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CHAPTER I 

INTRODUCTION 

1.1 Literature Review 

Let F be the unknown cumulative distribution function ( cdf) of a real­

valued random variable (rv) X defined on some probability space. We study the 

nonparametric estimation of F based on random samples that contain biased or 

constrained observations. Biased or constrained data occur naturally in reliabil­

ity studies and survival analysis. The following are two frequently encountered 

situations: 

(i) Biased sampling model. Suppose that w 1(y), ... ,ws(Y) are known non­

negative weights, called biasing functions, and Fis an unknown cdf. The biased 

cdf Gi corresponding to Fis defined by 

(1.1.1) 
1 jx 

Gi(x) = H!i -oo wi(y)dF(y), x E R1
, i = 1, ... , s, 

with 

(1.1.2) Joo def 
0 < vVi = - oo Wi(y)dF(y) = [F](wi) < oo, i = 1, ... , s, 

where [F](wi) di }~
00 

Wi(y)clF(y) is a functional. This notation will be used 

frequently in this thesis for simplicity. Inference about Fis based on s samples of 

ni iid random variables, Xii, ... , Xin; from the distribution Gi for i = 1, ... , s. 

The model (1.1.1) is called ans-biased sampling model. This model has been 

studied by Vardi (1985) who constructed the nonparametric maximum likelihood 
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estimator (NPMLE) fr(n) of F. Gill, Vardi, and Wellner (1988) ( to be abbrevi­

ated by G-V-W (1988)) have obtained the strong consistency and asymptotic 

normality of estimator fr(n)_ A special case of model (1.1.1) (s = 2, w 1 (y) = 1, 

w2(y) = y, y E [O, oo )) has been studied by Vardi (1982). 

(ii) Density estimation under a constraint. There are certain situations in 

which the observation X is distorted by a random scale change to ZX, where 

Z has the uniform distribution over (0, 1) and is independent of X. We assume 

the underlying random variable X is nonnegative. Let Y ~ ZX and G be its 

cdf. Here " d " means equal in distribution. Then Y has density 

(1.1.3) g(y) = dG(y) = J, !:_dF(u), 
dy u "2 11 11, 

y ~ 0, 

where Fis the cdf of X . The problem is to use the da ta Y1 , ... , Yn from density 

g(y) to estimate the distribution F. It is easy to check that 

F(t) = G(t) - tg(t), f (t) = -tg'(t) 

for t E [O, oo ), where g is subject to the constraint 

(1.1.4) g'(t) S O, tE[O,oo). 

In this case, nonparametric estimation of F is equivalent to estimating G and 

its density g. It is well known that the NPMLE of G under the constraint 

g' ( t) S O is the least concave majorant of the empirical distribution function of 

Yi , . . . , Yn. There are many papers discussing this problem, including Grenander 

(1956), Prakasa-Rao (1969), Groeneboom (1985), Devroye (1987), Birge (1987a, 

b, 1989), and Datta (1992). Recently, Vardi (1989) has generalized this problem 
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from the one sample to the two-sample case in which (Yi , ... , Yn) is a random 

sample from G and ( X 1 , .. . , X m) is another random sample from F, and ob­

tained fe(n), the NPMLE of F. Asymptotic properties of the estimator fe(n) have 

been studied in Vardi and Zhang (1992). 

In this thesis, we extend the s-biased sampling model ( 1.1.1) by making the 

weight functions wi(Y) depend on the population distribution function F in a 

variety of ways, and we consider the biased sampling model in a substantially 

more general setting. Also we investigate density estimation under more general 

constraints than (1.1.4). These generalizations are motivated by some important 

practical applications to be presented in the next section. 

1.2 Some Applications Leading to New Models 

Example 1.2.1. The perfect ranked-set-sampling model. The construc­

tion of the perfect ranked-set-sampling model (RSS) consists of n cycles. In 

each cycle the experimenter selects s random samples, each of size s , where s 

is a predetermined number. For each sample of s observations in the ith cy­

cle, the rth smallest observation, X[r]i , is determined and the rest of the s - 1 

observations are discarded. At the conclusion of n cycles, only ns out of the 

total of n s 2 observations are retained. The retained n s values are certain order 

statistics {X[r]i; r = 1, ... , s ; i = 1, ... , n}. Let F be population cdf of the basic 

rv X. It is easy to see that the cclf of X[r]i is given by 

(1.2.1) 
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where 

(r - l)!(s - r)! 
Wr=-----­

s! 
1 

s(s-1) 
r-1 

for r = 1, . .. ,s. Comparing with (1.1.5), we see that Gr(x) is a biased dis­

tribution function of F with weight function wr(Y) = [F(y)f-1 [1 - F(y)Js-r 

depending on the population distribution F. 

The application of the RSS procedure dates back to 1952. McIntyre (1952) 

used the procedure to estimate mean pasture yields. Measuring yields of pas­

ture plots requires mowing and weighing the hay, a time-consuming process. 

But an experienced eye can rank fairly accurately a small number of plots with­

out measurement. The RSS procedure has been applied mostly in agriculture 

( e.g., Cobby, Ridout, Bassett, and Large 1985; Halls and Dell 1966). Other 

related studied model can be found in Dell and Clutter (1972), Takahasi and 

Wakimoto (1968), and Stokes (1977, 1980). Stokes and Sager (1988) carried 

out an interesting study in which F is estimated with data from s populations 

Example 1.2.2. Nomination-sampling model. In the nomination sam­

pling model, we observe not X, but the extreme value of Xis, either 

(1.2.2) 

or 

(1.2.3) Z = min(X1 , ... ,Xk), 

where Xi's are iid with cdf F, and k is a fixed integer. Then the cdfs of Y and 
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Z are respectively 

(1.2.4) Gy(x) = [F(x)]k = l~ k[F(y)]k- 1dF(y), 

(1.2.5) Gz(x) = l - [1 - F( x)]k = l x= k[l - F(y)]k-ldF(y) . 

We see that the cdfs Gy and G z are also biased distributions of F with weight 

functions w(y) = [F(y)Jk-l and w(y) = [1 - F(y)Jk-l, respectively. Again, 

the weight functions depend on F. For applications, ,i\Tillemain (1980) used the 

Y -data to estimate the median of F. Boyles and Samaniego (1986) generalized 

model (1.2.2) to the case in which k is a rv, and studied the NPMLE of F and 

its properties. 

Example 1.2.3. (Gill, Vardi, and Wellner 1988). If we have control over 

the choice of the number of samples s, the sample fractions Ani = ni/n, z = 

1, ... , s, and the known weight functions wi(Y), we may want to choose them 

to obtain an optimal estimator, such as a minimum variance estimator. For 

example, if we take s = l and want to estimate the population mean µ F = 

f ~
00 

ydF(y) from the biased sampling distribution, then the optimal choice for 

the weight function is w(y) = IY - µFl- This example shows that w(y) depends 

on the population distribution F through µ,F, 

Example 1.2.4. Backward sampling of ages (He and Yang 1993). Let 

the target population P for sampling be all those individuals who were born in 

a specified time interval [O , T] and whose death tirn.es ( d = T + X) are at least as 

large as T . Here T is the birth time and X is the lifet ime of an individual. Let 

B(t) be the cdf of birth times T of all those individuals born in [O , T]. A variety 

of sampling methods can be designed to obtain data for estimating the cdf F of 
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the lifetime X. One problem addressed by He and Yang (1993) is to use the age 

da ta to estimate F. The data consists of the age of n individuals taken from P. 

The age, Y, of an individual taken from P has the cdf 

G(y) = P(Y :=; y) = P(T - T :=; yid > T) 

l lT = - F(T- u)dB(u) , 
C T-y 

for O :S y :=; T, where 

C = P(X + T > T). 

Evidently, F and B cannot be determined by the knowledge of G alone. Suppose 

that Bis known. Then we can identify F for x E [O , T] . In human populations, 

this is a reasonable assumption since birth records are available. Under the 

assumptions that B ( t) possesses a strictly positive pelf on [O, T], /3 F = inf { x : 

F( x) = 1} > T, and that X and T are independent, we have 

(1.2.6) F(x)= P[X >:r]= b(T) g(:i:)' xE [O,T] 
b(T - :i: ) g(O) 

where g denotes the pdf of G. 

It is interesting to note that m this case estimating F is equivalent to 

estimating the density g( x ) under the constraint that g(:r )/b(T-x) is a monotone 

decreasing function of x E [O, T]. This is similar to (1.1.8), but the constraint 

is that g(x)/b(T - x), ratio of two densities g( x) and b(T - x), is monotone 

decreasing. More examples will be given in Chapter V. 

Motiva ted by these applications, we proceed to formulate theoretically five 

biased sampling models that generalize models (1.1.1 ), (1.1.3), and the con­

straint (1.1.4). 
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1.3 New Models and Problems to Be Studied 

This thesis treats the following five classes of general s-biased sampling 

models. 

Model I. 

(1.3.1) l lx Gi(x) = Bi - oo wi(y)h(F(y))dF(y), , R1 XE , ' 

where 

0 <Bi = i: wi(y)h(F(y))dF(y) 

= i: wi(y)dH(F(y)) 

d e f = [ H o F] ( w i) < oo, i = 1, ... , s, 

i = 1, ... , s, 

and h( z) is a known, nonnegative and integrable function on [O, 1] such that 

H( x) - H(O) = 1x h(z)dz, 

and w1(Y), ... , ws(Y) are known nonnegative measurable biasing functions. 

This model generalizes models (1.1.1), (1.2.4) and (1.2.5) . By setting h(z) = 

C(constant) > 0 for O :S z :S 1, model (1.1.1) is clearly a special case of (1.3.1). 

Likewise setting s = l, w 1(y) = C(constant) > 0, and h(z) = zk-l for O < 

z :::; 1, we obtain the nomination sampling model (1.2.4); and setting s = l , 

w 1 (y) - C(constant) > 0, and h( z ) = (1 - z )k - J for O :S z :S 1, model (1.3.1) 

becomes the nomination sampling model (1.2.5). 
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Model II. 

(1.3.2) 

l jx 
Gi(x) = wi - oo Wi(F(y))dF(y), x E R 1

, i = l, . . . ,s, 

o < vVi = [ : wi(F(y))dF(v) < oo, i = 1, ... , s, 

where w 1(z), ... , w 9 (z ) are known nonnegative measurable biasing functions de-

fined on [O , 1]. 

The perfect ranked-set sampling model (1.2.1) and the nomination sampling 

model (1.2.4) are special cases of model (1.3.2) by setting respectively in (1.3.2) 

wi(z) = z i- l(l - z)s -i, l Si S s, ands= l , w1(z) = z k-l for O S z S 1. 

Model III. This model is described by the joint distribution of two random 

variables X and K , 

G(x, k) = P[X S x,I( = k] 

= p(k) 1-xoo Wk(y)dF(y) :r: E R1; 
H1k 

0 < vVk = i: Wk(x)dF(y) < oo, 

(1.3.3) 

p(k) = P(K = k), k E JC, 

where {wk( x) : k E JC} are assumed known, the probabilities {p(k): k E JC} and 

cdf Fare unknown. The observed values are independent pairs {(X;, K;)}f=i · 

In particular , if P(K = 1) = 1, then model (1.3.3) becomes the 1-biasecl 

sampling model. In fact , model (1.3.3) considers the number of people who 

contribute the da ta as a random variable. 

Model IV. Density es timation under the constraint: 

(1.3.4) -- < O [
f( x )]' 
w(x) - ' 

x E (O,A1) 
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where M :S: oo, and w(x) is a known and strictly positive weight function. 

When w( x) = C > 0 for x E (0, oo ), the constraint specializes to the 

well known problem of estimating a monotone decreasing pdf J; when w(x) = 

b(x - T), M = T, (1.3.4) becomes the problem described in (1.2.6). 

Similar to (1.3.4) we have the following model: 

Model V. Density estimation under the constraint 

(1.3.5) [
f( x) ]'> o 
w(x) - ' x E (0,{h·) 

where (Jp = inf{x : F(x ) = 1}, and w(x) is a known and strictly positive weight 

function . 

Special cases of this model, including the relevation transform (see Chapter 

VI) of two cdfs, the deconvolution model, and the mixture model will be studied 

in Chapter VI. 

1.4 Research Summary 

The dissertation is organized as follows: 

In Chapter II, we discuss the estimation of cdf Fin model (1.3.1). We first 

address the identifiability of model (1.3.1) under appropriate assumptions. We 

show that the model is identifiable by solving the equation ( 1.3.1 ) for F. Based 

on the solution of model (1.3.1), we propose a natural estimator of Fin Section 

2.2. Strong consistency and asymptotic normality of the estimator are presented 

in Section 2.3. Proofs of the large sample properties are given in Section 2.4. 

Some examples are considered in Section 2.5. 
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In Chapter III , we discuss model (1.3.2). The identifiability of the model 

and the estimation of F will be addressed in Section 3.2. Some properties of the 

estimator will be studied in Section 3.3. 

In Chapter IV, the identifiability of model (1.3.3) and estimation of F are 

discussed . In particular , we show that our estimator is in fact the NPMLE of F 

under model (1.3.3). 

In Chapter V, several nonparametric estimators will be considered for model 

(1.3.4). Specifically, we give five examples which motivate our study of model 

(1.3.4) in Section 5.1. The NPMLE off and its properties are studied in Section 

5.2. The kernel estimators off and their properties are investigated in Section 

5.3. The modified histogram type estimator off and its properties are considered 

in Section 5.4. 

In Chapter VI , a discussion of model (1.3.5) is presented , organized parallel 

to Chapter V. 

Finally, the Appendix contains a list of nota tion and three definitions used 

in this thesis. 
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CHAPTER II 

ESTIMATING THE DISTRIBUTION FUNCTION 

IN BIASED SAMPLING MODEL I 

2.1 Introduction 

In this chapter, we study the statistical inference of the general s-biased 

sampling model I defined by (1.3.1) 

Gi(:r) = [x
00 

wi(y )h(F1~ ))dF(y) x E R1, i = 1, ... , s, 

0 < B i= 1-: Wi(x)h(F(y))dF(y) < oo, i = 1, .. . ,s 

(2. 1.1) 

in Chapter I, where h is a known and nonnegative function on [O, 1] such that 

H(x) - H(O) = ix h(z)dz :S oo, 

w 1 , ... , w 8 are known and nonnegative functions, and F is an (unknown) cdf. 

As in the biased sampling model (1.1.1) (see Vardi 1985), it is assumed that 

the observations are not from F, but from distribution Gi, i = 1, ... , s. The s 

independent samples are denoted by 

(2.1.2) iid from Gi . 

We want to use all of then = n 1 + ... +n,9 observations to estimate the underlying 

cdf F efficiently and nonparametrically, and to find a bias-corrected estimator 

which corrects for the biasing involved in the distributions Gi, 1 :Si :S s. 

This chapter is organized as follows: Vve first consider identifiability and 

estimator of F for model (2.1.1). The identifiability is proved by solving for 
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F in equation (2.1.1). Based on the solution of (2.1.1), we propose a natural 

estimator of Fin Section 2.2. In Section 2.3 we sta te the large sample properties 

of strong consistency and asymptotic normality of the estimator. The proofs of 

these results are given in Section 2.4. Examples are di scussed in Section 2.5. 

