
ABSTRACT

Title of dissertation: DERIVATION AND REPRESENTATION OF SYNTACTIC
AMALGAMS

Maximiliano Guimarães Miranda, Doctor of Philosophy, 2004

Dissertation directed by: Professor Juan Uriagereka
Department of Linguistics

This dissertation consists of an investigation of syntactic amalgamation (cf.

Lakoff 1974): the phenomenon of combination of sentences that yields

parenthetic-like constructions like (01).

(01) John invited God only knows how many people to you can imagine what

kind of a party.

The theoretical framework adopted is the Generative-Transformational

Grammar (Chomsky 1957, 1965, 1975, 1981, 1986b, 2000b), following (and

elaborating on) the recent developments known as the Minimalist Program

(Chomsky 1995, 2000a, 2001a, 2001b; Martin & Uriagereka 2000; Uriagereka 1998,

1999, 2002).

As far as the representation of syntactic amalgams is concerned, the main

claim made in this dissertation is that such constructions involve a radical form

of shared constituency, where two or more matrix sentences share the same

subordinate sentence, in a multiply-rooted phrase marker.

As far as the derivation of syntactic amalgams is concerned, the main

claims made in this dissertation are: (i) context-free shared constituency arises

from overlapping numerations; and (ii) the computational system builds

structure incrementally, in a generalized tucking-in fashion, which yields a left-to-

right/top-to-bottom effect on the derivation, such that constituency is heavily

dynamic (along the lines of Phillips 1996, 2003; Drury 1998a, 1998b, 1999;

Richards 1999, 2003).

The conclusion is that this particular kind of paratactic-like construction is

better understood as a purely syntactic phenomenon, where the resources of the

computational system are pushed to the limit.

DERIVATION AND REPRESENTATION OF SYNTACTIC AMALGAMS

by

Maximiliano Guimarães Miranda

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Juan Uriagereka, Chair
Professor Norbert Hornstein
Professor Michael Long
Professor Howard Lasnik
Professor Amy Weinberg

© Copyright by

Maximiliano Guimarães Miranda

2004

ii

Freeze this moment a little bit longer.
Make each sensation a little bit stronger.
Make each impression a little bit stronger.
Freeze this motion a little bit longer.
Experience slips away.
The innocence slips away....
Time Stand Still!

(Neil Peart)

I dedicate this book to Beth Rabbin,

with Love.

For sharing the Rainbows,

in all those Magic Days.

For sharing the Music,

in all those Endless Nights.

For her Smile,

and her Smell,

and her Shining Eyes.

For making me feel Happy,

like a little Boy.

For turning the worst time of my life

into my Wonder Years.

iii

ACKNOWLEDGEMENTS

I am extremely thankful to my advisor Juan Uriagereka, for guidance and

inspiration.

I am thankful to my Professors at the University of Maryland: Juan

Uriagereka, Norbert Hornstein, Paul Pietroski, David Lightfoot, Howard Lasnik,

Amy Weinberg, Colin Phillips, for all they taught me along the way.

I am thankful to my Professors from back home at Universidade Federal

da Bahia and Universidade Estadual de Campinas: Ilza Ribeiro, Dante Lucchesi,

Rosa Virgínia Matos e Silva, Charlotte Galves, Maria Bernadete Abaurre, Mary

Kato, Rodolfo Ilari, and Eleonora Albano, for guiding me in my first steps.

I am extremely thankful to Cilene Rodrigues, for sharing the pain and the

loneliness.

I am extremely to John Drury, for the inspiration.

I am super-duper thankful to Beth Rabbin, for her Love, for being here for

me in the Magic Days.

I am thankful to the fellow graduate students Cilene Rodrigues, John

Drury, Leticia Pablos, Soo-Min Hong, Hirohisa Kiguchi, Itziar San Martin,

Elixabete Murguia, Ana Gouvêa, Acrisio Pires, Kleanthes Grohmann, Juan Carlos

Castillo, Usama Soltan, Roberta D’Alessandro, and Andrew Nevins, for the

friendship.

iv

I am deeply thankful to Camilo Dorea and Gabriela Alvarez, for sharing,

and for the friendship.

I am deeply thankful to Alexander Fortin for the friendship.

I am thankful to Marcelo Braga for inviting me to you can imagine what

kind of parties.

I am deeply thankful to Francisco Simões, for the friendship and the

emotional support.

I am deeply thankful to my mother Darilda, my father Murilo and my

brother Carlos Frederico, for pretty much everything..

v

TABLE OF CONTENTS

I. Walking on the Fine Line Between Syntax and Parataxis 1

I.1. The Structure of Syntactic Amalgams 1

I.2. Consequences for the Theory of Grammar (Architecture of UG) 38

II. Towards a Descriptively Adequate Theory of Syntactic Amalgamation 45

II.1. On the Ontology and Productivity of Syntactic Amalgamation 46

II.2. On the ‘Appropriate Modification’ Requirement 56

II.3. On the Unboundness of Amalgamation 60

II.4. Multiple Parallel Messages Presented in Two Layers of Information 64

II.5. Insensitivity to Islands 71

II.6. Apparent Lack of Superiority Effects 76

II.7. On Possible and Impossible Target Positions for Clause Invasion 80

II.8. Cross-Linguistic Word-Order Variation 84

II.9. Co-Reference Possibilities within Syntactic Amalgams 96

II.10. The Matrix-clause Behavior of Invaded and Invasive Clauses 100

III. (Neo)Conservative Approaches to Syntactic Amalgamation 107

III.1. Avoiding a Constituency Paradox by Postulating Extra Hidden

Structure: a brief overview of the traditional analysis of

108

vi

amalgamation

III.2. The Mechanics of Lakoff’s (1974) ‘Classical Analysis’ 112

III.2.1. Amalgamation Rules 112

III.2.2. The Inner-Workings of Amalgamation: Sluicing,

Cross-Derivational Adjunction and NP Ellipsis

117

III.2.3. Problems 120

III.3. An Alternative Neo-Conservative Analysis 148

III.3.1. The Mechanics: Remnant Movement 149

III.3.1.1. M-Scrambling, WH-Movement and IP-Topicalization 149

III.3.1.2. WH-Movement with Pied-Piping of VP and

IP-Topicalization

151

III.3.2. Some Good News 152

III.3.3. The Problem of Postulating an Additional

Unmotivated Movement

157

III.3.4. Two Alternative Implementations of the Remnant-

Movement Analysis

164

III.3.4.1. Rightward-Movement 165

III.3.4.2. Chain-Internal Selective Deletion of Copies 166

III.3.4.3. New Issues that Arise from the Alternative Analyses 169

III.3.5. Further Problems for the Remnant Movement

Approach

172

III.3.5.1. Embedded Amalgams 172

vii

III.3.5.2. Absence of Islands Effects 174

III.3.5.2. Multiple Amalgamation 175

Appendix to Chapter III 179

1. Avery Andrew’s Case 179

2. Larry Horn’s Case 180

3. Performative Predicate Modifiers 181

4. Mark Liberman’s because-clauses 182

5. Mark Liberman’s or-cases 183

6. Tag Questions

IV. Overlapping Computations, Dynamic Phrase-Structure, and Shared

Constituency

184

IV.1. The Input to the Computational System 185

IV.2. On Structure Building and Structure Preservation 195

IV.3. Structure Building and the Directionality of Derivations 204

IV.3.1. Derivationalism versus Representationalism 204

IV.3.2. Merge 219

IV.3.3. Movement 256

IV.3.4. Remerge Without Movement: shared constituency and

multiple roots

274

viii

Appendix to Chapter IV 295

1. Top-to-Bottom Derivations and the Syntax-Phonology Interface 295

2. The Facts 296

3. Phonology-Semantics Interface? 299

4. The Input to Prosodic Phrasing as a Super-String 301

4.1. The Factored LCA Hypothesis 301

4.2. An Alternative Approach within Mainstream Minimalism 306

4.3. Inadequacy of Bottom-up Multiple Spell-Out 308

4.4. The ‘Back-and-Fourth derivation’ Hypothesis 310

4.5. Top-to-Bottom Derivations, Dynamic Constituency and

Relativized Isomorphism

311

5. Concluding Remarks 316

V. The Emergence of Parataxis as ‘Syntax Pushed to the Limit’ 317

V.1. Deriving a Simple Syntactic Amalgam 317

V.2. Multiple Matrix Clauses: parallelism and ‘behindness’ 350

V.3. Multiple Roots and Relativized Islandhood 358

V.4. Cross-Linguistic Word Order Variation 373

V.5. Multiple Amalgamation 396

V.6. Hidden Superiority as Relativized Relativized Minimality 421

V.6.0. The Phenomenon 421

V.6.1. The General Idea 422

ix

V.6.2. Hidden Superiority in Top-to-Bottom Derivations 436

V.7. On the Restriction on Invasion at the Subject Position 481

V.7.1. Finite Clauses 484

V.7.2. Non-Finite Clauses 508

V.7.3. Back to Finite Clauses 520

V.8. Dynamic Interpretation and Relativized Matrixhood 526

VI. Concluding Remarks 543

VI.1. Conclusions 543

VI.2. Directions for Future Research 546

Bibliography 563

1

I

Walking on the Fine Line Between Syntax and Parataxis

The content of this dissertation has both analytical and theoretical aspects

to it,1 which I introduce in I.1 and I.2 below, respectively.

I.1. The Structure of Syntactic Amalgams

The empirical focus of this dissertation is syntactic amalgamation: a very

puzzling phenomenon first discovered, reported, described and analyzed by

Lakoff (1974), on the basis of empirical observations made by Avery Andrews,

Larry Horn, William Cantral, and Mark Liberman, as well as by George Lakoff

himself.

A typical example of syntactic amalgam is given in (01).

(01) Homer drank I don’t remember how many beers at the party.

Ever since Lakoff’s pioneering and insightful work, the phenomenon of

syntactic amalgamation has been almost completely ignored all these years. After

1 Here I commit to the definitions of analytical work and theoretical work given by Chametzky
(1996: xvii-xviii).

2

Lakoff’s (1974) work, little, if anything, has been said about syntactic amalgams.

The only exceptions to that major hiatus have been brief mentions to that seminal

paper by Lakoff in the context of historical debates about the ‘anti-D-structure

school’ of the nineteen-seventies (e.g. Huck & Goldsmith 1995: 117), in

discussions about conversational implicature (e.g. Levinson 1983: 164-165).

However, no new descriptive or analytical contribution has been given beyond

Lakoff’s findings, as far as I know. 2

More recently, Tsubomoto & Whitman (2000) have begun reopening the

debate, offering some little (but quite valuable) specific contribution to the

analysis of syntactic amalgamation. Also important is the recent work by van

Riemsdijk (2000, 2001) on free relatives, where syntactic amalgams are briefly

mentioned for the sake of comparison. The influence of van Riemsdijk’s work in

this dissertation is obvious, as the notion of multiply-rooted phrase markers

plays a crucial role in my analysis of amalgamation as it does in his analysis of

what he takes to be similar constructions.3

A typical first reaction to some examples of syntactic amalgamation is to

dismiss the body of facts as a ‘pragmatic effect that overrides grammar’, or a

‘performance anomaly’, or some sort of ‘periphery effect’, whatever that means.

2 According to Newmeyer (1996: 141), Lakoff’s (1974) paper is “full of what a current reader would
take to be a self-congratulatory gloating at having uncovered linguistic problems that no theory yet devised
have succeeded in treating adequately”.
3 Yet another work in which syntactic amalgamation is taken seriously is Kuroda (2000), which I
will not discuss in this dissertation because (i) it does not provide any new empirical
generalization beyond what was already done by Lakoff (1974); and (ii) its desiderata pose serious
incommensurability issues, as it is founded on radical connectionist-ish assumptions of total
denial of all foundational concepts of Generative-Transformational Grammar.

3

One of my main goals in this dissertation is to scrutinize the structure of

syntactic amalgams and attempt to characterize it as, essentially, a byproduct of

independently motivated mechanisms of core syntax. My take on the mysterious

and highly complex nature of amalgamation is that, instead of labeling these

facts upfront as ‘extra-grammatical’ artifacts of some sort, it is wiser to capitalize

on this puzzling phenomenon to explore the (potential) limits of the Theory of

Grammar to see how far it may go. If we confine our descriptive, analytical and

theoretical tools to the immediate horizon of apparently ‘well behaved’

sentences, we may be missing something quite deep about the Language Faculty.

However, the exploration of broader horizons is no guarantee that

amalgamation indeed belongs in the domain of core grammar. There is simply

no pre-theoretical line drawn between syntax and parataxis, grammar and

parsing, competence and performance, core and periphery, phonology and

phonetics, semantics and pragmatics. In the following chapters, I will be visiting

some previously unexplored corners of the territory of UG and will partially

(re)draw some of those boarder lines relatively to the body of facts pre-

theoretically described as syntactic amalgamation.

Biased by the desiderata of the Minimalist Program (Chomsky 1993, 1995,

2000, 2001a, 2001b; Martin & Uriagereka 2000; Uriagereka 1998, 2001, 2002) I will

venture to stretch the limits of syntax as they are standardly assumed, and will

ultimately claim that those boundary lines should be drawn so that most aspects

of amalgamation pertain to the domain of core syntax.

4

As the first step towards this goal, I will show that syntactic amalgams

exhibit some clear patterns. Moreover, I will claim that such patterns are

grammatical in nature, as they are describable in terms of usual syntactic notions

like c-command, locality, movement, pied-piping, economy of derivations, and

the like.

Chapter II is dedicated to an extensive description of amalgamation,

where I present a series of new empirical generalizations that I found, as well as

the ones provided by Lakoff (1974) and Tsubomoto & Whitman (2000). Although

I don’t have any pretensions of doing an exhaustive and detailed comparative

study, I will show some cross-linguistic observations (focusing on contrasts

between English and Romance) that constitute evidence that the phenomenon of

amalgamation is not restricted to the one particular language where

amalgamation was first observed by Lakoff (i.e. English), and, moreover, the

relevant differences correlate with independently motivated parametric choices.

Back to the example in (01), it is easy to see that, whatever the ultimate

structure of this kind of construction is, we are clearly walking on the fine line

between syntax and parataxis. Descriptively and Pre-theoretically speaking,

what happens in constructions like (01) is that a sentence S1 gets interrupted and

‘invaded’ by another sentence S2, as shown in (02).

5

(02) a: Homer drank beers at the party. I don’t remember how many.

b: Homer drank beers at the party.
 I don’t remember how many.

This suggests that syntactic amalgams are a subcase of parentheticals,

where the same pattern obtains, as shown in (03).

(03) a: Homer gave Lisa a brand new a saxophone on the occasion of

her 8th birthday. It ‘s beautiful, you should have seen it!

b: Homer gave Lisa a brand new a saxophone...

It’s beautiful, you should have seen it!

... on the occasion of her 8th birthday.

The picture is much more complicated than that, however. Unlike typical

parentheticals, it is not immediately obvious which substrings of a syntactic

amalgam count as the ‘invaded ‘and the ‘invasive’ sentences. In principle, either

informal notation in (04) could be a plausible way of representing the ‘clause

invasion’ going on in (01).

6

(04) a: Homer drank beers at the party.
 I don’t remember how many

b: Homer drank at the party.
 I don’t remember how many beers

By (04a), the two input sentences would be the ones in (05), which would

get paratactically combined as in (06).

(05) a: S1 = Homer drank beers at the party.

b: S2 = I don’t remember how many.

(06) S1

VP

VP PP

 NP NP

 V
 |

Homer drank I don’t remember how many beers at the party.

 S2

7

By (04b), the two input sentences would be the ones in (07), which would

get paratactically combined as in (08).

(07) a: S1 = Homer drank at the party.

b: S2 = I don’t remember how many beers.

(08) S1

VP

 NP VP PP
 |
 V
 |

Homer drank I don’t remember how many beers at the party.

 S2

Notice that, in (05)/(06), drank is treated as a regular transitive verb,

taking beers as its complement within the domain of the ‘invaded clause’;

whereas the analysis sketched in (07)/(08) capitalizes on the possibility of drank

being used intransitively, so that beers is a subconstituent of a more complex NP

(i.e. how many beers) within the domain of the ‘invasive clause’.

In either case, the ‘invasive clause’ seems somehow incomplete, as the

verb remember, in the relevant reading, selects a full clause as its complement

rather than an NP. After all, what the speaker doesn’t remember is how many

8

beers Homer drank at the party. This suggests that (01) may actually be a

convoluted version of (09), as both share the very same propositional structure

and truth conditions, although the their informational structures are not

identical.

(09) I don’t remember [how many beers]1 Homer drank t1 at the party.

This might seem a little puzzling at first sight, as what we have been

taking to be the main clause in (01) – i.e. Homer drank (beer) at the party –

corresponds to a subordinate clause in (09). One way out of this puzzle is to

assume that the syntactic representation of the invasive clause contains extra

elliptical material that replicates the structure of the invaded clause. Therefore,

syntactic amalgamation would reduce to a combination of sluicing (cf. Ross 1969;

Merchant 2001) and parentheticalization.

From this perspective, the two alternative analysis sketched in (05)-(06)

and (07)-(08) would be more accurately represented by (10)-(11) and (12)-(13),

respectively.

(10) a: S1 = Homer drank beers at the party.

b: S2 = I don’t remember how many beers Homer drank at the party.

9

(11) S1

VP

VP PP

 NP NP

 V
 |

Homer drank I don’t remember [how many beers at the party.
beers]1 Homer drank t1 at the party

 S2

(12) a: S1 = Homer drank at the party.

b: S2 = I don’t remember how many beers Homer drank at the party.

(13) S1

VP

 NP VP PP
 |
 V
 |

Homer drank I don’t remember [how many beers]1 at the party.
 Homer drank t1 at the party

 S2

10

Once invasive clauses are taken to involve internal sluicing, the null

hypothesis is that they should pattern exactly like any other ordinary sluiced

sentence in terms of which substrings get affected by whatever ellipsis

mechanism is involved in the inner-workings of sluicing. This gives us a way of

teasing apart the two alternative hypotheses in (4a) and (4b). The analysis in (11)

– in which beers is the complement of drank – has an obvious advantage over

the one in (13) – in which drank is taken to be intransitive –, since the

pronounced and unpronounced substrings in (10)-(11) correspond exactly to

what we obtain in the analogous case of sluicing without parentheticalization, as

shown in (14a); whereas the pronounced and unpronounced substrings in (12)-

(13) do not correspond to a grammatical structure in other instances of sluicing

outside amalgams, as shown in (14b).

(14) a: Homer drank beers at the party, but I don’t remember [how many

beers]1 Homer drank t1 at the party.

b: * Homer drank at the party, but I don’t remember [how many beers]1

Homer drank t1 at the party.

Not surprisingly, the same reasoning extends to similar cases where the

main verb of the invaded clause is transitive and does not have an intransitive

analog, as in (15).

(15) Homer gave you’ll never guess how much money to Lisa.

11

Notice that, in (16), the non-amalgamated version of (15) exhibits the same

sluicing pattern predicted by the analysis in (17) — i.e. the pronounced substring

ends with how much) —, which follows the same logic as the analysis in (11) for

(01).

(16)4 a: Homer gave money to Lisa. You’ll never guess [how much money]1

Homer gave t1 to Lisa.

b: * Homer gave money to Lisa. You’ll never guess [how much money]1

Homer gave t1 to Lisa.

c: * Homer gave to Lisa. You’ll never guess [how much money]1 Homer

gave t1 to Lisa.

(17) S1

 VP

 NP NP PP

 V
 |

Homer gave you’ll never guess [how much money to Lisa.
 money]1 Homer gave t1 to Lisa

S2

4 The judgment reported in (16) relates to the default prosodic pattern. An amelioration effect
arises if, in the second sentence, how much receives contrastive stressed, while money is
distressed. For a discussion on destressing/deaccenting related to sluicing, see Merchant (2001).

12

Just like its non-amalgamated version in (16b), the amalgam in (18) –

structured as in (19) – is ungrammatical by virtue of it having money (instead of

how much) as the last element of the pronounced substring.

(18) * Homer gave you’ll never guess how much money money to Lisa.

(19) S1

 VP

 NP NP PP

 V
 |

Homer gave you’ll never guess [how much money to Lisa.
 money]1 Homer gave t1 to Lisa

S2

In this context, one could stipulate that the acceptable example in (20) is

structured as in (21)/(22), where the parenthetical clause exhibits the same form

of sluicing as in (19), and the direct object of (the pronounced token of) gave is

missing (either because it is instantiated by an empty category in an ad hoc

construction-specific fashion, as in (21), or because it is simply absent despite the

usual theta-theoretical requirements, as in (22)).

13

(20) Homer gave you’ll never guess how much money to Lisa.

(21) S1

VP

 NP NP PP

 V
 |

Homer gave you’ll never guess [how much money]1 e to Lisa.
Homer gave t1 to Lisa

 S2

(22) S1

VP

 NP PP

 V
 |

Homer gave you’ll never guess [how much money]1 to Lisa.
Homer gave t1 to Lisa

 S2

14

However, the same (ad hoc) reasoning above cannot be extended to

equivalent cases differing only with respect to the internal structure of the WH-

phrase. That is, cases where the object is a bare WH-phrase (e.g. what, who)

instead of a complex one (e.g. how much money, how many beers).

For instance, compare (15) above to (23) below.

(23) Homer gave you’ll never guess what to Lisa.

I have just shown how examples like (15) can successfully be analyzed as

in (17), where the object of gave is simply money rather than a WH-phrase, while

what occupies the spec/CP of the in the sluiced sentence is the complex WH-

phrase how much money, which gets pronounced simply as how much due to

sluicing. Thus, descriptively speaking, the complex WH is split across the

invaded and the invasive clauses.

On the other hand, such splitting of the WH-phrase is impossible in

examples like (23). This forces us to analyze those examples differently, by

postulating a syntactic representation quite distinct from the one assumed in (17)

for (15), and from the one assumed in (11) for (01).

One way to go about (23) would be to postulate a radical kind of sluicing

internally to the invaded clause, where even the WH-phrase would be in the

unpronounced substring, while the theta-theoretical requirements in the invaded

clause would be satisfied by a distinct token of what, as the direct object of give.

This is shown in (24).

15

(24) S1

VP

 NP NP1 PP

 V
 |

Homer gave you’ll never guess what1 what to Lisa

 Homer gave t1 to Lisa

 S2

There are two immediate problems with this analysis: (i) an ad hoc instance

of WH in situ is stipulated for the invaded clause Homer gave ... what to Lisa;

and (ii) an ad hoc case of ‘radical sluicing’ is stipulated for the invasive clause,

where even the WH phrase does not get pronounced.5 Empirical evidence that

such formal devices are ad hoc is shown in (25), where they are unsuccessfully

applied to the non-amalgamated version of (23).

(25) * Homer gave what to Lisa. You’ll never guess what1 Homer gave t1 to Lisa.

5 Alternatively, we could consider that the WH-phrase in the embedded spec/CP of the invasive
clause is a pronominal empty category to begin with. That would run into similar conceptual
problems, as the presence of such pronominal empty category only in invasive clauses of
amalgams would be as ad hoc as the ‘radical sluicing’ in (24), and the same empirical problem
posed by (25) would be faced.

16

Another possible analysis for (23) is the one sketched in (26).

(26) S1

VP

 NP NP1 PP

 V
 |

Homer gave you’ll never guess what1 e to Lisa

 Homer gave t1 to Lisa

 S2

In this structure, the theta-theoretical requirements of gave in the invaded

clause are satisfied by an empty category, while the invasive clause is affected by

standard sluicing.

This analysis is problematic in face of the unacceptability of (27), which

shows that such hypothesized empty category is not licensed in a non-

amalgamated version of (23), hence not independently motivated.

(27) * Homer gave [NP e] to Lisa. You’ll never guess what1 Homer gave t1 to Lisa.

17

Any solution to this problem would have to capitalize on the intuition that

(23) is somehow the amalgamated version of (28), where the object of gave in the

non-sluiced sentence is an overt indefinite pronoun co-indexed with the WH-

phrase in the sluiced sentence.

(28) Homer gave something1 to Lisa. You’ll never guess what1 Homer gave t1

to Lisa.

From that perspective, the hypothesized empty category in (26) would be

an elliptical version of the indefinite pronoun in found in (28), which presumably

undergoes PF-deletion under certain circumstances. The mystery, though, is how

to define those circumstances without falling into ad hoc construction-specific

mechanisms, in order to avoid the overgeneration of examples like (29).

(29) * Homer gave you’ll never guess what1 Homer gave t1 to Lisa something1 to

Lisa.

Therefore, both analyses in (24) and (26) are problematic in themselves,

but the most serious issue is that neither one can be reconciled with the

formalism assumed in (11) and (17) for the cases in (01) and (15) respectively. In

a nutshell, this ‘sluicing inside the parenthetical’ approach fails to give a unified

account to the phenomenon of amalgamation, even if we restrict our scope to the

few cases mentioned above (not to mention if we consider the full range of facts

described in Chapter II).

18

Tsubomoto & Whitman (2000) have proposed a formalism along the lines

of (26) as a general theory of amalgamation, inspired by Lakoff’s classical

analysis, which, in its turn, was a development of an original idea by William

Cantral. Thus, the invaded clause would universally contain an elliptical NP co-

indexed with a WH-phrase inside the invasive clause, which undergoes internal

sluicing, just as in (26). There is, however, a significant difference between the

analysis sketched in (26) and Tsubomoto & Whitman’s (2000) proposal. The

former approach takes the invasive clause to be a parallel independent sentence

at the syntactic level, which gets paratactically combined with the invaded clause

through some non-trivial (re)linearization process. The latter approach takes

clause invasion to be ordinary clause embedding, so that the invaded clause

would be the matrix clause, while the invasive clause would be subordinated to

it by being adjoined to the elliptical NP, as sketched in (30), (31) and (32).6

6 In fact, Tsubomoto & Whitman (2000) do not explicitly discuss any case involving bare WH-
phrases or potentially intransitive verbs, but (30) and (32) naturally follow from their formalism.

19

(30) S1

VP

NP
 NP PP

S2 NP1

 V
 |

Homer gave you’ll never guess what1 e to Lisa

 Homer gave t1 to Lisa

(31) S1

VP

 NP
 NP PP

 S2 NP1

 V
 |

Homer gave you’ll never guess [how much money]1 e to Lisa.
Homer gave t1 to Lisa

20

(32) S1

VP

VP PP

 NP

 NP S2 NP1

 V
 |

Homer drank I don’t remember [how many beers]1 e at the party.
 Homer drank t1 at the party

An interesting feature of Tsubomoto & Whitman’s (2000) analysis is the

intuition that the paratactic relation between the invaded and the invasive

clauses is ultimately syntactic in its essence, so that the core structure and the

parenthetical are somehow connected by dominance relations at some point in

the structure. I share this general view, which I will be arguing for in the

remainder of this dissertation. However, I advocate for a radically different view

on how such syntactic connection is established derivationally and

representationally.

In chapter III, I discuss Lakoff’s (1974) classical analysis and Tsubomoto &

Whitman’s (2000) recent proposal in detail, concluding that, despite obfuscatory

and misleading superficial effects, syntactic amalgamation does not involve any

sluicing. Upon closer scrutiny, the sluicing-based approaches turn out to be

descriptively and explanatorily inadequate, as they make wrong predictions with

21

regards to the empirical facts presented in chapter II; and as they crucially rely

on (i) a construction-specific sluicing mechanism for the invasive clause, and (ii)

a construction-specific NP-ellipsis mechanism for the invaded clause.

The remainder of chapter III consists of an attempt to address the

problems faced by Lakoff’s (1974) and Tsubomoto & Whitman’s (2000) analyses

through standard theoretical tools, like clause-topicalization and remnant-

movement; or clause-topicalization and scattered deletion of copies. The

conclusion is that such minor tweaking is not enough, as major conceptual and

empirical problems remain. Thus, the theory of UG needs to undergo more

substantial revision in order to account for syntactic amalgamation.

In chapter IV, I set the stage for presenting my sluicing-free analysis of

syntactic amalgamation afterwards. I discuss the nature of the fundamental

notions of syntax: (i) the integration mechanism (i.e. merge); (ii) the input (i.e. the

lexical array, or numeration); (iii) the displacement property (i.e. movement); and

(iv) the derivationalism versus representationalism debate. All this discussion is

carried out vis-à-vis all the relevant concepts that pertain to the minimalist

desiderata (optimal design, economy of derivations and representations, reduction

of computational complexity, dynamic derivations with cyclic access to the

interfaces, interface-driven requirements (bare output conditions), and the like).

This discussion, then, culminates with the proposal of a specific model of syntax

that incorporates some rather non-standard assumptions about the architecture

of UG, which nonetheless interact in a strictly minimalist fashion, meeting

22

requirements of optimal design. Such a framework is briefly summarized in I.2

below.

In chapter V, I finally present my analysis of syntactic amalgamation,

which is built from the theoretical assumptions discussed in the previous

chapter. The essence of my proposal for the representation of syntactic amalgams

is as follows.

Back to (01), let us hypothesize, for a moment, that its structure is as in

(33). Let us take that as the starting point, and follow the reasoning below,

modifying the analysis step-by-step.

In order to achieve a unified analysis for all three cases discussed so far,

the representation in (33) is built without ‘WH-phrase splitting’ (so as to be

compatible with cases exhibiting what instead of how many beers), so that the

whole WH-phase is contained in the invaded clause while an empty category

satisfies the theta-theoretical requirements of drank in the invaded clause,

treated as a transitive verb (so as to be compatible with cases exhibiting bona fide

(di)transitive verbs like understand or give, instead of ‘hybrid’ verbs like drink).

23

(33) S1

VP

VP PP

 NP NP

 V
 |

Homer drank I don’t remember [NP how many beers] e at the party
 | |

 Aux V
 Homer drank t1 at the party

 NP

 S3

 S’3

 VP

S2

This is essentially a version of Tsubomoto & Whitman’s (2000) analysis

where the invasive clause is taken to be an independent parallel sentence, rather

than an embedded clause adjoined to the empty category in the invaded clause.

Informally speaking, we may say that the empty category in the invaded clause

is related to the rest of the structure in a way that is somewhat analogous to how

a parasitic gap is licensed, with the crucial difference that this empty category of

24

amalgams is not c-commanded by the WH-phrase that seems to act as its

‘antecedent’.7

My position is that this intuition is on the right track, but cannot be taken

literally, as it would conflict with familiar properties of parasitic gap

constructions (cf. Engdahl 1981; Chomsky 1982: 36-78; Culicover & Postal 2001).

Ultimately, I propose that the empty category under discussion is actually a trace

of movement, rather than a parasitic gap. As a step towards what I take to be the

actual structure of (01), consider, for a moment, the representation in (34), where

the WH-phrase is simultaneously the head of two parallel chains, as if two

distinct tokens of that WH-phrase were generated each one in a distinct theta-

position (one in the invaded clause, and the other in the invasive clause) and

then collapsed into a single token of that WH-phrase when both simultaneously

moved to the very same COMP position of the sluiced clause, as shown in (34).

7 The same lack of c-command is true of Tsubomoto & Whitman’s (2000) analysis, where the
sluiced sentence is adjoined to the empty category in the invaded clause.

25

(34) S1

VP

VP PP

NP

 NP
 t1

 V
 |

Homer drank I don’t remember [NP how many beers]1 at the party
 | |

 Aux V
 Homer drank t1 at the party

 NP

 S3

 S’3

 VP

S2

Needless to say, not only is this very chain-collapsing mechanism

nontrivial in itself, but also one of the chains involved does not fit into the

standard definition of chain as its trace is not c-commanded by the

corresponding moved phrase. One way to go about this would be to deny those

particular constraints on chains altogether. But, all else being equal, that has the

unwelcome consequence of leaving the theory unable to capture many well-

known and better-understood generalizations about chains (c-command, locality,

26

and the like), in detriment of a construction-specific formalism designed to deal

with syntactic amalgamation.

Nevertheless, in this particular case, there is indeed a way of having the

cake and eating it too. We may capitalize on the notion of ‘shared constituency’

(through remerge and multi-motherhood), along the lines of what Citko (2002)

proposed for Across-The-Board Extraction (ATB) and Free Relatives. Thus,

abstracting away from strictly-cyclic derivations and the extension requirement,

the relevant derivational step would involve a movement operation that takes

(35) as the input, generating (36) as the output.

27

(35) S1

VP

VP PP

 NP

 V
 |

Homer drank I don’t remember at the party
 | |

 Aux V
Homer drank [NP how many beers] at the party

 NP

 COMP S3

 S’3

 VP

S2

28

(36) S1

VP

VP PP

 NP

 V
 |

Homer drank I don’t remember at the party
 | |

 Aux V
 Homer drank [NP t1] at the party

 NP

 [NP how many beers]1

 S3

 S’3

 VP

S2

In chapter V, I provide empirical evidence and conceptual arguments in

favor of pushing this logic of shared constituency to the limit, so that the

constituent that gets shared is not just the WH-phrase, but the whole clause

containing its trace, as in (37). That way, we eliminate sluicing altogether, getting

rid of all the problems related to ad hoc forms of ellipsis.

29

(37)

S1

VP

VP PP

NP
 NP

 t1

 V
 |

Homer drank I don’t remember at the party
 | |

 Aux V [NP how many beers]

 NP

 S’1

 VP

S2

This analysis essentially treats (01) – repeated below as (38) – as a

convoluted version of (39). This is intuitively appealing, as both structures share

the same propositional content (despite differences in informational structure).

30

(38) Homer drank I don’t remember how many beers at the party.

(39) I don’t remember [how many beers]1 Homer drank t1 at the party.

Without any further adjustments, the structure sketched in (37) is identical

– abstracting away from word order – to the more familiar notation in (40),

which is the standard way of analyzing (39).

(40) S2

 NP Aux VP
 |
don’t

 I
 V S1’
 |
remember

 NP1 S1

 NP1 VP

 how many beers
 VP PP

 Homer
V NP
| |

 drank t1 at the party

31

In principle, the process that generates (38) from (39) can be conceived

either as a complex paratactic operation that somehow ‘warps’ the phrase marker

in (40) into the one in (37) – having a ‘relinearizing’ effect on the PF-string –; or as

a more ordinary combination of movement transformations that apply to (40),

yielding something other than (37). The latter possibility is discarded in chapter

III on the basis of both conceptual arguments and cross-linguistic empirical

evidence. In chapter V, the former possibility is shown to be incompatible with

the range of facts presented in chapter II, and arguments are given in favor of an

analysis that implicates a multiply-rooted phrase marker, as in (36), but

involving shared-constituency (rather than sluicing), as in (37). From that

perspective, the structure for the example under discussion would be as sketched

in (41), where the invaded clause Homer drank t1 at the party (S ≡ IP) is

simultaneously embedded inside the invasive clause, and inside an extension of

itself (S’ ≡ CP).

32

(41) S’1(a) ≡ CP

S1 ≡ IP

VP

VP PP

NP
 NP

 t1

 V
 |

Homer drank I don’t remember at the party
 | |

 Aux V [NP how many beers]

 NP

 S’1(b) ≡ CP

 VP

S2 ≡ [CP C [IP ...]]

Evidence for this comes from examples such as (42), which would

correspond to the structure in (43).

(42) Lisa said Homer drank I don’t remember how many beers at the party.

33

(43) S3 ≡ [CP C [IP ...]]

 NP VP

 Lisa V S1 ≡ IP
 |
 said

 VP

 VP PP

 NP

 NP
 t1

 V
 |

Homer drank I don’t remember at the party
 | |

 Aux V [NP how many beers]

 NP

 S’3 ≡ CP

 VP

 S2 ≡ [CP C [IP ...]]

The crucial property of (42) is that, while the event of Homer having

drank a certain quantity of beers at the party is simultaneously the theme of the

saying event performed by Lisa and the not-remembering event/state

34

experienced by the speaker, the not-remembering and the saying events are

independent from one another.

In a context where (42) is true, Lisa did not say anything about the speaker

not remembering how many beers Homer drank at the party. All Lisa said is that

Homer drank a certain number of beers at the party. Conversely, it is not the case that

the speaker does not remember Lisa having said how many beers Homer drank

at the party.

All the speaker doesn’t remember is the cardinality of the number x such

that Homer drank x beers at the party (as opposed to the cardinality of the

number y such that Lisa said that Homer drank y beers at the party).

This motivates an analysis along the lines of (43), where the sentence S1

expressing the drinking event is simultaneously embedded within the sentence

S2 expressing the not-remembering event/state, and within the sentence S3

expressing the saying event, with no subordination relation taking place between

S2 and S3, which stand as parallel matrix clauses.

For consistency, I propose to extend this logic of multiply-rooted phrase

markers to simpler cases like (38). Thus, I take the sentence expressing the

drinking event to be simultaneously an embedded clause inside the sentence that

expresses the not-remembering event/state, as well as a matrix clause, as in (41).

In essence, the speaker who utters (38) is making two parallel statements: (i) the

statement that Homer drank a certain number of beers at the party, and (ii) the

35

statement that (s)he, the speaker, does not remember how many beers Homer

drank at the party.

With regards to (38), the interpretive effect of having parallel statements

may be way too subtle for most speakers to have sharp intuitions on, as opposed

to crystal clear cases like (42). However, further observation reveals that this is

not a function of the structure itself. Rather, it is an artifact of a given choice of

lexical items, which may carry a certain pragmatic bias. For instance, the

syntactic amalgam in (44) radically differs from its non-amalgamated version in

(45) with respect to the scope of event structure.

(44) Homer drank everybody is asking me how many beers at the party.

(45) Everybody is asking me how many beers Homer drank at the party.

In (44), without the need to add one more level of embedding to the

invaded clause – as we did in (42) – it is clear that the speaker is making the

statement that Homer drank a certain number of beers at the party. That is, (s)he

is committing to the truth that there actually happened an event of drinking

beers (at the party) performed by Homer. In a parallel statement, the speaker is

committing to the truth that everybody is asking him/her how many beers were

drunk by Homer at the party, in that very event of drinking whose truth is being

stated.

36

In contrast, the non-amalgamated – and arguably single-rooted – structure

in (45) does not entail that the speaker is committing to the truth that an event of

drinking beers at the party performed by Homer actually happen. Rather, the

speaker is simply stating that everybody is asking him/her how many beers

were drank by Homer at the party, in a given drinking event not presupposed to

be true by him/her, the speaker. That is, it could be the case that the speaker

uttering (45) believes that such event did not actually happened (in which case

all the people asking him/her about Homer’s personal drinking history are

simply mistaken), or that (s)he simply ignores whether such event (s)he is being

asked about really happened or not.

Also in chapter V, further evidence is provided for the hypothesis that

both the invasive and the invaded clause have the status of matrix clauses, as

they both exhibit properties not found in embedded clauses elsewhere. In

addition, the apparent lack of superiority effects in syntactic amalgams like (46)

is shown to be an epiphenomenon that follows from multiply-rooted

representations, built through dynamic derivations, so that the relevant locality

principle is indeed active, but gets obfuscated by the interaction of competing

chains across the shared embedded clause and multiple parallel matrix clauses.

(46) a: I’ll find out [how much money]1 Bob gave t1 to you can imagine

[who]2

b: I’ll find out [who]2 Bob gave you can imagine [how much money]1

to t2

37

That said, it is not obvious, under this approach to syntactic

amalgamation, how those multiply-rooted phrase markers get mapped into a

linear string of terminals at PF. Aside from the shared material, multiply-rooted

phrase markers necessarily contain terminals that are dominated by only one

root, and do not stand in any relation to the terminals dominated by only another

of the roots. Therefore, whatever the linearization function is (e.g. Kayne’s (1994)

Linear Correspondence Axiom, the head parameter, etc.), it cannot establish

precedence relations among all terminals in any deterministic way. Thus, in a

nutshell, the multiple-root approach to syntactic amalgamation faces a

linearization puzzle to the same extent that the Parallel-Intermingled-Trees

approach sketched in (06) through (16) does.

As an elaboration on a general theoretical discussion from chapter IV, this

issue of linearization of syntactic amalgams is addressed in chapter V from the

viewpoint of the strong derivational approach. I argue that the attested word-

order patterns obtain if the computational system is conceived as a derivational

engine that builds phrase structure in a top-to-bottom fashion, along the lines of

Phillips (1996, 2003), Drury (1998, 1999), and Richards (1999, 2002), inter alia.

38

In the Appendix to chapter V, I explore the consequences of this general

model for the architecture of UG and its application to syntactic amalgamation

(as proposed in chapters IV and V, respectively) to the PF interface. I argue that

the combination of dynamic top-to-bottom derivations, multiple spell-out, and

move-as-remerge makes it possible to theorematically derive some important

generalizations about PF-structure, so that well-known mismatches between

prosodic constituency and syntactic constituency are better understood as

‘relativized isomorphism’, where prosodic constituents reflect earlier stages of

the syntactic derivation, pretty much like fossils of syntactic constituents that got

reshaped in a later stage of the derivation – crucially after the relevant

substructure being delivered to the phonological component – therefore not

being reflected at LF.

Chapter VI concludes the dissertation, summarizing the project developed

here, and pointing out issues to be addressed in future research.

I.2. Consequences for the Theory of Grammar (Architecture of UG)

Besides proposing an analysis for syntactic amalgams, this dissertation

also has the more ambitious goal of contributing to broader discussions about the

architecture of UG as a whole. Eventually, I end up advocating for a version of

the Chomskyan Generative-Transformational framework (and, in particular, the

39

Minimalist Program) that considerably deviates from the mainstream versions in

some significant technical aspects. Below I summarize the main theoretical

claims that I make along the dissertation.

(i) The very operation of structure building (i.e. merge) is inherently defined

as ‘tucking-in’ (Richards 1997), so that trees always exhibit endogenous

growth (i.e. incoming material is never inserted at the current root node,

but rather at some other node deep inside the tree). Consequently, there

can be no Extension Condition on merge (contra Chomsky 1995: 190, 327-

328; 2000: 136-137). This entails that syntactic constituency is heavily

dynamic, as it is always the case that some of the sisterhood and

motherhood relations among tree nodes get changed from one

derivational step to the next one. Nevertheless, derivations can be

considered to be fully monotonic from the point of view of the syntactic

relations that grammatical principles are actually relevant to: asymmetric

c-command and dominance.

(ii) Nothing in (any version of) the theory prevents a constituent from being

immediately dominated by multiple other constituents distinct from one

another, in a structure-sharing configuration, where multiple mother-

nodes all have one daughter-node in common. This is actually a desirable

consequence, as some syntactic constructions (i.e. amalgamation) require

40

representations of this kind in order for the descriptive generalizations

about it to be accounted for.

(iii) Chains are formed via multi-motherhood configurations. The kind of

constituency displacement known as overt movement is achieved

derivationally, with a constituent α being first merged in a position X, and

then remerged in another position Y, so that X and Y stand in a c-

command relation. That way, a so-called moved phrase is better

understood as a pluripresent phrase, simultaneously occupying the head

and the tail positions of a chain. Thus, (overt) move reduces to (re)merge8

(cf. Abels 2001, Bobaljik 1995; Drury 1998, 1999; Epstein, Groat,

Kawashima and Kitahara 1998; Guimarães 1999; 2002; 2003b/c; Gärtner

2002). Pushing this logic to the limit, I propose that the familiar c-

command condition on chain-formation reduces to a c-command

condition on the input to merge itself (which gets vacuously satisfied in

the case of ‘first merge’).

(iv) Contrary to the tradition in Generative Grammar, I defend that there is no

Single Root Condition on phrase markers.9 Thus, in multiple-motherhood

configurations, it is not necessary that there be some higher node

8 In chapters IV and V, I argue that Covert Movement should be formalized as Agree (Chomsky
1998, 1999, 2000).
9 This idea goes back, in some form, to Hoffman (1996) and, in a more direct way, to van
Riemsdijk (2000).

41

dominating all of the mother-nodes that share a daughter (as in chains, cf.

(iii)). In some instances, each of the multiple mothers of the shared

daughter may have its own distinct dominance path above it, so that the

whole phrase marker is shaped like two or more parallel trees connected

to each other at some node somewhere in between the root and the leaves.

From that perspective, most of what has been traditionally regarded as

parataxis can be reduced to ‘syntax pushed to the limit’, where two or

more parallel sentences get connected as what Riemsdijk (2001) called

‘Siamese Trees’, which allows them to be syntactically related to some

extent, despite the parallelism.

(v) Following Chomsky (1995), I take inputs to syntactic derivations to be

numerations, defined as sets of lexical tokens, which establish local

domains where convergence and economy are evaluated (or ‘derivational

workspaces’). Since nothing in Set Theory prevents two or more

numerations from intersecting and sharing some lexical tokens, this

option is in principle available. Such intersections give rise to overlapping

derivational workspaces, which allow local computations to interfere with

one another to some extent, ultimately yielding Siamese Trees that exhibit

paratactic effects.

(vi) With regards to the ‘derivationalism versus representationalism’ debate, I

strongly endorse the view that the syntactic component of UG is a

42

derivational system that builds structure step-by-step, so that the formal

properties of phrases and sentences are taken to be effects of how

syntactic structure is (economically) built, rather than effects of constraints

on representations, or a combination of the two. Instead of assuming the

standard view that structure is built in a bottom-up fashion, I take

syntactic derivations to uniformly proceed in a left-to-right/top-to-bottom

fashion, very much like in theories of parsing, as proposed by Phillips

(1996, 2003), Drury (1998, 1999), and Richards (1999, 2002), inter alia. In

fact, this top-to-bottom nature of derivations is an inevitable consequence

of the ‘generalized tucking-in’ approach to merge outlined in (i) above,

which enforces endogenous growth of trees across the board. Once the

directionality of derivation is reversed, we start making predictions that,

ceteris paribus, no representational approach can make (in particular, when

it comes to issues of dynamic constituency, as outlined in (i) above).

Moreover, these predictions seem to be by and large consistent with the

facts, confirming Chomsky’s (2000: 99) suspicion that the derivational

approach is more than just an expository device.

(vii) Following Uriagereka (1998, 1999, 2002), I assume that there are no levels

of representations in UG, only generative and interpretive components.

From that perspective, the syntactic computation of a sentence proceeds in

multiple successive ‘cascades’. Different parts of the structure are

generated and delivered to the phonological and semantic components

43

separately from each other. These PF and LF chunks are incrementally put

together and interpreted by the phonological and semantic components

respectively. Unlike in Uriagereka’s original formulation, I assume that

there are no ‘splitting points’, where the targeted syntactic (sub)structures

are delivered to both PF and LF interfaces simultaneously. Rather, syntax

feeds phonology and semantics independently, not necessarily at the same

derivational stages. As for the PF-interface, I endorse Uriagereka’s (1999)

position that those (multiple) applications of spell-out are driven by the

necessity to satisfy the Linear Correspondence Axiom (Kayne 1994) at all

derivational stages, in order to guarantee that the PF-representation being

built incrementally fully satisfies the linearity requirement imposed by the

A-P system. As a consequence of the assumptions outlined in (i) and (vi)

above, the version of Uriagereka’s (1999) Multiple Spell-Out model

developed here – which stems from Drury (1998, 1999) – works in a top-

to-bottom fashion, yielding interesting results when combined with the

move-as-remerge approach outlined in (iii). Chain-links are originally

generated in their highest positions and then remerged into lower

positions. When remerge takes place, the affected element has already

been spelled-out. What is being lowered/remerged is a combination of

formal and semantic features whose corresponding morpho-phonological

counterpart had already left the derivation for good.

44

(viii) As already mentioned in I.1 above, well-known mismatches between

prosodic constituency and syntactic constituency can be straightforwardly

accounted for in the dynamic derivational system proposed here, in terms

of ‘relativized isomorphism’.

(ix) Following Phillips (1996, 2003), I assume that the parser and the grammar

are not two distinct subsystems of the language faculty. Rather, they are

one single engine, so that ‘derivational time’ equals ‘real time’. This has

major consequences not only for PF-linearization matters (as previously

explored by Drury (1998, 1999) and Guimarães (1999a, 1999b), but also for

information-theoretical aspects of syntactic amalgamation, which exhibits

asymmetries with respect to the parallel matrix clauses, one having the

status of the ‘master matrix clause’, while the other(s) are ‘subservient

matrix clause(s)’. In the system proposed here, this paratactic asymmetry

is an effect of another asymmetry inherent to syntactic derivations, where

there must be a linear order in the very process of building the multiple

hierarchically parallel structures that constitute a syntactic amalgam.

45

II

Towards a Descriptively Adequate Theory

of Syntactic Amalgamation*

The goal of linguistic theory — as established in the foundational works of

Generative-Transformational Grammar — is to build models of natural language

grammars in a way that explanatory adequacy is achieved (cf. Chomsky 1965: 24-

37).10 Needless to say, that presupposes that both observational adequacy and

descriptive adequacy be achieved as well.

Therefore, while the following chapters are dedicated precisely to

developing a theory of syntactic amalgamation that is as explanatory as possible,

this chapter is dedicated to presenting my contribution to extending the body of

descriptive generalizations about syntactic amalgamation, beyond the few initial

class of facts reported by Lakoff (1974) and Tsubomoto & Whitman (2000).

* A preliminary version of the content of this chapter was presented at the First Joint
UConn/UMass/MIT/UMD Syntax Workshop, held at the Linguistics Department of the University
of Connecticut, on February 8th, 2003. I am thankful to the audience for the comments, especially
to Klaus Abels, Norbert Hornstein, Howard Lasnik, and Andrew Nevins.
10 Recent developments in the Minimalist Program have lead Chomsky (2001b) to envision the
possibility of going ‘beyond explanatory adequacy’. On this matter, see also Fukui (1996),
Uriagereka (1995, 1996, 1998, 2000 [DELTA paper], 2002a, 2002b), Chomsky (1994 [MIND paper],
2001c), Martin & Uriagereka (2000), Freidin & Vergnaud (2001), and Epstein & Seely (2002).

46

I will postpone any substantial analytical and theoretical discussion to the

following chapters, and simply focus on presenting ‘raw facts’11 and drawing

new empirical generalizations concerning syntactic amalgamation as pre-

theoretically as possible.

II.1. On the Ontology and Productivity of Syntactic Amalgamation

Let us begin with Lakoff’s (1974) classical example of syntactic amalgam

in (01).

(01) John invited you’ll never guess how many people to his party.

Lakoff reports that examples of this kind were originally discovered by

Avery Andrews. This particular construction was initially referred to as ‘indirect

question amalgam’ by Lakoff (1974), and later called ‘WH-amalgam’ by

Tsubomoto & Whitman (2000).

Another construction that Lakoff also took to be an instance of syntactic

amalgamation is the one exemplified in (02).

11 As far as the ‘raw data’ are concerned, I am extremely thankful to the following people for
judgements and discussion: Juan Carlos Castillo, Stephen Crain, John Drury, Scott Fults, Norbert
Hornstein, Howard Laskink, Paula Kempchinsky, Anthony Kroch, Ruth Lopes, Elixabete
Murguia, Andrew Nevins, Leticia Pablos, Colin Phillips, Paul Pietroski, Beth Rabbin, Phillip
Resnik, Cilene Rodrigues, Francisco Simões, Rosalind Thornton, Juan Uriagereka, and Jacek
Witkos.

47

(02) John is going to I think it’s Chicago on Saturday.

Lakoff referred to examples like (02) as ‘embedded cleft sentences’ (which

Tsubomoto & Whitman (2000) later called ‘cleft-amalgam’), and credited Larry

Horn for the discovery.

These two constructions are indeed very similar. They both exhibit a

sentence in the first plain conveying the main message, which gets interrupted

and ‘invaded,’ so to speak, by another sentence introducing a secondary message

in a quasi-parenthetical fashion, such that the ‘invasive clause’ contains a

focalized phrase somewhere in its embedded CP-domain.

In this dissertation, I will focus on WH-amalgamation. Most of what I have

to say — both descriptively and analytically — will naturally carry over to cleft-

amalgams. There will be, however, a few contrasts and incomensurabilities,

which I will point out along the way. At any rate, although the ultimate goal is to

build a general theory of amalgamation, the scope of this dissertation is to be

understood primarily as being restricted to WH-amalgamation.12

At first blush, there seems to be something unusual or out of ordinary

about examples like (01) and (02). They feel somehow ‘marked’. Prima facie, there

12 In fact, Lakoff (1974) takes into consideration six different constructions, and claims that they
are all instances of syntactic amalgam: (i) Andrews’ indirect questions, (ii) Horn’s embedded cleft
sentences, (iii) Forman’s parentheticals, (iv) Davison’s performative predicate modifiers, (v)
Liberman’s because-cases, (vi) Liberman’s or-cases, and (vii) tag questions. The sentences in (01)
and (02) are examples of (i) and (ii), respectively. In my view, although Lakoff’s (1974) analyses of
all these cases share important similarities, it is not accurate to say that he gave a unified account
of all six cases. Crucially, in his analysis, each construction has its own rule, which is similar in
format to the other rules, but explicitly refers to syntactic and pragmatic properties specific to
that given construction. An introductory presentation of all amalgamation rules proposed by
Lakoff is found in the Appendix to chapter III.

48

are at least four ways of approaching this ‘marked’ character of syntactic

amalgamation.

At first sight, amalgamation may seem to belong somehow in the

periphery, or even outside of the grammar, as some sort of ‘paralinguistic‘

discourse strategy. There seems to be something ‘idiomatic’ about amalgamation,

as if those ‘invasive quasi-parenthetical chunks’ were all bits of previously

‘lexicalized’ sentential material, which then behave as determiners or modifiers

to NPs. In fact, there is a relative small class of ‘invasive chunks’ (i.e. God only

knows, you can imagine, you’ll never guess, etc) that appear — in some variant or

other — over and over in the typical examples of amalgamation, as shown in (03).

(03) a: John invited 300 people to you can imagine what kind of party.

b: John has been writing his autobiography for God only knows how

many years.

c: Ever since he ran away, John has been hiding nobody has a clue

where.

d: John gave all his money to I wonder who.

e: John was nominated for I forgot which music award.

f: John was kissed in public by we all still remember which celebrity.

Although those recurrent substrings might indeed be instances of

‘readymade bits of discourse’, and despite the fact that their meanings are

49

somewhat ‘pragmatically equivalent’, there is also enough evidence that such

constructions are way less formulaic and way more productive than they seem to

be at first blush, as the examples in (04) reveal.

(04) a: John made a big deal out of having met I couldn’t care less which

celebrity at the party.

b: Noam Chomsky wrote maybe Zellig Harris kept track of

how many drafts of ‘Transformational Analysis’ until the final version

of the dissertation was presented to the committee.

c: The Beatles had not even George Martin remembers how many

recording sessions at the Abbey Road studios.

d: Batman can be reached at nobody in Gotham City but commissioner

Gordon knows which phone number.

e: Achilles held Hector’s corpse for Priamus certainly never forgot how

long during the Trojan War.

f: Developing a new antibiotic takes many years of research and you

can figure how much money.

A second way of approaching syntactic amalgams is to treat them as

structures that are anomalous at some relevant level of representation of the

50

grammar, but which are somehow able to ‘fool the parser’, similarly to what

happens with examples like (05).13

(05) * More people have been to Russia than I have.

There is, however, a clear difference between the ‘markedness’ of (01) and

(02) on the one hand, and the ‘oddity’ of (05) on the other hand. Upon closer

scrutiny, the latter exhibits an anomalous representation, despite the fact that it

may ‘sound good’ at first blush. Speakers who initially judge it as acceptable

inevitably recognize its oddity and change their minds immediately after being

asked what the meaning is supposed to be. As a matter of fact, examples like (05)

can be found only in works by linguists, and do not show up in spontaneous

speech. The former examples, on the other hand, do have crystal clear meanings

that can be paraphrased (cf. (09) below). Syntactic amalgams are uniformly way

more acceptable than structures like (05), typically triggering quite robust

judgments. Also, examples like (01) and (02) can be found in spontaneous

speech, and are quite productive, as shown in (03) and (04).

Another possibility is that the ‘markedness’ of (01) and (02) is just the

opposite of ‘grammatical anomaly that manages to fool the parser’. Instead, such

data would be fully well-formed, but would still sound a bit ‘unnatural’ due to

the high complexity of their structures, therefore ‘giving the parser a hard time’,

13 cf. Fults & Phillips (2004).

51

not to the point of leading to unacceptability, but to the point of making the

structure have the status of ‘marked’. From that perspective, syntactic amalgams

would be comparable to structures like (06) below.

(06) The rat that the cat that the dog bit chased ran away.

Sentences like (06) are standard examples of structures which look like

‘word-salad’ at first blush. However, upon closer inspection, it turns out that

they do not exhibit any formal property that could remotely be pointed out as a

potential source of ungrammaticality. Moreover, those same examples are

eventually judged as acceptable if one gives the speaker paper-and-pen, and

enough time to decompose it, going through the reasoning summarized in (07)

(07) a: The rat [that the cat [that the dog bit] chased] ran away.

b: The rat [that the cat [that the dog bit] chased] ran away.

c: The rat [that the cat [that the dog bit] chased] ran away.

Notice, however, that examples of the sort of (01) and (02) are not nearly

as confusing as (06). Despite sounding ‘marked’, syntactic amalgams are quite

easily understandable and acceptable right from the outset, as opposed to

structures with multiple center-embedding like (06). Ironically, although it

doesn’t take paper-and-pen and extra-time for any speaker to figure out what a

52

syntactic amalgam means, any attempt to decompose its structure in its parts is a

huge challenge to any syntactician, not to mention a naïve speaker.

Finally, one may take this marked status of syntactic amalgams as a

consequence of some grammatical process(es) of a more familiar kind. Whatever

amalgamation ultimately is, it would trigger ‘markedness’ no more and no less

than whatever grammatical processes are responsible for the generation of

sentences with topic-comment or focus-pressuposition structures, for instance,

which are arguably also ‘marked’, to the extent that their use is way more

restricted by contextual variables.

From that perspective, it seems reasonable, as a starting point, to

hypothesize that the syntactic amalgams in (01) and (02) — repeated below as

(08a) and (08b) —are ‘convoluted’ versions of (09a) and (09b) respectively,

generated through some complex combination of familiar context-sensitive

operations (e.g. movement, ellipsis, binding, control, etc).

(08) a: John invited you’ll never guess how many people to his party.

b: John is going to I think it’s Chicago on Saturday.

(09) a: You’ll never guess [how many people]1 John invited t1 to his party.

b: I think it’s [Chicago]1 (that) John is going to t1 on Saturday.

53

If this reasoning is on the right track, then the ‘marked feel’ of amalgams

like (08a) and (08b) would have a status similar to the one of the parasitic gap

constructions in (10), whose acceptability and grammaticality are nowadays a

consensus, but once were controversial (cf. Engdahl 1981; Chomsky 1982: 36-78;

Culicover & Postal 2001).14

(10) a: [Which articles]1 did John file t1 without reading e1 first ?

b: Here is [the influential professor]1 that John sent his book to t1 in

order to impress e1 .

c: [Who]1 did you give a picture of t1 to e1 ?

d: [Who]1 did John’s talking to e1 bother t1 most?

e: It was Ernest [who]1 pictures of e1 tended to depress t1.

