore, note that by time invariance, ~V u
k;j(x; x0) depends only on x and j. Thus

if x 2 Xu
k1
(x10)

T
Xu

k2
(x20) then ~V u

k1;j
(x; x10) � ~V u

k2;j
(x; x20). Hence,

~V u
k;j(x; x0) �! V u(x); as k �!1 ; 8x 2 xuk(x0); k � 0; x0 2 X0

Also, we have
0 � V u(x0) � �u(x0)

Since
V (x) = inf

u2S
V u(x) = V �u(x) � V u(x)

dynamic programming implies that V u(x) solves the dissipation inequality (8) for all
x 2 Xu

k (x0), k � 0, x0 2 X0. Furthermore V u(x) � 0 and V u(0) = 0. Thus V u is a
storage function and hence �u is �nite gain dissipative.
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We now have to show that the control policy u 2 S[0;1) which renders �u �nite gain
dissipative, also guarantees ultimate boundedness of trajectories, and furthermore un-
der a certain detectability type assumption, the existence of a sequence �n 2 F(xn; un)
such that limn!1 �n = 0. The above can be also expressed as [2]

0 2 lim inf
k�!1

F(xk; uk)

We, now study the convergence of

W �u
i = sup

r2F(�xi;�ui)
(j l(r; �ui)� l(�xi+1; �ui) j2 �
2 j r � �xi+1 j2)

to zero, where �x is a trajectory generated by the control �u.

Lemma 2 If W �u
k �! 0, as i �! 1 , then 8� > 0, 9K such that 8k � K, 9� such

that
j r � �xk+1 j< � =) j l(�xk+1; �uk)� l(r; �uk) j< �

Proof:

Suppose to the contrary. Then 9� > 0 such that, 8K, 9k � K, such that 8� > 0

j r � �xk+1 j< � =)j l(�xk+1; �uk)� l(r; �uk) j� �

Fix � such that 0 < � < �� and � <
p
�. Then for any s 2 B �



(�xk+1)

TF(�xk; uk)
� F(�xk; uk)

j l(�xk+1; uk)� l(s; �uk) j2 �
2 j �xk+1 � s j2� �� �2 = �

This contradicts the convergence of W �u
k .

2

Remark: The above lemma gives a necessary condition for the sequence W �u
k to

converge.

Lemma 3 If W �u
k �! 0, then 8�, �̂ > 0, �� > � > 0, 9K such that 8k � K, 9r 2

B�(�xk+1)
TF(�xk; �uk) with r 6= �xk+1 and

j l(r; �uk)� l(�xk+1; �uk) j
j r � �xk+1 j < 
 + �̂ (9)
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Proof:

By contradiction. 9�̂, � > 0, �� > � > 0, such that 8K 9k � K such that

j l(r; �uk)� l(�xk+1; �uk) j
j r � �xk+1 j � 
 + �̂; 8r 2 B�(�xk+1)

\F(�xk; �uk); r 6= �xk+1

Hence, 9� > 0 such that

j l(r; �uk)� l(�xk+1; �uk) j2 �
2 j r � �xk+1 j2� � j r � �xk+1 j2

Let r 2 B�(�xk+1)
TF(�xk; �uk) be such that � >j r � �xk+1 j> �

2
. Thus,

j l(r; �uk)� l(�xk+1; �uk) j2 �
2 j r � �xk+1 j2� �
�2

4
= �̂

Hence, 9�̂ > 0 such that 8K, 9k � K such that

W �u
k � �̂

Hence, we get a contradiction.

2

Corollary 1 If W �u
k �! 0, then

lim
k�!1

j @

@x
l(�xk+1; �uk) j� 


Proof:

Take the limit in equation (9) as �, �̂ �! 0.

2

Before we can prove weak asymptotic stability, we need the following additional as-
sumption on the system �.

A: Assume that for a given 
 > 0, the system ��u is such that

lim
k�!1

j @

@x
l(�xk+1; �uk) j� 


implies 0 2 lim infk�!1F(�xk; �uk).
Remark: The assumption above, can be viewed to be analogous to the detectability
assumption often encountered in H1 control literature e.g. [18],[11].

The following theorem gives a su�cient condition for weak asymptotic stability.
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Theorem 4 If for a given 
 > 0, ��u is �nite gain dissipative and satis�es assumption
A, then ��u is weakly asymptotically stable.

