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ABSTRACT
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Two distinct parts are presented. The first part is an
application of manifold theory and geometry to mathematical modeling
problems in depth vision. The second part 1is an application of
deconvolution methods to' the problem of constructing converging
sequences of approximating functions from sampled values of
convolutions. The connection between the two parts is this: the first
part depends on differential methods; the second part provides
converging algorithms for such methods.

The first part begins with a model for objects. A measure is
introduced and smoothness 1s assumed almost everywhere. The
radiometric notion of sterance is modeled using differential forms on
the sphere bundle (of three dimensional Euclidean space). It is shown
that sterance, even if known on a neighborhood in the sphere bundle,
does not uniquely determine the objects. However, sterance on a
neighborhood can be used to construct a submersion, hence to determine

codimension one submanifolds. A similar construction is carried out



for sterance given on the_sphere Bundle over a curve (motion stereo
with the path known).

The properties of this construction are used to motivate the
constructions for modeling the problem of depth vision based on time
varying sterance on the spheré bundle over a point. We introduce
bundles of bases, integral manifolds, and vector fields and one forms
with wvanishing Lie derivative with respect to the position vector
field. We study the flows of vector fields that are isometries of the
integral manifolds.

The second part begins with an analysis of deconvolution methods
for convolution operators that ére characteristic functions of
n-dimensional cubes. Such operators (for squares) are approximations
of the 1impulse response of photo-detectors in vision systems. A
complete description for the implementation of the methcd for sampled
data is given. The primary accomplishment is that the error analysis
is presented with explicit error bounds throughout.

The final chapter is an analysis of the properties of the
deconvolution methods in the presence of additive noise. For the class
of methods and noise studied it is shown that there is no penalty for

the use of deconvolution methods with photo-detectors.
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INTRODUCTION

This work is the product of the confluence of several technical
disciplines at a particular problem topic. Each of the disciplines, as
wéll as the problem topic, is well established. What is unusual is the
drawing togethér of the particular collection of disciplines about the
problem. As the title suggests, the blending is unfinished: the work
continues along two main branches but has not yet merged.

The objective of this introduction is to provide some background
and rationale for our particular collection of techniques and problem
focus.

First the problem. The problem area is vision. But this needs
bcth some qualification and expansion. (For an introduction to
contemporary 1issues and progress in understanding and synthesizing
vision phenomena see Marr (1982).) We are interested in the subtopic
of vision that addresses the rehote sensing of objects as subsets of
three dimensional Euclidean space. This should be contrasted with the

subtopics of vision that are solely pattern recognition, for example,

reading and photo-interpretation. The subject of remote sensing of
"obJjects really extends beyond vision. It includes such things as
radar, thermal sensing, laser radar, sonar, and tomography. In fact,

the problem area is possibly more accurately described by the term

space perception. However, at least 1in vision, the most widely
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recognized term is depth vision. As this work addresseé only vision
questions, we shall use this descriptor. Céllett and Harkness (1982)
provide an excellent survey of the experimental knowledge of the
variety of depth vision phenomena exhibited by animals.

The aspect of-depth vision that is of interest in this work is
mathematical modeling and the questions of existence and uniqueness of
solutions associated with the models. This raises the question of what
is a solution. It has 1long been my bpias that any plausible
mathematical model for depth vision must have manifolds as solutions.
Thus, manifold theory and all of the related mathematical techniques
are a primary element in our collection. Throughout this work the
standard problems in which the solutions are manifolds were kept in
mind: submersions, transversal intersections, and 1integration of
involutive distributions.

A second element in our collection of techniques 1is measure
theory. We use both Lebesgue and Hausdorff measure to make precise

such issues as edges and corners and to provide a weaker notion of

manifold.
A related issue is functions. Smooth functions are generally
regarded as too narrow a space for modeling. Since smooth functions

and differentiable structure are essentially equivalent, we must be
careful in the choice of function space. Consequently, in everything
we do here we understand that both the manifolds and the functions are

smooth approximations to objects in a more general space. In other
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words, we are free td use mollifiers, i.e., convolution, as needed.

This point of view is not only ma£hematica11y useful but is aiso
fruitful in modeling, for many of the physical processes in vision are
indeed (approximately) convolutions. But this raises the issue of
approximatioﬂ and coﬁvergence. Cur method to resolve this dilemma is
the use contemporary methods of deconvolution. This topic is a further
major element in our collection of techniques. We use deconvolution to
provide both a theoretical and practical tool to obtain well defined
converging approximating sequences for the manifolds and functions in
our model. It is this convergence in a suitable function space that
Justifies our use of differential methods.

The manifold methods and the deconvolution methods are not yet
fully merged. As of now the two are developing along separate,
parallel lines. Their 1individual progress is the subject of this

document.



PART 1

SOME SOLUTIONS TO PROBLEMS IN DEPTH VISION
FROM DIFFERENTIAL GEOMETRY

1 SOLUTIONS IN THE SPHERE BUNDLE

1.1 OBJUECTS, HAUSDORFF MEASURE, AND SMOOTH ALMOST EVERYWHERE

In this first section a somewhat technical issue is addressed.
The first goal 1is to provide a sufficiently ‘careful mathematical
description of precisely what it is one is attempting to solve for in a
depth visidén or visual perception problem. That is, in this section an
answer is provided to the questions of what constitutes a suitable
definition of "objects" and what are the consequent properties of this
definition. The motivation for all of this is contained in Theorem 8.
Theorem 8 may be paraphrased by saying that differential methods may be
applied on an open, dense subset and that the complement of the subset
has measure zero. Paraphbased in terminology borrowed from computer
vision, Theorem 8 szays that ali of the so called "edges" and

discontinuities are contained in a closed set of measure zero.
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1. DEFINITION. An object A is a compact, connected subset of R

that is a topological 3-dimensional submanifold with boundary, wherein
 the boundary 84 contains an open set U which is a smooth 2-dimensional

submanifold, and the 2-dimensional Hausdorff measure of 9A-U is zero.

This definition is made, as usual, with the objective of including
at least those things of interest while excluding as much as possible
of all else. This objective is illustrated in Figure 1. (In Figure 1,
as well as in others that follow, two dimensional figures are used to
illustrate higher dimensions.) In this definition the subset U is a
submanifold in the sense that U is a smooth manifold with the subset
topology and the inclusion map is an immersion (Bishop and Goldberg
1968, §1.4). See the proof of Theorem 8 for the definition of

Hausdorff measure (Federer 1969; Evans and Gariepy lecture notes).

object not objects

Figure 1
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It is certainly desirable to address the possibility of more than

one object. A way to do this is provided by the next definition.

2. DEFINITION. A set of objects is a finite collection {A)_Nr
- 1 1=
where N is a positive integer and each A1 is an object, such that
i) the interiors of the objects are pairwise disjoint,

Int 4, N Int A =@ for i =% j,
i i

ii) the union of the intersections, U [ BAi N aAJ ] , and the
1#]

boundary of -the union, 6[ UAi}, have an intersection which has
1

a 2-dimensional Hausdorff measure of zero.

We shall denote the union of all objects by 4 = U Ay

1

The motivation behind this definition is illustrated in Figure 2.

Fig. 2. A set of objects
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‘It is clear that all of the following are compact: A, OJA, aAv

i=1,...,N, and U 84 . Hence, 84 n U [ 94, n 94 ] is closed, and it
i 1#)

has a 2-dimensional Hausdorff measure of zero by definition. For each

aAi, i=1,...,N, let Ui be the (relatively) open set in 8Ai which is a

smooth submanifold. Then 384 N U[ aAi— Ui } is closed and has
i

2-dimensional Hausdorff measure zero. It follows, by deleting these

two closed (in Ra) sets from 94, that 84 contains an open set U which
'is a smooth 2-dimensional submanifold of R° and 84-U has 2-dimensional
Hausdorff measure of zero.

The. purpose of Definition 2 is not only to permit the
consideration of more than one object but also to permit these objects
to be in contact. In permiting contact it is necessary to drop the
requirement that the boundary be a topological manifold: see, for
example, the two spheres in contact in Figure 2. However, the second
half of Definition 1 can be retained: up to a closed set of measure
zero the boundary 1is a smcoth submanifold. A further remark on
Definition 2 1is that fpr many of the situations that follow, the
finiteness of the collection could be relaxed to, say, countability
with finiteness on any compact region. Essentially what is needed is a
suitable analcg for the notion of o-finiteness with respect to a
measure. This extra generality in not pursued here.

This disgussion began with the definition of objects only because
it is necessary to define what ultimately is to be excluded. Nearly

all cf the analysis is performed on the complement of the objects.
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3. DEFINITION. Empty space M is the complement of the union of

all objects,

M=lR3—A=|R3—UAl

i

Consequently, M is an open submanifold of RS.

The usual notation is used for the following objects. TR and TM
are the tangent bundles of R3 and M respectively. The bracket notation
<,> is used for the standard metric on TR3 and TM. The sphere bundles
over R® and over M are denoted by SR3 and SM respectively, these being
the bundles consisting of unit tangent vectors. The projection map of
a bundle to its base 1is wusually denoted by m, for example, the
projection m:SM —> M .

All of the bundles above are parallelizable. For example, SM is
bundle equivalent to M x Sz, that is, there exists a diffeomorphism
which maps fibers onto fibers and is the identity on the base. The
restriction of a bundle to a subset of the base is denoted by a
subscript. For example, the restriction of SR® to 84 ¢ R° is denoted
by SaARS. Of course, sincé M is open SMRS = SM, and the latter
notation will be used here.

A method is needed for extending a function (or section) from a
small neighborhood to some larger open set. In this work we tackle the
simplest possible problem and choose the simplest possible method of
extension. Roughtly s;eaking, we use the model that light travels in

straight 1lines in M. The following definition and constructions
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‘éxploit this choice. Theyrare illustrated in Figﬁre 3.

The convenient way to formalize tﬂerstraight line extension is to
use geodesic phase flow (Sternberg 1983, 199; Arnold 1980, App.1.J).
The standard constfuction is the following (O’Neill 1983, 67-70).
First, the so called na£ural covariant derivative is defined for vector
fields on R° by the condition that the standard basis for TR
determined by the natural coordinates is parallel. A geodesic is a
curve whose velocity vector field along the curve is parallel.
Geodesics exist at least locally and are uniquely determined by the
initial velocity vector. For R a geodesic, a curve from an interval
in R to Rs, can be extended to the so called maximal geodesic so that
it is defined for all of R. Also, the norm of the velocity vector of a
geodesic is constant along the geodesic. These standard results are
exploited in the following notation.

let u € SR°. Let 7:R —> R° be the maximal geodesic such that
the initial velocity vector &u(O) satisfies &u(Oj = u e SR°.

This formalism is convenient for a number of reasons. First and
foremost, it provides a coordinate free represenatation. Second, it
lifts in the appropriate way to paths in SRB. And third, by virtue of
this notation everything is in place to consider the problems discussed
here for more general, nonflat manifolds.

It is now necessary to use some less standard notation. Here the
relation between distance and the parameterization of unit speeq

geodesicé is exploited to define a function on the sphere bundle over
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empty space M.

4. DEFINITION. Let SM be the sphere bundle of R’ restricted to

empty space M and let R = { t e R | t > 0 }. Define T:SM — lR+U {w}

by T(u) = sup{ t>0]| Vse[0,t): qu(—s) e M } .

We shall refer to the function T as the extent function. Note

that in the definition of T the geodesic curve is followed backwards in
its parameter. This is illustrated in Figure 3, where the base point

of u € SM is m, that is, nw(u) = m, and where only S R3 is illustrated.
m

Figure 3
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For purposes of notation the following maps are defined:

7SR x R — R, 2(u,t) = 7 ()
y:SR® x R — SR° ,  ¥lu,t) = 7 (1) 5
wt:sma —>5 SR, v () = ylu,t)
Thé map ¥ 1is the so calied geodesic phase fliow. The map ¢ is

smooth since ¥ is the solution to a smooth ordinary differential
equation. Recall that for t, t’ e R, y(y(u,t) , t') = ylu, t+t’).

The visual perception problem in which we are interested may be
stated as the problem of determining the extent of empty space about an
observation point. In terms of the structure given above this problem

is the determination of the map ¢ defined as follows.

«

5. DEFINITION. Let SM and SaARa be the sphere bundle SRB
restricted to free space M and to the boundary of the union of the

objects 384, respectively. Let T be the extent function and let

R* = {t > 0}. Define
®:SM - T o) — S. R° x R
: 3A +

o(u) = ( w[u,—r(u)] , T(u) ) .

The next task is to clarify some properties of the extent

function.

6. LEMMA. The extent function t is lower semicontinuous.
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Proof. By definition Tt is lower semicontinuous at u € SM if
. . o

liminf t(u) = r(uo)

u —u
o
u € SM
Choose t such that 0 <t < t{u) = » . Hence, for all s € [0,t ],
o - [+] o (o]
y_ (-s) € M. Let ¥:SROxR —> R be defined by 7(u,t) = ¥ (t). Let 4
u

(o]

be the union of all objects. By continuity ¥y '(4) is closed in SRBXR,
while {uo}x[O,to] is compact and disjoint from ¥ '(4). For each point
(uo,s) € {uo}x[O,tO] there exists an open set U; ¢ SR® and an € > 0
such that (u,s) e Ux(s-e_s+e) «c v '(M).  Passing to a finite

subcover {U x(s -g ,s +¢ )} of {u x[0,t ], we have, with U =

s i s i s o o] o
i i i /1

n U , that there exists m > 0O such that

N s

i i

{uix[0,t ] cUx(-n,t+n) c UU x(s-e ,s+e ) c 3y (M.
o o o o i Si i Si i Si

4

Consequently, for every u € U we have T(u) = t + 7, hence
o o

inf t(u) =zt + 7 and liminf t(u) =z t + n > t . Since t was an
uel ° u —u ° © °
o o
u € SM
arbitrary positive number less than t(u ), the result follows. -
- (o]

7. COROLLARY. T (w) is open in SHM.

Proof. Let T be the restriction of T to SM n SB , where B is
n n

n
an open ball of radius n, n=1,2,..., and SBn = SB Rg. Since A = U 4
. i

n

i

is compact, the image of T is contained in a set (0,K )U{w} , for some
n

positive, finite X, for the finite values of T are bounded by the
n - n
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diameter of B Uu a4 . Consequently, r;d(m) = t;d({t>K }) =

- : n

1-1({t>Kn}) N SBn which is relatively open in SM since T is lower

semicontinuous and since SB 1is open (Wheedeﬁ and Zygmund 1977, Theorem
n

4.14). Hence T (w) = U T;d(m) is open in SM. . =

D

The following theorem is the primary goal of this section. It
tells us something about how "edges" of objects and other troublesome

sets on the boundary of objects appear to an "observer" in SM.

8. THEOREM. Let the set of objects be non-empty. Then the

following hold.

i. The interior of SK - T ‘() is non-empty.
ii. The interior of SM - T_l(m) contains an open set ¥ on which ¢
is a diffeomorphism of € with its image in SaAlele, and
+

Z=SM - r—l(m) - % has measure zero in the smooth manifold SM.
iii. Let S(34 - Z) denote the sphere bundle of 384 - Z. With
R°,

S(34 - Z) identified with its inclusion in SaA

z=0"((s84 - 2xR) U (SRExR))

Proof. Recall the map w:smaxm —>5 SR° , Ylu,t) = &u(t). We make
several observations.
Obs.1 ¢ is a left inverse for &, for y(®(u)) = v (u, -tw)) , t(u))
=’¢(u,0)7= u .

Obs. 2 ¢ is one—-to-one, for it has a left inverse.
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Obs.3 For any set S ¢ SRxR, & (S) = (yo@) (& (S)) c Y(S)

CLAIM 1. For Z ¢ 84 c R> and the 2-dimensional Hausdorff measure
of Z zero, 7then Q-I(SZ[RSXIR+) has measure zero as a subset of the smooth
manifold SHM.

Proof of Claim 1. By Obs.3 is suffices to show w(Szﬂ?sxR+) has
measure Zzero .

The Hausdorff measure is defined for subsets of R'. To relate

SR° x R to R° let TR-{0} = {v e TR | <v,v> # O } be

+

identified with R° x (R°-{0}) by the usual identification using the
natural coordinates for R°. Define p:T!Ra—{O} — SR® x R, by plv) =

2

(”z” , Ivil) , where llvil = <v,v>"%.  Then yop is smooth, hence locally

Lipshitz, on TR°-{0}.

The following result 1is needed. For any set A ¢ R”, let H°(A)
denote the s-dimensional Hausdorff measure of A. If H°(A) = 0, then,
for AxRc R x R, (A xR) = 0, Oss<w . To see this it suffices
to consider s>0, for Ho is counting measure. By definition, for 0<&=w,

H3(A) = 1im BS(A), where

50 °
° diamC ®
HS(A) = inf Z als)|——2| | AcUc , diamC = &
5 5 jor ) 3

{c}
j

and where a(s) is the Lebesgue measure of a ball with unit radius in

R®. Since H;(l_\) > 0 and since H;(A) increases as & decreases,

[l

HZ(A) =0 if H°(A) 0. Fix 8 < 1/3 and choose & > O. Then there
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00

. [+1]
exists sets {C} such that A cUCj~, cliamCJ < 8 , and such that
4 =1 7
® diamC .
z o(s) < € . let I be the intervals
5 ] 3
j=1
[k-diaij , (k+1)-diaij], k=0,1,...,k(j), where k(j) € N such that

1 = k(j)-diaij <1+ diaij . Let C‘; = CJ X Il; . Then

Ax (0,1 cUcC x (0,11 cUcC x If Uc* , diamc® < 2-diamC, = 23,
e e TR 3 3

o k(j) . s+1 0
dlamC,] "
J . . . s
and Z \L-:oc(s+1) n < als+1) Z (1 + k() [dlamcj]
j=1 k=0 j=1
[ve] s
diamC,
< als+1) ZZ(X(S) il o5 < (x(s+1)2s+1€ .
als) 2 als)
j=1
s+1 _ . s+1 P
Thus H26 (A X [0,1]] = 0 . Since H26 is countably subadditive,

H;; (A x U [0,kl) =0 . This provides the desired result.
k

Apply the result three times to obtain the implication that if
H(Z ) 94) = O then H°(Z | 34 x K’) = 0, hence H(Z ( 94 x R*-{0}) = O.
But R x [[RS—{O}] is the countable union of compact sets and yYeop 1is
locally Lipshitz. Let p be a céordinate map associated with the open
set V in the 5-dimensional manifold SIR3 ( i.e., VvV — W ¢ [RS, W
open). Then peyop is locally Lipshitz, and by subadditivity and the
standard result for Lipshitz maps |

Ho(uoyep(Z ) 04 x B—{0})) = H(Z ) 84 x B-{0}) = O .
Since Hs,, = L5 on [RS,~ where L5 js the usual Lebesgue measure, it is

established that l/l(:slea s [RJ has measure zero in the usual sense of
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measure zero for smooth manifolds.

CLAIM 2. Let wa be the restriction of ¥ to the smooth 5-manifold
SaA—ZR3 x R . Le£ CP dénote the critical points of wa. Then Q—I(CP)
has measure Zzero.

Proof of Claim 2. By Obs.3 & (CP) c ¥,(CP) and ¥,(CP) is the

set of critical values of wa. By Sard’s theorem (Sternberg 1983, ChZ

§3) wa(CP) has measure zero.

CLAIM 3. CP = S(8A - Z) x R, where S(84 - Z) x R 1s identified

R R . . . 3
with its inclusion in SaA—ZR x R .

Procof of Claim 3. Use the natural coordinates to identify

3 . 2 3 . 3 2
SBA—ZR x R with (84 Z) x S x R and SR™ with R™ x §.

Let
(e, x,d): I —> (84 - Z) x s x R be a curve, hence, by the coordinate
representation of geodesics in Ra, w@m(t),x(t),d(t)] is identified with
@u(t) + d(t)x(t) , x(t)) , where x{(t) is a unit vector in R> for all
t €e I . The derivative of this curve vanishes if and only if x(0) =0
and «(0) + d(0)x(0) = 0. Hence x(0) represents a vector tangent to
A - Z and CP < S(84 - Z) x R .

Conversely, if (p,x,dj € S(64A - Z) x R, where x = «(0) for a curve

a:l —> 84 - Z , «l0) = p, then the curve (a(ft),x,t+d] maps under Y to

@x(—t)+(t+d)x , x], which has vanishing derivative at t = O.

The following result will be needed in the next claim.
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Sublémma. Let X and Y be manifolds of the same dimension. Let H
be an open subset of X and let f:H —> Y be one-to-one and continuous.
Llet g:Y —> X be smooth with gof = '1d|H . Let Yo be the open subset of
Y for which g is regular. Then f_l(Yo) is open in H and
f: f_l(?’o) Y f(f_l(Yo)) is a diffeomorphism.

Proof of sublemma. Let x € f—l(Yo) and let f(x) € V ¢ YO, where
g|V is a diffeomorphism of V with g(V). By continuity f (V) is open.
Since f(x) € V, then x = gof{x) e g(V), or £ (V) c g(V). Therefore,
for all x e £ (V), glvof(x) = x = glvogwl(x), hence f(x) = g|]_/1(x)
since g,V is one-to-one. Consequently, every x € f_l(Yo) has a
neighborhood on which f coincides with a local diffeomorphism, hence

the result.

CLAIM 4. Let RP be the regular points of wé" Then & '(RP) is
-1 3 . .
open and ®:® (RP) —> SaA_Z[R x R, is continuous.
Proof of Claim 4. Let ®(u) = (l/:[ul,—r(ul)] , T(ul)] be a regular
. . 3° - .
point of t/la in SaA—fR x R . Let V be a neighborhood of <I>(u1) in
3 e . . . . 3
SaA_ZlR x> R in which wa is a local diffeomorphism with l/la(V) < SR
Shrink %4 so ‘ that l/la(V) C SM, which is possible since
y';a((b(ul)) =u € SM and SM is open. Moreover, wa(V) c SM - ’r_l(oo),
. 3 .
since, for any (v,t) e V ¢ SBA—ZIR x R, r(wa-(v,t)) =< t,
Summarizing, if u € <I>_1(RP), then u, is in some open set

wa(V) < SM - 't_}(oo) ,” and l/la is a diffeomorphism on V. It is not

necessarily the case for all (v,t) € V that T(\Ila(v,t)) = t. However,
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it is claimed that there exists a neighborhood V about Q(ul) in V for
which this does hold. This sufficés to prove the claim, for then on

this neighborhood @(wa(v,t)) = (w@wa(v,t)) , —T(wa(v,t))] , r(wa(v,t))]

= (v,t), that is, ®(y,(v,t)) < V, with wa(V) open, hence & '(RP) is
open and on this set ® is continuous.
To find V consider the open sets in (94 - Z) x S x R of the form
Ve = (B, N €84 - 2)) x W x (r(u)-2e , t(u)+2c) c 84 - Z,
where B is a ball of radius 2e centered at n(@(ul)). Make the
natural identification of-(aA ~ Z) x S° x R with SBA—ZRS x R and choose
€ sufficiently small so that V28 c V. Define VC similarly (replace 2¢

by € in all occurrences). It is claimed that

{(v,t) € V8 ] r(wa(v,t)) # t} c {(v,t) € Vc | T(wa(v,t)) = t—e} . (*%)

For let u = wa(v,t) and (v,t) € Vc . By the definitions
(Wlu,-t) , t) = (v,t) € SaA—ZRS x R,
while (defining v’ e saAma )
Wiy, -t() , tW)) = (v/,t(u)) € S, R xR,
hence
w@p(u,-r(u)) , T(u)—t) = ylv/,t(u)-t) = v . (%%)
If T(u) # t, then (v’,t(u)) cannot be in V28 , for otherwise, since wa
is a diffeomorphism on V28 , then wa(v,t) = uy and wa(vf,r(u)) = u,
hence (v,t) = (v’,T(u)) which is a éontradiction. ‘
With (v,t) € V8 , tlu) = t, a?d (vi,t(u)) ¢ V28 , if T(u) = t-g,

- then we arerdone. If T(u) > t-¢ , since t € (r(ul)—c s r(u1)+c), then

’ 3 s . ’ ( _
for (v',t(u)) ¢ V,_ it is pecessary that v’ ¢ (Bzc n.\BA Z)) x W.
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But by (=) ylv' , r(us-t) = v. That is, in terms of the
identification of S, R° with 84 x $?, v/ = (n(v'),w) € 84 x S° and v =
(n(v),w) € 84 x S®. Thus n(v) € B8 while w(v’) ¢ Bzc . Then, again by
(%), |T(u)-t| > €, whicb isra contradiction. This proves (*). .

From (%) it follows that {(V,t) €V, | T(wa(v,t)) # t} is closed,

for T 1is lower semicontinuous by Lemma 1 and consequently
(v,t) —> T(wa(v,t)) -t is = lower semicont inuous. Since

@(ul) 3 {(v,t) € Vc | r(wa(v,t)) # f} , there is an open set V about
@(ul) in V8 such that r(wa(v,t)) = t on V. This proves Claim 4.

To complete the proof of the theorem, use Claim 4 and the Sublemma
r T = = -1 Y = 3 = =
for the case f = & , H= & (RP), 1} SaA—ZR x R, g wa, Y0 RP. In

the statement of the theorem § = & (rRP). »

Remarks on the proof: (see Figure 4)
1. Note that m(y(u,-t(u)) is a point on the "nearest object"” to
w(u) in the direction corresponding to u. That 1is, ‘the reason for

introducing T and ¢ is to keep track of so called occlusions, the

Figure 4
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situation in whiéh'a geodesic between a point and an object intersects
a second object. The map Y does not respect occlusions: the path
ylu,t) = 7u(t) "passes through” objects.

2. All of the difficuities in the proof of Claim 4 are associated

- Wwith the problem pf occlusions.

3. The set Z of measure zero is made up of the union of the
"edges" ¢ '(S(84-Z) x R) and "corners" ®—1(SZR3 x R). These edges and
corners are subsets of a 5-dimensional- manifold. Theorem 10 is a
second version of Theorem 8 in which the edges and corners are subsets
of a more familiar 2-dimensional manifold that is the analog of an

"image plane" in optical devices.

The following corollary describes the manner in which Theorem 8

would typically be used in applied problems.

9. COROLLARY. Let R be a 4-dimensional smocth submanifold of SM
such that for every u € R the curve & in SM is not tangent to R. Then
u

R n Z has measure zero in the smooth manifold R.

Proof. Recall the flow y:SR° x R — SR>, ¢(u,t) = 7 (). Let E
denote the associated vector field on SM. By hypothesis E along R is
nowhere téngent to R. Then, by the argument in Claim 3 of Theorem 1, ¥

-restricted to R x R is_ reguiar. Choose a sufficiently small

neighborhood U = ¢(U x {0}) c¢ R and a sufficiently small interval



1.1 Objects, Hausdorff measure, smooth almecst everywhere 21

(-g,e) c R such that y(U x‘(—e,e)) is an open set of SM. If Z U does
not have measure zero in R, then yY(ZnU x (-e,c£)}) cannot have measure
zero in SM (for choose coordinates that map through U x (-¢,e) and use
the product measure »propefties of Lebesgue measure). From the
definition Qf Z, Y(ZU x (-g,e)) = Z n YU x (-e,€)), which must have

measure zero by Theorem 8. This is a contradiction. =

The following thecorem is a third version of Theorem 8. It is the
analog of Theorem 8 for the case of a single fiber in SM. The notation
is as above (e.g., A, M, &, Z). Here n:SIR3 _ R® is the proJjection to
the base.and n1:S[R3 x R —> R> is m acting on the first component of
the product. This theorem is stated and proved here for completeness.
It will not be needed until Chapter 2 of this part. All of the

remainder of this chapter depends only on Theorem 8 and its

corollaries.

10. THEOREM. Let A =U Aj be non-empty. For every me M
b

i. The interior of m '(m) - T (w) is non-empty;
ii. The interior of n—l(m) - 1t =) contains an open set

N 7 '(m) on which nlod> is a diffeomorphism of ?n n (m)

with its image in 84, and Z alm) = 7 m) - tTw) - § has

Ym);

measure zero ‘as a subset of w

-1

iii.  Z " (m) =--[(nlo<b5"1(z) Ue (s34 - 2) x [R)] N (m
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Proof. The proof parallels that of Theorem 8. Fix m € M. Let a

define the section o:R>-{m} —> S(R>-{m}) x R defined by

exp  (p) _1 )
al(p) = -w[_—%——-— ,. llexp (p)ll] , lexp “(pl , where, as
lexp (p) " n .
m
usual, exp:T R° —5 R° is defined by expm(v) = ;rv(l). Thus
m m - -

Yoo:Ro—{m} —> m (m) is smooth. (Note -y(u,t) = Y(-u,-t). )
Let & denote & restricted to n-l(m) - 't—l(oo) c SR. Thus
m R m
T o® (u) = exp (-t(u)u) (%)
1 m m
The three observations analogous to those in the proof of
Theorem 8 can now be made.
Obs.1 oo is a left inverse for nlod) .
m
Obs. 2 nlo<I> is one-to-one.
m

Obs.3 For any set S ¢ Ro-{m}, (r o0 )7HS) ¢ youlS)
m

CLAIM 1. For Z c 34 ¢ R={m} and H(Z) = 0, H" the 2-dimensional
Hausdorf{ measure, then (nlo<I> )—1(2) has measure =zero in the
m

2-dimensional mainfold m - (m).

Proof of Claim 1. The proof 1is a restatement of Claim 1 of

Theorem 8 with oo substituted for ¥ and without the need to lift Z to

Z><IR3.

CLAIM 2. Let (woo)a“ and s, be the restriction of Yoo and 4,

respectively, to the smooth 2-manifold 84 - Z. Let cp denote the
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. . A _ _ -1
critical points of (lll°0)a = Yoo, = l/laooa . Then (nlo<1>m) (cp) has

. : . -1
measure zero in the manifold n (m).

Proof of Claim 2. By Obs.3 (nlro¢’m)-1(cp) < (yoo), lcp).  Apply

Sard’s theoren.

CLAIM 3. let CP = S(8A - Z) x R , where S(84 - Z) x R is
identified with its inclusion in SaA_ZIR X R . Then

(nlo@m)"(cp) = @m‘l(cm

Proof of Claim 3. Recall CP is the set of critical points of wa .
By construction a4 is a section, hence doa # 0 . Consequently, if
pe€e 84 - Z is a critical point of (t/lca)a , then a(p) is a critical
point of tpa . That is, a(p) ¢ CP . This proves the first inclusion of

the following string of inclusions. The full string proves the

claim.

@ alp)) c @ TH(CP) = (oom 08 )TH(CP) = (w0 )7 (a7 (CP))
(1) (2)

< nlod>m)"1(cp) = <I>m_1(o(cp))
(3) (4)

To see (2) note that & is defined to satisfy, for u € =w (m),
somoy(u,-t) = (¥(u,-t) , -t] . Consequently
dom od = | (%)
1 m m

-To see (3) let p € 84 - Z and p € Image(nloém). such that

o(p) = (v,t) € S{(84 - Z) x R . Thus, there exists u € n-l(m) such that
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v = w(u,—t(u)) e S(eA - Z) , n(lll(u,—;r(g))) = p . The curve
«(t) = m(ylu,-t(u)+t)) is tangent to 84 - Zat t = 0 , a(0) = v # 0,
but yYosoca(t) = u . Thus p is a critical point of (|/1<><>)a .

To see (4) apply (*): for any set s, if nlo<bm(u) € S, then

aonloém(u), = d>m(u) e oS)

CLAIM 4. Let rp be the regular values of (!l/oo)a . Then
(r «® ) *(rp) is open and T od :(m o® ) (rp) —> B4 - Z is
1 m 1 m 1 m
continuous.

Proof of Claim 4. (Since this closely follows the proof of Claim
4, Theorem 8, the pr‘esentatioh is condensed.) Note that the image of

Tw) . Fix u € 7 (m) - T Hw) ,

(t,lloa)a is contained in w (m) - T
with 1r10<1>m(u) a regular value of (gboa)a . Let V be a neighborhood in
8A - Z about nloém(u) such that (woo)a is regular on V. It is claimed
that there Vis a neighborhood '17 in ¥V, with nloém(u) € IN/, such that for
all p € '17, if a(p) = (v,t) , then t(n/;oo(p)) = t. This suffices, for
then n1°d>mowoo(p) = nl(v,t) = p, hence nlotbm((woa)a(v)) c V7, with
(t/;oa)a('l;) open by regularity, hence (nloém)_l(z‘p) is open and on this
set nlod>m is continuous.