2.2 Identifiability and Estimation of F 

For nonparametric inference, it is necessary to show tha t model (2.1.1) is 

identifiable . Tha t is, we need to show that the sys tem of equa tions (2.1.1) has 

a unique solut ion for F in terms of G 1 , .. . , G 8 • Vve rnake the following three 

assumptions. The first two are introduced by G-V-,iV (1988). 

Let x+ = u :=l{x : Wj(x) > O} and let X = (- 00 , 00 ) be the sample space 

of the random variables { Xij}. Meanwhile, we assume tha t the biasing functions 

{wi( x )} i=l are distinct to avoid trivia. Then 

Assumption 1. x+ = X . 

Remark 2 .2.1. If thi s assumption fails, we must replace the cdf F( x ) by 

the conditional distribution function F+( :c ) = P (X :S :c i,1'+ ). 

The next assumption requires the concept of a connected graph. We say 

the graph :F with points { w 1 ( . ) , . .. , w 8 ( . )} is connected by a path if for each 

pair ( i, j) there exist indices li , ... , lk E {1, .. . , s } such that 

where li f--+ l2 means that 
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Assumption 2. The graph :F with points { w 1 (. ), ... , w 8 ( . )} is connected. 

Under Assumptions 1 and 2 G-V-W (1988) showed that the ordinary s­

biased sampling model (h(z) = C) is identifiable. However, we give an example 

to show that Assumptions 1 and 2 are not sufficient for the more general model 

(2.1.1) to be identifiable. Some restrictions on the functions h or H are necessary. 

Example 2.2.1. Suppose that s = l , w(y) is a positive constant, and 

h(z) = I[o,½J (z) for z E [O , l]. Then 

f ~ l [o<F(ii) <l]dF(y ) 
G( X) = 0000 - • - 2 

f _00 l[o s;F(y)s; ½ldF(y) 

{F'(x) 

= 2 Jo I[o s; ns; ½]du 

= 2min(F(:i:), 1/2) = min(2F (x), 1) 

= { 1, if F(x) > t; 
2F(x), if F(x) ~ 2 . 

Thus G cannot determine the unknown F when F( x) > ½. 

This example shows that additional assumption is needed. 

Assumption 3. The inverse function s- 1 (z) of H (z) from [H(O), H ( l )] 

to [O , l] exists, where H( z ) - H(O) = foz h(y)dy ~ oo for any z E [O , l]. 

If h( z ) is strictly positive on [O , 1], then Assumption 3 holds. On the other 

hand, without loss of generali ty, we can assume that H (O) = 0, H ( l ) = 1 

under Assumption 3. In fa.ct , we can make a transformation H *(x) = [H(x) -

H (O)]/[H(l) - H (O)] so that H *(O) = 0 and H *( l) = 1 always hold. 

Theorem 2.2.1. Under Assumptions 1, 2 and 3, model (2.1.1 ) is identi­

fiable. 
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Proof. By Assumption 3, model (2.1.1) can be written as 

G .·(x) = J_x= Wi(y)h(FB(~- ))dF(y) j x w ·(y) 
. . = - (X) TdH(F(y)) 

Bi = 1-: Wi(y)dH(F(y)), 

for i = 1, ... , s. Denote the sample fractions of G1 , ... , Gs by 

' . - ni 
Anz - , 1 :S i :S S 1 n 

We introduce an average distribution Gn( x) of s cdfs G1 (x ), .. . , Gs( x) as follows: 

(2.2.1) 

It follows from Assumption 1 that the reciprocal of the integrand is finite and 

(2.2.2) 

H[F(x)] = j x [t AniWi(Y)]-1 dGn(Y) , 
- = i=l Bi 

1 = 1= [t AniWi(Y)]-l dGn(y). 
- = i =l B i 

By Assumption 3, we see that H- 1 exists and thus 

(2.2.3) 

J·x ["'s AniWi(Y) ]-l dG ( ) 

{ 

- (X) L.,i=l B; ' Tr,. y } 
F(x) = H-1 

_
1 

1:::, [ z::=l Ani;:(y) l dGn(Y) 

= H-1 [T11(x )]. 

Now let us normalize Bi with respect to Bs by defining ½ = Bi/ Bs for i = 

1, . . . , s. Thus Vs = l. The ratio of integrals in H-1 can be expressed in terms 

of the½ as 

(2.2.4) 
I x ["'~ >.,,;w;(y)]-1 dG (1) - = L.,z= l V; n Y 

T11(x) = -1 · 

J= ["'s A,i ;w;(y)l dG (y) - = L.,1= 1 V; n . 
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Now proving the model is identifiable is to show for all Ani, i = l , ... , s, Ani > 0, 

and I:t=l Ani = l that Vi, ... , Vs- I, Vs can be uniquely determined as functions 

of G1, .. . , Gs· We shall use the technique of Proposition 1.1 in G-V-W (1988). 

To make the thesis self-contained, a detailed proof will be provided. 

Since Vs = l , we only need to consider the system of s - l equations that 

define B i or v; , 

(2.2.5) Lni(V1, . . . ,Vs-1,l) = 1, 'l = l , ' .. ) s - l , 

where 

l 1= Lni(V1, ... , Vs) = Vi -= wi(Y )dH[F(y)] 

(2.2.6) 
- I_ 1= ·( ) [~ >-n.iw1(Y) ] -1dG ( ) 
- V,· 'W1 Y ~ V, n Y · 

1 - CX> .i=l J 

We shall reparametrize the arguments in the equations Lni as follows: 

Put 
.i = l , .. . ,s, 

From now on, the bar underlying the symbol denotes a vector, and "T" denotes 

the transpose of a column vector. Set 

K nj(~) = AnjLnj(An1e- z1
, ••• , A118 e-z•) - Anj, 

D,.(£) = 1: log [t hv;(y)l dG,.(y) - t, An;z;. 

Then the system of equations in (2.2.5) becomes 

(2.2. 7) i=l, .. . ,s- l 
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and J{~ = (Kn 1 , . .. , Kns) is the gradient of Dn(~). vVe show that under As­

sumption 2 of a connected graph, Dn(~) is a strictly convex function of z1 , ... , Z s. 

In fact, 

(2.2.8) 

g_T D~'\s)<! = 1] t, a)p,(y) - [t, a,p,(y)l }an(Y) 

= 1-: Vary(a1)dGn(Y) 

2: 0 

for all scalars g_ T = ( a1, . . . , as ) E R s, where {JJi(Y)} i=l are probability distribu­

tions of a rv a1 defined by 

i = 1, . .. , s . 

Thus to show that system (2.2. 7) has a unique solution, it suffices to show that 

the upper left (s -1) x (s -1) submatrix of D~?\£) is positive definite or has rank 

s - l. To do this we argue that if Assumption 2 holds, then a strict inequality 

holds in (2.2.8) for all g_ i= ens for c i= 0, where nf = (1, .. . , 1) is an s x 1 vector 

with all components 1. 

Suppose instead that equality holds in (2 .2.8). Then 

(2 .2.9) a.e. ( Gn) y, 

that is on the set A = {y : Var 11 ( a1) = O}, G11 (A) = l. If so, we show ai = a.i 

for 1 ::; i, .i ::; s with i f= j. Under Assumption 2, for each pair ( i, .i) there exist 

indices i = l1, l2 , ... , lk = .i such that 

(2.2 .10) 
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for m = 2, . .. , k. Let 

m = 2, .. . , k . 

In view of (2.2.2), (2.2.10) implies HF(Am) = [Ho F] (Am) > 0, m = 2, ... , k , 

and hence Gn(Arn) > 0. Denote the intersection of A and Am by A~ , rn = 

2, ... , k. Choose y E A;. Then Vary( a1) = 0 and p1 1 (y ), Pt ) Y) > 0 would force 

ai = a1 1 = a1 2 since g_ must be constant for the coordinates with Pt(Y) > 0. 

Similarly, choose y E A;, we can conclude a1 2 = a 13 • Continuing this process 

yields 

Since the same argument holds for any pair i and .i, it follows tha t (2.2 .9) 

implies tha t g_ = en s for some c. From this we conclude that D}?\~) has rank 

s - l and its upper left ( s - 1) x ( s - 1) submatrix is nonsingular for all fI . 

Thus the solution ½ = Bi/ B 8 of (2.2.5) is unique. The existence of solution of 

equation (2.2.5) is given in Theorem 2 of Vardi (1985). Vve shall not prove it 

here. This completes the proof. I 

Clearly, from the identifiability result and (2.2.3) we can easily estimate 

F if the Bi ( or ½) are known. vVe can use the empirical cdf Gn of all the 

observa tions from s samples to estimate the average elf Gn of (2.2.1) , where 

(2.2.11) 
1 s n; s 

Gn(x ) =;:; LL I (- oo,x](X i.i ) = L Ani G ni(x), 
i= l .i= l i=l 

and 

(2.2.12) 
1 n ; 

Gni (x) =;;: LI(-oo,x ](X ij ), i = l , ... ,s, 
i .i=l 
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for X E R 1 . Then replacing Gn on the right side of (2.2.3) by the empirical cdf 

Gn yields a nondecreasing function .F~, i.e., 

(2.2.13) 

where 

(2.2.14) 

I
x ["'s >.n;w;(y) ]-l dG ( ) 
-oo L....z == l B; n Y 

~o Tn(x) = -1 

J~oo [ ~:~, '"';;':( ') l dGn (y) 

I
x ["'s >.,,;w;(y) ]-1 dG ( ) 
-oo L....i==l V; ' n Y 

- Joo ["'~ >.n;w;(y)]-l dG (y) 
-oo L....z==l V; n 

However, the Bi (and hence½) are unknown. Vve need to address the esti­

mation of the Bi = J Wi(Y )dH[F(y )] first. Once the Bi are properly estimated, 

we substitute them for the unknown Bi in (2.2.14) to obtain an estimate of F. 

In order to assume that the resulting estimate indeed has the properties of a 

distribution function, the following method of substitution is used. We substi­

tute the empirical cdf Gn for Gn in (2.2.6) to obtain the following equations 

(1:::;i:::;s) 

(2.2.15) 

1 loo ( ) [~ An_iw.i(Y) i-1 dG ( 
Lni(V1, ... , Vs)= V,· Wi Y ~ y. n y) 

2 -00 j==l J 

= 1. 

Let V nl, ... , y n,,-l, y., ( ee 1) denote the solution of ( 2.2. 15 ). Replacing Gn 

and V
1

, ... , V,(ee 1) on the right side of (2.2.3) by the empirical df Gn and 

V nl v · ld decr·easing function Fn which will be used as an esti-
' · · · , ns y1e s a non 
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mator of F . That is, 

(2.2.16) 

A A 

0 Fn(x) =Fn(x;Vnl,· · ·,Vns) 

f~= [ I::==l >.,,~~?') ] -
1 

dGn(Y) 

= S-' { r [ I:'- A.;w;(u) r' dG (1) 
- = i -1 V,,; n Y 

= H - l [Tn( X )] . 

Finally, with Fn we can estimate 

i = 1, ... , s - l , (2.2.17) 

(2.2.18) 
1 

Bns =------ - -----

1= [""'s >.,,; w;(y) ]-l dG (1) - = L..11==1 V ni n Y 

Remark 2.2.2. The equations (2.2.5), (2.2.15), (2.2.17) and (2.2.18), are 

the same as (1.12), (1. 14), (1.18) and (1.19) of G-V-W (1988). 

It is important to note that the solution Vn1, .. . , Vn,s-1, V 118 of (2.2.15) 

is not unique in general. To get a unique solution, an assumption similar to 

Assumption 2 is introduced. 

Assumption 4. The graph F with points {wk(.) : 1 ~ k ~ s} is 

strongly connected by a path in the sense that for any pair of ( i, .i) there exist 

l1, ... ,lk E {l, ... ,s} such that 

where l1 :;:::= l2 if and only if 

for 1 ~ l1 , l2 ~ s, where Gn is defined by (2.2.11). 
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Under Assumptions 1, 3, and 4, the solution V 1t1,···,Vn,s-1,Vns = 1 of 

(2 .2 .15) is unique. The proof, which is similar to that of Theorem 2.2.1, will be 

omitted. 

2.3 Asy1nptotic Properties of the Estimator Fn 

In this section, we state two main large sample results which are the strong 

consistency and asymptotic normality of the estimators V';; = (V nl, ... , V ns), 

B';; = (Bn 1 , ... , Bns), and Fn. We begin with the following lemma adapted from 

Dudley and Philipp (1983) for our purpose. 

Le1n1na 2.3.1. If Ani -; Ai > 0, i = 1, ... , s, then there exist a special 

construction of 

8 

X~(g) = vn(Gn(g) - Gn(g)) = L ~y01i(Gni(g) - Gi(g)) 
i=l 

and a Gaussian process X* on a common probability space (51, :F, P) satisfying 

IIX~ - X*llo = sup IX~(g) - X*(g)I _!__, 0 
gEQ 

as n -; oo, where 9 is a Donsker class for all cdfs Gi, i = 1, . .. , s, (see 

Definition A.1.3 in Appendix) and X* is a mean zero Gaussian process with the 

following covariance function 
s 

i=l 

where q1, q2 E 9 and 
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Before stating the main results, let us define a new measure 

Hp=HoF, 

which was introduced in the proof of Theorem 2.2.1. Defining bi(x) = awi(x), 

1 ::; i ::; s, we can write model (2.1.1) in terms of HF as 

for x E R 1
. Hence HF is equivalent to G in G-V-Vv ( 1988). All results for G in 

G-V-W (1988) hold for our new rn.easure Hp. 

The first theorern establishes the consistency of the estimates V n and Bn 

for VT = (V1, . .. , Vs) and BT= (B1, ... , B s) given by (2.2.15), (2.2.17), and 

(2.2.18). 

Theoren.1 2.3.1. (Strong consistency of V n and Bn.). Suppose that 

Assumptions 1, 2, 3 and 4 hold, and 

0 <Bi= 1-: wi(y)h(F(y))dF(y) < oo 

for i = 1, ... , s. Then equations (2.2.15) have (with probability 1 as n --t oo) a 

unique solution V n which satisfies 

(2.3.1) V ~ V = B/B -n - _ s as n --t oo, 

and 

(2.3.2) B ~B -n - as n --+ oo. 
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The second theorem proves the consistency of both Fn and F~ [see (2.2.13) 

where Bi are known] as estimators of F uniformly over Q(F), which is the class 

of functions defined by 

(2.3.3) Q(F) = {qe(x)Ic(x): CE C}, 

where qe ( x) is a fixed nonnegative function, C is a Vapnik-Chervonenkis class of 

subsets of the sample space X, and 

(2.3.4) [F](<Je) = 1-: <Je(x)dF( x ) < oo, 

(see Definition A.1.1 in Appendix). 

Theorem 2.3.2. (Strong consistency of F11 and F~). Suppose that 

Assumptions 1, 2, 3 and 4 hold, and 

0 < Bi= 1: Wi(y)h(F(y))dF(y) < 00 

for i = 1, ... , s . Assume that the function h( :r) is bounded in the sense that 

there exist two positive constants rn and ]\/[ such that 

(2.3.5) O<m:S h(x) S lvl for 0 :Sx:S l. 

Then 

(2.3.6) /IFn - FIIQ(F) = sup{ l[Fn](q) - [F](q)I : q E Q(F)} ~ 0 

as n -------+ oo. Furthermore, if only Assumptions 1, 3 and 4 hold , 

(2.3.7) /IF1~ - F/IQ(F) = sup{l[F1~](q) - [F](q)I: q E Q(F)} ~ 0 
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as n-+ oo. 