Proof:

From the dissipation inequality (equation 8), we obtain for any x0 2 X0

KX
i=0

j l(ri+1; �ui)� l(si+1; �ui) j2 �
2 j ri+1 � si+1 j2� V (x0); 8K; r; s 2 ��u(x0):

In particular for any x 2 ��u(x0)

KX
k=0

W �u
k � V (x0); 8K

We know that W �u
k � 0, 8k. This implies that

W �u
k �! 0 as k �!1

Hence, by corollary 1 and assumption A, we obtain

0 2 lim inf
k�!1

F(�xk; �uk)
This implies that 9�n 2 F(�xn; �un) such that limn�!1 �n = 0.
Hence, 8x 2 ��u(x0), 9�n 2 F(xn; �un) such that limn�!1 �n = 0.

2

Corollary 2 If ��u is �nite gain dissipative, then ��u is ultimately bounded.

Proof: In the proof of theorem 4, we observe that if ��u is �nite gain dissipative,
then

W �u
k �! 0 as k �!1

Hence, by corollary 1

lim
k�!1

����� @@xl(xk+1; �uk)
����� � 


Which implies that limk�!1 xk 2 L
, which is bounded by assumption 5.

2

Remark: Furthermore, if we impose su�cient smoothness assumptions on ��u, such
that V is continuous, then all trajectories generated by ��u are stable in the sense of
lyapunov. In particular V then becomes a lyapunov function.

Remark: It is clear from above and from lemma 2, that we do need some form of
continuity assumption on l as a necessary condition for the system to be �nite gain
dissipative.
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3.6 Solution to the State Feedback Robust Control Prob-

lem

Although, the results above indicate that the controlled dissipation inequality is both
a necessary and su�cient condition for the solvability of the state feedback robust
control problem, we state the necessary and su�cient conditions in terms of dynamic
programming equalities.

Theorem 5 (Necessity) If a controller �u 2 S solves the state feedback robust control
problem, then there exists a function V (x) such that V (x) � 0, V (0) = 0 and V

satis�es the following equation i.e.

V (x) = inf
u2U

sup
r;s2F(x;u)

fjl(r; u)� l(s; u)j2 � 
2jr � sj2 + V (r)g (10)

x 2 X �u
k (x0); k � 0; x0 2 X0.

Proof: Construct a sequence Vj, j = 0; : : : of functions as follows

Vj+1(x) = infu2U supr;s2F(x;u)fjl(r; u)� l(s; u)j2 � 
2jr � sj2 + Vj(r)g
V0(x) = 0

Clearly,
Vj(x) � 0 ; 8x 2 Rn; 8j � 0

and
Vj+1(x) � Vj(x) ; 8x 2 Rn; j � 0

For any x0 2 X0 and k � 0, pick an x 2 X �u
k (x0). Then dynamic programming

arguments imply that

0 � Vj(x) � ��u(x0) ; 8x 2 X �u
k (x0)

Furthermore, note that Vj(x) depends only on j and x. Hence,

Vj(x) �! V (x) as j �!1 ; 8x 2 X �u
k (x0); k � 0; x0 2 X0

and by de�nition, V satis�es equation (10). Furthermore, V (x) � 0 and V (x0) �
��u(x0). Hence, V (0) = 0.

2
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Theorem 6 (Su�ciency) Assume that there exists a solution V to the stationary dy-
namic programming equation (10) for all x 2 Rn, satisfying V (x) � 0 and V (0) = 0.
Let �u(x) be the control value which achieves the minimum in equation (10). Then
�u 2 S solves the state feedback robust control problem provided that ��u satis�es as-
sumption A.

Proof: Since V satis�es equation (10), ��u satis�es equation (8) with equality. Hence,
��u is �nite gain dissipative, and hence by theorem 3, ��u is �nite gain. Furthermore,
by theorem 4 ��u is weakly asymptotically stable and by corollary 2 ��u is ultimately
bounded.

2

Corollary 3 If X0 = Rn, then the existence of a solution to the stationary dynamic
programming equation (10) for all x 2 Rn, is both a necessary and su�cient condition
for the existence of a solution to the state feedback robust control problem.

Remark: It can be seen from the statement of theorem 5 and the proof of theorem 6,
that we could have expressed the necessary and su�cient conditions for the solvability
of the state feedback robust control problem in terms of dissipation inequalities.