To find V let Bze be the ball in R° of radius 2¢ centered at
1t10<1>m(u) . Chobse e>0 sufficiently small so that

V. =B_ (84~ 2) cV, and define B_ and V_ similarly.
2€ 2€ € £
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It is claimed that
{p eV, | olp) = (vit), T(Yoolp)) =* t}
C {p € V8 | «(p) = (Vft) , T woo(p)] = t—e} )

For let u = (woa)a(p) and p € Ve .. Let o{p) = (v,t). Then
m (Wlu,-t) , t) =wlv,t) =peV coh-Z,
nl(w(u,—r(u)) . —T(u)j = nl(v',r(u)) = n(v’) € A - Z ,
and
w[v’,T(u)—t)] = v, now(v’,r(u)—tJ = 7v,(r(u)—t) =p. (%)

If t(u) # t, then w(v’) cannot be in st, for otherwise, since (woo)a

is a diffeomorphism on Vze’ then woa(p) = Yoa(n(v’')) = u, hence
p = nu(v’), which is a contradiction of (x). But then, also by (%),
since p € B_and n(v’) ¢ B__, |t(u) - t| > € .

e 2¢e

By the lower semicontinuity of T it follows that

{ peV, | o(p) = (v,t) , T(yealp)) = ¢t }

is closed and does no£ contain (nloém)(u) , hence there is an open set
about nloém(u) in Ve in which T((woo)(p)] = t and o(p) = (v,t). This
proves the claim.

The theorem is completed by applying Claim 4 to the sublemma in

the proof of Theorem 1. L]

Why have we bothered with Theorems 8 and 10? Two of the payoffs
can now be described. For brevity we shall refer to the situation

described in Theorem 8 as the (SRg,SM) case, -and to that in Theorem 10

as the (RS,SZ) case.
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The firstApayoff is a deséription of so called "edges." In the
enginéering literature the notion of edge is.rarely explicitly defined
but rather is described intuitively. Frequently the notion carries the
de facto definition of that which the author’s edge-finding algorithm
finds. What is generally understood to be én edge could be defined as

follows.

11. DEFINITION. Let o be a submersion from a manifold N onto a
manifold P. Let S be a subset of N. The boundary 8(c(S)) of the set

o(S) is called the edge, or the set of edge points, of ¢(S) in P.

In Definition 11 it is to be noted that $§ is the only set in N.
There is not sufficient geometry in the notion of submersion to address
the case of one set occluding another. This can be partially resolved
by considering a di§joih£ union of such S and the corresponding
boundaries. However, the disjoint union includes all boundaries and
has no provision for excluding any. (Such an all inclusive projection
was used in the proofs of Claims 1 and 2 in Theorem 8.) These
considerations are, of course, the motivations behind our definitions

of T and & .

Let us find the edges in our two cases. For the (R3,SZ) case,
N = Rs—{m}, P = n_l(m), o = Yoo, and the set S is a weaker version of

our definition of the union of all objects A. The additional structure

in our definition of A provides additional information regarding
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8(¢(S)) in the case S = A. In particular, for the (R°,S°) case, it

follows from Theorem 10 that
3(o(S)) = 8(Yeald)) ¢ &7 (x1(2) US(84 - Z) x R) . (edg1)

To see (edgljn it is necessary of first observe that not only
(nloémfd(A) < yYoa(A) but moreover (nlo¢mf4(A) = Yoa(A) because A is
the only set in R-{m}: for every p € A Uﬂoémowoo)(p) must be a
point in A by the definition of ¢ . With this, by Claim 4 of
Theorem 10, hHOmeq(rp) is an open set of yoa(4), hence is in the
interior of yoos(A). Consequently, (nlon)_l(A—rp) must contain the
boundary 8(yea(4)).
The same holds for the (SRS,SM) case, where N = SRS X R+ , P = SM
{or a neighborhood in SM or a suitable 4-dimensional submanifold),
and §$ = S R3 x R . Then, as before, since S is the

o =¥yt s a4 .
only set, & (S) = y(S) N SM, and

8(o(S)) - aP = 8 (y(S)  SH) - 3P
; c Q'l{[S(BA -Z) xR} U (SZIR3 x IRJ] : (edg2)

From the inclusions in (edgl) and (edg2) we can now conclude that
for either of ﬁur cases the set of edge points is a set of measure
zero. We remark that the inclusions are not equalties because our
objects may have '"corners” ({points of hon—differentiability) and
critical points which may or may not project to edge points.

Aé is well known, a massive amount of effort has gone into the

developmént of algorithms to find the set 8(c(S)) in P. From our point
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of viéw here, finding 38(o(S)) is a difficult task since 8(o(S)) has
measure zero: almost surely, in the sense of probability measure, any
point chosen at random is not an edge point. In fact, almost surely
every point is a nice point in the sense that it has a neighborhood
about it which is, say, diffeomorphically reiated to a neighborhood in
some bundle over AJ4A. That is; thernice points constitute an open,
dense subset, and the complement of this subset has measure zero.
These properties form the basis for the application of geometric method
in the remainder of this work.

The second payoff is not that ¢ and @m are diffeomorphisms almost
everywhere but rather that their compositions with projections are
submersions. ‘Thus  these compositions injectively pull back
differential forms. Throughout the remainder of this chapter we will
be considering only the (SRB,SM) case. We will return to the (RB,SZ)
case in the next chapter.

Let p1 denote the projection p1:S[R3 x R — SR3 , and let
¥ = p o®:SH - M w) — SR’ . The following is immediate.

dA

12. COROLLARY (TO THEOREM 8). There exist an open set §
contained in the interior of SM - T_l(m) such that SM - T—l(m) - % has

measure zero as a subset of the smooth manifold SM, and on ¥ the maprw

is a submersion.
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With this result we can ﬁow use differential forms to describe
some standard radiometric notions 'iﬁ optics. We first describe
sterance. In elementary radiometry sterance is defined to be "the
radiant power emitted from, transmitted through, or reflected off a
surface per unit projected area of that rsurface per solid angle"
(Meyer—-Arendt 18984, 383). We éhall describe a differential form that
corresponds to sterance as well as describe a suitable theory of
integration.

First, 84 - Z is orientable, for, by Definition 2 each connected
component of 84 - Z is an open set in the boundary of only one of the

objects Aj (A=U Aj ) , and each BAj by Definition 1 is the boundary
]

of an orientable manifold with boundary. Also, SBA_ZIR3 is orientable,
for S° is orientable and S,, R’ is diffeomorphic to 84 - Z x S°.

In describing integration we must use some care since 84 - Z is

not compact. Let v denote a (global) volume element for SBA—ZR3

(0O’Neill 1883, 195). That is, v is a smooth 4-form on SBA—ZRB such
. 3
that, for any orthonormgl basis (61’82’83’84) of TV(SaA_zR ),
vie ,e ,e ,e ) = 21 . As usual, any basis (b ,b ,b ,b ) is said to be
1’72’ 73 T4 1’7273 T4

positively oriented if V(b1'b2’b3’b4) > 0 . A coordinate map h of a

coordinate chart (U,h), U c SBA—Zma , h = (xl,xz,x3,x4):U — r* , is

positively oriented if, for 48 = —g— , i=1;---,4, v(d ,8 ,86 ., ) > 0..
7 i ax 1’ 72”3 a4

For such a coordinate neighborhood and positively oriented map define

J v by
U
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Jv = fu(a 8,8 .,8 )on !
i 2 3 4 .
U h(W)

where the integral on the right is the lLebesgue integral over the open
(hence Lebesgue measurablé) set h(U) of the smooth (hence measurable),
positive function v(61,62,63,64)oh—{ Hencé, the integral is defined,
although it may have the value>+w .

For any open set E ¢ SaA_ZIR3 , let wl be a partition of unity

subordinate to the countable cover of E by coordinate neighborhoods U.
. 1

of an atlas {Ui,hi} with positively oriented coordinate maps. For
h = (xi,xz,xs,x4), let & A and dx denote dx dx dx dx . We
i 1771771 1} ox 1 2 3 4

i

propose to define [ v by
E

-1
J.v - ¥ f (¢, xg)eh "' w(8 ,8 8 .8 )en" dx, Ecs,, R
E i hi(Ui)

13. LtgMMA. For EcC S 7R3 , J v is well defined.
8A-Z E

Proof. (1) . Each term in the sum is finite, for each ¢, is smooth
and compactly supported in hi(Ui) and v is smooth. Since all terms of
the series are positive, all rearrangements either diverge or converge
to the same sum. Thus it suffices to consider the case in which for a
choice of (Ui,hi} and {wi} the series converges.

(2) Let {Vj,gj} be a second atlas with positively oriented maps

gJ = (y;,yi;yj,yj) . Let wj be a partition of unity subordinate to the
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. 7 -1 _ 0~ -1~
cover {Vj} . For brevity let (tple)ohl ¢ (wij)ogj wj,
H =v( 2.2 Jon' , and G = v{ 2., Jog'' . Then,

i ad 4 1 J 1 4 1
axi ax1 ayi ayi

[

where the equality at (%) is due to the rule for the change of variable

and the properties of differential forms. ]

Our definition holds as well if, for an atlas (Ui,hi) , E is the

countable union U h;l(hi(EnUi)) with each hi(EnUi) Lebesgue measurable.

1

For if {V,g} is a second atlas, then gjoh._lzhi(U‘nVJ) — Vs
1

smooth, hence gj(EnVJ) = U gJthi(hi(EnuanJ)] is measurable if
: , 1

each h{(EnUian) = hi(EnUl) n hi(UinVJ)A is measurable. By second

countability it suffices to require that FE satisfy the following



32 1.1 Objects, Hausdorff measure, smooth almost everywhere

‘definition.

14. DEFINITION. For any set E ¢ SBA-ZRB’ E is said to be locally
(Lebesgue) measurable if for any coordinate chart (U,h) of SaA—ZRS ,

h(EnU) is Lebesgue measurable.

We are interested here in differential forms. Consequently we can
define integration of forms only on the smooth manifold SaA—ZRS . We
could equally well define integration on SaARB by wusing, say, the
product measure Hzx H2 of two 2-dimensional Hausdorff measures for

3 . s ot . 2 3 3 X .
SaAR identified with 84 x S as a subset of R* x R°. With this latter

definition we can neglect SZR3 for it has measure zero. On SaA—ZRS the

measure of a subset E and the integral fv coincide by any of the usual
E

arguments that these two definitions of area of subsets coincide on
their common domain of definition. We will not need the measure

theoretic definition so we merely make the following definition.

, 3 3
15. DEFINITION. For E ¢ SaAtR , EnSaA_Z[R locally measurable, we

define fv by Jv = J v

E E 3
EnSsp-7R

Defintion 15 has the following obvious extension.
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16. ODEFINITION. Let E ¢ Sa Rs, EnSaA_ZRS'locally measurable. We

say a function f defined almost everywhere on EnSaA_ZlR3 is locally

measurable if the inverse images of Borel sets are locally measurable.

For f locally measurable and f = O we define [fv by ffv = J fv
. E E 3
EnSaA_ZR

Note that on the smooth nanifold S,, R all of the usual
properties of Lebegue integration of nonnegative measurable functions
hold. For example, sets of measure zero in SaA—zRS can‘be ignored.

The regard for orientation was not essential in the preceeding
defintions. We can neglect orientation by proceding exactly as above
with only one modification. (This is an adaptation of Sternberg 1983,
Ch.2, sec.3, Integration of densities.) Let w be a differential n-form

on an n-dimensional manifold R. Let D be a locally measurable subset

of R. Let {w‘} be'a partition of unity subordinate to a countable
cover of D by cocordinate neighborhoods Ui of an atlas {Uyly} . For
1
h o= (xt ... &) , 8 =-2, and dx = dx'...dx"., define
i i i ij 3 i i i
ox°
3
-1 -1
len = 3 J (p,xp)on " (8, ,....8, Jeh 'l dx,
D ' h (U)

The proof that [ |w] is well defined is just a restatement of the proof
D

of Lemma 13.

To integrate if w is a smooth n-form defined everywhere except on

a set Z of measure zero in R we proceed as in Definition 15.
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17. DEFINITION. Let D be locally measurable, D ¢ R . If w is a
smooth n-form on R - Z with Z of measure zero, we define [ |w| by
D
Jlel = [ jol
D D-Z

These preliminaries are sufficient to complete the discussion of
sterance. Recall the map ¥: SH-T H0) — SaAmsi , ¥ = ploQ, which

according to Corollary 12 is a submersion on § = SM—r—l(m)—Z .

18. DEFINITION. By the sterance on & associated with the
differential 4-form fv on SaA_ZlR3 , £ =z 0 and v a volume element, we

mean the differential 4-form on § defined by " (fv)

Recall that for any four tangent vectors Xl,Xé,XB,X; inTQq ,
u
3
V) (X, XX, X ) (@) = fo¥(u) v(d¥ X ,d¥ X ,d¥ X ,d¥ X ] ,
where d¥' is the differential of Vat u e § .
u
Since ¥ is a submersion and v is nonvanishing, v is a
nonvanishing 4—fofm on % .

The following result is the motivation for our discussion of

integration.

19. PROPOSTION. Let R be a smooth 4-dimensional submanifold of
SM that satisfies the conditions in Corollary 8. Let D be a locally

measurable subset of Rrwith D c SM¥1—1(m) and with ¥ one—io—one on D.
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Then DnZ has measure zero in R and

J’ I (fo)] = J'fv .
D ¥(D) '
Proof. By Definition 16 jfv = jf—v . In addition, the
3
¥(D) ) ‘I’(D)F\SBA_jR

unit tangent bundle S(84-Z) has measure zero in the manifold SaA—ZRS .

Hence, J' fr = f fv . Since Z = ¢! (ser3 U S(84-2)
3
V(D) W(D)nSaA_ZR -S(8A4-2Z) )
by Theorem 8, it suffices to show J IW*(fv)I = j fv . This
D-Z ¥(D-Z)

follows essentially from the standard change of variable argument,
since ¥ is a smooth map on D-Z . Briefly, the set where ¥ (fv) = 0 on
D-Z (that 1is, where the 4-form W*(fv) annihilates the four basis
vectors of the tangent space of D-Z, or, equivalently, where d¥ does
not have full rank on the tangent space of D-Z) has image under ¥ of
measure zero by Sard’s theorem. Thus, we can neglect this set and its
image in ¥(D). Then, when choosing a cover of the remaining open set
in D-Z by neighborhoods Ui of charts {UV}H}’ we may choose U.l and hi
such that \I/ohi_1 is one-to-one, nonsingular, and ,W°h;1(ui) is the
coordinate neighborhoods of a positively oriented chart. This has

reduced the problem to the change of variables case for R®. ]

The requirement that the set D satisfy the requirements of
Corollary 9 can be dropped. It will be seen later that W%(fv) = 0 on

the subset of D-Z where the requirements fail. Thus the image of this
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subset has measure zero in ¥(D).

The relationship in Proposition 19 is the basis for our elementary
model for the physical process of measuring therenergy "detected" at
the subset D due to some "emission density" fv on’SaA_ZIR3 . In this
model there is no time variable: all the objécts are assumed
stationary and fv has no time dependence.- To signify this situation we
shall say that the sterance is statiocnary. However, we are free to
move about in SM . The measuring of energy at D corresponds to the
physical process of integrating the power at D over a fixed time

interval. The measured value is I Iw*(fv)l . In applications the
' D
value f IW*(fv)I is used to estimate the 4-form W*(fv) at some u € D .
D

To estimate W*(fu) on all of the receptor submanifold R there is

typically a covering of R by sets DJ, j=1,..., and the values
J IW*(fv)I are used to estimate W*(fv) at some uj € Dj . In the next
D

J
secticn it will become clear why a single measurement suffices to

estimate this vector (4-form) 'in a five dimensional vector space
(A*(T"sm)).

The requirement to exclude 1t (=) is a nuisance. To eliminate
this requirement we shall use the fact that the compact set consisting
of the union of all cbjects A is contained in a sufficiently large open
ball B. The exterior of B, that is, R-B, is added to the set of all

objects. Then, since a[A V) Ra—B) = 38A v 8B , this new boundary -is once

again compact. Empty space M is then reduced to MnB . It is easy to



1.1 Objects,iHausdorff measure, smooth almost everywhere 37

see from the definition of T that with this augmented set of objects
fd(m) nMnB=g@ , for the geodesics cannot escape B. Finally, we

assume that fvr 1is redefined so that its domain is increased to

3
S(a4-2)ua

To conclude this section we now formulate thé problem that will be
the subject of the remainder of this éhaptér.

Define, for me M (i.e., for m € MnB),

G(m) = { 7u(—t) | ue SmR3 , t € [0,7(u)) }. _

That is, G(m) is the subset of M that can be reached from m by
geodesics.

PROBLEM. When is G(m) uniquely determined by the germ of the
differential form ¥ (fv) at m ?

That is, if we know W*(fv) throughout a small neighborhood U in
SM, m € U, then what can be said about G(m), in particular, what can be
said about- the boundary of G(m}? In this problem statement we have
been extremely generous in comparison to what is usually assumed to be
known in various depth vision problems. We briefly list what would be
given in the three standard methods. In ﬁotion stereo with observer
motion it would be assumed that ¥ (fv) is known along 7 N(«(I)), where
n is the projection m:SM —— M amd «(I} is the path of a curve
al — H . In binocular stereo it would be assumed that ¥ (fv) is
known at nnl(ml) and at n—l(mz), where m, and m, are two distinct
peints in M. Ana"in accommodation (depth from foéus), it would be

assumed that a 2-form is known along a path in M, where the 2-form is
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obtained by integrating the 4-form over a neighborhood in eéch fiber.
It is clear, then, that the solutions we find to the problem in
which W*(fu) is known over a neighborhood must be solutions to any of

the three standard methods.
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1.2 NONUNIQUENESS IN GENERAL

The first part of this secgion is devoted to checking that the
preceding definitions and results are adequate to prove several
elementary items. Witﬁ these items it is shown that even if W*(fu) is
given on a neighborhood about a point u € SM, then G(m), the image of

geodesic paths in M from m, 1is not uhigquely determined. In this

1

section the convention is continued that v (w) = @ and that M = MnB

for some open ball B.

Since 8A - Z is a submanifold of Ra, it has a normal bundlé which
is a subbundle of TBA—ZR3 . Since 84 - Z has codimension one and is
orientable, it has a unit normal vector field N. The field N may be
viewed as a section of the bundle SBA—ZRS . We shall use the bracket
<,> to denote the standard Riemannian metric tensor (that 1is, the
standard inner product of R3 applied to TPRS , P € R3, identified with
R° by the natural isomorphism). The corresponding norm is denoted

‘ 1/2
hvll = <v,v> " ",

20. LEMMA. Let N be a unit normal field on dA - Z. Then

<¥(u), (Nemo¥)(u)}> 0, ueSM~-2Z.

Proof. From Theorem 8 and the definition of ¥ = plo¢ it follows
-1 ' -1 3 .
that Z > WV (S(84-2)). Hence, SM-Z < V¥ CSBA—ZR - S(BA—Z)J, which

inplies ¥(SM-Z) c Sy, R - S(84-2). "
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The following definitions are standard ones. Let sl,sz,s3 denote
the standard coordinate functions of Ra; that is, s&(al,az,as) = ai.

Let H, denote the volume element My = dslAdszAds3 of RS.

To similarly express a volume element for SR® we shall wuse

interior multiplication and a volume element for TR®. In particular,

for TRS the SO called natural coordinate functions are
= o = i= 3 i

X ’Xz'xs’y1’y2’y3’ where xi s1 n and )q dsi , 1=1,2,3, with m the

natural projection of TRS. A volume form for TRS is then MAR, where
W
“1 = dxlAdxaAdx3 =T, and B, = dylAdyzAdy3 .

A vector in T(TRS) is called vertical if it lies in the span of

—Q—, —g—, —é~, and it is called horizontal if it lies in the span of
dy 3y 8y
1 2 3
3 3 3 . 3 .
+—— m-— 7= . Let the metric tencor for TR~ be defined by
dx > 8x’ 8x
1 2 3
a a o 3 3
<—\)—> = < —_—D = e > =
dy '8y, 8x ’'8x . 8s ’3s 61J’
i j i j i j
a a .
-~ oo ———> = =
: and 3y 3% o, i, j=1,2,3.

Then HAK, is a volume element.
Let F denote the vertical vector field

, V € TRS.

e
Yily

F(v) = z yi(v)g——
i
Note that if livll = 1 , that is, v € SRB, then IIF(v)Il =1
A p-form (as an alternating multilinear map) is said to be

vertical (horizontal) if it vanishes whenever any of the p vectors in

the afgument is horizontal (vertical). Thus dx1 and B are horizontal
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forms, dxlAdy1 is neither horizontal nor vertical.

Let the interior multiplication of a p-form w by a vector field X

be denoted by Xjw . That is, Xjw(X ,...,X ) = (XX ,...,X ). It

1 p-1 1 p-1
follows that F]uz is a vertical 2-form on TR . If the inclusion of
3 . 3, . 3 3 * . .
SR™ in TR™ is denoted by t:SR™ <— TR , then (Fjuz) is a vertical
2-form oh SR3 and f*ul is a horizontal 3-form on SR°. It is
straightforward, then, that
* > *
po=tpat (FJuz) = t (—FJ(uIAuz))

is a volume element for SR°.

In a similar fashion the vclume element v for SaA—ZRS can be
expressed in terms of vertical and horizontal forms. As above, the
inclusion maps are used to pull back appropriate forms. For example,
let 6 be the bundle inclusion map

3 3
B'TBA—ZR — TR ,
and similarly (the subscript 1 to distinguish the unit vector bundle)
3 3
el.SaA_ZR —— SR .
Let ©° denote the adjoint of 8 (e.g., (thxi)(X) = dxi(GX), X e
TaA_ZR3). Let N be the previously defined unit normal vector field on
8A - Z. Then Njetpo is a volume element for 384 - Z, where, as before,
we suppress the inclusions T(84 - Z) in TaA—ZR3 and S(84 - Z) in
3 . s 3 o t
SBA—ZR . With n the projection H'SBA—ZR —> 04 zZ, v, = @ (NJG uo)
. . 3 . . * ¥
is a horizontal 2-form on SBA—ZR . A vertical 2-form is 91t (FJpz)
From the definition of N: F,. By and “2 it follows that, up to.sign,

T * W
v = v A0 (Fjuz)
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.There is one additional 4-form that is needed. Let E denote the

horizontal vector field on TR® defined by

E:TR® — T(TRY) ,

a
5w = [ 5,z
ilv
7 i
Then E_Iu1 is a horizontal 2-form on TR® , (EJul)A(FJuz) is a 4-form,
and, with the inclusion :SR° < TR’ ,
— * 3 — 3
o=t ((EJul)A(F]uz)) is a 4-form on SR".
The following simple calculation shows o = f*[(EAF)J(plAﬂz)]
3
EJ(ulA(F]uz)] = (Ejul)A(FJuz) + (-1) ulA[EJ(FJuz)] ,
while the last term vanishes since u2 is vertical; by the same
reasoning
- — 3 .
FJ(}J-IMJZ) = 0 + (-1) ulA(FJuz) ;
hence
(EJul)A(FJuz) = —EJ[F](plAuz)] ,
and the right hand side is (EAF)J(]J.lA;lz).
The results we seek for SR3 depend, of course, on the structure of
TRB . The following result is elementary, but it provides a technical
relationship between SRS and TR® that will be used repeatedly in

proofs. Recall the definition of y (u) = y(u,t) = ¥ (t) for u e SR>,

t € R, and where Wu is the geodesic determined by u .

21. LEMMA.

i. The horizontal vector field E:TR° —> T(TR®) is complete and

the one parameter group of diffeomorphisms ¢t, t € R, of E is the
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geodesic phase flow; ¢t(v) = &v(t) , LeR, ve TRB.
ii. Let t:SlR3 s TR3 be the inclusion map, hence Eof is the

restriction of E to SRS. Then there is a vector field E1 on SRS such

that dt E1 = Eot . The one parameter group of diffeomorphisms of E1 is
wt, that is, ¢t restricted to SRs., In summary, the following diagram

commutes.

sk —2 . T(1R%)

Proof. For fixed v € TR® the images of v and E(v) € T(TR®) under
the standard coordinate functions are
v — (x ,x ,x,¥ J(v) € R® x R°
1 X X Y Y0 ¥y ’
Z 7
EW) r— ((x,x,x,y,y,y)(v) , (y,y,y)(v) , (0,0,0))
e (RARDx(R*<R)
hence ¢t(V)F——9 (x1+ty1,x2+ty2,x3+ty3,y1,y2,y3)(v; . On the other hand
7u(t) — (xl+ty1,x2fty2,x3+ty3) , hence 7u(t) = ¢t(v) . This proves
i., while ii. follows from the coordinate representations and the fact

that v € SR° if and only if I yi(v)z =1 . -
i

With this lemma we can <now_ say something about the 4-form

o = t*((EAF)J(u1Apé)) defined evefywhere on SR® and about the 4-form
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v*(fv) (sterance) defined on SM-Z. In the following we do not require

that M = MnB for some open ball B.

22. PROPOSITION.
i. wt*o =0, teR.
ii. Fix u € SM . For every t € (—T(—ul),r(ul)]
a) there exists a neighborhood Ut about u, such that for all
uelU , t(u) = o if and only if r(wt(u)) = o ;
b) if T(ul) # o and u ¢ Z, then there exists a neighborhobd
Ut about v, such that for all u € Ut W(yt(u)) = ¥(u) ; in particular,

3
for any p-form v on SBA—ZR ,

wt*[w*v) = ¥y almost everywhere on Ut‘

Proof. From the diagram of Lemma 21
* * * *
goo= Y ((EAF)J(ulAuz)) =1t¢, ((EAF)J(ulAuz))
Let X ,X,X_,X, be vector fields on TR® . Then
. L3
¢t ((EAF]J(ulAuz))(XI,XZ,XS,X4) =
wap (E F,dg X ,dp X ,dp X, dX).

But d¢tE = E since ¢t is the one parameter group of diffeomorphisms for

E. Moreover, from the standard coordinates, the matrix for d<,‘>t is

I t1
ldg 1 =
0 Iy

where I is the 3x3 identity matrix. Thus d¢tF = tE + F. Hence F =
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d¢tF - tE = d¢tE - td¢tE , consequently EAF = d¢t(EAF). Therefore
ulAuz(E,F,d¢tX1,d¢tXé.d¢tX5,d¢tX;)

*
- ¢t. (“1/\“’2)(E’F’XI'XZ’X3’X4)'

* 3 k3
But ¢t (HIAMZ) = det[d¢t]u1Au2 (plAuz) . This proves i.

For ii., for t € R, u € SRS, then if u € SM and if t e

[—r(—u),r(u)), it follows from the definition of T that wt(u) € SM and

Ty (u)) =t + (u) . (%)
The result follows since T (@) is open by Corollary 7. If r(ul) £ o
and u ¢ Z, then u, is in the open set § = SM—fd(m)—Z, as is each

wt(ul), t (—r(-ul),T(ul)}. Then

d

¥y () € y(y, (), -ty ()

L% glu, tly ()] 2 i, -Tw)) = ww)

The followipg result completes the story on the relationship
betweeﬁ the two 4-forms. Here we readopt the convention that
v (w) = . Since o is defined on SR° while ¥'v is defined only on
-SM-Z, we use the inclusion j:SM-Z —— SR to help keep things sorted

out.
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23. THEOREM. There exists a function h:SM-Z — R such that
v'v = hj'e .
In particular, for u € SM-Z, h(u) = <¥(u) , (Nono\ll)(u))_1 , where N is

the unit normal field on 84 - Z.

Proof. The following diagram summarizes the notation.

TisH-7) — 3 rsr® —H 5 1(R®)

| Al e

sM-z —d SK° ——~——i————9 TR®

w 'l s
S l 3 81 ) { :
84-2%

SR> ——— 5 TR’
The vector field E; on the open submanifold SM-Z of SR° is induced by

the inclusion j . We claim
dW(E;) =0 .

For consider any function f on SaA_ZR3 . By Lemma 21, for u € SM-Z,

s _— 4 a— d
(@¥(ED (O} (W) = (E](fe1))(u) = (-ﬁ{t:o(fowwt(u)) :

But by Proposition 22 W(wt(u) = Y(u) for all t in some small
neighborhcod about t=0, hence the claim.

- It follows from the claim that E;J(W*v) = 0. Locally consider any
1-form e’ such that e*(E;) # 0. Then E;J(e*AW*v) = e*(E;)W*v . Since
W*u is a nonvanishing 4-form, e*Aw*v is a nonvanishing 5-form on SM-Z,
hence there exists a nonvanishing function k“ on SM-Z for which

e Aty = kj*u , where u 1is the volume form'l*(F](ulAuz)) on SR°.

Collecting nonvanishing functions, we have that globally there exists
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h:SM-Z —> R such that ¥'v = hE;Jj*u .  From the diagram above, from
the expression for p, and from the definition of ¢, it follows that
’ * KR R
Y v = hjt [(EAF)J(ulAHZ)] = hjo.
To evaluate h, fix u € SM-Z and let to = t(uo). Choose U c SM-Z
R 3 .
and pl(V) x I ¢ SBA—ZR x R such -that u e U and on U the map & is a

diffeomorphism onto pl(V) x I . Thus to € I . The map w; is defined

by the following commuting diagram.

SM-Z > U J SR®
o \o !
v 4 , ¥
t, pl(L)xI > p1(V)X{to} t,
3v / 61 3
SaA—ZR > pl(V) > SR

Hence Wow; = id|
0

L oNK - JURN P
v = @[;to] (hj o) = h l,llto(!/lto 91) o

b (V) and locally EW: ]*W*v = p . Consequently,
1 0

hoy’ 87y o = hoy’ 8 (%)
W, O, 0= heyl 80, *
_ 0 0 0
where the last equation is by Propostion 22. Since
* * * ¥
6 o =06t (EJ“x) A (FJ“z) ,
* t * *
v = mu (N|e H A6 t (F]uz) ,
it suffice to compare Glﬂ*(EJul) and n*(NJGtuO) . Let X1 and Xé be
any vector fields on S ZR3 such that v = dnX, and v_ = drnX are
JdA- 1 1 2 2

orthonormal at W(uo). From the diagram and the definitions, at W(uo)

n*(NJBtuo)(Xl,Xé) =1 .
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On the other hand, since “1 = n*po and drn(E) = identity,
* ¥ R
6 t (EJu)(X,X) = n (te6 ,v,v)
(1 is the volume element of Rs,foe is the inclusion S ZRSC—e TRg)
0 1 8A-
Use these last two results to evaluate (%) at W(uo), noting that
wtO(W(uo)) = u, , and 1 = h(uo) pO[W(uO),vi,VZJ =

h(u )<¥(u ), NomeW(u )> . .
o} o} 0
Hereafter we shall assume that the function f that appears in the
. . 3
4-form fv is a smooth function on SBA—ZR .

The following theorem is the nonuniqueness result.

m (m the projection SK>—s

24. THEOREM. Let u e SM-Z, m(u )
R), and let bm be a ball centered at m such that b < M . Let
m
U=1'(b )n[SM—Z]. Let {wt | t € R} be the one parameter group of
m

diffeomorphisms of the vector field E on SR°.  Then & = U v (U) is

teR
open in SR3 and
i. There exists a smooth function g:& — R such that, in terms
of the following inclusion maps
. , 3
1U.U — &, 18.8 —> SR™
iU — SM-Z jiSM-Z — SR°

gig*c is a differential 4-form on & for which
R =,¥_*
7 Jy ¥ (fv) i, (g18 o),
where V¥:SM-Z —» SaA_Z[R3 is defined for a fixed choicg of a set of

objects {4}, A=U4A .
J Sy
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ii. Let B be any open ball centered at m such that b ¢ Bm . Let
m . m

3

1
vB be the volume element of Sa(m3—3 )R
m

Let the single set R°-B
m

constitute a second choice for a set of objects {A;} = {R°-B},
m
A’ =R -B , 8A" = 8(R3—B = 8B . Let v, be the volume element of
m m

S R™. Let \IlB:SBm —> SaB RB be the map for this set of objects that

m m

corresponds to ¥ above. Let jUB be the inclusion U “—— SB. Then
m

there exists a smooth function fB:S RB —> R such that

8B
m
R I L Rk P P
Jyg CWB(vaB)] = Jy ¥ (fv) = iy (gl8 o)
b . . fod = i o
Proof: By Theorem 23 and since Jedy igody
. K% _ ola i . C oo %
Jy ¥ (fv) = (fo¥ JU) (hoJU) (18 1U) o . (%)

Define g:6 —> R by
gy, (W) = (fe¥ej )W) (hoj)w) foralluel.
That this definition does not depend on the choice of u and t in wt(u)
follows from the facts a) if u , u e U, ¢ (u) =y (v), then u =
1 2 £, 1 t 2 1
wt . (uz) ; b) Wowt = ¥ as in Propostion 22; «¢) hol,ltt = h by the
2 1 7
formula for h in Theorem 23; and w(U) is a ball (convex) contained in
M. If we restrict g to U we have
goly = (f°w°ju) (h°juJ ’

and this used in (%) proves i.

