
Improved Approximation Algorithms for Uniform ConnectivityProblemsSamir Khuller � Balaji Raghavachari yAbstractThe problem of �nding minimumweight spanning subgraphs with a given connectivityrequirement is considered. The problem is NP-hard when the connectivity requirementis greater than one. Polynomial time approximation algorithms for various weighted andunweighted connectivity problems are given.The following results are presented:1. For the unweighted k-edge-connectivity problem an approximation algorithm thatachieves a performance ratio of 1.85 is described. This is the �rst polynomial-timealgorithm that achieves a constant less than 2, for all k.2. For the weighted k-vertex-connectivity problem, a constant factor approximation al-gorithm is given assuming that the edge-weights satisfy the triangle inequality. Thisis the �rst constant factor approximation algorithm for this problem.3. For the case of biconnectivity, with no assumptions about the weights of the edges,an algorithm that achieves a factor asymptotically approaching 2 is described. Thismatches the previous best bound for the corresponding edge connectivity problem.1 IntroductionConnectivity is fundamental to the study of graphs and graph algorithms. Recently, many ap-proximation algorithms for �nding subgraphs that meet given connectivity requirements havebeen developed [1, 11, 14, 15, 19, 21, 22]. These results provide practical approximation algo-rithms for NP-hard network design problems, via an increased understanding of connectivityproperties.In this paper we focus on uniform k-connectivity problems. The term connectivity refers toboth edge and vertex connectivities, unless speci�ed. The input is an integer k, a k-connectedgraph G = (V;E) and a weight function w on the edges of G. The goal is to �nd a minimum-weight k-connected subgraph of G. The problem is known to be NP-hard [12] even whenthe weights are all identical (i.e., the unweighted case). We present improved approximationalgorithms for unweighted and weighted connectivity problems.The practical motivation to study this problem is the following. Let G denote all feasiblelinks of a proposed communications network. An edge e = (a; b) denotes the feasibility of�Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,College Park, MD 20742. Research supported by NSF Research Initiation Award CCR-9307462. E-mail :samir@cs.umd.edu.yDepartment of Computer Science, The University of Texas at Dallas, Richardson, TX 75083-0688. Researchsupported in part by NSF Research Initiation Award CCR-9409625. E-mail : rbk@utdallas.edu.1

adding a link from site a to site b, and its weight, w(e), represents the cost of constructingit. A minimum spanning tree in G is the smallest connected subgraph, i.e., the cheapestnetwork that will allow the sites to communicate. Such a network is highly susceptible tofailures, since it cannot survive the failure of even a single link or site. For more reliablecommunication, one desires spanning subgraphs of higher connectivities. A network of edge-connectivity (vertex-connectivity) k continues to allow communication between functioningsites even after as many as k � 1 links (sites) have failed. The problem of �nding low-costfault-tolerant networks naturally leads to the minimum-weight k-connected spanning subgraphproblem. Further applications and the importance of this problem are discussed by Gr�otschel,Monma and Stoer [16].1.1 Our resultsUnweighted Connectivity Results:For this problem the previous best approximation factor was 2. This follows from thefollowing two facts. Any minimal k-connected subgraph contains at most k(n � k) edges [2].In any k-connected graph, the degree of each vertex is at least k, thus implying a lower boundof kn=2 on the number of edges in any optimal solution. E�cient algorithms for �nding k-connected subgraphs with at most k(n � 1) edges were given by Nagamochi and Ibaraki [20]and Cheriyan, Kao and Thurimella [3].We observe that such approximation algorithms do not exploit any structural propertiesof an optimal solution, other than the trivial lower bound on the degree of each vertex. Sincethese algorithms provide an absolute upper bound on the number of edges, there is no way toimprove their approximation factors. Any algorithm which obtains a solution that is provablybetter than 2 must exploit the structure of the problem and prove better lower bounds on anoptimal solution. Previously, algorithms that