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Limulus ventral photoreceptors have been studied using electrophysiological, 

immunocytochemical, and biochemical techniques. However, genetic manipulation 

has eluded Limulus research because the animal takes about 10 years to mature. As an 

alternative, we decided to explore the possibility of using RNA interference (RNAi), 

and morpholino to reduce the levels of a target protein. The purpose of this study was 

to test whether use of these techniques would result in any physiological changes in 

the ventral photoreceptors.  

 

As a target we chose arrestin, a protein that binds to and quenches 

metarhodopsin, the activated form of rhodopsin. Injecting arrestin RNAi, or arrestin 

morpholino into the cells had a profound effect. The rate of spontaneous quantal 

events („bumps‟) in the injected cells had a 5-fold increase as compared to bump rates 

of control cells at 24 hrs after injection. Because high levels of metarhodopsin are 

thought to be present in ventral photoreceptors even in darkness, this result is 

consistent with an increase in the amount of unquenched metarhodopsin in the cells. 



 

To show that the increase in spontaneous dark bumps was a result of unquenched 

metarhodospin, we treated RNAi -injected cells with hydroxylamine, a bleaching 

agent that destroys metarhodopsin. The bump rate after this treatment was down to 

pre-injection levels confirming our hypothesis that the excess bumps were generated 

by unquenched metarhodopsin. 

Another target protein selected was opsin. Opsin bound to the chromophore 

forms rhodopsin, and rhodopsin photoconverts to metarhodopsin. Therefore, opsin 

reduction was expected to lead to a reduction in sensitivity to light. sensitivity to light 

decreased by about 30 fold at 96 hrs after opsin morpholino injections.  

 

In another set of experiments, we fixed the injected cells with the 

arrestin/opsin antibodies. We measured the fluorescence from thee secondary 

antibodies targeted against the arrestin/opsin primary antibodies to get an insight into 

the protein levels. We observed a 2.5 fold decrease in fluorescent counts in arrestin 

morpholino injected cells and a 17 fold decrease in opsin injected cells. 
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Chapter 1 

 Introduction 
 

1.1 Phototransduction 
 

Vertebrates and invertebrates share some crucial steps in phototransduction 

while differing in others. The primary event in both vertebrates and invertebrates is 

absorption of a photon of light by the photopigment rhodopsin. This event activates a 

heterotrimeric G-protein and ultimately generates an electrical signal. However, the 

intermediate steps are different in the two classes of animals. In vertebrate 

phototransduction, the G-protein is transducin. Transducin- GTP activates the effector 

enzyme, cyclic GMP (cGMP) phosphodiesterase (PDE). A transient decrease in 

cGMP levels leads to the activation of cyclic nucleotide gated (CNG) channels 

(1Fesenko et al., 1985; 2Kaupp et al., 1989). This cascade results in channel closure 

and causes the membrane to hyperpolarize (3Yarfitz & Hurley, 1994). 

 

In contrast to vertebrates, in the microvillar photoreceptors of Drosophila, 

absorption of a photon leads to the opening of two cationic channels, TRP and TRPL, 

and an inward current resulting in membrane depolarization (4Niemeyer et al., 1996). 

The phototransduction is mediated by a G-protein activated phospholipase C (PLC) 

(5Bloomquist et al., 1988; 6Ranganathan et al., 1995). Activation of PLC catalyzes the 

breakdown of phosphatidylinositol-4, 5-bisphosphate (PIP2) leading to the production 

of inositol 1, 4, 5 trisphosphate (InsP3) and diacylglycerol (DAG) (7Berridge, 1993). 



 

 2 

Exactly how these products lead to the opening of the TRP & TRPL channels is not 

known. 

 

1.1.1 Phototransduction in Limulus 
Limulus ventral photoreceptors make an excellent model system for the study 

of invertebrate visual transduction for several reasons. Firstly, they are very large in 

size (~ 200 x 80 µm). This allows for multiple electrode impalement and pressure 

injection of substances in single cell recordings. Secondly, once dissected, the cells 

show robust responses for up to 75 days and therefore can be used to study long-term 

effects of manipulations (8Bayer et al., 1978). One optic nerve contains about 25- 35 

photoreceptor cells. All the above mentioned properties have enabled several 

researchers to use the Limulus ventral photoreceptors to get an insight into the 

invertebrate phototransduction process using electrophysiology, biochemistry, and 

immunocytochemistry (9Drolochter & Stieve, 1997).  

 

The Limulus ventral photoreceptors are divided into a rhadbomeral (R) lobe 

and an arhabdomeral (A) lobe (10Stern et al., 1982; 11Calman & Chamberlain, 1982). 

The R lobe has microvilli and is light sensitive whereas the A lobe is light insensitive. 

The axon arises from the A-lobe. The photocurrent is localized to the R-lobe (12Payne 

& Fein 1986). The phototransduction involves InsP3 as a second messenger. InsP3 

both excites and adapts the photoreceptors via a rise in intracellular calcium (13Brown 

et al., 1984; 14Fein et al., 1984; 15Payne et al., 1986). Although over the years, 
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substantial progress has been made in understanding the phototransduction in Limulus 

ventral photoreceptors, some questions still remain unanswered. 

 

One of the crucial steps that are not known is the identity of the membrane 

channel responsible for membrane depolarization in response to light. Two likely 

candidates for the channel are CNG, as in vertebrates, or TRP, as in Drosophila. 

Injection of InsP3 into the photoreceptors activates the light-dependent conductance 

(16Fein et al., 1984; 17Payne et al., 1986). Intracellular injection of Ca2+ elicits a 

response that mimics a light-induced response, whereas buffering Ca2+ inhibits this 

response (18Shin et al., 1993; 19Payne et al., 1986; 20Frank & Fein, 1991). Collectively 

these results show that InsP3 –induced release of stored Ca2+ might be the message 

responsible for activating the channels. Further, these results suggest that TRP 

channels might be involved in this process. However, other studies show that cGMP 

injections also depolarize ventral photoreceptors and in turn suggest the possible 

involvement of this second messenger in phototransduction (21Johnson et al., 1986). 

Further evidence in support of the cGMP pathway comes from the work that showed 

that the light-dependent channels were opened by cGMP and not by Ca2+, and that 

inhibitors of guanylate cyclase reduced light-induced response (22Bacigalupo et al., 

1991; 23Garger et al., 2001). These observations favor CNG channels in mediating 

photocurrent in Limulus. In our laboratory, putative cGMP and TRP channels have 

been cloned and sequenced from the Limulus eye cDNA (24Chen at al., 1999; 

25Bandyopadhyay and Payne, 2004).  
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The next step is to perform functional studies on these channels. Traditionally, 

the role of specific genes is determined by selecting or creating a mutation in the gene 

of interest followed by detailed analysis of the phenotype. Mutation and knockout 

experiments have led to a wealth of information on phototransduction in mice and in 

Drosophila. It is believed that until the effects of a gene knockout or null mutation are 

studied, a categorical statement can not be made about the function of the gene. This 

is because the knockout background may reveal multiple forms of proteins, redundant 

pathways, or reveal a gene as a pseudogene. Therefore, knockouts have become the 

“gold standard” for identifying protein function. However, despite a wealth of 

physiological data in Limulus phototransduction, mutation experiments are not 

performed because the animal requires about 10 years to mature. One way to 

overcome this problem is to use functional silencing of genes. This may bring the 

understanding of the physiology in Limulus to an approximate alignment with the 

molecular mechanisms found in studying Drosophila. 

 

We decided to use RNA interference (RNAi) and morpholinos as tools to 

achieve functional silencing. Our aim was to investigate if this technique would work 

in Limulus ventral photoreceptors. We chose arrestin and opsin proteins as our targets 

since these two proteins are better characterized, and their role in Limulus 

phototransduction is better understood than either of the putative membrane channels. 
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1.2 Post-transcriptional gene silencing techniques 
 

 RNAi and morpholino are emerging as most effective tools in bringing about 

functional silencing of genes. Both of these molecules are complementary 

oligonucleotides that interfere with mRNA translation. This reduces protein levels 

and functionally silences the gene.  

 

1.2.1 The RNAi technique 
 

RNA interference (RNAi), also named RNA silencing or post transcriptional 

gene silencing (PTGS), is a powerful technique that allows tissue-specific 

suppression of gene expression. As depicted in Fig.1.1, a small double-stranded RNA 

(dsRNA) introduced in the cell gets cut into small 21-25 nucleotide (nt) interfering 

RNAs (siRNAs) that induce sequence-specific degradation of homologous single-

stranded mRNA (26Fire et al., 1998). It is hypothesized that dsRNA resembles a viral 

or transposon infection and the cell has developed a defense mechanism to destroy it. 

The cell produces (or activates) RNA endonucleases that cleave the target RNA into 

small pieces (27Hammond et al., 2000). 

 

Double stranded RNA-mediated RNA interference is an effective method to 

down- regulate the levels of proteins in cells. It has become a dominant reverse 

genetics method that allows one to move from gene sequence to function. This 

technique has been shown to work in vertebrates and invertebrates, and has been 

extensively used in C. elegans, plants, D. melanogaster, mouse, and several cell lines 
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(Fire et al., 1998; 28Chuang et al, 2000; 29Misquitta et al., 1999; 30Caplen et al., 

2001;31Tuschl et al., 1999). RNAi is especially useful in organisms that were not 

amenable to genetic analysis. If this technique works in Limulus, it would be ideal for 

manipulation of RNA levels.  

 

Figure 1.1: Mechanism of RNAi results in post-transcriptional knockdown of a gene product. dsRNA 
is introduced into the cell by soaking, injecting, or transfecting. The dsRNA strands are cut by Dicer (a 
member of the RNase III family of dsRNA-specific ribonucleases) into siRNAs.  The siRNAs get 
attached to a nuclease, the RNA-induced silencing complex (Risc). The complex binds to the target 
mRNA that has a perfect complementary sequence. The targeted mRNA gets degraded by Risc 
activity. 

 

Figure modified from the webpage of Wolfgang Nellen Department of Genetics 

at Kassel University, Germany. 

 http://www.uni-kassel.de/fb19/genetics/projects/prj_as.html 
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1.2.2 Use of Morpholino 
 

Phosphorodiamidate morpholino oligomers (PMOs) are single, 25nt strands of 

a DNA-like molecule (32Summerton & Weller, 1997). They are different from DNA 

in two aspects. The phosphodiester linkage in DNA is replaced by a 

phosphorodiamidate linkage in morpholino. Secondly, the five membered 

deoxyribose ring in DNA is replaced by a six membered morpholine ring. These 

modifications make them highly resistant to degradation by enzymes while at the 

same time, they do not affect binding by Watson-Crick pairing (33Hudziak et al., 

1996). They are antisense molecules that prevent ribosome binding, or interfere with 

pre-mRNA spicing, and subsequently block gene expression.  

 

 Morpholinos are typically designed against the first 25 bases 3‟ to the AUG 

translational start site. They presumably act by preventing ribosomal binding to the 

mRNA. In the absence of ribosomal binding, translation is blocked and the target 

gene can be silenced (Review 34Summerton, 1999; 35Ekker & Larson, 2001). 

Morpholinos show a high affinity, low toxicity and very few non-specific side effects 

(Summerton, 1999; Summerton & Weller 1997).  

1.3 Selection of appropriate proteins to test the success of these techniques 

We used several criteria to select proteins for testing these techniques in 

Limulus ventral photoreceptors. Firstly the proteins should to be a part of the visual 

transduction cascade. Secondly, they should have been sequenced (to allow designing 

of complementary probes). Thirdly, their turnover should be high since the above 
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techniques target freshly synthesized proteins and have no effect on the proteins 

already present in the system. The two proteins that seemed to fit these criteria were 

opsin and arrestin. As indicated in Fig. 1.2, both opsin and arrestin feature during 

photoisomerization events in invertebrates. Rhodopsin absorbs a photon and 

isomerizes into metarhodopsin. Both rhodopsin and metrhodopsin are made of the 

protein moiety opsin and a chromophore. Metarhodopsin initiates the 

phototransduction cascade. Quenching of metarhodopsin is necessary for terminating 

the light response. This process occurs by phosphorylation of metarhodopsin at 

multiple sites and „capping‟ by arrestin. The quenched metarhodopsin photoconverts 

into an inactive rhodopsin on absorption of a photon. The inactive rhodopsin loses 

arrestin, gets dephosphorylated and becomes active. This rhodopsin can now initiate 

the cascade all over. 
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Figure 1.2 Schematic depicting the photoisomerization events of rhodopsin in invertebrates. (1) 
Rhodopsin (2) Rhodopsin isomerizes to form its active form, metarhodopsin on absorption of a photon 
(hν). Metarhodopsin initiates the phototransduction cascade that ultimately results in a change in 
membrane potential. (3) Metarhodopsin is quenched after multiple phosphorylations and arrestin 
binding. (4) Metarhodopsin is photoconverted to the inactive form of rhodopsin that is phosphorylated 
and bound to arrestin. (5) Arrestin is phosphorylated and dissociates from rhodopsin. Rhodopsin is 
dephosphorylated and converts back to rhodopsin (1) which can then absorb a photon and start the 
process all over again. 

1.4 Opsin 

Visual opsin is the apoprotein moiety of the photosensitive pigment of the 

eye. It forms rhodopsin when it is covalently attached to the chromophore that is 

usually 11-cis retinal (36Wald, 1968). The chromophore attachment occurs at a lysine 

residue via a Schiff-base linkage (37Bownds, 1967; 38Wang et al., 1980). Opsin is a 

member of a large super- family of G-protein coupled receptors (GPCRs) which have 
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a seven-transmembrane -helical domain (39Baldwin et al., 1997). Opsin is different 

from the other GPCRs in that it has a lysine residue that binds retinal in the seventh 

helix. Many studies of vertebrate photoreceptors have increased our understanding of 

the role of opsins in phototransduction. Since vertebrates and invertebrates share 

many features of phototransduction, especially the few initial steps, these studies also 

give us an indication of the role of opsins in invertebrates as well.  