To prove ii. first note that WB is regular on all of SBm. That

is, the set ZB for Rs—Bm that corresponds to Z for {AJ) is empty, for

8B is smooth everywhere and \P:(S(BBm)) = . Thus n—l(bm) c SB,
m B m
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hence U ¢ SB and the inclusion jUB is well defined. Define fB to be
m

zero on V¥ (2). It follows from Corollary 9 (to Theorem 8) that

*s°Jun

this set has measure zero in SaB R3  Otherwise define

m

[foWojU)(u) (hOjU)(u)
(u) = - )
(hBoJUB)Fu)

where hB is given by an-application of Theorem 23 and U%ojUB](u) * 0

fBOWBOJUB

by Lemma 20.
. . ) B VR
From i. for the object {Aj} we have Jy ¥ (fv) = 1y (glg o) and

gy, (W) = (fe¥ej)(u) (hojy)(u)

*

. . . 3 A o, * .
Repeating this for the object R Bm we have Jus WB (vaB) = I (gB18 o)
and

gB@wt(u)] = (fBoWBoJUB](u) [hBoJUB}(u)
But this implies g = gB , hence the result. ]

Theorem 24 says that the objects are, in effect, irrelevant. The
4-form W*(fv) could equally as well have been defined almost everywhere
by using the boundary of a sufficiently large ball. The following
immediate corollaries summarize more precisely some observations about

Theorem 24.

25. COROLLARIES TO THEOREM 24.

(1) A function g defined on U < SM-Z such that gowt is
- . _ - d _ ) .
differentiable a t = 0 and a?-tzo(g wt)(u) = 0 for all u € U determines

a function g on &(U) = U wL(U). hence a 4-form on &, gig*a.
. teR
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(2) For g as in (1) and for a ball B € R° such that @ (B) > U,

. 3 ' N L o , %
there exists fs’SaB R™ — R such that Jyp WB (vaB) = i, (gglg o).

m
(3) The choice of the ball (the extra object) that made

T Hw) = o is arbitrary.

(4) Let the subscripts 1 and 2 be used to distinguish quantities
associated with two different sets of objects, both with T—l(m) = g for

convenience. Then, for every U such that

2+ U< n_l(bm) n (SM1-21] n [Sﬂz_zz] ,

b a ball, for every 4-form f v on S RB , there exists a 4-form
m 11 3/11—21

. 3

f2v2 on SBA _z R™ such that
2 T2

* % R 2V . * , ¥

1 Wl (f1V1) = _]U.2 Wz (fzuz) = iy (gsl8 o)

Jy
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1.3 A LAMBERTIAN SUBMERSION

In the last section we saw that any given W*(fv) on a neighborhood
could arise, up to a set of measure zéro, from essentially any set of
objects. This result depended essentially on the fact that gjg*o
coincides with the extension to & of W*(fv) determined by wt, t € R.
The 4-form W*(fu) depends explicitly on an assumed set of objects while
gig*v does not. In this section we shift our attention to gig*v .

We begin by assuming we are given an open set W < SR that
satisfies the following conditions. Let E1 be the previously defined
horizontal field on SR> and let {wt}tem be the one parameter group of
diffeomorphisms of El. (Recall wt(u) = iu(t) for u € SR°.) We require
that W be convex with respect to {¢;}= if u € W and if for some t’ € R
wt,(u) € W, then, for all t € [0,t’], wt(u) € W. (We can equivalently
require that, for every u € W, (&u)_l(W) is connected. )

Further, we are given a closed set Z c S[R3 of measure zero which
satisfies, for UJ = W-Z,

VN {%u(t) luelU, t e R} c U .

Inraddition we require that for every m € n(W), n_l(m)anZ hasrmeasure
zero as a subset of the submanifold m  (m).

As discussed in Section 2, the action of wt generates sets for
which the features above are preserved.

gw) =U w (W),
teR
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gw) = U v (W) = €&,
teR '

g(z) = U n//t(Z)
“teR

In addition to W,‘U, and Z we are given a map gIU:U —> R . That
is, glU is defined almost everywhere in W. Further, for each t such
that wt is a local diffeomorphism from an open subset of U into U,

* . R . oo
gIUogl;t = wt gIU, = glU . As in Section 2, gIU then has a unique
extension to &(U} which is invariant under wt* for all t € R and which

coincides with glU on U. We denote the extension by g.

As in Section 2, with such a U, %, and g we define a 4-form by

3 % o
i, (g18 o) , o=t ((EAF)J(ulApz)) ,
with the inclusion maps
.iU:U > & = &(U) , 1'8: & <—>S1R3 ,

t: SR> > TR’ .
And gi_ o is a 4-form on & with ¢y (gi, o) = gi, o, t e R .
& t & &

We assume g is smooth on U.

We can prove that both o and gig*o are closed. We omit the proof
for we have no need for the result. This result is the key element in
the classical discussions of the energy entering and leaving a
neighborhood.

For the next several definitions we assume once again a fixed set

* R , W ¥ .
of objects. Suppose iU (g18 o) = Jy v (fv) , with fv a 4-form on
3 ) X . . 3 3
SaA-ZR .  Let n»denote the projection n.SaA_ZR — 84 - Z. Further,

suppose that for every p € 3A - Z the function g is constgni on

(re%) X(p) = {u € SM | (meW)(u) = p} = {u € SK | ¥(u) € w ' (p)}
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From Section 2 glu) = fo¥(u) <¥(u) , (Nomo¥)(u)>"" , hence, if g is
constant on (mo¥) '(p), then for all v e nnl(b)

f(v) = constant <v , N;> ,
Np the normal wvector at p € 8A - Z . This expression for f is the
usual Lambertian condition for the function f . In optics it is often

referred to as Lambert’s cosine law (Meyer—-Arendt 1984).

26. DEFINITION. The function f:SaA_ZIR3 —_ R+ is Lambertian if
there exists a function f :8A-Z —> R such that for every v € S ZRS
0 + a4~

flv) = fo(n(v)) <v , N(n(v))>. The 4-form fr , v a volume element for

3 . . L
SBA—ZR , 1s said to be a Lambertian form.
The following propositions are immediate.

27. PROPOSITION. The 4-form gig*o arises from a Lambertian form
3 X . -1, -1
fv on SBA—ZR if and only if g is constant on ¥ @r (p)] for every

p € 8A-Z .

28. PROPOSITION. If gig*w arises from a Lambertian form fv on
3 . 3 a . . . . .
SaA—ZR , if el.SaA_ZR C— SR is the inclusion map, and if V1 is the
vertical projection of T SR® to its vertical subspace (the subspace
v
tangent to the fiber at v), then [dgon)v = 0 for every v e
3 . 3
Gl(SaA_ZR ) n €(U) . Here we view &(U) as an open subset of SR so

that dgon is a section in T (SR®) over &(U)
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Recall from Theorem 24 that even if gig*a arises from a Lambertian
form then it is still the case that for any ball B such that U c¢ n—l(B)
there exists a form fv_ on S_.R° with i *(gi o) = Jj W (f v ),

B B 8B U &€ UB'B "B B
jUB:U (—-5 SB . However, for p = HCWBLjUB(U))), £ may not be constant
on CWBojUB]—l(n—l(p)). »

From Theorem 24 and the -above discussion it follows that on
& = §(U) it is sufficient to consider the function g . Let 91 be the
inclusicen el’SaA—ZRS s SR>, We know from Theorem 24 that for a
function g with the properties above a codimension one submanifold
91[SBA—ZR3] N & of € exists, but not uniquely, such that iU*[gig*oj =
jU*[W¥(fv)). The remainder of this section is devoted to choosing a
codimension one submanifold in &.

We shall say that g is degenerate on a neighborhood U < SR> if g
is constant on U. If g is degenerate on U, then it is clear that g is
degenerate on & = &(U). For example, as in Theorem 24, a degenerate g
can arise from fB defined on SaBRS, B a ball, B > n(U), by

f (v) =.constant <v , (Nem)(v)> , v €S R°
B dB

and N a unit normal field for JB. In addition, as in the corollaries
to Theorem 24 (Corollaries 25), the same degenerate g can arise from
any choice for a set of objects with f having the same definition as
fB . Moreover, for all of these choices f is Lambertian. Hehce, if g
is degenérate on U, then the condition that— f- be Lambertian is

satisfied trivially. Consequently, we shall exclude the case of g
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degenerate on U in the remainder of this section.

Although we do not develop it here, we think the degenerate case
is extremely important. This éase is useful for “filling in" choices
of submanifolds: if g is degenerate on U but ¥ is specifed on the
boundary of U; then a choice for ¥ (that is, for SaAR3) on U can be
based on variational methods such as minimal surfaces.

If g is nondegenerate we shall use the following tools to choose =a
codimension one submanifold in 6.

et w be the fundamental form of TRa. That 1is, for si the
standard coordinate functions for Rs, x1 = sion, yi=dxi, i=1,2,3,

w = z y1 dxl
i
Let
Q=dw = z ayi A dxi
i
Recall (Sternberg 1983, Ch.3 sec.7) that Q is a nondegenerate 2-form
and consequently provides a one-to-one correspondence &y Xa v oy €
* 3 3 .
T (TR™), Xa € T(TR”), defined by
o, = XaJQ .

We define the horizontal and vertical projections by

H:T(TR®) — T(TR®) V:T(TR®) — T(TR®)
8+ _ 8 8 _
Ax) = ax; Vs = ©
H _é_) = 0 V_jig = _Q,
Y, , Y, 6yi )

Note that H[T(TRS)] and VCT(TRS)) are orthogonal complements of T(TR°).
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As in the last section we use the inclusion map to pull Vback
objects from T(TR®) to T(SR®). Since the inclusion map t:SR° — TR®
is a one-to-one immersion, the differential dif and the projections H
. and V determine projections H1’ V1:T(S[R3) — T(SR®) such that

dtoH1 = Hodt and dton = Veodt .
By an abuce of notation we do not distinguish between T[R3 and SlRa-with
regard to the coordinates X, = S om.

We shall use the following notation for vector fields. If X is a
vector field, if f is a function, and if ¢ is a diffeomorphism, then Xu :
is a vector at the point u while X(f) is the function defined by X
acting of f. In particular (dd)oX)u = (d¢X)u = d¢, [del(u))’ where we

use d¢oX interchangeably with d¢X .

29. LeMMmA. The map T(SR®) -—> T (SR’) defined by ¥ +—— YJi*Q

provides an isomorphism VlT(SR3) s {xr e HlT*(sms) | AE) = o} . In
particular, for g defined on & = &(U) < SR’ as above there exists a
unique vector field ngoHl‘qn €& such that
: VltxngHl) - ngoyl’
,Olggen ) = 0
and

*
dgoH1 = xdg°H1J Q.



58 1.3 A Lamberiian submersion

Proof. Recall di E = Eof and E = ) vy . If Y e vT(SRY,
) ] 1 10x 1 u
i
then 0 = <dat Y , F» = z dy (diy ) y () .  But Z dy (dty ) y (i) =
i i
z dy (diY ) dx (E(tu)) = (dtY | Q)(dt E). Since Q is nondegenerate,
i u i u 1
i
the image of V1T (SR®) under Y r— dty |Q is a 2~dimensional subspace
u . - u

of HT};(TR3) which is contained in the 2-dimensional subspace {A €

HT(TR’) | A(E
17 fu

fu) = 0} . Hence these two subspaces coincide. Since

di is an isomorphism of ng}sma) to HTRJTRSL *H is injective, and
the result follows by consideringt*[dﬂL ] 9.
The second part follows from dgoHl(El) = dg(Ei) = 52 g[w (u)) =

02 (4 )——

0 . In particular, di(X T a3y,
1

|
dgoHl)'tu i

= l'"’l

If dgoH1 does not vanish on a neighborhood, then the vertical

vector field X does not vanish on a neighborhood. With this

dgoH1

vertical field we can test dgoV{

30. LEMMA. Hlodz,l)toH1 = dl//toH1 , that is dl/}toH1 is horizontal; in

particular

W (ax

w (u)

Proof: For i:SR3 <~—» TRS the inclusion, apply-dt to the left

hand side of the statement,
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dtoHlodt//toH1 = Hodtodz,l;toHl = }Iwi.qb';ocitoH1 = Hodq&toHodf ,
and to the rightﬂ hand side,
dtodz/;toHl = d¢>toH0d1 .
From Section 2 the matrix for d¢>t in standard coordinates is
I t1
0 I

_ 3
) T 38x.
1

Thus, dg, [(%
i

s where {a—i— } is a basis for
¢t.(u) ilu

H[Tu(T[Rs)]. Hence, d¢ oHedt = Hoedg oHodt , which suffices to prove the

result. n

31, LEMMA. [:t[/:(dgoHl))OHl = dgeH, . In particular, if dgoH = O

on an open set U, then dgoH1 # 0 on &(U).

Proof. For u € &

. (*)
(iamenyen ), = @on)y sl on), =ty s len),

(
t

= [alew) o), = (en), .

where (%) is by the preceding Lemma. ]

*
32. LEMMA. Q = $.Q .

Proof. For'u € & -

X * ’ o
: (¢tQ]u = (¢t Zd"x A dyi]u = Z d(xx°¢t)u A d(y1°¢t)u '

i i
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From the matrix for ciqSt in the standard coordinates,

d(xioqbt)uA = (ax + tdy ], .
d(y1°¢t)u - [dyiJu ’
hence the resﬁlt. =
33. LEMMA. Vlod',ll_to)(dch1 = X(l//:(dg°H1))°H1 More generally,

if « is a horizontal 1-form such that oc(EI) = 0, then Vlodyb_toxa =

X * .
[:l,l/t(oc))ol‘{1
Proof. For brevity let X = ngoH . Thus, for u € &
1
* * *
[(l/}t(dgolll))olll]u = [v,bt (th Q)]oH1 .

- (Xlllt(u)‘l“ Q)kl/t(u))o(dwt.OHl]u

- ((dtx)wt(u)_lﬂtwt(u)]o(dtod!l}toHl]u
(apply W, = 6.1, $.2 = Q)
= [(diX)¢t(,(u))J [¢tt_Q)¢t(f(u))) ° (d¢t°dt°H1)“
= [d‘p-t(diX)qst(t(u))J Qi(u)JO(dtOHl]“
= (v (@ x) 19 ) (atd ],

[[(dw_txut*sz]oﬂl]u = [vl[dw_tx]Jt*Q]u. .

34. PROPOSITION. [ng°H1 =V, [dwt (ngoﬂlju] , ue€eg.

]wt(u)
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Proof. Note that in Lemma 31 t is arbitrary. Hence,
{VlodwtoxdgoHJu - [X(!/l_:(dg°H1))°Hl]u - (ngoHl]u’

where the first equality is by Lemma 33 and the last equality is by

Lemma 31. Replace u by tjlt(u). _ n
~ oH oddl o - -1 -1,
35.  LEMMA. dg H1 dtllt V1 tm (ng°H1) ., where m is the
isomorphism from T & to T*6 defined by (m'l(}’ )](X ) = <Y ,X > for
u u u u u u

vectors X and Y .
u u

Proof. Use the injection dt. dtoHlodt,bton = Hodd)toVodf . But
X a _ 3 3
[Hoa¢t] (@—‘ ) = t % , consequently, for any X e Tu(SfR ),
i'u i ¢t(u)
[dtoH1 odwtovl) (x ) = (Hod(ﬁtov] (dix )
=Hod¢rvdy(dix)i) = t‘zdwax)i
el L i u’ dy. i u’ dx
. ilu ) it (u)
i i L
Thus (:H ody) oV ](X ) =t Zdy (dtx ) —a—l
ST t 1 u i u’ 8x.
i ’ wt(u)

_ a
= t ) dy (dix)) dwt(ﬁluj .

i u)} ]

where the last equation is by Lemma 30. Since dg[dwt(gg—
i

a

it follows that

) = dyi (dfxdgoH )u ’
u 1

N

| dg[[Hl"dwt"Vl)(xu)J = t < xu s (ngolll)u > . ]
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36. PROPOSITION.

dg[(Hlod}bton) [ng°H1)ws(u)] = t< xdgoh,1 , ngoyl >(y_(u))

= t < ngoH1 , ng°H1 >(u)

Proof'. The first equation is by Lemma 35. For the second
equation use Lemmas 23 and 30: < ngoH1 , xdg°H1 >(y_(u)) =
ag 2 ag 12 ;
£ = = = >
) [le[ws(l"))] Y [ax‘(u)J < xdgoﬂi , ngoyl (u) . .
1
i i

Combining all of the above Lemmas we obtain our goal which is

contained in the next two theorems.

37. THEOREM.

X >(u)

Jlu) - < xdeHl. dgo,

(dg ngoﬂl)('/’t(”)) = (dg ngoHl

Proof. Edg ngoHl)(wt(U)) = dg¢t(U)(xdg°H1]¢t(U)
{apply Proposition 34)
dg'l't(U) (V1°d"'t°xdgoyl)g )

(add and subtract)
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- dg'l’t(u) (dwtoxdg"ﬁl)u B dgwt(U.) (Hiodwto dg°H1)U.

(gowt = g and Propostion 36)

(de ngoHl)(”) -t ngoHl’ ng°H1 >(u) .

38, THEOREM. On & ) {dgoH1 # O} the function (dg ngoHl):S —> R

has zero as a regular value, hence

&N {ég ngoH1= 0} is a submanifold of codimension one.

Proof. Let ws(u) € & .

(El(dg xdgoﬁi)}(ws(u)) = £

t=o[(dg ngoH1] (ws+t(u) )]

{apply Theorem 37)

d
dt t=°[(dg Xagon )W) = (S Xgpopy + Xagoy >(u)]

= - < ngoHl, ng°H1 >{u)

{(by Proposition 38)

= - <

Yagon * Xagen > (¥ (w) # 0.

(dg xdgo'Hl](u)
In particular, this holds for s = . ]
< ngoHl, ngoH1 >(u)

This theorem is the primary result of this chapfer. In the next

section we obtain a modification of this result. We conclude this
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secfion with some interpbetation of the theorem.

Of course, the idea behind the theorem is that g is given or known
on a neighborhood U in SRS. the that if g is given on a codimensioﬁ
one submanifold R that satisfies the conditions of Corollary 9, then
there is a unique way to extend'g to a neighborhood. In either case,

dg and Xa are then known on the neighborhood. Since g has a unique

gol,

extension to & = &(U), then dg and ngoH are known on &. The theorem
1

tells us that the set in & for which the function dg ngoH is zero is
1

a smooth submanifold. To obtain dg and ngoH it is necessary that g
1

be known on a neighborhood.

Since ngoH is a vertical vector field, the theorem tells us that
1

the set of points in € < SR3 on which dg annihilates this vertical
field is a smooth submanifold. If g arises from a Lambertian form on a
set of objects, then, as was discussed in the beginning of this
section, dg is horizontal on S,, JR° ¢ SR’, that is dgeV = 0. Recall
from the definitions of (& and)‘W that ¥(U) is the subset of SBA—ZRB
which determines g on U. Consequently, if g arises from a lLambertian

form, then ¥(U) < & {ag ngoH = 0} . It is an obvious corollary to
. 7 T

the theorems that for fixed u the path {wt(u) ‘ t € R} intersects

{dg ngOle O} at only one point. Hence ¥(U) = & n {dg ng°H1= O} .

A second -issue is the relationship between {ag ngoH = 0} and the
1

standard depth vision problems. As was briefly discussed in Section 1,
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since g is estimated from integrations, it is physically impossible to
determine g (similtaneously) on a neighborhood. (Even an approximation
requires a sequence of measufements.) For a fixed set of conditions,
the set of possible solutions for g given on, say, a nowhere dense set
is certainly larger than the set of solutions for g given on a

neighborhood. However, the solution {ég ngoH = O} is the only one
1

that is consistent throughout a neighborhood U with the assumption that
dgon = 0 on the solution set.

A third point is one regarding continuity. The only restriction
on g was sufficient differentiabilty and dgoH1 # 0. This certainly
suggests that the results here reformulated appropriately into a
problem in terms of function spaces and manifolds would constitute a
problem that was well posed.

The final point is how the submanifold is positioned in & c SR°.
Certainly, if g arises from a Lambertian form on SaA—ZRS’ then, as was

. - . 3 <
seen, Lhe solution {dg xdg°H1— O} is a subset of SBA—ZR . However, for

arbirary g, with only dgoHlio, there is no guarantee that

{dg-xdgoH = O} lies along fibers in S (For applications the
N :

interpretation is that the "apparent surface" changes position in R® as
the position of the observer changes.) This observation is of some
consequence. It says that for an arbitrary g, dgoH1 # 0, there is not
necessarilj a suffgce in R3 that is compatible with g throughout =a

neighborhood U. This certainly suggests that problems that are stated

soley in terms of surfaces in R® may be ill-posed.
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These remarks are made precise by the following corollary to

Theorem 38.

39. . COROLLARY. For m the projection n: SRS —s IRB, for m € w(U},

the submanifold 8m = &) [ Ul,[/t(n—l(m)]] intersects the
teR

submanifold {dg ng°H1= O} transversely in &(U). Hence 8m N

{dg X = O} is a 2-dimensional submanifold of & .
dgoH1 m

Proof. Note that, for every u € & , (E) € T E , whereas by
m 1/u u m
the proof of Theorem 38 [El)u ¢ Tu{dg ng0H1= o} . And {dg ng°H1= O}

is of codimension one. n

-

Thus each point m € n(U) has an Jassociated Z2-manifold in &(U).

When we say that {dg ngoH = 0} does not necessarily lie along fibers
1

we mean that for a choice of m € nw(U) it is not necessarily the case

3 B 1 _
that {dg ngoHl_ 0} = SR, where N = n[ € {dg ngoyl‘ o} ]

However, & is not R°. Rather, & -m '(m) = Uy [n-l(m)) - ' m)
m m t
teR
is a double covering of R>-{0}. (For x € [RS—{O}, the two points

x -x . 3 2 . )
(x,m) and [x,m) are in (R"-{0})xS".) The sign of (dg ng°H1](U) in

Theorem 37 determines whether {dg ngoH = 0} is "in front of m" of
: 1
"behind m." (Note that these two cases are analogous to the

distinction between real and virtual images in optics.)
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1.4 THE SPHERE BUNDLE OVER A CURVE

In this section we push a bit farther the results of the previous
section. In the last section we found that the Lambertian condition
determined a codimension one submanifold in the sphere bundle. In this
section we find that we can reduce the dimension of everything by one.

let a:] —> R be a curve with nonvanishing tangent vector a(s)
for all s € 1I. Since all Vconsiderations will be local, let I be
sufficiently small so that a(I) is a submanifold (a is a one to one
immersion and a homeomorphism into). Let Sa(I)Rs denote the
restriction of SR° to a(I). Let S(a(i)) denote the unit tangent bundle
of the manifold a(I) and consider S(a(I)) as a subset of Sa(I)RB'

We claim that for every u € Sa(I)Ra—S(a(I)) there exists a

R>-S(a(I)) about u such that U (V) is a

neighborhood V < S
al(l)
teR

submanifold of SR°. To see this, first note that U wt(V) = Y(VxR).
teR
{Recall wt(u) = y(u,t).) From the. proof of Theorem 8, yY:VxR —> SR® is

nonsingular if V S(alI)) = w. In particular, there exists a
neighborhood Vx(-2e,2¢) on which ¢ 1is nonsingular and one to one.
Shrink V if necessary so that nw(V) < Bc(n(u)), where m:SR° —> R° is
the bundle projection and Be(n(u)) is the ball of radius ¢ ébout n(u).

Then ¢ is one to one on VxR, for if wt(u1) = wt(uz) , with uo,ou, € v,
1 2

then Yy (u ) = u =y {u) , hence |t -t | < 2e , which contradicts
0 1 1 et 2 1 2

the fact that ¥ is one to one on Vx(-2¢,2¢).. Thus ¢ is a one to one
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immersion on VxR. It is also an open map since w:SR3xR ———),S[R3 is an

open map. Thus U wt(V) is a submanifold.
teR .

Recall the definitions of the open sets W and U of SR> defined in
the beginning of Section 3. In particular W is convex with respect to
{wt}’ Z = W—b has measure zero in SRB, and U is convex with respect to
(wt}. By the same type of argument as in Corollary 8, Z n V has

measure zero in Sa([)Rs. Let us shrink V by a set of measure zero so

that V. ¢ U = W - Z , so that we may assume as in Section 3 that g,
which is smooth on U, is thereby smooth on V . Let 81 = U wt(V) and
teR

define g on 81 as before.
With these preliminaries we proceed to refine Section 3 to find a

submersion on 81 determined by the Lambertian condition.

40. PROPOSITION. Let Y be a vertical vector field on &(U} such
that Y = VlodwtoY . Then the function dg Y satisfies

(dg Y)oy = dg ¥ -t <ngoH1 .Y

Proof. For u € 8(U)
(dg Y)(wt(U)) - dgwt(u)y¢t(u) - [dgonodthu o
(adding and subtracting)
- Gaenan), ¥, - @ehean), ¥,
{(apply Lemma 35)

= — > -
dgu Yu t <ng°H1 , ¥ a [
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let u € Sa(I)RB—S(a(I)) and let u € V, where V 1is open in

s \R-S(a(I)) and € = Uy (V) is a submanifold of SR’. Let X be

a(l) teR

‘the horizontal 1ift to T(SRS) of the tangent wvector to the curve a.

That 1is, X = z dx (é(s))-g— for every u € M als)). Let
u 1 Bxi u .
i
* 3 3 . * * N
mlzT (SR”) — T(SR”) be defined by dhnnot = m (recall t is
surjective), and let w = wedt . Recall dmn(wl) = m{w) = E = cﬂEl.
Thus, the 1-form nx_lfx - w (X J(E) ] annihilates E . Consequently,
1 u 1 u” 1 1

there exists a vertical vector field X, along a such that

B

-1 v _ . *
m [xu - w, (Au)(El)u] = (KBJt Q), -

If u e€ m'a(s)), then X, € T & , for by definition VT & =
B u'1 1Tu 1
sl 3 ~ . 4 3
Vllu(Sm ). Consequently, dthB € Iﬁt(U)gl . We claim the vertical

projection is tangent to 81
41, LEMMA. V od oXg € th(u)gl -

Proof. For m(u) = a(s), it is easy to check that

i'tu

. — . ’ 8
dt(XB)u = Z {dxi(a(s)) - [Lyj(fU) dxj(a(s))]yi(iu)}aT
i B ]

Then dtonodwtO(XB)u

. . a
= z [dxi(a(s)) - [ Z yJUu) dxj(a(s)))yiUu)]g—— ,
- ilg (tu)
t j 7 7 t
by thermatrix for d¢t . Clearly Vlodw*fVlodwt(XB)u is tangent to 81
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at ‘u e w (a(s)) since V.T§ = V.T (SR°). We clainm
17u 1 tu
(Hlodw_toviodwt](XB)u is in the span of (E1)u agd X, - This will
. a 8
suffice to prove the lemma. But H|d¢ &7_ = -t = , SO
-t 9y dx
i ¢t(tu) i Hu
+ Yo ; = - -
that H d¢_ (V dqﬁt)di(xs)u dt[ t (X, w(Xu)(El)u]] : .

42. THEOREM. Let the curve a:lI —> SR> determine a submanifold

a(I) in R> and a subbundle Sa(I)Rs—S(a(I)) in SR°. Let V <

R>-S(a(I)) be sufficiently small so that 81 = U wt(V) is a

Satn) teR

submanifold of SR®. A vertical vector field XB along V is defined by

m (X - w(X)(E)) = (X]t"2) , ueV, X the horizontal lift of
1 u 1 u 1'u B u

a . The vertical vector field %B = Vldwtx along 81 is tangent to €1

B

The function dg X_ on 81 satisfies

B

(dg Xg)ow, = dg Xy =t Fy o Xy >
In particular, <XB , ng°H1> = dgoHl(X) , so that if dgoHl(X) # 0 on V,
then dg %B is a submersion and {ég %B = O}- is a codimension one
submanifold of 81

Proof. Only two things are not covered in Proposition 40 and

Lemma 41. One is <XB , ng°H1> = dgoHl(X) = dg(X) . A brief proof is
LA ngoH1> = <m1[xij*Q) , ml(xdgoHljt*Qp = <X - . (0E

ml(dgoH1)> . The second item is that in order to apply Proposition 40
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we need VldthB = Xﬁ . But this fol}ows from Vlodwton = Vlodz//t ,

which follows from the matrix for d¢t by essentially a restatement of

the proof of Lemma 30. n

We can conclude this section by restating everything from the end
of the previous section. All of the the observations are still
relevant. The relationship between an arbitrary dgoH1 known along a
curve and dgoH1 due to a Lambertian sterance is the same. Secondly, as
before, even though the sterance 1is stationary, the 2-dimensional
manifolds in 8m , m being different points along the curve, are not
necessarily over the same subsets in Ra. Finally, as before, the

solution submanifolds need not be "in front of" the observer.



2 SOLUTIONS AS VECTOR FIELDS AND 1-FORMS

2.1 MoTivATIOoN

The subject of this chapter can be viewed as a third problem in
the sense that the subject of the previous chapter was the first and
second problems. In this point of view, the situation in the previous
chapter was, first, that the sterance was specified on a neighborhood
and then, second, that it was specified along a curve. [n this chapter
the situation 1is, roughly speaking, a generalization of the sterance
being given along a curve with the curve not being given. We saw in
the previous chapter that the sterance plus the tangent vector to the
curve uniquely determined a submanifold solution. It is not
surprising, then, that in this chapter the problem is the sense in
which both this tangent vector and the submanifold solution can be
uniquely determined by the sterance.

In this first section we reexamine the results of Chapter 1 to
provide the motivation fof the contructions and the questions of this

chapter. In this reexamination we first want to clarify what we mean

T2
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by knowing the sterance but not knowing.the domain. Then we will use
the solutions from Chapter 1 to determine the consequences of assuming
only this partial knowledge. |

The subject of this chapter goes by various names 1in the
applications literature: motion parallax, motion stereo, depth from
motion, and optical flow. It would, of course, be possible to motivate
this chapter by discussing some of the visual phenomena associated with
motion parallax. However, for this the reader is referred to the
psychological and engineering literature (Collett and Harkness 1982;
Marr 1982; Prazdny 1983). Here we shall restrict ourselves to that for
which we have reasonably good definitions and structure. Since we have
something resembling this in the first chapter, we will stick to that
structure in characterizing our third problem.

It still should be kept in mind that the purpose of this section
is motivational. In the second section of this chapter the effort for
precision is resumed. We begin the reexamination with a two paragraph
summary of what werhave.

In the previous chapter we first considered the case in which the
function g (as described in the beginning of Section 1.3) was known on
a neighborhood U of the sphere bundle, and then we considered the case
in which g was>known on a neighborhood V in Sa(I)RS' where a:] — R3
is a curve. In both cases there was a natural choice for vertical
_vector fields Xa and X_ on the manifolds & = &(U) (dimen§ion = §) and

B

81 = g(v)y = U wt(V) (dimension = 4), respectively, -so that, for
teR
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ngH1 * 0, {?g Xa = O} c & and {ég XB = O} C. 81 are codimension one

submanifolds.
We also took note of the manifold 8m = 8(n—1(m)) (dimension = 3),
which is an embedding of S°%R in SR® with S${0} +— @ (m). We

found, for example, that for each m = a(s) € nw(V), s € I, 8m intersects

{dg XB = 0} transversely so Lhat 8m n 1dg X’3 = O} is a 2-manifold (see

Corollary 39). The projection map m embeds Sm N {dg XB = O} as a

submanifold. It was noted that in general the 2-manifolds

n@?a(s) n 14dg XB = O}] are different for different s € I

This chapter is motivated in part by the question of the

relationship between the family of manifolds n[@a(s) N {ég XB = 0}]
sel

and the family of functions { glga(s) }
sel

In both of the cases in Chapter 1, either the case of a
neighborhood or the case of a curve, the domain of g was & or 81 . We
did not consider the possibility that g could have a time dependence.
That is, we did not consider g:6xI — R , where I ¢ R is a so called
time interval. Let us refer to the case of Chgpter 1, 2266 — R , as
the stationary case for g . Thus, as was noted at several points in
Chapter 1, it_is physically possible to approximate a stationary g on a
neighborhood in SR> using sequentially measured samples, whereas it is
not physically possible to obtain the measured samples simultaneously.

lLet us review some observations regarding the stationary case

solutions of Chapter 1.