obtained factors less than 2 were known onlyfor the case k = 2; Khuller and Vishkin [19] gave an approximation algorithm that achieveda factor of 1.5 for the edge-connectivity case, and 1.66 for the vertex connectivity case. Thevertex connectivity bound was subsequently improved to 1.5 by Garg, Santosh and Singla [13].By combining the biconnectivity algorithm [19], and the sparse certi�cate algorithm [3] onecan easily obtain a factor of 2�1=k for the k-edge-connectivity problem, but this approaches 2as k increases. Recently, Karger [17] has given an algorithm with a factor of 1 +O(plog n=k)using randomized rounding of the fractional solution obtained from the corresponding linearprogram, together with the idea of �nding maximal forests. This algorithm is useful whenk� log n.In this paper we provide the �rst approximation algorithm which breaks the barrier of 2for the unweighted k-edge-connectivity problem (for all k). We give an algorithm and a lowerbounding method that yields an approximation ratio of about 1:85 for the k-edge-connectivityproblem. At a high level, the structure of our algorithm is based on the method of [3], butit uses depth �rst search to obtain a better solution in each phase. Our algorithm is quitestraight-forward, but proving a performance ratio of less than 2 for the algorithm requires asubtle analysis of the structure of any optimal solution.Weighted Connectivity Results:Here each edge of the input graph G has a nonnegative weight. For the k-edge-connectedsubgraph problem, an approximation factor of 2 was achieved by Khuller and Vishkin [19].Approximation algorithms with constant performance ratios (for all k) are not known for the2

k-vertex-connected subgraph problem. The best known algorithm to �nd a k-vertex-connectedsubgraph is due to Ravi and Williamson [21] that achieves a factor of 2H(k), where H(k) isthe kth Harmonic number (H(k) = 1 + 12 : : :+ 1k).Frederickson and J�aJ�a [8] considered the problem of computing a minimum-weight bicon-nected spanning subgraph. They gave an approximation algorithm for a more general graphaugmentation problem and used it to obtain a 3-approximation algorithm for the biconnectiv-ity problem. For k = 2, Ravi and Williamson's algorithm also achieves a ratio of 3. In thispaper, we present an approximation algorithm for the minimum-weight biconnected subgraphproblem with a performance ratio of 2 + 1=n.Not much more is known about the k-vertex-connectivity problem for the special case whenthe weights satisfy the triangle inequality. For k = 2, it is easy to show that the TSP algorithmof \doubling" the minimum spanning tree has a performance guarantee of 2. Frederickson andJ�aJ�a [9] proved that Christo�des' algorithm [4] (for the TSP problem) has a performanceguarantee of 1.5 for the minimum-weight biconnectivity problem as well. The analysis for thebiconnectivity algorithm is more complicated since the relationship between the weight of aminimum-weight matching and the weight of an optimal biconnected subgraph is not obvious.In this paper we give an algorithm for the k-vertex-connectivity problem when the edgessatisfy the triangle inequality. The performance guarantee is at most 2 + 2(k� 1)=n, which isless than 4 for all k and asymptotically tends to 2 for �xed k, as n tends to in�nity.2 PreliminariesA graph is said to be k-vertex-connected (or simply k-connected) if the deletion of up to k� 1vertices does not disconnect the remaining vertices of the graph. Analogously, a graph is k-edge-connected if the deletion of up to k � 1 edges does not disconnect the graph. A set ofpaths between vertices u and v is said to be openly disjoint if they do not share any internalvertices. This de�nition is extended to the case when v is replaced by a set of vertices asfollows: a set of k paths between u and a set of vertices R with jRj = k is openly disjoint ifthe paths are all vertex-disjoint (except for sharing the end-point u), and each of the pathsstarts at u and ends at a distinct vertex of R. If u 2 R then we �nd k�1 openly disjoint pathsfrom u to the vertices in R � u. We say u and v are k-edge-connected, if there exist k edge-disjoint paths between them. The same de�nition can be extended to vertex connectivity byreplacing \edge-disjoint" with \openly disjoint." Note that k-edge-connectivity can be viewedas a binary relation between vertices. It is a transitive relation because, if a graph G containsk edge-disjoint paths between