Therefore, despite initial impressions, there is enough reason to pursue

the hypothesis that syntactic amalgams are actually built through rather ordinary

14 Making explicit reference to the sentence here reproduced in (08c), Chomsky (1982: 37) said: “In
Chomsky (1981), I assumed that (08c) [my numbering, MG] was ungrammatical, but that was not really
correct; rather, it is more or less acceptable under the interpretation given, while other examples of a similar
kind are quite acceptable, as we shall see directly”. Ahead, Chomsky (1982: 39) asked the following
concrete questions about parasitic gaps:

a: Why does the phenomenon [of parasitic gaps] exist at all?
b: What are the basic properties of parasitic gaps?
c: What principles and mechanisms determine these properties?

I see no reason to consider that the ‘markedness’ of syntactic amalgamation is a priori any
different from the ‘markedness’ of parasitic gaps. The natural questions to ask, at this point, are:

a’: Why does the phenomenon of syntactic amalgamation exist at all?
b’: What are the basic properties of syntactic amalgamation?
c’: What principles and mechanisms determine these properties?

This chapter addresses question (b’); while questions (a’) and (c’) are dealt with in the following
chapters.

54

syntactic tools, as just plain syntax pushed to the limit. This is the position that I

will ultimately defend throughout this dissertation.

The issue, then, is to identify what exactly those ‘ordinary tools’ of ‘syntax

in-the-limit’ are. The first steps toward achieving that goal must necessarily

involve describing the facts as accurately and exhaustively as possible.

As a first approximation, one may adopt the view that the amalgams in

(08) are actually ‘convoluted versions’ of (09), as sketched above. This seems to

be intuitively on the right track, but there is something else about the examples

in (08) that indicates that syntactic amalgamation has a paratactic nature, rather

than a fully hypotactic nature. That would call for a trans-derivational approach.

For instance, although (08a) is semantically equivalent to (09a) as far as their

propositional contents are concerned, their informational structures differ in

such a way that the mini-text in (11) is a more accurate paraphrase of (08a).

(11) John invited people to his party. You’ll never guess how many.

This is so because the ‘main message’ in both (08a) and (11) is about the

event of John inviting people to his party, whereas, in (09a), the ‘main message’

is about the guessing event.

Thus, descriptively speaking, it seems as if you’ll never guess how many

somehow ‘invades’ John invited people to his party in a quasi-parenthetical

fashion, as suggested in chapter I, and repeated below in (12).

55

(12)
John invited people to his party. You’ll never guess how many.

John invited you’ll never guess how many people to his party.

This is actually the intuition behind the classical analysis proposed by

Lakoff (1974), who defined syntactic amalgam as follows.

By ‘syntactic amalgam’ I mean a sentence which has within it
chunks of lexical material that do not correspond to anything in
the logical structure of the sentence; rather they must be copied
in from other derivations under specifiable semantic and
pragmatic conditions.

Lakoff (1974: 321)

Although, in this passage, Lakoff was being somewhat vague about what

exactly such ‘clause invasion’ would be, he actually proposed a specific technical

formalism where relatively precise definitions of “not corresponding to anything in

the logical structure of the sentence” and “copied in from other derivations” were

spelled out. Those details will be presented and criticized in chapter III, and a

56

concrete alternative proposal will be provided in chapter V. For now, let us focus

on the structural contexts under which amalgams are licensed. Notice that Lakoff

talks about “specifiable semantic and pragmatic conditions” which would license the

relevant trans-derivational operations. Crucially, he did not talk about any

‘syntactic condition’ in his formalization of the amalgamation rules (cf. chapter

III).

In what follows, I show that, aside from semantic and pragmatic

conditions, amalgamation is sensitive to the syntactic properties of both the

‘invaded’ and the ‘invasive’ sentences.

II.2. On the ‘Appropriate Modification’ Requirement

Consider (13a) and its amalgamated version in (13b).

(13) a: Everybody knows what Sarah gave to Joe.

b: Sarah gave everybody knows what to Joe.

Both examples are acceptable to the same extent. This contrasts with the

slightly different pair of examples in (14).

(14) a: Tom knows what Sarah gave to Joe.

b: ? Sarah gave Tom knows what to Joe.

57

If uttered in an out-of-the-blue situation, (14b) tends not to be as

acceptable as its non-amalgamated counterpart in (14a), or as the similar

amalgam in (13b).

Interestingly, acceptability is significantly improved if the subject of the

relevant verb15 in the invasive clause is appropriately modified, as shown in (15).

(15) a: ? Sarah gave Tom knows what to Joe.

b: Sarah gave only Tom knows what to Joe.

c: Sarah gave perhaps Tom knows what to Joe.

d: Sarah gave not even Tom knows what to Joe.

e: Sarah gave certainly Tom knows what to Joe.

The same ‘acceptability-boost’ effect obtains if the ‘invasive clause’ is

made more complex in the appropriate way, as in (16).

(16) Sarah gave I bet Tom knows what to Joe.

Likewise, the same relatively unacceptable string of words in (14b)

becomes fully acceptable if the subject of the relevant verb in the invasive clause

has the status of a contrastively focalized phrase, marked with the appropriate

prosody, as indicated in (17).

15 The ‘relevant verb’ is the one which, in the non-amalgam counterpart, selects the material
corresponding to the invaded clause as an indirect-question.

58

(17) Sarah gave TOM knows what to Joe.

Finally, no explicit ‘appropriate modification’ to the structure is necessary

if the same syntactic amalgam is uttered in a favorable context. For instance,

suppose that the following background information is shared by both the utterer

and the addressee.

(18) Context

Joe is a prisoner at a maximum-security penitentiary. Once every week,

his daughter Sarah visits him, sometimes bringing him candies,

magazines, and other gifts. There is one soldier named Tom, whose job is

to watch out every meeting between Joe and any visitor in its entirety,

inspecting and keeping track of every object exchanged, making sure that

no weapon, cell phone or any other unauthorized object gets in Joe’s

hands. Once every week, Tom is supposed to report to the security

supervisor whatever happened in Joe’s meetings with any visitors. By

default, nobody else performs Tom’s task.

In the scenario described above, the syntactic amalgam in (14b) – repeated

below as (19) – is indeed fully acceptable, entirely dispensing with any additional

‘appropriate modifications’.16

16 In certain cases, like (i) below, the ‘appropriate context’ that licenses not-so-acceptable syntactic
amalgam is so salient and predictable, that no further explanation (like (18)) is necessary.

59

(19) Sarah gave Tom knows what to Joe.

The common feature to all those strategies is that the ‘invasive clause’

introduces a parallel secondary message that contrasts with the main message

introduced by the ‘invaded clause’ in terms of the knowledge (or memory) of a

given propositional content (i.e. the propositional content of the core structure

being ‘invaded’), or lack thereof, on the part of all people in the relevant universe

of discourse. What all those ‘appropriate modifications’ do is precisely to

introduce the contrast of knowledge just mentioned.

Mutatis mutandis, the acceptability-tied-to-appropriate-modification

pattern just described resembles very much what is observed in middle

constructions, as shown below (cf. Roberts 1986).

(20) Active Structures

a: I biased the vacuum-tubes of Max’s amplifier.

b: I biased the vacuum-tubes of Max’s amplifier quite quickly.

(21) Middle Structures

a: * The vacuum-tubes of Max’s amplifier biased.

b: The vacuum-tubes of Max’s amplifier biased quite quickly.

(i) During the recording sessions of St. Pepper’s Lonely Hearts Club Band, Ringo Starr

recorded the vocal parts of With a Little Help from My Friends Paul McCartney couldn’t
believe how many times until the drummer was finally satisfied with his own
performance as a front singer.

60

(22) Middle Structures in a Cleft Environment

a: It’s Max’s amplifier whose vacuum-tubes were able to get biased.

b: It’s The vacuum-tubes of Max’s amplifier which were able to get

biased.

(23) Middle Structures in a Contrastive-Focus Environment

a: The vacuum-tubes of MAX’S AMPLIFIER biased.

b: THE VACUUM-TUBES OF MAX’S AMPLIFIER biased.

(23) Plain Middle Structure in an Appropriate Context

I couldn’t get most of the amplifiers to work properly. Somehow, only the

vacuum-tubes of Max’s amplifier biased.

II.3. On the Unboundness of Amalgamation

Consider the sentence in (24a) and its corresponding amalgamated

version in (24b).

(24) a: Only his wife knows exactly [how much money John has donated

to charity ever since he became rich].

61

b: John has donated only his wife knows exactly how much money to

charity ever since he became rich.

As shown below, the parenthetical-like invasive chunk may be complex,

exhibiting embedded sentences in it. The data in (25) and (26) indicate that, no

matter how deeply embedded a subordinate (indirect question or cleft) sentence

is, it is possible to build a corresponding syntactic amalgam where that

embedded sentence figures as the ‘invaded clause’, with the ‘invasive clause’

being a complex structure of recursively embedded sentences. The phenomenon

seems to be unbounded at the competence level, limited only by parsing

limitations.17

(25) a: Sarah once told me [that only his wife knows exactly [how much

money John has donated to charity ever since he became rich]].

b: John has donated Sarah once told me that only his wife knows exactly

how much money to charity ever since he became rich.

17 As shown below, the same pattern obtains with regards to cleft-amalgams:
(i) a: I think it was sixty-five thousand Euros that John has donated to charity ever

since he became rich.
b: John has donated I think it was sixty-five thousand Euros to charity ever since he

became rich.
(ii) a: Sarah once told me that she believes it was sixty-five thousand Euros that John

has donated to charity ever since he became rich.
b: John has donated Sarah once told me that she believes it was sixty-five thousand Euros

to charity ever since he became rich.
(iii) a: I remember that Sarah once told me that she believes it was sixty-five thousand

Euros that John has donated to charity ever since he became rich.
b: John has donated I remember that Sarah once told me that she believes it was sixty-five

thousand Euros to charity ever since he became rich.

62

(26) a: I remember [that Sarah once told me [that only his wife knows

exactly [how much money John has donated to charity ever since

he became rich]]].

b: John has donated I remember that Sarah once told me that only his wife

knows exactly how much money to charity ever since he became rich.

This lack of upperbound on the complexity of the ‘invasive clause’ further

suggests that those quasi-parenthetical chunks are not formulaic idioms (cf. §I.1

above). However, that does not yet argue for the unboundness of amalgamation

itself. As a matter of fact, it is also the case that there can be multiple

amalgamation. That is, a sentence may be ‘invaded’ at many points by many

‘invaded clauses’. For instance, consider the sentence in (27).

(27) John invited you will never guess how many people to you can imagine what

kind of a party.

As it will be shown in §II.4 below, whenever there is multiple

amalgamation, the many ‘invasive clauses’ are hypotactically unrelated

(although paratactic related). In fact, the only possible way to build a non-

amalgamated version of (27) is through a paratactic arrangement of independent

sentences, as in (28).

63

(28) John invited people to some event. You’ll never guess how many... and

you can imagine what kind of party.

Crucially, the multiple amalgam in (27) has no hypotactically structured

correlate, unlike what happens to simple amalgams, as shown in (24), (25) and

(26) above.

In fact, this is evidence against taking amagamation to be the result of a

combination of transformations on a single-rooted phrase marker of the sort of

(24a), (25a) and (26a). This was actually the main point that Lakoff (1974) was

making when he first brought up the example in (27) above.

Lakoff (1974) also pointed out that, setting aside parsing limitations, the

iterative nature of a syntactic amalgam is unbounded, as shown in (29).

(29) John invited you will never guess how many people to you can imagine what

kind of a party at it should be obvious where with God only knows what purpose

in mind, despite you can guess what pressures.

Two minor observations to be added to Lakoff’s original findings are

illustrated below.

First, not only can there be many ‘invasions’ to a sentence, but the

‘invasion points’ need not to be all associated to positions of arguments and

adjuncts of the same predicate. The ‘invasive clauses’ may be distributed across

64

different predicated along the sentence, even across predicates that don’t scope

over one another, as shown in (30).

(30) The fact that Tom invited he couldn’t even count how many people to his

graduation party was the reason why his father ended up spending God

knows how much money on beers, snacks, napkins, and so on.

Moreover, multiple amalgamation may be an arbitrary combination of

WH-amalgamation and Cleft-amalgamation, as shown in (31).

(31) John invited I think it was three-hundred people to you can imagine what kind

of a party.

II.4. Multiple Parallel Messages Presented in Two Layers of Information

Consider again the amalgam in (01), repeated below as (32).

(32) John invited you’ll never guess how many people to his party.

As a first approximation, the meaning of this syntactic amalgam can be

informally described through the paraphrase in (33).

65

(33) You’ll never guess how many people John invited to his party.

Whether or not the syntactic structures of (32) and (33) are

transformationally related, these two examples seem to be, by and large,

semantically equivalent, sharing the same propositional content.

There is, however, one asymmetry in the meaning of (32) which is not

captured by the paraphrase in (33). Despite the propositional contents of (32) and

(33) being the same, these two examples differ in informational structure.

Speakers report that they feel the invitation event being somehow more

‘discoursively salient’ in (32) than it is in (33). Descriptively speaking, the

contrast under discussion is the fact that, in (32), John invited people to his

party has a ‘matrix-clause feel’ to it, with you’ll never guess how many acting as

a parenthetical; whereas, in (33), it is [how many people]1 John invited t1 to his

party that is perceived as a subordinate clause embedded under a VP headed by

guess, around which the matrix clause is built.

Therefore, a more accurate paraphrase of (32) would be the one in (34).

(34) John invited people to his party. You’ll never guess how many.

The mini-text in (34) is a much better paraphrase than (33) for expressing

the informational content of the amalgam in (32), to the extent that it shows, in a

transparent way, two parallel messages. One is structured around an inviting

66

event, and the other one around a guessing event, such that the first is somehow

at the front ‘informational layer’ — as the main message — and the second is in

another informational layer behind it, as a secondary chunk of information.

This generalization is further supported by multiple amalgams. Consider

the example in (27), repeated below as (35).

(35) John invited you’ll never guess how many people to you can imagine

what kind of party.

Any utterance of the construction in (35) will be mainly about John’s

invitation of people to a certain party. As secondary thoughts, there are two

parallel messages being conveyed: one concerns a guessing event, and the other

one concerns an imagining event (state). A reasonably faithful paraphrase is the

one in (36).

(36) John invited people to some event. You’ll never guess how many... and

you can imagine what kind of party.

In (35) — and, to some extent, in (36) —, there is no obvious hierarchical

organization between the two secondary messages. They both seem to be equally

67

‘behind’ the main message; and fully parallel to each other, so that none of them

is more ‘discoursively salient’ than the other. 18

As opposed to simple amalgams like (32), multiple amalgams like (35) are

not paraphrasable in a hypotactic fashion, along the lines of (33), even if

imprecisely. Any attempt to do so fails, as shown in (37).

(37) a: * You’ll never guess [how many people]1 you can imagine

[what kind of party]2 John invited t1 to t2.

b: * You can imagine [what kind of party]2 you’ll never guess

[how many people]1 John invited t1 to t2.

Not only are these two hypotactic structures both unacceptable to begin

with (being arguably agrammatical due to violations of the relevant locality

constraints on (WH) movement);19 but their LF structures exhibit properties that

couldn’t even remotely correspond to that.

Abstracting away from syntactic locality matters, standard assumptions

about semantic compositionality would predict that, in (37a), the clause

corresponding to the invitation event is the complement of the verb imagine; and

18 This bi-layered informational structure seems to be constant across amalgams, no matter how
many invasions there are. When faced with multiple amalgams like (i), speakers report to have a
‘gut feeling’ that there are only two informational layers: one displaying the inviting event; and
another one displaying all other events grouped in a flat, parallel fashion in terms of discourse
salience.
(i) John invited you will never guess how many people to you can imagine what kind of a party at it

should be obvious where with God only knows what purpose in mind, despite you can guess
what pressures.

19 cf. §II.6 for a more detailed description, and §V.5 for discussion and analysis.

68

the clause corresponding to the imagining event is the complement of the verb

guess. The resulting meaning is such that what is being guessed is something

about an event of imagining that concerns an invitation event. But this is not

what the multiply amalgamated structure in (35) means. Instead, the meaning of

(27) is such that what is being guessed is something about the invitation event

itself, which is also what is being imagined. The events of imagining and

guessing are independent. The same logic applies to (37b), which exhibits the

opposite scope between guess and imagine. Given standard assumptions about

semantic compositionality, the clause corresponding to the imagining event is

the complement of the verb guess; and the clause corresponding to the guessing

event is the complement of the verb imagine. The resulting meaning is such that

the event of imagining that concerns a guessing event, which — in its turn — is a

guessing of some property of the invitation event. But this is not what the

multiply amalgamated structure in (27) means either.

In a nutshell, an accurate paraphrase of (27) must necessarily exhibit a

structure neither guess scopes over imagine, nor imagine scopes over guess.

This is precisely the case with the paratactic arrangement in (36).

The data in (38) show further evidence that syntactic amalgams exhibit

informational structures quite distinct from the ones of their corresponding

hypotactic paraphrases.

69

(36) a: John invited his fiancé keeps asking me how many women to his

bachelor party.

b: His fiancé keeps asking me how many women John invited to his

bachelor party.

c: John invited women to his bachelor party. His fiancé keeps asking

me how many.

In (36a), the speaker is making the statement that John invited a certain

number of women to his bachelor party. Thus, the speaker is committing to the

truth that there actually happened an event of inviting people (to one’s own

bachelor party) whose agent was John. In a parallel statement, the speaker is

committing to the truth that John’s fiancé keeps asking him/her (i.e. the speaker)

how many women were invited by John to such a party, and that such an

invitation corresponds to that same inviting event whose truth is being stated.

On the other hand, the hypotactic paraphrase in (36b) does not entail that

the speaker is committing to the truth that such event of inviting people to a

bachelor party performed by John actually happened. Rather, the speaker is

merely stating that John’s fiancé keeps asking him/her how many women were

invited by John to a bachelor party, in a given inviting event that the event does

not presupposes to be true. It could well be the case that the speaker uttering

(36b) strongly believes that such invitation never happened, and/or that such a

party was never planned, and will never take place (in which case John’s fiancé is

70

simply mistaken about the whole story). It could also be that the speaker simply

ignores whether or not such invitation event (s)he is being asked about really

happened. Crucially, the paratactic paraphrase in (36c) faithfully captures the

relevant pressuposition present in the informational structure of the amalgam

(36a).

Finally, the example in (37) shows further evidence that the meaning of a

syntactic amalgam is structured in two layers.

(37) Tom said that John invited I forgot how many people to his party.

In (37), the event of John inviting a certain number of people to his party is

simultaneously the theme of the saying event performed by Tom and the theme

of the forgetting event experienced by the speaker. The key property of (37) is

that the forgetting and the saying events are completely independent from one

another.

In a context where (37) is true, Tom did not say anything about the

speaker’s lack of memory regarding how many people John invited to his party.

All Tom said is that John invited a certain number of people (for instance, fifty-

seven) to his party. Conversely, it is not the case that the speaker forgot Tom having

said how many people John invited to his party. All the speaker forgot is the

cardinality of the number x such that John invited x people to his party (as

71

opposed to the cardinality of the number y such that Tom said that John invited

y people to his party).

Therefore, the informational structure of (37) must contain two layers.

Presented ‘at the front’, there is a message about Tom having said that John

invited a given number of people to his party. As a secondary message behind

that one, there is the event/state of forgetting, experienced by the speaker, so

that what is being forgotten is the exact number of people that John invited to his

party.

The paratactic structure in (38) is a paraphrase of (36) which — as opposed

to (39) — reflects the informational structure of (37).

(38) Tom said that John invited (a bunch of) people to his party. I forgot how

many

(39) I forgot [how many people]1 Tom said that John invited t1 to his party.

II.5. Insensitivity to Islands

As pointed out by Tsubomoto & Whitman (2000: 80), invasive clause(s)

may appear inside certain domains that are well-known islands for extraction (cf.

Ross 1967, 1986), and which actually block movement of the relevant phrase in

72

the corresponding hypotactic non-amalgamated versions of the same examples,

as shown in (40) through (44) below.

(40) Coordinate-Structure Island

a: John invited one-hundred men and you can imagine how many

women to his party.

b: John invited one-hundred men and two-hundred women to his

party.

c: * You can imagine [how many women]1 John invited { [one-hundred

men] and t1 } to his party.

(41) Relative Clause Island20

a: John invited a woman he met you’ll never guess where to his party.

b: John invited a woman he met at the church to his party.

c: * You’ll never guess [where]1 John invited [a woman2 { he met e2 t }]

to his party.

20 The unacceptability/ungrammaticality of the example in (41c) is tied to the reading in which
the WH phrase where is interpreted as the place in which the male person denoted by he (most
likely John) met the female person denotated by woman. It is irrelevant for this discussion that
the same string of words is acceptable under the reading in which where is interpreted as the
place in which John when he invited a woman he met (somewhere) to the party. By standard the
syntactic and semantic assumptions, only the first reading is associated with a syntactic structure
involving extraction (of a WH) out of an island.

73

(42) Adjunct Clause Island

a: John invited all his friends to a big party immediately after I hired

it’s obvious who for the job.

b: John invited all his friends to a big party immediately after I hired

his daughter for the job.

c: * It’s obvious [who]1 [John invited all his friends to a big party

{ immediately after I hired t1 for the job }].

(43) Subject Island

a: Chatting with you can imagine who on the phone makes Max happy.

b: Chatting with his brother on the phone makes Max happy.

c: * You can imagine [who]1 { chatting with t1 on the phone } makes

Max happy?

(44) Complex NP/DP Island

a: Susan dismissed the claim that her husband dated I can’t remember

who before they got married.

b: Susan dismissed the claim that her husband dated Sarah before

they got married.

c: * I can’t remember [who]1 Susan dismissed { the claim that her

husband dated t1 before they got married }.

74

The same pattern obtains in cleft-amalgams, as shown below.

(45) Coordinate-Structure Island

a: John invited one-hundred men and I think it was two-hundred women

to his party.

b: John invited one-hundred men and two-hundred women to his

party.

c: * I think it was [two-hundred women]1 that John invited { [one-

hundred men] and t1 } to his party.

(46) Relative Clause Island21

a: John invited a woman he met at I think it was the church to his party.

b: John invited a woman he met at the church to his party.

c: * I think it was [at the church]1 that John invited [a woman2 { he met

e2 t1 }] to his party.

(47) Adjunct Clause Island

a: John invited all his friends to a big party immediately after Mr.

Goldstein hired I’m pretty sure it was his daughter for the job.

b: John invited all his friends to a big party immediately after Mr.

Goldstein hired his daughter for the job.

21 cf. previous footnote.

75

c: * I’m pretty sure it was [his daughter]1 that [John invited all his

friends to a big party { immediately after Mr. Goldstein hired t1 for

the job }].

(48) Subject Island

a: Chatting with I guess it’s his brother on the phone makes Max

happy.

b: Chatting with his brother on the phone makes Max happy.

c: * I guess it’s [his brother]1 that { chatting with t1 on the phone }

makes Max happy.

(49) Complex NP/DP Island

a: Susan dismissed the claim that her husband dated I guess it was

Sarah before they got married.

b: Susan dismissed the claim that her husband dated Sarah before

they got married.

c: * I guess it was [Sarah]1 that Susan dismissed { the claim that her

husband dated t1 before they got married }.

76

II.6. Apparent Lack of Superiority Effects

Ever since Chomsky (1973), contrasts like the one in (50) have been treated

as effects of a Superiority Condition on transformations (or whatever deeper

principle such condition ultimately reduces to), which is a locality requirement

on displacement.22

(50) a: I’ll find out [how much money]1 Bob gave t1 to [whom]2

b: * I’ll find out [who]2 Bob gave [how much money]1 to t2

I will postpone any technical discussion on the nature of superiority to

chapter V. For now, from a general descriptive perspective, it suffices to say that

whatever the deeper principle that ultimately accounts for superiority is, it has the

effect of preventing a phrase α of a given type (in this case, a WH) from moving to

the next available target position up (in this case, the embedded spec/CP) if there

is another β of the same type as α that is closer to the target than α is (where

closeness is yet to be precisely defined).

Before any movement, how much money is closer to the target than who

is. Thus, by superiority, the movement of who across how much money is

22 Standard examples of Superiority typically involve competition between a subject and an object
(as in (i) below) rather than two objects, which may raise further issues regarding equidistance.
(i) a: who1 t1 bought what?

b: * what1 did who buy t1 ?
All my examples involve double objects because here I am focusing on how superiority works in
syntactic amalgams; and syntactic amalgamation cannot affect bona fide subjects to begin with, as
shown below (cf. Guimarães 2003a/b/c):
(i) * I wonder what1 you can imagine who bought t1.

77

forbidden. On the other hand, provided that movement of some WH phrase to

spec/CP is required, how much money, being the closest WH to the target,

should move, as it does in (50a).

Such contrast does not exist in (51), however.

(51) a. I’ll find out [how much money]1 Bob gave t1 to [someone]2

b. I’ll find out [who]2 Bob gave [some money]1 to t2

Given the way superiority is defined, this is not surprising. The

grammaticality of (51a) is predicted straightforwardly. As for (51a), no violation of

superiority exists even though, at the derivational stage before movement, who is

as far alway from the target as it is in (50b). It is irrelevant that some money is

closer to the target than who is, since only phrases of the relevant type (in this

case, WH) can count as interveners, and block the movement of distant phrases.23

The superiority effect illustrated in (50) is not observed in cases where one

of the WHs is part of a syntactic amalgam (cf. Guimarães 2002; 2003a/b/c/d).24

23 Strictly speaking, the movement of how much money in both (50a) and (51a) indeed crosses an
intervening phrase, namely: the subject Bob. This is being ignored for expository reasons, and it
does not affect the reasoning, since Bob, not being a WH-phrase, cannot block the movement of a
WH phrase, just like the direct object some money in (51b).
24 Some English speakers judge (52b) as somewhat degraded in comparison to (52a). As
suggested by Howard Lasnik (personal communication), this may be due to parsing difficulties
associated with a highly complex material intervening between the WH and the stranded
preposition that selects it; as independently attested in cases like (i) which most speakers report
to be significantly less acceptable than (ii).

(i) ?* Who1 did you give that Beatles record autographed by George Harrison that you
got in London last year to t1 ?

(ii) Who1 did you give that Beatles record to t1 ?
Crucially, even for those speakers, (52b) is much more acceptable than (50b), which is just plain
impossible. Interestingly, such degrading effect does not exist at all in Romance (exemplified

78

(52) a: I’ll find out [how much money]1 Bob gave t1 to you can imagine who

b: I’ll find out [who]2 Bob gave you can imagine how much money to t2

Notice that (52) patterns like (51) rather than like (50), even though both

sentences in (52) have two WH-phrases apparently competing with each other

for occupying the spec/CP position right under the VP headed by find out, just

as in (50).

Apparently, in both (52a) and (52b), how much money is the closest WH

to the target before any movement takes place. Thus, at first blush, it is

surprising that there is not a significant acceptability contrast between (52a) and

(52b) the same way that there is between (50a) and (50b).25

Thus, a WH that participates in a syntactic amalgam, showing up at the

edge of an invasive clause, does not count as a WH for all intents and purposes.

Further evidence for this is shown below.

below with Portuguese), where the analogues of (52a) and (52b) are both equally acceptable,
which is consistent with the reasoning just sketched, since WH-movement must involve pied-
piping in Romance (cf. §II.8).
(iii) Eu vou descobrir quanto dinheiro Bob deu você pode imaginar pra quem.
I will discover how-much money Bob gave you can imagine to who.

(iv) Eu vou descobrir pra quem Bob deu você pode imaginar quanto dinheiro.
I will discover to who Bob gave you can imagine how-much money.
25 One could deny that this is a real problem under the assumption that how much money in
(52b) is deeply embedded inside a complex constituent also containing the parenthetic-like string,
as the brackets in (ib) indicate.
(i) a: I’ll find out [how much money]1 Bob gave t1 to [you can imagine who]

b: I’ll find out who2 Bob gave [you can imagine how much money] to t2

That way, despite what the linear- precedence dimension may suggest, how much money would
arguably not count as the closest WH-phrase to the target in the relevant technical sense (since it
would not scope over who), hence not counting as an intervener. This hypothesis will be
addressed in chapter V, where I will present arguments that those two WH phrases are indeed in
competition, and subject to superiority, but other structural variables (basically, shared
constituency) plays a key role in these constructions, ultimately obfuscating superiority effects.

79

The paradigm in (53) involves an ordinary instance of indirect question,

which requires a WH-phrase occupying a position (arguably, spec CP) in the left-

periphery of the embedded clause. If there is a normal (non-amalgamated) WH-

phrase fronted to the left-periphery of the embedded clause, as in (53a), the

structure is acceptable. If the WH-phrase phrase fronted to the left-periphery of

the embedded clause is affected by amalgamation, as in (53b), the structure is

unacceptable to the same extent that it is unacceptable to have a non-WH phrase

at the left-periphery of the embedded clause, as in (53c).

(53) a: Amy wonders [how much money]1 Bob gave t1 to Tom.

b: * Amy wonders God knows [how much money]1 Bob gave t1 to Tom.

c: * Amy wonders [some money]1 Bob gave t1 to Tom.

In (54), we observe the opposite pattern. The embedded sentence is not an

indirect question. Thus, there is no relevant element in the left periphery of the

embedded sentence, which could license a WH-phrase. If one of the arguments

of the verb of the embedded sentence is a WH-phrase in situ, as in (54a), the

structure is unacceptable (unless it is associated with an echo-question

interpretation and intonation). If, however, that very same WH-phrase not

fronted to the left-periphery of the embedded clause participates in a syntactic

80

amalgam, as in (54b), then the structure is acceptable,26 to the same extent that it

is acceptable to have a bona fide non-WH phrase in that position, as in (54c).

(54) a: * Amy believes Bob gave [how much money] to Tom.

b: Amy believes Bob gave God knows [how much money] to Tom.

c: Amy believes Bob gave [some money] to Tom.

II.7. On Possible and Impossible Target Positions for Clause Invasion

At first blush, it seems that syntactic amalgams exhibit no effects of a

constraint on which point of the string a sentence may be invaded by another one

sentence. Apparently, (the initial boundary of) any argument (or adjunct) of the

invaded sentence can be targeted as the ‘invasion point’.

The data below support this preliminary generalization.

(55) Invasion at the Direct Object Position

Tom believes that Amy has been dating I forget who since last October.

(56) Invasion at the Indirect Object Position

Tom believes that Amy gave all her money to I forget who yesterday.

26 Notice that, contrary to (54a), an echo-question interpretation and intonation is not possible in
(54b).

81

(57) Invasion at the Adjunct (to VP) Position (with a governing preposition)

Tom said that Amy has been dating Bob since I forget when.

(58) Invasion at the Adjunct (to VP) Position (without a governing preposition)

Tom said that Amy met Bob I forgot when.

(59) Invasion at a Nominal Complement Position

Tom believes that the general will demand the destruction of I forget

which city by tomorrow morning.

(60) Invasion at a Nominal Adjunct Position

Tom said that the president will hire a person from you’ll never guess

which country for the job of secretary of international affairs.

However, upon closer inspection, we notice that there is in fact a limit to

this freedom, as shown in (61) and (62), which are both unacceptable.27

27 The examples in (61) and (62) are totally unacceptable under the relevant interpretations, which
correspond to the paratactic paraphrases in (i) and (ii), respectively:
(i) Tom said that a given person is dating Amy. I forgot who that person is.
(ii) Tom said that a given person kissed Amy at the party. I forgot who that person is.
However, the same strings of words in (61) and (62) are acceptable under distinct interpretations,
which correspond to the hypotactic paraphrases in (iii) and (iv), respectively:
(iii) Tom said that I forgot the identity of the person who is dating Amy.
(iv) Tom said that I forgot the identity of the person who kissed Amy at the party.
The acceptability/grammaticality status of (61) and (61) under the readings in (iii) and (iv) is
irrelevant for the present discussion, since, in that case, the corresponding syntactic
representations would arguably be something along the lines of (v) and (vi), respectively, which
definitely are instances of ordinary subordination rather than syntactic amalgamation.
(v) [CP [IP Tom [VP said [CP that [IP I [VP forgot [CP who1 [IP t1 is dating Amy]]]]]]]]

82

(61) Invasion at the Subject Position (active structure)

 * Tom said that I forgot who is dating Amy.

(62) Invasion at the Subject Position (passive structure)

 * Tom said that I forgot who was kissed by Amy at the party.

What distinguishes all the acceptable examples in (55-60) from the

unacceptable ones in (61-62) is the fact that, in the former group, the constituent

that defines the target of the ‘clause invasion’ is a complement of either a verb or

a preposition,28 as opposed to the latter group. Therefore, there is something

special about the subject position that makes it an invalid target for ‘clause

invasion’.

Notice, however, that it is possible for clause invasion to target a subject

position that is associated with E(xeptional) C(ase) Marking, as shown in (64).

(63) Invasion at the Subject Position (ECM structure)

The conductor of the orchestra wants you’ll never guess which musician to

be in charge of the rehearsal while he will be out of town.

(vi) [CP [IP Tom [VP said [CP that [IP I [VP forgot [CP who1 [IP t1 was kissed t1 by Amy at the

party]]]]]]]]
28 Actually, the example in (58) is an exception exception to this generalization, as it shows clause
invasion targeting a ‘bare adverb’, not governed by a preposition. For further discussion, cf.
chapter V.

83

The same pattern shown in (55) through (64) above obtains in cleft

amalgams, as shown below.

(64) Invasion at the Direct Object Position

Tom believes that Amy has been dating I think it’s Bob since last October.

(65) Invasion at the Indirect Object Position

Tom believes that Amy gave all her money to I think it’s Bob yesterday.

(66) Invasion at the Adjunct (to VP) Position (with a governing preposition)

Tom said that Amy has been dating Bob since I think it’s last October.

(67) Invasion at the Adjunct (to VP) Position (without a governing preposition)

Tom said that Amy met Bob I think it was last October.

(68) Invasion at a Nominal Complement Position

Tom believes that the general will demand the destruction of I think it’s

Tehran by tomorrow morning.

(69) Invasion at a Nominal Adjunct Position

Tom said that the president will hire a person from I think it’s Holland for

the job of secretary of international affairs.

84

(70) Invasion at the Subject Position (active structure)

 * Tom said (that) I think it’s Bob is dating Amy.

(71) Invasion at the Subject Position (passive structure)

 * Tom said (that) I think it’s Bob was kissed by Amy at the party.

(72) Invasion at the Subject Position (ECM structure)

The conductor of the orchestra wants I think it’s Mr. Petrovic to be in

charge of the rehearsal while he will be out of town.

II.8. Cross-Linguistic Word Order Variation

As shown in §II.7, the position of object of a preposition is a possible

target for clause invasion, as exemplified in (73) and (74).

(73) John invited 300 people to you can imagine what kind of party.

(74) John has been planning his 40th birthday party since you can imagine when.

Examples of this kind have been previously described and analyzed by

Lakoff (1974), without being given any special status. However, something that

85

has gone unnoticed is the fact that this subclass of syntactic amalgam displays

effects of parametric variation.

The same construction exists in other languages, but there is variation

with respect to the relative order between the relevant preposition and the

invasive clause.

For comparison, let us first exhaust the description of the English

paradigm. As shown in (75) and (76), in English, the invasive clause must appear

in between the relevant preposition and its complement, as in (75a) and (76a), so

that the PP becomes a discontinuous constituent at PF. If the invasive clause

appears before the preposition, as in (75b) and (76b), the structure unacceptable.

(75) a: John invited 300 people to you can imagine what kind of party.

b: * John invited 300 people you can imagine to what kind of party.

(76) a: John has been planning his 40th birthday party since you can imagine

when.

b: * John has been planning his 40th birthday party you can imagine since

when.

86

In other languages, the opposite pattern obtains, as illustrated below with

examples from Romance (cf. (77) and (78)).29 In such languages, it is not possible

for the invasive clause to appear in between the relevant preposition and its

complement, as in (77a) and (78a). Rather, the invasive clause must appear

immediately before the preposition, as in (77b) and (78b).

(77) Romance (Portuguese)

a: * João convidou 300 pessoas pra você pode imaginar que tipo de festa

John invited 300 persons to you can imagine what kind of party

b: João convidou 300 pessoas você pode imaginar pra que tipo de festa

John invited 300 persons you can imagine to what kind of party

(78) Romance (Portuguese)

a: * João vem planejando a festa de 40˚ aniversário dele desde você

John has planned the party of 40th birthday of+him since you

pode imaginar quando

can imagine when

b: João vem lanejando a festa de 40˚ aniversário dele você pode

John has planned the party of 40th birthday of+him you can

imaginar desde quando

imagine since when

29 I have chosen to illustrate the point with examples from Portuguese, but the same pattern
obtains in Spanish, Galician, French, as well as in other languages pied-piping languages outside
the Romance family, like Polish and Russian.

87

A generalization that can be drawn from the data of the languages I

observed (and which may be further supported or refuted by future comparative

studies) is that there is a strong correlation between the word-order patterns

above and whether the language allows preposition stranding in WH-movement

(like English) or not (like Romance and Slavic in general), as the data below

indicate. This correlation will be analyzed in chapters III and V.

(79) English

a: What1 are you talking about t1 ?

b: * [About what]1 are you talking t1 ?

(80) Romance (Portuguese)

a: * [O quê]1 você está falando sobre t1 ?

What1 you are talking about t1 ?

b: [Sobre o quê]1 você está falando t1 ?

about what1 you are talking t1 ?

The generalization just presented deserve further comment, as far the

English facts are concerned. At first blush, there seems to be no one-to-one

correspondence in English between the pied-piping/preposition-stranding

distinction and the order of the preposition with respect to the invasive clause in

syntactic amalgams. It is a well-known fact that, although pied-piping the whole

88

PP is worse than stranding the preposition in cases like (81); there are other cases

where the contrast is not nearly as strong. For instance, in (82), although the

preposition-standing strategy is, by far, more acceptable, the pied-piping

strategy is by no means as unacceptable as it is in (81b). In fact, (82b) is relatively

acceptable despite its heavily marked status.

(81) a: What1 are you talking about t1 ?

b: * [About what]1 are you talking t1 ?

(82) a: Who1 are you talking to t1 ?

b: ? [To whom]1 are you talking t1 ?

This can be easily accommodated if the generalization is stated in terms of

‘availability of preposition stranding (or lack thereof)’ rather than ‘availability of

pied piping (or lack thereof)’. However, as it will become clear when I discuss

this at the analytical level (cf. chapters III and V), stating the generalization in

terms of ‘availability of preposition stranding (or lack thereof)’ is nothing but a

mere rhetorical move that has the negative effect of biasing the analysis towards

a model that lacks explanatory power. Prima facie, if some pied-piping is possible

in English, and if the suggestion I just made that the order of the preposition

relatively to the invasive clause in syntactic amalgams correlates with the pied-

piping/preposition-stranding distinction, then we would expect to find some

89

Romance-style syntactic amalgams in English to the same extent that we find

pied-piping in analogous constructions. But this is not the case. For instance,

while (83a) merely has the status of marginal or ‘too formal’ in comparison to

(83b), its amalgamated version in (84a) — which inherits its pied-piping

configuration — is considerably degraded in comparison with both (83a) and

(84b) to most speakers.

(83) a: ? I forgot to whom Mr. Smith was speaking after the meeting.

b: I forgot who Mr. Smith was talking to after the meeting.

(84) a: * Mr. Smith was speaking I forgot to whom after the meeting.

b: Mr. Smith was talking to I forgot who after the meeting.

In this dissertation, I endorse Murphy’s (1995) position that English is

essentially a full preposition-stranding language, with all instances of pied-

piping being an artifact of E-language.30 That is, there would be code-switching

between (at least) two distinct grammars with distinct parametric settings. One

of them is ‘actual English’, and is spoken in most situations. The other one is

‘formal English’, and its usage is “reserved for literary diction” (cf. Visser 1968:

30 I am thankful to Anthony Kroch, Colin Phillips and Paula Kempchinsky for discussion on this
idea of English pied piping being an E-language artifact.

90

406), and requires conscious application of a prescriptive rule learned at school,

in a self-monitoring fashion.31

Interestingly, even when one is speaking this literary dialect, the

preference for pied-piping does not carry over to all cases. Some instances of

pied-piping are just plain unacceptable despite one’s urge to abide by the rules of

‘proper grammar’, as shown in (85) and (86).32

(85) a: What1 did you see a picture of t1 ?

b: * [Of what]1 did you see a picture t1 ?

c: * [A picture of what]1 did you see t1 ?

31 It is true, however, that, in a few cases, pied-piping seems to be quite present even in colloquial
speech. Nevertheless, as Murphy (1995: 74) points out, there is reason to believe that those cases
fall outside the core grammar, rather being artifacts of peripheral glitches. On this matter,
Murphy says:

“There are other cases where pied piping seems to have been more widespread, as in certain
relatives like he is a man in whom I trust. Interestingly, Visser notes that in Old English
there was a ‘condensed’ relative construction hwan (= him…whom) that was preceded by the
preposition (1968: 400). Quite possibly the ‘pied piping’ is not movement at all, but rather
was the result of the loss of the object of the preposition, and a reanalysis whereby the
preposition is associated with the verb of the relative clause instead of that of the matrix
clause. At any rate, there are signs that the morphological marking of who (whom) was
already fading during the Old English period.”

32 As Murphy (1995: 72) observes, some instances of heavy pied piping that are unacceptable in
matrix questions become significantly more acceptable (in ‘literary diction’ contexts) if they
appear in embedded domains, as shown in (i) below.
(i) a: I met the woman [the picture of whom]1 John saw t1.

b: I met the woman [proud of whom]1 John is not. t1.
Notice, however, that this is only possible in relative clauses. Importantly, the same flexibility
does not exist in indirect questions, as shown in (ii). Not surprisingly, the corresponding syntactic
amalgams are equally unacceptable, as shown in (iii).
(ii) a: * I wonder [the picture of whom]1 John saw t1

b: * I wonder [proud of whom]1 John is t1.
(iii) a: * John saw I wonder the picture of whom

b: * John is I wonder proud of whom.

91

(86) a: Who1 is John proud of t1 ?

b: * [Of whom]1 is John proud t1 ?

c: * [Proud of whom]1 is John t1 ?

Therefore, it is reasonable to assume that the possibility of not stranding

the preposition in English is truly a peripheral E-language artifact. Those

speakers who are more into ‘literary diction’ can train themselves to master the

pied-piping strategy to the same extent that one can become relatively fluent in a

foreign language.

Some speakers can produce and comprehend sentences like (82b) and

(83a) quite naturally, as those do not exhibit much structural complexity. On the

other hand, syntactic amalgamation is quite demanding for the parser, due to its

arguably high structural complexity that goes beyond the hypotactic level.

Presumably, that is just too much for the ordinary non-native speaker of the

‘literary dialect’ to handle, and, at this point, his/her intuitions will reflect

his/her native dialect, hence the unacceptability of Romance-style amalgams by

even ‘highly educated’ English speakers.

Not surprisingly, there are a few speakers who are much more fluent in

their ‘second language’, up to the point of judging Romance-style amalgams like

(75b) and (76b) — repeated below as (87a) and (87b), respectively — as merely

marginal (even if slightly so), instead of completely unacceptable.33

33 A distinguishing aspect that I found about of all of my informants who fall into this category is
that they are all extremely fluent (quasi-bilingual) speakers of at least one dialect of Romance.

92

(87) a: * John invited 300 people you can imagine to what kind of party.

b: * John has been planning his 40th birthday party you can imagine for

how many years.

The comparison between this subclass of amalgams and bona fide

parentheticals with regards to this word-order is quite revealing. Although the

English cases of parentheticals do not exhibit any contrast with amalgams, as

shown in (88), the Romance data show a word-order pattern distinct from the

one found in amalgams, as shown in (89).34

(88) a: John invited 300 people to – as we already suspected – a wild party.

b: * John invited 300 people – as we already suspected – to a wild party.

(89) a: João convidou 300 pessoas pra, como a gente já suspeitava, uma

John invited 300 people to, as we already suspected, a

festa do cabide.

party of+the hanger.

‘John invited 300 people to – as we already suspected – a wild

party’

Thus, presumably, their judgments are very likely to be the result of ‘overlapping intuitions’,
where one grammar ‘contaminates’ the other. Further research is necessary in order to figure out
whether this is a systematic pattern, or just a coincidential idyossincrasy of my data sample.
34 The examples in (88b) and (89b) are not acceptable under the relevant interpretation, in which
the content of the parenthetical is a comment on the kind of party. The same examples become
acceptable under an alternative (non-relevant) interpretation, in which the content of the
parenthetical is a comment on the number of guests.

93

b: * João convidou 300 pessoas, como a gente já suspeitava, pra uma

John invited 300 people, as we already suspected, to a

festa do cabide.

party of+the hanger.

This contrast in Romance further supports the view that invasive clauses

of amalgams are not genuine parentheticals.35

There is yet one third word-order pattern that deserves to be mentioned

and looked at carefully, so that we can tease apart the relevant and the irrelevant

data. In Romance, it is possible for the invasive clause to appear both before and

after the preposition. That is, the preposition may be pronounced twice, one

token before and the other one after the invasive clause, as shown in (90) and

(91).36

(90) Romance (Portuguese)

João convidou 300 pessoas pra você pode imaginar pra que tipo de festa

John invited 300 persons to you can imagine to what kind of party

35 Another kind of evidence for that lies in their rather distinct prosodic structures, which I will
not discuss here.
36 I am thankful to Leticia Pablos for discussion on this matter.

94

(91) Romance (Portuguese)

João vem planejando a festa de 40˚ aniversário dele desde você pode

John has planning the party of 40th birthday of+him since you can

imaginar desde quando

imagine since when

These constructions are possible in Romance only if the content of the

invasive clause is presented as an afterthought, with a major intonational break

(typical of hesitation, suspense or memory lapse) after the first occurrence of the

preposition, followed by an increase in speed. The degree of acceptability of

these examples is directly proportional to how fast the string of words in the

invasive clause is pronounced, and how salient the intonational break right after

first occurrence of the preposition is (measurable mostly by the degree of

lengthening of the segmental material of the preposition, and the by the

identification of the proper intonational curve).

The heavily marked status of these examples seems to be related to

performance factors triggering their usage. Typically, this construction emerges

in situations where the speaker does not initially intend to produce a syntactic

amalgam, but, at the point he/she reaches the preposition, (s)he changes his/her

mind and decides to make a comment about the entity denoted by the object of

that preposition. In doing so, the main sentence is not just interrupted, but also

abandoned, and followed by that afterthought, whose structure is typical of a

95

sluiced sentence. Thus, the evidence points to the direction that cases of

preposition-doubling in (90) and (91) are parentheticals, rather than amalgams.

Not surprisingly, all that I said above about WH-amalgams applies to cleft

amalgams, as shown below.

(92) English

a: John will travel to I think it’s Chicago tomorrow.

b: * John will travel I think it’s to Chicago tomorrow.

(93) Romance (Portuguese)

a: * João vai viajar pra eu acho que é Curitiba amanhã.

John will travel to I think that is Curitiba tomorrow.

b: João vai viajar eu acho que é pra Curitiba amanhã.

John will travel I think that is to Curitiba tomorrow.

Finally, let us take a quick look at another fact about syntactic amalgams

where the ‘invasion’ targets the object of a preposition.37

A quite idiosyncratic fact about English is that, in sluiced sentences where

the WH phrase is the object of a preposition, that preposition may be

pronounced at the end of the word string, right after the WH-phrase, as if the PP,

37 I am thankful to Satoshi Tomioka and Andrew Nevins for discussion on this matter.

96

exclusively, were somehow linearized as in head-final languages. This is shown

in (94).

(94) John danced at the party. But I don’t remember who with.

Descriptively speaking, this pattern seems to involve a special kind of

ellipsis of the sluiced material, so that the preposition is left pronounced for some

reason, as indicated in (95).

(95) John danced at the party. But I don’t remember who1 John danced with t1

at the party.

As already discussed in chapter I, and as will be further discussed in

chapter III, syntactic amalgams may be potentially analyzed in terms of sluicing.

From that perspective, it is not obvious, at first blush, why the possibility of the

word-order pattern illustrated in (94) does not carry over to syntactic amalgams,

as shown in (96).

(96) * John danced I don’t remember who with at the party.

II.9. Co-reference Possibilities Within Syntactic Amalgams

97

Another property of syntactic amalgamation concerns co-reference

possibilities among pronouns and R-expressions that are distributed one in the

‘invasive clause’ and the other in the ‘invaded clause’. In all cases, the co-

reference possibilities for any given syntactic amalgam mimics exactly the

readings available in the corresponding paratactic paraphrase, rather than the

readings available in the corresponding hypotactic paraphrase, as shown below.

First, consider the case of potential co-reference between a pronoun in the

invasive clause and an R-expression in the invaded clause, as in (97).

(97) a: [Homer]1 drank [he]1/2 doesn’t even remember how many beers at

the party.

b: [He]*1/2 doesn’t even remember how many beers [Homer]1 drank at

the party.

c: [Homer]1 drank beers at the party. [He]1/2 doesn’t even remember

how many.

Now, take the case of potential co-reference between an R-expression in

the invasive clause and a pronoun in the invaded clause, as in (98).

(98) a: [He]*1/2 drank [Homer]1 doesn’t even remember how many beers at

the party.

98

b: [Homer]1 doesn’t even remember how many beers [he]1/2 drank at

the party.

c: [He]*1/2 drank beers at the party. [Homer]1 doesn’t even remember

how many.

The paradigm in (99) is similar to the one in (97), except that the pronoun

in the invasive clause is embedded inside a more complex NP/DP. In this case,

all potential co-reference possibilities are attested, making both paraphrases

accurate.

(99) a: [Homer]1 drank I bet [[his]1/2 wife] remembers how many beers at

the party.

b: I bet [[his]1/2 wife] remembers how many beers [Homer]1 drank at

the party.

c: [Homer]1 drank beers at the party. I bet [[his]1/2 wife] remembers

how many.

The paradigm in (100), in its turn, is similar to the one in (98), except that

the pronoun in the invaded clause is embedded inside a more complex NP/DP.

Again, all potential co-reference possibilities are attested, making both

paraphrases accurate in this case too.

99

(100) a: [[His]1/2 wife] drank I bet [Homer]1 remembers how many beers at

the party.

b: I bet [Homer]1 remembers how many beers [[His]1/2 wife] drank at

the party.

c: [[His]1/2 wife] drank beers at the party. I bet [Homer]1 remembers

how many.

The paradigm in (101) contains two R-expressions: one in the invaded

clause, and the other one in the invaded clause. Similarly to what happens in

(97a) and (98a), the co-reference possibilities in the amalgam in (101) match the

ones in the corresponding paratactic paraphrase, rather than the ones in the

hypotactic paraphrase.

(101) a: [Homer]1 drank [the idiot]1/2 doesn’t even remember how many

beers at the party.

b: [The idiot]*1/2 doesn’t even remember how many beers [Homer]1

drank at the party.

c: [Homer]1 drank beers at the party. [The idiot]1/2 doesn’t even

remember how many.

100

Finally, consider the paradigm in (102). Structurally, it is identical to the

one in (101), except that the two R-expressions switch positions. Again, the co-

reference possibilities in the amalgam match the ones in the corresponding

paratactic paraphrase, rather than the ones in the hypotactic paraphrase.

(102) a: [The idiot]*1/2 drank [Homer]1 doesn’t even remember how many

beers at the party.

b: [Homer]1 doesn’t even remember how many beers [the idiot]*1/2

drank at the party.

c: [He]*1/2 drank beers at the party. [Homer]1 doesn’t even remember

how many.

II.10. The Matrix-clause Behavior of Invaded and Invasive Clauses

Yet another indication of the paratactic nature of syntactic amalgams

comes from the fact that both the invaded clause and the invaded clause(s)

behave as matrix clauses, as I show below.

In (103) and (104), we see that the quasi-parenthetic ‘invasive’ clause may

exhibit syntactic patterns found only in matrix clauses, like auxiliary-inversion

for questions, or imperative mood.

101

(103) [Bob told me that Amy danced with [do you know who?] at the party]

(104) [Bob told me that Amy danced with [guess who!] at the party]

Another piece of evidence that invasive clauses are not embedded clauses

comes from Brazilian Portuguese, where – unlike in most Romance languages –

gaps in the position of a (3rd person) subject are licensed only in certain specific

kinds of embedded clauses, as in (105), but never in matrix clauses, as in (106)38.

(105) Brazilian Portuguese

a: Maria1 não se lembra quantos homens ela1/2 beijou na festa.

Mary1 not REFL remember how+many men she1/2 kissed at+the party.

‘Mary1 doesn’t remember how many men she1/2 kissed at the party’

b: Maria1 não se lembra quantos homens e1/*2 beijou na festa.

Mary1 not REFL remember how+many men ∅1/*2 kissed at+the party.

‘Mary1 doesn’t remember how many men she1/*2 kissed at the

party’

38 For a complete analysis of the licensing and distribution of gaps in subject position in Brazilian
Portuguese, as well as their morpho-syntactic nature, and the constraints of their reference, see
Rodrigues (2002, 2004). For the present purposes, the descriptive generalization above suffices. I
am extremely thankful to Juan Uriagereka, and, especially, Cilene Rodrigues, for discussion on
the data in this section.

102

(106) Brazilian Portuguese

a: Maria1 beijou muitos homens na festa. Ela1 nem se lembra quantos.

Mary kissed many men at+the party. She not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember how

many’

b: * Maria1 beijou muitos homens na festa. e1 nem se lembra quantos.

Mary kissed many men at+the party. ∅ not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember

how many’

In this regard, the ‘invasive’ clauses of syntactic amalgams behave exactly

as matrix clauses, as no gap in subject position is possible there, as shown in

(107).

(107) Brazilian Portuguese

a: Maria1 beijou ela1 nem se lembra quantos homens na festa.

Mary kissed she not+even REFL remember how+many men at+the party

‘Mary kissed she doesn’t even remember how many men at the

party’

103

b: * Maria1 beijou e1 nem se lembra quantos homens na festa.

Mary kissed ∅ not+even REFL remember how+many men at+the party

‘Mary kissed she doesn’t even remember how many men at the

party’

Notice the contrast between Brazilian Portuguese – cf. (105), (106) and

(107) above– and bona fide pro-drop Romance languages like Galician – cf. (108),

(109) and (110) below – and Spanish – cf. (111), (112) and (113) below.

(108) Galician

a: * María1 non se lembra cántos homes ela1/2 bicou na festa.

Mary1 not REFL remember how+many men she1/2 kissed at+the party.

‘Mary1 doesn’t remember how many men she1/2 kissed at the party’

b: María1 non se lembra cántos homes e1/2 bicou na festa.

Mary1 not REFL remember how+many men ∅1/*2 kissed at+the party.

‘Mary1 doesn’t remember how many men she1/*2 kissed at the

party’

104

(109) Galician

a: ? María1 bicou moitos homes na festa... Ela1/2 nin se lembra cántos.

Mary kissed many men at+the party. She not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember how

many’

b: María1 bicou moitos homes na festa... e1 nin se lembra cántos.

Mary kissed many men at+the party. ∅ not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember

how many’

(110) Galician

a: *? María1 bicou ela1 nin se lembra cántos homes na festa.

Mary kissed she not+even REFL remember how+many men at+the party

‘Mary kissed she doesn’t even remember how many men at the

party’

b: María1 bicou e1 nin se lembra cántos homes na festa.

Mary kissed ∅ not+even REFL remember how+many men at+the party

‘Mary kissed she doesn’t even remember how many men at the

party’

105

(111) Spanish

a: * María1 no se acuerda cuántos hombres ella1/2 besó en la fiesta.

Mary1 not REFL remember how+many men she1/2 kissed at the party.

‘Mary1 doesn’t remember how many men she1/2 kissed at the party’

b: María1 no se acuerda cuántos hombres e1/2 besó en la fiesta.

Mary1 not REFL remember how+many men ∅1/*2 kissed at+the party.

‘Mary1 doesn’t remember how many men she1/*2 kissed at the

party’

(112) Spanish

a: María1 besó muchos hombres en la fiesta... Ella1/2 ni se acuerda

cuántos.

Mary kissed many men at+the party. She not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember how

many’

b: María1 besó muchos hombres en la fiesta... e1 ni se acuerda cuántos.

Mary kissed many men at+the party. ∅ not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember

how many’

106

(113) Spanish

a: ? María1 besó ella1 ni se acuerda cuántos hombres en la fiesta.

Mary kissed she not+even REFL remember how+many men at the party

‘Mary kissed she doesn’t even remember how many men at the

party’

b: María1 besó e1 ni se acuerda cuántos hombres en la fiesta.

Mary kissed ∅ not+even REFL remember how+many men at the party

‘Mary kissed she doesn’t even remember how many men at the

party’

Finally, it is worth emphasizing that what we have been describing as the

‘invaded clause’ also shares with ‘invasive clauses’ the property of licensing

certain syntactic patterns found only in matrix clauses, like auxiliary-inversion

for questions, or imperative mood, as shown in (114).

(114) a: [Go tell Bob that Amy gave all her money to [Do you still

remember who?]!]

b: [Go tell Bob that Amy gave [Do you still remember how much

money?] to Tom!]

107

III

(Neo)Conservative Approaches to Syntactic Amalgamation

This chapter is dedicated to a detailed presentation and discussion of

Lakoff’s (1974) seminal work on syntactic amalgams. I will first introduce the

mechanics of his analysis vis-à-vis the original framework it was proposed, and

its historical moment. Then I will elaborate on the main consequences of that

kind of formalism in the context of recent developments of the Theory of

Grammar, which includes discussion Tsubomoto &Whitman’s (2000) work.

Finally, I will evaluate that traditional approach for descriptive adequacy, on the

basis of the facts presented in chapter II, and for explanatory adequacy, on the

basis of minimalist criteria. After attempting to translate this traditional

approach into an analysis that is commensurable with the contemporary

Principles & Parameters metalanguage, I will eventually conclude that the

general approach to syntactic amalgamation proposed by Lakoff and further

worked out by Tsubomoto &Whitman ultimately fails to meet both descriptive

and explanatory adequacy, and needs to undergo radical revision, which I will

leave for the subsequent chapters.

108

III.1. Avoiding a Constituency Paradox by Postulating Extra Hidden Structure:

a brief overview of the traditional analysis of amalgamation

One puzzling aspect of syntactic amalgams is the fact that, at first blush,

they seem to involve a paradoxical constituency, in which the container would

somehow be inside the content. In other words, although it is clear that the

whole construction involves two (or more) sentences standing in a subordination

relation, it is not obvious, without any further systematic investigation, which

clause is the matrix and which is the embedded one.

For instance, let us take a closer look at the example (01), which is

originally due to Avery Andrews.

(01) John invited you’ll never guess who to his party.

From a naïve perspective, this construction seems to be built around a

matrix clause structured as sketched in (02a), conveying the main message that

John invited X to the party, where X stands for a person whose identity the

speaker takes to be impossible for the listener to figure out. The syntactic

material of X would be as in (02b).