4 Output Feedback Case

We now consider the output feedback robust control problem. We denote the set of
control policies as O. Hence, if u 2 O, then uk = f(y1;k; u0;k�1).

4.1 Finite Time

Given 
 > 0, and a �nite time interval [0; K], �nd a control policy u 2 O0;K�1, such
that there exists a �nite quantity �u

K(x) with �u
K(0) = 0 and

K�1X
i=0

j l(ri+1; ui)� l(si+1; ui) j2� 
2
K�1X
i=0

j ri+1 � si+1 j2 +�u
K(x0);

8r; s 2 �u
0;K(x0); 8x0 2 X0
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We introduce for convenience the following notation.

�u
1;K(x0) = fy1;K j yk+1 2 G(xk; uk); 8x 2 �u

0;K�1(x0)g
�u;y
0;K(x0) = fx0;K 2 �u

0;K(x0) j yk+1 2 G(xk; uk); k = 0; : : : ; K � 1g

4.2 Dynamic Game

In this section, we transform the output feedback robust control problem to a dynamic
game. We introduce the function space

E = fp : Rn �! R�g

and de�ne for each x 2 Rn a function �x : R
n �! R� by

�x(�)
4
=

(
0 if � = x

�1 if � 6= x

For u 2 O0;K�1, and p 2 E de�ne a functional Jp;k(u) by

Jp;k(u)
4
= sup

x02X0

sup
r;s2�u(x0)

fp(x0) +
kX

i=1

j l(si; ui�1)� l(ri; ui�1) j2 �
2 j si � ri j2g (11)

for k = 0; : : : ; K.

Remark: The functional p 2 E in equation (11) can be chosen to re
ect any a priori
knowledge concerning the initial state x0 of �

u.

The �nite gain property of �u can now be expressed in terms of J as follows.

Lemma 4 �u
x0

is �nite gain on [0,K] if and only if there exists a �nite quantity
�u
K(x0), �

u
K(0) = 0, such that

J�x0 ;k(u) � �u
K(x0); k = 0; : : : ; K

For notational convenience, we introduce the following pairing

(p; q) = sup
x2Rn

fp(x) + q(x)g

and a restricted version

(p; q j X) = sup
x2X

fp(x) + q(x)g

13



Lemma 5 If each map �u
x0

is �nite gain on [0; K], then

(p; 0 j X0) � Jp;K(u) � (p; �u
K j X0)

Proof:

Set r = s 2 �u(x0) in equation (11). Then clearly

(p; 0 j X0) � Jp;K(u)

Since, �u
x0

is �nite gain on [0; K] for all x0 2 X0, this implies that for any x0 2 X0

p(x0) +
KX
i=1

j l(si; ui�1)� l(ri; ui�1) j2 �
2 j si � ri j2� p(x0) + �u
K(x0) � (p; �u

K j X0)

Hence, Jp;K(u) � (p; �u
K j X0).

2

Thus, we can de�ne

dom Jp;K(u) = fp 2 E : (p; 0 j X0); (p; �
u
K j X0) is �nite g

The �nite time output feedback dynamic game is to �nd a control policy u 2 O0;K�1,
which minimizes each functional J�x0 ;K.

4.3 Information State Formulation

Motivated by results obtained in the set-valued stochastic control problem [4], for a
�xed y1;k 2 �u

1;k(X0), and u1;k�1, we de�ne the information state pk 2 E by

pk(x)
4
= sup

x02X0

sup
r;s2�u;y

0;k
(x0)

fp0(x0)+
kX

i=1

j l(si; ui�1)� l(ri; ui�1) j2 �
2 j ri�si j2 j rk = xg

(12)
Here, the convention is that the supremum over an empty set is �1. Furthermore,
for convenience we rede�ne p0 as

p0(x) =

(
p0(x) ; if x 2 X0

�1 ; else

Clearly, if �u is �nite gain, then

�1 � pk(x) � (p0; �
u
K) < +1

14



and a �nite lower bound for pk(x) is obtained for all feasible x 2 Rn.

