
PARTIAL LEAST SQUARES ON GRAPHICAL PROCESSOR FOR EFFICIENT PATTERN
RECOGNITION

Balaji Vasan Srinivasan, William Robson Schwartz, Ramani Duraiswami, Larry Davis

Department of Computer Science, University of Maryland, College Park, MD, USA.
[balajiv,schwartz,ramani,lsd]@umiacs.umd.edu

ABSTRACT

Partial least squares (PLS) methods have recently been used for
many pattern recognition problems in computer vision. Here, PLS
is primarily used as a supervised dimensionality reduction tool to
obtain effective feature combinations for better learning. However,
application of PLS to large datasets is hindered by its higher com-
putational cost. We propose an approach to accelerate the classical
PLS algorithm on graphical processors to obtain the same perfor-
mance at a reduced cost. Although, PLS modeling is practically an
offline training process, accelerating it helps large scale modeling.
The proposed acceleration is shown to perform well and it yields
upto∼ 30X speedup, It is applied on standard datasets in human
detection and face recognition.

Index Terms— partial least squares, supervised dimensionality
reduction, graphical processors, human detection, face recognition

1. INTRODUCTION

With improved sensors, the amount of data available in many com-
puter vision problems has increased dramatically in the recent years.
Further recent research has led to the use of new feature descriptors
that capture the data characteristics better. With the availability of
tall fat datasets (large number (N ) of very high dimensional (d) fea-
tures) for learnng, algorithms using the data often scale poorly on
large datasets. One way to mitigate this is to project the features to a
low-dimensional subspace, and learn from data in this subspace, thus
improving the algorithmic scaling. Partial least squares are one such
dimensionality reduction approach that learn this subspace such that
the classes are well separated. They have recently gained popular-
ity as a supervised dimensionality technique in vision applications
because of its effective performance.

Partial least squares [1] are a wide class of methods for model-
ing relations between sets of observed variables by means of latent
variables. It includes regression, classification and dimensionality
reduction. The underlying assumption in PLS is that the observed
data is generated by a system/process which is driven by a small
number of latent variables. Projection of the observed data to the
latent structure was developed and enhanced by Wold and his col-
laborators [2, 3]. PLS has received a great amount of attention in
the field of chemometrics [4], and its success there has led to its
application in other scientific areas like bioinformatics and image
processing [5, 6].

Although originally proposed as a regression technique, PLS can
be used for class-aware dimensionality reduction [7]. PLS based di-
mensionality reduction techniques have recently been used in com-
puter vision to effectively combine several low level features for en-
hancing detection and recognition. Typically in these applications

the number of samplesN is much less than the number of features
d, (N << d). For example, Schwartz et al. [8] combine histogram
of oriented gradients (HOG), color frequency and co-occurence fea-
tures (tens of thousand of features) for∼ 1000 samples using PLS
to a low dimensional (typically∼ 20) space and use a standard clas-
sifier in this subspace for efficient human detection. Inspite of the
good performances of PLS, it has a computational cost of O(Nd)
and does not scale well withN andd. Although in the vision al-
gorithms, PLS modeling is an offline training step, accelerating it is
paramount to enable large scale modeling.

In this paper, we accelerate PLS [9] on a graphical processor.
The paper is organized as follows: in Section2, we first introduce
PLS formulation and draw its parallels with PCA and LDA. We then
describe the NIPALS algorithm for PLS and its computation bottle-
necks. We introduce the GPU-based strategies for PLS-acceleration
in Section3 and illustrate the resulting performance improvement in
human detection and face recognition in Section4.

2. PARTIAL LEAST SQUARES

PLS [1] is a latent variable based modeling technique that builds
relationships betweenX, a matrix of features andY , a matrix of the
corresponding response variable. While a detailed analysis of PLS
can be found in [1], we provide a brief introduction here.