(02) a: [IP John [VP invited X [PP to his party]]]

b: X = [you’ll never guess who]

109

By this reasoning, the substring you’ll never guess who is a constituent. If

so, what kind of constituent is it? In order for the selectional requirements of

invited to be satisfied, X must be an NP, in which case who would be the head of

the structure, whereas you’ll never guess would be a complex modifier of some

sort, as in (03).

(03) [IP John [VP invited [NP [X you’ll never guess] [N’ who]] [PP to his party]]]

But such a structure is problematic to the extent that the selectional

requirements of guess are not being satisfied. Therefore, the idea of taking the

string you’ll never guess who to be a constituent is impractical, at least under a

generative-transformational approach.39

An alternative would be to postulate a structure like (04), in which some

of the material is duplicated, and guess takes the whole clause John invited who

39 If we assume a Categorial Grammar approach (Ajdukiewicz 1935; Bar-Hillel 1953; Steedman
1996, 2000; inter alia), with radical type-shifts, there is room for an analysis along the lines
suggested in (03). However, that doesn’t immediately solve the basic problem in any trivial way.
In principle, one could come up with a combination of type-shift mechanisms that could make
possible to combine you’ll never guess with who, yielding you’ll never guess who, which would
eventually act as an argument of invited. However, as far as the semantic interpretation is
concerned, who alone cannot be the argument of guess. We need the whole sentence
John invited who to his party to be taken as an argument of guess. Evidence for this comes from
the fact that examples like (i) are ungrammatical.
(i) * How many people will you never guess?
Syntactically, the discontinuous string John invited ... to his party cannot be inserted into
you will never guess who. So, this integration has to be an effect of semantic interpretation,
which, as far as I can see, cannot be trivially achieved without further assumptions.

110

to his party as its clausal complement, within which who undergoes local WH-

movement and the IP undergoes internal sluicing.40

(04) [IP John [VP invited [IP you’ll [VP never guess [CP [NP who] [IP John invited

who to his party]]]] [PP to his party]]]

This is consistent with the internal semantic structure of the ‘constituent

X’. What the listener will never guess is not just the identity of a person x, but

rather the identity of the person x such that John invited x to his party. However,

this alternative analysis solves one problem by creating another one of the same

kind. If who is deeply embedded inside the complement of guess, as in (04), then

the ‘constituent X’ is not an NP. Thus, the selectional requirements of invited are

not being satisfied.

A way to satisfy the selectional requirements of both invited and guess is

to adopt a more elaborated version of (04), as did Tsubomoto &Whitman (2000),

piggybacking on Lakoff’s original insight.41 From that perspective, the core

40 It may seem, at first blush, that the complement of guess is who, instead of a more complex
structure with who in it. But the impossibility of structures like the ones in (i) indicates otherwise.
(i) a: * How many people will you never guess?

b: * You will never guess 300 people.
This is a general property of the class of verbs that appear in those ‘parenthetic-like strings’ of
amalgams (e.g. guess, wonder, imagine, ask). Under the relevant readings, they select only CPs
as their complements, rather than pure DPs. For instance the construction in (ii) is possible but
the ones in (iii) are not..
(ii) Homer drank I wonder how many beers at the party.
(iii) a: * I wonder 75 beers.

b: * How many beers do you wonder?
41 Lakoff’s insight is summarized the following passage: “By ‘syntactic amalgam’ I mean a sentence
which has within it chunks of lexical material that do not correspond to anything in the logical structure of

111

structure of (01) would be (5a), where the direct object is an elliptical indefinite

NP (perhaps a PF-deleted version of someone). A subsidiary structure (05b) is

built in parallel and it further undergoes sluicing and adjoins to the elliptical NP

inside (05a), in a generalized-transformational fashion, finally yielding (05c).

(05) a. [IP John invited [NP e] to his party]

b. [IP you’ll never guess [CP [who]1 [IP John invited t1 to his party]]]

c. [IP John invited [NP [NP e] [IP you’ll never guess [CP [who]1 [IP John

invited t1 to his party]]]] to his party]

Looking at syntactic amalgams from another angle, another possibility is

that the structure behind (01) is actually something like (06). That way, all

selectional requirements of all predicates are satisfied straightforwardly.

(06) [IP you will never guess [CP [DP how many people]1 John invited t1 to his

party]]

This cannot be the whole story, however. The precedence relations among

the words in (06) radically differs from the ones in (01). The null hypothesis,

then, is that the word-order pattern in (01) is associated with another phrase

marker, which is derived from (06) through a combination of movements.

the sentence; rather they must be copied in from other derivations under specifiable semantic and pragmatic
conditions”. Lakoff (1974: 321)

112

This kind of approach – which was explicitly rejected by Lakoff (1974) –

will be given a try in §III.3.2 and §III.3.4, by means of four different alternative

technical implementations based on remnant movement (Müller 1998).

Eventually, I will conclude that, although some of its features are on the right

track, this analysis needs to undergo major change in order to account for the full

range of empirical facts described in chapter II.

III.2. The Mechanics of Lakoff’s (1974) ‘Classical Analysis’

III.2.1.Amalgamation Rules

According to Lakoff (1974), the generation of syntactic amalgams involves

rules like the one in (07).42

42 As I mentioned in chapter II (footnote 4), Lakoff (1974) recognizes six different kinds of
syntactic amalgam. For each one, he postulates a rule along the lines of (06), except for tag
questions, which he leaves without a technical implementation. Each amalgamation rule has its
own idiosyncrasies, and is explicitly stated as being sensitive to construction-specific structural
properties. However, all rules share the following features. They require the existence of three
sentences S0, S1 and S2, and an NP1, such that S0 is embedded within S1, with S2 being a separate
sentence, and NP1 being a constituent of S to be replaced with a reduced version of S1 without S0.
Also, all amalgamation rules require that S1 entails S2 for them to apply. The list of all
amalgamation rules proposed by Lakoff (1974) is given in the appendix.

113

(07) For all contexts C, if (a) & (b) & (c) & (d), then (e):

a: S1 is an indirect question with S0 as its complement S;

b: S2 is the ith phrase marker in a derivation D whose logical structure

is conversationally entailed43 by the logical structure of S1 in context

C;

c: NP1 is an NP in S2, such that S2 minus NP1 is identical to S0;

d: S1 has the force of an exclamation;

e: relative to context C, S1 minus S0 may occur in place of NP1 in the

i+1th phrase marker of derivation D.

To see how the rule above works, consider the example in (08).

(08) John invited you will never guess how many people to his party.

In this case, the particular syntactic structures corresponding to S0, S1, S2

and NP1 are the ones shown in (09).44

43 This entailment is indicated in (08) by the symbol “” (meaning that what comes to the left of
the arrow is entailed by what comes to the right of the arrow).
44 For expository reasons, I decided to use a trace in the notation in (09) — as well as in (12) — to
indicate the movement of how many people within S0. Keep in mind, though, that Lakoff’s (1974)
analysis does not involve traces at all, given the framework in which it was formulated.

114

(09)
You will never guess [NP how many people]j John invited tj to his party

 S2  S1 S0

John invited [NP a lot of people] to his party

 NP1

Since S0 = [John invited tj to his party] is embedded within S1 =

[S you will never guess [NP how many people]j John invited tj to his party] as a

clausal complement, the condition (07a) is met.

Since, in a given context C, “you will never guess how many people John

invited to his party” (=S1) entails that “John invited a lot of people to his party” (=S2),

the condition (07b) is met too.45

The terminal string that corresponds to the surface structure of S0 is the

one in (10). Also, the terminal string that corresponds to the surface structure of

S2 without the substring corresponding to NP1 is the one in (11). Since (10) is

identical to (11), the condition (07c) is met.46

45 Depending on the context, we may have other NPs than a lot of people acting as the direct
object of invited, such as very few people, an amazing number of people, a huge number of
guests, etc.
46 We should keep in mind that the notion of Surface Structure used here (which goes back to the
old days of generative grammar) is not equal to the notion of S-Structure of the Principle-&-
Parameters approach, which recognizes different kinds of empty categories with different

115

(10) John invited ∅ to his party.

(11) John invited ∅ to his party.

In addition, in the same context C in which the condition (07a) is met, “you

will never guess how many people John invited to his party” (=S1) has the force of an

exclamation, which means that the condition (07d) is also met.

The terminal string that corresponds to S1 without the substring

corresponding to S0 is the one in (13).

(12)
You will never guess [NP how many people]j John invited tj to his party

 S1 S0

(13)
You will never guess how many people

 S1 minus S0

syntactic and semantic behaviors. The grammatical mechanism discussed here operates on
phrase-markers, defined as sets of strings of symbols, and recognizes that the non-terminal string
John∩invited∩NP∩to∩his∩party is a member of both the phrase-marker of S0 and the phrase
marker of S2. It also recognizes that the terminal string John∩invited∩to∩his∩party is a member of
both the phrase-marker of S0 and the phrase marker of S2. Somehow, this allows the NP symbol
in the string John∩invited∩NP∩to∩his∩party of S2 to be replaced with a reduced version of S1
which does not contain S0 as a substring. The gaps indicated by ∅ in the notation in (10) and (11)
are there for expository reasons only. They have no theoretical status, and basically encode the
fact that there is a string (namely: John∩invited∩NP∩to∩his∩party) in which an NP occupies the
slot here marked as ∅.

116

Given that all four conditions are met, then, by (07e), the whole chunk in

(13) (=S1 minus S0) may be copied from another derivation into derivation D,

replacing NP1 inside S2 in the context C. This generalized transformation gets us

from (14) to (15), yielding the syntactic amalgam in (01), repeated below as (16).

(14) ith phrase marker of derivation D

John invited a lot of people to his party

 S2 NP1

(15) i+1th phrase marker of derivation D

John invited you will never guess how many people to his party

 S2 S1 minus S0

(16) John invited you’ll never guess how many people to his party.

117

III.2.2.The Inner-Workings of Amalgamation: Sluicing, Cross-Derivational

Adjunction & NP Ellipsis

So far, we have been talking about the recognition of certain ‘incomplete’

strings that are put together via generalized transformation. It is clear that they

are not kernel sentences in the sense of Chomsky (1975). So, how do we get those

chunks of sentence? Also, how come a string that ‘is a’ sentence can replace

another string that ‘is a’ noun phrase? Certainly, this kind of rule is conceivable

under the classic transformational approach underlying Lakoff’s (1974) analysis.

However, we should be careful and skeptical about it. This kind of formalism has

been abandoned long ago precisely because it makes the system too

unrestricted.47

This does not mean that we should drop Lakoff’s (1974) proposal from

serious consideration. Lakoff (1974) seems to have been aware of these issues

already.48 Along the paper, he supports a particular technical implementation of

syntactic amalgamation given by William Cantrall, in which the overwriting of

strings (i.e. replacement of NP1 with “S1 minus S0”) is factored out into three

independent syntactic processes: (i) sluicing, (ii) adjunction, and (iii) NP ellipsis.

47 Moreover, the postulation of amalgamation rules like (07) faces serious problems with regards
to learnability. That is, how do children acquire such rules without negative evidence? Is the
input robust enough, with plenty of examples of syntactic amalgam? It doesn’t seem so. The way
out of the problem would be to assume that all amalgamation rules are fully innate. Besides,
syntactic amalgams don’t have exactly the same structure in all languages (cf. §II.8). That could
be treated in terms of parametrization, of course. But that would require postulating
construction-specific (parametrized) constraints.
48 However, Lakoff (1974) does not say anything about learnability.

118

Since this account is much closer to any given Principle & Parameters account,

we should examine it before we move on to any other technical solution.

Bill Cantrall has suggested what may be a more plausible
derivation for the Andrews sentences. He suggests that (1’) may
be an intermediate stage in the derivation of (1).

(1) John invited you will never guess how many people to
his party.

(1’) John invited a surprising number of people – you will
never guess how many (people) – to his party.

First the sentence remnant “you will never guess how many
people” is inserted under pretty much the same conditions as
those given in (06)49, with perhaps the additional proviso that
the constituent in S2 that corresponds to the questioned
constituent in S1 is modified by the adjective “surprising” or
“unexpected” or the equivalent. (1) would then be derived from
the structure underlying (1’) by the deletion of “a surprising
number of people”. Cantrall’s suggestion amounts to breaking
up the substitution rule of (06) into two rules – an insertion rule
and a deletion rule. this has the advantage of being able to
account for constructions like (1’).

Lakoff (1974: 323-324)

So, according to this line of reasoning, the generation of syntactic

amalgams involves the following steps.

In the first stage, we have two separate sentences like (17) and (18).

(17) [S John invited [NP a surprising number of people] to his party]

(18) [S you will never guess [NP how many people]1 John invited t1 to his party]

49 In Lakoff’s (1974) paper, the rule (07) is numbered (12). In this quotation, (07) refers to the rule
given in the previous subsection of this paper.

119

Then, (18) undergoes sluicing (whatever that process ultimately is)50,

yielding (19).

(19) [S you will never guess [NP how many people]1 John invited t1 to his party]

Then, we insert (19) inside (17), as an adjunct to [NP a surprising number

of people], via generalized transformation, yielding (20).

(20) [S John invited [NP [NP a surprising number of people] [S you will never

guess [NP how many people]1 John invited t1 to his party]] to his party]

Finally, the NP that hosts the adjunct gets deleted, yielding (21).51/52

(21) [S John invited [NP [NP a surprising number of people] [S you will never

guess [NP how many people]1 John invited t1 to his party]] to his party]

50 See Ross (1969) and Merchant (2001: chapter 2) on the matter.
51 Tsubomoto & Whitman (2000) also postulate a further LF-movement internal to the clause that
is adjoined to the elliptical DP, as in (i).
(i) [DP [DP e]1 [CP [CP [DPhow many people]1 John invited t1 to his party]]2 [IP you’ll never

guess t2]]
52 In this exposition, sluicing precedes adjunction, which precedes NP-deletion. However, it is not
obvious from this example whether this is the actual order of application of the rules, or even
whether there is any (intrinsic or derived) order of application to those rules. In principle, it could
be that the order is arbitrary, or even that all those operations are parallel (which is perhaps the
null hypothesis in a generalized-transformational approach).

120

III.2.3.Problems

Although it captures the essence of the paradoxical constituency effect,

Lakoff’s (1974) account of syntactic amalgams leaves many questions without

answers.

First of all, notice that, in Lakoff’s (1974) analysis, all amalgamation rules

are sensitive to specific syntactic constructions in a direct and explicit way (cf.

07); therefore this approach assigns a theoretical status to descriptive notions

such as ‘indirect question‘, ‘cleft sentence‘, ‘relative clause‘, ‘reason clause‘, etc

(cf. the Appendix at the end of this chapter). Although it is possible, in principle,

to ‘lexicalize‘ all of this, it is better if we could derive the amalgamation effects

from the interaction of other parameters that we already need to assume on

independent grounds.

Also, when we submit the analysis of WH-amalgams above to close

scrutiny, we detect that, aside from the adjunction operation, there are two

deletion rules involved: NP ellipsis and sluicing; and both seem to be obligatory,

as shown in the paradigm in (22).

(22) a:  [+ NP Ellipsis, + Sluicing]

John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

121

b: * [− NP Ellipsis, + Sluicing]53

John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

c: * [+ NP Ellipsis, − Sluicing]

John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

d: * [− NP Ellipsis, − Sluicing]

John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

The question is, then: why so? The basic intuition behind William

Cantrall’s suggestion is to eliminate the construction specific character of

amalgamation as much as possible, and derive its effects from the interaction of

other independent grammatical mechanisms.54 However, nothing in this analysis

explains why both sluicing and NP ellipsis are obligatory and must apply in

tandem, as shown in (22).55 If we aim to eliminate the construction-specific

53 If we assume that the sluiced sentence adjoins to the left of the indefinite NP, the relevant
example, whose ungrammaticality needs to be explained would be (i):
(i) * John invited you will never guess how many people a lot of people to his party.

54 Actually, the idea of eliminating the theoretical status of specific syntactic constructions is not
explicitly mentioned in Lakoff’s (1974) presentation of William Cantrall’s suggestion. But, as far
as I can see, there is a ‘principles-&-parameters flavor’ inherent to that proposal.
55 The same criticism applies to Romance, illustrated below with examples from Portuguese:
(i) João convidou muita gente você nunca vai adivinhar quantas pessoas João convidou

John invited many people you never will guess how-many people John invited
pra festa dele pra festa dele.
to+the party of+him to+the party of+him

(ii) * João convidou muita gente você nunca vai adivinhar quantas pessoas João convidou
John invited many people you never will guess how-many people John invited

122

character of amalgamation, and derive its effects from the interaction of other

independent grammatical mechanisms, we must not have two allegedly distinct

operations being parasitic on one another just by stipulation.

As far as NP-ellipsis is concerned, my criticism may not apply so

obviously. In fact, Lakoff (1974) claims that the technical implementation

suggested by William Cantrall has the advantage of also accounting for sentences

like (23). Apparently, the basic difference between (22b) and (23) would be

whether or not NP ellipsis applies.

(23) John invited a surprising number of people — you will never guess how

many —to his party.

Notice, however, that the sluicing that takes place in this construction

without NP-ellipsis goes a little bit further than what we see in (22b). As a matter

of fact, the example in (22d), where the WH-phrase surfaces as how many

people, is not acceptable, as opposed to the acceptable example in (23), where the

WH-phrase surfaces as how many.

pra festa dele pra festa dele.
to+the party of+him to+the party of+him

(iii) * João convidou muita gente você nunca vai adivinhar quantas pessoas João convidou
John invited many people you never will guess how-many people John invited
pra festa dele pra festa dele.
to+the party of+him to+the party of+him

(iv) * João convidou muita gente você nunca vai adivinhar quantas pessoas João convidou
John invited many people you never will guess how-many people John invited
pra festa dele pra festa dele.
to+the party of+him to+the party of+him

123

Thus, the apparent advantage of this formalism (and its alleged

unification power) does not resist closer scrutiny, as it is clear that there are two

distinct types of sluicing, one for each construction. The relevance of this

comparison lies on the fact that the very same type of sluicing involved in (22b)

is also involved in the acceptable example in (22a).

Crucially, the type of sluicing found in (23) — where deletion/ellipsis also

affects the head of the NP — is the same one independently found outside

syntactic amalgams, as shown in (24).

(24) a: John invited a surprising number of people to his party. You will

never guess how many people John invited to his party.

b: John invited a surprising number of people —You will never guess

how many people John invited to his party —to his party.

If that same type of sluicing takes place in a genuine syntactic amalgam,

the resulting structure is not acceptable, as shown in (25).

(25) * John invited [NP [NP a surprising number of people] [S you will never guess

how many people John invited to his party]] to his party.

This contrast can be taken as evidence that (23) is a bona fide case of

parenthetical construction, rather than a syntactic amalgam (and its prosodic

124

structure seems to corroborate that). Not only does (23) not exhibit NP-ellipsis,

but also what seems to be its ‘invasive clause’ exhibits a standard form of

sluicing. Moreover, in such constructions, the parenthetical does not necessarily

look like an ‘incomplete’ sentence at the surface, as shown in (26) and (27).

(26) a: John invited a surprising number of people to his party. You

will never guess how many guests there are.

b: John invited a surprising number of people (You will never guess

how many guests there are) to his party.

(27) a: John invited an amazing number of people to 40th birthday party.

Apparently, there are two thousand guests in total.

b: John invited an amazing number of people (apparently, there are two

thousand guests in total) to his 40th birthday party.

One may argue that both (22a) and (23) are genuine syntactic amalgams,

and that their distinct types of sluicing follow from recoverability of deletion, as

a consequence of the fact that (22a) exhibits NP-ellipsis and (23) does not.56 In

(22a), given that the direct object of the matrix clause — i.e. [NP a surprising

number of people] — undergoes ellipsis, the token of people in the sluiced

sentence is not recoverable, therefore it must not be deleted by sluicing, as

illustrated in (28). Conversely, in (23), the matrix direct object — i.e. [NP a

56 I am thankful to Klaus Abels for discussion.

125

surprising number of people] — does not undergo ellipsis, which makes the

token of people in the sluiced sentence recoverable, therefore it should be

deleted by the sluicing mechanism, as illustrated in (29).

(28) a: John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

b: * John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

(29) a: * John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

b: John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

The apparent advantage of this analysis is that the two different types of

sluicing seem to be derivable from the structural context and independent

assumptions about recoverability of deletion. Notice, however, that this goal is

not really being achieved, as it is still necessary to rely on a construction-specific

mechanics that cannot be extended to account for ordinary cases of sluicing

outside amalgams. This is so because, in order to derive the two different types

of sluicing from NP-ellipsis, it is necessary to stipulate that this very operation of

NP-ellipsis is a construction-specific mechanism, whose structural description is

126

defined in terms of syntactic amalgams. That would be the only way to predict a

grammaticality contrast between (30a) and (30b).

(30) a: John invited [NP a surprising number of people] to his party.

You will never guess how many people John invited to his party.

b: * John invited [NP a surprising number of people] to his party.

You will never guess how many people John invited to his party.

If amalgamation really involved sluicing inside the ‘invasive clause’, and

if the idiosyncratic ‘reach’ of that mandatory sluicing operation really followed

from the optionality of NP-ellipsis, modulo recoverability of deletion, then, ceteris

paribus, we would expect both examples in (30) to be acceptable. In (30a), NP-

ellipsis does not apply, and sluicing must delete people in the second sentence of

the mini-text. In (30b), NP-ellipsis applies, and sluicing does not delete people in

the second sentence of the mini-text.

The fact, however, is that (30b) is not a legitimate structure. Therefore, this

analysis based on recoverability of deletion lacks explanatory adequacy, as it

assigns theoretical status to ‘amalgamation constructions’, which the NP-ellipsis

rule would be sensitive to. Therefore, there is something else going on, which

escapes from Lakoff’s (1974) analysis. It cannot be just that NP-ellipsis is

optional. The sluicing that takes place in the adjoined clause is somehow

parasitic on NP-ellipsis.

127

Aside from the obligatoriness/optionality of NP-ellipsis and the details

about how much of the target string of words is affected by sluicing, there is the

issue of sluicing being obligatory inside syntactic amalgams, but optional

otherwise, as shown in (31) and (32). Again, in order for the analysis under

discussion to account for that, a construction-specific mechanism of sluicing

would be required for syntactic amalgams, leading to explanatory inadequacy.

(31) Obligatory Sluicing Inside Syntactic Amalgams

a: John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

b: * John invited [NP [NP a surprising number of people] [S you’ll never

guess how many people John invited to his party]] to his party.

(32) Optional Sluicing Outside Syntactic Amalgams

a: John invited [NP a surprising number of people] to his party.

You will never guess how many people John invited to his party.

b: John invited [NP a surprising number of people] to his party.

You will never guess how many people John invited to his party.

An alternative would be to assume that the sluiced sentence

corresponding to the ‘invasive clause’ is not really an adjunct to an elliptical

128

indefinite NP, but rather some sort of complex pre-nominal determiner or

modifier to an overt head noun instantiated by people, as in (33).57

(33) John invited [NP [S you will never guess how many people John invited to

his party] [N’ people]] to his party.

That way, the there would be nothing special about the sluicing that takes

place inside syntactic amalgams, and no ad hoc NP-ellipsis rule would be need to

be stipulated for syntactic amalgams.58

One problem with this analysis is that it cannot be extended to cases like

(34), in which the WH-phrase in the supposedly sluiced sentence is a bare WH

element rather than a complex phrase decomposable into a WH-determiner and

a noun.

(34) John invited you’ll never guess who to his party.

Ceteris paribus, this complex-determiner hypothesis wrongly predicts the

generation of something like (35) instead of (34).

57 I am thankful to Colin Phillips and Jonathan Bobaljik for pointing out this possibility to me.
58 From that perspective, the possibility of having both (16) and (23) — repeated below as (i) and
(ii) respectively — would correlate with the possibility of the sluiced sentence to behave either as
a pre-pronominal complex determiner/modifier to N (cf. (i)) or as an adjunct to NP (cf. (ii)).
(i) John invited you’ll never guess how many people to his party.
(ii) John invited a surprising number of people — you’ll never guess how many — to his

party.

129

(35) * John invited [NP [S you will never guess who John invited to his party]

[N’person]] to his party.

A way out of this problem would be to resort to an ad hoc mechanism of

ellipsis, as in (36). Again, this analysis is explanatorily inadequate, as no unified

account of amalgams is achieved.

(36) John invited [NP [S you will never guess who John invited to his party] [N’

someone]] to his party.

Moreover, this complex-determiner hypothesis also faces the problem of

having to stipulate the obligatoriness of sluicing inside syntactic amalgams but

not otherwise (cf. (31) and (32) above) in order to account for the constrast in (37).

(37) a: John invited [NP [S you will never guess how many people John

invited to his party] [N’ people]] to his party.

b: * John invited [NP [S you will never guess how many people John

invited to his party] [N’ people]] to his party.

Another worry that arises from Lakoff’s (1974) analysis is the following. It

is claimed that amalgams involve a kernel sentence like (38a), which becomes

130

something like (38b) after NP ellipsis. Eventually, after the adjunction of the

apparently-sluiced clause, (38c) obtains.

(38) a: John invited [NP a surprising number of people] to his party.

b: John invited [NP ∆] to his party.

c: John invited [NP [NP ∆]j [S you will never guess [NP how many

people]j John invited to his party]] to his party.

The question, then, is: why is this the gap [NP ∆] interpreted as [NP how

many people]? That is, why is the object of invited in (01) interpreted as “a

number of people n, such that you will never guess n”, as indicated by the indices in

(38)? (cf. Tsubomoto & Whitman 2000). There is nothing in Lakoff’s (1974)

analysis that accounts for this fact.59

Now, moving on to the empirical generalizations presented in chapter II,

consider the paradigm in (61), which illustrates that invasive clauses cannot

target non-ECM subject positions. The corresponding structures are given in (62).

(61) a: Tom said that Amy is dating I forgot who.

b: * Tom said that I forgot who is dating Amy.

c: * Tom said that I forgot who was kissed by Amy at the party.

59 Tsubomoto & Whitman’s solution is formalized under an indexation-through-predication
approach, with feature-percolation mechanisms. Although it makes the right predictions, such
analysis is problematic from a minimalist perspective, given its reification of indices.

131

d: The conductor of the orchestra wants you’ll never guess which

musician to be in charge of the rehearsal while he will be out of

town.

(62) a: [S Tom said [S’ that [S Amy is dating [NP [NP e] [S I forgot who1 Amy

is dating t1]]]]]]

b: * [S Tom said [S’ that [S [NP [NP e] [S I forgot who1 t1 is dating Amy]]] is

dating Amy]]]

c: * [S Tom said [S’ that [S [NP [NP e] [S I forgot who1 t1 was kissed by

Amy at the party]]] was kissed by Amy at the party]]]

d: [S [NP the conductor of the orchestra] [VP wants [NP [NP e] [S you’ll

never guess [which musician]1 the conductor of the orchestra wants

t1 to be in charge of the rehearsal while he will be out of town]]] to

be in charge of the rehearsal while he will be out of town]]

Without further stipulation, the sluicing-based analysis wrongly predicts

that no such constraint on amalgamation can exist, as there is nothing in the

corresponding structures for the examples in (61) which such constraint could

piggyback on, unless one simply stipulates that the elliptical NPs to which

sluiced sentences adjoin cannot occupy non-ECM subject positions. That,

however, would be just a restatement of the facts.

132

Consider, now, the cross-linguistic difference between English and

Romance presented in chapter II, with regards to cases where the ‘clause

invasion’ affects the object of a preposition.

In English, the preposition must appear before the material that is

supposedly adjoined to the NP which is the complement of that preposition, as

shown in (63).

(63) a: John invited 300 people to you can imagine what kind of party.

b: ?* John invited 300 people you can imagine to what kind of party.

This has a straightforward account under the sluicing-based approach, as

shown in (64).60

(64) John invited 300 people [PP to [NP [NP e] [S you can imagine [what kind of

party]1 John invited 300 people to t1]]]]

60 Also straightforward would be the treatment of the unacceptability of structures like (i),
mentioned at the end of §II.8 as an apparent mystery for the sluicing approach to amalgamation,
since the special type of sluicing involved in (i) — where the preposition is pronounced at the end
of the string — is actually found in its non-amalgamated analogue in (ii).
(i) * John danced I don’t remember who with at the party.
(ii) John danced at the party. But I don’t remember who1 John danced with t1 at the party.
Notice that, outside syntactic amalgams, this special type of sluicing obtains only when the WH-
phase of the sluiced sentence corresponds to an adjunct in the previous sentence, as in (iii), where
danced is used intransitively. In (iv), danced is used transitively, selecting with someone as its
indirect object, and such structural context only licenses ordinary sluicing.
(iii) a: John danced at the party. But I don’t remember who with.

b: * John danced at the party. But I don’t remember who.
(iv) a: * John danced with someone at the party. But I don’t remember who with.

b: John danced with someone at the party. But I don’t remember who.
Extending this logic to syntactic amalgams, we would expect that an invasive clause that
undergoes the special kind of sluicing — such as I don’t remember who with — would require
that the verb danced in the invaded clause be used intransitively. is being used intransitively.
That being the case, there would be no elliptical NP in the indirect object position to begin with.
Consequently, there would be no appropriate host where the sluiced invasive clause could adjoin
to. Therefore, structures like (i) are correctly predicted to be ungrammatical.

133

In Romance, the opposite pattern obtains. The preposition must appear

after the material that is supposedly adjoined to the NP which is the complement

of that preposition, as shown in (65).

(65) a: * João convidou 300 pessoas pra você pode imaginar que tipo de festa.

John invited 300 persons to you can imagine what kind of party

b: João convidou 300 pessoas você pode imaginar pra que tipo de festa.

John invited 300 persons you can imagine to what kind of party

If we maintain the view that the substring you can imagine what kind of

party (and its Romance equivalent) is a sluiced sentence that adjoins to an

elliptical NP, we are forced to assume that, in the matrix clause, the preposition

that takes that elliptical NP as its complement somehow must undergo ellipsis in

Romance but not in English, as in (66).61 Alternatively, we may say that, for some

reason, the elliptical argument which the sluiced clause adjoins to is an NP in

English, but a PP in Romance, as in (67).62 Either way, an extra parametric

difference is stipulated without independent evidence.

61 This also applies to the complex-determiner analysis sketched in (33), as shown in (i) [= (01)]
(i) João convidou 300 pessoas [PP pra [NP [α você pode imaginar pra que] [N’ tipo de festa]]]

John invited 300 persons to you can imagine to what kind of party
62 Notice that the alternative analysis in (67) has to be formalized in such a way that NPs can also
be the target of ellipsis and adjunction whenever there is no PP involved, or else cases like (i)
would not be accounted for. This undesirably complicates the analysis even further.
(i) John invited [NP [NP e [S you’ll never guess who1 John invited t1 to his party]] to his party.

134

(66) João convidou 300 pessoas [PP pra [NP [NP e] [CP você pode imaginar

John invited 300 persons to you can imagine

pra que tipo de festa João convidou 300 pessoas]]]

to what kind of party John invited 300 persons

(67) João convidou 300 pessoas [PP [PP e] [CP você pode imaginar

John invited 300 persons you can imagine

pra que tipo de festa João convidou 300 pessoas]]

to what kind of party John invited 300 persons

The analysis in (66) deserves further discussion. As suggested above for

(22a) and (23), one could, in principle, hypothesize that the existence of these two

distinct forms of sluicing follows from recoverability of deletion coupled with

standard assumptions about the parametric difference between the two

languages with regards to pied-piping/preposition-stranding.

In Romance (cf. 66), the preposition inside the sluiced clause escapes is not

affected by ellipsis in the sluicing process by virtue of it being pied-piped to

spec/CP along with the WH-phrase. That way, the preposition in the invaded

clause would be deleted under identity with the preposition inside the sluiced

clause. In English (cf. 64), on the other hand, the preposition of the invasive

clause is affected by ellipsis in the sluicing process by virtue of it being stranded

135

inside the IP. That way, the preposition in the invaded clause cannot be deleted

because it is unrecoverable.63

The problem with this analysis is that it lacks independent motivation. In

standard cases of sluicing in (Brazilian) Portuguese, whereas the preposition

must be pronounced in the sentence preceding the sluiced clause, it must be

absent (at least at PF) in the sluiced clause, contrary to Merchant’s (2001: 91-107)

generalization about strong pied-piping languages, as shown in (68).64

(68) a: Bob deu dinheiro pra alguém. Mas eu não sei quem.

Bob gave money to someone. But I not know who.

b: * Bob deu dinheiro pra alguém. Mas eu não sei pra quem.

Bob gave money to someone. But I not know to who.

In (69), we see that deleting the preposition in the non-sluiced sentence

and pronouncing the preposition in the sluiced sentence is not a legitimate

alternative.

(69) a: * Bob deu dinheiro pra alguém. Mas eu nao sei pra quem.

Bob gave money to someone. But I not know to who

b: * Bob deu dinheiro pra alguém. Mas eu nao sei pra quem.

Bob gave money to someone. But I not know to who.

63 This possibility was pointed out to me by Klaus Abels.
64 “Form-identity generalization II: Preposition-stranding. A language L will allow preposition stranding
under sluicing iff L allows preposition stranding under regular wh-movement” (Merchant 2001: 91)

136

Presumably, from this perspective, the idiosyncrasy of Brazilian

Portuguese that causes Merchant’s generalization to break down is that, for some

unknown reason, the structure that serves as the input to the ellipsis operation

involved in sluicing is not quasi-isomorphic to the overt clause. Rather, the input

structure would consist of a copular sentence, like (70), which undergoes ellipsis

and turns into the sluiced string in (71).

(70) Bob deu dinheiro pra [alguém]1. Mas eu não sei quem é [essa pessoa]1.

Bob gave money to someone. But I not know who is that person is.

‘Bob gave money to a certain person. But I don’t know who such person is’

(71) Bob deu dinheiro pra [alguém]1. Mas eu não sei quem é [essa pessoa]1.

Bob gave money to someone. But I not know who is that person is.

On the other hand, invasive clauses within syntactic amalgams exhibit a

structure that conforms to Merchant’s generalization, as shown in (72). Notice

that the preposition is pronounced only inside the parenthetic-like string, not in

the core structure.

(72) a: Bob deu dinheiro pra eu não sei quem.

Bob gave money to I not know who.

b: * Bob deu dinheiro eu não sei pra quem.

Bob gave money I not know to who.

137

In a nutshell, the cross-linguistic variation with regards to the relative

order of prepositions and invasive clauses — which correlates with the pied-

piping/preposition-stranding distinction — poses a serious problem to the

sluicing-based analysis of amalgamation.

Now, let us consider how the sluicing-based approach handles the facts

about co-reference among NPs/DPs across different parts of a syntactic amalgam

discussed in §II.9.

It is possible for an R-expression in the spine of the invaded clause to co-

refer with a pronoun in the spine of the invasive clause, as shown in (73a). This

co-reference pattern differs from what obtains in the corresponding hypotactic

paraphrase in (73b), and mirrors what obtains in the corresponding paratactic

paraphrase in (73c).

(73) a: [Homer]1 drank [he]1/2 doesn’t even remember how many beers at

the party.

b: [He]*1/2 doesn’t even remember how many beers [Homer]1 drank at

the party.

c: [Homer]1 drank beers at the party. [He]1/2 doesn’t even remember

how many.

If, on the other hand, the R-expression is in the spine of the invasive clause

and the pronoun is in the spine of the invaded clause, co-reference is impossible,

138

as in (74a). Again, the corresponding hypotactic paraphrase does not exhibit the

same pattern (cf. 74b), whereas the corresponding paratactic paraphrase does

(cf. 74c).

(74) a: [He]*1/2 drank [Homer]1 doesn’t even remember how many beers at

the party.

b: [Homer]1 doesn’t even remember how many beers [he]1/2 drank at

the party.

c: [He]*1/2 drank beers at the party. [Homer]1 doesn’t even remember

how many.

At first blush, the facts in (73) and (74) appear to receive a straightforward

account under the sluicing-based approach to amalgamation. The structure of the

two syntactic amalgams in (73a) and (73b) would be as in (75) and (76),

respectively. Notice that the overt token of Homer is not c-commanded by he in

(75), whereas in (76) it is. Thus, by Principle C, co-reference should be possible in

(75) but not in (76).65

65 Also straightforward are the cases where the pronoun is not in the spine of either the invasive
or the invaded clause, but rather embedded inside a more complex NP/DP, as in (i) and (ii). Co-
reference is legitimate in all possible combinations, which is compatible with Principle C, given
that the pronoun does not c-command the R-expression in any of the examples.
(i) a: [Homer]1 drank [NP [NP e] [S I bet [[his]1/2 wife] remembers how many beers

Homer drank at the party] at the party.
b: [S I bet [[his]1/2 wife] remembers [S’ how many beers [S [Homer]1 drank at the

party]]]
c: [Homer]1 drank beers at the party. I bet [[his]1/2 wife] remembers how many.

(ii) a: [[His]1/2 wife] drank [NP [NP e] [S I bet [Homer]1 remembers how many beers
his wife drank at the party] at the party.

139

(75) [IP Homer [VP drank [NP [NP e] [S he doesn’t even remember [how many

beers]1 Homer drank t1 at the party]] at the party]]

(76) [IP He [VP drank [NP [NP e] [IP Homer doesn’t even remember [how many

beers]1 he drank t1 at the party]] at the party]]

In the hypotactic paraphrases, the opposite c-command relations obtain,

as shown in (77) and (78). It follows, then, that Principle C would yield the

opposite effects, as it does.66

(77) [CP [IP He doesn’t even remember [CP [how many beers]1 [IP Homer drank

t1 at the party]]]]

(78) [S Homer doesn’t even remember [S’ [how many beers]1 [S he drank t1 at

the party]]]

However, nothing has been said so far about the NPs/DPs affected by

sluicing inside the invaded clause. Let us consider (75) again, repeated below as

(79).

b: [S I bet [Homer]1 remembers [S’ how many beers [S [[his]1/2 wife] drank at the

party]]]
c: [[His]1/2 wife] drank beers at the party. I bet [Homer]1 remembers how many.

66 In both paratactic paraphrases ((73c) and (74c)), there is no c-command relation between the
pronoun and the R-expression, which belong to two independent parallel sentences. Co-reference
is possible in (73c) but not in (74c). Needless to say, this contrast does not follow from Principle
C. Presumably, it follows from some post-LF condition on deixis at the pragmatic level.

140

(79) [S Homer [VP drank [NP [NP e] [S he doesn’t even remember [how many

beers]1 Homer drank t1 at the party]] at the party]]

There are actually two tokens of Homer in the structure. One is overt, and

occupies a position in the spine of the invaded clause, outside the c-command

path of he (therefore no Principle C violation arises in case of co-reference). The

other one is unpronounced due to sluicing, and is inside the invaded clause, so

that it is c-commanded by the overt token of Homer. The fact that these two

tokens of Homer co-refer, despite one c-commanding the other, is problematic,

given that such co-reference constitutes a violation of Principle C. Alternatively,

one may consider the hypothesis that the sluiced sentence does not contain a

token of Homer. Rather, there would be a pronoun in that position, as in (80).

(80) [S Homer1 [VP drank [NP [NP e] [S he1/2 doesn’t even remember [how many

beers]1 he1/*2 drank t1 at the party]] at the party]]

The fact that the deeply embedded and unpronounced token of he co-

refers with Homer does not constitute a violation of any binding principle. The

problem, however, is that, unlike the higher and overt token of he, which may or

may not co-refer with Homer, the lower and unpronounced token of he must co-

refer with Homer. Such mandatory co-reference does not follow from anything

in Binding Theory, and thus constitutes a construction-specific property of

amalgams that remains unexplained under the sluicing-based approach.

141

Another potential problem for the sluicing-based approach relates to the

facts in (81) and (82) below.

In (81a), there is an epithet NP/DP (i.e. the idiot) in the spine of the

invaded clause, and a proper name (i.e. Homer) in the spine of the invasive

clause. Co-reference between the two is impossible. The same pattern obtains in

both the hypotactic and the paratactic paraphrases, as shown in (81b) and (81c).

(81) a: [The idiot]*1/2 drank [Homer]1 doesn’t even remember how many

beers at the party.

b: [Homer]1 doesn’t even remember how many beers [the idiot]*1/2

drank at the party.

c: [The idiot]*1/2 drank beers at the party. [Homer]1 doesn’t even

remember how many.

In (82a), on the other hand, it is Homer that is in the spine of the invaded

clause, whereas the idiot is in the spine of the invasive clause. It is possible for

them to co-refer, unlike what happens in both the hypotactic and the paratactic

paraphrases, as shown in (82b) and (82c).

(82) a: [Homer]1 drank [the idiot]1/2 doesn’t even remember how many

beers at the party.

142

b: [The idiot]*1/2 doesn’t even remember how many beers [Homer]1

drank at the party.

c: [Homer]1 drank beers at the party. [The idiot]1/2 doesn’t even

remember how many.

The pattern in (81a) has a straightforward explanation under the sluicing-

based approach to amalgamation. The corresponding structure would be as in

(83), where the epithet the idiot is c-commanded by the proper name Homer.

Under the standard assumption that epithets are subject to Principle C (cf. Lasnik

1976, 1991), co-reference between Homer and the idiot is correctly predicted to

be impossible.

(83) [S Homer [VP drank [NP [NP e] [S [the idiot] doesn’t even remember [how

many beers]1 Homer drank t1 at the party]] at the party]]

The same logic would apply to the hypotactic paraphrase, whose structure

would be as sketched in (84). There, it is also the case the idiot c-commands

Homer.

(84) [S Homer doesn’t even remember [S’ [how many beers]1 [S [the idiot]

drank t1 at the party]]]

143

The pattern in (82a), however, poses a problem to the sluicing-based

approach to amalgamation. The corresponding structure would be as in (85),

where Homer is c-commanded by the idiot. By the same logic applied to (81a),

co-reference between these two R-expressions should be impossible, modulo

Principle C. But that is not the case.

(85) [S [the idiot] [VP drank [NP [NP e] [S Homer doesn’t even remember [how

many beers]1 [the idiot] drank t1 at the party]] at the party]]

Notice that, in the corresponding hypotactic paraphrase, co-reference

between Homer and the idiot is impossible, as expected under standard

assumptions about Principle C and c-command.

(86) [S Homer doesn’t even remember [S’ [how many beers]1 [S [the idiot]

drank t1 at the party]]]

Finally, the sluicing-based analysis reveals itself problematic in face of the

fact that invasive clauses systematically behave like matrix clauses, to the extent

that they may exhibit certain grammatical patterns that are licensed only in

matrix clauses, like auxiliary-inversion/do-support and imperative mood, as

shown in (87) and (88).

144

(87) [Bob told me that Amy danced with [do you know who?] at the party]

(88) [Bob told me that Amy danced with [guess who!] at the party]

The problem with this is that, under the sluicing-based approach, those

very clauses exhibiting auxiliary-inversion/do-support and imperative mood are

analyzed as embedded clauses, as shown in (89) and (90).

(89) [S Bob told me that Amy danced with [NP e [S do you know [S’ who1 [S Amy

danced with t1 at the party]]]] at the party]

(90) [S Bob told me that Amy danced with [NP e [S guess [S’ who1 [S Amy danced

with t1 at the party]]]] at the party]

It is rather mysterious, then, as to why those alleged embedded clauses of

syntactic amalgams can behave like matrix clauses, but other embedded clauses

cannot.

Another instance of the same problem can be observed in the distribution

of empty categories in Brazilian Portuguese. As shown in §II.10, in Brazilian

Portuguese, gaps in the position of a (3rd person) subject are licensed only in

145

certain specific kinds of embedded clauses, as in (91), but never in matrix clauses,

as in (92).67

(91) a: Maria1 não se lembra quantos homens ela1/2 beijou na festa.

Mary1 not REFL remember how+many men she1/2 kissed at+the party.

‘Mary1 doesn’t remember how many men she1/2 kissed at the party’

b: Maria1 não se lembra quantos homens e1/*2 beijou na festa.

Mary1 not REFL remember how+many men ∅1/*2 kissed at+the party.

‘Mary1 doesn’t remember how many men she1/*2 kissed at the

party’

(92) a: Maria1 beijou muitos homens na festa. Ela1 nem se lembra quantos.

Mary kissed many men at+the party. She not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember how

many’

b: * Maria1 beijou muitos homens na festa. e1 nem se lembra quantos.

Mary kissed many men at+the party. ∅ not+even REFL remember how+many

‘Mary kissed many men at the party. She doesn’t even remember

how many’

67 For an exhaustive and detailed presentation of this empirical generalization, and for an
explanation on why it holds, I refer the reader to Rodrigues (2002, 2004), who analyses those gaps
as traces (≡ deleted copies) of movement, whose antecedent is the subject of the matrix clause.

146

Crucially, the invasive clauses of syntactic amalgams behave exactly as

matrix clauses, as no gap in subject position is possible there, as shown in (93).

(93) a: Maria1 beijou ela1 nem se lembra quantos homens na festa.

Mary kissed she not+even REFL remember how+many men at+the party

‘Mary kissed she doesn’t even remember how many men at the

party’

b: * Maria1 beijou e1 nem se lembra quantos homens na festa.

Mary kissed ∅ not+even REFL remember how+many men at+the party

‘Mary kissed she doesn’t even remember how many men at the

party’

If invasive clauses are taken to be embedded clauses adjoined to an

(elliptical) NP/DP, as in (94), then there would be no reason for subject gaps not

to be licensed in those domains.

(94) a: [S Maria beijou [NP [NP e] [S ela nem se lembra [quantos homens]1

 Mary kissed she not+even REFL remember how+many men

Maria beijou t1 na festa]] na festa]

Mary kissed at+the party at+the party

b: * [S Maria beijou [NP [NP e] [S [NP e] nem se lembra [quantos homens]1

 Mary kissed not+even REFL remember how+many men

Maria beijou t1 na festa]] na festa]

Mary kissed at+the party at+the party

147

Notice that, in Brazilian Portuguese, those gaps in subject position are

attested in embedded clauses that adjoin to NPs/DPs, as shown below (cf.

Rodrigues 2004: chapter 4).

(95) a: O susto de João1 quando e1 chegou em casa foi grande.

the shock of John when arrived at home was big

‘John’s shock when he arrived at home was huge.’

b: [NP [NP o susto [PP de [NP João]1]] [S’ quando e1 chegou em casa]] foi

the shock of John when arrived at home was

grande

big

(96) a: Você perdeu a cara de João1 quando e1 viu Maria chegando.

you missed the face of John when saw Maria arriving

‘You missed John’s face when he saw Maria arriving.’

b: Você perdeu [NP [NP a cara [PP de [NP João]1]] [S’ quando e1 viu Maria

you missed the face of John when saw Maria

chegando]]

arriving

148

III.3. An Alternative Neo-Conservative Analysis

Consider, now, an alternative analysis of syntactic amalgams which does

not involve duplication of any chunk of structure. The basic intuition is that

examples like (97) are derived from a combination of transformations that apply

to input structures like (98).

(97) John invited you will never guess how many people to his party.

(98) [IP you will never guess [CP [DP how many people]1 John invited t1 to his

party]]

Interestingly, this idea involves much less structure than argued by

Lakkof (1974). What we have in (98) is in fact a proper subset of the syntactic

material involved in Lakoff’s (1974) formalization.

In fact, this possibility was already mentioned (but not pursued) by

Lakoff, who credited Avery Andrews for the insight.

Presumably the residual S “John invited to his party” would be
raised as in S-lifting (see Ross, 1973), and “you’ll never guess
how many people” moved (by some miracle) back into the right
place.

Lakoff (1974: 321)

149

Under the classical transformational approach, this idea of deriving (97)

from (98) may seem to require too much extra machinery, with back-and-forth

‘miraculous’ movements. But given the tools of the Principle-&-Parameters

framework, the basic mechanics is actually rather straightforward, as shown in

§III.3.1 below, though the details are not trivial at all, as shown in §III.3.2.

III.3.1.The Mechanics: Remnant Movement

Syntactic amalgams may be analyzed in terms of remnant movement

(Muller 1998), which may be implemented in two different ways, as shown in

§III.3.1.1 and §III.3.1.2.

III.3.1.1. M-Scrambling, WH-Movement and IP-Topicalization

According to this technical implementation, the generation of syntactic

amalgams via remnant movement would involve the following steps.

We start building the structure from the bottom upwards, up to the point

in (99).

(99) [CP [IP John2 [vP t2 invited1 [VP [DP how many people] t1 [PP to his party]]]]]

150

Then we move both [DP how many people] and [PP to his party] to the left

periphery of the embedded clause. The movement of [DP how many people] is

straightforward, targeting the specifier of CP, whereas [PP to his party] undergoes

some M-Scrambling-like operation, targeting a position somewhere above the

specifier of IP, and below the specifier of CP. For expository reasons, I will refer to

such movement as targeting the specifier of a hypothesized functional category

XP, projected in between CP and IP, as in (100).

(100) [CP [DP how many people]4 [XP [PP to his party]3 [IP John2 [vP t2 invited1 [VP t4 t1 t3]]]]

After that, we keep merging new elements from the bottom upwards, up

to the point that (100) is embedded inside a higher IP, like in (101).

(101) [IP you will never guess [CP [DP how many people]4 [XP [PP to his party]3

[IP John2 [vP t2 invited1 [VP t4 t1 t3]]]]]

Finally, the entire IP of the embedded clause moves to some specifier in

the CP domain of the matrix clause, where it presumably is assigned a topic-like

status, as in (102).

(102) [CP [IP John2 [vP t2 invited1 [VP t4 t1 t3]]]5 [C’ C [IP you will never guess

[CP [DP how many people]4 [XP [PP to his party]3 t5]]]]

151

Crucially, this is an instance of remnant movement. That is, the IP that

undergoes topicalization contains two traces of phrases left behind in the left

periphery of the embedded clause.

III.3.1.2. WH-Movement with Pied-Piping of VP and IP-Topicalization

Alternatively, the derivation of syntactic amalgams may be taken to be as

follows.

The computational system starts building the structure from the bottom

upwards, till the structure in (103) obtains.

(103) [CP [IP John2 [vP t2 invited1 [VP [DP how many people] t1 [PP to his party]]]]]

Then, the WH-phrase [DP how many people] moves to the specifier of the

embedded CP, pied-piping the entire VP,68 yielding (104).

(104) [CP [VP [DP how many people] t1 [PP to his party]]3 [IP John2 [vP t2 invited1 t3]]]

The rest of the derivation is trivial. New elements are merged, and the

phrase marker grows from the bottom upwards, up to the point that (104) is

embedded inside a higher IP, as in (105).

68 This pied-piping would be optional. As will become clearer later on, if pied-piping occurs, the
final result is (i), whereas, if it doesn’t, we get (ii). I’ll come back to this issue on §III.3.2 below.
(i) John invited you will never guess how many people to his party.
(ii) John invited to his party you will never guess how many people.

152

(105) [CP [IP you will never guess [CP [VP [DP how many people] t1 [PP to his

party]]3 [IP John2 [vP t2 invited1 t3]]]]]

Finally, we move the entire IP of the embedded clause to the topic

position, as in (106).

(106) [CP [IP John2 [vP t2 invited1 t3]]4 [C’ C [IP you will never guess [CP [VP [DP how

many people] t1 [PP to his party]]3 t4]]]]

Again, this is an instance of remnant movement. The IP that undergoes

topicalization contains a trace of the VP left behind in the CP of the embedded

clause.

III.3.2.Some Good News

There are some clear advantages of a remnant-movement approach to

syntactic amalgams over Lakoff’s (1974) original analysis.

First of all, we do not need to worry about the nature of those elliptical

indefinite NPs/DPs, since they actually do not exist. Hence, no deletion rule is

needed, and no condition on such a rule needs to be postulated or derived in

153

order for the theory not to overgenerate structures like (107) [=(22b)], where the

deletion does not take place.

(107) * John invited a surprising number of people you will never guess how

many people to his party.

With no elliptical NPs to worry about, then it becomes obvious why the

object of invited in (01) — repeated below as (108) — is interpreted as “a number

of people n, such that you will never guess n”.

(108) John invited you’ll never guess how many people to his party.

This is so simply because in the structure which the syntactic amalgam

originates from — i.e. (109) — the object of the verb guess is a clause whose verb

is invited; and the object of invited is [DP how many people] itself, instead of an

elliptical NP whose proper interpretation would require an extra mechanism to

obtain. In other words, the verb invited takes as its complement an indirect-

question which has how many people occupying the specifier of its CP.

(109) [TP you will never guess [CP [DP how many people]1 John invited t1 to his

party]]

154

Finally, as far as sluicing goes, no questions arise, as there is actually no

sluicing. After all, there is no embedded sentence adjoined to

[DP how many people] to begin with, where sluicing could possibly apply. That

predicts that (110) [=(22c)] should be ungrammatical. In Lakoff’s (1974) analysis,

something else has to be said about the obligatoriness of sluicing in such cases, as

well as about ‘how far’ the deletion goes.

(110) * John invited you will never guess how many people John invited to his

party to his party.

It seems, then, that the remnant-movement approach to syntactic

amalgams solves the problems faced by Lakoff’s (1974) analysis by denying that

the problems exist. Once a different structure is assumed as the input to

transformations, none of the problematic issues pointed in §III.2.2 arise.

Interestingly, the remnant-movement approach to syntactic amalgams

automatically accounts for the pattern in (111), not mentioned by Lakoff (1974).

(111) a: John invited you will never guess how many people to his party.

b: John invited to his party you will never guess how many people.

c: * John invited how many people to his party you will never guess.

d: * John invited how many people you will never guess to his party.

155

The grammaticality of both (111a) and (111b) follows from the fact that the

indirect object to his party may or may not be part of the phrase that is

topicalized, yielding either sentence as the output.

The generation of (111a) would be as discussed above in §III.3.2.1 or

III.§3.2.2, depending on the technical implementation adopted. When the

embedded IP is topicalized, it carries the indirect object with it.

On the other hand, the generation of (111b) would be as indicated in (112),

regardless of the technical implementation adopted. First, the WH-phrase moves

to the specifier of the first CP above it (cf. 112a); then the resulting clause gets

embedded within another sentence (cf. 112b); and eventually the embedded CP

containing the trace of the moved WH-phrase is moved to a topic position in the

CP domain of the matrix clause, as an instance of remnant movement (cf. 112c).

(112) a: [CP [DP how many people]4 [TP John2 [vP t2 invited1

[VP t4 t1 [PP to his party]]]]]

b: [TP you will never guess [CP [DP how many people]4

[TP John2 [vP t2 invited1 [VP t4 t1 [PP to his party]]]]]]

c: [CP [TP John2 [vP t2 invited1 [VP t4 t1 [PP to his party]]]]5

[TP you will never guess [CP [DP how many people]4 t5]]]

156

Under the technical implementation presented in §III.3.1.1, this amounts

to saying that the optional scrambling does not take place; whereas, under the

technical implementation presented in §III.3.1.2, this amounts to saying that the

optional pied-piping of the VP doesn’t take place when the WH-phrase is moved.

The ungrammaticality of (111c) and (111d) can be accounted for by

applying the same logic.

In order to generate (111c) or (111d), we need a derivation in which there

is no overt movement of the WH-phrase to the specifier of the embedded CP.

That way, whatever principle requires this movement to be overt in English is

getting violated. The (non-convergent) derivation of (111c) would be as in (113).

(113) a: [CP [IP John2 [vP t2 invited1 [VP [DP how many people] t1 [PP to his

party]]]]]

b: [IP you will never guess [CP [IP John2 [vP t2 invited1 [VP [DP how many

people] t1 [PP to his party]]]]]]

c: [CP [IP John2 [vP t2 invited1 [VP [DP how many people] t1 [PP to his

party]]]]3 [IP you will never guess [CP t3]]]

As for (111d), its (non-convergent) derivation would be as in (114) under

the scrambling approach given in §III.3.1.1.69

69 Under the pied-piping approach, a derivation of (111d) is actually inconceivable.

157

(114) a: [CP [PP to his party]3 [IP John2 [vP t2 invited1 [VP [DP how many people] t1

t3]]]]

b: [IP you will never guess [CP [PP to his party]3 [IP John2 [vP t2 invited1

[VP [DP how many people] t1 t3]]]]]

c: [CP [IP John2 [vP t2 invited1 [VP [DP how many people] t1 t3]]]]

[IP you will never guess [CP [PP to his party]3 t4]]

III.3.3.The Problem of Postulating an Additional Unmotivated Movement

One of the core properties of remnant movement constructions is that all

movements involved should be independently motivated (cf. Müller 1998). This

is not what happens in the derivations sketched in §III.3.1.1 and §III.3.1.2 above.

The movement of the WH-phrase to the specifier of the lower CP is

independently motivated, as the data in (115) indicates.

(115) a: How many people did John invite to his party?

b: I wonder how many people John invited to his party.

158

The movement of the lower IP to the topic position somewhere in the CP-

shell of the matrix clause also seems to be independently motivated, although the

data supporting this view (e.g. (116)) is not so conclusive.

(116) John invited two-hundred people to his party, I guess.

It is not immediately obvious that the displacement of a sentential

constituent in (116) reallyinvolves IP-topicalization, rather than topicalization of

the lower CP.70

At any rate, even if (116) really is IP-topicalization, the analysis, as a

whole, is still far from trivial. The scrambling-like movement of [PP to his party]

postulated in §III.3.1.1 is not attested in constructions other than syntactic

amalgams, as exemplified by (117).

(117) * She will never know that [PP to his party]2 John invited a lot of people t2.

One might say, along the lines of Müller (2000), that such scrambling-like

movement of [PP to his party] discussed in §III.3.1.1 is parasitic on the movement

of the WH-phrase [DP how many people] to the specifier of CP, and is required in

70 In fact, the data in (i) and (ii) below supports the view that what happens in (116) is CP-
topicalization rather than IP-topicalization.
(i) a: I believe (that) Amy gave all her money to Tom.

b: Amy gave all her money to Tom, I believe [DP THAT].
c: * Amy gave all her money to Tom, I believe [C that].
d: That Amy gave all her money to Tom, I believe.

(ii) a: You know if/whether Amy gave all her money to Tom.
b: * Amy gave all her money to Tom, you know if/whether.

I am thankful to Andrew Nevins for discussion on this matter.

159

order to satisfy a principle of shape conservation, which demands that the

original linear order of the arguments inside the VP must be kept constant when

they are extracted.

Putting aside issues about the ad hoc character of such a principle, the

main empirical problem with this idea is that not only is (117) ungrammatical,

but also (118) and (119), where that the linear order of the arguments inside the

VP is kept constant after they are extracted.

(118) * [DP how many people]1 [PP to his party]2 did John invite t1 t2?

(119) * I wonder [DP how many people]1 [PP to his party]2 John invited t1 t2.

Moreover, sentences like (120) are grammatical, despite the fact that the

linear order of the arguments is not conserved.71

(120) John invited to his party you will never guess how many people.

It is, thus, not clear how such a condition on representations would work,

and how it would interact with other grammatical principles, to yield the desired

results.