Now, de�ne H(p; u; y) 2 E by

H(p; u; y)(x)
4
= sup

�2Rn

fp(�) +B(�; x; u; y)g

where the function B is de�ned by

B(�; x; v; y)
4
=

8><
>:

sups2F(�;v)fj l(x; v)� l(s; v) j2 �
2 j x� s j2g if

(
x 2 F(�; v)
y 2 G(�; v)

�1 else

Lemma 6 The information state is the solution of the following recursion(
pk+1 = H(pk; uk; yk+1); k = 0; : : : ; K � 1
p0 2 E (13)

Proof:

We use induction. Assume that (13) is true for 0; : : : ; k; we must show that pk+1
de�ned by (12) equals H(pk; uk; yk+1). Now

H(pk; uk; yk+1)(x) = sup
�2Rn

fpk(�) +B(�; x; uk; yk+1)g

= sup
�2Rn

fpk(�) + sup
s2F(�;uk)

(j l(x; uk)� l(s; uk) j2 �


2 j x� s j2 j yk+1 2 G(�; uk); x 2 F(�; uk)g
= pk+1(x)

by the de�nition (12) for pk, and pk+1.

2

Remark: Note that we can write

pk(x) = sup
�2�u;y

0;k
(X0)

fp0(�0) +
k�1X
i=0

B(�i; �i+1; ui; yi+1) j �k = xg

for k = 1; : : : ; K.

Remark: The relationship between the information state and the indicator function
of the feasible sets was established in [4]. In particular, it was established that if
p0 = �x0 , then pk(x) � 0 if and only if x 2 X y;u

k (x0), where X y;u
k (x0) is the set of

feasible states at time k, given u0;k�1 and y1;k.
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Theorem 7 For u 2 O0;k�1, p 2 E, such that Jp;k(u) is �nite, we have

Jp;k(u) = sup
y1;k2�u(X0)

f(pk; 0) j p0 = pg; k 2 [0; K] (14)

Proof:

We have

sup
y1;k2�u(X0)

f(pk; 0) j p0 = pg

= sup
y1;k2�u(X0)

sup
�2�u;y

0;k
(X0)

fp(�0) +
k�1X
i=0

B(�i; �i+1; ui; yi+1)g

= sup
x02X0

sup
r;s2�u

0;k
(x0)
fp(x0) +

kX
i=1

j l(si; ui�1)� l(ri; ui�1) j2

�
2 j ri � si j2g
= Jp;k(u)

2

Remark: This representation theorem is actually a separation principle.

The following corollary enables us to express the �nite gain property of �u in terms
of the information state p.

Corollary 4 For any output feedback controller u 2 O0;K�1, the closed loop system
�u is �nite gain on [0; K] if and only if the information state pk satis�es

sup
y1;k2�u(X0)

f(pk; 0) j p0 = �x0g � �u
K(x0); 8k 2 [0; K]

for some �nite �u
K(x0), with �u

K(0) = 0.

2

Remark: Thus the name information state for p is justi�ed, since pk contains all
the information relevant to the �nite gain property of �u that is available in the
observations y1;k.

The information state dynamics (13) may be regarded as a new (in�nite dimensional)
control system �, with control u and uncertainty parameterized by y. The state pk,
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and the disturbance yk are available to the controller, so the original output feedback
dynamic game is equivalent to a new game with full information. The cost is now
given by (14).

We now need an appropriate class Ii;K of controllers, which feedback this new state
variable. A control u belongs to Ii;K, if for each k 2 [i; K], there exists a map �uk from
a subset of Ek�i+1 (sequences pi;k) into U , such that uk = �u(pi;k). Note that since pk
depends on the observable information yi;k, I0;k�1 � O0;k�1.

4.4 Solution to the Finite Time Output Feedback Robust

Control Problem

We use dynamic programming to solve the game. De�ne the value function by

Mk(p) = inf
u2O0;k�1

sup
y2�u

1;k
(X0)

f(pk; 0) j p0 = pg (15)

for k 2 [0; K], and the corresponding dynamic programming equation is

Mk(p) = inf
u2U

sup
y2Rt

fMk�1(H(p; u; y))g; k 2 [1; K] (16)

with the initial condition
M0(p) = (p; 0)

Remark: In the above equations, we have inverted the time index to enable ease of
exposition when dealing with the in�nite time case. Since, the system is assumed to
be time invariant, it does not matter if we write the equations as above, or as

~Mk(p) = inf
u2U

sup
y2Rt

f ~Mk+1(H(p; u; y))g; k 2 [0; K � 1]

with the initial condition
~MK(p) = (p; 0)

as far as we invert the index of the control policy obtained by solving equation(16).