1.4.1 Vertebrate opsins 

 Upon absorption of a photon in the photoreceptors of vertebrates, the 11-cis 

retinal bound to rhodopsin isomerizes to form all-trans retinal on a femtosecond time 

scale (40Wang et al., 1994). This causes conformational changes in the opsin and 

leads to the conversion of rhodopsin to metarhodopsin. This conversion occurs 

through various intermediates such as photorhodopsin, bathorhodopsin, 

lumirhodopsin, metarhodopsin I, metarhodopsin II, and metarhodopsin III (41Okada et 

al., 2001). These intermediates can be distinguished based on their specific absorption 

maxima (42Shichida & Imai, 1998). Metarhodopsin II initiates the phototransduction 

cascade by activating the heterotrimeric G-protein transducin (43Stryer, 1986; 

44Nathans, 1992). In a process termed bleaching, metarhodopsin eventually gets 

destroyed when the chromophore dissociates from it. Renewal of rhodopsin involves 

the binding of fresh retinal to opsin.  

Point mutations in opsins lead to retinitis pigmentosa, an autosomal –

dominant disease that causes blindness (45Dryja et al., 1990). In mice, rhodopsin 

mutants cause retinitis pigmentosa, retinal degeneration, and failure to develop rod 

outer segments (46Olsson et al., 1992; 47Toda et al., 1999; 48Humphries et al., 1997). 
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1.4.2 Invertebrate opsins 

Invertebrate rhodopsin gets pohotoisomerized in the presence of blue light, 

and activates the Gq  subunit of the heterotrimeric G-protein, dgq (49Lee et al., 1990; 

50Scott et al., 1995). Upon activation, rhodopsin forms intermediates similar to those 

in vertebrates (51Yoshizawa & Wald, 1964). However, unlike in vertebrate 

photoreceptors, metarhodopsin from invertebrates is thermally stable and does not 

bleach (52Kropf et al., 1959). Upon absorption of orange light it photoconverts back to 

rhodopsin.  

The downstream steps of this cascade differ in vertebrates in invertebrates.  In 

vertebrates, cGMP channels close and the photoreceptors hyperpolarize (53Fesenko et 

al., 1985). Although in invertebrates the identity of membrane channel is not fully 

understood, the photoreceptor membrane depolarizes as a result of phototransduction 

(54Hagins et al., 1962; 55Bortoff, 1964). Quenching of metarhodopsin is essential for 

ending phototransduction. 

The Drosophila ninaE (neither inactivation nor afterpotential E) gene was 

isolated and identified as encoding the opsin that is expressed in R1-R6 cells of 

Drosophila photoreceptors (56O‟Tousa et al., 1985; 57Zuker et al., 1985). Mutations in 

this gene cause ultrastructural defects as well as loss of photoreceptor sensitivity 

(58O‟Tousa et al., 1989). Recessive ninaE mutants exhibit a defective light response 

and photoreceptor cell death (59Leonard et al., 1992). Dominant ninaE mutants are 

defective in rhodopsin maturation, trafficking of rhodopsin in the endoplasmic 

reticulum, or cause retinal degeneration and constitutive strong desensitization in 
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photoreceptor cells (60Colley et al., 1995; 61Kurada et al., 1998; 62Iakhine et al., 

2004). 

Limulus has multiple opsin genes two of which (opsin1 & opsin2) are cloned 

and better understood than the other genes (63Dalal et al., 2003; 64Smith et al., 1993). 

1.5 Arrestin 

Arrestins are a class of soluble proteins that in conjunction with receptor kinases 

quench the G-protein coupled receptor function (65Hargrave & McDowell, 1992). 

There are two types of visual arrestins, rod –specific (called s-antigen) and cone-

specific (called x- arrestin) (66Review Krupnick & Benovic, 1998; 67Sakuma et al., 

1996). Several different types of visual arrestins also occur in the invertebrates. 

Drosphila has two (68LeVine et al., 1990; 69Yamada et al., 1990). 

1.5.1 The role of arrestin in vertebrate phototransduction 

Arrestin was initially characterized as a protein that translocated to the rod 

outer segment (ROS) after rhodopsin activation (Kuhn et al., 1984). During 

quenching of the light response, metarhodopsin is deactivated by a two-step process. 

Initially, rhodopsin kinase phosphorylates metarhodopsin at multiple serine and 

threonine residues on its COOH-terminal (70Wilden et al., 1982). This quenches the 

metarhodopsin partially. Phosphorylation alone decreases metarhodopsin activity by 

about 50% (Xu et al, 1997). Arrestin binding occurs only after metarhodopsin is 

phosphorylated at least at three sites (71Schleicher et al., 1989; 72Mendez et al., 2000).  

Arrestin does not bind to rhodopsin, has low affinity for unphosphorylated 

metarhodopsin and phosphorylated rhodopsin, and a high affinity for phosphorylated 
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metarhodopsin (73Vsevolod et al., 2004). Only after arrestin binding does the 

metarhodopsin get completely quenched (74Kuhn et al., 1984; 75Wilden et al., 1986; 

Xu et al., 1997). Quenched metarhodopsin cannot bind to transducin and thus is 

inactive. Later, in the presence of retinal dehydrogenase, the all-trans-retinal gets 

reduced to all- trans-retinol (76Palczewski et al., 1994). The retinol dissociates from 

opsin, leaving arrestin bound to phosphorylated opsin. Arrestin is then released, and 

phosphatase 2A dephosphorylates the opsin (77Palczewski et al., 1989). The 

rhodopsin is regenerated when opsin binds to a freshly synthesized 11-cis retinal.  

1.5.2 Mutations in vertebrate arrestin 

In humans, a homozygous deletion of nucleotide 1147 (1147delA) in codon 

309 of the arrestin gene leads to the formation of a “functional null allele” because 

although the gene product is formed, it is not functional (78Fuchs et al., 1995). This 

mutation results in a type of autosomal recessive congenital stationary night blindness 

(CSNB) called Oguchi disease (79Oguchi 1907). The symptoms of this disease 

include abnormally slow dark adaptation and diffuse yellow or gray coloration of the 

fundus (80Maw et al., 1995). This results in inability to see in darkness. After 2 or 3 

hours in total darkness, the normal color of the fundus and the ability to see returns. 

This is called the 'Mizuo phenomenon' (81Mizuo 1913). All other visual functions, 

including visual acuity, visual field, and color vision are usually normal (82Carr and 

Ripps 1991).   

The dark adaptation in Oguchi disease patients is slow because even under 

very dim light, the phototransduction cascade takes a long time to terminate. This 

may reduce the ability of the photoreceptors to detect low levels of light and thus 
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reduces night vision. The visual defects of Oguchi disease appear to require severe 

reduction in arrestin levels. Patients with heterozygous mutations in the arrestin gene 

do not show any defects in dark adaptation. 

Correspondingly in mice (83Xu et al., 1997), heterozygous arrestin mutants 

which have 33% functional arrestin still have normal responses in light. Homozygous 

null mutants, however, have a normal rising phase but prolonged falling phase in 

response to light. A defect in the falling phase is expected since in the absence of 

arrestin, there would be more unquenched metarhodopsin in the photoreceptors. An 

increase in the unquenched metarhodopsin would affect termination of the 

phototransduction cascade.  

1.5.3 Arrestin function in invertebrates 

In invertebrates there is one crucial difference in the fate of metarhodopsin 

from that of vertebrates. In vertebrates, the metarhodopsin dissociates into 

chromophore and opsin and rhodopsin is resynthesized in a multi-step process. 

However, in invertebrates, the metarhodopsin is thermostable, does not bleach, and 

does not regenerate spontaneously to rhodopsin. It stays as metarhodopsin until it 

absorbs a photon and isomerizes back to rhodopsin. In the absence of light, the only 

way to deactivate the metarhodopsin is phosphorylation and arrestin binding. Because 

a few unquenched metarhodopsin molecules might generate continuous bumps in the 

dark, a failure to quench metarhodopsin will lead to an increase in dark noise. Even a 

relatively small number of unquenched metarhodopsin molecules might therefore 

substantially increase background noise and decrease the sensitivity to light. So 
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deactivation of metarhodopsin in invertebrates is a crucial step and needs to be 

strictly regulated.  

The mechanism of arrestin function in invertebrates is understood mainly 

from work in Drosophila. In the presence of arrestin, metarhodopsin gets 

phosphorylated at multiple sites and gets quenched (84Bentrop et al., 1993).  As in 

vertebrates, arrestin further quenches the metarhodopsin activity and protects it from 

dephosphorylation by phosphatases (85Byk et al., 1993). Upon absorption of another 

photon, the arrestin-bound phosphorylated metarhodopsin is converted into arrestin-

bound phosphorylated rhodopsin. Phosphorylated rhodopsin releases arrestin and gets 

dephosphorylated by RDGC, a rhodopsin phosphatase (86Vinos et al., 1997). This 

dephosphorylated rhodopsin is ready to absorb another photon. 

1.5.4 Mutations in invertebrate arrestin 

Drosophila has two arrestin genes. Mutation in the dominant arrestin gene 

leads to a photoresponse that has a prolonged deactivating afterpotential (PDA) that 

takes ten times longer to terminate the light response (87Dolph et al., 1993). This 

observation indicates that arrestin is necessary for termination of phototransduction in 

vivo.  

There is evidence for only one arrestin gene in Limulus photoreceptors 

(88Smith et al., 1995). Limulus arrestin appears to be concentrated at the 

photosensitive rhabdomeral membrane, which is consistent with its participation in 

phototransduction. Arrestin also occurs in extra-rhabdomeral vesicles that contain 

internalized rhabdomeral membrane and might therefore also play a role in rhodopsin 
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endocytosis.  In response to a bright flash of light, CaCAM PKII phosphorylates 

arrestin in both ventral and lateral photoreceptors (89Battelle et al., 2001; 90Smith et 

al., 1995; 91Calman et al., 1996). 

 

1.6 Complementary oligonucleotide techniques are especially useful for 
molecules with high turnover since they target mRNA.  

1.6.1 Opsin turnover 

Vertebrate opsin levels are under the control of light and circadian rhythm. In 

mice, opsin mRNA and protein levels peak just before daylight and are lowest in the 

middle of the next dark cycle at night (92Bowes et al., 1988; 93McGinnis et al., 1990). 

In toad and fish retinas, the opsin mRNA level rises just before light onset, remains 

high while lights are on, and decreases four to tenfold in the dark (94Korenbrot et al., 

1989). In Drosophila, rhodopsin is highly stable and undergoes low levels of turnover 

(95Schwemer, 1984). 

In Limulus, opsin mRNA levels increase during mid to late afternoon and 

decrease during the night. The levels are light driven and are not affected by circadian 

input. The opsin 1 mRNA levels were twice the opsin 2 levels. However, there was 

no significant change in the relative levels throughout the 24 hr cycle (96Dalal et al., 

2003). Although there is no direct evidence of changes in the protein levels, since 

vertebrate opsin levels mimic opsin mRNA pattern, probably Limulus opsin does so 

as well. 
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1.6.2 Arrestin turnover 

The turnover rate of arrestin varies from one organism to another. Over a 24 

hr day and night cycle, arrestin mRNA levels vary in mice, rats, fish, and toads 

(97Bowes et al., 1988; 98Craft et al., 1990; 99McGinnis et al., 1990). In mice, the 

arrestin mRNA levels are lowest just before onset of the light and peak just before 

darkness.  Arrestin mRNA levels in mammals follow rates of transcription, the rate of 

synthesis, and the level of arrestin protein (100McGinnis et al., 1994; 101Agarwal et al., 

1994; 102Organisciak et al., 1991).  

On the other hand, arrestin mRNA levels in Drosophila, and Xenopus remain 

constant over a 24 hr period (103Hartman et al., 2001; 104Green and Besharse, 1996). 

In Drosophila (Hartman et al., 2001), arrestin protein levels are also stable over a 24 

hr period and thus reflect the mRNA pattern.  In Limulus, arrestin mRNA levels are 

low in the night and high in daytime (105Battelle et al., 2000). These changes in 

arrestin mRNA levels may reflect changes in the protein levels. 

1.7 Electrophysiology can be used to assess the success of the complementary 

oligonucleotide techniques. 

To investigate whether the RNAi and morpholino based techniques were 

successful, electrophysiological response of the Limulus photoreceptor cells to light 

can be studied. These cells show small depolarizations in membrane potential (1-

10mV) even in complete darkness in the form of dark noise called “bumps”. Bumps 

also occur in several other vertebrate and invertebrate photoreceptors such as locust, 
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spider, Hermissenda, and toad (106Scholes, 1965; 107DeVoe, 1972; 108Takeda, 1982; 

109Baylor et al., 1979).  

The occurrence of spontaneous dark bumps is attributed to two mechanisms. 

One is the thermal isomerization of rhodopsin (110Barlow et al., 1993) and the second 

results from the back reactions from quenched metarhodopsin. Temperature and pH 

contribute to the first mechanism. These bumps are heavily dependent upon 

surrounding temperatures since temperature strongly influences rhodopsin thermal 

isomerization. Toad photoreceptors show reduced dark bumps at low temperatures 

(111Aho et al., 1988). A rhodopsin unprotonated at the Schiff base is more likely to 

isomerize than a protonated one (112Birge and Barlow 1995). Therefore lowering of 

pH results in a reduction of dark bumps. Unquenched metarhodopsin contributes to 

the second mechanism. Metarhodopsin is kept quenched by the action of 

phosphorylation and arrestin binding.  

In the dim light, the absorption of a single photon causes a similar 

depolarizing event called quantum bump (113Yeandle & Spiegler, 1973). The light 

induced quantum bump is generated by metarhodopsin. 