71 In Lakoff’s (1974) system, that could be achieved by adjoining the embedded sluiced clause to
the VP, rather than to the elliptical indefinite NP, which, of course, poses many questions
regarding the freedom of.
(i) [S John [VP [VP invited [NP∆] to his party] [S you’ll never guess [NP how many people]1 John invited

t1 to his party]]]

160

Technically, one could play with formal definitions in such a way that the

scrambling-like movement is parasitic on both the WH-movement and the

remnant IP-topicalization. But that would face the conceptual problem of

massive globality/look-ahead, since, given the Extension Requirement (Chomsky

1995: 190, 327-328), [PP to his party] should move before both

[DP how many people] and [IP John invited tWH tPP] move, since [PP to his party]

occupies a lower specifier than the other two phrases. What that amounts to

saying is that a certain movement operation x is parasitic on other two

movement operations y and z, which that have not taken place yet when x

applies. Not even the triggers of y and z are present at that stage.

As for the movement of the WH-phrase and the scrambled PP, the reverse

derivational order (i.e. first the WH and then the PP) is in principle available if

we assume, with Richards (1997) and Castillo & Uriagereka (2000), that tucking-

in is allowed (see also Chomsky 2000: 135-138). It is less trivial to assume that the

movement of the scrambled PP derivationally follows the topicalization of the

remnant IP. Besides tucking-in, that would imply movement out from a copy in

the tail of the chain.72

In any case, if we assume a bottom-up system in which extension holds in

its strongest form, it seems that we will always need to postulate the existence of

at least one movement that is not independently available. Therefore, the attempt

72 See Nunes & Uriagereka (2000) for arguments against movement of chain-tails.

161

to derive syntactic amalgams without appealing to construction-specific

principles fails.

We should also worry about this order-conservation principle being

sensitive to linear order if we take linear order to be established only when

syntax interfaces phonology (Chomsky 1995: 334-340), on the basis of (a version

of) Kayne’s (1994) LCA. As Müller (2000) himself admits, the relevant notion has

to be precedence, not c-command, for reasons that I will not discuss here. One

potential problem with this approach is that precedence relations are being

established for non-terminals, therefore a crucial aspect of the Antisymmetry

Theory (Kayne 1994) gets missed; namely, that linearization applies to all and

only terminal elements.

One could also assume a system that interfaces PF and LF in cycles (cf.

Uriegereka 1999; Chomsky 2000, 2001b, 2001c; Guimarães 1999; inter alia),

therefore allowing linearization to be computed for local domains. But if

precedence is a property of PF objects only, and if syntactic structure is lost when

PF objects are generated, we need a way of avoiding pronunciation of traces —

so to speak — because, once a domain has been spelled-out, everything inside it

would be stuck there as far as phonology goes. In other words, we need

something like Chomsky’s (2000, 2001b, 2001c) notion of phases with edges that

are accessible to the next round of syntactic operations, and are mapped to PF

together with the material in the next cycle. One could say, then, that the

scrambled PP in (121) [=(100)] above uses the edge of its phase to escape from the

162

VP and keep the order of arguments constant just in case the next phase involves

the movement of the remnant IP, therefore requiring both objects to be adjacent.

(121) [CP [DP how many people]4 [XP [PP to his party]3 [IP John2 [vP t2 invited1 [VP t4 t1 t3]]]]

This can be a local computation, with no look-ahead. But what if nothing

in the next phase requires such adjacency? In principle, we should expect the PP

to be pronounced at the edge of the embedded CP, since the previous phase has

already been spelled-out without pronunciation of either argument. But that

would wrongly predict that we should get (123a) and (123b) instead of (122a)

and (122b), respectively. This is so because the PP is moved to the edge of its

phase anyway, no matter whether there is a higher phase, and no matter whether

something in a higher phase will require the PP to be adjacent to the WH-phrase.

(122) a: [DP how many people]1 did John invite t1 [PP to his party]?

b: I wonder [DP how many people]1 John invited t1 [PP to his party]

(123) a: * [DP how many people]1 [PP to his party]2 did John invite t1 t2?

b: * I wonder [DP how many people]1 [PP to his party]2 John invited t1 t2.

Similar problems arise under the pied-piping approach given in §III.3.1.2.

163

First of all, why should we pied-pipe the whole VP when moving the WH-

phrase? Is this a legitimate configuration? How do we handle the optionality?

Presumably, we don’t want to assume ad hoc pied-piping features for that.

Also, what is it that allows the pied piping in constructions like (124)

[=(104)], but not in cases like (125)73?

(124) [CP [VP [DP how many people] t1 [PP to his party]]3 [IP John2 [vP t2 invited1 t3]]]

(125) a: * [VP [DP how many people] t1 [PP to his party]]2 did John invite1 t2?

b: * I wonder [VP [DP how many people] t1 [PP to his party]]2 John

invited1 t2.

Finally, the movement of the VP to the specifier of CP is independently

problematic. Crucially, we have to assume that the head of VP has been moved

to vP, otherwise, we wrongly predict the generation of (126), whose structure

would be as in (127), where the verb ends up inside the phrase that is in the

specifier of the lower CP, at the right periphery of the sentence.

(126) * John did, you will never guess how many people invite to his party.

(127) * [CP [IP John did t1]2 [C’ C [IP you will never guess [CP [VP how many people

invite to his party]1 [C’ C t2]]]]]

73 As far as PF is concerned, (123) and (125) are identical pairs, but two different syntactic
structures are being postulated.

164

As a consequence, the movement of the lower VP to the specifier of the

lower CP is itself an instance of remnant movement, in which the trace of the

phrase being moved is the head of that very phrase. The problem is that such an

instance of remnant movement is illicit, and not independently available (cf.

Takano 2000), as exemplified in (127), which contrasts with (128), (129) and (130).

(127) * [VP [DP a book] [V’ t1 [PP to Mary]]]3 ... [IP [DP John]2 [I’ I [vP t2 [v’ v+gave1 t3]]]]

(128) [DP a book]3 ... [IP [DP John]2 [I’ I [vP t2 [v’ v+gave1 [VP t3 [V’ t1 [PP to Mary]]]]]]]

(129) [PP to Mary]3 ... [IP [DP John]2 [I’ I [vP t2 [v’ v+gave1 [VP [DP a book] [V’ t1 t3]]]]]]

(130) [vP t2 [v’ v+give1 [VP [DP a book] [V’ t1 [PP to Mary]]]]]3 ... [IP [DP John]2 [I’ did t3]]

III.3.4 Two Alternative Implementations of the Remnant-Movement Analysis

The two technical implementations presented in III.3.2 are minimally

different versions of essentially the same analysis, with basically the same virtues

and problems. As shown in III.3.3, they both fail to achieve explanatory

adequacy, as an ad hoc type of movement operation needs to be stipulated just for

syntactic amalgams. In this section, I will briefly consider two more alternative

165

technical implementations to the remnant movement analysis of amalgamation,

which apparently do not face such a problem. In one case, there is actually an

extra movement of a PP, but it is taken to be just one more instantiation of the

more general process of Rightward Movement. In the other case, no additional

scrambling-like movement of PPs is stipulated (and its effects is taken to be

derived from independently available mechanisms of ‘chain pronunciation’).

III.3.4.1. Rightward Movement

One potential way of technically implementing the remnant movement

analysis of amalgamation without facing the problem pointed out in III.3.3 is to

postulate that the movement of the rightmost PP in the problematic cases above

is an instance of Rightward Movement (Ross 1967, 1973), which is arguably a

stylistic/optional operation wildly available in natural languages, and not a

construction-specific sub-rule of amalgamation. (cf. Akmajian 1975; Johnson

1986; Postal 1998; McCloskey 1999; Sabbagh 2003).

Abstracting away from technical details about the inner-workings of

Rightward Movement, this approach predicts that (131) [= (111b)] and (132)

[= (111a)] can be both derived by the same grammar, depending on whether or

not the optional rightward movement of the PP out of the lower VP applies.

(131) John invited to his party you will never guess how many people.

(132) John invited you will never guess how many people to his party.

166

The respective derivations would be as in (133) and (134).

(133) Derivation Without Rightward Movement

a: [IP John [vP invited [DP how many people] [PP to his party]]]]

b: [CP [DP how many people]1 [IP John [vP invited t1 [PP to his party]]]]]

c: [IP you will [VP never guess [CP [DP how many people]1

[IP John [vP invited t1 [PP to his party]]]]]]]

e: [CP [IP John [vP invited t1 [PP to his party]]]3 [IP you will [VP never

guess [CP [DP how many people]1 t3]]]]

(134) Derivation With Rightward Movement

a: [IP John [vP invited [DP how many people] [PP to his party]]]]

b: [CP [DP how many people]1 [IP John [vP invited t1 [PP to his party]]]]]

c: [CP [CP [DP how many people]1 [IP John [vP invited t1 t2]]]]

[PP to his party]2]

d: [IP you will [VP never guess [CP [CP [DP how many people]1

[IP John [vP invited t1 t2]]]] [PP to his party]2]]]

e: [CP [IP John [vP invited t1 t2]] [IP you will [VP never guess

167

[CP [CP [DP how many people]1 t3]] [PP to his party]2]]]]

III.3.4.2. Chain-Internal Selective Deletion of Copies

Working under the framework of the Copy Theory of Movement (Chomsky

1995: chapter 4), Wilder (1995) and Boskovic (2001), among others, have explored

the possibility that, in certain special circumstances, the PF-deletion of chain

links (i.e. copies of the moved element) may not target the entire lower copy, as

usual. Rather, deletion would affect the node(s) corresponding to a given

substring at the lower copy, and the node(s) corresponding to complementary

substring at the higher copy.

Abstracting away from details of how chain-internal selective deletion

works, this approach might in principle be applicable to the case in point, and

the prediction would be that (135) [= (131)] and (136) [= (133)] can be both

derived by the same grammar, depending on whether there is chain-internal

selective deletion or ordinary deletion of the chain formed by the two copies of

the topicalized IP.

(135) John invited to his party you will never guess how many people.

(136) John invited you will never guess how many people to his party.

The respective derivations would be as in (137) and (138).

168

(137) Derivation With Canonical PF-Deletion of Copies

a: [IP John [vP invited [DP how many people] [PP to his party]]]]

b: [CP [DP how many people] [IP John [vP invited [DP how many people]

[PP to his party]]]]]

c: [IP you will [VP never guess [CP [DP how many people] [IP John [vP

invited [DP how many people] [PP to his party]]]]]]]

d: [CP [IP John [vP invited [DP how many people] [PP to his party]]] [IP

you will [VP never guess [CP [DP how many people] [IP John [vP

invited [DP how many people] [PP to his party]]]]]]]]

(138) Derivation With Canonical Chain-Internal Selective PF-Deletion of Copies

a: [IP John [vP invited [DP how many people] [PP to his party]]]]

b: [CP [DP how many people] [IP John [vP invited [DP how many people]

[PP to his party]]]]]

c: [IP you will [VP never guess [CP [DP how many people] [IP John

[vP invited [DP how many people] [PP to his party]]]]]]]

d: [CP [IP John [vP invited [DP how many people] [PP to his party]]]

169

[IP you will [VP never guess [CP [DP how many people] [IP John

[vP invited [DP how many people] [PP to his party]]]]]]]]

III.3.4.3. New Issues that Arise from the Alternative Analyses

The two alternative analyses in §III.3.4.1 and §III.3.4.2 both seem to be

successful attempts to dispense with ad hoc movement, consequently not

assigning any special theoretical status to amalgamation. However, each of these

analyses also raises its own nontrivial issues, which also relate to ‘last resort’.

The rightward-movement-based analysis, on the one hand, equates the

extra movement of a PP — necessary to account for cases like (132)/(136) — with

the allegedly more general operation of Rightward Movement. Although this

analysis has the virtue of potentially unifying various phenomena into a single

mechanics, this can also be a problem, to the extent that the very notion of

rightward movement itself is not straightforward in minimalist grounds. Its

optional nature is incompatible with the minimalist assumption that movement

is a last resort operation, which is a crucial aspect of any theory based on the

notion of economy of derivations.74

74 Moreover, if Kayne’s (1994) Antisymmetry Theory is correct, any instance of rightward
movement should be discarded from the outset, unless one formalizes it in terms of optional
leftward movement of the PP obligatorily followed by an extra (remnant) movement of a heavy
constituent containing the trace of the movement PP to a position right above the landing site of

170

One may hypothesize, then, that rightward movement, when it happens,

is triggered by the need to satisfy some additional requirement, caused by the

presence of some extra feature or functional projection, which is not always

present. That, of course, is not an explanation, but merely a way of encoding the

facts in our meta-language, unless we can detect some interpretive effect

associated with rightward movement, such as focalization or topicalization,

which would constitute evidence for the existence of such extra movement-

triggering devices. That might be true of some cases for which rightward

movement has been proposed, but there seems to be no sign that this is the case

with syntactic amalgams.

On the other hand, the analysis based on chain-internal selective deletion

denies the existence of the extra movement of a PP, deriving its effects from

mechanisms that are arguably necessary for independent reasons. The rational

behind the idea of chain-internal selective deletion is that canonical PF-deletion

of chain links is the default strategy by virtue of it being the most economical

strategy, whereas non-canonical deletion is a more costly strategy that the system

applies as a last resort, only in special structural contexts demanding certain

prosodic patterns that depend on non-canonical linearization to obtain (cf.

Boskovic 2001, for details).

The problem with extending this logic to the treatment of syntactic

amalgamation is that there seems to be no such ‘special circumstances’ or

the moved PP. This, of course, raises even more issues related to last resort, as it is unclear what
would optionally trigger the movement of the PP in the first place, and what would obligatorily
trigger the movement of the remnant constituent if and only if the movement of the PP.

171

‘additional prosodic demands’ present in the structures for which chain-internal

selective deletion is being postulated. Therefore this analysis is also problematic

with regards to last resort.

In any event, even if either of these two analyses turns out to be non-

problematic with respect to last resort once the relevant details are worked out, it

still does not immediately follow that either one represents a significant

improvement over the other remnant-movement-based approaches presented in

§III.3.2. This is so because the rightward-movement analysis and the non-

canonical linearization analysis are both based on remnant-movement

mechanics, to the same extent that the two analyses in §III.3.2 are. Putting aside

the extra movement of a PP in some cases, all those analyses share the key

property of taking syntactic amalgams to involve movement of a WH-phrase out

of an embedded IP,75 followed by the movement of that whole (remnant) IP to a

topic position in the left periphery of the matrix clause. If this is on the right

track, we expect this alleged movement of IP to be subject to the usual

constraints on movement, otherwise the remnant movement approach will suffer

from the problem assigning a construction-specific status to syntactic amalgams,

just like the sluicing based approach does.

In the next section, I will argue that some of the facts presented in chapter

II are incompatible with any of the versions of the neo-conservative (remnant-

75 In the case of cleft-amalgams, there would be no WH-phrase to begin with. But the logic is the
same, as there would be a DP dislocated to some position in the left periphery of the embedded
clause, followed by the movement of the remnant IP to a topic position in the left periphery of the
matrix clause.

172

movement-based) approach, as they would require further stipulation to rule in

instances of movement that would otherwise violate well-known constraints on

movement.

III.3.5 Further Problems for the Remnant Movement Approach

III.3.5.1. Embedded Amalgams

Empirical problems arise when any version of the remnant-movement

analysis is applied to more complex cases like (139).

(139) I believe that Amy gave all her money to you know who.

Details of technical implementation aside, there are two possible ways of

analyzing cases like (139) under the remnant-movement approach. Either (140)

or (141) could potentially be the derivation that generates (139).

(140) a: building the embedded clause

[IP Amy gave all her money to who]

b: local WH-movement

[CP who1 [IP Amy gave all her money to t1]]

c: building the intermediate clause

173

[IP you know [CP who1 [IP Amy gave all her money to t1]]]

d: remnant-movement of the embedded IP to a topic position

[CP [IP Amy gave all her money to t1]2 [IP you know [CP who1 t2]]]

e: building the matrix clause

[CP I believe that [CP [IP Amy gave all her money to t1]2 [IP you know

[CP who1 t2]]]]

(141) a: building the lowest embedded clause

[IP Amy gave all her money to who]

b: local WH-movement

[CP who1 [IP Amy gave all her money to t1]]

c: building the highest embedded clause

[IP I believe that [CP who1 [IP Amy gave all her money to t1]]]

d: successive cyclic WH-movement

[CP who1 [IP I believe that [CP t1 [IP Amy gave all her money to t1]]]]

e: building the matrix clause

[IP you know [CP who1 [IP I believe that [CP t1 [IP Amy gave all her

money to t1]]]]]

f: remnant-movement of the highest embedded IP to a topic

position

[CP [IP I believe that [CP t1 [IP Amy gave all her money to t1]]] [IP you

know [CP who1 t2]]]

174

The problem is that, while either of these alternative derivations can

account for the word-order, neither accounts for the meaning.

Given standard assumptions about semantic compositionality, the output

of the derivation in (140) should be about the speaker’s belief in the listener’s

knowledge of the fact that Amy gave money to someone. Similarly, the sentence

generated from the derivation in (141) should be about the listener’s knowledge

of the speaker’s belief in the fact that Amy gave money to someone.

As a matter of fact, neither of these possibilities corresponds to the actual

meaning of (139), in which the listener’s knowledge has nothing to do with the

speaker’s belief, and vice versa. In fact, there are two parallel messages in (139).

One of them concerns the speaker’s belief in the fact that Amy gave money to

someone. The other one concerns the listener’s knowledge of the fact that Amy

gave money to someone.

III.3.5.2. Absence of Island Effects

Another piece of evidence against all remnant-movement-based

approaches comes from the fact that it is possible for amalgams to occur inside

syntactic domains that are typical islands for extraction (cf. Tsubomoto &

Whitman 2000), as in (142), as discussed in §II.5.

(142) a: * I don’t remember [when]1 John lives in [a house]2 {that he built e2 t1}

b: John lives in [a house]2 {that he built e2 I don’t remember when}

175

This is a counter-example for the remnant-movement analysis, since it

would require a derivation like (143), which involves an extraction of a relative-

clause island in step (b).

(143) a: [IP John lives in [NP [NP a house]2 [CP that he built e2 when1]]]

b: [CP when1 [IP John lives in [NP [NP a house]2 [CP that he built e2 t1]]]]

c: [IP I don’t remember [CP when1 [IP John lives in [NP [NP a house]2 [CP

that he built e2 t1]]]]]

d: [CP [IP John lives in [NP [NP a house]2 [CP that he built e2 t1]]]3 [IP I

don’t remember [CP when1 t3]]]

III.3.5.2. Multiple Amalgamation

Yet another problem for the remnant-movement approach concerns

multiple amalgamation. Consider (144).

(144) John invited you will never guess how many people to you can imagine what

kind of party.

In this case, it is impossible to apply any of the movement-based analysis

successfully, unless we assume that the system overlooks/forgives violations of

176

the relevant locality constraints on WH-movement in two derivational steps. The

derivation for (144) would be as in (145).76

(145) a: [IP John invited [DP how many people] [PP to [DP what kind of a

party]]]

b:  [CP [DP what kind of a party]1 [IP John invited [DP how many people]

[PP to t1]]]

c: [IP you can imagine [CP [DP what kind of a party]1 [IP John invited

[DP how many people] [PP to t1]]]]

d: [IP [PP to t1]2 [IP you can imagine [CP [DP what kind of a party]1

[IP John invited [DP how many people] t2]]]]

e:  [CP [DP how many people] 3 [IP [PP to t1]2 [IP you can imagine

[CP [DP what kind of a party]1 [IP John invited t3 t2]]]]]

f: [IP you will never guess [CP [DP how many people] 3 [IP [PP to t1]2

[IP you can imagine [CP [DP what kind of a party]1 [IP John invited t3

t2]]]]]]

g: [CP [IP John invited t3 t2] [IP you will never guess [CP [DP how many

people] 3 [IP [PP to t1]2 [IP you can imagine [CP [DP what kind of a party]1

t4]]]]]]

76 An additional issue with (24) is the scrambling-like movement of the [PP to [DP what kind of
party]] in step (d), which is not independently motivated. However, as discussed in footnote 6, it
is possible to get rid of this extra ad hoc movement under an alternative implementation of the
remnant-movement analysis.

177

Notice that, in step (b), the WH-phrase what kind of party moves to the

lowest spec/CP crossing the other WH-phrase how many people, despite the

fact that how many people is closer to the target than what kind of party is.

Conversely, in step (e), how many people moves to the intermediate spec/CP

crossing over what kind of party, despite the fact that what kind of party is

closer to the target than how many people is.

These two instances of non-local WH-movement are problematic in

themselves, given the standard assumptions about UG principles – strongly

supported by cross-linguistic empirical generalizations about locality effects in

WH-movement – demanding that how many people should move at that step

(cf. Rizzi’s (1990) Relativized Minimality, Chomsky’s (1995) Minimal Link

Condition). Besides, this absence of locality effects in WH-movement are not

independently attested in a less convoluted version of the sentence (i.e. without

the IP-topicalization movements), as indicated by the unacceptability of (146).

(146) * [S3 you will never guess [how many people]1 [S2 you can imagine [what

kind of party]2 [S1 John invited t1 to t2]]]

Moreover, even putting aside syntactic locality matters, the actual

meaning of (144) is not compatible with the structure postulated in the analysis

in (145), given standard assumptions about semantic compositionality. In (145),

178

the clause corresponding to the invitation event is the complement of the verb

imagine; and the clause corresponding to the imagining event is the complement

of the verb guess. Therefore, this analysis wrongly predicts a meaning in which

what is being guessed is something about an event of imagining that concerns an

invitation event. But this is not what (144) means. Instead, the meaning of (144) is

such that what is being guessed is something about the invitation event itself,

which is also what is being imagined. The events of imagining and guessing are

independent.

In a nutshell, examples containing multiple ‘clause invasion’ constitute

strong empirical evidence against the remnant movement analysis to

amalgamation.

179

Appendix to Chapter III

1. Avery Andrews’s Case

(01) John invited you will never guess how many people to his party.

(02) John invited you will never guess how many people to you can imagine

what kind of a party at it should be obvious where.

(03) For all contexts C, if (i) & (ii) & (iii) & (iv), then (v):

i: S1 is an indirect question with S0 as its complement S;

ii: S2 is the ith phrase marker in a derivation D whose logical structure

is conversationally entailed by the logical structure of S1 in context

C;

iii: NP1 is an NP in S2, such that S2 minus NP1 is identical to S0;

iv: S1 has the force of an exclamation;

v: relative to context C, S1 minus S0 may occur in place of NP1 in the

i+1th phrase marker of derivation D.

180

2. Larry Horn’s Case

(04) John is going to I thinks it’s Chicago on Saturday.

(05) John is going to I thinks it’s Chicago on, I’m pretty sure he said it was

Saturday to deliver a paper on Was it morpholexemes?

(06) For all contexts C, if (i) & (ii) & (iii) & (iv), then (v):

i: S1 is a sentence with an embedded cleft-sentence with S0 as its

relative clause;

ii: S2 is the ith phrase marker in a derivation D whose logical structure

is conversationally entailed by the logical structure of S1 in context

C;

iii: NP1 is an NP in S2, such that S2 minus NP1 is identical to S0 minus

the relative pronoun;

iv: S1 is a hedged assertion of the content of S2;

v: relative to context C, S1 minus S0 may occur in place of NP1 in the

i+1th phrase marker of derivation D.

181

3. Performative Predicate Modifiers

(07) Since the President said you were to take orders from me, get me the

missing tapes.

(08) For all contexts C, if (i) & (ii), then (iii):

i: S0 is modified by the reason-clause S1;

ii: S2 is the ith phrase marker in a derivation D such that the logical

structure of S0 is either a felicity condition for, or a called-for

response to, a logical structure S3 which is conversationally entailed

by the logical structure of S2 in context C;

iii: relative to context C, S1 may occur as a reason-clause modifier of S2

in the i+1th phrase marker of derivation D.

example: S0 = I have authority to give you orders.

S1 = The president said you were to take orders from me.

S2 = I would appreciate it if you would supply me with the

missing tapes.

S3 = I order you to get me the missing tapes.

182

4. Mark Liberman’s because-cases

(09) I’m afraid the Knicks are going to win, because who on the Celts can

possibly handle Frazier?

(10) For all contexts C, if (i) & (ii) & (iii), then (iv):

i: the sentence consisting of S0 modified by the reason-clause S1 is

true in C;

ii: S4 conversationally entails an assertion of S1 in C;

iii: S2 is the ith phrase-marker in a derivation D such that the logical

structure of S0 is a felicity condition for, or a called-response to, a

logical structure S3 which is conversationally entailed by the logical

structure of S2 in context C;

iv: relative to context C, S4 may occur as a reason-clause modifier of S2

in the ith phrase-marker of derivation D.

example: S0 = I believe that the Knicks are going to win.

S1 = No one on the Celts can possibly handle Frazier.

S2 = I’m afraid the Knicks are going to win.

S3 = The Knicks are going to win.

S4 = Who on the Celts can possibly handle Frazier?

183

5. Mark Liberman’s or-cases

(11) i: You better get out, or somebody’ll slug you.

ii: I think you’d better get out, or I’m afraid I’ll have to throw you out.

(12) For all contexts C, if (i) & (ii) & (iii), then (iv):

i: the sentence consisting of S0 modified by the reason-clause IF NOT

S0, THEN S1 is true in C;

ii: S4 conversationally entails an assertion of S1 in C;

iii: S2 is the ith phrase-marker in a derivation D such that the logical

structure of S0 is a felicity condition for, or a called-response to, a

logical structure S3 which is conversationally entailed by the logical

structure of S2 in context C;

iv: relative to context C, S4 may occur disjoined to the right of S2 in the

ith phrase-marker of derivation D.

6. Tag Questions77

(13) You couldn’t open the door, could you?

77 No rule for Tag Questions was formalized by Lakoff (1974).

184

IV

Overlapping Computations, Dynamic Phrase-Structure,

and Shared Constituency

As said in §I.2, I am conducting this research and searching for answers to

questions about syntactic amalgamation biased by the desiderata of the

Minimalist Program (Chomsky 1993, 1995, 2000a, 2000b, 2001a, 2001b; Martin &

Uriagereka 2000; Uriagereka 1998, 2001, 2002). The main desideratum of

Minimalism is that grammatical patterns follow from principles optimal design.

In the limit, that amounts to saying that every formal property of a linguistic

expression is a consequence of economy principles, and every substantive

property follows from interface demands.

In what follows, I advocate for a derivational approach to Syntax, as in

mainstream Minimalism. However, I departure from this tradition with regards

to the ‘directionality of derivations’, in that I propose that tree-growth proceeds

in a top-to-bottom fashion, through a structure-building mechanism where

constituency is heavily dynamic. Moreover, I advocate for non-standard

representations, with structure-sharing and multiply-rooted phrase markers.

That way, constructions that appear to be of a paratactic nature can be seen as a

product of syntax itself, pushed to the limit.

185

IV.1. The Input to The Computational System

Following Chomsky (1995: 225-228), I assume that the inputs to syntactic

derivations are ‘initial arrays of lexical items’, conventionally called Numerations,

and defined as sets of lexical tokens.78 The role that the numeration plays in the

system is the one of a ‘reference set’ that establishes a local domain where

convergence and economy are evaluated. For instance, the sentence in (01) —

whose syntactic structure is arguably something along the lines of (02) — is taken

to be generated from the numeration in (03).

(01) Homer kissed many women at the party.

(02) [CP C [TP [DP D Homer] [T’ T [VP [DP D Homer] [V’ [V’ kissed [DP many

women]] [PP at [DP the party]]]]]]]

(03) {C, D, Homer, T[past], kiss, many, women, at, the, party}

78 It has been often assumed that the members of each numeration are not just tokens of lexical
items, but rather ordered pairs like <x,y> (standardly notated as xy), where x is a type of lexical
item, and y is an index that consists of positive integer which determines how many tokens of x
are available for the computational system.. Technically speaking, this amounts to saying that the
numeration is not an ordinary set, but rather a ‘multiset’ (Chomsky 1995: 225-228; Uriagereka
1998: 289-297; Gärtner 2002: 56-61). As far as I can see, this technicality is not relevant for the
present purposes (if relevant at all), as the difference between N = {X1, Y2, Z3} and N = {X, Ya, Yb,
Za, Zb, Zc} is obviously merely notational. In what follows, I will adopt the second notation,
dropping token indices for the sake of exposition unless they are necessary.

186

The mathematical object in (03) can be equivalently presented by the Venn

diagram notation in (04).

(04)

C

D

Homer

T[past]

kiss

many

women

at

the

party

A syntactic derivation, then, is a complex function that maps the

numeration (e.g. (05a)) into a phrase marker (e.g. (05b)), in a step-by-step fashion.

(05) a: {C, D, Homer, T[past], kiss, many, women, at the party}

successive applications of structure-building operations

b: [CP C [TP [DP D Homer] [T’ T [VP [DP D Homer] [V’ [V’ kissed [DP many

women]] [PP at [DP the party]]]]]]]

187

The standard take on how this mapping takes place is that the items of the

numeration are introduced into the derivational workspace Σ, each one by a

distinct application of an operation of the computational system called Select.

Those elements are integrated into the LF phrase marker that is being built in Σ,

through multiple applications of the operations Merge and Move,79 which

assemble complex phrases in a recursive fashion.80

One potential conceptual problem with this approach is that it assigns a

theoretical status to the notion of Numeration, which may apparently correspond

to a tacit recognition of an extra level of representation besides PF and LF. Thus,

the Numeration would be as an unwelcome ‘residue of D-structure’ that goes

against the minimalist desideratum that the grammar only has levels of

representations that are interface levels.81

79 In mainstream Minimalism, Move is understood as a combination of three distinct (but related)
operations: Copy, Merge and PF-Delete (Chomsky 1995: chapter 4). First, a given constituent X
that is already integrated into the LF phrase marker under construction is copied, then that new
copy of X is merged with some other constituent (the root node of the spine of the tree).
Eventually, all copies but the highest one are deleted at PF. Recently, Chomsky (2000, 2001a,
2001b) has proposed to decompose Move even further into Agree and Pied-Pipe, such that the
former would be the feature-checking operation per se, whereas the latter would be an EPP-
driven mechanism whose inner workings involve Copy, Merge, and PF-Delete.
80 Some of these steps are logically ordered with respect to others (e.g. in order for the system to
merge at with [DP the party], it must be the case that the complex phrase [DP the party] exists in
the first place, which presupposes the anteriority of the merging of the with party), while others
aren’t (e.g. the merging of many with women, and the merging of D with Homer).
81 Of course, if it can be argued on independent grounds, that such D-structure-like level of
representation interfaces with some module of the cognitive system, then it would be justified on
minimalist grounds. As pointed out by Uriagereka (forthcoming, chapter 1), the core minimalist
assumption with regards to levels of representations is not that that PF and LF are the only levels.
Rather, the assumption is that the grammar only has interface levels.

188

Prima Facie, this may not be much of a problem as long as no well-

formedness condition is posited on Numerations. However, to some extent, that

seems inevitable, since, no matter how ‘flat’ and ‘unstructured’ it is, it must

satisfy some formal condition or other, in order to count as a set-theoretical

object of a given kind. Needless to say, that is already a condition on well

formedness of the Numeration.

At any rate, it is virtually conceptually necessary to have some function

that creates lexical tokens from lexical types, in order to feed the derivation. After

all, phrase markers are made of tokens, while the Lexicon is a collection of types.

Under the standard assumption that lexicon is a collection of morphemes,

and that words are combinations of morphemes, the null hypothesis is that such

mapping function is nothing but standard morphology.

Taking seriously the idea of Numerations being sets has some interesting

consequences, which will play a major role in this dissertation, in the treatment

of parataxis.

First, consider the simpler (arguably hypotactic) constructions in (06) and

(08), and their respective numerations in (07) and (09).

(06) His wife just found out that Homer kissed many women at the party.

189

(07)

C

his

wife

just

T[past]

find-out

that

D

Homer

T[past]

kiss

many

women

at

the

party

(08) I couldn’t even count [how many women]1 Homer kissed t1 at the party.

190

(09)

C

I

could

not

even

count

C[+WH]

D

Homer

T[past]

kiss

how-many

women

at

the

party

Consider, now, the more complex construction in (10), which, pre-

theoretically speaking, can be seen as the result of some paratactic process that

somehow collapses (07) and (09) together.

(10) His wife just found out that Homer kissed I couldn’t even count how

many women at the party.

191

Since nothing in Set Theory prevents two or more numerations from

intersecting and sharing some lexical tokens, this option is in principle

available.82 In this dissertation, I will explore the hypothesis that the input to the

syntactic computation(s) that generate(s) constructions like (10) is as shown in

the Venn diagram in (11).

(11) C C

his I

wife could

just not

T[past] even

find-out count

that C[+WH]

D

Homer

T[past]

kiss

how-many

women

at

the

party

82. Regardless of the possibility of intersecting numerations, Set Theory also allows indefinitely
many kinds of set-theoretical arrangements of lexical tokens that do not constitute inputs that the
computational system can handle. Thus, we independently need to commit to an axiomatization
that determines which of those sets count as legitimate numerations. In this context, ruling out
intersecting numerations would require an additional axiom just for that purpose, which would
be an unnecessary complication to the theory, unless there were strong empirical evidence for
such a prohibition. Thus, a system that allows intersecting numerations is the null hypothesis;
and I take the facts presented here as evidence for it.

192

The claim is that such intersections allow local computations to interfere

with one another to some extent, with paratactic effects emerging from syntax

pushed to limit, as it will be shown in detail in §V.

Finally, there is one issue about the idea of inputs as intersecting

numerations which deserves further comment. The claim being made here is that

whenever there is an intersection between two or more numerations, the

syntactic computations that combine the lexical tokens of each numeration will

necessarily be integrated into a unified larger computation.

That does not follow from set theory alone. In principle, nothing seems to

prevent the computational system from focusing on only one numeration and

simply ignoring the other one(s), despite the intersection.83

One way out of the problem is to redefine what counts as an input to a

syntactic derivation. Instead of a numeration (i.e. a set of lexical tokens), the

input can be defined as a ‘super-numeration’, i.e. a set of sets of lexical tokens.

That way, there would be a single formal object containing all the numerations

that are supposed to ‘go together’, and nothing else. This would guarantee that

the computations corresponding to each numeration would be treated as

subcomputations of a larger computation.

From that perspective, (11) would be revised as in (12). For consistency,

the same concept would apply to simpler constructions involving only one

numeration, as in (13), which is the revised version of (07).

83 Maybe this is not a problem. Depending on which items are in that numeration, the derivation
would, in the best case, produce an ordinary sentence instead of a syntactic amalgam. In the
worst case, the derivation would crash or terminate prematurely.

193

(12)

C C

his I

wife could

just not

T[past] even

find-out count

that C[+WH]

D

Homer

T[past]

kiss

how-many

women

at

the

party

194

(13)

C

his

wife

just

T[past]

find-out

that

D

Homer

T[past]

kiss

many

women

at

the

party

In the rest of this dissertation, I will keep using the simpler notation, as in

(07) and (11), for expository reasons.

195

IV.2. Structure Building and Structure Preservation

In most variations of mainstream Minimalism, it is assumed that syntactic

representations are built derivationally, through recursive applications of the

operation merge, conceived as in (14) below.

(14) Merge84

a: input: α & β (such that both α and β are syntactic objects)

b: output: αP 2
 α β

It has been assumed, without much discussion, that both inputs to Merge

(i.e. α and β above) must be ‘root nodes’ of independent subtrees by definition,

so that trees always grow on their outer edges.

This has been explicitly stated as the Extension Condition, which basically

requires that, at any given derivational step t, only constituents that are root

nodes (i.e. maximal projections in the relational, bare-phrase-structure sense) can

undergo merge in t.

Therefore, abstracting away from linear order at PF, if (15a) is the input,

the output must be (15b), not (15c).

84 Formally speaking:
(i) input: α & β

output: K = {L, {α, β}}, such that L is the label of K, which corresponds to the
head to the element that projects (in this case, α)

196

(15) a: input: X & γ 2
 α β

b: output: Z 2
 γ X 2

α β

c: * output: X 2
 α Z 2

β γ

In (15b), γ remains outside of X in the output. The new constituent Z that

is created (and whose daughters are γ and X) is the new root node. Therefore, the

internal structure of all constituents in the input is completely preserved in the

output.

In (15c) γ is inserted inside X, as a new sister of β. The new constituent Z

that is created (and whose daughters are γ and β) is not a root node. Rather, it is

the new sister of α (which is no longer a sister of β). Therefore, the internal

structure of X is not preserved from the input to the output. One of its daughters

(i.e. β) is replaced with another one (i.e. Z). X was the root node in the input and

it remains the root node in the output. Strictly speaking, what happens in (15c) is

that γ merges with β, not with X.85 Richards (1998) refers to this second type of

Merge as Tucking-in.

85 Thus, it is a little misleading to describe the input to this operation as being X & γ. Rather, it is β
& γ, such that β is a daughter of X.

197

Clearly, the operation in (15b) obeys the Extension Condition, whereas the

operation in (15c) does not.

From a conceptual point of view, the Extension Condition is motivated on

minimalist grounds. Given derivational economy, it is not surprising that the

computational system always chooses to build structure in a monotonic fashion,

so that the internal structure of every constituent built in previous derivational

steps is fully preserved. New constituents are created, but no constituent is

destroyed. The intuitive idea behind this is as follows: why bother building a

constituent at one point if it will be destroyed later? Therefore, this monotonicity

appears to be part of an optimal solution, as if the system was designed by a

“super-engineer”, to put it in Chomsky’s (2000) metaphorical terms. The

Extension Condition might be seen, then, as a mere instantiation of a general

economy condition on derivations. If merge applies only at the root, then every

bit of structure built at any point is guaranteed to be in the final output (= LF).86

Uriagereka (2002) refers to this general economy condition as ‘Law of

Conservation of Patterns’.

It is hard to find examples of “loss of information”, among other
things because, on the average, linguistic processes are highly
conservative. familiar constraints on recoverability of deletion
operations, or what Chomsky calls the “inclusiveness” of
derivations (...), can obviously be expressed in terms of some
Law of the Conservation of Patterns (...). The same law,
however, normally prevents us from teasing apart a
computational and a representational approach.

(Uriagereka 2002: 14)

86 For a precise formalization of this argument, see Watanabe (1995),

198

However, the issue is not uncontroversial. Although intuitively appealing,

a ‘conservation law’ of this kind is not a priori required by derivational systems,

as a matter of logic. Changing structure is something that only derivational

systems can do. Therefore, it is worth exploring a system that allows merge

operations like in (15c). This is justified on methodological grounds, as a

potential way to conclude something about the ‘representationalism versus

derivationalism’ dilemma (as already hinted in Uriagereka’s (2002) quote above).

In this regard, Chomsky (2000: 136) wrote:

The new object K formed by Merge of β to α retains the label L of
α, which projects. There are two reasonable possibilities,
illustrating the ambiguity of cyclicity (...):

(i) a: α is unchanged;
b: β is as close to α as possible.

Suppose we have the L[exical] I[tem] H with selectional feature
F, and XP satisfying F. Then first Merge yields α = {XP, H}, with
label H. Suppose we proceed to second Merge, merging β to α.
In this case β is either extracted from XP (Move) or is a distinct
syntactic object (pure Merge). There are two possible outcomes,
depending on choice of K in (ii).

(...)

(ii) α (label = H) a: α (label = H) b: α (label = H)
 2 2 2
 H XP β α (label = H) XP α (label = H)

2 2
 H XP H β

The desired outcome is (ii-a), not (ii-b); that has always been
assumed without discussion. (...)

But the reasons are not entirely obvious. Each outcome satisfies a
reasonable condition: [(ii-a)] satisfies the familiar Extension
Condition (ii-a); [(ii-b)] satisfies the condition of Local Merge [(ii-b)].

One possibility is to stipulate that the Extension Condition always
holds: operations preserve existing structure. Weaker
assumptions suffice to bar (ii-b) but still allow Local Merge
under other conditions.

199

Moreover, many recent minimalist works based on bottom-up derivations

defend the necessity of certain grammatical mechanisms that, in one way or

another, involve massive overwriting and changing in constituency relations

along the derivational history, such as non-cyclic merge (Richards 1998; Castillo

& Uriagereka 2000) and movement by lowering (Boskovic & Takahashi 1998), all

of which would involve some variant of (15c). The common feature of all these

approaches is that the Extension Condition should be relaxed, as suggested by

Chomsky (1998) in the quote above.

I will not dispute the empirical advantages systems that allow tucking-

in.87 Actually, in the next section, I will go as far as endorsing the proposal that

every instance of merge is, by definition, tucking-in.

In what follows, I claim that ‘merge at the root’ (cf. 15b) and ‘tucking in’

(cf. 15c) are formally too different to be just two possible instantiations of the

same structure building operation.

87 One good example of the empirical and conceptual benefit of incorporating tucking-in into the
syntactic machinery is found in the work by Castillo & Uriagereka (2000) on successive cyclicity.
The phenomenon of long distance WH-movement defies the current minimalist desideratum of
last resort, to the extent that it requires the stipulation of an ad hoc feature in the intermediate
COMP whose only purpose is to trigger the very movement it tries to explain. By allowing
tucking-in, the authors are able to straightforwardly reduce long distance movement to local
movement, reconciling the Tree Adjoining Grammar approach to successive cyclic movement (cf.
Frank 2002 and references therein) with the Minimalist framework. Basically, WH-movement
happens in a strictly local fashion, and then the whole higher clause is built afterwards, by
tucking-in lexical tokens one by one, as shown in (i):

(i) a: [CP [IP Mary [VP loves who]]]
b: [CP who1 [IP Mary [VP loves t1]]]
c: [CP who1 [CP that [IP Mary [VP loves t1]]]]
d: [CP who1 [VP thinks [CP that [IP Mary [VP loves t1]]]]]
e: [CP who1 [IP John [VP thinks [CP that [IP Mary [VP loves t1]]]]]]
f: [VP wonder [CP who1 [IP John [VP thinks [CP that [IP Mary [VP loves t1]]]]]]]
g: [IP I [VP wonder [CP who1 [IP John [VP thinks [CP that [IP Mary [VP loves t1]]]]]]]]
h: [CP [IP I [VP wonder [CP who1 [IP John [VP thinks [CP that [IP Mary [VP loves t1]]]]]]]]]

200

Consider the instance of tucking-in in (16), and let us, then, scrutinize its

inner workings.

(16) a: input A & α 2
 w B 2

x C 2
 y z

b: output: A 2
 w B 2

x D 2
 α C 2

 y z

Apparently, what happens in (16) is that the internal structure of B

changes, whereas all other nodes remain unaffected. In (16a), the daughters of B

are a and C. In (16b), C ceases to be a daughter of D, and becomes a daughter of

the new constituent D, which is the new daughter of B, replacing C.

But what does that amount to, formally speaking? If the external element

α is merely merging to C, then the output should simply be as in (17a).

201

(17) a: A 2
 w B

x

 D

 α C 2
 y z

This is obviously not the same as (16b). Among many other things, (16b)

7differs from (17a) to extent that x and D are sisters in (16b) but not in (17a).

Therefore, aside from the mere merge of α and C, one extra step towards the

representation in (16b) would be merging x and the new constituent D, so that

they become sisters, as shown in (17b).

(17) b: A 2
 w B BB

x

 D

 α C 2
 y z

Once this is done, a new ‘incarnation’ of B is created in parallel to the

already existing B. Notice that, in (17b), w is the sister of the old incarnation of B,

the one that still has C as a daughter. However, in the target structure, w is the

sister of the new B, the one that has D as a daughter. Therefore, yet one more

202

merge operation is necessary. The new B and w merge, creating a new

incarnation of A, as shown in (17c).

(17) c: AA
A 2

 w B BB

x

 D

 α C 2
 y z

This is not yet the target structure. In order for the desired configuration

to obtain, the old constituents that have been ‘cloned’ during the derivation must

somehow be eliminated. Whatever the elimination procedure is, the result is that

the old incarnations of A and B (and their respective motherhood relations)

disappear from the structure, finally yielding (17d), which coincides with (16b)

above.

(17) d: AA

 w BB

x

 D

 α C 2
 y z

203

In conclusion, tucking-in is not simply ‘merge at a non-toot node’. It is a

complex combination of applications of merge coupled with some structure

elimination mechanism. And the deeper in the phrase marker that tucking-in

occurs, the more rebuilding will be involved to achieve the desired target

representations, as more and more nodes will have to be ‘cloned’ or eliminated in

the process.

Another possibility is that tucking-in is a completely different operation to

begin with, where all parts of the inner-workings described above come together

as an automaton. This is the approach that I will take in the following sections.

The question, then, is whether both structure building procedures exist in the

computational system’s toolbox, or only one of them. Needless to say, ceteris

paribus, Occam’s Razor would lead us to a theory where only one of these two

possibilities exist. But this is, in the end, an empirical matter. In this dissertation,

I commit to the view that every structure building operation is tucking-in, by

definition. Thus, I claim that there is no such thing as an Extension Condition in

the grammar. To the contrary, the system always builds new structure by

partially destroying old structure (in a very constrained way). Consequently,

constituency is heavily dynamic. What is a constituent at one derivational step

may or may not be a constituent at subsequent steps. The technical details of

such system will be presented in the next sections. In §V, the explanatory

adequacy of such system (vis-à-vis the empirical facts given in §II) will be

shown.

204

IV.3. Structure Building and the Directionality of Derivations

IV.3.1. Derivationalism versus Representationalism

Mainstream minimalism assumes the syntactic component of UG to be a

derivational system, which builds syntactic structure step-by-step, from the

bottom upwards, as in (18).

(18) a: [W a [Y b [X c [Z d e]]]]

b: [W a [Y b [X c [Z d e]]]]

c: [W a [Y b [X c [Z d e]]]]

d: [W a [Y b [X c [Z d e]]]]

From this perspective, the formal properties of phrases and sentences are

taken to be effects of how syntactic structure is built. Therefore, what makes a

given syntactic structure grammatical or ungrammatical is not much the

structural properties of the final representation that obtains at the end of the

derivation (e.g. (18d)). Rather, its entire derivational history must be in

accordance with the principles of derivational economy (cf. Chomsky 1995, 2000;

Collins 1997; Kitahara 1997; inter alia).88/89

88 Chomsky (1995: section 9) makes a big deal out of the contrast in (i) and (ii), pointing out that
the LF representation of (ii) is perfect, but it is ungrammatical because its derivational history
involves a step which violates Merge-Over-Move, when the specifier of the embedded TP is filled
with [DP a man] instead of [DP there]. The intuition is that Merge is just Merge, while Move is
Copy+Merge+Delete; therefore, the system always prefers to merge [DP there] at that derivational
stage since it is the most economical strategy (less operations), eventually yielding (i). Strictly
speaking, ungrammatical structures are not filtered or rejected at the interfaces. Rather, the

205

An alternative approach is to take syntax to be a representational system

(Brody 1995, 1997, 1998; inter alia). Under that view, instead of the derivation in

(18), all we have is the representation in (18d), generated in a single step. What

determines whether it is grammatical or ungrammatical is a set of declarative

rules that state which structural properties any given phrase marker must or

must not have (e.g. binary branching, endocentricity, format of chains, etc.).

As Chomsky (2000: 98-99) points out, these two perspectives are very hard

to tease apart. Arguments go in both directions, and, in most cases, analyses are

fully intertranslatable from one framework to the other.

The issue is reminiscent of old questions about morphological
processes (“item-and-process” vs. “item-and-arrangement”, etc.)
and grammatical transformations. Thus, does a transformation
map an input structure to an output structure, or is it an
operation on the “output” that expresses properties of the
“input”? It is unclear whether these are real questions; on the
surface they look like the question whether 25 = 52 or 5 = √25. If
the questions are real, they are subtle. (...) The apparent
alternatives seem to be mostly intertranslatable, and it is not easy
to tease out empirical differences, if any.

Cornell (1999) goes even further, and claims that these two apparently

opposite approaches are two sides of the same coin, and must co-exist in any

(transformational) theory of grammar.

economy principles prevent them from being generated in the first place. See Chomsky (1998,
1999) and Castillo, Drury & Grohmann (1999) for discussion of more complex examples of
Merge-Over-Move.

(i) [DP there]1 seems t1 to be [DP a man] in the room.
(ii) * [DP there] seems [DP a man]1 to be t1 in the room.

89 Uriagereka (1998, 1999) and Epstein, Groat, Kawashima & Kitahara (1998) are examples of
radically derivational systems, with no levels of representations whatsoever (i.e. there is a
phonological component and a semantic component, but no PF and LF levels of representations).

206

A transformational grammar should have both a derivational
and a representational interpretation, connected by soundness
and completeness results.

Chomsky (2000: 99) even ends up admitting that his choice for a

derivational approach is somewhat arbitrary.

I will adopt the derivational approach as an expository device,
though I suspect it may be more than that.

A new approach to this issue is offered by Phillips (1996, 2003). He

proposes a derivational system that works in a top-to-bottom fashion,90 rather

90 Phillips himself never used the terminology ‘top-to-bottom’ to refer to this kind of system. He
uses ‘left-to-right’ instead. The reason for it is that, in this framework, derivations do not work
like the ones of classical transformational grammar (Chomsky 1955 [1975], 1957, 1965; inter alia),
where non-terminal nodes were considered substantive entities that exist independently from the
terminals they end up dominating; with the terminals being introduced after their dominating
non-terminals (i.e. the whole being introduced before its parts). As opposed to that, Phillips-style
derivations have terminals being introduced first (just like in Bare Phrase Structure (Chomsky
1994, 1995)), and non-terminals do not exist as primitive items of the ‘alphabet of formatives’,
rather, they emerge as byproducts of merge operations on terminals (or, by recursion, on less
complex non-terminals). On the basis of this, Phillips-style derivations are considered ‘locally
bottom-up’ by Drury (1998a, 1998b), who prefers the terminology ‘root-first derivations’, also
adopted by Richards (1999, 2002).
 Phillips (2002) expressed his concern with this terminological issue as follows: “A ‘top-down’
parser is a parser that begins with a root node, such as ‘S’, and then expands the root node by projecting its
daughters, and then projects the daughters of each of those nodes, and so on until it arrives at the terminal
nodes. A ‘bottom-up’ parser works in the opposite direction, starting with the terminals and ending at the
root node. This terminology is well established in the computational linguistics literature. Notice that
neither of these systems is subject to any linear order constraints; the only constraint is that they build
structure either from top-to-bottom or from bottom-to-top. A number of authors have described incremental
left-to-right systems of the kind that I have proposed as ‘top-down’ systems (...) This is unfortunate, since a
left-to-right system is not a top-down system in the normal sense.”
 I myself have used the terminology ‘top-down’ before, when referring to Phillips-style
derivational systems (cf. Guimarães 1999, 2001), and I accept Phillips’ (2002) criticism on that.
However, I disfavor the term ‘left to right’ in the context of this research, since it masks the role
played by ‘tucking in’ in the system, which essentially makes the tree undergo endogenous
growth (with new branches emerging from the inside). Instead of ‘top down’, I here adopt the
term ‘top-to-bottom’, since the later is not loaded (i.e. not associated with the concatenation-
algebra re-writing formalism traditionally referred to ‘top down’), and — unlike ‘left-to-right’—
it transparently expresses the idea that what is higher in the phrase marker accesses the
derivation before what is lower.

207

than from the bottom upwards. Once the directionality of derivation is reversed,

we start making predictions that, ceteris paribus, no representational approach can

make. Moreover, these predictions seem to be by and large consistent with the

facts, confirming Chomsky’s suspicion that the derivational approach is more

than just an expository device.

This idea has been explored, in different ways, by Drury (1998a, 1998b),

Richards (1999, 2002), Schneider (1999), Terada (1999), Heider (2000), and

Guimaraes (1999a, 1999b, 2001, 2003b, 2003c).

From that perspective, we would have the derivation in (19) instead of the

one in (18).

(19) a: [W a b]

b: [W a [X b c]]

c: [W a [X b [Y c d]]]

d: [W a [X b [Y c [Z d e]]]]

This is what I will call the Generalized Tucking-in approach to structure

building. From that perspective, constituency is partially destroyed at every

derivational step.91 For instance, [W a b] is a constituent at step (19a); and, at step

(19b) the construction of the constituents [X b c] and [W a [X b c]] ends up

destroying [W a b].

91 In the example in (19), all non-terminals have their internal constituency changed at every step.
This does not happen to specifiers, which never get destroyed, as will be shown shortly.

208

As mentioned in §IV.2, recent research has pointed out that there is some

empirical evidence for tucking-in operations in syntax (cf. note 10). Moreover, as

also discussed in §IV.2, one we scrutinize tucking-in in its the inner workings, it

becomes clear that it is not merely ‘merge at a non-root node’, but rather a

completely distinct structure building operation. In this context, it is a legitimate

methodological move to hypothesize that tucking in is the only structure-

building device of syntax, therefore pushing the idea of ‘mutant constituency’ to

the limit to see which predictions are made when ‘partial destruction’ is taken to

be inherent to the basic mechanisms of ‘construction’. This is exactly what

Phillips’s (1996, 2003) program is all about.

One very powerful argument for a ‘generalized tucking-in’ derivational

approach like (19) goes back to Phillips’ (1996, 2003) work on conflicting

constituency tests.

An old and embarrassing puzzle in Generative Grammar is the fact that,

in some cases, multiple constituency tests give different and conflicting results

when applied to the same sentence. For instance, take the sentence in (20).

(20) John gives candy to children in libraries on weekends.

As Phillips (1996: 24-25) shows, some tests, like negative polarity (cf. 21)

and coordination (cf. 22) point to a right-branching VP structure, along the lines

209

of the ‘Larsonian shell’ in (23).92

(21) a: John gave nothing to any of my children in the library

on his birthday.

b: John gave candy to none of my children in any library

on his birthday.

c: John gave candy to children in no library on his birthday.

d: * John gave candy to any of my children in no library

on his birthday.

(22) TP
 2

[DP John]2 T’ 2
 T VP 2

 t2 V’ 2
 gives1 VP 2

 [DP candy] V’ 2
 t1 VP 2

 [PP to [DP children]] V’ 2
 t1 VP 2

 [PP in [DP libraries]] V’ 2
 t1 [PP on [DP weekends]]

92 This is based on the standard assumption that the licensing of a negative polarity requires c-
command.

210

On the other hand, some movement tests, like VP-topicalization (cf. 23),

point to a predominantly left-branching structure along the lines of (24).

(23) a: John intended to give candy to children in libraries on weekends...

and [give candy to children in libraries on weekends]1 he did t1 .

b: John intended to give candy to children in libraries...

and [give candy to children in libraries]1 he did t1 on weekends.

c: John intended to give candy to children...

and [give candy to children]1 he did t1 in libraries on weekends.

d: John intended to give candy...

and [give candy]1 he did t1 to children in libraries on weekends.

e: * and [to children in libraries]1 he did t1 give candy on weekends.

f: * and [in libraries on weekends] 1 he did t1 give candy to children.

(24) TP2
 [DP John]2 T’ 2

 T VP 2
t2 V’ 2
 V’ [PP on [DP weekends]] 2

 V’ [PP in [DP libraries]] 2
 V’ [PP to [DP children]] 2

 gives [DP candy]

211

This conflict is even more accentuated in cases where the very same

sentence exhibits symptoms of both left-branching and right-branching structure

(cf. Pesetsky 1995: 230 apud Phillips 1996: 27). This is attested in (25), where the

fronted fragments of VP require a structure like (24), whereas the binding

relations between an NP inside the fronted fragment and an anaphor outside it

require a structure like (22).

(25) a: ... and [give the books to [them]j in the garden]1 he did t1

on [each other’s]j birthdays.

b: ... and [give the books to [them]j]1 he did t1 in the garden

on [each other’s]j birthdays.

This is, in principle, a serious paradox that defies many concepts behind

the notion of constituency, which are the standard in Generative-

Transformational Grammar for the treatment of long distance dependencies.

The conflict between (21-22) and (23-24) is the following. In order for the

relevant c-command relations required to license NPIs in (21) to obtain, it must

be the case that the substrings in (26a-d) are constituents, whereas the ones in

(27a-c) are not. On the other hand, in order for the relevant movement operations

to take place in (23), it must be the case that the substrings in (26a-c) are not

constituents, whereas the ones in (27a-d) are.

212

(26) a: gives candy to children in libraries on weekends

b: gives candy to children in libraries on weekends

c: gives candy to children in libraries on weekends

d: gives candy to children in libraries on weekends

(27) a: gives candy

b: gives candy to children

c: gives candy to children in libraries

d: gives candy to children in libraries on weekends

From a representational perspective, these two possibilities are mutually

exclusive. The same holds for derivational systems where structure-building is

fully conservative, as in (18) above.

Phillips’ (1996, 2003) great insight is that such paradox completely

disappears once we take all those structures above as to be generated in what I

call the ‘generalized tucking-in’ fashion, along the lines of (19) above. In such a

system, it is possible to ‘have the cake and eat it too’, having both (22-25) and (24-

26) in the same derivation, which is absolutely crucial to account for cases like (25).

In derivations of the sort sketched in (19), constituency is dynamic. A

given substring can be a constituent at a given derivational step t (and, hence,

undergo some transformation), and later, at a derivational step t+n, that

constituent may be destroyed, so that one of its daughters forms a constituent

213

with together with another chunk of structure, with consequences for some other

grammatical process that applies at that stage.

With regards to the specific problem above, Phillips’ (1996, 2003) solution

to the paradox above can be summarized as follows. Abstracting away from the

VP-internal subject position, the VP of such constructions would be derived

along the lines sketched in (28).

(28) a: give

b: VP 2
 give [DP candy]

c: VP 2
 give VP 2

 [DP candy] give

d: VP 2
 give VP 2

 [DP candy] V’ 2
 give [PP to [DP children]]

e: VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] give

214

f: VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] V’ 2
 give [PP in [DP libraries]]

g: VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] V’ 2
 give VP 2

 [PP in [DP libraries]] give

h: VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] V’ 2
 give VP 2

 [PP in [DP libraries]] V’ 2
 give [PP on [DP weekends]]

215

Since, in such kind of system, derivations proceed essentially from top to

bottom, and from left to right, any fronted VP would be generated in surface

position (e.g. spec/CP, spec/TopP) and subsequently lowered to its ‘D-structure

position’, so to speak, as sketched in (29).93

(29) a: CP
 5
 VP C’ 2 tp

 give VP C TP 2 tp
[DP candy] V’ [DP he] did 2

 give [PP to [DP children]]

b: CP
 5
 VP C’ 2 tp

 give VP C TP 2 tp
[DP candy] V’ [DP he] T’ 2 2

 give [PP to [DP children]] did VP 2
 give VP 2

 [DP candy] V’ 2
 give [PP to [DP children]]

93 According to Phillips (1996, 2003), such lowering involves making a silent copy of the relevant
element, and then merging that silent copy in the lower position of the chain. This assumption
will be revised in the next subsection.

216

c: CP
 5
 VP C’ 2 tp

 give VP C TP 2 tp
[DP candy] V’ [DP he] T’ 2 2

 give [PP to [DP children]] did VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] V’ 2
 give [PP in libraries]

d: CP
 5
 VP C’ 2 tp

 give VP C TP 2 tp
[DP candy] V’ [DP he] T’ 2 2

 give [PP to [DP children]] did VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] V’ 2
give VP 2

 [PP in libraries] V’ 2
give [PP on weekends]

217

What happens in (29) is that, at the point where VP-topicalization takes

place, give candy to children is a constituent (as required by the movement-

based test). However, by the end of the derivation, that same substring no longer

a constituent (as required by the c-command-based test). Basically, the

construction of the VP begins in spec/CP, and gets interrupted at some point.