u and v, and k edge-disjoint paths between v and w, then itimplies that G has k edge-disjoint paths between u and w.3 Unweighted k-Edge-ConnectivityIn the edge connectivity version of the connectivity problem, the input is an integer k and anundirected graph G = (V;E) with edge connectivity at least k. The problem is to compute a k-edge-connected spanning subgraph of G using the minimum number of edges. Since the degreeof any vertex must be at least k in a k-connected graph, any solution to the above problemmust have at least dkn=2e edges. Any minimally k-edge-connected graph has at most k(n�k)edges [2], and this provides a 2-approximation algorithm. Khuller and Vishkin [19] provided the3

�rst approximation algorithm for k = 2 with a performance ratio less than 2. Their algorithmis based on depth-�rst search and has a performance guarantee of 3=2. A simple generalizationof their algorithm has a performance guarantee of 2� 1=k for all k. In this section we providethe �rst algorithm for unweighted k-edge-connectivity with an approximation factor strictlyless than 2 for all values of k. The structure of our algorithm is similar to the one usedby Cheriyan, Kao and Thurimella [3], where the connectivity of the solution is increased instages. The main idea behind the algorithm for �nding a sparse k-edge-connected subgraphis to repeatedly �nd and delete a maximal spanning forest from the graph G. After this isrepeated k times, the deleted edges form a k-edge-connected spanning subgraph of G [3, 20].3.1 The algorithmWe �rst describe our algorithm for even values of k. The algorithm works in phases. It startswith an empty subgraph S. In each phase the edge connectivity of S is increased by 2. In k=2phases the connectivity of S is k and the algorithm outputs S.We now describe the procedure that we use to augment the connectivity of S by 2 in anyphase. At the beginning of phase i, S is 2i � 2 connected. At the end of phase i, it will be2i connected. We �rst add a depth-�rst maximal spanning forest Fi of G � S to S. Thisincreases the connectivity of S to 2i� 1. Note that each tree of Fi is implicitly rooted. Sincewe added a depth-�rst forest to S, all remaining edges of G� S are back edges with respectto Fi. We then scan the edges of the depth-�rst forest Fi in post-order. Each time we �nd anedge (u; v) 2 Fi such that u and v can be separated by the removal of 2i� 1 edges in S (recallthat S includes Fi), we add to S a highest-going back edge e from G � S which also crosses(u; v). Assume that u is the parent of v in Fi. This back edge e goes from some descendant ofv (could be v itself) to a vertex with the lowest dfs number, when there is a choice of edges. Itis easy to identify such an edge during the execution of depth-�rst-search (similar informationis maintained during the computation of biconnected components in a graph [5]). This stepensures that u and v are 2i-edge-connected in S. Therefore after all edges of Fi have beenscanned, S is 2i-edge-connected. We will show that the algorithm outputs a subgraph S whosecardinality is at most a factor (3 + ln 2)=2 � 1:85 more than the cardinality of an optimalsolution.If k is odd, we can use the above procedure to �rst �nd a (k� 1)-edge-connected subgraphS of G and then �nally augment S to k-connectivity by the addition of any maximal spanningforest of G� S.3.2 Proof of correctnessWe �rst show that the addition of a maximal spanning forest at the beginning of each phaseof the algorithm increases the connectivity by 1. We then show that adding back edges aswe do in our algorithm increases the connectivity by 1 more. The following lemma is easilyestablished from the sparse certi�cate proofs of [3, 20]. We provide its proof for the sake ofcompleteness.Lemma 3.1 Let G = (V;E) be a graph which is at least �-edge-connected. Let S be a (�� 1)-edge-connected spanning subgraph of G, and let F be a maximal spanning forest in G�S. ThenS [F is �-edge-connected. 4

