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Abstract

The time-recursive computation has been proved as a particularly useful tool in real-time
data compression, in transform domain adaptive filtering and in spectrum analysis. Unlike
the FFT based ones, the time-recursive architectures require only local communication. Also,
they are modular and regular, thus they are very appropriate for VLSI implementation and they
allow high degree of parallelism. In this two part paper, we establish an architectural framework
for parallel time-recursive computation. In part I, we consider a class of linear operators that
consists of the discrete time, time invariant, compactly supported, but otherwise arbitrary kernel
functions. We show that the structure of the realization of a given linear operator is dictated
by the decomposition of the latter with respect to proper basis functions. An optimal way for
carrying out this decomposition is demonstrated. The parametric forms of the basis functions
are identified and their properties pertinent to the architecture design are studied. A library
of architectural building modules capable of realizing these functions is developed. An analysis
of the implementation complexity for the aforementioned modules is conducted. Based on this
framework, an architecture design procedure is developed in part II [12] that can be used for
routinely obtaining the time-recursive architecture of a given linear operator.

SP EDICS:
5.2. Algorithms and Application Mappings
5.1. Architectures and VLSI Hardware

*Research supported in part by grant NSFD CDR 8803012 through the Engineering Research Center’s Program.

tMartin Marietta Chair in Systems Engineering
tResearch also supported in part by ONR grant N00014-93-1-0566.






1 Introduction

The discipline of time-recursive computation embraces a number of algorithms and architectures
introduced in the context of diverse applications and under different names. First, the Goertzel al-
gorithms (or Goertzel filters), introduced in 1958 [13] and later explored by other researchers [2, 3],
can be used for implementing an N-point DFT in cases where only a small subset of the N fre-
quency components is desired [26]. During the last two decades, the running transforms have been
used in frequency domain filtering [27] and transform domain adaptive filtering [4]. Several data
transforms, such as the DFT, DCT, DST and variations of them have been employed for accel-
erating the convergence and improving the performance in applications like channel equalization,
echo cancellation, adaptive line enhancing and others [4, 25, 32, 9, 24]. The advantage of the
running algorithms over the fast algorithms is that for N consequitive evaluations of an N-point
sliding transform the computational complexity is O(N?%) compared to O(N?log, N) for the fast
algorithm implementation. The same rational applies for realizing the sliding transforms that are
used in spectrum analysis, the DFT being the most popular among them [27, 4]. A non-sinusoidal
transform used in this context was realized in a time-recursive way independently in [1] and [11].
Liu has demonstrated how non-rectangular data windowing can be embodied in the time-recursive
implementation of the Short Time Fourier Transform (STFT) and he generalized the time-recursive
design for multiple dimensions [18].

The term ”time-recursive” has first appeared in [8] in the context of real-time data compression.
Unlike adaptive filtering and spectrum estimation, where a sliding transform is desired, in data
compression schemes the transform coefficients have to be evaluated in a block by block manner.
The subtle point in the real-time, time-recursive implementation of the block transforms hinges on
the fact that the operators need to evaluate one result per time unit !, while an operator in the fully
parallel and pipelined FFT needs to produce one result every N time units. Apparently, this is the
reason that has discouraged the use of time-recursive computation in data coding until recently 8,
5]. The situation has been changed due to the advances in the VLSI technology that penalizes more
the global communication than the requirement for short internal clock cycle. In particular, note

that the FFT based architectures that employ global interconnection butterfly networks require

"The time unit is the time that lapses between two adjacent input data.



area O(N?) [29, pp.216-219]. As a side effect, the speed of a (VLSI implemented) operator can
match the input data rate, by adjusting the length of the clock cycle [7, 5]. As long as this constraint
is satisfied for a real-time application the area minimization becomes the only concern in the design.
Under this light, the success of the time-recursive VLSI circuits in evaluating block transforms and
the promise they show are mainly justified, apart from the modularity, regularity and scalability
of the resulted designs, by virtue of the area optimality property and the communication locality
property [8, 19, 20, 5]. Furthermore, the time-recursive architectures are very efficient for separable
multi-dimensional data transforms. In particular, the implementation cost is linear in terms of
operator counts and the communication requirement remains local. The induction procedure for
designing multi-dimensional architectures based 6n the one-dimensional ones is described in [18, 20],
while a detailed exainple is given in [8].

In this two part paper, we establish an architectural framework for parallel time-recursive com-
putation. We show that all the aforementioned algorithmic and architectural designs exhibit a
common infrastructure. We consider a class of linear operators that consists of the discrete time,
time invariant, compactly supported, but otherwise arbitrary kernel functions. We specify the prop-
erties of the linear operators that can be implemented efficiently in a time-recursive way. Based on
these properties, we develop a routine that produces a time-recursive architectural implementation
for a given operator. We use this routine for introducing a realization for a lossless QMF bank {31],
for modifying the realization of the cosine modulated QMF bank design in [30] and for deriving the
time-recursive designs of the Modulated Lapped Transform (MLT) [21, 23] (oftentimes referred in
the data coding community as Modified DCT - MDCT [15]) and an Extended Lapped Transform
(ELT) [22, 23]. These applications demonstrate the potential of the proposed design procedure.
At the same time, they introduce the use of time-recursive computation in multirate digital signal
processing. Aiming at single chip implementations of the associated computations, they provide
new results applicable to transform coding, subband coding and data sampling alteration with an
impact to real-time video and audio data compression, adaptive filtering and spectrum analysis.

