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Glomalin is an insoluble glycoprotein produced by hyphae of arbuscular mycorrhizal 

(AM) fungi. It is resistant to degradation and is found in large amounts in soil. Classical 

operationally defined extracts of soil organic matter include a large proteinaceous 

fraction. Therefore, clarification of glomalin as a separate fraction of extractable soil 

organic matter (SOM) is needed. Proof that glomalin accumulates over long periods of 

time has not been attempted. The overall hypothesis tested for this dissertation is that 



AM fungi are the source of an abundant, unique and important SOM component. The 

quantity of glomalin in soils was compared with particulate organic matter (POM), 

glomalin, humic acid (HA), and fulvic acid (FA) which were sequentially extracted 

from 5 – 8 undisturbed U.S. soils, aggregates and agriculturally managed soils that 

differed in tillage, crop rotation, and/or fertilizer amendment. Each fraction was 

extracted with the appropriate procedure: glomalin in pH 8.0 citrate at 121o C, POM by 

floatation in NaCl solution, and HA and FA in NaOH with acidic separation. Organic 

matter fractions were evaluated for total and immunoreactive protein and/or gravimetric 

and C weights. Percentages of C, N and H were used to characterize each fraction. 

Glomalin structure was examined by proton nuclear magnetic resonance (1H NMR), 

removal of iron and separation of amino acid and carbohydrate groups. Glomalin 

accumulation in pot cultures was assessed at 14-week intervals in a 294-day 

experiment. Glomalin was unique in protein, C, H, and N contents compared with HA, 

FA and POM. Glomalin contributed ca. 20% of soil organic carbon. A recalcitrant 

glomalin pool was discovered that might have a functional role in water-stability of 

aggregates. 1H NMR spectra of glomalin were unique compared with HA spectra. 

Extracted glomalin had tightly bound iron, organic matter, amino acids and 

carbohydrates. Sustainable agricultural management practices — reduced tillage, 

increased crop diversity, and reduced synthetic amendments — increased aggregate 

stability of bulk soil and glomalin and POM concentrations. Glomalin production under 

controlled conditions was affected by irradiance. These results provide evidence that 

glomalin is a separate and unique fraction of SOM and is important in terrestrial carbon 

sequestration and sustainable agricultural practices. 
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CHAPTER 1 

 

GLOMALIN – A GLYCOPROTEIN PRODUCED BY ARBUSCULAR 

MYCORRHIZAL FUNGI

 1



Background 

  Plant and soil health are dependent upon the interactions of biological, 

physical, and chemical components. The rhizosphere, or root zone, is the location of the 

greatest flow of energy and minerals among these components (Wright and Millner, 

1994).  In this highly productive region, a vital symbiosis exists between roots of 80% 

of all vascular plant species and soil-borne arbuscular mycorrhizal (AM) fungi (Smith 

and Read, 1997).  This mutualistic association has existed for more than 400 million 

years or since plants first moved from an aquatic to terrestrial environment (Morton, 

1990; Simon et al., 1993; Taylor et al., 1995). In this symbiosis, plants benefit by 

increased uptake of immobile nutrients in soil and improved soil structure (Wright and 

Upadhyaya, 1998), while the fungus receives photosynthetic carbon and other essential 

nutrients from the host (Smith and Read, 1997).   

Arbuscular mycorrhizal hyphae may colonize up to 80% of plant host root 

length (Millner and Wright, 2002). At arbuscules within root cells, hexose sugars from 

the plant are exchanged for nutrients acquired and transported by the fungus. Typically 

between 12 to 27% of photo-assimilated carbon is given to AM fungi (Tinker et al., 

1994). Carbon cost to the plant is balanced by access to a greater volume of soil through 

fungal hyphae (thread-like projections). Hyphae have a much larger surface area to 

volume ratio than root hairs and fan out up to 8 cm beyond nutrient depletion zones 

around roots (Douds and Millner, 1999; Millner and Wright, 2002). This allows AM 

fungi to scavenge even highly immobile nutrients, such as phosphate. In addition, the 

fungal cell membrane is capable of concentrating solutes against a gradient (Bolan, 

1991; George et al., 1992). The high carbon cost of P uptake is compensated for by an 
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increase in photosynthetic capability of the host through increased leaf surface area and 

photosynthetic efficiency (Bolan, 1991; George et al., 1992). Mycorrhiza is the most 

efficient mechanism for P acquisition, especially under stress conditions. The 

mycorrhizal symbiosis operates on a continuum between a mutually beneficial 

relationship and an almost parasitic relationship (where plant host growth declines with 

AM colonization). Although these fungi are not plant host specific, host and fungal 

genotypes and soil abiotic and biotic variables have been shown to influence the nature 

of the symbiosis (Bethlenfalvay et al., 1982; Brundrett, 1991; Gianinazzi et al., 1995; 

Varma, 1995).   

The mycorrhizal symbiosis provides a number of benefits to the plant host. 

Rapid growth of fine, ephemeral hyphae in microsites containing high concentrations of 

nutrients such as P, N, Fe, Cu and Zn (Clark and Zeto, 1996; Douds and Millner, 1999; 

Pawlowska et al., 2000) provides an efficient mechanism for nutrient uptake. The 

mycorrhizal relationship reduces the growth of plant pathogens, especially fungal 

pathogens, by increasing host resistance (i.e. triggering a defense response), altering 

root exudations to stimulate the growth of microbes antagonistic to pathogens, 

competing for photosynthetic carbon, and reducing the number of infection sites 

(Borowicz, 2001; Hooker and Black, 1995). The type of pathogen (nematode or fungal), 

pathogen species, mode of action (necrotrophic or wilt for fungal pathogens and 

migratory or sedentary for nematodes), and pathogen density help to determine the 

severity of disease (Borowicz, 2001). As with other benefits in the mycorrhizal 

relationship, the magnitude and direction of effects on disease resistance are dependent 

upon host genotype, AM species and isolate, timing of AM colonization, other soil 
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organisms and abiotic factors. Mycorrhizal fungi may hyper-accumulate toxic heavy 

metals, such as Cd and Pb, and keep them from the plant host (Gonzalez-Chavez et al., 

2002; Diaz et al., 1996). Metal uptake depends upon soil fertility, metal concentration, 

soil pH, host plant, and AM species and may interfere with P nutrition in the host plant 

(Gonzalez-Chavez et al., 2002; Diaz et al., 1996).  

In addition to improving plant health, mycorrhizal fungi also contribute to soil 

health. Fungal hyphae improve soil structure by helping to form water-stable soil 

aggregates (Miller and Jastrow, 1990; Rillig and Steinberg, 2002; Tisdall et al., 1997). 

Mycorrhizal fungi also improve rhizosphere health by stimulating root exudation which 

promotes the growth of other soil microbes (Borowicz, 2001; Paul and Clark, 1996). 

Arbuscular mycorrhizal fungi contribute directly to SOM by accounting for 5 to 50% of 

the total microbial biomass in soil (Olsson et al., 1999).  

Glomalin, a glycoprotein produced by AM fungi 

The identification of glomalin, a glycoprotein produced by arbuscular 

mycorrhizal fungi, has lead to a reevaluation of fungal contributions to SOM and 

aggregate stability. Glomalin was identified at the USDA in the early 1990’s during 

work to produce monoclonal antibodies reactive with AM fungi. One of these 

antibodies reacted with a substance on hyphae of a number of AM species (Wright et 

al., 1996). This substance was named glomalin after Glomales, the order to which AM 

fungi belong. Several other typical soil fungi, such as Rhizoctonia, Gaeumannomyces, 

Endogone, Mucor, and Phytophthora, were tested for cross-reactivity with the antibody 

against glomalin but were not immunoreactive (Wright et al., 1996). The glomalin 

fraction is operationally defined by its extraction procedure but is further characterized 
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by total and immunoreactive protein assays (Wright et al., 1996). Glomalin has been 

found in abundance (typically, 2 to 15 mg g-1 and up to >60 mg g-1) in a wide range of 

soil environments (acidic, calcareous, grassland and cropland) (Wright and Upadhyaya, 

1998; Wright et al, 1999) and appears to be as ubiquitous as AM fungi themselves 

(Carlile and Watkinson, 1996; Olsson et al., 1999; Wright and Upadhyaya, 1998).  

Glomalin was revealed on AM fungal hyphae using an indirect 

immunofluorescence procedure that employs the antibody against glomalin and a 

second antibody tagged with fluorescein isothiocyanate (FITC) molecule (Wright, 

2000). Evidence that glomalin is produced by AM fungi, not plant roots, was obtained 

early in the investigation of the reaction of the monoclonal antibody against glomalin. 

In a blind experiment, immunofluorescence correctly identified glomalin only on roots 

that were later described as having AM colonization by J.B. Morton (West Virginia 

University).  In more recent work with an axenic culture of transformed carrot roots, 

glomalin was extracted from hyphae in a root free zone (Rillig and Steinberg, 2002). 

Glomalin also is routinely extracted from hyphae up to 7 cm away from roots in pot 

cultures where hyphae are separated from roots by a 38-µm nylon mesh bag (Wright 

and Upadhyaya, 1999). Immunofluorescence assays show that glomalin coats AM 

fungal hyphae, sloughs from hyphae onto colonized roots, organic matter, soil particles, 

horticultural or nylon mesh, and glass beads, and is found on arbuscules within root 

cells (Wright et al., 1996; Wright and Upadhyaya, 1999; Wright, 2000).  

Several ‘pools’ of glomalin have been identified based on solubility 

characteristics: (i) easily extractable glomalin (EEG), (ii) total glomalin (TG) and (iii) a 

‘scum’ at the air-water interface that occurs during harvesting of hyphae from pot-
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cultured AM fungi. The EEG ‘pool’ is extracted using 20 mM citrate, pH 7.0, for 0.5 h 

(Wright and Upadhyaya, 1998). Total glomalin is extracted with 50 mM citrate, pH 8.0, 

in 1-h intervals (Wright and Upadhyaya, 1998). When mature sand-based pot cultures 

are submerged in water, an unattached fraction of glomalin forms tan-colored foam on 

the surface of water. This ‘scum’ is apparently a sloughed component of glomalin and is 

very hydrophobic. We speculate that ‘scum’ floats on soil water until it attaches to soil 

or organic matter particles, but the chemistry of this interaction currently is not defined. 

Hydrophobic and/or cationic interactions may be the mechanisms by which glomalin 

becomes deposited on soil or organic particles and mesh or glass beads (Wright and 

Upadhyaya, 1996; unpublished data). Glomalin may move in and out of these 

operationally defined pools (i.e. EEG becomes scum and scum becomes TG). Steinberg 

and Rillig (2003) found that following soil incubation to measure decomposition, EEG 

increased while TG decreased. They speculated that partial degradation decreases 

sorption of glomalin to soil particles, which may increase solubility and the amount in 

the EEG pool. 

Typically, glomalin concentration in these pools is measured by a Bradford total 

protein assay (i.e. TG and EEG) and immunoreactive protein (i.e. IRTG and IREEG) 

assays (Wright et al., 1996). The Bradford protein assay is non-specific and will detect 

any proteinaceous material. Bradford concentrations are based on comparison with a 

bovine serum albumin (BSA) standard curve. The immunoreactive protein assay, or 

enzyme-linked immunosorbent assay (ELISA), uses the monoclonal antibody specific 

for glomalin, but certain artificial conditions may reduce immunoreactivity. ELISA 

values are determined by comparison to 100% immunoreactive glomalin extracted from 
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hyphae or soil (Wright et al., 1996).  The total protein assay measures concentrations 

ranging between 1.25 to 5.0 µg while ELISA numbers range from 0.005 to 0.04 µg 

(Wright and Upadhyaya, 1999). Since the range of Bradford values is 100 times greater 

than ELISA numbers, values of over 100% could be supported.  

Comparisons of the total and immunoreactive pools of glomalin extracted from 

soil or pot culture show that not all of the extracted material is immunoreactive. 

Reduction in immunoreactivity may be due to exposure to conditions that affect the site 

of binding of the antibody. The reactive site for a monoclonal antibody is very specific 

(Goding, 1986). In this case, the monoclonal antibody was generated against glomalin 

on spores of AM fungi and not against extracted glomalin. Therefore, some reactivity is 

lost probably because of conformational changes during the high temperature (121oC) 

and long time period (at least 0.5 to 1.0 h) used in the extraction procedure (unpublished 

data). In the soil, organic matter, metals (such as iron), clay minerals, and other 

substances may bind to glomalin causing conformational changes or masking the 

reactive site. Degradation is another factor in soil extracts and may result in a decline in 

immunoreactivity (Wright and Upadhyaya, 1999). In addition, conformational changes 

may occur in the molecule when it sloughed from the hyphae and is in the scum pool 

due to self-aggregation via hydrophobic interactions.  

  Glomalin is present on extramatrical hyphae of all AMF tested to date (i.e. 

representatives from all known genera, except Sclerosystis) (Wright et al., 1996).  As 

hyphae degrade, this hydrophobic, highly stable glycoprotein sloughs off to coat 

organic matter and other soil particles.  Wright et al. (1996) hypothesize that glomalin 

forms a conglomeration with root fragments and organic matter, thus protecting it from 
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degradation by microorganisms. As a result, Wright and Upadhyaya (1998) found a 

strong correlation between glomalin concentration and soil aggregation.   

Glomalin is dark red-brown color and soil after extraction loses the brown color 

associated with organic matter. The brown color of glomalin was hypothesized to be 

due to incorporation of iron as a structural component and may play a role in 

accumulation and/or function (Wright and Upadhyaya, 1998).  Following microwave 

digestion, atomic absorption analysis indicated that the amount of iron in the molecule 

varies from 0.8-8.8% (Wright and Upadhyaya, 1998). Cultures grown in media that 

contains low levels of iron had little glycoprotein accumulation and one AM fungal 

isolate, Gigaspora gigantea (MA453A), failed to grow under these Fe-limited 

conditions. These results are corroborated by field surveys in which glomalin 

concentration and aggregate stability are low in high pH soils, where iron is less 

available (Wright and Upadhyaya, 1998). Information on the dynamics of glomalin 

accumulation on external hyphae, auxiliary cells, spores, or internal structures 

(intraradical hyphae, arbuscules, vesicles) and soil aggregation has yet to be obtained.   

The correlation between glomalin concentration and soil aggregation also may 

be influenced by iron. Iron- and Al-(hydr)oxides are speculated to be involved in 

aggregate formation by bridging organic matter to clay minerals and to contribute to the 

persistence of aggregates (Bird et al., 2002; Wright and Upadhyaya, 1998). Kemper and 

Chepil (1965) found that aggregate stability is a function of organic matter, clay and 

free iron oxides.   
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Foundations for the production of a glomalin (-type) molecule 

Evolution of land plants and the environment of early earth 

In the early Devonian, at least 400 million years ago, plants moved from the 

oceans onto land (Taylor et al., 1995). The environment of this early earth was very 

harsh with few plant-available nutrients and little structure to the soil (Lewis, 1987).  

Weathering of silicates in an abiotic environment was very slow, due mostly to 

mechanical and chemical weathering, which in turn were hampered by rapid wind and 

rain erosion in the absence of crust stabilizing algae, lichens, and more advanced biota 

(Schwartzman and Volk, 1989). Devonian land plants were morphologically very 

simple with few leaves, branches, or roots. Evolutionary progress was expressed in 

variant genotypes with greater nutrient-extraction ability and habits promoting water 

retention (Pirozynski and Malloch, 1975; Schwartzman and Volk, 1989; Talyor et al., 

1995). In this evolutionary process, plants did not readily evolve root hairs to improve 

efficiency of adsorption. Instead, they exploited their relationship with organisms, such 

as fungi and algae, to combat nutrient deprivation (Pirozynski and Malloch, 1975; 

Taylor et al., 1995). 

Recent evidence of similar sequences in the SSU rRNA region between several 

Glomus species and Geosiphon pyriforme indicates that this may be the precursor for 

the AM symbiosis in early land plants (Gehrig et al., 1996).  Geosiphon pyriforme 

forms a structure for nutrient exchange in its cyanobacterium host, Nostoc puntiforme, 

which is analogous to the arbuscule found in AM fungi (Gehrig et al., 1996).   

Ecological, geological, and cytological evidence has shown that there were 

explosive periods of morphological innovation during the Devonian Period (Gensel and 
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Andrews, 1987; Schwartzman and Volk, 1989). During this time, photosynthetic free 

oxygen became more abundant creating the ozone layer to protect land plants from UV 

radiation (Pirozynski and Malloch, 1975). This allowed plants to flourish on land and 

the number of genera of plants increased from 1 to 28 with plants changing from tiny 

creeping structures to a diverse array of 0.5-9 m high structures with leaves, roots, 

reproductive systems, and secondary growth (Gensel and Andrews, 1987). Algae and 

fungi have been implicated in the formation of calcareous crusts and biomineralization 

that made nutrients plant available and increased the rate of soil development 

(Stubblefield and Taylor, 1988). Soil and plant development would lower PCO2 and 

surface temperatures for the evolution of more complex life forms (Schwartzman and 

Volk, 1989).  

In mutualistic relationships, both plant host and fungal invader obtain benefits 

that outweigh the inherent costs of the symbiosis.  The mycorrhizal symbiosis that 

subsequently evolved optimizes Liebig’s “Law of the Minimum” (Read, 1991). Carbon, 

the limiting nutrient for AM fungi, was supplied in abundance by plants whose growth 

was limited by access to soil minerals, which the fungal hyphae could readily supply 

(Read, 1991).  

As protected root inhabitants, endomycorrhizal fungi have changed little from 

their ancient relatives, because they have not been subjected to the selective pressures 

that have caused morphological changes among the plants (Lewis, 1987; Morton, 1990; 

Stubblefield and Taylor, 1988). Indeed, the fossil record shows that the fungal 

structures found in the roots of Devonian plants are almost exactly the same as the 

structures found in the roots of modern plants (Stubblefield and Taylor, 1988; Taylor et 
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al., 1995). The intimate relationship between plant and fungi is best appreciated if it is 

realized that these organisms belong to different kingdoms that have evolved separately 

but in complete interdependence (Wessels, 1997). 

In satisfying the need in soils for a persistent material capable of performing a 

number of functions necessary for plant growth, nature has adopted a simple and 

elegant solution whereby plants benefit vitally from the ubiquitous, immediately 

surrounding organic medium resulting from the decay of the plants’ predecessors 

(MacCarthy, 2001).  The general functions of humic substances could, in principle, be 

satisfied by a suite of biomolecules that possess the requisite combination of 

hydrophilic, acidic, complexing, and sorptive properties, but many of these molecules 

do not survive for long periods in the environment (Burdon, 2001; MacCarthy, 2001). 

Therefore, the formation of humic substances or, more likely, glomalin would provide 

the organic environment that plants need for productive growth. Glomalin would have 

evolved this function, because  supposedly it was first formed when there was no other 

organic matter in the soil.  

Hydrophobins – Proteins that function at an interface 

 Fungi grow by tunneling their way through moist living and dead substrata. To 

tunnel effectively, fungi need to build turgor pressure via wall synthesis and protein 

secretion. To escape a liquid environment (i.e. produce aerial structures such as fruiting 

bodies or cross pores in soil), fungi need to lower surface tension. Hydrophobins are 

proteins produced by fungal saprophytes, pathogens, and mutualists (Wessels, 1997; 

Whiteford and Spanu, 2002). They are produced on the surface of fungal hyphae and 

help fungi tunnel and escape their typical environment. The level of surface activity of 
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hydrophobins is in the range of commercial synthetic surfactants, making hydrophobins 

some of the most surface-active molecules known.  

Hydrophobins were first identified by the discovery of mRNAs abundantly 

transcribed during development processes. Biochemical methods used to detect and 

measure extractable proteins were not effective in the discovery of hydrophobias 

because these molecules are highly insoluble. Class II hydrophobins are not even 

soluble in hot SDS solutions and do not show up in conventional SDS-PAGE analysis.  

Hydrophobins are a group of proteins that have a signal sequence for secretion 

and are easily translocated through the hyphal wall to the surface at the growing hyphal 

tip by the flow of semi-fluid wall polymers (Wessels, 1997). These proteins self-

assemble into amphipathic films at air-water interfaces. The formation of an 

amphipathic membrane at an air-water interface decreases the surface tension of water 

(72 to 24 mJ m-2) more than any other known protein (Wessels, 1999). The amphipathic 

membrane also allows them to convert hydrophobic surfaces to hydrophilic surfaces 

and visa versa.  

 A protein is classified as a hydrophobin based on containing eight cysteine 

residues and a two hydrophobic amino acid sequences, but there is very little amino 

acid sequence homology even among hydrophobins produced by the same organisms or 

with the same function in different organisms. Disulfide bridges formed between the 

cysteine residues prevent premature assembly by keeping the hydrophobin molecule 

properly folded until it reaches the hyphal surface. Typically four “loops” are found in 

hydrophobins: two that have mostly hydrophobic residues and two that are hydrophilic 

(Kershaw and Talbot, 1998; Wessels, 1997). Some hydrophobins are glycosylated, 
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which may enhance interaction with the hydrophobic surface by inducing the formation 

of hydrophobic α-helices and/or act as a hydrophilic domain for anchoring (Whiteford 

and Spanu, 2002). This glycosylation is typically high in mannose. 

In the monomer state hydrophobins are not surface active and are harmless to 

the cellular membranes of the producing fungus. When the monomers self-assemble, 

they produce a rodlet layer. This rodlet layer is produced at any interface – air-water, 

water-hydrophobic liquid or solid. Recent evidence, using hydrophobin mutants, shows 

that rodlet layers are instrumental in generating surface hydrophobicity, but the 

individual rodlets are too small to contribute to hydrophobicity alone (Kershaw and 

Talbot, 1998). Lipid interactions in rodlet layer production and in linking rodlets to the 

underlying cell wall has been proposed as the mechanism in the formation of 

hydrophobic layers (Kershaw and Talbot, 1998). 

 Hydrophobins are among the most abundant proteins (> 10% of protein 

synthetic activity) produced by fungi with many of them being secreted (i.e. fungi 

sometimes export into the medium more than half of the protein that they make) 

(Wessels, 1997; Wessels, 1999). Hydrophobins are typically produced at a level of 0.06 

to 0.17 g L-1 of media (Askolin et al., 2001). With the introduction of two additional 

copies of the gene into Trichoderma reesi, the hydrophobin was produced at a rate of  

0.6 g L-1 of media or 4.3 mg g-1 hyphae without interference in fungal growth or severe 

foaming (Askolin et al., 2001).  

Hydrophobins play a number of key roles in fungal development and the 

interactions of fungi with the environment and other organisms, particularly with plants. 

Many roles have been found for hydrophobins in addition to helping in the emergence 
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of aerial fungal structures. Hydrophobins may: (1) coat spores to prevent clumping and 

ensure easy dissemination, (2) facilitate the attachment of hyphae to hydrophobic 

surfaces such as plant or insect cuticles as a precursor to infection, (3) coat hyphae to 

protect against microbial attack, (4) allow proper gas exchange in fungal air channels, 

(5) assist in hyphal wall construction, (6) assist in transport between fungus and host in 

mutualistic relationships, (7) prevent desiccation or water-logging of aerial structures, 

and (8) assist in communication between a fungus and a plant to elicit various 

responses. 

In ectomycorrhizal fungi, hydrophobins accumulate during active root 

colonization (i.e. levels increased several fold) where it may play a role in the 

attachment of hyphae to root surfaces or in hyphal aggregation to form the hyphal 

mantle (Martin et al., 1999; Tagu et al., 1996; Whiteford and Spanu, 2002). Cell wall 

proteins, such as hydrophobins, may play additional roles in cytoskeletal changes that 

result in specific modification of the host tissues to create a favorable niche for the 

mycobiont (Martin et al., 1999).  

Molecules, called repellents, are similar to hydrophobins in that they contain a 

number of hydrophobic amino acids alternating with hydrophilic, but they do not 

contain the characteristic eight cysteine residues (Kershaw and Talbot, 1998; Whiteford 

and Spanu, 2002). Repellents are components of walls of aerial hyphae in Ustilago 

maydis. These proteins do not self-assemble into rodlets like hydrophobins, but they 

aggregate into a layer with a hydrophobic side and a hydrophilic side. A similar type of 

oligopeptide is found in the filamentous bacterium Streptomyces coelicolor (Kershaw 

and Tablot, 1998), which highlights the importance of aerial development to the fungal 
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lifecycle and the need to coat these aerial structures with an amphipathic membrane that 

can assist in binding hyphae to surfaces. 

Transferrins – A class of iron-binding glycoproteins 

Lactoferrin, or lactotransferrin, is a member of a group of iron-binding 

glycoproteins, called transferrins. Transferrins are extracellular proteins that have an 

affinity for binding heavy metals, especially iron. Lactoferrin is a ~80 kD protein or a 

dimer with 650 to 700 amino acid residues that is found in all external secretions 

(including tears and sweat) of most animals but is highest in milk (1-7 mg/ml) (Iyer and 

Lonnerdal, 1993). It is composed of a single polypeptide chain with 17 disulfide bridges 

due to a high concentration of cysteine (Paulsson et al., 1993). As a glycoprotein, 

lactoferrin is ~5% carbohydrate with poly-N-acetyllactosamine glycans that contribute 

to its stability and help it to survive intact through the digestive system (Iyer and 

Lonnerdal, 1993).  This molecule functions in iron binding and transport, as a growth 

factor for lymphocytes, as a bacteriostatic molecule, and as a regulator in immune 

response.  Its chelating capability is critical for its biological functions and the overall 

stability of the molecule (Iyer and Lonnerdal, 1993; Paulsson et al., 1993).  This protein 

is resistant to proteolysis by trypsin or trypsin-like enzymes, high heat (up to ~70oC), 

and/or low pH with iron-saturated lactoferrin being the more resistant form (Iyer and 

Lonnerdal, 1993; Paulsson et al., 1993). If the glycosyl groups are removed through 

deglycosylation, the overall function and binding capabilities of this molecule are not 

disrupted (Iyer and Lonnerdal, 1993). 

Heterogeneity exists in the carbohydrate attached to lactoferrin from different 

tissues in the same species and from different species (Iyer and Lonnerdal, 1993; 
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Nagasako et al., 1993; Paulsson et al., 1993).  Despite structural homology, protein 

from different species has different binding characteristics. Iron saturation gives the 

molecule an overall positive charge and may produce several bands in a SDS-PAGE gel 

depending on iron concentration and/or degree of degradation or deglycosylation 

(Nagasako et al., 1993)  

Crystallographic imaging shows that this molecule folds into two globular lobes, 

each containing an iron-binding site consisting of four conserved residues: aspartic acid, 

two tyrosines, and a histidine. When iron binding occurs, this dimer changes 

conformation and the N-terminal domains fold around these iron atoms in a hinge-like 

motion, keeping iron irreversibly bound over a pH range from 4-7. One dimer can also 

bind up to 1400 more iron atoms with additional iron-binding at surface electron 

donating groups, such as imidazole, thiol, and indole found in histidine, cystine, and 

tryptophan residues (Nagasako et al., 1993). These atoms are less tightly bound and 

may be released into solution. This protein typically has a creamy color but will be red 

to salmon-pink when saturated with iron. Lactoferrin is able to stabilize the bioavailable 

ferrous iron and keep it from being changed into the insoluble ferric iron, thereby 

keeping iron soluble at low pH and high iron concentration.   

 Despite homologous structure and function among lactoferrin proteins produced 

by different organisms, the iron binding and antibody binding properties are highly 

specific (Iyer and Lonnerdal, 1993).  This specificity also extends to iron-binding, 

where lactoferrin from one organism cannot bind iron in another organism.  Even 

transferrin produced by the same organism, which is 60% homologous in structure and 

sequence to lactoferrin, does not have the same binding ability and cannot replace 
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lactoferrin on receptors found within the gastrointestinal tract (Iyer and Lonnerdal, 

1993).  This protein is resistant to proteolysis, high heat, and low pH, which made it 

difficult to hydrolyze for amino acid sequencing, but these characteristics stabilize the 

protein in the biological system.   

 The bacteriostatic activity of the molecule also is not completely understood.  

Initially, it was thought that iron-sequestration by lactoferrin keeps biologically needed 

iron away from bacteria. However, there are some types of bacteria, such as 

Staphylococcus aureus, Aeromonas hydrophila, and Shigella flexneri, which have 

specific receptors that bind with lactoferrin and extract the iron. Veken et al. (1996) 

found that the bacterium, Pasteurella multocida, uses these receptors to bind to 

transferrin and hemoglobin, but cannot bind to the structurally similar lactoferrin to 

utilize iron. Apolactoferrin (lactoferrin without iron) is often more bacteriostatic than 

lactoferrin with iron. Rather than competing for iron, some transferrins bind to bacterial 

cells and cause the lipopolysaccharide (LPS) layer from the cell wall of enteric gram-

negative bacteria to be released from the rest of the layers in the cell wall. Releasing the 

LPS layer increases susceptibility of bacterial cells to antibacterial agents such as 

lysozyme and rifampicin (Iyer and Lonnerdal, 1993).   

A protein assay dye reagent was used to spectrophotometrically determine 

protein concentration by comparison with a standard curve created either from 

commercial lactoferrin or from bovine serum albumin (BSA).  If immunoassays are to 

be used, monoclonal antibodies are often created for the type of lactoferrin that is being 

examined since the antibody-antigen reaction is so specific for this protein. 
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 Iron-binding occurs concomitantly with binding of two bicarbonate ions that 

play an important structural role. Gerstein et al. (1993) analyzed the mechanisms 

involved in the motion of the protein upon iron-binding that keeps the iron tightly 

bound. Crystallographic structures of the open and closed protein and comparison with 

other instances of hinged domain closure and with sliding motion closure have been 

used to determine how this mechanism works. Lactoferrin is a two lobed protein and 

upon iron-binding, the protein closes with the two N-terminal domains moving together 

as if on ‘hinges’. These ‘hinges’ involve three large angular changes that cause most of 

the motion. The remaining motion is due to smaller changes in the neighboring 

residues. The motion from these changes passes through the two β-strands and links the 

domains together. A crucial feature of this mechanism is the few packing constraints 

that exist in this molecule. The domains make different packing contacts in the open 

and closed forms, resulting in a see-saw motion. When the protein closes, the residues 

with interface on one side are close-packed and buried, while the other side is now 

exposed. When the protein opens, the residues are in the opposite configuration. This 

hinge mechanism closes the protein and keeps the iron tightly bound. Iron concentration 

is about 700 times higher than the amount due to binding alone (Nagasako et al., 1993). 

This suggests that lactoferrin may help to regulate iron in biological systems by binding 

to it non-specifically and stabilizing ferrous iron (which is normally insoluble, since 

iron is only soluble in the ferric state.  

 Lactoferrin is an iron-binding glycoprotein, and the structure has been fairly 

well analyzed through the use of amino acid sequencing and x-ray crystallography, but 

the function continues to be debated. It appears to play a regulatory role in iron 
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metabolism that varies with developmental age and physiological state. It also appears 

to have growth stimulatory, immunological, and bacteriostatic effects, but these 

mechanisms are not very well understood, although they are not directly related to the 

iron binding capacity.  The iron-binding capacity and the glycosyl groups associated 

with this protein add stability to the protein which allow it to be biologically active 

within organisms and to pass intact through the digestive system.  

Characterization of glomalin 

 Glomalin extracted from soil is very similar to glomalin extracted from single-

species pot cultures. Samples have been examined using SDS-PAGE (Rillig et al., 

2001b; Wright et al., 1996; Wright and Upadhyaya, 1996), NMR (Rillig et al., 2001b), 

capillary electrophoresis (CE) (Wright et al., 1998), and C, H, N analysis by combustion 

(Rillig et al., 2001b). There are minor variations in elemental constituents of glomalin 

among samples, but CE and SDS-PAGE demonstrated that glomalin extracted from soil 

is similar to glomalin from hyphae. Rillig et al. (2003) and Steinberg and Rillig (2003) 

examined decomposition of glomalin following moist soil incubation in the dark at 

18oC. One of the incubation studies (Steinberg and Rillig, 2003) showed that hyphal 

length declined by 60% after 150 days of incubation while TG declined by 25%, IRTG 

disappeared almost completely, EEG did not change, but IREEG increased five-fold. In 

the other study (Rillig et al., 2003), the TG declined by 48 to 81% and the EEG declined 

by 51 to 88% after 413 days of incubation. Using 14C data, Rillig et al. (1999) 

calculated a turnover time for glomalin of 7 to 42 y. However, the incubation studies 

suggest that a long-lived, recalcitrant glomalin fraction exists with a much longer 

turnover time.  
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Soil organic matter 

In soil, plant- and microbially-produced organic carbon is found in two pools: 

(1) the labile, “light” or particulate organic matter (POM) fraction and (2) the 

recalcitrant, “heavy” or humic fraction.  The POM fraction represents fresh or partially 

decomposed plant material, while the humic fraction is more completely decomposed 

material.  The POM fraction is similar in chemical composition to plant material 

(Cambardella and Elliott, 1992) and may be separated by floatation in high-density 

liquids, such as NaCl or sodium polytungstate (Wolf et al., 1994; Gale and 

Cambardella, 2000).  Changes in POM concentration are correlated with changes in soil 

fertility due to tillage practices or environmental factors (Cambardella and Elliott, 

1992).  As POM degrades further, it is transformed into humic substances.  

The "heavy" fraction contains three types of humic substances: (1) humic acid 

(HA), (2) fulvic acid (FA), and (3) humin. Historically, solubility characteristics and 

color have separated humic substances into the acid- and alkaline-soluble, yellow to 

light brown FA fraction; the alkaline-soluble, dark brown to black HA fraction; and the 

insoluble, black humin. The low turnover rate, especially in the HA and humin 

fractions, makes these components important in sustainable agriculture and C 

sequestration.  Humic substances are considered important in sustainable agriculture 

because they enhance water-holding capacity, permeability, soil aggregation, buffering 

capacity, and cation exchange capacity.   

Typically, humic substances account for the majority of SOM [about 70 to 80 % 

of the soil organic carbon (SOC)] (Hayes and Clapp, 2001; Hayes and Graham, 2000).  

These substances are derived from biological and chemical transformations of organic 
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debris (i.e. POM) and are higher in C but lower in O and H than POM (Hayes and 

Graham, 2000; Swift, 1996).  The composition of humic substances varies slightly from 

sample to sample according to types of plant material and microbial populations.  

Frequently, because biochemical compounds such as amino acids, carbohydrates, and 

lipids, often are complexed to and extracted with humic substances, the extract is 

operationally but not structurally defined (Clapp and Hayes, 1999; Hayes and Graham, 

2000).  Low molecular weight humic substances can be bridged together via the 

introduction of iron salts to form high-molecular weight substances (Hatcher et al., 

2001).  Despite being chemically extracted in alkaline solution and separated by 

acidification, neither HAs nor FAs are pure compounds. Some residues or impurities in 

HAs may be removed by increasing the ionic strength of the extraction solution or by 

using XAD resins (Hayes and Clapp, 2001). These impurities contribute to the high 

concentrations for HAs reported for most soils.   

The recent discovery of glomalin has led to a reexamination of SOM 

components (Wright et al., 1996; Wright and Upadhyaya, 1996). Glomalin is a 

ubiquitous and abundant glycoproteinaceous molecule (Rillig et al., 2001b; Wright and 

Upadhyaya, 1999).  However, unlike POM or humic substances, glomalin is not derived 

from the decomposition of plant- or microbially-produced material. Glomalin forms a 

hydrophobic sheath on hyphae that may keep material from being lost from across the 

hyphal membrane and/or may protect the hyphae from microbial attack (Wright and 

Upadhyaya, 1998; S. F. Wright, personal communication). Its presence in soil helps to 

stabilize aggregates, which in turn help to protect the molecule from degradation 

(Wright and Upadhyaya, 1998). Glomalin appears to be highly correlated with 
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aggregate stability (Wright and Upadhyaya, 1998) and with carbon sequestration in the 

soil by helping to physically protect organic matter within aggregates (Rillig et al., 

1999; Rillig et al., 2001a). 

Soil aggregation 

 Loss of topsoil due to erosion is a serious problem in agroecosystems. Pimentel 

et al. (1995) estimated that during the last 40 years nearly one-third of the world’s 

arable land was lost to erosion with a current rate of 10 million hectares per year. Soil 

aggregates are important for: (1) maintaining soil porosity, which provides aeration and 

water infiltration rates favorable for plant and microbial growth, (2) increasing stability 

against wind and water erosion, and (3) storing carbon by protecting organic matter 

from microbial decomposition (Bird et al., 2002; Hassink and Whitmore, 1997; Rillig et 

al., 1999). Since both aggregate stability and SOM decline upon cultivation, it may be 

that SOM (i.e. POM, humic substances, microbially-produced molecules, and fungal 

hyphae) plays a role in aggregate formation, but the exact mechanism is not understood. 

Aggregate formation is a complex process of physical and chemical interactions 

(Kemper and Chepil, 1965; Miller and Jastrow, 1990; Tisdall and Oades, 1982).   

Electron microscopy shows that aggregates are a conglomeration of soil 

minerals (clay particles, fine sand and silt), small plant or microbial debris, bacteria, 

free amorphous organic matter and organic matter strongly associated with clay 

coatings (Chenu et al, 2000; Six et al., 2001). Fungal hyphae may initiate aggregate 

formation by providing the framework upon which organic mater collects (Miller and 

Jastrow, 1990; Tisdall et al., 1997). Chemical processes then contribute to aggregate 

formation and stability by coating with hydrophobic polymers, binding mineral particles 
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with organic polymers, bridging organic matter to clay particles by polyvalent cations, 

and gluing with polysaccharides (Degens, 1997; Piccolo and Mbagwu, 1999; Chenu et 

al., 2000). Drying and wetting actions, shrinking and swelling of clays, freeze-thaw 

cycles, compaction, and enmeshing by fungal hyphae and/or fine roots physically 

stabilize aggregates (Chaney and Swift, 1986; Degens, 1997).  

  In reduced or no-till systems, Chaney and Swift (1986) found that the stubble 

and mulch litter promote aggregate formation because fungal decomposition of organic 

matter produces gluing agents, such as polysaccharides and mucigels. Caesar-TonThat 

and Cochran (2002) found that ligninolytic basidiomycetes produce large quantities of  

hydrophobic polysaccharides, glycolipids or glycoproteins that bind to and stabilize soil 

particles in water-stable aggregates. However, many of the polysaccharides produced by 

microbial degradation will glue aggregates together quickly but are water-soluble and 

ephemeral and do not to contribute to the long-term stability of aggregates (Chaney and 

Swift, 1986; Six et al., 2001).  