Let x ∈ Rd denote thed-dimensional feature space (indepen-
dent variable) andy ∈ Rf be the corresponding response variable
(could be the1-dimensional class-label orf dimensional depen-
dent variables). Given the independent and dependent variable pairs
{xi, yi}, i = 1, . . . , N (x ∈ Rd, y ∈ Rf ), PLS aims at the mod-
eling the relationship betweenx and y by using latent structures.
DenotingX as aN × d matrix of independent data pointsxi andY
as aN × f matrix ofyj , PLS decomposes them as below,

X = TP T + F, (1)

Y = UQT + G, (2)

whereT andU areN × p (p < d) with p latent vectors,P (d × p)
andQ (f ×p) are loading vectors andF (N ×d) andG (N ×f ) are
residual vectors. PLS, in its classical form, is based on thenonlinear
iterative partial least squares (NIPALS) algorithm, which constructs
a set of weight vectorsw such that,

max[cov(ti, ui)]
2 = max

w
[cov(Xw, y)]2. (3)

whereti andui are theith columns ofT andU respectively.cov
indicates the covariance defined by,

cov(t, u) = E
[
(t− E[t])(u− E[u])T

]
, (4)



Table 1. NIPALS algorithm
Nonlinear Iterative PArtial Least Squares (NIPALS)

Given:N × d feature samplesX and
N × f response variableY

1) Initialize vectoru,
if Y is 1−dimensional, assignu = Y ,
elseu = a randomN × 1 vector

2) Iterate to convergence:
a) w = XT u/(uT u)
b) ‖w‖ → 1
c) t = Xw
d) c = Y T t/(tT t)
e) ‖c‖ → 1
f) u = Y c

3) p = XT t
4) DeflateX : X ← X − tpT andY : Y ← Y − tcT

If more projection vectors are required, go to step2

E being the expectation.
The NIPALS algorithm is shown in Table. 1 and comprises two

main steps; in the first step, the weightw is evaluated according to
Eq. 3. Oncew is obtained, NIPALS performs a deflation of theX
andY matrices, which is a rank-1 update such that any information
captured byw is removed fromX andY . If the desired latent space
dimension is not achieved, the algorithm returns to the first step to
evaluate a neww.

It can be shown that the weightw in NIPALS corresponds to
the first eigenvector of the following eigenvalue problem and the NI-
PALS is just a mirror of the popular power iterations for finding the
dominant eigenvectors,

[XT yyT X]w = λw. (5)

Because the rank of the above system is limited by the number of
samplesN , N < d yields a few dominant eigenvectors and hence
PLS works best in this scenario.

The NIPALS algorithm (Table. 1) involves a number of linear
algebra operations on the feature matrixX and response variable
Y . The asymptotic space and time complexity is O(dN ) (assuming
f ≤ d). It is not possible to do away with O(dN ) space require-
ment because this is required to store the feature matrix. However,
the time complexity can be addressed with efficient parallelization
strategy using graphical processors.

2.1. PLS, LDA and PCA

Principal component analysis (PCA) and Linear Discriminant Anal-
ysis (LDA) are two widely used dimensionality reduction techniques
in machine learning. We compare PLS with PCA and LDA based on
their optimization criteria.

PCA projects the features onto a direction of maximal variance
(the principal directions),

max|w|=1[var(Xw)]. (6)

This is equivalent to solving the following eigen problem,

[XT X]w = λw. (7)

PCA does not use any information about the response variables and
hence is an unsupervised dimensionality reduction.

LDA finds projectionw that maximizes the interclass variance
while minimizing the intraclass variance in the projected space. Ify
spansc classes, LDA results in ac−1 dimensional subspace. Unlike
PCA, LDA uses the response variable information to determine the
projection space. Let

Sb =

C∑
c=1

(µc − µ)T (µc − µ), (8)

denote thebetween-class variancewhereµc is the mean of the fea-
ture vectors from classc andµ is the mean of the feature vectors
from all classes. Let

Sw =

C∑
c=1

nc∑
i=1

(xj
c − µc)T (xj

c − µc) (9)

denote thewithin-classvariance, wherexj
c is the thejth feature sam-

ple in classc. LDA solves the following eigen problem,

[S−1
w Sb]w = λw. (10)

LDA is preferred over PCA for classification tasks because of its su-
pervised nature that enables a unique projection for each classifica-
tion task. However, the size of the LDA projection space is bounded
by c−1, which can limit the projected space’s representation ability.
When handling a few samples of thousands of features (N < d), the
variance matrices in LDA are not of full rank and the weight vectors
cannot be extracted.