The rest of this part I is organized as follows. In Section 2, we introduce some terminology. In
Section 3, we study the time-recursive algorithmic structures and their properties. In Section 4, we
focus on the architectural implementation of time-recursive architectures. In Section 5, we briefly

discuss the special features pertinent to block data transforms. We conclude with Section 6. In the



Appendix, we give the proofs of some lemmas that are stated in the course of the paper.

2 Preliminaries

In many signal processing applications the key computation consists of a mapping operator [ho hy ---
hn-1]: z(-) — X(-), which operates on the semi-infinite sequence of scalar data z(-) and produces

the sequence X(-) as follows:

N-1
X(t)ZZhnx(t+n—N+1), t:O’l’.... (1)

n=0

Note that all FIR filters can be considered as this type of computation. This is also true for a
number of data transforms. For example, the kth frequency component of the N-point Discrete
Fourier Transform (DFT) is obtained for h, = ™ Fhn,

We can specify a mapping operator [ho Ay --- An-1] with a function f(-), for which the values
at the points 0,1,--+, N — 1 are the prescribed coefficients: h, = f(n), n =0,1,--+, N — 1. In the
sequel, we will use the term kernel function or simply kernel for this function f(-). For example,
the kernel f(n) = e®™ is associated to the operator [¢*",n = 0,1,---, N — 1]. Furthermore, we will

call kernel group a vector of kernel functions fo(-), fi(+), -, far—1(+):

£() = [fo() () -+ fu1 ()

A time-recursive implementation of a mapping operator [h, hy -+ hn_1] is the one that is

based on a recursive update computation of the type
Xt+1)=UX({@),z(t—- N+1),z(t+1)).

For example, the kth frequency component of the N-point Discrete Fourier Transform (DFT) can

be extracted as follows [27]

Xe(t+1) = & F*[Xe(t) + ot + 1) —2(t — N +1)].



3 Design of Time-Recursive Algorithm

3.1 Shift Property

In the course of our study we will see that all mapping operators specified in (1) can be imple-
mented in a time-recursive way. Nevertheless, the implementation cost not always justifies the
time-recursive computation.

Let us first introduce the shift property of kernel groups.
Definition: A kernel group £(-) = [fo() fa(-) -+~ fM_l(-)]T, satisfies the shift property (SP) if it

satisfies the (matriz) difference equation
f(n—1)=Rf(n), n=12,---,N, (2)

with a specified final condition f(N), where R is a constant matriz of size M x M. Furthermore,
we shall say that a kernel function ¢(-) satisfies SP if there is a kernel group £(-) that satisfies SP
and ¢(-) is an element of £(-).

With the following Lemma, we specify a family of kernels and kernel groups that can be implemented

time-recursively in a way that will be determined shortly.

Lemma 3.1 A time-recursive implementation of a kernel group £(-) is feasible if this kernel group

satisfies the shift property.

Proof: (2) gives:

M1
fr(n=1)= 3 rpyfe(n), n=12,---,N, p=0,1,---,M ~ 1,

q=0

where 7pq,p,¢=0,1,---,M — 1 are the elements of the matrix R. Let

N-1
X)) =Y f(m)z(t+n—-N+1), p=0,1,---,M -1 (3)

n=0

Suppose this is available at the time instant ¢+ 1. For the quantities X,(¢+1), p=0,1,---, M-1



we have:

N-1 N
Xp(t+1)= Y z(t+n+1-N+1fp(n)= D z(t+n—N+1)fp(n—1)

N M-1 M-1 N
= Zm(t-{-n—N—I—l) 2_: Tpgfo(n) = Z Tpg (Zm(t—}-n-—N—i—l)fq(n))

g=0 n=1

and therefore we obtain the algorithm:

M-1
Xp(t+1)= Z Tpg [Xg(t) —2z(t— N + 1)fq(0) +z(t + 1) fo(N)], (4)

q=0

where p = 0,1,---,M — 1. If we assume knowledge of the boundary values {f;(0), fo(N), ¢ =
0,1,---,M — 1}, the algorithm specified in (4) will become the update computation we were af-
ter. (2) implies that knowledge of f(N) yields f(0). Furthermore, note that if R is nonsingular,
knowledge of £(0) yields (V). a

Corollary 1 A kernel group f(-) that satisfies SP can be implemented time-recursively as follows:
1. Compute the matriz R by evaluating f(n — 1) and using (2).
2. Ewaluate f(n) at the points n =0 andn = N.
3. At each time instant t evaluate (4).

Note that the first two steps of the above algorithm belong to the initialization phase (off-line

computation).

3.2 Scope of Time-Recursive Computation

The issue of specifying a family of kernel groups that satisfy SP is addressed by Lemma 3.2:
Lemma 3.2 The shift property is satisfied by:
1. The singleton kernel group [cb™], where b and ¢ are non-zero free parameters.

2. The kernel group
[cood™ + corb™", c100™ + enb™", (5)



where b is a non-zero parameter and the coefficients are free parameters, such that cogcy; —

Co1C10 # 0

T
3. The kernel group [co, cn, - -,cM_lnM"l] , where the coefficients are non-zero parameters.