After the chain is formed, the construction of the VP continues.

In a nutshell, the diagnostics from any movement-related tests is an

accurate snapshot of an early derivational stage, whereas the diagnostics from

any movement-related tests is an accurate snapshot of a late derivational stage.

This is essentially the derivational mechanics that I will adopt in this

dissertation for the treatment of syntactic amalgamation. The next section

concerns the technical details of its implementation.

Before moving on to the technical details, however, it is worth

emphasizing that the ‘generalized tucking-in’ mechanics adopted here is actually

not as much ‘destructive’ as it seems to be at first blush. Although monotonicity

does not hold in its strongest form in these systems (because some constituency

is destroyed in the course of the derivation), there is a weaker sense in which the

computation can still be seen as monotonic94.

If we focus on the core grammatical relations encoded in the phrase

markers, rather than on the constituency integrity, we can see that new relations

are established incrementally in the course of the derivation without eliminating

94 This idea of considering monotonicity with respect to syntactic relations (rather than to the
integrity of phrase geometry) is inspired on Weinberg’s (1995) work on parsing.

218

any of the previously established ones. This is true of both bottom-up and top-to-

bottom derivations, as shown in (30) and (31), respectively.

(30)
constituency precedence

among
terminals

asymmetric c-
command

dominance

[W a [Y b [X c [Z d e]]]] <d,e> <Z,d>, <Z,e>
[W a [Y b [X c [Z d e]]]] <d,e>, <c,d>,

<c,e>
<c,d>, <c,e> <Z,d>, <Z,e>,

<X,c>, <X,d>,
<X,e>, <X,Z>,

[W a [Y b [X c [Z d e]]]] <d,e>, <c,d>,
<c,e>, <b,c>,
<b,d>, <b,e>

<c,d>, <c,e>, <b,c>,
<b,d>, <b,e>, <b,Z>

<Z,d>, <Z,e>,
<X,c>, <X,d>,
<X,e>, <X,Z>,
<Y,b>, <Y,X>,
<Y,c>, <Y,Z>,
<Y,d>, <Y,e>

[W a [Y b [X c [Z d e]]]] <d,e>, <c,d>,
<c,e>, <b,c>,
<b,d>, <b,e>,
<a,b>, <a,c>,
<a,d>, <a,e>

<c,d>, <c,e>, <b,c>,
<b,d>, <b,e>, <b,Z>,
<a,b>, <a,X>, <a,c>,
<a,Z>, <a,d>, <a,e>

<Z,d>, <Z,e>,
<X,c>, <X,d>,
<X,e>, <X,Z>,
<Y,b>, <Y,X>,
<Y,c>, <Y,Z>,
<Y,d>, <Y,e>,
<W,a>, <W,Y>,
<W,b>, <W,X>,
<W,c>, <W,Z>,
<W,d>, <W,e>

219

(31)

constituency precedence
among
terminals

asymmetric c-
command

dominance95

[W a b] <a,b> <W,a>, <W,b>
[W a [X b c]] <a,b>, <a,c>,

<b,c>
<a,b>, <a,c> <W,a>, <W,b>,

<W,X>, <W,c>,
<X,b>, <X,c>

[W a [X b [Y c d]]] <a,b>, <a,c>,
<b,c>, <a,d>,
<b,d>, <c,d>

<a,b>, <a,c>, <b,c>,
<b,d>, <a,Y>, <a,d>

<W,a>, <W,b>,
<W,X>, <W,c>,
<X,b>, <X,c>,
<W,d>, <W,Y>,
<X,d>, <X,Y>,
<Y,c>, <Y,d>

[W a [X b [Y c [Z d
e]]]]

<a,b>, <a,c>,
<b,c>, <a,d>,
<b,d>, <c,d>,
<a,e>, <b,e>,
<c,e>, <d,e>

<a,b>, <a,c>, <b,c>,
<b,d>, <a,Y>, <a,d>,
<c,d>, <c,e>, <b,Z>,
<b,e>, <a,Z>, <a,e>

<W,a>, <W,b>,
<W,X>, <W,c>,
<X,b>, <X,c>,
<W,d>, <W,Y>,
<X,d>, <X,Y>,
<Y,c>, <Y,d>,
<W,e>, <W,Z>,
<X,e>, <X,Z>,
<Y,e>, <Y,Z>,
<Z,d>, <Z,e>

IV.3.2.Merge

The most basic substantive notion involved in the combinatorial system

proposed here is the syntactic atom, defined as in (32).

95 In order for dominance to be taken as monotonic in a top-down system, we must first work out
some details, and define syntactic objects in a more flexible and intuitive way, such that, for
example, [W a b], [W a [X b c]], [W a [X b [Y c d]]], and [W a [X b [Y c [Z d e]]]] would all be taken as
successive ‘reincarnations’ of the same phrase, since they all have the same label.

220

(32) Syntactic Atom:

A syntactic atom is a lexical token, which is formed by a π-particle

(relevant only to the phonological component), a λ-particle (relevant only

to the semantic component) somehow linked to each other.

For instance, drum = drum ↔#drum#, where: (i) drum is the λ-particle of

drum, i.e. its semantic material; (ii) #drum# is the π-particle of drum, i.e. its

phonological material; and (iii) ↔ is whatever lexical device (substantive or

formal) arbitrarily links drum and #drum# to each other.

In this system, phrases are taken to be organizations of λ-particles, rather

than organizations of syntactic atoms.

(33) Phrase:

K is a phrase if and only if either (i) or (ii):

a: K is a λ-particle;

b: K = {L, {x, y}}, such that both x & y are phrases,

and L (the label of K) corresponds to the head of either x or y.

Complex phrases are recursively built through the operation Merge, defined as in (34), where [A x

y] is the already existing structure and z is the incoming element to be inserted within [A x y].

(34) Merge: (preliminary definition, to be refined later)

input: {A, {x, y}} & z

221

output: {A, {x, {B, {y, z}}}}

By the definition in (34), there is no constraint on the label of the new

constituent formed inside the existing structure. In principle, either the new

element being tucked-in projects (as in (35a)), or its sister does (as in (35b)).

(35) input: xP = {x, {x, y}} 2
 x y

output (a): xP = {x, {x, {z, {y, z}}}} 2
 x zP = {z, {y, z}}  z projects 2
 y z

output (b): xP = {x, {x, {y, {y, z}}}} 2
 x yP = {y, {y, z}}  y projects 2
 y z

In order for this mechanics to work, we need some phrase already there in

the derivational workspace in order to introduce the (λ-particles of the) first two

syntactic atoms selected from the numeration. This is so because the input is

explicitly defined as including a branching ‘host phrase’, such that one of its

daughters becomes the sister of the incoming element in the output.

I assume, then, that the system has a starting axiom, which consists of an

operation that applies before all others, introducing the phrase in (36) in the

derivational workspace.

222

(36) Starting Axiom:

 ΣP = {Σ, {∅, Σ}}2
 ∅ Σ

The phrase ΣP of my system is analogous to the node S of Chomsky (1955

[1975], 1957, 1965) and to the abstract terminal of Kayne (1994: 36-38). I take Σ to

be an ‘assertion terminal’. In fact, every time that a speaker says, for instance,

“the earth isn’t flat”, (s)he is not just saying that the earth is not flat. Rather, (s)he

is asserting that (s)he believes that the earth not being flat is an actual fact about

the real world96. In other words, (s)he is committing to the truth of the uttered

sentence (see Echepare (1997) on this matter). My take is that this ‘commitment’

is syntactically represented/instantiated by ΣP97. The symbol ∅ stands for the

empty set, which is there, as a sister of Σ, just to guarantee the appropriate

syntactic configuration.98 Occasionally, this starting axiom may be omitted from

the notation for expository reasons, but I want the reader to keep in mind that it

is always present, or else no derivation could start.

Nothing has been said yet about linear order. Given the definitions in (33)

and (34), inputs and outputs of Merge are set-theoretical objects which do not

96 Or, at least, (s)he wants the interlocutor to believe that.
97 Of course, there is nothing (neither inside nor outside the system) requiring this ‘commitment’
to be syntactically represented. But it is also true that nothing in principle excludes this
possibility.
98 One may raise an objection to (36), pointing out that it does not count as a phrase in the
technical sense of (33) above, given that ∅ is not, in principle, a λ-particle. There are two ways to
go about this. Either we simply stipulate that ∅ is a λ-particle, or we leave (36) as it is, and take it
to be the locus of ‘Göedelian incompleteness’ of this theory.

223

encode precedence relations, or even any other kind of asymmetry between

sisters. Thus, in principle, (34) would be compatible with either logically possible

ordering pattern in (37).

(37) input: A 2 & z
x y

output (a): A 2
x B 2
 y z

output (b): A 2
x B 2
 z y

output (c): A 2
B x 2

 y z

output (d): A 2
B x 2

 z y

In Phillips’ (1996, 2003) system, the mechanics of merge is constrained in

such a way that only the output in (37a) is possible. This is achieved through the

postulation of the two additional axioms below.

224

(38) Merge Right:

A new element can merge only with a (compatible) node that is at the

right edge of the structure.

(39) Branch Right:

A new element must immediately follow the node it is merged with (i.e.

its sister).

On the one hand, Merge Right forces that the constituent targeted as the

sister of the new incoming element be one of the rightmost branches (as in (37a)),

not any left-branch (as in (37c) and (37d)). Branch Right, on the other hand, forces

that the new element be pronounced after its sister (as in (37a)), not before it (as

in (37b) and (37d)).

Consider a more complex case now. Suppose that the phrase marker

currently in the derivational workspace is the one in (40). At this point, the

lexical token λ is selected from the numeration. By Merge Right, the nodes C, E, F,

I and κ are all and only the legitimate candidates for being the sister of λ in the

next step. This is so because these are all and only the nodes at the right edge of

the structure. Among these possibilities, the system will choose one that is

compatible with being a sister of λ as far as convergence matters are concerned

(i.e. thematic and feature-checking requirements). Even if λ can potentially be a

225

sister of another node not at the right edge of the structure (e.g. D), such ‘merge

left’ type of attachment is not allowed, as a constraint on derivations.

(40) A5
 B C 2 2

 α D δ E 2 2
 β γ ε F 3

 G I2 2
 ζ η θ J2

ι κ

Suppose that the compatible node in this case is F. By Branch Right, the

output must be as in (41a), rather than as in (41b).

226

(41) a: A5
 B C 2 2

 α D δ E 2 2
 β γ ε K 2

 F λ 3
 G I 2 2
 ζ η θ J 2

 ι κ

b: * A5
B C 2 2

 α D δ E 2 2
 β γ ε K 2

 λ F 3
G I 2 2

 ζ η θ J 2
 ι κ

Notice that both Merge Right and Branch Right make explicit reference to

linear order relations in the phrase marker itself, which raises an important issue.

If precedence is not encoded in the syntactic representations — as I

explicitly assume in (33)—, then it must be the case that linear order is

established extrinsically, through some mapping function.

227

In Phillips’ (1996, 2003) system, the linear order of each terminal node

relatively to all the others is established upfront, at the very moment that it he

lexical token corresponding to that terminal node is selected from the

Numeration.99 In a nutshell, the PF-string of terminal nodes is a direct reflex of

the order in which lexical tokens access the derivational workspace. This is why

Phillips labels his model ‘Incremental Left-to-Right Syntax’.

Notice, however, that this leads to a serious ‘alignment problem’, as there

is no way in which the computational system could possibly know which nodes

are possible targets for merge, simply because the notion of ‘rightmost’ is not

definable for the phrase-marker. Consequently, in the limit, any given string of

terminals could correspond to pretty much any hierarchical structure, and vice-

versa.

A way out of this problem would be to assume that precedence relations

are indeed encoded in the phrase marker, which seems to be what Phillips (1996,

2003) tacitly assumes. From that perspective, the set-theoretical objects

corresponding to phrases wouldn’t be as in (42a), which encodes only one type

of asymmetry between the sister nodes (i.e. which one ‘projects’ its categorical

properties to the mother node). Rather, they would be something more or less

along the lines of (42b), which encodes two types of asymmetry between sister

nodes (i.e. which one ‘projects’ its categorical properties to the mother node, and

which one (immediately) precedes the other).

99 I am bringing the notion of Numeration into the picture for commensurability purposes.
However, Phillips (1996, 2003) does not commit himself to Numerations.

228

(42) a: xP = {x, {x, y}}

b: xP = {x, <x, y>}

That way, notions such as ‘rightmost’ are definable within phrase

markers, and structure-building operations can be sensitive to them, so that the

‘alignment problem’ goes away.

However, this technical solution relies on redundancy. Precedence

relations are determined upfront, outside of the phrase marker, and then they are

redundantly encoded in the phrase marker by the structure-building mechanism.

This ‘redundancy problem’ can be easily avoided if we assume that order

and hierarchy are related through some mapping function that is external to the

structure-building mechanism.

This can be implemented through some ‘Linearization’ mapping function

from hierarchical structure to a string of terminals, as has been standardly

assumed in mainstream Minimalism (based on some version of Kayne’s (1994)

Linear Correspondence Axiom). Alternatively, we can conceive the reverse

mapping function. That is, a string of terminals can be mapped to a hierarchical

structure through some ‘Hierarchization’ procedure. It is the second possibility

that I explore in this dissertation.

I assume that syntax generates two distinct kinds of syntactic objects in

the same derivational workspace. On one hand, if the phonological component

demands a string of sounds, then the syntactic component has to generate it. On

229

the other hand, if the semantic component demands a hierarchical structure with

part/whole relations, then the syntactic component has to generate that as well.

In a sense, this is very similar to what we had in the old days of generative

grammar, when every phrase structure rule was, by definition, the establishment

of both hierarchical and precedence relations (e.g. VP  V
∩
NP)100. The difference

is that, in the system I propose here, these two properties are factored into two

parallel (sub)representations, one of each satisfying a distinct bare output

condition.

I suggest the following way of conceiving these 2-dimensional syntactic

objects in more formal terms. Given three syntactic atoms x, y & z, such that their

λ-particles are x, y & z respectively; their π-particles are #x#, #y# & #z#

respectively; and such that they have been introduced in the derivation in the

following order: 1st = x, 2nd = y & 3rd = z; the complete structure generated by the

syntactic component for this small (sub)derivation is (43), where actual labels are

not specified for expository reasons.

100 That is, V

∩
NP “is a” VP (hierarchy), and V immediately precedes NP (order)..

230

(43)
 {Σ, {∅,{Σ, {Σ, {A, {x, {B, {y, z}}}}}}}} 2
 ∅ {Σ, {Σ, {A, {x, {B, {y, z}}}}}} 2

Σ {A, {x, {B, {y, z}}}} phrase
 2
 x {B, {y, z}}
 2
 y z

 #x#
∩
#y#

∩
#z# string

But nothing has been said so far about how these phrases and strings are

supposed to go together. I propose that what link them to each other is a version

of the Linear Correspondence Axiom, here conceived not as a

grammaticalization of a bare output condition in the spirit of Higginbotham (1983)

and Chomsky (1994, 1995)101, but as a constraint on the shape of phrase markers,

in a way closer to Kayne’s (1994) original proposal. In fact, I endorse Drury’s

(1998) assumption that precedence is not obtained from c-command. Rather,

precedence is THE primitive relation of UG, and c-command is somehow

parasitic on it.102 For him (as well as for me), Kayne’s (1994: 38) basic idea about

101 Higginbotham’s (1983) and Chomsky’s (1995) idea is that the nature of the A-P performance
system(s) demands that, for each sentence, all words must be temporally linearly ordered in
order to be pronounceable. In Guimarães (1998: 54-55), I question that assumption, arguing that
there is strong evidence (from radical phonetic co-articulation) that the A-P system can handle
simultaneity. As a matter of logic, nothing would prevent the A-P system from taking an
instruction to pronounce two or more words at once, and doing it by “calculating” the resultant
forces for the combination of all movements required to pronounce all words together. If human
language does not work like that, it is – in my view – because precedence is a grammatical
primitive.
102 Drury (1999) ends up classifying the derivations of top-down/left-to-right systems with these
properties as “π-derivations”, where π stands for precedence, [Colin] Phillips, and PF.

231

the relation between order and structure is better understood as the interaction

between the axioms in (44) and (45).

(44) Derivational Correspondence Axiom (adapted from Drury (1998a/b))

Given any two syntactic atoms x & y (where #x# & #y# are their

respective π-particles), if x accesses the derivation before y, then #x#

phonetically precedes #y#.

(45) Linear Correspondence Axiom

Given any two syntactic atoms x & y (where #x# & #y# are their

respective π-particles, and x & y are their respective λ-particles), if #x#

precedes #y#, then it must be the case that x asymmetrically c-commands y.

This is in accordance with Phillips’s (1996, 2003) idea that derivational

time equals real time, under the hypothesis that the parser and the grammar are

the very same engine. Although I agree with Drury (1998) that c-command is

parasitic on precedence (rather than the other way around), I do not endorse his

proposal of defining c-command in terms of precedence. In this regard, I am

more conservative and assume, that Kayne’s (1994) LCA is, like the name says, a

correspondence axiom (perhaps, motivated by parsing considerations), which

requires that these two (independently definable) relations must ‘go together’

throughout the derivation, as in (45).

232

This formalism works fine for simple cases like (46), as shown in (47).

(46) a: [IP she1 [I’ was [VP shot t1]]]

b: #she#
∩
#was#

∩
#shot#

(47)

PRECEDENCE ASYMMETRIC C-COMMAND
#she# precedes #was# she asymmetrically c-commands was
#she# precedes #shot# she asymmetrically c-commands shot
#was# precedes #shot# was asymmetrically c-commands shot

However, the LCA gets violated in structures with complex phrases at

non-complement positions like (48), as shown in (49).103

(48) a: [IP [DP the1 [NP man]] [I’ I [VP wonders [CP if

[IP [DP the2 [NP woman]]1 [I’ was [VP shot t1]]]]]]]

b: #the#∩#man#∩#wonders#∩#if#∩#the#∩#woman#∩#was#∩#shot#

103 Here, I am abstracting away from ‘the bottom-of-the-tree problem’, which arises when the two
lowest terminals of a (sub)tree are phonologically active. Since they mutually c-command each
other, satisfaction of the LCA is impossible. For the sake of exposition, I am assuming two
vacuous projections (i.e. [NP man] and [NP woman]), so that the1 asymmetrically c-commands man,
and the2 asymmetrically c-commands woman. See Guimarães (2000) on the matter.

233

(49)

PRECEDENCE ASYMMETRIC C-COMMAND
#the1# precedes #man# the1 asymmetrically c-commands man
#the1# precedes #wonders# * no correspondence
#the1# precedes #if# * no correspondence
#the1# precedes #the2# * no correspondence
#the1# precedes #woman# * no correspondence
#the1# precedes #was# * no correspondence
#the1# precedes #shot# * no correspondence
#man# precedes #wonders# * no correspondence
#man# precedes #if# * no correspondence
#man# precedes #the2# * no correspondence
#man# precedes #woman# * no correspondence
#man# precedes #was# * no correspondence
#man# precedes #shot# * no correspondence
#wonders# precedes #if# wonders asymmetrically c-commands if
#wonders# precedes #the2# wonders asymmetrically c-commands the2

#wonders# precedes #woman# wonders asymmetrically c-commands woman
#wonders# precedes #was# wonders asymmetrically c-commands was
#wonders# precedes #shot# wonders asymmetrically c-commands shot
#if# precedes #the2# if asymmetrically c-commands the2

#if# precedes #woman# if asymmetrically c-commands woman
#if# precedes #was# if asymmetrically c-commands was
#if# precedes #shot# if asymmetrically c-commands shot
#the2# precedes #woman# the2 asymmetrically c-commands woman
#the2# precedes #was# * no correspondence
#the2# precedes #shot# * no correspondence
#woman# precedes #was# * no correspondence
#woman# precedes #shot# * no correspondence
#was# precedes #shot# was asymmetrically c-commands shot

The bottom line is that the LCA gets violated every time a (phonologically

active) new terminal is merged in a position not asymmetrically c-commanded

by all (phonologically active) preceding terminals.

Since structures like (48a) do exist, the inevitable conclusion is that, in

such cases, the grammar has to have extra device to satisfy the LCA

incrementally. Moreover, minimalist assumptions force this extra device to be

234

something that we already need for independent reasons. Such device is Spell-

Out.

(50) Spell-Out:

Remove the current string of π-particles from the derivational syntactic

workspace, and deliver it to the phonological component, for

morphophonological and prosodic computation, and further

pronunciation.

The task of Spell-Out, then, is to break the link (↔) between the λ-particle

and the π-particle of all syntactic atoms present in the derivational workspace,

removing all π-particles and delivering them to the phonological component,

while leaving all λ-particles untouched, as well as the phrases formed by them104.

Thus, if Spell-Out applies to the object we have in (43), then (51) obtains.

104 Perhaps, this is what Chomsky (1995: 229) had in mind when he said that “Spell-Out strips
away from Σ [i.e. the current syntactic structure, MG] those elements relevant only to π [i.e. the sound-
related interface, MG], leaving the residue ΣL, which is mapped to λ [i.e. the meaning-related
interface, MG] by operations of the kind used to form Σ”.

235

(51)
 {Σ, {∅,{Σ, {Σ, {A, {x, {B, {y, z}}}}}}}} 2
 ∅ {Σ, {Σ, {A, {x, {B, {y, z}}}}}} 2

Σ {A, {x, {B, {y, z}}}}  in the Syntax
 2
 x {B, {y, z}}
 2
 y z

 #x#
∩
#y#

∩
#z#  out to Phonology

Inspired by Drury (1998), I assume that the way top-down systems satisfy

the LCA is by applying Spell-Out as many times as necessary, as first proposed

by Uriagereka (1998, 1999) for bottom-up derivations. Every time the string of π-

particles is removed from the syntactic derivational workspace and sent to the

phonological component, there is no longer a problem with merging a new

terminal in a position not asymmetrically c-commanded by all (phonologically

active) preceding terminals. When this happens, the LCA is vacuously satisfied,

since the π-particles of all (phonologically active) terminals preceding the new

element are gone.

Given the minimalist desiderata, the null hypothesis is that the Spell-Out

operation is restricted by economy. Therefore it can not apply freely. Rather, it is

a last resort strategy (cf. Uriagereka 1999).

236

(52) ‘Minimize Spell-Out’ Corollary:

Minimize the instances of Spell-Out as much as possible (i.e. do not apply

Spell-Out unless it is strictly necessary for convergence).

Let us go back to the example under discussion to see how this formalism

works. Starting from the top, the first phrase to be built is the subject of the main

clause.

(53) a: [ΣP ∅ [Σ’ Σ the]]

b: #the#

(54) a: [ΣP ∅ [Σ’ Σ [DP the [NP man]]]]

b: #the#
∩
#man#

Right at this point, the current string of π-particles (i.e. #the#
∩
#man#) has

to be spelled-out, otherwise, a problem of lack of correspondence between

precedence and c-command will arise as soon as the next phonologically active

terminal accesses the derivation.

(55) a: [ΣP ∅ [Σ’ Σ [DP the [NP man]]]]

b: ∅

237

Then the Infl head accesses the derivation, merging with the man. The

LCA is vacuously satisfied at this point, as there is no phonologically active

terminal in the derivational workspace.

(56) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] I]]]

b: ∅

The system keeps building the rest of the structure, inserting new

terminals step-by-step, from the top downwards, as follows:

(57) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I wonders]]]]

b: #wonders#

(58) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I [VP wonders if]]]]]

b: #wonders#
∩
#if#

(59) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I [VP wonders [CP if the]]]]]]

b: #wonders#
∩
#if#

∩
#the#

(60) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I [VP wonders [CP if

[DP the [NP woman]]]]]]]

b: #wonders#
∩
#if#

∩
#the#

∩
#woman#

238

At this point, it is time for was to access the derivation, turning the

temporary structural complement of if into the definitive specifier of was. But

before that happens, it is necessary to spell-out the current string (i.e. #

#wonders#
∩
#if#

∩
#the#

∩
#woman#), to avoid a violation of the LCA, since #the#

and #woman# would precede #was# despite neither the nor woman participating

in c-command relations with was.

(61) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I [VP wonders [CP if

[DP the [NP woman]]]]]]]

b: ∅

Once that is done, the subordinate Infl can finally access the derivation.

(62) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ is [VP wondering [CP if

[IP [DP the [NP woman]] was]]]]]]]

b: #was#

The derivation goes on, and the subordinate verb is introduced as in (63).

After that, the syntactic subject of the passive clause moves to its theta position,

as in (65). This operation has no impact on PF, and no consequences to the LCA,

since the substring corresponding to that phrase (i.e. #the#
∩
#woman#) is no

longer in the derivational workspace.

239

(63) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I [VP wonders [CP if

[IP [DP the [NP woman]] [I’ was shot]]]]]]]]

b: #was#
∩
#shot#

(64) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I [VP wonders [CP if

[IP t1 [I’ was [VP shot [DP the [NP woman]]1]]]]]]]]]

b: #was#
∩
#shot#

Eventually the last string (i.e. #was#
∩
#shot#) is sent to the phonological

component, as in (65); and the computational system is done with the derivation.

(65) a: [ΣP ∅ [Σ’ Σ [IP [DP the [NP man]] [I’ I [VP wonders [CP if

[IP t1 [I’ was [VP shot [DP the [NP woman]]]]]]]]]]]

b: ∅

The global PF representation of this sentence, then, would be the

concatenation of all spell-out strings in (66), yielding the longer string in (67).

(66) a: #the#
∩
#man#

b: #wonders#
∩
#if#

∩
#the#

∩
#woman#

c: #was#
∩
#shot#

240

(67) #the#
∩
#man#

∩
#wonders#

∩
#if#

∩
#the#

∩
#woman#

∩
#was#

∩
#shot#

It is not obvious, though, as to why the strings in (66) should get

concatenated exactly as in (67). There are other logical possibilities, as shown in

(68), but for some reason, only one of them is a legitimate linearization.

(68) a: #the#
∩
#man#

∩
#wonders#

∩
#if#

∩
#the#

∩
#woman#

∩
#was#

∩
#shot#

b: * #the#
∩
#man#

∩
#was#

∩
#shot#

∩
#wonders#

∩
#if#

∩
#the#

∩
#woman#

c: * #wonders#
∩
#if#

∩
#the#

∩
#woman#

∩
#was#

∩
#shot#

∩
#the#

∩
#man#

d: * #wonders#
∩
#if#

∩
#the#

∩
#woman#

∩
#the#

∩
#man#

∩
#was#

∩
#shot#

e: * #was#
∩
#shot#

∩
#the#

∩
#man#

∩
#wonders#

∩
#if#

∩
#the#

∩
#woman#

f: * #was#
∩
#shot#

∩
#wonders#

∩
#if#

∩
#the#

∩
#woman#

∩
#the#

∩
#man#

My proposal is that, for any derivation, only one out of all logically

possible options of concatenation of strings is actually available. The system has

no choice to make due to an automaton that determines that, given any two

strings of terminals X & Y, X precedes Y if and only if X accesses the

phonological component before Y does. Moreover, under the assumption that

‘the parser is the grammar’ (in the technical sense of Phillips 1996, 2003) — which

I have been tacitly assuming here —, when we talk about the order of operations

in a given derivation, we are talking about real time. Thus, the concatenation of

strings at PF works in a ‘first-come-first-serve basis’. Therefore, this way of

241

linearizing strings with respect to each other “is thus seen to be ultimately related to

the asymmetry of time”105.

Moreover, given the dynamics of the system, even if all strings eventually

end up concatenated to each other in a single (longer) string, it is natural to

expect these partial PF representations to behave as a prosodic domains, which

define intonational phrasing, stress patterns, cliticization, and related

grammatical processes. Therefore, (69) would be a better notation than (67). This

seems to be the null hypothesis, since each string accesses the phonological

component in an independent cycle.

(69) [#the#
∩
#man#]

∩
[#wonders#

∩
#if#

∩
#the#

∩
#woman#]

∩
[#was#

∩
#shot#]

That said, notice that the machinery presented so far is not enough to

avoid overgeneration of all unattested orders. For instance, once we reverse the

standard LCA, and combine this assumption with multiple spell-outs, it seems

that we are missing the generalization that specifiers must precede their

corresponding heads. Given the possibility of spelling-out strings to allow new

elements to be merged in a position not c-commanded by some preceding

terminals, it does not seem to matter whether the system merges the specifier

before its sister, as sketched in (70), or the other way around, as sketched in (71).

Either way, multiple spell-out allows satisfaction of the LCA. Therefore, it seems

105 The passage in italics is taken from Kayne (1994: 38), and used here to mean something slightly
different from what the author meant.

242

that we are wrongly predicting that both (70) and (71) are legitimate

derivations.106

(70) a: [ΣP ∅ [Σ’ Σ [DP the [NP girl [PP from [DP D Korea]]]]]]

#the#
∩
#girl#

∩
#from#

∩
#Korea#

b: [ΣP ∅ [Σ’ Σ [IP [DP the [NP girl [PP from [DP D Korea]]]] [I’ will [VP kiss

[DP D Max]]]]]]

[#the#
∩
#girl#

∩
#from#

∩
#Korea#]

∩
[#will#

∩
#kiss#

∩
#Max#]

(71) a: [ΣP ∅ [Σ’ Σ [I’ will [VP kiss [DP D [NP Max]]]]]]

#will#
∩
#kiss#

∩
#Max#

b: * [ΣP ∅ [Σ’ Σ [IP [I’ will [VP kiss [DP D Max]]] [DP the [NP girl [PP from [DP

D Korea]]]]]]]

[#will#
∩
#kiss#

∩
#Max#]

∩
[#the#

∩
#girl#

∩
#from#

∩
#Korea#]

It seems, then, that we need to further constrain of Merge, so that we can

capture the effects of Phillips’ (1996, 2003) Merge Right and Branch Right, but this

has to be done without the redundancy discussed above.

106 In both (70) and (71), I am abstracting away from the VP internal subject position for
expository purposes.

243

This goes back to the issue of the nature of tucking-in, discussed in §IV.2.

As argued in Chomsky (2000: 136 (cf. quote in §IV.2)), tucking-in is the optimal

way of satisfying the condition of Local Merge, which I define as in (72).

(72) Sisterhood Condition on Syntactic Relations

The establishment of any feature-checking or thematic relation between a

head H and a phrase α requires that H and α be sisters at the relevant

derivational step.

Besides that, we need a device that restricts the set of possible targets for

Merge, as in (73).

(73) ‘Active Node’ Condition on Merge (preliminary definition, to be refined)

A syntactic node α is active at a given derivational step t iff (i) or (ii):

i: α was tucked into the phrase marker at step t–1;

ii: The set of nodes dominated by α at step t –1 is a proper subset of

the set of nodes dominated by α at step t.

The intuition behind the formal definition in (73) is that, in order for any

constituent to be ‘active’ as a potential target of merge, and ‘attract new sisters’, it

must be somehow ‘new’. Any lexical token that was just integrated to the phrase

marker step before is, by definition, the newest thing in the derivational

244

workspace. In addition to that, each and every syntactic node that dominates an

active node would also count as ‘new’. This is so because of the ‘anti-extension’

requirement built into the very definition of merge, which causes the whole to

change once its parts change.

For instance, in (74), although the node A in the input and the node A in

the output are, for all intents and purposes, two incarnations of the same formal

object (by virtue of them having the same label), they do not have the exact same

internal structure. In the input, the daughters of A are x and y. In the output, the

daughters of A are x and the new constituent B, but y is no longer a daughter of

A.

(74) input: A 2 & z
x y

output: A 2
x B 2
 y z

As discussed in §IV.3.1 above, dominance relations are established in a

monotonic fashion in a ‘generalized tucking-in’ system. Thus, when z gets

tucked-in, there is a change in the set of dominance relations with respect to A

(i.e. A dominated only x and y in the input, and dominates z, y, z and B in the

output). It is this increment in the set of dominance relations that makes a node

245

‘new’. Therefore, x and y remain ‘old’ after z is tucked in, which means that, by

(73), neither x nor y can be the target of a new application of Merge (i.e. they

cannot get a new sister).

Now, let us see how the conditions (72) and (73), together, conspire to

yield the desired representations.

Consider the phrase marker in (75a) as the starting point (with αP being

equivalent to the starting axiom introduced above, and β being the first element

merged).

(75) a: αP 2
α β

Suppose that a new element γ merges inside αP, as a sister to β, such that β

projects, as in (75b).

(75) b: αP 2
α βP 2
 β γ

At this point, γ is a (temporary) complement to β. Whether or not there

will be some feature checking between γ and β, it depends on their selectional

properties, theta-grids, and feature specifications. Let us consider the case where

no such relation holds. Now, suppose that there is a new element δ to be

246

integrated into the phrase marker. By (73), must me merged either as a sister to

βP or as a sister to γ, since these two constituents are the only active nodes at step

(75b). Consider, then, the case where the new element δ is tucked in as a sister to

γ, such that δ projects, as in (75c). As a consequence, γ is no longer a sister of β

and no longer a daughter of βP (although βP is still its ‘ancestor’, dominating it).

(75) c: αP 2
α βP 2
 β δP

 2
γ δ

At this point, γ is the complement of δ. Assuming that γ and δ have some

property to check against each other, this is the moment where such

checking/evaluation takes place, since they are now sisters.

Suppose, further, that another new incoming element ε access the

derivation. By (73), the candidates for being its sister are βP, δP, and δ, since

these are the active nodes in (75c). Assuming that ε and δ are ‘compatible’, ε

merges inside δP, as the new complement to δ, as in (75d).

(75) d: αP 2
α βP 2
 β δP

 2
γ δ’ 2
 δ ε

247

The scenario in (75) is the one of the simplest cases. In principle, specifiers

can be arbitrarily complex, as exemplified in (76), which is essentially the same

derivation as in (75), except that the specifier of δP is not an atomic phrase γ, but

rather a complex phrase γP (= [γP ζ [γ’ γ η]]). Therefore, the analog of step (75b) —

i.e. the introduction of the specifier — is broken down into (76b), (76b’) and

(76b’’), as shown below.

(76) a: αP 2
α β

b: αP 2
α βP 2
 β ζ

b’: αP 2
α βP 2
 β γP

 2
ζ γ

b’’: αP 2
α βP 2
 β γP

 2
ζ γ’ 2
 γ η

248

c: αP 2
α βP 2
 β δP 4
 γP δ
 2
ζ γ’ 2
 γ η

d: αP 2
α βP 2
 β δP 4
 γP δ’
 2 2
ζ γ’ δ ε 2
 γ η

Needless to say, nothing prevents ε from being an arbitrarily complex

phrase itself, in which case the final representation would be something like (77).

(77) αP 2
α βP 2
 β δP 4
 γP δ’
 2 2
ζ γ’ δ εP 2 2
 γ η θ ε’ 2

 ε ι

249

In both (75) and (76), specifiers are systematically introduced before the

head of the phrase which they are specifiers of; and complements are

systematically introduced right after the head of the phrase which they are

complements of. This is not accidental. It follows from (72) and (73).

Let us now consider some alternative derivations for the same target

representation(s), to see how they can be ruled out by (72) and (73).

Take (78a) as the starting point.

(78) a: αP 2
α β

First, the head of δP is introduced before its specifier (i.e. γ), as in (78b).

(78) b: αP 2
α βP 2
 β δ

Then, the specifier (i.e. γ) is merged as a temporary complement of δ, as in

(78c).

(78) c: αP 2
α βP 2
 β δP

 2
δ γ

250

Up to this point, nothing wrong happened. The problem arises when the

actual complement of δ (i.e. ε) is supposed to be tucked in, as a sister to δ in the

next step. The structure in (78d) would be the intended representation, but that is

impossible, since δ was not active in the input structure (i.e. (78c)).

(78) d: * αP * head-specifier-complement 2
α βP tp
 β δP

 2
 δ’ γ tp
 δ ε

Another alternative derivation to be considered is the one in (79), where

both the specifier and the complement are introduced before the head.

(79) a: αP 2
α β

b: αP 2
α βP 2
 β γ

c: αP 2
α βP 2
 β _P

 2
 γ ε

251

d: * αP * specifier-complement-head 2
α βP 2
 β δP

 2
γ δ’ 2
 ε δ

Putting aside the issue of whether constituent labels can be temporarily

underspecified, as in (79c), this derivation is problematic because there is no step

where the head δ and its specifier (i.e. γ) are sisters. Thus, by (72), the relevant

relation cannot be established.

Yet another derivation to be ruled out is the one in (80), where the

specifier (i.e. γ) is merged late, after both the head (i.e. δ) and the complement

(i.e. ε) have been introduced.

(80) a: αP 2
α β

b: αP 2
α βP 2
 β δ

c: αP 2
α βP 2
 β δP

 2
δ ε

252

d: * αP * head-complement-specifier 2
α βP 2
 β δP

 2
 δ’ γ

 2
 δ ε

In (81), we see a variation of (80), where the specifier (i.e. γ) is also the last

element to be introduced. The difference is that, in (81), the complement (i.e. ε) is

introduced before the head (i.e. δ).

(81) a: αP 2
α β

b: αP 2
α βP 2
 β ε

c: αP 2
α βP 2
 β δP

 2
ε δ

253

d: * αP * complement-head-specifier 2
α βP 2
 β δP

 2
 δ’ γ

 2
 ε δ

Notice that both derivations in (80) and (81) violate the sisterhood

condition (72), as there is no step where the head δ and its specifier (i.e. γ) are

sisters, making it impossible for the relevant relation to be established.

Under the assumption that adjuncts are fundamentally different from

arguments, as the later participate in feature-checking and thematic relations but

the former do not, it follows that, in principle, the system allows late insertion of

adjuncts at the right edge of the phrase.

A sample derivation would be (82), where σ is an adjunct to δP.107

(82) a: αP 2
α β

b: αP 2
α βP 2
 β γ

107 Notice that, by this logic, there is no need to encode any difference between adjuncts and
arguments in terms of bar-levels or any category/segment distinction. Also, I will leave it as an
exercise to the reader the demonstration that such system predicts that adjuncts to the left can
only be merged above the specifier, whereas adjuncts to the right can be the sister of any
projection of the head.

254

c: αP 2
α βP 2
 β δP

 2
γ δ

d: αP 2
α βP 2
 β δP

 2
γ δ’ 2
 δ ε

e: αP 2
α βP 2
 β δP 4
 δ’’ σ
 2
γ δ’ 2
 δ ε

At this point, one may question the role of the LCA in this system. After

all, the internal mechanics of Merge itself — i.e. (72) and (73) — appears to be

enough to derive the (adjunct)-specifier-head-complement-(adjunct) order.

Although, conceptually, the LCA is not necessary to derive the desired

order, it does not introduce any redundancy into the system. This is so because,

as defined in (45), the LCA is not a device that linearizes previously unlinearized

255

structures. Rather, it is better understood as an internal device within a ‘buffer’

between syntax and phonology, which breaks the string of terminals into

substrings that are delivered to the phonological component in ‘cascades’. The c-

command-to-precedence correspondence is the metric that determines the length

of each ‘cascade’.

The reason for assuming that the string of terminals reaches the

phonological component ‘in cascades’ is empirical. After the body of work

known as Prosodic Phonology (cf. Selkirk 1984; Nespor & Vogel 1986; Inkelas &

Zec 1990; and subsequent work), it is now a truism that the PF representation of

any sentence is much more than a mere string of terminals. To a large extent,

syntactic structure shapes prosodic structure, which, at the very least, contains

boundaries that separate substrings of a certain kind (and, probably, more than

that: like metrical grids, layers of constituents, part-whole relations, etc). The

segmental and supra-segmental processes appear to be sensitive to such

boundaries. If so, it must be the case that the grammar incorporates some

mapping function from syntax to PF, which piggybacks on some structural

property of phrase markers in order to determine where the major PF boundaries

go. Without such device, and the major PF boundaries would either be absent or

be placed according to extra-syntactic criteria (or even at random). That way, the

observed (partial) connection between syntax and prosody would be entirely

lost.

256

Relying upon recent work in Minimalism, where (asymmetric) c-

command is the main syntactic relation — being pervasive across the whole

grammar —, I have proposed in previous research (cf. Guimarães 1997, 1998,

1999a, 1999b), that (asymmetric) c-command is crucial to explain various PF

phenomena (cliticization, stress, sandhi, etc.). For the purposes of this

dissertation, I have chosen to discuss constraints on intonational phrasing to

illustrate the point of why the LCA is necessary, and why it is crucial that it is

implemented is a ‘generalized tucking-in’ system. This is presented in the

Appendix at the end of this chapter.

IV.3.3.Movement

Now let us take a look at movement operations more closely. Consider the

structure in (83), which would be an intermediate stage in the derivation of a

passive sentence.108

(83) TP 5
 DP T’ 2 2
 D Lisa was kissed

108 CP and ΣP have are omitted from the notation for expository reasons, but are assumed to be
present in the structure.

257

The basic intuition is that the dependency established between the subject

DP generated in its case position and its theta position obtains through a

movement operation, formalized as lowering, as in (84).

(84) TP 5
 DP T’ 2 2
 D Lisa was VP 2

 kissed DP2
 D Lisa

Under the technical implementation proposed by Phillips (1996, 2003), the

effect of upward movement is achieved by making a silent copy (i.e. copy plus

PF-deletion) of a given constituent and merging it at a position in the phrase

marker lower than the position of the original copy, as shown in (84). Notice that

this is not the traditional concept of lowering, since the moved element gets

pronounced in its original/higher position.

In what follows, I assume that movement is nothing but ‘remerge’. That is,

a phrase may occupy more than one position at the same time, having multiple

mothers and multiple sisters (cf. Bobaljik 1995; Drury 1998, 1999; Epstein, Groat,

Kitahara & Kawashima 1998; Guimarães 1999, 2002, 2003b/c/d; Abels 2001,

2003; Gärtner 2002; Zhang 2003, inter alia). New motherhood and sisterhood

258

relations are established through merge without eliminating the previous one(s),

as shown in (85).

(85) TP 5
 T’ 2

 was VP 2
 kissed

DP 2
 D Lisa

This remerge mechanics has at least two advantages over Phillips’ (1996,

2003) approach to movement.

As shown in §IV.3.1, new structure can be tucked-in inside a phrase α

after α has lowered from its highest position into its ‘D-structure position’ (so to

speak). In some cases, the new structure that gets incorporated into α after the

chain is created is actually part of the argument structure of a predicate inside α,

which remained unsaturated until was lowered.

One example of such kind of derivation is the VP-topicalization

construction, which was presented by Phillips (1996, 2003) as evidence for

dynamic constituency. From that perspective, (86) would be derived as sketched

in (87).109

109 As I did in (29) above, I am abstracting away from the VP-internal subject position in (87) for
expository reasons.

259

(86) John intended to give candy...

and [give candy]1 he did t1 to children in libraries on weekends.

(87) a: CP
 5
 VP C’ 2 tp

 give [DP candy] C TP tp
 [DP he] did

b: CP
 5
 VP C’ 2 tp

 give [DP candy] C TP tp
 [DP he] T’ 2

 did VP 2
 give [DP candy]

c: CP
 5
 VP C’ 2 tp

 give [DP candy] C TP tp
 [DP he] T’ 2

 did VP 2
 give VP 2

 [DP candy] V’ 2
 give [PP to [DP children]]

260

d: CP
 5
 VP C’ 2 tp

 give [DP candy] C TP tp
 [DP he] T’ 2

 did VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] V’ 2
 give [PP in libraries]

e: CP
 5
 VP C’ 2 tp

 give [DP candy] C TP tp
 [DP he] T’ 2

 did VP 2
 give VP 2

 [DP candy] V’ 2
 give VP 2

 [PP to [DP children]] V’ 2
give VP 2

 [PP in libraries] V’ 2
give [PP on weekends]

261

Notice that, before the topicalized VP is lowered, it contains an

unsaturated predicate (i.e. give). As long as that configuration is temporary,

there is no problem with that. However, by the end of the derivation, the

topicalized VP should, at the very least, satisfy theta-criterion.110

This problem does not exist if movement is conceived as remerge. After

lowering takes place, the internal structure of the topicalized VP grows, such that

its predicate eventually gets saturated, as sketched in (88).111

(88) a: CP
 5
 VP C’ 2 tp

 give [DP candy] C TP tp
 [DP he] did

b: CP
 p

 C’ tp
 C TP tp
 [DP he] T’

 did

 VP 2
 give [DP candy]

110 In (87), I have abstracted away from the VP-internal subject position for expository reasons.
Strictly speaking, the saturation of the predicate give in (87) is not achieved only by the
introduction of to children in step (87c). At some point in the derivation, the subject [DP he] must
lower from spec/TP to spec/VP.
111 Once again, I am abstracting away from the VP-internal subject position in (88). Also, I am
skipping other details of the construction of the VP shell, such as the multiple instances of
remerge of give. This mechanics will be discussed in detail in chapter V.

262

c: CP
 p

 C’ tp
 C TP tp
 [DP he] T’

 did

 VP

 VP 2
 [DP candy] V’ y

 [PP to [DP children]]
give

263

d: CP
 p

 C’ tp
 C TP tp
 [DP he] T’

 did

 VP

 VP 2
 [DP candy] V’

 VP
 2

[PP to [DP children]] V’

 [PP in libraries]

give

264

e: CP
 p

 C’ tp
 C TP tp
 [DP he] T’

 did

 VP

 VP 2
 [DP candy] V’

 VP
 2

[PP to [DP children]] V’

 VP 2
[PP in libraries] V’

 [PP on weekends]
give

265

The other advantage of the remerge-based approach over the copy-based

approach concerns PF. In Phillips’ (1996, 2003) system, not only is it necessary to

assign a theoretical status to the notion of copy — which is not trivial in itself (cf.

Bobaljik 1995) —, but also it must be stipulated that the lower copy is ‘silent’.

In the remerge-based approach, on the other hand, the fact that the moved

element is always pronounced as if it were only in the higher position follows

from the ‘upfront linearization’ mechanics coupled with the ‘multiple spell-out’

derivational dynamics. When remerge takes place, the phonological features of

the element are no longer in the syntactic component. What is being ‘lowered is

an organization of λ-particles whose corresponding π-particles have already left

the derivation for good. This is exemplified in (90), which is the derivation

corresponding to (89a).

(89) a: Lisa was kissed.

b: * Lisa was kissed Lisa.

c: * Lisa was kissed Lisa.

(90) a: ΣP (starting axiom) 2
∅ Σ

b: ΣP (merge D) 2
∅ Σ’ 2
 Σ D

266

c: ΣP (merge Lisa) 2
∅ Σ’ 2
 Σ DP 2

 D Lisa

#lisa#

d: ΣP (spell-out) 2
∅ Σ’ 2
 Σ DP 2

 D Lisa

e: ΣP (merge was) 2
∅ Σ’ 2
 Σ TP 2
 DP was 2
 D Lisa

#was#

f: ΣP (merge kissed) 2
∅ Σ’ 2
 Σ TP 5
 DP T’ 2 2

 D Lisa was kissed

#was#∩#kissed#

267

g: ΣP ((re)merge [DP D Lisa]) 2
∅ Σ’ 2
 Σ TP p

 T’ 2
was VP

 kissed

 DP #was#∩#kissed# 2
 D Lisa

h: ΣP (spell-out) 2
∅ Σ’ 2
 Σ TP p

 T’ 2
was VP

 kissed

 DP 2
 D Lisa

at PF: [#Lisa#]∩[#was#∩#kissed#]

268

It is important to make sure that this remerge mechanism is constrained

enough to block the overgeneration of chains whose links do not stand in

c-command relation with each other, as in (91), or else the system would go

against a well known generalization about movement. Just like movement is

always to a c-commanding position in bottom-up systems, top-to-bottom

systems should exhibit movement only to a c-commanded position.

(91) input: αP 2
α βP 2
 β δP 4
 γP δ’
 2 2
ζ γ’ δ εP 2 2
 γ η θ ε

output: * αP 2
α βP 2
 β δP 4
 γP δ’
 2 2
ζ γ’ δ εP t 2
 γ θ ε’ t

 ε

η

269

If remerge does not have any independent theoretical status, being just

ordinary merge applied to an old constituent, then this c-command condition

should be built into the definition of merge itself,112 along with the ‘active node’

condition in (73).

This leads us to the final definition of Merge in (92).

(92) Merge: (final definition, modified from (34))

input: {A, {x, y}} & z, such that (i) & (ii) hold:

i: z c-commands y

ii: y is active (cf. (73))

output: {A, {x, {B, {y, z}}}}

Notice that this modification does not affect the basic cases where

incoming atoms access the derivation via ‘first merge’. Consider z in (92) is a

syntactic atom just taken from the numeration (hence, not connected to anything

in the phrase marker yet). Once the standard definition of c-command in (93) is

assumed, then z would automatically asymmetrically c-command [A x y]. This is

so because the condition (93-iii) is vacuously satisfied, since there is nothing

dominating z to begin with.

112 I do not consider this a definitive solution. More research is needed to derive this c-command
requirement on chains from some deeper property of derivations.

270

(93) C-Command:

α c-commands β if and only if (i), (ii) and (iii) hold:

i: α ≠ β;

ii: α does not dominate β;

iii: every category that dominates α also dominates β.

Finally, let us further scrutinize the cases where a given phrase β (either

atomic or complex) is merged inside an old phrase α after α has lowered from its

highest position into its ‘D-structure position’ (so to speak). Consider the

derivation in (94).

From (94a) to (94b), γP is lowered, remerging as a sister of ε. This is

possible because, in the input, (i) ε is a ‘new’ constituent (hence a potential target

for merge), and (ii) γP c-commands ε.

(94) a: βP 2
 β δP 4
 γP δ’
 2 2
γ κP δ εP 2 2
 ζ κ θ ε

 targeting the future co-sister

b: βP

271

 2
 β δP i

 δ’2
 δ εP 2

 θ ε’

 ε

γP
 2
 γ κP 2

 ζ κ

Notice that, immediately after γP lowers, it becomes an active node, since

it is recognized by the system as the last element tucked into the phrase marker

(cf. (73-i)). Therefore, it qualifies as a potential attachment point for future merge

operations.

How about the proper subconstituents of γP? The desirable outcome

(which would be compatible with both Phillips’s (1996, 2003) account for

conflicting constituency diagnostics and my analysis of syntactic amalgams in

§V) is that some of the proper subconstituents of the lowered phrase (i.e. γP)

should have the status of active: namely, the ones in the spine of γP (i.e. κ and κP).

In what follows, I will assume that this is the case, although, at this point, I do

not have any formalization to offer. The intuition that I will pursue is that, if any

given maximal projection XP is lowered, not only XP becomes ‘new’ at that

272

point, but also all of its subconstituents that were ‘the same age’ as XP. Those

nodes would correspond to the newest nodes inside XP, i.e. the ones that were

‘brand new’ right before XP was ‘pushed out of the spine’ (i.e. when it became a

specifier). When applied to the derivational step in (94b), this reasoning leads us

to conclude that, at that point, γP, κ and κP are active, and therefore count as

potential sisters for the element to be tucked into the phrase marker in the next

step.113

Form that perspective, the derivation in question can proceed as in (94c),

where the incoming element η is introduced deep inside γP, therefore changing

its internal structure from [γP γ [κP ζ κ]] to [γP γ [κP ζ [κ’ κ η]]].

(94) c: βP 2
 β δP i

 δ’2
 δ εP 2

 θ ε’

 ε

γP
 2
 γ κP 2

 ζ κ’ 2
 κ η

113 By (73b), also βP, δP, δ’, εP and ε’ would count as active nodes at this point, which is not
relevant for the point being made now.

273

As a result, we get a word-order pattern in which [γP ζ [γ’ γ η]] is

discontinuously pronounced, since there is no corresponding substring

#γ#
∩
#ζ#

∩
#κ#

∩
#η# at PF. Rather, there is a substring #γ#

∩
#ζ#

∩
#κ# and a

substring #η# which are not adjacent to each other.

Notice that nothing in the system forces that the element being tucked into

the lowered phrase γP be an atom just selected from the numeration. In principle,

it can be any element already present in the phrase marker (as long as the c-

command requirement is met).114 For instance, instead of going from (94b) to

(94c) by introducing η into the derivation, the system could have gone from (94b)

to (94c’) by lowering θ and remerging it as a sister of κ.115

In nutshell, what happens in (94c’) is that an element already present in

the phrase marker is lowered into a lowered phrase. This is exactly how remnant

movement (cf. Müller 1998) works in a top-to-bottom system.

114 As will be shown in §5, this is often the case with syntactic amalgams.
115 Needless to say, nothing prevents θ in (94c’) from being a complex phrase, rather than an
atomic one.

274

(94) c’: βP 2
 β δP i

 δ’2
 δ εP

 ε’

 ε

γP
 2
 γ κP 2

 ζ κ’ t
 κ

θ

IV.4. Remerge Without Movement: shared constituency and multiple roots

In the previous section, I argued that movement is best understood in

terms of multi-motherhood relations, which obtains through remerge.

In this section, I propose that this same mechanics should be extended to

other configurations beyond just chains. This will play a crucial role in the

analysis of syntactic amalgamation in chapter V.

275

Following van Riemsdijk (2000) and de Vries (2003),116 I assume that

syntactic representations may exhibit multiply-rooted phrase markers with

parallel trees that share some constituent(s) somewhere in between the roots and

the terminals (via multi-motherhood), as shown in (96), which corresponds to the

example in (95).117

(95) Marge said that Homer will give you can imagine what to Lisa.

116 The idea of shared constituency and multi-motherhood goes back to McCawley (1982; 1987)
and Goodal (1987); and it has recently been explored in some different ways by Muadz (1991),
Moltmann (1992), Wilder (1999) and Citko (2000, 2002) among others.
117 I exemplify multiple-rootness here with a syntactic amalgam for obvious reasons. Riemsdijk
(2000) applies the idea mainly to transparent free relatives, whereas de Vries (2003) does so
mainly for coordination.

276

(96) ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP
 ΣP 2 T’
 ∅ Σ’ 2 2 can VP
 Σ CP 2 V’

 C TP [DP you] 2 imagine CP
 T’ 2 C’
 T VP 2 y C
 V’ 2

[DP Marge] said CP

that TP

 T’ 2
 will VP y

 V’
 [DP Homer] y VP

 4
 [DP what] V’ y

 PP 2 to DP 2
give D Lisa

277

Notice that the ‘Siamese Trees’ in (96) can be factored out into two phrase

markers, as in (97).118 Basically, these two phrase markers are quasi-independent

parallel structures that share one constituent (i.e. the embedded TP: Homer will

give t1 to Lisa).

(97) a: [CP C [TP Marge4 [T’ T [VP t4 [V’ said [CP that [TP Homer2 [T’ will [VP t2

[V’ give t1 [PP to Lisa]]]]]]]]]]]

b: [CP C [TP you3 [T’ can [VP t3 [V’ imagine [CP what1 [C’ C [TP Homer2 [T’

will [VP t2 [V’ give t1 [PP to Lisa]]]]]]]]]]]]

The basic idea is that structure sharing —which formally corresponds to

multi-motherhood, obtained via remerging a given constituent (in this case, the

embedded TP) — is what gives rise to paratactic relations.

Thus, as put by de Vries (2003: 205-207), aside from dominance (and its

derivative: c-command), which relates syntactic nodes hypotactically, there is

also ‘behindance’, which relates syntactic nodes paratactically.

(...) [A] third dimension could be a useful addition to syntax in
principle. In general we can say this: paratactic material
interferes with the linear order of the matrix, but it backs out of
the dominance relations. Therefore I will assume that two nodes
in a syntactic structure can be related not only by dominance,
but also by ‘behindance’. (...) [N]ext to dominance and
precedence we have a third relation called behindance. We can
then say that syntactic relations are defined in terms of
dominance, whereas behindance encodes paratactic relations,
and precedence is related directly to word order. Independent
relations are mathematically orthogonal to each other. Since we
have three degrees of freedom here, we may envisage the
syntactical space as a cube. The x-axis encodes precedence, the y-
axis dominance and the z-axis behindance.

118 The terminology ‘Siamese Treee’ is taken from Riemsdijk (2000).

278

For instance, in (96), the VP headed by imagine is behind the VP headed by

said. Notice that, interpretation-wise, neither the event of saying scopes over the

event of imagining nor vice versa. However, there is one asymmetry at the level

of informational structure: namely, the event of saying is interpreted as the ‘main

message’, whereas the event of imagining is interpreted as a secondary thought.

Interestingly, both scope over the very same event of giving.

I suggest that, in a system like the one proposed here, where derivational

time plays a crucial role, the C-I interface piggybacks on the order of

introduction of terminals (which ends up being reflected as PF-precedence, as

discussed above) to encode ‘salience’ of the corresponding non-terminal nodes at

the level of informational structure.

In a nutshell, given any two non-terminal nodes that are not under the

same root, whichever of them gets to be built first will be seen by the C-I

interface as figuring ‘at the front’ at the level of information structure, which is a

notion established ‘on the fly’, as the derivation proceeds, which is in accordance

with Phillips’ (1996: chapter 5) idea that the grammar and the parser are the same

structure building engine.

In (96), there are two matrix clauses (i.e. (97a) and (97b)). The fact that

(97a) is ‘at the front’ makes it the ‘master clause’ of the whole paratactic

construction, whereas (97b), being ‘on the back’, becomes subservient to (97a).

basically, whichever of the parallel matrix clauses gets to be built first

279

automatically gets assigned the status of master matrix clause, whereas all the

subsequent others become subservient matrix clauses.

That said, let me introduce the basic tools of the derivational mechanics

that yields behindance relations in ‘Siamese Trees’.

As already said in §IV.1, inputs to syntactic derivations can be made up of

multiple intersecting numerations, as in (98).

(98)
α β

 Ω  ε ζ η

Δ  γ δ

Once an input like (98) above is established, two (sub)computations will

run, one for each numeration, and the intersection allows for these

(sub)computations to interfere with each other to some extent.

Consider the target global structure to be (99), which breaks down into

(100a) and (100b).

280

(99) ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2

α βP δ’

 β δ

ζP 2
 ε ζ’ t
 ζ

η

(100) a: ΣP 2
∅ Σ’ 2
 Σ αP 2

α βP 2
 β ζP 2

 ε ζ’ 2
 ζ η

281

b: ΣP 2
∅ Σ’ 2
 Σ γP 2

 γ δP y
 δ’ 2
 δ ζP 2
 ε ζ’ t
 ζ

η

Since no asymmetry between the multiple numerations is encoded in the

input, the choice of which numeration to start from is a random one. Whichever

one gets picked first will correspond to the ‘master clause’.

Let is consider the case where Ω is randomly chosen as the starting point.

By the assumptions made in §IV.3 above, the derivation of (99) will then be as in

(111).

First, the system ‘zooms into’ Ω and proceeds tucking in the lexical tokens

in the usual fashion, as in (111a) through (111e).

