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Abstract

Elastic networks consist of rigid bodies interconnected with gener-
alized springs. Allowing more general interactions leads to a theory of
rigid body systems. Stiffness of an elastic system is defined and com-
puted. Compactification of the space of such systems is conveniently
interpreted in a grassmannian framework as the set of all Lagrangian
planes in the displacement-force space. This compactified space con-
sists of systems which may be constrained by holonomic constraints.

1 Introduction

It is possible and desirable to develop a theory of rigid bodies interact-
ing via generalized springs. There are examples of similar past efforts
([Whi82], [MS85|, [CK87]) in robotics. The problem is to determine the
elastic forces which arise when manipulated objects are brought into con-
tact. The lumped model of this situation consists of rigid bodies represent-
ing objects interconnected by springs. A potential energy function describes
the response of the system.
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The theory developed here is based on Lie groups and differential ge-
ometry, following methodology developed in [Arn78] and [AMT78]. There
are conceptual benefits associated with this approach resulting from the
clearly outlined mathematical structure of the problem. Some important
geometric features of elastic networks with holonomic constraints will be
pointed out.

Throughout this paper an effort has been made to avoid basing the
problem description on a specific choice of coordinates. This makes it easy
to choose coordinates adapted to the problem later on.

1.1 Preliminaries

The physical space is given an Euclidean metric by a choice of length scale
and orientation!. This object will be denoted by E® and a distinction will
be made between E® and R? for the following reasons:

e E3 is not a vector space whereas R3 is.

o E3 is isotropic whereas R* = {(z1,%2,z3)} has prefered directions
along z; , t =1,2,3.

e E3 is homogeneous whereas R3 has a distinguished point - the origin.

¢ It is desirable to use several ways of identifying E® with R® after the
problem has been described.

The coordinate maps z : E3 — R3 are required to preserve the chosen
Euclidean metric as well as orientation. There is a good way of visualizing
the coordinate map z as a coordinate frame. The codomain R3 of = has a
distinguished point (the origin) and distinguished unit vectors which point
along the three axes of R3. The inverse image of those features of ®3 defines
a frame of z in E3, and this frame uniquely determines z.

This paper treats rigid bodies as open three dimensional submanifolds
of E3. Their motions preserve the chosen metric and orientation. One
can easily show that a motion of a rigid body uniquelly extends to a rigid

1Length scale is chosen by using meters, centimeters, feet or some other unit of length.
Orientation can be left or right handed. One usually works with right handed orientation.



motion of E3. It is well known that the group of such motions is SE(3), the
special euclidean group in three dimensions.
The elements of SE(3) are maps g : E> — E® and the commutative
diagram
B L E
x | l =z

R3 9_’) RS

defines the numerical representation of ¢ in terms of a specific choice of
coordinates z. Since g = z o g o 7!, changing coordinates to y gives
g =yogoy '=yoz log®ozoy?

and it is seen that changes of coordinates induce conjugation by y o 71
on the representations of rigid motions. Note that y o 27! is in itself a
representation of a rigid body motion, which maps the coordinate frame of
y to the frame of z when interpreted relative to either y or z.

We shall consider a given configuration of n elastically coupled rigid
bodies. Since displacement of each body from this initial configuration
is given by an element of SE(3), the configurations of this system are in

SE(3)".

2 Systems and networks

This section deals with statics of a system or a network of rigid bodies. We
will show that a distinction needs to be made between these two concepts.
First, by an elastic system we mean a smooth real valued function

V:SE@Q)" — R

and the set of all such elastic systems will be denoted by §. This definition
allows elastic systems whose potential depends on their position in space
even when the relative positions of the rigid bodies remain fixed. An elastic
system which is free of any such dependence will be called a free elastic
system. Free elastic systems must satisfy

V=Vol,
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for any left translation L, by a g € diag(SE(3)"). The diagonal subgroup
of a product group is in our case defined by

diag(SE(3)") = {(915---,9n) € SE(3)*|jgr =92 = ... = gn}

On the other hand, we are clearly interested in those special elastic systems
which arise as networks of interconnected generalized springs. The set of
all elastic networks, N, turns out to be a proper subset of §.