The following theorems assert the give asymptotic norm ality of V
11

, B
11 

and 

Theorem 2.3.3. Suppose that Assumptions 1, 2, 3 and 4 hold. Then 

(2.3.8) vn(Fn(t) - F(t)) ~ Z*(t) , t E R1 

where Z *(t) is the mean zero Gaussian process with the following covariance 

function 

where 

c(t1,t2) = Cov(Z(It 1 ),Z(It 2 )) 

(2 .3 .9) = [HF] (r[It 1 - HF (ti) l[It 2 - HF(t2)]) 

+ [HF] ([It 1 - HF(t1) ]nvT) M-[HF] ([It2 - HF(t2 )]rw) , 

Z(Ix) is the limiting process of ,./n(Tn(x)-T(x)), lvl- is the {l, 2}-generalized 

inverse of M in the sense that M - satisfies lv1-1v11v1- = lvf-, MM- lvl = lvl, 

and 

(2.3. 10) 

I x = I (-oo,x](z), M = 6 - l - A; 

A= [G] (r2 wwT) = j 00 

r2(x)zv(x)zuT(x)dG(x); 
-oo 

8 

G(:c) = I: ,\Gi(:i: ), x E R 1
, 

i= l 

and r and ware defined in Lemma 2.3.1. 
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Theorem 2.3.4. (Asymptotic normality of Bn) If Assumptions 1, 2, 3 and 

4 hold, then 

(2.3.11) 

where 

BT = ( B 1 , ... , B s), B = diag( B 1, ... , B s) > 0; 

Z0 = -X*(r) - [HF](r ivT)M- X*(nv), 

defined in G-V-W (1988). 

Theoren.1 2.3.5. (Asymptotic normality of V 1i.) If Assumptions 1, 2, 3 and 

4 hold, then 

(2.3.12) 

,..., Ns-1 (Q, E) 

where 

C = Cov[X*(nv), X*(nv)] = A - A.6A. 

2.4 Proofs of the Asymptotic Results 

By Remark 2.2.2. it is unnecessary to prove the asymptotic normality given 

in Theorems 2.3.4 and 2.3.5 since the proofs are the same as those of Propositions 

2.2 and 2.3 of G-V-W (1988) except for a change of notation from Ws to B 8 • 

We shall therefore prove the consistency only. Since Fn is a function of 'I'n ( cf. 

(2.2.16)), an estimator of the ordinary s-biased sampling model, the result of 

G-V-W (1988) can be applied again. 
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Proof of Theorem 2.3.1. 

The proof that V n ~ V is the same as the first part of the proof of Propo­

sition 2.1 of G-V-W (1988). So (2.3.1) holds. Under Assumption 1, by (2.2.2), 

(2.3.1) and the fact that Gn(x) ~ G(x), Bns given by (2.2.18) converges a.s. 

to 

1 

J= ['°' s_ )\iw;.(y)] - 1 dG(y) 
- = L..,z-1 V, J= ['°'~ >.;w;(11)]-ldG( ) = Bs. 

-oo L..,z=l B; Y 

Hence 

for i = 1, ... , s, so (2.3 .2) holds. I 

Proof of Theorem 2.3.3. 

The quantity Tn(x) = ['.Z\](Ix) appearing in (2.2.16) is a distribution func­

tion. Let 

j x [~ w;(y)]-1 _ 
T(x) = _

00 

~ >.;~ dG(y) = [T](Ix) 

for any x E R 1
. Applying Theorem 2.2 of G-V-Vv (1988), we have 

where Z(Ix) is a mean zero Gaussian process with the covariance function 

c(t1 , t 2 ) given by (2.3.9). On the other hand, by (2.2.3) and (2.2. 16) 

Fn(x) = H - 1(Tn(x)), 

F(x) = H- 1 (T( x)). 

Applying the 8-method we have 

A d l ) 
.jn(Fn(x) - F(x)) -t h(F(x)) Z(Ix 

= Z*(x). 
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That is , the limiting process of fo(Fn(x) - F(x)) is a rn.ean zero Gaussian 

process with covariance function 

K(t1, t2) = Cov(Z*(ti), Z*(t2)) 

1 
h(F(t1))h(F(t2)) Cov(Z(I11 ), Z(I12)) 

for any t1, t2 E R1. So the proof is complete. I 

Proof of Theorem 2.3.2 . 

From Theorem 2.1 of G-V-,i\T (1988), we know that 

ll'I'n - TIIQ(HF) = sup !['I'n] (q*) - [TJ (q*) ! 
(2.4.1) q* EQ(HF) 

~ 0 as n -, oo. 

Moreover, (2.2.16), (2.4.1) and the continuity of H- 1 imply that 

Thus , for a fixed function q E Q(F), we have h~F E Q(H F) and 

A I J oo q( x) A J oo q( x) I 
![Fn] (q) - [FJ(q)I = - oo h(Fn(x)) dTn(x) - - oo h(F(x) ) dT(x) 

I Joo [ 1 1 ] A I < q(x) A - -- dTn(x) 
- - oo h(F11 (x)) h(F(x)) · 

'J
oo q(x) A I 

+ - oo h(F(x)) d[Tn( x ) - T(x)J 

= II h(:(x) ) -l ll ['Z\J(-q ) 
h(Fn(x)) 00 · ho F 

A q q 
+![Tn](-

1 
F) - [T](-

1 
F)I 

1, 0 7, 0 

~o 

as n -, oo. The second equa.li ty holds because h( F( x)) / h( Fn ( x)) is bounded by 
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(2.3.5). Therefore 

sup l[l\](q)-[F](q)I S II h(:(x)) -111 sup [1\J(, qF) 
qEQ(F) h(Fn(x)) 00 qEQ(F) i 0 

A q q 
+ sup l[Tn]( h F) - [T](-h F)I 

qEQ(F) o O 

~o 
as n - oo. That is, (2.3.6) holds. The proof of (2.3.7) is similar and will be 

omitted. But it is worth noting that we do not need (2.3.1) for the proof. Instead 

we use 

IIT~ - TIIQ(F) = sup l[T~](q) - [T] (q)I ~ 0 
qE Q( F) 

as n - oo since .F~ depends only on the Bi and not on Bn i· I 

2.5 Some Examples 

We give some examples of model (2.1.1). 

Exa111ple 2.5.1. (Ordinary s-biased sampling model). Let h(z ) = C > 0 

for z E [O, 1]. Then (2.2 .2) reduces to the solution of the ordinary s-biased 

sampling model. Thus, the results of Section 2.3 are generalizations of G-V-vV 

(1988). 

Example 2.5.2. (Nomination sarnpling model for the maximum (1.2.2)). 

Let s = 1, w 1 (x) = C > 0 for x E R.1 and h( z) = [p + (q - p)z]k-l for z E [O , 1], 

0 S p < q S 1, p + q = 1. Then (2.2.3) becomes 

F(x) = [(l - p"~)G(x) + pk]1/k - p 
q-p 

while (2.2.16) becomes 

A [(qk - pk)Gn(x) + 1}]1/k - p 
Fn ( X) = -'-'---___:__---'--'------''------. 

q-p 
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By (2.3.8) we obtain that fo[Fn(x) - F(x)] converges in law to a Gaussian 

process with mean zero and covariance function 

a2 

K(s, t) = h(F(s))h(F(t)) F(s)[l - F(t)], s ~ t, 

where 
k k q -p 

a=---
k[q - p]" 

When q = l, we obtain the results for nomination sampling model (1.2.2). That 

IS, 
~ d 

v'n[Fn(x) - F(x)] -. Z(x); 

K(s, t) = Cov(Z(s), Z(t)) 

[1] 2 
1 = k [F(s)F(t)Jk-1 F(s)[l - F(t)], s ~ t. 

Similar results can be obtained for model (1.2.4). 

Example 2.5.3. (Nomination sampling model for the minimum (1.2.3)). 

Let s = l, w1(x) = C > 0 for x E R1 and h(z) = [1 - qzJk-l for z E [O , 1], 

0 ~ q ~ l. Then (2.2.3) becomes 

Hence, 

1 - [1 - akqG(x)]1fk 
F(x) = ------, 

q 

l-(l-q)k 
a=----

kq 

F
~ ( ·) _ 1 - [1- a/,:qGn(x)]1fk 
nX----- ----

q 

By (2.3.8) we obtain that fo[Fn(x) - F(x)] converges in law to a Gaussian 

process with mean zero and covariance function 

a2 

K(s, t) = h(F(s))h(F(t)) F(s)[l - F(t)], s ~ t. 
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When q = l , we obtain the results for the nomination sampling model (1.2.2) . 

That is, 

vn[F'n (x) - F(x)] ~ Z(x); 

K (s, t) = Cov(Z(s), Z (t)) 

[1] 2 1 = - - _ F s l-Ft 
k [F(s)F (t)Jk -1 ( )[ ( )], s ~ t . 

29 



CHAPTER III 

ESTIMATING THE DISTRIBUTION FUNCTION 

IN BIASED SAMPLING MODEL II 

3.1 Introduction 

In this chapter, we study statistical inference of the class of general s-biased 

sampling models defined by (1.3.2) 

(3 .1.1) 

l jx 
Gi(x) = vVi -CX) Wi(F(y))dF(y), 

o < wi = 1-: wi(F(y))dF(y) < oo, 

x E R1
, i = l, ... ,s, 

i = 1, ... , s 

in Chapter I, where w1, ... , W 8 are known nonnegative and measurable biasing 

functions, and F is an (unknown) absolutely continuous cdf. As in Chapter 

II, iid observations from F are not available. Instead we can only observe s 

independent samples: 

(3.1.2) iid from Gi, i = 1, ... , s, 

vVe wish to use all of the n = n 1 + .. . + n 8 observations to estimate efficiently 

the underlying cdf F. This estimator corrects for the biasing involved in the 

distributions Gi, 1 :Si :S s. 

The perfect ranked-set-sampling model (1.2.1) and nomination sampling 

models (1.2.4) and (1.2.5) are special cases of (3. 1.1 ). 

This chapter is organized as follows: We first investigate the identifiability 

of model (3 .1.1 ). It is followed by the construction of an estimator for F. This 
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is given in Section 3.2. The strong consistency and asymptotic normality of the 

estimator are established. While the technical treatment is similar to that of 

Chapter II, however, we are unable to provide a unified presentation for both 

chapters. 

3.2 Identifiability and Estimator of F 

The model (3.1.1) is identifiable if given Gi , i = 1, ... , s, F can be 

uniquely determined by (3.1.1). Obviously, the answer depends on the bias­

ing functions w1(z), ... , w8 (z). Example 2.2.1 shows that we have to impose 

conditions on the biasing functions w1(z), ... ,w8 (z) to assure the identifiabil­

ity of the model. Hence, the following assumptions are made throughout this 

chapter: 

Let y+ = LJ:=l {y E [O, 1] : wi(Y) > 0}. Then 

Assumption 1. y+ = [O, 1]. 

As in Assumption 1 of Section 2.2, we must replace F( x) by p+ ( x) 

P(X s; xlX+) if the above assumption fails, where F(,1'+) = y+. 

Let Ani = ni/n, 1 :'.S i :'.S s be the sampling fractions of G1, ... , G 8 • If 

limn-+= Ani = Ai > 0 exist for i = 1, ... , s, then we write I:f=l >.;:?t) = h( u) 

and set 

f'L 
H( u) - H(O) = Jo h(z )dz, o s;u s; l. 

Similar to Chapter II, without loss of generality, we can assume that H(l) = 1 

and H(O) = 0. 
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Assurnption 2. For i = 1, . .. , s, 

exist. 

Theorem 3.2.1. Under Assumptions 1 and 2, model (3.1.1) is identifiable. 

Proof. Write (3.1.1) as 

G ·( ) = jx Wi(F(y))dF( ) -1F(x ) Wi(u) 
I X vV y - --du, 

- (X) 1 o VVi 

l,Vi = i: W,j(F(y))dF(y) , 

for i = 1, . . . , s . Then the average distribution of G 1 (:r), ... , G
8
(:r) is given by 

(3.2.1) 
- AiWi U s 1F( x ) [ s \ ( )] 
G(x) =; ,\iGi (x ) = 

0 8 VVi d 1t = H(F(x)). 

Thus, it follows from Assumption 1 that ( cf. (2 .2.3)) 

(3 .2.2) F(x) = H-1 (G(x)). 

Although (3.2.2) shows that the solution for F involves vVi, .. . , W s, they are in 

fact independent of F, since 

(3.2.3) l,Vi = 1= Wi(F(y))dF(y) = [1 wi(u)du 
- = lo 

for i = 1, .. . , s . Furthermore H by definition is also independent of F. Thus, the 

solution (3.2.2) for F is what we a.re seeking. 

Let us further illustrate the solution by examples 1.2.1 and 1.2.2. 

Example 3.2.1. (Example 1.2.1 continued). Take /\ni = l/ s, 1 ::=; i ::=; s . 

Since 

h(u) = ~ Aiwi(u) = ~ (~ - l)u.i-l(l _ u.)8-i = l , 
~ l¥· ~ -i - 1 
i=l I i=l 
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then 

Then 

H(u) - H(O) = 1u dz = u, 

H- 1 (u) = u. 

s 

1- - 1""' F(x) = H - (G(x)) = Gn(x) = - ~ Gi(x). 
s . 

i = l 

This relation between F and { G1 , ... , Gs} can be used to estimate F. A heuristic 

estimator introduced by Stokes and Sager (1988) is in fact the estimator Fn(x) = 

(1/s ) :z=:=l Gni( x ), where Gni(x ) is the empirical distribution of Xii, ... ,Xin;, 

1 :S i :S s . 

Example 3.2.2. (Example 1.2.2 continued). V•le have 

and 

F( x ) = H-1 (G(x)) = [Gy(x)]t. 

Similarly, when w( z) = (1 - zl-1
, we have 

1 
F( x ) = 1- [1- Gz(:i:)Jr. 

Clearly (3.2.2) suggests an estimator Fn for F. Namely, t ake 

(3.2.4) 

where 
s 

Gn(x) = L AniGni(x); 
i= l 

1 n; 

Gni = - ""'J(- oo x](Xi j ), 1 '.S i '.S S. n-~ , . 
i .i=l 
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3.3 Asymptotic Properties of the Estimator Fn 

Our main task in this section is to establish consistency and asymptotic 

normality of the estimator Fn of F. But first note 

Theorem 3.3.1. EH[l\(x)] = H[F(x)] for any x E R1
. 

This result follows directly from (3.1.1) and (3.2.4). When H is a linear 

function, we conclude that Fn ( x) is an unbiased estimator of F( x). This is the 

case for the perfect ranked-set-sampling model. In general, Fn( x) is of course 

biased for F. However, we can show that Fn is an asymptotically unbiased esti­

mator of F by the Lebesgue Dominated Convergence Theorem and the following 

Theorem 3.3.2. 

Theorem 3.3.2. (Strong consistency of F11 ) For any x E R1
, 

Fn(x) ~ F(x) 

as n - oo. 

This result also follows directly from (3.1.1) and (3.2.4), and the Glivenko 

theorem for the empirical distribution Gn. 

Theorem 3.3.3. (Asymptotic normality of Fn) 

vn[Fn(x) - F(x)] ~ Z(:i:), XE R 1
' 

as n - oo, where Z(x) is a Gaussian process with zero mean and the following 
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covariance function 

K(t1, i2) = Cov(Z(t1), Z(t2)) 

for any t 1 , i2 E R 1
. 