Without the protection of hydrophobic coatings, soil aggregates may be 

disrupted by rainfall because of slaking, the differential swelling of clays, mechanical 

dispersion by the kinetic energy of raindrops, and physiochemical dispersion. The 

aliphatic molecules involved in aggregate formation increase water stability and long-

term survival of aggregates, because attractive forces between these molecules are much 

stronger internally than externally (Degens, 1997; Piccolo and Mbagwu, 1999; Chenu et 

al., 2000). Soil organic matter containing high concentrations of aliphatic groups, such 

as HA, may increase aggregate stability and the long-term stabilization of organic 

materials (Piccolo and Mbagwu, 1999). These aliphatic, hydrophobic groups and 
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polymers are the major contributors to the water-stability of aggregates.  They increase 

the contact angle for water penetration, which restricts infiltration and slaking, lowers 

wettability and increases the internal cohesion of aggregates (Chenu et al., 2000).  

 Glomalin contributes to the stabilization of aggregates by sloughing off hyphae 

onto the surrounding organic matter, binding to clays (probably via cation bridging by 

iron), and providing a hydrophobic coating (Wright and Upadhyaya, 1999). This is 

demonstrated in a number of experiments, where total and, especially, immunoreactive 

concentration of glomalin are positively correlated with percent water-stable soil 

aggregates in both agricultural and native soils (Bird et al., 2002; Rillig et al., 2003; 

Wright and Anderson, 2000; Wright and Upadhyaya, 1998; Wright et al., 1999).  

Glomalin under elevated CO2 

 Several studies were conducted to compare glomalin concentrations to aggregate 

stability under elevated CO2 conditions. In a native grassland ecosystem in northern 

California, TG and IRTG concentrations increased with higher CO2 concentrations, 

along with hyphal length at one site, and aggregate stability in 1-2 and 0.25-1 mm 

aggregate size fractions (Rillig et al., 1999). Long-term exposure to elevated 

atmospheric CO2 conditions from a natural CO2 spring in New Zealand formed by a 

thermal vent resulted in a linear increase in percent root colonization by AM fungi, soil 

hyphal length, TG and EEG along a CO2 gradient (Rillig et al., 2000). In a Sorghum 

field, aggregate stability, hyphal length and EEG increased with elevated CO2 (Rillig et 

al., 2001a). In both the grasslands (Rillig et al., 1999) and Sorghum field (Rillig et al., 

2001a), aggregate stability was correlated with glomalin concentrations. These studies 
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show that under elevated CO2 conditions, photosynthetic carbon is allocated 

belowground and glomalin may provide a significant sink to trap carbon in the soil. 

Objectives and experimental design 

Glomalin is a ubiquitous, abundant glycoprotein produced by hyphae of 

arbuscular mycorrhizal (AM) fungi. This research had three major objectives in the 

characterization of glomalin: (1) to validate that glomalin is a unique and major pool of 

soil organic matter (SOM), (2) to measure glomalin accumulation in a pot culture 

system, and (3) to examine the glomalin molecule.   

Because of its abundance, reddish-brown color and solubility characteristics, 

glomalin may be co-extracted with humic substances which are widely studied for their 

role in sustainable agriculture and as a carbon sink. These similarities resulted in two 

central questions for the proposed research: (1) is glomalin uniquely different from 

humic substances, and (2) is glomalin present in amounts high enough to play a role in 

SOM processes, such as aggregate stability? Experiments where glomalin, humic 

substances (HA and FA) and particulate organic matter fractions are extracted from 

both native and managed agricultural soils will be conducted to answer these questions. 

Comparisons will be made among fractions using amounts measured by total and 

immunoreactive protein assays and gravimetric and C weight. Typically, glomalin is 

quantified by protein concentration. However, this measurement does not provide a 

method for comparison to HA, FA and POM. The gravimetric and C weights are used 

to make that comparison. In addition, glomalin is comprised of more than just 

proteinaceous material. Other groups, such as carbohydrates and iron, are a part of the 

glomalin molecule. Therefore, protein weight is an underestimation of glomalin 
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concentration while gravimetric weight is a direct measurement of the mass of purified 

glomalin. 

Glomalin is extremely stable and continues to accumulate in the soil over time.  

To directly measure this accumulation, a pot culture experiment utilizing repeated 

culturing the same pot over a 294-day period with three 14-week intervals. These pot 

culture experiments are a direct measure of glomalin accumulation to see how much 

glomalin may be added at one time and how that amount continues to increase with 

additional culturing.   

Examining the composition of the glomalin molecule will help in the 

understanding of its functional role, reactions with other soil particles, and ability to 

accumulate and act as a carbon sink. Proteins are the most complex macromolecules 

known, and glycoproteins are especially complex in structure, composition, and 

functional roles (Varki, 1993).  In addition to containing a peptide and carbohydrate 

residues, glomalin also binds metals, such as iron, and may be associated with organic 

matter and clay minerals.   

The ecological (organic matter comparison), developmental (pot culture 

production), and structural (molecular composition) components will be combined to 

provide an understanding of the role(s) of glomalin in the mycorrhizal symbiosis. This 

work will also provide a foundation for future studies relating glomalin to soil structure 

and global climate change issues. 
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Abstract 

The majority of soil organic matter (SOM) is comprised of humic substances [humic 

acid (HA), fulvic acid (FA) and humin], particulate organic matter (POM) and 

glomalin. The hypothesis that methods to extract POM, humic substances and glomalin 

are specific for these SOM fractions was tested by sequential extractions from the same 

soil sample. Bulk soil samples (0 to 10 cm depth) from six native soils – two each from 

Colorado (CO), Maryland (MD) and Georgia (GA) – were analyzed. Particulate organic 

matter was extracted first with high density NaCl solution, followed by extraction of 

glomalin with a citrate solution at 121oC, and then by extraction of HA and FA in a 

NaOH solution. Glomalin, HA and FA were similarly extracted from the POM fraction. 

Total protein and carbon, nitrogen and hydrogen concentrations showed that glomalin 

and HA were, for the most part, separate fractions. However, because of a lack of a 

definitive assay for HA and the identification of immunoreactive protein (using an 

antibody against glomalin) in the HA fraction, the question of co-extraction of glomalin 

with HA remains unresolved. The POM fraction also contained glomalin. 

Introduction 

Soil organic matter (SOM) is important for soil stabilization, nutrient cycling 

and carbon (C) storage. Humic substances (HS) – humic acid (HA), fulvic acid (FA) 

and humin – contribute 70 to 80% of the soil organic carbon (SOC) (Hayes and 

Graham, 2000). Generally, HS are defined as highly condensed plant material and 

microbial byproducts produced during the decomposition of plant residues (Burdon, 

2001; Hayes et al., 2001; MacCarthy, 2001). Operationally, HS are divided into 

fractions based on solubility characteristics: alkaline-soluble HA, acid- and alkaline-
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soluble FA and mostly insoluble humin. Fractions of HS are structurally heterogeneous 

(Burdon, 2001; MacCarthy, 2001). 

Humin is a highly condensed fraction of organic matter that is bound tightly to 

clays or in organometallic complexes and is mostly insoluble (Hayes and Graham, 

2000; Rice, 2001). Humic and fulvic acids are extracted in NaOH solution and 

separated by acidification. Amino acids, carbohydrates, lipids and metals that often are 

complexed to and extracted with HS are treated as contaminating material (Clapp and 

Hayes, 1999; Hayes and Graham, 2000; Schulten and Schnitzer, 1997). Some residues 

or impurities in HAs are removed by increasing the ionic strength of the extract solution 

or by using resins (Swift, 1996; Hayes and Graham, 2000). These impurities contribute 

to the high weights reported for HA in most soils. Using 13C NMR, Schnitzer and 

Schuppli (1989) found that of the 92 mg g-1 of material from a Melfort [Black 

Chernozem (similar to a Mollisol)] soil extracted with NaOH and operationally defined 

as humic acid about 59% was ash material.  

Other major fractions of SOM are particulate organic matter (POM) (Gale and 

Cambardella, 2000; Stevenson, 1994) and glomalin (Wright and Upadhyaya, 1998). 

Particulate organic matter consists of insoluble plant debris (mostly roots) that floats in 

high-density inorganic liquids such as sodium chloride (NaCl) or sodium polytungstate 

(Gale and Cambardella, 2000; Wolf et al., 1994). Glomalin, a glycoproteinaceous 

substance produced by arbuscular mycorrhizal (AM) fungi, is found in abundance (2 to 

14 g protein kg-1 soil) in a variety of soils (Wright et al., 1996; Wright and Upadhyaya, 

1996; Rillig et al., 2001).  
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Arbuscular mycorrhizal fungi colonize 80% of vascular plant species and are 

found worldwide in almost every soil (Trappe, 1987). Glomalin is produced on AM 

hyphae and accumulates in soils (Wright and Upadhyaya, 1999; Rillig et al., 2001). In 

its native state, glomalin exists as an insoluble compound on hyphae and in soil. As 

hyphae degrade, glomalin sloughs off onto soil particles providing a hydrophobic 

coating that contributes to soil stabilization (Wright and Upadhyaya, 1996; 1998). A 

citrate buffer (pH 7.0 to 8.0) at high heat (121oC) is used to extract glomalin (Wright et 

al., 1996; Wright and Upadhyaya, 1996). This extraction procedure operationally 

defines glomalin which is quantified by protein assays on the extract solution (Wright et 

al., 1996; Wright and Upadhyaya, 1998).  

Glomalin is classified as a glycoprotein because it binds to lectins (Wright et al., 

1996) and by identification of N-linked oligosaccharides on the molecule with capillary 

electrophoresis (Wright et al., 1998). Extracted glomalin is flocculated by acidification 

or with saturated ammonium sulfate and is soluble in an alkaline solution (Wright et al., 

1996). Glomalin extracted from sand-based pot cultures of various AM fungi is 

equivalent to glomalin extracted from soil according to protein banding on sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis, ELISA, glycoprotein assays, C, N 

and H concentrations and NMR spectra (Wright and Upadhyaya, 1996; Wright et al., 

1998; Rillig et al, 2001; unpublished data).  

The objectives of this study were to:  (1) determine if the four major SOM 

fractions (POM, glomalin, HA and FA) can be isolated separately from a soil sample as 

defined by extraction technique and concentrations of C, N and H, and (2) quantify and 

compare SOM fractions using common measures for HA, FA and POM (gravimetric 
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and C weights) and by the standard measures for glomalin (total and immunoreactive 

protein assay values).   

Materials and methods 

Soils 

Bulk soil samples (0-10 cm depth) were collected with a shovel at two locations 

in three U.S. states [Maryland (MD), Colorado (CO) and Georgia (GA)]. The following 

series were sampled: Baltimore (MD) (at two sites designated as ‘a’ and ‘b’), Sampson 

and Haxtun (CO), and Pacolet and Cecil (GA). The soils were all acidic loams – Mollic 

Hapludalfs (Baltimore series), Pachic Argiustolls (Sampson and Haxtun series) and 

Typic Kanhapludults (Pacolet and Cecil series). All soils were collected fresh from sites 

that had native vegetation. Soils were air-dried and sieved to collect particles < 2 mm. 

Five replicate 2-g samples were extracted from each soil sample.  

Soil organic matter extractions 

Density separation of particulate organic matter  

Particulate organic matter was removed by floatation in a high-density solution 

using a method modified from Wolf et al. (1994). Briefly, soil samples were covered 

with a NaCl solution (12%, w/v), vortexed, and allowed to settle for 30 min. (See 

Appendix A1 for detailed extraction procedures.) After the mineral fraction had settled, 

the solution was carefully decanted. Floating organic matter (POM fraction) was 

collected on a 0.053 mm screen. This procedure was repeated a total of five times. The 

POM fraction was washed with distilled water to remove salt, rinsed from the screen 

into pre-weighed weigh boats and dried at 70oC. Soil minus POM was washed with 

distilled water, pelleted by centrifugation, and dried at 70oC.  
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Citrate extraction of glomalin  

Glomalin was extracted from the POM fraction and soil minus POM using 50 

mM sodium citrate, pH 8.0, at 121oC for 1 h (Wright and Upadhyaya, 1999). (See 

Appendix A2 for detailed extraction procedures.) Samples were centrifuged and the 

supernatant was decanted and saved. The procedure was repeated until the supernatant 

was straw-colored (up to three more times). Supernatants from each 1 h extraction cycle 

were combined and centrifuged. Glomalin was flocculated at pH 2.0 to 2.5 by adding 1 

N HCl, the solution was placed on ice for 45 min, and the precipitate was pelleted by 

centrifugation. The pellet was dissolved in a minimum amount of 0.1 N NaOH and 

dialyzed extensively against deionized (dH2O) in tubing with molecular weight cut-off 

(MWCO) of 8,000 to 12,000 Daltons (D). Dialyzed material was centrifuged and the 

supernatant was collected and freeze dried. All centrifugations were at 6850 × g for 10 

min.    

Sodium hydroxide extraction of humic and fulvic acids 

The International Humic Substances Society method described by Swift (1996) 

was used to extract HA and FA. (See Appendix A3 for detailed extraction procedures.) 

Modifications to the method were in sample size (2 g instead of 50 g) and in the 

purification steps. Briefly, soil samples were pre-incubated in HCl followed by a multi-

step NaOH extraction procedure: (i) extraction under N2 overnight; (ii) centrifugation to 

collect the supernatant; (iii) acidification of the supernatant; (iv) precipitation of HA 

overnight; and (v) separation of HA (precipitate) from FA (supernatant) by 

centrifugation. The NaOH extraction followed by acidic separation was repeated until 
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the solution was almost clear to assure that all humic and fulvic acids were extracted. 

All centrifugations were at 6850 × g for 10 min. 

Insoluble solid particles were removed from HA by: (i) re-dissolution in a 

minimum volume of KOH under N2; (ii) addition of KCl (until [K+] ≥ 3 M); (iii) 

centrifugation at 10844 x g to remove suspended solids; and (iv) precipitation of HA 

from the supernatant with HCl. After settling overnight, samples were centrifuged and 

the supernatant was discarded. The HA precipitate was: (i) suspended in an HCl-HF 

solution, (ii) incubated overnight, and (iii) collected by centrifugation at 6850 x g. The 

supernatant was discarded. The HCl/HF treatment was repeated twice. Residual acid 

was removed by repeatedly washing the precipitate with dH2O and centrifuging at 

10844 × g for 3 min.  

The HA precipitate was re-dissolved in a minimal measured volume of 0.1 N 

NaOH. A subsample (0.5 mL) was removed for protein assays (see below), and the 

remaining solution was acidified rapidly to precipitate HA. Acid was removed from the 

precipitate by centrifuging at 10844 × g and washing with DH2O. The precipitate was 

freeze-dried. 

The FA fraction (i.e. acid soluble material) was dialyzed against water until the 

pH was neutral using tubing with a MWCO of 8,000 to 12,000 D. Insoluble material 

was pelleted by centrifugation at 6850 x g for 10 min and the supernatant was freeze-

dried.  

Sequential extraction 

Extraction procedures were conducted sequentially on the same soil sample. 

(See Appendix B for a diagram of the extraction sequence.) First, the POM fraction was 
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separated from the mineral fraction. For each soil, POM from the five 2-g samples was 

combined to facilitate more accurate quantification of glomalin, HA and FA. Both the 

POM and soils minus POM were extracted for glomalin followed by co-extraction of 

HA and FA. The POM fraction material that remained after extraction of glomalin, HA 

and FA was classified as Residual POM.  

Quantitative measurements 

Protein assays 

Total and immunoreactive protein concentrations were measured on subsamples 

of HA, FA and glomalin. (See Appendix C for detailed methods.) For glomalin and FA, 

the subsample was taken prior to purification by dialysis, and the HA subsample was 

collected from re-dissolved HA precipitate prior to freeze-drying as discussed above.  

A modified Bradford protein assay (Wright et al., 1996) was used to measure 

total protein (TP) concentration. Samples were diluted with phosphate buffered saline 

(PBS) and reacted with Bio-Rad® (Hercules, CA) Bradford protein dye reagent. 

Absorbance was read at A595 after 5 min. Protein concentration was determined by 

comparison with a bovine serum albumin (BSA) standard curve and reported as g 

protein kg-1 soil.  

Immunoreactive protein (IRP) concentration was measured by ELISA as 

described by Wright and Upadhyaya (1998) with modifications in the enzyme and color 

developer. ExtrAvidin® (Sigma-Aldrich, Inc.) phosphatase was used instead of 

peroxidase. Wells were rinsed with Tris [Tris(hydroxymethyl)aminomethane]-buffered 

saline with Tween 20 (polyoxyethylenesorbitan monolaurate) before the color 

developer, p-nitrophenyl phosphate in diethanolamine buffer (Wright, 1994), was 
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added. Absorbance was read at A405 after 15 min. Test samples were compared to a 

standard curve produced by dilutions of highly immunoreactive glomalin extracted from 

a temperate soil under native grasses. Immunoreactive protein concentrations were 

reported as g kg-1 soil. Percent immunoreactivity was calculated as amount of IRP 

divided by amount of TP times 100 and reported as the range and the mean for all soils. 

Gravimetric weight 

The POM fraction and Residual POM were dried at 70oC and weighed to the 

nearest 0.1 mg. All freeze-dried samples of HA, FA and glomalin were weighed to the 

nearest 0.1 mg. Gravimetric and protein weights were compared by dividing the 

calculated protein weight by the measured gravimetric weight times 100. Comparisons 

of TP and IRP to gravimetric weight for glomalin and HA from soils and glomalin from 

POM (P. glomalin) were reported as the mean and SE for all soils.  

Carbon, nitrogen and hydrogen concentrations 

Carbon, nitrogen, and hydrogen concentrations were measured by combustion 

with a Perkin-Elmer Series II C, H, N, S/O 2400 Analyzer. Freeze-dried glomalin, HA 

and FA fractions from replicate 2-g soil samples were combined to give a bulk sample 

of each fraction. All fractions plus POM prior to extraction, Residual POM and soil 

before (Initial) and after (Residual) all extractions were stored in a desiccator under 

vacuum until analyzed. Gravimetric weights were multiplied by percentage C to give a 

C weight (g kg-1) in each fraction. 

Statistical analysis 

Means and standard errors (SE) were calculated for protein weights from each 

soil. Gravimetric weight values were corrected for subsamples removed for protein 
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assays. Carbon, nitrogen and hydrogen concentrations for each fraction (Residual POM, 

glomalin, HA and FA) were means and SEs for all soils combined. Mean comparisons 

were made at α ≤ 0.05 by ANOVA (Analysis of Variance) using REML (Restricted 

Maximum Likelihood) after meeting the assumptions for normality and homogeneity of 

variance for the residuals. When needed, the log transformation was made to meet the 

assumptions. All statistical analyses were performed using SAS software, ver. 8 (SAS 

Institute, 1999).  

Results 

Protein concentrations 

Total protein concentration in glomalin from soil was significantly higher than 

protein in all other fractions for all soils except Sampson (Table 2A). Protein was 

detected in P. glomalin in measurable amounts (>0.1 g kg-1), but not in HA or FA 

extracted from POM. Fulvic acid fractions had no measurable protein. 

 Immunoreactivity of proteinaceous material in glomalin extracted from soil 

ranged from 10 to 45% (mean = 25%). Percentages of IRP in HA ranged from 1 to 65% 

(mean = 18%). Glomalin in the POM fraction had 5 to 19% IRP (mean = 14%). (See 

table in Appendix D for IRP values in the three major soluble fractions.) 

Comparison of protein to gravimetric weight 

Glomalin and HA averaged 25 ± 4% and 55 ± 15% proteinaceous material on a 

weight basis, respectively, for all soils. (See table in Appendix E for gravimetric weight 

values for the fractions extracted from all six soils.) In the POM fraction, glomalin was 

100 ± 54% proteinaceous. Immunoreactive protein was 6 ± 2%, 10 ± 3% and 8 ± 5% of 

the gravimetric weight for glomalin and HA from soil and P. glomalin, respectively. 
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Carbon, nitrogen and hydrogen concentrations 

Humic acid contained significantly more C, N and H than any other fraction, 

including glomalin (Table 2B). Humic acid from soil had a C concentration similar to 

HA from POM but was higher in N. Percentages C, N and H in P. glomalin were similar 

to percentages in glomalin from soil. Fulvic acid in POM had higher C contents and C 

to N ratio than FA in soil. Statistically, FA and Residual POM had similar C contents 

but Residual POM was lower in N with a higher C to N ratio. 

Carbon weights of SOM components 

Glomalin in soil and Residual POM were the dominant C-containing fractions 

extracted (up to 3 and 2 g C kg-1 soil, respectively). (See table in Appendix F for carbon 

weight values in each fraction from all six soils.) In the Sampson soil, the Residual 

POM fraction contained the most C while in the Baltimore soils, Residual POM and P. 

glomalin accounted for smaller amounts of C (Fig. 2A). The majority (43%) of the SOC 

initially present in these soils was non-extractable (humin). Of the total extracted C, 

glomalin from soil and P. glomalin combined accounted for 43% followed by Residual 

POM, HA and FA with 21, 7 and 3%, respectively.  

Discussion 

Total protein values for glomalin these six soils averaged 2.53 g kg-1 (Table 2A) 

and were consistent with previously reported values for glomalin from a variety of 

temperate soils (2 to 14 g kg-1 soil) (Wright and Upadhyaya, 1998). Glomalin was 

expected to be a major fraction of SOM because: (1) glomalin coats the surface of AM 

fungal hyphae (Wright, 2000; Wright et al., 1996; Wright and Upadhyaya, 1999) and 

hyphal lengths can be >100 m g-1 in an undisturbed prairie soil (Miller et al., 1995), (2) 
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glomalin resists degradation by proteases, high heat, and low pH (Wright and 

Upadhyaya, 1998) and (3) glomalin has a turnover time of at least 7 to 42 y (Rillig et 

al., 2001) and maybe up to 200 y (R.M. Miller, personal communication).  

High glomalin and low HA contributions to total extractable C (Fig. 2A) were 

inconsistent with reports of humic substances as the major C-containing fractions of 

OM in most soils (Hayes and Graham, 2000; Stevenson, 1994). Contaminants (i.e. 

amino acids, carbohydrates, lipids and metals) that are typically co-extracted with HA 

(Clapp and Hayes, 1999; Hayes and Graham, 2000; Schulten and Schnitzer, 1997) and 

are found in humin (Hayes and Graham, 2000; Rice, 2001) suggest that a compound 

such as glomalin could be present in these fractions. Protein assay values, especially the 

IRP values, indicated that glomalin was in the HA fraction.  

Glomalin contained high concentrations of protein (Table 2A). However, only 

about one-fourth of the gravimetric weight of glomalin from soil was proteinaceous 

whereas almost all of the glomalin in POM from the Baltimore site b, Sampson and 

Haxtun soils was proteinaceous. This indicated that the extraction of glomalin from soil 

either co-extracted some other substance with similar solubility characteristics as 

glomalin (soluble at alkaline pH, survived high temperature, and was acid-insoluble 

after extraction), such as HA, or the extracted glomalin contained a tightly-bound, non-

proteinaceous substance. Lower percentage C values for glomalin from soil compared 

to glomalin from the POM fraction (Table 2B) suggested that it is unlikely that a large 

amount of co-extracted organic material was included in the gravimetric weight of 

glomalin from soil. In addition, NMR spectroscopy shows that glomalin does not have 

co-extracted or attached tannins (Rillig et al., 2001). 
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Iron possibly contributes to high gravimetric weight and correspondingly low C 

values for glomalin from soil. Previous analysis of glomalin indicates a wide range of 

iron in glomalin from soils (0.8 to 8.8%) (Wright and Upadhyaya, 1998). This is in 

contrast to lower values for iron in glomalin from pot cultures (0.2%) (Chapter 7). 

Glomalin may accumulate iron over time in soil, and this characteristic could account 

for the resistance to decomposition and formation of stable complexes within soil 

aggregates. Iron-saturated transferrins, such as lactoferrin, are glycoproteins that are 

thermal stable and have antimicrobial properties (Paulsson et al., 1993). Organometallic 

complexes formed by Fe- and Al-hydroxides protect organic matter from decomposition 

in stable soil aggregates (Tisdall and Oades, 1982; Rice, 2001). Ongoing work is 

examining the composition of glomalin more fully with iron targeted as important for 

glomalin stability and function. 

 Plant-derived particulate matter was easily recognized as unique because it was 

insoluble particulate matter that was separated from the extractable components in POM 

(glomalin, HA and FA). Likewise, FA was readily distinguished from other fractions 

because it is both acid- and alkaline-soluble, a lighter color than glomalin and HA, and 

had essentially no proteinaceous residues. The purification procedure used for FA was 

not optimized to retain all of the low-molecular weight components in this fraction. 

Solubility of FA in acid and the lack of proteinaceous material in FA extract prior to 

purification eliminated this fraction as a source of glomalin.  

Distinguishing between glomalin and HA was more difficult because both were 

dark-colored, alkaline-soluble and acid-insoluble. Operationally, glomalin and HA can 

be separated by origin and extraction method. Glomalin originates from hyphae of AM 
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fungi and is extracted in a citrate solution at 121oC (Wright et al., 1996; Wright and 

Upadhyaya, 1996) while HA is derived from chemically and biologically degraded 

organic matter and is solubilized in NaOH solution (Burdon, 2001; Hayes et al, 2001). 

However, both glomalin and HA contained proteinaceous and immunoreactive material. 

It is possible that even after extensive extraction with citrate, some glomalin remained 

in the soil. Subsequent treatment of soil with NaOH to extract HA may have resulted in 

co-extraction of a ‘recalcitrant’ glomalin fraction as indicated by the presence of IRP in 

HA. Across all soils 18% of the protein in HA was IRP. Co-extraction of non-glomalin 

proteins with HA also is a possibility. 

Immunoreactivity is a useful indicator of the presence of glomalin in the protein 

fraction extracted from soils using alkaline citrate at high heat, but previous work shows 

that values for Bradford protein and ELISA may not be equivalent. Values for 

percentage of IRP in glomalin and HA from soil and P. glomalin were within the lower 

range of values obtained from other studies where multiple 1-h extractions were 

required to remove glomalin from soils. Samples from Georgia pasture soils (n = 192) 

(similar to the Cecil and Pacolet series included in this study) ranged from 19 to 76% 

immunoreactive glomalin (Franzluebbers et al., 2000). Glomalin extracted from a Weld 

silt loam soil (Akron, Colorado) under perennial grass (n = 9) was 27 to 87% 

immunoreactive (Wright and Anderson, 2000). Extraction conditions such as the 

concentration of citrate and length of exposure to heat during extraction at least partially 

influences immunoreactivity (Wright and Upadhyaya, 1996). In this study, 

immunoreactivity probably was compromised in order to optimize the amount of 

glomalin extracted from a sample.  
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Co-extraction of HA and glomalin in hot, alkaline citrate solution is a 

possibility. However, percentage C and H in glomalin indicate that a large amount of 

HA was not co-extracted (Table 2B). Humic acid from soil averaged 53% C and 5.6% 

H. These values are much less than 35% C and 4.1% H for glomalin from soil and 40% 

C and 4.5% H for P. glomalin. Results indicated that POM contained essentially no HA. 

Therefore, percentage C in P. glomalin probably reflects a value for glomalin not 

contaminated with HA. Also, the value for percentage C in P. glomalin is similar to that 

of glomalin extracted from AM fungal hyphae produced in single-species pot cultures. 

Isolates of AM fungi [Gigaspora rosea Nicolson and Schenck FL224 (INVAM) and 

Glomus etunicatum Becker and Gerdemann BR220 (INVAM)] had 44% and 38% C, 

respectively (Chapter 6). Based on C concentrations in P. glomalin and HA, if glomalin 

from soil were contaminated with HA, percentage C should have been higher, not lower 

than P. glomalin.  

In these six soils, the amount of C represented by adding up C weights for all 

seven of the extracted fractions plus the non-extractable C that remained in the residual 

soil, accounted for an average of 67% of the total organic C across all soils (Fig. 2A). 

Unaccounted-for-C possibly was lost in the many extraction and purification procedures 

used in this study. Also, minor C fractions such microbial biomass C or hot-water 

extractable carbohydrates were not measured. 

Glomalin accounted for a higher percentage of the SOC than HA even though 

the HA molecule has a higher concentration of C. Using protein assays, and 

concentrations of C, H, and N, glomalin and HA were, for the most part, shown to be 

separate OM fractions. However, because of a lack of a definitive assay for HA and the 
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identification of immunoreactive material in the HA fraction by ELISA, the question of 

co-extraction of glomalin with HA remains. MacCarthy (2001) stated that it may be 

difficult to definitively isolate humic and non-humic substances from each other 

because of shared functional groups and solubility characteristics. In this study, 

similarities in extraction methodology (i.e. alkaline solution extraction and acidic 

separation), physical properties such as dark brown color and functional properties such 

as soil aggregate stabilization and metal accumulation and the low amounts of HA 

measured compared to glomalin makes co-extraction a possibility. Ongoing research is 

investigating co-extraction of glomalin and HA and better methods to separate these 

constituents of SOM. 
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Table 2A. Total protein (g protein kg-1 soil) in glomalin extracted from the particulate organic matter (POM) fraction (P. 

glomalin) and glomalin and humic acid (HA) from soil minus POM. † 

Fraction Baltimore a Baltimore b Sampson Haxtun Pacolet Cecil Mean § 

P. Glomalin 0.13c 0.19c 1.69a 0.59b 0.23b 0.65b 0.58±0.24b 

Glomalin       
 

       

2.25±0.04a 2.19±0.06a 1.70±0.02a 1.14±0.03a 2.87±0.03a 1.55±0.08a 1.95±0.25a 

HA 0.98±0.03b 0.95±0.08b 0.28±0.00b 0.06±0.01c 0.32±NDb 0.20±NDc 0.46±0.16b 

Prob>F ‡ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0012 <0.0001
 

56 † Mean ± SE were determined for fractions extracted from soil but not for fractions extracted from POM that was combined before 

extraction. 

‡ Significant differences were determined according to REML. ND = not determined.  

§ Mean ± SE for all six soils. 

 

 



  

Table 2B. Percentages C, N and H and ratio of C to N for glomalin, humic acid 

(HA) and fulvic acid (FA) extracted from both the particulate organic matter 

(POM) fraction and soil minus POM and for the initial soil sample prior to 

extractions and residual soil material remaining after all extractions averaged 

across six soils in the U.S. † 

 Fraction % C % N % H C to N N‡ 

 Initial 
soil 2.85±0.48 0.22±0.08 0.64±0.15 19.12±8.09 6 

POM  23.12±1.54 1.18±0.09 3.24±0.10 20.43±2.86 6 

Glomalin 39.57±1.50 2.75±0.28 4.45±0.13 15.07±1.42 6 

HA 49.62±2.34 2.80±0.26 5.33±0.26 17.96±1.39 3 

FA 40.33±0.57 1.97±0.34 5.64±0.04 21.19±3.90 2 

POM 
fraction 

Residual 
POM§ 28.13±3.46c 1.29±0.17c 3.50±0.44b 22.30±1.92a 6 

Glomalin 34.55±2.14b 3.00±0.29b 4.07±0.18b 11.75±0.63b 6 

HA 53.19±0.40a 3.89±0.39a 5.64±0.17a 14.38±1.79b 5 

FA 26.11±2.86c 2.31±0.33b 4.27±0.41b 11.80±0.83b 6 
Soil 

minus 
POM 

Residual 
soil 1.23±0.23 0.07±0.02 0.34±0.08 15.72±3.81 6 

Prob>F  <0.0001 <0.0001 0.0007 <0.0001  
 

† Means and standard errors in a column followed by different lowercase letters 

represent significant differences in fractions.  Significant differences (P=0.05) were 

determined according to REML on the four major organic matter fractions – Residual 

POM and glomalin, HA and FA from soil. 

‡ Number of soils used to calculate mean and standard error. 

§ Residual POM is the residual POM after extraction of glomalin, HA and FA. 
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Figure 2A. Proportion of extractable carbon in each organic matter fraction – Residual particulate organic matter (R. POM), 

glomalin in POM (P. glomalin), glomalin, humic acid and ful id – extracted from six native soils in the U.S. The 

e carbon to total organic carbon ach soil is the number in the center of each bar.
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CHAPTER 3 

 

COMPARISON OF EXTRACTION SEQUENCES TO OPTIMIZE THE 

PURITY OF HUMIC ACID AND GLOMALIN



 

Abstract 

Glomalin and humic acid (HA) are alkaline-soluble and acid-insoluble fractions of soil 

organic matter that differ in optimal temperature for extraction – glomalin at 121 oC and 

HA at RT. The hypothesis of this study was that HA and glomalin could be isolated 

from soil samples as essentially pure fractions by manipulating the extraction sequences 

to favor one or the other of these fractions. Bulk samples (0 to 10 cm depth) from eight 

soils – two soils from each of four U.S. states (Colorado, Nebraska, Maryland and 

Georgia) – were tested. Extraction Sequence (ES) 1 was citrate-extraction of glomalin 

followed by NaOH-extraction of HA to maximize glomalin amounts and ES 2 was 

NaOH-extraction followed by citrate-extraction to maximize HA amount. Comparisons 

between glomalin and HA fractions from the two extraction sequences were by 

Bradford total protein, immunoreactive protein and gravimetric weights and 

concentrations of carbon, hydrogen, nitrogen and iron. HA protein values from ES 2 

were two times greater than from ES1. Low-protein HA (0.23 to 0.90 g protein kg-1soil) 

was obtained by a two-step procedure: extraction of glomalin followed by extraction of 

HA (ES 1). Glomalin concentrations measured by the total protein assay were higher in 

ES 1 compared to ES 2 for all except the Nebraska soils. A recalcitrant pool of glomalin 

was released from soil after NaOH-extraction of HA in ES 1. Significant correlations 

were found between iron, organic C and clay concentrations in soil and protein 

concentrations, percentage iron and gravimetric weight of glomalin from ES 1.  

Introduction 

Soil organic matter (SOM) influences soil structure, water holding capacity, 

water and oxygen infiltration rates, soil erosion, pesticide efficacy and soil fertility. A 
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previous study (Chapter 2) showed that the majority of SOM is comprised of glomalin, 

Residual POM and humic substances (HS), such as humin, humic acid (HA) and fulvic 

acid (FA). Of these, glomalin and POM were the largest fractions isolated and HA was 

present in concentrations lower than expected. Glomalin and HA are distinctly different 

from POM (insoluble plant debris) and FA (acid- and alkaline-soluble). Therefore, 

POM and FA were neither collected nor examined in this study. Both HA and glomalin 

were extracted in alkaline solutions (glomalin in citrate, pH 8.0, at 121 oC and HA in 

0.1 N NaOH at RT) and separated from the extraction solution and other contaminants 

by acidification. Since glomalin was extracted prior to HA in Chapter 2, it was possible 

that HA was co-extracted with glomalin. This would account for the high glomalin 

amounts and corresponding low amounts of HA. 

Glomalin is a red-brown, glycoproteinaceous substance produced by arbuscular 

mycorrhizal (AM) fungi (Wright et al., 1996; 1998; Wright and Upadhyaya, 1996). 

Native glomalin is hydrophobic and insoluble unless exposed to an alkaline buffer 

[citrate, borate, or pyrophosphate at pH 7.0 to 9.0 (see Appendix G)] at high 

temperature (121oC) (Wright et al., 1996; Wright and Upadhyaya, 1996). Hydrophobic 

interactions appear to bind glomalin into a complex structure that is consistent across 

soils (Rillig et al., 2001; Wright et al., 1996; Wright and Upadhyaya, 1998; 1999; 

Chapter 7). Glomalin apparently provides a hydrophobic coating on AM hyphae to 

reduce solute loss (Wright and Upadhyaya, 1996). Other fungi, including some 

ectomycorrhizal fungi, produce self-aggregating small proteins called hydrophobins that 

protect aerial hyphae at air-water interfaces (Wessels, 1997). Glomalin is different in at 

least one way from hydrophobins because it contains iron (0.8 to 8.8%) (Wright and 
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Upadhyaya, 1998). Iron may protect glomalin and other organic matter from 

degradation by forming bridges to clay minerals and other types of organic matter. 

Humic substances (HS) are formed by the decomposition of plant and animal 

debris, microfauna, biowastes, and other organic materials in the soil and are non-

proteinaceous (Burdon, 2001; Hayes and Clapp, 2001). In soil, HS are thought to 

provide acidic and basic buffering capacity; retain soil moisture; contribute to soil 

warming; act as a reservoir of plant-available micronutrients; bind to metals, clays and 

other small organic molecules to form aggregates; and act as an electron shunt in 

microbial and abiotic redox reactions (Burdon, 2001; Fan et al., 2000; Hayes and Clapp, 

2001; MacCarthy, 2001). However, many of the above functions are not supported by 

the chemistry of small molecules formed from the degradation of plant and microbial 

debris (i.e. HS) (Burdon, 2001; Hayes and Clapp, 2001). Therefore, there is a gap 

between the molecular structure of classic HS – decomposition products – and organic 

substances that provide buffering capacity, assist in redox reactions, and bind organic 

matter, metals, and clays. 

Modern analytical techniques such as NMR (nuclear magnetic resonance), GC-

MS (gas chromatography-mass spectroscopy) and thermochemolysis have been applied 

to HS to identify functional groups and match function with chemistry (Hatcher et al., 

2001). These techniques confirm that other molecules, such as amino acids, 

carbohydrates and lipids, which are not considered part of HS, are frequently extracted 

with HS and provide many of the functional properties of HS. Techniques, such as 2D 

NMR, show that most of the N in HA is in the form of amino acids (Kingery et al., 
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2000; Simpson, 2001) and that aliphatics are underrepresented and aromatics are 

overrepresented in older models of HA structure (Burdon, 2001; Hatcher et al., 2001). 

Humic acid (HA) is the alkaline-soluble and acid-insoluble dark brown to black 

component of HS. Whether HA is a supermixture of low molecular weight molecules 

(Hayes and Clapp, 2001, MacCarthy, 2001) or a high molecular weight complex 

(Schulten and Schnitzer, 1997), this fraction is defined operationally as an alkaline 

soluble material. Elucidating the quantities and composition of HA and glomalin will 

help clarify the processes involved in soil stabilization and carbon storage. To do this, 

procedures must be found to determine how much glomalin or HA is co-extracted with 

each extraction procedure. 

In this study, eight soils – two from each of four U.S. states – were extracted for 

glomalin and HA using Extraction Sequence (ES) 1 – glomalin followed by HA and ES 

and ES 2 – HA before glomalin. (See Appendix H for diagrams of the sequences.) A 

highly proteinaceous fraction has been found in HA collected at pH 2.0-2.5 and not in 

HA collected at pH 1.0 (Clapp and Hayes, 2001; Hayes and Graham, 2000; M.H.B. 

Hayes, personal communication). This indicates the presence of glomalin in this 

fraction. Therefore, a subsample of HA extracted during ES 2 was redissolved and 

precipitated at pH 2.5, 2.0 and 1.0. These HA precipitates were analyzed the same as 

glomalin and HA collected in Sequences 1 and 2. Because glomalin and HA are 

operationally defined by extraction procedures (Swift, 1996; Wright et al., 1996), both 

fractions from the two experiments were carefully examined for co-extraction using 

total and immunoreactive protein assays (which are specific for glomalin) and C 
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concentrations (which are higher in HA than in glomalin). Nitrogen, iron and hydrogen 

concentrations were used to further define glomalin and HA.  