The amplitude and temporal profiles of the dark and light activated bumps are 

identical, because thermally isomerized rhodopsin is indistinguishable from 

photoisomerized rhodopsin (114Baylor et al., 1980). The inability to distinguish 

between dark and light-induced bumps becomes a key limiting factor in dim light. In 

dim light, the dark bumps generate false signals which can not be distinguished from 

those generated by single photon absorption. It is therefore important for an animal to 
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keep the noise level as low as possible. In Limulus the problem of lowering thermal 

isomerization of rhodopsin is handled internally by lowering the photoreceptor pH via 

an unknown mechanism. This protonates the Schiff base of a small population of 

unprotonated rhodopsins and reduces noise. The problem of spontaneous activation of 

metarhodopsin resulting in dark bumps is reduced by keeping a tight control of 

quenching by phosphorylation and arrestin binding (115Lisman 1985). On exposure to 

bright light, the cells depolarize to about 60mV. A summation of bumps leads to these 

larger light-induced changes in membrane potential as demonstrated using a model 

called the “adapting bump model” (116Dodge et al., 1968).  The spontaneous dark 

bumps, light-induced bumps, and depolarization in response to bright light are three 

parameters that can be investigated in cells treated with the complementary 

oligonucleotides. 

1.8 Target proteins and predictions 

Opsin and arrestin were selected as target proteins to test the feasibility of 

using RNAi and morpholino in Limulus ventral photoreceptors. The two proteins 

have well defined functions, which helps us to predict what to expect in the event of 

reduction in their levels. A reduction in opsin concentration would lead to a 

subsequent reduction in rhodopsin and metarhodopsin concentration. This would 

affect both the dark and light-induced bumps. A reduction in arrestin is expected to 

increase unquenched metarhodopsin which would increase the bump rate. They form 

a nice pair since they have opposing effects. Neither protein was expected to affect 

the resting membrane potential, or the bump attributes other than bump rate (such as 
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peak, duration, etc.). They were also not expected to affect the peak response in the 

presence of bright light. 
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Chapter 2 

RNAi as a tool to downregulate arrestin levels in Limulus 
ventral photoreceptors 
 

2.1 Introduction 
 

RNA interference (RNAi), also named RNA silencing or post transcriptional 

gene silencing (PTGS), is a powerful technique that allows tissue-specific 

suppression of gene expression. A small double-stranded RNA (dsRNA) introduced 

in the cell gets cut into small 21-25nt interfering RNAs (siRNAs) that induce 

sequence-specific degradation of homologous single-stranded mRNA (117Fire et al., 

1998). dsRNA seemingly resembles a viral or transposon infection and the cell has 

developed a defense mechanism to destroy it. The cell produces (or activates) RNA 

endonucleases that cleave the target RNA into small pieces (118Hammond et al., 

2000). 

 

Double stranded RNA-mediated RNA interference is an effective method to 

downregulate the levels of proteins in cells. It has become a dominant reverse 

genetics method which allows one to move from gene sequence to function. This 

technique has been shown to work in vertebrates and invertebrates, and has been 

extensively used in C. elegans, plants, D. melanogaster, mouse, and several cell lines 

(Fire et al., 1998; 119Chuang et al, 2000; 120Misquitta et al., 1999; 121Caplen et al., 
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2001, and 122Tuschl et al., 1999). RNAi is especially useful in organisms that are not 

amenable to genetic analysis. One such organism is Limulus polyphemus, the 

horseshoe crab. 

 

In our laboratory, we have used Limulus ventral photoreceptors to investigate 

the phototransduction cascade. These ventral photoreceptors are very large (~ 200 x 

80 µm) and can be maintained in culture for several days. These properties make 

them highly suitable for electrophysiology, immunocytochemistry, and microscopy. 

If RNAi worked in this system, it would be a powerful tool to explore additional 

aspects of the phototransduction mechanism. 

 

 We selected arrestin as a target protein to test whether the RNAi technique 

works in the Limulus ventral photoreceptors. Arrestin binds to phosphorylated 

metarhodopsin and quenches it so that the physiological activity of metarhodopsin in 

phototransduction is completely abolished. Metarhodopsin is the photoactivated form 

of rhodopsin that initiates the phototransduction cascade. Quenching of 

metarhodopsin involves phosphorylation at multiple sites and subsequent arrestin 

binding. In the absence of arrestin, phosphorylated metarhodopsin is likely to be 

dephosphorylated spontaneously. The dephosphorylated metarhodopsin is active and 

may initiate the phototransduction cascade in the dark. Thus, arrestin binding is an 

essential part of the phototransduction cascade and a reduction in the abundance of 

arrestin protein should lead to a gain-of-function response. 
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siRNA delivery methods vary depending on the organism under investigation. 

The double stranded RNA can be fed to C.elegans, injected in Xenopus oocytes, or 

delivered through special delivery methods such as scrape-loading (123Timmons & 

Fire; 1998; 124Nakano et al., 2000). We decided to add arrestin siRNA into the culture 

medium. Although we observed some effects with this delivery method, to increase 

accuracy, we decided to inject the siRNA into the cells. Consistent with our 

predictions about the effects of arrestin silencing, we observed a 5-fold increase in 

bump rate at 24 hrs after injection.  

Since arrestin siRNA might increase unquenched metarhodopsin 

concentration, we looked at tools to decrease active metarhodopsin concentration. 

Metarhodopsin can be bleached by hydroxylamine, a very strong reducing agent. In 

vertebrates, hydroxylamine competes with the opsin and attacks the chromophore at 

the Schiff base linkage (125Crescitelli 1958). After binding to the chromophore, it 

forms retinal oxime (C=NOH) and opsin. Hydroxylamine is more likely to attack the 

Schiff base bond after photoisomerization of rhodopsin because the linkage in opsin 

is shielded either by the phospholipid layer of the outer membrane or by being buried 

within the hydrophobic portion of the opsin (126Abrahamson 1974). In rod 

photoreceptors, hydroxylamine treatment destroys metarhodopsin and reduces the 

light-induced bumps (127Leibrock & Lamb, 1997). The rate of breakdown of 

metarhodopsin in the presence of hydroxylamine shows a half-time between 12 min 

to 35 hr depending on the species and type of pigment being studied.  
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It is reasonable to suspect that, as in the case of vertebrates, hydroxylamine 

acts in Limulus by competing with opsin for the Schiff base. Another hypothesis is 

that probably an unstable intermediate photopigment (between rhodopsin and 

metarhodopsin) is formed on photon absorption. In this intermediate, the bond 

between the opsin and chromophore is momentarily broken and hydroxylamine 

attaches to the chromophore at this instant. The result of either of these processes 

would be breakdown of metarhodopsin in the presence of hydroxylamine. 

Hydroxylamine affects two indicators of reduced metarhodopsin content. One is the 

quantum efficiency to flashes of light. The second is the early receptor potential 

(ERP). ERP occurs in the presence of intense bright light, has virtually no latency, 

and is hypothesized to be generated directly by charge displacements that resulted 

from the isomerization of rhodopsin (128Cone & Pak, 1971). Therefore, ERP is a 

direct measure of the amount of rhodopsin and its intermediates present in the 

photoreceptor. Hydroxylamine treatment in the ventral eye has been shown to 

decrease the quantum efficiency, and abolish the ERP in response to flashes of light 

(129Faddis and Brown 1992). This treatment was very effective in light but not in the 

dark, further supporting the hypothesis that hydroxylamine destroys metarhodopsin. 

Our aim was to use hydroxylamine to counteract any effects of unquenched 

metarhodopsin in the presence of arrestin siRNA.  
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2.2 Materials and methods 
 

2.2.1 Preparation of the nerve 
 

The ventral nerve of adult male horseshoe crabs, Limulus polyphemus, was dissected 

as described by Clark et al. The nerves were placed in artificial sea water (ASW) that 

contained (in mM): 435 NaCl, 10 KCl, 20 MgCl2, 25 MgSO4, 10 CaCl2, and 10 

HEPES. The nerves were desheathed, and treated with 1% pronase (Calbiochem, San 

Diego, CA) for 1 min.  

 

2.2.2 Preparation of siRNA  
 

siRNA was produced in the laboratory of Dr. Barbara Battelle (The Whitney 

Laboratory & The Department of Neuroscience, Univ. of Florida) using Ambion‟s 

siRNA cocktail kit. A 314nt long piece of cDNA which is the 3‟ end of Limulus 

arrestin gene from nt 926-1239 was used. dsRNA was produced by transcribing in the 

same reaction mix two plasmids containing the target sequence: one plasmid had the 

T7 promoter at the 5' end of the sequence; the other had the promoter at the 3' end. 

After the transcription reaction, the products were annealed, treated with RNAse and 

DNAse, and the double stranded product was purified. The product migrated as a 

single band that was slightly larger than the 300 bp marker. 50ml of this purified 

product contained about 1 mg/ml of RNA. About 15 mg of RNA was then cut with 

RNAse III, and the cut pieces were purified. The yield was about 50 ml of 470 mg/ml 

RNA or 52 mM siRNA.  
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The control siRNA was ordered from Ambion. The control siRNA was diluted 

the same way as the arrestin siRNA and injected into cells. 

 

2.2.3 siRNA treatment 
 

In bath:  

A Limulus ventral nerve was placed in a 200 µl well. The well was filled with 

10 µl siRNA and 190 µl culture medium. A control preparation contained a nerve in a 

dish with 200 µl culture medium and no siRNA. The nerves were kept in a cold room 

(100 C) for four days covered in aluminum foil so that they were not exposed to light. 

 

 Injections: 

siRNA was diluted to 1/1000 in a carrier solution (100mM potassium 

aspartate, 10mM Hepes, pH 7.0). This siRNA was pulse-pressure injected into the 

ventral photoreceptors with a glass electrode of 20MΩ resistance. All nerves were 

kept in a culture medium in a cold room under 12 hrs light / 12 hrs dark conditions. 

Control nerves with cells injected with the carrier solution alone were also treated 

similarly.  

 

2.2.4 Hydroxylamine treatment 
 

 Cells were chemically bleached with hydroxylamine to reduce their 

metarhodopsin content (Faddis & Brown 1992). The protocol used is described in 
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Payne & Demas (2000). Briefly, a bleaching solution was prepared containing (mM) 

200 hydroxylamine chloride (Sigma-Aldrich), 235 NaCl, 10 KCl, 20 MgCl2, 25 

MgSO4, 10 CaCl2, 10 HEPES, adjusted to pH 6.5 with 10 N NaOH and cooled to 4°C. 

Cells were bathed in this solution for 10 min under intense white light at 4°C (for 

bleaching experiments) and in the dark at 4°C (for dark experiments). Nerves were 

then washed four times at 10-min intervals with 50 ml ASW at 4°C. 

 

2.2.5 Electrophysiology 
 

 The arrangement of light source and neutral density (ND) filters was similar 

to that described in 130Wang et al., (2002). The unattenuated intensity of light was 80 

mW/cm2. Other intensities are log10 units of attenuation of this intensity. Attenuation 

by -10 log10 units typically elicited about one single photon event per second. Axon 

laboratory‟s Axoscope 9 was used for data acquisition. A Digidata 1200 (Axon 

instruments) analog-to-digital board installed in a personal computer was used, with 

temporal filtering set to 300 Hz and digital sampling at 1 kHz.  

 

The response of cells in the dark and to various intensities of light was 

recorded with glass micropipettes containing carrier solution (resistance ~ 20MΩ). 

The same micropipette was used to inject siRNA into the cells. The siRNA injected 

cells were tested at 18, 20, 23, 24, and 48 hrs after injection. The cells were dark 

adapted for about 30 min and their response in the dark was recorded. The dark 

response was represented as the number of bumps/s. The cells were then exposed to 



 

 28 

200ms flashes of light of varying intensities (log10 -6, -5, -4, -3, -2, -1 and 0). At these 

intensities, we do not observe bumps but a single depolarization with amplitudes in 

the range of -20 to -60mV. Every flash was followed by a period of complete 

darkness until the cells recovered the dark-adapted state.  

 

For experiments involving hydroxylamine treatment, in addition to the dark 

and bright light responses as described above, bump rate in response to continuous 

dim light for two min was also recorded. The dim light is represented as log10 -10 

through -7.5 in increments of 0.5. Exposure to this intensity of light increases the 

bump rate with increasing intensity. Every dim light exposure was followed by a 

period of complete darkness till the cells recovered their dark-adapted state. 

 

2.2.6 Estimation of photon counts corresponding to the different log10 light 
intensities. 
 

In order to verify the accuracy of the ND filters, a photon multiplier tube (PMT) was 

used to count the number of photons emitted when particular ND filters were used to 

attenuate the light to specific log10 intensities. The results are fitted with a line of 

slope one and shown in fig.2.1. This indicates a linear relationship between the 

incident light and the number of photons counted by the PMT. This also indicates that 

the filters attenuate the light quite accurately. 
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Figure 2.1 Representative photon counts indicating the attenuation of light at various log10 light 
intensities. The attenuation decreases with increasing negative log values. The PMT saturates beyond 
log10 -6.5. The data are fitted with a line of slope 1. A close fit indicates that the filters attenuate the 
light quite accurately. 
 

2.2.7 Calculating volume of injections 
 

131Carson and Fein (1983) used pressure injection from micropipettes into oil 

to get an estimate of the volume injected into ventral photoreceptor cells. They 

concluded that volume injected in cells was about three times the volume observed in 
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oil. In our experiments, we injected about 4 pl solution in oil/injection. This would 

mean that at we injected about 12 pl solution in the cell/ injection. Since we injected 

each cell 10 times, the total volume was about 120pl. This was about 1/5th the volume 

of the cells. Since we injected about 55 M siRNA in a cell with an average volume of 

550pl, concentration of siRNA in the cell was about 11 M.  

 

2.2.8 Data analysis  
The traces were analyzed for the bump number and bump amplitude using an 

in-house Matlab program developed by Mr. Murat Ayetikin. The program was 

designed to calculate threshold by two methods. The first was a manual method 

wherein the user manually clicked a point and all points above it were considered for 

bump estimation. The second method was called the “boxing” method. In this 

approach the user drew a box around the part of the trace where no bumps occurred. 

The program then calculated the mean and standard deviation (SD) of that section. A 

threshold for a bump was assigned as four SD above this mean. We initially used both 

these methods to obtain threshold for about 10 traces. Once I verified that the 

thresholds obtained via both the methods were similar, I used only the boxing method 

for subsequent analysis.  