Proof: One can readily verify that the associated matrices R{), { = 1,2, 3 respectively are

1
rD o
-1
-1
RO - €00 Cot b=t 0 oo Co1 and
¢io C11 0 b ¢io €11
4
2 (=177, ¢<p
R(3) prnd [rpq]p,q=0,1,--~,M—1 5 ',-pq —_ 9 q
0, g>p . O
Suppose now that we are given a mapping operator [hg hy -+ hy—1] for which we have the

following linear decomposition:
hn:a¢(n)+ﬂ¢(n)’ nzO,l""aN—lv

where ¢(-) and ¥(-) are kernel functions that satisfy SP. Since we have

N-1
XA E Y hua(t+n—N+1) = aXy(t) + BXy(1),

n=0

where X4(¢) and Xy(t) have the obvious definitions, we can obtain an efficient time-recursive
implementation for [hg hy -+ hny—1]. The mapping operators generated by this linearity property
supplement the family of the operators that can be computed in a time-recursive way dictated by
Lemma 3.2.

One can generate all the transform kernels that have been employed in the literature referenced
in Section 1 with proper choice of the kernel parameters specified by Lemma 3.2. In particular, for
¢ =1, and b = e/27/N_Statement 1 yields the kernel functions of the DFT.

By virtue of the fact that every mapping operator of finite length N can be expressed as a

combination of exponential functions (by taking for example the DFT of the mapping operator



coefficients) we conclude that all such operators can be implemented in a time-recursive way. In
this perspective, Lemma 3.2 provides a completeness result. In other words, it provides a basis
of kernel functions, so that every mapping operator of finite length can be expressed as a linear

combination of the basis functions.

3.3 Systematic Design I

In what follows, we summarize the steps to be taken in order to formulate the computation specified
by a mapping operator in a time-recursive manner. We assume here that the given operator can
be expressed by inspection (and use of Lemma 3.2) as a linear combination of kernel functions that
satisfy SP. For example, the kernel functions of the discrete sinusoidal transforms belong in this
class of operators (cf. Lemma 3.2, Statement 2).

Design Procedure

Input :

hn = Zci¢i(n)’ (6)

1
where {$;(n)} is a set of kernel functions that satisfy the shift property SP and {c;} is a set

of known constants.

Step 1: Specify the kernel groups f;(-) in which the kernel functions ¢;(-) belong. For example, if

$i(n) = n? then, according to Lemma 3.2, Statement 3, we get fi(n) = [L n n2]T.

Step 2: For each kernel group f;(-) use (2) in order to compute the matriz of parameters R; and

evaluate f;(n) at the pointsn =0 andn = N.
The outcome of this design procedure is the following algorithm:

1. Evaluate (4) in order to obtain X;(t + 1), where X;(t) is defined as Xi(t) = SNV hi(n)z(t +
n—N+1).

2. Fvaluate

X(t) = E CiX,'(t). (7)

Detailed examples along the lines of this procedure are given in part IL



3.4 Mapping Operator Decomposition

If the mapping operator is not specified in the form (6), for example if we are given the vector of the
coefficients instead of a close form expression, an elaborate technique must be employed in order to
obtain the linear expression required as the input of the design procedure. For any mapping operator
a number of different time-recursive realizations exist, since the above mentioned decomposition
is not unique. Given a mapping operator, we would like to obtain the optimal time-recursive
implementation in terms of the architectural cost. Unfortunately, this is not an easy problem, since
a variety of ad-hoc designs may exist for a specified operator. Here, we address the question of
optimality with respect to the number of kernels that are used in a linear decomposition of a given

mapping operator.

Lemma 3.3 The size of the smallest kernel group that can be used to implement the mapping
operator [hg hy -+ hy-—1] in a time-recursive way is equal to the size of the minimal order partial
realization of the Linear Time Invariant (LTI) system with the N first Markov parameters 2 being

equal to the coefficients of the specified operator.

Proof: Given a mapping operator [ho hy -+ hn—1], we can have the following coeflicient expan-
sion:

hn =cA"b, n=0,1,---,N -1, (8)

where A is the system matrix of size M X M and b, c are the input and output vectors respec-
tively {16, 17]. Let
f(n) = A" (9)

be a kernel group of size M. Since f(n — 1) = A" 'b = A~'f(n), this kernel group satisfies the
shift property with
R=A"1! and f(0)=b. (10)

From (8) and (9) we get the linear decomposition of the mapping operator coefficients hy, = cf (n).
Therefore, the time-recursive implementation of the mapping operator can be based on the kernel

group f(+). In our construction, the size of the kernel group M is equal to the order of the realization

2For the definition of the Markov parameters of an LTI system see [16, pp.92-93].



{A,b,c}. O
Thus, by using Lemma 3.3 we can obtain a time-recursive algorithm for an arbitrary mapping

operator based on the minimum number of kernels. The extended algorithm design procedure is

described in the following Subsection.

3.5 Systematic Design IT

For the time-recursive implementation of an arbitrary mapping operator [ho by --+ hy—1] three
steps need to be added at the beginning of the design procedure in Subsection 3.3:

Design Procedure Supplement
Input : The mapping operator [hg hy -+ hy_1].
Step 0.1: Compute the quantities A, b and ¢ in (8) [16, 17].
Step 0.2: Use the similarity transform that will yield {A,b,c} in the modal canonical form 3.
Step 0.3: Calculate the close form ezpression for the operator coefficients.

The expression specified in Step 0.3 can be used as the input in the design procedure described
in Subsection 3.3.

Note that Step 0.1 returns a state space description of an LTI system in the controller canonical
form. By transforming this system in the modal canonical form we are able to compute the close
form of the elements in matrix A™ (since this is a block diagonal matrix where the blocks are either
rotation matrices or real scalars). Consequently, Step 0.3 can be carried out by simple algebraic
manipulations.