PLS is also a supervised dimensionality reduction technique, as
seen from Eq. 3. It has further been shown that for normalized
response variables (y), the eigen problem of Eq. 5 reduces [10] to,

[Sb]w = λw, (11)

which is equivalent to maximizing the between class-variance. Rosi-
pal et al. [10] further note that for a2-class problem, the first eigen-
vector of Eq. 11 (PLS) and Eq. 10 (LDA) are identical. However,
PLS does not have thec− 1 limit in the projection space dimension,
and can extract further projecting directions beyondc − 1. Also,
unlike LDA, PLS is well-suited for data withN << d.

We compared the projections of LDA, PLS and PCA for classi-
fying two random objects in the Caltech-101 database [11] based on
the SIFT features. The resulting projections that were learned from
the entire samples in the class are shown in Fig. 1. It can be seen
that while the projections of PCA are not discriminating for the first
2 components, PLS and LDA exhibit more discrimination between
classes.

In order to illustrate the performance forN << d, we chose
only 25 samples in the two classes, and the resulting projections for
PCA and PLS are shown in Fig. 2. The LDA in this case failed
because of a rank-deficit variance matrix. PLS is again more dis-
criminating than PCA.

From these examples, the PLS and LDA spaces are clearly more
discriminating than PCA-space. Further, when the number of fea-
tures exceed the number of samples, PLS projections work the best
among the3, making it a better choice than LDA/PCA ford >> N .
it may be a problem when you have to built multiple models, like for
face recognition.

3. GRAPHICAL PROCESSORS

Computer chip-makers are no longer able to easily improve the speed
of processors, with the result that computer architectures of the fu-
ture will have more cores, rather than more capable faster cores. This



−0.9 −0.8 −0.7 −0.6 −0.5 −0.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PCA component 1

P
C

A
 c

om
po

ne
nt

 2

 

 

Class 1
Class 2

(a) First2 PCA dimensions

5 10 15 20
−1

−0.5

0

0.5

1

LDA component 1

 

 

Class 1
Class 2

(b) LDA projection

−0.1 −0.05 0 0.05 0.1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PLS component 1

P
LS

 c
om

po
ne

nt
 2

 

 

Class 1
Class 2

(c) First2 PLS dimensions

Fig. 1. PCA, LDA and PLS projections on2 randomly chosen objects
in Catltech-101 [11] dataset
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Fig. 2. First two dimensions of PCA and PLS projections using only
25 samples per class

era of multicore computing requires that algorithms be adapted to
the data parallel architecture. A particularly capable set of data par-
allel processors are the graphical processors, which have evolved
into highly capable compute coprocessors. A graphical processing
unit (GPU) is a highly parallel, multi-threaded, multi-core proces-
sor with tremendous computational horsepower. In2008, while the
fastest Intel CPU could achieve only∼ 50 Gflops speed theoreti-
cally, GPUs could achieve∼ 950 Gflops on actual benchmarks [12].
Fig. 3 shows the relative growth in the speeds of NVIDIA GPUs and
Intel CPUs as of2008 (similar numbers are reported for AMD/ATI
CPUs and GPUs). The recently announced FERMI architecture sig-
nificantly improves these benchmarks. Moreover, GPUs power uti-
lization per flop is an order of magnitude better. GPUs are partic-
ularly well-suited for data parallel computation and are designed as
a single-program-multiple-data (SPMD) architecture with very high
arithmetic intensity (ratio of arithmetic operation to memory oper-
ations). However, the GPU does not have the functionalities of a
CPU like task-scheduling. Therefore, it can efficiently be used to
assist the CPU in its operation rather than replace it.



Fig. 3. Growth in the CPU and GPU speeds over the last6 years on
benchmarks (Image from [12])

In 2007, NVIDIA introducedCompute Unified Device Architec-
ture (CUDA)[12], a parallel programming model that leverages the
parallel compute engine in NVIDIA GPUs to solve general purpose
computational problems. With CUDA, GPUs can be seen as a bunch
of parallel co-processor that can assist the main processor in its com-
putations. The OpenCL initiative seeks to provide a similar non-
proprietary API for general purpose GPU computing. NVIDIA have
further released CUBLAS [9], a CUDA based BLAS (Basic Linear
Algebra Subprograms) which includes accelerated BLAS1, BLAS2
and BLAS3 routines in single and double precisions, although dou-
ble precision on GPU is an order of magniturde slower than single
precision.