Once the threshold was selected, the program detected peaks above this level 

and determined their amplitude. A peak was determined as a highest value that had at 

least 25 consecutive points in both directions with lower values. To avoid counting 

multiple bumps, we also had a provision to discard a peak if it appeared within 80ms 

of another peak on either side (since average bump duration was about 40ms). 
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Amplitude was the height of the peak from the threshold value. The bumps identified 

in this manner were then assigned to various bins of 0.5mV amplitude. Individual 

differences between the bump rates were measured using a t-test. Probability (p) 

value of less than 0.05 was considered significant. To verify whether the bumps 

obtained in different categories had similar properties, we calculated the power 

spectra obtained from a fast Fourier transform (FFT) of the traces.  

2.3 RESULTS 

2.3.1 siRNA is membrane permeable in Limulus ventral photoreceptors: 
 

dsRNA can be delivered to C. elegans by soaking the animals in a medium 

containing dsRNA (132Tabara et al., 1998). If the siRNA can be delivered to ventral 

photoreceptors just by adding it to the medium, it would keep the cells healthy and 

undamaged. We tried to deliver siRNA by adding the siRNA to the culture medium 

and testing the response of the cells through electrophysiological methods. Nerves 

kept for 96 hrs in a culture medium without siRNA added to it were used as a control. 

When the rate of dark bumps was compared between the two types of cells as in Fig. 

2.2, those with siRNA in the medium had a rate of 3.4 + 0.8/s as compared to a dark 

bump rate of 1.1 + 0.2/s in cells that were not exposed to siRNA. The peak response 

of the siRNA treated cells was similar to control cells under bright light (log -3 

through log 0 in increments of 1).  

 

This led us to conclude that siRNA is membrane permeable. However, there 

were two problems associated with this method. Firstly, there was a lot of variability 
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in the bump rate of cells that had been treated with siRNA and secondly, it was not 

possible to determine whether the siRNA had actually penetrated the cells. So we 

decided to use another method, injecting the siRNA into the cells.  
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Figure 2.2 Dark bump rate in cells treated with arrestin siRNA in bath. Cells with arrestin siRNA in 
bath had a bump rate of 3.4 + 0.8 /s as compared to the 1.1 + 0.2/s rate in control cells with no siRNA 
in bath. n=7. Error bars indicate SEM.  
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2.3.2 Arrestin siRNA injections lead to an increase in the dark bump rate and 
are most effective at 24 hrs after treatment 
 

We injected siRNA into cells and tested them electrophysiologically at 18, 20, 

23, 24, and 48 hrs after injection. Fig 2.3 indicates representative traces of cells tested 

at selected time points. At 24 hrs after injection, the number of bumps goes up as 

compared to control cells and cells tested at other time points. Uninjected cells had a 

dark bump rate of 1.1 + 0.2, cells injected with the carrier solution had a bump rate of 

0.9 + 0.1, and cells injected with the control siRNA had a bump rate of 1.16+0.2.  As 

compared to these controls, the cells injected with arrestin siRNA and tested at 24 hrs 

after injection had a bump rate of 4.9+ 0.3 (Fig.2.4). As compared to the control 

siRNA injections, the cells tested 18 hrs, and 20 hrs after injection did not show any 

significant difference in the dark bumps. Cells tested 24 hrs after injection showed a 

five-fold increase in the bump rate (4.9 + 0.3). This effect was transient, as seen at 48 

hrs after injection, when the bump rate was 3.3 + 0.4 (Fig. 2.5).  

 

siRNA injections had no significant effect on the kinetics of the response to 

bright flashes of light at all the time-points tested. A representative trace of average 

response to log10-2 of cells injected with arrestin siRNA and tested at 24 hrs after 

injection is indicated in Fig.2.6.  
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Figure 2.3: Representative traces of bumps observed in different categories. Cells 

were injected with siRNA and were tested at 18, 24, and 48 hours after injection. At 

24 hrs after injection, the bump rate is almost 5 times higher than that in the control.  



 

 35 

Bump rate after SiRNA injections at 24 hrs 

B
um

p rate

0

1

2

3

4

5

6

Uninjected cells
Injected with carrier solution

Injected with coontrol SiRNA

Injected with arrestin RNA

*

n=7

 

 

Figure 2.4: Cells injected with arrestin siRNA have a five-fold higher bump rate. 

Cells injected with siRNA had a bump rate of 5 bumps/s when tested at 24 hrs after 

injection. This was a five-fold increase from the bump rate in control cells. Controls 

consisted of three types; uninjected cells, cells injected with the carrier solution, and 

cells injected with a control siRNA.  
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Figure 2.5: Spontaneous dark bump rate in cells tested at different points after 

arrestin siRNA injections. The dark bumps of cells injected with arrestin siRNA and 

tested 18, 20, 23, 24, and 48 hours after injection are compared with the dark bumps 

of cells injected with the control siRNA. There is no significant change in the number 

of dark bumps at 18, and 20 hours after injection. However, the number goes up to 

4+1 at 23 hours, 4.9 + 0.3 at 24 hours, and 3.3 + 0.4 at 48 hours after injection. n= 9. 

Error bars indicate SEM.  
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Figure 2.6: The response kinetics of cells tested 24 hours after injection with arrestin 

siRNA are compared with those of control cells. A mean trace of response to a 200ms 

flash of light of log-2 intensity is shown here. The dashed line represents mean and 

SEM of six control cells. The straight line shows a mean and SEM of six cells 

injected with siRNA and tested at 24 hrs after injection. The peak response of the 

injected cells and the decay time is not significantly different from that of the control. 

 

2.3.3 The bumps generated by siRNA injections have properties similar to those 
generated in the presence of log10 -8.5 light. 
 

To address the question whether the shape of the bumps generated by siRNA 

injections was different from those generated in the presence of dim light, we 

analyzed a power spectrum of the two categories of cells. Fourier analysis has been 

used to compare bumps in Limulus photoreceptors (133Ratliff et al., 1974; 134Hardie & 
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Minke, 1994).  Fig. 2.7 is a power spectrum plot of mean traces from two categories 

of cells. One set of traces is from the cells injected with siRNA and their response 

recorded in the dark. The second set of traces is from control cells exposed to dim 

light (log -8.5). This light intensity was selected because it resulted in a bump rate of 

about 5/s in control cells which is similar to the spontaneous dark bump rate in cells 

injected with siRNA. Traces from bumps generated by siRNA injections have a 

power spectrum similar to that of traces from bumps generated in dim light. This 

indicates that siRNA induced bumps and light-induced bumps may have similar 

properties. 
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Figure 2.7: Power spectrum determined from traces containing bumps. siRNA dark = 

mean of traces from cells injected with siRNA and their response recorded in the 

dark. Control dim light = mean of traces from control cells exposed to dim light (log -

8.5). There is no significant difference between the two spectra. Error bars indicate 

SEM. n=6 

 

2.3.4 Bleach with hydroxylamine reduces dark noise 
 

The effects of hydroxylamine treatment on Limulus photoreceptors in dim 

light have been investigated previously by Faddis and Brown (1992). We conducted 
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similar experiments to verify that hydroxylamine does not reduce bump rate when 

treated in darkness but leads to a reduction in bump rate when treated under intense 

white light (fig. 2.8). The dark bump rate in control cells and cells treated with 

hydroxylamine in the dark is not statistically different. However, the dark bump rate 

in cells treated with hydroxylamine under intense bright light is significantly lower 

than that of control cells. This indicates that bleaching with hydroxylamine reduces 

spontaneous dark noise in uninjected control cells. Dark noise is generated by 

rhodopsin present in the cell. Bleaching with hydroxylamine reduces metarhodopsin 

content. However, in Limulus since rhodopsin-metarhodopsin ratio is always 

maintained at 50:50 on illumination, reduction in metarhodopsin results in some 

rhodopsin photoconverting to metarhodopsin. This process continues for the duration 

of bleaching treatment (10 min) by the end of which both the rhodopsin and 

metarhodopsin content should have decreased equally. Once the cell has been dark 

adapted, this reduced rhodopsin content likely results in the observed reduction in 

dark noise.   
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Figure 2.8: Effect of hydroxylamine treatment on control cells. Uninjected control 

cells were treated with hydroxylamine in the dark and in the light. The bump rate was 

tested at dim light intensities. Hydroxylamine treatment in the dark had no significant 

effect on the bump rate of cells. However, bleach with hydroxylamine in intense 

bright light led to a reduction in sensitivity to light. 

 

2.3.5 The effects of hydroxylamine are consistent with an attack on 
metarhodopsin but not rhodopsin.  
 

Hydroxylamine treatment in the dark has been shown to have no effect on the 

light-induced bump rate of control cells (Faddis and Brown, 1992). We observed that 
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after treatment with hydroxylamine in the dark, there is no reduction in the dark 

bumps generated by the uninjected control cells. Since hydroxylamine attacks 

metarhodopsin and does not affect rhodopsin, this result confirms that dark bumps in 

control cells do not originate from metarhodopsin. We also tested the effect of 

treating cells with hydroxylamine in the dark on the bump rate in cells injected with 

the arrestin siRNA. Representative traces from control cells, cells injected wit arrestin 

siRNA, and  injected cells treated with hydroxylamine are shown in Fig. 2.9. We 

measured the dark bump rate in control cells before and after hydroxylamine 

treatment, and in injected cells before and after hydroxylamine treatment. The bump 

rate in injected cells treated with hydroxylamine (1.1 + 0.2) was educed significantly 

from that at 24hr after injection (5 + 0.4). The bump rate of control cells before and 

after treatment was 1.4 + 0.1 and 1.2 + 0.1 respectively (Fig. 2.10).  

 

Since hydroxylamine reduces the concentration of metarhodopsin, the 

corresponding reduction in bump rate in hydroxylamine – treated cells is indicative of 

metarhodopsin being the source of these bumps. The bump rate after treatment is 

almost indistinguishable from that of pre-treatment in uninjected control cells. This 

indicates that the hydroxylamine treatment probably led to the dissociation of the 

excess metarhodopsin that was generated as a result of the RNAi treatment.  
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Figure 2.9: Representative traces depicting the bumps in cells treated with 

hydroxylamine in the dark. Cells were injected with arrestin siRNA and tested at 24 

hrs to verify the increase in bump rate. The cells were then treated with 

hydroxylamine in complete darkness and the bump rate was checked again. After 

hydroxylamine treatment, the bump rate reduced to pre-injection control level. 
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Hyrdoxylamine treatment eliminates the RNAi induced bumps 
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Figure 2.10: Dark bump rate after hydroxylamine treatment in the dark. In the cells 

injected with arrestin siRNA and then treated with hydroxylamine in the dark, the 

bump rate goes down from 4.9 + 0.38 to 1 + 0.33. Bump rate in uninjected cells is 1.3 

+ 0.19 and that in uninjected cells treated with hydroxylamine is 1.1 + 0.2. n= 7. Error 

bars indicate SEM. 
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2.3.6 siRNA injected cells bleached with hydroxylamine show a marked decrease 
in dark bumps. 
 

We studied the effect of bleach with hydroxylamine on the cells injected with 

arrestin siRNA. The dark noise in uninjected cells was recorded. These cells were 

then injected with siRNA, and after 24hrs, the dark noise was recorded again to verify 

the increase in bumps. Then these cells were bleached with hydroxylamine in the 

presence of intense bright light for 10 min. After several washes, the dark noise of the 

cells was recorded again. Representative traces are depicted in Fig. 2.11. As indicated 

in Fig. 2.12, the bump rate in bleached cells (0.4 + 0.1) was reduced significantly 

from that at 24hr after injection (4.8 + 0.3). In uninjected control cells, the bump rate 

after bleach (0.8 + 0.2) was also lower than that of pre-bleach (1.3 + 0.2). 

 

During 10 min of bleaching, the hydroxylamine is expected to inactivate 

metarhodopsin by binding to all-trans retinal. This will reduce the metarhodopsin 

concentration in the cell. In bright light, some rhodopsin is expected to convert to 

metarhodopsin. This metarhodopsin is again attacked by the hydroxylamine. Since 

rhodopsin-metarhodopsin is at equal ratio in vivo, we may see a decrease in 

rhodopsin content as well. As this process continues, the content of both rhodopsin 

and metarhodopsin is decreased.  The reduction in bump rate occurs due to 

elimination of bumps generated by unquenched metarhodopsin, and the bumps 

generated by some rhodopsin. 
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Figure 2.11: Traces indicating the bump rate in cells injected with arrestin and 

bleached with hydroxylamine. Cells were injected with arrestin SiRNA and the 

increase in bump rate was verified at 24 hrs. These cells were then bleached with 

hydroxylamine under intense bright light. The bump rate in the bleached cells was 

significantly lower than the uninjected cells. 
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Figure 2.12: The dark bumps are compared for a cell before injection, 24hr after 

injection and 30 min after bleaching with hydroxylamine. The bump number 

significantly goes down after bleaching with hydroxylamine and subsequent four 

washes. n=5. Error bars indicate SEM. 

2.4 Discussion 
 

The major findings of this study are that siRNA when delivered through the 

bath or via injections leads to an increase in Limulus ventral photoreceptor dark bump 

rate, and that these bumps are abolished in the presence of hydroxylamine.  
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2.4.1 Injecting siRNA is the optimum delivery method. 
 

Delivery methods vary widely. siRNA can be fed, injected, or scrape loaded 

into cells. Although in Limulus ventral photoreceptors arrestin siRNA in bath seems 

to have the expected effect on the dark noise, we observed considerable levels of 

variability in the response. This could result probably because of the variation in 

positioning of cells on the nerve. Some cells are more accessible than others. The 

nerve is treated with pronase before the treatment. The pronase cleaves the peptide 

bonds in the glia that surround the photoreceptor cells on the optic nerve. However, 

this action of pronase might not be uniform and could affect accessibility to the 

photoreceptor cells. These factors might lead to varying amounts of siRNA entering 

into the cells and might account for the observed variability of response. Also, the 

only verification of the success of the technique was the electrophysiological data. 

There was no independent confirmation of the success of the RNAi technique since 

we could not mark the cells that had taken up the siRNA. We therefore decided to 

inject cells with the arrestin siRNA. This allowed us to estimate the amount of siRNA 

injected into the cells (~11nM) and later also allowed us to mark the cells that had 

been injected. With injections, we also had an internal control of uninjected cells 

from the same nerve. 

