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Digital imaging has experienced tremendous growth in recent decades, and

digital images have been used in a growing number of applications. With such

increasing popularity of imaging devices and the availability of low-cost image

editing software, the integrity of image content can no longer be taken for granted.

A number of forensic and provenance questions often arise, including how an image

was generated; from where an image was from; what has been done on the image

since its creation, by whom, when and how. This thesis presents two different sets

of techniques to address the problem via intrinsic and extrinsic fingerprints.

The first part of this thesis introduces a new methodology based on intrin-

sic fingerprints for forensic analysis of digital images. The proposed method is

motivated by the observation that many processing operations, both inside and



outside acquisition devices, leave distinct intrinsic traces on the final output data.

We present methods to identify these intrinsic fingerprints via component forensic

analysis, and demonstrate that these traces can serve as useful features for such

forensic applications as to build a robust device identifier and to identify potential

technology infringement or licensing.

Building upon component forensics, we develop a general authentication and

provenance framework to reconstruct the processing history of digital images. We

model post-device processing as a manipulation filter and estimate its coefficients

using a linear time invariant approximation. Absence of in-device fingerprints,

presence of new post-device fingerprints, or any inconsistencies in the estimated

fingerprints across different regions of the test image all suggest that the image is

not a direct device output and has possibly undergone some kind of processing,

such as content tampering or steganographic embedding, after device capture.

While component forensics is widely applicable in a number of scenarios, it

has performance limitations. To understand the fundamental limits of component

forensics, we develop a new theoretical framework based on estimation and pattern

classification theories, and define formal notions of forensic identifiability and clas-

sifiability of components. We show that the proposed framework provides a solid

foundation to study information forensics and helps design optimal input patterns

to improve parameter estimation accuracy via semi non-intrusive forensics.

The final part of the thesis investigates a complementing extrinsic approach

via image hashing that can be used for content-based image authentication and

other media security applications. We show that the proposed hashing algorithm is

robust to common signal processing operations and present a systematic evaluation

of the security of image hash against estimation and forgery attacks.
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Chapter 1

Introduction

1.1 Motivations

Visual sensor technologies have experienced tremendous growth in recent decades.

The resolution and quality of electronic imaging has been steadily improving, and

digital cameras are becoming ubiquitous. Shipment of digital cameras alone has

grown from $46.4 million in 2003 to $62 million in 2004, and this forms an approx-

imately $15 billion market worldwide [5]. Digital images taken by various imaging

devices have been used in a growing number of applications, from military and

reconnaissance to medical diagnosis and consumer photography. Consequently, a

series of new forensic issues arise amidst such rapid advancement and widespread

adoption of imaging technologies. For example, one can readily ask what kinds of

hardware and software components as well as their parameters have been employed

inside the devices? Given a digital image, which imaging sensor or which brand of

sensors was used to acquire the image? What kinds of legitimate processing and

undesired alteration have been applied to an image since it leaves the device? How

would you authenticate such device captured images?
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Some of these forensic questions are related to identifying the source of the

digital image, and determining possible tampering or presence of hidden data.

Evidence obtained from such forensic analysis would provide useful forensic in-

formation to law enforcement and intelligence agencies as to if the given image

was actually captured with a camera (or generated by other means) and to estab-

lish the authenticity of the digital image. In this thesis, we present two different

approaches to address this problem based on intrinsic and extrinsic fingerprints.

Intrinsic fingerprints are internal traces left behind on the final digital image

by the image capturing device. Each digital device can be broken into a number

of its internal components, each performing a particular role. When the device

is used to take a picture, the information of the real-world scene passes through

the digital device and through each of its internal components before the final

image is formed. Each of these components in the digital device modifies the

input scene via a particular algorithm and leaves some intrinsic fingerprint traces

on the final output. In this thesis, we develop a new forensic methodology called

component forensics, which aims at identifying the intrinsic fingerprints left behind

by each component inside a visual device by inferring what algorithms/processing

are employed and estimating their parameter settings. Building upon component

forensics, we extend these ideas to address a number of larger forensic issues in

discovering technology infringement, protecting intellectual property rights, and

identifying acquisition devices.

For centuries, intellectual property protection has played a crucial role in fos-

tering innovation, as it has been known for “adding the fuel of interest to the fire

of genius” since the time of Abraham Lincoln. Fierce competition in the elec-

tronic imaging industry has led to an increasing number of infringement cases filed
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in U.S. courts. The remunerations awarded to successful prosecution have also

grown tremendously, sometimes in billions of dollars. For example, the Ampex

Corporation has more than 600 patents related to digital cameras; and based on

one of the patents it has received more than $275-million compensation from law-

suits and settlements involving patent infringement cases with many digital camera

vendors [4].

According to the U.S. patent law [1], infringement of a patent consists of the

unauthorized making, using, offering for sale or selling any patented invention

during the term of its validity. Patent infringement is considered one of the most

difficult to detect, and even harder to prove in the court of law. The burden of

proof often lies on patent holders, who are expected to provide solid evidence to

substantiate their accusations. A common way to perform infringement analysis is

to examine the design and implementation of a product and to look for similarities

with what have been claimed in existing patents, through some type of reverse

engineering. However, this approach could be very cumbersome and ineffective.

For example, it may involve going over VHDL design codes of an IC chip in charge

of core information processing tasks, which is a daunting task even to the most

experienced expert in the field. Such analysis is often limited to the implementation

of an idea rather than the idea itself, and thus could potentially lead to misleading

conclusions [93,144]. Component forensics is an important methodology to detect

patent infringement and protect intellectual property rights, by obtaining evidence

about the algorithms employed in various components of the digital device.

Component forensics also serves as a foundation to establish the trustworthi-

ness of imaging devices [131]. With the fast development of tools to manipulate

multimedia data, the integrity of both content and acquisition device has become
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particularly important when images are used as critical evidence in journalism, re-

connaissance, and law enforcement applications. For example, information about

hardware/software modules and their parameters in a camera can help in building

camera identification systems. Such systems would provide useful acquisition foren-

sic information to law enforcement and intelligence agencies about which camera

or which brand of camera is used to acquire an image. Additionally, component

forensics helps establish a solid model on the characteristics of images obtained di-

rectly from a camera. This in turn will facilitate tampering forensics to determine

if there has been any additional editing and processing applied to an image after

it has been captured by the camera.

We can classify component forensics into three main categories based on the

nature of the available evidence:

1. Intrusive Forensics: A forensic analyst has access to the device in question

and can disassemble it to carefully examine every part, including analyzing

any available intermediate signals and states to identify the algorithms em-

ployed in its processing blocks.

2. Semi Non-Intrusive Forensics: An analyst has access to the device as

a black box. He/she can design appropriate inputs to be fed into the de-

vice so as to collect forensic evidence about the processing techniques and

parameters of the individual components inside.

3. Non-Intrusive Forensics: An analyst does not have access to the device in

question. He/she is provided with some sample data produced by the device,

and studies them to gather forensic evidence.

The proposed research focuses on completely non-intrusive and semi non-intrusive
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component forensics of visual sensors, while the suggested technologies can be ex-

tended to other types of acquisition models. As a new addition to the emerging

field of digital forensic engineering, we propose a novel framework for analyzing

technologies employed inside digital cameras solely on output images/videos, and

develop a set of forensic signal processing algorithms to identify the parameters of

such important camera components as color filter array, color interpolation, and

white balancing. In the first part of this thesis, we show that successful develop-

ment of the proposed intrinsic fingerprint methodologies offer a powerful framework

and solutions to a large number of critical forensic issues.

The final part of this thesis addresses the problem of multimedia forensics via

extrinsic fingerprinting. Extrinsic fingerprints are external signals that are added

to the image by the device after the image has been captured. These external

signals can then be used to establish the authenticity of digital data and determine

possible tampering. Compared with non-intrusive forensic analysis via intrinsic

fingerprints, the use of extrinsic fingerprints necessitates the presence of the device

at hand as the fingerprint needs to be added at the time of image acquisition.

While this requirement imposes some additional constraints on their applicability,

extrinsic fingerprinting techniques help build a content-based image authentication

scheme that is collision-resistant, robust to common signal processing operations,

and secure against estimation and forgery attacks, as will be shown in the thesis.

1.2 Thesis Organization

This dissertation is organized as follows. In Chapter 2, we introduce a system

model for digital imaging devices and identify the main components that go into

the making of the digital device and formulate the problem.
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Chapter 3 considers the problem of non-intrusive component forensics and pro-

poses a set of forensic signal processing techniques to identify the algorithms and

parameters employed in individual processing modules in digital devices. We show

through detailed simulations that the proposed algorithms are robust to various

kinds of postprocessing that may occur in the camera and demonstrate that the

estimated intrinsic fingerprint traces can be employed to provide forensic evidence

for patent infringement cases, intellectual property rights management, and tech-

nology evolution studies for digital media.

In Chapter 4, we propose a set of forensic signal processing techniques to verify

whether a given digital image is an direct device output or not. We introduce a

new formulation to study the problem of image authenticity based on the observa-

tion that each in-device and post-device processing operation leave some distinct

intrinsic fingerprint traces on the final image. We model post-device processing as

a linear shift-invariant system and estimate its coefficients using blind deconvolu-

tion. The absence of in-device fingerprints from a test image indicates that the test

image is not a direct output of a digital device and is possibly generated by other

image production processes. Any change or inconsistencies among the estimated

in-device fingerprints, or the presence of new types of fingerprints suggest that

the image has undergone some kind of processing after the initial capture, such as

tampering or steganographic embedding.

Complementing the methods in Chapter 3 and 4 that identify the algorithms

and parameters of various parts of the information processing chain, Chapter 5

presents the theoretical aspect of multimedia forensics to help understand its lim-

itations. Using ideas from estimation and pattern classification theories, we de-

fine formal notions of identifiability of components in the information processing
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chain. We show that the parameters of certain device components can be accu-

rately identified only in controlled settings through semi non-intrusive forensics,

while the parameters of some others can be computed directly from the available

sample data via complete non-intrusive analysis.

We extend the theoretical framework to quantify and improve the accuracies

and confidence in component parameter identification for several forensic applica-

tions. In Chapter 6, we specifically consider applications of the theoretical analysis

to semi non-intrusive forensics. We assume the availability of the digital device;

and introduce a forensic methodology to estimate the component parameters more

accurately by devising good testing conditions and designing optimal input pat-

terns. We experimentally verify that by careful choice of input and test conditions,

semi non-intrusive forensics can provide much lower errors and higher accuracies

in parameter estimation compared to completely non-intrusive forensics by better

capturing the intrinsic fingerprint traces.

Chapter 7 explores using extrinsic fingerprints in image authentication and

other media security applications. In this chapter, we develop a new algorithm for

generating an image hash based on Fourier transform features and controlled ran-

domization. We formulate the robustness of image hashing as a hypothesis testing

problem and evaluate the performance under various image processing operations.

We then introduce a general framework to study and evaluate the security of image

hashing systems by quantifying its uncertainty in terms of differential entropy. We

show that the proposed hash function can provide excellent tradeoffs between secu-

rity and robustness. The dissertation is concluded in Chapter 8, with discussions

on future perspectives.
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Chapter 2

System Model and Problem

Formulation

In this chapter, we introduce the system model for digital imaging devices and

formulate the problem of multimedia forensics. For our work, we use visual sensors

and images captured by devices employing these sensors for illustration, while the

suggested techniques can be appropriately modified and extended to other types

of acquisition models, and sensing technologies.1

2.1 Image Acquisition Model in Digital Cameras

Figure 2.1 shows the image capture model in digital cameras. As illustrated in

the figure, light from a scene passes through a lens and optical filters, and is

finally recorded by an array of sensors. Few consumer-level color cameras directly

acquire full-resolution information for all three primary colors (usually red, green,

1In our ongoing work, we have extended the proposed forensic techniques for images produced

by other acquisition sources such as scanners [54, 55] and cell phone cameras [94].
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Figure 2.1: Image acquisition model in digital cameras.

and blue).2 This is not only because of the high cost in producing a full-resolution

sensor for each of the three colors, but also due to the substantial difficulty involved

in perfectly matching the corresponding pixels and aligning the three color planes

together. For these reasons, most digital cameras use a color filter array (CFA) to

sample real-world scenes.

A color filter array consists of an array of color sensors, each of which captures

the corresponding color of the real-world scene at an appropriate pixel location.

Some examples of CFA patterns are shown in Figure 2.2. The Bayer pattern,

shown in left corner of Figure 2.2, is one of the most popular CFA patterns. It

uses a square lattice for the red and blue components of light and a diagonal

lattice for the green color. The sensors are aligned on a square grid with the green

color repeated twice compared to the corresponding red and blue sensors. The

higher rate of sampling for the green color component enables to better capture

the luminance component of light and thus provides better picture quality [6].

After CFA sampling, the remaining pixels are interpolated using the sampled data.

Color interpolation (also known as demosaicking) is an important step to produce

an output image with full resolution for all three color components [7, 112].

2New digital cameras employing Foveon X3 sensor, such as Sigma SD9 and Polaroid x530,

capture all the three colors at each pixel location [2].
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To facilitate discussions, let S be the real-world scene to be captured by the

camera and let p be the CFA pattern matrix. S(x, y, c) can be represented as a

3-D array of pixel values of size H ×W ×C, where H and W represent the height

and the width of the image, respectively, and C = 3 denotes the number of color

components (red, green, and blue). The CFA sampling converts the real-world

scene S into a three dimensional matrix Sp of the form

Sp(x, y, c) =











S(x, y, c) if p(x, y) = c,

0 otherwise.
(2.1)

After the data obtained from the CFA is recorded, the intermediate pixel values

corresponding to the points where Sp(x, y, c) = 0 in (2.1) are interpolated using

its neighboring pixel values to obtain S
(I)
p .