The objectives of this study were to:  (1) Determine the extent of co-extraction 

of glomalin and HA by measuring protein concentrations in glomalin and HA isolated 

by extraction sequences that maximize one fraction or the other, (2) Compare selected 

chemical characteristics (such as C, N, Fe, H and protein concentrations) of glomalin 

and HA from both experiments, and (3) Compare amounts of glomalin and HA to soil 

characteristics [such as clay, P and  Fe concentrations] that may affect glomalin and HA 

accumulation and function. 

Materials and Methods 

Soils 

Bulk soil samples (0-10 cm depth) were collected with a shovel at two locations 

in four states – Maryland (MD), Nebraska (NE), Colorado (CO) and Georgia (GA). The 

following series were sampled: Baltimore (MD) (at two sites – MD A and MD B), 

Sampson and Haxtun (CO), Pacolet and Cecil (GA), and Wymore and Pawnee (NE). 

Soil was freshly collected at each site except for the NE soils which had been stored at 

RT for 3 y. Each site had native vegetation. Soils were air-dried and sieved to remove 

fragments >2-mm. Glomalin and HA were extracted from 10 g (five 2-g duplicate 

subsamples) of each soil.  

Selected variables were measured on soils prior to extraction (Table 3A). Cation 

exchange capacity (CEC), pH level, and P, sand and clay concentrations were measured 

by the Soil Testing Laboratory at the University of Maryland (Table 3A). (See 

Appendix I for values from other elements measured in these soils.) Phosphorus 
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concentration was measured by colorimetric assay on solution extracted from soil using 

the Mehlich I procedure. Soil pH was measured in 1:1 (w/v) 0.01 M CaCl2 solution. 

Total C, N, and H and organic C were measured by combustion with a Perkin-Elmer 

Series II C, H, N, S/O 2400 Analyzer (Shelton, CT) at USDA-ARS. Organic C was 

measured on soil treated with 0.1 N HCl to remove carbonate carbon, rinsed with dH2O 

(de-ionized water), pelleted by centrifugation at 6850 × g, and dried at 70oC. 

 Iron was extracted from soil by a modified Aqua Regia (McGrath and Cunliffe, 

1985) procedure and quantified by Atomic Absorption (AA) at USDA-ARS. Briefly, 

concentrated HNO3 was added to the sample and heated to 85-90oC (a temperature high 

enough to cause evaporation but not boiling) for 2 hrs. Next, concentrated HCl 

(equaling 1 part HNO3:3 part HCl) was added followed by incubation at 60oC for 1 hr. 

After hydrolysis, samples were decanted through a Whatman 1 filter into a volumetric 

flask and brought to volume with dH2O. Iron concentration was measured with a Varian 

Atomic Absorption Spectrometer (AA-400, Palo Alto, CA) with deuterium background 

correction.  

Soil organic matter extractions 

Citrate extraction of glomalin  

Samples were extracted with 50 mM sodium citrate, pH 8.0, at 121oC for 1 h 

(Wright and Upadhyaya, 1999). (See Appendix A2 for a detailed description of 

extraction and purification.) Extraction was repeated until the supernatant was straw-

colored (up to three more times). All supernatants from each 1 h extraction were 

combined. Extracts were purified by precipitation, solubilized in NaOH and dialyzed 
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against dH2O. Dialyzed material was centrifuged and the supernatant was collected and 

freeze dried.  

Sodium hydroxide extraction of humic acid 

  HA was extracted according to a method recommended by the International 

Humic Substances Society (Swift, 1996) with slight modifications. Incubation 

conditions and solution concentrations used were as described by Swift (1996). (See 

Appendix A3 for a detailed description of HA extraction.) Modifications of the method 

were primarily in sample size (2 g instead of 50 g) and the purification procedures. FA 

was not collected.  

 Following a pre-incubation with HCl, soil extracted using a multi-step NaOH 

extraction procedure: (i) neutralization with NaOH under N2, (ii) extraction overnight 

with NaOH and (iii) acidification to precipitate HA. The NaOH extraction followed by 

acidic separation was repeated two more times (until the solution was almost clear) to 

assure that all HA was extracted. All centrifugations were at 6850 × g for 10 min. 

Insoluble solid particles were removed from HA by: (i) re-dissolving in a minimum 

volume of KOH under N2; (ii) adding KCl (until [K+] ≥ 3 M); (iii) centrifugation at 

10844 x g to remove suspended solids; and (iv) precipitation with HCl. After settling 

overnight, samples were centrifuged again and the supernatant was discarded. The 

precipitated HA fraction then was: (i) suspended in 0.1 N HCl and 0.3 N HF, (ii) 

incubated overnight, and (iii) centrifuged at 6850 x g with the supernatant discarded. 

The HCl/HF treatment was repeated twice. Residual acid was removed by repeatedly 

washing the precipitated HA with dH2O and centrifuging at 10844 × g for 3 min.  

 66 
 



 

After removal of insoluble particles and ash material, the HA precipitate was re-

dissolved in a known minimum volume of 0.1 N NaOH. A subsample (0.5 mL) was 

removed for protein assays (see below). The remaining solution was acidified 

immediately to precipitate HA. Acid was removed by centrifuging at 10844 x g and 

rinsing with water. The precipitate then was freeze-dried. 

Extraction sequences 

Extraction Sequence 1:  Glomalin followed by humic acid 

Soils were citrate-extracted for glomalin followed by NaOH extraction of HA 

(see Appendix H1). Residual soil (soil remaining after sequential extraction of glomalin 

followed by HA) was re-extracted with citrate to determine whether the NaOH 

treatment to extract HA facilitated the release of a recalcitrant pool of glomalin. This 

recalcitrant glomalin (R. glomalin) was collected from all soils except the Pawnee soil 

(which was not citrate extracted for R. glomalin).  

Extraction Sequence 2: Humic acid  followed by glomalin 

Humic acid was extracted from soils with NaOH, and the remaining soil was 

extracted with citrate to obtain glomalin (see Appendix H2). Following purification of 

HA (described above), a subsample of the freeze-dried HA fraction from each soil was 

extracted with citrate to assess co-extraction of glomalin. The supernatant from citrate 

extraction of the original HA potentially contained glomalin and HA that was 

solubilized during the citrate-extraction procedure. The material in this citrate solution 

was precipitated in steps to determine differences in protein concentration by pH level: 

(1) pH 2.5 (HA 2.5), (2) pH 2.0 (HA 2.0), and (3) pH 1.0 (HA 1.0). At each step, 

precipitate was collected by centrifugation at 6850 × g after 30-min incubation on ice. 

 67 
 



 

Following step 3, the supernatant was discarded. Each precipitate was re-dissolved in 

0.1 N NaOH and dialyzed against water in dialysis tubing with MWCO of 500 D. After 

dialysis, the supernatant collected by centrifugation at 6850 × g for 10 min was freeze 

dried. 

Quantitative measurements 

Protein assays 

Total and immunoreactive protein concentrations were measured on subsamples 

of glomalin and HA from ES 1 and ES 2, R. glomalin from ES 1 and the three fractions 

of HA collected at different pH levels in ES 2. (See Appendix C for detailed 

descriptions of the protein assays). For glomalin and R. glomalin, the subsamples were 

taken prior to dialysis. For HA, the subsample was collected from re-dissolved HA 

precipitate as discussed above. HA fractions from ES 2 (HA 2.5, HA 2.0 and HA1.0) 

were solubilized in water at neutral pH. A subsample was removed from each, and the 

remaining solution was freeze-dried. 

A modified Bradford protein assay (Wright et al., 1996) was used to measure 

total protein (TP) concentration. Samples were diluted in PBS (phosphate buffered 

saline) and reacted with Bio-Rad® (Hercules, CA) Bradford protein dye reagent. 

Absorbance was read at A595 after 5 min. Protein concentration was determined by 

comparison with a bovine serum albumin (BSA) standard curve and reported as g 

protein kg-1 soil.  

Immunoreactive protein (IRP) concentration was measured by ELISA as 

described by Wright and Upadhyaya (1998) with modifications in the enzyme and color 

developer. ExtrAvidin® (Sigma-Aldrich, Inc.) phosphatase was used instead of 
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peroxidase. Wells were rinsed with Tris [Tris(hydroxymethyl)aminomethane]-buffered 

saline with Tween 20 (polyoxyethylenesorbitan monolaurate) before adding the color 

developer, p-nitrophenyl phosphate in diethanolamine buffer (Wright, 1994). 

Absorbance was read at A405 after 15 min. Test samples were compared to a standard 

curve produced by dilutions of highly immunoreactive glomalin extracted from a 

temperate soil under native grasses. Immunoreactive protein concentrations were 

reported as g kg-1 soil. Percent immunoreactivity was calculated as amount of IRP 

divided by amount of TP times 100. 

Gravimetric weight 

 All purified and freeze-dried samples – glomalin, HA, R. glomalin, pH 

fractionated HA – were weighed to the nearest 0.1 mg. Gravimetric weights were 

reported as g kg-1 soil. Soil after extraction (Residual) was dried at 70oC, weighed and 

ground with a mortar and pestle for elemental analysis. 

Elemental composition 

Extracted, freeze-dried organic matter fractions – glomalin, HA, R. glomalin, 

pH fractionated HA – and Residual soil (stored in a desiccator under vacuum) were 

analyzed for C, N, H and/or Fe contents. Carbon, N and H contents were measured by 

combustion with a Perkin-Elmer Series II C, H, N, S/O 2400 Analyzer. Iron 

concentration was measured by AA on glomalin and HA samples hydrolyzed with Aqua 

Regia (see above). Hydrolysis was incomplete for a limited number of samples, so the 

weight of the original sample was corrected for non-hydrolyzed material collected by 

centrifugation at 10844 × g.  
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Statistical analysis 

Gravimetric weight values were corrected for subsamples removed for protein 

measurement and for secondary extractions. Means and SEs were calculated for all soils 

combined. For all mean weight values (i.e. TP, IRP and gravimetric weight) and 

elemental concentrations (C, N, H and Fe) in glomalin, HA and R. glomalin, two 

statistical comparisons were made: (1) across sequence for all five fractions (three from 

ES 1 and two from ES 2) and (2) within Sequences 1 and 2, individually. The first 

analysis compared glomalin to HA, and the second analysis tested whether extraction 

sequence affected glomalin or HA individually. All means comparisons for weights and 

elemental concentrations were made at the α ≤ 0.05 level by ANOVA (Analysis of 

Variance) using REML (Restricted Maximum Likelihood) after the residuals met the 

assumptions for normality and homogeneity of variance. When needed, the log 

transformation was made to meet the assumptions.  

Pearson product-moment correlation coefficients (r) were calculated for 

gravimetric, TP and IRP weight and percentage Fe in glomalin or HA from ES 1 and 

soil concentrations of organic C, clay, Fe and P and pH level. Significance was 

measured at the α = 0.05 level. All statistical analyses were performed using SAS 

software, ver. 8 (SAS Institute, 1999).  
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Results 

Quantitative values 

Protein concentrations 

 Glomalin from ES 1 and ES 2 contained the highest TP concentrations (Table 

3B). Protein concentrations in glomalin from ES 2 were 45 to 61% lower than in 

glomalin from ES 1 for five soils. In the remaining three soils, protein concentration in 

glomalin from ES 2 was 23 to 62% higher from ES 1.  

Humic acid protein concentrations increased in all soils from ES 1 to ES 2. The 

largest (3 to 4 fold) increases were in the MD and GA soils. Proteinaceous material in 

HA was concentrated in the fractions that precipitated at pH 2.0 and 2.5. When 

examined within an extraction sequence, the glomalin fraction contained significantly 

more protein than HA (P = 0.0009) in ES 1. In ES 2, a significant difference between 

glomalin and HA TP could not be determined (P = 0.2317).  

 Immunoreactive protein concentrations followed a trend similar to TP 

concentrations. Mean values were significantly higher in the glomalin fractions from 

both experiments (Table 3C). In the HA fraction, IRP concentrations increased from ES 

1 to ES 2 for all soils, except for the Sampson, Pacolet and Cecil soils. Immunoreactive 

protein concentration was significantly greater in the glomalin fractions than that in HA 

and R. glomalin fractions from ES 1 and HA from ES 2 (P = 0.0030 and <0.0001, 

respectively). 

Gravimetric weights  

 When glomalin extraction was maximized (ES 1), weight of glomalin was 7 to 

19 g kg-1 soil and weight of R. glomalin was 0.4 to 7 g kg-1soil (Fig. 3A). Maximizing 
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HA over glomalin (ES 2) resulted in HA weight increases of 62 to 92% in all soils 

except Wymore and Pawnee where HA decreased by 27 and 10%, respectively. The 

Pacolet soil had the largest amounts of R. glomalin in ES 1 and HA in ES 2.  

Mean weight of glomalin in ES 1 (13.4 g kg-1 soil) was significantly greater than 

for R. glomalin and HA (3.0 and 3.1 g kg-1 soil), respectively (P <0.0001). Mean weight 

of HA (9.1 g kg-1 soil) in ES 2 was not significantly different from glomalin (6.2 g kg-1 

soil) (P = 0.2911). Glomalin from ES 1 weighed significantly more than glomalin from 

ES 2 (P <0.0001).  

The HA precipitate collected at pH 2.0 in ES 2 had the highest weight of all 

three sequentially precipitated fractions in seven soils. In the Pacolet soil, the highest 

weight of precipitate was obtained at pH 2.5 (Fig. 3B).  

Comparison of gravimetric to total protein weight 

The total gravimetric weight of glomalin was an average of 20 and 31% 

proteinaceous for ES 1 and ES 2, respectively. For HA, the total gravimetric weights 

were 27 and 16% protein for ES 1 and ES 2, respectively. Proteinaceous material was in 

the HA fractions that precipitated at pH levels 2.0 and 2.5, and averaged 41and 55% of 

the gravimetric weight, respectively, for these precipitates. 

Elemental composition 

 In all eight soils, especially the Wymore and Pawnee soils, the percentage C in 

glomalin increased in ES 2 compared to ES 1 (Table 3D). The R. glomalin fractions had 

C values comparable to glomalin in ES 2. Percentage C in the HA fraction declined 

from ES 1 to 2 in all soils, except the Cecil and Wymore soils. The HA fraction that 
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precipitated at pH levels 2.5 and 2.0 had the highest C values, and, in some cases, these 

values were even greater than in the original HA sample. 

 Mean values for elemental concentrations of initial soils, glomalin, HA, R. 

glomalin and soil after extractions (Residual) are presented in Table 3E. Within ES 1, 

HA had a significantly higher C than glomalin, but not R. glomalin. Both glomalin and 

R. glomalin contained more than 4% Fe while HA had 1.2% Fe. In ES 2, HA contained 

significantly more C and N than glomalin, but there was no significant difference in Fe 

and H concentrations. The HA fractions collected at pH levels 2.0 and 2.5 in ES 2 were 

significantly higher in C and H than the fraction collected at pH 1.0 (P ≤ 0.004). 

Glomalin from ES 1 had significantly lower concentrations of C and H than R. 

glomalin and glomalin from ES 2. Also, glomalin from ES 2 was lower in N than 

glomalin in ES 1 or R. glomalin. Glomalin and R. glomalin in ES 1 contained more Fe 

than glomalin in ES 2. Humic acid did not differ significantly in percentage C, Fe, N or 

H across Sequences 1 and 2.  

Comparison of glomalin and soil characteristics 

 Iron concentration in the soil was significantly and positively correlated with 

gravimetric weight, IRP and percentage Fe in glomalin from ES 1 and soil organic C 

and clay content (Table 3F). Glomalin weight also was correlated with Fe in glomalin 

and clay content. Additionally, organic C was related significantly to glomalin TP and 

IRP. Humic acid TP concentration was positively correlated with HA weight and soil P 

concentration.  
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Discussion 

Procedures operationally defined to extract HA or glomalin successfully 

separated these SOM fractions from the eight soils tested. However, it is currently not 

possible to isolate humic and nonhumic substances definitively from each other and 

assure that no co-extraction has occurred (MacCarthy, 2001). Since co-extraction was 

possible, the differences in weight, protein, and elemental values for glomalin and HA 

in Experiments 1 and 2 showed that the typical NaOH extraction of HA was more likely 

to co-extract glomalin than the citrate, high temperature glomalin extraction to co-

extract HA. 

 Glomalin was found in lower amounts and HA in greater amounts in ES 2 than 

in ES 1 (Fig. 3A). It was speculated that glomalin was co-extracted with HA in ES 2. 

Higher TP values in HA from ES 2 supported this hypothesis (Table 3B and 3C). The 

amount of glomalin in HA was estimated to be at least 2 to 14% (mean = 8%) of weight 

of HA. This estimate was calculated as: 

% TP in HA from ES 2 - % TP in HA from ES 1 x 100   (1) 
              gravimetric weight of HA in ES 2 

 

Subtraction of HA TP in ES 2 from HA TP in ES 1 corrected for soil proteins or 

peptides other than glomalin that may have been co-extracted with HA. This calculated 

value underestimated the amount of glomalin in HA since TP values are only a fraction 

of gravimetric weight in glomalin. A value somewhere between 8% (calculated from 

the change in TP) and 80% [calculated from the change in total weight (for six soils, not 

including Wymore and Pawnee)] actually may represent the amount of glomalin that 

was co-extracted with HA in ES 2.   
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Isolation of R. glomalin in ES 1 and the extraction of glomalin in ES 2 

confirmed that operationally defined glomalin was different from HA and was part of 

the 'insoluble' humin fraction. Recent examination of humin shows that it contains more 

nonhumic substances such as lipids, carbohydrates, and proteins than previously 

hypothesized (Hayes and Clapp, 2001; MacCarthy, 2001; Rice, 2001). These proteins 

resist humification by becoming physically encapsulated in humic-mineral complexes 

(Hatcher et al., 2001). The R. glomalin pool and its similarity to operationally-defined 

humin indicated that glomalin has a fraction with a slow decomposition rate and may 

accumulate to high amounts in soil. 

Cecil (GA), Sampson and Haxtun (CO) soils contained the lowest 

concentrations of OM, clay and glomalin (Table 3A). High P concentrations, near 

neutral pH and low Fe values in the Sampson and Haxtun soils could explain the low 

glomalin amounts. High P can reduce the growth of AM fungi (Bolan, 1991), and 

glomalin accumulation is low in calcareous and low Fe soils (Wright and Upadhyaya, 

1998). However, the low amount of glomalin in the acidic, low P, high Fe Cecil (GA) 

soil was contrary to expected levels if P and Fe are controlling factors. The only factor 

that these three soils have in common that could explain the low OM and glomalin 

concentrations was the low clay content.  

Organic matter concentration is correlated with high clay content. Iron- and Al-

(hydr)oxides create bridges between organic matter and clay minerals to form organo-

mineral complexes (Hassink and Whitmore, 1997). These complexes protect organic 

matter from decomposition and are speculated to be responsible for the formation of 

humin (Hayes and Clapp, 2001; Rice, 2001). In soil, P, Fe and pH may influence the 
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production of glomalin by impacting AM fungal growth, but overall accumulation of 

glomalin may be tied to clay content, type of clay, and the presence of Fe- and Al-

(hydr)oxides.  

Elemental (C, Fe, N and H) percentages in glomalin, R. glomalin and HA 

showed that these fractions represented different molecules (Table 3E). Glomalin was 

different from HA because glomalin from ES 1 contained significantly less C and more 

Fe than HA. Recalcitrant glomalin had similar C values as HA, but a significantly 

higher Fe concentration (Table 3E).  

Carbon, Fe, N and H values for glomalin, R. glomalin and HA were examined to 

determine if extraction sequence influenced molecular composition and if these changes 

support the hypothesis of co-extraction. For HA from six of the eight soils, C values 

declined slightly from ES 1 to ES 2. This supports the hypothesis of co-extraction of 

glomalin with HA (Table 3D). Using the percentage C values for glomalin from ES 1 

and the estimated amount of glomalin in each fraction, it was possible that the slight 

reduction in HA-C in ES 2 was due to co-extraction of glomalin. Another way to look at 

the possible co-extraction is to examine HA-C values (mean = 49.7%) in ES 2. This 

value is almost equal to estimated HA-C values (mean = 49.5%) when 10% of the mass 

in HA was estimated to come from co-extracted glomalin as discussed above. 

For glomalin, C, Fe, N and H contents were significantly affected by extraction 

sequence (Table 3E). Variation in C does not support the hypothesis of co-extraction of 

HA in the glomalin extract. If this occurred, glomalin from ES 1 would not be 

significantly lower in C than glomalin from ES 2 and R. glomalin. Glomalin from ES 2 

had significantly less Fe than glomalin from ES 1, which probably decreased the weight 
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and thereby gave the higher C concentrations. In ES 1, glomalin was 28% C and 4% Fe 

which equals a total atomic mass of 5.6. If the Fe concentration were reduced to 1%, 

glomalin would require 42% C for an equivalent mass. The percentage C in glomalin in 

ES 2 was 43% (Table 3E). Therefore, the additional amount of iron in glomalin from 

ES 1 would account for the significant difference in percentage C in glomalin between 

Sequences 1 and 2 and co-extraction of HA would not. 

In ES 2, iron in glomalin was not lost by hydrolysis because structural 

decomposition and concomitant reduction in C and protein values did not occur. 

Instead, treating the soil with a strong acid (HCl) prior to extraction of HA and glomalin 

probably reduced Fe concentration in glomalin just as treatment with acid or a strong 

chelator reduces Fe concentration in HA (Fan et al., 2000; Hatcher et al., 2001; 

Simpson, 2001). Iron is tightly bound to glomalin but is not a major part of the native 

glomalin molecule. Glomalin freshly produced on hyphae has Fe concentrations of ≤ 

0.3% (Chapter 7). 

In the recalcitrant glomalin pool (which had high Fe values), high heat used in 

extraction of the initial glomalin possibly helped ‘fuse’ Fe on glomalin in such a way 

that it could not be removed by the acid treatment as it was in ES 2. Similar types of 

fusion have been found for aromatic compounds in char material produced by burning 

(Hayes and Clapp, 2001) and other research by our lab has shown that some of the 

extraction buffer may be incorporated as part of the glomalin molecule with the high 

heat used for extraction (Chapter 7). 

Recalcitrant glomalin also had a high percentage C (higher than glomalin in ES 

1 and similar to glomalin in ES 2). Presumably, this pool of glomalin has resided in the 
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soil for a long time. Although resistant, glomalin is not immune to decomposition. 

Hydrolysis and oxidative chemical degradation in the soil and during the extraction 

procedure can induce significant changes in organic matter (Hayes and Clapp, 2001; 

MacCarthy, 2001). This type of degradation, or humification, would leave behind more 

long chain hydrocarbons (with a higher C percentage) than more labile carbohydrates 

and amino acids (with a lower C percentage). 

Contamination of HA with glomalin during the typical NaOH extraction was 

expected (Chapter 2). Glomalin is extracted routinely in alkaline solutions (Wright et 

al., 1996; Appendix G), and a small fraction of glomalin is soluble after prolonged 

incubation in an alkaline solution at RT (unpublished data). In addition, proteinaceous 

and carbohydrate residues have frequently been found in the HA fraction that are co-

extracted with the HA molecule but are not part of its structure (Burdon, 2001; Hatcher 

et al., 2001; Hayes and Clapp, 2001; Simpson, 2001). In ES 2, stepwise titration at pH 

2.5, pH 2.0 and pH 1.0 was used in an attempt to separate HA and glomalin because a 

highly proteinaceous fraction is isolated at pH 2.5 to 2.0 (Hayes and Graham, 2000; 

Hayes and Clapp, 2001) and glomalin precipitates in this pH range (Wright et al., 1996). 

Total protein concentrations in the pH 2.5 and pH 2.0 precipitated fractions showed that 

glomalin was present. The HA 1.0 fraction was very low in protein, but the C, N and H 

content differed greatly from the relatively low-protein HA from ES 1. Therefore, HA 

1.0 was probably not representative of HA.  

The fraction that is isolated between pH 2.5 and pH 2.0 by Hayes and Clapp 

(2001) is distinctly different from the other HA fractions collected at other pH levels. 

According to 13C NMR spectroscopy, this fraction consists mostly of aliphatic 
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hydrocarbon residues and is high in both amino acids (14%) and carbohydrates (6.7%), 

but low in aromatic groups (Hayes and Clapp, 2001). Glomalin contains amino acid and 

carbohydrate residues, is low in aromatic groups and is speculated to contain some 

hydrophobic, aliphatic groups. Further studies of these residues are presented in Chapter 

7. This study demonstrated that the NaOH extraction method used for HA will co-

extract glomalin or a glomalin-like molecule. To obtain isolated glomalin and HA 

fractions, glomalin must be extracted prior to HA. The R. glomalin fraction also needs 

to be examined further along with the organic (humin) fraction that remains in the soil. 

Soil organic matter is an important component to soil health. A greater understanding of 

the molecules that comprise organic matter will increase understanding of its functional 

roles and how to maintain and/or accumulate more of it in soil. 
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Table 3A. Characteristics of eight soils extracted for glomalin and humic acid. † 

 Baltimore 
(site a) 

Baltimore 
(site b) Sampson      Haxtun Pacolet Cecil Wymore Pawnee

Soil Type Mollic 
Hapludalf 

Mollic 
Hapludalf 

Pachic 
Argiustolls 

Pachic 
Argiustolls 

Typic 
Kanhapludult 

Typic 
Kanhapludult

Aquertic 
Argiudolls 

Oxyaquic 
Vertic 

Textural 
class loam   

        

        

         

        

        

        

        

loam loam sandy loam sandy clay 
loam sandy loam silty clay loam silt loam 

Vegetation Hardwood 
forest 

Hardwood 
forest 

Tall- and 
mid-grass 

prairie 

Tall- and 
mid-grass 

prairie 

Long-term tall 
fescue pasture 

Hardwood 
forest 

Tall- and mid 
grass prairie 

Tall- and mid-
grass prairie 

Sand 
(g kg-1) 260 270 480 780 610‡ 750 150 210

Clay 
(g kg-1) 250 260 160 100 220‡ 110 280 200

pH 5.1 5.0 6.7 6.6 5.4 4.4 5.5 5.6
CEC  

(cmol kg-1) 4.6 4.0 17.3 8.2 NA 4.2 NA 15.3

Organic C 
(g kg-1) 30.3 26.6 27.9 7.0 38.0 29.4 20.9 24.2

Fe  
(g kg-1) 15.4 16.9 4.5 2.9 17.8 4.8 6.0 5.2

P  
(mg kg-1) 23.4 29.4 232.8 123.6 30.4 21.4 42.4 20.4

83 

† NA = insufficient amount of sample for this analysis. 

‡ Values from Franzluebbers et al., 2000.

 



 

 Table 3B. Total protein (g protein kg-1 soil) in glomalin, humic acid (HA), recalcitrant glomalin (R. glomalin), and HA 

fractions precipitated at pH levels 2.5, 2.0 and 1.0 extracted from eight native U.S. soils when glomalin concentrations were 

maximized by extracting glomalin first (Extraction Sequence 1) or when HA values were maximized by extracting HA first 

(Extraction Sequence 2). † 

Extraction 
Sequence Fraction MD A MD B Sampson Haxtun Pacolet Cecil Wymore Pawnee Mean‡ 

Glomalin        2.53 1.61 1.79 1.63 4.05 3.14 1.76 1.87 2.3±0.3a 

HA 
       

 

0.41 0.37 0.78 0.23 0.90 0.36 0.75 0.66 0.6±0.1c 

 
1 

R. glomalin¶ NA NA 0.15 NA 2.94 1.77 0.22 ND 1.3±0.7bc
HA 1.74 1.51 0.87 0.59 2.70 1.39 0.84  0.92 1.3±0.2b 

  pH 2.5§ 0.55 0.48 0.31 0.02 5.56 0.06 0.80  0.07 1.0±0.7 
pH 2.0§ 2.59 1.77 1.74 0.94 0.03 2.48 1.71 1.59 1.6±0.3 
pH 1.0§ 0.03 0.03 0.01 0.03 0.03 0.06 0.10 0.05 0.0±0.0 

2 

Glomalin         0.98 0.69 2.27 0.89 2.02 1.38 4.67 3.72 2.1±0.5ab
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† NA = quantity of sample was insufficient for analysis; ND = samples not collected. 

‡ Mean ± SE. Different letters within a column indicate significant differences (P = 0.0016) according to REML.   

§ Fractions of HA collected by step-wise precipitation. 

¶ R. glomalin = recalcitrant glomalin released from soil after NaOH extraction of HA.

 



 

Table 3C. Immunoreactive protein (g protein kg-1 soil) in glomalin, humic acid (HA), recalcitrant glomalin (R. glomalin), and 

HA fractions precipitated at pH levels 2.5, 2.0 and 1.0 extracted from eight native U.S. soils when glomalin concentrations 

were maximized by extracting glomalin first (Extraction Sequence 1) or when HA values were maximized by extracting HA 

first (Extraction Sequence 2). † 

Extraction 
Sequence Fraction MD A MD B Sampson Haxtun Pacolet Cecil Wymore Pawnee Mean‡ 

Glomalin        1.41 0.92 0.59 0.26 1.51 0.60 0.23 0.29 0.7±0.1a 

HA 
       

 

0.01 0.01 0.28 0.07 0.27 0.13 0.00 0.00 0.1±0.0c 

 
1 

R. glomalin¶ NA NA 0.30 NA 0.56 0.24 0.00 ND 0.3±0.1bc
HA 0.13 0.15 0.14 0.08 0.13 0.12 0.11 0.12 0.1±0.0c 

  pH 2.5§ 0.06 0.06 0.06 0.00 0.52 0.00 0.09 0.01 0.1±0.1 
pH 2.0§ 0.16 0.12 0.10 0.05 0.00 0.10 0.12 0.18 0.1±0.0 
pH 1.0§ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0±0.0 

 
 
2 

Glomalin        0.39 0.22 0.61 0.49 0.57 0.33 0.77 0.66 0.5±0.1ab
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† NA = samples without enough material for analysis; ND = samples not collected. 

‡ Mean ± SE. Different letters in a column indicate significant differences (P <0.0001) according to REML.   

§ Fractions of HA collected by step-wise precipitation. 

¶ R. glomalin = recalcitrant glomalin released from soil after NaOH extraction of HA in ES 1.

 



 

 Table 3D. Carbon percentages in glomalin, humic acid (HA), recalcitrant glomalin (R. glomalin), and HA fractions 

precipitated at pH levels 2.5, 2.0 and 1.0 extracted from eight native U.S. soils when glomalin concentrations were maximized 

by extracting glomalin first (Extraction Sequence 1) or when HA values were maximized by extracting HA first (Extraction 

Sequence 2). † 

Extraction 
Sequence Fraction MD A MD B Sampson Haxtun Pacolet Cecil WymorePawnee

Glomalin       26.52 24.63 40.69 31.01 36.71 37.12 15.06 15.54
HA       

       
       

54.96 55.01 53.72 54.58 39.59 50.65 29.49 51.91

1 

R. glomalin¶ 39.29 37.11 47.67 46.51 41.91 42.76 45.86 ND
HA 45.98 50.91 52.08 53.62 38.72 52.79 52.50 51.21
  pH 2.5§ 49.86 48.40 46.55 NA 51.03 51.34 49.26 37.86
  pH 2.0§ 50.53 50.06 50.23 51.53 NA NA 49.12 49.95
  pH 1.0§ 44.56 30.84 25.58 33.76 37.51 NA 40.78 37.74

 
 
2 

Glomalin       39.99 39.08 48.80 44.17 38.98 40.11 47.59 47.89
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† NA = samples without enough material for analysis; ND = samples not collected. 

§ Fractions of HA collected by step-wise precipitation. 

¶ R. glomalin = recalcitrant glomalin released from soil after citrate extraction was followed by NaOH extraction.

 



 

Table 3E. Elemental analysis [carbon (C), iron (Fe), nitrogen (N) and hydrogen (H)] of soil before (Initial) and after (Residual) 

extraction, glomalin, humic acid (HA), recalcitrant glomalin (R. glomalin), and HA fractions precipitated at pH levels 2.5, 2.0 

and 1.0 extracted from eight native U.S. soils in Extraction Sequence 1: citrate extraction of glomalin prior to NaOH 

extraction of HA or Extraction Sequence 2: citrate extraction of glomalin after NaOH extraction of HA. †  

     Fraction C
 

Fe‡ N H n§ 

 —————————— % ———————————
Glomalin   

     

    
     

28.41±3.44b  4.1±0.8a 2.56±0.36a 3.68±0.31b 8 (8)
HA 48.74±3.29a 1.2±0.5b 3.54±0.30a 4.89±0.42a 8 (7)

R. Glomalin 43.02±1.48a 5.5±3.4a 4.01±0.62a 5.01±0.22a 7 (3) 

Extraction 

Sequence 1 

Residual soil 1.26±0.19 ND 0.12±0.03 0.38±0.09 8 
Prob>F 0.0003 0.0282 0.0763 0.0191

HA 49.73±1.78a 0.8±0.6a 3.96±0.20a 4.65±0.19a 8 (8)
pH 2.5 47.16±1.96 ND 4.14±0.26 4.63±0.22 6 
pH 2.0 50.39±0.32 ND 4.06±0.17 4.94±0.16 7 
pH 1.0 35.82±2.40 ND 4.15±0.77 3.28±0.33 7 

Extraction 

Sequence 2 

Glomalin     

    

43.33±1.51b 1.3±0.4a 2.98±0.19b 4.39±0.21a 8 (7)
Soil - Residual   0.83±0.12 ND 0.10±0.03 0.23±0.07 8 

Prob>F 0.0158 0.0627 0.0028 0.3752
Soil – Initial   2.87±0.35 0.92±0.22 0.21±0.06 0.63±0.11 8 
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† Means ± SE in a column and within an experiment followed by different lowercase letters are significantly different at α = 0.05 

according to REML.  

‡ ND = not determined. 

§ n = number of soils used for C, N and H. Values in parentheses were for Fe.  
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Table 3F. Correlation coefficients (r) comparing gravimetric (weight), total protein (TP), or immunoreactive protein (IRP) 

weights of glomalin† and humic acid† (HA) and percentage iron (Fe) in glomalin to soil edaphic factors – pH and 

concentrations of organic carbon (C), iron (Fe), phosphorus (P) and clay.‡ 

Variables          TP IRP Fe Weight TP Clay pH Organic C Fe P

 ———— Glomalin ———— ———— HA——      

        Weight -0.1263 0.3022 0.8992* 0.1918 0.0366 0.8041* -0.4568 0.4262 0.6409* -0.1650

TP           

   

     

      

       

        

        

         

          

0.6698* 0.0080 0.0688 0.2977 -0.0693 -0.4943 0.7510** 0.4264 0.0520

IRP 0.2810 -0.2729 0.1640 0.3525 -0.3693 0.8530*** 0.8705* -0.1160

Fe 0.1934 -0.0403 0.8219* -0.6440 0.5014 0.6296* -0.4590

Weight 0.7850* 0.3731 0.0587 0.1942 -0.0934 0.4945

TP 0.3913 0.1820 0.4575 0.1957 0.6742*

Clay -0.2954 0.5777 0.7017* -0.1509

pH -0.5369 -0.5031 -0.3922

Organic 0.8743* -0.0713

Fe -0.2451

—
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m
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 —
 

—
H

A
—
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† Glomalin and HA samples were those from Extraction Sequence 1 (i.e. glomalin extracted before HA). 

‡ All values were tested for a normal distribution and were log or sine transformed when necessary. 

*, **, *** Denote significance at 0.10, 0.05 and 0.01, respectively.
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Figure 3A. Weights of glomalin (glomalin and R. glomalin) and humic acid (HA) 

extracted from eight native U.S. soils in Extraction Sequence (ES) 1: citrate 

extraction of glomalin prior to NaOH extraction of HA or ES 2: citrate extraction 

of glomalin after NaOH extraction of HA. 

* R. glomalin was not extracted from the Pawnee soil. 
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Figure 3B. Weights of humic acid (HA) fractions extracted from eight native U.S. 

soils and precipitated at pH levels 2.5, 2.0 and 1.0 in Extraction Sequence 2: NaOH 

extraction of HA before citrate extraction of glomalin. 
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CHAPTER 4 

 

SOIL ORGANIC MATTER DISTRIBUTION IN SOIL 

AGGREGATES 
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Abstract 

Aggregation is a soil quality factor that positively affects water infiltration rates, 

resistance to erosion, and nutrient cycling. The fraction or type of carbon compound 

influences the persistence and water-stability of aggregates. The hypothesis that 

extractable organic matter fractions are related to aggregate stability was tested in five 

native U.S. soils. Three aggregate size classes (1-2, 0.5-1, and 0.25-0.5 mm) were 

separated by dry sieving. The percentage of water-stable aggregates (WSA) was 

measured by wet-sieving. Within each aggregate size class, the major labile and 

recalcitrant carbon fractions — Residual POM, glomalin, humic acid (HA), and fulvic 

acid (FA) — were extracted. The weight of organic carbon in each fraction was 

measured. All three aggregate size classes from the five soils were highly stable (most 

>90%). The highest amounts of carbon were found in the humin (i.e. unextractable 

carbon remaining after all other fractions had been extracted), Residual POM and 

glomalin fractions. The amount of Residual POM declined with decreasing aggregate 

size, while the more recalcitrant fractions [i.e. humin and a recalcitrant fraction of 

glomalin (R. glomalin)] increased. Total soil carbon, R. glomalin carbon, and FA 

carbon were significantly correlated with WSA. The R. glomalin, humin, HA, FA and 

total carbon weights were related to iron concentration in the aggregates which 

indicated that these organic matter fractions are stabilized within organo-mineral 

complexes formed by iron bridging organic matter to clay particles. These organo-

mineral complexes are important in the long-term stability of aggregates and may help 

native and agricultural soils sequester carbon.  
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Introduction 

Soil aggregation is a process in which the forces binding soil particles together 

are stronger than the forces between adjacent clusters of particles (Degens, 1997; 

Tisdall and Oades, 1982). A well-aggregated soil maintains porosity and aeration that is 

favorable to plant and microbial growth, water infiltration, stability against water and 

wind erosion, and protects organic matter from microbial decomposition (Bird et al., 

2002; Degens, 1997; Hassink and Whitmore, 1997). A number of biochemical 

(inorganic and organic) and physical processes are involved in the formation and 

stability of aggregates.  