In conclusion, the above design procedure yields a realization for which the associated matrix
R, first, has the minimum possible size, and second, it is block diagonal with block elements either
real scalars or 2 x 2 plain rotation matrices. In Section 4 we will see that both of these features are

very desirable for the architectural implementation.

3For the definition of similarity transforms and the canonical realization forms for LTI systems one may refer
to [16].



3.6 Difference Equation Property
A fundamental property of the Markov parameters {h, = cA"b, n = 0,1,---} of LTI systems
dictates [16]:

hn+M + aMhn+M—1 + -t ah, = 0,

where ap, p = 1,2,---, M are the constants specifying the system matrix A in the controller

canonical form [16]. Equivalently, this can be written in a difference equation format as follows:

hn =7Mhn—1 +"'+71hn-—M7 (11)

where

Y =—a,, p=1,2,--+, M. (12)

Let e, be the row vector of length M, for which the pth element is unity and all other elements
equal zero. If vector ¢ equals e, then (8) implies that h, is the pth kernel function of the kernel
group f(+). Suppose now that A and b are of the form specified in controller canonical form. Then,
all kernel functions in (9) satisfy the same difference equation (11). Lemma 3.4, which follows,
states that this is true even if A and b do not have any special structure. Thus, it introduces the
Difference Equation Property of a kernel group:

Definition : A kernel group () = [fo(-) fa(}) --- fM_l(-)]T, satisfies the difference equation
property (DEP) if there are scalars v,,p = 1,2,---, M, independent of n, such that the kernel

functions f,(-), ¢ =0,1,---, M — 1 satisfy the following difference equation

fQ(n):71fq(n“1)+"'+7qu(n_M)’ n=12-N (13)

with specified initial conditions fy(n),n = —1,-2,-.-, - M.
Lemma 3.4 A kernel group satisfies DEP if and only if it satisfies SP.

The proof of this Lemma is given in the Appendix.

10



4 Design of Time-Recursive Architecture

4.1 Lattice Architecture Design for Mapping Operators

In Section 3, we introduced a unifying approach for formulating the computation specified by a
mapping operator in a time-recursive manner. A key role in this formulation is played by the
evaluation of the expression in (4). The architectural implementation of (4) will have a lattice
structure if the size of the associated kernel group is M = 2 (see Fig. 2). An example of this
architecture appears in [19]. In an abuse of terminology, we will call lattice architectures the
architectures that implement (4) regardless of the size of the kernel group. The lattice architecture
that implements a kernel group of size M = 3 is depicted in Fig. 3. The overall architecture
design is completed by a simple weighted-sum circuit that evaluates (7). We can observe that this
architecture consists of M 2-tap FIR filters and a M X M weighted interconnection network with
M feedback loops. The total cost of this structure is no more than M? + 2M multipliers and
M(M - 1)+2M = M? & M 2-input adders. The weighted-sum circuit consists of M multipliers
and M —1 adders. The cost of the overall implementation is given on Table 1 (lattice architecture).

The M x M weighted interconnection network is characterized by the matrix R specified in (10).
If we follow all five steps of the design procedure described in Subsections 3.3 and 3.5 the matrix R
will be block diagonal with blocks consisted of plain rotations. Consequently, we can implement the
interconnection network very efficiently, with locally interconnected rotation circuits. The latter can
be realized either with CORDIC processors [14] or with distributed arithmetic techniques [28]. The
cost for implementing a mapping operator with this approach is shown on Table 1 (lattice/modal).
Furthermore, with this setup we can exploit the fact that the absolute values of all the eigenvalues
of a lossless system have the same magnitude [30, 31]. The lossless QMF bank implementation
presented in part II [11] takes advantage of this fact to reduce the number of multipliers to be

implemented.

4.2 Periodicity Property

With regard to the structure depicted in Fig. 3, suppose that there are two constants Dy and D,
such that the relation

Xp(t) = DypXo(t), (14)

11



is true for p = 1,2 énd t = 1,2,-+-. Then, one can verify that the 3 2-tap filters in Fig. 3 can
be replaced by the structure shown in Fig. 4.a. The corresponding circuit for M = 2 is given in
Fig. 4.b. In this way, M — 1 multipliers and an equal number of adders are saved. Obviously, the
same modification can be applied for a kernel group of arbitrary size. The resulted cost metrics
are depicted in Table 1 (case b.). In Lemma 4.1, which follows, we state a condition on the kernel
functions that imply (14) and consequently the savings mentioned above can be obtained.
First, let us introduce the periodicity property of kernel groups.
Definition :A4 kernel group £(-) = [fo(-) fi() -+ far—1(")]7, satisfies the periodicity property (PP)

if the following relation holds:

folN) _AW) _  _ fma(N) _ 1 (15)
fo(0)  A(0) fm-a(0) S

for some non-zero constant S.

Lemma 4.1 Given a kernel group £(-) relation (14) holds forp=1,2,---,M —1 andt =0,1,---

if £(-) satisfies the periodicity property.

The proof of Lemma 4.1 is given in the Appendix.
The name periodicity property is justified by the following special case: Consider the kernel

group specified by Statement 2 in Lemma 3.2. In the Appendix we prove the following Lemma:

Lemma 4.2 If the parameter b of the kernel group (5) is of the form b = ei#, then (5) satisfies the
periodicity property if and only if B = j’j—v’i, that is, if the kernel functions are periodic with period
equal to N. Furthermore, if PP is satisfied the ratio value in (15) is equal to 1/5 = (=1)F.