2.1 Motivation 75

Observation 1. For the first observation consider the case of g

3

known on a neighborhood in SR° as in Section 1.3. Let Fk:TR3 — 5 TR

be defined by (xl,xz,x3,y1,y2,y3) — (kxl,kxz,kxa,yl,yz,ys). k > 0,

in the standard (or natural) coordinates. Let Fk:SfR3 — SR3 be
defined in the obvious way by restriction. Let g’ = goFk_{ It is
straightforward that Fk[{dg ng°H1 = O}J = {?g ng,oHl = O} . This

example illustrates the role of the domain of g. In other words, if g
were known up to homotheties of the domain, then one would have a

family of submanifolds related by homotheties.

Observation 2. The preceding observation is more interesting in
the case of the curve a (Section 1.4). Again g is stationary. Note
3 3 < s . .
that Sa(I)R = U Sa(S)R ] Similarly, with k(x1’X2’X3) =
sel
3 3 .
(kxl,kxz,kxs) , Ska(I)R = U Ska(s)m } Since we can measure g
sel
sequentially, we can consider the sequence of functions
g] 3:5 R> —> R . We then have the sequence of functions
S R als)
a(s)
, - . -1 . . 3
g s R (g Fy ]|S g3 ska(s)m ——> R . It should be clear,
ka(s) ka(s) _
for a fixed s and for S R3 and S Ra identified with 52 by the
7 ka(s) a(s)
natural coordinates and parallel translation, that g|S R and
a(s)
[goqujls RS are the same functions on S°. That is, the sequence
' kais)

of functions parameterized on s is the same. It is only the additional
knowledge of the two curves a and ka that distinguishes the cases.

There are even more interesting examples 1if we drop the

requirement that g be stationary. For example, for s € I let Fi be
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defined as Fk but with exp(sk) replacing k . Then g’| R =
' exp(sk)a(s)

(go(Fifd)!S 3 is the same sequence of functions on s° as
. exp(sk)al(s)

glg 3, where S_ R® and S are identified with S° by

R°
2(s) (s) exp(sklal(s)
parallel translation and the natural coordinates. Here g’'(u,s) =
-1 X . .

go(Fi) (u) defines a nonstationary function.

Observation 3. A final observation 1is the recollection of the

fact from the previous chapter that even if g 1is stationary and

a:l — R3 is known, it 1is still possible to have a nonconstant

sequence of 2-manifolds n[&a(s) N {dg XB = 0}] in R°. The interest

here is not that the manifolds "move," but rather that there is no

canonical way to define a pointwise correspondence of flow associated

with this sequence of manifolds. Although the sequence of manifolds is

well defined by {ég XB = O} , there is not sufficient structure to

uniquely define- a flow. (See the discussion of correspondence by

Blicher (1984).)

Issues related to these three observations above will occupy us in

this chapter. In general, we wish to consider Sm R’ for some fixed
: 0

m e R° and define € = Uy (S R . The parameter s that was

0 0 ter ¢ My

previously the parameter for the curve a is now considered to be a
parameter for g . That is. we wish to study functions g:SOxI —> R,
I ¢ R, which satisfy g(@t(u) , s) = g@l , s] for (u,s) € 8OxI .- The

coordinate s is to be interpreted as time. As usual, we assume g- is

smooth where needed. Such a function g on goxI would arise, for
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e#ample, from g’ described at the end qf Observation 2.

In this formulation we have dropped all information about the path
a and the neighborhood U. In the VPesults of Chapter 1 precise
information about the path was required and g was to be stationary.
This amounts to assumihg that g:80xI —> R arises from a rigid motion
of RS. Here we wish to remove this restriction and to consider a wider
class of motions. (For applications we have in mind examples of
g:goxI ——> R that arise not only from observer motion but also from
moving objects such as water waves, animals, wind blewn grain fields,
flapping flags, as well as isometries of RS.) In fact, rather than
assume an isometiry, we wish to determine to what extent local analysis
of g:@oxI — R can be used to "detect" isometries.

In Observation 2 there is a preview of the type of degeneracies
that will be faced. The example involving Fi is equivalent to the
observation that g:80xI —> R does not vary if the objects about an
observer at my collapse {are retracted to n%) or expand along radial
lines. Thus g:@oxl — R cannot "detect" such motion; i.e., g is
invariant under such motion. From Observation 3 there is the second
preview that, even if a moving manifold is specified, an associated
flow is not necessarily uniquely determined.

A first result from these remarks is that we may drop the pretense
of working in the sphere bundle. With the understanding that we are

interested only in points not at the origin, we have the following.
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‘Remark. Without loss of generality we may replace g:80xI —> R

with g: (R°-{0})x] —> R .

Reason. We can identify R°—-{0} with Uy (S R°) ¢ Uy (s R°) =
m t m
t<0 0 teR 0

80 , and RQ—{O} suffices, for we may reflect, if necessary, any of the

codimension one submanifclds of Chapter 1 (e.g., 84, n[{dg X = 0}] )

through the origin because of the wt invariance property of g .

The problem of selecting (moving) submanifolds in (R%-{0} )xI that
are consistent with a given g:(Ra—{O})xI —> R has at least the
degeneracy of the problems 1in Chapter 1. In Chapter 1 we had
nonuniqueness in general, but unique Lambertian submanifolds. We seek
similar conditions for a well posed problem for selecting submanifolds
consistent with g:(Ra—{O})xI —> R . In this chapter we shall make an
assault and some progress on this prbblem. Our progress will at times
consist of solving a subproblem which we call the still picture

problem.

DEFINITION. We say that a problem involving g:(Ra—{O})xI —> R
satisfies the still picture condition if whenever g satisfies
gim,s) = g(m,so) , (ms) e (Ra—{o})xl R fixed in I,

then the only possible flow on Ro-{0} is the identity.

Since, for example, the flow on (R>-{0} )xI given by ¢ (m,s%) =
: s

[e_sm , so+s] does not change g, then there obviously must be some
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additional structure for the problem. to satisfy the still picture
condition. In this study we have adopted this still picture condition
as our first question to be asked (and answered) in seeking to

understand mathematical structures for modeling depth vision phenomena.
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2.2 SPACE, BASIS VECTORS, FLOWS, AND FORMS

In the last section (R°~{0})xI was identified as the space of

interest. In this section definitions and some elementary
relationships are presented. As in Chapter 1, we are pursuing local
results, and we will ignofe any closed seﬁ of measure =zero. The

structure of the ignored sets is contained in Theorem 10 of Chapter 1:
we are ignoring, among other things, "edges." Since everything in this
chapter is local (i.e., we only need some open set around the point of

interest), it suffices to know that the ignored set is closed and of

measure zero. The additional structure given in the theorem can be
neglected.
Let (m,t) € (RB—{O})XI , where I is an open interval in R . In

this chapter t will always be an element of I. The natural coordinate

functicns for (RS—{O})XI will be denoted by X XX 05 if m =
(nﬁ,mz,ma) € R3—{0} , then X}(m,t) =m i=1,2,3, and s(m,t) = t
(R°-{0})xI is equipped with the standard metric <% , a—if> =5,
i j
<§gT , g%’ =0, <5§ , §g> = 1 . The vector field 52 determined by the
i

natural coordinates will often be denoted as . Equivalently, as =
grad(s).

For m = (ml,mz,m3), let [ml® = . m? . The smooth, positive valued

i

function p on (R°-{0})xI is defined by p(m,t) = |ml
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1. DEFINITION. The position vector field R on (R°—{0})xI is

a

% The one parameter group of diffeomorphisms
.

defined by R = § X,
i

of the vector field R is denoted by 6r , reR.

It is fairly easy to see, for (m,t) € (R°-{0})xI, that Gr(m,t) =
r . . . e i
¥ ’t)(e -1) , where 7?(m,t) is the gecdesic determined by the initial
tangent vector R(m,t) . In particular, R is a complete vector field on
(R’-{0})xI ; that is, ©_is indeed defined for all r ¢ R .

The following elementary consequences are noted: ds R = 0; sod =

1

r
s; dp R = p; 1lnp is well defined on (R%-{0} )xI and dinp R 1; R =

p gradp . Since poﬂr = erp and since 0: commutes with d, 0: dinp
dlnp .

In this chapter two types of figures will be used. Each type has
its unique ambiguity. In Figure 5 the vectors R(m,t) and as(m,t) are
illustrated for a fixed (mt) € (R°={0})xI . In Figure 5a the first
factor R°-{0} of (R°-{0})xI is displayed ambiguously as a quadrant of a
two dimensionail plane whereas the second factor I 1is displayed
unambiguously. In Figure 5b the second factor I is ambiguously
displayed. The two dimeﬁsional plane in Figure 5b is used to represent
either the slice (RS—{O})x{t} or the 1image of the projection
m: (R°={0} )xI —> R°~{0)

We wish to consider vector fields on (R°—{0})xI that correspond to

the so called nonautonomous or time dependent vector fields (Arnold

1973, Ch.2 sec.8). We also wish to restrict the consideration to
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those vector fields that are consistent with the scaling observations

of the previous section.

, R(m,t;\\\\
‘1— 8 (mt)

AN
{(m, t) <N
N

(a) (b)

Figure 5

2. DEFINITION. An admissible vector field 1s a vector field X on
2 neighborhood U ¢ (R°~{0})xI such that

i. v= Uws (U,
r
reiR

. ds X =1,

. [X,R] = 0, where [,] is the Lie bracket.

The local one parameter group of X is denoted {@0} (Warner 18971,
Definition 1.49). From Definition 2 one has several elementary

consequences. First one can apply the standard result that linear



2.2 Space, basis vectors, flows, and forms 83

independent vector fields with vanishing Lie bracket have commuting one
parameter groups on a sufficiently small neighborhood (Bishop and
Goldberg 1968, Theorem 3.7.1). Since ds X =‘1 and ds R = 0, X and R
are linearly independent on U. Since R is complete, there is the

following (Figure 6).

3. LEMMA. d® X = X on U. If ¢ is defined on V ¢ (R°-{0} )xI

for o € J ¢ R, then ¢ is defined on U ﬁr(V) and ¢ oB_ = O op .
’ reR

Proof. For any (m,t} € U , cover the compact set Kn =

U 6r(m,t) by a finite collection of neighborhoods in which the
-nsr=n

local one parameter groups commute, hence in which dﬂr X =X . By the
completeness of R and by the group property of ﬁr it follows that this
holds on Kn , hence on U . It is then easy to check that the integral
curve of X at 0r(m,t) is (6r°¢a)(m't) , and the last statement follows
by uniqueness. ]

9 l¢ (m, t)
9 (m,t)/ r(#s(m 0)]
r /

Yo
/ // \)

Figure 6
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An additional consequence of Definition 2 is the following. Since
ds X = 1, then, for (m,t) in the domain of éa , s(wo(m,t)) =t + o=
s(m,t) + a . Thus, since-wz commutes with d, wz ds = ds .

We digress briefly fgr a few remarks on motivation and modeling
regarding the choice of definition for the admissible vector field.
First, the flow N determined by a time varying vector field X is the
obvious generalization of the transformations discussed 1in the
Observations of Section 1. Second, it is readily seen that for fixed r
—the action of the map 6r is an expansion or contraction of the vector
space R® by the factor el . Thus, the 0r invariance of the flow {wo} is
the generalization of the invariance under scale change discussed in
the Observations.

However, one might consider choosing a flow {wa} that models a
motion from mechanics rather than one that commutes with 0r . An
example is the choice that ®, is an isometry of RS. There are many
reasons why such a restriction is not used, some of which will become
apparent later. One of the reasons can be made precise immediately:
it is that such a choice f‘or‘-q)0 can nol in general be made in a manner
that is consistent with the sterance function g . The following
definition for sterance function is the obvious adaptation of the

function g from Chapter 1.

4. DEFINITION., A sterance is a function g:(RB—{O})xI -—> R that

is smooth except on a closed subset of measure zero and that satisfies

R(g) =0 .
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It is an immediate consequence that gom‘)r = g , r € R , hence
0: dg = dg . (The 6r invariance of g is the exac£ analog of the wt
invariance in Chapter 1.) -

It follows from the definition that g is determined by g!ssz ,
the restriction of g to SxI . For a fixed t € I we call g[szx{t} the
image associated with g at t ; we call g|Ssz the image sequence. In
view of the fact that gev_ =g, a distinguised role for glssz is of
significance only for applications: the image sequence g]SZXI is the

function that is approximated in physical measurements.
5. DEFINITION. An admissible vector field X defined on a
neighborhood U ¢ (R°-{C})xI and a sterance g are said to be compatible

if g is smooth on U and if X(g) = 0 on U .

An immediate consequence is that, on a domain of definition JxV of

the local one parameter group {wo} of X, ae (-g,e) =JcR, VcU,
we have goq)O = g , hence wz dg = dg . This invariance of g along a
path wo(m,t) , A é J , 1is analogous to the Lambertian condition of
Chapter 1.

It can now be seen that the condition that ¢, and ﬁr commute is
sufficient for the consistency of ®, and ﬁr with sterance. For, by the
definition of sterance and by the definition of compatibility,

g°ﬂr°¢0 = g°¢o = 8= g°0r = 8°¢0°0r
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If dg - ggds * 0 we have three linearly 'independent fuﬂctions, g,
Inp , and s , on the 4-manifold (R°={0})xI . This is typical. The
introduction of the sterance function always 1eavés us one function
short of a chart for any of the manifolds used in vision problems.
This gap is frequently noted and is often filled by changing g from a
real valued function to a map into Rc, c =z 2. This is done typically
to model the physical phenomena of color. (See for example Blicher
1985. ) We shall not do this. Instead, we will make do with three

functions, but from the three linearly independent 1-forms we will

determine a fourth by the Hodge star operator. In this way we will
have defined a bundle of bases on ldg - ggds e 0} .
; L

A convenient definition of the Hodge star operator (Flanders 1963,
15-7) uses the metric induced on 1-forms by metric equivalence (0’Neill
1983, 60). Let M be an n-dimensional Riemannian manifold. Let me M .

Metric equivalence refers to the existence of the isomorphism m from

1-forms at m to vectors at m defined by <m(w) , X> = w(X) for all

1-forms w < T*M and all vectors X € TM . The inner product of 1-forms
m m

w, and w, is defined by <w1 R w2> = <m(w1) , m(w2)> . For p-forms at m

it

the inner product 1is defined by defining for decomposable elements v

VA...AV and g = HA...AH , <v , p> = det{<v ,u>) . For M
1 p 1 P g

orientable, choose a volume element o . (We assume a positive definite

metric, hence <o,0> = 1;) The Hodge star operator * acting on a p-form

v produces an (n-p)-form *v defined by

VAL = <xv _, pu> o , for all {(n-p)-forms pu .
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From. the smoothness of the metric tensor it follows that x maps
differential p-forms on M to differentiél (n-p)-forms on M .
We define a differential 1-form on (RS—{O})XI by
B B = % (dp A dg A ds )

We shall repeatedly use the following elementary facts about g . (The

notation for the norm asscciated. with the inner product of any of the

. 1/2
vector spaces is Il | = <, >77))

6. PROPOSITION.

1. 0 = <B,dp> = <B,dg> = <B,ds> .

Do _ 98
2. gL = lidg ggdsn
3 9 B =8
Proof. Statement 1 is immediate. For example, <B3,dp>0 =
dpadgadsadp = 0 . For statement 2, if dg - ggds = 0 then we are done.
dg — ggds g
Otherwise, by 1 we have that dp , T ds , WEW are
lidg — —§dsH
ag ds
dg — =ds
< > o
orthonormal, "hence o = dp A ~—————g§——— A ds A —g— = Bég g
lidg — ggdsn tdg - ggdsu [LF311
To prove statement 3, we express 3 in spherical coordinates. For X =
p sinb cos¢ |, X2 = p sinB sing , x3 = pcosB , sinB = 0 , with
dx Adszdngds = ¢ , then dpadoadgads = _5i5—~ . Since dg =
! p sinb
g g _ 2
5§d9 + ¢ ==d¢ + ——ds , <dp,dp> = 1 , <de,do> = 1/p , . <d¢,d¢> =

1/(p°sin®0) , <ds,ds> = 1 , it follows that
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_ 1 ag s ag
B = Siné 8_5 do sin@ 36 d¢ .
The desired result follows from 8.9 = 0 Pod_ = ¢ Q§O@ = 98 and
r ? r '8¢ r 8¢

g . %g
56 19[_ = % . n

It is convenient to have an indexed notation for these four

i - 3 og
i1-forms that are a basis for T (R™-{0} )xI when dg - Z=ds #
(m, t) 3s
(m,t)
C We use
el* = dg , 62* =R, eB* = dlnp , 84* = ds .
We denote the four vector fields that are dual to {ei*} by {ei} . We
also use e = e _ , e =e€e,, e =€ , e = e . It is easy to see
g 2 B 3 p 4 s
gradg - géé 3
that e = 3 52 , e = R , and e, = a - 5§e by checking
lgradg - 283 | P s g
8s s
that e (e ) = &
J i)
7. PROPOSITION.
1
1. negn = e HeBH
2. ds e =e , hence [R,e ] =0, i=1,2,3,4 .
) r i i i

Proof. The first equation in statement 1 follows fron the

formulas for e _ and statement 2 in Proposition 6. For the second

equation, note that statement 1 of Proposition 6 implies m(B) =
constant+e , . 7 B
B
*  §x 3% -
Statement 2 follows from the fact that ﬂr e = e , i=1,2,3,4 .
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Note that three of the 1-forms are differentials of functions.

However df3 need not vanish. From this observation we have

8. ProPosiTioN. [e e = B(le e ] eg » 1,J=1234.

The following table summarizes the definitions, notation, and

results of this section.

TABLE 1
functions g o] s
plm, t)=|m|
vector fields X R= Yx 9 8 =grads
. i8x. s
1
flows ¢, (local) ﬁr
1-forms ei*=dg e2*=B e3*=dlnp e =ds
/T~
dual
v . _ dg
vector fields e =e e =e e =R e =0 —=2e
1 g 2 B 3 1 s ds'g
a
gradg—ggas
= __——a_g’—
lgradg 5565"
. -9 o P * o ik_ ik
relations wooﬂr—ﬂr N g.ﬂr 8 ﬂr e e
g°w°=g dﬁr ei=ei

[X,R}=0 [R,ei]=0
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le 12 0 0 98y 42
g 8s g
2
0 he 12 0 0
B
7. =<Le , € D=
e 0 0 p° 0
- %017 o 0 1+[‘;—g)2ne &
ds g s g

It 1s easy to see from Table 1 that for any sterance g there
exists admissible vector fields that are compatible with g . The
simplest example is the vector field e, - Another is R + e, - More

precisely, X = B(X) e, + dlnp(X) R + e is admissible if and only if

B
R(B(X)}) = O and R(dlnp(X)) = C , for then [X,R} = 0 . If this X is

admissible, then it is clearly compatible with g . This is summarized

in the following.

9. PROPOSITION. let g be a sterance that is smocth on U c
o
(R°-{0})xI and assume dg - ggds # 0 on U . Then there exists vector

fields on U that are compatible with g .

To say that X 1is compatible with g is to say that the motion
¢°(m,t) , ¢« € J, of a point {(m,t) is contained in a level set of g
(Figure 7). Equivalently, g is constant along wa(m,t). This latter is
the usual point of view for applications: the sterance associated with
the point (m,t) does not change as the point moves. In this latter

sense g 1s a consequence of a motion. This 1is analagous to .our

censideration in Chapter 1.of a form gig*a that is a consequence of a
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Lambertian form fv (Propositions 27 and 28). Just as in Chapter 1, to
get a well posed problem we do not place such restrictions on g . As
in Chapter 1, g has essentially no restrictions. Instead, we will

study subsets of- admissible vector fields.

Figure 7

In this section there has been no mention of objects or surfaces.
In fact, there will be no mention of these until Section 4. The reason
for this was suggested in the first section but can now be made
precise. Let S be a neighborhood in any surface such that R is nowhere
tangent to S. Then {i‘)r(S)}r is a family of surfaces and for -each

surface its motion due to admissible, compatible X is pointwise‘along
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level sets of g.

In applications this situation is freduently stated in the
following manner: the absolute distance from the origin to a moving
surface cannot be determined from g[ssz , where the sterance g is the
consequence of a Lambertian>form on the surface.

In light of this it is not meaningful to introduce a surface.
However, {6F(S)}F suggests that we introduce {dﬁr(TS)}r , that is, an

involutive distribution, and that we seek relationships between X , g ,

and integral marifolds of this distribution.
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2.3 PARALLEL FIELDS, GEODESIC VARIATIONS IN IMAGES

In The last section we saw that admissible, compatible vector
fields always exist but are not uniquely determined by the sterance.
In this section we will consider a subset of admissible vector fields.
In this restricted subset we obtain a uniqueness result, up to images
which satisfy a condition related to geodesic variations on SZ. When
this uniqueness result is applied Vto the case of a constant image

sequence, i.e., g% = 0, we find that this restricted problem satisfies

the still picture condition.
The following terminology is standard (for example, O'Neill 1983,

Ch. 3). For vector fields V and W on (RS-{O))XI . let DVW denote the

natural covariant derivative of W with respect to V ,
D W =Y V(dx W) so + V(ds W) 2
v . i 6xi ds ’

where X1’ X2, x3, s are the natural coordinate functions. A vector

field P is said to be parallel if DYP = 0 for all vecter fields ¥ . A

related case is ds P = 0 and, for all Y such that ds Y = 0, DYP =0

That is, P is tangent to and parallel in R-{0}x{ t} , but Da P need not

s

vanish.

Let X be an admissible vector field. Let X and sterance g be

compatible on a neighborhood U (where we may assume U = U 0r(U) } in
- reR

which dg - dis = 0 . In this case we have on U the four linearly

Js

independent vector fields e=e , e=e_, , e=R , e=e , and the dual
1 g 2 B 3 1 s
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1-forms dg , B, dlnp , ds . Therefore X = B(X) ep *+ dlnp(X) R + e,

since dg X = 0 and ds X = 1 .

10. THEOREM. Let X and X’ be admissible vector fields on U ¢
([RB—{O})XI , and let g be a sterance such that both X and X’ are
compatible with g on U. If there exists a vector field P # O on U ,

with DYP = 0 for all Y with ds Y = 0 , and a smooth function h on U

such that X - X = hP, where the measure of {h=0} is zero, then
B(P) B(D, eg.) =0 (1)
B
and
= dlnp{P) . (2)

B(P) B [Degeg)

Proof. It follows from the admissibilty and compatibility of X

and X’ that hP = dlnp(hP) R + B(hP) e From the matrix for <ei,ej>

B
in Table 1 of Section 2, it follows that <hP,eg> = <hP,eS> = 0 on U .

et e =e and e,~e - It follows by continuity and from the fact that

{h=0} has measure zero that

<P,ej> =0onU, j=1,4 . (a)
Since Y<P,ej> = <DYP,ej> + <P,DYej> , we have for every vector field Y
with ds Y = 0 ,
<P,Dyej> =0 oan , J=1,4 . (&)
Note that DY? = Y for any vector field Y . Recall e, = R = p gradp .
Hence,
pdp(DYej) = <R,Dyej> =7Y<63,ej> - <DYR{eJ> = —<Y,ej> i j=1,2.3,4 . (c)
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Since DYej = dlnp(DYej) R + B(Dyej) eB + (terms in e_ eg) , it

follows from (a), (&), and (c) that

2
~ _ R 2 .
0 = <P,Dye > = ~dlnp(P) <Y, e > —25- + B(P) B(Dyej] legh” . J=1,4 . (x)

Recall IIRI%= p° and ueBn2 = uegu2 . Note Wle i # O . (See Table 1.)
From () with j=1 and with Y=eg it follows that

0 = -dlnp(P) + B(P) B(D, eg) ;
g

with Y=eB it follows that

0= 0 +BP) B(D, eg]
B
(Note that (%) is trivial for Y=R . Alsc (*) with j=4 leads to the
. ag .
same resuits, for e =e_ =38 - z2e_and J_ is parallel.) =
4 s s s g s

It is easy to see that if hP = X’ - X, then R(h) = h , for [R,hP]
must vanish if X and X’ are admissible, and [R, P] = DRP - DPR = -P .
Consequently, there exists admissible vector fields X + hP . An

admissible vector field & + hP is illustrated in Figure 8.
s

-~

—

o

Figure 8
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The following corollaries explain why the theorem is interesting.
Note that U sHt) = U n R°-{0}x{t} . The corollaries are direct

consequences of statements (1) and (2) of the theorem.

11. COROLLARY. For P as in the theorem, if there exists a point

(m,t) € U s such that B(P)(m,t) 0, then P=0on U s

Proof. Apply statement (2) of the theorem and 0 = dg P = ds P .«u

12. ExaMpPLE. Let g% = 0 on U . Hence, on U the image cequence
< . . - | Vo o= =

g'Ssz is a still picture, glssz glPity - Let X = e_ , hence X
8_ . Thus ¢ = id x {tr——=t+a} . The corollary tells us that X + hP =
8 + hP , P = 0 , cannot be compatible with a still picture if any

s

point (m,t) € U has B(P)(m’t) = 0 . Note that it is not necessary that
h(m,t) = 0 .

The vector field as + hP with h # 0 is frequently implicit in the
engineering literature. Compare the problem of finding the "“focus of
expanslon,”'that is, a point (m,t) such that g(m,t) = 0 , in Prazdny
(1983).

The proofs of the next two corollaries are immediate.

13. COROLLARY. With P as in thé theorem, if there exists a point
(m,t) e U s '(t) such that dp P = O and B(D, eg] # 0, then P = 0 on
: . &

-1

Uns (t)
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The following result is of more significance than the preceding

two for it depends on only the image glszg{t}

14. COROLLARY. With P as in the theorem, if there exists a point

-1 _
(m,t) € U s (t) such that B(DeBeg)(m,t) # 0 , then P = -0 on

Ups ()
This result is of the type we are seeking. First, it is lccal:
B[De eg) depends on only the germ of g at (m,t) . Second, it provides

: .o 08 _
a unigueness result. For example, if 3e 0 on U and B(De eg](m,t) # 0

for any (m,t) € U , then there is a neighborhood U U n s 1(t) on
|ti<e

which 6s + hP is a solution if and oﬁly if P=0 .

The following corollary provides some insight into what the image
g!szx{t} must look like locally if P # O . Recall the definition of
geodesic variation. Here we follow O’Neill (1983, Ch.8). A two
parameter map x into s° is a map x:D —> s° , where D is open in R® and
where horizontal and vertical lines in R2 intersect 9§ in intervals.
Let (u,v) b¢ the natural coordinates for Rz. The u-parameter curves
u —> x(u,vo) are called longitudinal. A two parameter map x is a
geodesic variation if every longitudinal curve of x 1is a gecdesic.
With au , Bv the natural coordinate tangent vectors of D , there are
the two vector fields along x , dx(Bu) and dx(av)

Recall that the covariant derivative D' on Sx{t} induced fromrd

on (RS—{O})xI is defined by taking the tangential component, and a
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curve ¥ is a geodesic on Szx{t} if and only if D; 7 = 0 . Recall that
eg and eB are tangent to S$5{t}

15. COROLLARY. For P as in the theorem, P # 0 if and only if for
every (m, t) € {P=0}nU there exists a  geodesic variation

x:[-e,elx(-8,8) —> N ([Ra—{O})x{t} such that x(0,0) = (m,t) and

e
ax(8 ) = P | dx(8) = e
u e v g
B
Consequently, P # 0 if and only if
T eB T T €
D [ eB ]”63” =0 and D { eB ]D [ eB Jeg = Reg { eB ][——”63“] ,
!l eBII lleBII lIeBII IleBIl

that is, eg is a Jacobi vector field, where R is the curvature tensor

for Sz.

Proof. For P as in the theorem, P # O on U s (t) if and only

if B(D, e,) =0 onUp s'(t) . Since D W is tensorial in V,

74
B(D eB eg] =0 . (%)
”eB”
e e e
Also, < B , B > =1 1implies B(D —i) = 0 . Hence
e Il e |l . e llell
B B g B
e e
- B _ B
0= B[De e ~ P % eg] B[[ g el ]]
&b e T B
B
r eB
Since [eg , eB] = B[[eg , eB]]eB , we have [eg . W} = 0.
e
Therefore, considering e and B as tangent vectors of Szx{t)—, for

li eBII



2.3 Parallel fields, geodesic variations in images 99

each point of S { t} | U there exists a coordinate neighborhood about

e
the point such that eg and ngﬁ are coordinate vector fields.
B
e e e e
From < ——E— s B > = 1 we have < ——E— , D e B > =0 .
e HeBH HeBH B HeBH
B e
B
°s
From < , € > =0 we have
: e g
B
e €
<e , D.e ——ﬁ— > + < ——E— , D, e e > =20
g B el e Il B g
— B B
e e i
B . B
. B - -
?rom (#*) and Table 1, < Te T D[ eB ]eg, > = 0 . Consequently,
e
e B
DT eB WEEW' = 0 , so that the coordinate corresponding to the
[He H] 5
B : €
coordinate field WEEW is in fact a geodesic curve on Szx{t} . Thus the
B

coordinates define a geodesic variation and the transverse field eg

satisfies the Jacobi differential equation (e.g., O’Neill 1883,

Lemma 8.3). =

The results of this section are, of course, only partial.
However, they do begin to clarify several relationships between
admissible, compatible fields and the image. We may summarize these
results by saying that for a sterance g , for X + hP admissible and
compatible with g , and for P parallel on (RB—(O})x{t} for all t , with

ds P = 0 , we understand the necessary and sufficient conditions on g

such that {P | [X+hP](g)=O} # {P=O} .
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2.4 |SOMETRIES FOR TWO-DIMENSIONAL DISTRIBUTIONS

The results of the last section described a restricted subset of
admissible vector fields and used only the properties of the sterance
function. In this section a larger class of admissible vector fields
is studied by the introduction of additional structure. As suggested
at the end of Section 2, the new structure is involutive distributions
or, equivalently, differential ideals (Warner 1971, Ch.1, 2; Bishop and
Goldberg 1968, §3.11). The vector fields to be studied are those whose
flows are isometries of the integral manifolds of the distributions.

Our first task is to define the differential ideal that is of interest.

16. DEFINITION. A 1-form compatible with an admissible vector
field X is a closed 1-form w defined on a neighborhood U ¢ (RB—{O})XI
such that

i. about each point (m,t) € U there is a neighborhood V =

U® (V) in which v = df , Fc )
rer

. w(R) =1 ;

idd. w(X) =0

This definition merely summarizes the situation in which there is
a two-dimensional submanifold (surface) in (RB—{O})x{tO} , with R never

tangent. Consequently, there is a coordinate chart p = (yl,yz,ya,s) on
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a neighborhood such that (O’yé“nfto) is a coordinate chart for the
surface. And, since [X,R] = O ,‘ the 1inverse of the map
(r,yz,yg,a) —— @rowaou_l(O,yZ,ya,to) is a coordinate chart on a
neighborhood. Let F be the first coordinate function of this inverse.
Fach level set of F is a submani%old which is tangent to X .

On the -other hand, directly from the definition the I1-form w
trivially generates a differential 1ideal. Hence, by the Frobenius
thecrem (Warner 1971, Theorem 2.32), through each point (m,t) of U
there is a unique, maximal, connected codimension one submanifold whose
téhgent space is the annihilator of w .

There are the following immediate consequences of the definition:
ﬁ;w = w , hence L?w = 0 where Lﬁ is the Lie derivative relative to R ;

Fep = F , hence w*w = w and L = Q . Further, recall, as in Table 1,
.y 'y Xw

ix i*

that 0: e = e , [R,X] = 0, hence

17. PROPOSITION. In the expansion w = ¥ ffei* , where w is a
1
i

1-form that is compatible with an admissible vector field X,
f3 =1 and R(f) =0, i=1,2,3,4 .
1

To construct a basis we use the Hodge star operator.

18.  PROPOSITION. For a sterance g, dg—g—i'ds # 0 on U =

U 6F(U) , for a 1-form w compatible with an admissible vector field X
reRr '

defined on U, then the differential i-forms
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1%

a- =dg,

a2 = v o= x (pw A dg A ds) ,
3%

a =uw,

a4* = ds ,

constitute a linearly independent set of 1-forms on U , with

2 2
= — 1 = = =
v=r>Fp-p fZUB dlnp , f w(ez) , f3 @(ea) 1,
and
*
3 v = v,
r
hence,
6; ai* = al* , 1=1,2,3,4 , but w* ai* = al* , 1=#2

Proof. It follows from w = § £ €' and from the definition of @
1
i

(see Table 1) that v = = (prB A dg A ds) + faB . By the definition

of the Hodge star operator

< (v—fsB) L et s o = pfz(B A dg A ds A e™)
I 0 1if i=3
[ - £, dpadgadsa = - f_ ngn? o
The result follows from lle 1% = lidlnpl® = 1/p° .