The performance of color interpolation directly affects the quality of the image

captured by a camera [6,7,68]. There have been several commonly used algorithms

for color interpolation. These algorithms can be broadly classified into two cat-

egories, namely, non-adaptive and adaptive algorithms. Non-adaptive algorithms

apply the same type for interpolation for all pixels in a group. Some typical exam-

ples of non-adaptive algorithms include the nearest neighbor, bilinear, bicubic, and

smooth hue interpolations [7]. Traditionally, the bilinear and bicubic interpolation

algorithms are popular due to their simplicity and ease in hardware implementa-

tion. However, these methods are known to have significant blurring along edge

regions due to averaging across edges. More computationally intensive adaptive
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algorithms employing edge directed interpolation, such as the gradient based [92]

and the adaptive color plane interpolation [56], have been proposed to reduce the

blurring artifacts.

After interpolation, the three images corresponding to the red, green and the

blue components go though a post-processing stage. In this stage, depending on

the camera make and model, the images may undergo different processing opera-

tions [6, 7] which might include white balancing, color correction, gamma correc-

tion, lens vignetting correction, lens distortion removal, denoising, etc. Finally,

the image may be JPEG compressed to reduce storage space to produce the out-

put image Sd. For our work, we model all such post-interpolation processing as a

combined post-processing block as shown in Figure 2.1.

2.2 Problem Formulation

In this thesis, we consider two approaches to multimedia forensics based on intrinsic

and extrinsic fingerprints. These approaches are summarized in Figure 2.3 and

Figure 2.4, respectively.

2.2.1 Forensic Analysis via Intrinsic Fingerprints

The system model for component forensics based on intrinsic fingerprint analysis is

shown in Figure 2.3. As discussed in Chapter 1, the problem of component forensics

deals with a methodology and systematic procedure to find the algorithms and

parameters employed in various components in the device. Component forensics

works by estimating the intrinsic fingerprint traces that are left behind in a digital

image when it goes though various processing blocks in the information processing
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chain, and uses such traces for estimating component parameters. We classify the

intrinsic fingerprint traces into two categories, namely, in-camera and post-camera

fingerprints. Using a detailed imaging model, as described in Section 2.1, and its

component analysis, we estimate the intrinsic fingerprints of the various in-camera

processing operations. Specifically, we focus on such important camera components

as color filter array and color interpolation and present methods to identify them

based on the traces left behind on the final camera output (corresponding to the

point A in Figure 2.3). The details of this work are presented in Chapter 3.

After the image has been produced by the camera, additional processing op-

erations may be done using softwares such as Adobe Photoshop, Google Picasa,

GIMP, etc. to further improve the picture quality and/or tamper with the image.

In our system model, we represent such post-camera processing as an additional

manipulation block as shown in Figure 2.3. Given the test image St, we assume

that it is a manipulated camera output corresponding to the point B in Figure 2.3,

and is obtained by processing the actual camera output Sd (point A in the figure)

using the manipulation block. We introduce a two-step approach to detect post-

camera manipulations. In the first step, we characterize the properties of a direct

camera output using a camera model, and estimate its component parameters and

the intrinsic fingerprints. We then represent the post-camera processing applied
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on Sd as a combination of linear and non-linear operations in the second step,

and approximate them with a linear shift-invariant filter. The coefficients of this

manipulation filter, estimated using blind deconvolution, serve as our post-camera

fingerprints. In Chapter 4, we describe the estimation algorithm in detail.

2.2.2 Forensic Analysis via Extrinsic Fingerprints

As discussed in Chapter 1, extrinsic fingerprints are external signals added to the

image by the camera after capture. They can be employed to establish the au-

thenticity of images and determine possible tampering of hidden data. Figure 2.4

shows the system model for extrinsic fingerprinting. After the image has been

captured by the camera, the camera inserts an extrinsic fingerprint, either in the

form of a watermark embedded with the image or in the form of a hash appended

along with the image. The image is then transmitted over the manipulation chan-

nel along with the extrinsic fingerprint. At the receiver end, the authenticator

computes the extrinsic fingerprint of the manipulated image and compared them

with the ones transmitted along with the data for verifying its authenticity. A

high similarity among the estimated fingerprints from the manipulated image and

the transmitted fingerprints suggests that the image has not undergone any ma-

nipulation after capture. On the other hand, a low similarity implies that image

13



has been manipulated via tampering or steganographic embedding operations. In

this way, extrinsic fingerprints can help establish the authenticity of multimedia

data. Chapter 7 will present details about the framework and design of extrinsic

fingerprints.
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Chapter 3

Non-Intrusive Component

Forensics

In this chapter, we consider the problem of non-intrusive forensic analysis of digital

cameras. We use sample images obtained from a digital camera under diverse and

uncontrolled scene settings to determine the algorithms (and their parameters)

employed in internal processing blocks. In particular, given an camera output im-

age Sd (refer Figure 2.1), we focus on finding the color filter array pattern and

the color interpolation algorithms, and show that the forensic analysis results of

these components can be used as a first step in reverse engineering the making

of a digital camera. The features and acquisition models that we develop in this

chapter can be used to construct an efficient camera identifier that determines the

brand/type of camera used to take the image. Further, our forensic algorithms

can quantitatively help ascertain the similarities and differences among the cor-

responding camera components of different cameras. For devices from different

vendors, the digital forensic knowledge obtained from such analysis can provide

clues and evidence on technology infringement or licensing, which we shall refer to
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as infringement/licensing forensics and will assist the enforcement of intellectual

rights protection and foster technology innovation. For devices of the same brand

but of different models released at different years and/or at various price tiers, our

analysis forms a basis of evolutionary forensics, as it can provide clues on technol-

ogy evolution. In the subsequent sections, we describe our proposed methodology

and algorithms, and demonstrate their effectiveness with detailed simulation re-

sults and case studies. Later in Chapter 4, we show that the component forensic

techniques can be employed to build a ground truth camera model to facilitate

tampering forensics.

This chapter is organized as follows. We begin by reviewing prior work in non-

intrusive forensic analysis in Section 3.1. In Section 3.2, we present methods to

identify the CFA pattern and the color interpolation algorithm. We then illustrate

proofs of concept with synthetic data in Section 3.3.1 and present results with a

real data set of 19 cameras in Section 3.3.2. The estimated model parameters are

used to construct a camera identifier and to study the similarities and differences

among the cameras in Section 3.4. Section 3.5 generalizes the proposed methods

to extend to other devices. The chapter is summarized in Section 3.6.

3.1 Related Work on Non-Intrusive Forensics

In literature, methods have been proposed to help identify the brand and model of

the device just based on output data [10,14,15,21,26,69,70,70,75,83,112,136,136].

Choi et al. propose to employ the radial component of the lens distortion for cam-

era identification [26] based on their hypothesis that the radial component varies

among different camera models. The authors show through their simulation results

that they can achieve a classification accuracy close to 91% over three different
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camera models using this approach. In [70], Kharrazi et al. proposed a set of

34−features for camera identification aiming to model the image-capture process

in digital cameras. The set of features include: average pixel value, RGB pairs cor-

relation, neighbor distribution center of mass, RGB energy ratio, wavelet domain

statistics [36], and image quality metrics [10]. The authors employ SVM for classifi-

cation and report accuracies close to 88% when tested with pictures captured under

controlled input conditions from five camera models of three different brands. The

same set of features were also tested for camera identification in [136] where they

report accuracies close to 95% over four different camera models from two different

models again under controlled input conditions, and for cell phone camera identi-

fication in [21] with an accuracy close to 62.3% over 9 cell phone camera brands.

These work do not target at explicitly estimating the various components of the

information processing chain and only try to extract representative features for

camera identification. Further, it is not clear as to which of these features enables

identification, which might become very important in forensic investigations.

Chen and Hsu proposed a camera identification method based on camera gain

histograms and features obtained from modelling camera noise to obtain an ac-

curacy close to 85% over two camera models [25]. In [112], the authors employ

Expectation/Maximization (EM) algorithms to estimate the color interpolation

coefficients for forensic analysis. The authors first assume that the image pixels

belong to one of the two hypothesis: (a) the pixel is linearly correlated to its

neighbors and is obtained by a linear interpolation algorithm, and (b) the pixel is

not correlated to its neighbors. Based on this assumption, the authors propose a

two-step EM algorithm to estimate the CFA coefficients [112]. In the expectation

step, the probability of each sample belonging to the two models is estimated, and
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the specific form of the correlations is found in the Maximization step. The EM

algorithm generates two outputs: a two-dimensional probability map indicating

the likelihood of the pixel belonging to the two models and the weighting coeffi-

cients. Using these two outputs from the EM algorithm, Bayram et al. developed

a camera identification method employing the weighting coefficients and the peak

location and magnitudes of the frequency spectrum of the probability map as fea-

tures [15]. Images captured from two cameras under controlled input conditions

along with randomly acquired images from the Internet for the third camera were

used for in the experiments, and the authors report accuracies close to 84% on

three brands [15] when 20% of the 140 images were used in training and the re-

maining 80% employed in testing. Further improvements to this algorithm were

made in [14] by separately considering smooth and non-smooth regions in the im-

age to obtain accuracies close to 96% for three camera brands. Quadriatic pixel

correlation model was used in [83] where the color interpolation coefficients were

approximated by a linear model to give a classification accuracy close to 80%. Com-

pared with these work on camera identification [14,15,70,83,136], the component

forensics methodology described in this dissertation provides better discriminat-

ing power by doing a joint estimation of the CFA pattern and the interpolation

algorithm.

Geradts et al. examine the effects of CCD pixels and used them to match

images to the source camera [50]. Building upon these techniques Lukas et al. in-

troduced a method for camera identification by estimating the pixel non-uniformity

noise, which is a dominant component of the photo-response non-uniformity noise,

inherent to an image sensor to distinguish between two cameras of the same brand,

model, and set [85]. In the training phase of the algorithm, a wavelet based de-
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noising algorithm is employed to obtain an estimate of the pixel non-uniformity

noise and the random component of this noise is eliminated by averaging the es-

timates from a number of images. In the testing phase, to determine whether a

given image is captured by a digital camera or not, the noise pattern from the

image is obtained and correlated with the average noise pattern (also called the

‘reference pattern’) of the given digital camera. A correlation value greater than

the pre-chosen threshold suggests that the given image is from the digital camera.

The authors show that such an approach can identify the digital camera source

with 100% accuracy when tested with high quality images. While useful in some

forensic tasks when a suspicious camera is available for testing, this approach does

not provide information about the internal components and cannot be used for

identifying common features tied to the same camera models and brands.

Compared to these alternative approaches, the component forensic techniques

introduced in our work are less dependent on input scenes and are robust against

various common in-camera processing, and provide a high classification accuracy

over a much larger database, as will be seen in as will be seen in Section 3.3.2.

3.2 Parameter Estimation of Camera Components

In this section, we develop a robust and non-intrusive algorithm to jointly estimate

the CFA pattern and the interpolation coefficients by using only the output images

from cameras. The proposed algorithm is schematically illustrated in Figure 3.1.

Our algorithm estimates the color interpolation coefficients in each local region

through texture classification and linear approximation, and finds the CFA pattern

that minimizes the interpolation errors [125, 128].

More specifically, we establish a search space of CFA patterns based on common
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Figure 3.1: Algorithm to estimate color filter array and color interpolation coeffi-

cients.

practice in digital camera design. We observe that most commercial cameras use

a RGB type of CFA with a fixed periodicity of 2 × 2 that can be represented as

C1 C2 . . .

C3 C4 . . .

...
...

. . .

where Ci ∈ {R, G, B} is the color of the corresponding sensor at a particular

pixel location. In typical digital cameras, each of the three types of color sensors

(R, G, and B) appears at least once in a 2 × 2 cell, resulting in a total of 36

possible patterns in the search space, denoted by P. For every CFA pattern p in

the search space P, we estimate the interpolation coefficients in different types of

texture regions of the image by fitting linear filtering models. These coefficients

are then used to re-estimate the output image Ŝ
(p)
d , and find the interpolation error

(Ŝ
(p)
d − Sd). We now present the details of the proposed algorithm.
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3.2.1 Texture Classification and Linear Approximation

We approximate the color interpolation to be linear in chosen regions of the im-

age [123]. We divide the image into three kinds of regions based on the gradient

features in a local neighborhood. Defining Ix,y = Sd(x, y, p(x, y)), the horizontal

and vertical gradients at the location (x, y) can be found from the second order

gradient values using

Hx,y = |Ix,y−2 + Ix,y+2 − 2Ix,y|, (3.1)

Vx,y = |Ix−2,y + Ix+2,y − 2Ix,y|. (3.2)

The image pixel at location (x, y) is classified into one of the three categories:

• Region ℜ1 contains those parts of the image with a significant horizontal

gradient for which (Hx,y −Vx,y) > T , where T is a suitably chosen threshold;

• Region ℜ2 contains those parts of the image with a significant vertical gra-

dient and is defined by the set of points for which (Vx,y − Hx,y) > T ; and

• Region ℜ3 consists of the remaining parts of the image which are mostly

smooth.

Using the final camera output Sd and the assumed sample pattern p, we identify

the set of locations in each color of Sd that are acquired directly from the sensor

array. We approximate the remaining pixels to be interpolated with a set of linear

equations in terms of the colors of the pixels captured directly. In this process,

we obtain nine sets of linear equations corresponding to the three types of regions

ℜm(m = 1, 2, 3) and three color channels (R, G, B) of the image.