A free elastic network can be represented by a directed graph in which
each node is a rigid body and each edge is a generalized spring. Let I be
the index set labeling the rigid bodies and J be another index set labeling
the generalized springs. The potential energy in the network is given by

V=X
jeJ
where r} is the pullback of the relative position map associated with the
edge 7, and
V;:SE(3) — R
is the potential function of the generalized spring 7. If this edge is directed
from the rigid body #; to the rigid body i, the map r; is given by

r;i : SE(3)" — SE(3)

ri(91,- - 19n) = 6i 05"
and the pullback r;V; = V;or;.

A general elastic network need not be free, since we can have springs
connecting its rigid bodies to the reference rigid body. This additional body
does not move, but it can absorb arbitrary forces, and it can be thought of
as the ground. If a spring j is directed from the reference body to body ¢,
its contribution to the potential is r;V; where r; = m; is the projection from
the product group SE(3)" to its ¢-th component. We will always label the
reference rigid body by 0, so that the index set I is enlarged to Iy = JU{0}.

2.1 Equilibrium and stiffness

The equilibrium of an elastic system is characterized by dV = 0 and the
stability of such equilibrium can in most cases be decided from the spectrum
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of the Hessian d*V at that point. For elastic networks, the situation is
analogous but slightly more complicated. While

av =) r;dV; =0
jeJ
characterizes an equilibrium, clearly it does not imply that individual gen-
eralized springs V; are in an equilibrium. In fact, in most interesting situ-
ations those springs do exert nonzero forces. Thus, “d?V;”is not a Hessian

of V; and we need to define it here. The d*V; shall be represented relative
to ¢ by the matrix of second partials

(se55)

aQaBQﬂ

where ¢ : SE(3) — R® are coordinates on SE(3) belonging to the family
of ezponential coordinates. These exponential coordinates can be easily
constructed around the identity in a Lie group as follows. Given a basis
of the Lie algebra se(3) let ¢(g) be the components of exp~(g) relative to
that basis. Clearly changes of coordinates within this family of exponential

coordinates are linear, and thus the above matrix behaves tensorially under
such changes of coordinates.

3 Elastic networks

Let us consider an elastic network which is in equilibrium at its current
configuration, i.e. at e € SE(3)". The cartesian product structure of the
configuration space SE(3)" leads to a natural notion of displacement and
force components, since the tangent and cotangent space at e are direct
sums of n copies of se(3) and se(3)* respectively. A displacement vector
4 € se(3)" has components «; € se(3) where ¢ € I. Similarly, components
of a force vector ' € se(3)™” are I'; € se(3)".

The following propositions, which tell us how to compute dV and d?V
from dV; and d?V}, are easy to prove. The edge j is assumed to be directed
from body ¢; to body ¢, where 1,7, € I U {0}



Proposition 8.1 The force r;dV; has components I'; where 1 € I and

—dV; fi=1,
Ii=1 dV; if { = 1y,
0 otherwise

This proposition follows from the definition of r; and the properties of the
pullback, and it can easily be proven by choosing a matrix representation of
SE(3) and doing explicit calculations. The immediate consequence of this
result, which is basically a statement of the action-reaction principle, is

Proposition 3.2 At equilibrium dV = 0 the sum of all forces ezerted on
each free body 1s zero.

which follows from
dV =) ridV; =0
JeJ
Similarly, the contribution of V; to the stiffness of V' can be determined.
Note that we can think of d*V as a matrix of maps kg : se(3), — se(3)],

where subscripts indicate the components of the direct sum se(3)" and its
dual.
d*V =K = (ku) where a,b € I

Clearly, the stiffness of the spring j will have nonzero entries k,; only where
a,b € {i1,i2} N I. We will denote this submatrix by K;.