3.1. GPU for accelerating NIPALS

CUBLAS is an implementation of BLAS (Basic Linear Algebra
Subprograms) on top of the NVIDIA CUDA driver. The library is
self-contained at the API level, that is, no direct interaction with the
CUDA driver is necessary. CUBLAS attaches to a single GPU and
does not auto-parallelize across multiple GPUs. The basic model by
which applications use the CUBLAS library is to create matrix and
vector objects in GPU memory space, fill them with data, call a se-
quence of CUBLAS functions, and, finally, upload the results from
GPU memory space back to the host. To accomplish this, CUBLAS
provides helper functions for creating and destroying objects in GPU
space, and for writing data to and retrieving data from these objects.
CUBLAS offers best speedup for BLAS2 (matrix-vector operations)
and BLAS3 (matrix-matrix operations) operations.

The key difference between an efficient algorithm on a sequen-
tial processor and a graphics processor is that the former requires to
have as less computation as possible while the latter needs to min-
imize memory access to and from the global memory. An efficient
GPU algorithm should ensure a minimal transfer of data from the
host memory to the GPU memory. NIPALS has several BLAS1,
BLAS2 and BLAS3 tasks. Therefore, the best computational perfor-
mance would result if BLAS2 and BLAS3 are performed on GPU
and BLAS1 on CPU. But, this would result in several data move-
ments back and forth between CPU and GPU, and can cost heavily
in access times. Therefore, in our GPU-based NIPALS we perform
all blas operations on the GPU. Such a strategy would be advanta-
geous because the BLAS2 and BLAS3 speedups are significant and
the savings on the memory transfer times is big enough to weigh
over BLAS1 disadvantages. Accordingly the schematic for the GPU
based implementation is shown in Table 2.

Fig. 4. Human samples vs Nonhuman samples from INRIA Person
database [13]

4. EXPERIMENTS

We experimented on PLS based human detetion and face recognition
to illustrate the GPU speedup and its utility. In all our experiments,
we used a Quad core Intel Xeon processor for the CPU operations
and the240-core Tesla C1060 for the GPU operations. The CPU and
GPU codes were written in C++ with Matlab linkages and the mean
absolute error between the CPU and GPU based PLS-modeling in
all runs was∼ 10−6.

4.1. Human Detection

Detection of humans in videos and images is a task of fundamental
importance in computer vision in order to be able to provide infor-
mation for higher level processing steps. It has been observed that
combination of feature descriptors provide improvements on detec-
tion rates [8]. Such feature augmentation leads to a very high di-
mensional feature space that may not be handled correctly by some
machine learning methods. Schwartz et al. [8] propose the use of
PLS to reduce the dimensionality of the feature space.

The method proposed by Schwartz et al. [8] works as follows.
First, a PLS model is learned to discriminate between human and
non-human samples (Fig. 4), with the resulting low dimensional
representation being used to estimate the parameters of a quadratic
classifier. Once the model is available, a testing sample has its fea-
ture descriptors projected onto the model and the low dimensional
representation is used to classify it as either human or non-human.
The method was tested on several human detection datasets and it
was able to improve detection results comparing to other state-of-art
methods.

In this experiment, we emulate the experiments in [8] by extract-
ing only the Histogram of Oriented Gradients (HOG), instead of the
full feature set done in [8], from the INRIA person database [13]
and building the PLS model for human/non-human training datasets.
There were2416 positive training samples and9744 negative train-
ing examples. We extract98928 HOG features from each of these
samples, thus resulting in a tall-fat dataset which will be our test bed
for performance analysis.

First, we illustrate the effect of the number of PLS components
and the computational time. Fig. 5(a). For low number of PLS
components, the eigenvalue problem is well-conditioned and there-



Table 2. NIPAL algorithm with CUBLAS
GPU based NIPALS for partial least squares

Given:N × d Feature samplesX and response variableY

1) Allocate GPU memory forX andy and transfer data to GPU [cublasAlloc,cublasSetVector ]
2) Iterate to convergence:

a) w = XT u/(uT u); ‖w‖ → 1: [cublasSgemv,cublasSscal,cublasSnrm2 ]
c) t = Xw: [cublasSgemv ]
d) c = Y T t/(tT t); ‖c‖ → 1: [cublasSgemv,cublasSscal,cublasSnrm2 ]
f) u = Y c: [cublasSgemv ]

3) p = XT t: [cublasSgemv ]
4) DeflateX : X ← X − tpT andY : Y ← Y − tcT : [cublasSgemv ]
If more projection vectors are required, go to step2

fore the speedup obtained is not significant. However, as the num-
ber of PLS components is increased, the eigen system becomes ill-
conditioned, resulting in increased computations and thus significant
speedup. In a practical experiment, the number of PLS components
is determined by cross-validation after building a PLS model with at
least10 to 20 components.