 

2.4.2 Increased bump rate after siRNA injections gives an estimate of arrestin 
turnover rate. 

We expected the arrestin RNAi injections to be effective if the turnover rate of 

arrestin was high since the RNAi affects the levels of freshly made protein and has no 
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effect on the pre-existing protein in the system. The turnover rate of arrestin protein 

varies from one organism to another. Over a 24 hr (12h D/12h N) cycle, diurnal 

rhythms of arrestin mRNAs have been observed in mice, rats, fish, and toads 

(135Bowes et al., 1988; 136Craft et al., 1990; 137McGinnis et al., 1990; 138Korenbrot et 

al., 1989). On the other hand, there is no change in arrestin mRNA levels over a 24hr 

period in Drosophila, and Xenopus (139Hartman et al., 2001; 140Green and Besharse, 

1996). In Limulus, arrestin protein turnover has not been determined. Light causes a 

reversible movement of the arrestin protein to the photosensitive membrane. Light-

driven shedding of the rhabdomeral membrane probably involves arrestin (141Sacunas 

et al., 2002). Arrestin mRNA levels are regulated mostly by clock input. Levels of 

arrestin mRNA are higher during the day in the light than during the night in the dark 

(142Battelle et al., 2000). In mice, levels of arrestin biosynthesis mimic the mRNA 

levels (143Agarwal et al., 1994). In Limulus too, changes in arrestin mRNA levels may 

reflect changes in the protein levels. In the present study, we observed a maximum 

effect of arrestin siRNA injections at 24 hrs.  

At 48 hrs after injections, we observed a decline in the bump rate from that at 

24 hrs after injections. siRNA gets amplified once it is inside cells. The decrease in 

bump rate could be indicative of deleterious effects of high siRNA concentration. It 

could also be due to the degradation of siRNA inside the cells. There is no direct 

evidence to indicate either of the two possibilities.  
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2.4.3 Excess bumps are probably caused by unquenched metarhodopsin. 
 

The source of these bumps was of interest to us. The increase in bump rate was 

probably caused due to the presence of unquenched metarhodopsin in the 

photoreceptors. Hydroxylamine is often used to reduce metarhodopsin concentration 

pharmacologically since it competes for the chromophore, retinal. We treated siRNA-

injected cells with hydroxylamine and observed that the bump rate went down to 

about 1/s which is similar to control levels. In the presence of siRNA, there was a 

high concentration of unquenched metarhodopsin present in the cell and this 

presumably led to an increase in bump rate. After hydroxylamine treatment, the 

metarhodopsin concentration was decreased and the bump rate also was reduced. 

Since the RNAi-induced bumps in toads are generated by metarhodopsin, a decrease 

in the bump rate in the ventral photoreceptors could be indicative of a decrease in 

metarhodopsin concentration (144Leibrock and Lamb, 1997). 

 

 

2.4.4 Equal rhodopsin and metarhodopsin ratio in Limulus results in a decrease 
in spontaneous dark bumps after bleach with hydroxylamine. 
 

When hydroxylamine was administered in the presence of intense bright light, 

there was a decrease in the spontaneous dark bump rate in cells injected with arrestin 

siRNA. This decrease was significantly lower than the spontaneous bump rate in the 

control cells. This can be explained if we consider that in Limulus photoreceptors the 

ratio of rhodopsin and metarhodopsin is always maintained at 50:50 in the light. In 
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this set of experiments, we expect arrestin levels to go down due to siRNA injections. 

Pharmacologically the injections cause an increase in unquenched metarhodopsin. 

The unquenched metarhodopsin could be destroyed by hydroxylamine treatment. This 

could skew the ratio towards rhodopsin. The intense bright light could aid in 

converting large amounts of rhodopsin into metarhodopsin and the ratio could be 

maintained. In this process, however, the total amount of both rhodopsin and 

metarhodopsin would be reduced than in the dark state. Since the dark bumps are 

generated in part by rhodopsin in toads, the spontaneous dark bumps after bleach with 

hydroxylamine in Limulus will probably be lower than those in the dark-adapted state 

(145Baylor et al., 1980). 

2.4.5 siRNA injections do not abolish bump rates completely. 

In the above experiments, I did not observe a difference in the peak amplitude or 

the kinetics of falling phase in response to flashes of bright light. This could be due to 

two reasons. Firstly, metarhodopsin may be partially deactivated when it is 

phosphorylated. So even in the absence of arrestin, the phosphorylated metarhodopsin 

is quenched to a large extent and the falling phase of the light is not significantly 

affected. Secondly, the reduction in arrestin content might not be sufficient to leave a 

large number of metarhodopsin molecules unquenched. A similar phenomenon has 

been observed in arrestin mutant mice (146Xu et al., 1997). The heterozygous mutants 

with 33% arrestin protein showed no change in response to light. On the other hand, 

the null homozygous mutants showed an abnormal falling phase in response to light 

while the rising phase of light response was unaffected. In Drosophila arrestin 

mutants, there was no change in response to bright light when the arrestin1 expression 
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was reduced to 10% and 80% respectively (147Dolph et al., 1993). However, when the 

expression of the dominant arrestin, arrestin2 was reduced to 10%, a prolonged 

depolarized afterpotential (PDA) was observed. This confirms the idea that only a 

drastic change in arrestin concentration will sufficiently change the concentration of 

unquenched metarhodopsin that would affect the falling phase of the response. 

2.4.6 siRNA technique can be a very powerful tool to study Limulus 
phototransduction. 

Our experiments indicate that using siRNA might be a feasible option for 

manipulating the concentration of the proteins involved in Limulus phototransduction. 

This method can be used to explore the function of trp and cGMP genes that have 

been sequenced in our lab.  siRNA has opened the doors for exploration of a large 

number of processes in vertebrates and invertebrates alike. The feasibility of siRNA 

as a potential therapeutic drug is being explored. RNAi in Limulus has the potential to 

be a very powerful tool that can be used to understand the transduction mechanisms 

better.
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Chapter 3 

Inhibiting Limulus arrestin and opsin gene expression using 
Morpholino Antisense Oligonucleotide 

 

3.1 Introduction 
 

The ventral photoreceptor cells of the horseshoe crab Limulus polyphemus are 

highly suitable for studying phototransduction. Their large size renders them ideal for 

single-unit recordings. They are also amenable to other techniques such as 

immunocytochemistry and microscopy. However, genetic studies have not been 

possible so far because the animal takes about 10 years to mature. 

 

We decided to use morpholino oligonucleotides to silence target genes 

functionally to overcome the problem of genetic manipulation. Phosphorodiamidate 

morpholino oligomers (PMOs) are potent antisense molecules used to inhibit gene 

expression by preventing translation or by inhibiting pre-mRNA splicing 

(148Summerton & Weller, 1997;149 Summerton, 1999). PMOs differ from DNA in that 

they have a nonionic phosphorodiamidate intersubunit linkage instead of the 

negatively charged phosphorodiester linkage, and have a six-membered morpholine 

moiety (morpholine = C4H9NO) instead of a five-membered deoxyribose ring. The 

neutral nature of non-ionic PMOs overcomes the limitations of traditional nucleotides 

in that they are not toxic at high concentrations, do not have non-specific interactions 

with cellular proteins, and are more amenable to delivery in conjugation with cationic 
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peptides (150Iversen, 2001;151 Summerton et al., 1997). The morpholine ring renders 

them resistant to enzymes and degradation (152Hudziak et al., 1996). In spite of these 

differences, they bind to complementary sequences by Watson-Crick pairing. These 

and other properties have made morpholinos very popular in the past decade, 

especially in the field of vertebrate developmental biology (153Heasman, 2002). They 

have been used in Xenopus laevis, Zebrafish, Sea urchin, and snails (154Haesman, 

2000; 155Nasevicius & Ekker, 2000; 156Howard et al., 2001; 157Bogulavsky et al., 

2003). We decided to use this technique on two target proteins; arrestin and opsin. 

 

Arrestin is a protein involved in quenching of metarhodopsin. Metarhodopsin 

is formed by photoconversion of rhodopsin in which the chromophore 11-cis-retinal 

isomerizes to form all-trans-retinal. Metarhodopsin initiates excitation and the 

ensuing cascade of events results in a change in membrane potential. It was first 

shown in vertebrates that quenching of metarhodopsin is a two-step process. Firstly, 

metarhodopsin gets phosphorylated by rhodopsin kinase and subsequently it binds to 

arrestin for complete silencing of activity (158Kuhn et al., 1984; 159Palczewski & 

Benovic, 1991). In Drosophila, genes encoding two types of visual arrestins have 

been isolated, arrestin 1 (arr1) and arrestin 2 (arr2) (160Hyde et al., 1990; 161Smith et 

al., 1990; 162Levine et al., 1990). Arrestin in Drosophila mimics its role in 

vertebrates. Severe arrestin mutants cause a prolonged depolarizing afterpotential 

(PDA) indicating their role in metarhodopsin inactivation (163Dolph et al., 1993). 
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Dark noise in Limulus is seen in the form of events called “bumps”. The 

bumps appear as small (1-10mV) depolarizing events. To reduce noise, 

metarhodopsin needs to be kept quenched. Since arrestin is involved in inactivating 

metarhodopsin, arrestin plays an important role in reducing noise. The question 

addressed here is whether injecting arrestin morpholino into the Limulus ventral 

photoreceptor would reduce the arrestin mRNA. If it does, the arrestin protein 

concentration would go down and we would observe an increase in noise levels. To 

complement these studies, we decided to use opsin. A reduction in opsin protein 

content would presumably lead to a reduction in sensitivity to light, and decrease dark 

noise. 

 

There is one known arrestin gene in Limulus and two opsin genes (opsin1 & 

opsin2) (164Smith et al., 1995; 165Smith et al., 1993). The morpholinos were designed 

against the region near the start codon. The sequence of this region is identical in the 

two Limulus opsin genes so we expect the morpholino sequence to target both these 

genes. We injected known concentrations of the morpholinos into the ventral 

photoreceptors and used predicted changes in the dark noise and sensitivity to light as 

a measure of success. We observed an increase in dark noise in the presence of 

arrestin morpholino and a decrease in sensitivity to light in the presence of opsin 

morpholino. 
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3.2 MATERIALS and METHODS 
 

3.2.1 Preparation of the nerve 
 

Adult male horseshoe crabs, Limulus polyphemus, measuring about 5-7 inches 

across the carapace were obtained from the Marine Biological Laboratory, Woods 

Hole, Massachusetts. The crabs were maintained on a 12 hr light/dark cycle. The 

ventral nerve was dissected as described by 166Clark et al. (1969). The nerves were 

kept in artificial sea water (ASW) that contained (in mM): 435 NaCl, 10 KCl, 20 

MgCl2, 25 MgSO4, 10 CaCl2, and 10 HEPES. The nerves were desheathed, and 

treated with 1% pronase (Calbiochem, San Diego, CA) for 1 min.  

 

3.2.2 Morpholino injections 
 

Three different morpholinos were used in this study. One was directed against 

the 16-40 nt of Limulus arrestin and had the sequence 5‟-

AATCATTGGGCTGCCGTTTTACTTT -3‟. A second morpholino was directed 

against 16-40 nt of Limulus opsin and had a sequence of 5‟-

GGCATTACCATTAGTTGACTCGAT-3‟. The third morpholino was an unrelated 

standard control 5‟-CCTCTTACCTCAGTTACAATTTATA-3‟. All morpholinos 

were designed and prepared by Gene Tools (Philomath, OR, USA). 

 

Three concentrations of all of these PMOs were injected into cells, 0.1 µM, 1 

µM, and 10 µM, all diluted in a carrier solution (100mM potassium aspartate, 10 mM 
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Hepes, pH 7.0). PMO was delivered into the cells by pulse-pressure injections with a 

glass micropipette of 20MΩ resistance. The nerves were kept in a moist chamber 

covered with aluminum foil at 100C. Control nerves with cells injected with the 

carrier solution were also treated similarly. 

 

Ten injections were made in each cell with a total volume of injected solution 

being ~ 120pl. This resulted in a final concentration of ~17pl inside the cell. The 

reliability of the injections was monitored by observing a disturbance in the cell‟s 

cytoplasm with each pressure pulse. 

 

3.2.3 Electrophysiology 
 

A glass micropipette containing PMO (resistance ~ 20MΩ) was used to test 

the bump rate before injections. The cells were kept in the dark for about 30 min so 

that their bump rate was at the dark adapted level (1/s). Arrangement of light source 

and neutral density (ND) filters was similar to that described in 167Wang et al., 

(2002). Attenuation by log10 -10 typically elicited about one single photon event per 

second. Before exposing the cells to the next flash of light, the cells were kept in dark 

till the spontaneous bump rate recovered to that of dark-adapted state. 

The spontaneous dark bump rate, bump rate in response to dim light, and 

membrane depolarization in response to bright light were recorded for uninjected 

cells. The same micropipette was used to inject morpholino into cells. The cells were 

kept in a chamber covered with aluminum foil at 10oC.  At 24, 48, 72, 96, 108, 120, 
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and 144 hrs after injections (n = at least 6), the injected and uninjected cells were 

tested for the spontaneous dark bump rate, bump rate in response to dim light, and 

membrane depolarization in response to bright light 

 

3.2.4 Immunocytochemistry 
 

 The anti-arrestin and anti-opsin antibodies were a generous gift from Dr. 

Barbara Battelle (The Whitney Laboratory & The Department of Neuroscience, Univ. 

of Florida). The antibody treatment protocol as described in Battelle at al., (2001) was 

used. Briefly, nerves left in the modified organ culture medium (MOCM) overnight in 

the dark were treated with 4% paraformaldehyde and 0.1M PBS for 2 hrs. They were 

then washed with PBS, permeabilized by incubation for 1 hour with PBST (PBS plus 

0.1% Triton X-100), blocked for 1 hour with PBST containing 2% BSA and 2% 

normal goat serum, and rinsed with 2% BSA in PBST (PBST/BSA).The nerves were 

then incubated for 1 hour at room temperature with 1:200 dilutions of the primary 

antibodies in PBST/BSA, and rinsed three times with PBST/BSA. The secondary 

antibody conjugated to Molecular Probes' Alexa Fluor 488 fluorescent dye was 

diluted 1:200 in PBST/BSA. The nerves were incubated with this antibody for 1 hr at 

room temperature. Finally, the nerves were rinsed three times with PBS. 