Proposition 3.3 The nonzero components of the stiffness r;-‘szj belong to
the submatriz K; which is given by

K._( d*V; ——d’Vj)
2 —d2V,~ dzvj

when both 11,13 € I. When the reference body ts tnvolved,
K; = (d*V;)

This proposition gives us a recipe for constructing the stiffness matrix
of an elastic network. We begin by choosing a coordinate frame z and
expressing all stiffnesses in terms of that fixed frame.
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The diagonal entries of this matrix are sums of stiffnesses of all springs
connected to a particular body. Off-diagonal entries k,; are negative sums
of stiffnesses of all springs connecting bodies a and b. Note that this implies
that K is not only a symmetric matrix, but also that it is block symmetric,
since each kg, is a symmetric 6 X 6 matrix. This clearly demonstrates that

although N € §, N # S§.

4 Adapted frames

A generic spring defines an adapted coordinate frame in terms of which its
stiffness is brought to a normal form which maximally decouples rotational
and translational aspects of stiffness [Lon85|, [Lon88]. An elastic system
presents the opportunity to use n coordinate frames. We define a n-frame
Z as an n-tuple of frames z; where ¢+ € I. This coordinate frame induces
a particular choice of basis in se(3)" which determines exponential coordi-
nates in a neighborhood of e € SE(3)". The numerical representation K2 of
coordinate free objects like K will be denoted by a superscript to indicate
which coordinate frame generated it.

Under changes of coordinates £ +— § = £ o g where g € SE(3)", the
matrix representation of d?V changes from K2 to K? as follows:

K’ = Ad}’K*Ad?

where Ad, is the Jacobian of the conjugation map h + ghg~!. The product
structure of SE(3)" shows that Ad, is a block diagonal map, where the i-th
block is represented by the familiar 6 X 6 matrix

(e &)

where R is the 3 X 3 direction cosine matrix of the i-th component of ¢
expressed relative to the i-th frame in £, and ¢ is the associated translation
component. The notation

0 —ts ¢
[t_] = ts 0 —tl
-2 U 0



is used to convert a vector ¢ into the antisymmetric matrix which represents
the cross product operator £X.

We can choose g so that the diagonal blocks maximally decouple rota-
tional and translational aspects of stiffness (see [Lon85] or [Lon88|). The
following proposition states this result.

Proposition 4.1 It 1s possible to find a frame § such that the diagonal
blocks of K? are of the form

9 _ [ A B;
k““(Bg c,-)

where A; = A}, C; = C}, gnd B; = D; + [5:] are 3 X 3 matrices; where D;
18 a diagonal matriz and b; € ker(tr(C;)I — C;).

In a generic case, tr(C;) & 0(C:), and B; is a pure diagonal matrix. Further-
more, the origin of the :-th component frame of § is a uniquely determined
point in space called the center of stiffness. This situation is discussed in
detail in [Lon85] and [Lon88].

5 Building larger elastic systems

The set of all elastic systems of order n forms a vector space. Given two
elastic systems V,V' on n rigid bodies, we can construct a larger one by
adding the potential functions. The composite system W =V + V' is very
interesting, since it naturally arises as the result of a parallel as well as a
serial connection of springs.

Example 5.1 Consider two bodies connected by a spring. We wish to con-
nect another spring in parallel. The potential of the two springs is simply
the sum of thesr individual potentials.

Example 5.2 Consider two springs connected in series between bodies a
to b to c. The potential of this system is the sum of the potentials of the
spring from a to b and the spring from b to c.