Let the set of Ne equations with Nu unknowns for a particular region and color

channel be represented as Ax = b, where A of dimension Ne×Nu and b of dimen-

sion Ne×1 specify the values of the pixels captured directly and those interpolated,

21



respectively, and x of dimension Nu × 1 stands for the interpolation coefficients to

be estimated. To cope with possible noisy pixel values in A and b due to other

in-camera operations following interpolation (such as JPEG compression), we em-

ploy singular value decomposition [137] to estimate the interpolation coefficients.

Let A0 and b0 represent the ideal values of A and b in the absence of noise, and

the errors in A and b be denoted by E and r, respectively, so that

A = A0 − E, b = b0 − r,

The values of x are found by solving the minimization problem

min
E,r

||[E r]||F ,

subject to the constraint that A0x − b0 = 0. Equivalently this can be written as

[A + E, b + r]







x

−1






= 0. (3.3)

Here ||.||F denotes the Frobenius norm of the matrix, so that

||[E r]||F =

(

Ne
∑

m=1

Nu
∑

n=1

|e(m, n)|2 +

Ne
∑

m=1

|r(m)|2
)1/2

. (3.4)

The solution to the minimization problem can be written as







x

−1






= − 1

vNu+1,Nu+1
vNu+1, (3.5)

where vNu+1 represents the (Nu +1)th right singular vector of the combined matrix

[A b].
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3.2.2 Finding the Interpolation Error and the CFA Sam-

pling Pattern

Once we find the interpolation coefficients in each region, we use them to re-

interpolate the sampled CFA output in the corresponding regions ℜm, to obtain

an estimate of the final output image Ŝ
(p)
d . Here, the superscript p denotes that

the output estimate is based on the choice of the CFA pattern p. The pixel-wise

difference between the estimated final output and the actual camera output image

is e(p) = Ŝ
(p)
d − Sd. The interpolation error matrix e(p) of dimension H ×W ×C is

obtained for all candidate search patterns p ∈ P. Denoting the interpolation error

in the red color component as e(p)(., ., 1) and so on, the final error is computed by

a weighted sum of the errors of the three color channels:

ε(p) = wR ||e(p)(., ., 1)||2F + wG ||e(p)(., ., 2)||2F + wB ||e(p)(., ., 3)||2F (3.6)

The CFA pattern p̂ = arg minp∈P ε(p) that gives the lowest overall absolute value

of the weighted error is chosen as the estimated pattern. The constants wR, wG,

and wB denote the corresponding weights used for the three color components (red,

green, and blue), and their values are based on the relative significance of the mag-

nitude of errors in the three colors. In our experiments, we choose wR = wB = 1

and wG = 2 to give more importance to the error in the green channel as it provides

more information about the luminance values of the pixel [6]. The interpolation

coefficients corresponding to the estimated CFA pattern p̂ for all three types of

regions and the three color channels are also obtained in this process. These co-

efficients can then be directly used to obtain the parameters of the components

in the imaging model, as will be shown later in Section 3.3.2. They can also be

processed to obtain further forensic evidence, as will be demonstrated by several
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case studies in Section 3.4.

3.2.3 Reducing the Search Space for CFA Patterns

The search space for the CFA patterns can be reduced using a hierarchial approach.

As an example, we synthetically generate a 512 × 512 image, sample it on the

Bayer pattern, and interpolate using the bicubic method. In Figure 3.2, we show

the detection statistics ds(p) given by

ds(p) =
ε(p)

H × W × (wR + wG + wB)
, (3.7)

and sorted in ascending order for the 36 different CFA patterns. In this case, the

Bayer pattern gave the lowest interpolation error and was correctly identified. A

closer look at the results in Figure 3.2 reveals that the detection statistics form

three separate clusters, with some values close to 0, some around 0.3 − 0.4, and

others close to 0.7. A similar trend is also observed for real camera data and other

synthetically generated images sampled on different CFA patterns and interpolated

with the six representative interpolation techniques reviewed in Appendix I of

this chapter. This observation forms the basis for the heuristic discussed in this

subsection to reduce the search space of the CFA patterns.

Figure 3.3 shows sample patterns from these three clusters. Cluster 1 includes

all 2× 2 patterns that have the same color along diagonal directions (either along

the main diagonal or off-diagonal), chosen among the three colors (red, green, or

blue). The remaining two spots can be filled in two different ways, giving a total

of 12 such patterns in the first cluster. Cluster 2 and Cluster 3 consists of patterns

that have the same color along the horizontally (or vertically) adjacent blocks of

the 2 × 2 grid. Cluster 2 has either red or blue color repeated to produce a total

of 16 possible patterns. The remaining eight patterns with green appearing twice
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form Cluster 3. In this example, the Bayer pattern is the actual color filter array

and the patterns from first cluster give lower errors compared to the other clusters.

The patterns from Cluster 3 gives the highest error values because the error in the

green color channel is penalized more with the weight assignment wG = 2 and

wR = wB = 1 in (3.6).

The observation of clustering of patterns into three groups helps us develop

a heuristic to reduce the search space of CFA patterns. We first divide the 36

patterns into three groups and choose one representative pattern from each of the

three classes. The interpolation error is then estimated for these representative

patterns to find the cluster that the actual CFA pattern is most likely to belong.

Finally, a full search is performed on the chosen cluster to find the pattern with

the lowest interpolation error. The number of searches required to find the optimal

solution can be reduced to around 10. If additional information about the patterns

are available, it may be used to further reduce the search space. For instance, a

forensic analyst may choose to test only on those CFA patterns that have two green

color components if he/she has such prior knowledge about the visual sensor.

3.2.4 Evaluating Confidence in Component Parameter Es-

timation

In addition to identifying the parameters of the internal building blocks of the

camera, it is also important to know the confidence level on the estimation result.

A higher confidence value in estimation would increase the trustworthiness of the

decision made by a forensic analyst.

We propose an entropy based metric to quantify the confidence level on the

estimation result. Given a test image, we estimate its interpolation coefficients and
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Figure 3.2: Sorted detection statistics in terms of normalized overall error for

different candidate search patterns.

Figure 3.3: Sample CFA patterns from the three clusters.

provide it as an input to a c−class SVM classifier that is trained on the coefficients

of the c candidate interpolation methods. The probability that a given test sample

comes from the ith class, qi, is estimated from the soft decision values using the

probabilistic SVM framework [148], and the test data point is classified into class k

if qk is larger than the other probabilities. Some details of the probabilistic SVMs

are included in Appendix II of this chapter for readers’ reference. The confidence
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score η on the decision is then defined as

η = 2Υ



1 −
∑c

i=1 qi log2

(

1
qi

)

log2 c



 . (3.8)

where Υ(y) = z is defined as the inverse binary entropy function such that

y = −z log2(z) − (1 − z) log2(1 − z) for 0 ≤ z ≤ 1

2
.

The argument to the Υ function in (3.8) measures the entropy difference between

the distribution {qi} and a discrete uniform distribution, and the final value of η

is normalized to the range of [0, 1] to represent a probability.

To verify that the proposed metric η can reflect the confidence level, we examine

two extreme cases. When q = [1, 0, 0, . . . , 0], the decision of choosing the first

class is made with a very high confidence and η = 1. And when q = [1
c

+ ǫ, 1
c
−

ǫ
c−1

, 1
c
− ǫ

c−1
, . . . , 1

c
− ǫ

c−1
] where ǫ is a small positive real number, there is an almost

equal probability that the given data sample comes from any of the c classes. In

this case, the decision is made with a very low confidence and η also approaches

zero. For other values of q between these two extreme cases, the value of η would

lie in the interval [0, 1], with a higher value indicating more confidence in the

decision.

3.3 Experimental Results

3.3.1 Simulation Results with Synthetic Data

We use synthetic data constructed from 20 representative images to study the

performance of the proposed techniques. The original images are first downsampled

to remove the effect of previously applied filtering and interpolation operations.
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They are then sampled on the three different CFA patterns as shown in Figure 2.2.

Each of the sampled images are interpolated using one of the six interpolation

methods reviewed in Appendix I of this chapter, namely, (a) Bilinear, (b) Bicubic,

(c) Smooth Hue, (d) Median Filter, (e) Gradient based, and (f) Adaptive Color

Plane. Thus, our total dataset contains 20 × 3 × 6 = 360 images, each of size

512 × 512.

Simulation Results under no Post-processing

We test the proposed CFA pattern and color interpolation identification algorithms

on this synthetic data set. In the noiseless case with no post-processing, we observe

no errors in estimating the CFA pattern. We use a 7×7 neighborhood to estimate

the interpolation coefficients for the three color components in the three types of

texture regions, and pass it to a classifier to identify the interpolation algorithm. A

support vector machine (SVM) classifier with a third-degree polynomial kernel [19]

[22] is used to identify the interpolation method. We randomly choose 8 out of

the 20 images from each of the six interpolation techniques as ground truth for

training and the remaining 12 images for testing. We repeat the experiment 500

times with a random set of images each time. The classifier is 100% accurate in

identifying the correct color interpolation algorithm without any errors.

Simulation Results with Post-processing

As mentioned earlier, post-processing such as color correction and compression

are commonly done in nearly all commercial cameras. Therefore, to derive use-

ful forensic evidence from output images, it is very important that the proposed

methods be robust to the common post-processing operations done in cameras.
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In this work, we primarily focus on JPEG compression and additive noise, and

study the performance under these distortions. Other post-processing operations

such as color correction and white-balancing are typically multiplicative, where the

final image is obtained by multiplying the color interpolated image by appropriately

chosen constants in the camera color space. In most commercial cameras, white

balancing is done in the XY Z color space [150], and the inverse transformation

may be applied before estimating the color interpolation coefficients. The multi-

plicative factors used in white balancing operations operate on each color channel

separately [39], and therefore white balancing operations do not significantly affect

our solution of the color interpolation coefficients. Gamma correction can be esti-

mated from the final output images [34] and can be undone before computing the

interpolation coefficients. For the results presented in this sub-section, we directly

obtain the coefficients from the output images and do not perform inverse gamma

correction based on the estimated values of gamma. Later in Section 3.3.2, we

show that the estimation results are robust to gamma correction distortions.

(i) Performance Results Under JPEG compression: JPEG compression

is an important post-processing operation that is commonly done in cameras. The

noise introduced by compression could potentially result in errors in estimating

the color interpolation coefficients and the CFA pattern. We test the proposed

CFA pattern identification algorithm with the synthetic data obtained under dif-

ferent JPEG quality factors {20, 30, . . . , 80, 90, 99}. We find that in all cases, the

estimator gives very good results and the correct CFA pattern is always identified.

Next, we study the accuracy in identifying the color interpolation when the

synthetically generated images are JPEG compressed. Here, we consider two pos-

sible scenarios. In the first case, a forensic analyst does not have access to the
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camera(s) and therefore does not have control over the input(s) to the device.

He/she makes a judgement based on the forensic evidence obtained from the im-

ages submitted for trial. In this scenario, the pictures obtained with different

interpolation methods would correspond to different scenes, which we shall call

as the multiple-scene case. The performance of the proposed color interpolation

identification for the multiple-scene case at different JPEG quality factors is shown

in Figure 3.4(a). Here we use a total of 12 images (two distinct images for each of

the six interpolation methods) for training, and test with the remaining 8 images

under each interpolation (8 × 6 = 48 in total). The experiment is repeated 500

times by choosing a random training set each time. We observe that the average

percentage of images for which the interpolation technique is correctly identified

is around 95–100% for moderate to high JPEG quality factors of 80–1001 and the

average performance reduces to 80–85% for quality factors from 50–80.

Alternatively, if a forensic analyst has access to the camera, he/she can perform

controlled testing by choosing the input to the cameras so as to reduce the impact

of the input’s variation on the forensic analysis. In this scenario, the analyst

may consider taking similar images with all the cameras under study, in order

to improve the estimation accuracy and increase the confidence level on his/her

final judgement. We call this situation the single-scene case. The single-scene

case corresponds to the semi non-intrusive forensic analysis discussed earlier in

Chapter 1. The performance of the proposed color interpolation technique for this

case for different JPEG quality factors is shown in Figure 3.4(b). Here we use 8

images under the six interpolation techniques for training (48 in total) and the

1Most commercial digital cameras employ JPEG compression with quality factors between 80

and 100
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72 remaining images for testing. We observe that for most JPEG quality factors,

the average percentage of images for which the color interpolation technique is

correctly identified is around 96% and thus the forensic decision can be made with

a higher confidence compared to the multiple-scene case. The accuracy can be

further improved using more images with representative characteristics for training.

This suggests that with an increasing number of well-designed image inputs to the

system, the detection performance can be enhanced.

(ii) Performance Results Under Additive Noise: Additive noise can be used

to model the sensor noise and several other kinds of random post-processing opera-

tions that may occur during the scene capture process. In order to study the noise

resilience of a forensics system, we test the proposed CFA pattern identification

algorithm with the images obtained under different noise levels with peak-signal

to noise ratios (PSNRs) of 15, 20, 30, and 40 dB, respectively. The correct CFA

pattern was identified in all but one cases, and the only error occurred at an ex-

tremely low PSNR of 15dB for an image interpolated with the adaptive color plane

method. Even in this case, the correct pattern came in the top three results.

We then study the identification performance of the color interpolation method

under additive noise. The performance for synthetic data, averaged over 500 iter-

ations, for the multiple-scene and the single-scene case are shown in Figure 3.5(a)

and Figure 3.5(b), respectively. We observe that there is around 90% accuracy for

the multiple-scene case and it increases to around 95% for the single-scene scenario.