Proof. Suppose there exist vertices u and v which are not �-edge-connected in S [F . We aregiven the fact that S is (�� 1)-edge-connected and therefore any set of edges separating u andv must have at least �� 1 edges. Let C be a set of �� 1 edges separating u and v in S [F .Clearly C � S because otherwise C \ S would be a set of edges with size strictly smaller than�� 1, separating u and v in S. Also G is �-edge-connected and therefore there is some edgefx; yg in G� S which crosses C. Therefore x and y are in the same connected component ofG� S and hence in the same tree of F . At least one edge in the path from x to y in this treemust cross the cut C. This implies that C cannot be a separating set in S [F , which is acontradiction.Lemma 3.2 Let G = (V;E) be a graph which is at least �-edge-connected. Let S be a (�� 2)-edge-connected spanning subgraph of G that is augmented to (� � 1)-edge-connectivity by theaddition of a maximal spanning forest F . Then any cut C with ��1 edges that separates S[Fmust separate some two vertices x and y that are in the same tree of F .Proof. Suppose there exists a cut C with � � 1 edges that separates S [F , but does notseparate any vertices within the same tree, i.e., vertices of each tree of F are in the samecomponent when the edges of C are deleted from S [F . Since F is a maximal spanning forest,the components of G � S and F are the same. Therefore C is a separator for G, which is acontradiction because jCj = �� 1 but G is �-edge-connected.Lemma 3.3 Let G = (V;E) be a graph which is at least �-edge-connected. Let S be a (�� 2)-edge-connected spanning subgraph of G that is augmented to (� � 1)-edge-connectivity by theaddition of a maximal spanning forest F . If S [F is augmented with an edge set B fromE � fS [Fg such that each pair of adjacent vertices in F cannot be separated by �� 1 edgesin S [F [B. Then S [F [B is �-edge-connected.Proof. Consider any tree T in F . Any pair of adjacent vertices in T are �-edge-connected inS [F [B. Since edge connectivity is transitive, all vertices of T are in the same �-connectedcomponent of S [F [B, i. e., no two vertices of T may be separated by the removal of fewerthan � edges. By Lemma 3.2, any � � 1 edge-separator of S [F must separate two verticesin the same tree of F . But we have shown that vertices within the same tree of F cannot beseparated by the removal of �� 1 edges and therefore S [F [B is �-edge-connected.Theorem 3.4 The algorithm outlined earlier correctly outputs a k-edge-connected spanningsubgraph of G.Proof. The proof proceeds by induction on the number of phases of the algorithm. Theinduction hypothesis is that when the algorithm completes phase i, S is 2i-edge-connected.Suppose the algorithm is entering phase i of the algorithm. By the induction hypothesis, S is2i�2-edge-connected (which is trivially true for the base case, i = 1). The algorithm �rst addsa depth-�rst maximal spanning forest Fi to S. By Lemma 3.1 this augments the connectivityof S to 2i� 1. The algorithm then ensures that all adjacent vertices of Fi are 2i-connected byadding back edges crossing the corresponding cuts, where necessary. Therefore by Lemma 3.2,S becomes 2i-edge-connected, thus proving the induction step. Since the algorithm runs ink=2 phases, the solution S that it outputs is k-edge-connected. If k is odd, after bk=2c phases,a maximal spanning forest of G� S is added to S thus making it k-edge-connected.5

3.3 Performance analysisWe now analyze that the performance guarantee of the algorithm. Consider phase i of thealgorithm. It adds a depth-�rst maximal spanning forest Fi and then a set of back edges Bito S. Let fi = jFij and bi = jBij. Let OPT (G) be an optimal k-edge-connected spanningsubgraph of G. The following is a trivial lower bound on OPT (G).Lemma 3.5 jOPT (G)j � dkn=2e.We now prove the following lower bound on the cardinality of the optimal solution whichlets us obtain a better factor than 2 for our algorithm.Lemma 3.6 jOPT (G)j � (k � 2i+ 2)bi.Proof. Consider phase i of the algorithm. Let e = (x; y) be a tree edge in Fi, where x is theparent of y. We �rst observe that whenever we add an edge in Bi to cross a cut correspondingto e, then the connectivity of x and y at the beginning of phase i is exactly 2i � 2 (at thatpoint S does not contain Fi). Otherwise using a proof analogous to that of Lemma 3.1, it canbe shown that the connectivity between x and y is at least 2i after the addition of Fi to S.Consider a cut C with 2i�1 edges in S [Fi separating x and y. Let the removal of C fromS [Fi break G into two components X and X with x 2 X and y 2 X. Observe that only oneedge of Fi can cross this cut | this is because S is 2i� 2 connected, and if two or more edgesof Fi cross this cut, the size of this cut would be at least 2i. In fact, the edge in Fi crossing Cis exactly the edge (x; y). Let Pe be the set of edges in G�S that cross C. In other words, Peis the set of edges in G� S that