[1 ½JTCov(Z.( i1 ), Z.( i2) )[1 ½J 
h(H- 1 ( G( ti)) )h(H-1 ( G( t 2 ) )) 

I::=l AiCi(i1, i2) 
h(H- 1 (G(ii)))h(H- 1 (G(t 2 )))' 

Ci(t1,i2) = Cov(Zi(t1),Zi(t2)) 

Proof. It is well known that 

as ni -, oo for i = 1, ... , s, where Zi is a Brownian bridge with zero mean and 

the covariance function 

T I l l 
Let Z = (Z1, ... , Zs), and 1 2 = (-\1, ... , Ai )T. By the 8-method, we have 

7' 1 
~ d Z (x)-\2 

fo[Fn(x) - F(x)] ___, Z(x) = - _­
h[H-1(G(x))] 

It remains only to compute the covariance function of Z(x). In fact, 

K(t1, t2) = Cov[Z(t1 ), Z(t2)] 

- C [ z_T(t1)1½ z_T(t2)1½ ] 
- ov h(H-1(G(t1)))' h(H- 1 (G(t2))) 

[1 ½JT Cov(Z.( i1 ), Z.( i2) )[1 ½] 
h(H- 1 ( G( t 1 )) )h( H- 1 ( G( t2 )) ) 

By noting that the following covariance function is a diagonal matrix, 
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the result follows immediately. 

Example 3.3.1. (Example 3.2.1 continued) By Theorem 3.3.3, we have 

~ 1 8 

Fn(x) = - L Gni(x), 
s i=I 

Jn[l\(x) - F(x)] ~ Z(x) 

for any x E RI, where Z is a Gaussian process with mean zero and the covariance 

function 

for tI, t2 E RI. In the case t1 = t2 = x, we have 

fo [Fn (x) - F(x)] ~ N(O, l) 
JK(x,x) 

which is given by Stokes and Sager (1988). 

Example 3.3.2. (Example 3.2.2 continued) Similar to Example 3.3.1, we 

have 

~ d 
y'n[Fn(x) - F(x)] ~ Z(x) 

for x E RI, where Z has the Gaussian process with mean zero and the covariance 

function m ean zero Gaussian process with covariance function 

The following theorem strengthens Theorem 3.3.2. 

Theorem 3.3.4. (Strong consistency uniformly over Q( F) ). Suppose 

that there exist two positive real numbers J'vf and ni such that 

0 < rn::;; h(z) ::s; J'vf for all z E [O , l]. 
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Then 

sup 11[1\] (q) - [F](q)II ~ 0 
qEQ(F) 

as n --t oo, where Q(F) is defined by (2 .3.3). 

Proof. This proof is similar to that of Theorem 2.3.3. For a fixed function 

q( x) we write 

I [ 1\] ( q) - [ F] ( (j) I = I [ G n] ( h 
O 
q l\ )-[ G] ( h : F) I 

~ l[Gn](q[ho\\ - h~F])I 
+ l[Gn](h:F )-[GJ(h!F )\ 

~ ll~i:f-i ll = [Gn](h:F) 

+ l[Gn](h:F )-[GJ(h;F )\ 

as n --too with [G] (q/hoF) = [F](q) < oo. The second inequality holds because 

h(u)/h is bounded together with F 11 (.1: ) <~. F(.r;) by Theorem 3.3.2. Thus, 

sup l[Fn] (q) - [F] (q) I ~ II h O : - 1\\ [Gn] (,. qeF) 
qEQ(F) h O Fn = i 0 

+ sup l[Gn](-,. qF)-[cJ(-1 qF)\ 
qEQ(F) i o i o 

~-o. 

The result is proved. I 

Remark 3.3.1. The condition that his bounded above and below is equiv­

alent to the condition that the function H satisfies a. Lipschitz condition. 
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CHAPTER IV 

ESTIMATING THE DISTRIBUTION FUNCTION 

IN BIASED SAMPLING MODEL III 

4.1 Introduction 

In this chapter, we study the statistical inference of the general biased 

sampling model III defined by (1.3.3) 

G( x, k) = P[X S x , I(= k] = p(k) Jx wk(y)dF(y) 
- = wk 

(4 .1.1) 
0 < Wk= 1-: wk(x)dF(y) < oo, 

p(k) = P(I( = k) , k EK, 

in Chapter I, where {wk : k E K} are known and nonnegative measurable func­

tions, {p( k) : k E K} and F are unknown. The observed data for estimating F 

are n independent observations (X1, Ki), ... , (X11 , K 11 ), where (X, K) ,.,._, G( x, k ). 

The random variable I( in model ( 4.1.1) can be considered as the "label'' of 

individuals who contribute the data set. Model (4.1.1) is different from the or­

dinary biased sampling rnodel when K = { 1, ... , s } and s 2: 1. For model ( 4.1.1) 

we take the sample of n independent random vectors (X1 , K 1 ), .. . , (Xn , Kn) 

from a mixture of s populations while we sample independently from each of 

s populations in s-bia.sed sampling model. Vve m ay have some choices of the 

design elem ents of the biasing sampling ( choice of s, sample fractions and the 

biasing functions wi(x )). Vve, however, do not have any choice since the design is 

fixed an<l given in the s-biase<l sampling model. On the other hand, the number 
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of observationss from each biased distribution Gi is predetermined for s-biased 

sampling while we do not know this information in advance for model ( 4.1.1 ). 

Hence we may often be interested in model ( 4.1.1) 

This chapter is organized as follows: We first consider identifiability for 

model ( 4.1.1 ). Based on the solution of ( 4.1.1 ), we propose a natural estimator 

of F in Section 4.2 and prove the strong consistency and asymptotic normality 

of the estimator in Section 4.3. Finally, we show that the estimator proposed in 

Section 4.2 is in fact the NPMLE of F. 

4.2 Identifiability of the Model and an Estimator of F 

The following three assumptions are needed for establishing identifiability. 

The first two are similar to Assumptions 1 and 2 Section 2.2. 

Ass urn pt ion 1. x+ = uiEX:{ x : Wi( x) > 0} = X, where X is the sample 

space of the random variable X. 

As before, if this assurnption fails , we must replace the cdf F by the condi­

tional distribution F+(:r) = P(X ::; xl..-Y+). The following example shows that 

the assumptions used in G-V-\i\T (1988) are not enough to produce an identifiable 

model even in their stratified sampling model. 

Example 4.2.1. Stratified sampling. Suppose that K, contains at least 

three elements, say {1, 2, 3} CK,. Let {Dk : k EK,} be a measurable partition of 

the sample space X = R1 . If the weight functions are the indicators of the set s 

G( , k~) = F((-oo, x] U Dk) (k·) 
x, . ( ) p . 

F Dk 
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is just the product of P( l{ = k) and the conditional distribution given the event 

Dk, Note here, without introducing further notation, we have for simplicity used 

F for both the probability distribution and the cdf. It is clear that estimation 

of F itself not possible without the knowledge of the probabilities F(Dk) and 

p( k). Even if {p( k) > 0 : k E K:} is known, F is still not estimable. 

Assumption 2. The graph :F with points {wk(,): k EK:} is connected 

by a path. That is, for any pair of ( i, j) there exist l 1, ... , l k E K: such that 

where l1 +-t l2 if and only if 

Additionally, we assume that the set K: contains only a finite number of 

ele1nents for conveience. 

Assumption 3. K: = {1, ... , s }, where 1 ::; s < oo. 

Theorem 4.2.1. Under the Assumptions 1, 2 and 3, the model (4. 1.1) is 

identifiable. 

Proof. By Assumption 3 

(4 .2.1) '°" jx ~ w1.Jy)p(k) . 
G(x) = L G(x, k) = L liV , clF(y). 

kEK -= k=l k 
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Applying Assumptions 1 and 3, we compute 

F(x) = Jx [t Wk(y)p(k)]-l dG(y) 
v{!k 

-oo k=l 

Jx ["~- wk(y)p(k) ] -1 dG( ) 
-oo wk-I wk Y 

( 4.2.2) Joo ["s wk(y)p(k)]-l dG( ) 
-oo wk=I wk , :r Y 

Jx ["°'s,_ wk(y)p(k)]-l dG( 1 ) 
- oo wk-I Vi y 

Joo ["s Wk,(y)p(k)]-ldG( ) 
- oo wk=I vk · " Y 

where ½ = vVi/Ws, 1. 1, ... , s. The rest is to show that (vVi, ... , Ws) or 

(V1, ... , Vs) can be uniquely determined as functions of G(x, k), 1::; k :=; s. The 

procedures are the same as in the proof of Theorem 2.2.1 with a slight change 

of notation, namely Ani, Hp, Bi and Gn are changed to p(i), F, Wi and G, 

respectively. So we omit the rest of the proof. I 

As in Chapter II, V1, ... , V, - i, V. = 1 are solutions of the system of s - l 

equations 

( 4.2.3) i = 1, ... ,s - 1, 

where 

1 Joo Li(Vi, ... , Vs)= Vi - oo Wi(y)dF(y) 

( 4.2.4) 
= ~ Joo wi(Y) [t W.i(y)p(.i)]-1 dG(y). 

v; -oo .i=l V1 

Now we use the equation ( 4.2.2) to construct an estirnator for F. We write 

(4.2.5) 

l s n l n 

Gn(x) = - ~ ~ I(x <x J( =i) = - ~ Jcx:,<x); nLL J_,i nL -
i=l .i=l i=l 

1 n 

Pn(k) = - ~ J[K·=k]· nL . 
i=l 
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Replacing G and p( k) on the right side of ( 4.2.2) by the empirical cdf Gn and 

Pn ( k) yields a nondecreasing function F~, 

Fi(x) = {= [t w,(:n(k)l-J dGn(Y) 

(4.2.6) Jx ['-' s wk(y)73n(k)]-l dG ( ) 
- CX) wk=l wk n y 

JCX) ['-' s wk(y)pn(k) ]-l dG ( ) . 
-= wk=l vVk n Y 

The next step of construction is to replace the unknown VVi by appropriate 

es timates. Thus we need to estimate TVi = J wi( y)dF(y) first. For this purpose, 

we replace G and p(k) on the right side of (4.2.4) by the empirical cdf Gn and 

Pn (j) , to obtain the following equations ( 1 ::; _j ::; s) 

(4.2.7) 

1 JCX) [ s ( ) ' (')]-1 'Wj Y Pn .7 
Lni(Vi,. ••, Vs)= V, Wi(Y) L . dGn(Y) 

i - = .i=l V1 

= 1. 

Solving the system (4.2.7) gives a solution Vn1, ... , Vn, s -1, V ns(= 1). Finally, 

substituting G, p(k), and Vi , ... , Vs on the right side of (4.2.2) by the empirical 

cdf Gn, Pn(k ), and V nl, ... , V 11 8 yields an estimator Fn., 

' ' 0 
Fn(x) = Fn( x ; V n.l, .. . , V n. s) 

(4.2.8) Jx ['-''q w,(11)z,n(i) ]-l dG (7 ) 
- = wi=l V,,, n Y 

J•CX) ['-'s fin(i)wi(Y) ]-l dG (?). 
- CX) w1.=l v,,, n '!J 

The estimator Fn fulfills the requiren:1ents of a cclf. VVe can estimate VVi by 

( 4.2.9) Wni = VniWn s, i =l , ... ,s- 1, 

( 4.2.10) 
1 

W ns = -------------
J":"= [ I::~, ,;.<~:;<,) ]-, dG.,(y) 
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Remark 4.2.2. In general, the solution Vnl, · ··, Vn,s-1,Vns(= 1) of 

( 4.2.8) is not unique. For uniqueness of the solution, we impose the following 

two assumptions. The first is similar to Assumption 4 in Section 2.2. 

Assumption 4. The graph :F with points {w1 (.) , . .. ,w8 ( .)} is strongly 

connected by a path. That is, for any pair of (i,j) there exist Zi , . .. , lk E 

{ 1, ... , s } such that 

where li ;:::= 12 if and only if 

Assuinption 5. The estimates Pn(k ) defined by (4.2.5) are strictly posi­

tive for all k = l , . .. , s . 

Assumption 5 requires that the data set must contain at least one observa­

tion from each data contributor. 

Under Assumptions 4 and 5, the solution V 111, ... , Vn,s- 1, Vn s(= 1) of 

(4.2.7) is unique. The proof, which is similar to that of Theorem 4.2.1, will be 

omitted. 

4.3 Asy111ptotic Properties of the Estimator Fn 

The first theorem gives consistency of the V~ = (Vn1, .. . , Vn,s-1, 1) and 

w~· = (Wnl,···,Wns) given by (4.2.7), (4.2.9), (4.2.10) and (4.2.8) , respec­

t ively. 
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Theorem 4.3.1. (Strong consistency of Vn and W n). Suppose that 

Assumptions 1-5 hold, and 

0 < TtVi = 1-: wi(Y )dF(y) < oo 

for i = 1, . . . , s . Then equations ( 4.2.7) have ( with probability 1 as n---+ oo) the 

unique solution V n which satisfies 

(4.3.1) as n ---+ oo. 

Furthermore, 

( 4.3.2) W ~ T1V -n as n ---+ oo. 

The proof of V n ~ Vis similar to the first part of the proof of Proposition 

2.1 of G-V-W (1988) if we note the only difference is we have {fin(i)} instead of 

{And · Hence we omit this part of the proof. 

Now applying (4.3.1) , (4 .2.2) and Assumption 1, W 11 8 given by (4.2.10) 

converges a.s. to 

1 

f:'°~ [ I::~, p(il~,(yl i-1 dG(y) 

Hence 

for i = 1, ... , s , so ( 4.3.2) holds. 

TtVs - - ---------- = M~ . 

Joo ["' s p(i)w;(11)]-l dG( ·t) 
- oo L....i==l W; Y 

, , 0 
The second theorem asserts the uniform strong consistency of F11 and Fn. 
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Theorem 4.3.2. (Strong consistency of Fn and F~). Suppose that 

Assumptions 1-5 hold, and 

o < wi = 1-: wi(y)dF (y) < oo 

for i = 1, .. . , s. T hen 

(4.3.3) II Fn - F II Q(HF) = sup{ l[Fn](q) - [FJ (q)I : q E Q( F )} ~ 0 

as n, -t oo. Furthermore, under Assumptions 1,3, 4 and 5, 

( 4.3.4) II F,~ - F II Q(F) = sup{ l[Fr~ J(q) - [F J(q) I : q E Q(F)} ~ 0 

as n-, oo. 

Proo f. Let 

PT = (Pn( l ), ... ,Pn(s)), PT = (p( l ), . .. ,p(s)); 
-n -

r (V )= [~wi(:c)z3n(i) ]-l r(V )= [~wi(x)p(i) ]-I· 
n - n, Pn L V . ' _,p_ L V:· 

i=l n,. i=l z 

both r n and r are funct ions of x . Then for a fixed function q( .1:) with [F] ( q) < oo 

we have 

l[Gn](qrn(V n• P )) - [G](qr(V,p)) I 
-n -

+ l[Gn](qr(V,£)) - [G](qr(V,£)) 1 

~ 117·117:~i,'Jn) - lll = l[Gn](qr(V,£)) 1 

+ l[Gn](qr(V,£)) - [G](qr(V,p_)) I 

<~ - 0 as n--+ oo . 
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The second inequality holds because r n (V n, En)/ r( V, E_) is bounded as a function 

of x together with V n a~. V and En~- E.· Thus, 

sup l[Gn](qrn(V n, p )) - [G] (qr(V,p)) I 
qEQ(F) -n -

ll
rn(Yn,P) II :S: (V -)It - 1 sup l[Gn](qr(V,e))I 

r _, E_ 00 qEQ(F) 

+ sup l[Gn] (qr(V,p)) - [G](qr(V,p))I 
qEQ(F) - -

< llrn(Yn,E.J -111 [G ]( (V ))I _ (V ) n qer _,p 
r _,E. oo -

+ sup l[Gn] (qr(V,p)) - [G] (qr(V,p)) I 
qEQ(F) - -

~·o. 