Biochemical processes produce binding agents and stabilizing compounds such 

as polysaccharide glues, aliphatic polymers, and organo-mineral complexes formed by 

polyvalent cations bridging organic matter to clay particles (Degens, 1997; Dinel and 

Nolan, 2000; Piccolo and Mbagwu, 1999; Chenu et al., 2000). Drying and wetting 

actions, shrinking and swelling of clays, flocculation of clay minerals, freeze-thaw 

cycles, compaction, and enmeshing by fungal hyphae and/or fine roots physically 

stabilize aggregates (Chaney and Swift, 1986; Degens, 1997; Franzluebbers et al., 2000; 

Tisdall and Oades, 1982).  

Organic constituents of aggregates are plant or microbial debris, fungal hyphae, 

bacteria, free amorphous organic matter (OM) and OM strongly associated with clay 

particles (i.e. clay coatings) (Chenu et al., 2000). This organic matter contributes 

directly and indirectly to aggregate stability (Chenu et al., 2000; Tisdall and Oades, 

1979). Indirectly, organic matter provides energy for microorganisms, and directly, the 

products produced by microbial degradation act as binding agents in aggregate 
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formation. Three classes of organic binding agents that have been identified are: (1) 

transient, polysaccharides, (2) temporary roots and hyphae, and (3) persistent 

compounds associated with polyvalent cations (Jastrow et al., 1998; Tisdall and Oades, 

1982).  

Plants and soil biota in concert influence aggregation by (1) root growth, 

exudation and architecture, (2) production of organic acids, (3) metabolism of root 

exudates, (4) decomposition of organic debris, (5) physical entanglement by roots and 

hyphae, (6) production of soil-binding agents by roots, bacteria, filamentous fungi and 

actinomycetes, and (7) earthworm activity (Rillig et al., 2002; Schreiner and 

Bethlenfalvay, 1995). In addition to belowground contributions, plants form canopies 

that protect the soil surface from disturbance and increase organic matter inputs and 

moisture content (Bird et al., 2002). Both plant roots and fungal hyphae may initiate 

aggregate formation by enmeshing or cross-linking organic matter and coarse 

fragments, acting as nucleation sites, and/or by supplying substrates to the microbial 

community (Bethlenfalvay et al., 1999; Degens, 1997; Jastrow et al, 1998; Schreiner 

and Bethlenfalvay, 1995; Tisdall and Oades, 1982). 

A rapidly developing hyphal network is related to an equally rapid increase in 

water-stable aggregates (WSA) (Bethlenfalvay et al., 1999). The majority of the hyphae 

in soil is from arbuscular mycorrhizal (AM) fungi (Miller et al., 1995; Schreiner and 

Bethlenfalvay, 1995). These fungi have several advantages over other soil fungi: (1) 

AM fungi utilize photosynthetic carbon which eliminates the carbon limitations that 

affect saprophytic growth, (2) grazers prefer saprobic hyphae over AM hyphae, (3) AM 

fungal hyphae have an affinity for binding soil organic matter, (4) hyphae have the 
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ability to enter micropores within the soil matrix to form aggregates and acquire 

nutrients, (5) active AM hyphae may enhance aggregate stability by extracting water 

and causing a parallel reorientation of embedded clays (similar to what has been seen on 

plant roots), and (6) an amorphous, polysaccharide-containing organic substance has 

been found coating the surface of AM fungal hyphae and attached sand grain-sized 

particles (Gupta and Germida, 1988; Rillig et al., 2002; Schreiner and Bethlenfalvay, 

1995; Tisdall and Oades, 1979; Wright and Upadhyaya, 1996).  

Analysis of the amorphous substance on hyphae of AM fungi showed that: (1) 

clay particles attach firmly to it, (2) it contains sugars, mostly glucose and some 

galactose, xylose and possibly mannose, and (3) it does not contain phenolics, but may 

have proteins, aromatics or nucleotides (Schreiner and Bethlenfalvay, 1995; Tisdall and 

Oades, 1979). The same could be said for glomalin (Wright et al., 1996). In addition, 

glomalin is a hydrophobic substance that protects hyphae from nutrient and water loss 

(Wright et al., 1996), which is similar to a class of proteins, called hydrophobins, found 

on hyphae of a variety of fungi, including ectomycorrhizal fungi (Wessels, 1999). 

Hydrophobins form an amphipathic membrane that protects aerial hyphae from 

moisture changes (Wessels, 1999). Glomalin is a biomolecule that resists decomposition 

and has been correlated with WSA in a number of soils (Bird et al., 2002; Rillig et al., 

2002; Wright et al., 1999; Wright and Upadhyaya, 1998).  

Aggregate stability is a function of the strength of the physiochemical attractions 

between the organic and mineral components and the lability, size and location of 

organic binding agents (Dinel and Nolin, 2000; Jastrow et al., 1996). Labile fractions 

(i.e. polysaccharides) may increase aggregate formation initially but a decrease in 
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aggregation is seen after only a few weeks (Degens, 1997; Piccolo and Mbagwu, 1999). 

Polysaccharides are ephemeral (i.e. water-soluble and readily degraded by microbes) 

and of small molecular size (Chaney and Swift, 1986; Six et al., 2001). Therefore, they 

are unlikely to be important binding agents in aggregates with diameters of several 

millimeters and are less important to aggregate stability under high organic matter 

contents (Jastrow et al., 1996; Kemper and Koch, 1966; Tisdall and Oades, 1982). 

Transient binding agents and entanglement by temporary roots and hyphae are not 

enough to form persistent, water-stable aggregates. Instead, cementing agents that are 

resistant to microbial degradation by being either biochemically-resistant or physically 

inaccessible are required along with hydrophobic, water-stable compounds.  

The formation of organo-mineral complexes produces clay “skins” or iron oxide 

coatings on aggregates which cements aggregates together (Franzluebbers et al., 2000; 

Gupta and Germida, 1988; Tisdall and Oades, 1982). Slow-decomposing, organic 

compounds from decaying plants, fungi and arthropods, such as lignin and chitin, also 

may act as persistent binding agents (Schreiner and Bethlenfalvay, 1995). Aliphatic 

compounds (or long-chain hydrocarbons) that have been measured in high 

concentrations in organic matter are hydrophobic and promote water-stability in 

aggregates (Capriel et al., 1990; Caron et al., 1996; Chenu et al., 2000; Piccolo and 

Mbagwu, 1999).  

Without the protection of hydrophobic coatings, soil aggregates may be 

disrupted by rainfall because of slaking, the differential swelling of clays and 

mechanical dispersion by the kinetic energy of raindrops (Piccolo and Mbagwu, 1999). 

Therefore, non-uniform distribution of organic matter which contains high 
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concentrations of aliphatic groups may increase aggregate stability and decrease the 

decomposition of more labile organic matter within aggregates (Piccolo and Mbagwu, 

1999). These aliphatic, hydrophobic groups increase the contact angle for water 

penetration, which reduces slaking, lower wettability and increase the internal cohesion 

of aggregates (Caron et al., 1996; Chenu et al., 2000). Within aggregates, the formation 

of clay-metal-humic linkages (where O-containing hydrophilic groups in humic 

substances orient the hydrophobic moiety to the aggregate surface) creates a water-

repellent coating on aggregates (Piccolo and Mbagwu, 1999).  

Aggregates are separated into two large size classes: macroaggregates (>250 

µm) and microaggregates (<250 µm). The hierarchical model for aggregate formation 

states that macroaggregates consist of smaller aggregates bound together by roots, 

hyphae and labile organic fractions (Bethlenfalvay et al., 1999; Miller et al., 1995; 

Tisdall and Oades, 1982). The objectives of this study were to determine which organic 

matter fractions were related to WSA and the distribution of organic carbon in each 

aggregate size class. Because fungal hyphae have an important functional role in the 

formation of macroaggregates, three sizes of macroaggregates (1-2, 0.5-1, and 0.25-0.5 

mm) were separated from five native U.S. soils. The percentage of WSA was measured 

by wet-sieving and related to fractions of organic matter – Residual POM, glomalin, 

humic acid (HA), fulvic acid (FA), and humin.  

Materials and Methods 

Soils 

Bulk soil samples (0-10 cm depth) were collected with a shovel from the 

following soil series: Baltimore (MD) (site b), Sampson and Haxtun (CO), and Pacolet 
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and Cecil (GA). (For more details on these soils, see Chapters 2 and 3.) Soils were 

freshly collected. All sites had native vegetation. Prior to aggregate separation and 

organic matter extraction, soils were air-dried and passed through a 2-mm screen.  

Aggregate separation 

 Air-dried soil was dry sieved with the appropriate screen size to remove 1- to 2-

mm (A), 0.5- to 1-mm (B) and 0.5- to 0.25-mm (C) aggregates. Aggregate stability was 

determined according to Kemper and Koch (1966). Briefly, 2-4 g of air-dried soil in 

each aggregate size classes (A, B and C) was placed individually onto screens ¼ of their 

size and capillary rewetted for 10 min. Aggregates were separated via mechanically wet 

sieving for 5 min using an apparatus described by Kemper and Koch (1966). Material 

collected on the sieve was washed gently into weigh boats, dried at 70oC and weighed.  

The coarse material was removed by adding 0.5% sodium hexametaphosphate and 

shaking periodically over a 5 min period to disrupt the aggregates. Coarse material was 

collected on a screen matching the aggregate size and subtracted from the amount of 

aggregates collected after wet sieving. Percentage water-stable aggregates (WSA) was 

calculated as: 

(weight of material left after wet sieving) – (weight of coarse material)     
x 100   (1) 

  (original weight placed in screen prior to wet sieving) 

Iron Analysis 

Iron was extracted from soil by a modified Aqua Regia (McGrath and Cunliffe, 

1985) procedure and quantified by Atomic Absorption (AA) at USDA-ARS.  

Briefly, concentrated HNO3 was added to the sample and heated to 85-90oC (a 

temperature high enough to cause evaporation but not boiling) for 2 hrs. Next, 
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concentrated HCl (1:3 HNO3:HCl) was added followed by incubation at 60oC for 1 hr. 

After hydrolysis, samples were decanted through a Whatman 1 filter into a volumetric 

flask and brought to volume with deionized water (dH2O). Iron concentration was 

measured with a Varian Atomic Absorption Spectrometer (AA-400, Palo Alto, CA) 

with deuterium background correction.   

Soil organic matter extractions 

Density separation of particulate organic matter  

  Particulate organic matter was removed by flotation in a high-density solution 

(Wolf et al., 1994). Soil samples were covered with a NaCl solution (12%, w/v), 

vortexed, and allowed to settle. After the mineral fraction had settled, the solution was 

carefully decanted. Floating organic matter (i.e. the POM fraction) was collected on a 

0.053 mm screen. This procedure was repeated four more times. The POM fraction 

collected on the screen was washed with distilled water to remove salt, rinsed from the 

screen into pre-weighed weigh boats and dried at 70oC. The mineral fraction (i.e. soil 

minus POM) was washed with distilled water, pelleted by centrifugation, rinsed into 

pre-weighed weigh boats and dried at 70oC.  

Citrate extraction of glomalin  

Samples (the POM fraction and soil minus POM) were extracted with 50 mM 

sodium citrate (Wright and Upadhyaya, 1999). (See Appendix A2 for a detailed 

description of the glomalin extraction method.) Extraction was repeated until the 

supernatant was straw-colored (up to three more times). Glomalin was purified by acid 

precipitation, solubilized in NaOH and dialyzed against deionized water (dH2O). 

Dialyzed material was centrifuged and the supernatant was collected and freeze dried.  
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Sodium hydroxide extraction of humic and fulvic acids 

  A method from Swift (1996) recommended by the International Humic 

Substances Society was used to extract HA and FA. (See Appendix A3 for a detailed 

extraction method.) Modifications of the method were primarily in sample size (2 g 

instead of 50 g) and in the purification procedures. After a pre-incubation in HCl, HA 

and FA were co-extracted from subsamples using a multi-step NaOH extraction 

procedure: (i) neutralization with NaOH under N2, (ii) extraction with NaOH overnight, 

(iii) acidification of the supernatant, and (iv) separation of HA (precipitate) from FA 

(supernatant) by centrifugation. The NaOH extraction followed by acidic separation 

was repeated two more times (until the solution was almost clear) to assure that all 

humic and fulvic acids were extracted.  

Purification of the HA precipitate involved the removal of insoluble particles 

and ash material using the following procedures. Insoluble solid particles were removed 

from HA by: (i) re-dissolving in a minimum volume of KOH under N2; (ii) adding KCl 

(until [K+] ≥ 3 M); (iii) centrifugation at 10844 x g to remove suspended solids; and (iv) 

precipitation with HCl. After settling overnight, samples were centrifuged again and the 

supernatant was discarded. To reduce ash content, the precipitated HA fraction was: (i) 

suspended in 0.1 N HCl and 0.3 N HF, (ii) incubated overnight, and (iii) centrifuged at 

6850 x g with the supernatant discarded. The HCl/HF treatment was repeated twice. 

Residual acid was removed by repeated washing with dH2O and centrifugation at 10844 

× g for 3 min.  

After removal of insoluble particles and ash material, the HA precipitate was re-

dissolved in a known minimum volume of 0.1 N NaOH. A subsample (0.5 mL) was 
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removed for protein assays (see below). The remaining solution was acidified rapidly to 

precipitate HA. After precipitation, acid was removed by centrifugation at 10844 × g 

and rinsing with water. The precipitate then was freeze-dried. 

The fulvic acid fraction (i.e. acid soluble material) was purified by dialysis 

against water until the pH was neutral. Insoluble material was collected by 

centrifugation at 6850 x g for 10 min and the supernatant was freeze dried.  

Extraction sequence 

In each aggregate size class (A, B and C), organic matter was extracted 

sequentially from five 2-g subsamples of dry-sieved aggregates in each soil. (See 

Appendix A for detailed descriptions of the extraction methods and Appendix B for a 

diagram of the extraction sequence.) The POM fraction was separated first followed by 

glomalin and humic and fulvic acids from both the POM and soil minus POM fractions. 

This extraction sequence yielded nine fractions: POM after extraction of glomalin, HA 

and FA (Residual POM); glomalin, HA and FA extracted from the particulate organic 

matter fraction (i.e. P. glomalin, P. HA and P. FA); glomalin; glomalin extracted after 

humic and fulvic acid extraction (i.e. R. glomalin); HA; FA; and unextractable carbon 

material left behind after all the extractions were complete (i.e. humin). 

Organic matter quantification 

Protein measurements 

Total and immunoreactive protein concentrations were measured on subsamples 

of glomalin, HA, FA, and R. glomalin extracted from the POM fraction or the soil (See 

Appendix C for detailed description of the protein assays.) Assay values were 

extrapolated to g kg-1 by correcting for the weight of soil and volume of extract 
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solution. For glomalin, R. glomalin and FA, the subsamples were collected prior to 

dialysis. For HA, the subsamples were collected from HA re-dissolved as discussed 

above. 

A modified Bradford protein assay (Wright et al., 1996) was used to measure 

total protein (TP) concentration. Samples were diluted in PBS (phosphate buffered 

saline) and reacted with Bio-Rad® (Hercules, CA) Bradford protein dye reagent. 

Absorbance was read at A595 after 5 min. Protein concentration was determined by 

comparison with a bovine serum albumin (BSA) standard curve and reported as g 

protein kg-1 soil.  

Immunoreactive protein (IRP) concentration was measured by ELISA as 

described by Wright and Upadhyaya (1998) with modifications in the enzyme and color 

developer. ExtrAvidin® (Sigma-Aldrich, Inc.) phosphatase was used instead of 

peroxidase. Wells were rinsed with Tris [Tris(hydroxymethyl)aminomethane]-buffered 

saline with Tween 20 (polyoxyethylenesorbitan monolaurate) before adding the color 

developer (p-nitrophenyl phosphate in diethanolamine buffer) (Wright, 1994). 

Absorbance was read at A405 after 15 min. Test samples were compared to a standard 

curve produced by dilutions of highly immunoreactive glomalin extracted from a 

temperate soil under native grasses. Immunoreactive protein concentrations were 

reported as g kg-1 soil. Percent immunoreactivity was calculated as amount of IRP 

divided by amount of TP times 100 and reported as the range and the mean for all soils. 

Gravimetric weight measurements 

 Non-soluble materials (i.e. POM, Residual POM, and soil before (Initial) and 

after (Residual) extraction) were dried at 70oC and weighed. Freeze-dried, purified 
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soluble extracts (i.e. glomalin, HA and FA) were weighed. Sample weights were to the 

nearest 0.1 mg. Gravimetric weights were reported as g kg-1 soil. 

Carbon weight measurements 

 All samples were analyzed by combustion for percentage carbon using a Perkin-

Elmer Series II 2400 CHNS/O Analyzer. Soil samples, POM and Residual POM were 

ground with mortar and pestle prior to CHN analysis. Carbon concentration was 

calculated based on gravimetric weight and reported as g kg-1 soil. 

Statistical analysis 

Gravimetric and carbon weight values were corrected for subsamples removed 

for protein measurement. In each aggregate size class, means and SEs for WSA and 

gravimetric and carbon weights were calculated for all five soils combined. Gravimetric 

and carbon weight values for each organic matter fraction were compared within an 

aggregate size class. Water-stable aggregates were analyzed across all three aggregate 

size classes. All means comparisons were made at the α ≤ 0.05 level by ANOVA 

(Analysis of Variance) using REML (Restricted Maximum Likelihood) test after the 

residuals met the assumptions for normality and homogeneity of variance. When 

needed, the appropriate transformation was made to meet the assumptions.  

Pearson product-moment correlation coefficients (r) were calculated for WSA, 

percentage Fe in soil and carbon weights in the bulk soil and all the organic matter 

fractions. Regression analysis was used to compare the percentage iron in the soil to the 

weights of carbon in each fraction and total carbon in the soil. All statistical analyses 

were performed using SAS software, ver. 8 (SAS Institute, 1999). 
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Results 

Water-stable soil aggregates 

 The percentage WSA varied across soils and aggregate size classes (A, B and C) 

(Table 4A). In the Pacolet and Cecil soils, all three aggregate size classes had high 

water stability (≥ 95%) and did not vary from A to C. The A sized aggregates in the 

Baltimore and Sampson series soils were about 50% water-stable, while both the B and 

C sized aggregates were over 90% stable in these soils. The Haxtun soil had a steady 

increase in aggregate stability with a decrease in aggregate size. For the five soils, the 

average amount of WSA was not significantly different among the aggregate size 

classes. 

Organic matter quantification 

 The mean gravimetric weight in each fraction – Residual POM, P. glomalin, 

glomalin, R. glomalin, HA, and FA – was different in each of the three aggregate size 

classes (Table 4B). (See Appendix J for a table of weight values in each fraction in each 

soil.) The amounts of HA and FA extracted from the POM fraction in all three 

aggregate size classes were small (0.25 and 0.15 g kg-1) and could not be measured in 

some soils. Therefore, these fractions (P. HA and P. FA) are not discussed further. The 

Residual POM and glomalin fractions were significantly higher than all the other 

fractions. However, the weight of Residual POM decreased with decreasing aggregate 

size, whereas glomalin increased. The recalcitrant glomalin fraction also increased with 

decreasing aggregate size along with HA and FA. 

 The protein assays confirmed the presence of glomalin in the P. glomalin, 

glomalin, R. glomalin, and HA fractions. For P. glomalin, the amount of TP accounted 
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for 80, 41 and 67% of the gravimetric weight in aggregates A, B and C. (See Appendix 

K for protein and percentage IRP values in the glomalin and HA fractions in each soil.) 

Lesser amounts of the weights were proteinaceous in the glomalin (33, 28 and 26%) and 

R. glomalin (30, 31 and 31%) fractions for the A, B and C aggregates. In HA, protein 

weight was 54, >100 and 99% of the gravimetric weight. Aggregate size A, B and C 

glomalin was 23, 21, and 16% immunoreactive and HA was 37, 35, and 26% 

immunoreactive. POM glomalin and R. glomalin ranged from 16 to 17% and 13 to 15% 

immunoreactive, respectively, for the three aggregate sizes. 

 Carbon weights in the seven organic matter fractions varied across aggregate 

size class and soil (Fig. 4A). The Baltimore soil contained very little Residual POM and 

P. glomalin. In the other four soils, especially the Sampson and Haxtun soils, the carbon 

contributions from Residual POM and P. glomalin declined from aggregate size B to C. 

The other fractions increased in aggregates B and C. For all of the soils, except the 

Haxtun soil, the total amount of carbon measured increased from aggregate size A to C. 

The total amount of carbon in glomalin (i.e. sum of P. glomalin, glomalin and R. 

glomalin) was 21 (±5), 20 (±4) and 26 (±3) percent of the total carbon measured in 

these soils for the A, B and C aggregates (mean ± SE). The humin fraction (or carbon 

remaining in the soil after all extractions were complete) contained significantly more 

carbon than all the other fractions, followed closely by Residual POM and glomalin. 

 Aggregate stability was weakly but significantly correlated with total carbon, 

carbon in R. glomalin and FA (Table 4C). The R. glomalin fraction was significantly 

correlated with total carbon and carbon in glomalin, HA, FA, humin. Strong, significant 

correlations also existed between Residual POM and P. glomalin. 
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 Regression analysis showed that total soil carbon and the more recalcitrant 

carbon fractions (i.e. humin, HA, FA and R. glomalin) were functionally related to the 

percentage iron in the soil (P < 0.01) (Figs. 4B and 4C). The more labile Residual POM 

and potentially more labile P. glomalin and glomalin carbon fractions were not 

significantly related to iron (P > 0.05). 

Discussion 

The greatest amounts of aggregation are found in surface soils where plant roots 

and AM fungi are actively growing (Six et al., 2001). Aggregate stability is important 

for maintaining soil fertility, reducing erosion and sequestering carbon. Organic 

compounds that contribute to aggregate formation and stability should be effective in 

terms of flocculation, cementation, rewetting processes, and occlusion of pores. In this 

study, the percentage of water-stable aggregates in all five soils and all three aggregate 

size classes was high, especially when compared to tillage systems (17 to 38%) (Wright 

et al., 1999), and increased with decreasing aggregate size (Table 4A). As aggregate 

size decreased, the amount of persistent binding agents (i.e. organo-mineral complexes) 

compared to temporary binding agents (i.e. hyphae and roots) may increase (Tisdall and 

Oades, 1982). Roots and hyphae may be excluded from smaller aggregates due to the 

small interaggregate pore size (Jastrow et al., 1998; Tisdall and Oades, 1982). The 

carbon distribution in the organic matter fractions (Fig. 4A) showed that recalcitrant 

organic compounds (i.e. humic substances and R. glomalin) that may be in organo-

mineral complexes increased with decreasing aggregate size while the more labile 

Residual POM and P. glomalin fractions decreased. 
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 Regression analysis showed that these more stable fractions were related to the 

percentage of iron in the soil (Fig. 4B). This was a further indication that these organic 

fractions persist in soil by forming organo-mineral complexes that resist decomposition 

by making organic matter inaccessible to microbes and having a complex structure that 

resists enzymatic attack (Degens, 1997; Dinel and Nolan, 2000; Jastrow et al., 1996). 

These persistent binding agents form water-stable aggregates that physically protect 

organic matter, including the more labile organic matter fractions, against microbial 

decomposition (Piccolo and Mbagwu, 1999; Tisdall and Oades, 1982). In 

macroaggregates, turnover of organic carbon was 140 y (Jastrow et al., 1996). The 

persistence of labile fractions within stable aggregates may enhance the ability of soils 

to sequester carbon. 

 In these highly stable soils, only R. glomalin and FA organic carbon weights 

were significantly, but weakly, correlated with WSA (Table 4B). Correlations between 

organic carbon content and water-stable aggregates are not always good, especially in 

undisturbed soils, because: (1) only a fraction of the organic matter may be responsible 

for aggregation, (2) the disposition of organic matter may not favor stabilization, (3) 

some of the water stability in native soils is related to physical factors (Schreiner and 

Bethlenfalvay, 1995; Tisdall and Oades, 1982), and (4) there is a threshold (2%) at 

which the addition of organic matter does not increase stability (Kemper and Koch, 

1966). Kemper and Koch (1966) found that the primary variables that contribute to 

aggregate stability are: free iron oxides, clay, organic matter and exchangeable sodium.  

In this study, glomalin and R. glomalin are major fraction of the organic matter 

within aggregates. The iron (0.8 to 8.8 %, Wright and Upadhyaya, 1998) in glomalin 
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may help it form organo-mineral complexes that help to stabilize aggregates. When 

aggregate stability is high, aliphatic organic compounds improve water infiltration and 

water retention rates and internal cohesion to form larger stable aggregates (Caron et al., 

1996; Capriel et al., 1990; Chenu et al., 2000; Piccolo and Mbagwu, 1999). The 

hydrophobins described by Wessels (1997) are hydrophobic, self-aggregating bio-

molecules. Glomalin, which has similar characteristics to hydrophobins, appears to 

contain high concentrations of hydrophobic groups or hydrophobic amino acids 

(Chapter 7) and to self-aggregate. On the surface of an aggregate, glomalin will self-

aggregate into complexes that form a water stable lattice, such as the one described by 

Capriel et al. (1990). In this way, glomalin is an important component to the water-

stability of aggregates. 
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Table 4A. Percentage water-stable aggregates in three dry sieved aggregate size 

classes [1-2 (A), 0.5-1 (B), and 0.25-0.5 (C) mm] collected from five undisturbed 

U.S. soils. 

Aggregate 
size class 

(mm) 

Baltimore 
(MD) 

Sampson 
(CO) 

Haxtun 
(CO) 

Pacolet  
(GA) 

Cecil  
(GA) Mean†‡ 

A 56 52 62 95 97 72 ± 10a
B 92 93 78 95 97 91 ± 3a 
C 94 97 82 96 96 93 ± 3a 

 

† Mean ± SE.  

‡ Different letters in a column indicate significant differences according to REML (P = 

0.2874). 
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Table 4B. Mean† gravimetric weights (g kg-1 soil) for the seven organic matter 

fractions – Residual particulate organic matter (POM), glomalin extracted from 

POM (P. glomalin), glomalin, glomalin extracted after humic and fulvic acid 

extraction (R. glomalin), humic acid (HA), and fulvic acid (FA) – extracted from 

three aggregate size classes [1-2 (A), 0.5-1 (B), and 0.25-0.5 (C) mm] collected from 

five undisturbed U.S. soils.‡ 

Fraction Aggregate size 
A 

Aggregate size 
B 

Aggregate size 
C 

Residual POM 13.03 ± 4.03a 13.24 ± 4.39a 8.09 ± 2.33a 

P. glomalin 1.29 ± 0.39b 1.82 ± 0.47b 0.82 ± 0.16c 

Glomalin 5.92 ± 0.99a 5.85 ± 1.03a 7.55 ± 1.63a 

R. glomalin 1.92 ± 0.34b 1.99 ± 0.31b 2.79 ± 0.83b 

HA 0.62 ± 0.25b 0.58 ± 0.30c 0.97 ± 0.47c 

FA 0.95 ± 0.45b 0.55 ± 0.23c 0.88 ± 0.39c 
 

† Mean ± SE.  

‡ Different letters in a column indicate significant differences according to REML (P 

<0.0001). 
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Table 4C. Correlation coefficients comparing water-stable aggregates (WSA), iron (Fe) concentration in the soil, and carbon 

concentrations in bulk soil (Total), Residual particulate organic matter (POM), glomalin extracted from POM (P. glomalin), 

glomalin, glomalin extracted after humic and fulvic acid extraction (R. glomalin), humic acid (HA), fulvic acid (FA), and 

unextractable material left behind after all the extractions were complete (humin).† 

Variables Bulk Soil 
Fe 

Bulk Soil 
C 

Residual 
POM P. glomalin Glomalin R. glomalin HA FA Humin 

WSA          -0.3819 0.6080** 0.1157 -0.1256 0.4050 0.5579** 0.3424 0.6246* 0.1561
Fe          

         

    

      

       

        

         

          

0.0383 -0.4250 -0.5198** 0.0317 -0.2602 0.1449 -0.2423 -0.0417

Total -0.0927 -0.2388 0.3465 0.4716* 0.6086** 0.5318 0.0990
Residual 
POM 0.8270*** -0.0144 -0.1053 -0.3325 -0.4280 -0.3102

P. glomalin -0.1800 -0.2654 -0.4644 -0.3798 -0.1824

Glomalin 0.6338** 0.4301 0.3100 0.6026**

R. glomalin 0.7767*** 0.9199*** 0.5716**

HA 0.7559** 0.5915**

FA 0.5026
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† All values were tested for normal distribution and were transformed when appropriate. 

*, **, *** Denote significance at 0.10, 0.05 and 0.01, respectively.
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Figure 4A. Carbon concentrations (g C kg-1 soil) in Residual particulate organic 

matter (POM), glomalin extracted from POM (P. glomalin), glomalin, glomalin 

extracted after humic and fulvic acid extraction (R. glomalin), humic acid (HA), 

fulvic acid (FA), and unextractable material remaining after all extractions were 

complete (humin) extracted from three aggregates size classes [1-2, 0.5-1 and 0.25-

0.5 mm] collected from five undisturbed U.S. soils: Baltimore (1),  Sampson (2), 

Haxtun (3), Pacolet (4) and Cecil (5). 
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Figure 4B. Relationships of the percentage of iron in 15 samples [three aggregate 

size classes (1-2, 0.5-1 and 0.25-0.5 mm) collected from five U.S. soils] to the 

amount of carbon in A: the total carbon concentration in the soil and the amount 

of carbon in the unextractable material remaining after all the extractions were 

complete (humin) and B: glomalin extracted after humic and fulvic acid extraction 

(R. glomalin), humic acid (HA) and fulvic acid (FA).
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CHAPTER 5 

 

SOIL ORGANIC MATTER DISTRIBUTION IN FARMING SYSTEMS  
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Abstract 

At the USDA-ARS Farming Systems Project (FSP) site in Beltsville, MD, nine 

regionally-specific farming systems were started in 1996. These systems were 

incorporated into three experimental comparisons: (1) Tillage Experiment in 2000 – 

Systems 1.1 [(Synthetic NT (no-till) C(corn)-W(wheat)-SB(soybean))], 2.1 [Synthetic 

CT (conventional till) C-W-SB] and 6.1 [Organic MT (minimum till) C-SB-W)]; (2) 

Fertilizer Treatment Experiment in 2001– Systems 1.1, 2.1, 3A [Synthetic MT C-W-SB 

2X raw manure], 3B [Synthetic MT C-W-SB 1X raw manure], 4A [Synthetic MT C-W-

SB 2X composted manure], and 4B [Synthetic MT C-W-SB 1X composted manure]; 

and (3) Rotation Length Experiment in 2001 – Systems 1.1, 2.1, 51 [Organic MT C-

SB], 6.3 [Organic MT C-SB-W)], and 7.2 [Organic MT C-SB-W-H]. In each 

experiment, a Normalized Stability Index (NSI) was measured on four composite 

samples from each system. Using the appropriate extraction methodology, all five 

organic matter (OM) fractions – plant-derived particulate matter (Residual POM), 

glomalin, glomalin from particulate organic matter (P. glomalin), humic acid (HA), and 

fulvic acid (FA) – were extracted sequentially from soil in the Tillage Experiment. In 

the Fertilizer Treatment and Rotation Length Experiments, only particulate organic 

matter (POM) and glomalin were extracted sequentially. Systems that used sustainable 

agricultural practices (i.e. reduced tillage, organic inputs and greater crop diversity) 

were hypothesized to have larger NSIs and higher concentrations of glomalin and POM. 

In all three experiments, glomalin was present in significantly higher concentrations 

than the other OM fractions. The CT (2) and two-crop rotation (5) systems had the 

lowest NSI, while the NT (1) and organic three- (6) and four-crop (7) rotation systems 
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had the highest NSI. Labile OM (Residual POM) declined with tillage and with the 

addition of manure at a 1X (3B and 4B) compared to a 2X concentration (3A and 4A). 

Introduction 

Nearly one-third of the world’s arable land has already been lost to erosion, and 

the current rate of loss is 10 million hectares per year (Pimentel et al., 1995). The 

formation of water-stable soil aggregates helps prevent topsoil loss by erosion (Degens, 

1997; Tisdall and Oades, 1982). In surface layers of many agricultural soils, organic 

matter (OM) plays a major role in binding aggregates together (Degens, 1997; Tisdall 

and Oades, 1982). Decreases in OM below 1% cause large reductions in aggregate 

stability (Kemper and Koch, 1966). Organic matter content and aggregate stability 

decrease with cultivation due to increased microbial mineralization (Cambardella and 

Elliott, 1994; Chenu et al., 2000; Schreiner and Bethlenfalvay, 1999; Studdert and 

Echeverria, 2000).  

Soil organic matter (SOM) is a key soil component of sustainable systems 

because it influences soil biological, physical and chemical properties that define soil 

fertility (Six et al., 2001; Studdert and Echeverria, 2000). The amount of SOM is a 

result of the balance between humification and mineralization rates. Increases in high 

biomass production, high C/N ratio crop residues, the use of organic manures, irrigation 

and/or reduced tillage will add SOM (Ding et al., 2002; Studdert and Echeverria, 2000). 

Changes in the size of the OM pool with intermediate turnover rates account for most of 

the differences in SOM content between management treatments after 20 y of 

cultivation (Cambardella and Elliott, 1994). 
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Conventional tillage affects carbon (C) dynamics in the soil through its effects 

on crop residue decomposition, soil aeration and facilitation of microbial attack on OM 

fractions released from protected sites within aggregates (Studdert and Echeverria, 

2000). Frequent cultivation also leads to exposure of aggregates to physical disruption 

by rapid wetting and raindrop impact as well as to shearing by implements (Tisdall and 

Oades, 1982). Long-term conservation tillage creates an organic-rich surface zone 

promoting fungal growth, while tillage mixes light fraction material exposing it to more 

rapid bacterial decomposition (Ding et al., 2002; Franzluebbers et al., 1999). Fungal 

growth increases macroaggregation (aggregates >250 µm), while bacterial growth has a 

negative impact (Ding et al., 2002).  

Macroaggregation is influenced most by tillage because it is related to root and 

hyphal growth and its binding agents include labile OM compounds (i.e. 

polysaccharides) (Cambardella and Elliott, 1992; Degens, 1997; Franzluebbers et al., 

1999; Six et al., 2001; Tisdall and Oades, 1982). There are four primary ways for OM to 

contribute to aggregate formation and stability: (1) fungi form a framework to collect 

OM, (2) polysaccharides glue aggregates together, (3) organic polymers bind to clay 

minerals via polyvalent cations to increase stabilization, and (4) hydrophobic polymers 

coat the surface of aggregates to keep them water stable (Chenu et al., 2000; Degens, 

1997; Miller and Jastrow, 1990; Piccolo and Mbagwu, 1999; Schreiner and 

Bethlenfalvay, 1999; Tisdall and Oades, 1982).  

Arbuscular mycorrhizal (AM) fungi are the most abundant type of fungi in the 

soil and are important to aggregate formation and stability (Miller and Jastrow, 1990; 

Schreiner and Bethlenfalvay, 1999; Tisdall and Oades, 1982; Wright and Upadhyaya, 
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1996). In farming systems, tillage disrupts the hyphal network and fallow treatments or 

non-mycorrhizal plants diminish mycorrhizal production due to the lack of roots from a 

living host (Schreiner and Bethlenfalvay, 1999; Wright and Anderson, 2000). A diverse 

rotation system results in a variety of AM fungi, higher plant yields and tissue nutrients, 

while monoculture systems may select for inferior AM species (Douds and Millner, 

1999; Paul and Clark, 1996; Schreiner and Bethlenfalvay, 1999). Glomalin is a 

glycoproteinaceous substance that coats AM fungal hyphae and is highly correlated 

with stability and organic C (Wright and Anderson, 2000; Wright and Upadhyaya, 

1996; Wright et al., 1999). A path model developed by Rillig et al. (2002) shows that 

the water-stability of 1 to 2-mm aggregates is directly related to root length, soil 

glomalin, and percent cover and indirectly to hyphal length through root length and soil 

glomalin. 

 In this study, a normalized stability index (NSI) was used to measure aggregate 

stability of the soil from nine farming systems in three experimental comparisons: (1) 

Tillage Experiment in 2000 – Systems 1.1 [Synthetic NT (no-till) C(corn)-W(wheat)-

SB(soybean)], 2.1 [Synthetic CT (conventional till) C-W-SB] and 6.1 [Organic MT 

(minimum till) C-SB-W)]; (2) Fertilizer Treatment Experiment in 2001– Systems 1, 2, 

3A [Synthetic MT C-W-SB 2X raw manure], 3B [Synthetic MT C-W-SB 1X raw 

manure], 4A [Synthetic MT C-W-SB 2X composted manure], and 4B [Synthetic MT C-

W-SB 1X composted manure]; and (3) Rotation Length Experiment in 2001 – Systems 

1.1, 2.1, 5.1 [Organic MT C-SB], 6.3 [Organic MT C-SB-W)], and 7.2 [Organic MT C-

SB-W-H] (Table 5A). The advantages of using NSI over other stability measurements 

are that it (1) combines both slaking and capillary rewetting measurements to 
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characterize whole soil stability and eliminate errors from rewetting and antecedent 

water content, (2) corrects for differences in sand size distribution among soils, 

aggregate size classes and pretreatments, and (3) uses a maximum level of disruption to 

normalize the level of disruption imposed by slaking (Six et al., 2000). The NSI is 

sensitive to changes in agricultural management especially at sites that have similar soil 

characteristics (Six et al., 2000). Generally, the NSI decreases with increasing 

cultivation and is highest at native sites (Six et al., 2000). The normalized stability 

index and OM concentrations, especially for glomalin and POM or Residual POM, 

should be higher in more sustainable systems (i.e. reduced tillage, greater crop diversity, 

and organic not synthetic inputs).  

The objectives of this study were to: (1) measure differences in NSI in nine 

farming systems that differ in tillage practices, fertilizer amendments, and/or rotation 

length, and (2) compare the distribution of OM in POM or Residual POM, glomalin, 

humic acid (HA) and fulvic acid (FA) fractions to NSI. These SOM fractions include 

labile (POM or Residual POM), intermediate (glomalin and FA) and recalcitrant 

(glomalin and HA) fractions. 

Materials and methods 

Farming systems project site 

The Farming System Project is a long-term farm management project that was 

established in 1993 at the USDA Beltsville Area Research Center in Beltsville, MD. 

After three years of site variability assessment in a no-till (NT) continuous corn field 

(See Appendix L), seven regionally-appropriate cropping systems – one no-till (NT), 

three low-input and three organic – were established (Table 5A). Two of the seven 
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systems were split with one receiving a 1X concentration of the amendment (i.e. raw or 

composted broiler litter) and the other a 2X concentration. To remove yearly season 

variability as a factor, all years in the rotation in each system were represented at the 

same time resulting in 2 to 4 subsystems (See Appendix L, Fig. L2). Each subsystem 

had four plots randomly distributed in blocks designed to eliminate the effects of 

drainage class, slope, soil series, and other soil characteristics (See Appendix L, Fig. L1 

and L3).  