connect vertices in X to vertices in X.We �rst observe some simple properties about Pe. In the following discussion, we considera vertex to be both a descendant of itself and an ancestor of itself.Lemma 3.7 The set Pe consists of all the edges of G � S that connect descendants of y toancestors of x.Proof. We know that x 2 X and y 2 X . If some descendant z of y (in Fi), belongs to X thenthere are at least two edges of Fi in cut C (one is the edge (x; y) and the other is some edge onthe path from y to z). Thus all descendants of y are in X. Similarly all vertices in the tree ofy in Fi that are not descendants of y must be in X . Also, the vertices of any other tree T in Fiare entirely contained in either X or in X. Therefore X is exactly the vertices of the sub-treerooted at y together with the vertices of some of the other depth �rst spanning trees of Fi. Alledges in G� S from X to X are exactly the back edges, and the single tree edge (x; y) out ofthe sub-tree rooted at y and these edges clearly go to (not necessarily proper) ancestors of x.By the de�nition of Pe, every k-edge-connected spanning subgraph, and in particularOPT (G), must have at least k � (2i � 2) edges from Pe. We will show that our selectionof back edges to add to Bi using the highest-going back-edge rule ensures that the sets Pe forall e 2 Bi are all disjoint (i.e., form a 1-packing of cuts). Once we show the disjointness ofthe cuts corresponding to Bi, we complete the proof of Lemma 3.6, because OPT (G) mustcontain at least k � (2i� 2) edges from each of these cuts.We now prove that the cuts are disjoint. Consider two back edges ` and `0 in Bi that wereadded when the algorithm examined the tree edges e = (u; v) and e0 = (x; y) respectively.6

Suppose e is processed before e0. Recall that the algorithm processes the edges of Fi in post-order. Since Fi is a depth-�rst spanning forest, G � fS [Fig contains only back edges andtherefore, Pe \ P 0e is empty if the tree edges are located such that none is an ancestor of theother. Suppose that tree-edge e0 = (x; y) lies on the path from v to the root of v's tree in Fi.If (x; y) is on the path from v to the root of v's tree (see Fig. 1), then we note that ` does notreach higher than y in the tree. Otherwise, the edge ` will be su�cient to ensure that verticesx and y cannot be separated by 2i � 1 edges, because there are 2 paths between x and y inFi [f`g and at least 2i� 2 in S. Since ` was chosen as an edge which goes highest in the tree,there can be no edges that cross (u; v) which also cross (x; y). In other words, in this case alsoPe \ P 0e is empty. This proves Lemma 3.6.
` vuy

x Root`0
Figure 1: Structure of back edges.Theorem 3.8 The performance guarantee of the edge-connectivity algorithm outlined earlieris at most (3 + ln 2)=2 < 1:85.Proof. We prove the result for even k (the proof for odd k requires minor changes, and isomitted). The algorithm adds fi + bi edges during each phase. Since Fi and Bi are forests,fi < n and bi < n. We combine the lower bounds from Lemmas 3.5 and 3.6 to obtain theperformance ratio of the algorithm as follows.Pk=2i=1(fi + bi)jOPT (G)j � 3kn=4 +Pk=4i=1 bimaxfkn=2;maxif(k � 2i+ 2)bigg� 32 + k=4Xi=1 1k � 2i+ 27

� 32 + 12 k=4Xi=1 1k=2� i+ 1� 32 + ln 22 < 1:85:Remark: For small values of k this actually yields better factors. For example, the ratio is1:66 for k = 3, 1:75 for k = 4, and 1:733 for k = 5.4 Weighted Vertex ConnectivityRecently, Ravi and Williamson [21] gave an algorithm that �nds an approximation to aminimum-weight k-vertex-connected subgraph. Their algorithm works for all k, and its per-formance ratio is 3 for the biconnectivity problem (k = 2). Their algorithm uses techniques oflinear programming and it constructs the solution in stages, augmenting the connectivity by1 in each stage. The performance guarantee for general k is 2H(k), where H(k) =Pki=1 1=i isthe kth Harmonic number.On a related problem in directed graphs, Frank and Tardos [7] extended a technique dis-covered by Edmonds [6] and showed that the following problem can be solved in polynomialtime. The input is a directed graph D with nonnegative weights on the edges, a root vertexr and an integer �. The problem is to �nd a minimum-weight directed subgraph H of D,such that for each vertex v there are � openly disjoint paths from r to v in the subgraph H .Gabow [10] introduced techniques for representing crossing set families based on separators,and showed that