But 

~ I [Gn](qrn(Yn,P )) [G](qr(~,p)) I 
l[Fn](q) - [F](q)I = [Gn](rn(Vn,£)) - [G](r(V,e)) 

l[Gn](qrn(Vn, P ))-[G](qr(V,p))I < -n -
[Gn](rn(V n, P )) 

-n 

l[G](qr(V,p)) ll[Gn](rn(Vn, p )) - [G] (r(V ,p))I + - -n - . 

[G](r(V , E_) )[Gn](rn (V n, En)) 

So (4.3 .3) follows immediately. The proof of (4.3.4) (i.e., consistency of F7~) is 

similar, but does not use ( 4.3.1 ), since F
1
~ depends only on the \iVi and not on 

the Wni· We therefore omit it. I 

The following theorern establishes the asymptotic normality of F~ under 

the further assumption that wT = (vVi' ... '\ills) and ET = (p( l ), ... 'p( s)) a.re 

known values. The asymptotic normality of general Fn is sti ll under investiga­

tion. 

Theorem 4.3.3. Suppose that Assumptions 1-4 hold. 0 < Wi 
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[F](wi) < oo, and p(i), 1 :::;: i:::;: s are known. Then 

01[.F~(x) - F(:i:)] _.:!_, N(O,ii;), 

where 

2 = V . [I (X") (~ p(i)wi(X) )-i]. 
(j X ar (-cx:,,x] 6 vV ) 

i==l z 

X rv G(x) = lx (t p(i)wz(Y))dF(y). 
-oo i==l T¥z 

Proof. According to ( 4.2.8) and assumptions, we have 

by the classical CLT. The proof is complete. I 

4.4 Maximurn Likelihood Property of the Estimator Fn 

A natural question can be raised: 

Is Fn in (4-2 .8) a, NPMLE of F ·under model (4-1.1)? 

In this section we are going to give a positive answer to this question. VVe 

can prove the following lemma by using the method used in Theorem 2.2.1. 

Le1nrna 4.4.1. Suppose that Assumption 4 holds, X(l ) :::;: · · · :::;: X(n), and 

K (i) are the accompanying K's. Let 

(4.4.1) 

where Z i > 0 such that :z::=;~ 1 e- z ; = l. Then R is a strictly concave function of 

Z 1 , . .. 'Zn. 
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Put 

( 4.4.2) 
R (1) = 8R 

' I - 8 z1' l = l, . .. 'n. 

Then 

(i) ~ Ai1 z R1 =-l+L_;~n A ··· =l, ... ,n. 
i=l Uj=l I) 

Same argument implies that the solution of R}1) = 0, l = l, ... , n exists uniquely. 

Theorem 4.4.1. The estimator Fn defined by ( 4.2.8) is the NPMLE of 

F under model ( 4.1.1 ). 

Proof. Let (X1 , !(1 ), ... , (Xn , !(11 ) be a random sample from the distri­

bution Gas in (1.3.3). Relabel the sample in terms of ordered values of X - that 

is, as (X(l) , J((l ) ), ... , ( X ( n) , J((n) ), where X(l) ::; · · · ::; X(n) and J((i) are the 

accompanying K' s. It is easy to show that the NPl\lILE in this problem places 

of its mass on {(X(i) , J((i))} and maximizes the probability element 

( 4.4.3) 

Let dF(X(i)) = Pi and p_T = (p1 , ... ,PnJ Then it follows that 

n 

w]((i) = L wg(i)(Xw)P.i· 
i=l 

Maximizing ( 4.4.3) with respect to F is equivalent to maximizing L(p_) with 

resp ect to p_ : 

( 4.4.4) 

subject to 
n 

LPi = l, Pi > 0, i = l, . .. , n. 
i = l 
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We reparametrize: Let e - zi = Pi, and set 

R(~) = log L(p_). 

We know from Lemma 4.5.1 that the maximizer of the likelihood function ( 4.4.4) 

exists uniquely. Now we compute this maximizer. 

In fact, simple calculation gives 

(4.4.5) -1 z · ~Wl((i )(Xw) 
P.f = e , = 6 '°'n A . . 

i=I u1=1 ii 

Renee the NPMLE of F is obtained by 

(4.4.6) F*(x) = L P.i · 
Xu)~x 

In fact, ( 4.4.6) and ( 4.2.8) are equivalent. To see this point, we rewrite 

( 4-2.9) as follows 

We claim that 

(4.4.7) 

j ·x ['°' s_ w;(11)p,.(i)1-l dGn(Y) 
- 00 LJi-1 w,., 

n [ n WJ((i) (Xu)) ] 
L .f=l Li=l W nK(i) 

n 

w /·' . = ~ Wl((i) (X(l))Pl· 
n\ ( ,) 6 

l=l 

1 . 

I f fi ·t· f W J ' that n act, we obtain from de m 10n o n ((i) 

(4.4.8) 
100 [~ w.f(y)f3n(j) ]-ldGn(Y) 

Wn/(( i) = - oo Wl((i/y) .£:i Wnj 

n [ n WJ((J) (X(t)) ] -l 
= L WJ((,)(X(t)) L WnK(J) 

t=l 1=1 
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It is easy to see from (4.4.5) that (4.4.7) satisfies (4.4.8) . This concludes the 

proof. I 
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CHAPTER V 

DENSITY ESTIMATION UNDER CONSTRAINT I 

5 ·1 Introduction 

Suppose that X is a lifetime random variable with an unknown pdf J. In 

th· 
is chapter we study the nonparametric estimation off with a sample of n iid 

observations X 1 , ... , Xn drawn from population f subject to constraint (1.3.4) 

[
f (x) ]

1

< 0 .-i;E(O,A1), 
w(x) - ' 

where M may be infinite. The following applications motivate our study. 

Example 5.1.1. vVe see from Example 1.2.4 that the backward sampling 

plan is a special case of model (1.3.4) by setting w(x) = b(T- :c), and 1Vl = T . 

Example 5.1.2. (Estimating a monotone decreasing pelf) . As we men-

tion d · · df j ' · · l e lil Section 1.3, estimating a monotone decreasmg p IS a specia case 

of model (l.3.4) which is obtained by setting w(x) = C > 0 and M = oo . This 

is a Well-known problem . See e.g., Grenander (1956), who introduced the MLE 

of J; Prakasa-Rao (1969), who provided a thorough analysis of the pointwise 

Properties of the MLE; Groeneboom (1985), who obtained the exact conver­

gence of the Li risk of the MLE; Devroye (1987) , who devotes an entire chapter 

to the various methods used so far to estimate the density f ; Birge (1987a, b, 

1989) wh bl. h d 
1 1 b d r01. the L1 minimax risk and obtained ' o esta IS e t 1e ower oun 1' 

a miniin . . d D tt (199?) who discussed nonasymptotic 
ax optimal estimator , an . a a ~ ' 

bounds for L1 density estimation using kernels. 
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Example 5.1.3. (Mixture model). Suppose that X :I:::. YZ, where positive 

random variables X and Y have the pdfs g and J, respectively, and Z rv B(a, 1) 

(Beta distribution) independent of Y. Let X1, ... , Xn be an iid sample from the 

population g. The purpose is to estimate the pdf f. Then it is easy to check that 

g(x) = J, ax:-1 f(y)dy = axo -1 J, lo f(y)dy. 
Y~X Y )J~X Y 

In order to estimate J, we first need to estimate g under the constraint 

[ 
g(x) ]' < o. axo-1 -

This is a special case of model (1.3.4) with w(x) = n:r 0 ·-l and JV! = oo. When 

a = 1, it reduces to Example 5.1.2 with w(y) = 1. 

Exa111ple 5.1.4. (Deconvolution model). Suppose that 

x:!:::.Y+Z, 

that f and g are the pdfs of Y and X, respectively, and that -Z has an ex­

ponential distribution with parameter 1 and is independent of Y. The problem 

is to derive the NPJvILE of the pdf .f ( or cdf F) of Y by using iid observations 

X1, ... , Xn from g. It is easy to see that 

This implies that 

[g~:)r = -e-x.f(x)::; O; 

f(x) = g(x) - g'(x), 

for x E R1 . vVe first need to estimate g(:r) under the constraint [g(x)e-x ]' ::; 0 

in order to estimate f ( x) non parametrically. 
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Note that this example is not an exact special case of model (1 3 4) b 
· · ecause 

of the r ange of x. If we, however , m ake a simple change for (5.1.3) by X :f::: 

m ax(O, Y + Z) , then this example is a special case of (1.3.4) with w(x ) = eX, 

and M = oo . 

Example 5.1.4 is a prototype example of the deconvolution model since z 

can have any distribution in a deconvolution model. 

The following biological example is from the corpuscle problem which has 

applications in tumor growth. This example shmvs that the constraint (1.3.4) 

sometimes m ay fail for population distribution, but a reasonable est imator must 

satisfy this constraint . 

Exam.pie 5.1.5. (Keiding, J ensen , and Ranek (1972)) . From sections 

of liver biopsies, the distribution of the radii of sections of liver cell nuclei is 

recorded. Under the assumption tha t the nuclei are spherical, the problem of 

inferring the distribution of the radii of the nuclei in the liver from the observed 

distribution of the radii of sections is an example of the corpuscle problem studied 

long ago by vVicksell (1925, 1926). In its general setting the corpuscle problem 

concerns a conglomera te consisting of a material A and bodies of another ma­

terial B distributed therein. Vve shall assume throughout that the bodies are 

spheres with a random size distribution . The density of the distribution of the 

sphere radii is denoted by J(y ). 

The Wicksell theory considers the case where the surface of a plane section 

is observed. The density g( x) of the radius of the spherical section is then related 
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to f (y) by the Volterra integral equation of the first kind: 

(5.1.1) ( ) 11= xf(y) d 
g X = - -----;== = y' 

µ X -Jy2 - x 2 

whereµ= J
0
= xf(x)dx is the expected spherical radius. It can be shown that 

g(x)/x is monotone decreasing if we assume that f is monotone decreasing. 

Thus (5.1.1) is a special case of model (1.3.4) with w(x) = x and M = oo. In 

general, g( x) / x need not have the monotone decreasing property. The inversion 

formula for the model (5.1.1) was not available until Anderssen and Jakeman 

(1975) provided the solution: 

(5 .1.2) f( x )= - 2x µ r= l ~[g(y)]dy. 
1r .f x -Jy2 _ x2 dy y 

Applying (5.1.2), we may choose an estimator ?In for g such that fln(x)/x is 

monotone decreasing to ensure fn( :r ) 2: 0, a necessary requirement for a density 

es timator. 

This chapter is organized as follows: \Ne first consider in Section 5.2 the 

NPMLE estimator .f~ off and its large sample properties for model (1.3.4). The 

construction of J~ makes use of a a simple transformation of the data set. In 

Section 5.3 we inves tigate the kernel estimator of .f and its properties . Similar 

discussion for modified histogram type estimator will be given in Section 5.4. 

5.2 The NPMLE and Asymptotic Properties 

The NPMLE J~( :i: ) of f (x) for model (1.3.4) is defined as a density function 

such tha t J1: ( x ) / w( x) is a monotone decreasing function and 

n 

II t~*(X ) . n I 

i=l 
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is maximal. 

We first note that since we consider only one sample from f, the weight 

function w( x) needs no subscripts. 

The construction of J~ is based on a transformation of the data 

(5 .2.1) i
x 

Y = 
0 

w( z )clz = vV(X) 

for any X E (0, M). Here ]\If may be equal to oo. If the pdf of X is f, then the 

pdf of Y is given by 

(5.2.2) 
f (vlf-1 (y)) 

r(y) = w(H!-1(y))' y E (0, VV(J\1)) 

where W(M) = J0= w(z)clz :S oo . 

It is easy to check that r is monotone decreasing if and only if / / w is 

monotone decreasing. Thus the problem can be solved by using the transformed 

sample 

(5.2.3) 

(5.2.4) 

We claim that 

(5.2.5) 

Y1 , ... , Yn iid r( y) ( rnonotone decreasing), 

J"i = f X; w(z)dz, 
Jo 

.f;(x ) = w(x)1\1 (vV(x)), 

i = l , . .. , n. 

x E (0 , .M), 

where 1\1 (.) is Grenander's NPMLE of r(.) based on data Yi , . .. , Y,1 . • The follow­

ing Lemmas 5.2 .1 and 5.2.2 and Theorem 5.2.1 give rigorous proof to our claim 

(5.2.5). 
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Lemma 5.2.1. The NPMLE f~(x) of f(x) is the product of w(x) and a 

step function with breakpoints (jumps) at the order statistics X(i)(l :Si :Sn). 

Proof. Write the log-likelihood of the sample in terms of the order 

statistics X(l) :S X(z) :S · · · :S X(n) as 

Define 

n n 

L(f) = L log[f(Xi)] = L log[f(X(i) )]. 
i=l i=l 

if X :S O; 

if x(i-1) < x s; x(i); 

if X > X(n); 

n f(X(i)) 
= cw(x) 8 w(X(i))I[x(i-l)<x:SX(,)], 

where c is a normalizing constant such that .f* ( x) is a pelf on [O, oo ). Observe 

that 

L(f*) = nlog(c) + L(f) 2 L(f). 

This is because 

1 n f(X · ) JX(i) 
- = L · y) w(v)dv 
c w(X(·)) v i=l ! .,,(,-!) 

n JX(i) f(y) 
s L ~( ) w(v)dv 

V 'lV y i=l .,,(,-!) 

(by the decreasing property of f(y)/w(y)) 

{X(n) 

= Jo f(y)dy 

:S 1. 

Thus for every density fn(x) there exists a density function J,:(x) such that 

f~(x) is the product of w( :i:) and a step function with breakpoints at the order 

s tatistics and L(f~) 2 L(fn ). I 
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Lemma 5.2.1 asserts that the form of the NPMLE of J ( x) is the product 

of w( x ) and a data dependent histogram. The next Lemma states that once we 

have set tled on the breakpoints, the NPMLE is completely specified. Its proof 

is patterned after the proof of Lemma 8.3 of Devroye (1987). 

Lemn1a 5.2.2. Consider a partition A 1 , ... , Ak of a compact subset A 

of R 1
, and a histogram type density es timate fn ( x) taking the value w( x )gi 

on Ai, subject to the normalization L,9i j~; w(x)dx = l. That is, fn(x) = 

w(x) 'E,7= 1 gJA; ( x ). Then the maximum over all these histogram type estimates 

of the likelihood product 

n 

(5 .2.6) II fn (Xi) 
i=l 

is attained for the histogram type estinmte with 

(5. 2.7) 
µ,n(Ai) 

9i = JA; w(y)dy' 

where µ 11 is the empirical measure for the data. 