Soil organic matter extractions 

Density separation of particulate organic matter 

  Particulate organic matter (POM) was removed by flotation in a high-density 

NaCl solution (Wolf et al., 1994) and collected on a 0.053 mm screen. (See Appendix 

A1 for a detailed description of the extraction method.) The POM fraction was washed 

with distilled water, rinsed from the screen into pre-weighed weigh boats and dried at 

70oC. The mineral fraction (soil minus POM) was washed with distilled water, pelleted 

by centrifugation, rinsed into pre-weighed weigh boats and dried at 70oC.  

Citrate extraction of glomalin  

Samples (POM and/or soil minus POM) were extracted for glomalin with 50 

mM sodium citrate (Wright and Upadhyaya, 1998). (See Appendix A2 for a detailed 

description of the glomalin extraction method.) Extraction was repeated until the 

supernatant (citrate extract) was straw-colored (up to three more times). Glomalin was 

purified by centrifugation, precipitated in acid, solubilized in NaOH and dialyzed 

against deionized (dH2O) water. Dialyzed material was centrifuged and the supernatant 

was freeze dried.  
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Sodium hydroxide extraction of humic and fulvic Acids 

  A method modified from Swift (1996) and recommended by the International 

Humic Substances Society was used to extract HA and FA. (See Appendix A3 for a 

detailed description of the extraction procedure.) Incubation conditions and solution 

concentrations used were described by Swift (1996). Modifications of the method were 

primarily in sample size (2 g instead of 50 g) and in the purification procedures. Briefly, 

after an acid pre-incubation, HA and FA were co-extracted from soil using a multi-step 

NaOH extraction procedure: (i) extraction under N2 overnight, (ii) centrifugation and 

acidification of the supernatant to precipitate HA, and (iii) separation of HA 

(precipitate) from FA (supernatant) by centrifugation. The NaOH extraction was 

repeated two more times. 

Purification of the HA precipitate involved the removal of insoluble particles 

and ash material. Insoluble solids were removed by: (i) re-dissolving in a minimum 

volume of KOH under N2; (ii) adding KCl (until [K+] ≥ 3 M); (iii) centrifugation at 

10844 x g to remove suspended solids; and (iv) precipitation with HCl. After settling 

overnight, samples were centrifuged again and the supernatant was discarded. To 

reduce ash content, the precipitated HA fraction was suspended in an HCl:HF solution, 

incubated overnight, and centrifuged at 6850 x g with the supernatant discarded. The 

HCl/HF treatment was repeated twice. Residual acid was removed by repeated washing 

with dH2O and centrifugation at 10844 × g for 3 min.  

After removal of insoluble particles and ash material, the HA precipitate was re-

dissolved in a known minimum volume of 0.1 N NaOH. A subsample (0.5 mL) was 

removed for protein assays (see below). The remaining solution was acidified rapidly to 
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precipitate HA. After precipitation, acid was removed by centrifugation at 10844 × g 

and rinsing with water. The precipitate was freeze-dried. 

The fulvic acid fraction (i.e. acid soluble material) was purified by dialysis 

against water until the pH was neutral. Insoluble material was collected by 

centrifugation at 6850 x g for 10 min and the supernatant was freeze dried.   

Organic matter quantification 

Protein measurements 

Total and immunoreactive protein concentrations were measured on subsamples 

of glomalin, FA and HA. For glomalin and FA, the subsamples were taken prior to 

dialysis. For HA, the subsample was collected from re-dissolved HA precipitate as 

discussed above. (See Appendix C for detailed descriptions of the protein assay 

procedures.) 

Briefly, a modified Bradford protein assay (Wright et al., 1996) was used to 

measure total protein (TP) concentration. Samples were diluted in PBS (phosphate 

buffered saline) and reacted with Bio-Rad® (Hercules, CA) Bradford protein dye 

reagent. Absorbance was read at A595 after 5 min. Protein concentration was determined 

by comparison with a bovine serum albumin (BSA) standard curve and reported as g 

protein kg-1 soil.  

Immunoreactive protein (IRP) concentration was measured by ELISA as 

described by Wright and Upadhyaya (1998) with modifications in the enzyme and color 

developer. ExtrAvidin® (Sigma-Aldrich, Inc.) phosphatase was used instead of 

peroxidase. Wells were rinsed with Tris [Tris(hydroxymethyl)aminomethane]-buffered 

saline with Tween 20 (polyoxyethylenesorbitan monolaurate) before the color 
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developer, p-nitrophenyl phosphate in diethanolamine buffer (Wright, 1994), was 

added. Absorbance was read at A405 after 15 min. Test samples were compared to a 

standard curve produced by dilutions of highly immunoreactive glomalin extracted from 

a temperate soil under native grasses. Immunoreactive protein concentrations were 

reported as g kg-1 soil. Percent immunoreactivity was calculated as amount of IRP 

divided by amount of TP times 100 and reported as the range and the mean for all soils. 

Gravimetric measurements 

 All non-soluble materials (i.e. POM and soil) were washed thoroughly with 

water to remove extract solution residue. For POM, this was done over a 53 µm screen. 

The soil was washed, vortexed and pelleted by centrifugation at 6850 x g for 10 min. 

Washed POM and soil were rinsed into pre-weighed weigh boats, dried at 70oC and 

weighed. All purified soluble extracts (i.e. glomalin, HA and FA) were freeze-dried and 

weighed. Gravimetric weights were reported as g kg-1 soil. 

 Percentage C was measured by combustion on all freeze-dried OM fractions, 

initial soil, and residual soil remaining after extraction (i.e. soil containing the insoluble 

humin fraction) using a Perkin-Elmer Series II 2400 CHNS/O Analyzer. Both soil 

samples and POM were ground with mortar and pestle prior to C analysis. Carbon 

weight was calculated by dividing the percentage by 100 and multiplying by the 

gravimetric weight and reported as g C kg-1 soil. 

Water-stable soil aggregates 

   Aggregates were separated and stability was measured according to Six et al. 

(2000). Soil was subjected to two pretreatments prior to wet sieving: (1) immersed 

immediately in water (slaked) or (2) capillary rewetted at 4oC overnight. The 50-g 
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samples were wet-sieved through three screens (2, 0.25, and 0.053 mm). The pretreated 

soil was submerged for 5 min atop the 2-mm screen. Aggregate stability was 

determined by manually moving the sieve submerged in a water column 3 cm up and 

down 50 times during a 2-min period. The >2-mm aggregates were collected. The soil 

<2-mm was rinsed onto the 0.25 mm sieve. Aggregates were again separated by manual 

wet-sieving. This procedure was repeated for the 0.053-mm screen. All aggregate size 

fractions were dried at 70oC, weighed, and corrected for coarse material after disrupting 

the aggregates with 0.5% sodium hexametaphosphate. A normalized stability index 

(NSI) was calculated using the equations found in Six et al. (2000). (See Appendix M.) 

Experimental comparisons 

Tillage Experiment – July, 2000 

Immediately following the wheat harvest, a composite was made of 25 (10 cm 

depth x 1 cm width) cores collected randomly from four replicate plots in each of three 

systems: 1.1, 2.1 and 6.1. Soil was air-dried and passed through a 9.5-mm screen. 

Organic matter fractions were extracted from 10 g (five 2-g increments) of each 

replicate. The POM fraction was separated first followed by citrate extraction of 

glomalin and NaOH co-extraction of HA and FA from the POM and soil minus POM. 

(See Appendix B for a diagram of the extraction sequence.) The NSI was measured in 

unextracted soil from each plot. 

Fertilizer Treatment and Rotation Length Experiments – April, 2001 

Prior to spring planting, composite samples (0-10 cm depth) were collected from 

each plot in all nine systems (Table 5A). The nine systems were separated into two 

broad categories: Fertilizer Treatment (Systems 3A, 3B, 4A, and 4B) and Rotation 
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Length (Systems 5.1, 6.3 and 7.2). Systems 1.1 and 2.1 were positive and negative 

controls, respectively. In the statistical analysis of these systems, both of the controls 

were added to both experiments. Glomalin and POM were extracted from 10 g (2-g 

increments) of air-dried soil passed through a 9.5-mm screen. The NSI was calculated 

for unextracted soil from each plot. 

Statistical analysis 

Gravimetric and carbon weight values were corrected for subsamples removed 

for protein measurement. In each system, means and SEs were calculated for data from 

the four replicate plots, except for the C weight data in the Tillage Experiment. In the 

Tillage Experiment, the OM fraction samples from each of the four plots in a system 

were combined, which resulted in only one C weight value for each fraction per system.  

All means comparisons were made at the α ≤ 0.05 level by ANOVA (Analysis 

of Variance) using REML (Restricted Maximum Likelihood) after the residuals met the 

assumptions for normality and homogeneity of variance. When needed, the appropriate 

transformation was made to meet the assumptions. In the Tillage Experiment, the 

gravimetric weight values for each OM fraction were compared within a system as well 

as for each fraction individually across the three systems. Means comparisons for the 

Fertilizer Treatment and Rotation Length Experiments were made for glomalin or POM 

across system in an experiment. 

In each of the three experiments, Pearson product-moment correlation 

coefficients (r) were calculated for NSI and C weights in the bulk soil and all extracted 

OM fractions. All statistical analyses were performed using SAS software, ver. 8 (SAS 

Institute, 1999). 
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Results 
Aggregate Stability 

 There were no significant differences in NSI for the different systems in July, 

2000 and April, 2001 (Table 5B). Stability declined in the CT system from 2000 to 

2001. The two-crop rotation system (System 5.1) had the lowest NSI, while the NT and 

four crop rotation systems had the highest NSI. Carbon weight in bulk soil or in any 

OM fraction was not significantly correlated with NSI. 

Quantitative values 

Protein values 

In all three experiments, the TP and IRP assays confirmed the presence of 

glomalin in the citrate extract and the HA fraction. (See tables in Appendices N and O.) 

No measurable protein was present in FA fraction. Both the glomalin and HA fractions 

in the Tillage experiment (2000) were highly immunoreactive (97 and 91%, 

respectively). In the April, 2001 experiments, immunoreactivity of glomalin ranged 

from 45 to 48% and 40 to 48% for the Fertilizer Treatment and Rotation Length 

experiments, respectively. 

Gravimetric and carbon weights from the Tillage Experiment – July, 2000 

 In all three systems, the amount of glomalin was significantly greater than 

amounts for all other OM fractions, and the P. glomalin fraction was the smallest (Table 

5C). The weights of any of the five organic matter fractions did not vary significantly 

across all three systems (P < 0.05). The recalcitrant fractions (glomalin and HA) were 

higher in the CT (System 2.1) than the NT (System 1.1) system while the reverse was 

true for the labile (Residual POM) fraction.  
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Carbon weight in the labile Residual POM fraction from the MT system (System 

6.1) was about twice that in the CT and NT systems (Fig. 5A). The C weight of the 

glomalin and HA fractions increased only slightly in the System 6.1, while the very 

recalcitrant, insoluble humin fraction did not change across the three systems. 

Gravimetric and carbon weights from the Fertilizer Treatment and Rotation Length 

Experiments – April, 2001 

 There were no significant differences in glomalin or POM weight across 

systems within either experiment (P > 0.10) (Table 5D). In each of the nine systems, 

POM weights were significantly less than the glomalin weights (P < 0.05). Glomalin 

weights were highest in the NT (System 1.1), 2X raw manure MT (System 3A), and 

organic C-SB-W rotation MT (System 6.3) systems. The POM weights were highest in 

the 2X raw (System 3A) and 2X (System 4A) compost manure systems. 

 In the Fertilizer Treatment Experiment, there were no significant differences in 

either glomalin or POM across systems, but some trends were seen (Fig. 5B). The CT 

synthetic fertilizer (System 2.1) and MT 1X composted manure (System 4B) systems 

contained the lowest C weight in the glomalin fractions. The twp systems without 

manure (Systems 1.1 and 2.1) had the lowest C weight in the POM fraction, while both 

the 2X manure systems (Systems 3A and 4A) contained the highest carbon weights in 

the POM fraction. Glomalin C weights were highest in the NT (System 1.1) and 2X 

manure systems (Systems 3A and 4A). There was significantly more glomalin-C (4 to 

10 times) than POM-C in all of the systems (P < 0.05). 

 Glomalin also had significantly higher C weights (4 to 10 times) than POM in 

the Rotation Length Experiment (Fig. 5C). The NT C-W-SB (System 1.1) and MT 
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organic C-SB-W (System 6.3) systems had the highest C weights in the glomalin 

fraction, while the CT C-W-SB (System 2.1) system had the lowest. Carbon weight in 

POM was greatest in the MT organic C-SB (System 5.1) and C-SB-W-H (System 7.2) 

systems. 

Discussion 

At the Farming Systems Project site, there were no significant differences in 

NSI among the systems, but there were some interesting trends. In the CT system 

(System 2.1), NSI declined over the two years of sampling. This was expected, because 

tillage disrupts aggregates by physical disruption and increasing SOM mineralization 

(Cambardella and Elliott, 1994; Hu et al., 1995). Rotation length also appeared to affect 

stability with the two crop rotation system having the lowest stability index. 

Monoculture systems have a negative impact on mycorrhizal fungi and aggregate 

stability by decreasing the number of AM species present (Cambardella and Elliott, 

1992; Douds and Millner, 1999; Paul and Clark, 1996; Schreiner and Bethlenfalvay, 

1999).  

In System 6, the stability index was 0.80 in 2000 and 0.65 in 2001. This change 

may have been because different plots were sampled (i.e. 6.1 plots in 2000 and 6.3 plots 

in 2001). In order to remove yearly changes in climatic conditions as a variable, all 

crops in a rotation are present at the same time in different plots (which are indicated by 

the second number in the plot ID). (See Appendix L, Fig. L2, to determine where these 

plots were located in the field.) Timing of sampling (i.e. April, 200 and July, 2001) also 

may have resulted in differences in NSI. The July sampling occurred immediately after 

wheat harvest. The increase in C from crop residues may have stimulated a short-term 
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increase in aggregate stability via saprophytic fungal growth (Caesar-TonThat and 

Cochran, 2000; Degens, 1997; Hu et al., 1995) with plant debris acting as nucleation 

sites for aggregate formation (Cambardella and Elliott, 1992; Six et al., 2001). The 

April 2001 sampling occurred prior to planting and after the winter season when POM 

concentrations and microbial activity were low. 

In reduced or NT systems, the stubble and mulch litter promote aggregate 

formation because fungal decomposition of OM produces gluing agents, such as 

polysaccharides and mucigels (Chaney and Swift, 1986; Caesar-TonThat and Cochran, 

2002; Degens, 1997; Hu et al., 1995). Caesar-TonThat and Cochran (2002) found that 

ligninolytic basidiomycetes produce large quantities of polysaccharides, glycolipids or 

glycoproteins that bind to and stabilize soil particles in water-stable aggregates. 

However, many of the polysaccharides produced by microbial degradation will glue 

aggregates together quickly but are water-soluble and ephemeral and, therefore, do not 

to contribute to the long-term stability of aggregates (Chaney and Swift, 1986; Caesar-

TonThat and Cochran, 2002; Six et al., 2001).  

No-till systems also promote hyphal growth of fungi. Frey et al. (1999) found 

that fungal hyphae length was about 2 to 2.5 times higher in NT than CT systems. Fungi 

are favored in NT systems because: (1) hyphal networks are maintained, (2) fungi may 

bridge the soil-residue interface and utilize spatially separated nutrients, especially C 

and N; and (3) fungi maintain activity, even in dry locations or across air-filled pores 

(Degens, 1997; Frey et al., 1999; Schreiner and Bethlenfalvay, 1999).  

The humic fractions (i.e. HA, FA and humin) are long-term fractions (i.e. they 

resist decomposition over the long-term but also take a long time to form). Therefore, 
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they are not affected by tillage as much as POM, which requires the presence of living 

plants for production. Production of glomalin also is plant-dependent, but longevity is 

intermediate with an estimated turnover rate of 6 - 42 years (Rillig et al., 2001). The 

Tillage Experiment in July, 2000 showed very little change in the concentrations of the 

HA, FA or P. glomalin and these fractions accounted for very little of the total SOM. 

Therefore, further examination of these fractions was deemed unnecessary when 

sampling was expanded to include all nine systems in April, 2001. 

Previous research shows that glomalin is a major fraction of OM in a variety of 

soils (Chapters 2, 3 and 4). All three experiments in this study also showed that 

glomalin was an abundant fraction. In fact, it was the most abundant fraction and 

accounted for a major part of the total carbon in the soils (ca. 19%). However, glomalin 

in the April, 2001 samples was two to three times more than glomalin in the July, 2000 

samples. This possibly was due to the additional 1 h citrate extraction (i.e. four cycles 

instead of three) performed in 2001. In the Tillage Experiment (July, 2000), protein 

measurements showed that the HA fraction contained some co-extracted glomalin. In 

April, 2001, the additional high temperature extraction of glomalin may have 

solubilized some of the glomalin that was co-extracted with HA in 2000 and some of 

the glomalin that was bound clay mineral complexes and was normally insoluble (such 

as the recalcitrant glomalin that was discussed in Chapter 3). Finally, variation in 

glomalin values by sampling time may have reflected higher glomalin in the soil or 

greater solubility in the spring prior to planting than right at harvest. There currently is 

not sufficient information about this molecule to predict changes in solubility or how it 

builds up in the soil. 
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Previously, glomalin has been separated into two pools based on extraction 

technique: easily-extractable (30 min extraction in 20 mM citrate) and total (60 min 

extraction in 50 mM citrate) (Wright and Anderson, 2000; Wright et al., 1999; Wright 

and Upadhyaya, 1998). It has been hypothesized that the easily-extractable, highly 

immunoreactive fraction may a more labile fraction that is related more closely to 

aggregation and changes in tillage management while the more recalcitrant fraction may 

be a resistant fraction important in the stability of aggregates (Wright and Upadhyaya, 

1998). Significant differences in glomalin and aggregate stability measurements 

occurred within 2 to 3 y after initiation of NT treatments (Wright et al., 1999). Soil 

organic C and N concentration, carbohydrates and amino acids were higher in NT rather 

than CT systems (Hu et al., 1995) further indicating the presence of glomalin in NT 

systems. Therefore, glomalin could be an indicator of ecosystem recovery/restoration 

success due to the strong positive correlation with soil aggregate water stability and the 

response of this compound to land-use changes (Rillig et al.,2003; Wright et al., 1999).  

The systems used in this study at the FSP site did not show the differences in 

aggregate stability and glomalin concentration that were expected and had been seen at 

other sites (i.e. higher values with NT and 3 to 4 y rotation systems). In a similar study 

by Wander and Traina (1996), crop yields declined while SOM concentrations and 

microbial biomass increased during the first five years of management transition from 

conventional to organic. Low (1955) stated that improvement in the structure of a 

degraded soil to that of a grassland soil may take from 5 to 50 y depending upon soil 

texture. The FSP systems had been in place for four years prior to sampling (three of 

which were drought years), and time was probably a major factor in the results from this 
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study. However, trends in the data do indicate that differences should be apparent after a 

few more years. 
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Table 5A. Descriptions of systems at the Farming Systems Project site in Beltsville, MD. 

System†   Tillage Crop Rotation Length of 
Rotation

Nutrient 
Management 

Weed 
Management‡ Cover Crop§ 

1.1      No-till (NT) Corn-Wheat-
Soybean (C-W-SB) 2 Synthetic fertilizer Herbicides None

2.1 
Conventional 

till 
(CT) 

Corn-Wheat-
Soybean (C-W-SB) 2 Synthetic fertilizer Banded herbicides 

+ cultivation None 

3A Minimum till  
(MT) 

Corn-Wheat-
Soybean (C-W-SB) 2 

Synthetic fertilizer + 
Raw broiler litter 

(2X) 

Banded herbicides 
+ cultivation None 

 
3B Minimum till  

(MT) 
Corn-Wheat-

Soybean (C-W-SB) 2 
Synthetic fertilizer + 

Raw broiler litter 
(1X) 

Banded herbicides 
+ cultivation None 

 
4A 

Minimum till  
(MT) 

Corn-Wheat-
Soybean (C-W-SB) 2 

Synthetic fertilizer + 
Composted broiler 

litter (2X) 

Banded herbicides 
+ cultivation None 

4B Minimum till  
(MT) 

Corn-Wheat-
Soybean (C-W-SB) 2 

Synthetic fertilizer + 
Composted broiler 

litter (1X) 

Banded herbicides 
+ cultivation None 

5.1 Minimum till  
(MT) 

Corn-Soybean  
(C-SB) 2 Legume + Organic 

fertilizer 
Cover crop + 

cultivation 

Rye, Over-
seeded crimson 

clover 

6.1, 6.3 Minimum till  
(MT) 

Corn-Soybean-
Wheat (C-SB-W) 3 Legume + Broiler 

litter 
Cover crop + 

cultivation 
Rye, Drilled 

crimson clover 

7.2 Minimum till  
(MT) 

Corn-Soybean-
Wheat-Hay 

 (C-SB-W-H) 
4 Legume + Broiler 

litter 
Cover crop + 

cultivation Rye 
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† Systems are labeled by subsystem – system plus another number that identifies where it was in the rotation. For example, a plot 

identified as 6.3 would be in the third year of the rotation with wheat as the crop in System 6. 

‡ A no-till high residue cultivator was used to kill weeds between rows and cover weeds within a row. 

§ Cover crops are crushed with a stalk chopper prior to planting the main crop.
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Table 5B. The normalized stability index (NSI) for the management systems at the 

16 ha Farming Systems Project site sampled in July, 2000 and April, 2001. † 

Experiment System/Plot Sampled  NSI‡ 

1.1 – Synthetic NT C-W-SB 0.72 ± 0.06 
2.1 – Synthetic CT C-W-SB 0.65 ± 0.05 

July, 2000 
Tillage 

6.1 – Organic MT C-SB-W 0.80 ± 0.01 
1.1 – Synthetic NT C-W-SB 0.77 ± 0.04 April, 2001 

Controls§ 2.1 – Synthetic CT C-W-SB 0.53 ± 0.14 
3A – Synthetic MT C-W-SB,  

2X raw manure 0.62 ± 0.08 

3B – Synthetic MT C-W-SB,  
1X raw manure 0.63 ± 0.07 

4A – Synthetic MT C-W-SB,  
2X composted manure 0.69 ± 0.07 

April, 2001 
Fertilizer 

Treatment 

4B – Synthetic MT C-W-SB,  
2X composted manure 0.62 ± 0.06 

5.1 – Organic MT C-SB 0.41 ± 0.12 
6.3 – Organic MT C-SB-W 0.65 ± 0.10 

April, 2001 
Rotation 
Length 7.2 – Organic MT C-SB-W-H 0.74 ± 0.05 

 

† In the April 2001, the experiments were divided into the Fertilizer Treatments 

experiment plus controls and the Rotation Length experiment plus controls. There were 

no significant differences between the values in any experiment (P > 0.09). 

‡ Mean ± SE.  

§ These were the positive (no-till) and negative (conventional tillage) systems that were 

used as controls the statistics for both April, 2001 experiments.
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Table 5C. Mean† gravimetric weights (g kg-1 soil) for the five organic matter 

fractions – Residual particulate organic matter (POM), glomalin extracted from 

POM (P. glomalin), glomalin, humic acid (HA), and fulvic acid (FA) – extracted 

from three farming systems (System 1.1 – Synthetic NT C-W-SB, System 2.1 – 

Synthetic CT C-W-SB, and System 6.1 – Organic MT C-SB-W) at the Farming 

Systems Project site in Beltsville, MD in July, 2000.‡ 

Fraction System 1.1 System 2.1 System 6.1 

Residual POM 1.06 ± 0.27bc 0.89 ± 0.23c 1.93 ± 0.46b 

P. glomalin 0.21 ± 0.05d 0.17 ± 0.04c 0.35 ± 0.06c 

Glomalin 3.77 ± 0.15a 4.28 ± 0.23a 4.08 ± 0.30a 

HA 1.59 ± 0.10b 1.80 ± 0.55b 2.12 ± 0.32b 

FA 0.87 ± 0.30c 0.60 ± 0.23c 0.87 ± 0.22c 

 

† Mean ± SE.  

‡ Different letters in a column indicate significant differences according to REML (P 

<0.0001).  
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Table 5D. Mean† gravimetric weights (g kg-1 soil) for two organic matter fractions 

– glomalin and particulate organic matter (POM)– extracted from nine systems 

that included no-till (NT), conventional till (CT) and minimum till (MT) with raw 

or composted broiler litter using corn (C), soybean (SB), wheat (W), and hay (H) 

crops. 

Experiment System Glomalin POM 

1.1 16.20 ± 0.96 2.12 ± 0.67 April, 2000 
Controls‡ 2.1 12.53 ± 1.76 1.63 ± 0.16 

3A 15.33 ± 0.71 3.40 ± 1.18 

3B 12.99 ± 3.11 1.72 ± 0.25 

4A 12.64 ± 1.37 3.43 ± 1.08 

April, 2001 
Fertilizer 

Treatment 
4B 10.72 ± 2.58 2.59 ± 0.39 

5.1 13.53 ± 3.11 2.36 ± 0.17 

6.1 14.69 ± 1.37 2.68 ± 0.56 
April, 2001 

Rotation 
Length 

7.2 13.66 ± 0.65 2.62 ± 0.42 

 

† Mean ± SE.  

‡ These were the positive (no-till) and negative (conventional tillage) systems that were 

used as controls the statistics for both April, 2001 experiments. 
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CHAPTER 6 

 

GLOMALIN ACCUMULATION IN SINGLE-SPECIES POT 

CULTURES 
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Abstract 

Glomalin, a recalcitrant glycoprotein produced by arbuscular mycorrhizal (AM) fungi, 

is found in temperate soils in concentrations ranging from 2 to 15 mg g-1. The 

hypothesis that glomalin from active cultures accumulates over time was tested in a 

soilless pot culture system. Zea mays roots were enclosed in the center of the pot (root 

chamber) by a 38-µm nylon fabric. Hyphae penetrated the mesh openings and grew into 

the media surrounding the root chamber, forming a separate hyphal chamber. After each 

of three consecutive 14-week culture periods, glomalin was measured in different 

sections of pots: (1) on AM colonized roots and hyphae in the root chamber, (2) on AM 

fungal hyphae and associated debris in the hyphal chamber, (3) on sand:coal potting 

media in the hyphal chamber and (4) on horticultural mesh placed in the hyphal 

chamber. In this study, glomalin levels in the hyphal chamber did not increased over 

consecutive culture periods. Plant growth, hyphal weight and total glomalin 

accumulation in the whole pot appeared to be affected mostly by irradiance with greater 

production under high light conditions. Immunofluorescence assays showed that 

glomalin was present on hyphae and arbuscules of AM fungi and that an abundant 

amount of hyphae had accumulated over the three 14-week culture periods. The high 

flow-through watering system and the large pore size and low surface charge of the 

sand:coal media used in this study probably allowed much of the freshly-produced 

glomalin to be lost through the bottom of the pot. 

Introduction 

A symbiotic relationship exists between arbuscular mycorrhizal (AM) fungi and 

80% of all vascular plants (Smith and Read, 1997). This mutualistic association has 
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existed for more than 400 million years or since plants first moved from an aquatic to 

terrestrial environment (Morton, 1990; Simon et al., 1993; Taylor et al., 1995). In this 

symbiosis, plants benefit from uptake of immobile nutrients (Jakobsen  et al., 1994)  

and improved soil structure (Wright and Upadhyaya, 1999), while the fungus receives 

photosynthetic carbon and other essential nutrients from the host plant (Douds and 

Millner, 1999; Millner and Wright, 2002; Tinker et al., 1994). About 12 to 30% of plant 

photosynthetic carbon is translocated belowground in the form of sugars that support 

fungal growth and development (Tinker et al., 1994). These sugars are rapidly 

converted into sugar alcohols to maintain C flow to the fungus (Tinker et al., 1994). 

Carbon cost to the plant is balanced by access to a greater volume of soil through fungal 

hyphae. Hyphae have a much larger surface area to volume ratio than root hairs and fan 

out up to 8 cm beyond nutrient depletion zones around roots (Douds and Millner, 1999; 

Millner and Wright, 2002).  

Arbuscular mycorrhizal fungi must be grown in a plant-fungus pot culture 

system to provide a living root system for AM fungal growth. Plant roots may be 

separated from fungal hyphae by using a nylon fabric barrier that is penetrable by 

hyphae, but not by roots (Wright and Upadhyaya, 1999). Hyphae may be collected from 

the rootless hyphal chamber by wet-sieving and floatation. In pot culture experiments, 

soilless (coarse sand) amended with nutrients in solution or soil diluted with sand or 

vermiculite may be used. Soilless media reduces AM colonization and sporulation, 

possibly due to inadequate maintenance of moisture (Biermann and Linderman, 1983). 

Millner and Kitt (1992) designed a watering system that maintains continuously moist 

conditions and significantly increases AM hyphal growth and sporulation. In addition, 

 152



 

the use of MES [2-(N-morpholino)-ethane sulfonic acid] buffer in the nutrient media 

increases the length of external hyphae and the density of propagules (Medeiros et al., 

1993; Vilariño et al., 1997). The buffer solution helps to stabilize rhizosphere pH to 

maintain conditions for adequate nutrient availability.  

At high pH levels, P availability to plants decreases. Medeiros et al. (1993) 

speculated that plant host dependence on AM fungi would increase with a 

corresponding increase in hyphal growth. Vilariño et al. (1997) found that with a Tris 

[Tris(hydroxymethyl)aminomethane] buffer solution they did not get the same results as 

with MES buffer. Therefore, rather than increasing host plant dependence on AM fungi, 

Vilariño et al. (1997) hypothesized that MES increased the activity of soil 

microorganisms (possibly through the liberation of sulfur from the MES molecule) 

whose ‘metabolites favor external hypha growth’. 

Large amounts of isolated hyphae for glomalin extraction may be produced by 

using a pot culture system that incorporates root and hyphal chambers, a watering 

system that keeps media continuously moist, and a low P nutrient solution containing 

MES buffer (Wright et al., 1996; Wright and Upadhyaya, 1996). Immunofluorescence 

assays show that glomalin attaches to any solid matrix in the hyphal chamber — 

horticultural mesh, nylon fabric, plant roots, arbuscules in the root cells, soil aggregates, 

and glass beads (Wright, 2000; Wright et al., 1996; Wright and Upadhyaya, 1996; 1999; 

S.F. Wright, personal communication). Glomalin may be extracted from hyphae and 

solid matrices in an alkaline citrate solution at 121oC and quantified by using protein 

and immunoassays (Wright et al, 1996; Wright and Upadhyaya, 1999).  

In this study, the accumulation of glomalin in pot cultures of Zea mays was 
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examined using two isolates of AM fungi grown for three consecutive 14-week culture 

periods. After each culture period, glomalin was extracted from the root chamber and 

components of the hyphal chamber: potting media, horticultural mesh inserted in the 

media, and hyphae isolated by floatation and wet sieving. The objectives were to: (1) 

measure total glomalin concentration after each culture period and (2) identify where 

glomalin accumulated – roots, hyphae, mesh, or potting media. 

Materials and methods 

Potting media 

 Coarse sand (# 4 quartz sand Jim’s Air, Tuxedo, MD; a local sandblasting 

supply company) was pre-extracted to remove glomalin by using 50 mM citrate, pH 8.0, 

at 121oC for 1 h. Extract was poured off and the sand was rinsed thoroughly (until 

colorless) to remove any residual glomalin reducing background glomalin levels to near 

zero. Extracted sand was mixed (1:1) with crushed coal (medium “Black Beauty” coal 

from Jim’s Air, Tuxedo, MD).  Pre-extraction of crushed coal was unnecessary, because 

previous extractions indicated that glomalin was not present (unpublished data). The 

mixture was sterilized at 121oC for 45 min and kept covered until placed in pots. 

Potting design 

 Standard 15-cm diameter, 1300 mL volume azalea pots were sterilized in 10% 

sodium hypochlorite along with 12-in circles of 38 µm nylon fabric (Sefar America, 

Inc., Depew, NY) and horticultural mesh strips (WeedBlock®, Easy Gardner, Inc., 

Waco, TX) (ca. 3 x 6 cm) and squares (ca. 7 cm2). The mesh squares were placed in the 

bottom of the pots to cover 4 of the 8 holes (the other 4 holes were taped over) and 

allow for adequate drainage while retaining the sand media. Potting media (ca. 350 cm3) 
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was placed in a 1-L graduated cylinder. The nylon fabric was placed over the top of the 

cylinder and secured with a rubber band. The cylinder was then inverted and placed in 

the middle of the pot. Horticultural mesh strips were placed vertically along the inside 

wall of the pot and secured with clamps. The area around the cylinder was filled with 

potting media. The rubber band and cylinder were gently removed leaving behind the 

nylon fabric root chamber (Fig. 6A). Irrigation was through a ring (6 mm I.D.) made of 

drip tubing placed outside of the root chamber. The ring was suspended above the 

media with plastic electrical ties taped to the outside of the pot (Fig. 6A).  

Planting 

 Corn (Zea mays) seeds were rinsed thoroughly to remove fungicide, surface 

sterilized with 10% (v/v) sodium hypochlorite for 10 min, rinsed, and pre-germinated 

on moist paper towels for 5 to 7 days. Seedlings were planted (3 per pot) in the root 

chamber and inoculated with spores and hyphae – 18 pots with Gigaspora (Gi.) rosea 

(Nicholson and Schenck) [INVAM (InterNational culture collection of Vesicular 

Arbuscular Mycorrhizal fungi) number (FL224)] and 18 pots with Glomus (G.) 

etunicatum (Becker and Gerdemann) (BR220) – collected from previous pot culture 

experiments in our lab and stored at 4oC. Inoculum was applied directly to roots, which 

then were covered with media and watered with ca. 100 cm3 of distilled water. 

Culture 

 Pots were placed in the greenhouse and watered with a reduced phosphorus (P) 

(40 µM) half-strength Hoagland’s solution automatically 4 times daily (Millner and 

Kitt, 1992). Sodium vapor lights for auxiliary lighting in the greenhouse were set on a 

12-h day:night cycle. After 4 weeks, the P concentration in the Hoagland’s solution was 
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reduced to 20 µM. Plants and fungi were allowed to grow for three 14-wk increments. 

Ambient irradiance (W m-2) was measured outside of the greenhouse every 15 min 

throughout most of this period. The culture periods for G. etunicatum were from 

January 14 to April 22, April 22 to July 29 and July 29 to November 4, 2002 and for Gi. 

rosea from May 21 to August 27, August 27 to December 4 and December 8 to March 

15, 2002 to 2003. (During the four days between December 4 and 8 while seeds were 

germinating, the watering regimen was continued to maintain moist conditions.) 

Harvesting 

 After each 14-week increment, six of the pots were harvested completely. The 

remaining pots were replanted. Replanting consisted of removal of the old root chamber 

and placing a new root chamber (nylon fabric ‘bag’) in the hole vacated by the old 

‘bag’.  The new root chamber was filled with potting media and planted with 

uninoculated, pre-germinated corn seedlings.  

Complete harvesting consisted of processing the root and hyphal chambers 

separately. The nylon fabric was removed and the root chamber was placed in a beaker 

and extracted for glomalin. A multi-step procedure was used to separate components in 

the hyphal chamber: 

1. Horticultural mesh strips and mesh square from the bottom of the pot were 

carefully removed and extracted for glomalin along with the sand that adhered to 

the mesh via hyphae and glomalin. Following glomalin extraction, mesh area 

was measured.  

2. The media was rinsed repeatedly with forced water to free hyphae. Released 

hyphae were collected with forceps and by pouring the wash over a 53-µm 
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screen. When no hyphae were visible, the sand was washed onto a 250-µm 

screen atop a 53-µm screen and rinsed thoroughly with forced water. (This was 

done to facilitate the release of any remaining hyphae.) Potting medium on the 

250-µm screen was rinsed into autoclavable containers and extracted for 

glomalin.  

3. Hyphae and fine particles from the 53 µm screen and hyphae released from the 

potting medium by forced water were combined (forming the hyphae fraction) 

and extracted for glomalin. After glomalin extraction, hyphae were dried at 70oC 

and weighed to get an estimate of yield – glomalin per amount of hyphae. (See 

Appendix P for a detailed discussion of a mini-experiment conducted on these 

samples to measure glomalin yield from hyphae.) 

Glomalin extraction 

All glomalin extractions were in 50 mM sodium citrate at 121oC for 1 h (Wright 

and Upadhyaya, 1999), and samples were submerged in the citrate solution. The 

supernatant was collected by centrifugation. Extraction was repeated for the hyphae 

fraction until the extract solution was straw-colored. Glomalin was purified by 

centrifugation, acid precipitation and dialysis against deionized water. (See Appendix 

A2 for a detailed description of the glomalin extraction and purification procedure.) 

Dialyzed material was centrifuged and the supernatant was collected and freeze dried.  

Glomalin measurement 

In each of the extracted fractions – roots, mesh, potting media and hyphae 

fraction – glomalin concentration was measured by the total protein (TP) assay and 

ELISA. (See Appendix C for detailed descriptions of the protein assays.) Values, except 
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for those from glomalin extracted from mesh, were corrected for the total volume of the 

extract solution and reported as mg protein. Concentration of glomalin extracted from 

mesh was extrapolated to mg cm-2 by correcting for total area of mesh extracted and for 

the volume of extract. 

A modified Bradford protein assay (Wright et al., 1996) was used to measure TP 

concentration. Samples were diluted in PBS (phosphate buffered saline) and reacted 

with Bio-Rad® (Hercules, CA) Bradford protein dye reagent. Absorbance was read at 

A595 after 5 min. Protein concentration was determined by comparison with a bovine 

serum albumin (BSA) standard curve.  

Immunoreactive protein (IRP) concentration was measured by ELISA as 

described by Wright and Upadhyaya (1998) with modifications in the enzyme and color 

developer. ExtrAvidin® (Sigma-Aldrich, Inc., St. Louis, MO) phosphatase was used 

instead of peroxidase. Wells were rinsed with Tris buffered saline with Tween 20 

(polyoxyethylenesorbitan monolaurate) before adding the color developer (p-

nitrophenyl phosphate in diethanolamine buffer) (Wright, 1994). Absorbance was read 

at A405 after 15 min. Test samples were compared to a standard curve produced by serial 

dilutions of highly immunoreactive glomalin extracted from a temperate soil under 

native grasses. Percentage immunoreactivity (%IRP) was calculated as amount of IRP 

divided by amount of TP times 100. 

Immunofluorescence 

 Prior to extraction for glomalin, small samples were taken from the horticultural 

mesh strips (ca. 1 cm2), roots (4 to 6 1-cm fragments), and potting media (>2-mm 

aggregates) to examine for the presence of glomalin using an immunofluorescence 
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assay (Wright, 2000). (See Appendix Q for a detailed description of the immuno-

fluorescence assay procedure.) Briefly, samples were placed in wells of a 12-well plate 

and incubated sequentially with milk, monoclonal antibody 3211 (antibody specifically 

against glomalin) and goat anti-mouse IgM tagged with fluorescein isothiocyanate 

(FITC). Samples were mounted with VectaShield® (Vector Laboratories, Burlingame, 

CA) mounting medium. Immunofluorescence was examined using an epi-fluorescence 

microscope. 