It is a corollary to the proof of Proposition 6 that pligil is
independent of p, hence 8; v = v . The remaining relations are

previous results and definitions. [

19. PROPOSTION. The properties of {ai*} and the dual vectors

{a} for a neighborhood U = U o (U) c (R°-{0})xI are collecled in the
, ,
reR
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following table, where

D =det(a'“(e)) = £.2 + £ 2%a1°% ,
3 3 2
f =1 , and lle Il = lle Il = 1/U8l
3 g B &
TABLE 2
i*
a = dg a =a_ =e_ - f a
1 g g w
2% 1 _ 1
a” = a,=a =3 [f3eB - fZR) = F;(eﬁ fzaw
I i% 1 2.2 2
a —w—‘;fle aB—aw—E[prHBH eB+f35R)
1
a4* = ds a =a =e_ -fa
4 s s )
o a*=a", La"=0, do a =a , [Ral=0, i=1,2,3,4
r R r i i i
* i i* i* *
p,a =a an =0, d(paal—ai+(<p°v)(ai)a,1=t2
dwa , = [¢a v)(av) a

In particular, at each point in U the vectors a =a and a=a, form an

orthogonal basis for the integral manifold {ézO R ds=0} , and under the

flow {wo} of X the basis ag ;a, is mapped to a basis.
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Proof. The expressions for a, in terms of the basis {ei} is
obtained by inverting the matrix (ﬁl*(ej)] . 'Note that ﬂ? a'* = 't
implies Lﬁar = 0 (Warner 1971, Prop. 2.25) and that the converse holds
locally. The same holds for dﬂra1 = ai and [?,ai] = Lg{ai . The
results for dgnaai follow from aq*[ﬂwogi) = w: aj*(ai) . Similarly for
dﬁrai . The result for [X,ai] follows most simply from the product
rule for X[aj*(ai)] and from aj*([X,ai]) =0, j# 2, since only v is
not exact and since aj*(X) is a constant, j # 2. (It also follows from

the derivative of dwaa' with respect to & .) The crthogonality result
1

follows directly by using <e , e > in Table 1. N
i 3

We now reach the motivation for the preceding constructions. We

wish to study X, g, and w as in the following definition.

20. DEFINITION. Let X be an admissible vector field with local
one parameter group ¢, where N is defined on U for 2 € J (0 € J).
Let g be a sterance, dg - g%ds # 0, which is compatible with X , and
let w be a 1-form which is compatible with X . We say e, is an

N
isometry of { =0 , ds=0} if e, is an 1isometry from the integral
manifolds of {F=O , ds=0} N U to the integral manifolds of {é=0 , ds=0}

nU . That is, 9, is an isometry if for each (m,t) € U and & € J

< > = < > i, j =
d<.00ai , dqoaaj zpo(m,t) a s a2y L 1,2,

where a1=ag and a=a as defined in Proposition 19.
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. The following result provides several equivalent descriptions of

an isometry of {§=0 , ds=0} .

21. THEOREM. For a local one parameter groﬁp ¢, defined on U

for o« € J , of an admissible vector field X , X compalible with
sterance g , dg - ggds # 0 , and compatible with 1-form w , the

following are equivalent. For a e J , (mt) € U :

1. °, is an isometry of { =0 , dS:O} .

2. X<a  , a > =20 3. X<a_ , a > =20
g’ ‘g g’ ‘g
r
dy = a [X , a ] =0
o g ‘g g
aU aV al}
wo[ﬂa u] BEN [X ' Ta n] =0
v v v
4 < Da X, ag >=0
g
aU
<D X

av

< D, a X — 1 > =0
[ v ] N T
————e v

la |l
v

Vv >

u
o

5. For every V € {w=0 s ds=0} , < DVX )

6. The (0,2) teusor T, e TZ[{w=O , ds=0}] defined by

TX(V,W) = <DVX . W

is skew symmetric.
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Proof. 1 & 2. From Proposition 18

*
de, a, = a, + Epa v](ag) a (%)
*
dp a = Ep& v)(av) a ] (%x)
. - * — -
(=) If ¢, 1s an isometry, then (q><l v)(ag) 0 since ag and a, form
. * 3 r Y > =
an orthogonal basis. If ¢, 1s an isometry dwaag , d@aag wo(m,t)

* . -
= < >
<a. , a >(m, t) But (‘PQU}(a ) C lmplles d(poa’g ’ d(paag q)a(m, t)

<ag , ag>¢a(m,t) by (). Hence <ag , ag>w0(m,t) is constant for & €
J, thus X<a , a > = 0 . Finally, if ¢ 1s an isometry, then 1 =
a £ £ 2 © a
i v But by (%x) d v
. * - =
Woltan) = ulizr) ‘ utoby el Ao ia
v v c.oa(m,t) v/ (m,t)
* av * al}
(¢ v) [r~——] (a } . Hence (¢ v) [————] =
¢ {mt) HavH (m, t) v wo(m,t) a (m,t) HavH (m, t)
+ Wiﬁ . By continuity at & = O the right hand side must be
v (mt)
Y
4 SV
positive. Hence by (**) d¢ |/—r = |
allla |l fa i
v /(m,t) v @Q(m,t)
< = < > j
(&) dwoag , dwoag>¢°(m,t) ag , ag (m, t) follows from

X<a , a > = 0 and fromdg a = a_ . That d reserves orthogonalit
g g @, g g ¢, P g Yy

is easy to see. Finally, <dwaav , do = MaUH? follows

a >
I wa(m,t) m, t)
directly.

2 <« 3. The forward (=) case follows directly from the definition

of Lie derivative that uses the derivative of dwoa, with respect to o .
1

Conversely, the vanishing of the Lie bracket implies tnat locally the
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corresponding local one parameter groups commute, hence the result.
3 & 4.

This follows from the identity DXY - DYX = [X,Y] and
from ai*[[X,aj])

1}
o
I

L 1% 2
<D X, a> = <D + [X,a J,a>» = (1/2)X<a _ ,a > ;
a % Xg g% g
- .
X, <Da X, a>
a la |t g
fa M
v
a aU au
— r .
= Dyag riXea et <Dx[u u} [’Ila n] s
v v
a av av
=Xag g v a5 <ead e
aV aU al)
Pray, o T <[x, Ta n] > Ta il
_— v v 1%
(EN
v

4 < 5. 4 clearly is a special case of 5.

And 5 follows from 4

by the tensorial property of the covariant derivative and the fact that
a

and a constitute a basis for the tangent space of the integral
manifolds.

5 < 6.

This requires only the application of the pclarizaticn
identity for bilinear forms.

A key reason for considering only those admissible vector fields
which are isometries of {w=0 . ds=0} is that this restriction excludes

the type of motion in which the still picture condition is violated by

the retraction of R- to the origin. (Figure 9)
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22. COROLLARY. (radial motion) Let X be an admissible vector

field on U c (R°-{0})xI with local one parameter group ¢, and let X

be compatible with a sterance g , dg - ggds # 0, and with 1-form w
Let wa be an isometry of {é=0 , ds=0} . If X = XAR + 3 onU, Xs €
) s

c®(U), then X, =0onU .

Proof. Let V be any vector in {w=0 , ds=0} at (m,t) € U such that

dXS(V) 0 . Then, by statement 5 of the theorem,

0 = <DVX,V> = <DV(x3% + 83) , V>

= <D (XR) , V> (since 8 1is parallel)
V' '3 s
= Xs <DVR , V> (since V(X)) = 0)
= X_1vi® B .
3

Figure 9

A second coroliary of a similarly simple nature further clarifies

those X which generaiérisometries of { =0 , ds=0}.
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23. COROLLARY. (uniform motion) Let X on U be admissible and
let sterance g and 1-form w both be compatible with X . Let ‘N be an

isometry of {é=0 R ds=0} . If X = hP + 3 , where DYP = 0 for all Y
S

{including Y = 8 ), then h is a constant.
s

Proof. By the statement 4 of the theorem

a.
0=<D,a ~(hP +38) , —>
(% s a
BN J
j
a. ao
= a J ~‘]_ i =
- ah[ua,u] R P LS
J
a
Fix j . 1If dh[”ém] # 0 at (m,t) , then there is a neighborhood in
b
a
which <P , W21W> = 0 by smoothness of P and aj . But then
J
aj a, a. 2
j J
= _> = —_— = < = —_
0 X<P , a0 0 + <P, DX[Ha_H]> P, D aj x> dh[”a'"]HPH ,
i 1 BN J
J
which is a contradiction. ]

These two corollaries give some insight into the permissible X .
They do not depend on the sterance g ; they depend only on the isometry
assumption. In the next section the sterance is used to clarify a

question of the uniqueness of X for a given sterance and a given

1-form.
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2.5 UNIQUE FLOWS

In this section we make explicit use of ag-and a, . We recall a
few facts from Table 2 (in Proposition 19). The vector fields ag and

a are tangent to the integral manifolds of {w=0 , ds=0} ; <a_ ., a> =

g v
0 ; and
d (ar) =1, C via ) =0,
&g g
dg(av) =0, v(au) =1
That is, since dg(av) = 0 , a, is tangent to the level sets of g as

well as tangent to the integral manifold. This holds, by constfuction,
for any 1-form w used to define the integral manifold. On the other
hand, ag is tangent to the integral manifold but is "adjusted" so that

<a a> =0 . In Figure 10 a sphere is illustrated in which the

3

24 v

level sets of g are lines of latitude.

Figure 10
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The next result is essentially a continuation of Theorem 21.

24. THEOREM. Let X be an admissible vector field on U , with a

sterance g , dg - ggds # 0 , and 1-form w compatible with X. Let {a}
- . 1

. 1% 2% 3% 4%
be the vector fields dual to a =dg , a =v , a =0 , a =ds . With
the notation a=a and a=a , -if a [Ha ”2) # 0 , then the following

1 g 2 v v g
are equivalent.
1. The local one parameter group of X , where defined, is an
isometry of {§=O , dszo} .
L
2. X<a_ ,a > = X(lla_i®) =0
g g g
2
Xla [lta Il =0
[20125%)]
2 2
x[m[uagu )] =0
v
3. For any sequence of vector fields ﬂl,dé,ﬂs,...,ﬂa , where each
2 2
&j is either a, or Wg;ﬁ" the function &d(ﬂd¢1("'&1(”ag" )...)) is
annihilated by X .
Proof. 1l & 2. The forward (=) implication clearly holds, for,
a
by Theorem 21, statement 3, X commutes with both ag and o and
. - v
2
X{lha il =0 .
(12,7)
The converse requires the additional assumption in the statement

. ) a

of the theorem. For in general [X,a_ ) = v([X,a_l]a and |X , _ v
. g g v 7 HaUH
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. a
v[[X R WEBWJ] a, . But by the conditions in 2
v

2 2 .
u[[x,agl) av(HagH ) = Xalial ) =0,

a

u{P’,Wéﬁ}]av@agF]==[x, ﬁ%ﬁ]@agf); 0.

If av[ﬂagﬂz) # 0 , then these two equations provide the result.

Statement 3 clearly implies 2, and it follows from 1 by using the

a

commutativity of X with both a_ and —= . and x[naguzj =0 . "
v

The significance of the theorem is that it provides relationships
between the vector field X and the 1-form w, for ag and av are defined
in terms of w . (Recall, e and eB are determined ?y g alone.) The
theorem is an example of how we are presently seeking to understand the

sense in which the pair X and w can be determined by g under the

restriction that X generate an isometry of {w=0 R ds=0} .

The following theorem explains the significance of the condition

that a [Na "2) 2 0 . In fact, if a [Ha “2) # 0 , then there is a
v g v g

uniqueness result that uses somewhat less than the condition that X

generate an isometry.
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25. THEOREM. Let X be an admissible vector field on U <c

(Ra—{O})xI , and let g , dg - ggds # 0, be a sterance and w a 1-form

both of which are compatible with X . Let {a‘} be the vector fields
1% 2% 3% 4% . .

dual to a =dg , a =v , a =w , a =ds _, with the notation a1=ag and

aé=av . If X[Hag”%) = 0 (for example, if X generates an isometry.-of

{@:O , ds:O} ), then X is uniqﬁe whenever ab[uagnz] # 0 on U .

Proof. Since a'"(a) =& , the four 1-forms dg , d{lla i) , o,

b] ij g

ds are linearly independent if and only if aU(HagH2] # 0 . Since

{ai*}. and {ai}i are determined by g and w, then the four vector fields
1

dual to dg , d[naguz) , w, ds are determined by g and w . In

particular, X is so determined since dg X = d(ilag!!z) X = w(X) = 0 and

ds(¥X) =1 . ®

26. COROLLARY. With the conditions as in the theorem, since w

dF locally, the functions ¥, = g , y, = Hag“z, y, = F, y, = s area

coordinate system for U ¢ (R°-{0})xI . For this coordinate gsystem X =
3 . ! _ _ .
5y the slices Ly1 , y2 , ys—const , y4—const} are the integral
4
manifolds of {w=0 , ds=0} , and 5%— s 5%~ are tangent to {w=0 ) ds=0} .
1 2

This theorem can -be compared to our result in Chapter 1, Sec. 4.

There we had a uniquely determined sequence of submanifolds of R3,hbut

no canonical way to define a flow that generated this sequence. This



114 2.5 Unique flows

theorem says there 1is at. most one flow that preserves Ilagll2 , if
a (1a 1% = o0 .
v g

It is easy to see that the condition av(nagnz) # 0 is necessary.
In fact, a proof by picture is already available in Figure 10. If the
level sets of g correspond to lines of latitude on the sphere, then
av [II agllz] = 0 . Any rotation of the sphere about the north, south axis

is compatible with g and with the 1-form w® that characterizes a

stationary sphere.



PART 2

SOME SOLUTION TO PROBLEMS IN -VISION
FROM DECONVOLUTION METHODS

3 DECONVOLUTION FOR THE CASE OF
MULTIPLE CHARACTERISTIC FUNCTIONS OF CUBES IN R”

SUMMARY

Explicit error bounds are exhibited for a case of deconvolution
with elementary convolutors on R". The convolutors studied are a set
of n+1 characteristic functions of cubes ( e.g., with side length Vj ,
Jj=1,2,...n+1) which operate by convolution on L'aL®(R"). For a
suitable choice of approximate identity, a set of n+1 functions
(deconvolutors) in Lz(Rn) are exhibited which restore Llan(Rn), up to
convolution with the approximate identity, from the n+1 convolutions.
For the case of the convolutors operating on LlannLP(Rn). 1=p<eo,
explicit bounds for the restoration error in the norm LP(E), E compact,

are exhibited; that is,rerror bounds for restoration restricted to a
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compact subset . The motivation for this study 1is the digital
implementation of this deconvolution for the application to signal
detectors which act by integrating over cubic regions. This
motivation is discussed along with remarks on the significance of the
topology for signals that is implied by the notion of restoration or

deconvolution.
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3.1 INTRODUCTION: DECONVOLUTION AND MACHINE VISION

Our interest in deconvolution is in part a consequence of a point
of view in machine vision that we have been developing. (For
contemporary developments in machine vision ;ee, for example, Marr
(1982).) In this introduction we shall indicate this point of view and
we shall also indicate certain constraints to deconvolution that arise

in machine vision.

The deconvolution problems that are of interest here are of the

type: on Rn, given N distributions of compact support ‘Q'LE""'HN
(called convolutors), determine the existence, support, and
construction of N distributions V1’v2""’vn (called deconvolutors)
such that
N
=3
Z pi*vi ,

where 8 is the Dirac distribution.

For machine vision the interest is in R® or R°. Existence of the
deconvolutors depends on the O e.g., the M cannot all be smooth
(¢”) functions. A condition can be placed on the Mo called strong
coprimeness, such that the desired v, exist and have compact support
(Kelleher and Taylor i971). The cases for which the pooare
characteristic functions of a) two intervals on R and b) two disks on

R® have been examined in Berenstein and Yger (1983) and in Berenstein,

Taylor, and Yger (1983a, 1983b). For these cases deconvolutors with
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compact support exist when, for example, two interval lengths or two
disk diameters have the ratios V2 or 2, respectively. Explicit
. formulas for the deconvolutors in cases a) are reported in Berenstein,

Krishnaprasad, and Taylor (1884).

Let us consider a role for deconvolution, or signal
reconstruction, 1in machine vision. In machine vision one seeks
information about objects by means of one or more images. Let us

consider ocbjects that can be modeled as a finite union UM of c!
3

2-manifolds M  in Ra. An emitted or reflected radiation can be
j

associated with an object by defining a density F on the sphere bundle

of R° restricted to UM, SR3|UM , where the density is with respect to
ij I
J

a choice of voiume form for SR3|UM . To include the variable time we
iJ

consider the product space SR3|UM xR. Let M denote a subset of the set
i
of such densities along with their support

Hc AF i SR | xR — R).
3

Let E2 denote a subset of R-. This subset will represent what Iis
typically referred to as the "image plane." Let ¥ dencte a subset of
the set of time varying image densities

F c {f ; E2XR —> R}.
A basic problem in machine vision is the definition and construction of
a suitable left inverse p of an image forming map p,

M . F .

[

Additionally, and most importantly, appropriate topologies are sought
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so that p is continuous. For example, if M is a finite set with the
discrete topology, then ¥ should consist of disconnected components,
each containing at most one point from p(M), and on each component p is
constant. If p(m) is in component C then the convolution exp(m) of a
given function ¢ with p(m) may not be in C. In this example, the role
for deconvolution is fo map ¢*p(m) back to C. Since we require only
that the deconvolution yield a point in a neighborhood of p(m), we use
the term approximate deconvolution.

We shall leave further mathematical details on this point of view
to a future paper, but we will discuss the mogivation. The motivation
is that we wish to consider separately the questions of image quality
and the questions of machine vision, and then tc join these questions
throught continuity of vision on an appropriate space of images. We
separately consider these questions because it seems ill advised to
address the issue of vision over some neighborhood of-an image (which
might include the image plus some additive noise, convolutions of the
image, or non-linear sensor degradation of the image) when the issue of
vision at the idealized, perfect image remains an open question. With
this separation, we consider the idealized, perfect image (e.g., p(m)
for m € M) as a limit point in an appropriate function space ¥, and we
shall require that any well defined vision algorithm p be continuous on

this space. (An example of a topology for # is the smallest topology

such that p is continuous.)
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We now turn to the specific issues- in image quality and
convolution-deconvolution that are the subject of this paper. For any

image f € ¥ we never know f: we measure, for example, [f , where Q is
Q

a neighborhood of (0,0} € szR, instead of f£(0,0).- To - use our
continuous vision algorithm, if we cannot know f then we would like to
be sufficiently close to f. Let us consider an example of what we can
) a a aa .
know about f. The set Q could be (_§’§)X("§’§)X(—T'O)' That is, Q
models a square detector of side length a > 0 centered at 0 € 52 c R®

and which integrates over the time interval (-T,0), T>0. Let

A= [—%,%)x(—%,% x[p,T) = {x : -x € Q} -Q,

and let X, be the characteristic function of A. Then

_[f = J‘fxo = (x,*£)(0,0).
Q

Let us model a staring array with a simple integration time
response. A set of non-overlapping subsets which covers EExR (up to
I.ebesque measure zero) is

i _ a a a a .

{Qp,q = ( 5'P2 §+p1a) < ( 5P2 §+p2a) x ((@-1T , qT) :

2
p_(plv p2)€Z ’ qez}'

Let each Q model a square detector of side length a centered at pa =
P

»d

(pla,pza)eE2 which integrates over the time interval ((q—l)T , qT).
Let (xA][(u,S” be the shift of x, by (u,s),
(XA](hhS)](x,t) = x,(x-u,t-s).

With thi = :
ith this [XA)[(pa,qT)] ZopgI » and

J‘(XQ][(-pa,qT)]f = (XA*f] (pav C{r)
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For the staring array-we'do not measure fe¥ but rather

{(XA*f)(Pa:qT) : peZ2 , qeZ , (pa,qT)eE}

where E is some bounded subset of EéxR.
An answer to the question of what can be said about f based on the
measured data is that for f in a suitable choice-of normed f{unction

_space, these meausred values can be used to approximate XE[xA*fj by the

interpolation
% z (x,*f) (pa, qT) Voo
p,q
where W is a choice of interpolating function (e.g.,
P,q
¥ =xo(x—pa,t—qT) ). Moreover, for suitable normed spaces, xp[xA*f)
+q E
approximates fo. For a choice of A let ¥ denocte the set of all

interpolations
¥ = {xs Z (XA*f)(pa,qT) wp’q : £ € ?}.
P,q
Let 3“ denote the direct product of N such sets, in each of which a

different characteristic function is used,

N
g X { X X [xA *f)(pai,qT) U g}.

i=1 P,q i

Thus, what is known about f is a set of approximating interpolations of
approximating convolutions.

We summarize the above by the diagram
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The relations p and p are between objects and images in the sense we
have modeled them above. The map r is the compdsition
interpolation o sample o convolution
Just discussed.
The map n is the subject of this paper. For a given choice of
norm on ¥, n is a map from r(f), fe¥, to.an approximate reconstruction
of f. This may be viewed as a numerical implementation of the

deconvolution from {XA *f}’ 12 N to f, for the reconstruction 1is
i=1,2,...,
i

based on a finite set cof values from the convolutions. The existence

and continuity of the operator which deconvolves {XA*f}'l 5 N is
i=1,2,...,
i

discussed later. Given this operator, its continuity permits us to

discuss approximate deconvolution based on approximations of X, *f by
i

interpolation.

We now turn to a second item, certain physical constraints on

deconvolution. Let A, Q, A , E, and f:szR —> R be as above.

pP»q

It has already been suggested that the set {A } is to be a cover
p

»qd

of EZXR by non-overlapping sets. Recall

r = £
LxA*f)(pa,qT) Ixo . f .
P,

The physical constraint is that Q@ nQ, , = @& for (p,q) # (p’',q’).
P4 P ,q
This is Dbecause two detectors cannot occupy the same space

similtaneously. This constraint can be modified (e.g., using beam

splitters) such that the constraint is

Z c(p,q)xO (x,t) =1
P.q P,q
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where c:Z°xZ —s [0,1]. For the staring array example, c = 1. (Here
we do not include detector efficiency’ in our discussion.) This
‘constraint will determine in part the "observation points," that is,

points at which xA*f can be evaluated. For example, the set
2
{[xA*f](pB,to) i pe z}
is not physically realizable for g < a .
In addition to constraints on the points at which XE[xA*f) is

measured, we also have bounds on the measured values. From Holder’'s

inequality

1 1
Gy = Dl el - 2+ =1, 1spse
Let |A| be the three dimensional Lebesgue measure of A, i.e., (Al =
| = g° ;

"xAhl a“T. Thus

1/

I, G, = 141770,
and for p< o, f € Lp’(Rn),
[Al
(For p = o and for f € l}(Rn), we get pointwise convergence by the
Dominated Convergence Theoren, [xE[xA*f)](x,t)———————~e 0.)
- [A]l —0

In the case where noise or errors for each measurement do not

1/p

decrease as |A| , and for f with unit LP norm, we have a lower bound

@  on Al imposed as an addition constraint.
For A as above, the simplest pattern of observation points in R°xR
is the staring array with simple integrator,

- {(pa,qT) : pe Z°, q  7}.



124 3.1 Introduction

See Figure 11. With |A|

A(s) = (—sg , ng X (—sg . sgj x (0, T/Sz) , s>0 ,

« we may rescale a and T,

so that [|A(s)| = |Al = « - See Figure 12a and 12b. In other words,
the detector size <can be reduced 1if the intggratiqn time 1is
appropriately increased, and visa versa, without altering the wupper
bound due to Holder.

A second simple observation scheme 1is a cont inuous scanning

pattern. Let v be a unit vector in R® and define

2 a a a a 2
B = {(x,t) € R°x(0,T] : x-vt € (-5.5)x(-5.5) < R }

See Figure 13. Note that [B| = |Al.

A third scheme is an alternative to the continuous scan, the shift
scanning pattern of Figure 14.

In all of these cases, the number of observation points in a fixed
set E c EéxR is approximately IEI/aO. We have here the "mesh size" or
sampling interval bounded below due to o

Let us examine the consequences of f being independent of time.
Let f(x,t) = g(x), and let P(1/n) = (-50,52) X (5m352) » P = P(1).

For the rescaling case of the staring array

Ry m* )01 = [(XP(I/n) x[(o,nzr)l)*f](x't)

- J' JXPU/n)(X_y) gly) dyds
[t-n T,t]
= n°T (x *g](x)
P(1/n)
X
- 2 P(1/n) )
=aT (ﬁr“—_— * g](x)

P(1/n) 1
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Fig. 11. Representation of a staring array with a simple

integration time-response.
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Fig. 13. Representation of continuous scanning with

scan velocity v € Rz . In this representation

{pa+vT 1 p € Zz} = {pa T p € 12} . .
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Fig. 14. Representation of shift scanning. After each
interval T the set B is shifted by vT, v € Rz. Here, for

each n € Z ,‘{pq+an : pe€ Zz} = {pa+(n+4)vT T p e Zz}.
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Fig. 15. Scan in R® for (e, p2]+,j(%,——1-§) . (p, p) € 7%, j e L.
. > :

Numbers at points refer to value of J for which sampled.
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The observation points are (p%,qnzT) . peZ2 , ge€Z, and

x ) .
*f)(p%.qnar) = a’T Gﬁgilfﬂﬂ'* g)(p%).

(x
A(1/m) P(1/n) 1

We conclude
Remark 1 For rescaling of A to A(1/n}, and for g € L?(R"), 1=p<o,
a) The underlying convolution which is sampled converges in LY to
g as n increases:
xP(l/n) P, N
« |— % gl ————— a g in L(R) ;
oty 1 o]
P(1/n) 1 n — o
b) the number of obsérvation points on any set E2 increases as nz;
c) the time interval associated with each observation point
increases in length as nz.

For shifted scanning, a choice for an observation point set is
((p.pa + 35 (5H%a, 1) : (p,p)el® , jez
1’ 2 n’ n ? 1) 2 » 14
whereas the set A remains the same for any n. See Figure 15.

Moreover,
2
)

{[XA*f)(pa + Ja(%.(%) , JT) - pez” JEZ}

= {T[xp*g](pa + ja(%,(é)z)) : p622 , jel}
= {T(xp*g] [k(o,l)‘% + J(l,%)g] : (J,k) € zz} .

We conclude

Remark 2 For shifted scanning according to

{[pa +Jals, (D%, gT) ¢ el jeZ}

a) the underlying convolution remains
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X *8
o« — 3

AN
b) the number of observation points on any set increases as nz;
c) the time required to acquire a full obseryation'set increases
as n°.
Let us compare rescaling (Remark 1)-and scanning (Remark 2}. For
o, fixed and for f independent of time, to reduce the mesh size of the
observation points projected onto Ez’ we can use smaller detectors and
observe over a lionger time interval, or we can use (shifted) scanning
and a sequence of time intervals. In both cases |A| = o and the total
observation time to get all observation points is the same. Therefore,
1. Rescaling and scanning are equivalent in terms of observation
time required. However,
2. Rescaling and scanning differ in that
a) rescaling uses decreasing detector size to approach the
desired function g,
b) scanning uses a fixed detector size to approach xp*g.

Our interest is in the scanning case. In particular, we examine

the case of
3

X {(xp'*g](xj) D€ 2/.},

i=1 i
that is, more than one detector of fixed but appropriate sizes and a
sequence of observation points whose mesh size can be as fine as
required. For such-a case, the desired approximate reconstruction of g

can be given.
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3.2 CONSTRUCTION OF AN APPROXIMATE DECONVOLUTION ON Rn

While we shall address in detail the case in which the convolutors
are the'characteristic functions of cubes in R" (e.g., the cubes Pf

P2, and P3 in Rz mentioned Jjust above), we may begin somewhat more

generally. Specifically, we shall assume we are given N convolutors
o, i=1,2,...N, and each g is in L”(R™) and has compact - support. Let
1 1

f be in Llan(Rn). We wish to approximately reconstruct f from

r(f)eﬂ'N, where r and .?N are as in the Introduction of this chapter.
Approximate will mean any of the L? normg, 1=p<w (and p=« with some

additional qualifications).
For approximate reconstruction of f it suffices that for
sufficiently large v, >0, the reconstruction approximate wT*f, where
1 n n n .
¢ € L'{R') and wr(x) = T p(tx) for x € R, since
p_*f ——— f in LP(R™), 1sp<w .

T > ®

In this case we seek N deconvolutors vl,vz,...,vN such that
N

The 1ingredients for a solution {v *p )i - y vere noted by
” i Tthi=1,2,...,

Berenstein, Krishnaprasad, and Tayler (1984). Let A denote the Fourier

transform. The Fourier transform of distributions in the equation

N N
Z u,*ui = & results in the Bezout equation z ﬁi b = 1. A necessary
i1 1=1
condition on {p. }. ; y for the existence of a sclution is thus
1 i=
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N N
Z [ﬁilz(w) > 0 for all w € R". For such u a solution of z ﬁi D =1
i=1 i=1
is
A
D = S
i N
AN
i
i=1
where  denotes complex conjugation. However, .the D are not the
N 1

solutons C_ if each v is to be a distribution with compact support,
1 1
for the D are nct analytic. On the other hand we have the following.
1

For w = (v ,0,...,0) let
1’ 2 n

lwll = max {lw.l}.
© j

j=1,2,...,n

The growth of D as Hme gets large is known once a lower bound is
1

N

established for Z |ﬁj2(w). For the p, of interest we shall exhibit
1 1

i=1
such a bound as well as a choice of e such that DX$T € Lz(Rn). In
this case there exists hi e L?(R") such that ﬁi = D.Qr and

1
N

.ZJH*“x*f = wr*f’
1=

this last equation easily seen by taking Fourier transforms. (We have
assumed f € L'(R") so that urf € LY(R™ and the left hand side is in
L*(R™).) |

The {hi}kﬂ,.”,N are the desired approximate deconvolutors.
However, -they do not have compact support. On the 6ther hand, they can
be explicitly exhibited wusing only ﬁhé- knowledge of the Fourier
transforms of the convolutors M- Because of this simplicity and

potential utility, in the following we conduct an error analysis for a

digital implementation of this approximate deconvolution for the
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special case of convolutors which are characteristic functions of cubes
in R". In addition the cases described in the introduction provide two
further restrictions on the problem and these we adopt.

First, it will suffice to approximately reconstruct f on some
compact set E. For example, it suffices to choose T such that

e, = I (r - o)

is sufficiently small.

Second, the measurements consist of a discrete set in R" cn which
a set of convolutions is evaluated. Let {Xﬁ}qEQ denote the discrete

set of points, with x = R® and with Q a finite index set. The
q

convolution values are
{[u,*f)(x) : geQ, i=1,2,...,N}.
i q

We seelk to use these values to approximate f on E by constructing

an interpolation. In particular we seek functions wj:Rn -— R, jeJ

¢ Q, and we seek a map G:{xj}jej —> R such that X = xE.Z wj and fo
JjeJ

is approximated in L? by X ¥ a(xj)wj . That is, we seek to make the

JjeJ
error € ,
£ = f-3G ,
Ix (£ -~ T &0 pw )
jeJ
sufficiently small.
For brevity let F denote wr*f . Frém above we have
N
F = wr*f = Zlﬂ*u‘*f
i=1
Let v denote inverse Fourier transform, let XA be the characteristic

function of the set {weR Hwﬂmsk}, and let B be a compact set in R"
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with characteristic function x3 . Then define

e ‘i[(xk ﬁljvxﬂ];(ui*f).

We shall seek to choose A and B such that
e = lx. ¥ (F(x ) - G{x )]w I
3 E jeJ b ] i'p -

is sufficiently small.

135

The triangle inequality now indicates the additional two terms

needed to have a bound for £€. One term is
e, = I (F- I FGxv]| .
2 E jeJ i it

and the second term is

e, = |z, ng[G(xj) - G(xj))tllj"p .