3.3.2 Results on Camera Data

A total of 19 camera models as shown in Table 3.1 are included in our experiments.

For each of the 19 camera models, we have collected about 40 images. The images
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Figure 3.4: Fraction of images for which the color interpolation technique is cor-

rectly identified under different JPEG compression quality factors. The testing

results here are with the synthetic dataset.

from different camera models are captured under uncontrolled conditions−different

sceneries, different lighting situations, and compressed under different JPEG qual-

ity factors as specified by default values in each camera. The default camera set-

tings (including image size, color correction, auto white balancing, JPEG compres-

sion, etc.) are used in image acquisition. From each of these images, we randomly

choose five non-overlapping 512 × 512 blocks per image and use it for subsequent

analysis. Thus, our database consists of a total of 3800 different 512×512 pictures

with 200 samples for each of the 19 camera models.

Note that all the cameras in our database use RGB type of CFA pattern with

red, green, and blue sensors. The search space for CFA in our experiments focusses

on such RGB type CFA, since it has been widely employed in digital camera design

and most cameras in the market currently use this pattern or its variations. There

are a few exceptions in CFA designs, for example, some models use CMYG type of
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Figure 3.5: Fraction of images for which the color interpolation technique is cor-

rectly identified under different noise PSNR’s. The testing results here are with

the synthetic dataset.

CFA that captures the cyan, magenta, yellow, and green components of light [7].

We believe that the proposed algorithms may be extended to identify CMYG type

CFA patterns by incorporating an appropriate set of CMYG combinations in the

search space, and we plan to test cameras with such patterns as part of our future

work.

Among RGB type CFA patterns, several layouts of the three types of color

filters have been used in practice. The 2 × 2 square arrangement is the most

popular and most digital cameras utilize a shifted variation of the Bayer pattern

to capture the real world scene. Recently introduced super CCD cameras [3] have

sensors placed as shown in Figure 3.6. To test the performance of the proposed

algorithms to such cameras, we include images from the Fujifilm Finepix A500

(camera no. 17) that uses super CCD [3] in our database.

As an initial step, we try to estimate the CFA pattern from the output images
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Table 3.1: Camera models used in experiments.

No. Camera Model No. Camera Model

1 Canon Powershot A75 11 Olympus C3100Z/C3020Z

2 Canon Powershot S400 12 Olympus C765UZ

3 Canon Powershot S410 13 Minolta DiMage S304

4 Canon Powershot S1 IS 14 Minolta DiMage F100

5 Canon Powershot G6 15 Casio QV 2000UX

6 Canon EOS Digital Rebel 16 FujiFilm Finepix S3000

7 Nikon E4300 17 FujiFilm Finepix A500

8 Nikon E5400 18 Kodak CX6330

9 Sony Cybershot DSC P7 19 Epson PhotoPC 650

10 Sony Cybershot DSC P72

Figure 3.6: Super CCD sensor pattern.

using the algorithm described in Section 3.2. The estimation results show with

a high confidence that all the cameras except Fujifilm Finepix A500 (camera no.

17) use shifted versions of the Bayer color filter array as their CFA pattern. For

instance, the estimated 2 × 2 CFA that minimized the fitting errors on JPEG

images from Canon EOS Digital Rebel (camera no. 6) and the Fujifilm Finepix

S3000 (camera no. 16) are shown in Figure 3.7(a) and (b), respectively. The

estimation results perfectly match these cameras’ ground-truth data obtained by

reading the headers of the raw image files produced by the two cameras.
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Figure 3.7: Sample CFA patterns for (a) Canon EOS Digital Rebel and (b) Fujifilm

Finepix S3000.

When testing the images from the Fujifilm Finepix A500 (camera no. 17) with

the same 36 square patterns in the CFA pattern search space, we notice that the

best 2×2 pattern in the search space is still a shifted version of the Bayer pattern.

However, we observe that the minimum error ε, as given by (3.6), is larger than

the ones obtained from other square-CFA cameras. Therefore, the overall decision

confidence is lower for this super CCD camera compared to the other cameras in

the database. Further, we also find that the CFA pattern estimation results are not

consistent across different images taken with the same camera, i.e., different images

from Fujifilm Finepix A500 give different shifted versions of the Bayer pattern as

the estimated CFA. Such inconsistencies in the results along with lower confidence

in parameter estimation could be an indication that the camera does not employ

a square CFA pattern. One possible approach to identify super CCD is to enlarge

the CFA search space to include these patterns. We plan to further investigate

this aspect in our future work to gather forensic evidence to distinguish super CCD

cameras and square CFA cameras.

Next, we try to estimate the color interpolation coefficients in different image

regions using the algorithm presented in Section 3.2.2. In our simulations, we find

the coefficients of a 7×7 filter in each type of region and color channel, thus giving

a total of 7 × 7 × 3 × 3 = 441 coefficients per image. Sample coefficients obtained
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Figure 3.8: Interpolation coefficients for the green channel for one sample image

taken with the Canon Powershot A75 camera for (a) Region ℜ1 with significant

horizontal gradient, (b) Region ℜ2 with significant vertical gradient, (c) Smooth

region ℜ3, (d) Coefficients of bicubic interpolation.

using the Canon Powershot A75 camera for the three types of regions in the green

image are shown in Figure 3.8. For region ℜ1 that corresponds to areas having

significant horizontal gradient, we observe that the value of the coefficients in the

vertical direction (0.435 and 0.441) are significantly higher than those in the hor-

izontal directions (0.218 and 0.204). This indicates that the interpolation is done

along the edge, which in this case is oriented along the vertical direction. Similar

corresponding inferences can be made from coefficients in region ℜ2 of significant

vertical gradient. Compared to these two regions, the coefficients in region ℜ3 have
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almost equal values in all four directions, and do not have any directional prop-

erties. Moreover, careful observation of the coefficients in region ℜ3 reveals their

close resemblance to the bicubic interpolation coefficients shown in Figure 3.8(d).

This suggests that it is very likely that the Canon Powershot A75 camera uses

bicubic interpolation for smooth regions of the image. Similar results obtained for

other camera models indicate with η = 96% confidence that all cameras use the

bicubic interpolation for handling smooth regions. This is consistent with com-

mon knowledge in image processing practice that bicubic interpolation is good for

regions with slowly changing intensity values [63].

3.4 Case Studies and Applications of Non-Intrusive

Forensic Analysis

In this section, we present case studies to illustrate the applications of the proposed

non-intrusive forensic analysis methodology for camera identification (acquisition

forensics), and for providing clues to identify infringement/licensing.

3.4.1 Identifying Camera Brand from Output Images

The color interpolation coefficients estimated from the image can be used as fea-

tures to identify the camera brand utilized to capture the digital image. As shown

in Section 3.3.2, most cameras employ similar kinds of interpolation techniques for

smooth regions. Therefore, we focus on non-smooth regions and use the coefficients

obtained from the horizontal gradient regions ℜ1 and vertical gradient regions ℜ2

as features to construct a camera brand identifier.

To obtain more reliable forensic evidence from the input image for camera
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identification, we first pre-process the image by edge detection to locate five sig-

nificant 512 × 512 blocks with the highest absolute sum of gradient values. The

interpolation coefficients corresponding to the regions ℜ1 and ℜ2, from all three

color channels, estimated from these 512 × 512 blocks are used as features for

identification.

We use a classification based framework to identify camera brand. For each

camera in the database, we collect 40 different images and obtain 200 different

512×512 image blocks by locating the top five regions with higher gradient values.

These 200 image blocks collected from each of the 19 cameras are grouped so that

all images from the same brand form one class. A 9−camera brand SVM classifier

with a polynomial kernel function [22] is constructed with 50% of the images

randomly chosen from each class for training. The remaining images are used in

testing and the process is repeated 500 times by randomly choosing a training set

each time. Table 3.2 shows the average confusion matrix, where the (i, j)th element

gives the percentage of images from camera brand−i that are classified to belong to

camera brand−j. The main diagonal elements represent the classification accuracy

and achieve a high average classification rate of 90% for nine camera brands. A

closer look at the remaining 10% of misclassified images suggest that most of them

have significant amount of smooth regions; these regions have less discriminating

capability because most digital cameras employ similar kind of interpolation in the

smooth regions as demonstrated earlier.

The above results demonstrate the effectiveness of using the color interpolation

component as features to differentiate different camera brands. The robustness of

estimating these features under JPEG and additive noise has been shown earlier

in Section 3.3.1. Here we further examine the robustness against such nonlinear
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Table 3.2: Confusion matrix for identifying different camera brands (* denotes

values smaller than 4%).

Canon Nikon Sony Olympus Minolta Casio Fuji Kodak Epson

Canon 96% * * * * * * * *

Nikon * 83% 5% * * * * * *

Sony * * 90% * * * * * *

Olympus * * * 93% * * * * *

Minolta 8% * * * 81% * * * *

Casio * * * 6% * 89% * * *

Fuji * * * * 7% * 87% * *

Kodak * * * * * * * 89% *

Epson * * * * * * * * 100%

point operations as gamma correction. As a common practice in digital camera

design, most cameras perform gamma correction with a γ = 1/2.2 to match the

luminance of the digital image with that of the display monitor. In order to test

the goodness of the proposed algorithms for gamma correction, we first do inverse

gamma correction with γ = 2.2 on the original camera images.2 The interpolation

coefficients are then estimated from these gamma corrected images and used in

camera brand identification. In this case, the confusion matrices are similar to the

ones in Table 3.2, and average identification accuracy was estimated to be 89%.

This negligible difference from the non-gamma correction case of 90% suggests

that the camera identification results are invariant to gamma correction in digital

2In a general scenario, the value of γ can be estimated from the output images [34] and the

corresponding inverse could be applied before estimating the interpolation coefficients.
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cameras.

As the problem of camera brand identification only received attention recently,

there is a very limited amount of related work to compare with. Some algorithms

were developed recently in [70] [15], where the authors test their algorithms for

pictures taken under controlled conditions with the same scene captured with mul-

tiple cameras (corresponding to the single-scene case discussed earlier in Section

V-A). The best performance initially reported in [15] is 84% on three brands, and

this algorithm is sensitive to other in-camera processing such as compression owing

to the dependence on image content by the null-based spectral features employed

in [15]. Concurrent to the present work, further improvements have been made

to the algorithm in [15] by separately obtaining the coefficients from smooth and

non-smooth regions of each image, leading to an enhanced classification accuracy

of 96% for three camera brands [14]. Compared to these alternative approaches,

the interpolation coefficients derived in our work by exploring the spatial filtering

relations are less dependent on input scenes and are robust against various com-

mon in-camera processing. The formulation of minimizing noise norm via (3.5)

further helps mitigate the impact from noise, compression, and other in-camera

processing. As a result, the features obtained from the proposed component foren-

sics methodologies are able to achieve a high classification accuracy over a much

larger dataset with 19 camera models from nine different brands. Further, as will

be demonstrated later in this section, the proposed component forensic techniques

have a broader goal of identifying the algorithms and parameters employed in

various components in digital cameras, and are not restricted to camera brand

identification.

40



3.4.2 Identifying Camera Model from Output Images

Our results in the previous subsection demonstrate the robustness of non-intrusively

identifying the camera brand using the color interpolation coefficients as features.

In this subsection, we extend our studies to answer further forensic questions to

find the exact camera model used to capture a given digital image, and examine

the performance in identifying the camera model.

We use 200 images from each of the 19 cameras in our experiments. Out of these

200 images, a randomly chosen 125 images are used for training and the remaining

are for testing with a 19−camera model SVM classifier. The simulation is repeated

500 times with different training sets and the average confusion matrix is shown

in Table 3.3. The (i, j)th element in the confusion matrix gives the fraction of

images from camera model−i classified as camera model−j. In order to highlight

the significant values of the table, we show only those set of values that are greater

than or equal to a chosen threshold λ = 1/Nc, where Nc is the number of cameras

(λ = 1/19 in our experiments). The average classification accuracy is 86% for 19

camera models.

The classification results reveal some similarity among different camera models

in handling interpolation, as there are some off-diagonal elements that have a non-

zero value greater than the threshold of 1/19. For example, among the Canon

Powershot S410 (camera no. 3) images, 20% were classified as belonging to Canon

Powershot S400 (camera no. 2). A similar trend is also observed for images from

other Canon models. These results indicate that the color interpolation coefficients

are quite similar among the Canon models and hence it is likely that they are using

similar kinds of interpolation methods.
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Table 3.3: Confusion matrix for identifying different camera models. The matrix

is divided based on different camera makes. The values below the threshold λ = 1
19

are denoted by ∗. The camera index numbers are according to Table 3.1.

Epson

Kodak

Fujifilm

Casio

Minolta

Olympus

Sony

Nikon

Canon

1.00******************19

*0.88**0.08**************18

**0.68**0.20**********0.08**17

***0.96***************16

****0.84************0.16*15

*****0.80*0.08**********0.0814

******0.96************13

*******1.00***********12

********1.00**********11

*********1.00*********10

**********1.00********09

**0.16**0.08*****0.72*******08

*****0.08***0.08**0.60*0.16****07

*************0.88*0.08***06

**************0.88*0.08**05

*****0.08****0.16****0.56*0.16*04

****************0.800.20*03

*****************0.84*02

******************0.9201

19181716151413121110090807060504030201

3.4.3 Similarities in Camera Color Interpolation Algorithms

Motivated by the results in the previous subsection, we further analyze the similar-

ity between the camera models in this subsection, and propose metrics to quantita-

tively evaluate the closeness among interpolation coefficients from several cameras.