An example of kernel group that satisfies PP is the one that consists of the DCT and DST kernels

T
fi(n) = [cos Er(n+ 1) sinfF(n+ %)] )

4.3 IIR Architecture Based on Shift Property

The lattice architecture we have seen in Subsection 4.1 constitutes a direct translation of (4) into
an architectural implementation. If a transfer function approach is adopted instead, we obtain an
IIR filter structure implementation for (1) [20]. In this Subsection, we show how we can specify

the IIR implementation of a kernel group based on the shift property, while the IIR architecture

12



design based on the difference equation property is the subject of the following Subsection. The IIR
architecture often involves less implementation cost in comparison to the lattice one, especially if the

associated kernel group exhibits the periodicity property we have seen in the previous Subsection.

Lemma 4.3 Let f,(-) be a kernel function in the kernel group £(-) = [fo() fi(*) --- 1O
of size M. If £(-) satisfies SP, the kernel function f,(-) can be implemented by an IIR filter with

transfer function Hy(z)

= B@) Wb
HP( ) - a(z) a(z) 9 p= 07 17 7M 15 (16)

where a(z) is a polynomial in z~' of degree M and b;(z), i = 0,1 are polynomials in 2! of degree

M — 1. These are defined as follows: a(z) = |A(z)|, bi(2) =

B;,(z)l, 1= 0,1, where

- -

—1+4 10z rorz”" ro,p—12""
-1 -1 -1
T10Z -1+ mz T1,P-1%
A(z) = ) ] ] , (17)
L TP_1,02 " rp-1127"! -1+ rpypo127!

i . : g th : i i T . _
B} (2) is an M XM matriz formed by substituting the p''* column of A(z) with [30 Sy e Syl S 1=
0,1, and

M-1 M-1
sgz—Zqufq(O), s},:—erqfq(N), p=0,1,---,M — 1.
g=0 q=0

Note that |X| denotes the determinant of the matriz X.

The proof is given in the Appendix. As a direct consequence of this Lemma we have:

Corollary 2 Let £(-) = [fo(-) f1(-) -+ fs-1(-)]" be a kernel group of size M that satisfies PP.

Then, the transfer function H,(z) of the linear system that models (4) is:

HP(Z): (S'—Z_N) %) p=0,1,-",M—1, (18)

where a(z) and bzl,(z) are specified in Lemma 4.3 and § is the constant specified in (15).

13



For the sake of clarity, we will consider the special case of a kernel group of size M = 2 in detail.

Let Hp(z) be the transfer function of the linear system that models the mapping operators

[£p(0) fp(1) -+ fo(NV = 1)},

for p = 0,1. From (17), for M = 2 we get:

—14 rgoz~t ro127 1
a(z) = 1 1
™02 -1+ ri1z”
Furthermore, we have
; 8g ro12~ 1 ; —14 ropz™t s}
bo(2) = | , 0i(2) = E
st =14 71127t r10271 8

where

Sg = —Tpng(O) - Tplfl(()) and Sll) = —Tpofg(N) — ’I‘plfl(N), D= 0, 1.

The architectural implementation resulted from (16) is shown in Fig. 5, while for the case where
the periodicity property is satisfied, the architecture associated to (18) is depicted on Fig. 6. We
observe that the IIR architecture consists of a feedback structure with M = 2 delay elements. The

parameters d;,i = 1,2 and n;j,7 =0,1,7 = 0,1,2,3 are given by the following expressions:

dy = —7o0 — ™11 noo = fo(N)roo + fi(N)ror n10 = fo(0)roo + f1(0)ror

dy = rooT11 — To1T10 o1 = —fo(V)dg n11 = —fo(0)ds (19)
noz = fo(N)rio+ fi(N)ri maz = fo(0)rio + f1(0)rna
no3 = — f1(NV)dz n13 = — f1(0)d2

4.4 TIR Architecture Based on Difference Equation Property

An alternative approach to the problem of designing the IIR architecture is based on the defin-

ing equation of X,(t) (3) and the difference equation property of the kernel group introduced in
Subsection 3.6. In more concrete terms, we can compute the Z transform of a kernel function

fp(n) based on the difference equation (13) and then calculate the transfer function of the system

14



specified by (3). The following lemmas describe how we can obtain the desired transfer function
if we are specified the difference equation parameters. The special case of a difference equation of
order M = 2 is first considered, the reason being both its importance for a number of practical

applications [20] and its simplicity.

Lemma 4.4 Let the kernel function f,(-) satisfy the second order difference equation

) =nfo(n—1)+72f(n~2), n=1,2,---,N. (20)

The transfer function Hyp(z) of the system specified in (3) is

(N -1+ 5 H(N)71 nfpD+ 2 r(0)27

21)
M1 _ 1 -2 _M.—-1__ 1. -2 ° (
1 ’Y2z ’YZZ 1 ')’22 '72z

Hp(2) =

A variation of this Lemma was originally given in [20]. In Appendix, we present a proof that enables
the generalization considered in Lemma 4.5.
The parameter values of the associated IIR architecture in Fig. 5 is a direct outcome of

Lemma 4.4:
di = —v1/72 noo= fo(N ~1) 7m0 = fo(-1)

de=—1/72  nor = fo(N)/v2 n11 = fo(0)/72
ngz = fi(N —1) ni2 = fi(-1)
noz = fi(N)/v2 niz = —f1(0)/72

(22)

The generalization of Lemma 4.4 for arbitrary values of the order M of the difference equation

follows:

Lemma 4.5 Let the kernel function f,(-) satisfy the M order difference equation (13). Then,

the transfer function Hp(2) of the system specified in (3) is given by the expression in (16), where

M-1 YM—n 1 M
a(z) = 1+ e g T e —— 7Y
B = T

M-1[ 1 M

b(2) = D> |= D 1 fo(N+M—-n—-q—-1)| 2" and (23)
n=0 _771 g=M-n
Ml M

by(z) = Z ~ Z Yofo(M —n—q—1)] 27"
n=0 _7"' g=M-n
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Lemma 4.5 gives a means for computing the IIR parameter values that is considerably easier from
the alternative way of carrying out the algebraic computations involved in (16). Finally, as a direct

consequence of Lemma 4.5 we have:
Corollary 3 Let the kernel function f,(-) satisfy:
1. The M order difference equation (13).

2. The condition

fP(N) _ fp(N—-l) L fp(N—-M—{-l) B
RO S I T (24)

for some constant S.

Then, the transfer function H,(z) of the system specified in (3) is given by (18), where a(z) and
by(2) are specified in (23) and S in (24).

We may observe that (24) has the same effect on the IIR architecture with (15), the defining
equation of the periodicity property for a kernel group. This fact suggests the following extension
of the definition of the periodicity property:

Definition: We shall say that a kernel function ¢(-) satisfies the periodicity property (PP) if there

is a positive integer M and a non-zero constant S such that

BN) _ SN -1) (N -Mi1)
60) ~ #(-1) S(—M +1)

is satisfied.

Interestingly, (15) and (24) imply:
Corollary 4 If a kernel group satisfies the periodicity property, then the ratio value S in (15) will

be either S =1 or § = —1.

4.5 IIR Architecture Design for Mapping Operators

So far, we have discussed the procedure for computing the transfer function that is associated to
a given kernel group. We have shown how this transfer function is determined from two different

starting points: the matrix difference equation (2) and the scalar difference equation (13). In the
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sequel, we will consider the implementation of the associated mapping operator, which is the goal

of our construction. As a direct consequence of (7), the desired transfer function H (2) is

M-1

H(z)= Z cpHy(2),

p=0

where H,(2),p=0,1,---, M — 1 are the transfer functions of the members of the associated kernel
group and c¢p,p = 0,1,---,M — 1 are specified by the algorithm design procedure. Based on

Lemmas 4.3 and 4.5 one can show that

1 M-1 o N 1 M-1 .
H(z) = o pz:% epbo(2) — 2 ol EO epba(2), (25)
where the expressions of a(z), b3(z) and bl(z) are described by Lemma 4.3 or by Lemma 4.5,
depending on the specifications we are given. In a similar way, based on corollaries 2 and 3, one
can show that for the case where the associated kernel group satisfies the periodicity property the

transfer function we were after is:

M-1

H(z)= (S - z"N) E(lz_)- Z epbi(2), (26)

p=0

where the expressions of a(z) and b}(2) are specified as above.

We conclude our discussion on IIR architectural implementations with some comments on the
implementation cost *. For the denominator a(z) in (25) we need M multipliers and M adders. For
the two numerators of this expression we need 2M multipliers and 2(M — 1) adders. An additional
adder is needed for the addition in (25). If the periodicity property is satisfied, the implementation
of the numerator in (26) requires M multipliers and M — 1 adders. Note that no multiplier is needed
for the factor 9, since the constant S takes values in {1,—1}. The overall cost is shown in Table 1
(IR architecture). A comparison of the lattice and the IIR architectures on the basis of the costs in
Table 1 will yield the following conclusion: The IIR architecture is better if the periodicity pmpefty

is satisfied by the underlying kernel group, while the lattice architecture is appropriate for the cases

*The IIR structure we consider throughout this paper is the well known type-1 realization and the cost analysis
that follows is based on this fact. Nevertheless, any one of the known filter realizations can be used for implementing
the transfer functions we specify in this Subsection.
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where the above property is not satisfied. Note that the implicit assumption we have made is that
only one kernel function from the associated kernel group participated in the linear expression that
specifies the mapping operator in consideration (cf. (6)). A decision rule that encounters all the

different factors affecting the proper choice of the architecture is provided in part II.

5 Implementing Sliding and Block Transforms

An N X N data transform can be viewed as a bank of N mapping operators of length ¥. A
time-recursive implementation of these operators yields a locally interconnected, modular, regular
and scalable with NV design and with linear cost O() (in terms of operator counts). In particular,
the constant term underlying the asymptotic cost expression can be made linear in terms of the
associated kernel group size M, as manifested by the figures in Table 1, resulting in the more
accurate expression of O(M N). In the introductory Section 1, we have distinguished between the
sliding and the block transforms. We observe in Table 1 that such classification reflects different
implementation costs. This is justified as follows.

The output of the operators that implement a block transform are sampled at the time instances
t=0,N,2N,--- Consequently, between two adjacent sampling instances we compute N — 1 pieces
of data that are neglected. The only purpose of this computation is to have a transition phase to
computing the data output at the next time instance that is a multiple of N. Consider now the
computation of the first valid output that is at time instant ¢ = N. The scenario for producing
this output amounts to initializing the memory elements of the time-recursive structure at { = 0
and feeding the N first input samples. If we reset (to 0) the memory elements periodically, with
period N, we can periodically imitate the computation of the initialization phase, while being able
to produce all the useful output data. The consequence of this observation is a simplification of
the time-recursive design for the operators in block transforms: the delay element 2=V will never
deliver a non-zero quantity and therefore it should be replaced by 0 in (25) and (26) (as well as in
(16), (18), (21) and (23)). The architecture designs need to be changed accordingly. For example,
both IIR structures in Fig. 5 and 6 reduce to the one in Fig. 8.