Proof. Put .6i = j~; w(y)dy and Ci = np,n(Ai), Observe that for any 

91' ... '9k 
n k 

II f n(Xi) = II[giw(X(i))J°; 
i=l i=l 
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Here we h ave used th arithmetic-geometric mean inequality. This proves the 

lemma. I 

When Lemma 5.2.2 is applied with Ai = (X(i - I), X(i)], (1 ~ i ~ n), then 

it is easily seen that among all densities which are the products of w(:r) and all 

s tep functions with breakpoints at the order statistics, the likelihood product 

(5.2.6) is maximized if we take a density which on (X(i-l), X(i)], takes the value 

w(x) 

n J;<•l w(y )dy 
( • - 1) 

since the empirical m easure of each interval is precisely one. 

Now let us use I 1 , ... , h to denote a partition of indices { 1, ... , n} deter­

mined by the breakpoints of the smalles t concave majorant of the empirical 

dis tribution function of {l"i}r= 1 defined by (5.2.4). 

Theorem 5.2.1. The NPMLE lr: is a density whose distribution function 

is given by 

(5.2.8) P;(x) = ix w(y)Bn(y)dFn(Y) = Rn(vV(x)) 

where Rn and Fn are the smallest concave majora.nts of the empirical distribu­

tion functions Rn and F11 based on data Yj , ... , Y11 and X 1, ... , X n, respectively, 

and 
l n 

Rn(Y) = -;; L f(- cx, ,yJ()~); 
i=l 

Di = UJEI,A.i = U.iEI,(Xu-1),X(i)]; 

""' Jxul ( )d w 'EI " · W y . y ) • ~, (J - 1) 

""' JXU ) l wJEI, Xc; -i ) cy 

58 



i.e., ai is the average of function w(y) over set D;, (1 ::::; i::::; k). 

Proof. According to Lemma 5.2.1, it suffices to consider only histogram 

type estimators with monotone histogram and breakpoints at the order statistics. 

Consider such a density g*(x), and let its value be w(x)gi on the interval Ai= 

(X(i-1), X(i) ]- Let ~i = J;;c;J w(y)dy . Consider a partition of 1, . . . , n into 
-" ( ,-1) 

intervals of indices, I 1 , • .. , h, and define 

Pi= L 9j~j, 
jE/; 

q; = ~Cardinality of U_fEJ;A_7, 
n 

(qi) h j = -:- 9.i, J E I;, 
P1 

where i = 1, ... , k . Note that the hj's define another histogram estimator h*(x) 

with the following properties: 

(I) The integral of h * ( x) is one, since 

{ M M k ( ) lo h*(x)dx = L f hjw(x)dx = L qi L 9.i f w(x)dx = l. 
o .i lo i=l P,. .iEI; } Ai 

( II) The likelihood evaluated a t h * is larger than at g*, since 

n n k 

IT h*(Xi) = IT w(Xi) II II h7 
i=l i=l i= l jEI; 

= D w(X;) fr G:) nq; IJ 91 
1- l t - 1 .7E/; 

n k 

~ II w(Xi) II II 9.i 
i= I i=l jE/; 

n n 

= IT w(X;) II g; 
i=l i=I 

b ecause J~ q(.--c) log [ ;~ ::~ ] dx ~ 0 for all densit ies q( x) and p( x ). This improve­

m ent is applicable to any histogram type estimator with a.n arbitrarily selected 
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partition. In particular, we can partition the indices {1, ... ,n} by the break­

points of the smallest concave majorant of the Rn with {Y;t~1 defined by (5.2.4). 

For such a partition, we have 

1!Vl <Ji j L hj(x)dx =-:- L 9j w(x)dx = <Ji· 
jEl; 0 Pi jEl; Aj 

Furthermore, since the 9j are nonincreasing, the h.i are nonincreasing in each Ji, 

i = 1, .. . , k. As in the proof of Theorem 8.2 of Devroye (1987), we can make a 

further improvement from h1, . .. , hn to l1 , ... , Zn, which has the property that 

they are independent of the original choice of 9i 's. This is the desired improve­

ment, and the product of the histogram type density defined by {l1 , ... , Zn} and 

w( x) is the NPMLE. Define l.i for .i E Ii by 

l - L-.i El, ft h.i(x)dx <Ji 

J - L-,iEl; JAi w(x)dx L-,iEl; t:..i. 

They agree with the NPMLE. It suffices to show that we have a likelihood 

product improvem ent for every Ii. To see this, we need to show that 

IT hi :S IT 1.1 
.iEl; .iEl; 

for all i = 1, .. . , k. In fact, 

[ ] 
¼. 1 

IT h· 
1

:S-"'h 
.7 nq· ~ J 

jEl; I jEl, 

by the arithmetic-geornetric mean inequality, and 

<Ji= 1M w(x) [Lh.iIAi(x)]dx 
O .iEl; 

{M 
= L h_7 fn w(x)IAi (x)d.-r 

.iEl; ' o 

= I: hit:..i 
jEl; 

~ [f I: h.1] [I: t:..i ] 
<Ji 'E l· 'El .7 1 .7 1 
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i 

by association inequality. This concludes the proof of the first equality of (5.2.8). 

The second equality of (5.2.8) follows by a simple transformation z = W(y) in 

the integral. I 

The NPMLE j~ in (5.2.5) has the following convergence properties: 

Theorem 5.2.2. f0M lf~(x) - f(x)ldx -+ 0 almost surely if and only if 

f(x)/w(x) is monotone decreasing. 

Proof. We apply Theorem 8.3 of Devroye (1987) which asserts 

J
W(M ) 

0 

lf\1(Y) - r(y)ldy-+ 0 

almost surely if and only if r, defined by (5.2.3) is monotone decreasing. Direct 

computation gives 

[W(M) 

Jo lfn(Y) - r(y )ldy 

The r esult follows immedia tely from the fact r is monotone decreasing if and 

only if f / w is m.onotone decreasing. I 

Theorern 5.2.3. Let X 1 , ... , Xn be independent observations generated 

by f such that J(x)/w( :r) is a monotone decreasing function on (O,M) which 

has a nonzero derivative [1 /w] 
1 

at a point t E (0 , Af). If .f~ is the NPMLE of 
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J, then 

nl/3 [w(t)J- 2/3 1! [J(t) l [ f(t) ]'1-1/3 [J*(t)- J(t )] -+ 2Z 
2 w(t) w(t) n 

in distribution, where Z is distributed as the location of the maximum of the 

process [L( u,)-u2 , u E R 1], and Lis standard Brownian motion on R1 originating 

from zero (i.e., L(O) = 0). 

Proof. Using the notation of Groeneboom (1985) we have 

p [f~(t) - J(t) :s; xn-1/3[w(t)J2/3 I~ [ J(t) l [ J(t) ] '1 1/3] 
2 w(t) w(t) 

= P [w(t)fn(W(t)) - r(W(t))w(t) <:'. xn-
113[w(t)J'i' IH~\!\] [~\!\]f'] 

= p [r n(W( t)) - r(W( t)) <:'. w~tt-
1

/
3 
[w( t)]

2
i
3 I H ~\!\ l [ ~\!\] r '] 

= p [n1 / 3 I! [ f(t) ] [ f(t) ] ' _ l 1-l/
3 

(rn(vV(t)) - r(H!(t)) ) :s; x] 
2 w(t) w(t) w(t) 

-+ P(2Z :s; x ). 

The weak convergence follows by Theorem 2.1 of Groeneboom (1985). I 

Theorem 5.2.4. Assume that f/w has two bounded continuous deriva­

tives on (0, M) and that [f/w]' < 0 on (0, lvf). T hen 

M M l 

n½E [i l.(:(x) - f(x) ld:i: ] -+ c 1 [~w(.1:)f(:r)l[f(.1:)/w(x)]' I] 
3 

d:r 

where c ::::;; 0.82 is a universal constant. 

Proof. Applying Theorem 8.4 of Devroye (1987) we have 

[ 

/ W(M) l t \/(M) [ 1 l ½ n ½ E Jo lfn(Y) - r(y )ldy -+ c Jo ir(y )Ir ' (y )I dy 
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where c ~ 0.82 is a universal constant (see Theorem 5.2.5.). The result follows 

by the transformation y = W(x) = fox w(z)dz and the following facts: 

n½E[1W(M) lrn(Y) - r(y)ldy] = n½E[1M lrn(W(x)) - r(W(x))lw(.1:)dx] 

= n½E[1M l.f~(x) - f(x)Jdx]; 

r W(M) [ 1 ] ½ /M [ 1 ] ½ 
c lo 2r(y)Jr'(y)J dy = c lo 2r(W(x))Jr'(vV(x))I w(x)dx 

=cf [~w(x)f(x )I (t(x )/w(x)) 'I]½ dx. 

This concludes the proof. I 

Next we investigate the asymptotic normality of the Li-norm 11.f;. - fll1-

ln order to do that, let f be a density, concentrated on a bounded interval 

[O,B] such that [f(x)/w( x) ]' < 0 for x E (O,B) and [f(x)/w( x)JC 2
) is bounded 

and continuous. Furthermore, let (L(t), t E R 1
) be Brownian motion on R1

, 

originating from zero, and let the process (V( a), a E R 1
) be defined by 

V(a) = sup{t E R1 
: L(t) - (t - a) 2 is maximal} . 

Then V is an increasing pure-jump process, generated by the Brownian motion 

sample paths. Let 

11.f~ - fll1 ,B = 1B J.ii:(t) - f(t)ldt . 

Then we have the following result: 

Theorem 5.2.5. (Asymptotic normality) Let B be a positive number. 

Assume that w is differentiable . Then 

63 



where 

C = 2E /V(O) / {B /! f(x) (f'(x)w(x) - w'(x)f(x)) /½dx, lo 2w(x) 

~ 0.8218 /1 ~~:~ (J'(x)w(x) - w'(x)f(x)) /½dx, 

a- 2 = 81= Cov( /V(O) /, /V(a) - V(O)/)da 

~ 0.17. 

Proof. Let 

f W(B) 
1/ fn - r /1 1,W(B) = lo /fn(Y) - r(y) /dy. 

From the proof of preceding theorem we have /lfn - r /1 1,W(B) = 1/ f~ - flli ,B · 

Further, compute 

{W(B) l I 1. !B/l . (f(x) )'/½ lo /2r(y)r (y) l:idy = lo 2w(x)f(x) ~(x) d:c 

= { B I! f (x) [f'( x)w(x) - w'(.1:)f(x) Jl ½dx. 
lo 2w(x) 

Theorem is proved by application of Groeneboom (1985) to f - r. 

5.3 Kernel Estimators and Their Properties 

I 

In this section we are going to discuss kernel estimators off and their prop­

erties for model (1.3.4). vVe first study asymmetri c kernels and then symmetric 

kernels. The kernel estimator of f is defined by 

(5.3. 1) 
l n (T X) l n fn(:c) = -
1 
L k · - 1 = -

1 
L kh(,T - Xi) 

ni. h ni. 
i= l 1.=l 

where the kernel k is a function on R1 satisfying k 2 0 and J~= k(.T)dx = 1, 

and h = hn depending on n is a sequence of positive reals decreasing to 0. 
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Let E denote the expectation with respect to the joint distribution of 

X 1 , ... , Xn, and let C > 0 be a fixed constant , and let 

D _ { J( x) : J(x) is a density on [O,oo) such that} 
c - [f(x )/w(x)]' ~ O,f(O)/w(O) ~ C . 

Theorem. 5.3.1. Let fn be defined by (5.3.1). Assume that the kernel k 

is left sided , that is, k(x) I(o,oo)(x) = 0. Then for all J E D e, 
I 

E 1= lfn (x) - f (x) /dx ~ (n1h) 2 

M11i(J) + Chk1 lv.f(J), 

where 

k1 = 1: /x /k(x)dx; 

w1i ,.7(x) = l 0

00

[k(u)]1 w(x - uh)du, _j = 1,2; 

M1h(J) = 1= [J(x) w~'c;;) r dx; 

() .. 100

[/(0)] - l[f(x) ] () M J = hmmf - ( ) -() w1i ,1 x dx. 
h->O+ 0 W O W X 

Proof. As usual, we split E f
0

00 /.fn(x) - J(x) /d:r into two parts 

E 1= /fn(x) - f( x) /dx ~ E 1= /.fn(x) - Efn(x) /dx 

+ 1= /Ef\ ,.(x) - f (x) /d:r 

= VARIATION+ BIAS. 

Now for fixed tr, we define w1,,.7(:i;) = J~
00

[ k( tt)]-7w(x-uh)du, with /1, ,.7(:r) defined 

similarly. Then for x > 0, 

- 2 .T. -y . l 100 ( ' ) Var[f11 (x)] ~ 12 k -
1
. - .f(y)dy 

n I, o I, 

= -
1 

/
0 

k2(u)f(x - uh)du 
nh } _

00 

~ _2_f(x) f
0 

k2 (u)w(x - uh)clu 
nhw(x) }_

00 

_ 1 .f (x) . 
= - h -(-)w1i,2(x). n , W X 
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It follows that 
I 

VARIATIONS 1 =[Var(fn(x))] 
2 

d:c 

( 
1 

) 
½1=[ w (x)] ½ S - f( x) h,2 • dx 

nh O w(x) 

where 

r=r w1i,2(x)] ½ 
M11i(f) = lo J(.T) w(x) dx. 

On the other hand, note that E],i(.r:) = fh,l ( x ). Therefore, applying Theorem 

7.1 of Devroye (1987), we obtain an upper bound for the integrated absolute 

bias: 

where 

D*(f) = lim inf / = /.h ,1 (.r: )/d.r: 
h-+O+ lo 

1. . f1= f(x) ( )d S 1m1n -( )wh,I x .x 
h -+O+ 0 W X 

.. 1=rf(O)J-l[f(x)J S Chmmf - ( ) -(· ) w1i.,1(x)d.r: 
h -+O+ O W Q W X 

= CM(f), 

and 

l'vf(f) = liminf 1=r1((0))J-
1

[f((x)) ]w1i ,1(x)dx . 
h-+O+ lo W Q W X 

The result is proved. I 

Corollary I. Under the condition of Theorem 5.3.1 and assume that 

s uph> O M11i(J) = 1111 (f) exists, then 

E1= /fn (x) - J (.1:) /d.1: S (~/) ½l\lI1(f) + Chl.:1lVf(f) , 
o n i 
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Corollary 2. Under the condition of Corollary 1, the bound in Corollary 

1 is minimized for 

and for this choice of hn 

Corollary 3. For all n and the band width h > 0, 

100 A ( 1 ) 1/2 
sup E lfn (x) - f(x)ldx::; -

1 
J\lfih + hk1Cl'l1 

fEDc o n i 

provided lvllh = supfEDc Mu1(.f) and NI= supfEDc 1v!(f) are finite. Hence 

1
00 

A (lc1 CJvl )½ 1 inf sup E lf,,(.T) - f(x )ldx ::; -- Jvl/ [21
/

3 + 2- 213
] 

h JEDc o n 

if M1 = suph>O lvl11i exists. 

The next theorem considers a symmetric kernel. 

Theorem 5.3.2. Suppose that the kernel in (5.3.1) is symmetric about 

zero. Then for all n and h, 

I 

E 100 

If n(x) - f(x )ldx ::; C~i) 2 

Mi*,,(f) + Chk1M*(f), 

where 

M1\(.f) = 100

[w7i, 2 (x)J½d:c; 

wii,1(:i:) = 1-: k·i(1l)w(x - 1l h)clu , .i = 1,2; 

* .. 100 [f(O)]-J[f(:c) l * M (f) = hmmf -(-) -( ·) wh,J (x)dx . 
h--+O+ 0 'W Q 'W X 
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Proof. The proof is similar to that of Theorem 5.3.1. It is produced here 

for completeness. 