The defining expression for G above suggests the consideration of 5(x,)
J

of the form
N
G(xj) = Z ¥ Hl(xJ - xq)(ui*f)(xq) ,
i=1 geQ
where H :{x }qGQ —> R . The ﬁi then are the deconvolutors which
i Tq

shall implement. An L? error bound for this approximation is thus

e = "xE (f —jgbc(xj)wj)”p S £ te_+e_te,

In the following we develop bounds for each of the four error terms.

we
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3.3 THe Lower BounD C(w)

For a choice of n+l1 positive numbers ao,a1,...,an let Ai be the

cube of side. length a, in R". "Let X, be the characteristic function
i

X

of A and let p = L For this specific case of conyolutor we
i 1 n
(a) '
1

shall prove the following.

1. THEOREM. (Berenstein) et I R be a choice of n+1
n

positive integers such that the collection is pairwise relatively prime

and none 1is a perfect square. Let a = Voo , and let M =
1
max {a }. Let g be the characteristic function of the cube in R"
1 1
i=0,1,...n

with side length a normalized to unit L1 norm as above. Then
1

The proof will follow from several lemmas. We begin with

2. LEMMA. Let p and g both be postive integers. If p and q are
relatively prime, then vp/g is rational if and only if both p and g are

perfect squares.
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Proof. () Clear. (=) It follows from qr2 = ps2 for some

relatively prime integers r and s, from a prime factor expansion of gq,

q =q y--~qkk , and from the fact that p and g are relatively prime,

that each q, divides s. Hence,
52 =q 1---q k(s’) , 2n. z m_ fer i=1,2,...,k.
1 k i i

If g is not a perfect square then, reordering factors, m, is odd,

2 2 - 2 . 2 .
2n1—m1 =z 1, hence, from qr = ps, q, divides r~ as well as s . This

contradicts r and s being relatively prime. This along with a similar

argument for p show that both p and g are perfect squares. ]
To proceed it will be necessary to define some maps. let 4 =
{ao,al,...,a }y, m= min{a}. Let xceR. Define the maps
" aieﬂ
d: Rxd —> Z, riRxd —> [-5~ , =21
2m 2m
by
x = d(x,a ) L rix,a ), sgn(x) r(x,a ) e [--" ,—E ).
i° a, . i i 2a '2a.
1 1

1

For fixed x we have the maps defined by restriction

g o 14

dx.ﬂ — Z, 1x.ﬂ - [ T 55]

d (a ) = dlx,a ) rla)=r(xa).
X i i be i i

For each fixed xeR we alsc define the subset I' < 4 by
X

r = {a € 4: |r(a)|] =  min{|r (a )I}}.
X X X i
a e€d
i
A choice from I' will be denoted y . (The set ' may consist of more
X X X

than one element. Any element ¥ may be interpreted as an element of
X- -

for which some integer multiple of wn/y 1is as near x as any element
X



138 3.3 The lower bound C(w)

from the set {zg- . zel , aied}.)
1

The following simple observation will be used. Its proof follows

directly from the definition of v

3. LEMMA. For every Q = 0 either

[r (¥ )] =0
X X
or
for every a_ € 4, |r (a)| > Q .
1 X 1
4. 1EMMA. For every a, a € f such that a # a_, and for every
i j 1 J
5 ez - {0},
a
fsin[—ibn]] = 4
a. a, .
) [4——|6| + 1]a
a J
J
Proof. There exists a nonnegative integer n and ¢ € [-1/2 , 1/2]
such that
a.
allbln = nm + €nw . (%)

]

From this and the properties of the sine function

a a )
|sir1f—ibn]| = lsin[——ilbln]l = |sin(en)]| = éIenl ] (%%)
a a T
j j
From (x)
a .2
i] .2 2] 2
° - n'|n
.
len] = |—18] - n|n = J . (xwx)
a a.
) 18] + n|n
_ a,

This cannot vanish, for
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o

3‘22 2 i
[—]6‘1’1:0(:)———:"——',

2
hence —
aj

is rational, which by Lemma 2 contradicts the intial

assumptions for &. This nonvanishing along with the fact that a_2 and
. 1
a‘2 are both integers implies laizbz - nzajzl = 1. This with (*xx)
j .
implies
T
len| =
a ?|—L8] + n
a
)]
a.
However, from (%) n = —Eilbl + = , hence
j
a. a, a. 1
1 1
181+ | = 26+ 2160+ 5
3 b j
consequently
lem| = L ,
2 4 1
a2 1ol + z'
=

which, when substituted in (**}, yields the desired inequality.

Recall M = max{a}.
aed

5. LEMMA. Let x € R be fixed. For every ¥ € I' , if
X X

{dx(wx)i = 1

and
P 1
|r (¥ )| = ¥ ,
*ox M 2
[4—ld (y )l + 1]?
¥ X X x

X
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then for every a # 7x
2 ‘ 2

>

[sin(a x)| =

1 ax 2 M 2

[4__101 (7 )1 + 1]7, : [4———Id (7 )1 + 1]7
¥ b4 x X v X X X

X x

Pfoof. Since x = d (¥ )—;— + r (y ), by the Mean Value Theorem
X X X X

X

there exists £ € R such that

a. a
sin(a x) = sin[——id (¥ Jmu + ar (¥ )] = sin[——id (¥ )HJ + ar (y Jcosg.
i 'IX X X i x x ’a’x X X i x x

Thus
a

|sin(a x)| = [sin[——id (r )n]l - lar ()]
i ’a’xxx i x x

(apply Lemma 4)

> 4 - a |r (v )|
i' x "x

a
[4——i|d (v )1l + 1]7 2
L 7 X X x

X

(apply the hypothesis)

4 2a, 2
= —_ ——
2 2 M M 2
[4—!d (y )] + 1]7 [4—Id (7 )] + 1]7
s X X b v X % x
X X
2 2

= z

a.
[4—‘|d (r )l + 1J72 [4i;d (y )] + 1]@, 2
7 X X X b g X X X

X

X .

The next two lemmas will address the case |[x| = n/2M. For this

case the condition [d (7 )[ > 1 is not vacuous.
X X
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6. LEMMA. If |x| =z w/2M , then there exists"yx € Fx such that

|d (¥ )| = 1:
X X
Proof. a) Case x = n/2M.
Since x = w/M - nw/2M , then d (M) = 1 and r (M) = -w/2M. _Moreover, for
X X
all ai # M, x < n/2a_ , hence, d (a ) =20 and,rx(a‘) = w/2M , therefore
1 X 1 1
lr (M| = |r(a)], or MeT..
X X 1 x
b) Case x = -n/2M.
Use an analogous argument with d (M) = -1, r (M) = /2, and for a # M
X X 1

r (a ) = -n/2M.
X 1
c) Case |x| > n/2M.

-

Consider any 7 € I Since x = d (¥ Eohr (¥ ) whereas |r (% )| =
X X X x ¥ X X X X

lr (M)| = m/2M < |x|, then |d (¥ )] = 1. n
X X b 4

7. LeMMA. If |x] =z n/2M then there exists ¥y € 4 such that for
X

every a_ € 4 - {7}
i X

[51n(aix)! 5
[aix| 5 x)°m
Proof. Fix x € R, |x|l =z n/2M. Lemma 6 provides a ¥y € I' such
X X
that
s |
x=d(y)- +ry), [d ()] =1

X x ¥ X X X X

X

Since |r (y )| = n/2y , then {x]| = (|d (¥ )[ - l]n/y . Therefore,
X o x X - x % 2x7_
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1
1 y (e, G| - e,

>

a, - x| a, }
[4T|dx(7x)l + 1} [47|dx(7x)l + 1]

X X

The right hand expression is increasing in |d (¥ )| for |d (Vx)| z 1,
X X

so we may use |d (y )] = 1 to get a lower bound:
. X X

1 ! n/27x 1 w2 1 /2

=

a E .
i + + S5

[4 ylld (y )] + 1J | x| 4ai/afx 1 Ix] 4M 7, | x| M
X X

X

_— =

By Lemma 3 it suffices to consider two cases.

Case 1: |r (¥ )| o= 2 1
) x X

M M 2
[4—Id (v 31 + 1}7
v X X X

X

In this case, if ai #* gx, then by Lemma 5

|sin(a x)| = 2 ,
1 a 2
4——w(7)1+1}
¥ X X x

X

hence,
|sin(a x)| = 2 1wz, LSS 2 ,
- ' ?fxz Ix| SM  |xISH  |xISM
and
|sin(aix)| _ - g 5
]aix] 5|X|2a1M3 5(x| %M
Case 2: For every a € 4, |r (a)]| > 2 L
i x i M

M
P——M(W)I+ 47?
Y X X B X

X

Here, x = d {a )n/a_ + r (a ), |r {a )| = mn/2a_, hence
N X 1 1 X 1 x 3
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. . 2
|sin(a x)| = |sin(ar (a))| = = |r (a)]a
2ai 5 1 2a1 2 1 w2 1
> - = > -
_HM ’

[4—”—|d (y )] + 1]72
v X X X

X

which implies the desired result (recall yst). ) ]

Remark: In Case 2 a x is never an interger multiple of mu. In Case 1
1
a #y 1is used.
i X
The case x| < w/2M is addressed next. As usual sin(x)/x is

defined to be 1 for x = 0.

|sin(a_x) |
8. LtEMMA. If (x| = n/2M , then — 1 > 2/n for every a_ed.
la, x| '
1
Proof. |x| = n/2M = for every a, e 4, |x| = 1r/2ai =
]sin(alx)l

— z 2/, u

|a, x|

These last two results can be combined.

9. LEMMA. For every x € R, there exists ¥ € 4 such that for
X
every a_ € £ - {y }
1 X

isin(a x)| 2 .

|a x| sM* n 2
i ) max SN i x|
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Proof. Since M > 1, % = 24 2 1 . With this we
consider separately |x| = n/2M and |x| > n/2M and apply the preceding

lemmas. -]

We can now conclude the theorem.

Proof of the theorem. Let w = (wl,wz,...,w ) e R". It is readily
n

checked that
N " sin(aiw./Z)
- J
“i(w) B ” a w /2
j=1

i

Let w € R" be fixed. For each coordinate w of w let 7, be an element
’ j
of oA provided by Lemma 8. Since there are at most n distinct Y and

3
4

since there are n+l distinct elements in 4, there exists an element

a(w) € 4 such that a(w) = v, j=1,2,...,n. To complete the proof let
J

pai = M hence,

sin(a(w)w /2),2

j
alvw)w /2
j

Il [~

B [* = ) IR, @] = i, @ ]* =
i=0 i

i=0

(apply Lemma 9)

\]

’
= |

-3
| S
[\J
=
jmmme |
[y

n
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3.4. PIECEWISE POLYNOMIAL APPROXIMATE IDENTITIES

Our choice for ¢ in ¢T*f is a piecewise polynomial, for ¢ can then

have
i. compact support,
Ii. nonnegative values everywhere,
iif. an analytic representation in digital simulations,
iv. a predetermined number of continuous derivatives,
v, V a tractable Fourier transform.

Let R be the characteristic function of the unit cube in R" centered -at
the origin. We use the following notation:  for any function
g:[Rn —> R, for a € Rn, and for x € Rn,

1 be
gs(x) = —;; g(E) s

g[a](x) = g(x-a)

Our choice for ¢ is denoted ¢<k>, k € N,

k+1 times

¢<k> = (R* R» o R)l/(k+1)

It has the following readily checked properties:
i. The support of P s is the centered unit cube in R":

the support of ? s is the centered cube of side length s.
s

“w<k>s"1 =1
o . > n
ii. ¢<k>(x) z 0, x € R.
Iii. ® is a piecewise polynomial of degree k.

<k>
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iv. P s has k-1 continuous derivatives.

k+1 .
v. $ (w) = [ﬁ[EéT w]] , W= (wl,wz,...,wn) e R",
31n(w /2) |

Rlw) = ”

As usual we have for the first error term 81, for f € l?(RnL

1=p<oeo,

”X [ <k>s J”p s——)F_) 0. 1=p<e,

and for p = o, for ¥ a point of continuity of f,
. |f(X) - L(p(l()S*fJ(X)l _S———)—O_-) 0.
For any f of interest we can choose a suitable s, but the convergence
in not uniform (e.g., f a square wave on D ¢ R , D = supp(w *x ),
<k>s E

with unit amplitude and period L, then forr any fixed s, p # o, g,
approaches (“13"1)1/p as L approaches 0). Consequently, we have no
more to say about any upper bound for €.

We note, however, that for a fixed choice of k, the set
s *f : s>0} is a one parameter subset of LP(R™), and each s is a
s

piecewise polynomial with compact support. These properties make it

practical to evaluate by simulation the appropriate size of s for the

vision task at hand. Such a choice for s determines £ which in turn

suggests an upper bound for €, £, and g, - For 52+s:3+84 defines the

radius of a neighborhood about ? s *f. The approach will be to make
s

this radius as small as desired for a fixed s, hence for a fixed €,
A conservative guide would be that _the radius shouid be small compared

to 81 .  Beyond these remarks anQ'additional significance for the size
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of the neighborhood depends on additional problem structure such as
that discussed in the Introduction. Our' interest hereafter is solely

how to achieve an error bound radius of a predetermined size.
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3.5 INTERPOLATION IN L°(E)

With the choice of ? e above we turn to the error €, We shall

use frequently the facts that for g and h functions on R” such that g*h
is defined, for s>0 and for a € R',
(g«h) = g xh_,
s S s

(gxh) | = gxh |

g =1ligl for ge L'(R"), and
s 1 1

-1, 1 = p,gqr £=w, 0= 1/

+
N

T
Q-

lgxhll = llglt linlt for
P q r

{Young’s inequality).

We shall also need

10. LEMMA. For k =z 1, for y = (yl,yz,h..,yn), and for 1 = p = o,

"(¢<k>s)[y] - go<k>s||1:>
1
K+ 1 n(1-;) ) Kk+1 n k+1 n 1/p 1/p
= [—S—] m1n{2-—s—1;|yi| ’ [ZTileyil] » 2 }

with the convention 0 = 1/» .

—k~1 times—

Proof. Define R = (R * R %---% R)‘“k n To establish the
s +

first term in the minimum use

[Fas) i~ Cavely = 17 * By * [Rorgn) i = Ruveen ] Iy

< -
- ,

”7{”1 ”Rs/(k+1) ”p ” [Rs/(kﬂ))[y] s/(k+1) ”1
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with the obvious modification if k = 1. We have, with 0=1/c,"

n

- k+1)"p
PRl =1 e R, L= ()T
’ n
whereas | (R ) - R | is [Eil] times the Lebesgue
s/(k+1)7 [yl s/(k+1) "1 S
measure of
s/2 s/2 s/2 s/2
[[Y1 o1 Y k+1] o e Yn*m] s
- s/2  s5/2 .. . r.s/2 s/2
et e <o ey w1

where for sets A and B, AAB = (A~ B) u (B - A). Let

s/2 s/2 s/2 5/2
I = T 0 LTIt ’ [Y ’ o=
k+1 k+1 i kvl 0 Ykl

Then

n
S ¢ [_U I xeo-x I x (I_-1) x1 xeoox I ] U
1 i-1 s Yia1 In

n
[ UTI xo»x T (I -1 )xT1x-+-x I) R
121 y

i

so that, with ISl denoting the measure of S ,
n s n-1
s = 2 Z ly, | [EIT] .
i=1 ~ 7

Hence,

k+1
| (Rs/(kﬂ)][y] - Rq/(lul) 1 i;' ’

which completes the proof of the first term in the minimum.

To establish the second and third terms in the minimum use
- |
” [w<k>s) [yl w(k)s L P

(ES R LN [Rs/(k+1))[y] - Rs/(k+l)”p

For the case p<w the second term follows from
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k+1)°, o 17p
" (Rs/(k+1))[y] B RS/(k+1)"p = [ = ] PS” ,

n
while the third term follows from ISl =< 2 [Egi] . For the case p=w it

suffices for both the second and third terms to note that ? rs is
R S

nonnegative, hence

, k+11"
” (w<k>s][y] N (p<k>s”oo = I[‘p<k>snoo = ”?zllllle/(k+1)."1"RS/(IHI)"oo = [T] ’

The following lemma indicates that we have many choices for an

interpolating function.

1. LEMMA. Let g € Ll(Rn), g =z 0, and supp g < B(O,r), the ball

n

of radius r in R". Llet T > 0, N € N, and N = (2N+1)". Let

{el,eZ...,e } be an orthonormal basis for R", and let {xjjni denote
n J =

the set of points in R"

n
Iy . B
L pirei P, € Z, Ipil N} .

Li=1

_ 1 n . _ _
Let R(’L’)(X) = R(; x), x € R. Define ¢y = g R(r) and l,l/j = ¢

n times -

For E ¢ R" such that supp(xE )J ¢ [-Nt,Ntlx...x[-Nt,Nt} = D ,

* Xg(o,r
then
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Proof. From the definitions

N : . N
%, (x) lej(x) =0 [ gt ZI[R(_”)[ (1) at .
= B(x, r) = Xy
1t suffices to check that for x € E then B(x,r) ¢ D, and

X
Zl (R,) =1onD .

Since R = T'R_ by definition,
{T}) T

12. coroLLARY.  For supp (X, * Xg(p vqecy) © D and for ¢y =

— £ times — N
t"(R_ % --+ % R), then Yy =1onkE.
T T j;l Bl

With this we can now establish an upper bound for £, We choose

— ¢ times —

Y = -rn(RT TR Rr)' Let {xj} and wj be -as in Lemma 11, and let N

be sufficiently large to satisfy the condition in Lemma 11.

13. THEOREM. Let ¢ = ¢ ., 1=q,q'=0, 1/q + 1/q" =1 (0=1/0), f

l(go*f)(xj) ‘/’j)"p ,

I~z |

e Lq(Rn), and let h = ¢t. For 82 = ng[w*f -
o

l=p=w, then

n/q l/q 7
R I o R P e (S = B
2 q s Elp s s
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Proof. We have

N .
|7, (30 Zl [lotx-t) - ox-03) (23 at 4,

N
(0 ) gy s = 9l 11, 9,00

1 p _
—‘l') 1/q ’ N
”f“ [k+1] a min{ kslnh ) [Eglnh] , ol } %, (x) Z v (0,

where the last inequality follows from Lemma 10 and from suppy <
b

{llx-x I =h/2}. "
j

We conclude this section with some remarks. First, we have
required that f € L”(R") because only for g = o does £, depend on s and
h according to h/s. This is the simplest case for applications. As we
shall see, we will obtain HXE" as a factor in the bounds for € and €,

p
as well.

A further remark is that for h/s sufficiently small the minimum

k+1
has the value of ———nh

A final cbservation is that the smallest bound is obtained for the

, that is, £ = 1.

choice of ¢y = )
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3.6 APPROXIMATE RECONSTRUCTION

In this section we shall determine aﬁ explicit upper bound for the
third error €, We use the notation and definitions of the
Construction section and we use- the specific convolutors {”1}?20 of the
Lower Bound section. This bound requires more work than any of the
others. The first task is to determine the values of Kk in wdoS for

which ﬁ‘ = quo )AD' is in L*(R™). To use effectively the lower bound
1 s 1

C(w) we shall need the following lemmas.

14. LeMMaA. For a, b, p, g, and x all nonnegative real numbers,
for p-q = 0, and for b # O,

AP P ~
{(max{a, x}) < max {_g_ P q} .
(max{b, x} )1 bd

Proof. It suffices to show that the left side of the inequality
is bounded by some member of the set on the right hand side for each of

the cases: =x=a,b ; asx<b ; b=x=a ; a,b=x . [

1%5. LemMMaA. For a, b, p, g, and x all nonnegative real numbers,

for bza, p-g = 0, and for x # 0, b # O,

(max{a, x})° < min {(max{a,x})p ' Xp-q} < min{b”? | Y
(max{b, x} )7 ~ b
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Proof. For the first inequality it suffices to show that the left
hand side is bounded by each term in the set on the right hand side for
each of the cases: x=a,b ; asx=b ; b=x . For the second inequality,

since bza, it suffices toc check the cases xzb and x=b. x N

We can now prove

16. PROPOSITION. For (k-2)p > 1, then ﬁ, = @) )AD. e LP(R"),
i <k>s i

1=p<w. In particular, k = 3 is sufficient for ﬁ' e LA(RY).
1

Proof. It is straighforward tnat for w = (wl,wz,...,wn) e R" then
- sz
X n SIII&ETEITTJ k+1 .
[(p<k>s] (w) = ” sz
I=t 2(k+1)

Since |sin(x)| = min{|x[,1},

n k+1

A - . k+1 1

(Caod"@ =1 mm{l C 2 ij—:}
J:

n
[ k+1]n(k+1) | 1
= _ - r k+1
s ! max{zl—(il , Jw l}
= s j
From the definitions, L With this and the theorem from the
i
Lower Bound section,
, A
H (w)
_ A i
[ﬂi(uﬂ | = [w<k>s) (w) ,
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4
T
. n . max{= , ijl
+1
i 2 , k+1 K
j=1 maxi— , [w |} max{2—— , |w |
a 3 , s 1

Note that a may be replaced by m = min {ai} . With this and Lemma 14,
1

a e€d
i

' max mr ' |w |3 -
n(k+1) ﬁ 21M) j

j=1 max{Zk4

s

K+l Kk+1 m(m)* |V
Note that 2—5— may be replaced by K = max{Z—E— - ﬁ] }. Then by

et = ()6 B

i
\_ng
;__1
3

Lemma 15

n
4+ 2n n  n(k+1} J j 2-k
,ﬁi(w)! = F%;J Eﬂ K I] min e ,]wjl }
j=1 -

(The case 2521 = K is typically the case of interest here.) Hence, ﬂ.
1

e LP(R™) , 1=p<w, whenever (k-2)p > 1. n
The next result is a well known tool. Our notation for some

standard items is: 38U for the boundary of the set U; & for the

imaginary element in C; w-x for the usual scalar product of w and x in

R"; dw for the standard volume form for R" represented by

dw Adw A*--Adw 1in the coordinates (wl.wz,...,w ), where A is the wedge
n n

product of differential forms; and ...Adij... for the deletion of the

factor dw_ in a wedge product.
) b
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17. LEMMA. Let g:R" — R, g € (R (i.e., g has k continuous

derivatives). Let ajg denote the partial derivative (‘2—5— Let U be an

open set in R" with compact closure U. Let U have a triangulation

consisting of differentialble singular n-simplexes in R". Then

J(a 6. 6 g)ew * dw
Iy ) Tk
k-1 )
=2_‘ [ LX ]( 1) J(a Ry g)ewlx dw A---Adw_ A---Adw
] 1 j n
— r k s
+ J(a' --‘6.g)ew'x dw A Adw_ A- - - Adw
J ] 1 Jl n
k-1 jk+1 - w-x ~
+ { n (-ix, )J(—l) J g e dwlA'--Adw Ao Adw
r=1 Jr au )k n
x - x
+[n(-4:x )]Jge dw .
r=1 jr U

Proof. Stokes theorem and induction on k.

18. COROLLARY. Let aj aj 3 g =0 on 8U for 0 = s =< k-2 and
j
1 72 S

for any indices j1’ j2,...,_j . Then, for llxll any norm of x € [R’n,
S

J g e ¥ dv=0xi™) as Ixl —> w .
. .
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Proof. From the lemma

J(a 8 ---8 g)eu”'x dw
Jl jz jk
u
- (—1) J(a . 6 g)eu»'x dwl/\---/\dwj As e Adw
n
1
:[ H(LX ]J‘ge dw .
Consequently, by letting j =1,2,...,n and taking the sum,
n .
j Y (x088 -8 gle ‘““’de~J(a a -8 e (x]dw)
12 Iy 2 73 Tk

au

n k . o
= [ Z—thZM M-, )] jg e aw
t

=1 r=2 r
U

n -~
where x|dw = Z XidwlA"'Adij"'Adw
5=t

n

Repeat this for the remaining indices j2, j3,...,jk and normalize by
n

X
dividing by lek. | x| the Euclidean norm of x. Let ax/(xl =jZlT;% aj‘

Thus
k e x k-1 w-x x
> - 2 id
J(ax/lxlg)e dw f(ax/lxlg)e |X|J w)
U au
- (—L)klxlkJ g e® ¥ au . -
U
We now begin the comparison of Zﬂw*f](xj)wj with an approximation
- j 7 -
YG(x Y . We consider first (w*f)(o), Some required notation
N SRS 7 )
n -
follows. Let ¥ = supp ¢ , Mo U supp ¢ , let x, and x, deonote the
- <k>s i ¥ M

o]

i
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characteristic functions of ¥ and M respectively, and define

¥ + M = supp Xy * Xy o

— p times —
$+ pM = supp x, *x (x, * 10 * x4 -
We have —~¥ = ¥ and we shall require -M = M. As usual, we abbreviate
? s by ¢. Recall that we have the relation )
s
o ,
L hx px = gxf |
i =0 1 1
19. LEMMA.
n .
(px£)(0) = [ 'Zohi*[(ui*f)xy,w] ](o)
i=
n r
£ a_ _ 3
+ .Zohi* [[ui * [:Axy+2M(1 xy,)]]xy,+3/“(1 Xf/’-l*/ﬂ}] (0)
1= -
Proof.

e}

Zhi*((“i*f)xmm] = Lhx [[ Bo* (fx%z/u(xy,ﬂ‘l—xy))]xy%]

i=0 i=0

= i§ohi* [gi * [ny;)] + i§ohi* {[ B (fX.S”+2M(1—x.Y’)]]X$"+M]

The first term in this sum evaluated at O is
[so * [fxy,)](o) = ¢xf(0)
The second term evaluated at 0, after adding and subtracting

Lhe [[ e (fxy’+2m(1'xy)]ny)+3M(1‘xy+m)] (),
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is [iz hi»s [[ po* (fxy+2M(1;xy))]x9’+3M]](0)

=0

_ {thl* [[ e (fxy,+2ﬂ(1—xy))]xy+3M(1—xy+M)]](O),

and the first term in tﬁis sum is
n ) -
~Zoh"* [ui*. (fxsum(l'xy’))] (0) = [go x (fx%rz/n(l—xy,)]](o) =0 .
i=

Now we decompose this expression for [¢*f](0),

[(p*f)(O) = I: ¥ (ﬂixhjv * [(ui*f)nyrM]J(O)
i=0
+ %(‘5 ]V*[ « (f (1-x)) (1=, ) |[(0)
& UL LT Ueeon "2 [Xpeaat " Xpait

+ > (ﬁi(l—xx)]v *((“1*f)xy’-+/n)](0)
L i=0

n v )
+ izg[ﬁi(l-xl)) * [[ pox foy+2m(1'xy))]xy+3m(1‘Xy+M)]](0)~

-

This same proceedure can be carried out at x .
J
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20. COROLLARY. :
n V }
(rr) (x)) = [Eo[ﬁix;\] * ((urD) (x%/rt)[le]](xj)
]

n Vv . - .
' [ .?O[ﬁixh) * [[ by [f'txyuz,n“"‘y’))xijJ[xy+3m(1"7‘y’+m)][x ]]J("j)
;- ' j

n : v ' -
+[.¥O[ﬁi(1—7ﬁ)) *U“a’*f)(xyum)(xj])](xj)

o \%
+ [;O[ﬁi(l—xh)) *[[“i*(f[XTfZM“_xS’))[le)]{7‘%3,14_“”%%,;{)}“ ]]](Xj).

I
U » ;
Proof. Apply (a*b](xj) = (a*b[_xj])(o) , e.g.
((p*f)(xj) = [go*f[_xj]](o) and

(a*(f[_xj]b)](o) = [a*(fb[le))(xj'f) : =

The convolutions above can be replaced by the scalar product.

Define for a, b:R® — R, <a,b> = Jab . Whenever b(t) = b(-t), then
R" :

[a*b](x.) =<a,b > =<a ,b>. Therefore,
j [xj] [-x ]

21. COROLLARY.

2 v
[“’*f](xj) §o< [(ﬁxxhl ][le ' (“1*f)(xy’+/n)[xj1 >

i=
+ %([ﬁx}v [p*[f X (1—ny))xi (1-x ) >
o i"A ’ i [—xj] $+2M ¥ P+3M P+ M
i=

~

+ < (gi(l_lk))v -

Mok

i=0
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(“1*f(--xj117‘y’+m * [“1*(fr-xj17‘.y’+zm(1'7‘9))]7‘y+3m(1"7‘y+m) >

Let nl(x') and nzfx_) be the second and third terms respectively
: j
of the right hand side above. Then

e =
3

b 5@ ope - (), s G, G0 1

jEedJ i€eJ i=0

= xg o w0+ o T x v |

jEJ ,eJ

= max{[nl(xj) l}”%“p + max{|n2(xj)i}"x£"p

We turn to determining bounds for nl(xj) and nz(ij We address

nz(xj) first, this case being easier.

First, n (x ) is the sum of two terms, each of the form

Eo < (ﬂ (1- XA)] , xS[u (f XTD > , which is bounded by

Eoi(ﬂ (1-,1)"1, Ixs[u (r,_ - ),

= 3 (2o I, 01- )l e, )l
i=0

= § o™ n%iu—xynz I, 1,11,

,..
Q

It is easy to see that this also bounds nz(xj). Recall that "#‘"1 =
1

We use the proof of Proposition 16 to bound "(gi(l_xx)]v"p , p>1.

K+l n (e
If s=M and k=3 then 2——— z 5 [ﬁ} , and this is the case we shall

assume. Let
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4)1/3
|m |x _ oktl
a7z bﬂ » PE20g

so that by the proof of Proposition 16, with C a constant,
3 , 3
n max{ a , lw i }
J

. 2-k
|ﬁi(w)| = C ” mln{ — , |wjl } .

b
R j:l

By definition, 1-x., is the characteristic function of the set {Hme>A},

A
where Hme = max{|w,| , J=1,2,...n}. ‘Note that the zero set of
j
A . \ k+1
Ep ) contains {llwl = &r 2—~, {LcN}. Consequently, because of
<k>g ey} . S
Lemma 17 and its corollary, we shall later choose A = {n 2521 = {ib,

and this is convenient here also. Finally observe that

{uwum>x} = {uwnm>A} N {1wil=uwum}

i=1

We outline the integration.

C~p"ﬁ1(1—xA)"§ = Z J n min{---}* = n jjU1min{'-'}p

i=1 j=1
{ltwll >A}n{|lw |=lwil } {oll >AYn{|w |=lloll }
(] i [e+] © n [+4]
0 a g > b 3 <p N n-1
- " I yp(z-k) [ L a dx + J X dx + f xp(z-k)dx ]
J Pkl P+ J
A 0 a b

(use a=b and the inequality |vn - (v + u)n1 = n]u|([v|+|u[]"_1 )

1+p(2-k)

< on [yee)” [, Lt (em) P o
- l p(k-2) - 1 p(k-2)-1

With this and with p = 2,
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max{ [n,(x )|}
5 3

i B B P

1

. 1+1+ (en)1+2(2-k) n-1 (371')1 +2(2-k) 2
2(k-2) - 1 S 2(k-2)-1
We now turn to nl(xj). Whereas we used A to control the size of

nz(x'), we shall depend on M to control the size of
j

™~ B

nl(xj) = .

1

\%
a ()" [ B [f[-x_JXy+2M(I‘Xy)]]xy+3m(l“xy+m) &
J

Ji]

How this is done is indicated in Lemma 22 below. First some notation.

As previously noted, we use XA to denote the characteristic function of

{HwHwSA} and we choose A = EHZEEE, where ¢ is some positive integer.

For simplicity, let A = {NmeSA}. Then
n
A=n {lel = A},

i=1
n

A c U{lw 1 = a}
j=1

A second item of notation is the multi-index « = (al,az,...,a ) e
n
n o 061 OC2 o
N’. Define fal = T« , « =« tat---a! , andd =48 8 °---3"
R 172 n 1 2 n
j=
22. LEMMA. If Jal = k, then Baﬂi(w) = 0 for w € 8A.

Consequently, for all r=k+l, x € Rn, with |x| the Euclidean norm of x,

v 1 1 A T
][ﬂixA) (X)l - (2™ I x| ”ox/lxlﬁi”l,A )
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" Proof. The first statement follows from the property v of ? s

in Section 4, from the product formulas for derivatives, and from the

definition of ln . The second statement follow from the proof of

Corollary 18. . . u

" Several lemmas will be required to bound [3_ ", f | . Since
x/tx| 1", A

ﬁi(w) = quos]A(w) D (W), it suffices to bound 6a[[quS]A](w) and

r

ax/lxlDi(w)’ to apply Leibnitz’'s rule, and finally to integrate.

Recall Leibnitz’s rule for C valued functions f and g on R", with «, B,

¥ multi-indices:

!

T 8Pf) (a%g)

8%(fg) = ¥
B,y
B+y=«

(In the particular cases examined here all Fourier transforms have

values only on the real axis.)

It will be convenient to have a bound for 6“[@Qk>)A](w) which
S

depends only con |al.