this representation scheme can be used to speed up several algorithms. Hisalgorithm for solving the above problem of Frank and Tardos runs in O(�2n2m) time, whereD has n vertices and m edges.4.1 Basic techniqueWe give an algorithm for undirected graphs that uses the algorithm of Frank and Tardos [7]as a subroutine. The algorithm �nds an approximately minimum-weight subgraph that has� openly disjoint paths to a set of \root" vertices. This algorithm is used by all our vertexconnectivity algorithms.The input is an integer �, a �-vertex-connected undirected graph G = (V;E), a nonneg-ative weight function w de�ned on the edges, and a set R of � vertices. The output is anapproximately minimum-weight subgraph of G in which there are � openly disjoint paths fromany vertex v to R. Observe that v could be in R, in which case we �nd �� 1 paths from v tothe remaining vertices in R.The algorithm Undirected-FT(G; �;R) is as follows. First create the directed versionD of G in the most natural way: for each undirected edge in G create anti-parallel directededges in D, each having the same weight as the corresponding undirected edge. Augment Dby adding a new vertex r and add � new directed edges of weight 0 from r to each vertex in R.Use the algorithm of Frank and Tardos on this graph with r as the root and �nd a minimumweight subgraph H with � openly disjoint paths between r and any vertex of D. Let S � Ebe those edges in G such that at least one of its copies is in H . Since S was obtained from H ,for any vertex v in G, there are � openly disjoint paths between v and R in S.8

Proposition 4.1 There are � openly disjoint paths in S between any vertex in G�R and R.There are �� 1 openly disjoint paths in S between any vertex v 2 R and R� fvg.Lemma 4.2 The weight of S is at most twice the weight of a minimum-weight �-vertex-connected spanning subgraph of G.Proof. Let T be a minimum-weight �-vertex-connected spanning subgraph of G. We observethat the directed version of T obtained as above by taking two anti-parallel directed edgesinstead of each undirected edge of T (with the same weight) is a subgraph of D, and alongwith the zero-weight edges from r to the vertices of R has � openly disjoint paths from r toeach vertex of G. Since the algorithm of Frank and Tardos returns a minimum-weight solution,the weight of the solution that it returns, w(S), can be no heavier than 2w(T).We can also prove the following interesting theorem that S is at least d�=2e-vertex-connected.No assumptions about triangle inequality are required for this theorem. In other words, onecan obtain a subgraph with half the required connectivity, paying at most twice the optimalcost (of twice the connectivity). A similar result (with a slightly better approximation ratio)can be derived from the work of Ravi and Williamson [21] by running their algorithm for �=2phases.Theorem 4.3 The vertex connectivity of S is at least d�=2e.Proof. We give a proof by contradiction. Assume that the graph contains a vertex cut C withjCj < d�=2e, i. e., the removal of C breaks G into components C1; C2; : : : ; C`, where ` � 2.Let Ci be a component such that jCi \ Rj � b�=2c; clearly, such a component must exist. IfCi contains a vertex v =2 R, then there are at most b�=2c+ d�=2e � 1 paths from v to verticesin R (the paths either must go to the vertices in Ci \R or must go through the vertices in C).Clearly, this is a contradiction to the assumption that there were � openly disjoint paths fromv to R. If Ci \ R = Ci, then there are at most jCij � 1 + d�=2e � 1 paths from vertices in Rto any vertex in Ci. Since Ci � b�=2c, we conclude that there are at most b�=2c+ d�=2e � 2paths from R to any vertex in Ci. This is a contradiction to the assumption that there are�� 1 openly disjoint paths from a vertex v 2 R to the remaining vertices in R.4.2 Weighted biconnectivityWe now describe a 2-approximation algorithm for weighted biconnectivity (k = 2).Let e = (x; y) be a minimum-weight edge in G. Set R = fx; yg and call the procedureUndirected-FT(G; 2; R). This returns a subgraph S of G. The biconnectivity algorithmnow returns S [feg as the solution. Since S was obtained by calling Undirected-FT, byProposition 4.1, for any vertex v in G� fx; yg, there are two openly disjoint paths starting atv, one ending at x and the other ending at y.Lemma 4.4 The graph S [feg is biconnected.Proof. We give a proof by contradiction. Suppose S [feg contains a cut vertex a. Let thedeletion of a from S break the graph into components C1; : : : ; C`. Since x and y are adjacentthey will be in a [Ci (for some i). Consider a vertex v 2 Cj for some j 6= i. There cannot betwo openly disjoint paths from v to x and y respectively, since both paths must go through a.But by Proposition 4.1 such paths must exist, which is a contradiction.9