E /.
00 

lfn(x) - J( x )/dx S: E J.00 

/fn( x) - Efn(x)/dx + J.00 

/Efn(x) - f(x)/dx 

= VARIATION+ BIAS. 

For fixed x, 

It follows tha t 

Where 

, 1 l oo 2 ( X - y) f( )d 
Var[Jn(x )] ~ nh2 l

0 
k -h- . Y Y 

= 2-j_f, k2(u)J(x - uh)du 
nh - oo 

< 2_ f(O) j_f, k2(u)w(x - uh)du 
- nh w(O) - oo 

1 J(O) * = -, -(0) W1i,2(x). 
niw 

I 

VARIATIONS: r [var(}.(x))] ' dx 
lo I 

< (2-) ½ ( x; [J(O) wii ,2(1: )] "i. dx 
- nh lo w(O) 

( C) ½ = - M1\U), 
nh 

M1\U) = 1 oo [wii, 2(x)J½dx. 

0 11 , * ) A )1 ing Theorem 7.1 of De-
the other hand , note tha t Efn(.1: ) = .h,1 (.1: · Pl y 

Vroye (1987) we h ave 

1
00 

/Ef, ( ·) _ f( :c)/dx ~ hk1D*(f), BIAS= n :c . 
0 
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where 

D*(J) = liminf r= If,: 1(x) /dx 
h---+O+ lo , 

< 1. . f1= f( x) * ( )d 
_ Im Ill - ( ) W h l X X 

h---+O+ O W X ' 

< Cl. . f r = r1(0)1- l [f(x) ] * ( ) - k~6~ lo w(O) w(x) wh,l x dx 

= Clvl*(J), 
and 

M *(f) 1· . f 1= rf(0)]-1[f(x) ] * () 
= k~6~ lo w(O) w(x) wh,l x dx. 

The proof is complete. 

5.4 Modified Histogram Type Estimates 

Let f be a density defined on a bounded interval [a, a+ L] such that f /w 

is monotone decreasing and f(a)/w(a) ~ C. Let f n be an estimator off con­

structed from n iid observations from f. We define the risk of fn at f by 

(5.4.1) R(Jn,J) = E[[+L /f,, (x) - f(x)/dx]. 

In (5.4.1), we make the change of variable y = fox w(z)dz = W(x). Then 

[ 
{ W(a+L)/ -1 -1 I dy 1 

R(fn, J) = E lw(a) fn(W (y)) - f(W (y)) w(W-l(y)) 

-E[ [ W(a+L) 1f~(vlf - l (y)) - f(vV-l(y) ) ldy] 
- lw(a ) w(W-l (y)) w(T,V- I(y)) 

= E[ f W(a+L) /rn (Y) - r(y)/dy] · 
lw(a) 

Hence, as long as we define fn( x) = w( x )rn (vf!( x )), where rn is Birge's histogram 

estimator, then the results of Birge (1987) also hold for our estimator. One of 

such results is the following. 
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Theorem 5.4.1. Let 

p - 1 

fn(x) = w(x) I)nzir1 NJA,(vV(x)), 
i=O 

where Ni denotes the number of observations {Yi}i=I which belong to Ai, where 

{Ai= [Yi , Yi+1)}f,:J is a partition of [vV(a), W(a + L)], and li = Yi+I -yi is the 

length of Ai such that { li}f,:; is an increasing sequence. Then 

. [SJ½ [SJ 1 R(Jn, f) ~ l. 89 - +0.2 - , 
n n 

where S = log[I + C(liV(a + L) - W(a))] . 
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CHAPTER VI 

DENSITY ESTIMATION UNDER CONSTRAINT II 

6.1 Introduction 

Suppose tha t X is a lifetime random variable with an unknown pdf f. The 

problem we discuss in t his chapter is similar to that of Chapter V, but the 

estimation problem is subject to the constraint (1.3.5): 

[ ~~:;]I ~ 0, :c E [0, NI]. 

Suppose we are given a sample of n iid observations X 1 , . . . , Xn taken from the 

population density f. Our goal is to construct nonparametric estimators for f 

under the constraint (1.3.5). There are numerous practical examples to motivate 

our study: 

Example 6.1.1. (Relevation transform in reliability theory). The Stieltjes 

convolution of two distribution functions F and G with support on the nonneg­

a tive axis is denoted by 

F * G(t) = it F(t - u)dG(1t). 

It represents the distribution function of the time to failure of the second of 

two components when the second component (with lifetime distribution G) is 

put into service on the failure of the first ( with lifetime distribution F). The 

replacem ent component, is usually assumed to be new on installation. Suppose, 

however , that we replace the failed component by one of equal age. The survival 

71 



function H of S, th t· t r e nne o sys tem 1ailure (i. e., both components are failed) 

is the relevation of F and G, the survival functions of the first and second 

components, respectively, and is denoted by 

H (t) = F(t) + ( G(t) dF(u) . 
Jo G(u) 

If we assume that F and G have pelfs f and g , respectively, and F(O) = 0, we 

can check that 

[!!.) 
1

= f 2 0, 
g G 

provided g -:/ 0 and G 2 0. This is a special case of (1.3.5) with w( x) = g( x ). 

The relevat£on transform was introduced by Krakowski (1973). Its appli­

cations in reliability analysis can be found in Baxter (1982) and the references 

therein. 

The following two examples are similar to Examples 5. 1.4 a
nd 5

.1.
3

, but 

the distributions of Z are different. 

Example 6.1.2. (Decon volu tion model). Suppose 
th

at 

X :i Y + Z, 

. ,. :ables y and X, respectively, 
th a t f and g are the pelfs of nonnegative random , cul 

. . . de endent of y The problem 
and that Z h as an exponential distribution and is m P 

. . . . X ... ' X n from g. It is 
is to es timate the pelf ( or cdf) of y by usmg ud datd, l, 

easy to see that 

g(.1:) = e-x ( ; e .'I J(y )dy. J_ oo 

This imp lies that 

[ :(,;} J '~ e" f (x) 2 0 
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pecia case of (1.3.5) with w(x) == e- x. Of course, this can also be This is a s . 1 

a special case of Example 6.1.1 m which g has the exponential considered as . . . 

distribution. 

Exa111ple 6 1 . .3. 

nonnegative X cl y · 1 cl Z B-
1 

( ) rvs an have pdfs g and f , respective y, an - a, 1 

(inverse Beta distribution with a > l) is independent of Y. Let X1, · · ·, Xn be 

(Mixture model). Suppose that X ~ Y Z, where the 

samp e from X . The purpose is to estimate g. Then it is easy to check 
an iid 1 

that 

•m P 1es that g ( x )x • 2: o. This is also a special case of model ( 1. 3. 5) with 
This · 1. [ ] ' 

w(x ) == x - a 

Since model ( l 
3 5

) . . .
1 

t del (1 3 4) all discussions in this Chap-
. . 1s snn1 ar o 1no . . , · 

\er are parallel to Chapter V. SpecificaliY, we first consider J; , the NPMLE 

estimato. f f . . f . d 1 (1 3 5) in Section 6.2. 
1 0 

, and its large sample properties 01 mo e · · 

The construction of the estimator J; is based on a transformation of the data. 

In Sectio 6 . f 1· d their properties, and a 
n .3 we investigate kernel estimators o an 

similar d' . . t . . will be given in Section 
iscuss10n for modified histogram type eS

t
llTia oi s 

6.4 

6,2 Tl t' le NPMLE and Its Asymptotic proper ies 

f t· 1 such that 

The NPMLE J; of f for model (1.3.5) is a density unc ,01 
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l:;(x)/w(x) · 
Is a monotone increasing function of x and 

n 

II i;cxi) 
i=l 

Is rna:ximal. F ~ 
rom the results of Chapter V, one would expect that J; is the 

Product of w( ·) d h' · h' h · d · If x an a Istogram estimator w IC IS non ecreasmg. so, we 

need a fi 't . 
nI e nght end point for the histogram. Thus the following assumption 

18 rnade. 

ASSUMPTION: f]p = inf{x: F(x) = 1} < oo. 

Now We make the following transformation 

(6.2. I) 

for any X E (0, f]p ). If the pdf of Xis f, then the pdf of y is given by 

(6.2.2) l(y) = f(JiV;-1(y))' 
w(Hl*- 1(y)) 

y E (O,M*) 

Where M* = W*(O) = JtF w(z)dz ~ oo. It is easy to check that l is monotone 

decre · . . · . As in Chapter V, we asing 1f and only if f/w is monotone mcreasmg. 

in trod . 
Uce the following histogram type estimator 

n 

(6 .2.3) fn(x) = w(x) LgJrxu)~x<Xu+1)] 
i=l 

= [w(x)J x [histogram estimator], 

Where O _ r r r _ /J [= JiV*-1(0)] are the order 
- X(o) S X(l) ~ ... ~ Xcn) ~ A(11+1) - F 

St· t' LE . a istics of v _xr N Ia1·m that the NPM is 
<l J ' .•• ' T/.. OW we C 

(6.2.4) 
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Where f · 
n is Grenander 's NPMLE of l based on data Yi, ... , Yn . We are going to 

Pr ove this 1 . . 
c aim m Lemma 6.2.1 and Theorem 6.2.1. Their proofs are parallel 

to those of L 
emma 5.2.1 and Theorem 5.2.1. 

Lernrna 6.2.I. The NPMLE J; off is the product of w(x) and a step 

function . h . . r . ) 
WJ t breakpoints (jumps) at the order statist1cs X (i) (1 S z S n · 

Proof. The log-likelihood of the sample with order statiStics X(l) < 
X 

(2) < < lT • 
- ... - <l.(n) JS 

Define 

n 

L(J) = L log[.f(X(i))]. 
i=l 

if x < x0 >; 

if x(i> s x < x(i+1>; 
if x 2 Xcn+l) · 

n J(X · ) 
) 
~ ( z) Ji r } = cw(.r 6 r ) [X(i)::;x<.1\(i+1 ) ' 
. w(X(i) 
i=l 

Where · 
c 1s an 1· · Ob that c orma 1zmg constant . serve c 

L(J*) = nlog(c) + L(f) 2 L(f) 

since 

~ = t J(~(i)) [ Xu+1J w(y)dy 
c i=l w(X(i)) ixc,J 

n 1 Xc+1) f( ) S L ' _Jl_w(y )dy 
i=l Xc,J w(y) 
(by the increasing property of 

J(y)/w(y)) 

1
X (n +1 ) f /JF )d 

= f(y)dy = ix J(y y 
x(IJ .Xc1> 

1
/JF 

s O J(y)dy = 1. 
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Thus for eve d . 
ry ens1ty fn(x) there exists a density function J;(x) such that 

f*( ) . 
n x is the product of w(.x) and a step function with breakpoints at the order 

statist · .c 
ics 1or which L(J;) 2 L(Jn). I 

Lemma 6.2. 1 asserts that the form of the NPMLE of f is the product of 

w(x) and d· . 
a ata dependent histogram. Next we have to use Lemma 5.2.2. 

When Lemma 5.2.2 is applied with Ai = [X(i) ,X(i+l)), (1 .'.Si .'.Sn), then 

it is easil ( ) 11 
Y seen that among all densities which are the products of w x and a 

st
ep functi · h · · h 1·1 1·h d d t ons w1t breakpoints at the order statistics, t e 1 ce 1 oo pro uc . 

n 

i=l 

l S rn · 
a:x:1mized "f 1 . · l [Xr _xr ) tal"es the value 1 wetaceadens1tywh1c1on (i), (i+l), ~ 

w(x) 

n J')'Ci+1> w(y)dy 
-'~(i) 

since the · · . 1 · . · ly one emp1n ca1 measure of each mterva 1s p1 ec1se · 

A.s i11 Chapter V, we use 11 ' ... ' h to denote a partition of indices {1, ... 'n} 

determ · · . t of the empirical 
Ined by the breakpoints of the smallest concave maJoian 

distrib t. 
u 10n function of {Yi} i=l defined by (6.2.1). 

'I'l 1 d" t ·ibutionfunction leore1n 6.2.1. The NPMLE f; is the density w 1ose is r 

Is the 
following 

{ 
Lh (TX/ ( )) if XE [O ,,BF), 

Fn*. (x) = 11, - n VI' * X ' if .1: 2 PF, 

Where L . . the empirical distribution func-
n' 1s the smalles t concave maJorant of 

tio11s L -d the fact Ln(Nl*) = 1. 
n' based 011 clata J7 Y, . Here we have use 1, ... ) 1/. 
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The proof . h 
ts t e same as that of Theorem 5.2.1 except A, = (X(H),X(;)] 

ts replac d 1 X e )Y Ai = [X(i), X(i+l)), 6.i == fxXul w(x )dx by /J.i == f x u +i l w(x )dx, ( ,-1 ) (•) 

and fi oo b f3F 
0 

Y fo . So we omit it here. 

The NPMLE fh * . t· n m (6.2.4) has the following convergence proper 1es: 

Theorem 6.2.2. Jt' 1j;(x) _ f (x)ldx ~ o almost surely if and only if 

f /w is mon t . 0 one mcreasing. 

Proof. \i 
'le apply Theorem 8.3 of Devroye (1987) which asserts 

M* 1 If n(Y) - r(y) ldY ~ 0 

alm t os surel "f · H · Y 
1 

and only if r is monotone decreasing. owever, 

{ M* 
}

0 

lfn(Y) - r(y) ldy = {M" [rn(Y) - ~((y)))) ldy Jo w(H'* y 
M* ~ 

= 1 lw(W;l(y))fn(y)-f(W;l(y))I~ 

= {,. lw(x)f,,(W,(x)) - f(x)ldx 

= {F 1j;(x) - J(x)ldx, 
and · . ·ng· So the 

r is mo . ·; . onotone increasi . 
notone decreasing if and only if f w is rn 

result follo . I 
ws nnmediately. Ti b rvations generated 

leorem 6.2.3. Let X1, . . . ,Xn be independent o se by f . [O f.l ) which 
such ti . · . {unction on , a F 

iat f ( x) / w ( x) is a monotone increasing 
has a [ ] ' If j• is the NPMLE of 

nonzero derivative f /w at a point t E (O}F )· n 

f, then 

,

1

-i/3 [ l 2Z 
nl/3[w(t)r2/3 ~ [M] [M] .f~(t) - J(t) ~ 

2 w(t) w(t) 
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in distribution, where Z is distributed as the location of the maximum of the 

process [ L( u )-u 2 , u E R 1 J, and Lis standard Brownian motion on R 1 originating 

from zero (i.e., L(O) = 0). 

Proof. Let a(t) = f(t)/w(t). By using the notation of Groeneboom (1985) 

we have 

P(f;(t) - f(t)::; xn-113 [w(t)J 213 /~a(t)a'(t)/ 113
) 

= P[w(t)rn(W*(t)) - r(J!T!*(t))w(t) ~ xn - 113 [w(t)J213 /ia(t)a'(t)/ 113J 

= P[rn(W*(t)) - r(W* (t)) ::; _(x) n-113 [w(t)J 213 
/ }a(t)a' (t)/ 113

] 
wx ~ 

= P (n 1! 3 
/ ~a(t)a' (t) wt t) 1- 1! 3 [rn(W*(t)) - r(J!T!*(t))J ::; x) 

-+ P(2Z ::; x ). 

