


the biasing function. We develop conditions under which the generalized model
is identifiable. Under these conditions, an estimator of the underlying distri-
bution F = proposed 1 its strong consistency and as; >totic normality are
established.

In certain situation, estimation of . in a biased sampling model is in fact a
problem of estimating a monotone decreasing density. Several density estimators
are studied. They include the nonparametric maximum likelihood estimator, a,
kernel estimator, an a mod :d his Cr
sistency, the asymptotic normality, and the bounds on average  or for the
estimators are studied in detail.

summary, this thesis is a generalizations of the estimation  ults avail-
able for the ordinary s-biased sampl 5 model, the ranked-set sampl vdel,

the nomination sampling model, and a monotone decreasing density.
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When = 1, we obtain the results for the nomination sampling model (1.2.2).

That is,
VILLFn(I) — . \.’L')] —d—> Z(.’L‘),

K(s,t)  Cov'7s),Z(t))

[1}1* 1 (s)[1=F(t)], s<t

Bl e vope B































































It is easy to see from (4.4.5) that (4.4.7) satisfles (4.4.8). .ais concludes the

proof. |




























































Theorem 5.4.1. Let

p—1

fu(@) = w(z) Y (ndi) " Nila,(W(x)),
=0

where N; denotes the number of observations {Y;}X, which belong to A;, where
{A; = [yi,y  )}"7) is a partition of [W(a), W(a + L)], and [; = y;41 — y; is the

length ich = {[;}  is an increasing sequence. Then

R(fu, f) - 1.89[5] §+o.2[ mJ

n

v e S log[l+ C(W(a+ L) — W(a))].
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f r,;(2) with defined similarly. Then

R 1 Br Ly
Var[f,(z)] < 3 kz( . )f(y)a'y
1

nh fz-s
[

Fg ©

lcz(u)f(x —uh)du

oorE
L—/v—ﬂ k(u)w(z — uh)du

h

1’;;,2(15)'
It fo ywg that

1

B 7
V2 [ATIONS/ F[V: fn(z))J dz
i (

< (E)' [ wiator

1

N2
(nn) Nl*(h)>

) Br .
N = [ i) e,
0

where

On the other hand, note that ../, (z) fii(z). Applying T »  17.1 of

vroye (1987) we have

pr
BIAS = [ [P (e) - fla)ide < ks D*(1),

where
Br
D* im i palz
(f) ;ggégf/ﬂ iz e
. . IBF
SCI}E(I,Ef A wy, 4 (z)dr
=CN?,
and

h—0-+

Br
N* =lim inf/ wy, 1 (z)dz.
0
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