Theorem 4.5 The total weight of S [feg is at most 2+ 1=n times a minimum-weight bicon-nected spanning subgraph of G.Proof. Let OPT (G) be a minimum-weight biconnected spanning subgraph of G. Since anybiconnected graph on n vertices contains at least n edges, a minimum weight edge of G is atmost w(OPT (G))=n. By Lemma 4.2, the weight of S is at most 2w(OPT (G)).4.3 Weighted k-vertex-connectivityIn this section we consider the weighted k-vertex-connectivity problem, when the edge weightssatisfy triangle inequality. We describe an algorithm that �nds a k-vertex-connected subgraphwhose weight is within a factor 2+2(k�1)=n of a minimum-weight k-vertex-connected subgraphin G. Previously, an algorithm achieving a factor of 1:5 for the case k = 2 was given byFrederickson and J�aJ�a [9].Many algorithms for graphs satisfying triangle inequality are based on simple ideas forshortcutting. For example, taking two copies of a minimum spanning tree and then shortcuttingit suitably yields a 2-approximation for 2-connectivity. One may wonder whether such a simplealgorithm exists for the k-connectivity problem under triangle inequality. We �rst observe thatthe following straightforward algorithm does not yield a good approximation ratio. Take a TSPtour obtained as described above. Connect each vertex of the tour to the k=2 vertices thatcome before (and after) it on the tour. Such a graph is indeed k-connected, but there areinstances in which its weight is
(k2) times the weight of a minimum spanning tree and theperformance ratio of the algorithm is
(k).Our algorithm �rst �nds a subset R of k vertices, such that the complete graph inducedon R is relatively \light". It then calls Undirected-FT(G; k;R) to obtain a subgraph S ofG. The algorithm returns S [KR as its output, where KR is the complete subgraph on R.We now show how to �nd the subset R of k vertices, such that the complete graph inducedon the vertices in R is \light".Let S(i) be the \star" graph formed by vertex i together with the edges to its k� 1 closestneighbors. Let j be a vertex with the weight of S(j) being minimum over all vertices of G.Select R to be the vertices of S(j), i. e., R consists of vertex j and its k� 1 nearest neighbors.Let KR be the complete graph on the vertices of R.Lemma 4.6 The weight of KR, the complete graph on the vertices in R is at most 2(k� 1)=ntimes the weight of OPT (G), a minimum weight k vertex-connected subgraph of G.Proof. Let N(i) be the subgraph of OPT (G) formed by vertex i together with its k � 1closest neighbors in OPT (G) (observe that each vertex in OPT (G) has at least k neighbors).Clearly, for any i, w(S(i))� w(N(i)). Also since each edge is counted at most twice,nXi=1w(N(i))� 2w(OPT (G)):Thus w(S(j)) = mini w(S(i)) � 2nw(OPT (G)):10

This is an upper bound on the weight of the star-graph centered at vertex j. For any pair ofvertices u; v 2 S(j), by triangle inequality, we know that w(u; v) � w(u; j) + w(j; v). Thusw(KR) = Xu2R Xv2R;u<vw(u; v) �Xu2R Xv2R;u<vw(u; j) + w(v; j) = (k � 1)w(S(j)):Thus the weight of KR is at most 2(k� 1)=n times w(OPT (G)).Lemma 4.7 The graph induced by the edges of S [KR is k-vertex-connected.Proof. We give a proof by contradiction. Assume that the graph contains a vertex cut C withjCj < k, i.e., the removal of C breaks G into components C1; C2; : : : ; C`, where ` � 2. Sinceany two vertices in R are adjacent, all vertices of R belong to C [Ci (for some i). Considera vertex v 2 Cj for some j 6= i. By Proposition 4.1 there must be k openly disjoint pathsbetween v and R. But clearly there cannot be k openly disjoint paths from v to the nodes inR since these paths can only go through nodes in C, which is a contradiction.Theorem 4.8 The total weight of S [KR is at most (2 + 2(k� 1)=n)w(OPT (G)).Proof. By Lemma 4.2, the weight of S is at most 2w(OPT (G)), and by Lemma 4.6, theweight of KR is at most 2(k � 1)=n � w(OPT (G)).Remark: We note that KR can be replaced by any subgraph SR of G that has the propertythat there are k openly disjoint paths between every pair of vertices in R. If the weight of SRis within a factor