Immunofluorescence staining was detected using a Zeiss LSM 510 laser-scanning 

confocal microscope. 
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3.2.5 Confocal microscopy 
 

The immunostained nerves were imaged on a Zeiss LSM 510 laser-scanning 

confocal microscope (Zeiss, Germany) using a 40X oil lens. The secondary 

antibodies for arrestin and opsin were excited using a 488nm line of the Argon ion 

laser and detected after passing through a BP505-550 emission filter. Alexa fluor 568 

10,000 MW dextran conjugate (Molecular Probes, OR) was used as a marker for 

morpholino injections. It was injected with morpholino at a final concentration of 200 

µM. Dextrans are water soluble inert polysaccharides that have low toxicity. They 

have been used as markers for microinjection (168Pepperkok et al., 1988). The dextran 

dye was excited by a 543nm light from the green HeNe laser and imaged through the 

LP 560 emission filter. The sections were scanned in a multi-track mode. One track 

was used for dextran fluorescence (presence of fluorescence indicated that the cell 

had been injected) and a second track was used for the antibody fluorescence. Zeiss 

LSM image browser was used to acquire images. The images were exported to the 

NIH image J software (http://rsb.info.nih.gov/ij/). The histogram tool of image-J was 

used to quantify the fluorescence counts.  
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3.3 RESULTS 

3.3.1 Arrestin morpholino leads to a 5-fold increase in bump rate 24 hrs after 
injection. 
 

In previous studies with arrestin RNAi injections, we showed that arrestin 

suppression is most effective at 24 hrs after injection (section 2.3.2). To investigate 

the effects of arrestin morpholino, we decided to use this time-point and a later time 

point (48 hrs), which would give us an insight into the longevity of the morpholino-

induced effect. We compared uninjected cells, cells injected with a control 

morpholino, and cells injected with 1 µM arrestin morpholino. We tested them at 24 

hrs and 48 hrs after injection. The cells were “mapped” while injecting the 

morpholino by drawing a diagram of the nerve with cells and marking the injected 

and uninjected cells on this diagram. 

 

Representative traces from cells in these three categories (uninjected, injected 

with control morpholino, and injected with arrestin morpholino) are shown in Fig.3.1. 

The traces of uninjected control, and cells injected with the control morpholino look 

identical. However, in the cell injected with arrestin morpholino there appear to be 

many more bumps. Quantification of the data is indicated in Fig. 3.2A. The dark 

bump rate in cells injected with arrestin morpholino and tested 24 hrs after injection 

was 5.1 + 0.4. This was about a five-fold increase over that of the bump rate in 

uninjected cells (1 + 0.1) (p<0.05), and in cells injected with control morpholino (1.2 
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+ 0.1). This mimicked a previous result obtained with arrestin RNAi injections. At 48 

hrs after injection, there was no (p=0.55) further increase in the average bump rate 

beyond the 24 hr time-point.  

 

The responses of cells to 200ms flashes of bright light (log10-3 to log100 in 

increments of 1) were also tested. The parameters recorded were the peak amplitude 

and the width at half the peak amplitude. The response to bright light in all categories 

of cells was same as that in the control cells. 

20mV

1s

Uninjected Control

Injected arrestin morpholino 

Injected control morpholino

 

Figure 3.1: 1 µM arrestin morpholino injections lead to an increase in dark bumps. 

Shown above are representative traces from cells under three conditions. The trace on 

top is from the uninjected control and shows the normal bump rate. The middle trace 

shows the increase in bumps when cells are injected with arrestin morpholino and 

tested 24 hrs later. The trace at the bottom is from a cell that had been injected with a 
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control morpholino and tested at 24 hrs. This trace indicates that the process of 

injecting 25nt long morpholino in itself does not have any effect on the bump rate. 

1 M arrestin morpholino injections 
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Figure 3.2: Dark bumps in cells injected with arrestin morpholino. Cells were 

injected with 1 µM arrestin morpholino and checked at 24 and 48 hrs after injections 

for their bump rate. Uninj= uninjected control cells CM= cells injected with the 

control morpholino AM= cells injected with the arrestin morpholino. The bumps in 

cells tested at 24 hrs after injection (AM 24) (5.1 + 0.4) and 48 hrs after injection 

(AM 48) (4.8 + 0.3) show about a 5-fold increase as compared to cells injected with 

control morpholino and tested at similar times (1.2 + 0.1 and 1.3 + 0.2 respectively). 

Control morpholino did not induce any increase in bump rate when compared to the 

uninjected cells (1 + 0.1).  n=9. Error bars indicate SEM. 
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3.3.2 Dose-dependence in arrestin morpholino injected cells 
Typically in oligonucleotide studies, multiple sequences and/or multiple 

concentrations are used to verify that the effect seen is not spurious. We used two 

additional concentrations of arrestin morpholino (0.1 µM, and 10 µM) with 

corresponding concentrations of control morpholinos.  We tested the effect of these 

concentrations at 24 hrs after injection (Fig. 3.3). Cells injected with 0.1 µM arrestin 

morpholino had a bump rate of 3 + 0.3 which is lower than that observed with 1µM 

arrestin morpholino injections (4.8 + 0.33). However, with 10 µM morpholino 

injections, we did not observe any further (p=0.71) increase in bump rate as compared 

to 1 µM morpholino injections. This indicates that morpholino injections at 1µM may 

have a saturating effect. 
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Dose dependence in arrestin morpholino injections
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Figure 3.3: Arrestin morpholino injections show a dose-dependent effect. Bump rates 

in cells injected with 0.1 µM, 1 µM, and 10 µM arrestin morpholino were compared. 

Control morpholinos at corresoponding concentrations were used as controls. At 0.1 

µM injections, cells have a bump rate of 3 + 0.3, at 1 µM they have a bump rate of 

4.8 + 0.33, and at 10 µM they have a rate of 5.3 + 0.35. n=9. Error bars indicate SEM. 
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3.4 Opsin morpholino Injections 

3.4.1 Opsin morpholino injections reduce dark noise 
 

To verify that the morpholino technique works in Limulus ventral 

photoreceptors, we decided to check its effect on a different protein. Since the 

previous experiments led to a gain-of-function response, we decided to use a protein 

that would lead to a loss-of-function response. Opsin seemed to be an ideal candidate 

for this purpose.  

 

One µM opsin morpholino was injected into cells. Time-points selected were 

24, 48, 72, 96, 108, 120, and 144 hrs after injections. It was possible to extend the 

time point until six days since the morpholino does not get degraded and also because 

the Limulus nerve preparations stay responsive when kept in the culture medium 

(169Hudziak et al., 1996; 170Bayer et al., 1978). As shown in Fig. 3.4, at 96 hrs after 

injections, opsin morpholino reduced the dark bump rate from 1/s to 0.4/s (p<0.05). 

This is consistent with the role of opsins (rhodopsin and/or metarhodopsin) in 

generating the spontaneous dark bumps. 

 

Even at 144 hrs after injections, the spontaneous dark bump rate is 0.36+0.07. 

The bump rate does not go down to zero. This occurs probably not because of 

reduced concentration of morpholino over time since as mentioned above; 

morpholino does not get degraded in the cells. One possibility is that the 

concentration of opsin morpholino in the cell body may decrease over time if the 

morpholino moves down the axons. This reduced concentration might be ineffective 
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in interrupting translation and could therefore result in the residual bumps observed at 

144 hrs after injections. Another possibility is that the opsin turnover rate is low in 

dissected cells and the levels of opsin protein do not decrease further in spite of 

waiting 6 days after injections. A third possibility if that the residual bumps are 

formed by sources other than rhodopsin and/or metarhodopsin such as the G-protein. 
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Figure 3.4: Dark bump rate in cells injected with 1 uM opsin morpholino and 

checked at various time points. UC = uninjected control CM = control mprpholino 

OM = opsin morpholino. 48, 72, 96, and 144 = hrs after injection. The bump rate in 

uninjected control cells and cells injected with the control morpholino is the same. 

However, on opsin morpholino injections the bump rate starts declining. The bump 
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rate is lowest at 96 hrs after injections (0.4/s). There is no further significant decrease 

beyond 96 hrs. n=8. Error bars indicate SEM. 

 

 

3.4.2 Opsin morpholino injections lead to a 1.5 log10 reduction in sensitivity at 96 
hrs after injection. 
 

We decided to explore the effect of 1 µM opsin morpholino injections by 

checking the cells for their light sensitivity. Cells were tested 24, 48, 72, 96, 108, 120, 

and 144 hrs after injections. We observed their response to dim light of intensities 

ranging from log10 -10 to log10 - 7 in increments of 0.5. In all cases, the bump rate 

was lower in cells injected with opsin morpholino as compared to cells injected with 

control morpholino, or those not injected at all (Fig. 3.5). However, the largest 

difference, reduction in light sensitivity by 1.5 log10, was observed at 96 hrs after 

injection.  

 

These results are consistent with opsin morpholino reducing the rhodopsin 

content. 
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Figure 3.5: Effect of opsin morpholino injections on the bump rate. CM= control 

morpholino OM= opsin morpholino. Cells were injected with 1 M opsin 

morpholino. This figure indicates representative time-points at which the response of 

cells to the dark and dim light was measured. With increasing time after injections, 

the bump rate gets lower at all intensities including darkness. At 96 hrs after injection, 

the sensitivity of cells to light is decreased by 1.5 log10 units. n= 9. Error bars indicate 

SEM. 
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3.4.3 Bump rates in response to opsin morpholino injections show a dose-
dependent effect 

 

To investigate dose-dependence of opsin morpholino injections, we injected 

0.1 µM, 1 µM, and 10 µM into cells and tested the bump rate at 96 hrs after injection. 

As indicated in Fig. 3.6, after 0.1 µM opsin morpholino injections, the bump rate is 

lower than after control morpholino injections at all time points tested. There is a 

further decrease in bump rate after 1 µM opsin morpholino injections. However, no 

dose dependence was observed in cells when they were tested with 10 µM opsin 

morpholino injections. This could probably be explained if morpholino at 1µM has a 

saturating effect and 10 µM injections have no additional effect on the sensitivity of 

cells.  
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Dose dependence at 96 hrs after opsin morpholino injections
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Figure 3.6: Varying concentrations of opsin morpholino injections. Cells were 

injected with 0.1 µM, 1 µM, and 10 µM opsin morpholino. The bump rate in 0.1 µM 

injected cells is lower than control morpholino injected cells at all time points tested. 

There is a further decrease in bump rate in cells injected with 1 µM opsin 

morpholino.  After 10 µM opsin injections, there is no further decrease in bump rate. 

n=8 Error bars indicate SEM. 

 

3.4.4 Light sensitivity decreases in opsin morpholino injected cells.  
 

The reduction in sensitivity occurred gradually over time. Shown in fig. 3.7 

are two representative traces, one in the dark and one in response to log-8 light 
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intensity. Both traces show a decrease in bump rate over time. As shown in fig. 3.7A 

the largest drop in sensitivity occurs between 48-96 hrs after injections. Beyond 96 

hrs, there is no significant decrease in sensitivity. The decrease in the spontaneous 

dark bump rate occurs earlier, by 48 hrs (Fig. 3.7b). The biggest drop observed is not 

immediate. This indicates that the drop in bump rate is not due to damage during 

electrode withdrawal or reimpalement. Both the reduction in the dark, and light-

induced bumps, are consistent with a reduction in opsin concentration as a result of 

the morpholino injections. 
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Figure 3.7: Sensitivity to light decreases with time. OM = cells injected with opsin 

morpholino A) Response to log10 -8 light is plotted over time in cells injected with 1 

M opsin morpholino. The bump rate decreases with time. In control cells, the bump 

rate remains constant. B) Bump rate in the dark is plotted in cells injected with 1 M 

opsin morpholino. With time, there is a decrease in the bump rate in injected cells 

while the bump rate in control cells remains constant. The bump rate in injected cells 

is fitted with a sigmoid curve while that in control cells is fitted with a straight line. 

n=8. Error bars indicate SEM. 
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3.4.5 Bump amplitude is not reduced in injected cells  
 

 We addressed the issue of whether the light induced bumps generated in the 

presence of opsin morpholino had similar characteristics to the light induced bumps 

in control cells. For this, we selected traces from injected and uninjected cells that had 

similar bump rate. We then analyzed the average bump amplitude in these traces. As 

shown in table 3.1, this process confirmed the decreased sensitivity shown in fig. 3.7 

since the bump rate generated by log10-9 light in control cells was achieved by 

shining log10 -7.5 light on morpholino injected cells. The natural variation in the 

bump amplitude of uninjected cells is pretty large (4.2+0.9). This has been attributed 

to the multi-step deactivation of metarhodopsin (171Kirkwood & Lisman, 1994).  The 

average bump amplitude in these two categories of cells was not significantly 

different (p=0.22). This indicates that although there may be reduction in opsin, 

bumps generated by the remaining opsin have the same amplification characteristics. 

We also tested these cells for their dark bumps and their amplitudes were also 

statistically similar (p>0.05). 

 

 

 

 

 

 

 

 



 

 74 

 Bump rate Light intensity Light bump 

amplitude 

Dark bump 

amplitude 

Control cells 2.4+0.1 9 + 0.2 4.2+0.9 1.36+0.2 

Cells injected 

with OM 

3.1+0.7 7.5 +0.1 2.8+0.5 1.26 + 0.2 

 

Table 3.1: Properties of bumps in the two categories of cells. OM = opsin 

morpholino. Light intensities were selected such that the bump rate would be between 

2-3/s. At these light intensities, the amplitude of bumps was compared. The bump 

amplitude in morpholino injected cells was not statistically different from that in 

control cells (P=0.22). The cells had similar dark bump amplitude (P=0.74) indicating 

that the cells were healthy and bumping normally. 