We will work out the later example in detail. There are three rigid
bodies, so the configuration space is SE(3)®. We will use I = {a,b,c} as
our index set for the bodies, and J = {1,2} as the index set for the springs.
The first spring will be a directed edge from a to b, while the second spring
will connect b to ¢. The potential function of the first spring is V = riVj
while the second spring has potential V! = r;¥,. The composite system
has potential function W = V + V', which can be explicitly written as a
function of ¢ = (ga,95,9:)' as

W (gas 95, 9:) = Vi(gs9s) + Valgs 'gc)

The force exerted on this system in order to keep it in the current
configuration is I' = (T4, Ty, I'c) = dW or

(Paa rba rc) = ('—dVI: dVl - dVZa de)

while the stiffness of this system is a matrix of maps se3 — se(3)" given by

d*vy ~d*V; 0
—d?V, d¥V, + dPV, —d®V; | :se(3)° — se(3)"?
0 —d*V, d?V,

At an equilibrium, I' = 0 and therefore dV; = dV; = 0. We can, however,
imagine a slightly more complicated situation, where there is another spring
number 3 connecting a to c¢. This gives a new system W' whose potential
is

W'(ga, g5, 9) = Vil gs) + Va(gy 'gc) + Valg:'ge)

giving the following expression for the force
I = (—dV; — dV3,dV; — dV,,dVs + dV3)

and stiffness

&2V, + Vs —dV, —d?V,
—d2V1 d’VI + d2V2 —’d2V2
—dY “dV, @V, + ds

This modified system need not have dV; = 0 at an equilibrium since internal
forces can be present.



5.1 Vector space of stiffnesses

The vector space of elastic systems is infinite dimensional, but the stiffnesses
form a finite dimensional vector space. The dimension of this vector space
can be determined for each family of such systems as a function of the
number of bodies involved. Let us denote by § and N the spaces of elastic
systems and networks respectively, and their free versions by S; and N;.

Proposition 5.1 The dimension of the vector space of stiffnesses ts given
by:

6n(n —1) for systems in S

6(n — 1)(6§" —1)-1 for systems in §;
2in(n —1) for systems in N
21(n — lz)(n ~2) for systems in Ny

The proof of this proposition comes from the observations that the elas-
tic systems have 6n X 6n symmetric stiffness matrices, that elastic networks
have n x n block symmetric stiffnesses where each 6 x 6 block is symmetric;
and that each free system or network corresponds to a non-free version with
one less body.

6 Linearized stability analysis

Although this section does not discuss dynamics, we will assume that the
energy is slowly dissipated by the system. If a small amount of energy is
added to the system at an equilibrium, it is certain to settle back to that
equilibrium when the potential energy forms a sufficiently deep well. Thus,
we will say that an elastic system V is linearly stable when the stiffness d*V
is positive definite.

Obviously, free elastic systems are never linearly stable, since they can-
not resist left translations by those g which move each body the same way.
Both of our examples are free systems and therefore not linearly stable.
However, if we modify the system W' so that the body a is the reference
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body, we get a second order system U : SE(3)* — R where

U(9s,9c) = Va(a) + Va(g59c) + Valge)
giving the following expression for the force
I = (dVy — dV2,dV3 + dV3)
and stiffness

—dV, d*V, + d?V;

This stiffness matrix can represent a serial connection of springs between
the reference body and the body ¢. Suppose V3 represents a very stiff
positioning device which is holding the body c fixed relative to the ground.
The linear stability of this system will then depend on the internal stability
of the body b. This internal stability results when d*V; + d?V, is positive
definite. Thus, we can define that a series connection of springs is internally
stable if and only if their parallel connection is stable.

A stable elastic systems can alternatively be represented by the compli-
ance matrix which is obtained by inverting the stiffness matrix. We shall,
however, pursue another approach which proves particularly fruitful since
it generalizes both concepts.

(d2V1+d2Vz —d?v, )

7 Stiffness graph

Given a spring whose stiffness is K, we will consider the graph of K defined
by
G(K) = {(v,T) € s¢(3)" @ s¢(3)™" | T = K~}

The graph of K is a 6n-dimensional hyperplane in a 12n-dimensional vector
space. In general, a space of k-planes in m-space is called a Grassmannian
and denoted by Grass(k,m). Therefore, the graphs G(K) are elements of
Grass(6n,12n).