23. LEMMA.IGQ[&QDS]A](w)]s

< Ial(k+lal)! olal n o 1 k+1
5(k+1) Ki = o S '
o 5 20K+ 1)
(min{1, 1/x} is understood to be 1 for x = 0.)
Proof. Let ¢’ denote ¢ constructed for R. From the
<k>s <k>s

definitions, for w = (wl,wzf...,w ) e R,
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T IR-

(¢<k>s] A(w) =

J

, A
1 (q)<k>s] (wj)

Claim. For v € R and for r € N,

r r k+1
lar[[@, )A](v)l < [i] min{ - (k+r)! [1 . 2(k+1)] [2(k+1)] } ‘
- <k>s 2) K (k+1)° luls lvls

Proof 5f Cléim. The first element in the minimized set is

established by

r
r .~ A < ’ r < ) s
S (o NI N AT IETE o N A )

The second elemént is established by induction on k. Recall

I+l
((p;k>s)A(U) = [SinC[ZT%f—‘lT]J , Sinc(v) = Sin(U)/U X

By Leibnitz’s rule

cf -, A T(sYC et 2 - T 21" 2
) Jon = G i n Bl wH ()

hence the result for k = 0. Recall the notation g“ﬂ(v) = glu/s) for

1A

s>0. Consequently (argks))(v) = (1/5)7(8"g)(v/s). With this notation

;YA , Al Mer A
COREEN [CHND B (CAN Y

k

From Leibnitz’s rule, from the result for k=0, and from the induction
hypothesis

| r ’ A |

S (CAeU]

s]"_1 2(k+1)]r [2(k+1) kelor [r}(e+k—1)!
e b -y (r-elt
[2](k+1)r[ lUlS |U|S] e§0 e (k‘l)' e

' ]
and the final sum is checked by induction to be Eﬁ%?lL . This proves

the claim. 5
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|
Observe that —T1 o 4 and that for y>0

k! (k+1)"

r k+1} r k+i

min{1l , (l+y) y < min{1 , 2"y} = 2"min{1 , yk+1}

With these observations
r , A .
|8 [[¢<k>s)](v)] =
V n

s )7 (k+r)t r . 1
[2(k+1)] I ”"‘1“{1 ' 5 }
j=1 vl

k+1

2(k+1)
o A) noor A
Since 48 [[¢GOS] J(w) = JEB [[wq»s) ](wj) , it remains only to
J:
check by induction on n that for a multi-index «
n (k+o )! k+lal)!
J <
1 T e —
j=1
n
A 2 ooa 2]t
We next Dbound derivatives of Di = K [ Y hﬂ’ ] . From
i =0 J
Leibnitz’'s rule and since ﬁ = [w )A, it suffices to consider
i <0>a

derivatives of the second factor. A formula for higher derivatives of

compositions of functions will be needed. Let s(e) denote a
multi-index with e coordinates s(e) = (sl,sz,...,s ). For a function f
e
(s )

of one variable let f ' denote the derivative of order Sf
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24. LeMMmA. For g, f € C'(R), with r = 1,

(r)_ 1 e 2 e .. e
(fog) "= §: s -1 s -1 s -1
e=1 |{s(e)|=r
sizl

r
S 4--4s 1] [s_+---+s -1 s —1}

Proof. The proof is by induction on r. With the convention 0!=1

the case r=1 is clear. Assume the resuit for r-1.
N (e ~
(rog)F) = [(fog)(l)]‘r = [[f(“og]~g(“](r Y

(apply Leibnitz’s rule and the induction hypothesis)

-1 . r-s
S +---+35 ~1||s +--++s —-1 s -1
1 2 e

r—1
[s—l] s ~1. s -1 s g
s=1 e=1 |s(e)l=r-s 1 2 J
s z1
i
(s.) (s.) (s ) (s)
1 e r
[f(e+ )og][g 12 ey ] . (f(l)og)-g( )

Observe
_1 - - —
r r—l] r-s ( r-1 r-e —1.
1 D TR B ) -1
s=1 e=1 |s(e)l=r-s e=1 s=1 |s{e)|=r-s
s =1 s =1
i i
rol r-1
S I S Y
e=l s +5 +5 ++<-+4g =r
0 e .
s ,s z1
0’1

The term (f(l)og]-g(r) corresponds to an additicnal e=0 term in the

last formulation of the summation. By renaming these r values for the
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index e (add 1) the desired form is obtained.

Some miscellaneous results that will be needed are collected in

29. temma.  Let av be the directional derivative in direction v e

L. Lemma 24 holds for f € C(R), g e C(R") if &  is replaced by

o]

=r.

For ¢ € Ck(Rn) and for r=lai=<k, if M{|al) is a bound for a“¢

L.

which depends only on |a|, then, for |v| the Euclidean norm of v,

}6;¢| = (V) IvIM(r)

Proof. For i, if f € C(R"), x,v € R", and if p:R — rR" , p,(t)

= x + vt, then [Bif)(x) = (6r(f°pv))(0)j

For ii, The first relation uses sl+S2+---+s = r. The irequality
e

follows from .
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r r (r-1)t (r—sl—l)! (r—sl—sz—l)!
ezl AN r (s,-1)T(r-s J1 (s _-11(r-s -s,)! (53—1)!(r—sl—sz—s3)!”'
s =1
(r-s - _=++--s -1)!
1 2 e-1
T (s —1)10t
r
_ Z r!
e=1 |s(e)l=r [r(r-sl)(r—sl—sz)---(r—sl—---—Se_l))
Sizl
1
% -
[(sl—l)!(sz—l)!---(se—l)!]
r
. }: r!
521 16T |=r [r(sl—l)!)((r-sl)(sz—l)!)---((r-sl—--'—se_l)(se—l)!)
s 21 N
r

r!
s ls t--

with this last summation

*

A
)
0
IA
™1
811

e=1|s(e)|=r

s =1
1
. . . . r .
in multi-index notation (¢ € N ) , while for m € N, s € R,
1
i=1,2,...,r,
o o I
r m 1 2 r
m! s S ERIRE
s = Y+ "1 "2 r
i o!
i=1 lal=m
For iii, use
n n
Yiv. | = vVnlvl , 8,9 =Lvde.



170 3.6 Approximate reconstruction

r _ n n - n . .n (
|av¢| = | X v, 8, " Lv, 8, ol = ¥ ) |vt v | M(r)
t =11 1 t=tr r t =1 t =11 r

< (vnlvl]) ™M(r). ®

Now we can complete the bound for lazD,(w)].
1

26. LEMMA. For v e R", Ivi=1, for rz1, and for w =

n
(v, ,...,0) € R,
1 2 n

4+ 2n(r+1) n(2r+1)
67D (&) | = (WVA(n+1)r)" (re1) [@’_] [2]
v i 8

m
y lx_‘lmaxf[ﬁ]4(r+1)(lﬂ]2r+l lw 121‘*‘3}
j=1- L L2 T
Proof. From Leibnitz’'s rule and from Lemma 24 with f(t) = t—1
g 2
and g = 1 |H |,
1=0
r P N _
arD - r ar—p/\ \ 5.F +Se 1 Se ! (“l)ee!
i p| Vv “1 s -1 s -1l rn A o e+l
e
p=0 e=1 |s(e)l=p LZ luil ]
s zi i=0
1
s
¢ =l 1 (s st t ~
q qa q q
x ” t 8v “i av “i
q=1 j=0 t =0\ 9
q
From Lemma 23 with p = Csa® M = min{ai}, M = max{a}, and from
1 a Y

Lemma 25, ' ] i
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r
% n
|6;D1(w)[ =< E: [ ](Vﬁﬂ)r—p(r—p)! n min{l ,-——E—— }
p=0 g =1 )

N S +”'+Se_1 Se—_l (—1)ee'
Sl—l s -1 n A 5 e+l
e
e=1 |s(e)l=p [Z b, | }
s =1 i=0
1
s
° Yi d S S n > 2
x ﬂ /) }: tq (vVany s -t )t ! nmin{l , m}
a a9 q .
g=1 j=0 t =0 4 =1 )
q
For the last factor,
S
° o d e S n ) 2
H }: ool = (n+l)(s +1) (V) @ m min[l C To Tm }
q=1 j=0 t =0 a=1 ! ST J
q -
n
(using 11 (aj+1)! < (|al+1)! as in the proof of Lemma 23 )
j=1
n > 2e
= (m1)S(VAM® g mind{l , —=——} (p+1)!
M @ Im
j=1 J
Combining,
- min{l __E__
T ' To Imf
r - j=1 J
|8, ()] = rt (VM) - Z (p+1)
LR ) ]° =0
i=0
n -
mi 1,
s +-e-+s5 —1 s -1 (n+1) f 1D{ | Im}
« . e R - o
- slfl s -1} noo )
e=1 |s(e)l=p ¢ L L |H ()]

s =i i
1

171
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: A 2 n - 2 °
Since |u1(w)| =< nmin{l , m}'
j=1 J o
p+1
. min{1 ——2-—
r Il o Im
r T p p j=1 )
|8°D (w)| = r!(vnM) Z (p+1)tp (n+1)
voi - . no 5 p+1
p=0 Z Iui(w)|,
- 1=0
2r+1

° 2
ind1 | 2
jglmm{ lw, Im}

2 ~ r J
< ((r+1)9)7(vVnM) (n+1)

n A 5 r+l
T |k, (e)]
i=0

To complete the proof apply the lower bound theorem, then apply

Lemma 1. ]

At last we bound }afﬁ_(w”.
1

27. LEMMA. For v € R", |v]l=1, r =z 1, and for « = (wl,wz,...,wn)
e R"
" 2r+3
r+
poqynCed 'ljlmax{ C ,ijl)
16°H (0)] = Alr K, n, d) [2 ] = ,
vV i S
n Kk+1 k+1
n max{2— ,iw | }
) ]
j=1
T 4(e+1) m 2e+1 1/(2e+3)7
where C = max [F{] [5] , and where
e=0,1,...,r
B . k;+r s 2n o0 < sM* 52" ’
N A [T] H T m“””“{? "]
. (k+1)C" n
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with 4 the set {ao,av...,a ) of which M and m are the max and min,
n

respectively.

Proof. Apply Leibnitz’s rule, Lemma 26, and Lemma 23, then use

the inequalities ,

- 4(e+1) - 2e+1 2e+3 2e+3
max< | — - ,Jw | = max{ C ,|w |
M 2 j B]

5e+3 12:‘ +3

+

c=° max{ 1 ,lw |/C , for e=r,
b

J

and
—e)! '
(lern) ) UFT=) o ehpyiern) SO0 o (a2 [RiT)
K1 Kl Lr
and finally apply the binomial formula. N
We return to our original goal, the bound for lnl(x_);. Lemma 22
j

and Lemma 27 narrow the choices for r and k. By Holder's inequality
and by Young's inequality, along with "th =1,
n
v 1
I, G 1= T 1) (o2 e,

We may assume that M is a centered cube in R” with side length 3. Let

Bi(r,k,n,A) bound nax;lx]ﬁiul A uniformly in x e R -{O}. Then by
Lemma 22,
v Bi(r,k,n,h) ( , 1/2
r J
| ()" (xy ), = T omn L ]
R™-M
Consequently, we chcose 2r z n+1. Sincg Hwa = [x|, we integrate over:

{Hx“m>B} in "the manner as that outlined in the discussion preceding
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Lemma 22:°

B (r,k,n,A) Vi - am
A 2 1Y (1= < 1 o [1] 2

From Lemma 27 Bi(r,k,n,h) can be determined.

8. LEMMA. For v, r, w, 4, C, and A as in Lemma 27, for
' k+1

k-2r-2#1, for A = 21 | L e N -{0} , A = {llwl =A},
) 3]
N+14yn
« T \ n 2n(r+2) . A | n [F N+(Lw) ] _ ]]
“avﬁiul,A = Alrk,nd) 2" K m1n{1,—§1} M eyl J
where
0 if A=K
N = 2r+2-k, u = o K, = max{zﬁgl , c} i
. L if MK

Proof. Note that each occurrence of 2551 in the first inequality

of Lemma 27 may be replaced by K1' Thus, by Lemmas 14 and 15 combined,

n
r n(k+1) 2r+3-k~1
|8Vﬁi(w)l = A(r,k,n,s!l)K1 -n max{Kl,lel}
. ):1
Integrate, treating separately HwHwSK1 and Ilwllm>K1 . For example, for

n
A=K and using R" = U {lo_[=lloll }
1

i=1
K
1
ra o r < n(k+1) n nN n-1
1855, 1, 4 = 1,008, 1, = ACr i, n, K n2" [k "y ay
o]

~

A

K y
N n-1 1 N N
+ n2" J YO [ J. K dy + J.y dy. ]dy
j=1 b J J j
X (0] K

1 1

J

kk+1) (N+1) |1 1 N+(A/K1)N+1 n 1
< A(r,k,n,HK " n2" k" 4 _[{ - ] -1
1 1 n n N+1

’ L

J
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Note that, regardless. of the sign of N,

N+(A/K1)N+1 N+ (er ™!
[ = [ ]

From Lemma 27 B (r,k,n,A) can be chosen to be independent of A.
1

For if ktl > 2r+3+1 the |a§ﬁ,] is in L'(R"). Explicitly,
1

2S. COROLLARY. For k> 2r + 3, (i.e., N < -1)

2n(r+2) .n (-N) "
(-N)-1} °

1858 | . = 8" |. = Alr,k, n, MK 2
viilli, A viif 1

In Lemma 22 it was seen that r could be as large as k+1. However,
r must be less than half of this value for the Corollary to apply. For
example, the Corollary does not apply for k=<5. For k=39, r can be no
greater than 2. In this case nz(xj) decreases as A '>? whereas nl(xj)
decreases as B_l for n = 2. To have nl(xj) converge more rapidly we
must choose between large values for k, and hence for Kl, and a bound
for nl(xj) which depends on A.

We can finally state our bound for |nl(xj)y We conclude this
section by collecting the results in

30. THEOREM‘ For E a compact subset of [Rn, for ¢ = ¢ as
p <k>s

. - 1 2,..n i
defined above, for f € L AL°(R’), for hi, Xy Xgy o wj, {Xj}jej , and
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“1 as defined above, and for k = 3,

e =
3

PR EDICHIERIE, Z<((ﬁ %) Do Cigusd o B2 E29 ),

jeJ j€J i=0
< Jap Do ey |+ g Do,y |
JjE€J jEJ
< ' |
< mafIn, ) i, + me{ ) 1,
[~ \ale+1) , y2e+1]1/(2e+3)
oo m
Let C = max [ﬁ] Eﬂ , and let
e=0,1,...,r L
k+r 4+ 2n n
Alr,k,n,d) = ((r+1)1)? S %] I—S—— + VeM(n+1)r 51" 2
r 8 mj 2 8 m
L (k+1)C
with £ the set {ao,af...,a ) of which M and m are the max and min,
n
respectively. Let K1 = { k1 , C} , A = In 2—1Sil , £ e N -{0}y. For
2r =z n+l and for k-2r-2+#1,
1 Vi 2n(r+2) (1 2;—n
max{ {n (x )[} = (n+1) | £], " Alr,k,n, K nr [3]
3 ) (2n)" V2r-n !
N+1
1+ u[[ N+(em) ] _1] ’
L N
0 if ASKl
and where N = 2r+2-k, u =

1 if 7\>K1



3.6 Approximate reconstruction 177

. ) K+l ) m 173
Secondly, for the case 2—S— = [[ﬁ] 5]. ,

max{ |m,(x ) |}
3

4~ 2n n — =
< oot P S
A n
1

{ 1+ (gm)l¥2lakyncl o 1e(2mk) r
1+ ]

2(k-2) -1 2(k-2)-1
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3.7 DISCRETE APPROXIMATE RECONSTRUCTION

We have in this section the payoff for' all of the preceding
analysis: We can exhibit maps defined on discrete spaces which may be
used in a digital implementation of the approximate reconstruction.

For these maps we develop the final error term £,
To begin, recall the interpolating function ¢ used in the

Construction section and in the Interpolation section: w:Rn — R along

with a discrete set of points % in R° with index set J, {x_}jeJ— &
J

. N n
1 X, = 1£.§ij , vhere E is a subset of R
j j

with compact closure. To condense the notation of the previous

such that, with ¥ = ¢
j

section, let

Hi= [x\.ﬁ]VZIRn’_')lRy 1=0’1v"~rn’

i~

(recall ﬁl is symmetric) and let the set $+M be denoted by B. As in

the construction section. let
n

G =iZ;(H1xB)*“1*f .

In the preceding sections we have developed the manner in which

Y, G(x )y is an approximate reconstruction of F£. The set ¥ may be

j€J

. . . n
viewed as the "reconstruction set" in R .

A second discrete subset of R" is the "data set" Q, the set on

which the convolutions p *f , 1=0,1,...,n, are evaluated. As in the
1

Construction section let Q be the index set for @, Q@ = {x} o’ We
aq

shall require
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Q> ¢
and

for every x € Q, xj €}, geQ, jeJ: X, =¥ e9= J -
q

With this notation the objective of this section is to exhibit'a

map

ﬁ_:Q n3B—R
1
such that the discrete convolution

5; — R
Glx) = ZAZ [_/}VI,XEBJ(X_"X bo(ro*f) (x)
3T Lygeg i Tq i q

approximates G in the sense that

e, = |x, I (6(x) ~3Gx)) ¥ | ———0,
' e 2l 1Ql— 0

where |Q| is a suitable measure of the "mesh" of Q. Here the irregular
notation H x, is used in place of Hi(x3|Q]. Also G depends on Q, but
this dependence is supressed in the notation. We have immediately

n
€ = Z max{
4

.‘ - - i
L [(HixfBJ*“x*f](xj) X (ﬁxzﬂ](xj xq) (p.i*f](xq)|} ||ch||p ‘

q€Q

We require that the set Q have associated with it a set S ¢ R".

With the notation Xg (x) = xS(x—x ) for g € Q, x € Q, x € R", and for
q q
q

X the characteristic function of S, the sets Q and S are to satisfy

i X * X ¥ Xg = X * Ag almost everywhere, and
c€Q q

= Y (XS) , almost everywhere
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. for x € % for x-,x, € Q,
] qa 9q .
"xS"1 if X =X TX
(xs *2g ,)(XJ) =
g g 0 otherwise
n

Lid. xs(—x) = xs(xl, xeR.
With these conditions on S and Q the difference in the expression for

€, splits:

l[(HixfB]*ui*f](xj) - % () (x,7x) [}Li*f)(xq)‘ (x)

g€Q

1
= ¥ [H_x - [ﬁ.x ] (x ,)] X ] xu *f | (x )
| [ 4’ €0 i*B HXSHl 1B q Sq' i j

1 < ]
+ o o—— (Hox,)(x,) x ] * [ Vo *f ~ ([ rf)(x )]x (x )“
{ b Mg, (7, xg) ' s, qeo[ i (*£) Cx, s )|

To define ﬁi and to bound g, we specify certain remaining choices.
In particular, let the index set Q be a finite subset of 7" and let 6

be a second finite subset of Z". Choose 8 > 0 and A > O and let

n times

3§ 8 o 4
Q = {Xq=q5 ) qEQ} » S = [_5) '2_] X X [_§v§ ’
n times
A A A A
@ = {Ut=tA , tEQ} , é = [“i, 5] X X ["g,g s

where A and é are chosen such that, with x {w-tA) = x (w), we R,

ZA X, =X, -
teQ Tt
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We now define

1 _ : v
WE;WI (ﬁixﬂ)(xq) = [ Zh(xhﬁj](tA) Xé ] (xq) xﬂ(xq)

teqQ t
_ ' irs(t-q) v
= ¥ (h)) e (xé) (g8) x5(qd) .
teqQ
31. THEOREM. Let p *f, i=0,1,...,n, be given on the set Q. where
1
8 and Q are such that condition ¢ holds for given sets E and B. Let

ﬁ,, A, @, and H be as above. Let J be a subset of Q, with J the
1 1

corresponding subset of the index set Q. such that as above X

X ) wj. Then
jeJ

€, 7 "xs z iz; [(Hlxﬂj*ui*f](xj) _qgo(ﬁixﬂJ(Xj_xq)(“i*fJ(Xq) ijp

=
A n
< Il 71, (3]
n 5
nmax{C , jw [}
n(k+1) ' J
max{A(l,k,n,ﬂ)[Zég—} =1 } VEA(1+n;o)

wel J » k+1 kel
T max 2— = |w |
s ;

j=1
4 2n n
5M 2 3 nAd -n . {nd
+ [——8—] [)—'H_] K n [T + Hxﬂnlm nmln{—”—l, 1}] »

where A = {"w"m<k}, A(1,k,n,#) and C are as in Lemma 27, and where K is

as in the proof of Propostion 16.

Proof. In the following let 1£r,r’£m, with -1/r + 1/r’ = 1 and 1/w

= 0. A bound for the first term in the splitting (») is
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q

I]'*Nl*f](xj)t

1 q
all ,GQ[”J@ g G 0] 7] et
q

' 1
‘[[ L [HxxfB P2 (Flixﬂ)(xq')] s
q S'1

1A

1 |
A R L ] R N T R
q’€Q S q

A bound for the first factor of this bounding product is

1 )
|| E[H.x —.———fl;'x]tx,)]x I
weql t B lixghl, Vi g Sqr
, _
< max { 1[5y - i B e g 1, I,
q’eQ{ 1738 nxSlll 1™B q Sq' Bl r

We now apply the definition of ﬁi to bound

1
n {HixfB P (ﬁix.‘B](Xq)] x5 ey
1 - q

A

teQ gt

1 - x w-x
sup { . Yy I I(xxﬁi](w)e - [xhﬁi)(tA)e 9 dw }
xeSq (2m)

1A

SUP{ L v | lxkﬂ_ - ;(A?z (tA) |dw
n i i
xe€S Y(2n) - g
q teqQ ¢
' {w-Xx - x
v Dh)e - h)an) te -e Yaw
a ,

t

iw'x - x
fIIh) e -e Ydw }
. ,

For x € S and |o| < a,
q ) )

iwx _ wx - .
le - e N = o (x-x )1 = o] [{(x-x )] = Q%é .
q q
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Combining these bounds

1
'“ax{“ [”ixsg - i) ("‘q)] X "m}
i,q S q
maxfwasc sup {1 () 0 = G h) (o) [y |, 0452

B (2m)" 1 Leo we N
nASs
“ 22 i)

We have HXAHI = (2A)", and from the proof of Proposition 16

<

b 1, = Iy l, I8, = @02 (2] et
NS PR FON PR A0 P 7 8 m ,

where, as always, k3.

To bound the sup above we observe that with v = w-tA there exists

w' € gt such that
| fi)(w) - (A)a)]| = |8 f (v)] = max {Iav/lvlﬁi(w,)l}lw-“”

w’ €A

AV

A /
< max {iav/lvlhi(w )I}Vﬁ

w' eA

By Lemma 27

sug {j(xAﬁiJ(w) - (xhﬁl](tA)}}
we

" 5
n(k+1) UlmaX{C ’ ijl}

vna
- .

wel i k+1 kel 2
, m max{2———,lw,|}
=1 s J
J_

p
< max{A(l,k,n,ﬂ)t2k+l]

This completes the bound for the first term of the splitting (*). =

For the second term of the splitting we first use
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q€0Q

il[q;ﬁo Wiéﬁ: (ﬁ;xg)(xq,) xsq,] * [ Y. [pi*f - (pi*fJ(xq)]xéq]](xq)i

= |

1
Lo gl xg 112 [“x*f E [“1*f](xq)]7‘s I
a’€eq "S1 q q€Q q

To bound | ¥, {u *f - Qz*f)(x J{x | , note that, with 1=v,v'=w, 1/v +
0 i i q Sa'r,
q€ 1 :

| © [ui*f(x) - (ui*f)(xq)]xs (x)]

qg€Q q
= Z " (ui)[x] - [ui)[x ] "v "f"v’xs (X)
q€Q q q
1YY . (ns  (n8\t/v 1/
< R B g
i i i geQ q
where 8/2 = max{|x - x "w} . The last inequality follows from Lemma 10
XeS d
q
and from ¢ = M. As usual, all occurrences of s, in the last
<O>ai i i

expression may be replace by m.

1
To bound | ; T [ﬁixg)(xq,) XS’;”r use
q’ €Q S1 q

1 1 +
max {| Wi;ﬁ: (ﬁixﬂ)(xq,){ = m?x{ I ZA(xhﬂi](LA)Xé "1}

i,q (2)" teq

max{"xkﬁium} ::{:1 < [,*—[]nllﬂl o

W

To complete the proof, combine the above bounds and use r’=1 in the

t

1A
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7

bounds . for the first term of the splitting (%), and use r = v/ = 1 in

the bounds for the second term of the splitting.
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3.8 DiscussioN

A primary motivation for exhibiting an explicit error bound was to
. determine if a “practical" support for the deconvolutors (Xaﬁi]vxg
could be established. A "“practical" support would be one for which the
side length B of B differed from the side length m of the smallest
convolutor by a factor of several tens. Such a support would be useful
for applications.

The bounds established here do not satisfy our ‘“practical"

criterion. Let us examine the error £ for a specific case. Consider

n=2, 4= {1, vZ, V3}, k = 3, and s = 1.
Then
‘m= 1, M= V3, 2}‘—;1 = 8, and

(see the Theorem in Approximate reconstruction for definitions)

2 5173 .
i m k+1

= —f = o~ { = 2—_ .
C [LJ 2] 1.76, Al -

Since the side length m = 1 of the smallest convolutor is our unit in

R, it is easy to select a function f and a set E such that

n

Ifl, = 1. 1=pse, and x| =2
(e.g., a simple functicn with support in E ). For such a case the
error £ should be no more than 1.
Consider €, In the bound for £, given 1in Section 6 the

quantities |n1(xj)| and |n2(xj)| have the common factor
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1.70 x 10 .

R

8 m

4.2n 11
L = (nt1)Vn [SM ] Fﬂ )

This term also appears in A(r,k,n,4) so that

2r+n 2 (k+r n )" 4n+2nr [ 1 zr;n
In (x )1 = |f]| ————— ((r+1)1) [r]{1+rl‘12 L] L K [ﬁ] ,
J (2n)"V2r-n ]
' (e (2 3n+n/2 | K812
( il - R
m,G )| = el {F] 5 LK [ZH_J

“If k = 3, then for £ = "f"z it is necessary that Inz(xj)l = “f"z which

requires that

For Inl(xj)l to not exceed Inz(xj)l it is necessary that

Br—n/2 > (En)l/z Kln(2r+1/2%
whence, for r = 2,
g = (o) M2 g° » 221427 _ 518
Clearly, such estimates are not "practical." Similar relations hold

for A and 3 that appear in the bound for g,



4 MULTIPLE OPERATOR DECONVOLUTION \A‘IITH. ADDITIVE NOISE;
THE ENVELOPE OPERATOR

SUMMARY

The methods for multiple operator decoﬁvolution— of Berenstein,
Taylor, and Yger are examined for the case of the addition of a noise
signal after each of the multipie convolutions and preceding the
deconvolutions. It is shown that for strongly coprime multiple
operators there is an obvious choice for optimal deconvolvers. The
case of m strongly coprime, parallel convolvers with m independent
noise sources is compared to that of m identical, parallel convolvers
with m independent, 1identically distributed noise sources. A
performance criterion 1is defined. The performance for selected
collections of strongly coprime convolvers is shown to be at least as
good as that for the corresponding collection of an equal number of
identical, parallel convolvers. That is, there is no penalty for the
additional frequency response available with deconvolution, at lea§£
for the noncompactly supported optimal deconvolvers. Qualitative
methods are developed to characterize the properties of strongly
coprime configurations. These methods enable the description of
circumstances in which it is advantageous to wuse strongly coprime

multiple detectors of large gupport.

188
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41 INTRODUCTION

Throughout the last several years mathematical results have been
presented which form the foundations for the use of multiple (parallel)
linear operators, each given by convolution with a distinct kernel (or
impulse response), in place of the use of a single sﬁch linear operator
or, equivalently, in place of the use of multiple (parallel) operators
each with the identical kernel (Kelleher and Taylér 1971; Berenstein
and Taylor 18738, 1980a, 1980b; Berenstein, Taylor, and Yger 1983a,
1983b; Berenstein and Yger 1983; Berenstein 1983). See Figure 16. In
the multiple operator method each distinct kernel (also referred to as
a convolver or convolutor) is associated with a second kernel, referred
to as a deconvolver. These kernels are viewed as distributions, that
is, as linear functionals on the space of infinitely differentiable
functions on R'. The mathematical results cited above describe the
conditions under which compactly supported distributions i Hooeeos B

have associated to them compactly supported distributions

v, v,..., v such that
m

1 2
‘m

) BV =8 , 7 (1)

i=1

where &8 1is the Dirac distribution on Rn and where % denotes

convolution.

This is of interest for applications in which the convolver pu.
1

must correspond to a physical, analog device wherein the impulse
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Hy Y1 o 1
o
v (b)
“2 2
+ T
- 5 . . [:T— ¢ — _
- . R u
o * o
“m vm “O
+
—> . T
(a) . ’
(c) K,

Fig. 16. (a) Multiple parallel linear operators with distinct
distributions Mo Single operator (b) and multiple parallel

operators with identical distributions M, (c).

response is dictated by a solid state or biological process. It is
entirely possible to select such analog convolvers which satisfy
approximately the multiple operator criteria. Then each associated
deconvolver can be digita%ly implemented. The fact that the

deconvolvers are linear and of compact support means that their

impiementation is straightforward; that they -are continuous implies
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stability. Most importantly, the evident high bandwidth of the overall
operator is accomplished without any essential change in the response
tunctions of the analog devices. The term overall operator refers to

m

the operator given by the kernel distribution } u;*v‘ =5 . of
, i=1

course, because of practical constraints such as anélog and digital
approximations and computation ﬁime, the design objective for the
overail operator would not be the identity operator with impulse
response 8 but rather a high bandwidth approximation of the identity
operator given by an impulse response ¢. In termé of the distribution

equatien (1) and since convclutions commute

L (g, = Tuslveg) = ¢ . (2)
i=1 i=1 ’ !

In a sense ¢ can be considered to be made up of "parts," each of which
arises from one of the practical constraints just listed, along with a
special part that is deliberately added to control the noise power
spectrum of the output of the overzll operator.

The publications on this subject have appeared primarily in the
mathematical literature. The following issues regarding (1) have been
addressed: sufficient conditions for the existence of solutions
(Hormander 1967; Kelleher and Taylor 1971; Berenstein and Taylor 18789,
1980a, 1980b); examples of sets of distributions that satisfy the
sufficient conditions (Berenstein, Taylor, and Yger 1983a, 1383b);
construction of explicit solutions, that is, explicit formulas for the

deconvolvers (Berenstein and Yger 1983; Berenstein 1983); ~and

construction and evaluation of approximate solutions (Berenstein,
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Krishnaprasad, and Taylor 1984; Chapter 3 of this documént).

Only recently have specific applicatioﬁs of (1) been mentioned.
The wo;k of Berenstein, Krishnaprasad, and Taylor (1984) addressed the
case of one dimensional integration over an interval as a linear
cperator on a variety of function spaces. This work was the first time
that (1) and contemporary mathematical methods for understanding the
equation were applied to physical problems. There the linear operators
in (1) were considered to act on function spaces other than the space
cf infinitely differentiable functions Cw(Rn). In applications these
other function spaces may be LP(R") (functions with modulus to the
power p having bounded Lebesgue integral) or, more generally, Sobolev
spaces. The consideration of (1) acting on such functions spaces
requires the consideration of C”(R") as a dense subset and the behavior
of the operators on the closure. Consequently it 1is natural that
approximate identities and mollifiers such as ¢ in (2) are used. This
work also discussed the question of additive noise and the question of
the continuity of the overall operator with respect to the
distributions B Hopooos M The noise question is in regard to noise
added following the action of the operators defined by the C while
the continuity question is in regard to the dependence of the overall
performance on either the actual analog approximations of the B, oor the
digital approximations of the v,

The approximation methods of Chapter 3 of this document _were

motivated by this work of Beréﬁstein et al. These methods exploit the
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approximation in (2). - In conjunction with the analysis of the methods
(Chapter 3), a computer simulation .for Rz was performed; This
simulation dramatically_illustrated (2) for imaging devices in which
the analog convolvers were solid state photodetectors. With these
results there was an increased interest in imaginé applications. This
led to the consideration of not jus£ detectors but of linear systems
consisting cf sequences of operators with each operator of the multiple
operator type. These activities led to the need té answer basic
systems analysis questions.