Studying Similarities in Cameras using Leave-One-Out

We perform additional experiments to identify the camera models with similar

color interpolation by a leave-one-out procedure. More specifically, we train the

classifier by omitting the data from one of the camera models and test it with

these coefficients, to find the nearest neighbor in the color interpolation coefficient

space. For instance, when we train the SVM using all the 200 images from 18

cameras except Canon Powershot S410 (Camera no. 3), and then test it using

the 200 images from Canon Powershot S410, we observe that 66% of the Canon
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Powershot S410 images are classified as Canon Powershot S400. Furthermore, out

of the remaining images, 28% of the pictures are classified as one of the remaining

Canon models. The reverse trend is also observed when we train with all the

images except Canon Powershot S400 (camera no. 2) and use these images for

testing. Around 45% of the Canon Powershot S400 pictures are classified as Canon

Powershot S410, 19% are categorized as Canon Powershot A75, and 15% of the

remaining guessed as some other Canon model. This result suggests that there is

a considerable amount of similarity in the kind of interpolation algorithms used by

various Canon models.

A similar trend is also observed for the two Sony cameras in our database.

We note that around 66% of the Sony Cybershot DSC P7 model are classified as

Sony Cybershot DSC P72 model when the former was not used in training. These

results indicate the similarities in the kind of interpolation algorithm among various

models of the same brand. Interestingly, we also observe similarity between Minolta

DiMage S304 and Nikon E4300. Around 53% of the Minolta DiMage S304 pictures

are designated as Nikon E4300 camera model. This suggests closeness between the

interpolation coefficients in the feature space.

Quantifying Similarity in Color Interpolation with a Divergence Score

From our preliminary analysis in Section 3.3.2, we observe that the majority of the

cameras use similar kinds of interpolation techniques in handling smooth regions.

We thus focus our attention on the type of interpolation used by a camera in the

non-smooth regions. We extend our interpolation coefficient estimation model in

Section 3.2.2 to explicitly target at non-smooth regions in the image. To do so, we

divide the image into eight types of regions depending on the relative gradient esti-
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mates in eight directions (namely north, east, west, south, north-east, north-west,

south-east, and south-west). The gradient values can be obtained following the

threshold-based variable number of gradients (VNG) algorithm [23]. For example,

the gradient in the north direction JN is obtained using

JN(x, y) = |Ix−1,y − Ix+1,y| + |Ix−2,y − Ix,y|

+ 0.5 × |Ix−1,y−1 − Ix+1,y−1| + 0.5 × |Ix−1,y+1 − Ix+1,y+1|

+ 0.5 × |Ix−2,y−1 − Ix,y−1| + 0.5 × |Ix−2,y+1 − Ix,y+1|, (3.9)

where Ix,y = Sd(x, y, p(x, y)) represents the image pixel sample. Similar expressions

for gradients in the remaining seven directions can be developed to find the local

gradient values [23]. Once these gradients are obtained, they are compared to a

threshold to divide the image into eight types of texture regions. The interpolation

coefficients are obtained in each region by solving a set of linear equations as given

by (3.5).

We use a classification based methodology to study the similarities in inter-

polation algorithms used by different cameras. To construct classifiers, we start

with 100 representative images, downsample them (by a factor of 2) and then

re-interpolate with each of the six different interpolation methods as discussed in

Section 3.3.1. With a total of 600 images synthetically generated in this way, we

run the color interpolation estimator to find the coefficients for each image. The

estimated coefficients are then used to train a 6-class SVM classifier, where each

class represents one interpolation method. After training the SVM classifier, we

use it to test the images taken by the 19 cameras. For each of the 200 images taken

by every camera in the 19-camera dataset, we estimate the CFA parameters (eight

sets of coefficients each with a dimension of 5×5), feed them as input to the above
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classifier and record the classification results.3 Probabilistic SVM framework is

used in classification and the soft decision values are recorded for each image [148]

(refer to Appendix II of this chapter for more details). If the two camera models

employ different interpolation methods (not necessarily the same as the six typical

methods in the classifier), then the classification results are likely to be quite dif-

ferent, and their differences can be quantified by an appropriate distance between

the classification results.

More specifically, for each image in the database, the interpolation coefficients

are found and fed into the N -class classifier, where N denotes the number of possi-

ble choices of the interpolation algorithms studied (N = 6 in our experiments). Let

the output of the classifier be denoted as a probability vector g = [g1, g2, . . . , gN ],

where gk gives the probability that the input image employs the interpolation

algorithm−k (1 ≤ k ≤ N). Such probability vectors are obtained for every image

in the database and the average performance is computed for each camera model.

Let the average classification results for camera model−i be represented by the

vector πi = [πi1, πi2, . . . , πiN ], where πik is the average probability for an image

from camera model−i to be classified as using the interpolation algorithm−k. The

πik’s are estimated using soft decision values obtained using the probabilistic SVM

framework. The similarities of the interpolation algorithms used by any two cam-

eras (with indices i and j) can now be measured in terms of a divergence score ϕij ,

defined as symmetric Kullback-Leibler (KL) distance between the two probability

3A kernel size of 5 × 5 is chosen in this case to limit the total number of coefficients, and to

make the total number of features to be on the same order of magnitude as the previous case in

Section 3.4.2 where we used a kernel size of 7 × 7 and three gradient based regions.
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Table 3.4: Divergence scores for different camera models as indexed in Table 3.1.

The values below or equal to 0.06 are shaded, and the ∗ indicates zero similarities

between the same camera models by definition.

Epson

Kodak

Fujifilm

Casio

Minolta

Olympus

Sony

Nikon

Canon

*0.980.510.170.240.130.250.260.250.820.140.920.340.370.260.230.270.160.2519

0.98*0.231.050.450.610.450.420.610.230.610.100.190.350.390.580.570.570.8318

0.510.23*0.820.440.420.390.420.560.180.430.310.120.230.250.490.310.350.5417

0.171.050.82*0.180.110.170.200.191.020.130.890.470.540.320.190.330.170.1816

0.240.450.440.18*0.110.080.010.110.590.070.410.170.230.160.100.290.150.3115

0.130.610.420.110.11*0.060.120.080.560.070.480.180.220.090.070.100.030.0914

0.250.450.390.170.080.06*0.080.100.520.110.390.120.300.160.100.200.110.1813

0.260.420.420.200.010.120.08*0.110.610.080.390.160.210.140.080.270.140.3112

0.250.610.560.190.110.080.100.11*0.660.170.470.240.320.190.040.230.120.2511

0.820.230.181.020.590.560.520.610.66*0.090.160.210.420.460.710.510.550.7610

0.140.610.430.130.070.070.110.080.170.09*0.530.190.180.140.140.220.110.2209

0.920.100.310.890.410.480.390.390.470.160.53*0.210.360.360.500.470.460.6808

0.340.190.120.470.170.180.120.160.240.210.190.21*0.150.140.230.220.190.3607

0.370.350.230.540.230.220.300.210.320.420.180.360.15*0.070.220.180.190.3506

0.260.390.250.320.160.090.160.140.190.460.140.360.140.07*0.100.060.050.1405

0.230.580.490.190.100.070.100.080.040.710.140.500.230.220.10*0.150.070.1704

0.270.570.310.330.290.100.200.270.230.510.220.470.220.180.060.15*0.050.0603

0.160.570.350.170.150.030.110.140.120.550.110.460.190.190.050.070.05*0.0602

0.250.830.540.180.310.090.180.310.250.760.220.680.360.350.140.170.060.06*01

19181716151413121110090807060504030201

distributions πi and πj :

ϕij = D(πi||πj) + D(πj||πi), (3.10)

where D(πi||πj) =

N
∑

k=1

πik log2

(

πik

πjk

)

. (3.11)

The symmetric KL distance is separately obtained in each of the eight types of

regions by training with synthetic data and testing with the camera images using

the appropriately chosen coefficients as features. The overall divergence score is

obtained by taking the mean of the individual divergence scores in eight regions

and three color components. A low value of overall divergence score indicates that

the two cameras are similar and are likely to use very similar kind of interpolation

methods.

The divergence scores of the 19 different camera models are shown in Ta-

ble 3.4. Here, the (i, j)th element in the matrix represents the average symmetric
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KL distance between the interpolation coefficients of camera model−i and cam-

era model−j. Divergence scores below a threshold of 0.06 have been shaded. We

observe from the table that most cameras from the same brand are likely to use

similar kinds of interpolation algorithms. This is especially evident for some models

of Canon and Minolta used in our analysis.

The divergence score between the two Canon models, S400 and S410, are very

low, suggesting that both of these models are likely to use similar techniques for

color interpolation. We also observe similarities between the two Minolta models,

DiMage S301 and DiMage F100, and between the two Sony models, Cybershot DSC

P7 and P72. The metric is close to zero in all these cases, thus indicating that

cameras from the same manufacturer have similar interpolation. Interestingly, we

also observe some similarity between several cameras from different manufactures.

As shown in Table 3.4, the divergence score between Nikon model E4300 (camera

no. 7) and the Minolta DiMage S304 (camera no. 13) is low, which suggests a

resemblance in the type of interpolation used by these two cameras.

The work that we have presented so far quantifies the similarity of camera

models based on the estimated color interpolation coefficients. The parameters of

the other stages in the scene capture model, such as white balancing and JPEG

compression, may be further used to study similarities among different camera

models and brands. In such cases, the forensic information collected from various

components may also be fused together to provide quantitative evidence to identify

and analyze technology infringement/licensing of cameras.
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3.4.4 Applications to Image Acquisition Forensics

The goal of image acquisition forensics is to determine the device type and the

brand and model of the device that was used to acquire the image in question. In

the previous sections, we have shown that the color interpolation coefficients can

help identify the brand and model of the camera that was used to capture the image

if indeed the image was originally camera captured. In this subsection, we extend

the feature based classification approach to facilitate image acquisition forensics,

and show that the proposed methods combined with noise features [54,55] provide

a very high accuracy in differentiating between images from different sources such

as cell phones cameras, standalone cameras, scanners, and computer-graphics.

For our study, we use 100 images from each of the four scanner models (Ep-

son Perfection 2450 photo, AcerScan, Canon CanoScan D1250U2F, and Microtek

ScanMaker 3600), five different cell phone cameras models (Nokia 6102, Motorola

V550, Samsung c417, Sony Ericsson W810, and Audiovox CDM-8910), and five

standalone cameras models (Canon Powershot A75, FujiFilm Finepix S3000, Casio

QV-UX2000, Minolta DiMage F100, and Canon PowerShot S410). A separate set

of 100 computer graphics (CG) images were obtained from the Columbia univer-

sity dataset [101]. The sample images were taken in completely random conditions,

without any controlled experimental setup to simulate non-intrusive testing condi-

tions. In this way, the image dataset simulates real-world data in terms of lighting,

color, texture, and subject. The color interpolation coefficients and the noise fea-

tures from [55] were estimated from each of the 1500 images in our database and

employed for subsequent studies.
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Table 3.5: Confusion matrix for device-type identification.

Device Phone camera Standalone Scanner Computer

Digital Camera Graphics

Phone camera 93% 2% 0% 5%

Standalone camera 1% 98% 1% 0%

Scanner 1% 3% 94% 2%

Computer Graphics 4% 2% 4% 90%

Identifying Image Acquisition Device

For our study, 100 images from each device type (cell phone camera, standalone

camera, and scanner) were selected with an equal number from each model, and all

CG images were used, to create four classes of 100 images each. A randomly cho-

sen set of 99 images from each class were used in training the SVM classifier, and

the remaining image was used in testing to obtain the leave-one-out performance.

The experiment was repeated 100 times with different set of training images and

the average confusion matrix is shown in Table 3.5. Here, the (i, j)th element of

the matrix corresponds to the fraction of images from source type−i classified as

belonging to source type−j. The main diagonal elements give the percentage of

correct identification. From the results in Table 3.5, we find that overall identi-

fication accuracy is 93.75%, suggesting that the proposed features are good for

identifying the source type.

Identifying Device Brand/Model

Once an image’s source device has been determined, further analysis can be per-

formed using the same set of features to identify the particular brand or model
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of the device that was used to capture the image. In the previous subsections,

we have presented results for camera brand and model identification and in this

subsection, we focus on cell phone cameras and scanners. Finding the type of cell

phone camera from its output images poses additional challenges, compared to

standalone cameras and scanners, due to their lower image resolution, noisier im-

age sensors, and a higher rate of default JPEG compression. In our results with cell

phone cameras, we found that using interpolation coefficients alone, rather than

a combination of interpolation coefficients and noise features, produced higher ac-

curacies [94]. This result for cell phone cameras is expected because most cell

phone camera brands/models employ different algorithms for color interpolation;

and therefore, these coefficients alone provide tell-tale evidence to distinguish im-

ages from different brands/models. For our experiments with cell phone cameras,

we used a randomly chosen 90 random images for training and the remaining 10

for testing, and the corresponding results are shown in Table 3.6. We find from

the table that the average identification accuracy is close to 97.7% for five models,

and this is significantly better than state-of-the-art techniques that produce av-

erage accuracies close to 92% over four camera models from two different camera

brands [135].

We test the robustness of the proposed system for post-processing operations

such as JPEG compression. To generate data, we compress the original cell phone

camera images under different JPEG quality factors from 60% to 100%. The

color interpolation coefficients are then obtained from the compressed images and

used as features for classification. A randomly chosen 90 images were used in

training the classifier and the remaining 10 were used in testing. The experiment

was repeated 100 times and the average accuracies under different JPEG quality
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Table 3.6: Confusion matrix for cell phone camera identification.