Similarly, the lattice structure in Fig. 2 reduces to the one in Fig. 7. A specific instance of this

class of circuits, namely the DFT IIR structure, is the well known Goertzel filter [13, 2, 3].
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Observe that the periodicity property has an interesting interpretation in this context: If the
mapping operators that implement a data transform satisfy PP, the implementation cost of the
block transform is almost identical (it differs by one adder) to the one of the sliding transform.

Note finally that the decimation in Fig. 8 lets a substantial part of the circuitry operate at

minimum rate (that is N times lower than the input data rate).

6 Conclusion

In this first part of the two-part paper, a unifying architectural framework for parallel, time-
recursive computation is established.

The structure of the realization of a given mapping operator is dictated by the decomposition
of the latter with respect to proper basis functions. Three properties of these functions that are
instructive for the architecture design are the shift property (SP), the difference equation property
(DEP), and the periodicity property (PP). The design of a lattice architecture can be based on
SP and the design of an IIR architecture can be based on either SP or DEP. PP yields a cost
reduction and it should be involved in the decision rule for choosing between the two candidate
architectural options. The time-recursive architectures associated to block transforms are simpler
from the corresponding ones associated to sliding transforms.

A comprehensive overview of the above results is given in Fig. 9. The algorithm design procedure
suggested in Subsections 3.3 and 3.5, along with the cost figures in Table 1 can be used as design
guides. Based on this background, an architecture design procedure is developed in part II that
can be used for routinely obtaining the time-recursive architecture of a given mapping operator.

Application areas for this framework include real-time data compression, adaptive filtering and
spectrum analysis. Although focused on architectural implementations, the developments in this

work are equally useful for algorithmic implementations of sliding transforms.

A Appendix

Proof of Lemma 3.4: We will proceed with the proof by showing that there are algorithms for

the following computations:
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ot

. Compute {A,b} based on the knowledge of R and £(0).

N

. Compute {R,f(0)} based on {A,b}.

(%]

. Compute {A,b} based on {f(-1),f(-2), -, f(~=M), 71,72, *, Y™}

N

. Compute {f(-1),f(-2),---,f(=M),¥1,72,* -, M} based on {A,b}.

The first two algorithms are straightforward implications of relation (10). Note the implicit non-
singularity assumption we have made for the matrix R.

For the computation in 3. we follow four steps: First, compute the quantities f(n), n =
0,1,---,M — 1 based on f(n), n = —1,-2,---,—~M and (13). Since we have f(n) = A"™b, the

controllability matrix specified by the unknown quantities {A, b} will be [16]
C=[bAb ... AM=b| = [£(0) £(1) --- £(M - 1)].

Second, by using relation (12) find the controller canonical form system matrix A. and output

vector b.. So, the controllability matrix of the controller canonical form is obtained:
Ce= [bc Ach, -+ AM-Tp,].
Third, compute the matrix T that defines the similarity transform
{A,b} — {A=T"*A.T, b=T"'b.} (27)
by using the relation [16]

T =C.C1.

Forth, the quantities {A,b} are computed by the relations specified in (27).

The computation in 4. is as follows: From the knowledge of {A, b}, we obtain the correspond-
ing pair in controller canomical form {A., b.} [16]. The desired coefficients vy1,72,+++,7a can be
obtained from the elements of the first row of the matrix A, by using (12). The initial values
£(—1),£(—2),--,f(—M) can be obtained by simply evaluating the expression f(n) = A"b for

n=—1,~2,---, - M.
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Proof of Lemma 4.1: We will consider here the special case of M = 3. The proof can be
easily generalized for arbitrary values of M.
One can verify that the transfer functions from the input to the pbints Xo(t), X1(t) and Xo(2)

in Fig. 3 respectively are
—fo(0)z"N 4 fo(N), —fi(0)z™N + fu(N) and - £(0)zN + fo V).
Consequently, from the £ transform of (14) we get
Xp(2) = DpXo(z) o = fo(0)N + f,(N) = D, [~ fo(0)7N + fo(N)], p=1,2.
Since this is true for every z in some open interval, the latter implies

HO | _ | 6O
L | T R

for p = 1,2, or equivalently

fp(o) fp(N) r fO(N) _ fp(N) -1.9

H0) " ) RO T RO T

which in turn is equivalent to (15).

Proof of Lemma 4.2: If we have b = ¢/'¥ one can verify that (15) holds with ratio value
1/8 = (=1)%, by simply substituting the above expression of b in (5).
On the other hand, suppose that (15) is satisfied by a kernel group specified by (5) with b = P,

If 1/§ is the value of the ratio in (15), then the latter implies:

. . 1
Cp()e]ﬁN + cple’JﬁN = -§(CPO + Cp1)7 p= 07 1.
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The left hand side expression can also be written as
cpo(cos BN + jsin BN ) + cpi(cos BN — jsin BN) = cos BN (cpo + cp1) + jsin'ﬂN(cpo — Cp1),

where p = 0, 1. Therefore we have either c,0 = ¢p1, p=0,10r 8 =3 %’,—' Since the first condition

yields cgoc11 — co1c10 = 0, the alternative must be true. In turn, the above result implies

% =cos SN = coskr = (—1)’“.