The weak convergence follows by Theorem 2.1 of Groeneboom (1985). I 

Theorem 6.2.4. Assume that f /w has two bounded continuous deriva­

tives on (0, f3F ), and that [.f /wJ' > 0 on (0, f3F ). Then 

[ f fiF J r fiF [ 1 J ½ n½E lo lf::(x) - f(x)/dx -+ c lo 2w(x)J(.r)/[f(x)/w(x)]'/ dx 

where c ~ 0.82 is a universal constant. 

Proof. Applying Theorem 8.4 of Devroye (1987) we have 

where c ~ 0.82 is a universal constant. The result follows from simple transfor-
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t • 1(3p ma IOn y = x w( Z )dz = W* ( X) and the facts: 

n½E[1M· /fn(Y) - r(y)/dy] = n½E[l' /fn(W,(x)) - r(W,(x))/w(x)dx] 

f f3F 
= r,}E(lo /1:.(x) - J(x)/dx); 

rM• [ 1 J ½ (~F [ l J ½ c lo 2r(y)/r'(y)/ dy = c lo ,_, 2r(T¥*(x))/r'(W*(x))/ w(x)dx 

= c [' [Jw(x)f(x) / [!(x)/w(x)] '/] ½ dx. 

So the proof is complete. 

In the following we discuss the asymptotic normality of the L 1 -norm 

f (ip 
Ill: - f//1,(3p = lo /l;(t) - f(t)/dt. 

vVe assume that [J(x)/w(x)]' > 0 for x E (0,fJp) and [J(x)/w(x)JC 2) is bounded 

and continuous. Then we have the following result: 

Theorem 6.2.5. (Asymptotic normality of the L1 -norm //1; - fl/i.f3F) 

Assume that w is differentiable. Then 

where 

{ f3F llf(x) I½ 
C = 2E/V(O)/ lo 2 w(x) (f'(x)w(x) - w'(x)f(x)) dx, 

I 

~ 0.82 f f3F /I f((x)) (f'(x)w(x) - w'(x)f(x))l 3 dx, 
lo 2w x 

c,
2 = 81= Cov(/V(O)/, /V(a) - V(O)/)da 

~ 0.17. 
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Proof. 

following facts: 

Applying Theorem 3.1 of Groeneboom (1985) and noting the 

1/rn - r//i,M• = /Ii:: - f//1 ,;,F j 

1.M· /Jr(y)r'(y)/kdy = t'/Jw(x)J(x)( ~i:D t dx 

/JJF/lf(x) [ JI½ = Jo 2 w(x) J'(x)w(x) - w'(x) f( x) dx, 

the result follows immediately. 

6 ,3 Kernel Estimators and Their Properties 

In this section we are going to discuss kernel estimators of f and their 

properties under condition ( 6.1.1 ). As in Chapter V, we first study asymmetric 

kernels and then symmetric kernels. The kernel estimator off is defined by 

(6.3.1) 

where the kernel k and the sequence { h = hn} are defined in Chapter V. 

Let E denote the expectation with respect to the joint distribution of 

X1, . . . , Xn, and let C > O be a fixed constant , and let 

{
f( x) :f(x) isadensity on [O ,,BF) suchthat } 

Uc= [f(x)/w(x) ]' 2 0, f (,BF )/w(,BF) ~ C · 

Theorem 6.3.1. Let fn be defined by (6.3.1). Assume that the kernel k 

is left sided, that is, k(x)Ico,oo)(x) = 0. Then for all f E Uc, 
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where 

N = liminf rr}F wt i(x)dx. 
T •-0+ lo ' 

18 

similar to that of Theorem 5.3.1. In order to rnake the theSis he proof" . . . 

self-cont . amed · ' we give the proof as follows: 

Proof A f3 , ' 
8 

usual, we split E Jo ' If n( x) - J( x )ldx into two parts 

Et' lfn(x) - J(x )ldx <:;El' lf,,(x) - E}n(x)ldx 

l /3F A + lo IEJ,,(x) - J(x)ldx 

==VARIATION+ BIAS. 

N 
ow for fi + ( ) · h xed x, we define w+ .(x) ~ J0£[k(u)]i J(x - uh)du, f, ,i x wit 

d fi h,.7 h 

e ned 8 • . unilarly for _j = 1, 2. Then 

, 1 1 /3F (x-Y) . 
Var[f

11

(x)] :S -
12 

k2 h f(y)dy 
n 1, 0 

= !_ 1° k2(u)f(x - uh)du 
nh }:::J.L ,, 

< £ 1° kz(u)w(x - uh)du 
- nh }:::J.L 

" 

It£ ollows that 

r flF [ A l ½ 
VARIATION <:; lo Var(fn(x)) dx 

( ) 
lf.(JF I C 2 [w + ( x) p dx 

< - h,Z 
- nh o 

l 

== (£) 2 

N1 (h), 
nh 
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where 

N1(h) = lf3F[wt, 2(x)J½dx. 

On the other hand, note that Efn(x) = J,t1 (x). As in the proof of Theorem 

5.3.1 , we have 

ff3F 
BIAS = lo /Efn(x) - f(x)/dx ~ hk1 D*(f), 

where 

l
f3F 

D*(f) = 1iminf lfit1 (x)/dx 
h-+O+ o ' 

l
f3F 

~ Clim inf w7 1 (x )d.1: 
h-+O+ 0 ,1., 

:::=CN, 
and 

l
f3F 

N = 1iminf w; 1(x)dx . 
h-+O+ o ·, 

The result is proved. I 

Corollary 1. Under the condition of Theorem 6.3.l and assume that 

N1 = suph>o N1 ( h) exists, then 

f fiF 
E Jo /fn(x) - f(:z:)(dx -

Corollary 2. Under the condition of Corollary 1, the bound in Corollary 

1 is minimized for 

and for this choice of hn 

l 

ff3F (k1N) 
3 

1[ 1/3 -2/3] 
E lo /./n(x) - J(x)/dx S -;;- (CN1) 3 2 + 2 · 
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CorolJ ary 3. For all n 
' 

1'he next th 
eorern considers a symmetric kernel. 

Zero. 

l'heoren 6 1 .3.2. Suppose that the kernel in (6.3.1) is symmetric about 

Then for all n and h 
' 

1/Jp ( 1) ½ 
E 

O 
/fn (x) - J(x) /dx 5 nh l\\*(h) + Chk1N*, 

k1 = / /x /k(x)dx, 

1
/Jp I 

N/(h) = 
0 

[w{z(x))2dx, 

1
/JF 

N* = lim inf wh,l ( x )dx, 
h-+D+ o 

wh,1(.x) = l~/J e k 2(u)w(x -uh)du, 
h 

. 1 ? J = ,~· 

Proof. 
Similar to the proof of Theorem 6.3.1, 

Now for fi 

1/Jp 1 /Jp A )/d 
E o /fn (x)-J('r) /d.x5 E o /f~(x ) -Efn(x x 

1

/Jp A 

+ o /Efn (?:) - f(.1: )/dx 

= VARIATION+ BIAS. 

Xed x, we define 

w;;,Jx) = f f; ki(u)w(x - uh)du, 
J =--/Jp 

h 
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fh,j ( x) with defined similarly. Then 

It follows that 

where 

Var[fn ( x )] <'. n!, t' k2 
( x ~ y) f (y )dy 

1 if. = -h k2(u)J(x - uh)du n x-/Jr 
h 

C f. ~ -h f k 2(u)w(x - uh)du 
rt 1::.- /JF 

h 

- C * ( ) = - hwh 2 X. n , 

VARJATION <'. ip, [var(/n(x))] ½ dx 

( C) ½ f /3F 1 

~ nh lo [wi:, 2 (x)]2dx 

f /JF I 

Nt(h) = lo [wii, 2 (x)}2dx. 

On the other hand, note that Ej:_(x) = f{ 1 (x). Applying Theorem 7.1 of De­

vroye (1987) we have 

f /JF 
BIAS= lo /Efn (x) - f(x)/dx ~ hk1D*(f), 

where 

l
/JF 

D*(f) = liminf l.fi:,1(x) /dx 
h-+O+ o 

l
/JF 

< Clim inf w h 1 ( x )dx 
- h-+O+ 0 ' 

::::CN*, 

and 

l
/JF 

N* = liminf wii, 1 (x)dx. 
h-+O+ o 
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I 
The proof is complete. 

6.4 Md" 0 ified tt· 15t0gram Type Estimators 

P .er V, let J be a denSity defined on a bounded interval [a, a+£; As in Cha t , . . . 

f w IS monotone increasing and J(a + L)/w(a + L) '.'. C. Let fn be such that f . 
r off constructed from n iid observations from f. The risk of fn at an et· s imato 

f is defi ned by (5.4. l) . 
'we make the change of vanable y = J, w(z)dz - W,(x), where In ( 5 .4 .1) . · /3 F _ 

(3p >a+ L - · Then 

R(!n,J) = Eu:.;::J!n(W;'(y))-J(W;'(y))\~l 
= E[ f w.(a) 1~-~ldv] 

J w.(a+L) w(W; (y)) w(W* (y)) 

= E [ f w.(a) lrn (Y) - r(y)ldv] · 
IIence l w.(e+L) . . ,, . 
t , as long a.s we define f" ( x) = w(x )r n(W,(x )), where rn ,s Birge s his· 

ogram r f t es imator, then the results of Birge (1987) also hold for our es Hna or. 

One f o such . 1 . reSu ts 1s the following. 

Theore1n 6.4. 1. Let 
p-1 

fn(x) = w(x) :[(nl;)-1 N,h(W,(x)), 

Wher N ,~o A h . e i denotes the number of observations {Y.}:'~1 which belong to ;, w ere 

{Ai = [Yi y· )}p-1 . ( L) W (a)] and li === Yi+l - Yi is 
' i+1 i=O 1s a partition of [H

1
* a+ , * ' 

the 1 
engtl f . Then 

1 0 
A; such that { / y-1 is an increasing sequence. 

R(,f' I,!,)~: ).89 [5] * +0.2 [~] j' 
. n, - 71, 71, 

Where S = log(l + C(Hl*(a) - lif*(a + L) )]. 
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APPENDIX 

DEFINITIONS AND NOTATION 

A.I Definitions 

The following definitions can be found in Shorack and Wellner (1986, p.828-

p.839). 

Definition A.1.1. Let A denote a class of subsets of the sample space 

,1:'. For any finite subset D of X, let #A(D) denote the number of different 

subsets of D that can be obtained by intersecting D with members of A. For 

any r = 0, I, .. . , define 

mA(r) = max{#A(D): DC X, #(D) = r} 

Clearly, mA ( r) cannot be larger than 2r. We call 1nA ( r) the growth function for 

A. Let 

{ 
inf{r: mA(r) < 2r}; 

v = VA = oo, if mA = 2r for all r < oo. 

Then VA is called the Vapnik-6 hervonenk£s index number of A. If VA < oo, then 

A is called a Vapnik-C hervonenhs class or VC class. We always use C to denote 

a Vapnik-C hervonenkis class. 

The next definition requires the following notation. 

Let £
2 

= £,
2
(X ,:F, P) be the Hilbert space of (equivalent classes of) 

F-measurable functions f : X ~ R1 such that J f 2
dP < oo . Let WP be 

a Gaussian process indexed by £2. That is, the rvs {W p(f) : f E £2} are 
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jointly Gaussian with mean O and covariance 

P(Jg) = L fgdP 

for f, g E £2. Let 

Zp(J) ~ W p(J) - P(J)W p(l). 

Definition A.1.2. A class B C £2 will be called a Zp-BUC class if and 

only if the process Zp(J)(w) can be chosen so that for all w the sample functions 

f - Zp(f)(w) restricted to f EB are bounded and 

2] 2 I pp(f,g) = {P[(f - g) - [P(f - g)] }2 

is uniformly continuous with respect to the £ 2-norm. 

Definition A.1.3. A Zp-BUC class B will be called a functional Donsker 

class for P if and only if there exist processes Yj(f), Y EB where Yj !_ Zp are 

independent copies of Zp for which Bis Zp-BUC for each J such that 

where 

m 

n-½ max 1/vrnZm - L 1'}//s ~ Mn, 
m<n . 

- .7=1 

p 
Mn --t O as n--too 

Zm = vm[Pm - P] 
1 m 

Pm= - L Dx;, (empirical measure) 
1n i=l 

and //. // is the supremum norm. 

87 



A.2 Special Notation for Chapters II and III 

Q(F) = {qe(x )lc: CE C, qe(x) 2: 0 is fixed with [F](qe) < oo} 

where x E R 1
, and [F](qe) = 1: qe(x)dF(x) 

C = Vapnik-Chervonenkis class of subsets of sample space ,1:' 

s 

;y+ = LJ {x: Wi(x) > O} 
i=l 

n = n1 + · · · + ns (total sample size) 

Ani = ni/n (sample fractions) i = 1, ... , s 

Ai = lim Ani > 0 (if the limit exists), i = 1, . . . , s 
n-+oo 

-6 = diagonal matrix with diagonal (/\1, . .. , As) 
s 

Gn(x) = L AniGi(x) average distribution of cdfs 
i=l 

G1(.1:), ... , Gs(x) for xE R 1 

s 

G(x) = L AiGi(x) for x E R1 

i=l 

l s n; 

Gn(x ) = - LL f( -oo,xj(Xij) , XE R 1 

n. . 
i=l 1= 1 

VT = (Vi, . . . , V:. ), ( solution of equation (2.2.5)) 

V~ = (V nl, ... , V ns), (solution of equation (2.2.15)) 

wT = (W1, .. . , Ws), where 

wi = .l: w(F(y))dF(y) = fo
1 

Wi(u)du , 1 ~ i ~ s 

BT = (B1 , . . . , B s), where Bi= ½Bs, 1 ~ i ~ s 

B~ = (B n1, ... , B ns), where 
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B ni = V niB ns, i = 1, . .. ,s - 1, (see (2.2.17)) 

1 
Bns = ---------- (see (2.2.18)) 

Joo [~s_ An;w;(y) l-l dG (i)' 
-oo L.,z-1 V ni n Y 

r.(Bn) = rt '\::.cx)r, XE R
1 

r(B) = [ t A;i;?T', x E R1 

A.3 Special Notation for Chapter IV 

p ~ = (Pn( l ), ... ,Pn(s)), where Pn(i) = ¾ tI[l(; =iJ, 1 ~ i ~ s 

.i=l 

P.T = (p( l ), .. . ,p(s)), where p(i) = P(K = i), l ~ i ~ s 

VT= (Vi, ... , Vs), (solution of equation ( 4.2.3)) 

V';;_ = (V nl, ... , V ns), (solution of equation ( 4.2. 7)) 

W';;_ = (Wn 1 , . .. , Wns), where 

W ni = V ni W ns, i = l, .. . , s - l , ( see ( 4. 2. 9)) 

1 
Wns = l ' 

Joo [~s_ Pn(i)w_;(y) l - dG n(Y) 
- 00 L.,z-1 V n1 

(see (4.2.10)) 

l n 

Gn(x) =-;:; L f(-oo,x ](Xi), XE R
1 

i=l 

r(W )= r~ Pn(i)wi(x) l-1 xER1 
- n, Pn L....t W . , 

i=l ni 
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