Cell Phone Nokia Motorola Samsung Sony Audiovox

Nokia 95.8% 0.4% 0% 3.8% 0%

Motorola 2.8% 97.2% 0% 0% 0%

Samsung 1.2% 0% 97.8% 0.2% 0.8%

Sony 2.4% 0% 0% 97.6% 0%

Audiovox 0% 0% 0% 0% 100%

factor are shown in Figure 3.9. The figure shows that as the JPEG quality factor

decreases, the identification accuracy decreases as expected. However, the lowest

accuracy achieved is around 91% demonstrating the superior performance of the

proposed features.

We compare the performance of the proposed features for cell phone camera

identification with the higher order statistical features introduced in [36]. In our

experiments with [36], we employ the same set of cell phone camera images (with

90 for training and 10 for testing) and examine the identification accuracies as a

function of JPEG quality factors. The performance, averaged over 100 iterations,

is shown alongside in Figure 3.9. The results suggest that the proposed features

perform at least 12% better in identifying the cell phone brand/model, establishing

the goodness of the proposed features.

For scanner identification, we found that using a combination of interpolation

coefficients and noise feature parameters from [54] gave best results. 100 images

from each of the four models of scanners were used, with 90 random images used for

training and the remaining 10 used for testing. The overall identification accuracy

for scanner brand was 96.2%. Further, the identification results were found to be
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Figure 3.9: Robustness to JPEG compression for cell phone camera identification

using (a) proposed color interpolation coefficients as features, and (b) higher order

statistics [36] as features.

robust to moderate levels of post-processing operations such as JPEG compression,

image sharpening, gamma correction, and contrast enhancement. Further details

can be found in [54, 94].

3.4.5 Detecting Cut-and-Paste Forgeries based on Incon-

sistencies in Component Parameters

Creating a tampered image by cut-and-paste forgery often involves obtaining dif-

ferent parts of the image from pictures captured using different cameras that may

employ a different set of algorithms/parameters for its internal components. In-

consistencies in the estimated sensor pattern noise obtained from different regions

of the image [86] or the inconsistencies in the estimated intrinsic fingerprint traces

left behind by camera components [123] can be used to identify such digital forg-

eries as cut-and-paste operations. Here, we illustrate with a case study. We create
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a tampered picture of size 2048 × 2036 by combining parts of two images taken

using two different cameras. In Figure 3.10(a) and (b), we show the tampered pic-

ture and its individual parts marked with different colors. The regions displayed

in white in Figure 3.10(b) are obtained from an image taken with the Canon Pow-

ershot S410 digital camera, and the black parts are cropped and pasted from a

picture shot using the Sony Cybershot DSC P72 model. The combined image was

then JPEG compressed with quality factor 80%.

To identify the intrinsic camera fingerprints in different parts of the picture,

the image is examined using a sliding window of 256× 256 with step size 64× 64,

and the color interpolation coefficients are estimated in each 256×256 block [123].

The k−means clustering algorithm [31] is then employed to cluster these features

into two classes. With a step size of 64, each individual 64×64 sub-block would be

analyzed 16 times to provide 16 different clustering results; the clustering results

are represented as binary values (0 or 1) as labels for the two classes. Figure 3.10(c)

shows the average of the clustering labels from these 16 sub-blocks. As shown in

Figure 3.10(c), our results indicate that the features are clustered distinctly in two

separate classes with the gray area in between representing the transition from one

class to the other. In this particular case, we notice that the manipulated picture

has tell-tale traces from two different cameras and is therefore tampered.

We then employ supervised training [31] using the 19-camera model classifier to

further verify our results. The detection results from the 19-camera model classifier

are shown in Fig. 3.10(d). In this figure, the regions marked black denotes those

classified as the Sony Cybershot DSC P72 model and the white areas correspond

to the parts correctly classified as the Canon Poweshot S410 model. The remaining

regions represented in grey correspond to the blocks that were misclassified as one
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(a) (b)

(c) (d)

Figure 3.10: Applications to source authentication showing (a) Sample tampered

image; (b) Regions obtained from the two cameras; (c) Results from clustering

the color interpolation coefficients with black representing Sony Cybershot DSC

P72, white representing Canon Powershot S410 and shades of gray indicating the

likelihood that the region is from Canon Powershot S410 with a value close to white

denoting higher likelihood; (d) CFA interpolation identification results using the 19

camera-model classifier with black representing Sony Cybershot DSC P72, white

representing Canon Powershot S410, and grey indicating the regions classified as

other cameras.
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of the remaining 17 camera models. As shown in Fig. 3.10(d), the results indicate

that the correct camera can be identified with a very high confidence in most of

the regions in the tampered picture using the data obtained from each 256 × 256

macro-block. In this particular case, we notice that the manipulated picture has

distinct traces from two different cameras and is therefore tampered. A closer

observation of the misclassified blocks (shown in grey) also indicates that most

of these regions are clustered either around the tampering boundaries from two

cameras or in very smooth areas of the image. Blocks around tampered regions

would contain traces of both the camera models and thus might lead to incorrect

classifications and misclassifications around the smooth regions of the image can

be attributed to the fact that most cameras employ similar techniques such as

bicubic interpolation around the smooth regions.

3.5 General Component Forensics Methodology

In this section, we extend the proposed non-intrusive forensic analysis to a method-

ology applicable to a broad range of devices. Let O1, O2, . . . , ONo be the sam-

ple outputs obtained from the test device that we model as a black box, and

C1, C2, . . . , CNc be the individual components of the black box. Component foren-

sics provides a set of methods to help identify the algorithm and parameters used

by each of the processing blocks Cy. A general forensic analysis framework is

composed of the following processing steps as shown in Figure 3.11.

1. Modelling of the Test Device: As the first step of forensic analysis, a model is

constructed for the object under study. This modeling helps break down the

test device into a set of individual processing components C1, C2, . . . , CNc and
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Figure 3.11: The proposed forensic analysis methodology.

systematically study the effect of each of these blocks on the final outputs

obtained with the test object.

2. Feature Extraction: The forensic analyst identifies a set of features that has

good potential to help identify the algorithms used in yth device compo-

nent Cy. These features are based on the final output data and are chosen

to uniquely represent each of the algorithms used. For the case of digital

cameras, we have used in this chapter the estimated color interpolation co-

efficients as features for forensic analysis. Parameters of other components,

such as white balancing constants and gamma correction values, are also

possible features to incorporate.

3. Feature Analysis and Information Fusion: We analyze the features extracted

from the previous stage to obtain forensic evidence to meet specific applica-

tions’ needs. The appropriate analysis technique depends on the component

under study, the application scenario, and the type of evidence desired. The
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results obtained from each of the analysis techniques can be combined to

provide useful evidence about the inner working of the device components.

4. Testing and Validation Process: The validation stage uses test data with

known ground truth to quantify the accuracy and performance of the foren-

sic analysis system. It reflects the degree of success of each of the above

processing stages and their combinations. Representative synthetic data ob-

tained using the model of the test object can help provide ground truth to

validate the forensic analysis systems and provide confidence levels on esti-

mation. The results of this stage can also facilitate a further refinement of

the other stages in the framework.

The methods and techniques adopted in each stage may vary depending on the

device, the nature of the device components, and the application scenario. Re-

garding feature extraction, in some situations, the features by themselves (without

further processing) can be proven to be useful forensic evidence and be used to

estimate the parameters of the model. For instance, the color interpolation co-

efficients were directly estimated from the camera output, and used to study the

type of interpolation in different regions of the image in Section 3.3.2. Evidence

collected from such analysis can be used to study the similarities and differences

in the techniques employed in the device components across several models and

answer questions related to infringement/licensing and evolution of digital devices.

In some other application scenarios, the component parameters might be an inter-

mediate step and further processing would be required to answer specific forensic

questions. For example, we have used the estimated color interpolation coefficients

as features to build a robust camera identifier to determine the camera model (and

make) that was used to capture a given digital image as seen in Sections 3.4.1 and
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3.4.2.

3.6 Chapter Summary

In this chapter, we consider the problem of component forensics and propose a

set of forensic signal processing techniques to identify the algorithms and parame-

ters employed in individual processing modules in digital cameras. The proposed

methodology is non-intrusive and uses only the sample data obtained from the

digital camera to find the camera’s color array pattern and the color interpolation

methods. We show through detailed simulations that the proposed algorithms are

robust to various kinds of postprocessing that may occur in the camera. These

techniques are then used to gather forensic evidence on real world datasets cap-

tured with 19 camera models of nine different brands under diverse situations. The

proposed forensic methodology is used to build a robust camera classifier to non-

intrusively find the camera brand and model employed to capture a given image

for problems involving image source authentication. Our results indicate that we

can efficiently identify the correct camera brand with an overall average accuracy

of 90% for nine brands. Our analysis also suggests that there is a considerable de-

gree of similarity within the cameras of the same brand (e.g. Canon models) and

some level of resemblance among cameras from different manufacturers. Measures

for similarity are defined and elaborate case-studies are presented to elucidate the

similarities and differences among several digital cameras. We believe that such

forensic evidence would provide a great source of information for patent infringe-

ment cases, intellectual property rights management, and technology evolution

studies for digital media.
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Appendix I: Some Popular Color Interpolation Al-

gorithms

There have been numerous algorithms employed in practice for Color Filter Array

interpolation. In this appendix, we briefly review some of the popular methods.

For a detailed survey, the readers are referred to [7]. Color interpolation methods

can be broadly classified into two main categories, namely, adaptive and non-

adaptive methods, depending on their adaptability to the image content. While

non-adaptive methods use the same pattern for all pixels in an image, adaptive

methods such as gradient based algorithms use the pixel values of the local neigh-

borhood to find the best set of coefficients to minimize the overall interpolation

error.

Bilinear and Bicubic methods are examples of non-adaptive interpolation schemes.

In these algorithms, the pixel values are interpolated according to the following

equation [112]:

Sint(x, y, c) =

Ng
∑

u,v∈−Ng

hc(u, v)Sraw(x − u, y − v, c),

where Sraw are the original raw values obtained from the sensor with Sraw(., ., 1)

representing the red color and so on, Sint denotes the interpolation results, and hc

denotes the 2-D filters of dimension Ng × Ng used in interpolation. In a general

case, hc may be dependent on the color channel. Let hr, hg, and hb denote the

values taken by hc for red, green, and blue colors, respectively. For the bilinear

case, these filters are given by

hr = hb =
1
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The corresponding filters for the bicubic case are given by

1
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The Smooth Hue interpolation algorithm is based on the observation that the

hue varies smoothly in natural images. In this algorithm, the green channel is first

interpolated using bilinear interpolation to yield Sint(., ., 2). The red components

are then obtained by interpolating the ratios of ‘red/green’ via

Sint(x, y, 1)

Sint(x, y, 2)
=

1

2

(

Sraw(x, y − 1, 1)

Sint(x, y − 1, 2)
+

Sraw(x, y + 1, 1)

Sint(x, y + 1, 2)

)

.

The blue components can be obtained similarly by interpolating the ‘blue/green’

ratios.

In Median filter based algorithms, the three channels are first interpolated

using bilinear interpolation. Then the differences ‘red−green’, ‘red−blue’, and

‘green−blue’, are median filtered to produce Mrg, Mrb, and Mgb, respectively. At

each pixel location, the missing color values are obtained by linearly combining

the original color sensor value and the appropriate median filter result [112]. For

example, the green color component at the location of the red color filter is obtained

as

Sint(x, y, 2) = Sraw(x, y, 1) − Mrg(x, y).

All the methods described above are non-adaptive in nature and do not depend

on the characteristics of particular regions. In contrast to these techniques, the

Gradient Based algorithms [76] are more complex. Here, the horizontal gradient
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(Jh) and the vertical gradient (Jv) at the point (x, y) are first estimated using

Jh(x, y) = |Ix,y−2 + Ix,y+2 − 2Ix,y|,

Jv(x, y) = |Ix−2,y + Ix+2,y − 2Ix,y|,

where Ix,y = Sraw(x, y, p(x, y)) and p is the CFA pattern matrix (e.g. Bayer pat-

tern) with p(x, y) = 1, 2, or 3, indicating that the CFA pattern at the (x, y)th pixel

is red, green, or blue, respectively. The edge direction is then estimated from the

gradient values, and the missing pixel values in the green component of the image

are obtained in such a way that the interpolation is done along the edge and not

across the edge, using only pixel values from the green channel. The missing red

and blue components are found by interpolating the difference, ‘red−green’ and

‘blue−green’ along the edge, respectively.

The Adaptive Color Plane interpolation method [56] is an extension of the

gradient based method. Here, the horizontal and vertical gradients are estimated

using

Jh(x, y) = |Ix,y−1 − Ix,y+1| + |Ix,y−2 + Ix,y+2 − 2Ix,y|,

Jv(x, y) = |Ix−1,y − Ix+1,y| + |Ix−2,y + Ix+2,y − 2Ix,y|.