282

(111) a: ΣP (starting axiom) 2
∅ Σ

b: ΣP (merge α) 2
∅ Σ’ 2
 Σ α

c: ΣP (merge β) 2
∅ Σ’ 2
 Σ αP 2

α β

d: ΣP (merge ε) 2
∅ Σ’ 2
 Σ αP 2

α βP 2
 β ε

e: ΣP (merge ζ) 2
∅ Σ’ 2
 Σ αP 2

α βP 2
 β ζP 2

 ε ζ

283

Notice that, at step (111e), the master clause is not complete yet. Given the

target structure in (100a), an extra element is supposed to take place, where η

mergesas the complement of ζ.

However, as it will become clear soon, step (111e) is as far as the system

can go without crashing. This is so because, if η is introduced in the first

derivational flow, it will not be able to remerge in the appropriate position in the

subservient clause in the next derivational flow. The mere fact that η is left out at

the end in the first derivational flow does not immediately make it impossible for

the master clause to be eventually completed, since η is also present in

numeration Δ, and the next subcomputation can, in principle, ‘take care of it’, as

it will be made clear in chapter V, with concrete examples of syntactic

amalgamation.

Thus, at this interruption point, the phrase marker corresponding to the

incomplete master clause is spelled-out, and the string #α#∩#β#∩#ε#∩#ζ# is

delivered to PF. The application of spell-out is mandatory at this point, otherwise

the LCA would be massively violated in subsequent steps, as new terminals are

about to be introduced ‘behind’ the ones already in the derivational workspace,

therefore violating the asymmetric c-command requirement. After spell-out, all

relevant π-particles of previous cascades are no longer in the derivational

workspace, and consequently the LCA gets trivially satisfied.

284

Then, the computational systems shifts its attention to numeration Δ, and

the construction of the subservient clause proceeds with the lexical tokens being

tucked-in in the usual fashion, as in (111f) through (111k).

(111) f: ΣP (starting axiom) 2
 ΣP ∅ Σ 2
∅ Σ’ 2
 Σ αP 2

α βP

 β

ζP 2
 ε ζ

g: ΣP (merge γ) 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γ 2
 Σ αP 2

α βP

 β

ζP 2
 ε ζ

285

h: ΣP (merge η) 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ η 2

α βP

 β

ζP 2
 ε ζ

This derivational stage deserves further comment. If η had been

previously tucked-in within ζP in the previous derivational flow, it would not be

able to be remerged as a (temporary) sister of γ in step (111h). This is so because

ζP is visible to both computations (given that its terminals belong in the

intersection of numerations). Therefore, η would fail to c-command the target of

merge (i.e. γ). This is why the introduction of η must be delayed in those cases.

As it will be discussed in detail in chapter V, with concrete data, this ‘late merge’

mechanics is crucial in the derivation of syntactic amalgams.

The next steps are as follows.

286

(111) i: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2 2

α βP η δ

 β

ζP 2
 ε ζ

At this point, there are two separate structures which do not share

constituents (yet).

In the following step, the whole constituent ζP ‘travels’ from one

subderivation to the other and is remerged as the complement of δ, yielding

(99j).119

119 Mutatis mutandis, this mechanism of phrases travelling from one subderivation to another is
also found in Chomsky’s (2000, 2001) original notion of factoring out computations into
subderivations and subnumerations. The derivation of the sentence in (i) would start from the
numeration in (ii). First, the items from the subnumeration {Mary, loves, him} are combined to
form (iii). Then, in the next round, the output of that subderivation is taken by the other
subderivation and embedded inside the larger structure in (iv).

i: Paul knows Mary loves him.
ii: {{Paul, knows}, {Mary, loves, him}} (functional heads omitted for expository reasons)
iii: [CP [IP [DP Mary] [VP loves [DP him]]]]
iv: [CP [IP [DP Paul] [VP knows [CP [IP [DP Mary] [VP loves [DP him]]]]]]]

 There are three ways in which this formalism differs from what I am proposing. First of all, in
(i-iv) above, it is the root node generated by one subderivation that travels to the other
subderivation, while in my account of multiple amalgams it is a non-root constituent that travels
across subderivations. Moreover, in Chomsky’s (2000, 2001a) system, there is no intersection
between two (or more) subnumerations, as opposed to what happens in my system. Finally,
Chomsky’s (2000, 2001a) formalism involves merge instead of remerge. As for the first issue, it

287

The basic intuition is that the shared tokens (with the exception of η,

which is not yet inside ζP at the relevant step) are selected all at once. Since they

are already part of a syntactic structure being built in the derivational workspace,

the system takes that whole constituent and remerges it into the targeted

position, as in (111j). This is the most economical strategy, because a single

application of (re)merge generates the intended structure.

(111) j: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2 2

α βP η δ’

 β δ

ζP 2
 ε ζ

should be kept in mind that in order to restrict merge across subderivations to root nodes, one
has to make a further assumption (i.e. adding a constraint), therefore complicating the theory. So,
we should not do it unless we have to; and, as far as syntactic amalgams go, such further
assumption would just prevent us from getting the desired results. As for the second issue, I
think that the absence of intersection between subnumerations in Chomsky’s (2000, 2001a)
system conflicts with his idea that each subnumeration corresponds to a local computation that is
blind to what goes on outside it. Once two (or more) numerations share some lexical tokens, then
a link between parallel subderivations is established, while keeping the computations local. As
for the third issue, the question does not arise to the extent that the difference between merge and
remerge has no theoretical status whatsoever in my system.

288

At first blush, the remerge of ζP in derivational step (111j) appears to

violate the c-command condition on (re)merge, since ζP does not seem to c-

command δ in the input structure.

However, the material that dominates the shared constituent (i.e. ζP)

without dominating the target of the lowering operation (i.e. δ) is all built up

from lexical tokens that are not part of the same numeration from which the

subservient clause (= 100b) is being built (i.e. Δ). So, in relatively to the step when

the shared constituent ζP is about to be inserted inside δP as the new sister of δ,

the computational system cannot detect anything that dominates ζP in the other

parallel derivation previously, given that only syntactic material built from

lexical tokens of the relevant numeration is visible. Consequently, for all intents

and purposes, ζP does c-command δ in (111i), through vacuous satisfaction, as

discussed in §IV.4.

Finally, η is remerged in its ‘D-structure position’ (so to speak) inside the

shared constituent ζP, as shown in (111k). After that, spell-out applies, delivering

the string #γ#∩#η#∩#δ# to PF.

289

(111) k: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2

α βP δ’

 β δ

ζP 2
 ε ζ’ t
 ζ

η

That said, we must address the issue of whether (111) is the only possible

derivation for the target representation (99) from the same input. One of the

many logical possibilities that must be taken into consideration is the derivation

in (112), which is an extreme case of a derivation where the computational

system keeps switching back-and-fourth from one numeration to the other

(instead of focusing on one numeration, going as far as it can go there, and then

shifting to the next numeration for good, as in (111)).

290

(112) a:

 ΣP2
 ∅ Σ

b: ΣP 2
 ΣP ∅ Σ2

 ∅ Σ

c: ΣP 2
 ΣP ∅ Σ 2
∅ Σ’ 2
 Σ α

d: ΣP 2
 ΣP ∅ Σ 2 2
∅ Σ’ Σ γ 2
 Σ α

e: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γ 2
 Σ αP 2

α β

291

f: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ η 2

α β

g: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ η 2

α βP

 β

ε

h: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2 2

α βP η δ

 β

ε

292

i: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2 2

α βP η δ

 β

ζP 2
 ε ζ

j: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2 2

α βP η δ’

 β δ

ζP 2
 ε ζ

293

k: ΣP 2
 ΣP ∅ Σ’ 2 2
∅ Σ’ Σ γP 2 2
 Σ αP γ δP 2

α βP δ’

 β δ

ζP 2
 ε ζ’ t
 ζ

η

Given the assumptions about word order presented in §IV.3, which

determine that terminals be pronounced in the same order they access the

derivation, the corresponding PF string for (111) would be as in (113a), whereas

the corresponding PF string for (112) would be as in (113b). In a nutshell, both

derivations produce the same final LF representation, but each one produces a

distinct PF-string.

(113) a: α β ε ζ γ η δ

b: α γ β η ε δ ζ

294

This becomes very problematic when we start dealing with concrete cases

of amalgamation, since this freedom of being able to switch back-and-fourth

from numerations ultimately leads to the wrong prediction that, for any given

multiply-rooted phrase marker, there are many possible corresponding word

order patterns.

For instance, if (96) above were to be generated along the lines of (112), the

expected PF-string would be as in (114b), rather than as in (114a (=95)).

(114) a: Marge said that Homer will give you can imagine what to Lisa.

b: * Marge you said can that imagine what Homer will give to Lisa.

Thus, in a nutshell, there must be some sort of constraint in the system,

preventing derivations from going back-and-fourth across numerations.

That can be taken to be a consequence of some deeper principle of

reduction of computational complexity, since breaking down the global

computation into separate derivational flows restricted each one to a numeration

is a straightforward way of limiting the search space of computations.

295

Appendix to Chapter IV

1. Top-to-Bottom Derivations and the Syntax-Phonology Interface

As stated in §IV.3.1, one of the main motivations for adopting a

derivational top-to-bottom approach to syntax is methodological. By exploring

the limits of grammatical theorizing in that way, we can shed some light on the

representationalism–versus–derivationalism debate, pointing out some facts that

can help us to tease apart these two approaches that appear to be fully inter-

translatable at first blush. As I said before, once the directionality of derivation is

reversed, we make predictions that, ceteris paribus, no representational approach

can make. Moreover, these predictions seem to be consistent with the facts.

In this Appendix, I am concerned with a syntax-phonology interface

phenomenon that constitutes some evidence that syntactic structure should be

built in a top-to-bottom fashion.

Although the position of prosodic and syntactic boundaries with respect

to each other reveals that the syntax-phonology interface involves no absolute

isomorphism, the mismatching at the surface level is better understood in

derivational terms as a ‘relativized isomorphism’. By that I mean that the core

prosodic units that define the domains of prosodic phrasing always correspond

to syntactic constituents at the relevant derivational point, namely: when Spell-

296

Out applies, delivering the phonological material of syntactic phrases to the

relevant interface.

The interaction between economy and legibility principles forces syntax to

interface phonology in cascades (cashing out chunks of structure), rather than in

a single step at the end of the derivation (cashing out the whole syntactic

structure at once), or after every merge (cashing out each terminal in isolation).

After each phonological cascade falls, its isomorphic syntactic counterpart does

not leave the derivation. Rather, it continues being processed by the syntactic

component, and may have parts of its constituency relations modified in such a

way that it ends up being no longer isomorphic to its phonological counterpart.

I argue that intonational phrases can be taken as an accurate diagnostic for

figuring out the exact shape of these PF-chunks that emerge from phonological

cascades, and that constitute fossils of extinct syntactic phrases.

2. The Facts

It is a robust fact about human languages that (the phonological component of) UG allows a

certain flexibility on the shape of intonational phrases120. For example, the strings of words of the sentence

in (01) – whose syntactic structure is assumed to be (02) – can either be prosodically parsed in a single

120 A precise definition of intonational phrase is not necessary here. Roughly speaking, the
phonetic correlates of the intonational phrase are (i) lengthening of its last syllable(s), and/or (ii)
tendency towards the occurrence of pauses in its initial and final boundaries, and/or (iii) the
existence of a complete melodic contour circumscribed in its limits, and/or (iv) maintenance of
constant patterns of rate of speech and tessitura in its domain.

297

intonational phrase, as in (03), or be partitioned into a sequence of intonational phrases in many different

ways. Some of them are shown in (04) 121.

(01) A packer of the factory will put every product inside its box.

(02) TP5
 DPk T’
 2 tp

 a NP will vP
 2 qp

 packer PP tk v’
 2 qu
 of DP putj + v VP 2 5
 the NP DP V’

| 2 ey
 factory every NP tj PP

 | 2
 product inside DP2

 its NP
|

 box

(03) ❙ a packer of the factory will put every product inside its box ❙

(04) a: ❙ a packer of the factory ❙ will put every product inside its box ❙

b: ❙ a packer of the factory will put every product ❙ inside its box ❙

121 Of course, some possible partitioning strategies are (or tend to be) associated with particular
readings, contrasting with each other with respect to informational structure, although sharing
the same propositional structure (see Steedman 1991a, 1991b, 1999, 2001, on the matter). I will
abstract away from this complication here.

298

c: ❙ a packer of the factory ❙ will put every product ❙ inside its box ❙

d: ❙ a packer Ì of the factory ❙ will put Ì every product ❙ inside its box ❙

Nonetheless, this flexibility is not unrestricted. Some intonational phrasing strategies are

ungrammatical (no matter what the intended reading is), like the ones in (05).

(05) a: * ❙ a packer of the factory will ❙ put every product Ì inside its box ❙

b: * ❙ a packer of the factory Ì will put ❙ every product inside Ì its box ❙

c: * ❙ a packer Ì of the factory will put ❙ every product Ì inside its box ❙

d: * ❙ a packer of the factory Ì will put ❙ every product inside its box ❙

The offending intonational phrase in (05-a) is

❙ a packer of the factory will ❙. The ungrammaticality of (05-b) is due to

❙ every product inside ❙. In (05-c), the problem is in ❙ of the factory will put ❙.

Finally, (05-d) is ruled out because of ❙ every product inside its box ❙.

At first sight, it seems that this restriction can be straightforwardly

accounted for in simple syntactic terms. That is, the mapping from syntactic

phrase-markers to prosodic constituents requires some kind of isomorphism. If

we look at (05-a), (05-b) and (05-c), we see that their respective offending

intonational phrases do not correspond to any syntactic constituent in (02).

Things are much more complex, however. A closer look at the format of licit and

illicit intonational phrases reveals that the mapping from syntactic phrases to

intonational phrases does not involve strict isomorphism under any

299

representational view of syntactic constituency. On one hand,

❙ will put every product ❙ in (04-c) is a well-formed intonational phrase

regardless it not being isomorphic to any syntactic constituent in (02). On the

other hand, ❙ every product inside its box ❙ in (05-d) is an ill-formed intonational

phrase even though it is isomorphic to a syntactic constituent in (02): namely, the

lower VP of the VP-shell, including a trace of the verb, and both objects.

3. Phonology-Semantics Interface?

This absence of isomorphism had lead Selkirk (1984: 286-296) to postulate

the existence of the Sense Unit Condition, defined below.

(06) The Sense Unit Condition on Intonational Phrasing: (Selkirk 1984)

The immediate constituents of an intonational phrase must together form

a sense unit.

(07) An immediate constituent of an intonational phrase IntPi is a syntactic

constituent contained entirely within (“dominated” exclusively by) IntPi

and not dominated by any other syntactic constituent contained entirely

within IntPi.

300

(08) Two constituents Ci, Cj form a sense unit if (a) or (b) is true of the semantic

interpretation of the sentence:

a: Ci modifies Cj (a head)

b: Ci is an argument of Cj (a head)

This principle is based on prosodic, syntactic, and semantic notions at the

same time, and it is not clear how the relevant relations are computed. For

example, what does it mean for a syntactic category to be dominated by a

prosodic category? Moreover, if we adopt something like the Sense Unit

Condition, we clearly need to assume an alternative architecture for UG, like (09)

or (10), and dump many minimalist assumptions, like the inclusiveness

condition, the absence of S-Structure, and the lack of interaction between

interface levels responsible for sound and meaning. Although this might be true,

certainly it is not the null hypothesis, and we should try another way of handling

the effects of the Sense Unit Condition if we can.

(09) D-Structure (Selkirk 1984)

S-Structure

S-Structure + I-Structure

301

 PF LF

(10) D-Structure (Vogel & Kenesei 1987)

S-Structure

[prosodic mapping rules] LF

 PF

4. The Input to Prosodic Phrasing as a Super-String

4.1. The Factored LCA Hypothesis (Guimarães 1998)

In face of that, I proposed in Guimarães (1998) that the effects of the Sense

Unit Condition can be captured in a straightforward way if we assume a version

of the Minimalist Program in which the input to prosodic phrasing (= output

from linearization) is not a flat string of words, like (11), but a super-string (i.e. a

string of strings of words), like (12), in which overt terminals are linearized with

respect to each other, forming kernel strings (= phonological clauses) on the

basis of c-command relations among them; and these kernel strings are

302

linearized with respect to each other on the basis of c-command relations

involving the non-terminals that dominate the terminals represented in the

kernel strings.

Roughly speaking, for any two overt terminals x & y, such that x is

pronounced immediately before y, they belong to the same kernel string

(= phonological clause) if and only if x asymmetrically c-commands y in the

syntax.

(11) <a, packer, of, the, factory, will, put, every, product, inside, its, box>

(12) <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

In order for this system to account for the facts, the only further

assumption that we have to make is the one in (13), which is far way more trivial

than Selkirk’s Sense Unit Condition.122

(13) Constraint on the Shape of Intonational Phrases:123 (naïve definition)124

122 Of course, the use of the expression “far away more trivial” is appropriate only if we find a way
of naturalizing the notion of super-string, arguing that it follows from an independent property
of the grammar, which is precisely my goal here.
123 The constraint in (13) is intended to be just a general mapping function, not a specific
algorithm that executes it. In principle, this can be formalized either as an alignment constraint
(McCarthy & Prince 1993) in the OT framework (Prince & Smolensky 1993), or as a procedural
mechanism of generating prosodic constituents from syntactic outputs.
124 See Guimarães (1998: chapter IV) for a formal definition of (13), taking into consideration the
whole prosodic hierarchy (including prosodic words, phonological phrases, metrical grid, etc.), so
that the ungrammaticality of * ❙ a packer ❙ of the factory ❙ will put every ❙ product ❙ inside its box ❙
is explained in terms of a bracketing paradox involving another level of the prosodic hierarchy.

303

There must be no bracketing paradox involving phonological clause

boundaries and intonational phrase boundaries.

If this is correct, then all the facts shown in the previous section follow straightforwardly, as we

can see in (14), (15) and (16) below.

(14) <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

 ❙ a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box ❙

(15) a: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

 ❙ a, packer, of, the, factory>❙<will, put, every, product>,<inside, its, box ❙

 b: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

 ❙ a, packer, of, the, factory>Ì<will, put, every, product Ì<inside, its, box ❙

 c: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

 ❙ a, packer, of, the, factory>❙<will, put, every, product ❙<inside, its, box ❙

 d: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

 ❙ a packer Ì of, the, factory>❙<will put Ì every product ❙<inside, its, box ❙

(16) a: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

* ❙ a packer of the factory will ❙ put every, product>,<inside, its, box ❙

 b: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

* ❙ a packer of the factory ❙ will put ❙ every product inside Ì its box ❙

304

 c: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

* ❙ a packer ❙ of the factory will put ❙ every product ❙ inside its box ❙

 d: <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

* ❙ a packer of the factory ❙ will put ❙ every product inside its box ❙

But how do we get the super-strings like the one in (12)? If we adopt

mainstream Minimalism (i.e. the bottom-up derivational approach of Chomsky

(1995, 2000, 2001a, 2001b)), we need to add extra technology to the system in

order to get the super-strings.

One way of doing this is redefining the LCA in such a way that it

generates super-strings with the desired shape, instead of flat strings. This is

what I did in Guimarães (1998: chapter IV). The basic idea is to factor out the

base and the induction steps of the post-kaynean version of the LCA in (17) into

two distinct algorithms (18) and (19), which are logically ordered.

(17) Linear Correspondence Axiom:

For every terminal elements x & y, x precedes y if and only if (i) or (ii):

305

i: x asymmetrically c-commands125 y;

ii: ∃ Z | Z dominates126 x & Z asymmetrically c-commands y.

(18) Algorithm of Linearization of Terminals: (ALT)

Linearize all overt terminals of the input phrase marker in one or more strings, such that x can

precede y if and only if x asymmetrically c-commands y.

(19) Algorithm of Linearization of Strings: (ALS)

Given a set K of strings of overt terminals generated by the ALT, generate

a super-string linearizing all members of K with respect to each other,

such that, for every L and M which are members of K, L precedes M if and

only if ∃ w, ∃ z | [[[w is a symbol of L] & [z is a symbol of M]] &

[∃ Q | [Q dominates w] & [Q asymmetrically c-commands z]]]

The first algorithm (i.e. 18) generates a set of strings of words, as in (20)127;

then the second one (i.e. 19) linearizes those strings with respect to each other,

generating a super-string, as in (21).

(20) { [a∩packer∩of∩the∩factory], [will∩put∩every∩product], [inside∩its∩box] }

125 C-Command: Given two maximal and/or minimal projections α & β, α c-commands β if and
only if (i) α ≠ β & (ii) no segment of α dominates β & (iii) every category that dominates α also
dominates β.
126 Dominance: Given a syntactic object K = {γ, {α, β}}, K dominates a syntactic object α if and only
if either (i) ∃ L | α ∈ L & L ∈ K or (ii) ∃ M | K dominates M & M dominates α.
127 As I discuss in Guimarães (1998: 162-171), there is always more than one legitimate output
from the ALT (for example, in the case under discussion, it could be { [a∩packer∩factory],
[∩of∩the], [will∩put], [every∩product], [inside∩its∩box] } instead of (20)). However, it is always the
case that, among all potential outputs from the ALT, only one constitutes a legitimate input to the
ALS. If the wrong choice is made, the derivation is cancelled.

306

(21) [a∩packer∩of∩the∩factory]
∩
[will∩put∩every∩product]

∩
[inside∩its∩box]

Despite being so cumbersome, this mechanics makes the right predictions,

by and large (see Guimarães (1998) for details). The problem is that it does not

follow from anything.

4.2. An Alternative Approach within Mainstream Minimalism

Another way of getting the same result is assuming the standard version

of the LCA in (17) and positing an additional mapping algorithm that applies

after the linearization procedure, converting flat strings like (11) – repeated

below as (22) – into super-strings with the desired shape, like (12) – repeated

below as (23) – on the basis of syntactic information encoded in the phrase-

marker: the same object that serves as the input to linearization. The basic idea

remains the same: for any two overt terminals x & y, such that x is pronounced

immediately before y, they belong to the same kernel string (= phonological

clause) if and only if x asymmetrically c-commands y in the syntax.

(22) <a, packer, of, the, factory, will, put, every, product, inside, its, box>

(23) <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

307

Of course, we can formulate such mapping algorithm that gets us from (22) to (23)128. But this is

not going to be less inelegant than (18-19), and, again, it does not follow from anything in the system.

Moreover, it sounds counterintuitive to have two distinct mapping algorithms based on the very same

syntactic information. That is, if two adjacent words are linearized with respect to each other through the

base step of the LCA, there is no phonological clause boundary between them. If they are linearized with

respect to each other through the induction step of the LCA, there is a phonological clause boundary

between them129.

This might be right or wrong, but, certainly, it is not the null hypothesis. From the minimalist

viewpoint, we better collapse these two algorithms into a single one if we can, as I did in Guimarães

(1998).

4.3. Inadequacy of Bottom-up Multiple Spell-Out

In face of that, one may think that the desired result can come for free if we assume Uriagereka’s

(1999a) original version of the Multiple Spell-Out model. After all, chunks of structure defined on the basis

of c-command is what it is all about130. However, it is easy to see that the boundaries of the chunks created

by Spell-Out in a bottom-up system will not be any helpful. Notice that the offending intonational phrases

in (27-a), (27-b) and (27-c) are no different from the well-formed intonational phrase

❙ will put every product ❙ in (26-c) with respect to the principle in (13) above.

128 One possibility would be that there is an algorithm that starts from a flat string without
boundary symbols (understood as substantive entities, dummy prosodic formatives, a la
Chomsky & Halle 1968), and inserts them in between two adjacent terminals if and only if their
copies left in the phrase marker are not in asymmetric c-command relation.
129 Keep this in mind: technically speaking, at the relevant level of abstraction, after the super-
string (23) is generated from (22), factory does not precede will anymore, even though the former
happens to be pronounced immediately before the latter, by virtue of them being the last and the
first symbols the strings A (=a∩packer∩of∩the∩factory) & B (=will∩put∩every∩product) respectively,
such that A immediately precedes B.
130 Here I am assuming that my audience is completely familiar with Uriagereka’s (1999a) work.

308

(24) <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

(25) <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

 Ì a packer, of, the, factory><will, put, every, product> inside, its, box Ì

(26) a: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

 ❙ a, packer, of, the, factory>❙ will, put, every, product ,<inside, its, box ❙

 b: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

 ❙ a, packer, of, the, factory><will, put, every, product ❙ inside, its, box ❙

 c: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

 ❙ a packer, of, the, factory>❙ will, put, every, product ❙ inside, its, box ❙

 d: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

 ❙ a packer ❙ of, the, factory>❙ will put ❙ every product ❙ inside, its, box ❙

(27) a: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

* ❙ a packer of the factory will ❙ put every, product inside, its, box ❙

 b: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

* ❙ a packer of the factory ❙ will put ❙ every product inside ❙ its box ❙

 c: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

309

* ❙ a packer ❙ of the factory will put ❙ every product ❙ inside its box ❙

 d: <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

* ❙ a packer of the factory ❙ will put ❙ every product inside its box ❙

If we assume Uriagereka’s original version of the Multiple Spell-Out model, we need an

additional mapping algorithm that generates (29) from (28), in order to get the facts through a trivial

‘avoid-bracketing-paradox’ assumption. Again, this mapping function, besides being formally very

complex, does not seem to follow from anything.

(28) <<a, packer, of, the, factory>, will, put, <every, product>, inside, its, box>

(29) <<a, packer, of, the, factory>,<will, put, every, product>,<inside, its, box>>

4.4. The ‘Back-and-Fourth Derivation’ Hypothesis

A third way of getting the desired super-strings is redefining the LCA as a

mapping algorithm that builds strings and super-strings step by step, removing

(demerging) the terminals from the phrase-marker in a top-to-bottom fashion,

and organizing them into strings (see Fukui & Takano 1998, for an approach

along these lines). Roughly speaking, this procedure would work as follows.

First of all, the least embedded overt terminal A is targeted, demerged,

and turned into the first symbol of a PF string. Second of all, the next overt

310

terminal in the c-command path of A (say, B) is targeted, demerged and

concatenated to the right of A. Then, the next overt terminal in the c-command

path of B (say, C), is targeted, demerged and concatenated to the right of B... and

so on. This is a trivial markovian process that terminates every time that the last

demerged element has no overt terminal in its c-command path. If the set of

overt terminals of the phrase marker is not exhausted, this markovian process is

required to apply again, now starting from the least-embedded overt terminal

among the ones that remain merged. It seems plausible to assume that, every

time the markovian procedure (re)starts, a dummy phonological formative # (a

la Chomsky & Halle 1968) is inserted as the first symbol of the string, and then

the first demerged element is concatenated to the right of # (and perhaps,

another instance of # is inserted right after the last demerged element of each

round). If this is so, then we get a flat string with the relevant properties of the

super-string proposed by Guimarães (1998), and all the rest follows.

(30) #
∩
a
∩
packer

∩
of

∩
the

∩
factory

∩
#
∩
#
∩
will

∩
put

∩
every

∩
product

∩
#
∩
#
∩
inside

∩
its

∩
box

∩
#

In this system, syntax works in a bottom-up fashion, whereas the syntax-to-phonology mapping

proceeds the other way around, from the top downwards. From now on, I will refer to this as the ‘Back-

and-Forth Derivational Hypothesis’. Notice that the mapping algorithm just described follows from nothing,

and is not in any sense more natural than the ones required in the systems mentioned above.

4.5. Top-to-Bottom Derivations, Dynamic Constituency and Relativized Isomorphism

311

There seems to be robust evidence that PF-structure-building mechanism really works in this

incremental, left-to-right/top-to-bottom fashion. Thus, what if the syntax also builds structure this way?

Then, the way the phonological component works would follow from the way the syntactic component

works, and we can kill two birds with one stone.

Once we assume a ‘generalized tucking-in’ system like the one proposed

in this dissertation, where constituency is dynamic, we start to make correct

predictions with regards to the boundaries of PF-strings.

Having said that, let us run a sample derivation from the very beginning till the very end

(abstracting away from movement), and see how the system works. I will take the same sentence used to

illustrate the generalizations about intonational phrasing above, and show how the desired super-strings

emerge from the very nature of the derivation.

(31) A packer of the factory will put every product inside its box.

(32a) derivational stage #1

[ΣP ∅ Σ]syntax

phonology

(32b) derivational stage #2

[ΣP ∅ [Σ’ Σ a]]syntax
#a#

phonology

(32c) derivational stage #3

[ΣP ∅ [Σ’ Σ [DP a packer]]]syntax
#a#∩#packer#

phonology
(32d) derivational stage #4

312

[ΣP ∅ [Σ’ Σ [DP a [NP packer of]]]]syntax
#a#∩#packer#∩#of#

phonology

(32e) derivational stage #5

[ΣP ∅ [Σ’ Σ [DP a [NP packer [PP of the]]]]]syntax
#a#∩#packer#∩#of#∩#the#

phonology

(32f) derivational stage #6

[ΣP ∅ [Σ’ Σ [DP a [NP packer [PP of [DP the [NP factory]]]]]]]syntax
#a#∩#packer#∩#of#∩#the#∩#factory#

phonology

(32g) derivational stage #7

[ΣP ∅ [Σ’ Σ [DP a [NP packer [PP of [DP the [NP factory]]]]]]]syntax
SPELL-OUT

phonology #a∩packer∩of∩the∩factory#

Spell-Out is forced to apply at stage #7 because otherwise there would be

no way of satisfying the LCA from the next stage onwards131. After all π-particles

have been removed from the derivational workspace, the next item (i.e. the λ-

particle of will) can access the derivation at stage #8 without causing any

linearization problem. Although its corresponding π-particle (i.e. #will#) can not

be linearized with respect to any other π-particle (by virtue of the older sister of

its corresponding λ-particle being a complex phrase), no violation of the

131 An alternative would be merging will to factory. Although this strategy would create no
linearization problem, it is ruled out on semantic grounds.

313

Linearity Principle arises, since #will# is the only π-particle in the derivational

workspace. That is, the LCA is vacuously satisfied.

(32h) derivational stage #8

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] will]]]syntax
#will#

phonology #a∩packer∩of∩the∩factory#

(32i) derivational stage #9

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will put]]]]syntax
#will#∩#put#

phonology #a∩packer∩of∩the∩factory#

(32j) derivational stage #10

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will [VPput
every]]]]]

syntax

/will/∩/put/∩/every/
phonology #a∩packer∩of∩the∩factory#

(32k) derivational stage #11

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will [VPput
[DP every [NP product]]]]]]]

syntax

/will/∩/put/∩/every/∩/product/
phonology #a∩packer∩of∩the∩factory#

(32l) derivational stage #12

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will [VPput
[DP every [NP product]]]]]]]

syntax

SPELL-OUT
phonology <#a∩packer∩of∩the∩factory#, #will∩put∩every∩product#>

314

(32m) derivational stage #13

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will [VPput
[PP [DP every [NP product]] inside]]]]]]

syntax

#inside#
phonology <#a∩packer∩of∩the∩factory#, #will∩put∩every∩product#>

(32n) derivational stage #14

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will [VPput
[PP [DP every [NP product]] [P’ inside its]]]]]]]

syntax

#inside#∩#its#
phonology <#a∩packer∩of∩the∩factory#, #will∩put∩every∩product#>

(32o) derivational stage #15

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will [VPput
[PP [DP every [NP product]] [P’ inside [DP its [NP box]]]]]]]]]

syntax

#inside#∩#its#∩#box#
phonology <#a∩packer∩of∩the∩factory#, #will∩put∩every∩product#>

(32p) derivational stage #16

[ΣP ∅ [Σ’ Σ [TP [DP a [NP packer [PP of [DP the [NP factory]]]]] [T’will [VPput
[PP [DP every [NP product]] [P’ inside [DP its [NP box]]]]]]]]]

syntax

SPELL-OUT
phonology <#a∩packer∩of∩the∩factory#, #will∩put∩every∩product#, #inside∩its∩box#>

315

5. Concluding Remarks

5.1. Prosodic Hierarchy is built over a super-string, that partially

determines the shape of prosodic constituents132. That is, prosodic

phrasing must respect the boundaries of PF-chunks.

5.2. The format of the PF chunks follows of the very nature of the

derivation. PF chunks correspond to syntactic constituents at some

point of the derivation (specifically, at the turning point between

two phonological cascades), even though they do not correspond to

final LF-chunks. So, in a sense, we can say that there is

isomorphism between PF chunks and syntactic constituents. We

can call it ‘relativized isomorphism’. This can be taken as an

evidence for the strong derivational hypothesis, since it is very hard

to get the same results in strict representational terms.

5.3. We can entirely dispense with the Sense Unit Condition and its

consequences for the architecture of the grammar.

132 Here I am concerned with intonational phrases only, but see Guimarães (1998, 1999a) for
evidence that the super-string is relevant to other levels of prosodic hierarchy too.

316

V

The Emergence of Parataxis as ‘Syntax Pushed to the Limit’

After having described the phenomenon of amalgamation in §II, pointed

out the problems with the (neo)conservative analyses in §III, and then, in §IV,

presented the theoretical framework for my proposal, this chapter is dedicated to

analyzing the range of facts shown in §II in an explanatorily adequate fashion.

V.1. Deriving a Simple Syntactic Amalgam

(01) Homer will give you can imagine what to Lisa.

According to the assumptions presented in chapter IV, the generation of

the syntactic amalgam in (01) involves the intersecting numerations in (02) as the

input to the computational system.133

133 Following Bennett (1977: 282), I assume that anything that appears to be a bare WH word at
the morpho-phonological level actually corresponds to a much more complex structure at the
syntactic and semantic levels, as shown in (i).

(i) a: who = [DP [D which] [N(P) person]]
b: where = [DP [D which] [N(P) place]]
c: when = [DP [D which] [N(P) time]]
d: why = [DP [D which] [N(P) reason]]
e: how = [DP [D which] [N(P) manner]]

317

(02)

 Δ  C D C  Ψ
Homer D
will you
give can
wh- imagine
-at
to
D
Lisa

The computational system starts by randomly zooming into numeration Δ

to begin the structure-building process. Given the assumptions (tacitly) assumed

in chapter IV about the nature of the grammar and the parser (heavily inspired

by Phillips’ (1996, 1998) work), the choice of Δ automatically makes the sentence

built from Δ the master clause, with the one built from Ψ being subservient to it.

The PF representation of the whole Siamese-Tree structure is built incrementally,

as the derivation proceeds, with smaller chunks of each subcomputation getting

successively spelled-out and being pronounced with respect to each other in an

order that directly reflects the order in which syntax delivers them to the A-P

system.

f: what = [DP [D which] [N(P) thing]]

The motivations for taking this approach have to do with the semantic interpretation of syntactic
amalgams, which I investigated in Guimarães (2003c).

318

Within the confines of that subcomputation defined by Δ, the first

derivational step is the introduction of the initial phrase by the starting axiom, as

in (03a).

(03) a: ΣP 2
 ∅ Σ

The next step is the introduction of C, which gets tucked in inside ΣP, as

the older sister of Σ, as in (03b).

(03) b: ΣP 2
 ∅ Σ’ 2
 Σ C

Then, the lexical tokens of Δ are introduced, one by one, and tucked in at

the bottom of the phrase marker, each one becoming a (provisory) older sister of

the lexical token introduced in the immediately preceding step, as in (03c-d)

below.

(03) c: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C D

319

d: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C DP 2
 D Homer

#Homer#

At this point, the natural way to take the next step would be to introduce

T as the sister to the DP Homer, as in (03d’).

(03) d’: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP qy
DP will 2

 D Homer

#Homer#∩#will#

However, that would lead to a violation of the LCA, as defined in IV.3

Notice that the π-particle of Homer (i.e. #Homer#) precedes π-particle of will

(i.e. #will#) even though Homer does not asymmetrically c-command will, as it

should. But, since selectional properties of the lexical tokens in Δ require that

320

will be eventually merged as the (temporary) sister of the DP Homer, the system

needs to ‘prepare’ the derivational workspace first, shipping the current PF-

string to the phonological component, leaving the phrase marker ‘naked’, with

no π-particle linked to any of its terminals, so that the introduction of will, when

it happens, will not constitute a violation of the LCA.

Therefore, for convergence reasons, the step immediately after the one in

(03d) is not (03d’). Rather, it is the one in (03e), where the current structure

undergoes spell-out

(03) e: ΣP 2
 ∅ Σ’ 2
 Σ CP  in the Syntax 2

 C DP 2
 D Homer

#Homer#  out to the Phonology

The next step, then, is the introduction of will as the (temporary) sister to

the DP Homer, as in (03f). Notice that, now, #will# is the only π-particle in the

derivational workspace. Therefore, the LCA is trivially satisfied in this step.

321

(03) f: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP qy
DP will 2

 D Homer

#will#

Then, the DP Homer (which no longer has phonological material) is

remerged as a sister to will in (03g),134 so that the subject can find itself in its

theta-position in a subsequent step, after the introduction of give, as in (03h).

134 This may seem counter-intuitive at first sight, since, in (03f), Homer is already a sister to will.
(although, in the previous step, it was will which merged to Homer). However, this step (which
makes Homer become simultaneously the complement and the specifier to will) is crucial to
make it possible for Homer to become the specifier of VP in a subsequent step.

322

(03) g: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’

 will

DP #will# 2
 D Homer

h: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
 will VP y

 give
DP 2

 D Homer #will#∩#give#

At this point, the natural continuation towards building the sentence

corresponding to Δ would be to build the WH-phrase what, by tucking in its

terminals, one at a time, at the bottom of the spine of the tree, as in (03h’).

323

(03) h’: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
 will VP y

 VP
DP 2 2 give DP

 D Homer 2
 wh- thing

 #will#∩#give#∩#what#

However, if that happens, the WH-phrase what will not be able to be later

merged in the lower spec/CP of the subservient clause, since it will fail to c-

command that [+WH] complementizer. I will return to this matter shortly (cf.

(03r’) below).

The only alternative that could lead to convergence, then, is the

termination of the first derivational round, leaving the phrase marker

corresponding to Δ as an incomplete structure. This is possible because all

relevant lexical tokens necessary to build this chunk of the structure are shared

by the numeration in Ψ. That way, the subcomputation performed in the second

324

derivational round can finish the job of building that chunk of structure left

incomplete by in the first derivational round.

Therefore, for convergence reasons, the step immediately after the one in

(03h) is not (03h’). Rather, it is the one in (03i), where the current structure

undergoes spell-out.

(03) i: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP
 in the Syntax

 T’ 2
 will VP y

 give
DP 2

 D Homer

[#Homer#]∩[#will#∩#give#]  out to Phonology

Notice that, in the phonological component, the incoming string (i.e.

#will#∩#give#) gets concatenated to the final edge of the previous one, rather

than to its initial edge. As discussed in §IV.3.2, this deterministic linearization of

strings that happens within the Phonological component follows from the deeper

325

derivational time equals real time (Phillips 1996) across components in the

grammar. In a nutshell, under the assumption that the ‘parser is the grammar’,

the string [#Homer#] is pronounced before the string [#will#∩#give#] simply

because arrived at the Phonological component first, getting the first timing slot.

The computational system then shifts its attention to numeration Ψ to

continue the structure-building process. As discussed in §IV.3.4, The fact that the

matrix clause built from Δ is done after the one built from Ψ automatically makes

the later subservient to the former.

The higher portion of the subservient clause is built in the usual fashion,

by integrating the relevant lexical tokens in the non-shared part of Ψ, into a

parallel phrase marker built from the top downwards, via successive

applications of tucking-in, as shown in (03j) though (03z’).

First, the initial phrase is introduced by the starting axiom, as in (03j).

326

(03) j: ΣP 2
 ∅ Σ

ΣP 2
 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

327

Then the highest complementizer is tucked in, becoming the (temporary)

sister of Σ, as in (03k).

(03) k: ΣP 2
 ∅ Σ’ 2
 Σ C

ΣP 2
 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

328

Then the subject is built as a (temporary) sister to C, by first merging D to

C, and then you to D, as shown in (03 l-m).

(03) l: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C D

ΣP 2
 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

329

(03) m: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C DP 2
D you

ΣP 2 #you#
 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

At this point, the DP you is about to become a complex specifier, as soon

as the head of T is integrated to the phrase marker, making it impossible for the

pronounceable terminal inside that subject DP (i.e. #you#) to c-command any

other terminal in the rest of the rest of the structure. That would lead to a

violation of the LCA. In order to avoid that, the system then needs to apply Spell-

Out to the phrase marker under construction, removing the current PF-string

from the derivational workspace, as shown in (03n).

330

(03) n: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C DP 2
D you

 in the Syntax
ΣP 2

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

 [#Homer#]∩[#will#∩#give#]∩[#you#]  out to Phonology

In the phonological component, the incoming string (i.e. [#you#]) gets

concatenated to the final edge of the existing super-string (i.e.

[#Homer#]∩[#will#∩#give#]), rather than to its initial edge, as determined by the

‘first come first serve basis mapping algorithm’ discussed in §IV.3.2.

331

The next step, then, is the introduction of can as the (temporary) sister to

the DP you, as in (03o). Notice that, now, #can# is the only π-particle in the

derivational workspace. Therefore, the LCA is trivially satisfied in this step.

(03) o: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP 2
 DP can
 2
 D you

ΣP 2 #can#
 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

332

Then, the DP you (which no longer has phonological material) is

remerged as a sister to can in (03p),135 so that the subject can find itself in its

theta-position in a subsequent step, after the introduction of imagine, as in (03q).

(03) p: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’

 can

ΣP #can# DP 2 2
 ∅ Σ’ D you 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

135 This may seem counter-intuitive at first sight, since, in (03f), Homer is already a sister to will.
(although, in the previous step, it was will which merged to Homer). However, this step (which
makes Homer become simultaneously the complement and the specifier to will) is crucial to
make it possible for Homer to become the specifier of VP in a subsequent step.

333

(03) q: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 imagine
ΣP DP 2 2

 ∅ Σ’ D you 2
 Σ CP #can#∩#imagine#

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

The verb imagine at the bottom of the phrase marker under construction

selects for a CP with a [+WH] head. Since that head requires a WH-phrase in its

specifier, the introduction of the complementizer must be delayed until the WH-

phrase is built as a temporary sister to imagine, as shown in (03r-s).136

136 I am assuming that the morphologization of [DP wh- thing] as #what# happens in the
phonological component, after the string of π-particles leaves the syntactic derivational
workspace. However, I will keep using the notation in (03s) for expository reasons.

334

(03) r: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
ΣP DP 2 2 2 imagine wh-

 ∅ Σ’ D you 2
 Σ CP

 C TP #can#∩#imagine#∩#wh-#

 T’ 2
 will VP y

 give
DP 2

 D Homer

335

(03) s: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
ΣP DP 2 2 2 imagine DP

 ∅ Σ’ D you 2 2 wh- thing
 Σ CP

 C TP

 T’ #can#∩#imagine#∩#what# 2
 will VP y

 give
DP 2

 D Homer

Notice that this WH-phrase could, in principle, have been built in the

previous derivational round (cf. (03h’) above), and then remerged a (temporary)

sister to imagine, as in shown (03s’).

336

(03) s’: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
ΣP DP 2 2 imagine

 ∅ Σ’ D you 2
 Σ CP

#can#∩#imagine#
 C TP

 T’ 2
 will VP y

 V’
DP 2 VP

 D Homer 2
 [DP what] V’

 [PP to [DP D Lisa]]
give

Notice, however, that such instance of (re)merge would have violated the

c-command condition on merge. This is so because, right before the DP what gets

shared, it is dominated by projections of will and give, which are lexical tokens

337

that are present in numeration Ψ, therefore visible for calculating c-command

relations in the derivational round that builds the subservient clause. Notice that

none of those projections of will and give happen to dominate imagine. As a

result, the DP what would fail to c-command imagine, which makes the step in

(03s’) illegitimate. This is the reason why the first derivational round was forced

to terminate early, leaving an incomplete structure. That said, let us go back to

step (03s), repeated below.

338

(03s) ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
ΣP DP 2 2 2 imagine DP

 ∅ Σ’ D you 2 2 wh- thing
 Σ CP

 C TP

 T’ #can#∩#imagine#∩#what# 2
 will VP y

 give
DP 2

 D Homer

At this point, the DP what is about to become a complex specifier, as soon

as the new incoming [+WH] complementizer is selected from numeration Ψ and

integrated to the phrase marker as a (temporary) sister to what. That would

make it impossible for the pronounceable material inside that subject DP (i.e.

#what#) to c-command any other terminal in the rest of the rest of the structure

about to be formed, which would lead to an irreparable violation of the LCA in

339

the subsequent steps. In order to avoid that, the system then needs to apply

Spell-Out to the phrase marker under construction, removing the current PF-

string from the derivational workspace, as shown in (03t).

(03) t: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
ΣP DP 2 2 2 imagine DP  in the Syntax

 ∅ Σ’ D you 2 2 wh- thing
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer out to Phonology
 

[#Homer#]∩[#will#∩#give#]∩[#you#]∩[#can#∩#imagine#∩#what#]

340

In the phonological component, the incoming string (i.e.

[#can#∩#imagine#∩#what#]) is concatenated to the final edge of the existing

super-string (i.e [#Homer#]∩[#will#∩#give#]∩[#you#]).

Then, the [+WH] complementizer in Ψ is finally introduced as a

(temporary) sister to the DP what, as in (03u).

(03) u: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
ΣP DP 2 2 2 imagine CP

 ∅ Σ’ D you 2 2 DP C
 Σ CP 2

 wh- thing
 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

341

Now comes the crucial step. Given the intersection of numerations in the

input, the system can take a TP that is already partially built as and remerge it as

the complement of the lowest C in the subservient clause, as in (03v). Notice that

this instance of remerge is possible because, in (03u), the TP vacuously c-

commands what is about to become its new sister (i.e. C[+WH]), as none of the

nodes that dominate that TP is visible in the second derivational round (i.e. none

of those dominating nodes is a projection of a lexical tokens in Ψ).

342

(03) v: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
 DP 2
 2 imagine CP
 D you 4

 DP C’
ΣP 2 2 2 wh- thing C

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 give
DP 2

 D Homer

Next, the WH-phrase what is lowers into its theta position, being

remerged inside the embedded VP, as a sister to give, as in (03w).137

137 I am abstract away from how what checks accusative case.

343

(03) w: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
 DP 2
 2 imagine CP
 D you

 C’
ΣP 2 2 C

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 give DP

 D Homer 2
 wh- thing

Then, the lower layer of the VP shell is built through the lowering of give,

which remerges with what, as in (03x), so that the indirect object can be

introduced as a sister to the verb in subsequent steps.

344

(03) x: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
 DP 2
 2 imagine CP
 D you

 C’
ΣP 2 2 C

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 VP

 D Homer 2
DP 2

 wh- thing

give

345

(03) y: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
 DP 2
 2 imagine CP
 D you

 C’
ΣP 2 2 C

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 VP

 D Homer 4
 DP V’ 2 y

 wh- thing to

 #to#
give

346

(03) z: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
 DP 2
 2 imagine CP
 D you

 C’
ΣP 2 2 C

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 VP

 D Homer 4
 DP V’ 2 y

 wh- thing PP 2 to D

give
 #to#

347

(03) z’: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
 DP 2
 2 imagine CP
 D you

 C’
ΣP 2 2 C

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 VP

 D Homer 4
 DP V’ 2 y

 wh- thing PP 2 to DP 2
give D Lisa

 #to#∩#Lisa#

348

(04) ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 can VP

 V’
 DP 2
 2 imagine CP
 D you

 C’
ΣP 2  out to Semantics 2 C

 ∅ Σ’ 2
 Σ CP

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 VP

 D Homer 4
 DP V’ 2 y

 wh- thing PP 2 to DP 2 out to Phonology
give D Lisa 

[#Homer#]∩[#will#∩#give#]∩[#you#]∩[#can#∩#imagine#∩#what#]∩[#to#∩#Lisa#]

349

V.2. Multiple Matrix Clauses: parallelism and ‘behindness’

Now, let us take a quick look at another case of amalgamation.

(05) I will find out if Homer gave you can imagine what to Lisa.

This example is very similar to the one analyzed above. The only

difference is that its master clause is more complex. That is, in the previous

example, the shared TP is a matrix TP in the master clause and an embedded TP

in the subservient clause. The only portion of the master clause that is not shared

is the CP.

In (05), on the other hand, the shared TP is an embedded TP in both the

master clause and the subservient clauses, as we are going to see below.

The derivation of (05) would be pretty much like the derivation of (01),

except that there is more material in the master clause.

The input would be the intersecting numerations in (06).

(06)

 Δ  C D C  Ω
D Homer D
I will you
will give can
find-out wh- imagine
if -at

to
D
Lisa

350

Abstracting away from the multiple application of spell-out along the

derivation, the generation of (05) can be summarized in four stages.

First, the computational system targets Δ, and starts to combine its lexical

tokens, from the top downwards, up to the point where the higher portion of the

master clause is built, as in (07).

(07) ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out if

 D I

Then that subcomputation proceeds, and the items in the intersection

between Δ and Ψ start being integrated to the phrase marker, up to the point

where (08) obtains.

351

(08) ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I

 if
TP y
 T’ 2
T VP y

 gave

DP 2
 D Homer

For the same reasons discussed above with regards to (03h’) and (03r’), the

system is forced to terminate the first derivational round at this point, leaving the

current phrase marker incomplete, to be finished by the end of the second

derivational round.

352

The second derivational round begins. The lexical tokens in the non-

shared portion of Ψ start to be combined, and the higher portion of the

subservient clause is built, as in (09).

(09) ΣP 2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y 2

 V’ C DP
DP 2 2 2 find-out CP wh- thing

 D I

 if
TP y
 T’ 2
T VP y

 gave

DP 2
 D Homer

353

Eventually, the lower TP of the master clause is remerged as the sister to

the lower C of the subservient clause. The WH-phrase what is remerged at its

theta position inside the shared TP, and the indirect object to Lisa is eventually

built, thus finishing the construction of that structure left incomplete in the

previous derivational round.

The final representation for (05) is as in (10).

354

(10) ΣP 2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C’
DP 2 2 find-out CP C

 D I

 if
TP y
 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Homer P’ 2

 to DP2
 DP D Lisa 2
 wh- - thing

355

Examples of this kind, with more complexity in the master clause, are

more transparent in terms of exhibiting the properties of ‘parallel messages’ and

‘multiple layers of information’, as discussed in §II.4.

Notice that, in (10), the substructure corresponding to the giving event is

under the scope of both (i) the substructure corresponding to the imagining

event, and (ii) the substructure corresponding to the figuring-out event. Thus,

both the master clause is about finding out something about a certain giving

event, whereas the subservient clause is about the ability to imagine something

about that very same giving event. Crucially, there is no scope relation between

the substructure corresponding to the figuring-out event and the substructure

corresponding to the imagining event. Syntactically, these two substructures are

fully parallel, but one (i.e. the higher portion of the subservient clause) is behind

the other (i.e. the higher portion of the master clause). In the framework

developed here, this ‘behindness’ is a function of which portion of the Siamese-

Tree gets to be built first, which has a direct impact on informational structure

and on the PF-string.

In a nutshell, strictly speaking, a syntactic amalgam is not a sentence. It is

a organization of two (or more) sentences that share some subpart. The

representation in (10) above can be factored out into (11) and (12) below.

(11) [CP C [TP I2 will [VP t2 find-out [CP if [TP Homer1 T [VP t1 gave what [PP to Lisa]]]]]]]

(12) [CP C [TP you3 can [VP t3 imagine [CP what3 [TP Homer1 T [VP t1 gave t3 [PP to Lisa]]]]]]]

356

While (12) is an independently available well-formed structure when in

isolation, the structure in (11) is not, as it violates whatever principle demands

that WH-movement be overt (in English). Somehow, the instance of WH in situ

in (11) gets licensed by virtue of (11) being amalgamated with (12).138

Descriptively speaking, (11) and (12) somehow collapse at the paratactic

level, yielding (10), whose only WH-phrase is in a chain configuration.

Interestingly, this paratactic effect obtains from the application of syntactic

operations alone. As a result, the WH-phrase in the master clause (cf. (11))

behaves as an indefinite for all intents and purposes, which makes the structure

in (10) equivalent to the paratactic construction in (13).139

(13) I will find out if Homer gave a certain thing to Lisa, and you can imagine

what is that certain thing that Homer gave to Lisa.

Another welcome consequence of analyzing syntactic amalgams in terms

of Siamese-Trees representations such as (04) and (10) is that the matrix-clause

138 Actually, there is nothing new about the idea of licensing a structure that would otherwise be
ungrammatical. Examples (i-a) and (ii-a) are ungrammatical in isolation, but are legitimate parts
of larger syntactic structures, as in (i-b) and (ii-b). The question, then, is why and how each
particular otherwise ungrammatical structure gets licensed when combined with extra structure
of a certain kind.
(i) a: * [IP [DP John]1 to be [AP t1 happy]]

b: [IP [DP Mary]1 believes [IP [DP John]1 to be [AP t1 happy]]]
(ii) a: * [CP [DP who] [IP John will invite t1 to his party]]?

b: [IP I don’t know [CP [DP who] [IP John will invite t1 to his party]]]
139 The intuition behind this analysis is that the WH-feature of what is licensed/checked against a
[+WH] complementizer in the subservient clause, leaving only the ‘pronominal’ part of it to be
seen by the [-WH] complementizer of the master clause. For a detailed and lengthy discussion on
the formal details of how WH-phrases may semantically behave as indefinites in syntactic
amalgams, see Guimarães (2003c).

357

behavior exhibited by all invasive substrings is straightforwardly accounted for.

As discussed in §II.10, those quasi-parenthetic chunks may exhibit syntactic

patterns found only in matrix clauses, like auxiliary-inversion for questions, or

imperative mood, as shown in (14) and (15).

(14) Bob told me that Amy danced with [do you know who?] at the party

(15) Bob told me that Amy danced with [guess who!] at the party

Under the approach developed here, this result is not surprising, as any of

those ‘invasive chunks’ is indeed another matrix clause built in parallel, which

just happens to be ‘behind’ the one chosen as the ‘ main message’.

V.3. Multiple Roots and Relativized Islandhood

It is outside the scope of this dissertation to investigate (i) what makes a

given syntactic constituent an island for extraction, or (ii) why islandhood only

prevents movement transformations and not other long-distance dependencies

(i.e. binding, agreement), or (iii) whether there is a unified account for all types of

island.

358

My starting point is the well-known generalization that certain kinds of

constituent, for some reason, are island for extraction. Whatever the ultimate

explanation for that turns out to be, the generalization itself can be equally

described in at least three different meta-languages, as summarized in (16).

(16) ZP 2
 α1 Z’ 2

 Z YP 2
 δ Y’ island 2 

 Y XPXP 2
 β X’ 2

 X α2

From a representational point of view, we can say that, if a given

constituent XP is an island, there must not be a chain formed with only link

inside XP and another link outside XP.

From a derivational perspective, assuming a bottom-up directionality, we

can say that, if a given constituent XP is an island, no element α can move from a

position inside XP to another position outside XP.

359

From a derivational perspective, assuming a top-to-bottom directionality

(as proposed in his dissertation), we can say that, if a given constituent XP is an

island, no element α can move from a position outside XP to another position

inside XP.

As shown in §II.5, amalgamation is insensitive to islands. That is, the

invasive clause can interrupt the invaded clause at a position of the substring

that is exhaustively included inside a constituent of the kind that defines an

island for extraction, as exemplified in (17) and (18) below.

(17) Complex NP/DP Island

a: Susan dismissed the claim that her husband dated I can’t remember

who before they got married.

b: Susan dismissed the claim that her husband dated Sarah before

they got married.

c: * I can’t remember [who]1 Susan dismissed { the claim that her

husband dated t1 before they got married }.

(18) Adjunct Clause Island

a: John invited all his friends to a big party after he got you can imagine

which job.

b: John invited all his friends to a big party after he got the job of head

coach of the Chicago Bulls .

360

c: * You can imagine [which job]1 [John invited all his friends to a big

party { after he got t1 }].

As argued in §III.3.5.2, this is a serious problem for any neo-conservative

approach to amalgamation based on remnant-movement, as that would require

that WH-extraction out of an island at some point in the derivation, as sketched

in (19) and (20).

(19) a: [TP Susan dismissed [DP the claim [CP that [TP her husband dated

who [PP before they got married]]]]

b:  [TP I can’t remember [CP who1 [TP Susan dismissed [DP the claim

[CP that [TP her husband dated t1 [PP before they got married]]]]]]]

c: [CP [TP I can’t remember [CP who1 [TP Susan dismissed [DP the claim

[CP that [TP her husband dated t1 t2]]]]]] [PP before they got

married]2]

d: [CP [TP Susan dismissed [DP the claim [CP that [TP her husband dated

t1 t2]]]]3 [CP [TP I can’t remember [CP who1 t3]] [PP before they got

married]2]]

(20) a: [TP John invited all his friends to a big party [PP after [TP he got

[which job]]]]

b:  [TP you can imagine [CP [which job]1 [TP John invited all his friends

to a big party [PP after [TP he got t1]]]]]

361

c: [CP [TP John invited all his friends to a big party [PP after [TP he got

t1]]] [TP you can imagine [CP [which job]1 t2]]]

Under the system proposed in this dissertation, however, the facts follow

straightforwardly. Once we analyze syntactic amalgams in terms of Siamese-Tree

configurations, where one embedded TP simultaneously belongs inside more

than one matrix clause (with these matrix clauses standing ‘behind’ each other),

the facts follow straightforwardly. Speaking in ‘bottom up’ terms for the sake of

exposition, what happens with the structures under discussion is that the shared

TP, out of which a WH is extracted,140 can be inside an island relatively to one

embedding domain, but outside an island relatively to the domain to which the

WH moves.

For this specific phenomenon, the top-to-bottom derivational dynamics

adopted in this dissertation is not crucial. What makes those constructions

possible is the multi-rootedness of the representation, so that the island is

invisible to the subcomputation where the chain is formed.

For instance, the example in (17a) —repeated below as (21) — would be

structured as in (22).

140 In the case of cleft amalgams, what is extracted is a non-WH DP. But both movements share
the property of having the highest chain-link in the specifier of a CP (or whatever specific
functional category in that highest structural layer of the clause) which, in turn, is embedded
inside a larger (non-shared) clause.

362

(21) Susan dismissed the claim that her husband dated I can’t remember who

before they got married

(22) ΣP 2
 ∅ Σ’

ΣP 2 2 Σ CP
 ∅ Σ’ 2
 2 C TP
 Σ CP y 2 T’

 C TP 2
can’t VP

 T’ 2 V’
 T VP [DP D I] 2

 remember CP
 V’

 2 C’
[DP D Susan] dismissed DP 2 C

the NP 2
 claim CP 2
 that TP

 y
 T’ 2
 T VP

 V’ 4
[DP her husband] V’ [PP before they

 2 got married]
 dated DP

 2
 wh- -o

363

This is consistent with the meaning of (21). What the speaker cannot

remember is not the identity of a woman x such that Susan dismissed the claim

that her husband dated x before they got married. Rather, what the speaker

cannot remember is the identity of the woman y such that Susan’s husband

dated y before they got married.

Notice that lower who is indeed inside an island relatively to the master

clause, as explicitly indicated in (23).