The linear maps K are bounded, which implies that their graphs G(K)
form a non-compact subset of Grass(6n,12n). In this section, let us denote
by G(S) the set of all points in Grass(6n,12n) obtained as a graph of

some system in §. The closure G(S§) includes some additional hyperplanes
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which can be obtained as limits of very stiff springs. We have the following
proposition:

Proposition 7.1 An elastic system V of order n subject to k locally holo-
nomic constraints C(g) = 0, K = 1,...,k where C : SE(3)" — R* and
where C(e) = 0 is characterized by the hyperplane

G(dzvlker(dC)) @ span(dC)

Corollary 7.1.1 The elastic system V = 0 subject to holonomic con-
straints C is characterized by the hyperplane

ker(dC) @ span(dC)

The above corollary follows immediately from the preceeding proposi-
tion, which we shall prove here. Recall that dC is a k-vector of 1-forms,
whose kernel consists of those vectors in se(3)" which preserve the identity
C(g) = 0. The span of dC, which we will call the internal force space,
consists of all linear combinations of the 1-forms dC,. If we model the
constraint C as an infinitely stiff spring, we see that it can support any
force in span(dC) with vanishingly small displacement. We shall consider
all points (v,T) € se(3)" @ se(3)™ which are compatible with the stiffness
K = d?V and the constraints C.

First, notice that dC(v) = 0 if the constraints are to be satisfied and
therefore vy € ker(dC). Thus, our hyperplane has to lie in ker(dC) & se(3)*".
Let us consider a point 4 € ker(dC) and find all T' € se(3)*” which are
compatible with 4. Clearly I' = K(v) is compatible. On the other hand,
the constraint C allows for any internal force to be added to that I'. Thus,
the system is characterized by a hyperplane which is a direct sum of the
graph of K restricted to ker(dC) and the span of dC, and our proof is
complete.

Another result of interest to us explains what happens when two elastic
systems with constraints are connected in parallel, so that their stiffnesses
add and both constraints have to be satisfied.

Proposition 7.2 Given two systems S1,S2 € G(S) characterized by

S1= G(d2V1|ker(dc,)) @ span(dCh)
Sy = G(dzvzlker(dc,)) ® span(dC,)
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their parallel connection is characterized by
G(d* (V1 + V2)|ker(dcy)nker(dc,)) © (span(dCi) @ span(dCy))

This proposition follows from the fact that the resulting system has
potential function V; + V2 and that the space of free directions is obtained
by intersection. Note that this result tells us how to build (in stages)
representations of complicated elastic systems with multiple constraints. In
particular, we now know how to work with elastic networks with networks of
constraints. This completes the development of a formalism which enables
us to regard stiffness, compliance, and constraints as different views of the
same object, i.e. a point in Grass(6n,12n).

8 Lagrangian planes and reciprocity

There is a natural antisymmetric form w in se(3)" @ se(3)™ given by
g

{(11,T1), (42, T2)), = T1(72) — T2(m)

where v, € se(3)" while Ty € s¢(3)"™. A plane in Grass(6n,12n) is re-
ciprocal if w is zero for all vectors in that plane. The Betti reciprocity
theorem [MH83] applied to our situation states that any plane in G($) is
reciprocal. By continuity of the form w we can conclude that all planes in
G(S) are reciprocal. Furthermore, the converse is also true: a reciprocal
plane in Grass(6n,12n) is in G(S). To see that, one need only show that
reciprocity is basically equivalent to the fact that stiffnesses are symmetric
matrices.

Some standard results [Arn78|, [AMT78] on symplectic geometry can
be applied to the symplectic vector space (se(3)" @ se(3)™™,w). The null
planes (which are self w-orthogonal, and also called isotropic) of dimension
6n are called Lagrangian planes. The Lagrangian planes are the highest
dimensional null planes. We have just shown that the set of elastic systems
with constraints corresponds to the set of Lagrangian planes.

In [Arn78] it is shown that every Lagrangian plane is transversal to at
least one of the 2% coordinate Lagrangian planes. These coordinate planes
are obtained by choosing a basis for se(3)" and then taking the span of 6n
vectors in se(3)" @ se(3)"" where the vector ¢ is either the basis vector ¢ or
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the corresponding dual basis vector. We shall use this result in the next
section.