This chapter describes the result of our application of standard
methods of linear systems and random signals to the multiple operator
type of system of equations (1) and (2). This analysis was necessary
if one was to seriously consider multiple operator designs. While the
extended bandwidth was well understood, analyzed, and even illustrated
in simulations, the consequence of the introduction of noise and of
design errors was not fully understood. It was clear that since the
operator was linear and continuous that there would be no instablity
due to noise (at least for smooth (Cm(Rn)) approximations), which is
already an improvement over the case of single operator reconstruction
methods (Berenstein, Taylor, and Yger 1983a; Berenstein, Krishnaprasad,
and Taylor 1984). However, the performance needed to be explicity
described so that standard tools such as resolution, equivalent
bandwidth, and éignal to noise ratio would be available for systenms

engineering design studies.
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This investigation was motivated in largé part by the botential
application of these multiple operator methods to electo-optics,
especially to imaging devices. We have in mind imaging devices that
are for the detection, transformation, and display of eiectromagnetic
radiation for a human observer as well as such devices for artificially
‘intelligent "observers." Consequently, the problems and the desired
solutions have the flavor of this application. While the analysis and
the results are in a sense general, much is framed and guided by the
motivating problems.

With this in mind, let us review two features of performance
descriptions suitable for engineering studies. For imaging
electro-optics systems it is best to cast off any hope and preference,
common in mathematics, for an obvious choice of norm or metric as a
performance measure. First, performance criteria are never uniquely
determined by the device: they depend instead on the infinite number
of possible end~uses. Loosely speaking, if there are two end-uses that
are "linearly independent," then one would need at least either two
real valued performance metrics or a performance ériterion that takes
values in a Z2-dimensional space. For example, for field use of an
infrared imeging device for observations in a natural terrain, there is
a requirement for good sensitivity at low spatial frequencies for
purposes of orientation and search strategy relative to the terrain,
while there is a requireﬁent-for sufficient response at sufficiently

high spatial frequencies,for-purposes of accomplishing the objective of
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the observation (Ratches, Lawson, etral. 1975); These two sub-uses of
field use are an example of two "independent" uses. A different
end-use, say industrial robot vision, would surely have distinct
sub-uses that were independent of those in the field use example.

The simplest thing to hope for is a performance critefia that can
be "projected" onto any of the criteria "spanneé” by'a set of end-uses.
Consequently, 'it is typical in electo-optics to use functions to
characterize devices and systems and to rarely be satisfied with a
choice of norm of the function, or even with a choice of a projection
of the function to a finite dimensional space. 1In other words, one is
willing to forego a linear ordering of devices.

The transfer function (the Fourier transform of the impulse
response) and the noise power spectral density are familiar examples of
such device characterizing functions. (The second may depend on a
background signal level as well as the device.) The minimum resolvable
temperature difference is another such function. (A human observer is
assumed for this one.) The simiplest example of a projection is the
"evaluate at" map; for example, evaluating the modulus of the transfer
function at a specific frequency projects the space of all transfer
functions onto the real numbers. Evaluating a weighted sum of such
projections is a further example. While the set of all transfer
functions in not naturaily ordered, it inherits an order from a fixed
choice of such a projection, as well as from, say, the L2 normn. The

characterization of a device by such dimension reducing projections is
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almost always inadequate; one prefers to see the éystem in terms of its
characterizing functions.

On the other hand, system characterizations typically have an
implied equivalence relation. A familiar example of such an
equivalence relation is the one in which transfer functions tﬁat differ
by a constant, nonzero multiple are identified (hencé the use of the
familiar signal to noise ratio). That 1is, by means of a suitable
equivalence relation one seeks to factor from the characterizing
functions all irrelevant differences. (In the example, any difference
in gain is to be neglected.) Frequently the equivalence classes are
identified by a standard choice of normalization. (In optics, transfer
functions are normalized to unity at =zero frequency.) The
identification and use of equivalence classes reduces the size of the
space of the characteriz?ngCfunctions.

The objective of this chapter is to provide explicit performance
characterizations for multiple operator deconvelution in the presence
of additive noise. In addition to the two features above (functions,
equivalence classes) that are to be incorporated, é third is that
characterizations are always relative: the whole point of any
characterization is comparisons. Our objective, then, is to provide an
explicit performance | characterization for multiple operator
deconvolution relative to the performance of any of the constituent
single operators. Once this is accomplished the existing comparisons

between conventional single operators can be used to compare multiple
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operators with arbitrary single operators. Aﬁd our goal is‘to do this
with wisely chosen equivalence classes so that succint engineeringr
conclusions can be formed directly from the characterizing functions.
This goal is accomplished in this chapter by the use of what we call
the envelope operator (and the equivalence <class i£ generates)
associated with a multiple operator. With this .construction the

comparison task is reduced to a comparison of transfer functions.
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4.2 GENERAL RESULTS

A fundamental result in this subject is the following. Given a
set of distributions Moy M-y fOD R", each with compact support,
then the necessary and sufficient condition for the existerice of a

. . . n . i .
second set of distributions vl, v2,...,v on R, again each with
R m

compact support, such that

m
Lux =3, (1)
i=1

is that the Fourier-Laplace transforms of the ui, denoted ﬁi, satisfy

m —C2|Im z | N
Y. Iﬁi(z)l = Cie (1+]z1) , zecC" (3)
1=1

for some positive constants C1’ Cz’ and N (Hormander 1967; Kelleher and

Taylor  1971). (For  g=1(g, &,....¢) ¢ " define |Z| =
N .

[ ¥ Igl2 ]1/2 ) The condition (3) is often referred to as the
i
i

strongly coprime condition.

Here we will need only elementary harmonic analysis and we shall
consider the Fourier transform on Rn, that is, the restriction of the
Fourier-Laplace transform to R” ¢ € in the sense that for z = (21’
22,...,Zn) e €%, w= (wl, w2,.;., wn) = (Re z, Re Z, s Re zni e R".

Then (3) has the form

I8, (@)1 = C1(1+|w|)_N  weRY. (4)
i

N~ s

i

For any distribution. v of compact support, b e C”(R™). As usual,

we may choose ¢ € C”(R") such that 3 has compact support and is
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sufficiently differentiable so that v*¢ € LY(R"). But v*¢ can not have
compact support. However, for each i=1,2,...m define hl = vi*¢ €

LY(R"™). Then

T u.xh, = ¢. : (5)

The h € Ll(Rn) that satisfy (5) are not uniquely determined.
1 R

From (4) and from ﬁi e C®(R™) and with ¢ as above, the choice

ﬁ.(w) ,
1
D (0) = — , ﬁi(w) = Di(w)f})(w) . i=1,2,...,m,  (B)
LI (w)1®
j=1
defines functions hi € LI(R") which satisfy (5). (z denotes the

complex conjugate of z.)

While (6) is exhibited essentially by inspection, the result can
be obtained in a more systematic fashion as well as in a more general
form. We first recall some standard tools, apply these toolé to a
simple case, and then proceed to the more general form. The diagram in
Figure 17 represents an operator L acting on a function f. Let
(temporarily) f be bounded and in Cé(Rn). Let Mo Hzi""“m be an
) arbitrary set of m distributions with ceompact support. For each linear
operator defined by M let n, be a sample function of a zero mean,
wide-sense stationary random process that 1is added to the output of
Ho let n € L”(R™), and let N? (Ni = 0) be the noise power spectral
density of the process (see, for example, Davenport and Root 1958,
Ch.4, Ch.6). For each distinct %Aénd J let n, be independent of nj énd

let each_nJ be independent of f. TLet v, be defined by (v‘ni))A = D1$ ,
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7)1
+
“1 vl
n2
+
}12 v2
i $+
] . . . T ¢
F n
m
+
u : v
m m

Fig. 17. Multiple operator configuration consisting
of m parallel convolvers Ho, m noise signals 7, and
1

m deconvolvers v .
1

where $, D‘l € Cr(Rn), 3 has compact support, and r is sufficiently

large so that (D.Q]A e L'(R™). Let g € L°(R”) be defined by
1

g=Lf= % (ui*f + ni)*(vi*¢). (7)
1=1

In the usual manner, with E denoting expectation,

E{g} = Lpfx(v x¢). (8)
i=1 i

Let T’ denote translation by y, T'(x) = x + y , let Y denote inverse
y y L
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Fourier transform, and let | | denote the LP norm. Directly from the
p .
definition of wide-sense stationary and noise power spectral density it

follows that
E{[g - E{g})[(g - E{g}]oT;]} - [z Nleilzlalz]v(y) , (8a)
i=1

and, for y = 0, that

E{(g - E{g}]g} S—

(2m)”

(9b)

i|D| ‘1817

1
The simplest configuration for L is all distributions equal, .all
deconvolvers trivial, and all random processes identically distributed:
g =p , v =38, Nf=N§, for i = 1,2,...,m . (10)

Then

.
R R LG E{g})"‘} 2. (11)

The utility of (8) and (8) or of (11) is that if L is followed by

a linear operator U with kernel u (which could model a specific

"end-lse") then classical discrimination methods would compare the

function [U(E{g}))2 with the constant function E{(H[g—E{g})]z}. In the

case of the simplest configuration, (10) and (11), there are the

following formulas and bounds.

(H(E{g}))z E{ug}z = (u*(muo*¢*f)]2 = mz[(ﬁﬁog?)v]z (12)

I uu ot ]

A
N
N
=
v

i

[ n —]2 pAf 812 1fi®  when £ e L%(R™) ;
n (0] 2 2 )
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and

E{(n(g - E{g}))z} - (Zm]nu{‘m()&uZ . (13)
R 14

The function E{lg} is referred to as the signal, its square E{ug}2

is referred to as the signal power or energy, and E{(u(g—E{g}])z} is

referred to as the noise power. Typically the ratic of E{ug}2 ‘to

E{[u[g—E{g}))z} is considered, or, alternatively, the positive square

root of the ratio. Here we shall consistently use the latter. If this
ratio is evaluated at some distinguished point, the value defines a
“signal to noise ratio." We denote by P the precjection of a function
by the evaluation of the absolute value of the function at the
distinguished point. Given L and for a given choice cf ¢, f, U, and P
define the signal to noise ratio

PU(E{g}) . (14)

E{ (1 (-EX g}])z}

PHNR(UL) =

1/2

For a fixed choice of ¢, £, U, and P, two operators L and L’ can be
compared and ordered by (14).

On the other hand, for a choice of ¢, f, U, and 9P, (14) is
determined for the case of the trivial operator in (10) by the pair of
functions

m ﬁo and Vm N_ . (15)
In genefal, let operators L and L’ (for example, as in Figure 17} have
transfer functiéns and noise power spectral densities ﬁ, N°  and ﬁ’,

N’2, respectively. For a choice of 1 we shall say that uLluL'
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(i.e. "UL divides UL’") if there exists a function § e L®(R®) such that
T80 =0p . If uL|uL’ and |3|2|ﬁ|2N2 =< |{\1|2N’2 , we say that
UL = UL’ -

This definition is motivated by the following. As usual, let ¢ be

such that a linear operator 2 with kernel ¢ can be associated with 8 by

considering $$ . Let 3 be any continuous. transiation invariant,
linear operator. For fixed U if UL = UL‘, then Zﬁgﬁlgggil = 1
FNR(UBL')

Consequently, sup¥$NR(UBL) = sup SNR(UBL‘)
B B

Next consider the operator L diagrammed in Figure 17 for the case

in which Mo K M are distinct and strongly coprime (i.e., satisfy

y e e

2

m
(3)). An obvious consequence is J |ﬁi(w)|2 > 0 and, equivalently,
1=1

0 * (ﬁl(w), ﬁz(w),...,ﬁm(w)) et , weR". (18)

Consequently we can visualize (16) as is shown in Figure 18a. A
similar illustration can be used to visualize
Py (f (), A, .. A ) =  (Fh ), fi(w,... P (o),

1 2 m 1 2 m
except the "curve" passes- through the origin if and only if fw) = 0.
The power spectral densities are real and nonnegative (thus we write N?
1

and choose Ni > (0). Assume

n

Ni(w) >0, weR , 1=1,2,...,m. (17)

We can visualize (17) as is shown in Figure 18b. The case of strongly
coprime ~ multiple operators has the useful feature that the

consideration of (16) and (17) pointwise in conjuction with (8) and (9)
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uniquely determines an alternative choice for the Di of (6). This

choice will be optimal in the sense it has the smallest E{(g-E{g}]z}

among all sets of deconvolvers.

c” R™ ¢ ¢”
(N, (@), .. N (w))
A A
[ul(w),...,um(w))
/
ot w
!
AN
(a) (b)
Figure 18
PROPOSITION. ~ For N € L”(R™), N(w) >0 for v € R, i =
1,2,...,m then D : Rn>———9 c" is uniquely determined (almost

everywhere) by the conditions, for fixed w € Rn,

D(w) = (Dl(w), Dz(w),...,Dm(w)) =z

B

zﬁi(w) 1}. (18)
1

m
minimizes ¥ |zi|2Nf(w) on the set {z ec”: .
1

i=1
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In fact
ﬁi(w)
Nf(w)
Di(w) = " 5 (19)
m Iu(w)[
L———
1=1 Nl(w)
Proof: Any z that satisfies (18) is clearly contained in the
linear subspace of C" determined by the span of
A \ A A
(ul(w;,o,...,o), (0,p2(w),0,...,0),..., (0,0,...O,pm(w)) . (20)
That is, 2i = 0 if ﬁi(w) = 0. Equivalently, there exists A =
(A, A_,...,A ) € C" such that
1 2 m
(z N (w), z N (w),...,z N (w)] = (A 5 (w), A 5 (w),...,A 5 (w)) (21)
11 T2 T " m 171 T2l T ' m )
m
Let ¥’ denote ¥ . Then (18) implies
i A=t
ui(w)ato
A (2
L za 2 , Bt
minimize ? |Ai| lgi(w)l on { ? “1"ﬁjfai“ =1 } . (22)

From this it follows that the Ai are all real, so that (22) in-the form

(23)

i, (@) | 1 }

minimize T’ (A | (@)])° on {Z'lilﬁ,(“’)l N (o)
i ! !

is an elementary case for R" and has the unique solution
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Iﬁi(w)]

N (w)

A i ()] = (for fi {w) # 0) . (24)
J

1 N2 (w)
]

A 2
no |i ()]
y ———
j:
Consequently, from (21), the unique z corresponding to the minimum is

D(w) as in (19). r

In addition to N, > O, 1 = 1,2,...,m , we shall assume N0 > 0.
1

Further, we shall assume that the Ni are sufficiently differentiable

and that —%— = 0(|w|p) for some integer p, i = 0,1,2,...,m . With this
i
. —p' A\ 2, N

we can find ¢ = 0(|w|® ) so that (Dig) e L*R" and for @

sufficiently smooth and with compact support then (D,@)v e L'(RM.
1

COROLLARY. For the choice of Di from the Proposition,

1/2

2
N (25)

m m 5 o 1/2 i
Zﬁ'D =1, [ ) |Di|' Ni ] - |
= i=1 ' >
3

m
z
=1 N

j

Let LO identify the trivial qonfiguration of L in (10) and let LS
identify the strongly coprime configuration. Unless explicitly
indicated to the contrary, LS indicates that the deconvolvers D1,°f
(19) are used. The first of the functions in (25) is the transfer

function for L and the second is the square root of the noise power
s
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- spectral density. The cérresponding.functions for LO are (15). The
mollifier 3 is suppressed but‘understood. From (25) obviously LS|L for
any operator L. (Note that L always denotes a pair, a transfer
function (linear operator) and an additive noise.) From (15) and (25)
the dividend 3 for L = L0 is mﬁo. Let N: denote the noise power spectral
density of LS. In the sense discussed earlier let Qo denote the linear
operator associated with mﬁo .  That leLo with dividend mﬁo means L0 =
2L . Then QOLS has functions corresponding tc (25) (transfer

0O s

function, square root of noise power spectral density) given by

m
A A _
mi YL eDoo= ompo,
1=1
& |°
o
. 1/2 n e 112
A 2 . 2 0
Imi [N = m|i] _ZI{Di| N} = —TF—_ VN _ (26)
1= m
Z ]
j=1 N2

By definition UL_ = UL if |mﬁo|N (w) = VENO(w) on the support of 7,
S s
and UL = UL if UL |UL and |mﬁ IN (w) = VmN_(w) on the support of
o s o} s 0' s o}
ﬁ. Thus, whether ﬁLO > UL or UL = nLO holds depends, in part, on
S s
whether one of the following inequalities holds on the support of ﬁ

from (15) and (26)

VﬁNo(w) —

v 1A

A
[mpOINs(w)

m 2 1/2

{w)
Lo i
N (w)

i=1 i

valh (o) . (27)

v
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In (27) the notation ﬁeans that the upper inequality symbol on the left
is to be paired with the upper inequality symbol on the right and lower
left with lower right.

The comparison in (27) can in special cases be viewed from a
slightly different perspective. First, view the left side of the
second inequality in (27) as the Fourier transform of a kernel. Define

" Nz(w) 1/2

g = | Y—— IR @* | . (28)
N (w) J

1=1

We refer to ¢ as the envelope transfer function corresponding to the

envelope operator € for a given strongly coprime Ls in comparison with

a given LO. If Vm& acts on LS , then the pair of functions associated
with VmEL_ is

VR &, VAN . (29)

Recall that the pair for L0 is given by (15) (rewritten for

convenience)

m ﬁo , VAN . (15)
That 1is, the composition of vt with Ls has a noise power spectral
density equal to thét of Lo . If, for example, ﬁo‘ is real and
positive, then it makes sense to compare (29) with (15). it is easy to
_ check that the condition fvme = ﬁmﬁo (on the support of 4) coincides
with our definition UL_= UL, and unfi = Vm coincides with what we
mean by uLO = uLS . These two inequalities are precisely the content

of the comparison of the right side of (27). One could say that vm€ is

the normalization of Ls to the noise power spectral density of LO .
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For either point of view we consider W> = {w e R": Q(w) >
Vﬁlﬁo(w)|} and W = {w e R €(w) = Vﬁ[ﬁo(w)|} . For all U such that 4
has support in w> it follows from (27) and the definiticns that UL =

s
uLo . Consequently,
$NR(UQ L ) | 2 8N |
°s = °2 = (30)

PNR(UL ) Vo R
0 A 0

” u 3 N

A o)

2

where Qo is used to denote the linear operator corresponding to the
transfer function mﬁo of Lo‘

Assume ﬁo(o) # 0 and define

QO={we[Rn: vt e [0,1) |R (tw)] >o}.
Note that for R' the usual definition of limiting resolution is sup QO.
if supp(ﬁ) is compact and supp(ﬁ) c QO, then ua;l makes sense,

consequently HLOIHLS . Hence, if supp(ﬁ) is compact and supp(ﬁ)cW(nQo,

then HLO = UL .Consequently,
s

PNR(UL )
'j = =1. - (31)
PHNR(CUQ L)
0 0

In general the inequality cannot be extended to all of W<nQO because of

the behavior of 1/ ﬁo on the boundary.
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FNR(UL )
There is no information regarding - = implied by either
fNﬂ(uLo)
u. = KLO or HLO = UL . Additional information is needed. For
s s

example, it may be sufficient to know the effect of the so-called
"boost" HLO —> 'HQ;1L0 . In particular, if supp(ﬁ) is compact and

supp(ﬁ)cﬂo then

. S‘W?(Im;ILO) PNR(UL )
supp(1) < W and —mm———— 21 = _ = 21, (32a)
: FHR(UL ) FHR(UL )
and
. PNR( ua;lLO) PNR(UL )
supp(u) ¢ W and =1 = —_— % =<1, (32b)
< $HR(UL ) FHR(UL )

For supp(ﬁ) c Rn-Qo, or even for supp(ﬁ)n(Rn—Qo) # @, it is often
the case in applications that nLO is not defined. Since HLS is defined

for all 1 it makes sense in such cases to consider UL = uLO.
s
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4.3 ExaMPLES: CHARACTERISTIC FUNCTIONS OF SETS IN R

Collections of sets in R" such that the characteristic functions
of the sets in the collection are strongly coprime have been reported

{Berenstein, Taylor, and Yger 1983a, 1983b; Chapter 3 herein). For

n

example, such a collection of cubes consists of m = n+l cubes in R
with sides parallel and with side lengths Val, Vaz,..., vYa , where for
m

all i=j a, and aj are relatively prime integers and for all i VE? is
not an integer. A second example is the collection of m = 2 disks in
Rz where the ratio of the radii is an integer between 2 and 200.

A common situation for electro-optic detecters on R" (ﬁ.g., n=1
(slits), n=2 (focal plane arrays), n=3 (sz{time})) is for the noise
power spectral density to have the form "xs"1NZ , where "xsul is the L
norm of the characteristic function X of the set S {equivalently, the
Lebesgue measure of the set). For such a case, let sets S1’ S ,...,

2

S, be chosen so that, for pu = x , the p, p,...,p0 are strongly
m i Si 1 2 m

coprime. Then, from the Proposition,

ﬁi(w)

Je. |
11 (33)

Di(w) = - 5
|uj(w)|

I ™ B

=t fu,
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and (25) becomes

mA m 2 o 172 -————-—A >

THD =1, { Z D |7 N ] = m |“j| N, - (34)

i=1 . i=1 J

=)
Let SO be any set, let By = X be its characteristic function, and
0

consider this to be the convolver in L0 defined by (10) (i.e., m
parallel, identical convolvers). Let the noise power spectral density
have the same form as above, Ni = "“o"lNZ . From (27) and (28) one

. . A . .
obtains an envelope transfer function ed and the associated comparison

for these two: a convenient renormalization by the constant "“0"1/2 is
made in
' R m Iﬁ-(w)lz 1/2 A ()|
8 (o) = @) Z—_ Ve (35)
d 1/2 = 1/2
" 0"1 i=1 "“i "1 “ 0"1

For an explicit example let S ¢ Rz be the region in a focal plane

1
of an imaging device which corresponds to a single light sensitive
detector. The exposure time interval is assumed fixed and the image is

assumed constant. Then M= X is the idealized response function of

i

the detector. {(The actual shape of the response function, if not
deconvolved, is incorporated into the mollifier ¢.) Then ﬁi is what is
referred to as the "detector MIF" and the form of the noise power
spectral density corresponds to typical detector properties such as
"D*" for infrared detectors. The density has the above form as well

for the so-called background limited case. 1t also has this form for
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Rs when the time interval is included as the third dimension. Further,
a background limited slit detector éorresponds to the above forms for
Rl with the slit width as the coordinate. (In the background limited
case there is assumed to be a relatively small signal of interest
superimposed on a relatively large constant signal so that the noise in
the signal of interest is due to the "shot" noise of the constant
signal.) (For detector characteristics discussed above see, for
example, Kingston 1978, Ch.2.)

In Figures 189 and 20 the transfer functions for such cases are
shown. In Figure 19, a comparison is shown for the example for R'.
The characteristic functions M and M, for the two intervals (—1 R 1)
and (-v2 , v2) , respectively, are strongly coprime. The envelope
transfer function @d is shown and 1is compared with the transfer
function for the two identical, parallel convolvers as in (35) where M,
= K- The choice My =M is used rather than My =R, in this
comparison because K is "better" than K, in the sense that the first
zero of ﬁl (i.e., its bandwidth) is greater than the first zero of ﬁz'
Recall:from the scaling property for Fourier transforms on Rl that
pl(x) = uz(fo) for all x € R' if and only if V§ﬁ1(V§b) = ﬁz(w) for all
w e R. Figure 19 illustrates the consequence of the strongly coprime
condition: the envelope response is approximately an envelope for the
modulus of the other two responses and, correspondingly, 1is without

zeroes. Also, it can be observed that the envelope response decreases

approximately as 1/|wl



214

4.3 Examples:

Characteristic functions

19.

Fig.
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In Figufe 20 the envelope trénsfer function is shown for an
example in Rz, the case ofrthree squares Q1’ Qz’ Q3 of side length 1,
v2, V3, respectively. The characteristic %unctions of these three
squares are strongly coprime. The comparison (35) is illustrated in
Figure 20 by graphing the modulus of the corresponding transfer

functions for two subsets of Rz : the wl-axis {?=(w1,w2) € Rz : w2=0}
(see Figure 20a) and the diagonal {é=(w1,w2) € R° : wl=w2} (see Figure

20b). All graphs use the Euclidean distance as abscissa, |w] =

@3 + wz)bq. The comparison illustrated in Figure 20 is for ﬁo = %

L .
4

{As before, QO has the greatest bandwidth and the scaling property for
1

R” has the form ul(x) = uz(kx) for k > 0 and for all x € R" if and only
if knﬁl(kw) = ﬁz(w) for all w € R".) The comparison is essentially the
same as that for the two intervals in R'. The difference between the
wl—axis and the diagonal illustrates that approximately the envelope
response decreases as lw) ™ along the un—axis and as |w| ¢ along the
diagonal.

Frém (35) (and as illustrated by the figures) the following
statements can be made. These are stated as "observations" because the
results can nqt be given in terms of explicit inequalities. Some
notation is helpful. Define

m
.Qi = { weR": vt e [0,1] |ui(tw)| >0 } and Q = ﬂ Qi ] (36)
: 1=1
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D(w ) 2z 1, D(w) = 1 for |u| =< |w L and D(w) = 1 for |w| z o |.
0 _ 7 0 0
PNR(UL_) . PHR(UL_)
Qualitatively ————— = 1 for & = |o | ,and ———= =1 for ¢ =
FHR(UL ) $HR(UL )

[wo| + A and for A sufficiently large. This example highlights the
difference between the two independent statements HLS = HLO and
yN?(uLS) = ?N?(HLO%

The elementary P makes this example a candidate for the use of @d
as the transfer function of a linear operator which normalizes Ls to
have the same noise power spectral density as Lo, as was mentioned at

(29). Let Gd denote this linear operator. Then, proceeding exactly as

for (37)
PHR(VE L) e ()
— = — Lo, € . (38)
PNR(UL ) valu (0 )|
o] 1 [¢]
1s/2
I 0

For the cases considered this is approximately unity except for w, near
the zero set of ﬁl. The significance of (38) is that it is an explicit
exgmple of Observations 1 and 2: on Q1 LS is at least as good as Lo
wi£h the additional feature of extended frequency response outside of
Ql. That is, on Q1 there is no penaity for the additional response
outside of Ql. On the other hand, (38) only gives essentially

equivalent performance on 91’ despite the fact that @d has no zeroes.
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AN EXPLICIT EXAMPLE

PNR(UL )

It is instructive to consider —— > for some explicit
?NW(HLO)

choices for Nz’ f, 1, and for P. Let Nz be the constant function. For

n

fixed w, € R”, let fix) = 1 + exp(Lwo-x), x € R. Let
PU(E{g}) = | (W(E{g})]}(0)|, and let 1 = 1AL£ be the characteristic

function of the punctured (excludes w = 0) closed disk centered at the

origin and of radius ¢, |wo[ :< L. (Alter'natively, the punctured cube

of side lenght 2¢, or the set {wean : |w1 |s£1 ,i=1,2,... ,n} ) This

latter alternative, {\18 the characteristic function of the

set {w e R%: lo | =20 | , o | = g]w I} , with f(x) = 1 +
1 0 2 5!70

exp(Lxl(wo)l), is a very coarse approximaticn of a standard vision
model (Ratches, Lawson, et al. 1975).) Then from (14), (34), and (35),

with C a constant,

180 ) 0(w) | $0) vin & (0 ) lw) ]
PNR(UL ) = C —————————  ¥NR(UL ) = C
” CRAR ° e 75 13 RN, |
2 1l z 2
A
e
d 2
hence _
A
SHR(IL) I8N, |, -
A A
PNR(UL ) Vi |fi, ()| " $unN,
1/2 A
”“1"1 “a 2
Vil (@) | .
For the examples above, with D(w) = , for wte,

e 1272 8w
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Once again, any advantage due to this later depends on

$NR(USE L ) | ¢ 2N, |,
sup -——— = sup = , (39)
8 $NR(UE L) 6 182 6N
d s [}
ﬁ(wo)
where 8 is a linear operator and f its transfer function. It is
clearly possible for @dLs to be the optimal: for example, consider

QQNE constant and § convex.

This consideration is of significance for operators M, Moo ool
that are not characteristic functions of sets but rather have each ﬁi
approximately compactly supported. The primary example here is the
diffraction limited lens. If strongly coprime convolvers My pz,...,pm
were such that each lﬁil was small outside some set, then the envelope
transfer function would exhibit the same behavior. In this case,

unless sup .?NR(uBELS) is substantially greater than $N¥R(UEL ), the
3 s

performance of the strongly coprime configuration will be essentially

that of its constituent convolvers.
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4.4 MORE COMPARISONS: STRONGLY COPRIME VERSUS CHANGE OF SCALE

Let L be the same .as above. In the above LS was compared with
s -
I, where L was chosen to be p. and N° = "u"N2 . In these cases u
0 o 1 1 11 o 1
was the "best" in the sense Qi C 91 i=1,2,...,m . Here L will be
S
compared with a one parameter family of such L. Define Lo by the

trivial configuration of m parallel, identical M .5 @S in (10), where

N° =

2 X
N ||u<°>||1Ng and u<°>(x) = “1(3)’ s > 0.

The primary result of this section is

OBSERVATION FOR FIXED NUMBER OF CHANNELS: Fix the number of

parallel convolvers in both L and L0 to be m . Let the convolvers be

s

characteristic functions of cubes on R” and let the additive noise be
as above. Assume that u is such that supp(ﬁ) c
m
U {w e R : w =0, fij} . Then for n = 2
j=1

W = uL0 for all 0 < a4 = 1 . (40)

s

COROLLARY TO OBSERVATION: For the conditions in the Observation
above, it is advantageous to construct LS using sets that are as large

as possible.

APPLICATION OF THE COROLLARY: In parallel scanned imaging systems

with square detectors wherein the systems are ranked using some 1
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meeting the conditions of the Observation (e.g., horizontal or vertical
bars), therdetector size should be sufficiently large so that the array
of detectors fills the image, and the detector sizes in the array
should constitute a strongly coprime collection. (This application

depends on sufficiently high sampling rates. See Chapter 3.)

The Observation is illustrated in Figure 21 for n = 2. For Figure
21 L. is as in Figure 20: in the notation just above LS is configured
s
from the parallel convolvers Hegsr Moy Beygss and B, is the

characteristic function of the unit square. For this LS the envelope

A
|’J'<<>>l

transfer function éd is compared with V3 — as in (35), for &

" “(0) |I 1

=1, 0.5, 0.2, and 0.1 . For « = 1 see Figure 20; for « = 0.5, 0.2,
and 0.1 see Figure 21. The observation in (40) is clearly evident.
(Here we neglect Observation 3 of the last section by means of a broad
interpretation of = in Observation 1.)

The Observation (40) depends on the following properties. The
first, which is again ~an approximation, is that for A =

{é e R" : wi = 0, iij}, the_wj-axis,

A " -1
ed|A§w) = Clo|™ . (41)
|ﬁ2°>(“)| n/2lﬁ1(m")l
The second is that — 7. = o -5 Hence, for n =z 2 , for
"“<0>"1 ) " 1"1
N

B, (@] ] |3 () | ]
a =<1, and for weA , vhn ! 5 = Clw| Y Vm ——§32~—T72 = C|w| 1

" 1"1 "“(0}"1
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Figures 22 and 23 show two counterexamples for cases not addressed

in the Observation. Figure 22 is for the case of the diagonal in R® ,

and Figure 23 is for n = 1. The Observation fails on the diagonal
D = {@=(w JWw ) € Rz D W =W } because
1’2 1 2
A " -2
ediD(w) = Clo| “ . (42)

It fails for R because (41) holds.

If in place of characteristic functions of cubes one uses

characteristic functions of disks on Rz, then the relationship between

AN
'“<o>l

@d and vm is intermediate between that of the wj—axis and

172
lkcos

that of the diagonal for

8 (0) = clo| ™ (43)

The significance of the Observation (40) is that it provides a
qualitative lower bound for the performance of the strongly coprime
configuration. To the extent performance is characterized for the uLO,
the "envelope" consisting of the collection over all & is a lower bound
for the performance of uLg

All of fhe abové has focused on performance away from the origin.
If the figures are rescaled so that the K, @appear fixed with a
sequence of Lé constructed from convolvers of increasingvsupport, the
Observation indicates that nothing is sacrificed away from zero while
the envelope transfer function near zero is substantially increased.
That is, HLS z 11L0 represents a substantial enhancement near w = 0, not

merely approximately identical performance. On the other hand, this
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uniform improvement is for the case of U supported by the axes. For
the cases off the axes for cubes and for the case of disks there is a

trade-off between some loss away from zero and the gain near zero.