364

(23) ΣP 2
 ∅ Σ’

ΣP 2 2 Σ CP
 ∅ Σ’ 2
 2 C TP
 Σ CP y 2 T’

 C TP 2
can’t VP

 T’ 2 V’
 T VP [DP D I] 2

 remember CP
 V’

 2 C’
[DP D Susan] dismissed DP 2 C

the NP 2
 claim CP 2
 that TP

 y
 T’ 2
 T VP

 V’ 4
[DP her husband] V’ [PP before they

 2 got married]
 dated DP

 2
 wh- -o

So, forming a chain with on e occurrence of who in that lower position

and another one in the highest spec/CP of the master clause would constitute a

365

violation of whatever principle makes the domain highlighted above an island,

as shown in (24)

(24) * Who1 did Susan dismiss {the claim that her husband dated t1 before they

 got married}?

However, considering the whole structure, who is actually not a link of a

chain with relatively to that domain. It is a chain-link only relatively to the

subservient clause, which is built in a subcomputation that cannot even see that

part of the structure where the island is, as shown in (25) and (26).141

141 Given the system here proposed, such invisibility would be a consequence of the relevant
lexical tokens not being in the intersection of the two reference sets.

366

(25) ΣP 2
 ∅ Σ’

ΣP 2 2 Σ CP
 ∅ Σ’ 2
 2 C TP
 Σ CP y 2 T’

 C TP 2
can’t VP

 T’ 2 V’
 T VP [DP D I] 2

 remember CP
 V’

 2 C’
[DP D Susan] dismissed DP 2 C

the NP 2
 claim CP 2
 that TP

 y
 T’ 2
 T VP

 V’ 4
[DP her husband] V’ [PP before they

 2 got married]
 dated DP

 2
 wh- -o

(26) I can’t remember who1 her husband dated t1 before they got married.

367

The same thing is true of (18a), repeated below as (27).

(27) John invited all his friends to a big party after he got you can imagine which job.

The corresponding representation would be as in (28).

(28) ΣP ΣP 2 2
 ∅ Σ’ ∅ Σ’
 2 2
 Σ CP Σ CP 2 2

 C TP C TP
 y

 T’ T’ 2 2
 T VP T VP

 V’ V’
[DP D you] 2

[DP D John] VP imagine CP
 2

[DP all his friends] V’ C’ tp
V’ PP C y 2
 PP after CP

 2
invited C TP

to a big party T’ 2
 T VP

 V’
 [DP D he] 2

got DP2
 which job

368

Again, this is consistent with the meaning that (27) has. What the listener

can imagine is not the nature of x such that John invited all his friends to a big

party after he got a job of the type x. Rather, what the listener can imagine is

simply the nature of x such that John got a job of the type x.

Notice that lower which job is indeed inside an island relatively to the

master clause, as explicitly indicated in (29).

369

(29) ΣP ΣP 2 2
 ∅ Σ’ ∅ Σ’
 2 2
 Σ CP Σ CP 2 2

 C TP C TP
 y

 T’ T’ 2 2
 T VP T VP

 V’ V’
[DP D you] 2

[DP D John] VP imagine CP
 2

[DP all his friends] V’ C’ tp
V’ PP C y 2
 PP after CP

 2
invited C TP

to a big party T’ 2
 T VP

 V’
 [DP D he] 2

got DP2
 which job

So, forming a chain with on e occurrence of which job in that lower

position and another one in the highest spec/CP of the master clause would

370

constitute a violation of whatever principle makes the domain highlighted above

an island, as shown in (30)

(30) * [Which job]1 did John invite all his friends to a party { after he got t1 }

Once the whole structure is considered, it is easy to see that which job is

actually not a link of a chain relatively to that domain, but only relatively to the

subservient clause, which is built in a subcomputation to which the island is

invisible, as shown in (31) and (32).

371

(31) ΣP ΣP 2 2
 ∅ Σ’ ∅ Σ’
 2 2
 Σ CP Σ CP 2 2

 C TP C TP
 y

 T’ T’ 2 2
 T VP can VP

 V’ V’
[DP D you] 2

[DP D John] VP imagine CP
 2

[DP all his friends] V’ C’ tp
V’ PP C y 2
 PP after CP

 2
invited C TP

to a big party T’ 2
 T VP

 V’
[DP D he] 2

got DP2
 which job

(32) You can imagine [which job]1 he got t1.

372

V.4. Cross-Linguistic Word Order Variation

As discussed in §II.8, there is an interesting cross-linguistic variation to be

explained, which concerns those instances of syntactic amalgamation where the

object of a preposition is the target ‘clause invasion’, as exemplified in (33) and

(34).

(33) English

a: Bob gave money to I forgot who.

b: * Bob gave money I forgot to who

(34) Romance (Portuguese)

a: * Bob deu dinheiro pra eu me esqueci quem.

Bob gave money to I REFL-forgot who.

b: Bob deu dinheiro eu me esqueci pra quem.

Bob gave money I REFL-forgot to who

In §II.8, I have shown that this pattern poses a real problem for sluicing-

based approaches to amalgamation, requiring extra ad hoc assumptions to

account for the contrast.

Now, I will show how the facts can follow straightforwardly from the

system here proposed.

373

Let us consider the English case in (33) first. The starting point would be

the intersecting numerations in (35).

(35)

 Δ  C D C  Ψ
Bob D
T[past] I
give T[past]

D forget
money
to
wh-
-o

The system begins by randomly zooming into numeration Δ. The lexical

tokens in that set start being combined in the usual top-to-bottom fashion, as in

(36a) through (36d).

(36) a: ΣP (starting axiom) 2
 ∅ Σ

b: ΣP 2
 ∅ Σ’ 2
 Σ C

374

c: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C D

d: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C DP 2
 D Bob

At this point, spell-out needs to apply to ensure LCA-satisfaction in the

subsequent steps, as shown in (36e).

(36) e: ΣP 2
 ∅ Σ’ 2
 Σ CP  in the Syntax 2

 C DP 2
 D Bob

#Bob#  out to Phonology

The derivation proceeds with the construction of the master clause, all the

way down to the direct object, as in (36f) through (36j).

375

(36) f: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP qy
DP T 2

 D Bob

g: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’

T

DP 2
 D Bob

376

h: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
 T VP y

 gave
DP 2

 D Bob

i: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 2 gave D

 D Bob

377

j: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 2 gave DP

 D Bob 2
 D money

Once again, needs to apply to ensure LCA-satisfaction in the subsequent

steps, as shown in (36k).

378

(36) k: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’  in the Syntax 2
T VP y

 V’
DP 2 2 gave DP

 D Bob 2
 D money

[#Bob#]∩[#gave#∩#money#]  out to Phonology

In the next step, the verb gave lowers as remerges as a new sister to the

DP money, so that it can find itself in the spine of the tree at the subsequent stage

in order for the indirect object to under sisterhood, as required by the Local Merge

condition.

379

(36) l: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob
DP 2

 D money

 gave

Then the indirect object starts to be built, with the introduction of the

preposition to as the sister of gave, as in (36m).

380

(36) m: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D money to

 gave

At this point, the first derivational round is forced to terminate, leaving an

incomplete phrase-marker to be finished in the next round. This is so because, if

the WH-phrase what is built at this point, it would be impossible for it to be

further remerged in the lowest spec/CP position of the subservient clause, due to

the lack of c-command, as discussed in the previous sections.

Before the second round begins, the remaining structure is spelled-out, as

in (36n).

381

(36) n: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2  in the Syntax
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D money to

 gave

[#Bob#]∩[#gave#∩#money#]∩[#to#]  out to Phonology

The system then shifts to numeration Ψ. First the lexical tokens in Ψ that

are not part of the intersection start being combined in the usual top-to-bottom

fashion, all the way down to the matrix verb forgot, as in (36o).

382

(36) o: ΣP2
 ∅ Σ’ 2

 Σ CP2
 C TP y

 T’ 2
 T VP

 forgot
 DP
 2

 D I
ΣP 2

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D money to

 gave

383

Subsequently, the WH-phrase who is built as a temporary sister to forgot,

as in (36p).

384

(36) p: ΣP2
 ∅ Σ’ 2

 Σ CP2
 C TP y

 T’ 2
 T VP

 V’
 DP 2
 2 forgot DP

 D I 2
 wh- -o

ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D money to

 gave

385

After that, spell-out applies, and the construction of the subservient clause

continues with the merge of C[+WH] as the (temporary) sister to who, as in (36q),

and subsequent remerge of the TP of the master clause as the new sister to

C[+WH], as in (36r). Eventually, who lowers into its theta-position inside the

shared TP, as in (36s).

386

(36) q ΣP2
 ∅ Σ’ 2

 Σ CP2
 C TP y

 T’ 2
 T VP

 V’
 DP 2
 2 forgot CP

 D I 4
 DP C

ΣP 2 2 wh- -o
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D money to

 gave

387

(36) r ΣP2
 ∅ Σ’ 2

 Σ CP2
 C TP y

 T’ 2
 T VP

 V’
 DP 2
 2 forgot CP

 D I 4
 DP C’

ΣP 2 2 wh- -o C
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D money to

 gave

388

(36) s ΣP2
 ∅ Σ’ 2

 Σ CP2
 C TP y

 T’ 2
 T VP

 V’
 DP 2
 2 forgot CP

 D I
 C’

ΣP 2 C
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D money PP 2

 to DP 2
 wh- -o

 gave

[#Bob#]∩[#gave#∩#money#]∩[#to#]∩[#I#∩#forgot#∩[#who#]

389

The crucial step in the derivation above is the one between (36-l) and

(36-m). It is at that point that the system took the direction towards (33a) and not

(33b) (repeated below as (37) and (38)).

(37) Bob gave money to I forgot who.

(38) * Bob gave money I forgot to who

In (36m), the system is pushing the derivation as far as it can go by

integrating the preposition to to the phrase marker. If the first derivational round

goes beyond that point, and the WH-phrase is constructed at the bottom of the

tree, then that very WH-phrase will not be able to be remerged into the

subservient clause in the next derivational round, since it will fail to c-command

the target of remerge. That would leave WH-features unchecked in the structure.

Therefore, spell-out applies in (37n), and the first derivational round terminates,

leaving an incomplete phrase marker to be finished in the second round.

Now, let us consider Romance, which exhibits the opposite word-order

pattern, as repeated below in (39).

390

(39) Romance (Portuguese)

a: * Bob deu dinheiro pra eu me esqueci quem.

Bob gave money to I REFL-forgot who.

b: Bob deu dinheiro eu me esqueci pra quem.

Bob gave money I REFL-forgot to who

The derivation for (39) would be identical to the one of (38) up to the

crucial point, which is the equivalent of (36-l). This is shown in (40a).

(40) a: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob
DP 2

 D dinheiro

 deu

391

Just like in (36-l), the system pushes the derivation as far as it can go,

which means that the introduction of the WH-phrase must be delayed, for the

same reasons discussed above. In Romance, however, there is one extra

requirement on WH-chains which makes it impossible for the derivation to go as

far as in the English case. Not only the introduction of the WH-phrase must be

delayed, but also the introduction of the preposition governing it. This is so

because of whatever parametric setting ultimately requires pied-piping in

Romance, demanding that the whole PP containing the WH-phrase be in the

relevant spec/CP. If that is the case, then the first derivational round must

terminate right before the introduction of the preposition.

At the relevant point in the second derivational round, the preposition is

introduced, immediately followed by the introduction of the WH-phrase, as

shown in (40b).

392

(40) b: ΣP2
 ∅ Σ’ 2

 Σ CP2
 C TP y

 T’ 2
 T VP

 V’
 DP 2
 2 esqueci PP

 D eu 2
 pra DP

ΣP 2 2 qu- -em
 ∅ Σ’ 2

Σ CP 2
 C TP

 T’ 2
 T VP y

 V’
 DP 2 VP

 D Bob
 DP 2

 D dinheiro

 deu

393

Eventually, the incomplete TP is shared and further completed by the end

of the second derivational round, when the (pied-piped) PP lowers/remerges

into its theta-position, as in (40c).

394

(40) c: ΣP2
 ∅ Σ’ 2

 Σ CP2
 C TP y

 T’ 2
 T VP

 V’
 DP 2
 2 esqueci CP

 D eu
 C’

ΣP 2 C
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Bob 5
 DP V’ 2 y
 D dinheiro PP 2

pra DP 2
 qu- -em

 deu

[#Bob#]∩[#deu#∩#dinheiro#]∩[#eu#∩#me#∩#esqueci#∩#pra#∩#quem#]

395

V.5. Multiple Amalgamation

In §II.3, I have shown that there can be multiple ‘invasive clauses’ for the

same ‘invaded clause’, as in Lakoff’s (1974) classical example reproduced in (41).

(41) John invited you will never guess how many people to you can imagine what

kind of a party at it should be obvious where with God only knows what purpose

in mind, despite you can guess what pressures.

As discussed in §III.3.5.2, such constructions pose a serious problem to

the remnant-movement analysis to amalgamation, which wrongly predicts that

one invasive clause should contain the other, in a way that is inconsistent with

the actual semantic interpretation. Moreover, locality constraints on movement

would have to be violated in order to generate multiple amalgams, as also

discussed in §III.3.5.2.

This section is dedicated to a demonstration of how multiple amalgams

are generated in the framework here proposed. In fact, there is nothing special

about the mechanics of multiple amalgamation under this approach. Those

constructions are just like ordinary syntactic amalgams, except that they are

generated from an input with more numerations, which yields more than one

parallel subservient clauses, aside from the master clause.

For concreteness, consider (42).

396

(42) Amy gave I wonder how much money to you know who.

The input to (42) would be as in (43) below.

(43)

 Δ  C

 Ω  C D C  Ψ
D Amy D
I T[past] you
T give can
wonder how much imagine

money
to
wh-
-o

As usual, the system randomly takes one of the intersecting numerations

as the starting point. In this case, the starting point is Δ.

Then, the subcomputation that leads to the master clause begins with the

starting axiom, as in (44a). Then, the derivation proceeds by tucking in lexical

items, one by one, at the very bottom of the tree, up to step (44d).

397

(44) a: ΣP 2
 ∅ Σ

b: ΣP 2
 ∅ Σ’ 2
 Σ C

c: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C D

d: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C DP 2
 D Amy

At this point, spell-out needs to apply in order to guarantee that the LCA

will be satisfied in the consecutive steps, as shown in (44e).

398

(44) e: ΣP 2
 ∅ Σ’ 2
 Σ CP  in the Syntax 2

 C DP 2
 D Amy

#Amy#  out to Phonology

After that, the derivation proceeds in the usual (top-to-bottom) fashion

with the introduction of T (cf. (44f)), the lowering of the subject (cf. (44g)), and

the introduction of the verb (cf. (44h)).

(44) f: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP qy
DP T 2

 D Amy

399

(44) g: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’

 T

DP 2
 D Amy

h: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
T VP y

 gave
DP 2

 D Amy

As discussed in the previous sections, the system must delay the

construction and integration of the WH-phase until the next derivational round,

or else that WH-phase will not be able to be merged at the relevant spec/CP due

400

to the lack of c-command. Therefore, the structure in (44h) must be spelled-out,

as shown in (44i).

(44) i: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP  in the Syntax

 T’ 2
T VP y

 gave
DP 2

 D Amy

[#Amy#]∩[#gave#]  out to Phonology

The computational system then shifts its attention to numeration Ω (it

could have been Ψ, as I will discuss later) to continue the structure-building

process. This means that, in a second derivational round, a parallel matrix clause

will be built from the items in Ω, which will be subservient to the (master) matrix

clause built from Δ in the first derivational round.

The higher portion of that subservient clause is built in the usual fashion,

by integrating the relevant lexical tokens in the non-shared part of Ω, into a

401

parallel phrase marker built from the top downwards, via successive

applications of tucking-in. Thus, at some point, the derivational workspace will

contain two unconnected matrix clauses as in (44j), whose corresponding PF-

string is as in (44k).

402

(44) j: ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
[DP D I] 2

 wonder CP 2
[DP how-much money] C

ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 gave
DP 2

 D Amy

(44) k: [#Amy#]∩[#gave#]∩[#I#∩#wonder#∩#how-much#∩#money#]

403

The next step consists of the sharing of the TP of the master clause, which

remerges as the sister of the lower C of the subservient clause, as in (44-l)

(44-l)

 ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
[DP D I] 2

 wonder CP 2
[DP how-much money] C’

ΣP 2 C
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 gave
DP 2

 D Amy

404

The second derivational round, then, proceeds in the usual fashion, taking

lexical items from the intersection between Δ and Ω, and integrating them into

the shared TP, continuing the job left unfinished in the first derivational round.

This is shown in (44m) through (44p)

405

(44) m:

 ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
[DP D I] 2

 wonder CP

 C’
ΣP 2 C

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 2 gave [DP how-much money]

 D Amy

406

(44) n:

 ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
[DP D I] 2

 wonder CP

 C’
ΣP 2 C

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Amy

[DP how-much money] gave

407

(44) o:

 ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
[DP D I] 2

 wonder CP

 C’
ΣP 2 C

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Amy

[DP how-much money] V’

gave to

408

(44) p:

 ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
[DP D I] 2

 wonder CP

 C’
ΣP 2 C

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Amy

[DP how-much money] V’

gave to

[#Amy#]∩[#gave#]∩[#I#∩#wonder#∩#how-much#∩#money#]∩[#to#]

409

The second derivational round ends at this point, right before the

introduction of the WH-phrase, for reasons already discussed.

The computational system then shifts its attention to numeration Ψ, and

the structure-building process continues. This means that a third derivational

round starts, which will eventually build yet another parallel matrix clause (from

the lexical tokens in Ψ). That new matrix clause will be ‘behind’ the two previous

one, and it will also figure as subservient to the (master) matrix clause built from

Δ in the first derivational round.

The higher portion of the new subservient clause is built in the usual

fashion, by integrating the relevant lexical tokens in the non-shared part of Ψ,

into a parallel phrase marker built from the top downwards, via successive

applications of tucking-in. Thus, at some point, the derivational workspace will

contain two matrix clauses connected at an embedded TP node, plus an

unconnected parallel matrix clause, as in (44q), whose corresponding PF-string is

as in (44r).

410

(44) q:

 ΣP ΣP2 2
∅ Σ’ ∅ Σ’ 2 2
 Σ CP Σ CP 2 2
 C TP C TP

 T’ T’ 2 2
 T VP T VP

 V’ V’
[DP D I] 2 [DP D you] 2

 wonder CP know CP

 C’ [DP wh- person] C
ΣP 2 C

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Amy

[DP how-much money] V’

gave to

(44r) [#Amy#]∩[#gave#]∩[#I#∩#wonder#∩#how-much#∩#money#]∩[#to#]

411

Then, the embedded TP is shared one again, and gains a third sister: the

lower C of the second subservient clause, as in (44s). Subsequently, the WH-

phrase who is remerged in its theta-position inside the shared TP, as in (44t).

Eventually, the whole structure in (44t) undergoes spell-out, and the final

representation gets associated with the PF-string in (44u).

412

(44) s:

ΣP ΣP2 2
∅ Σ’ ∅ Σ’ 2 2
 Σ CP Σ CP 2 2
 C TP C TP

 T’ T’ 2 2
 T VP T VP

 V’ V’
[DP D I] 2 [DP D you] 2

 wonder CP know CP

 C’ [DP wh- person] C’
ΣP 2 C C

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Amy

[DP how-much money] V’

gave to

413

(44) t:

 ΣP ΣP2 2
∅ Σ’ ∅ Σ’ 2 2
 Σ CP Σ CP 2 2
 C TP C TP

 T’ T’ 2 2
 T VP T VP

 V’ V’
[DP D I] 2 [DP D you] 2

 wonder CP know CP

 C’ C’
ΣP 2 C C

 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
T VP y

 V’
DP 2 VP

 D Amy

[DP how-much money] V’

gave PP 2
 to [DP wh- person]

414

(44u)

[#Amy#]∩[#gave#]∩[#I#∩#wonder#∩#how-much#∩#money#]∩[#to#]∩[#you#∩#know#∩#who#]

There is one important issue about multiple amalgamation which has not

been discussed yet. I have been assuming all along that, when the input contains

multiple intersecting numerations, the order in which those numerations are

mapped to phrase markers is the mere result of a random choice. Thus the status

of ‘master clause’ or ‘subservient clause’ is not encoded in the numeration in any

way. However, in all derivations demonstrated so far, the outcome crucially

depended on that particular choice of which numeration to be mapped at a given

derivational round. The question, then, is: what would happen if the

computational system does things in a different order?

In order to address this issue, let us first consider cases of simple

amalgamation. Take (45) as the staring point.

(45)
 Δ  C

 Ω  C D
D Amy
I T[past]

T give
wonder how much

money
to
D
Bob

415

In cases like this, there would be two matrix clauses to be built, one from

each numeration. Notice that one numeration (i.e. Ω) has many lexical tokens in

it besides the ones in the intersection, whereas the other one (i.e. Δ) has only one

token of C besides the shared lexical tokens. Eventually, the matrix clause built

from Ω will be a statement that the speaker wonders how much is the amount of

money x, such that Amy gave x to Bob. On the other hand, the matrix clause to

be built from Δ will be a statement that Amy gave an amount x of money to Bob.

In principle, either matrix clause can have the status of the master clause (which

makes the other one subservient to it). That will depend only on which

numeration is randomly chosen for the first and for the second derivational

round.

This system predicts that both possibilities should surface, as neither is

more economical than the other and both converge. The two possibilities are

given in (46a) and (46b), which correspond to the structures in (47) and (48),

respectively.142

(46) a: order of derivational rounds: <Ω, Δ>

I wonder how much money Amy gave to Bob.

b: order of derivational rounds: <Δ, Ω>

Amy gave I wonder how much money to Bob.

142 In what follows, traces are mere notational devices, to be understood as remerged phrases.

416

(47) [CP]
 Amy gave t1 to Bob

[CP [TP I [VP wonder [CP [how-much money]1]]]]

(48) [CP [TP I [VP wonder [CP [how-much money]1]]]]
 Amy gave t1 to Bob

 [CP]

The notational convention used in (47) and (48) presents the master clause

at the top, and the subservient clause at the bottom.

Notice that (46b)/(48) is homophonous to the simpler structure in (49),

which comes from a simpler input, containing only the numeration Ω.

(49) [CP [TP I [VP wonder [CP [how-much money]1 [Amy gave t1 to Bob]]]]]

Now, let us go back to cases of multiple amalgamation, where things get

more interesting.

Consider again the input in (43), repeated below as (50)

417

(50)

 Δ  C

 Ω  C D C  Ψ
D Amy D
I T[past] you
T give can
wonder how much imagine

money
to
wh-
-o

The logical possibilities are the ones listed in (51), and their corresponding

structures are the ones in (52). All of these are equally economical and equally

convergent. Notice that they do not all correspond to the same LF and/or the

same PF representations

418

(51) a: order of derivational rounds: <Δ, Ω, Ψ>

Amy gave I wonder how much money to you know who.

b: order of derivational rounds: <Δ, Ψ, Ω>

Amy gave you know how much money to I wonder who.

c: order of derivational rounds: <Ω, Δ, Ψ>

I wonder how much money Amy gave to you know who.

d: order of derivational rounds: <Ω, Ψ, Δ>

I wonder how much money Amy gave to you know who.

e: order of derivational rounds: <Ψ, Ω, Δ>

You know how much money Amy gave to I wonder who.

f: order of derivational rounds: <Ψ, Δ, Ω>

You know how much money Amy gave to I wonder who.

(52a) [CP]

[CP [TP I [VP wonder [CP [how-much money]1 Amy gave t1 to t2]]]]

[CP [TP you [VP know [CP who2]]]]

(52b) [CP]

[CP [TP you [VP know [CP [how-much money]1 Amy gave t1 to t2]]]]

[CP [TP I [VP wonder [CP who2]]]]

419

(52c) [CP [TP I [VP wonder [CP [how-much money]1]]]]

[CP Amy gave t1 to t2]

[CP [TP you [VP know [CP who2]]]]

(52d) [CP [TP I [VP wonder [CP [how-much money]1]]]]

[CP [TP you [VP know [CP who2 Amy gave t1 to t2]]]]

[CP]

(52e) [CP [TP you [VP know [CP [how-much money]1]]]]

[CP Amy gave t1 to t2]

[CP [TP I [VP wonder [CP who2]]]]

(52f) [CP [TP you [VP know [CP [how-much money]1]]]]

[CP [TP I [VP wonder [CP who2 Amy gave t1 to t2]]]]

[CP]

Even more interesting is the fact that the six structures above do not even

exhaust all the logical possibilities of a legitimate output for the same input.

Regardless of which numeration is chosen for each round, some extra flexibility

arises whenever there is more than one WH-phrase whose terminals are in the

intersection of numerations. In such cases, there are other attested structures,

where superiority effects appear not to hold. This will be the subject of the next

section.

420

V.6. Hidden Superiority as Relativized Relativized Minimality

V.6.0. The Phenomenon

As shown in §II.6, syntactic amalgams appear not to exhibit superiority

effects.

For instance, in (53), there are two WH-phrases (which would in principle

be competing for the same position(s)), but the pattern that obtains resembles the

one in (54) rather than (55), as if one of the WH-phrases were behaving like a

pronoun for all intents and purposes.

(53) a: I’ll find out [how much money]1 Bob gave t1 to you can imagine [who]

b: I’ll find out [who]2 Bob gave you can imagine [how much money] to t2

(54) a. I’ll find out [how much money]1 Bob gave t1 to [someone]2

b. I’ll find out [who]2 Bob gave [some money]1 to t2

(55) a: I’ll find out [how much money]1 Bob gave t1 to [whom]2

b: * I’ll find out [who]2 Bob gave [how much money]1 to t2

Before getting into the details of how the system proposed here would

handle the phenomenon, let us first establish a metalanguage that can help us

state the problem more precisely. As an expository device, in §V.1, I will be

talking about movement in terms of raising rather than lowering, and in terms of

421

traces and/or copies rather than remerged elements. Later on, the partial

conclusions will be formalized in §V.2 in terms of the dynamic top-to-bottom

derivational system that I advocate for in this dissertation.

V.6.1. The General Idea

As argued by Kitahara (1997), the so-called Superiority Condition on

Transformations (Chomsky 1973) can be formalized in terms of Chomsky’s (1995)

Minimal Link Condition (MLC), itself a reformulation of Rizzi’s (1990) Relativized

Minimality (RM).143 (56a) and (56b) are the outputs of two competing derivations,

such that (56a) wins over (56b) because the chain links in (56a) – i.e. how much

money1 & t1 – are closer to each other than are the chain links in (56b) – i.e. who2 &

t2. Before any movement, how much money is closer to the target position (i.e. the

embedded spec/CP) than who is. Thus, who cannot move there.

(56) a: I’ll find out [how much money]1 Bob gave t1 to [whom]2

b: * I’ll find out [who]2 Bob gave [how much money]1 to t2

143. Rizzi’s (1990) original formulation of RM was not initially meant to handle Superiority. For
present purposes, though, it’s safe to take Superiority as an instance of RM, since the descriptive
characterization of the former shares with the later the general idea of minimizing distance
between chain links and precluding intervention; which, technicalities aside, is the essence of
MLC (cf. Kitahara 1997). Alternatively, Chomsky (1981), Jaeggli (1981) and Aoun, Hornstein &
Sportiche (1981) propose that Superiority reduces to the ECP applied at LF. May (1985) takes
Superiority to be a subcase of Pesetsky’s Path Containment Condition. Hornstein (1995, 2001),
inspired by Chierchia’s work, takes Superiority to be a subcase of Weak Cross Over. As far as I
can see, all these takes on superiority are compatible with my present proposal that shared
constituency may obfuscate superiority effects.

422

Such contrast does not exist in (54), repeated below as (57).

(57) a: I’ll find out [how much money]1 Bob gave t1 to [someone]2

b: I’ll find out [who]2 Bob gave [some money]1 to t2

In this case, the chain links in (57a) – i.e. [how much money]1 and t1 – are also

closer to each other than are the chain links in (57b) – i.e. [who]2 and t2. But that

does not make (57b) ungrammatical. In fact, the derivations that yield (57a) and

(57b) do not compete to begin with, since they start out from distinct

numerations. Thus, the competitor to be compared with (57b) should be (58),

which resembles (56a) with respect to the distance between chain links. As

expected, (58) is not acceptable, as opposed to (56a).

(58) * I’ll find out [some money]1 Bob gave t1 to [whom]2

(57b) wins over (58) because, before any movement, it is irrelevant that

some money is closer to the target position (i.e. the embedded spec/CP) than whom

is, since the attracting head (i.e. the embedded C) attracts to its checking domain

only phrases that can match its WH-feature. Last Resort rules out the movement

of some money in (58), given that no feature gets checked that way. Therefore,

some money is invisible to RM/MLC in (57b), which makes the chain links who2

and t2 as close as possible in the technical sense. This is the essence of RM:

423

phrases that are close to the attracting head should block the movement of distant

phrases if and only if they are all of the same kind. Closeness and Minimality of

chain-links are calculated relatively to the features of the attractor and the ones of

the potential moving phrases.144

In (56a) as well as in (56b), both how much money and who(m) are in the

c-command path of the embedded C and both can check its [+WH] feature; hence

they are both attractable. Since how much money is closer to the embedded C than

who is, then (56a) is grammatical but (56b) is not.

The contrast described above is not observed in cases where one of the

WHs is part of a syntactic amalgam.145 Notice that (59) patterns like (57) rather

than like (56), even though both sentences in (59) have two WHs apparently

under the scope of the attracting C, similarly to (55). By the MLC, how much

money should count as the closest WH to the embedded C (thus blocking the

movement of who in (59b)), but it behaves as a non-WH version of itself

(i.e. some money) for the purposes of moving who in (59b), which, unlike (56b), is

just as acceptable as (57b).146

144. Technically speaking, α can move to the checking domain of a head β iff α is attractable by β;
and there is no γ which is also attractable by β, γ being closer to β than α is. We say that α is
attractable by β iff α has the relevant kind of feature that could potentially check a feature of β;
and β c-commands α. We say that γ is closer to β than α is if and only if β c-commands both α and
γ, and moreover γ c-commands α.
145. Standard examples of Superiority typically involve competition between a subject and an object
(e.g. who bought what?/*what did who buy?) rather than two objects, which may raise further issues
regarding equidistance. All my examples involve double objects because syntactic amalgamation
cannot affect bona fide subjects to begin with (e.g. *I wonder what1 you can imagine who bought t1) (cf.
Guimarães 2003a/b/c).
146. Some English speakers judge (59b) as somewhat degraded in comparison to

(59a). As suggested to me by Howard Lasnik (personal communication), this

424

(59) a: I’ll find out [how much money]1 Bob gave t1 to you can imagine [who]

b: I’ll find out [who]2 Bob gave you can imagine [how much money] to t2

For all intents and purposes, a WH that is amalgamated with syntactic

chunks of a certain kind (e.g. you’ll never guess, God knows, you can imagine, etc)

does not count as a WH. Further evidence for this is shown in (60) and (61).

(60) a: Amy wonders [how much money]1 Bob gave t1 to Tom.

may be due to parsing difficulties associated with a highly complex material

intervening between the WH and the stranded preposition that selects it; as

independently attested in cases like “who did you give that Beatles record

autographed by George Harrison that you got in London last year to?” which is less

acceptable than “who did you give that Beatles record to?”. Crucially, even for those

speakers, (59b) is much more acceptable than (56b), which is just plain

impossible. Interestingly, such degrading effect does not exist at all in Romance

(exemplified below with Portuguese), where the analogues of (59a) and (59b) are

both equally acceptable, which is consistent with the reasoning just sketched,

since WH-movement must involve pied-piping in Romance (cf. §II.8; §V.4).

(i) Eu vou descobrir quanto dinheiro Bob deu você pode imaginar pra quem.

I will discover how-much money Bob gave you can imagine to who.

(ii) Eu vou descobrir pra quem Bob deu você pode imaginar quanto dinheiro.

I will discover to who Bob gave you can imagine how-much money.

425

b: * Amy wonders God knows [how much money]1 Bob gave t1 to Tom.

c: * Amy wonders [some money]1 Bob gave t1 to Tom.

(61) a: * Amy believes Bob gave [how much money] to Tom.

b: Amy believes Bob gave God knows [how much money] to Tom.

c: Amy believes Bob gave [some money] to Tom.

One could deny that this is a real problem under the assumption that how

much money in (59b) is deeply embedded inside a complex constituent also

containing the parenthetic-like string, as the brackets in (62b) indicate. That way,

how much money would not c-command who, hence not counting as an intervener

according to the MLC (Kitahara 1997; Uriagereka 1999).

(62) a: I’ll find out [how much money]1 Bob gave t1 to [you can imagine who]

b: I’ll find out who2 Bob gave [you can imagine how much money] to t2

But what kind of complex constituent would that be? For (62b), one could speculate that

you can imagine how much is some sort of complex modifier whose sister is money; or even that you

can imagine how is the sister of much money. But that reasoning would not carry over to you can

imagine who in (62a) since there is no NP which that would the modifier of. In face of that, one

might take you can imagine to be a constituent that takes who (62a) or how much money (62b) as its

sister. That poses the problem of having an unsaturated verb (imagine) inside the modifier, or

426

having to stipulate an ad hoc empty category there, not to mention the mysterious nature of that

kind modification, not found anywhere other than amalgams.147

Now, let us see how the problem can be once we assume that syntactic amalgams involve

multiply-rooted phrase markers. Let us focus on the problematic case (53b), repeated below as

(63).

(63) I’ll find out [who]2 Bob gave you can imagine [how much money] to t2

The key property of this construction is the fact that it conveys two

independent parallel messages (cf. §II.4). In (63), what is being imagined is not

just the size of amount of x money, but the size of amount of x money such that

Bob gave x to a person y. But (63) cannot be just a convoluted version of (64a), as

it also includes another chunk of structure (i.e. I’ll find out...) to which [who2 Bob

gave [how much money]1 to t2] is subordinated, as an indirect question about the

identity of that person y that was given an amount x of money by Bob. So,

besides (64a) there is also (64b).

(64) a: You can imagine [CP [how much money]1 [IP Bob gave t1 to whom]]

b: I’ll find out [who]2 Bob gave [how much money]1 to t2

It seems, thus, that (64a) and (64b) somehow collapse at the paratactic

level, yielding (63). Intriguingly, (64b) is a legitimate structure as part of this

147. Also notice that those parenthetic-like string always contain verbs that (under the relevant
reading) select only CPs as their complements, rather than pure DPs. For instance, “Homer drank I
wonder how many beers at the party” is possible, but “I wonder 75 beers” and “How many beers do I
wonder?” are not.

427

more complex paratactic construction, even though it is ungrammatical when in

isolation – as in (55b) – due to a violation of the MLC. Therefore, the problem

with the absence of contrast in (59) is real. In what follows, I propose that (59b)

indeed obeys the MLC at the relevant derivational step, but the complex

interaction of parallel structures masks superiority effects. I further claim that

this complex interaction is not paratactic, but syntactic.

Following the proposal made in §IV.1, let us take the input to the syntactic

computations that generate (53a) and (53b) would be as in the Venn diagram in

(65), irrelevant functional elements omitted.

(65)

Δ  you, can, imagine, C[+WH],

Bob, gave, how-much, money, to, who

Ω  I, will, find-out, C[+WH],

Such intersections allow local computations to interfere with one another

to some extent, with paratactic effects emerging from syntax pushed to limit.

We have been assuming that syntactic representations may exhibit

multiply-rooted phrase markers with parallel trees that share some constituent(s)

somewhere in between the roots and the terminals (via multi-motherhood). From

that perspective, the actual structure of (63) would be (66), which – linearization

matters aside – involves two parallel matrix clauses (i.e. you can imagine... and I’ll

428

find out...) sharing the same subordinate IP (i.e. Bob gave [how much money] to

[whom]).

(66) [CP I’ll find out [CP [who]2 C IP]]

 Bob gave t1 to t2

[CP you can imagine [CP [how much money]1 C]]

The derivation of (66) starts with the computational system randomly

selecting the numeration Δ as the array of lexical tokens to be syntactically

integrated first. Right after the embedded IP is built, (67) obtains.

(67) [IP Bob gave [how much money]1 to [who]2]

This IP is then embedded inside a CP that will eventually be a sentential

complement inside the matrix clause that corresponds to numeration Δ.

(68) [CP C[+WH] [IP Bob gave [how much money]1 to [who]2]]

At this point, C attracts the closest WH under its scope (i.e. how much

money) in accordance with the MLC, as in (69).

(69) [CP [how much money]1 C[+WH] [IP Bob gave t1 to [who]2]]

429

The derivation proceeds in the usual fashion, and the matrix clause

corresponding to numeration Δ is eventually built, as in (70).

(70) [CP-Δ you can imagine [CP [how much money]1 C [IP Bob gave t1 to [who]2]]]

Once the (sub)derivation corresponding to numeration Δ is over, then the

entire remnant IP (from which how much money has been moved) is taken and

incorporated into the derivation corresponding to numeration Ω, being remerged

with another C, which cannot detect the (now-moved) WH how much money

under its scope at that derivational point, as in (71).

(71) [CP C[+WH] IP]]

Bob gave t1 to [who]2

 [CP-Δ you can imagine [CP [how much money]1 C]]

What actually happens in (71) is that the very same token of the IP

[Bob gave t1 to who] remains as a daughter of the embedded CP (and as a sister of

the embedded C) under the root CP-Δ while being ‘remerged’ with another

element from a parallel (sub)derivation (i.e. the C taken from numeration Ω in

(65), which will eventually be the complementizer of the embedded clause under

the other matrix clause (root CP-Ω) of the complex structure).148 Thus,

148. This instance of shared constituency follows from derivational economy. When the
computational system is done with the (sub)derivation that syntactically integrates the members

430

[IP Bob gave t1 to who] becomes a shared constituent, having two mothers in a

complex multiply-rooted phrase marker.

Once [IP Bob gave t1 to who] gets remerged with another C in a parallel

(sub)derivation, then who becomes the closest (and the only) attractable WH

under the scope of that new attracting C. Then it moves to the spec/CP within

the derivation that integrates the lexical tokens in Ω, in accordance with the

MLC. This is the crucial step that explains why (53b) is possible.

(72) [CP [who]2 C IP]]

 Bob gave t1 to t2

 [CP-Δ you can imagine [CP [how much money]1 C]]

The derivation proceeds in the usual fashion, and the matrix clause

corresponding to numeration Ω is eventually built, as shown in (73).

(73) [CP-Ω I’ll find out [CP [who]2 C IP]]

 Bob gave t1 to t2

[CP-Δ you can imagine [CP [how much money]1 C]]

of set Δ and starts integrating the members of Ω, it identifies the intersection Δ∩Ω, given that
some of the members of Ω are already in the derivational workspace, as the leaves of a (sub)tree.
Then, why would the system select those same lexical tokens again, one by one, and build an
identical clone of that same IP? It is more economical to just take that IP already built and
incorporate it into the new (sub)derivation. It is a matter of choosing between one application of
merge and many applications of select, merge, and move (copy, merge, delete).

431

Thus, the whole complex paratactic-like construction in (53b) is built with

purely syntactic tools. Notice that there are two WH-chains in (73). Chain #1 is

headed by how much money under root CP-Δ, and chain#2 is headed by who

under root CP-Ω. The tails of both chains are inside an IP that is shared by the

two roots. From a representational perspective, chain#2 seems to violate the

MLC, since between its links there is the tail of chain#1. From a derivational

perspective, though, both chains obey the MLC. In a nutshell, RM should be

calculated relatively to each derivational domain and each derivational step. I call

this Relativized Relativized Minimality.

Before moving on to other examples, let me clear up a very important

issue that was overlooked in the exposition above. On the one hand, the rationale

behind the idea of getting shared constituency through remerge in the

derivational step in (71) is that this is the optimal way to make all lexical tokens

in Δ∩Ω access both parallel (sub)derivations, therefore being integrated into

both parallel (sub)representations. On the other hand, it is crucial that in step

(72) the higher WH (i.e. how much money) be absent from the shared IP, which

contains only a trace of it. Therefore, for all intents and purposes none of the

terminals that constitute how much money is there when the embedded IP gets

remerged and accesses the derivation.

The conflict between these two assumptions is obvious. If we take t1 in

(71) to be a GB-style trace with no internal content (other than a category label

and an index), then its not surprising that who should move in step (72) without

432

violating the MLC; but this also entails that the system fails to map all items of Ω

onto the corresponding phrase marker, since there would be no ‘occurrence’ of

the tokens how-much and money anywhere under root CP-Ω. Conversely, if we

take t1 to be a minimalist-style copy of [DP how much money] in the spec/CP under

root CP-Δ, then it is obvious why how-much and money are entering the

derivation that syntactically integrates the items in Ω; but it is mysterious, then,

why this copy inside the shared IP does not block the movement of who,

according to the MLC.

This problem goes away if we endorse the following two assumptions.

(74) Technical questions arise about the identity of α and its trace t(α) after a

feature of a has been checked. The simplest assumption is that the features

of a chain are considered a unit: if one is affected by an operation, all are.

(Chomsky 1995: chapter 4, note 12)149/150

149 This is equivalent to Hornstein’s (1995) All for One Principle, which states that “Every link in a
chain meets the morphological conditions satisfied by any link in a chain”. Chomsky (2001) incorporates
this idea into a system where Move is seen as Agree + Pied-Piping + Merge; where Pied-Piping
requires phonological content.
150 As it will be shown in the next section, this assumption can be derived as theorem if we take
that movement, too, involves remerge/multi-motherhood as part of its inner-workings, rather
than copy + merge (+ delete). That way, a so-called moved phrase is better understood as a
pluripresent phrase, simultaneously occupying the head and the tail positions of a chain (cf.
Bobaljik 1995; Drury 1998, 1999; Epstein, Groat, Kitahara & Kawashima 1998; Guimarães 1999,
2002, 2003b/c/d; Abels 2001; Gärtner 2002). If any feature of that single entity gets deleted,
obviously the whole chain gets affected. It is this approach to movement that I am tacitly
assuming here, although I keep using the copy-theoretical terminology and the trace-theoretical
notation for expository reasons.

433

(75) [T]he wh-phrase has en uninterpretable feature [wh] and an interpretable

feature [Q], which matches the uninterpretable probe [Q] of a

complementizer in the final stage. (...) The wh-phrase is active until [wh] is

checked and deleted. (Chomsky 2000: 128)151

Therefore, how much money indeed is inside the shared IP, c-commanding who.

But, after having its [wh] feature checked in step (69), it becomes inactive. Hence,

the MLC demands that who be attracted in step (72).

Although, by this relativized version of RM, how much money must be the

first WH to move (since it is closer to either attractor), nothing forces it to move

to the spec/CP under imagine. Alternatively, the MLC can be satisfied by the

movement of how much money to the spec/CP under find-out; which causes who to

further move to the spec/CP under imagine. This is exactly how (53a) is

generated. The starting point is also be intersecting numerations in (65).

Remember that the choice of which numeration to start with is random. So, if Ω

is chosen, how much money moves in that first subcomputation, whose final

output is (76). Then, the embedded IP gets remerged with the C from Δ, as in

(77), which attracts who, as in (78), eventually yielding (79).

(76) [CP-Ω I’ll find out [CP [how much money]1 C [IP Bob gave t1 to [who]2]]]

151 But see Guimarães (2003b/c) on successive cyclicity and defective intervention.

434

(77) [CP C[+WH]]]

Bob gave t1 to [who]2

[CP-Δ you can imagine [CP [how much money]1 C]]

(78) [CP [who]2 C IP]]

 Bob gave t1 to t2

 [CP-Δ you can imagine [CP [how much money]1 C]]

(79) [CP-Ω I’ll find out [CP [who]2 C IP]]

 Bob gave t1 to t2

[CP-Δ you can imagine [CP [how much money]1 C]]

This competing derivation is as economical as the one in (67-73), and it

also produces a convergent representation. Therefore, such representation

should be grammatical too; which indeed it is. The corresponding meanings for

(53a)/(79) and (53b)/(73) would roughly be (80a) and (80b) respectively.152

(80) a: ∃x, ∃y [[Bob gave an amount x of money to a person y] & [you can

imagine what the size of x is] & [I’ll find out what the identity of y is]]

152 This is obviously a rough oversimplification. See Guimarães (2003e) for details, especially with
regards to how both variables x and y (the WH-traces) get bound in the same domain despite the
absence of a single root in the syntactic representation.

435

b: ∃x, ∃y [[Bob gave an amount x of money to a person y] & [you can

imagine what the identity of y is] & [I’ll find out what the size of x is]]

If complex syntactic amalgams indeed have the structure proposed above,

it not obvious how they get mapped into a linear PF-string. Aside from the

shared material, multiply-rooted phrase markers necessarily contain terminals

dominated only by one of the roots, which do not stand in any relation to the

terminals dominated only by another root. Whatever the linearization function is

(e.g. Kayne’s (1994) LCA, the head parameter, etc), it cannot establish precedence

relations among all terminals in any deterministic way.153

V.6.2. ‘Hidden Superiority’ in Top-to-Bottom Derivations

Having presented the idea of superiority effects being masked by

derivational ‘circumstances’, let’ us now see how that applies to the specific

‘generalized tucking-in’ derivational system being proposed here.

Just like in the bottom-up implementation of above, we need to commit to

the assumption in (81 (=75)).

153 See Wilder (1999), Gärtner (2002) and Citko (2002) for related discussion.

436

(81) [T]he wh-phrase has en uninterpretable feature [wh] and an interpretable

feature [Q], which matches the uninterpretable probe [Q] of a

complementizer in the final stage. (...) The wh-phrase is active until [wh] is

checked and deleted. (Chomsky 2000: 128)

In the sample derivations below the following notational convention will

be adopted. Whenever a phrase bears an unchecked [wh] feature, it will be

marked with a flag symbol (i.e. ), while the checkmark symbol (i.e. ) will be

used for phrases whose [wh] feature has been checked.

As for the Minimal Link Condition, nothing substantial needs to be

changed. However, minor technical details must be redefined in accordance with

the top-to-bottom mechanics of ‘generalized tucking-in’ derivations. This can be

done in many ways. For the present purposes, I will not bother with details, and

will simply follow the informal definition in (82), which captures the general

idea.

(82) A new active WH-phrase Z cannot be merged anywhere in the c-

command path of the highest WH-phrase X before X lowers (i.e. remerges)

into its case/theta position(s).

Let us begin with the non-controversial case, repeated below in (83),

whose corresponding input would be as in (84 (=65)).

437

(83) I’ll find out how much money Bob gave to you can imagine who

(84)

Δ  you, can, imagine, C[+WH],

Bob, gave, how-much, money, to, who

Ω  I, will, find-out, C[+WH],

First, the system randomly takes Ω as the starting point for the first

derivational round. The construction of the master clause begins in the usual

fashion, with the starting axiom, as in (85a), and subsequent tucking-in of lexical

tokens in Ω, one at a time, as follows.

(85) a: ΣP (starting axiom) 2
 ∅ Σ

b: ΣP (merge C) 2
 ∅ Σ’ 2
 Σ C

c: ΣP (merge D) 2
 ∅ Σ’ 2
 Σ CP 2

 C D

d: ΣP (merge I) 2

438

 ∅ Σ’ 2
 Σ CP 2

 C DP 2
 D I

e: ΣP (spell-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C DP 2
 D I

f: ΣP (merge will) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP qy
DP will 2

 D I

g: ΣP ((re)merge [DP D I]) 2
 ∅ Σ’ 2
 Σ CP 2

439

 C TP

 T’

 will

DP 2
 D I

h: ΣP (merge find-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
 will VP y

 find-out
DP 2

 D I

i: ΣP (merge how-much) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
 will VP y

440

 V’
DP 2 2 find-out how-much

 D I

j: ΣP (merge money) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
 will VP y

 V’
DP 2 2 find-out DP

 D I 2
how-much money

k: ΣP (spell-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP

441

 y
 V’

DP 2 2 find-out DP
 D I 2

how-much money

So far, the corresponding PF (super-)string is [#I#]∩[#will#∩#find-

out#∩#how-much#∩#money#]. Notice that, at this point, the WH-phrase how

much money is still active, in the sense of (81) above, and it needs to have its

uninterpretable [wh] feature checked under sisterhood, which is done in the

following steps, as shown below.

(85) l: ΣP (merge C) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C

 DP

442

 2
how-much money

m: ΣP (feature checking) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C

 DP 2
how-much money

After that, the first derivational round proceeds in the usual fashion, as

follows.

443

(85) n: ΣP (merge D) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C D
 how-much money

o: ΣP (merge Bob) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

444

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C DP
 how-much money 2

 D Bob
p: ΣP (spell-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C DP
 how-much money 2

 D Bob

445

q: ΣP (merge T) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
 how-much money y

 T
DP 2

 D Bob

446

r: ΣP ((re)merge [DP D Bob]) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
 how-much money y

 T’ t
T

DP 2
 D Bob

447

s: ΣP (merge gave) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
 how-much money y

 T’ 2
T VP y

 gave

DP 2
 D Bob

448

t: ΣP ((re)merge [DP how-much money]) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’

DP gave 2
 D Bob

449

 DP 2
how-much money

u: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Bob to

450

 DP 2
how-much money

At this point, the natural continuation towards building the sentence

corresponding to Ω would be to build the WH-phrase who, by tucking it in as

the complement of to.

However, if that happens, the who will not be able to be later merged in

the lower spec/CP of the subservient clause, since it will fail to c-command that

[+WH] complementizer, as discussed previously for many other derivations

along this chapter.

The only alternative that could lead to convergence, then, is the

termination of the first derivational round, leaving the phrase marker

corresponding to Ω as an incomplete structure. This is possible because all

relevant lexical tokens necessary to build this chunk of the structure are shared

by the numeration in Δ. That way, the subcomputation performed in the second

derivational round can finish the job of building that chunk of structure left

incomplete by in the first derivational round.

Therefore, for convergence reasons, the next step after immediately after

(85u) must be the one in (85v), where the current structure undergoes spell-out.

451

(85) v: ΣP 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Bob to

452

 DP 2
how-much money

This marks the end of the first derivational flow. So far, the corresponding

PF (super-)string is [#I#]∩[#will#∩#find-out#∩#how-much#∩#money#]∩[#to#]

The computational system, then, shifts its attention to numeration Δ, and

starts the second derivational flow, which proceeds in the usual fashion, from the

top downwards, up to the point where the structure in (85w) obtains.

453

(85) w: ΣP (merge C)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ DP C
DP 2 2 2 find-out CP wh- -o

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Bob to

 DP 2
how-much money

454

The remainder of the derivation is as follows.

455

(85) x: ΣP (feature checking)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ DP C
DP 2 2 2 find-out CP wh- -o

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Bob to

 DP 2
how-much money

456

y: ΣP ((re)merge TP)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ DP C’
DP 2 2 2 find-out CP wh- -o C

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Bob to

 DP 2
how-much money

457

z: ΣP ((re)merge [DP who])2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C’
DP 2 2 find-out CP C

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Bob P’ 2

 to DP2
 wh- -o

 DP 2
how-much money

458

z’: ΣP (spell-out)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C ’
DP 2 2 find-out CP C

 D I y
 C’
 2
C TP y

 T’ 2
T VP y

 V’
 2

DP gave PP 2 y
 D Bob P’ 2

 to DP2
 wh- -o

 DP 2
how-much money

459

The corresponding PF (super-)string is [#I#]∩[#will#∩#find-out#∩#how-

much#∩#money#]∩[#to#]∩[#you#]∩[#can#∩#imagine#∩#who#]. Notice that, at

no step in (85), the MLC (as defined in (81)) has been violated.

Now, let us take a look at the controversial case in (86).

(86) I’ll find out who Bob gave you can imagine how much money to.

The corresponding derivation would be as in (87).

First, the system randomly takes Ω as the starting point for the first

derivational round.

The first steps are identical to the ones on derivation in (85-86), yielding

the structure in (87a).

(87) a: ΣP (merge find-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T ’ 2
 will VP y

 find-out
DP 2

 D I

460

At this point, nothing prevents the system from tucking in who, as in

(87b-d), instead of how much money as the temporary complement of find-out,

since all relevant lexical tokens are present in relevant numeration.

(87) b: ΣP (merge wh) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out wh-

 D I

c: ΣP (merge person) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out DP

 D I 2
 wh- -o

461

d: ΣP (spell-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out DP

 D I 2
 wh- -o

The derivation, then, proceeds in the usual fashion, as follows.

e: ΣP (merge C) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C

 DP 2
 wh- -o

462

f: ΣP (feature checking) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C

 DP 2
 wh- -o

g: ΣP (merge D) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C D
 wh- -o

463

h: ΣP (merge Bob) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C DP
wh- -o 2

 D Bob

i: ΣP (spell-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C DP
wh- -o 2

 D Bob

464

j: ΣP (merge T) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T
DP 2

 D Bob

465

k: ΣP (remerge [DP D Bob]) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ t
T

DP 2
 D Bob

466

l: ΣP (merge gave) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ 2
T VP y

 gave

DP 2
 D Bob

467

m: ΣP (spell-out) 2
 ∅ Σ’ 2
 Σ CP 2

 C TP

 T’ 2
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ 2
T VP y

 gave

DP 2
 D Bob

Notice that spell-out has applied prematurely in step (87m), before the

direct object is tucked in. As discussed before, it is crucial that the first

derivational flow terminates at this point, otherwise the direct object will fail to

c-command the target position in the subservient clause when it is time for it to

remerge.

468

This marks the end of the first derivational flow. So far, the corresponding

PF (super-)string is [#I#]∩[#will#∩#find-out#∩who#]∩[#Bob#]∩[#gave#]

The computational system, then, shifts its attention to numeration Δ, and

starts the second derivational flow, which proceeds in the usual fashion, from the

top downwards, up to the point where the structure in (87n) obtains.

469

(87) n: ΣP (merge imagine)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can V P

 T’ imagine 2 [DP D you]
 will VP y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ 2
T VP y

 gave

DP 2
 D Bob

The remainder of the derivation is as follows.

470

(87) o: ΣP (merge how-much)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine how-much y

 V’
DP 2 2 find-out CP

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ 2
T VP y

 gave

DP 2
 D Bob

471

p: ΣP (merge C)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ DP C
DP 2 tp 2 find-out CP how-much money

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ 2
T VP y

 gave

DP 2
 D Bob

472

q: ΣP (feature checking)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ DP C
DP 2 tp 2 find-out CP how-much money

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ 2
T VP y

 gave

DP 2
 D Bob

473

r: ΣP ((re)merge TP)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C TP 2
 Σ CP T’ 2 2

 C TP can VP

 T’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ DP C
DP 2 t 2 find-out CP howmuch money C

 D I y
 C’

 DP 2 2 C TP
wh- -o y

 T’ 2
I VP y

 gave

DP 2
 D Bob

474

s: ΣP ((re)merge[DP how-much money])2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C IP 2
 Σ CP I’ 2 2

 C IP can VP

 I’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C
DP 2 t 2 find-out CP C

 D I y
 C’

 DP 2 2 C IP
wh- -o y

 I’ 2
I VP y

 V’ 2
DP gave DP 2 2

 D Bob how-much money

475

t: ΣP ((re)merge gave)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C IP 2
 Σ CP I’ 2 2

 C IP can VP

 I’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C
DP 2 t 2 find-out CP C

 D I y
 C’

 DP 2 2 C IP
wh- -o y

 I’ 2
I VP y

 V’

DP VP 2 2
 D Bob DP2

 how-much money

gave

476

u: ΣP (merge to)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C IP 2
 Σ CP I’ 2 2

 C IP can VP

 I’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C
DP 2 t 2 find-out CP C

 D I y
 C’

 DP 2 2 C IP
wh- -o y

 I’ 2
I VP y

 V’

DP VP 2
 D Bob DP2

 how-much money V’

 to

gave

477

The step in (87u) is a crucial one. The WH-phrase how much money is

introduced in the c-command path of who before who lowers to its ‘D-structure

position’ (so to speak). Notice, however, that, at this point, how much money

is no longer active, as is [wh] has already been checked in a parallel domain

outside the scope of who. Therefore, the MLC is satisfied.

The derivation continues as follows.

478

(87) v: ΣP ((re)merge who)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C IP 2
 Σ CP I’ 2 2

 C IP can VP

 I’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C
DP 2 t 2 find-out CP C

 D I y
 C’
 2
C IP y

 I’ 2
I VP y

 V’

DP VP 2
 D Bob DP2

 how-much money V’ y
 PP t

 to

 DP
gave 2

 wh- -o

479

w: ΣP (spell-out)2
 ∅ Σ’

 2
ΣP Σ CP 2 2

 ∅ Σ’ C IP 2
 Σ CP I’ 2 2

 C IP can VP

 I’ V’ 2 [DP D you] 2
 will VP imagine CP y y

 V’ C
DP 2 t 2 find-out CP C

 D I y
 C’
 2
C IP y

 I’ 2
I VP y

 V’

DP VP 2
 D Bob DP2

 how-much money V’ y
 PP t

 to

 DP
gave 2

 wh- -o

480

The corresponding PF (super-)string is [#I#]∩[#will#∩#find-

out#∩#who#]∩[#you#]∩[#can#∩#imagine#∩how-much#∩#money#]∩[#to#].

Notice that, at no step in (87), the MLC (as defined in (82)) has been

violated.

V.7. On the Restriction On Invasion at the Subject Position

As shown in §II.7, an important empirical generalization about syntactic

amalgams is that invasive clauses can fit in the position of an object (cf. (88a) and

(88b)) or an adjunct (cf. (88c)) of the master clause, but somehow they cannot fit

in a subject position, as shown in (89).154

(88) a: Tom believes that Amy has been dating I forget who since last month.

b: Tom believes that Amy gave all her money to I forget who yesterday.

c: Tom said that Amy has been dating Bob since I forget when.

(89) * Tom said that I forgot who is dating Amy.

154 As previously mentioned in §II.7, the example in (89) is fully acceptable under the
interpretation corresponding to the structures in (i). This reading is irrelevant for our purposes,
as they are cases of ordinary embedding, rather then syntactic amalgamation.
(i) [CP C [TP Tom3 T [VP t3 said [CP that [IP I2 T [VP t2 forgot [CP who1 [IP t1 is [VP t1 dating Amy]]]]]]]]]

481

Thus, there seems to be a constraint on what counts as a legitimate

‘invasion point’. Such a constraint can be stated along the lines of (91).

(91) A DP that occupies a spec/TP position in the master clause cannot

simultaneously occupy a spec/CP position in a subservient clause.

Although descriptively adequate, this is obviously a mere stipulation.

Given the assumptions about trans-sentential shared constituency that I have

been assuming so far, it seems rather mysterious as to why the generalization

behind the stipulation in (91) should hold.

From a representational point of view, without assuming the stipulation

in (91), there is nothing wrong with the structure in (92), which would

correspond to the unacceptable example in (89) above.

482

(92) ΣP 2
 ∅ Σ’2
 Σ CP 2

 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2

 T VP C’

 V’ C
 DP 2
 2 said CP
 D Tom 2

 that TP

 T’ 2
 is VP

 V’ 2
DP dating DP 2 2

 wh- -o D Amy

Thus, at first sight, it seems that such constraint on invasion cannot be

straightforwardly reduced to deeper principles.