 

3.4.6 Peak amplitude is reduced in response to a saturating flash of light 
 

As indicated in Fig. 3.8, the peak amplitude in response to a 200ms flash of 

saturating (log100) light is lower in cells injected with opsin morpholino. This is 

consistent with the decrease in quantal sensitivity observed in dim light. However, 

this is not an accurate measure of sensitivity since the peak amplitude is a function of 

sensitivity and driving force. This is the force driving the ion flux changes and is 

dependent on the membrane potential. Besides a decrease in quantal sensitivity, the 

decrease in the amplitude of the saturating response could also be contributed in part 

by a decrease in the driving force mediated by a drift in the membrane potential.  
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Therefore, the response to a non-saturating light might give a better estimate of 

sensitivity. 

 

 

Mean trace in response to log100 flash of light

10m
V

Control

MO

 

Figure 3.8: Response to a 200ms saturating flash (log100) is compared between cells 

injected with opsin morpholino (MO) and control cells. The reduction in peak 

amplitude and faster recovery kinetics are consistent with a reduction in opsin. n= 8. 

Error bars indicate SEM.  
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3.4.7 Response kinetics affected in the presence of a non-saturating flash of light 
 

Cells were exposed to a 200ms flash of log10-4 light. At this intensity, the 

response of the cell is not saturated. As compared to control cells, opsin morpholino 

injected cells had smaller peak amplitude and the response terminated earlier (Fig. 

3.9). This is consistent with the decrease in sensitivity of cells to light as observed in 

the analysis of bump responses. 

 

Control
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Response to a flash of log10 -4

 

Figure 3.9: Response to a 200ms non-saturating flash (log10-4) is compared between 

opsin morpholino injected (MO) and control cells. Reduction in peak amplitude is 
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consistent with a reduction in opsin levels and mimics the decreased bump rate 

observed in response to dim light. n=8. Error bars indicate SEM. 

 

3.5 Reduction in protein levels after morpholino injections 
 

 As described in methods, cells injected with either arrestin or opsin 

morpholino were co-injected with dextran. Alexa fluor 568 10,000 MW dextran 

conjugate is a fluorescent dye that is water soluble and has low toxicity. This dye was 

used to mark the cells that had been injected with opsin morpholino. The nerves were 

fixed and probed with antibodies against opsin and arrestin. The fixed nerves were 

imaged on an LSM 510 confocal microscope. For analysis of fluorescence, cells were 

imaged in optical sections via a focus series (z-series). 

 

3.5.1 Dextran injections do not damage the cell  
 

 We first assessed the dextran fluorescence pattern by injecting cells with 

dextran alone (Fig. 3.10). This also gave us an opportunity to observe that dextran 

injections did not cause any bloating or shrinking in cells. We also checked the 

arrestin/opsin fluorescence in the presence of dextran injections. The secondary 

antibodies for arrestin and opsin were excited using a 488nm laser and detected after 

passing through a BP 505-550 emission filter. The dextran dye was excited by a 

543nm laser and imaged through the LP 560 emission filter. Once we verified that 

dextran injections do not interfere with arrestin/opsin fluorescence, we then co-
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injected the arrestin/opsin morpholino with dextran. Cells with dextran fluorescence 

were marked as being injected. Fluorescent counts of for stacks of these cells were 

compared with similar counts in uninjected cells. 

       

 

Figure 3.10: Immunofluorescece micrograph of dextran staining. A) Cell injected 

with dextran. The cell does not look damaged, bloated, or shrunken. B) Image of a 

cell not injected with dextran. No immunofluorescence is observed. C) Phase-contrast 

image of the cell in B.  
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3.5.2 Arrestin morpholino injections lead to a 2.5 fold reduction in fluorescent 
counts 
 

Cells were co- injected with arrestin morpholino and dextran, and fixed at 24 

hrs after injection. The fixed cells were imaged at the confocal microscope. Control 

cells were uninjected cells from the same nerve. As shown in Fig. 3.11, cells injected 

with arrestin morpholino were less bright and had a diffused pattern of fluorescence. 

Confocal z-section analysis of the stacks of images obtained from the cells was used 

to calculate the fluorescent counts from the images.  As shown in Fig. 3.12, there is a 

2.5 fold reduction in fluorescent counts in injected cells as compared to the counts in 

uninjected cells.  
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Figure 3.11: Fluorescent counts are lower in the images of cells injected with arrestin 

morpholino. Immunofluorescence micrograph recorded from cells that have been 

probed with anti-arrestin antibody. The green indicates arrestin and red indicates 

dextran fluorescence. A and B are images from a cell that has not been injected with 

arrestin morpholino and dextran. C and D are images from a cell that has been 

injected. A- Cell with a characteristic arrestin staining pattern. B- Absence of dextran 

fluorescence indicates that the cell was not injected C- Arrestin staining is diffused 

and less bright. D- Cell injected with morpholino as indicated by the dextran staining.  
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Figure 3.12: Fluorescent counts from z-section images of cells. AM= arrestin 

morpholino. Images of cells injected with arrestin had an average of 6.3 + 1.3 

fluorescent counts as compared with the uninjected control cells that had an average 

count of 16.9 + 2.2. This indicates about 2.5 fold decrease in fluorescence in injected 

cells. n=3. Error bars indicate SEM.  
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3.5.3 Opsin morpholino injections lead to a 17 fold reduction in fluorescent 
counts 
 

The opsin morpholino injected cells were also less bright (Fig. 3.13) and had a 

diffused pattern of fluorescence. Quantitative analysis of the fluorescent counts from 

the confocal images indicated a 17 fold  reduction in fluorescent counts in injected 

cells (Fig. 3.14).  

 

Although we can not quantify actual protein levels by this method, the 

decrease in fluorescent counts arising from the antibody staining is consistent with a 

decrease in protein levels in the injected cells. 
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Figure 3.13: Confocal fluorescent images of ventral photoreceptors probed with the 

opsin antibody. The green indicates opsin and red indicates dextran fluorescence. A 

and B are images from a cell that has not been injected with opsin morpholino and 

dextran. C and D are images from a cell that has been injected.  A) Cell has a 

characteristic opsin pattern B) Cell not injected with opsin morpholino as indicated by 

the absence of dextran fluorescence. C) Cell looks less bright and has a diffused 

pattern. D) Cell injected with opsin morpholino as confirmed by the dextran 

fluorescence.  
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Figure 3.14: Fluorescent counts from z-section images of cells. OM= opsin 

morpholino. Images of cells injected with opsin had an average of 2.3 + 1.1 

fluorescent counts as compared with the uninjected control cells that had an average 

count of 39.8 + 10. This indicates about 17 fold decrease in fluorescence in injected 

cells. n=3. Error bars indicate SEM.  

3.6 DISCUSSION 
 

Functional silencing of genes is a very powerful technique for model systems 

in which mutagenesis studies can not be carried out. Limulus is therefore an ideal 
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candidate to make the most use of this technique. We have shown here that 

morpholino can be injected directly into individual ventral photoreceptor cells and its 

long term effects can be investigated. It is possible to study the effect of morpholino 

up to 6-7 days after injections because morpholino is very stable and the cells 

themselves can be maintained in culture for a long time.  

 

The results with the arrestin morpholino support the data obtained from 

arrestin RNAi studies since both these procedures lead to a 5-fold increase in bump 

rate 24 hrs after injections. It is interesting to note that although RNAi and 

morpholino work through different mechanisms, their functional output in our studies 

was very similar. At the same time there were some differences too. The bump rate at 

48 hrs after arrestin RNAi injections decreased significantly from that at 24 hrs after 

injections. However, morpholino injections at 48 hrs had no significant difference in 

bump rate from those at 24 hrs. This could be due to low toxicity of morpholinos 

observed both in vitro and in vivo (172Iversen et al., 2003). 

 

Opsin morpholino injections lead to a loss of sensitivity to light. The degree of 

the loss increases with longer time points after injections. However, after about 96 

hrs, there is no further significant reduction observed in the bump rate. Although the 

decrease in sensitivity is maintained at later hours, there is an increase in cell death 

and difficulty in obtaining good recordings from cells. Thus we decided that 96 hrs 

after injections was the optimum time to readily test the effectiveness of opsin 

morpholino. We hypothesize that failure of injections to further reduce bump rate 



 

 87 

could be due to morpholino diffusing out of the cell body into the axon. Another 

possibility is that the morpholino significantly reduces the content of the freshly 

synthesized opsin but the residual bumps at 96 hrs are produced due to the opsin that 

was already present in the system before the injections.  

 

The reduction in bump rate at 96 hrs after morpholino treatment is indicative 

of a slow turnover of opsin in Limulus ventral photoreceptors. Turnover of opsin in 

vertebrates is rapid. In the presence of light, the discs in the outer segment of rods get 

degraded and new discs are continuously assembled.  Each photoisomerization event 

leads to the formation of the active photoproduct, metarhodopsin. To replenish the 

rhodopsin concentration, fresh opsin needs to bind the chromophore in the pigment 

epithelium. This mechanism requires rapid turnover of opsin. In invertebrates, 

however, rhodopsin regeneration is not long and involved but occurs when 

metarhodopsin absorbs a photon. Thus the rate of synthesis of opsin is much slower. 

In Drosophila, there is no change in opsin mRNA or opsin protein levels over a 24 hr 

D/L cycle (173Hartman et al., 2001). In Limulus lateral photoreceptors, opsin mRNA 

levels spike at 9-12 hrs after sunrise but stay constant for the rest of the day and night 

(174Dalal et al., 2003). However, no information is available on the opsin protein 

levels. Morpholino injections reduce the production of fresh opsin protein but have no 

effect on the opsin that was already present in the system before the injections. Since 

it takes about 96 hrs to maximally reduce the bump rate, this might indicate a slow 

turnover of opsin in Limulus. 
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3.6.1 Consequence of Rhodopsin and metarhodopsin with similar spectral 
properties 

 

Rhodopsin and metarhodopsin in most species absorb light maximally at 

different wavelengths. In Drosophila, a 480nm (blue) light can convert about 80% of 

rhodopsin to metarhodopsin and a 580nm (orange) light can convert > 80% of 

metarhodopsin back to rhodopsin (175Matsumoto et al., 1982). However, in Limulus, 

both forms of rhodopsin have the same absorption maxima. This means that light that 

photo-converts rhodopsin to metarhodopsin also photo-converts metarhodopsin to 

rhodopsin. This process quickly reaches equilibrium and there is a 1:1 ratio of 

rhodopsin and metarhodopsin present in the ventral photoreceptors. As a consequence 

of this, we observed some unique results in the opsin experiments. 

 

 In cells injected with opsin morpholino, the dark bump rate is significantly 

lower than those of control cells (Fig. 3.3). This is presumably because the opsin 

morpholino injections reduce the opsin content in the cell. This results in reduction in 

both rhodopsin and metarhodopsin. So the dark bump rate goes down. 

 

The confocal experiments were designed to get an idea about the protein 

levels in the injected cells. Analysis of fluorescent counts indicates that in the 

presence of arrestin morpholino and opsin morpholino, there might be a reduction in 

protein levels. This is in agreement with the electrophysiology data and is indicative 

of the success of the morpholino technique in Limulus ventral photoreceptors. 
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We have demonstrated here that morpholino technique can be used to study 

the different proteins involved in Limulus phototransduction. It is a powerful 

technique that can be used to overcome the inability to do genetic studies in this 

system.  
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Chapter 4 

 Discussion 
 

4.1 Controls used in the experiments. 
 

For the arrestin RNAi experiment, we tried two delivery methods. First was 

adding RNAi to the bath in the culture medium. The controls for this experiment were 

nerves placed in a separate dish that had no RNAi added to the culture medium. 

Although this experiment resulted in an increased dark bump rate in the RNAi treated 

cells, there was a lot of variability from cell to cell. So we decided to inject RNAi into 

the cells instead. This also gave us the opportunity to use an internal control. 

Experimental cells were the ones on a nerve that were injected while control cells 

were the ones on the same nerve that were not injected. This meant that both 

categories of cells were exposed to the same conditions of light, temperature, pH, and 

osmolarity. Another control group was cells injected with the carrier solution. This 

served to test the effect of injecting a specific volume of solution into the cells and 

testing them at various time points after that. 

 

For the morpholino experiment, there were two types of control. On a nerve, 

some cells were injected with opsin morpholino and formed the experimental set. The 

cells from the same nerve that were not injected formed the uninjected control set. In 

some cells, an unrelated standard control morpholino was injected and these formed 

another set of control. These controls addressed the issues of injecting large 
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molecules into cell, keeping the cells in the culture medium for up to 6 days, and of 

specificity. For some experiments, the cells injected with opsin morpholino, cells 

injected with control morpholino, and uninjected control cells were all from the same 

nerve. These provided us with an excellent internal control. 

 

4.2 RNAi vs.  Morpholino; Morpholino is recommended. 

  

What I have shown here is that the complementary oligonucleotide technique 

seems to work for Limulus ventral photoreceptors. The arrestin data indicates that 

although RNAi and morpholino work through different mechanisms, their effect on 

the electrophysiology of cells is similar; that of a five-fold increase in bump rate. 

Either of these techniques can be further used to understand the role of membrane 

channels and other proteins in the photoreceptors. However, I would recommend 

using morpholino as opposed to RNAi. This recommendation is based on the 

production of these oligonucleotides and their mechanism of action. RNAi is targeted 

against a long length of the gene (in case of arrestin RNAi it is about 300 base pairs). 

Once the RNAi is delivered into the cells it breaks down into 25 bp –long strands and 

gets amplified. This introduces a lot of uncertainties. We can neither identify specific 

sequences that might have had the silencing effect nor can we estimate the 

concentration of RNAi that was reached inside the cells. Once inside the cell, the 

RNAi gets amplified and the concentration inside the cell can not be determined. 
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Morpholino on the other hand is manufactured as a 25bp long sequence 

against an intentionally chosen site on the gene. Once delivered to the cell it does not 

get amplified but functions for a long time because of its resistance to degradation by 

endonucleases. Therefore it introduces a lot of specificity in our system. We can 

control the sequence and the concentration of morpholino and study its effects on the 

ventral photoreceptors. Although RNAi has been used as a preferred method in 

several systems, in our system morpholino seems to be a better choice. 