De�ne for a function M : E �! R�,

dom M = fp 2 E jM(p) finiteg

Theorem 8 (Necessity) Assume that �u 2 O0;K�1 solves the �nite time output feed-
back robust control problem. Then there exists a solution M to the dynamic program-
ming equation (16) such that dom Jp;K(�u) � dom Mk, Mk(�0) = 0, Mk(p) � (p; 0),
k 2 [0; K].
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Proof:

For p 2 dom Jp;K(�u), de�ne Mk(p) by (15). Then

Mk(p) = inf
u2O0;k�1

Jp;k(u)

Now, we also have

Mk(p) = inf
u2O0;k�1

sup
x02X0

sup
r;s2�u

0;k
(x0)
fp(x0)+

kX
i=1

j l(si; ui�1)� l(ri; ui�1) j2 �
2 j si� ri j2g

For u = �u, by using the �nite gain property for ��u we get

Mk(p) � sup
x02X0

sup
r;s2��u

0;k
(x0)

fp(x0)+
kX
i=1

j l(si; �ui�1)�l(ri; �ui�1) j2 �
2 j si�ri j2g � (p; ��u
K)

Thus, dom Jp;K(�u) � dom Mk. Also

Mk(p) � (p; 0)

Since, ��u
K(0) = 0, and (�0; 0) = 0, we have that Mk(�0) = 0.

2

Theorem 9 (Su�ciency) Assume there exists a solution M to the dynamic pro-
gramming equation (16) such that �x 2 dom Mk for all x 2 X0, Mk(�0) = 0,
Mk(p) � (p; 0), k 2 [0; K]. Let �u� 2 I0;K�1 be a policy such that u�k = �u�K�k(pk),
where �u�k(p) achieves the minimum in (16); k = 0; : : : ; K � 1. Then u� solves the
�nite time output feedback robust control problem.

Proof:

We see that
MK(p) = Jp;K(u

�) � Jp;K(u)

for all u 2 O0;K�1, p 2 dom MK . Now

sup
y2�u�

1;K
(X0)

f(pK; 0) j p0 = �x0g �MK(�x0)

which implies by corollary 4 that �u� is �nite gain with �u�

K (x0) = MK(�x0), and
hence u� solves the �nite time output feedback robust control problem.

2

Corollary 5 If the �nite time output feedback robust control problem is solvable by
an output feedback controller �u 2 O0;K�1, then it is also solvable by an information
state feedback controller u� 2 I0;K�1.

2
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4.5 In�nite Time Case

We pass to the limit as K �!1 in the dynamic programming equation (16).

lim
k�!1

Mk(p) =M(p)

where Mk(p) is de�ned by (15), to obtain a stationary version of equation (16)

M(p) = inf
u2U

sup
y2Rt

fM(H(p; u; y))g (17)

4.6 Dissipation Inequality

The following lemma is a consequence of corollary 4.

Lemma 7 For any u 2 O, the closed loop system �u is �nite gain if and only if the
information state satis�es

sup
k�1

sup
y2�u

1;k
(x0)
f(pk; 0) j p0 = �x0g � �u(x0) (18)

for some �nite �u(x0), with �u(0) = 0.

2

By using lemma 7 we say that the information state system �u ((13) with information
state feedback u 2 I) is �nite gain if and only if the information state pk satis�es (18)
for some �nite �u(x0), with �u(0) = 0. If �u is �nite gain, we write

dom Jp(u) = fp 2 E j (p; 0); (p; �u) �niteg

where Jp(u) = supk�0 Jp;k(u).

We say that the information state system ��u is �nite gain dissipative if there exists
a function (storage function) M(p), such that dom M contains �x for all x 2 X0,
M(p) � (p; 0), M(�0) = 0, and satis�es the following dissipation inequality

M(p) � sup
y2Rt

fM(H(p; �u(p); y))g (19)

Note that if ��u is �nite gain dissipative, and p 2 dom M , then H(p; �u(p); y) 2 dom M

for all y 2 Rt. Consequently, p0 2 dom M , implies pk 2 dom M , 8k > 0.
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Lemma 8 Mk is monotone non-decreasing. i.e.