of � times w(OPT (g)), then the above proofs can be modi�ed to show thatSR [S is k-connected and its weight is at most �+ 2 times w(OPT (g)).5 ConclusionsWe conclude with some open problems related to the topic of obtaining approximation algo-rithms for the k-connected spanning subgraph problem.1. Can we obtain an approximation factor better than 2 for the unweighted k-vertex-connected spanning subgraph problem? For the edge connectivity case we establisha 1:85 factor in this paper. Can this be improved further?2. Can we obtain an approximation factor of 2 for the weighted k-vertex-connectivity prob-lem even when the edge weights do not satisfy triangle inequality? For the edge connec-tivity case, a factor 2 approximation is known [19]. Can this be improved further?Acknowledgements: We thank Randeep Bhatia, Hal Gabow, Kazuo Iwano, Michal Penn,Ramki Thurimella and Neal Young for useful discussions related to the problems and techniquesdiscussed in this paper. 11

References[1] M. Aggarwal, N. Garg, A scaling technique for better network design, Proc. 5thAnnual ACM-SIAM Symp. on Discrete Algorithms, pp. 233{240, (1994).[2] B. Bollob�as, Extremal graph theory, Academic Press, London, (1978).[3] J. Cheriyan, M.-Y. Kao and R. Thurimella, Algorithms for parallel k-vertex connec-tivity and sparse certi�cates, SIAM J. Comput., 22 (1), pp. 157{174, (1993).[4] N. Christo�des. Worst-case analysis of a new heuristic for the traveling salesmanproblem. Report 388, Graduate School of Industrial Administration, Carnegie MellonUniversity, 1975.[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, TheMIT Press, 1989.[6] J. Edmonds, Matroid intersection, Annals of Discrete Math., No. 4, pp. 185{204,(1979).[7] A. Frank and E. Tardos, An application of submodular
ows, Linear Algebra and itsApplications, 114/115, pp. 320{348, (1989).[8] G. N. Frederickson and J. J�aJ�a, Approximation algorithms for several graph augmen-tation problems, SIAM J. Comput., 10 (2), pp. 270{283, (1981).[9] G. N. Frederickson and J. J�aJ�a, On the relationship between the biconnectivity aug-mentation and traveling salesman problems, Theoret. Comput. Sci., 19 (2), pp. 189{201, (1982).[10] H. N. Gabow, A representation for crossing set families with applications to sub-modular
ow problems, Proc. 4th Annual ACM-SIAM Symp. on Discrete Algorithms,pp. 202{211, (1993).[11] H. N. Gabow, M. X. Goemans and D. P. Williamson, An e�cient approximationalgorithm for the survivable network design problem, Proc. 3rd Integer Programmingand Combinatorial Optimization Conference, pp. 57{74, (1993).[12] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theoryof NP-completeness, Freeman, San Francisco, 1979.[13] N. Garg, V. Santosh and A. Singla, Improved approximation algorithms for bicon-nected subgraphs via better lower bounding techniques, Proc. 4th Annual ACM-SIAMSymp. on Discrete Algorithms, pp. 103{111, (1993).[14] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. Shmoys, E. Tardos andD. P. Williamson, Improved approximation algorithms for network design problems,Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 223{232, (1994).[15] M. X. Goemans and D. P. Williamson, A general approximation technique for con-strained forest problems, Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algo-rithms, pp. 307{316, (1992). 12

[16] M. Gr�otschel, C. Monma and M. Stoer, Design of survivable networks, Handbook inOperations Research and Management Science, Volume on Networks, 1993.[17] D. Karger, Random sampling in cut,
ow, and network design problems, Proc. 26thAnnual ACM Symposium on Theory of Computing, pp. 648{657, (1994).[18] S. Khuller and R. Thurimella, Approximation algorithms for graph augmentation, J.Algorithms, 14 (2), pp. 214{225, (1993).[19] S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, J.Assoc. Comput. Mach., 41 (2), pp. 214{235, (1994).[20] H. Nagamochi and T. Ibaraki, Linear time algorithms for �nding a sparse k-connectedspanning subgraph of a k-connected graph, Algorithmica, 7 (5/6), pp. 583{596, (1992).[21] R. Ravi and D. P. Williamson, An approximation algorithm for minimum-cost vertex-connectivity problems, Proc. 6th Annual ACM-SIAM Symp. on Discrete Algorithms,pp. 332{341, (1995).[22] D. P. Williamson, M. X. Goemans, M. Mihail and V. V. Vazirani, A primal-dualapproximation algorithm for generalized Steiner network problems, Proc. 25th AnnualACM Symposium on Theory of Computing, pp. 708{717, (1993).

13