Statistical analysis 

 Glomalin protein values for each part of the pot (i.e. root chamber, mesh, potting 

media or hyphae) are means and SEs calculated from values in each replicate pot (up to 

6 replicate pots per culture period). In rare cases, fine roots were able to penetrate the 

nylon fabric bag or to grow over the top of the nylon bag and into the hyphal chamber. 

Values obtained for these pots were not included in the analysis. 

Protein values were compared for G. etunicatum and Gi. rosea, individually, 

across culture periods using ANOVA (Analysis of Variance) after meeting the 

assumptions for normality and homogeneity of variance (using the appropriate log or 

sine transformation when needed). Significant differences were made at the P < 0.05 

level according to REML (Restricted Maximum Likelihood).  

Ambient irradiance measurements (obtained every 15 min) were averaged for 

each h. These averages were totaled for each week. If more than 2 data points were 

missing in a 1 h period that week’s totals were not calculated. For G. etunicatum, values 

were not obtained for the first culture period and during the first 5 weeks of the second 

culture period. 
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Results 

Irradiance 

Irradiance had a dramatic affect on plants grown in the greenhouse (Fig. 6B and 

Appendix R) with the plants directly under supplemental lighting being much taller than 

plants not directly under the lights. During each of the 14-week culture periods for both 

G. etunicatum and Gi. rosea, the ambient irradiance varied by season (Fig. 6C).  

Protein values 

Glomus etunicatum in the second culture period (April 22 to July 29) had 

significantly higher TP concentrations than the other two periods (Fig. 6D.A). This 

culture period also had the highest irradiance values (Fig. 6C.A). The third period had 

high irradiance for 9 weeks but these declined rapidly in the last 5 weeks of growth. The 

largest difference in glomalin levels between these culture periods was in the root 

chamber. Total protein values for glomalin extracted from the horticultural mesh were 

ca. 0.02 mg cm-2 at all three harvests.  

The percentage of IRP (%IRP) in glomalin extracted from G. etunicatum hyphae 

was highly variable in different sections isolated from the pots (Table 6A). All of the 

glomalin fractions showed increases in % IRP as the culture time increased, except the 

horticultural mesh. For glomalin extracted from the horticultural mesh, the % IRP was 

greater than 100% in the first culture period, but decreased in periods 2 and 3. In the 

first culture period % IRP in the hyphae fraction was almost zero and from the root and 

hyphal chambers was much lower than in subsequent culture periods. 

Gigaspora rosea had the highest amount of glomalin in all fractions at the end of 

the first culture period (Fig. 6D.B). However, glomalin collected from the hyphae 
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fraction after the third culture period was significantly higher than in the first period (P 

= 0.0283). Irradiance values during the first culture period were consistently >200 W m-

2 (Fig. 6C.B). During the second culture period, irradiance measurements were above 

150 W m-2 for the first half of the culture period, but they dropped rapidly to ca. 75 W 

m-2 during the latter half. During the third period, irradiance values were low (50 to 100 

W m-2) until the last two weeks. Gigaspora rosea cultures did not show wide variation 

in % IRP among different sections of the pot cultures examined (Table 6A). The second 

culture period had the highest % IRP in the four fractions.  

Hyphal amounts 

Large amounts of hyphae were produced (Fig. 6E and 5F) with estimated weight 

of 4.2 and 3.0 g for G. etunicatum periods 2 and 3, respectively, and 24.3, 4.9 and 3.1 g 

for Gi. rosea in periods 1, 2 and 3, respectively. Because fine sand and crushed coal 

grains adhered to hyphae, it was not possible to obtain ‘pure’ hyphae that would 

accurately reflect the total amount of hyphae in a pot. (Attempts to purify hyphae are 

described in Appendix P.) Although large amounts of hyphae were collected, there was 

no direct relationship between hyphal amounts and glomalin amounts. For example, in 

Gi. rosea, the amount of hyphae from period 1 was about 5 times the amount from 

period 2 but there was no significant difference in the amount of glomalin measured. 

Immunofluorescence 

Immunofluorescence was used to indicate the presence of glomalin on fungal 

hyphae (Fig. 6E and 5F), potting media (Fig. 6G), horticultural mesh (Fig. 6F), 

colonized roots and arbuscules (Fig. 6H). One sample of horticultural mesh had many 

strands of coiled hyphae that formed a ‘rope’ with accumulation of glomalin in discrete 
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areas along the various strands (Fig. 6E). A similar hyphal ‘rope’ in soil would protect 

hyphae crossing air-filled pores and/or entrap organic matter and soil particles to initiate 

aggregates formation. Other samples of mesh appeared to be covered with hyphae (Fig. 

6F.A) and plaque-like spots of glomalin (Fig. 6F.B) reflecting an increase in hyphal 

production and glomalin accumulation with the repeated cultures (Fig. 6F). Sufficient 

amounts of glomalin and hyphae were produced during the 294 days of culturing to 

form pseudo-aggregates of sand and coal (Fig. 6G). Although spots of glomalin may be 

found on plant roots, AM fungal spores, intraradical hyphae and arbuscules were coated 

with glomalin (Fig. 6H).   

Discussion 

Glomalin production and hyphal growth are dependent upon photosynthetic C. 

Under low light, C is the limiting nutrient (Whitbeck, 2001; Tinker et al., 1994). Since a 

new root chamber was added at the start of each cultivation period, glomalin 

accumulation in this chamber does not reflect accumulation over time (Fig. 6D). Rather 

values in the root chamber directly reflect C inputs from the plant. During periods with 

the highest irradiance values – Period 2 for G. etunicatum and Period 1 for Gi. rosea – 

glomalin concentrations in the root chamber and hyphal weights were the highest of the 

three growth periods for both species. The amounts of glomalin in the sand and hyphae 

fractions increased over time, especially for the Gi. rosea cultures (Fig. 6D), indicating 

that glomalin may be accumulating slowly. However, these values did not double or 

triple in successive culture periods which indicates that more glomalin was being lost 

than was retained. 
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Glomalin resists enzymatic and chemical decomposition in the soil and 

laboratory (Wright and Upadhyaya, 1998; Steinberg and Rillig, 2003; Rillig et al., 

2001). Therefore, it was unlikely that rapid turnover influenced glomalin accumulation. 

Some of the glomalin will absorb to roots, sand/coal particles and mesh, but under these 

high flow-through watering conditions, it was likely that glomalin was lost through the 

bottom of the pot. Visual observations and immunofluorescence assays on the 

horticultural mesh square placed in the bottom of the pot indicated that glomalin is 

deposited there, often forming plaque-like films (Fig. 6F). In addition, 

immunofluorescence assays on material that precipitated in the wastewater from a 

previous pot culture study indicated the presence of glomalin (data not shown). Also, 

glomalin is in colloidal suspension in water from shallow wells in an area where AM 

fungi colonize natural vegetation growing on sand in Florida (S. F. Wright, personal 

communication). 

The automatic watering system used in this study maintains constantly moist 

conditions in pots. Under these conditions, most of the pore space would be filled with 

water, roots or fungal hyphae (especially following periods of high hyphal production). 

If glomalin has the same characteristics as hydrophobins produced by other fungi, it 

would not self-aggregate into rodlet-like complexes without an air-water interface 

(Wessels, 1997). Aggregated, floating glomalin (scum-like material) was noticed in this 

study when forced water was used to release hyphae from sand. This action probably 

released unbound glomalin that aggregated and accumulated at the air-water interface. 

A similar reaction is seen for hydrophobins that form a hydrophobic foam, similar to 

soap bubbles, when air or nitrogen is bubbled through the growth media (Askolin et al., 
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2001; Wessels, 1997). Therefore, when glomalin sloughs from hyphae but does not self-

aggregate, it may be lost from the pot with the wastewater.  

In this study container volume and removal of the root chamber may have 

affected carbon allocation and growth patterns in these fungi. Container volume limits 

hyphal growth (Bethlenfalvay et al., 1999) and fungal and plant growth under different 

nutrient conditions (Biermann and Linderman, 1983). Removal of the root chamber 

prevented the plants from becoming root-bound but disrupted hyphal networks. 

Colonization of the new host plant was successful in all pots. However, it is unknown 

how disruption of the hyphal network affected glomalin production or fungal growth. 

Other growing conditions, such as nutrient availability and moisture, and signals 

from the plant, cause differential fungal growth patterns. In some cases, intraradical 

structures (such as arbuscules, hyphal coils and hyphae) are favored, whereas 

extraradical hyphal growth increases under other conditions (Rillig et al., 2001; 

Whitbeck, 2001). Bethlenfalvay and Ames (1987) found that the fragility, type (i.e. 

function), and distribution of extraradical hyphae may be a function of age, nutrition, 

soil texture, host compatibility, or other environmental conditions. By the same token, 

the formation of biomolecules, such as glomalin, also depends on carbon allocation and 

other not well-understood signals. 

Immunofluorescence assays showed that an abundance of hyphae was produced, 

but hyphae were not completely coated with glomalin (Figs. 5E and 5F). The spotty 

distribution on fungal hyphae indicated that glomalin was not an integral part of the 

hyphal wall but rather something attached to it. This could account for the lack of 

correspondence between glomalin values and hyphal weight. Like hydrophobins 
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(Wessels, 1997), glomalin may have a signal sequence for secretion and be funneled to 

the surface of the hyphal wall. On the surface of hyphae, hydrophobins, and possibly 

glomalin, self-assemble into rodlets or amphipathic membranes. Rodlets of aggregated 

hydrophobins perform a variety of functions, notably protecting hyphae from moisture 

changes and facilitating hyphal attachment to surfaces (Askolin et al., 2001; Wessels, 

1997). Glomalin produced similar aggregated or plaque-like structures on horticultural 

mesh (Fig. 6G.B). 

The bright and patchy distribution of immunofluorescence due to the presence 

of glomalin was readily distinguished from auto-fluorescence in plant roots (Fig. 6H). 

Arbuscules produced by AM fungi were immunofluorescent while the root cell was not. 

This was further proof that the antibody against glomalin was against something 

produced by AM fungi, because only AM fungi produce arbuscules. 

Although glomalin concentrations did not increase with successive culture 

periods, this does not mean that plants were not colonized by AM fungi or that glomalin 

was not produced in subsequent periods. Rather glomalin amounts in these pots were 

influenced by three factors (other than the length of culture): (1) reduction in 

photosynthetic activity and C allocation to AM fungi because of low light, (2) loss of 

glomalin through the bottom of the pot, and (3) disruption of hyphal networks by 

removing the root chamber. To eliminate or reduce the effects of these other variables, 

future research comparing glomalin production and accumulation should include: (1) 

growing plants only during the summer season or in a growth chamber, (2) additional 

supplemental lighting, (3) examining wastewater from pots to quantify glomalin 

concentrations, (4) using a different nutrient delivery system that does not keep the 
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media constantly moist, (5) using different potting media to retain more glomalin within 

the pot, or (6) using larger pots and keeping the root chamber in the pot.  
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Table 6A. Percentage immunoreactive protein for glomalin extracted from 

different sections or section-components of single species pot cultures of Glomus 

etunicatum and Gigaspora rosea after one, two and three consecutive 14-week 

culture periods. ‡ 

  
Number of culture periods 

Species Section and 
components  1 2 3 

Hyphae 
chamber:    

        Hyphae 0.3 ± 0.2a 44.5 ±  1.1a 58.1 ± 10.4a 
        Mesh 311.2 ± 73.5a 58.2 ± 3.8a 40.6 ± 2.9a 

Potting 
medium 26.9 ± 3.4b 51.0 ± 8.2a 54.0 ± 9.1a 

Glomus 

etunicatum 

Root chamber 2.2 ± 0.5a 36.9 ± 18.4a 53.6 ± 3.5a 

Hyphae 
chamber:    

        Hyphae 25.5 ± 2.3a 51.2 ± 8.0b 23.4 ± 1.3a 
        Mesh 22.0 ± 1.5a 77.0 ± 30.2b 26.0 ± 2.2a 

Potting 
medium 42.6 ± 16.0a 47.4 ± 11.9a 25.4 ± 1.4a 

Gigaspora 

gigantea 

Root chamber 37.5 ± 14.1a 55.0 ± 28.3a 47.3 ± 2.7a 
 

† Mean ± SE.  

‡ Different letters in a row indicate significant differences according to REML  

(P <0.05). 

 170



 

 

 

 

Root  
compartment 

Hyphal  
compartment 

Horticultural 
mesh  
Horticultural 
mesh  

 

 

 

 

 

 

 

 

 

 

Figure 6A.  Schematic representation of corn pot cultures inoculated with 

arbuscular mycorrhizal fungi grown in a root compartment that is kept separate 

from a hyphal compartment by a 38 um nylon fabric bag. Horticultural mesh is 

inserted in the sides and at the bottom of the pot to measure glomalin 

accumulation on solid surfaces. 
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Figure 6B. Corn plants inoculated with Gigaspora rosea in the greenhouse at the 

end of the third culture period. The taller plants on the far left were directly under 

a sodium vapor lamp, while those on the right were between lamps.
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Figure 6C. Irradiance measurements from outside the greenhouse during three 14-week culture periods (2002 to 2003) – 

Period 1 (Jan. 14 to April 22 and May 21 to Aug. 27), Period 2 (April 22 to July 29 and Aug. 27 to Dec. 4), and Period 3 (July 

29 to Nov. 4 and Dec. 8 to March 15) – for corn plants inoculated with Glomus etunicatum (A) and Gigaspora rosea (B) 

respectively. Equipment problems resulted in several missing data points.
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Figure 6E. Glomalin present on a rope of Gigaspora rosea hyphae bridging two 

spatially separated holes in the mesh. Bright green spots indicate the presence of 

glomalin. 
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Figure 6F. After three 14-week culture periods, glomalin was present on a massive 

network of Gigaspora rosea hyphae and deposited on horticultural mesh placed in 

the hyphal chamber (A) or at the bottom of the pot (B). Bright green spots indicate 

the presence of glomalin. 
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Figure 6G. After three 14-week culture periods, some of the sand grains and 

crushed coal had formed a >2-mm aggregate-like structure with glomalin on the 

surface gluing these particles together. Bright green spots indicate the presence of 

glomalin. 
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Figure 6H.  Glomalin found on a colonized corn root, a Glomus etunicatum spore 

(A) and intraradical fungal structures, including arbuscules (B). Bright green spots 

indicate the presence of glomalin. 
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COMPOSITIONAL ANALYSIS OF GLOMALIN
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Abstract 

Glomalin is a complex macromolecule produced by arbuscular mycorrhizal (AM) fungi 

and is classified as a glycoprotein. In addition to structural oligosaccharides and amino 

acids, glomalin binds iron and organic matter. Glomalin is difficult to hydrolyze with 

acid or proteases for analysis of functional groups. The incorporation of iron as an 

apparent integral component and as a tightly bound shell increases molecular stability. 

High heat (1210C) used to solubilized glomalin apparently ‘fused’ bound iron and 

organic matter to the molecular structure and prevented removal following extraction. 

To remove iron, which causes interference in spectroscopic and colorimetric assays, 

competitive chelation and deglycosylation were attempted. Results indicated that pre-

treatment of the soil with HCl to remove iron or with NaOH to disrupt organo-mineral 

complexes and extraction with sodium pyrophosphate may improve analytical results. 

In addition, purification and separation of the oligosaccharide and proteinaceous 

components of glomalin was accomplished. The procedures defined herein will aid in 

future work to elucidate the structural units of glomalin. Elucidating the structure of 

glomalin will help to understand the roles of this molecule in plant health and soil 

quality. 

Introduction 

 Proteins are the most complex naturally occurring macromolecules. Although all 

proteins have the same peptide backbone, the 20 different amino acid side chains may 

be combined in chains of various lengths with a number of different folding patterns. 

Therefore, an infinite number of molecules may form. Considering the diverse 

biological functions for proteins, a vast array of molecules is expected. The formation 
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of glyconjugates or glycoproteins creates even more complex molecules because of the 

branching and stereochemistry of the added oligosaccharides.  

Carbohydrate modifications to proteins are a key factor in their structure and 

function (Bahl, 1992). Glycoproteins act in enzyme catalysis, hormonal control, 

immunology, ion transport, structural support, cell adhesion, and cell recognition (Bahl, 

1992; Varki, 1993). Carbohydrates affect viscosity, thermal stability, solubility, and 

resistance to proteolysis (Bahl, 1992; Iyer and Lonnerdal, 1993).  

 Glomalin is produced by arbuscular mycorrhizal (AM) fungi and is resistant to 

trypsin and chemical (acid) hydrolysis (Wright et al., 1996). Lectin-binding capability 

and high performance capillary electrophoresis (HPCE) indicate that glomalin is a 

glycoprotein with one major asparagine-linked (N-linked) chain of carbohydrates 

(Wright et al., 1998). The procedures used to denature and deglycosylate glomalin for 

HPCE are not fully successful. Protein that remained intact precipitated from solution 

and was separated by centrifugation prior to analysis. These results indicate that some 

fractions of glomalin may be more resistant to denaturation and deglycosylation than 

others.  

 In its native state, glomalin is insoluble in aqueous solutions. High heat (121oC) 

treatment in 1 h intervals is used to solubilize glomalin. This treatment would denature 

heat-labile proteins that may be co-extracted from the soil (Wright et al., 1996). These 

denatured proteins and other small molecules are lost during the primary purification 

process of acid precipitation, re-dissolution in an alkaline solution and dialysis.  

Because glomalin is so resistant to decomposition, it is a fraction of organic 

matter (OM) that may be present in both the transient and persistent pools with a 
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turnover time of at least a decade (Rillig et al., 2001; Steinberg and Rillig, 2003). 

Molecular stability comes from chemical characteristics, such as hydrophobicity and 

iron binding. Hydrophobicity makes glomalin water-insoluble, prevents microbial 

access to the molecule, and helps it bind to surfaces. Iron-binding prevents microbial 

decomposition and bridges glomalin to clay minerals and other types of organic matter.  

Iron causes interference with a number of techniques used to examine molecular 

structure, such as NMR and some colorimetric assays, and adds structural stability that 

may help glomalin resist chemical and enzymatic treatment used for analysis. Iron may 

also act as a bridge between clay minerals and glomalin. This process would bind 

inorganic molecules such as clay silicates to glomalin which would account for the high 

gravimetric weight compared to protein weight seen in other studies (Chapters 2 and 3) 

and would account for the high silica values measured previously in our lab using ICP 

(inductively-coupled plasma). 

Purification of proteins with hydrophobic characteristics with phenyl column-

HPLC (high-pressure liquid chromatography) is commonly used. In a phenyl column, 

ammonium sulfate salt increases surface tension in the buffer solution which brings 

hydrophobic groups such as hydrophobic amino acids (leucine, isoleucine, alanine, 

valine, phenylalanine, tyrosine, and tryptophan) and aliphatics to the surface of the 

protein. The hydrophobic environment of a phenyl column is so strong that proteins will 

absorb to the column and not to each other. Upon lowering salt concentration in the 

buffer solution, the surface tension will decrease and the protein will desorb from the 

column. 
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 Lectin affinity chromatography is used to purify hydrophilic glycoproteins or 

oligosaccharide in solutions. Lectin chromatography with Con A-Sepharose may be 

used to isolate glycoproteins or oligosaccharides from mixtures of substances. Con A 

recognizes the core sugars and their substitution pattern including the three major 

classes of asparagine-linked (N-linked) sugar chains: (1) high mannose chains, (2) 

biantennary complex oligosaccharides, and (3) branched tri- and tetra-antennary 

complex-type oligosaccharides (Varki, 1993). 

In this study, procedures were developed to examine the compositional groups 

in glomalin from hyphae and soil extracts. This work will provide a context for future 

experiments to determine the structure of glomalin and its importance in global climate 

change and soil fertility issues. 

Materials and methods 

Glomalin samples 

 In this study, freeze-dried glomalin extracted from soil and hyphae samples in 

previous experiments was used. Hyphae samples [Glomus (G.) intraradices Schenck & 

Smith (WV795) and Gigaspora (Gi.) rosea Nicolson and Schenck FL224 (INVAM)] 

were collected from the hyphal chamber in pot culture experiments. (See Chapter 6 for 

detailed culturing methods). Soil samples were from a variety of other experiments in 

our laboratory: (1) a Weld silt loam from Colorado (CO) (samples from field and native 

grass plots) (Wright and Anderson, 2000), (2) soils from the Eastern Shore of Maryland 

(MD) (samples from plots in fields or woods at two sites –R. Reily and Ed Q), (3) the A 

and B horizons of Gilpin soil from Maryland, and (4) from soils used Chapters 2 and 3. 
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Each of the glomalin samples was extracted with citrate at 121oC. (See Appendix A2 

for a detailed description of the glomalin extraction and purification methods.)  

Treatments to remove iron 

Competitive chelation experiments 

 EDDHA incubation 

 Glomalin samples (2.5 mg) - extracted from horizons A and B of a Gilpin soil -

were reconstituted in 10 mM borate, pH 8.0, and placed in dialysis capsules in a 100 

mM EDDHA [ethylenediamine di-(o-hydroxyphenylacetic) acid] and 10 mM borate, pH 

9.2, solution. After mixing for 2.5 weeks, samples were removed and protein 

concentration was measured (see below).  

8-hydroxyquinoline incubation 

Glomalin samples (~20-100 mg) from Baltimore series soil (Chapters 2 and 3) 

and from hyphae of G. intraradices and Gi. rosea were reconstituted in 20 mM MES [2-

(N-morpholino)-ethane sulfonic acid] buffer at pH 5.5. Chloroform (2 to 5 mL) was 

added followed by 8-hydroxyquinoline (1-5%). Samples were covered tightly and 

incubated for about 12 h. During this time, the chloroform phase was replaced after it 

turned a green-black color. This process was repeated until the chloroform phase was 

nearly colorless. After treatment, samples were washed using a centrifugal filter device 

with a 50 kD cut-off (Centricon 50, Millipore). Other samples were washed in 

progressively smaller Centricon tubes (50>30>10>3 kD). Retentate and filtrate were 

collected and assayed for protein (see below). 
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Tiron treatment  

Freeze-dried glomalin samples (Chapters 1 and 2) from the Baltimore site a 

(MD) and Pacolet (GA) soils were reconstituted with a 0.1 N NaOH solution containing 

0.15 M 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron®, Sigma Aldrich, St. Louis, 

MO) and H2O (Simpson, 2001; Fan et al., 2000). Samples were incubated overnight, 

centrifuged at 6850 x g for 10 min, and dialyzed extensively against water. Glomalin 

samples were analyzed for carbohydrate concentration using the carbohydrate 

estimation kit (see below) and compared to glomalin that was not treated with Tiron. 

Acid hydrolysis and iron oxide extraction experiments 

Hydrolysis in acid under vacuum  

Glomalin samples (1 – 10 mg) from the Weld, Eastern Shore, and Gilpin soils 

and from Gi. rosea hyphae were placed into vacuum hydrolysis tubes and 1 mL of 

constant boiling point 6 N HCl was added. Tubes were capped loosely and subjected to 

3 cycles of evacuation and injection of N2 gas followed by a final evacuation. Tubes 

were capped tightly and incubated at 100 – 115 oC overnight. After incubation, samples 

were centrifuged to pellet the precipitate. Both the supernatant and precipitate were 

tested for iron concentration using the colorimetric iron assay (see below).   

Sodium dithionate extraction of iron oxides 

 Glomalin was extracted from the NE (Wymore and Pawnee) and CO (Sampson 

and Haxtun) soils (Chapter 3) before or after treatment with HCl and NaOH co-

extraction of HA and FA. Iron oxides were extracted by heating glomalin dissolved in a 

0.3 M sodium citrate and 1 M sodium bicarbonate solution to 75 to 80oC (Loeppert and 

Inskeep, 1996). When the solution reached temperature, sodium dithionate powder 
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(equivalent to 20% of the weight of the sample) was added followed by continuous 

stirring for 1 min and intermittent stirring for 5 min. Another, similar-sized portion of 

dithionate was added followed by intermittent stirring for 10 min. The samples were 

removed from the heat and saturated NaCl was added to promote flocculation. Glomalin 

was pelleted by centrifugation at 10844 × g. The supernatant was decanted through a 

Whatman #1 filter into a volumetric flask or graduated tube and brought to volume with 

deionized (dH2O). Iron concentration was measured in each sample by the colorimetric 

assay and/or AA (see below). The pellet of treated glomalin was a red-brown color, 

which indicates the presence of iron. These samples were then subjected to a follow-up 

digestion using the modified Aqua Regia procedure. 

Modified Aqua Regia 

 The modified Aqua Regia procedure (McGrath and Cunliffe, 1985) consisted of 

adding concentrated HNO3 to the sample and heating to 85-90oC (a temperature high 

enough to cause evaporation but not boiling) for 2 hrs. Next, concentrated HCl was 

added followed by incubation at 60oC for 1 hr. Samples were centrifuged at 6850 x g 

for 10 min. The supernatant was decanted through a Whatman #1 filter into a 

volumetric flask or graduated tube and brought to volume with dH2O. Iron 

concentration was measured in each sample by the colorimetric assay and/or AA (see 

below). In a few glomalin samples, most, but not all, of the sample was hydrolyzed. The 

remaining material was collected by centrifugation at 10844 x g, rinsed with dH2O, 

lyophilized, weighed and subtracted from the original sample weight. 
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Microwave digestion 

 Glomalin from the Weld and Eastern Shore soils (ca. 10 mg) were placed in 

Teflon tubes. The samples were treated with 1 mL dH2O water and 3 mL of Ultra Pure 

concentrated nitric acid (HNO3). The caps were screwed on until just tight, and samples 

were placed into a microwave and connected to a pressure regulator tube. Microwave 

digestion was run with the following program: 6.9 x 105 pascal (Pa) for 10 min; 4.83 x 

105 Pa for 15 min; and 3.45 x 105 Pa for 10 min. After the pressure in the chamber 

returned to zero, the tubes were removed from the microwave and the caps were 

unscrewed slowly. Condensation in the tops was rinsed into the tubes. Samples were 

filtered through Whatman #40 filter paper to remove particulate matter and brought up 

to 25 mL with dH2O. Iron concentration was measured in each sample by atomic 

adsorption (AA) and the colorimetric assay. 

Column purification of glomalin 

Phenyl column 

Samples (12) from soil (Chapter 3) and hyphae extracts were processed through 

a phenyl column using a HPLC (High-Pressure Liquid Chromatography) pump (Waters 

600E). Before adding samples, the column was washed with ca. 250 mL of filtered 

(0.25 µm filter) dH2O. About 200 mL of filtered (0.25 µm filter) 1 M ammonium sulfate 

in 25 mM phosphate buffer, pH 7.0, was used to equilibrate the column.  

Glomalin was dissolved in 30 mL of 25 mM phosphate buffer, pH 7.0 and 

centrifuged at 6850 x g to remove any insoluble material. The supernatant was 

transferred to a new tube and ammonium sulfate was added to a concentration of 1 M. 

In some samples, a large amount of the material precipitated. These samples were 
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centrifuged again at 6850 x g. The supernatant was collected and sampled for total (TP) 

and immunoreactive protein (IRP) assays (see below). 

When a large amount of glomalin precipitated with 1 M ammonium sulfate, the 

samples were centrifuged at 6850 x g. The supernatant was loaded onto the column and 

the precipitate was redissolved in the phosphate buffer with ammonium sulfate at 0.25 

M. Prior to loading, samples were centrifuged again at 6850 x g. 

Samples were loaded onto the column at the rate of 3 mL min-1. When all of the 

sample volume was on the column, the column was washed with 150 to 200 mL of 

buffer before running the gradient and collecting the fractions. In a select number of 

samples, this wash was collected and examined further. A linear gradient was used to 

decrease the concentration of 1 M ammonium sulfate in 25 mM phosphate buffer, pH 

7.0 to dH2O over 1 hr at 5 mL min-1. The column was washed with dH2O for another 20 

min. Fractions were collected in 1-min intervals while the gradient was running and for 

the 20 min after the end of the gradient (giving a total of 80 fractions). The three or four 

tubes containing the highest amounts of protein were pooled for TP and IRP assays (see 

below). The remaining volume was dialyzed extensively against water (dialysis tubing 

with a MWCO (molecular weight cut-off) = 6-8,000 D), freeze-dried and weighed.   

Lectin affinity column 

Concanavalin A (Con A)-Sepharose (Sigma Aldrich, St. Louis, MO) columns 

were prepared by transferring a well-mixed suspension into a 10 mL column to the 1 

mL mark.  The column was equilibrated by washing with 10 column volumes of TBS 

buffer [(0.01 M Tris (Tris(hydroxymethyl)aminomethane), 0.15 M NaCl, 1 mM CaCl2 

and 1 mM MgCl2), pH 8.0]. The final wash was drained to the top of the column bed. 
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Samples were loaded onto the column, washed, and eluted according to 

protocols of Fattman et al. (2000) and Sanjay et al. (1997). Briefly, a sample was 

reconstituted in TBS buffer (5 mL) and loaded onto the column in 1-mL increments. 

The column was washed with TBS (8 mL). When the last wash was at the top of the 

bed, 10 mL of the eluent 10 mM µ-methyl-D-glucopyranoside in TBS buffer was added. 

When the µ -methyl-D-glucopyranoside elution was complete, the column was eluted 

with 10 mL of warmed (60°C) 100 mM µ-methyl-D-manno-pyranoside in TBS buffer. 

The column retained the red-brown color of glomalin making a third eluent - 3% acetic 

acid - necessary. Fractions were collected from the wash and each eluent separately and 

analyzed for total protein (TP) concentration (see below). Fractions with the highest 

protein values were pooled, dialyzed against water in dialysis tubing with a MWCO = 

6-8,000, and freeze-dried. 

Separation of oligosaccharides from a glycoprotein 

Samples that had only been through the phenyl column or had been through both 

the phenyl and lectin affinity columns were reconstituted in 200 µl of 50 mM sodium 

phosphate buffer, pH 7.5 containing 0.5% (w/v) SDS (sodium dodecyl sulfate) and 50 

mM 2-mercaptoethanol. Samples were denatured at 100oC in boiling water bath for 5 

min. After the samples had cooled, the SDS was diluted out with 270 µl 50 mM sodium 

phosphate buffer, pH 7.5. Concentration of SDS at this point was 0.2%. A non-ionic 

detergent (NP-40) was added to protect the enzyme from denaturation by the residual 

SDS. The final concentration of NP-40 was 1.5% (v/v) providing a greater than 7-fold 

excess over the concentration of SDS. The samples were treated with 10 units of 

PNGase F (peptide-N-glycosidase F; Sigma Aldrich, St. Louis, MO) and incubated at 
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37 oC in a water bath for ~18 h. The reaction was terminated by boiling in a water 

(100°C) bath for 5 min.  

Released oligosaccharides were separated from the peptide using a Sep-Pak® 

C18 (Waters Associates, Milford, MA) column. The column was cleaned by washing 

with 3 mL methanol and was equilibrated by washing six or seven times with 3 mL 

dH2O. The sample was loaded and washed three times with 1 mL dH2O. 

Oligosaccharides were collected in 3 – 5 mL 5% (v/v) acetic acid. The protein fraction 

was then collected with 3-5 mL a 60% propanol and 40% acetic acid (5%) solution. 

Each fraction (i.e. oligosaccharide and protein) was evaporated to dryness. Samples 

were dissolved in pyridine-acetate solution and quantitative measurements were made 

for TP, IRP and neutral hexose concentrations (see below). (The pyridine-acetate 

solution was added to the blanks used in the TP, IRP, and neutral hexose assays to 

check of interference.) 

NMR spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy was conducted on two sets of 

samples. One set contained carbohydrate and protein fractions of glomalin extracted 

from Glomus etunicatum hyphae and Cecil soil and separated as described above after 

purification through phenyl and Con A columns. The second set contained a citrate 

alone control and three glomalin samples extracted in 1 h intervals from the Sampson 

series soil with (1) 50 mM citrate, pH 8.0, at 121oC, (2) 100 mM sodium pyrophosphate, 

pH 9.0, at 121o, and (3) 50 mM citrate, pH 8.0, at 121oC, following a sequential 

extraction of glomalin with pyrophosphate and HA with NaOH solution at RT (see 

Chapter 3). (See Appendix G for details on similar extractions from hyphae.)  
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All samples (10 to 20 mg) were reconstituted with 95% D2O and placed in NMR 

sample tubes. One-dimensional (1D) 1H-NMR experiments were conducted using a 300 

MHz Bruker QE Plus NMR spectrometer with Tecmag Aquerius ver. 5-6 operating 

system. Spectral width was 3000 Hz and chemical shifts were referenced relative to the 

HDO peak at 4.8 ppm. The HDO signal was minimized using a pre-saturation pulse 

sequence (Braun et al., 1998). Baseline correction was applied.  

Quantitative measurements 

Protein assays 

Protein measurements were made on glomalin samples that were dissolved in 

the appropriate solution from the experiments above. A modified Bradford protein assay 

(Wright et al., 1996) was used to measure TP concentration. Samples were diluted in 

PBS (phosphate buffered saline) and reacted with Bio-Rad® (Hercules, CA) Bradford 

protein dye reagent. Absorbance was read at A595 after 5 min. Protein concentration was 

determined by comparison with a bovine serum albumin (BSA) standard curve.  

Immunoreactive protein concentration was measured by ELISA as described by 

Wright and Upadhyaya (1998) with modifications in the enzyme and color developer. 

ExtrAvidin® (Sigma Aldrich, St. Louis, MO) phosphatase was used instead of 

peroxidase. Wells were rinsed with Tris buffered saline with Tween 20 

(polyoxyethylenesorbitan monolaurate) before the color developer (p-nitrophenyl 

phosphate in diethanolamine buffer) was added (Wright, 1994). Absorbance was read at 

A405 after 15 min. Test samples were compared to a standard curve produced by 

dilutions of highly immunoreactive glomalin extracted from a temperate soil under 

native grasses.  
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Iron concentration measurements 

Colorimetric iron assay 

 An aliquot of sample was placed in a 15 mL screw cap centrifuge tube. If the 

sample was in a strong alkaline solution, 1 mL of 6 N HCl was added. Two mL of 10% 

(w/v) hydroxylamine HCl was added to each tube plus 1 mL of 1.5% (w/v) o-

phenanthroline in 95% ethanol. Tubes were filled to 10 mL with dH2O and shaken. 

Samples were read at 490 nm after at least 30 min and concentration was determined by 

comparison to a standard curve with a range of 0-60 µg. Percentage iron in glomalin 

was calculated by converting the µg values into µg mg-1 values using the assay volumes 

and the weights of the glomalin samples and multiplying by 0.1. 

Atomic adsorption 

An aliquot of sample was injected into a Varian Atomic Absorption 

Spectrometer (AA-400, Palo Alto, CA) with deuterium background correction and 

heated until the elements were burned off. Concentration was determined by 

comparison to a standard curve with a range of 0-30 µg L-1. Percentage iron was 

calculated by converting the µg L-1 values into µg mg-1 values using the sample volumes 

and the weights of the glomalin samples and multiplying by 0.1. 

Carbohydrate concentration measurements 

Glycoprotein detection  

 Glomalin samples (0.5 mg) were dissolved in 1mL of a commercial 

Glycoprotein Assay Buffer (Pierce Glycoprotein Carbohydrate Estimation Kit, 

Rockford, IL). A solution (0.1 mL) containing 10 mM sodium meta-periodate in the 

assay buffer was added. After votexing, samples were incubated for 10 min at room 
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temperature. A 1 N NaOH solution containing 0.5% (w/v) aldehyde detection reagent 

(Pierce Glycoprotein Carbohydrate Estimation Kit) was added. Samples were again 

votexed and then incubated at room temperature for 1 hr. Samples were centrifuged at 

10844 × g to remove the precipitate. The supernatant was transferred to cuvettes and 

read at 550 nm. Glycoprotein concentration was determined by comparison to a 

standard curve made from glycoproteins containing known concentrations of glycosyl 

groups and were treated the same as the samples.  

Modifications to periodate treatment  

 Precipitation of glomalin during the deglycosylation step of the carbohydrate 

assay suggested that not all of the material in the glomalin samples was deglycosylated. 

The procedure described above was performed again with the following modifications: 

incubating with periodate for longer times (1, 1.5 and 2 h), using a higher periodate 

concentration (30 mM), and keeping samples either exposed to air or sealed to create 

anaerobic conditions. 

Neutral hexose assay procedure 

A sample (200 µl) from the carbohydrate and protein fractions of the 

deglycosylated samples in pyridine-acetate buffer was placed in a test tube. Phenol (200 

µl) was added followed by vortexing. Concentrated sulfuric acid (1 mL) was added 

rapidly to the samples, which were vortexed and allowed to cool. Absorbance was read 

at 492 nm. 
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Results 

Competitive chelation experiments 

None of the competitive chelators was successful in removing all of the iron 

from glomalin as evidenced by lack of total removal of the red-brown color considered 

to be indicative of iron. In addition, there were only small changes in the carbohydrate 

and IRP concentrations before and after treatment with Tiron and dialysis (Table 7A). 

The results of the carbohydrate analysis showed that when glomalin was extracted 

before NaOH extraction of HA and FA (Experiment 1), the percentage of carbohydrates 

was higher than when glomalin was extracted after HA and FA (Experiment 2). 

Following incubation in 8-hydroxyquinoline, proteinaceous material was collected in all 

size fractions separated with the Centricon 50, 30, 10 and 3 tubes (Table 7B). However, 

the Centricon 3 filtrate was not immunoreactive.  

Acid hydrolysis and iron oxide extraction experiments 

 The percentage iron was measured on samples subjected to acid hydrolysis 

under vacuum, microwave digestion, dithionate extraction, and modified Aqua Regia 

hydrolysis. In all of these methods, except the microwave digestion, a portion of 

glomalin remained insoluble. Percentage iron values were lower in glomalin extracted 

from hyphae (G. intraradices and Gi. rosea), from the native grass Weld soil (CO) 

plots, and from the Eastern Shore soils (MD) than in glomalin from the Gilpin soil 

(MD) (Table 7C) and the soils from Chapters 2 and 3 (Table 7D). The two methods 

used to measure percentage iron (AA and colorimetric assay) gave different values for 

the samples that were digested in the microwave with the colorimetric assay values 

being lower (Table 7C). Values in samples where hydrolysis was under vacuum and 
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iron was measured by the colorimetric assay were similar to values from samples that 

were digested in the microwave and iron was measured by AA (Table 7C). 