Mk�1(p) �Mk(p)

Proof:

Note that

Mk(p) = sup
x02X0

sup
r;s2�u

0;k
(x0)
fp(x0) +

kX
i=1

j l(ri; ui�1)� l(si; ui�1) j2 �
2 j si � ri j2g

Then for any � > 0, choose x
0

0 2 X0, and r
0

; s
0 2 �u

0;k�1(x
0

0) such that

Mk�1(p) � p(x
0

0) +
k�1X
i=1

j l(r0i; ui�1)� l(s
0

i; ui�1) j2 �
2 j r
0

i � s
0

i j2 +�

Let x0 = x
0

0, and de�ne r; s 2 �u
0;k(x0) by r = r

0

, s = s
0

on [0; k � 1], and rk = sk.
Then

Mk(p) � p(x0) +
kX

i=1

j l(ri; ui�1)� l(si; ui�1) j2 �
2 j ri � si j2

� p(x
0

0) +
k�1X
i=1

j l(r0i; ui�1)� l(s
0

i; ui�1) j2 �
2 j r
0

i � s
0

i j2 +

j l(rk; uk�1)� l(sk; uk�1) j2
� Mk�1(p)� �

Since � > 0 is arbitrary, letting � �! 0+ gives

Mk(p) �Mk�1(p)

2

We are now in a position to prove a version of the bounded real lemma for the
information state system �.

Theorem 10 Let u 2 I. Then the information state system �u is �nite gain if and
only if it is �nite gain dissipative.

Proof:

(i)
Assume that �u is �nite gain dissipative. Then by the dissipation inequality (19)

M(pk) �M(p0); 8k > 0; 8y 2 �u
1;k(X0)

20



Setting p0 = �x0, and using the fact that M(p) � (p; 0), we get

(pk; 0) � M(�x0); 8k > 0; 8y 2 �u
1;k(x0)

Therefore �u is �nite gain, with �u(x0)
4
= M(�x0).

(ii)
Assume �u is �nite gain. Then

(p; 0) � Jp;k(u) � (p; �u); 8k � 0; p 2 dom Jp(u)

Writing Mk(p) = Jp;k(u), so that

(p; 0) �Mk(p) � (p; �u); k � 0; p 2 dom Jp(u)

By lemma 8, Mk is monotone non-decreasing. Therefore

Ma(p) = lim
k�!1

Mk(p)

exists, and is �nite on dom Ma, which contains dom Jp(u).

To show that Ma satis�es the dissipation inequality (18), �x p 2 dom Ma, y 2 Rt,
and � > 0. Select k > 0, and ~y1;k�1 such that

Ma(H(p; u(p); y)) � (~pk�1; 0) + �

where, ~pj, j = 0; : : : ; k � 1 is the information state trajectory generated by ~y, with
~p0 = H(p; u(p); y).

De�ne

yi =

(
y ; if i = 1
~yi�1 ; if i = 2; : : : ; k

and let pj, j = 0; : : : ; k denote the corresponding information state trajectory with
p0 = p. Then

Ma(p) � (pk; 0)

= (~pk�1; 0)

� Ma(H(p; u(p); y))� �

Since, y and � are arbitrary, we have

Ma(p) � sup
y2Rt

Ma(H(p; u(p); y))

Hence, Ma solves the dissipation inequality. Also, by de�nition (p; 0) � Ma(p). This
and (18) imply that Ma(�0) = 0. Thus, �u is �nite gain dissipative.
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2

We, now again assume that �u satis�es assumption A.

Theorem 11 Let u 2 I. If �u is �nite gain dissipative and �u satis�es assumption
A, then �u is weakly asymptotically stable.

Proof:

Inequality (19) implies

sup
x02X0

sup
r;s2�u

0;k
(x0)
fp(x0) +

kX
i=1

j l(ri; ui�1)� l(si; ui�1) j2 �
2 j si � ri j2g �M(p)

for all k � 1. Let x0 2 X0, and let p = �x0. Then the above gives

sup
r;s2�u

0;k
(x0)
f

kX
i=1

j l(ri; ui�1)� l(si; ui�1) j2 �
2 j si � ri j2g �M(p)

For any �r 2 �u
0;k(x0), there is a sequence

W u
k = sup

g;h2F(�rk;uk)
fj l(g; uk)� l(h; uk) j2 �
2 j g � h j2g

� 0

Also, from above we obtain that

kX
i=0

W u
k � M(p); 8k � 0

Hence, W u
k �! 0, as k �!1 and by corollary 1 and assumption A

0 2 lim inf
k�!1

F(�rk; uk)

Hence, �u is weakly asymptotically stable.