Unlike the simple gradient based method, the interpolation of one color component

here also uses the other colors, and the output is a linear combination of sampled

sensor outputs in the neighborhood across the three color channels [56].
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Appendix II: Probabilistic Support Vector Ma-

chines

We employ the probabilistic SVM framework proposed in [148] to find the likeli-

hood qi that a given data sample comes from the ith class. Let the observation

feature vector be denoted as x and the class label as y, where 1 ≤ y ≤ c for a

c-class problem. With the assumption that the class-conditional densities Pr(x|y)

are exponentially distributed [108], the estimate µ̂ij of the pairwise class proba-

bilities µij , Pr(y = i|y = i or j,x) is found by fitting a parametric model to

the posterior probability density functions µ̂ij = 1/(1 + exp(âx + b̂)). The values

of â and b̂ are estimated by minimizing the Kullback-Leibler distance between the

parametric pdf define earlier and the one observed obtained from the training sam-

ples. We then find qi , Pr(y = i|x), the probability that the data sample comes

from the ith class for a c−class SVM, by solving the optimization problem that

minimizes the following:

min
q1,q2,...,qc

c
∑

i=1

(

∑

j,j 6=i

(1 − µ̂ij)qi −
∑

j,j 6=i

µ̂ijqj

)2

subject to

c
∑

i=1

qi = 1, qi ≥ 0, i = 1, 2, . . . , c.

Further details of the algorithm can be found in [148], and a possible implementa-

tion is available at [22].
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Chapter 4

Digital Image Forensics via

Intrinsic Fingerprints

In Chapter 3, we showed that any change or inconsistencies in the estimated intrin-

sic fingerprints can help detect forgeries. In this chapter, we take a closer look at

approaches for tampering detection and steganalysis and introduce a new method-

ology for digital image forensics of color images aimed at identifying different types

of global tampering operations. The algorithm works in a two steps. In the first

step, using a detailed imaging model and its component analysis as presented in

Chapter 3, we estimate the intrinsic fingerprints of the various in-camera process-

ing operations. We then model any further processing applied to camera outputs

as a filtering operation, and estimate its coefficients to obtain the post-camera

fingerprints. We show that absence of estimated in-camera fingerprints suggests

that the test image is not a camera output and is possibly generated by other im-

age production processes, and any change or inconsistencies among the estimated

in-camera fingerprints, or the presence of new post-camera fingerprints indicates

that the image has undergone some kind of post-camera processing. We begin this
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chapter by reviewing related work in Section 4.1. The proposed forensic frame-

work to estimate the post-camera fingerprints is presented in Section 4.2. Detailed

simulation results and elaborate case studies are then presented in Section 4.3 and

Section 4.4, respectively, and the chapter is summarized in Section 4.5.

4.1 Related Work on Tampering Detection and

Steganalysis

In the forgery detection literature, there have been work that try to address the

problem of identifying if the given digital image has gone through any process-

ing, such as tampering or steganographic embedding, after being produced by the

camera. These work try to define the properties of a manipulated image in terms

of the distortions it goes through, and using such analysis present methods for

detecting manipulated images. For instance, some work assume that creating a

tampered image involves a series of processing operations, which might include

resampling [111], JPEG compression [33,80,84], Gamma correction [34], and chro-

matic aberration [67]. Based on this observation, they propose to identify such

manipulations by extracting certain salient features that would help distinguish

such tampering from authentic data.

When the image is upsampled, some of the pixel values are directly obtained

from the smaller version of the image, and the remaining pixels are interpolated and

thus highly correlated with its neighbors. Thus, post-processing operations such

as resampling can be identified by studying the induced correlations [111]. JPEG

compression has been considered as quantization in the discrete cosine transform

(DCT) domain and statistical analysis based on binning techniques have been
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used to estimate the quantization matrices [33, 84]. Image manipulations such as

contrast changes, Gamma correction and other image non-linearities have been

modelled and higher order statistics such as the bispectrum have been used to

identify and blindly correct them [37,110]. Inconsistencies in noise patterns [110],

JPEG compression [35], or lighting [66], and alternations in correlations induced

by color interpolation [112] caused while creating a tampered picture have been

used to identify inauthentic images.

In [35], the authors exploit the differences in JPEG quantization tables among

different cameras to introduce an image authentication scheme. Given a digital

image, the authors first estimate the quantization table from it [84,110], and then

compare the estimated tables with a database of quantization tables collect apriori

from 204 different digital cameras. A mis-match in the estimated quantization ta-

bles with the ones in the database or across different regions of the image suggests

that the image has been manipulated after being captured by a digital camera.

Johnson et al. model inconsistencies in lighting directions to determine possible

tampering [66]. A 2-D model is constructed based on an earlier work by Nillius

et al. [103] and the lighting direction is estimated non-intrusively from the image

based on this model. The authors show through simulations that the lighting di-

rection can be estimated up to an error of two degrees when tested with infinite,

local, and multiple light sources; therefore, assisting in the detection of contradict-

ing light sources.

Although these methods can be employed to identify the type, and the pa-

rameters of the post-processing operation, it would require an exhaustive search

over all the numerous kinds of post-processing operations to detect tampering.

Based on this observation, blind tampering detection methods based on sensor
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noise patterns and image features were proposed. The presence of pattern noise

in camera-captured images and its absence in tampered images have been used

to detect forgeries [86]. Ng et al. employed bicoherence features to detect the

presence of abrupt discontinuities in the image and use such analysis to detect

tampering and to distinguish between photographic and computer graphics im-

ages [102]. In [36], the authors show that wavelet features extracted from the

image can be employed for other forensic applications including distinguishing be-

tween natural and un-natural synthetic images, plan text and stego data, computer

graphics images and photographs, and differentiating between live and broadcast

images [36,87]. Avcibas et al. develop a set of content independent features based

on analysis of variance approaches and image quality metrics [10] for distinguishing

between unmanipulated images and images manipulated via brightness or contrast

enhancement [8]. These methods [8,36,53] require samples of tampered images for

classification to distinguish manipulated images from genuine ones. Further, these

methods may not be able to efficiently identify other kinds of manipulations that

are not modelled or considered directly. By defining the properties of an authentic

image via intrinsic fingerprints, our proposed methods provide better scalability

and can help identify previously unseen distortions as will be seen in Section 4.3.

In steganalysis literature, there have been work that identify the presence

of hidden information in multimedia data. These work can be broadly classi-

fied into two classes, namely embedding-specific and universal. In the class of

embedding-specific steganalysis, there have been algorithms to identify different

types of least significant bit (LSB) embedding [43, 45, 143]. Statistics based ap-

proaches for universal blind staganalysis have been introduced in [9, 88], where

features from wavelet statistics [88] or image quality measures [9] are used to build
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a classifier to distinguish stego data from cover data.

Most of these techniques mentioned above are primarily targeted at finding

the processing steps that occur after the image has been captured by the camera,

and are not for finding the algorithms and parameters used in various components

inside the digital camera. As shall be seen from our results, the proposed foren-

sic methodology based on intrinsic fingerprints provides a combined framework

for authenticating digital camera outputs and distinguishing them from scanned,

computer generated, tampered, and stego data.

4.2 Estimating Intrinsic Fingerprints of Post-Camera

Manipulations

In this section, we present methods to estimate the intrinsic fingerprints of post-

camera manipulations under the assumption that the entire image has undergone

the same manipulation. This approach can be extended over a block-by-block basis

to estimate the intrinsic fingerprints in individual blocks. Given a test image or

an image block, St, we introduce a non-intrusive forensic methodology to identify

if it has undergone any further processing after it is being captured using a digital

camera. We first assume that St is a manipulated camera output corresponding

to the point B in Figure 2.3, and is obtained by processing the actual camera

output Sd (point A in Figure 2.3) using the manipulation block. We then represent

the post-camera processing applied on Sd as a combination of linear and non-

linear operations, and approximate them with a linear shift-invariant filter. The

coefficients of this manipulation filter, estimated using blind deconvolution, serve

as our post-camera fingerprints to answer a number of forensic questions related to
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the origin and the authenticity of digital images [132]. In the following subsections,

we describe the estimation algorithm in detail.

4.2.1 Computing Inverse Manipulation Filter Coefficients

by Constrained Optimization

Let St denote the test image, and let Ste represent the estimate of the camera

output obtained by passing the given test image through the inverse manipulation

filter u, i.e.,

Ste(x, y, c) =
∑

m,n

u(m, n, c)St(x − m, y − n, c), for 1 ≤ c ≤ 3. (4.1)

Here, we assume that u(., ., .) is of dimension Nu ×Nu × 3, and operates indepen-

dently on each color component. The coefficients of the inverse manipulation filter,

u, are estimated by solving an optimization problem that minimizes the camera

model fitting error, E(u), given by

E(u) =
3
∑

c=1

∑

x,y

(

Ŝte(x, y, c) −
∑

m,n

u(m, n, c)St(x − m, y − n, c)

)2

, (4.2)

where Ŝte denotes the image formed from Ste by imposing the constraints that

pixels from a camera output image should satisfy due to CFA based color interpo-

lation:

Ŝte(x, y, c) =























∑

m,n αℜi
(m, n, c)Ste(x − m, y − n, c)

∀{x, y} ∈ ℜi, and 1 ≤ c ≤ 3,

Ste(x, y, c) otherwise.

(4.3)

In these camera constraints, αℜi
denote the estimates of the color interpolation co-

efficients, and are derived from the image Ste using the component forensics tech-

niques presented in Section 3.2 . In our work, we assume that
∑

m,n u(m, n, c) = 1
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Figure 4.1: Recursive algorithm to estimate the coefficients of the manipulation

filter.

for c = 1, 2, 3 to ensure that the original image and its manipulated version have

similar brightness levels. Incorporating this gain constraint into the minimization

problem, we solve for u by minimizing a modified cost function, J(u), given by

J(u) =
∑

x,y,c

(

Ŝte(x, y, c) −
∑

m,n

u(m, n, c)St(x − m, y − n, c)

)2

+η
3
∑

c=1

(

∑

m,n

u(m, n, c) − 1

)2

, (4.4)

where the value of η is chosen to adjust the weights of the relative individual costs.

The filter coefficients can be directly estimated in the pixel domain through

a recursive procedure illustrated in Figure 4.1. We start the iteration by setting

u(0) to be a delta function; this corresponds to direct camera outputs. In the kth

iteration, we obtain an estimate of the camera output, S
(k)
te , by passing the test

image St though the estimate of the inverse blur filter u(k)(., ., .). We then impose

camera constraints given by (4.3) to get Ŝ
(k)
te and find the camera model fitting

error. The inverse filter coefficients are then updated [74] by

u(k+1) = u(k) + tkdk, (4.5)
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Figure 4.2: Convergence of the cost function for (a) unmanipulated image, (b)

manipulated image filtered with a 5 × 5 averaging filter.

where

dk =











−∇J(u(k)), if k = 0,

−∇J(u(k)) + λk−1dk−1, otherwise,
(4.6)

λk−1 =
< ∇J(u(k)) −∇J(u(k−1)),∇J(u(k)) >

||∇J(u(k−1))||2 , (4.7)

and the step sizes tk are chosen as the one that minimizes J(u(k) + tkdk) ≤

J(u(k) + tdk) for all t. The recursive procedure is repeated for a finite number

of iterations or until convergence. In the Appendix of this chapter, we show that

the optimization problem is convex and converges to a unique solution for all im-

ages whose interpolation parameters αℜi
can be estimated accurately.

We test the blind deconvolution method for a sample direct camera output

along with its filtered versions. Figure 4.2(a) and (b) shows the variation of the

modified cost function J given by (4.4) as a function of the number of iterations

for a sample unmanipulated image and an image filtered with an 5 × 5 averaging
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Figure 4.3: Estimated inverse manipulation filter coefficients for (a) unmanipulated

image, (b) manipulated image filtered with a 5 × 5 averaging filter. The inverse

filter kernel size is set to 5 × 5.

filter, respectively. We observe that the cost function converges in 10 iterations

in both cases. The final estimated inverse filter coefficients u(., ., 2) for the green

color channel for the two cases are shown in Figure 4.3(a) and (b), respectively.

While the estimated coefficients from the unmanipulated camera output in Fig-

ure 4.3(a) are very close to an identity transform (corresponding to no post-camera

manipulations), the corresponding manipulation coefficients derived from the av-

erage filtered image, as presented in Figure 4.3(b), are similar to the 5 × 5 kernel

approximation of the inverse of the 5 × 5 averaging filter.

The performance of the blind deconvolution algorithm for tampering detection

is to a great extent tied with the choice of the kernel size. In an ideal scenario, a

finite size averaging filter in the pixel domain would require an infinite length kernel

for its inverse. Although a larger kernel gives enhanced performance improvements,

it requires more iterations for convergence. In the next subsection, we present a

solution to directly estimate the filter coefficients in frequency domain.
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4.2.2 Estimating Manipulation Filter Coefficients by Iter-

ative Constraint Enforcement

The recursive algorithm described in Figure 4.1 can be solved in the frequency

domain to directly obtain the manipulation filter coefficients by iteratively applying

known constraints to the input image [11]. A schematic diagram of the iterative

constraint enforcement algorithm is shown in Figure 4.4. The test image St is used

to initialize the iterative process. In each iteration, the estimated camera output, g,

and the estimated filter coefficients, h, are updated by repeatedly applying known

constraints on the image and the filter in the pixel domain and the Fourier domain.

In the kth iteration, the pixel domain constraints on the image gk consists of

1. Real-valued constraints that enforce the image pixel values to be real,

2. Boundedness constraints restricting the image pixel values to the range [0, 255],

and

3. Camera constraints of CFA-based color interpolation given by

ĝk(x, y, c) =























∑

m,n αℜi
(m, n, c)gk(x − m, y − n, c),

∀{x, y} ∈ ℜi, and 1 ≤ c ≤ 3

gk(x, y, c) otherwise,

(4.8)

where αℜi
denote the estimates of the color interpolation coefficients derived from

the image gk using the component forensics techniques presented in Section 3.2.