Extraction of iron using dithionate was compared to extraction using a modified 

Aqua Regia method on glomalin samples collected before and after treating the soil 

with HCl (Table 7D). The dithionate treatment did not extract all of the iron from 

glomalin. Glomalin from soil that was pre-treated with HCl had less iron than glomalin 

from soil that was not treated with HCl. 

Carbohydrate measurements – Periodate treatment 

 Periodate treatment to release carbohydrates from glomalin resulted in the 

formation of a precipitate regardless of the length of incubation, concentration of 

periodate, or whether the sample was covered or uncovered. Therefore, values obtained 

by the assay used herein may not be an accurate assessment of carbohydrate 

concentration in glomalin. 

Analysis of glomalin purified by column chromatography 

 Glomalin was purified using both phenyl and lectin column chromatography. 

For the phenyl column, colored, proteinaceous material was collected immediately after 

the ammonium sulfate gradient had finished and the column was being washed with 

water (Fig. 7A). Glomalin was not eluted from the lectin affinity column as easily – 

three eluent solutions were required. Fractions, collected from each of the three eluent 

solutions, contained proteinaceous material (Fig. 7B). All the protein-containing 

fractions were combined for analysis by protein assays and NMR.  

 After purification, glomalin samples were deglycosylated to give 

oligosaccharide and protein fractions. The samples were examined using 1H NMR (Fig. 
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7C). Both samples had similar peaks in the two fractions. The oligosaccharide fraction 

had several peaks in the 3-4 ppm range which is characteristic of carbohydrates and a 

major peak at 2 ppm, which would represent aliphatic methines and some methylenes 

(e.g. CH-N, CH2-N, CH-C=O, CH2-C=O) (Cavanagh et al., 1996). The protein 

fractions had major peaks in the 0.5 to 2.5 ppm region that are typical of protons in the 

methyl-type groups: (1) methyls (CH3) at <1.0 ppm; (2) methylenes (CH2) between 1.0 

to 2.0 ppm; and (3) aliphatic methines and methylenes between 2.0 and 2.5 (Cavanagh 

et al., 1996; Wüthrich, 1986). The peak at 0.8 indicated the presence of amino acids: 

valine, isoleucine, and leucine (Cavanagh et al., 1996). There were no major 

corresponding peaks between the oligosaccharide and protein fractions, which indicated 

that two different fractions were isolated by this procedure and that the protein fraction 

contained more aliphatic protons. 

 When citrate was used to extract glomalin, some of the citrate apparently was 

bound to the glomalin molecule and was removed by acid precipitation and dialysis. 

The 1H NMR spectra showed that the four peaks at 2.5 to 3.0 ppm in the glomalin 

extracted with citrate are from citrate (Fig. 7D). When glomalin was extracted with 

pyrophosphate, it did not contain these citrate peaks. However, when citrate was used to 

extract the recalcitrant glomalin fraction (i.e. glomalin extracted after NaOH treatment 

for humic acid), the citrate peaks returned. 

Discussion 

Several iron chelators with increasing strength (EDDHA < 8-hydroxyquinoline 

< Tiron) were used to attempt to remove iron from glomalin. The competitive chelation 

treatments and other attempts to remove iron by chemical treatment, such as 
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deglycosylation, were only partially successful. In addition to the methods used here, 

others have tried using ion exchange columns, including a Chelex 100 resin column, 

without success (J. Gander and A. Simpson, personal communications). It seems that 

some iron was loosely associated with glomalin and may be removed by these methods 

or with dithionate, but the majority of iron can be removed only by complete hydrolysis 

of the protein (Table 7D). When the soil was pre-treated with acid, as was done in 

Chapter 3 for the glomalin extracted after NaOH extraction, the concentration of iron in 

glomalin was significantly lower than when it was not pre-treated (Table 7D; Chapter 3-

Table 3E).  

The hydrolysis methods (microwave digestion and acid hydrolysis under 

vacuum) used in this study and the methods used to measure percentage iron (AA and 

colorimetric assay) gave inconsistent results for the same glomalin samples. The 

incomplete hydrolysis of glomalin treated under vacuum would account for some 

variability in the hydrolysis methods. Changing the matrix solution for the colorimetric 

assay may account for some variability in the measurement methods. However, the data 

indicate that methodology must be carefully examined before making any definitive 

conclusions. 

The smaller-sized proteinaceous fragments collected with the Centricon tubes 

after treatment with 8-hydroxyquinoline indicated that glomalin extracted from soil and 

hyphae could be a multimeric complex of aggregated monomers formed by the 

interactions of iron. Iron may be bridging glomalin monomers together or may be 

inducing a folding pattern that increases hydrophobic interactions among monomers. 
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Release of iron from glomalin was suggested by observations made during 

phenyl column chromatography. When the phenyl column was washed after the 

glomalin sample was loaded and prior to running the gradient, some red-brown material 

was washed off as well. This material was not highly proteinaceous but probably 

contained iron. When hydrophobic groups were brought to the surface by the 

ammonium sulfate solution for glomalin to bind to the phenyl column, glomalin 

underwent conformational changes that may have caused some iron to be released. 

Because glomalin was purified by both hydrophobic (phenyl column) and 

hydrophilic (Con-A column) interactions, it was unlikely that there was much 

contamination in the polypeptide sample that was deglycosylated and examined by 

NMR spectroscopy (Fig. 7C-B and D). The NMR spectra showed that the protein 

fraction contained aliphatic peaks and the oligosaccharide fraction (Fig 7C-A and C) 

contained peaks in the carbohydrate region. Further analysis will be required to identify 

functional groups.  

Glomalin shares many characteristics with hydrophobins (a class of hydrophobic 

proteins found on the surface of AM fungal hyphae) (Wessels, 1997), transferrins (a 

class of iron-binding glycoproteins) (Iyer and Lonnerdal, 1993) and humic substances 

(Hayes and Clapp, 2001). Like all of these molecules, glomalin is structurally complex 

and its native or original structure may not be the same as the structure after deposition 

and incubation in soil or, more importantly, after extraction to obtain a soluble form of 

the molecule. Changes occur as the result of chemical reactions in the soil, such as 

binding metals or other organic matter and microbial degradation. Chemical reactions 

occur during extraction, such as hydrolysis and oxidation (Burdon, 2001; Hayes and 
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Clapp, 2001; Iyer and Lonnerdal, 1993). Glomalin extracted from hyphae typically has 

a much lower iron concentration than glomalin from soil (Table 7C). The NMR spectra 

in this study showed that the extraction method tightly binds citrate to glomalin (Fig. 

7C). This indicated that glomalin was capable of binding organic substances and may 

bind organic matter in the soil to assist in aggregate formation. A number of other, as 

yet unidentified, changes may be occurring in glomalin in the soil and during extraction. 

In the soil, many of these changes may help in the stability of glomalin and impact its 

role in soil quality. The methods used in this study demonstrated many of the unique 

characteristics of glomalin and defined procedures that provide a context for future 

work. 
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Table 7A. Percentage carbohydrates and immunoreactive protein (IRP) in 

glomalin extracted from the Baltimore site a (MD) and Pacolet (GA) soils from 

Extraction Sequences 1 – glomalin extraction before HA and FA and 2 – glomalin 

extraction after HA and FA and treated or untreated with 4,5-dihydroxy-1,3-

benzene disulfonic acid (Tiron) to remove iron.† 

Site Experiment Tiron-
treated 

% 
carbohydrates 

IRP 
(µg) 

1 Yes 6.6 0.0295 

2 Yes 5.9 0.0168 

1 No 6.3 0.0221 
Baltimore 
site a (MD) 

2 No 5.6 0.0188 

1 Yes 5.6 0.0169 

2 Yes 2.8 0.0139 

1 No 5.9 0.0192 
Pacolet 
(GA) 

2 No 3.2 0.0124 

 

† Detailed descriptions of Extraction Sequences 1 and 2 are in Chapter 3.
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Table 7B.  Total and immunoreactive protein concentrations of glomalin extracted 

from soil or mycorrhizal hyphae stripped of iron with 8-hydroxyquinoline and 

fractionated with centrifugal filter devices that retained 3, 10, 30, and 50 kD 

molecules. 

 

Sample Sample 
ID 

Molecular weight 
fraction 

Total 
protein 

(µg) 

Immunoreactive 
protein (µg)† 

>3 kD 50.55 ND 1 <3 kD 5.21 ND 
30-50 kD 27.80 1.10 2 3-10 kD 13.87 0.50 

>3 kD 174.95 0.00 
30-50 kD 34.99 1.80 

Baltimore 
soil 

3 
<3 kD 46.55 0.00 
>3 kD 186.55 ND 1 <3 kD 18.66 ND 

30-50 kD 30.93 0.60 

Glomus 
intraradices 

hyphae 2 <3 kD 69.00 0.00 
>3 kD 158.80 ND 1 
<3 kD 14.53 ND 

30-50 kD 322.70 0.70 
3-10 kD 22.97 0.04 
>3 kD 48.31 3.80 

Gigaspora 
rosea hyphae 

2 

<3 kD 218.20 0.00 
 

† ND = not detected (i.e. below the detection limit) 
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Table 7C.  Percentage iron in of glomalin samples digested in the microwave 

compared with acid hydrolysis under vacuum and measured by atomic adsorption 

or the colorimetric assay. 

 

  Percentage iron 

  Atomic 
adsorption Colorimetric assay 

Glomalin extracted 
from Soil Microwave 

digestion 
Microwave 
digestion† 

Acid 
hydrolysis† 

Gilpin soil (MD) Bench mark 1.47 0.25 1.27 

G. intraradices 
hyphae Hyphae 0.48 0.19 NA 

Gi. rosea hyphae Hyphae 0.52 0.23 0.55 

Weld (CO) Field plots 1.09 0.08 2.45 

Weld (CO) Native grass 
plots 0.49 0.13 1.18 

R. Reily (Eastern 
shore –MD) Woods 0.23 NA 0.11 

R. Reily (Eastern 
shore –MD) Field 0.20 NA 0.25 

Ed Q (Eastern 
shore –MD) Woods 0.59 NA 0.57 

Ed Q (Eastern 
shore –MD) Field 0.29 NA 0.14 

 

† NA = not available (i.e. analysis was not conducted) 
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Table 7D. Percentage iron in glomalin extracted before or after treating a soil with 

HCl.  Sodium dithionate extraction is compared to hydrolysis by Aqua Regia. 

Values were obtained using atomic adsorption spectroscopy. †‡ 

Iron 
Extraction 
Method 

Glomalin 
Extraction 

Method 

Wymore 
soil 

Pawnee 
soil 

Sampson 
soil 

Haxtun 
soil 

Before 1.85 ND ND 0.65 
Dithionate 

After NA ND NA 0.24 

Before 3.82 2.06 0.28 0.63 Aqua 
Regia after 
Dithionate After NA 0.04 NA 0.09 

Before 6.00 4.98 0.65 1.72 Aqua 
Regia 
alone After NA 0.29 0.17 0.27 

 

† NA = not available (i.e. analysis was not conducted) 

‡ ND = not detected (i.e. values were below the detection limit)
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Figure 7A. Total protein values in fractions of glomalin purified on a phenyl 

column. The gradient of ammonium sulfate solution ended at fraction 60 and had 

completely evacuated the column at fraction 67. 
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Figure 7B. Total protein values in fractions collected from the Conca

Sepharose lectin affinity column sequentially eluted with: (1) µ-meth

glucopyranoside in TBS buffer (glucoside), (2) µ -methyl-D-mannopy

TBS buffer (mannoside), and (3) acetic acid. Fractions also were coll

the sample was being loaded onto the column (load) and when the co

washed with TBS buffer solution (wash). 
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Figure 7C. 1H NMR spectra of two glomalin

and D) that purified using both phenyl and 

protein (C and D) fractions. 
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Figure 7D. 1H NMR spectra of citrate buffer alone (control sample) (A) and glomalin extracted from Sampson series (CO) soil 

with pyrophosphate (B), citrate (C), or citrate after pyrophosphate extraction of glomalin followed by NaOH treatment to 

extract humic acid (D). 

 



 

 

 

 

 

 

 

 

CHAPTER 8 

 
CHARACTERIZATION OF GLOMALIN
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Background 

Glomalin is a complex macromolecule produced by arbuscular mycorrhizal 

(AM) fungi. This molecule is a hydrophobic, iron-binding glycoproteinaceous 

substance that is a major fraction of organic matter and is important in the long-term 

structure of soil. It shares many similarities with other biomolecules, such as 

hydrophobins (Wessels, 1997), transferrins (Iyer and Lonnerdal, 1993) and humic 

substances (Hayes and Clapp, 2001). Immunofluorescence assays show that glomalin is 

present on AM fungal structures in single-species pot cultures, while cultures of other 

soil fungi were not immunoreactive (Wright et al., 1996). Although glomalin is 

produced only by AM fungi, copious amounts (up to 60 mg g-1) have been measured in 

the soil (Wright and Upadhyaya, 1996). High glomalin amounts primarily are due to an 

abundance of hyphae in to the soil (lengths equaling >100 m cm-3) (Miller et al., 1995) 

and the slow decomposition rate of glomalin (7 to 42 years) (Rillig et al., 2001; 

Steinberg and Rillig, 2003). 

Analysis (i.e. protein and compositional) of glomalin has been performed only 

on samples extracted at high temperature (121oC) in a buffer solution (typically a 

chelator). Under these conditions, glomalin may have undergone chemical reactions that 

changed its composition from its native state. Previous studies showed that the 

extraction procedure reduces immunoreactivity by inducing conformational changes 

and non-glomalin substances, such as iron and the citrate extraction buffer, to become 

‘fixed’ to glomalin in such a way that they may not be removed by chemical treatment. 

Hydrolysis and oxidation reactions are also possible under the extraction conditions. 
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In addition, when glomalin is extracted, other substances may be co-extracted. 

Some of these contaminants may be removed during the precipitation and dialysis 

procedure. However, since gravimetric, total protein (TP) and immunoreactive protein 

(IRP) weights are not equivalent, it was impossible to prove that all of the material that 

is referred to as glomalin is actually glomalin. Immunofluorescence assays show that 

immunoreactive glomalin is present on fungal structures, including hyphae, spores and 

arbuscules, colonized roots and rhizosphere and mycorrhizosphere particles that are 

associated exclusively with AM fungi (Wright et al., 1996; Wright, 2000). 

Immunoreactive glomalin extracted from single-species pot cultures is equivalent to 

glomalin extracted from soil according to protein banding on sodium dodecyl sulfate-

polyacrylamide gel electrophoresis, immunoreactive protein assays, glycoprotein 

assays, C, N and H concentrations and nuclear magnetic resonance (NMR) spectra 

(Wright and Upadhyaya, 1996; Wright et al., 1998; Rillig et al, 2001; unpublished data). 

Research results presented in this dissertation characterized glomalin from ecological 

(by comparison with other types of organic matter), developmental (pot culture 

accumulation), and structural (molecular composition) perspectives.  

Glomalin – A unique and major pool of soil organic matter 

Each extractable organic matter fraction – glomalin, Residual POM, humic acid 

(HA), and fulvic acid (FA) – is operationally defined by extraction technique and 

quantified by gravimetric and C weights (Chapters 2 and 3). Protein assay values were 

used to indicate the presence of glomalin in the extract solution. Only glomalin and HA 

contained immunoreactive proteinaceous material.  
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The extract-defined glomalin fraction is a major fraction of soil organic matter 

(SOM) (Fig. 8A). Only Residual POM was present in amounts that were equivalent to 

or more than glomalin. The extraction and purification techniques and C, N and H 

values have shown that glomalin was a different fraction from Residual POM, HA and 

FA. Percentages of C, N and H in each fraction showed that the HA fraction contained 

material with a high C concentration while the glomalin fraction had a higher C and/or 

N concentration than the Residual POM and FA fractions.  

Glomalin is either present in the traditional HA extraction or remains 

unextracted in the soil as part of the humin fraction. [Recalcitrant glomalin (R. 

glomalin) was extracted from the humin fraction.] The presence of glomalin in the HA 

extract would account for the proteinaceous and aliphatic contaminants measured in HA 

by other laboratories (Hayes and Clapp, 2001; MacCarthy, 2001). Recent analysis using 

15N NMR and 13C NMR has shown that HA contains high concentrations of amino 

acids, possibly in the peptide form, and aliphatic groups (hydrocarbon chains) 

(Simpson, 2001; Hatcher et al., 2001). These proteins and long chain hydrocarbon, fatty 

acid and ester structures are of plant and microbial origins and are merely associated 

with true humic molecules (Hayes and Clapp, 2001; MacCarthy, 2001; Simpson, 2001). 

 In the past, HA has been described as a high molecular weight compound 

(Schulten and Schnitzer, 1997). Burdon (2001) argues that degradation products from 

plant and microbial debris (i.e. humic substances) cannot be of higher molecular weight 

than the original material and cannot contain substances that would not be formed as 

degradation products. Glomalin binds to Fe (Chapter 3), organic matter (Chapter 7) and 
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clay minerals. Similar mechanisms may cause glomalin to bind to HA and account for 

the high molecular weight of HA. 

Glomalin in dry sieved aggregates 

The role of mycorrhizal fungi in aggregation and thus water penetration appears 

to be as important as, if not more so than, their role in nutrient adsorption 

(Bethlenfalvay et al., 1999; Degens, 1997). Hyphae and roots act like a “sticky string 

bag” that physically trap organic matter and soil particles in aggregates, while 

biomolecules, like glomalin, bind these aggregates together (Jastrow et al., 1998). 

Several researchers have identified an amorphous substance on hyphae as a binding 

agent for clay minerals and organic matter (Gupta and Germida, 1988; Schreiner and 

Bethlenfalvay, 1995; Tisdall and Oades, 1979). It is likely that this substance is 

glomalin (Rillig et al., 2002; Wright et al., 1996; Wright and Upadhyaya, 1996; 1998).  

Glomalin is resistant to decomposition (Wright et al., 1996; Rillig et al., 2001) 

and may stabilize aggregates and organic matter in aggregates (Wright and Upadhyaya, 

1998; Rillig et al, 1999). Hydrophobic (aliphatic) compounds form a water-insoluble 

lattice around soil aggregates to help keep these aggregates water-stable (Capriel et al., 

1990). For humic substances, aliphatics have been implicated in their ability to stabilize 

soil aggregates. However, these aliphatics are not part of the humic molecule but are co-

extracted with HA (Burdon, 2001; Hayes and Clapp, 2001). Many types of fungi 

produce hydrophobins – proteins with spans of hydrophobic (aliphatic) amino acids – 

that protect hyphae from changes in moisture and help hyphae adhere to surfaces 

(Wessels, 1997). Glomalin may be the hydrophobin equivalent for AM fungi that not 

only protect fungal hyphae but also helps to form and stabilize aggregates. 
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Plant-derived particulate matter, glomalin, HA and FA were extracted from dry 

sieved aggregates in three aggregate size classes (1-2, 0.5-1, and 0.25-0.5 mm). 

Research herein showed that the labile and intermediate turnover fractions (Residual 

POM and glomalin) were present in high concentrations in the 1-2 mm aggregates but 

declined with aggregate size. On the other hand, the recalcitrant fractions (HA and R. 

glomalin) increased with decreasing aggregate size. Glomalin also was related to 

aggregate stability and to persistent binding agents, such as iron and clay minerals.  

Glomalin in managed agricultural systems 

Increased mineralization, organic matter content and, as a result, aggregation are 

reduced in agroecosystems. Below 1%, organic matter causes a rapid decline in 

aggregate stability (Kemper and Koch, 1966). Above 2%, organic matter may be less 

important in the binding and stability of aggregates (Kemper and Koch, 1966; Tisdall 

and Oades, 1982). Under high organic matter contents, certain fractions, such as the 

recalcitrant glomalin, HA and humin fractions, and soil clay and iron content may help 

to form aggregates.  

Conventional agroecosystems are generally more productive but far less diverse 

than natural systems and are far from self-sustaining (Gliessman, 2001). Their 

productivity can be maintained only with large additional inputs of energy and material 

from external, human sources. When converting to sustainable practices, a range of 

processes and relationships are transformed, beginning with aspects of basic soil 

structure, organic matter content, and diversity and activity of soil biota (Gliessman, 

2001). Therefore, changes in the physical and biological components of agroecosystems 
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may be difficult to assess over the short term. Long-term study sites, such as the 

Farming Systems Project site (Chapter 5) will be used to measure these changes.  

At the Farming Systems Project site, systems varied by tillage (no-, 

conventional, or minimum till), crop rotation length (2, 3 or 4 y), and amendments (raw 

or composted at 1X or 2X concentrations). Aggregate stability was measured using a 

method that corrects for problems with both the slaking and capillary re-wetting 

methods (i.e. the Normalized Stability Index) (Six et al., 2000). In all nine systems, the 

labile and intermediate turnover rate fractions (Residual POM and glomalin) were 

extracted over the recalcitrant fractions (HA and R. glomalin), because labile fractions 

are more apt to show changes between management systems in a shorter period of time. 

Trends in data indicated differences in aggregation and the labile POM and glomalin 

fractions with the conventional system having lower values. The data presented here 

was collected after only 3 y of management and will be used as baseline for future 

comparisons. 

Glomalin accumulation in a pot culture system 

A soilless, single-species pot culture system was used measure glomalin 

accumulation at 14-week intervals in a 294-day experiment. Protein concentrations 

(measured by the total and immunoreactive protein assays) showed that glomalin 

production was primarily influenced by irradiance and, therefore, photosynthetic C 

production. Arbuscular mycorrhizal fungi are obligate biotrophs that require 

photosynthetic carbon to grow. Distribution of carbon by AM fungi to fungal structures 

(i.e. hyphae or arbuscules) and production of biomolecules (such as glomalin) are not 
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very well understood. Glomalin production and accumulation levels and the processes 

controlling them may impact aggregation, soil fertility and carbon sequestration. 

Composition of the glomalin molecule 

Methods were developed to analyze the composition of the glomalin molecule, 

including removing iron, measuring iron concentration, purifying by column 

chromatography, and separating amino acids and carbohydrates. Results showed that 

iron and organic matter might bind to glomalin in the soil and/or during glomalin 

extraction. The stability and complexity of the glomalin molecule increases with iron 

and organic matter binding, which makes it difficult to analyze glomalin structure. This 

study has identified a number of methods that will be useful in future studies to measure 

types and concentrations of functional groups in glomalin and relate them to aggregate 

stability.  

Summary and conclusions 

Organic matter within aggregates, even the labile POM, has a slower 

decomposition rate than free organic matter (Six et al., 2001). Typically, the majority of 

surface and root-derived residues are respired by microbes in a matter of a few years, 

with almost all residue carbon lost in two decades (Gale and Cambardella, 2000; Six et 

al., 2001). Only a very small fraction of POM remains for centuries or millennia as 

humified matter. To increase the concentration of SOM, improve soil quality, and 

sequester C, labile organic matter must be stabilized increasing the amount of organic 

matter with an intermediate turnover rate. Carbon sequestration in the soil may lower 

atmospheric carbon concentrations and mitigate the Greenhouse Effect. Rising CO2 

levels increase belowground carbon allocation to plant roots and arbuscular mycorrhizal 
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hyphal length (Rillig et al., 1999). When hyphal length increases and more carbon is 

allocated belowground, glomalin production is favored (Rillig et al., 1999).  

Although HA contains 24% more C than glomalin, glomalin is ca. 50% of the 

extracted organic C (Chapter 2). Humic acid has a turnover time of centuries to 

millennia but only ca. 8% of the total soil carbon (Fig. 8A). Whereas glomalin, which is 

about 20% of the total carbon, has mean residence time of 7 to 42 yr with certain 

fractions potentially having a century turnover time (Fig. 8A) (Steinberg and Rillig, 

2003; Rillig et al., 2001). Data herein showed that R. glomalin might be the fraction of 

glomalin with a century turnover time.  

Results from these studies demonstrated that glomalin: (1) is a large and 

important component of SOM, (2) may help to form and stabilize soil aggregates along 

with persistent binding agents such as clay minerals and iron, (3) may indicate changes 

in organic matter concentrations and aggregate stability with differences in 

management, (4) may increase under conditions of high irradiance and photosynthetic 

activity, and (5) has a complex structure with tightly-bound iron and organic matter 

along with amino acid and carbohydrate groups. Future work will use this information 

to better understand the structure of the glomalin molecule and its roles in C 

sequestration and soil health. 

References 

Bethlenfalvay, G.J., I.C. Cantrell, K.L. Mihara, and R.P. Schreiner. 1999. Relationships 

between soil aggregation and Mycorrhizae as influenced by soil biota and 

nitrogen nutrition. Biol. Fert. Soils. 28: 356-363. 

Burdon, J. 2001. Are the traditional concepts of the structures of humic substances 

realistic? Soil Sci. 166: 75-769. 

218 



 

Capriel, P., T. Beck, H. Borchert, and P. Harter. 1990. Relationship between soil 

aliphatic fraction extracted with supercritical hexane, soil microbial biomass, 

and soil aggregate stability. Soil Sci. Soc. Am. J. 54: 415-420. 

Degens, B.P. 1997.   Macro-aggregation of soils by biological bonding and binding 

mechanisms and the factors affecting these: a review.  Aust. J. Soil Res. 35: 431-

459. 

Gale, W.J. and Cambardella, C.A. 2000. Carbon dynamics of surface residue- and root-

derived organic matter under simulated no-till. Soil Sci. Soc. Am J. 64: 190-195. 

Gliessman, S.R. 2000. The ecological foundations of agroecosystem sustainability. In: 

S.R. Gliessman (ed.) Agroecosystem Sustainability-Developing Practical 

Strategies. p. 3-14. CRC Press. New York. 

Gupta, V.V.S.R., and J.J. Germida.  1988.  Distribution of microbial biomass and its 

activity in different soil aggregate size classes as affected by cultivation.  Soil 

Biol., Biochem.  20:6.  777-786. 

Hatcher, P.G., K.J. Dria, S. Kim and S.W. Frazier. 2001. Modern analytical studies of 

humic substances. Soil Sci. 166: 770-794. 

Hayes, M.H.B. and C.E. Clapp. 2001. Humic substances: Considerations of 

compositions, aspects of structure, and environmental influences. Soil Sci. 

166(11): 723-737. 

Iyer, S. and B. Lonnerdal. 1993. Lactoferrin, lactoferrin receptors and iron metabolism. 

Euro. J. Clin. Nutrit. 47: 232-241. 

219 



 

Jastrow, J.D., R.M. Miller, and J. Lussenhop. 1998. Contributions of interacting 

biological mechanisms to soil aggregate stabilization in restored prairie. Soil 

Biol. Biochem. 30(7): 905-916. 

Kemper, W.D. and E.J. Koch. 1966. Aggregate stability of soils from Western United 

States and Canada: measurement procedure, correlations with soil constituents. 

U.S. Dept. of Agriculture, Technical bulletin no. 1355. Washington, D.C. 

MacCarthy, P. 2001. The principles of humic substances. Soil Sci. 166(11): 738-751. 

Miller, R.M., D.R. Reinhardt, and J.D. Jastrow. 1995. External hyphal production of 

vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie 

communities. Oecologia. 103: 17-23. 

Rillig, M.C., S.F. Wright, M.F. Allen, and C.B. Field. 1999. Rise in carbon dioxide 

changes soil structure.  Nature 400: 628. 

Rillig, M.C., S.F. Wright, K.A. Nichols, W.F. Schmidt, M.S. Torn. 2001. Large 

contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical 

forest soils. Plant Soil. 233: 167-177. 

Rillig, M.C., S.F. Wright, and V.T. Eviner. 2002. The role of arbuscular mycorrhizal 

fungi and glomalin in soil aggregation: Comparing effects of five plant species. 

Plant Soil 238: 325-333. 

Schreiner, R.P. and G.J. Bethlenfalvay. 1995. Mycorrhizal interactions in sustainable 

agriculture. Crit. Rev. Biotechn. 15(3/4): 271-285. 

Schulten, H.-R., and M. Schnitzer. 1997. Chemical model structures for soil organic 

matter and soils. Soil Sci. 162(2): 115-130.  

220 



 

Simpson, A. 2001. Multidimensional solution state NMR of humic substances: A 

practical guide and review. Soil Sci. 166(11): 795-809. 

Six, J., A. Carpenter, C. van Kessel, R. Merck, D. Harris, W.R. Horwath, and A. 

Lüscher. 2001. Impact of elevated CO2 on soil organic matter dynamics as 

related to changes in aggregate turnover and residue quality. Plant Soil 234: 27-

36. 

Six, J., E.T. Elliott, K. Paustian. 2000. Soil structure and soil organic matter: II. A 

normalized stability index and the effect of mineralogy.  Soil Sci. Soc. Am. J. 

64: 1042-1049. 

Steinberg, P.D. and M.C. Rillig. 2003. Differential decomposition of arbuscular 

mycorrhizal fungal hyphae and glomalin. Soil Biol. Biochem. 35: 191-194. 

Tisdall, J.M. and J.M. Oades. 1979. Stabilization of soil aggregates by the root systems 

of ryegrass. Aust. J. Soil Res. 17: 429-441. 

Tisdall, J.M. and J.M. Oades. 1982. Organic matter and water-stable aggregates in soils. 

J. Soil Sci. 33: 141-163. 

Wessels, J. G. H. 1997. Hydrophobins:  Proteins that change the nature of the fungal 

surface. Adv. Microb. Physiol. 38: 1-45. 

Wright, S.F. 2000. A fluorescent antibody assay for hyphae and glomalin from 

arbuscular mycorrhizal fungi. Plant Soil 226: 171-177. 

Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya.  1996.  Time-course 

study and partial characterization of a protein on arbuscular mycorrhizal hyphae 

during active colonization of roots.  Plant Soil.  Plant Soil.  1-12. 

221 



 

Wright, S.F. and A. Upadhyaya. 1996.  Extraction of an abundant and unusual protein 

from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. 

Soil Sci. 161: 575-585. 

Wright, S.F., and A. Upadhyaya. 1998.  A survey of soils for aggregate stability and 

glomalin, a glycoproteins produced by hyphae of arbuscular mycorrhizal fungi.  

Plant Soil 198: 97-107. 

 

222 



 

 

 
 

14%

23%

20%
4%

14%

25%

HA

R. glomalin

Glomalin

P. glomalin

FA

Residual POM

 
 
 
Figure 8A. Distribution of organic C in six organic matter fractions – humic acid 

(HA), recalcitrant glomalin (R. glomalin), glomalin, glomalin extracted from the 

particulate organic matter fraction (POM) (P. glomalin), fulvic acid (FA), and 

Residual POM – extracted from 6 soils (two each from Maryland, Georgia and 

Colorado). Data from Chapters 2 and 3.
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Appendix A. Detailed methods for organic matter extraction 

Appendix A1. Physical separation of POM  

Method 

1. Weigh out five 2-g samples (10 g total) into autoclavable centrifuge tubes. 

2. Add 10 mL of 12% (w/v) NaCl to each tube. 

3. Vortex briefly. Let settle at RT for 30 min. 

4. Decant carefully over a 53 µm screen.  Collect organic debris from each of the five 

tubes in one soil to have a bulk POM fraction from each soil.  Keep the soil in each 

tube separate. 

5. Add 5 mL of 12% NaCl to each tube. 

6. Repeat steps 3-5 for a total of 5 extractions.  

7. Fill tube about 1/4 full with distilled water. 

8. Centrifuge at 6850 × g for 10 min and decant rapidly over screen. 

9. If more POM is visible in the sample, use forceps to remove or repeat steps 7-8.  

10. Rinse POM collected on screen thoroughly with distilled water to remove salt. 

11. Rinse POM off screen into a pre-weighed weight boat. 

12. Dry material in weigh boats on slide warmer at 70oC and record dry weight. 

13. If the remaining soil will be used for additional analyses, wash the soil repeatedly 

using distilled water and centrifugation. Next, wash the soil into weigh boats, dry at 

70oC and weigh. 
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To extract other fractions of organic matter (i.e. glomalin, HA and FA) from POM 

or soil minus POM: 

1. Carefully, rinse or scrape material from weigh boats into autoclavable centrifuge 

tubes with a minimal amount of water. 

2. Use centrifugation, if necessary, to remove the wash water. Excess water will dilute 

extraction solutions. 

3. Extract glomalin or HA and FA using the appropriate procedure – Appendices A2 

and A3 respectively. 
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Appendix A2. Chemical extraction of glomalin 

Method 

1. Add 8 mL of 50 mM citrate, pH 8.0, to each sample. 

2. Autoclave for 1 hr. 

3. Centrifuge at 6850 × g for 10 min and decant. 

4. Repeat steps 1-3 until solution color lightens (i.e. straw-colored), combine all 

repeated extracts but keep extracts from each sample separate. 

5. Centrifuge at 6850 × g for 10 min, measure volume and transfer to a new tube. 

6. Remove a 1 mL sample for protein assays and set aside. 

7. Precipitate glomalin from the extract with a minimum volume of 1 N HCl by drop 

wise addition until the pH is 2.5. Keep the solution on ice for 45 min to 1 h. 

8. Centrifuge at 6850 × g and dispose of supernatant. 

9. Quickly re-dissolve the precipitate with a minimum volume of 0.1 N NaOH. 

10. Place the solution in dialysis tubing with MWCO = 8,000 to 12,000 D. 

11. Dialyze against de-ionized water with at least five, and up to ten, changes of water 

(depending on the number and size of samples and size of dialysis container). 

12. Transfer the dialyzed sample to a centrifuge tube and centrifuge at 6850 × g for 10 

min. 

13. Carefully decant the supernatant, freeze dry and weigh freeze-dried material. 
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Appendix A3. Chemical Extraction of Humic and Fulvic acid  

Method 

1. Equilibrate sample to pH 1-2 with 1 mL 1 N HCl at room temp. 

2. Add 10 mL 0.1 N HCl . 

3. Shake 1 h. 

4. Centrifuge at 6850 × g for 10 min, decant and save supernatant as part of fulvic acid 

fraction. 

5. Neutralize the precipitate with 1 mL 1 N NaOH under N2 . 

6. Add 10 mL 0.1 N NaOH under N2 . 

7. Extract for 4 h with intermittent shaking under N2. 

8. Allow to settle overnight under N2. 

9. Centrifuge at 6850 × g for 10 min and collect supernatant as part of fulvic acid 

fraction. 

10. Repeat steps 5-9, and continue adding the supernatant to acidified (fulvic acid) 

supernatant. 

11. Acidify supernatant with 6 N HCl to pH 1.0. 

12. Allow to stand for 12-16 h. 

13. Centrifuge at 6850 × g for 10 min and separate humic acid (precip) and fulvic acid 

(supernatant). 

14. Add fulvic acid supernatant to supernatant collected at step 1. 

To purify the humic fraction: 

1. Re-dissolve the precipitate in a minimum volume (~5 mL) of 0.1 N KOH under N2. 

2. Add solid KCl to attain a concentration of 3 M [K+]. 
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3. Centrifuge at 10844 × g for 10 min to remove suspended solids. 

4. Re-precipitate with 6 N HCl pH 1.0. 

5. Allow to stand for 12-16 h. 

6. Centrifuge at 6850 × g for 10 min and dispose of supernatant. 

7. Suspend the precipitate in ~5 mL (depending on amount of material) 0.1 N HCl/0.3 

N HF. 

8. Shake overnight at room temp. 

9. Centrifuge at 6850 × g for 10 min and carefully decant. 

10. Repeat steps 7-9 twice. 

11. Add de-ionized water to rinse away acid, centrifuge 10844 × g for 3 min and decant 

and discard the supernatant. 

12. Re-suspend the precipitate in ~5 mL 0.1M KOH. 

13. Remove a 0.5-1 mL sample for protein assays and set aside. 

14. Precipitate with 6 N HCl. 

15. Let settle overnight, centrifuge and decant carefully and discard the supernatant. 

16. Add de-ionized water, centrifuge and decant carefully and discard the supernatant. 

17. Freeze-dry and weigh freeze-dried material. 

 

To purify fulvic acid: 

1. Remove 1 mL from composited supernatants and set aside for further analysis. 

2. Transfer the remaining supernatant to dialysis tubing (MWCO = 8,000 to 12,000 D) 

and dialyze against de-ionized water. This pore size dialysis tubing does not retain 
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all of the low molecular weight FAs but was used in this work to determine whether 

glomalin was co-extracted with FA. 

3. When pH is neutral, freeze dry. 

4. Weigh freeze-dried material. 
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Appendix B. Diagram of the sequential extraction of organic matter from six U.S. soils 

Acidification and 
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Appendix C.  Protein measurements 

C1. Bradford total protein assay 

Introduction 

 This procedure is used to measure protein concentration in samples that were 

extracted for glomalin, after either the total or easily extractable extraction procedure.  

This assay does not give the most accurate glomalin concentration, because it is not 

specific for glomalin, but it will measure any protein that has survived the extraction 

procedure at a concentration greater than 1.25 µg/100 µl sample.  Bradford protein 

values are usually higher than the values calculated from the ELISA procedure, but 

values from this assay determine the dilution factor needed to perform the ELISA 

procedure and are used to compare samples based on the percentage of total protein that 

is immunoreactive. 

Methods 

1. Prepare standard curve, using BSA (bovine serum albumin) as outlined below.   

2. Add 200 µl of PBS (phosphate buffered saline) minus the volume of extract to each 

well in a 96 well plate.  (For example, if you put 5 µl of sample in the well, you will 

need 195 µl of PBS.) Extract volume will typically be 10µl, 5µl, or 2µl depending 

on color. (Follow color chart to determine amount of sample to add.) 

3. Start 5 min on timer. Carefully add 50 µl of Bio-Rad (Hercules, CA) protein dye 

reagent to each well. Mix quickly and well with a pipette.  

4. Pop bubbles with needle (clean needle between samples) and read at 595 nm after 5 

min has expired.  The Bradford reagent is acidic and glomalin will eventually 

precipitate. If a precipitate forms within 5 min, use less sample.  



 

5. Use BSA standard curve to calculate g protein kg-1 material extracted. 

BSA standard curve preparation 

1. Make 1 mL stock solutions of 5 µg BSA/200µl PBS (25 µg/1 mL) and freeze, until 

needed. 

2. Thaw and dilute with PBS as outlined below: 

Well 
designation 

µg/well BSA stock 
solution(µl) 

PBS (µl) 

Blank 0 0 200 
Standard 1 0 0 200 
Standard 2 1.25 50 150 
Standard 3 2.5 100 100 
Standard 4 3.75 150 50 
Standard 5 5 200 0 

 
Bradford color chart 

 The color of the extract can help you determine the right amount of sample to 

use for the reading to be somewhere within the values of the standard curve. 

 

Sample color µl sample/well 

Golden 50+ 
Golden-brown 25-50 
Brown 10-25 
Reddish brown 5-10 
Reddish black 1-5 
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C2. Indirect ELISA with biotinylated secondary antibody 

Introduction 

This assay allows you to determine the concentration of glomalin reactive with a 

monoclonal antibody. It uses an indirect assay that employs a biotinylated secondary 

antibody with a long spacer arm that apparently overcomes steric hindrance in the 

reaction between the antigen, the monoclonal antibody and the secondary antibody. 