 

4.3 Arrestin reduces dark noise. 
 

Visual arrestins forms a part of a large family of arrestins found in both 

vertebrates and invertebrates (176review Palczewski 1994). In mammals, four 

members of the arrestin gene family have been identified. Two of these are visual 

arrestins. One is a form present in the rods and is called the s-antigent or arrestin 

(177Review Krupnick & Benovic, 1998). The second occurs in the cones and in pineal 

glands and is called x-arrestin, arrestin 4, or cone arrestin (CAR) (178Sakuma et al., 

1996). The other two types of arrestins are expressed ubiquitously and are called β-

arrestin1, and arrestin2. The first invertebrate arrestin homologue was characterized 

in Drosophila (179Yamada et al., 1990; 180Smith et al., 1990). 

 

Functionally, visual arrestin has been implicated in termination of light 

response and retinal degeneration. To terminate the light response, it binds to 

phosphorylated metarhodopsin (181Kuhn et al., 1984). Arrestin knock-out mice exhibit 
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prolonged photoresponses (182Xu et al., 1997). In Drosophila arrestin mutants there is 

an increase in the prolonged depolarizing afterpotential (PDA) (183Dolph et al., 1993). 

The observations above are indicative of a role of arrestin in terminating the light 

response. In humans, a frameshift mutation in the arrestin gene causes slowed dark 

adaptation and reduced sensitivity, a condition called Oguchi's disease (184Fuchus et 

al., 1995).  This suggests that arrestin is involved in dark adaptation. Dark adaptation 

is the process that occurs when photoreceptors have been exposed to intense bright 

light and are then exposed to darkness. Immediately after the onset of darkness, the 

photoreceptors can not return to pre-light exposure sensitivity because their pigment 

is “bleached”. The process in which this pigment recovers its sensitivity may take 

tens of minutes in vertebrates and is called dark adaptation.  

 

Arrestin plays a crucial role in retinal degeneration, a process in which it 

forms stable arrestin-rhodopsin complexes that lead to apoptosis (185Alloway et al., 

2000). Higher arrestin levels have been observed in retinal degeneration slow (rds) 

mutant mice. In these mice the inner segments are normal but the outer segments fail 

to form. Accumulation of high concentration of arrestin is implicated in this 

degeneration (186Agarwal et al., 1994). In arrestin KO mice, light driven degeneration 

is observed in the photoreceptors (187Chen et al., 1999). In Drosophila, failure to 

dissociate arrestin from the arrestin-rhodopsin complexes eventually leads to light-

dependent apoptosis of retinal photoreceptors (188Alloway et al., 2000).  
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Arrestin in Limulus has been implicated in internalization of rhodopsin in 

response to light (189Sacunas et al., 2002). However, the function of arrestin in the 

quenching of the light response has not been investigated. In our experiments we 

show that a reduction in arrestin leads to an increase in dark noise. This was 

demonstrated by the use of two different methods; RNAi, and morpholino injections. 

Both of these techniques work through different mechanisms but have the same end 

effect on the photoreceptor cells; that of increasing the spontaneous dark noise 5-fold. 

This supports a role of arrestin in keeping the spontaneous dark noise level down. 

 

4.4 Opsin confirmed as the photopigment in Limulus. 
 

Visual pigments across different species are all made of a 7-transmembrane 

protein (opsin) covalently linked to a chromophore. Most species have multiple opsin 

genes.  In vertebrates several „visual‟ and „non-visual‟ opsins have been identified 

(190review Kumbalasiri & Provencio 2005). In humans, there are four visual opsins. 

The one expressed in rods is the rhodopsin and the ones expressed in cones are S, M, 

and L cone opsins. Invertebrates also have multiple opsin genes.  In Drosophila, there 

are 6 opsin genes, Rh1 to Rh-6, that are expressed in different cell types and no cell 

expresses more than one type of opsin.  

 

In Limulus, about four opsin genes have been sequenced (191Dalal et al., 

2003). Of those, two proteins generated from genes opsin1, and opsin 2, have been 

identified. Opsin 1 and opsin 2 express in both the lateral and ventral eyes and opsin 1 
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is the more abundant transcript in the ventral photoreceptors. Information about the 

expression of the other two possible opsin genes is not available. 

 

Although these studies strongly indicate that opsins form the photopigment in 

Limulus, there have been no functional studies to confirm that. Our 

immunocytological studies show that there is a reduction in opsin content in the 

presence of opsin morpholino. Our electrophysiological studies indicate that the 

functional consequence of reducing opsin content through opsin morpholino is a 30-

fold decrease in sensitivity to light. This is consistent with the gene product of opsin 1 

and opsin 2 forming the photopigment in Limulus ventral photoreceptors. 

 

4.5 Consequence of opsins with similar spectral properties not resolved. 
 

 Multiple opsins occurring within a single eye have different spectral 

properties. In humans, rhodopsin absorbs maximally at 500nm whereas the three cone 

opsins S, M, and L absorb maximally at <500nm, ~530nm, and ~560nm respectively. 

In some vertebrates there is a fifth opsin gene that senses ultraviolet light. Mice, 

rabbits, guinea pigs, and probably marsupials appear to coexpress two opsins per cell 

(192Rohlich et al., 1994; 193Applebury et al., 2000194Hemmi & Grunert, 1999). Fish, 

eels, tiger salamander, and gecko express two or three opsins in the same cell 

(195Archer & Lythgoe, 1990; 196Hope et al., 1998; 197Makino & Dodd, 1996; 198Loew 

et al., 1996).Each of the six opsins expressed in Drosophila has different absorption 

maxima (199Review Montell 1999). Butterfly photoreceptors express two visual 
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pigments per cell (200Kitamoto et al., 1998). The distinct absorption maxima of the 

opsins work towards avoiding sensory overlap and broadening spectral sensitivity of 

eyes. 

 

Interestingly, the two opsins expressed in the ventral photoreceptors 

presumably have the same spectral sensitivity since the domain thought to influence 

this property is the same in both genes (201Briscoe, 2000; Dalal et al., 2003). A similar 

phenomenon has been observed in the crab Hemigrapsus sanguineus where the two 

opsins presumably have similar spectral properties (202Sakamoto et al., 1996).  

However, the physiological significance of having multiple opsins with similar 

spectral properties is not known. 

 

 In our experiments, the opsin morpholino was targeted against the 5‟ region of 

the gene. In the two opsin genes that express in the ventral photoreceptors have 

identical sequence in this region. So presumably the morpholino was targeted against 

both the gene products. The antibody used was made against the C-terminus of the 

opsin DNA. This antibody also presumably recognizes both the opsin products. We 

observed a decrease in opsin levels in morpholino injected cells as indicated by a 

decrease in fluorescence counts. Although this experiment indicates the success of the 

morpholino technique, it still does not give any indication as to the significance of 

multiple opsins with similar spectral properties.  
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4.6 Regulation of metarhodopsin deactivation is extremely critical in Limulus. 

In Limulus, both rhodopsin and metarhodopsin share the same absorption 

maxima (λmax =500nm). This phenomenon is also observed in the squid 

photoreceptors but is unlike other animals in which the absorption maxima for 

rhodopsin and metarhodopsin are different. For example, in Drosophila, rhodopsin 

λmax =480nm (blue) and metarhodopsin λmax = 580nm (orange). Blue light converts 

rhodopsin to metarhodopsin and orange light converts metarhodopsin to rhodopsin. 

However, in Limulus, a photon that can activate rhodopsin to form metarhodopsin is 

equally likely to change a metarhodopsin back into rhodopsin. As a result of this, 

unlike vertebrates that have no metarhodopsin in the dark, and invertebrates such as 

Drosophila, that has about 20% metarhodopsin in the dark, Limulus photoreceptor 

cells have equal number of rhodopsin and metarhodopsin molecules. Since the total 

opsin is estimated to be 109 molecules, it means that there are about 5* 108 

metarhodopsin molecules present at any time (203Lisman et al., 1977). 

The metarhodopsin stays inactive due to phosphorylation and arrestin binding. 

However, sometimes it can spontaneously lose arrestin and become 

dephosphorylated. This reaction, even though rare, may produce spontaneous bumps 

in the dark. The rate of dark bump production in dissected Limulus photoreceptors 

from about 5* 108 metarhodopsin molecules is about 1/s. In the event of reduction in 

quenching by arrestin even by a fraction, the dark noise would go up several folds. 

This shows that it is very crucial to tightly regulate metarhodopsin activation and 

deactivation and arrestin forms an important part of this cycle.  
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This is consistent with our observation in arrestin RNAi and arrestin 

morpholino experiments wherein a reduction in arrestin levels led to a five-fold 

increase in the spontaneous dark bump rate. 

 

4.7 Membrane channels involved in phototransduction. 
 

 Two types of photoreceptors have been identified in vertebrates and 

invertebrates, ciliary, and rhabdomeric. The ciliary photoreceptors occur primarily in 

vertebrates but are also seen in invertebrates. They respond to light either by 

hyperpolarization or depolarization. However, they all use the cGMP pathway for 

transduction. The membrane channels in these photoreceptors, the CNG channels, 

either close or open during phototransduction. CNG channels were first implicated in 

rod photoreceptors (204Fesenko et al., 1985). The same year these channels were 

found to be involved in cone phototransduction (205Haynes & Yau, 1985). The 

channel was cloned and expressed a few years later (206Kaupp et al., 1989). 

Involvement of cGMP as a second messenger in the ciliary photoreceptors of scallop 

was shown by 207Gomez & Nasi (1995). Scallop photoreceptors hyperpolarize in 

response to light (208McReynolds, 1976). 

 

The rhabdomeric photoreceptors, on the other hand, occur only in 

invertebrates and absorption of photons always results in depolarization. 

Phototransduction involves activation of the phorphoinositide second messenger 

pathway and the membrane channels in Drosophila have been reported to be 
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TRP/TRPL channels that are part of the transient receptor potential (TRP) family 

(209Hardie & Minke, 1992). However, the second messenger involved in activating 

these channels is not known. Heterologous studies indicated a role of InsP3 in 

activating these channels since addition of thapsigargin reduced Ca2+ levels and 

activated these channels (210Vaca et al., 1994; 211Xu et al., 1997). However, this result 

has not been duplicated in vivo. When Ca2+ was depleted using thapsigargin in vivo, 

phototransduction was not affected (212Ranganathan et al., 1994). Caged InsP3 did not 

activate any light sensitive channels (213Hardie and Raghu, 1998). InsP3R null mutant 

did not have any defect in phototransduction (214Acharya et al., 1997). All of these 

studies indicate that the TRP/TRPL channels are probably not activated via the  

InsP3-mediated pathway. There is some indication that the DAG branch of the 

phototransduction might be involved in the activation process. These channels were 

shown to be activated in the presence of polyunsaturated fatty acids (PUFAs) which 

are presumably produced after DAG hydrolysis (215Chyb et al., 1999). TRP channel 

was shown to be constitutively active in Drosophila retinal degeneration A (rdgA) 

mutants (216Raghu et al., 2000).  The rdgA are diacylglycerol kinase mutants. 

Diacylglycerol kinase converts DAG to phosphotidic acid and so the DAG 

concentration in these mutants is expected to be high. These experiments support the 

idea of DAG pathway to be involved in channel activation. 

 

The success of the complementary oligonucleotide technique studied with 

respect to arrestin and opsin provides us with a valuable tool that can be used to 

manipulate the expression of CNG and/or TRP channels and study their effect on 
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phototransduction. As mentioned in the introduction section, the identity of the 

membrane channel leading to membrane depolarization in Limulus is not known. 

Injection of InsP3 and Ca2+ in the photoreceptors activates light-dependent 

conductance (217Fein et al., 1984; 218Payne et al., 1986). This supports the role of Ca2+ 

in activating the channels. However, cGMP injections also activate light-dependent 

conductance and indicate involvement of this second messenger (219Johnson et al., 

1986). Further evidence in support of this pathway comes from the work that shows 

that the light-dependent channels open by cGMP and not by Ca2+ (220Bacigalupo et 

al., 1991). In our laboratory, the cGMP and TRP channels have been cloned and 

sequenced from the Limulus eye cDNA (221Chen at al., 1999; 222Bandyopadhyay and 

Payne, 2004). We can now use this technique to study the functional consequence of 

lowering the concentration of cGMP and trp.  

 

4.8 Future directions. 
  

The success of the RNAi and morpholino injection techniques opens new 

doors to study phototransduction in Limulus ventral photoreceptors. These techniques 

give us a handle on manipulating protein levels in the cells and thus overcoming the 

shortcomings imposed by inability to perform mutagenesis.  

 

An ERP experiment can be performed in the immediate future to show the 

changes in pigment concentration in the presence of morpholinos. ERP occurs in the 

presence of very bright light, has virtually no latency, and is hypothesized to be 
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generated directly by charge displacements produced by the isomerization of 

rhodopsin (223Cone & Pak, 1971). Therefore, ERP is a direct measure of the amount 

of rhodopsin and its intermediates present in the photoreceptor. The hydroxylamine 

experiments indicate that the increased bumps are generated due to unquenched 

metarhodopsin. The results from the hydroxylamine experiments are consistent with 

the idea that bumps in the dark are generated by rhodopsin while bumps in the light 

are generated by metarhodopsin. ERP experiments will be another way to prove this 

point. 

 

As mentioned before, a big question in Limulus phototransduction concerns 

the identity of the membrane channel. There is indirect evidence supporting the 

finvolvement of both cGMP and TRP channels. Since the sequences for both Limulus 

TRP and cCMP are available, morpholinos against them can me made. It may now be 

possible to use cGMP morpholino and trp morpholino to manipulate the levels of 

these proteins and study the electrophysiological consequences. Defects in 

electrophysiological responses in the presence of the cGMP morpholino or trp 

morpholino would strongly indicate the involvement of that channel in Limulus 

phototransduction. This technique can be extended to the study of any protein in the 

ventral photoreceptors. Currently sequences are available for Gq and myosin. 

Morpholinos can be made against these. As more and more sequences become 

available, this technique can be extended to those proteins and play a valuable role in 

understanding their function. 
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