However, once we assume a derivational approach to syntax, and —

crucially — once we implement such view in terms of a ‘generalized tucking in’

483

mechanics to phrase structure building (cf. §IV.3), then we can correctly predict

(89) to be ungrammatical.

V.7.1 Finite Clauses.

The relevant (non-convergent) derivation for the structure in (92) would

be as follows. The starting point is the input (93)

(93)

  Ψ
C C

 Δ  D D
Tom I
T T
said forgot
that C[+WH]

wh-
-o
is
dating
D
Amy

The computational system starts by randomly zooming into numeration Δ

to begin the structure-building process. Given the conception about the nature of

the grammar and the parser implied by the derivational system outlined in

484

chapter IV (heavily inspired by Phillips’ (1996, 2003) work), the choice of Δ

automatically makes the sentence built from Δ the master clause, with the one

built from Ψ being subservient to it. The PF representation of the whole Siamese-

Tree structure is built incrementally, as the derivation proceeds, with smaller

chunks of each subcomputation getting successively spelled-out and being

pronounced with respect to each other in an order that directly reflects the order

in which syntax delivers them to the A-P system.

First, the computational system builds the non-shared portion of the

phrase-marker corresponding to Δ. The lexical tokens in the non-intersecting

portion of Δ get combined one by one, in a top-to-bottom fashion, up to the point

when the structure in (94) obtains.

(94) ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP 2
 2 said that
 D Tom

At this step, the PF representation is as in (95).

485

(95) [#Tom#]

The next natural step is to build the subject of the sentence introduced by

the complementizer already present in the structure. However, at this point, the

system can recognize that the subject that is about to be built would be a WH-

phrase that has no matching C head within the domain established by Δ. Rather,

its matching C is the [+WH] complementizer in Ψ. As will be discussed shortly, if

the subject is build at this point, it will not be able to undergo a feature-checking

operation later on.

The system is then forced to abandon the computation of the master

clause, leaving the structure incomplete, to be completed by the same

subcomputation that builds the subservient clause.

Right before one subcomputation hands the structure to the other, spell-

out needs to apply to guarantee LCA satisfaction. This is indicated in (96), whose

corresponding PF representation is as in (97).

486

(96) ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP 2
 2 said that
 D Tom

(97) [#Tom#]∩[#said#∩#that#]

The computational system then zooms into Ψ (cf. (93)) and begins to build

the subservient clause. The non-shared lexical tokens in Ψ are combined one by

one, in a top-to-bottom fashion, up to the point illustrated in (98).

487

(98) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] forgot

 T’ 2
 T VP

 V’
 DP 2
 2 said that
 D Tom

At this point, the WH-phase who is built from lexical tokens shared by Ψ

and Δ, which are tucked in at the bottom of the subservient clause, giving rise to

(99).

488

(99) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot DP 2 2

 T VP wh- -o

 V’
 DP 2
 2 said that
 D Tom

The next necessary step is to introduce C[+WH] and tuck it in at the bottom

of the subservient clause, as a (temporary) sister to who, so that the relevant

checking of (WH and EPP) features can take place. But, before that, spell-out

needs to apply in order to guarantee LCA satisfaction. This is indicated in (100),

whose corresponding PF representation is as in (101).

489

(100) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot DP 2 2

 T VP wh- -o

 V’
 DP 2
 2 said that
 D Tom

(101) [#Tom#]∩[#said#∩#that#]∩[#I#]∩[#forgot#∩#who#]

Once that is done, then the [+WH] complementizer is finally merged

inside the V’ in the subservient clause, as a sister to the WH-phrase, so that all

relevant feature checking operations can take place. This is indicated in (102).

490

(102) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 2

 T VP DP C 2
 V’ wh- -o

 DP 2
 2 said that
 D Tom

At this point, the lowest complementizer of the subservient clause is

supposed to take the embedded TP of the master clause as its complement.

However, there is no such TP there yet.

The only alternative left is to build the embedded TP from scratch, from

the lexical tokens present in the numeration Ψ (precisely the same lexical tokens

shared by numeration Δ). This would be done in the usual fashion, tucking in the

relevant lexical tokens one by one at the bottom of the spine of the tree, going

from the top downwards and applying spell-out whenever (and only when)

necessary for PF reasons.

491

The reminder of the derivation would be as shown in the steps from (103)

to (110) below. For expository reasons, indicators of spell-out are omitted from

the notation.

(103) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 y

 T VP C’

 V’ C
 DP 2
 2 said that
 D Tom DP 2

 wh- -o

492

(104) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 y

 T VP C’ 2
 V’ C TP

 DP 2
 2 said that is
 D Tom DP 2

 wh- -o

493

(105) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 y

 T VP C’ 2
 V’ C TP

 DP 2
 2 said that T’
 D Tom 2 is

 DP 2
 wh- -o

494

(106) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 y

 T VP C’ 2
 V’ C TP

 DP 2
 2 said that T’
 D Tom 2 is VP

 dating
 DP 2
 wh- -o

495

(107) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 y

 T VP C’ 2
 V’ C TP

 DP 2
 2 said that T’
 D Tom 2 is VP y

 V’
 DP 2 2 dating D
 wh- -o

496

(108) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 y

 T VP C’ 2
 V’ C TP

 DP 2
 2 said that T’
 D Tom 2 is VP y

 V’
 DP 2 2 dating DP
 wh- -o 2

 D Amy

At this point, the construction of the subservient clause is over. The

corresponding PF representation so far is as in (109).

(109) [#Tom#]∩[#said#∩#that#]∩[#I#]∩[#forgot#∩#who#]∩[#is#∩#dating#∩#Amy#]

497

Notice, however, that the master clause still lacks an embedded clause,

which, given Δ, is supposed to be a shared constituent, namely: the lower TP

embedded inside the subservient clause.

As it stands, the master clause in (108) is not convergent. What needs to be

done in order to fix that structure is to make the lower TP of the subservient

clause a shared constituent, so that, aside from being a sister to the lowest C of

the subservient clause, it becomes also a sister to the lowest C of the master

clause. At some point during the computation of the subservient clause, the

system has to somehow take that TP (whether it is complete or not) and tuck it in

at the bottom of the master clause, as a sister to the lowest [-WH]

complementizer that. Eventually, the resulting global structure would be the

Siamese Tree configuration in (110).

498

(110) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2 y

 T VP C’ 2
 V’ C TP

 DP 2
 2 said CP T’
 D Tom 2

 that is VP y
 V’

 DP 2 2 dating DP
 wh- -o 2

 D Amy

However, taking such derivational step is impossible. In order to do that,

the system would have to be able to go back and fourth between

subcomputations. As discussed in §IV.3.4, there is an inherent asymmetry in the

way overlapping computations interact. Once a given derivational round is over,

there is no way back. A constituent built in a terminated derivational round can

still be remerged inside a phrase in the active derivational workspace (as long as

499

the former (vacuously) c-commands the later), but cannot have anything being

remerged inside it while it still remains in the inactive derivational workspace.

In the hypothetical computation above, the problem lies in the higher V’

constituent of the master clause. At the point when the derivational round for the

master clause terminates, the daughters of that V’ are said and that. Later on, the

lower TP of the subservient clause is remerged inside that same V’ as the new

sister to that (thereby creating a CP that is the new mother of the shared TP and

the new daughter of that V’ in question). When that happens, the V’ was

crucially not in the active derivational workspace.

Therefore, in the end, there is no constraint on invasion at subject position

as a primitive notion. In a heavily dynamic system where derivations proceed in

a ‘generalized tucking-in’ fashion, every subject is introduced before its

corresponding T. It follows, then, that the corresponding TP cannot possibly be

built early enough for it to be shared, since structure-sharing is inherently

asymmetric, with master clauses feeding subservient clauses, but not the other

way around.

Consider now the example in (111), which is not a possible syntactic amalgam.

(111) * Tom said that who I forgot is dating Amy.

At first sight, it may seem that the system proposed here could potentially overgenerate

cases like this, where the WH-phrase is introduced early, still in the derivational round

corresponding to the master clause, and then shared later on. Let us take a closer look at the

500

relevant derivations, then, and appreciate how the ungrammaticality of (111) is indeed predicted

without further stipulation.

Starting from the same intersecting numerations — repeated below as (112) —, consider

the following derivation for (111).

(112)

  Ψ
C C

 Δ  D D
Tom I
T T
said forgot
that C[+WH]

wh-
-o
is
dating
D
Amy

First, the computational system begin to build the master clause. The

lexical tokens in the non-intersecting portion of Δ get combined one by one, in a

top-to-bottom fashion, up to the point when the structure in (113) obtains.

501

(113) ΣP MASTER CLAUSE2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP 2
 2 said that
 D Tom

Then the WH-phase who is built (in a step-by-step fashion) at the very

bottom of the spine, as a temporary sister to the complementizer that, yielding

(114).

502

(114) ΣP MASTER CLAUSE2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP 2
 2 said CP
 D Tom 2

 that DP2
 wh- -o

Then spell-out applies, and the structure in (115) obtains. The

corresponding PF representation so far is as in (116).

503

(115) ΣP MASTER CLAUSE2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP 2
 2 said CP
 D Tom 2

 that DP2
 wh- -o

(116) [#Tom#]∩[#said#∩#that#∩#who#]

At the next step, the T head of the embedded clause is tucked in at the

bottom of the phrase marker as a sister to who, as in (117), which guarantees that

there will be a TP to be shared in the next derivational round.

504

(117) ΣP MASTER CLAUSE2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP 2
 2 said CP
 D Tom 2

 that TP 2
 DP T 2

 wh- -o

This structure is then spelled-out, and the derivational round of the master clause

terminates. The derivational round of the subservient clause begins, and computational system

then builds another phrase marker in parallel, combining the lexical tokens of Ψ in the usual

‘generalized tucking-in’ fashion, starting from the non-shared portion of the numeration, up to

the point where (118) obtains.

505

(118) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] forgot

 T’ 2
 T VP

 V’
 DP 2
 2 said CP
 D Tom 2

 that TP 2
 DP T 2

 wh- -o

Still within the derivational round of the subservient clause, the system can take the WH-

phrase who and tuck it in at the bottom of the spine of the subservient clause, as a temporary

complement to the verb forgot (cf. (119)), so that it can subsequently become the specifier of the

[+WH] complementizer that is about to be introduced in the following step.

(119) ΣP SUBSERVIENT CLAUSE 2
 ∅ Σ’

506

2
MASTER CLAUSE Σ CP 2

 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP T VP 2
 C TP [DP D I] V’

 2
 T’ forgot 2

 T VP

 V’
 DP 2
 2 said CP
 D Tom 2

 that TP 2
 DP T 2

 wh- -o

This is an illegitimate step, however. In order for any element to be

(re)merged inside a phrase, it must c-command its future sister (cf. §IV.3). Notice

that, in the input structure in (118) above, the WH-phase who is dominated by a

TP whose head is a member of the reference set (i.e. Ψ) for that derivational

round. Therefore, that TP is visible for the purposes of figuring out whether who

(vacuously) c-commands forgot. Since that TP dominates who but does not

dominate forgot, it follows that who fails to (vacuously) c-command forgot.

Therefore, the derivation is ruled out at this point, even before the [+WH]

complementizer is introduced so that the TP gets the chance to be shared.

507

V.7.2 Non-Finite Clauses.

However, as previously mentioned in §II.7, it is possible for clause

invasion to target a subject position in ECM constructions, as shown in (120).

(120) The boss wants you’ll never guess which employee to do that job.

These cases seem to pose a problem for the analyses just presented. By

standard assumptions, the subject position at issue would be the spec/TP of the

(shared) embedded clause. The corresponding input would be the intersecting

numerations in (121), and corresponding representation would be as in (122).

(121)

  Ψ
C C

508

 Δ  the D
boss you
T will
wants forgot

never
which C[+WH]

employee
to
do
the
job

509

(122) SUBSERVIENT CLAUSE

 ΣP 2
 ∅ Σ’2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP will VP 2 2
 C TP never VP

 y
 T’ V’ 2 [DP D you] 2

 T VP guess CP y
 V’ C’

 DP t
 2 wants C
 the boss

 TP

 T’ 2
 to VP

 V’ 2
 DP do DP 2 2

 which employee the job

If this is the case, we would expect examples like (120) to be as

unacceptable as the ones like (89). After all, the relevant parts of the structure are

510

identical.155 The representation in (122) should be impossible to be derived for

the same reasons that the one in (110) is. If the head of the shared TP (i.e. to) is

introduced early, still in the derivational round where the master clause is built,

then the WH subject which employee would later fail to c-command guess (by

virtue of being dominated by the shared TP), so that it could be tucked in at a

position where it would eventually end up as the spec/CP and undergo the

relevant feature-checking process associated with WH-phrases and [+WH]

complementizers. On the other hand, if the introduction of the head of the shared

TP (i.e. to) is delayed until the derivational round where the subservient clause is

built, then it would be too late for the embedded TP to be shared, given the

asymmetry inherent to overlapping computations. Thus, it seems that the

analysis so far undergenerates, making the wrong prediction that examples like

(120) should not be possible.156

155 One could say that the Siamese-Tree structure in (122) is expected to be ungrammatical even
on purely representational grounds. If we focus on the subservient clause (cf. (i) below), we
detect that it has a WH-chain without case, due to the fact that neither is the matrix verb (i.e.
guess) associated with the relevant structure that would assign accusative case to which
employee, nor is the embedded non-finite T able to assign nominative case to which employee.

(i) [CP [IP [DP you]2 will [VP never t2 guess [CP [DP which employee]1 [IP t1 to [VP do [DP the job]]]]]]]

That being the case, the problem mentioned above becomes even worse, as there would be one
other thing forcing us to wrongly predict accepted examples to be ungrammatical. Notice
however, that which employee arguably does get case in the domain of the master clause by
whatever mechanism is ultimately responsible to assigning case to embedded subjects in ECM
constructions. Since there is nothing wrong with the DP which employee itself (its case feature is
indeed checked somewhere), and since it is the very same token of the DP which employee that
participates in both sides of the Siamese-Tree structure, there is no a priori reason why there
should be any case-related problem with the WH-chain in the subservient clause.
156 In principle, one could hypothesize that what makes invasion at the subject position in ECM
constructions possible is something related to the fact that those subjects have a special status
with regards to case, as they are related to a case assigner in the matrix domain of the master
clause (arguably the head of a specific functional projection (e.g. AgrOP, vP, AccP) right above
VP, ommited from the notation in (122) for expository reasons). Thus, there is a real difference
that the system could, in principle, piggyback on in order to derive representations like (122).

511

Interestingly, however, the meaning of (120) — repeated below as (123) —

is not compatible with the representation in (122). For instance, (124a) is a

possible paraphrase for it, but (124b) is not.

(123) The boss wants you’ll never guess which employee to do that job.

(124) a: You will never guess [which employee]1 the boss wants t1 to t1 do the job.

b: # You will never guess [which employee]1 t1 is the one doing the job.

In other words, what the listener will never guess is the identity of the

employee x such that the boss wants x to do the job. Therefore, the actual LF

representation of (123) should be as in (125), where the shared TP is the highest

TP at the master clause.

Nevertheless, even if we factor that in, and even if we assume that ECM subjects do occupy the
specifier of that relevant functional projection in overt syntax (following Lasnik 1999, 2001;
Boskovic 2001), it does not immediately follow that amalgamation at that position should be
possible, unless we propose major changes in the theory. This is so because the timing issues
discussed above would remain unaltered. It would be still the case that the head of the non-finite
T would going to be introduced either too early or too late.

512

(125) SUBSERVIENT CLAUSE

 ΣP 2
 ∅ Σ’ 2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP will VP 2 2
 C TP never VP

 y
 T’ V’ 2 [DP D you] 2

 T VP guess CP y
 V’ C’

 DP t
 2 wants C
 the boss

 TP

 T’ 2
 to VP

 V’ 2
 DP do DP 2 2

 which employee the job

This representation can indeed be generated by the system proposed here.

The starting point would be the intersecting numerations in (126).

513

(126)

  Ψ
C C

 Δ  the D
boss you
T will
wants forgot

never
which C[+WH]

employee
to
do
the
job

The relevant derivational steps would be as follows (once again, indicators

of spell-out have been omitted from the notation for expository reasons).

In the first derivational round, the master clause begins to be built, down

to the point where the verb want is introduced, as in (127).

514

(127)

MASTER CLAUSE

 ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 wants
 DP
 2
 the boss

The first derivational round terminates here, with the structure left

incomplete, to be finished in the next round. The corresponding PF-string so far

is as in (128).

(128) [#the#∩#boss#]∩[#wants#]

The second derivational round begins, and the subservient clause starts to

be built. The first relevant step is the one right after the WH-phrase which

employee is built as a temporary complement to the matrix verb guess, as in

(129).

515

(130) SUBSERVIENT CLAUSE

 ΣP 2
 ∅ Σ’ 2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP will VP 2 2
 C TP never VP

 y
 T’ V’ 2 [DP D you] 2

 T VP guess DP 2
 wants which employee

 DP
 2
 the boss

Then, the [+WH] complementizer is merged inside V’ as a temporary

sister to which employee, as in (131).

516

(131) SUBSERVIENT CLAUSE

 ΣP 2
 ∅ Σ’ 2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP will VP 2 2
 C TP never VP

 y
 T’ V’ 2 [DP D you] 2

 T VP guess CP 2
 wants DP C

 DP 2
 2 which employee
 the boss

Now comes the crucial step. The matrix TP of the master clause is

remerged inside the embedded CP of the subservient clause, as in (132). Notice

that, right before that, the TP that is about to be shared (vacuously) c-commands

the lowest C of the subservient clause. This is so because nothing that dominates

that TP is visible to the subcomputation that builds the subservient clause. So, it

is as if there were nothing dominating that TP.

517

(132) SUBSERVIENT CLAUSE

 ΣP 2
 ∅ Σ’ 2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP will VP 2 2
 C TP never VP

 y
 T’ V’ 2 [DP D you] 2

 T VP guess CP 2
 wants [DP which employee] C’

 DP
 2 C
 the boss

After that, the derivation proceeds in the usual fashion, from the top

downwards, until the whole shared TP is fully built, as in (133), whose

corresponding PF-string is as in (134).

518

(133) SUBSERVIENT CLAUSE

 ΣP 2
 ∅ Σ’ 2

MASTER CLAUSE Σ CP 2
 ΣP C TP2 y
∅ Σ’ T’ 2 2
 Σ CP will VP 2 2
 C TP never VP

 y
 T’ V’ 2 [DP D you] 2

 T VP guess CP y
 V’ C’

 DP t
 2 wants C
 the boss

 TP

 T’ 2
 to VP

 V’ 2
 DP do DP 2 2

 which employee the job

(134)[#the#∩#boss#]∩[#wants#]∩[#which#∩#employee#]∩[#to#∩#do#∩#the#∩#job#]

519

V.7.3. Back to Finite Clauses

The analysis given in the previous section for cases of clause invasion at

the subject position in ECM constructions resolved a tension with regards to

what seemed to be a contradiction in the paradigm.

However, for better or for worse, that same analysis makes the prediction

that the possibility of sharing the highest TP and clause invasion at the position

of the subject of the lower TP should in principle be available across the board.

Consequently, examples like (89) —repeated below as (135) — are predicted to

be derivable by the system here proposed, being possible under the reading

corresponding to the paraphrase in (136).

(135) * Tom said that I forgot who is dating Amy.

(136) I forgot who1 Tom said t1 is dating Amy.

The corresponding LF representation would be as in (137), where it is the

higher TP of the master clause (rather than the lower one) that is under the scope

of the verb forgot. In other words, what is being forgotten is not the identity of

the person that is dating Amy. Rather, it is the identity of the person x, such that

Tom said that x is dating Amy.157

157 In such case, this person x may or may not be the one actually dating Amy.

520

(137) ΣP 2
 ∅ Σ’2
 Σ CP 2

 ΣP C IP2 y
∅ Σ’ I’ 2 2
 Σ CP I VP 2
 C TP [DP D I] V’

 2
 T’ forgot CP 2

 T VP C’

 V’ C
 DP 2
 2 said CP
 D Tom 2

 that TP

 T’ 2
 is VP

 V’ 2
DP dating DP 2 2

 wh- -o D Amy

Thus, the fact that the degree of acceptance of examples like (135) is very

low is indeed a potential problem for my analysis.

521

I do not claim to have an ultimate solution to this problem, but the facts

seem to strongly indicate that the very low degree of acceptance of examples like

(135), under the relevant reading (i.e. (137)) may be an artifact of parsing

limitations, something like a garden-path effect.

It is not so much that the string of words in question is not acceptable. The

problem is that that very string is fully acceptable under a non-amalgam reading,

which would correspond to the structure in (138).158

158 Therefore, in the end, the meaning that I have been taken to be irrelevant turned out to be
indirectly relevant, once we performance variables are factored in.

522

(138) ΣP2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP 2
 2 said CP
 D Tom 2

 that TP

 T’ 2
 T VP

 V’
 2

 DP forgot CP 2
 D I C’ 2

 C TP

 T’ 2
 is VP

 V’ 2
DP dating DP 2 2

 wh- -o D Amy

523

The strong preference for parsing the string of words in (135) as in (138),

rather than as in (137), is not surprising under standard assumptions about

sentence processing on the perception side (i.e. notions derivative of minimal

attachment and late closure), especially if we endorse assume a Minimalist

approach to sentence processing, such as the one proposed by Weinberg (1999).

From that perspective, the task of mapping the string in (135) onto the structure

in (138) would involve way less computational complexity than mapping it onto

(137), both globally (only one derivational round rather than two) and locally

(minimization of spell-out applications at the decision points, crucially, after said

that159.

From that perspective, the reason why amalgamated subjects of ECM

constructions have a much higher degree of acceptability would be the fact that

the point of invasion in those cases is right after an ECM verb, which gives a big

hint to the listener that what the finite clause that follows it cannot possibly be its

complement, which pretty much reduces the logical possibilities down to

analyzing that finite clause as a subservient matrix clause in a Siamase-Tree

configuration.

159 It is standardly assumed in mainstream Minimalism that issues of computational complexity
and derivational economy are tied to the notion of ‘reference set’. A structure x can only win over
a structure y if both x and y are derivable from the same numeration. The two structures in
question come each from a distinct input (intersection of numerations). However, on the
perception side, there is no a priori numeration to begin with. The decisions have to be made
locally in terms of the ‘current substring’, which gets constantly updated leading to constant
changes with respect to the logically possible numerations behind that structure being parsed.

524

Interestingly, some speakers find a slight contrast in acceptability between

bona fide ECM verbs (e.g. want) and hybrid verbs that can be select either a finite

or a non-finite complement clause clause (e.g. believe).

(139) The boss wants you’ll never guess which employee to do the job.

(140) ? The boss believes you’ll never guess which employee to be the best.

Moreover, some speakers report an amelioration effect with invasive at

the subject position of a finite clause if the complementizer (that) selected by the

verb of the master clause is not pronounced, as in (141b).160

(141) a: * Tom said that I forgot who is dating Amy.

b: ? Tom said that I forgot who is dating Amy.

If that is the case, one could hypothesize that, given the structure in (137)

above, the issue could potentially be partially reduced to the that-trace effect

observed in the non-amalgamated versions of the examples.

(142) a: * I forgot who1 Tom said that t1 is t1 dating Amy.

b: I forgot who1 Tom said that t1 is t1 dating Amy.

160 I am thankful to Norbert Hornstein for discussion on this matter.

525

526

V.8 Dynamic Interpretation and Relativized ‘Matrixhood’

As shown in §II.9, in any syntactic amalgam, the co-reference possibilities

among pronouns and R-expressions that are distributed one in the ‘invasive

clause’ and the other in the ‘invaded clause’ are exactly the ones in the

corresponding paratactic paraphrase, rather than the readings available in the

corresponding hypotactic paraphrase, as shown below.

(143) a: [Homer]1 gave [he]1/2 doesn’t even remember how much money to

Lisa.

b: [He]*1/2 doesn’t even remember how much money [Homer]1 gave to

Lisa.

c: [Homer]1 gave money to Lisa. [He]1/2 doesn’t even remember how

much.

(144) a: [He]*1/2 gave [Homer]1 doesn’t even remember how much money to

Lisa.

b: [Homer]1 doesn’t even remember how much money [he]1/2 gave to

Lisa.

c: [He]*1/2 gave money to Lisa. [Homer]1 doesn’t even remember how

much.

527

(145) a: [Homer]1 gave [the idiot]1/2 doesn’t even remember how much

money to Lisa.

b: [The idiot]*1/2 doesn’t even remember how much money [Homer]1

gave to Lisa.

c: [Homer]1 gave money to Lisa. [The idiot]1/2 doesn’t even

remember how much.

(146) a: [The idiot]*1/2 gave [Homer]1 doesn’t even remember how much

money to Lisa.

b: [Homer]1 doesn’t even remember how much money [the idiot]*1/2

gave to Lisa.

c: [He]*1/2 gave money to Lisa. [Homer]1 doesn’t even remember how

much.

Then, towards the end of §III.2.3, I have shown that the sluicing-based

approach to amalgamation makes wrong predictions with regards to the facts

above, as it presupposes a structure where there first of the two DPs in question

c-commands the second one, which would lead to violation of Principle C of

Binding Theory in cases like (146).

In principle, a similar problem seems to arise for the approach to

amalgamation proposed in this dissertation. This is so because, given the

multiply rooted representations assumed, the first of the two relevant DPs would

528

be in the shared embedded clause, in a position where it is c-commanded by the

second relevant DP, which would be in the spine of the subservient clause.

This is illustrated in (147), which corresponds to (143a).

529

(147) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember CP
 2

 ΣP D he C’2
∅ Σ’ C 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP
 2 VP
 D Homer 4

 DP V’ 2
 how-much money [PP to [DP D Lisa]]

gave

530

Notice that he c-commands Homer in (147), even though co-reference

between the two is indeed possible. This is, in principle, problematic, to the

extent that it is incompatible with Principle C of Binding Theory, which is

strongly supported by a huge body of cross-linguistic data.

A similar problem concerns the impossibility of co-reference between he

and Homer in (144a), which would be analyzed as in (148) below, where Homer

is not c-commanded by he. Thus, modulo Principle C, co-reference is predicted to

be possible, but it is not.

531

(148) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember CP
 2

 ΣP D Homer C’2
∅ Σ’ C 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP
 2 VP
 D He 4

 DP V’ 2
 how-much money [PP to [DP D Lisa]]

gave

532

Now, take the case of potential co-reference between an epithet and a

proper name. The relevant cases are (145a) and (146a), repeated below as (149)

and (150).

(149) [Homer]1 gave [the idiot]1/2 doesn’t even remember how much

money to Lisa.

(150) [The idiot]*1/2 gave [Homer]1 doesn’t even remember how much

money to Lisa.

Co-reference is possible in the first case but not in the second case. This

contrast seems rather surprising, as the corresponding structures would be as in

(151) and (152) respectively.

533

(151) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember CP
 2

 ΣP the idiot C’2
∅ Σ’ C 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP
 2 VP
 D Homer 4

 DP V’ 2
 how-much money [PP to [DP D Lisa]]

gave

534

(152) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember CP2

 ΣP D Homer C’2
∅ Σ’ C 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 V’
 DP
 2 VP
the idiot 4

 DP V’ 2
 how-much money [PP to [DP D Lisa]]

gave

535

Notice that, in both structures above, there is an R-expression c-

commanding another R-expression. In (151), the idiot c-commands Homer. In

(152), Homer c-commands the idiot.

In (152), co-reference between the idiot and Homer is correctly predicted

to impossible, modulo Principle C. In (151), however, the same logic leads to the

prediction that co-reference between Homer and the idiot should be impossible

as well. But such co-reference is possible.

In a nutshell, in all cases above, all relevant c-command relations in the

Siamase-Tree configurations correspond exactly to the c-command relations in

the corresponding ‘hypotactic paraphrases’. However, the patterns of co-

reference match the ones in the corresponding ‘paratactic paraphrases’, where

the two DPs in question belong to two distinct unconnected sentences, therefore

not standing in c-command relation with each other.

I do not claim to have an ultimate analysis for this phenomenon, but I like

to point out that there should not underestimate the fact that the patterns

exhibited by syntactic amalgams are identical to the ones found in the

corresponding ‘paratactic paraphrases’. I propose that such similarity is the key

notion.

Let us focus on the ‘paratactic paraphrases’ now.

536

(153) [Homer]1 gave money to Lisa. [He]1/2 doesn’t even remember how much.

(154) [He]*1/2 gave money to Lisa. [Homer]1 doesn’t even remember how much.

(155) [Homer]1 gave money to Lisa. [The idiot]1/2 doesn’t even remember how

much.

(156) [He]*1/2 gave money to Lisa. [Homer]1 doesn’t even remember how much.

In all cases, each of the two relevant DPs belongs to a distinct sentence.

Therefore, neither DP c-commands the other. Consequently, whatever is

ultimately responsible for the co-reference patterns above, it certainly has

nothing to do with Binding Theory, which is dependent on the notion of c-

command.

In this dissertation, I will not even speculate about what could be the

cause of the co-reference patterns above. I will simply take it for granted that

there are discursive-pragmatic principles of some sort, which derive the facts.

That being the case, I propose that the very same principles are

responsible for the facts in syntactic amalgams.

Notice that, although, in every case of amalgamation, it is the case that one

of the relevant DPs c-commands the other in the final LF-representation, there is

537

a moment in the derivation of the Siamse-Tree when the master clause and the

subservient clause are not connected yet.

This is illustrated below for all four cases of amalgamation discussed in

this section.

(157) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember DP
 2 2

 ΣP D he how much money2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 gave
 DP
 2
 D Homer

538

(158) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember DP
 2 2

 ΣP D Homer how much money2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 gave
 DP
 2
 D He

539

(159) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember DP
 2 2

 ΣP the idiot how much money2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 gave
 DP
 2
 D Homer

540

(160) ΣP 2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
doesn’t VP 2
 even VP

 V’ 2
 DP remember DP
 2 2

 ΣP D Homer how much money2
∅ Σ’ 2
 Σ CP 2
 C TP

 T’ 2
 T VP

 gave
 DP
 2
the idiot

In such configurations, there is no c-command relation between the two

relevant DPs, just like what happens with the ‘paratactic paraphrases’. At that

specific point, the subservient clause is not yet ‘behind’ the ‘master clause’, but

just ‘after’ it, since the lowest TP has not been shared yet. Therefore, it is as if

541

there were two independent (incomplete) sentences one after the other, as shown

below.

(161) [Homer]1 gave...

[He]1/2 doesn’t even remember how much money...

(162) [He]*1/2 gave...

[Homer]1 doesn’t even remember how much money...

(163) [Homer]1 gave...

[the idiot]1/2 doesn’t even remember how much money...

(164) [The idiot]*1/2 gave...

[Homer]1 doesn’t even remember how much money...

My suggestion, then, is that the system proposed in chapter IV should be

combined with some modified version of Lebeaux’s (1995) and Epstein, Groat,

Kawashima & Kitahara’s (1998) theories, where interpretation of DPs, and

satisfaction of Binding Principles, is done in a dynamic fashion, as the LF-

representation is built.

I will leave to future research the task of formalizing the details of this

intuition, such as how exactly such dynamic interpretive devices would be

542

sensitive relates to the notions of ‘derivational round’ and ‘behindness’. The

basic idea is that, at the relevant point, the there are two parallel (incomplete)

sentences still unconnected, which would give rise to the same results found in

‘paratactic paraphrases’.

543

VI

Concluding Remarks

Having described and analyzed the phenomenon of amalgamation in the

previous chapters, now I make my final remarks, first summarizing what I

consider to be the main conclusions about the theory of UG which can be drawn

from the study of amalgamation (cf. VI.1), and pointing out issues to be

addressed in future research (cf. VI.2).

VI.1. Conclusions

The main analytical points made in this dissertation are as follows:

(i) Syntactic amalgams are not the same thing as parenthetical constructions,

as amalgamation involves the sharing of some syntactic material between

the invasive and the invaded clauses in a way that parentheticalization

does not; and this has major consequences for the establishment of

syntactic relations across these domains (binding, movement, etc).

544

(ii) Syntactic amalgamation does not involve a combination of sluicing and

DP-ellipsis (contra Lakoff 1974, Tsubomoto & Whitman 2000). Such an

approach fails to account for all the empirical generalizations in chapter II.

(iii) Syntactic amalgamation does not involve topicalization of an embedded

TP through a remnant movement mechanics. Such an approach also fails

to account for all the empirical generalizations in chapter II.

(iv) Syntactic amalgams involve multiple matrix clauses that share the same

embedded clause (which is why some constraints on long-distance

dependencies (e.g. superiority, island) get obfuscated in such

constructions, given the existence of quasi-parallel domains where the

relevant chain link may ‘escape’ the effects of the relevant constraint).

The main theoretical points made in this dissertation are as follows:

(v) Amalgamation requires a derivational approach to syntax.

(vi) Phrase-structure building uniformly involves tucking-in, so that

derivations proceed in a top-to-bottom fashion.

(vii) Constituency is dynamic (mutant).

545

(viii) Derivational time equals real time (so that the order of pronunciation of

terminals mimics the order in which lexical tokens access the derivation.

(ix) Movement is the consequence of a phrase being remerged into a new

position, and having multiple mothers.

(x) Remerge is not limited to chain formation. When the multiple mothers of

a remerged phrase do not stand in a dominance relation, a multiply-

rooted phrase marker arises.

(xi) Multiply-rooted structures are formed through overlapping computations,

that start out from numerations that intersect.

(xii) The paratactic aspect of syntactic amalgamation can be reduced to ‘syntax

pushed to the limit’.

546

VI.2. Directions for Future Research

VI.2.1.. Semantics

Once syntactic amalgams are treated in terms of multiply-rooted syntactic

representations, a puzzle arises with regards to how such ‘Siamese Trees’ are to

be semantically interpreted. For instance, consider the syntactic amalgam in (01).

(01) Marge found out that Homer kissed you probably know who at the party.

By the analysis proposed chapter V, the syntactic structure of (01) is something

along the lines of the representation sketched in (02).

(02) [S2 Marge found out that S1]

 Homer kissed t1 at the party

 [S3 you probably know [who]1]

The absence of a single-root in (02) makes it impossible to calculate a

truth-value for the amalgamated structure as a whole in any standard fashion.

Although it might seem relatively trivial, at first blush, to calculate quasi-

independent truth-values for each of the sentences constituting the multiply-

547

rooted syntactic representation,161 it is not obvious how those parallel

interpretations can obtain in the desired fashion, the WH-chain is formed with a

link within the shared embedded clause and another link exclusively in a distinct

matrix clause. In principle, the WH-trace– or equivalent notion (e.g. copy,

occurrence, etc) – would count as a variable bound by a WH-operator in the

domain of one of the parallel matrix clauses, but remain as a free variable in the

domain of the other parallel sentence(s), presumably getting existential import

by default, as sketched in (03).

 free variable

(03) ∃p [p = [Homer kissed a person x at the party] & bound variable

 [Marge found out that p] &

∃x [the listener probably knows what the identity of x is,

 such that p]]

 operator

The problem is that (03) is not the actual semantic interpretation attested

for (01)-(02). Rather, something roughly along the lines of (04) obtains.162

161 i.e. S2 = [Marge found out that Homer kissed t1 at the party] & S3 = [The listener knows who1

Homer kissed t1 at the party].
162 The semantic structure in (03) is compatible with any of the three situations below. The first (i)
and the second (ii) cases correspond to the logical possibility where the first (unbound) x and the
second (bound) x have identical values. The third (iii) case corresponds to the logical possibility
where the first (free) x and the second (bound) x have distinct values.

548

(04) ∃x, ∃p [p = [Homer kissed a person x at the party] & bound variable

[Marge found out that p] &

[the listener probably knows what the identity of x is]]

 operator

As opposed to (03), the operator that binds the variable corresponding to

the WH-trace in (04) crucially scopes over all the material in the whole

amalgamated structure, as if there were a single root in the syntactic

representation to where such operator could be adjoined through Quantifier

Raising at LF, or whatever the actual grammatical mechanism is.

Providing a solution to this problem is something that would go way

beyond the scope of this dissertation. In a parallel research (Guimarães 2003e), I

propose to derive (04) from (02), within the truth-theoretical framework of

Larson & Ludlow (1993) and Larson & Segal (1995),163 which stems from

previous work by Tarski (1944, 1956) and Davidson (1965, 1967, 1968, 1970, 1984).

The crucial tree-node that does the job of the ‘illusory single-root’ is the node

i: Homer kissed Peggy at the party; and Marge found that out. Also, the addressee of a
given utterance of (01) probably knows that Peggy was the one kissed by Homer at the
party.

ii: Homer kissed both Peggy and Amy at the party. Marge found out that Homer kissed
both Peggy and Amy at the party. Also, the addressee of a given utterance of (01)
probably knows that both Peggy and Amy were the ones kissed by Homer at the party.

iii: Homer kissed both Peggy and Amy at the party. Marge found out that Homer kissed
Peggy at the party (but she didn’t find out about Amy). Also, the addressee of a given
utterance of (01) probably knows that Amy was the one kissed by Homer at the party.

On the other hand, the semantic structure in (04) is compatible only with situations (i) and (ii).
Given that any utterance of (01) can be true in situations like (i) or (ii), but not in situations like
(iii), a semantic analysis along the lines of (04) is empirically adequate, whereas the one in (03) is
not..
163 See also Higginbotham (1985, 1986) and Pietroski (2002, forthcoming-a, forthcoming-b).

549

corresponding to the shared embedded clause (i.e. S1), due to some interpretive

devices that piggyback on that node to fix the contexts (formalized as Tarskian σ-

sequences) according to which WH-quantifiers quantify over. That way, the

semantic values assigned to each trace/variable in a given parallel semantic

computation are transmitted up and down the tree in the desired fashion, having

the effect of variables being bound as in (03).

Further research is necessary to refine the formalism proposed in

Guimarães (2003e), and to make sure that it is fully compatible with everything I

said here (and vice-versa).

VI.2.2.Head Movement

Quite a lot has been said about movement of maximal projections in this

dissertation. However, in all parts of the analysis, I abstracted away from any

potential instance of head movement other than the movement of the verb within

the VP-shell itself (which, following Phillips’ (1996, 2003), I take to be a case of

‘reprojection’).

In principle, head movement should involve the same remerge mechanics

involved in phrasal movement. However, head movement typically involves

‘morphological incorporation’ (cf. Backer 1988), as in (06), whose effects at PF do

550

not follow straightforwardly in a top-to-bottom system, where the order of

pronunciation mimics the order in which the terminals access the derivation.

(06) a: TP 2
 [DP Kevin]1 T’ 2

 [T -ed] VP 2
 t1 V’ 2
 [V kiss] [DP Winnie]

b: TP 2
 [DP Kevin] T’ 2
 [T [V kiss]2-ed] VP 2

 t1 V’ 2
 t2 [DP Winnie]

Fortunately, a great amount of work on this topic has been done by

Phillips (1996: chapter 4), who advocates for a decompositional approach to head

movement (‘early morphologization’ coupled with ‘excorporation’). Although

the basic essence of his system is compatible with the one being proposed here,

future research is needed in order to work out all the technical details in a way

compatible with everything else I said here about movement of phrasal

constituents.

551

VI.2.3.Linearization

Another topic for future research is the status of the LCA in this theory.

On the one hand, the LCA seems to be crucial in order to yield the desired

prosodic patterns (cf. appendix to chapter IV), by establishing an alignment

between boundaries of syntactic constituents and prosodic constituents. On the

other hand, the LCA seems somewhat redundant in the system, to the extent that

it is unnecessary when it comes to linearization per se (since the desired spec-

head-comp order follows independently from the principles governing the

mechanics of Merge).

Intuitively, if the general design specifications of the model proposed here

are on the right track, is must be the case that there is something in the grammar

playing the role that the LCA plays in this work, but it is not quite the LCA itself,

as stated here. Perhaps, it is the case that, instead of the syntax delivering partial

strings of terminals to the phonological component in cascades, it is the

phonological component that accesses the derivation ‘on the fly’, therefore

‘interpreting’ the phrase marker and keeping track of all constituency changes, so

that the effects of an LCA-based prosodic phrasing obtain. For now, I will pay

the price of ‘redundancy’ and I will leave the refinement of the syntax/PF

interface for the future.

552

VI.2.4.Amalgamation as Sluicing, Sluicing as Amalgamation

One of the main goals of chapter III was to argue that syntactic

amalgamation does not involve sluicing. Such goal has been achieved to a large

extent.

Nevertheless, it is impossible to deny the striking structural similarity

between bona fide sluiced sentences and what I have been calling ‘invasive

clauses’ present in syntactic amalgams.

Apart from the obvious resemblance with regards to the string of

terminals at PF, the two constructions pattern together in other ways, with

regard to context sensitive operations. For instance, like in syntactic amalgams,

island effects are absent from sluiced sentences (cf. Merchant 2001: chapter 3).

Also, as described in §II.9, the co-reference possibilities inside amalgams mimic

the ones observed across two paratactically related sentences, one of which is

sluiced.

Yet another structural similarity between amalgams and sluiced sentences

concerns the absence of successive cyclic WH-movement inside invasive clauses,

which is a quite robust empirical generalization left out of chapter II for

expository reasons.

For reference, consider first the pair in (07).

(07) a: Homer drank only Moe knows exactly how many beers last night.

b: Only Moe knows exactly how many beers Homer drank last night.

553

As discussed in §II.3, in syntactic amalgams, the substring that looks like a

parenthetical chunk may be complex, exhibiting (an unbounded number of)

embedded sentences in it, as in (08).

(08) a: Homer drank I bet only Moe knows exactly how many beers last night.

b: I bet only Moe knows exactly how many beers Homer drank last night.

However, successive cyclic movement is not tolerated inside those

parenthetical chunks in amalgams, as in (09a). Notice that the non-amalgam

version of the relevant example does allow successive cyclic movement, as in

(09b).

(09) a: * Homer drank I wonder how many beers Marge thinks last night.

b: I wonder how many beers Marge thinks Homer drank last night.

Nothing in my analysis makes this prediction. On the other hand, if we

take invasive clauses to be sluiced sentences, the pattern follows

straightforwardly, as shown in (10).

(10) a: [S Homer drank [NP [NP e [S I wonder [how many beers]1 Marge

thinks t1 Homer drank t1 last night]] last night.

b: * [S Homer drank [NP [NP e [S I wonder [how many beers]1 Marge

thinks t1 Homer drank t1 last night]] last night.

554

Compare (10) with (11).

(11) a: Marge thinks that Homer drank a certain number of beers last night.

I wonder [how many beers]1 Marge thinks t1 Homer drank t1 last

night

b: * Marge thinks that Homer drank a certain number of beers last night.

I wonder [how many beers]1 Marge thinks t1 Homer drank t1 last

night

Basically, the pattern follows from whatever independent principle

mandates that the deletion process inherent to sluicing affects all the material

that follows the WH-phrase.

However, once an analysis along the lines of (09) is adopted, we

automatically face all the problems mentioned in §III.2 with regards to many

other empirical generalizations discussed in chapter II.

In this context, I would like to suggest one direction of research to be

explored in the future, as a step towards resolving this tension. It may be the case

that, although amalgamation is not a subcase of sluicing, sluicing is a subcase of

amalgamation. What I mean by this is that what we call amalgamation may be

just one epiphenomenal byproduct of overlapping computations, which may

take place in several other ways.

555

In all instances of overlapping computations discussed so far, I have only

considered the cases where two or more numerations intersect, such that the

intersection is a proper subset of all numerations involved. Other logically

possible mathematical possibilities exist. For instance, consider (12), where the

whole numeration Ω is a proper subset of the numeration Δ.

(12)

but  Δ

D

I

T[past]

forget

what

C  Ω

D

Homer

T[past]

give

something

to

D

Lisa

556

Perhaps, this is the input that leads to the typical case of sluicing in (13).

(13) Homer gave something to Lisa. But I forgot what.

The relevant derivation would start from numeration Ω and build the

master clause in (14), whose corresponding PF-string is (15).

(14) ΣP 2
 ∅ Σ’ 2

 Σ CP 2
 C TP y

T’ 2 T VP

V’
[DP D Homer] VP 2

 [DP something] V’

 [PP to [DP D Lisa]]

gave

(15) Homer gave something to Lisa...

557

Then, the computational system starts building the subservient clause

from the tokens in numeration Δ, up to the point in (16).

(16) ΣP 2
 ∅ Σ’ 2

 Σ CP 2
[but] C’ 2

C TP y
 T’ 2 T VP

 forgot
[DP D I]

 ΣP 2
 ∅ Σ’ 2

 Σ CP 2
 C TP y

T’ 2 T VP

V’
[DP D Homer] VP 2

 [DP something] V’

 [PP to [DP D Lisa]]

gave

558

(17) Homer gave something to Lisa... But I forgot

The next step would be the introduction of the WH element, as in (18).

(18) ΣP 2
 ∅ Σ’ 2

 Σ CP 2
[but] C’ 2

C TP y
 T’ 2 T VP

 V’
[DP D I] 2 forgot CP

 ΣP 2 2 [DP what] C
 ∅ Σ’ 2

 Σ CP 2
 C TP y

T’ 2 T VP

V’
[DP D Homer] VP 2

 [DP something] V’

 [PP to [DP D Lisa]]

gave

559

After that, the TP is shared, as in (19).

(19) ΣP 2
 ∅ Σ’ 2

 Σ CP 2
[but] C’ 2

C TP y
 T’ 2 T VP

 V’
[DP D I] 2 forgot CP

 ΣP 2 2 [DP what] C’
 ∅ Σ’ 2 2 C

 Σ CP 2
 C TP y

T’ 2 T VP

V’
[DP D Homer] VP 2

 [DP something] V’

 [PP to [DP D Lisa]]

gave

560

The WH-element is then lowered and adjoined to the indefinite, in a

process akin to ‘vehicle change’, as in (20)

(20) ΣP 2
 ∅ Σ’ 2

 Σ CP 2
[but] C’ 2

C TP y
 T’ 2 T VP

 V’
[DP D I] 2 forgot CP

 ΣP y 2 C’
 ∅ Σ’ 2 2 C

 Σ CP 2
 C TP y

T’ 2 T VP

V’
[DP D Homer] VP 2
 [[DP what] [DP something]] V’

 [PP to [DP D Lisa]]

gave

561

What I have just shown is obviously just a mere intuition to be explored.

Many technical details need to be worked out.

At any rate, if something roughly along these lines is on the right track,

then we may have an explanation for the pattern below.

(21) a: Homer gave a book to Lisa. But I forgot what.

b: Homer gave a book to Lisa. But I forgot which.

c: * Homer gave a book to Lisa. But I forgot which book.

(22) a: Homer gave a book about saxophones to Lisa. But I forgot which.

b: * Homer gave a book about saxophones to Lisa. But I forgot which

book.

c: ** Homer gave a book about saxophones to Lisa. But I forgot which

book about saxophones.

(23) a: Homer gave a book about saxophones written by Paul Desmond to

Lisa. But I forgot which.

b: * Homer gave a book about saxophones written by Paul Desmond to

Lisa. But I forgot which book.

d: ** Homer gave a book about saxophones to Lisa. But I forgot which

book about saxophones.

562

c: ** Homer gave a book about saxophones written by Paul Desmond to

Lisa. But I forgot which book about saxophones written by Paul

Desmond.

The basic idea is that a ‘bare’ WH-phase like what is really something like

wh + something. And the ‘vehicle-change’-like process in (21) is nothing but

ordinary syntactic and semantic composition. The more and more distant from

the bare indefinite that the ‘antecedent’ of the WH gets, the worse the result of

the ‘vehicle-change’-like process gets.

563

Bibliography

Abels, K. 2001. Move? Doctoral Research Paper. University of Connecticut,

Storrs.

Abraham, W., S. Epstein, H. Thráinsson & C. Zwart. 1996. Minimal ideas:

Syntactic studies in the minimalist framework. Amsterdam: John Benjamins.

Aoun, J., N. Hornstein & D. Sportiche. 1981. Some Aspects of Wide Scope

Quantification. Journal of Linguistic Research. 1: 69-95.

Baker, M. 1988. Incorporation. Chicago: University of Chicago Press.

Bobaljik, J. 1995. In Terms of Merge: copy and head movement. MITWPL 27: 41-

64.

Bobaljik, J. 1995. In Terms of Merge: copy and head movement. R. Pensalfini &

H. Ura (eds.) Papers in minimalist syntax: MIT working papers in linguistics

27, pp. 41-64.

Brody, M. 1995. Lexico-logical Form: A radically minimalist theory.

Cambridge/MA: MIT Press.

Brody, M. 1998. Projection and phrase structure. Linguistic Inquiry 29, pp. 367-

398.

Brody, M. 2000. Mirror theory: syntactic representation in perfect syntax.

Linguistic Inquiry 31, pp. 29-56.

Chametzky, R. 1996. A Theory of Phrase Markers and The Extended Base. Albany:

SUNY Press.

564

Chomsky, N. 1955. The logical structure of linguistic theory. University of Chicago

Press [1975].

Chomsky, N. 1973. Conditions on Transformations. in: S. Anderson & P. Kiparski

(eds.) A Festschrift for Morris Halle. New York: Holt, Rinehart and Wilson.

Chomsky, N. 1981. Lectures on Government and Binding. Dordrecht: Foris.

Chomsky, N. 1982. Concepts and consequences of the theory of government

and binding. Cambridge, Mass.: MIT Press.

Chomsky, N. 1986a. Barriers. Cambridge, Mass.: MIT Press.

Chomsky, N. 1986b. Knowledge of language. New York: Praeger.

Chomsky, N. 1988. Language and problems of knowledge. Cambridge, Mass.:

MIT Press.

Chomsky, N. 1991. Some notes on economy of derivation and representation. In

R. Freidin (ed.), Principles and parameters in comparative grammar.

Cambridge, Mass.: MIT Press, pp. 417-54. [Reprinted in Chomsky (1995)]

Chomsky, N. 1993. A minimalist program for linguistic theory. In K. Hale and S.

J. Keyser (eds.), The view from Building 20. Cambridge, Mass.: MIT Press,

pp. 1-52.

Chomsky, N. 1994. Bare phrase structure. MIT Occasional Papers in Linguistics 5.

Cambridge, Mass.: MITWPL. [Reprinted in G. Webelhuth (ed.) (1995)

Government and binding theory and the minimalist program. Cambridge,

Mass.: MIT Press, pp. 383-439.]

Chomsky, N. 1995. The Minimalist Program. Cambridge, MA: MIT Press.

565

Chomsky, N. 1998. Minimalist inquires: The framework. MIT Occasional Papers in

Linguistics 15.

Chomsky, N. 2000. Minimalist Inquiries: the framework. in: R. Martin, D. Michaels

& J. Uriagereka (eds.) Step by Step. Cambridge, MA: MIT Press, pp. 89-155.

Chomsky, N. 2001a. Beyond explanatory adequacy. Papers in Linguistics 20.

Cambridge, Mass.: MITWPL.

Chomsky, N. 2001b. Derivation by phase. In M. Kenstowicz (ed.), Ken Hale.

Cambridge, Mass.: MIT Press, pp. 1-52.

Citko, B. 2000. The implications of (dynamic) antisymmetry for the analysis of (free)

relatives. [Paper presented at the Workshop on the Antisymmetry Theory,

Cortona, May 15-17]

Citko, B. 2002. ATB Wh-Movement and the Nature of Merge. Talk given at NELS

33.

Collins, C. 1997. Local economy. Cambridge/MA: MIT Press.

Cornell, T. 1999. Derivational and representational views of minimalist

transformational grammar. University of Tübingen [ms.].

Drury, J. 1998. The promise of derivations: atomic merge and multiple spell-out.

Groninger Arbeiten zur Germanistischen Linguistik 42, pp. 61-108.

Drury, J. 1999. Movement as Remerge and C-Command as Subderivational

Precedence. Paper presented at the GLOW 1999 Workshops in Postdam.

Echepare, R. 1997. The grammatical representation of speech events. Ph.D.

dissertation, University of Maryland.

566

Epstein, S. & N. Hornstein. 1999. Working minimalism. Cambridge/MA: MIT

Press.

Epstein, S., E. Groat, H. Kawashima & R. Kitahara. 1998. A derivational approach

to syntactic relations. Oxford University Press.

Epstein, S., E. Groat, R. Kawashima & H. Kitahara. 1998. A Derivational Approach

to Syntactic Relations. Oxford: Oxford University Press.

Frank, R. & K. Vijay-Shanker. 1999. Primitive c-command [ms.] Johns Hopkins

University and University of Delaware.

Fukui, N. & Y. Takano. 1998. Symmetry in Syntax: merge and demerge. Journal

of East Asian Linguistics 7: 27-86.

Gärtner, H-M. 2002. Generalized Transformations and Beyond: reflections in

minimalist syntax. Berlin: Akademie Verlag.

Goodal, G. 1987. Parallel Structures in Syntax. Cambridge UP, Cambridge.

Guimarães, M. 1999. Phonological Cascades and Intonational Structure in

Dynamic Top-Down Syntax. Talk given at the Fall 1999 UMCP Linguistics

Dept Student Conference. College Park, MD, March 14th; available at

[http://www.ling.umd.edu/Events/StudentConference/1999.html]

Guimarães, M. 2001. Syntactic amalgams in dynamic top-down derivations.

[Doctoral research paper] University of Maryland.

Guimarães, M. 2002. Syntactic Amalgams as Dynamic Constituency in Top-

Down Derivations. Proceedings of ConSOLE-X. Universiteit Leiden;

available at

http://www.sole.leidenuniv.nl/index.php3?m=1&c=11&garb=0.7125535

677557686&session=

567

http://www.sole.leidenuniv.nl/index.php3?m=1&c=11&garb=0.7125535

677557686&session=

Guimarães, M. 2003a. Towards a Descriptively Adequate Theory of Syntactic

Amalgams. Talk given at the 1st Joint UMass/UConn/MIT/UMD Syntax

Workshop. Storrs, CT, February 8th.

[http://www.linguistics.uconn.edu/sx_wkshp.html]

Guimarães, M. 2003b. Parallel Derivations that Eventually Converge. University of

Maryland at College Park, ms.

Guimarães, M. 2003c. Hidden Superiority in Syntactic Amalgams. Talk given at

the 13th Colloquium on Generative Grammar. Ciudad Real, Spain, April, 2nd-

4th.

Guimarães, M. 2003d. Effects of Pied-Piping on Syntactic Amalgams in

Romance. Talk given at the 33rd Linguistic Symposium on Romance

Languages. Bloomington, IN, April 24th-27th.

Guimarães, M. 2003e. A Preliminary Investigation on the Semantics of Multiply-

Rooted Phrase-Markers. University of Maryland at College Park, ms.

Hornstein, N. 1995. Logical Form: from GB to Minimalism. Oxford: Blackwell.

Hornstein, N. 2001. Move! A Minimalist Theory of Construal. Oxford: Blackwell.

Huck, G. & J. Goldsmith. 1995. Ideology and Linguistic Theory: Noam Chomsky and

the Deep Structure Debates (history of linguistic thought). London:

Routledge.

Jaeggli, O. 1981. Topics in Romance Syntax. Dordrecht: Foris.

568

Kayne, R. 1994. The Antisymmetry of Syntax. Cambridge, MA: MIT Press.

Kitahara, H. 1997. Elementary Operations and Optimal Derivations. Cambridge,

MA. MIT Press.

Kuroda, K. 2000. Foundations of Pattern Matching Analysis, A New Method

Proposed for the Cognitively Realistic Description of Natural Language Syntax.

Ph.D. dissertation. Kyoto University. downloadable from:

http://clsl.hi.h.kyoto-u.ac.jp/~kkuroda/

Lakoff, G. 1974. Syntactic Amalgams. Papers from the 10th Meeting of the Chicago

Linguistic Society.

Lasnik, H. 1991. On the necessity of binding conditions. In: R. Freidin (ed.)

Principles and Parameters in Comparative Grammar. MIT Press, pp. 7-28.

Levinson, S. 1983. Pragmatics (Cambridge Textbooks in Linguistics series).

Cambridge: Cambridge University Press.

May, R. 1985. Logical Form: its structure and derivation. Cambridge, MA: MIT Press.

McCawley, J. 1982. Parentheticals and Discontinuous Constituent Structure.

Linguistic Inquiry, 13: 91-106.

McCawley, J. 1987. Some Additional Evidence for Discontinuity. In: G. Huck &

A. Ojeda (eds.) Syntax and Semantics 20: Discontinuous Constituency. New

York: Academic Press, 185-200.

Merchant, J. 2001. The Syntax of Silence: sluicing, islands, and the theory of ellipsis.

Oxford: Oxford University Press.

Moltmann, F. 1992. Coordination and Comparatives. Ph.D. dissertation, MIT.

569

Muadz, H. 1991. Coordinate Structures: a planar representation. Ph.D. dissertation,

University of Arizona.

Müller, G. 1998. Incomplete category fronting: a derivational approach to remnant

movement in German. Dordrecht: Kluwer.

Newmeyer, F. 1996. Generative Linguistics: History of Linguistic Thought. London:

Routledge.

Phillips, C. 1996. Order and Structure. Ph.D. dissertation, MIT.

Phillips, C. 2003. Linear Order and Constituency. Linguistic Inquiry 34: 37-90

Richards, N. 1999. Dependency formation and directionality of tree

construction. MIT Working Paper in Linguistics 34 (Papers on morphology

and syntax: cycle two.

Richards, N. 2003. Very Local A’ Movement in a Root-First Derivation. in: S.

Epstein & D. Seely (eds.) Derivation and Explanation in the Minimalist

Program. Oxford: Blackwell.

Rizzi, L. 1990. Relativized Minimality. Cambridge, MA: MIT Press.

Ross, J. R. 1969. Guess Who?. in: R. Binnick et alii. (eds.) Papers from the 5th

Regional Meeting of the Chicago Linguistic Society. Chicago: Chicago

Linguistic Society, 282-286.

Tsubomoto A. & J. Whitman. 2000. A type of head-in-situ construction in

English. Linguistic Inquiry 31, pp. 176-183.

Tsubomoto A. & J. Whitman. 2000. A Type of Head-in-Situ Construction in

English. Linguistic Inquiry 31: 176-183.

570

Uriagereka, J. 1999. Multiple spell-out. S. Epstein & N. Hornstein (eds.) Working

Minimalism, Cambridge/MA: MIT Press, pp. 251-282.

Uriagereka, J. 2002. A mind plan? Colloquium talk at Postdam University.

van Riemsdijk, H. 2000. Free Relatives. Tilburg University, ms.

Watanabe, A. 1995. Conceptual basis of Cyclicity. MIT Working Papers in

Linguistics, 27, pp. 269-291.

Weinberg, A. 1995. Parameters in sentence processing: the case of Japanese. R.

Mazuka & N. Nagai (eds.) Japanese sentence processing. Erlbaum.

Wilder, C. 1998. Transparent free relatives. ZAZ Working Papers in Linguistics,

pp. 191-199.

Wilder, C. 1999. Right Node raising and the LCA. Proceedings of WCCFL 18.