Enzyme-linked streptavidin is the third reagent, and the reaction between biotin 

protruding from the site of reaction with the monoclonal antibody and streptavidin is 

covalent. This procedure allows detection of low concentrations of immunoreactive 

glomalin due to amplification of the signal. It is important to note that U-shaped 

polyvinyl chloride microtiter plates should be used. The shape of the well and type of 

plastic make a difference in the attachment of the antigen. The amount of sample 

needed is determined by using the Bradford total protein assay and adding an amount 

equal to 0.02 µg protein/well.  

Methods 
 
1. Add sample (amount determined from Bradford total protein assay to equal 0.02 µg 

per well) plus enough PBS to equal a total of 50 µl or 50 µl of pre-diluted sample to 

a well (Dynex 96 well microtiter plate). Prepare standard curve using glomalin from 

a highly immunoreactive soil as outlined below. 

2. Let it dry over night (make sure that it is completely dry).  

3. Add 250 µl/well of freshly prepared 2% non-fat milk to wells and incubate on 

shaker for 15 min. Flip plate into sink to remove milk and blot (via inverting and 

hard taps) on an absorbent paper towel.  
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4. Add 50 µl/well of diluted MAb 32B11 antibody (monoclonal antibody against 

glomalin) and incubate on shaker for 1 hr. Flip plate to remove and blot with paper 

towel. Wash with PBST (PBS with 0.2 mL/L Tween 20) 3x, blotting between 

washes.  

5. Add 50 µl/well of biotinylated IgM antibody, diluted in 1% BSA, and incubate on 

shaker for 1 hour. Flip plate to remove and blot with paper towel. Wash with PBST 

3x, blotting between washes.  

6. Dilute the ExtrAvidin® Alkaline Phosphatase (Sigma Aldrich, St. Louis, MO) in 

1% BSA and add 50 µl of the diluted solution to each well. Incubate for 1 hr. 

7. After incubation, flip plate to remove and blot with paper towel. Wash with PBST 

3x, blotting between washes.  

8. The fourth wash should be done with TBST [Tris Buffered Saline (250 mM NaCl, 

10 mM Tris(hydroxymethyl)aminomethane, and 0.2 mL/L of Tween 20)] at pH 7.4, 

because PBST will react with the phosphatase enzyme.  

9. Dissolve one tablet of Sigma 104® Phosphatase Substrate (disodium 4-nitrophenyl 

phosphate hexahydrate) (Sigma Aldrich, St. Louis, MO) (5mg tablets) in 5 mL of 

DEA buffer (Mix 97 mL of diethanolamine buffer, 10%, with 1L of 0.01% MgCl2 

solution, and adjust the pH to 9.8 with 1 N HCl. The solution must be kept sterile 

and stored covered at room temperature).  

10. Add 50 µl to each well and incubate for 30 min. Read plate at 405 or 410 nm.  

11. Use standard curve to calculate g  protein kg-1 material extracted. 
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Standard curve preparation – Serial dilution 

1. Put 100 µl of the 0.08 µg protein/100 µl of PBS in 2 of the wells and 50 µl PBS in 

the other 10 wells.  

2. Transfer 50 µl of the 0.08 µg sample to a neighboring well that has 50 µl PBS.  

3. Mix 3-4 times with the micropipet by pulling the sample up and down.  

4. Remove 50 µl from these 2 wells and transfer to 2 neighboring wells. Mix 3-4x.  

5. Repeat step 4 for a 3rd dilution. 

6. After the 3rd dilution, remove 50 µl from the 2 wells that have 100 µl and dispose of 

it.  

Wells will have the concentrations as outlined below:  

Well # Protein 
concentration 

(µg/50 µl) 
1 0 
2 0 
3 0 
4 0 
5 0.005 
6 0.005 
7 0.01 
8 0.01 
9 0.02 
10 0.02 
11 0.04 
12 0.04 

 
 
Serial diultion on ELISA plate:  

50 
50 50 

50 

100 ul of 
0.08ug/10050ul PBS 
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Appendix D. Immunoreactive protein (g protein kg-1 soil) in glomalin extracted from the particulate organic matter (POM) 

fraction (P. glomalin) and glomalin and humic acid (HA) extracted from soil minus POM. †‡ 

Fraction Baltimore a Baltimore b Sampson Haxtun Pacolet§ Cecil§ Mean¶ 

P. glomalin 0.01b 0.01b 0.32b 0.11b 0.04b 0.09ab 0.10±0.05b
Glomalin 0.75±0.05a 0.57±0.03a 0.76±0.07a 0.28±0.01a 0.30±0.00a 0.15±0.01a 0.47±0.11a
HA 

   
0.00±0.00b 0.01±0.00b 0.18±0.00b 0.01±0.00c 0.04±NDb 0.03±NDb 0.04±0.03b

P 0.0001 <0.0001 0.0042 0.0001 <0.0001 0.0367 <0.0001
 236

† Significant differences (P=0.05) were determined according to REML.   

‡ Mean ± SE were determined for fractions extracted from soil but not for fractions extracted from POM that was combined before 

extraction. 

§ ND = not determined. 

¶ Mean ± SE for all six soils. 

 



 

Appendix E. Gravimetric weights (g kg-1 soil) of organic matter fractions – glomalin, humic acid (HA) and fulvic acid (FA) – 

extracted from soil and particulate organic matter (POM) and of soil and POM before (Initial) and after (Residual) extraction 

for six U.S. soils. 

 Fraction Baltimore a Baltimore b Sampson Haxtun Pacolet Cecil Mean†  
 Soil – Initial  990.59 993.90 982.70 994.37 982.66 976.39 984.47±5.27 

POM – Initial 9.41 6.10 17.30 5.63 17.34 23.61 15.53±5.27 
P. glomalin§ 0.70 0.05 1.89 0.68 1.45 2.24 1.46±0.45b 

 HA     
      

    

0.01 0.00 0.13 0.00 0.36 0.32 0.23±0.11
FA 0.00 0.00 0.09 0.00 0.07 0.00 0.02±0.02

 
POM 
fraction 

Residual POM 3.15 2.63 16.65 3.49 6.65 7.05 5.73±1.13a 
Glomalin 17.76 9.13 5.54 6.28 7.40 6.38 6.68±0.36a
HA     

     
1.62 0.80 0.54 0.17 2.41  0.99±0.72b0.38

FA 0.76 0.85 1.94 0.30 1.02  0.53±0.24b0.29

 
Soil minus 
POM Residual soil 929.30 934.72 943.10 971.32 902.42 937.30 937.01±19.89
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† Significant differences (P < 0.0001) were determined for the five major extractable organic matter fractions according to REML.   

‡  Mean ± SE for all six soils. 

§ P. glomalin = glomalin extracted from the POM fraction 

 



 

Appendix F. Carbon weights† (g kg-1 soil) of organic matter fractions – glomalin, humic acid (HA) and fulvic acid (FA) – 

extracted from soil and particulate organic matter (POM) and of soil and POM before and after extraction for six U.S. soils.‡§ 

 Fraction Baltimore a Baltimore b Sampson Haxtun Pacolet Cecil Mean¶ 
 Soil – Initial  29.12 21.57 15.90 7.76 33.51 15.13 20.50±3.90

POM – Initial  29.22 21.07 24.79 21.93 18.06 23.63 23.12±1.54
P. glomalin‡ 0.26 0.02 0.73 0.24 0.61 1.01 0.48±0.15c
HA     

     

   

NA NA 0.06 NA 0.18  0.12±0.06NA
FA NA NA 0.04 NA 0.03  0.03±0.00NA

POM 
fraction 

Residual POM 1.27 0.87 3.24 0.63 2.03 1.93 1.66±0.39b
Glomalin 5.27 2.68 2.32 1.95 2.87 2.33 2.90±0.49a
HA    0.88 0.43 0.28 0.00 1.28  0.51±0.20c0.20
FA  0.20 0.22 0.26 0.09 0.36 0.08 0.20±0.04c

Soil minus 
POM 

Residual soil  13.75 11.93 10.75 3.01 18.68 10.31 11.41±2.09
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† Carbon weight = gravimetric weight x (percentage C ÷ 100) 

‡ Significant differences (P < 0.0001) were determined for the five major extractable organic matter fractions according to REML.   

§ NA = not enough material available to assay 

¶ Mean ± SE for all six soils. 

‡ P. glomalin = glomalin extracted from the POM fraction

 



 

Appendix G. Extraction of glomalin from hyphae with different buffer solutions 

Introduction 

Glomalin is typically extracted from soil and hyphae using a citrate buffer 

solution at high heat (Wright et al., 1996; Wright and Upadhyaya, 1996). Analysis with 

1H NMR (Chapter 7) showed that when extracted with citrate, the high temperature 

conditions caused some citrate to bind or ‘fuse’ to glomalin such that it could not be 

removed even after treatment with a strong acid (HCl) or a strong base (NaOH), such as 

were used in the purification procedures (Appendix A2). Other organic solutions had 

been used to extract glomalin, such as malate and citrate at different concentrations, pH 

levels, temperatures, and times, but 50 mM citrate at pH 8.0 extracted the most glomalin 

(Wright and Upadhyaya, 1996). This experiment was done to determine if glomalin 

could be extracted in other buffered solutions (such as borate, Tris and pyrophosphate). 

Materials and methods 

 Four arbuscular mycorrhizal (AM) species – Gigaspora (Gi.) rosea (FL224), 

Acaulospora (A.) morrowiae (CL551), Glomus (G.) etunicatum (BR220), and G. 

intraradices (WV964)] were grown on corn (Zea mays) in sterile, single-species pot 

cultures. After 14 weeks, pots were harvested: (1) shoots were removed and disposed 

of, (2) nylon mesh bag was removed, and (3) sand outside of nylon mesh bag was rinsed 

with water to separate hyphae. (Complete details of the pot culturing and harvesting 

procedures are in Chapter 6.) 

 Hyphae for each species were divided into four different tubes. Glomalin was 

extracted from hyphae using one of four buffer solutions: Tris (Trizma® base, 2-

Amino-2-(hydoxymethyl)-1,3-propanediol), sodium citrate, sodium borate, and sodium 
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pyrophosphate. Extractions were made at 121oC in 100 mM solutions, pH 9.0, for 1 hr. 

Extract solution was collected after centrifugation at 10844 × g for 3 min. Hyphae was 

rinsed into weigh boats, dried at 70oC and weighed. Glomalin concentration (mg g-1 

hyphae) was measured in each extract solution using total and immunoreactive protein 

assays. (For detailed descriptions of the protein assays, see Appendix C.) 

Results and Discussion 

 The buffers were chosen for the following reasons: (1) citrate was the positive 

control, (2) Tris is frequently used in protein assays, (3) borate is a common buffer 

(frequently used in dialysis of proteins) and is relatively inert, and (4) pyrophosphate 

has been used to extracted humic substances from the soil (Clapp and Hayes, 1999; 

Stevenson, 1994).  

Glomalin was successfully extracted from hyphae using each of the extraction 

buffers (Fig. E1). The Tris buffer extracted the least amount of glomalin, while the 

pyrophosphate and borate extracted the most. Borate was the most inert buffer and 

would not contribute an organic contaminant to the glomalin fraction. Pyrophosphate 

may not add more organic material to the glomalin fraction, but with the amount of iron 

that is typically found in glomalin (0.2 to 6.0%) (Chapter 7) some phosphate may bind 

to glomalin. 

In soil, sodium pyrophosphate releases humic material from organo-mineral 

complexes (where Fe- and Al-(hydr)oxides bridge organic matter and clay minerals 

together) with divalent cations via isomorphic substitution (a monovalent cation causes 

these complexes to dissociate) (Clapp and Hayes, 1999). Glomalin, which is similar to 

humic material and may from organo-mineral complexes in the soil and may be 
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solubilized by the same reactions as humic materials. Pyrophosphate is also a metal 

chelator, like citrate, and may solubilize glomalin by binding to iron in glomalin. Since 

iron concentrations in glomalin from hyphae are lower than glomalin from soil (0.2% 

compared 4.1%), glomalin was not expected to be bound in complexes and 

pyrophosphate was not expected to extract more glomalin than citrate (as was seen for 

three of the four species).  

Two reasons why pyrophosphate may have extracted more glomalin from 

hyphae than citrate are: (1) sodium in solution binds to glomalin at the normal binding 

sites for iron and the concentration of the sodium ion in pyrophosphate is higher than in 

citrate (35% compared to 23%) or (2) pyrophosphate (i.e. phosphate) may be interacting 

with glomalin in some unknown manner that increases solubility. Since one of the 

functions of AM fungi is improved phosphorus nutrition (Bolan, 1991), the interaction 

with pyrophosphate may indicate a mechanism for the involvement of glomalin in P-

acquisition. The sodium ion concentration alone does not result in improved extraction 

of glomalin because borate, which also had 23% sodium, extracted about the same 

amount of glomalin as pyrophosphate for only two of the fungal species (A. morrowiae 

and Gi. rosea).  

The data does not show any definitive pattern except that pyrophosphate 

extracted more glomalin as measured by the total protein assay. When the 

immunoreactive protein concentrations are examined, it becomes even more difficult to 

establish a pattern. It is highly probably that there are variations in the structure of 

glomalin produced by different species or genera that influence the ability to extract 

glomalin and/or to retain immunoreactivity.  
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Another problem with the immunoreactivity data was that the concentration of 

immunoreactive protein in glomalin extracted from hyphae of G. intraradices by both 

Tris and citrate was much higher than the total protein concentration. Frequently, it has 

been noted that immunoreactive protein concentrations are less than 100 percent of the 

total protein concentrations. (See Chapters 1 and 2 for a discussion on how 

conformational changes may interfere with immunoreactivity.) Values of over 100 

percent may have occurred because: (1) the sensitivity of the standard curve for the total 

protein assay (0 to 5 µg) is more than 100 times less than that for the immunoreactive 

protein assay (0 to 0.04 µg), (2) the concentrations, especially for immunoreactive 

protein, being measured are so small that a difference of 0.01 µg µl-1 in the assay would 

be equivalent to 5 µg in a 500 µl sample, and (3) there may be more than one epitope 

(i.e. binding site) for the antibody, but it is unlikely that multiple molecular 

configurations react with a monoclonal antibody.  

Despite these questions, this experiment showed that inorganic buffers extract 

glomalin. A further study was conducted in our laboratory to extract glomalin from soil 

using these same buffer solutions. Carbon values for glomalin extracted from soil were 

not significantly higher in glomalin extracted with citrate. This indicated that only a 

small amount of citrate binds to glomalin. Therefore, citrate was not a major contributor 

to the gravimetric or carbon weights of glomalin.  
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Figure G1. Total and immunoreactive protein measured on glomalin extracted from hyphae of four arbuscular mycorrhizal 

species (Acaulospora morrowiae, Glomus etunicatum, G. intraradices, and Gigaspora rosea) using one of four buffer solutions 

[Tris (T), citrate (C), borate (B), pyrophosphate (P)].

 



 

Appendix H. Diagrams of sequential extraction 

Appendix H1. Diagram of Extraction Sequence 1: citrate extraction of glomalin before NaOH extraction of humic acid (HA) 

and fulvic acid (FA) followed by citrate extraction of recalcitrant glomalin (R. glomalin). 

Acidification and 
centrifugation

NaOH extraction 

Residual material

Soil

Glomalin 

Citrate extraction 

Residual materialHA and FA mix

Citrate extraction 

Residual soil R. glomalin FA HA 
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Appendix H2. Diagram of Extraction Sequence 2: citrate extraction of glomalin after NaOH extraction of humic acid (HA) 

and fulvic acid (FA) followed by citrate extraction and pH level separation of HA. 

SupernatantPrecipitate

Titrate to pH 1.0 (C)

SupernatantPrecipitate 

Titrate to pH 2.0 (B)

SupernatantPrecipitate 

Titrate to pH 2.5 (A) 

Citrate extraction 

HA and Glomalin Mix Citrate insoluble HA 

Acidification

NaOH extraction 
HA and FA mix Soil 

Soil  

HA  
 

FA  
 

Residual materialGlomalin 

Citrate extraction
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Appendix I. Characteristics of eight U.S. soils extracted for glomalin and humic acid. † 

  
Baltimore 

(site a) 
Baltimore 

(site b) Wymore      Pawnee Sampson Haxtun Pacolet Cecil
Mean annual 

temperature (oC)         12 12 13 12 9 9 17 17
Mean annual 

precipitation (mm)         

         

         

         

         

         

         

         

         

         

         

         

         

1067 1067 838 762 381 432 1250 1250

% sand 26 27 15 21 48 78 NA 75

% silt 49 47 57 59 36 12 NA 14
 

% clay 25 26 28 20 16 10 NA 11
 

% OM 6.3 5.0 4.9 4.9 4.2 1.9 7.7 4.0

Mg (ppm) 52.0 32.4 150.2 150.2 150.2 150.2 150.2 18.0

K (ppm) 196.6 64.4 210.9 104.2 225.2 225.2 137.6 43.7

Ca (ppm) 134.5 13.8 1505.1 1505.1 1505.1 944.8 850.0 13.8

Zn (ppm) 6.9 3.6 1.6 1.1 1.2 0.6 16.5 1.0

Mn (ppm) 136.0 92.0 42.5 46.0 25.5 18.0 48.5 18.0

Cu (ppm) 1.3 1.2 0.5 0.4 0.2 0.2 0.7 0.4

SO4 (ppm) 15.4 20.6 1.6 1.1 1.8 1.0 NA 2.6

NO3 (ppm) 19.2 4.6 1.0 0.8 2.2 1.3 NA 0.7
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Appendix J. Gravimetric weights (g kg-1 soil) for the seven organic matter fractions – Residual particulate organic matter 

(POM), glomalin extracted from POM (P. glomalin), glomalin, glomalin extracted after humic and fulvic acid extraction (R. 

glomalin), humic acid (HA), and fulvic acid (FA) – extracted from three aggregate size classes [1-2 (A), 0.5-1 (B), and 0.25-0.5 

(C) mm] collected from five undisturbed U.S. soils. 

Soil  Size Residual 
POM P. glomalin Glomalin R. glomalin HA FA 

Baltimore        A 2.02 0.12 9.19 1.91 0.83 0.88
Sampson A       

        
        

        
        

24.72 1.86 6.17 2.41 0.31 2.61
Haxtun A 19.46 2.35 5.45 1.62 0.33 0.03
Pacolet A 9.12 1.26 5.81 2.82 1.51 0.86
Cecil A 9.84 0.84 2.99 0.82 0.11 0.34

Baltimore B 2.35 0.72 9.03 2.09 1.40 0.84
Sampson        

        
        

        
        

B 19.70 2.64 6.31 1.72 0.07 0.41
Haxtun B 26.76 3.19 6.05 1.71 0.20 0.22
Pacolet B 9.56 1.18 5.21 3.13 1.19 1.26
Cecil B 7.85 1.37 2.65 1.30 0.04 0.01

Baltimore C NA† 0.37 13.17 3.22 1.60 0.82
Sampson        

        
        

        

C 14.50 1.10 8.17 3.02 0.54 2.08
Haxtun C 3.37 0.48 4.08 0.78 0.04 0.07
Pacolet C 7.61 1.00 7.76 5.55 2.48 1.38
Cecil C 6.89 1.14 4.55 1.38 0.18 0.03
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† NA = quantity not sufficient for assay. 

 



 

Appendix K. Total protein weights (g protein kg-1 soil) in glomalin extracted from the particulate organic matter fraction (P. 

glomalin), glomalin, glomalin extracted after humic and fulvic acid extraction (R. glomalin), and humic acid (HA) extracted 

from three aggregate size classes [1-2 (A), 0.5-1 (B), and 0.25-0.5 (C) mm] collected from five undisturbed U.S. soils.† 

Soil Series Size P. glomalin    Glomalin R. glomalin HA
Baltimore A 0.13 (4) 1.87 (26) 0.48 (17) 0.81 (1) 
Sampson A 2.33 (22) 1.84 (39) 0.69 (23) 0.16 (47) 
Haxtun A 1.58 (21) 1.04 (23) 0.59 (8) 0.15 (43) 
Pacolet A 0.17 (25) 2.39 (17) 0.82 (19) 0.04 (71) 
Cecil A 0.65 (9) 1.62 (8) 0.23  (8) 0.08 (23) 

 Mean‡  A 0.97 ± 0.43 (16 ± 4)  1.75 ± 0.22 (23 ± 5)  0.56 ± 0.10 (15 ± 3)  0.25 ± 0.14 (37 ± 12) 
Baltimore B 0.10 (6) 1.62 (29) 0.53 (17) 0.77 (NA) 
Sampson B 1.87 (25) 1.35 (31) 0.71 (21) 0.27 (45) 
Haxtun B 1.83 (21) 1.11 (23) 0.62 (6) 0.20 (34) 
Pacolet B 0.21 (26) 2.72 (12) 0.91 (16) 0.08 (NA) 
Cecil B 0.65 (6) 0.77 (13) 0.32 (6) 0.08 (27) 

 Mean‡  B  0.93 ± 0.39 (17 ± 4)  1.51 ± 0.33 (21)  0.62 ± 0.10 (13)   0.28 ±  0.13 (35 ± 5) 
Baltimore C 0.15 (6) 1.38 (19) 0.75 (22) 0.68 (1) 
Sampson C 1.38 (26) 1.83 (25) 1.09 (19) 0.39 (46) 
Haxtun C 0.44 (16) 0.80 (10) 0.24 (7) 0.10 (40) 
Pacolet C 0.21 (29) 3.36 (16) 1.93 (13) 0.15 (26) 
Cecil C 0.66 (11) 1.57 (8) 0.45 (5) 0.22 (17) 

Mean‡ C   0.57 ±  0.22 (18 ± 4)   1.79 ±  0.43 (16 ± 3)   0.89 ±  0.30 (13 ± 3)   0.31 ±  0.10 (26 ± 8) 
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† Values in parentheses are percentage of immunoreactive (IR) protein: % IR = (IR ÷ TP) * 100 

‡ Means ± SEs 

 



 

Appendix L. Plot Design for the Farming Systems Project, Beltsville, MD 

Background: The entire 16 ha site was planted to no-till corn for three years. A detailed 

soil survey was conducted at 47 sampling points in a non-uniform grid in 1993 (Fig. 

L1). In 1993, 1994 and 1995, numerous crop, soil and weed characteristic were 

measured at up to 298 sampling points. Areas of minimum variability were identified by 

this data. The lowest block variability was with blocking on soil drainage class. Four 

plots for each treatment system and rotation year were established in strips (110m long 

and 9.1 m wide) in the field (Figs. L2 and L3). All crops in a rotation are present at the 

same time giving 2 to 4 subsystems for each system. Maps and plot design were 

provided courtesy of Michel Cavigelli at USDA-ARS, Beltsville, MD. 
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Figure L1. The soil survey map showed that the Farming Systems Project site 

contained several different soil types distributed throughout the field. If you overlay the plot design in Figs. L2 and L3, you 

can see that each of the soil types is represented in each system. 

Symbol Map Unit Name 
CeA Christina Silt Loam, 0-

3% slope 
CeB Christina Silt Loam, 3-

8% slope 
DoA Downer Sandy Loam, 0-

3% slope 
EkA Elkton Silt Loam, 0-3% 

slope 
KeA Keyport Silt Loam, 0-3% 

slope 
KxA Keyport Silt Loam 

variant, 0-3% slope 
KxB Keyport Silt Loam 

variant, 3-8% slope 
MkA Matapeake Silt Loam, 0-

3% slope 
MkB Matapeake Silt Loam, 3-

8% slope 
MxA Mattapex Silt Loam, 0-

3% slope 
Ota Othello Silt Loam, 0-3% 

slope 
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Sys.  Plot Crop Sys. Plot Crop
2.1    101 W/SB 7.1 107 C
2.2   102 C 7.2 108 SB
1.1    103 W/SB 7.3 109 W/H
1.2   104 C 7.4 110 H
5.2    105 C 3.1 111 W/SB
5.1    106 SB 3.2 112 C

    6.1 113 W/F
4.2    201 C 6.2 114 C
4.1    202 W/SB 6.3 115 SB
7.2    203 SB 4.1 116 W/SB
7.1    204 C 4.2 117 C
7.3   205 W/H
7.4  206 H 
5.2   207 C
5.1   208 SB
6.3   209 SB
6.2    210 C
6.1   211 W/F
2.2   212 C
2.1    213 W/SB
3.2  214 C 
3.1   215 W/SB
1.1    216 W/SB
1.2  217 C 
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252 Crop Designations (Crop in 
system at time of sampling) 
C – Corn 
H – Hay 
SB – Soybean, full season 
W/SB – Wheat-Soybean,  

double crop 
W/F –Wheat, fallow 
W/H – Wheat – Stubble  

Hay 
System Designations 
See Table 4A. 

Figure L2. Farming Systems Project - 2000 Plot Plan  
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Figure L3. Aerial picture of the Farming Systems Project site, the open areas (A) were locations of high variability based on 

the pre-assessment and were not included in the experimental design. 

 



 

Appendix M. Equations used to calculate the Normalized Stability Index (NSI) 
 
 
Formula for calculation of disruption level in each size class is: 
 

( ) ( )( )
( ) ( ) [ ]

[ ]SioPio
SiPiSioPio
SiPiSioPio

DLSi
−

×
⎥
⎦

⎤
⎢
⎣

⎡
−−−

+−−−

=
1

2
    (1) 

 
where DLSi = disruption level for each size class I; Pio = proportion of total sample 

weight in size class I before disruption (i.e. capillary rewetted); Pi = proportion of total 

sample weight in size class I after disruption (i.e. slaked); Sio = proportion of sand with 

size I in aggregates of size I (= aggregate-sized sand) before disruption; Si = proportion 

of sand with size I in aggregates of size I after disruption. All proportions are expressed 

on a soil weight basis (g fraction g-1 soil). The size classes in this study were I = 1 = 53-

250 µm, I = 2 = 250-2000 µm, and I = 3 = > 2000 µm. 

 
 

Formula for the whole soil disruption level (DL) is: 
 

( )[ ]∑ ×−+=
n

i
DLSiInnDL 1/1       (2) 

 
where n = number of aggregate size classes. 
 
 
 
 
Formula for the calculation of the maximum disruption in each size class [DLSi (max)] 
is: 
 

( ) ( ) ( )[ ] [ ]
[ ]SioPio

PpPioPpPio
DLSi

−
×

−+−
=

1
2

max    (3) 

 
where Pp = primary sand particle content with the same size as the aggregate size class 

after complete disruption of the whole soil. 
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Formula for the whole soil maximum disruption [DL(max)] is:  
 

( )[ ] (max)1/1(max) ∑ ×−+=
n

i
DLSiInnDL      (4) 

 
where n = number of aggregate size classes. 
 
 
 
Normalized stability indexed is calculated as: 
 

⎥⎦
⎤

⎢⎣
⎡−= (max)1 DL
DLNSI        (5) 

 
 

Reference 
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Appendix N. Total and immunoreactive protein weights (g protein kg-1 soil) of 

glomalin extracted from the particulate organic matter fraction (P. glomalin), 

glomalin and humic acid (HA) in three farming systems (System 1.1 – Synthetic 

NT C-W-SB, System 2.1 – Synthetic CT C-W-SB, and System 6.1 – Organic MT C-

SB-W) at the Farming Systems Project site in Beltsville, MD in July, 2000.† 

System P. glomalin Glomalin HA P 
Total Protein Weight 

1.1 0.05 ± 0.01c 1.01 ± 0.06a 0.37 ± 0.02b <0.0001 
2.1 0.05 ± 0.01c 1.08 ± 0.04a 0.38 ± 0.06b <0.0001 
6.1 0.08 ± 0.02c 1.20 ± 0.06a 0.43 ± 0.02b <0.0001 

Immunoreactive Protein Weight 
1.1 0.01 ± 0.00a 0.84 ± 0.18a 0.37 ± 0.03a 0.1352 
2.1 0.01 ± 0.00c 1.23 ± 0.04a 0.41 ± 0.08b <0.0001 
6.1 0.02 ± 0.00a 1.13 ± 0.11a 0.28 ± 0.02b 0.0386 

 

† Mean ± SE.  

‡ Different letters in a row indicate significant differences according to REML.  
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Appendix O. Total (TP) and immunoreactive (IRP) protein weights (g protein kg-1 

soil) in glomalin extracted from nine systems at the Farming Systems Project site 

in Beltsville, MD in April, 2001.† ‡ 

Experiment System/Plots Sampled TP IRP 
1.1 – Synthetic NT  

C-W-SB 1.60 ± 0.07Aa 0.72 ± 0.06Aa 
Controls§ 2.1 – Synthetic CT  

C-W-SB 1.66 ± 0.06Aa 0.79 ± 0.09Aa 

3.1 – Synthetic MT  
C-W-SB, 2X raw manure 1.64 ± 0.10A 0.76 ± 0.04A 

3.2 – Synthetic MT  
C-W-SB, 1X raw manure 1.61 ± 0.06A 0.77 ± 0.06A 

4.1 – Synthetic MT C-W-
SB, 2X composted manure 1.57 ± 0.09A 0.71 ± 0.02A 

Fertilizer 
Treatment 

4.2 – Synthetic MT C-W-
SB, 2X composted manure 1.45 ± 0.04A 0.70 ± 0.04A 

Prob>F  0.3868 0.8092 

5.1 – Organic MT C-SB 1.61 ± 0.11a 0.65 ± 0.07a 
6.3 – Organic MT  

C-SB-W 1.74 ± 0.15a 0.80 ± 0.10a Rotation 
Length 

7.2 – Organic MT  
C-SB-W-H 1.53 ± 0.04a 0.74 ± 0.03a 

Prob>F  0.6042 0.6147 

 

† Mean ± SE.  

‡ Different letters in a column indicate significant differences according to REML. 

Uppercase letters are used for the Fertilizer Treatment experiment plus controls and 

lowercase letters for the Rotation Length experiment plus controls.  

§ These were the positive [no-till (NT)] and negative [conventional tillage (CT)] 

treatments that were used as controls the statistics for both April, 2001 experiments. 
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Appendix P. Immunofluorescence assay 

Introduction 

An indirect immunofluorescence procedure is used to determine the location of 

the protein on fungal structures, roots, plastic mesh, soil particles, etc. The monoclonal 

antibody (MAb 32B11, and IgM class of antibody) is incubated with the sample. A 

fluorescent tagged secondary is a commercially available reagent (FITC-tagged goat 

anti-mouse IgM). A microscope with an ultraviolet-emitting light source is used to view 

the location of green color as an assessment of the location of the protein.   

Materials and methods 

1. Place root fragments or sand aggregates in small sieve (made from 10 mm ID 

polyvinyl chloride or other plastic tubing with a 40 um nylon mesh glued to the 

bottom) or place the mesh pieces themselves in wells of a 12-well plate. 

2. Add 2% (w/v) skim milk (Carnation®) in phosphate buffered saline (PBS), pH 

7.4, to wells – enough to cover roots, sand or mesh  

3. Incubate while shaking (50-75 rpm) for 30 min 

4. Remove samples – place sieves or mesh on paper towels – and invert and blot 

plate to remove milk (via hard taps) 

5. Add monoclonal antibody 32B11 diluted in PBS – enough to cover – and 

incubate on shaker for 1 h   

6. Remove samples – place sieves or mesh on paper towels – and invert and blot 

plate to remove antibody solution 

7. Add PBS with Tween 20 (PBST) to cover and incubate on shaker for 5 min.  

Repeat PBST incubation twice.   
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8. Add FITC tagged goat anti-mouse IgM diluted in PBS plus 1% (w/v) bovine 

serum albumin (BSA) and incubate on shaker for 1 hour.   

9. Remove samples – place sieves or mesh on paper towels – and invert and blot 

plate to remove antibody solution  

10. Add PBST and incubate on shaker for 5 min. Repeat PBST incubation twice, 

followed by a 5-min incubation with PBS.   

11. Mount on slides with VectaShield® (Vector Laboratories, Burlingame, CA) 

mounting medium  

12. Examine using an epi-fluorescence microscope with band pass combination 

BP450-BP490 exciter filter, a dichroic chromatic beam splitter FT-150 filter, 

and a longwave pass LP-520 barrier filter 

13. Use a digital camera with a frame grabber to capture and save images 
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Appendix Q. Plant height vs. light intensity 

Background 

 By the end of the third culturing period for Gi. rosea, an obvious difference was 

seen in plant height for those plants directly under the sodium vapor lights in the 

greenhouse and those not under supplemental lighting (Fig. 5B). This culturing period 

was from December 12 to March 15 and had the lowest ambient irradiance throughout 

all but the last two weeks of the culturing period (Fig. 5C). Because this represented an 

ideal situation to test the effects of supplemental lighting, plant height and irradiance at 

the pot level were measured at harvest. Irradiance and plant height were linearly related 

(Fig. Q1). 
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Figure Q1. Relationship between the average height (cm) of corn plants per pot 

and irradiance (W m-2) at the pot level. 
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Appendix R. Glomalin weight per weight of hyphae 

Introduction 

An accurate assessment of extraradical arbuscular mycorrhizal (AM) hyphae is 

important in evaluating fungal contributions to plant growth and soil structure 

(Bethlenfalvay et al., 1987; Miller et al., 1995; Stahl et al., 1995). Hyphal length in soil 

is frequently measured by direct microscopic counts. Shaking manually or grinding in a 

buffer solution is used to separate hyphal from soil and homogenize the extract (Miller 

et al., 1995; Rillig et al., 2002; Stahl et al., 1995). Glomalin is a substance produced by 

AM fungi that may assist in the formation and stabilization of aggregates. Measuring 

glomalin production in relation to hyphal growth will help determine the role of 

glomalin in phenomena such as soil aggregation and source-sink relationships with the 

plant host.  

Measuring hyphal length is a tedious process and has inherent sources of error 

such as: (i)  separating hyphae from soil, (ii) getting a homogeneous sample, and (iii) 

human error (i.e. having more than one person making counts, counting at different 

times or observer subjectivity) (Stahl et al., 1995). Hyphal weight is often difficult to 

measure for amounts that are obtainable from pot cultures and may not be within the 

weight error of a balance that measures to 10-6 g. 

Unusually large amounts of fungal hyphae, enough to get an accurate weight, 

were produced in a soilless pot culture experiment after two 14-week culturing periods 

(Chapter 6).  Several methods were developed to isolate hyphae from this material and 

to obtain a more accurate measure of glomalin per unit of hyphae. The hyphae fraction 

collected by floatation and wet-sieving frequently contained a large number of spores, 
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fine sand:coal particles, and other debris. The objective of this work was to get as 

accurate a measure of hyphal mass as possible and to relate glomalin concentration to 

hyphal mass. 

Materials and Methods 

Three fractions (hyphae fraction, spore fraction and hyphae sand fraction) were 

collected with forced-water washing and wet-sieving using a series of small screens. 

The hyphae sand fraction was material left behind following forced-water rinsing and 

decanting over a 53 µm screen. Hyphae collected on this screen were rinsed through a 

series of stacked screens depending on spore size (G. etuniatum 60 µm and 53 µm 

screens and Gi. rosea 125 µm and 53 µm screen). The spore fraction consisted of 

material on the larger, top screen, while the hyphae fraction was on the smaller, bottom 

screen. Sand particles and small debris were removed from the hyphae fraction by 

repeated washing over screens and transferring to new beakers for density separation 

(i.e. hyphae floats and sand sinks to the bottom of the beaker). 

Samples were examined under a stereomicroscope, which showed that debris 

and spores remained attached to hyphae. Hyphae were selectively removed using 

forceps and transferred to a tissue grinder. Hyphae were partially crushed and separated 

by grinding the sample in an aqueous solution, which was then passed through a series 

of screens to collect the purest hyphae fraction on the smallest screen. For Gi. rosea, a 

125 µm screen was inserted to collect the spores so the subsequent 60 and 53 µm 

screens contained different sizes of hyphal fractions.  Only the 60 and 53 µm screens 

were used for G. etunicatum. Material on the 60 µm screen was placed in the tissue 

grinder and the grinding and sieving process was repeated until almost all of the hyphae 
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went through the larger screen. Material on both screens was collected separately, dried, 

weighed, and extracted for glomalin. In G. etunicatum samples, hyphae were ground 

until almost all of it went through the 60 µm screen, leaving only material on the 53 µm 

screen for glomalin extraction. 

Glomalin concentration was measured on a 1 mL aliquot by total and immuno-

reactive protein assays. (See Appendix C for assay methods.) The remaining glomalin 

extract solution was precipitated in acid, dialyzed, freeze-dried and weighed for 

comparison to hyphae. After extraction, hyphae were collected, dried and weighed. 

Results and Discussion 

 Isolation of fungal hyphae from spores and debris proved to be a tedious process 

with the problems that are discussed below.  The overall results are in Table R1.  

Problems: 

1. Comparisons using hyphal weight rather than hyphal length may be incorrect, 

because hyphal weight may be inflated by the weights of sand particles or other 

debris that are too tightly bound to hyphae to be removed by grinding.    

2. Grinding strips away the outer layer of the spore wall, which may be collected 

with the ‘pure’ hyphae and inflate the weight.  For Glomineae species, this outer 

layer also may have glomalin, which would bias these values. 

3. Grinding also appeared to release glomalin as scum/foam from hyphae as the 

hyphae break apart. This scum/foam was lost by rinsing the screen. 

4. It was difficult and time-consuming, if not impossible, to separate hyphae from 

spores and other debris.  Also, not all of the hyphae were collected as pure 

hyphae (some remains on the upper screens) using any of the separation 
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methods, i.e. grinding and sieving, which meant that comparisons cannot be 

made on a whole pot basis. 

5. Autoclaving the hyphal samples resulted in two problems: 1) a small amount of 

hyphae may lyse in the autoclave and 2) autoclaving appears to fuse hyphae, 

especially from the Glomus species, together creating more problems when 

trying to measure hyphal length. 
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Table R1. Weight of Gi. rosea or G. etunicatum hyphae isolated on either a 53 or 60 

µm screen and extracted for glomalin – measured as gravimetric weight, total 

protein weight (TP) and immunoreactive protein weight (IRP).  

 

AMF species Gi. rosea G. etunicatum 

Hyphae collection 53 µm screen 60 µm screen 53 µm screen 
 

Weight hyphae 
extracted (mg) 

 
3.38 ± 1.26 12.55 ± 3.64 1.28 ± 0.21 

Weight glomalin 
(µg mg-1 hyphae) 

 
59.14 ± 9.88 30.01 ± 10.38 67.17 ± 13.71 

TP 
(µg mg-1 hyphae) 

 
14.86 ± 2.04 10.15 ± 2.56 17.91 ± 2.54 

IRP 
(µg mg-1 hyphae) 5.66 ± 0.82 5.00 ± 1.38 18.30 ± 5.53 
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