2

Corollary 6 If �u is �nite gain dissipative, then �u is ultimately bounded.

Proof: Similar to that of corollary 2.
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2

We also need to show that the information state system �u is stable.

Theorem 12 Let u 2 I. If �u is �nite gain dissipative, then �u is stable on all
feasible x 2 Rn.

Proof:

The dissipation inequality (19) implies that

pk(x) � (pk; 0) �M(p0) < +1

for all p0 2 dom M , and for all k � 0. For the lower bound, note that by de�nition
(12)

pk(x) = sup
x02X0

sup
r;s2�u

0;k
(x0)
fp0(x0) +

kX
i=1

j l(si; ui�1)� l(ri; ui�1) j2 �
2 j ri � si j2g

For any x0 2 X0, this implies that for any feasible x 2 Rn

pk(x) � p0(x0) > �1; 8k � 0

Therefore, �u is stable.

2

4.7 Solution to the Output Feedback Robust Control Prob-

lem

As in the state feedback case, it can be inferred from the previous results, that the
controlled dissipation inequality (8) is both a necessary and su�cient condition for
the solvability of the output feedback robust control problem.

However, we now state necessary and su�cient conditions for the solvability of the
output feedback robust control problem in terms of dynamic programming equalities.

Theorem 13 (Necessity) Assume that there exists a controller �u 2 O which solves
the output feedback robust control problem. Then there exists a function M(p), such
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that dom Jp(�u) � dom M(p), M(p) � (p; 0), M(�0) = 0 and M solves the stationary
dynamic programming equation

M(p) = inf
u2U

sup
y2Rt

fM(H(p; u; y))g (20)

for all p 2 dom Jp(�u).

Proof: For p 2 dom Jp(�u), de�ne Mk(p), k = 0; : : : as follows

Mk(p) = infu2U supy2Rt Mk�1(H(p; u; y))
M0(p) = (p; 0)

Clearly
(p; 0) �Mk(p) � (p; ��u) < +1; 8p 2 dom Jp(�u)

Furthermore, a modi�cation of lemma 8 establishes that

Mk+1(p) �Mk(p); 8p 2 dom Jp(�u)

Hence,
Mk(p) �!M(p) as k �!1

and M(p) satis�es equation (20) for all p 2 dom Jp(�u). Furthermore, dom Jp(�u) �
dom M(p) and (p; 0) �M(p) � (p; ��u). Thus, since (�0; �

�u) = 0, M(�0) = 0.

2

Theorem 14 (Su�ciency) Assume that there exists a solution M to the stationary
dynamic programming equation (20) such that �x 2 dom M , 8x 2 X0, M(�0) = 0,
and M(p) � (p; 0). Let �u 2 I be a policy such that �u(p) achieves the minimum in
(20). Then, �u 2 I solves the information state feedback robust control problem if the
closed loop system ��u satis�es assumption A.

Proof: Since M satis�es equation (20), ��u satis�es equation (19) with equality.
Hence, ��u is �nite gain dissipative and by theorem 10, ��u is �nite gain. Furthermore,
theorem 11 establishes that ��u is weakly asymptotically stable, and by corollary 6
��u is ultimately bounded. Also by theorem 12, ��u is stable for all feasible x 2 Rn.

2

Remark: As in the state feedback case, we can from the statement of theorem 13 and
the proof of theorem 14, obtain necessary and su�cient conditions for the solvability
of the robust control problem in terms of dissipation inequalities.
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Figure 1: State Trajectories: x1 (top) and x2 (bottom)

5 Example

In this section we present a simple example. The system being considered is

x1k+1 2 [2; 3]x1k + x2k + 7sin(u1k) + [�0:1; 0:1]
x2k+1 2 1:5x1k + [1; 2]x2k + 6sin(u2k) + [�0:1; 0:1]

with the measurement equations

y1k+1 2 x1k + [�0:05; 0:05]
y2k+1 2 [1; 1:1]x2k + [�0:05; 0:05]

and the regulated output
zk =j xk j2

The value of 
 is set to 0:8, and the initial state was set to (2; 2).

Figure 1 gives the state trajectories for the output feedback case. The trajectories of
the optimal state feedback case are also presented for comparison.
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