Proof of Lemma 4.3: Let X,(t), ¢ = 0,1,--- be the output data of the mapping operation

defined by the operator
[fp(o) fp(l) fp(N - 1)]

From (4) we get

Xp(t) = Mz_:lrpq [Xq(t -1) +Xq(t)] , p=0,1,--- M-1, t=1,2,--- (28)
where
2o(t) = —fo(O)(t = N) + f(N)a(), g=0,1,--, M~ 1. (29)

Consider the unilateral Z; transform, defined as

X(2) = Zo{z(t)} = _=z(2)z™"
=0
Since
Zi{z(t —m)} = 27" X(z), foreveryinteger m > 0, (30)

the Z, transform of (28) and (29) gives

M-1
Xp(2) = Z Tpq [z_qu(z) + Xq(z)] , p=0,1,--,M -1, (31)

q=0
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where

Xy(2) = [~ £V + (D] X(2), g=0,1,-, M~ 1. (32)
From (31) we have
M-1 M-1 R
Z Tpe2 " Xq(2) + (=1 4 rppz ™) Xp(2) = — Z TpeXq(2)
=0,9#p g=0

M-—1
=—X(2) Y g [ (027N + f(N)], p=0,1,--, M~ 1,
g=0

By solving the above system of equations for X,(z),p=0,1,---, M — 1, we obtain
XP(Z) = HP(Z)X(Z)’ p= 0’ 17 . ’M - 17

where H,(z) can be brought into the form specified in Lemma 4.3 after a few algebraic manipula-

tions.

Proof of Lemma 4.4: First, we define the Zx transform of a discrete time function f(n) over

the time segment {0,---,N — 1}

N-1
En{f(m)} = ) f(n)z". (33)

n=0

This variation of the Z transform is appropriate for the frequency domain representation of the
kernel functions we consider here, since these functions are defined on a bounded segment of the
time axis. On the other hand, we will use the unilateral Z, transform as the frequency domain
representation of the input signal z(¢) and the output signal X (¢), since these signals are defined
on the semi-infinite sequence of time instances ¢t = 0,1,---

Let F(2z) = Zn{fp(n)}. Based on (33) we can show that
Z{fy(n—1)} = 27" F(2) + fo(-1) = 27V f(N = 1) and

Z{fp(n=2)} = 22 F(2) + fo(~2) + 27 (1) = 27N (N = 2) = 2T fp (N = 1), (34)
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Also, we have

F(z)= 2N Rp(TY, (35)

where

F(2) = Zx{f,(n)} and f(n)=fo(N -1-n), n=0,1,---,N—1.

By taking the Zx transform of both sides of (20), using (34) and solving for F(z), we obtain:

- fp(0) + '72fp(_1)z_l -z N [fp(N) + y2fpo(N — 1)”5—1] )

F) 1= 71271 — 79272 (36)
From (3) we have
N-1
X(t+N-1)= 3 fo(n)z(t +n),
n=0
or equivalently N
-1
y(t) = 3 =(t—n)f(n), (37)
n=0

where y(t) = X(t+ N —1). By taking the Z transform of both sides of (37) and using (30) we

obtain:

N-1 _ N-1 _ _
Y(z) = Z f(n)[z7"X(2)] = X(2) Z f(n)z™" = X (2)F(z).
n=0

n=0
By substituting (35) we get
Y(z) = 2 NP X (2),

and therefore, the transfer function we were after is
H(z) = z"N*1p(z1). (38)

If we substitute the expression (36) of F(z) in the above we obtain the transfer function specified

in (21).

Proof of Lemma 4.5: One can verify that

q
En{fy(n— @)} = = F(=) + 3 [folmm)em T (N — m)aN T (39)

n=1
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where the Zpy transform is defined by (33) and F(2) = Zn{f,(n)}. By taking the Zy transform
of (13), using (39) and solving for F(z) we obtain:

22{‘1 q [ZZ:l Jo(—n)z7oH — z=N =1 fo(N — n)Z#N—q+n]

F(z) = —

M
1 -2 g=17%

By substituting this expression in {38) we obtain (23).
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multipliers adders rotations

lattice architecture M?4+3M M?4+3M -1 -
Case a. lattice / modal 2M [5M/2 + 1] M
IIR. architecture 3M 3M -1 -
lattice architecture | M2 +2M +1 M?*+2M -2 -

Case b. lattice / modal 2M [5M/2 + 1| M/2
IIR architecture 2M 2M -
lattice architecture | M2 +2M +1 M?+2M -3 -

Case c. | lattice / modal 2M |5M /2] M/2
IIR. architecture 2M 2M -1 -

Table 1: Implementation cost of a mapping operator, based on a kernel group of size M: Case a,
the operator does not satisfy the periodicity property and it is utilized by a sliding transform. Case
b, the operator satisfies the periodicity property and it is utilized by a sliding transform. Case c,
the operator is utilized by a block transform.

x(t) ¢ >{> L3 X(1)
Z'N

Figure 1: Architecture for kernel group of size M = 1.
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Figure 2: Lattice architecture for kernel group of size M = 2.
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Figure 3: Lattice architecture for kernel group of size M = 3.
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Figure 4: Part of lattice architecture if the periodicity property is satisfied.
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Figure 7: Lattice architecture for M = 2 for an operator used in block transform.
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Figure 8: IIR architecture for M = 2 for an operator used in block transform.
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Figure 9: Overview of the time-recursive architecture design principles.
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