Next, we built the PLS model using the entire98928 features,
but chose a random subset of training samples. The correspond-
ing computational performance is shown in Fig. 5(b). Initially, the
data transfer time is dominant, hence GPU-based NIPALS is slower
than the CPU-based NIPALS. However, as the sample size increases,
there is an improved performance.

In the final experiment, we built the PLS model using a ran-
domly chosen subset of features to study the effect of dimension in
speedup. The resulting performance is shown in Fig. 5(c), and a
speedup of∼ 30X is obtained against the direct version.

Fig. 6 shows the speedup of our GPU-based NIPALS for various
sample and feature sizes. Although there is considerable speedup for
lower datasize/dimension, significant speedup is obtained for large
datasize/dimension indicating its utility for large datasets.

Schwartz et al. [8] perform a cross-validation analysis to se-
lect a subset of the negative training examples. The PLS model is
built initially using 5000 samples and this is used to classify the
remaining negative examples. The misclassified examples are now
added to the training set, and the experiment is repeated for a fixed
number of trials. We repeated this experiment using the HOG fea-
tures and observed that while the CPU based approach takes over an
hour, GPU-based approach took only10−minutes for a5-iteration
trial. Here, we have reported the time taken for PLS modeling and
cross validation only, and have not included the feature extraction
time. This shows that using a GPU-based approach would reduce
the training time by6 − 7 folds, which can be utilized for further
algorithmic sophistication. Figure 7 shows the detection error trade-
offs obtained using1126 positive testing samples and by shifting the
detection windows by8 pixels in the negative testing images, all of
which are available in the dataset, similar to the approach in [8].

4.2. Face Recognition

The problem of face recognition has received significant attention
over the years due to its importance to applications such as surveil-
lance. One of the tasks of face recognition is called identification,
in which for a given probe face, its goal is to match unknown faces
(probe samples) against a gallery of known people. One of recent ap-
proaches that deal with face identification using PLS is proposed in

Schwartz et al. [14]. It uses a one-against-all classification scheme
(Fig. 8). This scheme requires one PLS model per subject; therefore,
due to the availability of large amounts of data, it is important that
these models are built quickly.

Specifically, the one-against-all classification scheme works as
follows. When the PLS model is built for theith subject, the sam-
ples of the remaining subjects in the gallery are used as counter-
examples. Therefore, PLS method estimates which features are bet-
ter suitable to discriminate between theith subject and the remaining
ones. Finally, after all models are built, when a probe sample is pre-
sented, it is project onto each model and the best match is the one
with highest regression response.

In this experiment we compare the computational cost between
CPU and GPU-based approaches for building the models for subjects
in the gallery of the FERET dataset [15]. This dataset consists of
1196 subjects in the gallery (with one sample per subject), and four
probe sets: fb (1995 images taken with different facial expressions),
fc (194 images taken under different lighting conditions), dup1 (722
images taken at a later date), and dup2 (234 images taken at least
one year apart). The recognition rates obtained by Schwartz et al.
[14] are shown in Fig. 9.

For each subject, GPU-based approach takes only2.516 ±
0.068s to extract20 PLS factors, whereas the CPU approach takes
17.06 ± 0.802s. Total time to process the1196 subjects in the
database was only50 minutes with the GPU against a∼ 6-hour
CPU processing. Here again, we have reported the PLS modeling
time only, without considering the feature extraction time. The
improved computational performance allows for easier addition of
new face models and addition of negative examples for improving
an existing model.

5. CONCLUSION

In this paper, we have accelerated partial least squares based di-
mensionality reduction on a graphical processor. Although, in many
cases this is an offline task, we have illustrated the utility of the ac-
celeration for tall and fat datasets to enable faster modeling and the
speedups are promising. With newer FERMI architecture improv-
ing the FLOPS (FLoating-point OPerations per Second) further, the
speedups can only improve and become increasingly advantageous.
The core algorithm illustrated here will soon be released as an open
source.
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