9 Input-output characterization

Today’s robots are mostly position controlled devices, and static forces
which arise during their operation can often be determined from the stiff-
ness matrix. This approach becomes ill-posed when constraints are in-
volved. The compliance matrix approach has similar difficulties dealing
with situations in which there are no restoring forces. Nevertheless, one
can always consider an elastic system with constraints as an input-output
system provided the following definition is adopted:

Definition 9.1 An input-output system s a triple (A,Q,T) of points in
Grass(6n,12n) such that

1. ¥ € G(8) ts a graph which characterizes an elastic system with con-
straints,

2. 3 and A are transversal to §1.

The 6n-hyperplane A is called the input space, while Q is the output space.
The hyperplane ¥ is the graph of the input-output map of the system.

This definition clarifies our intuitive notion of an elastic input-output
system with constraints. When a rigid body is manipulated by a robot,
n =1 and joint angles of the robot naturally define a basis of se(3)" (as-
suming that the Jacobian of the forward kinematic map is nonsingular).
In a position controlled situation, one would like to consider se(3)" as the
input space and se(3)*" as the output space, but this choice runs into prob-
lems as soon as constraints are introduced. This difficulty was solved in
[RC83] by choosing a new input-output representation in which some po-
sitional basis vectors have been replaced by the corresponding force basis
vectors.

Proposition 9.1 Given a basis for se(3)", and a Lagrangian plane T which
characterizes an elastic system with constraints, it 18 always possible to
construct an input-output representation (A,Q,X) such that A and Q are
coordinate Lagrangian planes.
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This proposition is an immediate result of the application of the theorem on
coordinate Lagrangian planes cited from [Arn78] at the end of the previous
section. We have thus proven that the hybrid position-force control strategy
outlined in [RC83] can always be designed in a well posed way.

Stability of a system controlled by a hybrid position-force controller
can also be achieved by this method. The controller is an elastic system
characterized by a plane A € G(S) which is connected in parallel to the
system X. The plane A represents the m positional constraints P = 0 where
P(9) = (¢iy»%izs---1%,) and g; are the exponential coordinates obtained
from the given basis of se(3)". Therefore,

A = ker(dP) & span(dP)

and since
Y= G(d2V]ker(dc)) (3] spa.n(dC')

the controlled system is characterized by
G(d*V |ker(aP)ker(dc)) ©® (span(dP) @ span(dC))
which is certainly stable if ker(dP) N ker(dC) = {0}.

Proposition 9.2 Given a basis of se(3)" and an elastic system with con-

straints ¥ € G(S) one can construct a stable hybrid position-force con-
troller.

To prove this, note that span(dC) is transversal (as a k—dimensional sub-
space) to at least one of 6n — k dimensional coordinate planes in se(3)™",
say plane Z*. Let Y be the complement coordinate plane in se(3)*" so that
Y* @ Z* = se(3)™. The basis vectors which span Y* are dual to the basis
vectors in se(3)" whose span is Y. Then, the hybrid controller A=Y @ Z*
is stable, since span(dC) & Z* = se(3)" and the space of free directions is
zero.

The controller A is a coordinate Lagrangian plane which is transversal
to ¥ and we can use it as the output space. Similarly, Y* & Z is another
coordinate Lagrangian plane which is transversal to A, and we can think of
it as the input space.
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10 Conclusions

We have shown how statics of a system of n rigid bodies with constraints
can be described by a Lagrangian plane in the displacement-force space
se(3)" @ se(3)™. The theory developed here can guide the development of
computer programs capable of analyzing of such systems. The coordinate
independent description of the general problem can easily be expressed in
terms of any given choice of basis vectors in se(3)", and in a generic case,
a particular adapted frame can be found. We have also shown how to
construct a stable hybrid control strategy which guarantees a valid input-
output description of a given elastic system with constraints.
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