After the image ĝk is obtained, it is transformed by Discrete Fourier transform

(DFT) to give Ĝk. The frequency response Hk of the estimated manipulation filter

in the kth iteration is obtained using the technique described in [72,73] with

Hk =
F(St)Ĝ

∗
k

|Ĝk|2 + β1

|Hk−1|2

, (4.9)
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Figure 4.4: Schematic diagram of the iterative constraint enforcement algorithm.

where β1 is an appropriately chosen constant, F(St) denotes the Fourier transform

of the test image St, and Ĝ∗
k represents the complex conjugate of Ĝk. The value

of H0 for the first iteration is initialized as H0 = F(St)/Ĝ0. The estimated filter

response Hk is then inverse Fourier transformed to give hk. We further impose

filter constraints on hk and obtain ĥk to be the real part of hk. The value of Gk+1

for the (k + 1)st iteration is obtained as a function of its two available estimates,

(a) previous value, Gk, and (b) the estimate obtained by enforcing the Fourier

domain constraint, (FSt/Ĥk), where FSt = F(St) and Ĥk = F(ĥk). Both these

estimates have their unique properties – Gk has a non-negative inverse transform

that satisfies the image domain constrains, and (FSt/Ĥk) satisfies the Fourier

domain constraints. In our work, we average these two estimates separately in

every iteration for each spatial frequency value and color to obtain the new estimate

for Gk+1 as described in [11]:

Gk+1 =























Gk if |FSt| < γ,

(1 − β2)Gk + β2
FSt

Ĥk
if |FSt| ≤ |Ĥk| and |FSt| ≥ γ,

(

(1−β2)
Gk

+ β2Ĥk

FSt

)−1

if |FSt| > |Ĥk| and |FSt| ≥ γ.

(4.10)
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Here, γ and β2 are appropriately chosen constants. The value of γ represents

the noise resilience of the system, and β2 is chosen to lie in the range [0, 1] to

indicate the relative significance of the two terms in update equation [11]. In our

experiments, we set γ = 10−5 and β1 = β2 = 0.3. Finally, Gk+1 is inverse Fourier

transformed to give gk+1, the pixel domain estimate of the camera output image,

and the system proceeds to the next iteration. This process is repeated for a finite

number of iterations and the frequency response of the estimated manipulation

filter parameters H are found, to obtain the intrinsic fingerprints of post-camera

manipulations. Deviation of the estimated manipulation filter parameters from

an identity transform indicates that the test image has been manipulated after

capture by the camera.

4.2.3 Performance Studies on Detecting Manipulations with

Synthetic Data

We use synthetic data constructed from 100 representative images to study the

performance of the blind deconvolution techniques for tampering detection [124,

132]. These 100 images are first down-scaled by a factor of 2 × 2 to remove the

effects of previously applied filtering and interpolation operations, sampled on

the Bayer filter [6, 7] array and then interpolated using six different interpolation

algorithms to reproduce the scene capture process in cameras. For our simulations,

we consider six different color interpolation methods: (a) bilinear, (b) bicubic, (c)

smooth hue, (d) median filter, (e) gradient based, and (f) adaptive color plane.

Details about these interpolation algorithms can be found in [7]. These 600 images

that satisfy the camera model form our unmanipulated set. Processed versions are

then obtained by applying average filtering to these 600 images with different filter
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Figure 4.5: Frequency response of the manipulation filter for (a) A simulated un-

manipulated camera output, and (b) Image low-pass filtered with a 5×5 averaging

filter; (c) Actual manipulation filter coefficients of the 5× 5 averaging filter shown

alongside for comparison. The magnitude of the frequency response is shown in

the log10 scale.

orders from 3 to 11.

We run the proposed blind deconvolution methods on all the images and com-

pute the coefficients of the manipulation filter in each case using iterative con-

straint enforcement algorithm. In Figure 4.5(a), we show the estimated Fourier

transform for a simulated unmanipulated camera output. We notice that it is

almost a constant flat spectrum, representing an identity transform. The corre-

sponding estimated frequency response for a 5× 5 average filtered image is shown

in Figure 4.5(b), and the actual coefficients are shown in Figure 4.5(c) for compar-

ison. The similarity among the estimated and the actual coefficients justifies the

performance of the the blind deconvolution algorithms.

A closer look at the frequency response of the manipulation filter for an un-

manipulated camera output, shown in Figure 4.5(a), suggests minor deviations

from an ideal flat spectrum. These deviations are attributed to the various post-

interpolation processing that are done inside the cameras such as compression,

denoising, and white balancing. To compensate for these minor deviations, we
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use the spectral response Href , obtained using the blind deconvolution algorithm,

from an authentic camera output as reference. Given the test input St, we find the

frequency domain coefficients of the manipulation filter Ht and compare it with

Href to measure the similarity among the coefficients. More specifically, we first

find Θt = log10(|Ht|) to obtain the logarithm of the magnitude of the frequency

response, and compute the similarity between the coefficients of the test input and

the reference image using the similarity score defined as

s(Θt, Θref) =
∑

m,n

(Θt(m, n) − µt) × (Θref(m, n) − µref) , (4.11)

where µt denotes the mean of the Θt, and µref represents the mean of the Θref .

The test input is then classified as unmanipulated if the similarity to the reference

pattern is greater than a suitably chosen threshold. On the other hand, if the

input image has undergone tampering or steganographic embedding operations,

the estimated manipulation filter coefficients would include the effects of both

the post-camera manipulation operations along with post-interpolation processing

inside the camera. In this case, the manipulation filter coefficients would be less

similar to the reference pattern, and the similarity score would be lower than the

chosen threshold.

We examine the performance of the threshold based classifier in terms of the

receiver operating characteristics (ROC) [124]. For each original image, we com-

pute the frequency response of the equivalent manipulation filter and measure its

similarity with the reference filter pattern. The fraction of original images with a

similarity score lower than a threshold τ is found to give the false alarm probability

PF . Similarly, we record the fraction of manipulated images (filtered in this case)

with a similarity score less than τ to give the probability of correct decision PD.

We repeat this process for different decision thresholds τ , and arrive at the ROC as
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Figure 4.6: Receiver operating characteristics for distinguishing between simulated

camera outputs and its filtered versions.

shown in Figure 4.6. We observe from the figure that the proposed scheme attains

a PD ≈ 1 for PF = 0. This suggests that the proposed scheme can effectively

distinguish between direct camera outputs and its filtered versions.

4.3 Detecting Tampering on Camera Captured

Images

Forensic evidence obtained by analyzing the coefficients of the manipulation filter

provides clues about possible image tampering. Most often, creating a realistic

tampered image involves a series of post-camera processing operations such as fil-

tering, compression, resampling, contrast change, and others, that may be applied

globally to the entire image or locally to different regions of the image. These

processing operations leave distinct traces in the final picture and can be detected

using the threshold based classifier by comparing the estimated manipulation filter

coefficients with the reference pattern. In this section, we study the performance of
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the proposed techniques for detecting different types of global image manipulations

with real camera data. The forensic methodologies discussed in this section can be

extended to detect local tampering by applying the techniques on a block-by-block

basis.

4.3.1 Simulation Setup

A total of nine camera models as shown in Table 4.1 are used in our experi-

ments. For each of the nine camera models, we have collected about 100 im-

ages. The images from different camera models are captured under uncontrolled

conditions−different sceneries, different lighting situations, and compressed under

different JPEG quality factors as specified by default values in each camera. The

default camera settings (including image size, color correction, auto white balanc-

ing, and JPEG compression) are used in image acquisition. From each of these

images, we randomly crop a 512 × 512 portion and use it for subsequent analysis.

Thus, our camera image database consists of a total of 900 different 512 × 512

pictures. These images were then processed to generate 21 tampered versions per

image to obtain 18900 manipulated images, and the 21 manipulation settings are

listed in Table 4.2.

4.3.2 Classification Methodology and Simulation Results

We study the discriminative capabilities of our proposed schemes in terms of the

ROC of the hypothesis testing problem with the following two hypotheses:

• Υ0: image is a direct camera output,

• Υ1: image is not a direct camera output and is possibly manipulated.
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Table 4.1: Camera models used in experiments.

No. Camera Model No. Camera Model

1 Canon Powershot A75 6 Canon EOS Digital Rebel

2 Canon Powershot S410 7 Nikon E4300

3 Canon Powershot G6 8 Fujifilm Finepix S3000

4 Canon Powershot S400 9 Sony Cybershot DSC P72

5 Canon Powershot S1 IS

For each image, we compute the frequency domain coefficients of the estimated

manipulation filter and determine its similarity with the chosen reference pattern.

Images with a similarity score greater than a threshold are classified as authentic.

To choose the reference pattern, we randomly select a set of Nt training images

along with its manipulated versions in the training stage. Using each of these Nt

images, we compute the in-class and out-class similarity scores. More specifically,

given the ith image (1 ≤ i ≤ Nt), we calculate the in-class similarity scores by

comparing the manipulation filter estimated from the ith image and the estimates

obtained from the remaining (Nt − 1) images using (4.11). The out-class scores

are then found by quantifying the similarity among the manipulation filter of the

ith image and the filter coefficients derived from the remaining tampered images.

Using a threshold τ , the fraction of direct camera outputs with a similarity score

lower than τ is computed to give the false alarm probability PF = Pr(Υ1|Υ0), and

the fraction of manipulated images with a similarity score less than τ is found to

give the probability of correct decision PD = Pr(Υ1|Υ1). We repeat this process for

different decision thresholds τ to arrive at the ROC, and compute the area under

the curve. These steps are performed separately with each of the Nt images in
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Table 4.2: Tampering operations included in the experiments.

Manipulation Operation Parameters of the Operation Number of Images

Spatial Averaging Filter orders 3-11 in steps of 2 5

Median Filtering Filter orders {3, 5, 7} 3

Rotation Degrees {5, 10, 15, 20} 4

Resampling Scale factors 6

{0.5, 0.7, 0.85, 1.15, 1.3, 1.5}

Additive Noise PSNR 5dB and 10 dB 2

Histogram Equalization 1

Total 21

the training stage, and the manipulation filter coefficients that gives the maximum

area under the ROC curve is chosen as the reference pattern. After choosing the

reference pattern in the training stage, we compute the in-class and out-class sim-

ilarity scores by comparing the chosen reference pattern with the filter coefficients

obtained from the remaining camera outputs and its corresponding tampered ver-

sions, respectively, in our database in the testing stage. The corresponding ROC

curves are obtained through this process.

Testing with Images from Canon Powershot A75

We test the performance of the proposed techniques using the 100 images from

Canon Powershot A75. We choose this camera for two reasons: (a) based on our

experimental studies, we observe that a linear shift-invariant model for the color

interpolation coefficients fits well with the cameras’ interpolation in each type of

region and gives a very low fitting error; and (b) we observe that this Canon camera
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Figure 4.7: Receiver operating characteristics for tampering detection for images

from Canon Powershot A75 when 50 images are used in training and the remaining

50 images are used in testing.

uses the same JPEG quantization table for all images that it captures, invariant

of the input scene. Therefore, all images from the camera undergo the same kind

of post-processing operations after color interpolation.

For our analysis with images from Canon Powershot A75, we use a randomly

chosen set of 50 images for training, and test on the remaining 50 images along

with the corresponding 50 × 21 tampered images. Figure 4.7 shows the perfor-

mance of the threshold based detector averaged over 100 iterations. At relatively

low PF around 10%, the probability of correct detection is about 80% − 95% for

most types of manipulations tested. Here, the results are based on a two-class

classification problem, wherein the first class includes the direct camera outputs

and the second class consists of camera outputs that have undergone a specific

type of manipulation.
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Testing with Diverse Inputs from Multiple Cameras

We now examine the performance of the proposed techniques under diverse in-

put conditions. More specifically, we use all the 900 direct camera output images

for the untampered dataset. These images were captured under the default cam-

era settings and may have undergone different kinds of in-camera post-processing

operations such as JPEG compression after color interpolation.

Figure 4.8 shows the ROC curve for detecting each manipulation. Here, we use a

randomly chosen set of 200 images to train the classifier and test with the remaining

700 images; the experiments are repeated over 100 times to obtain an average

ROC curve. In this case, we observe that for PF close to 10%, the probability of

correct detection is close to 100% for such manipulations as spatial averaging and

additive noise, and around 70%−80% for median filtering, histogram equalization,

and rotation. These results are better than other work in the literature that are

applicable to blind tampering detection [36, 112].

Comparing the results in Figure 4.8 with the results with the Canon Power-

shot A75 in Figure 4.7, we notice around 5%−10% performance drop in detection

accuracy for the same false positive rate. This reduction in performance can be at-

tributed to the different types of post-processing operations performed after color

interpolation in various camera brands and models. In our future work, we plan to

estimate the parameters of such post-interpolation operations as JPEG compres-

sion [84] and white balancing, and include them into the system model to bridge

the performance gap.
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Figure 4.8: Receiver operating characteristics for tampering detection when tested

with all images in the database with 200 images are used in training.

Training and Testing using Inputs from Different Cameras

The proposed techniques are non-intrusive and do not require that the actual

camera make/model be used in the training set. To demonstrate this aspect, we

test the performance of the proposed techniques using 100 images from Canon

Powershot A75 and 100 images from Sony Cybershot DSC P72. We randomly

choose 50 out of 100 Canon Powershot A75 images and use them for training to

identify the reference pattern; the 100 images from Sony Cybershot DSC P72 are

used in testing. The performance results, averaged over 100 iterations, are shown in

Figure 4.9. The figure shows that the performance is good for most manipulations

and for PF around 10%, the probability of correct detection is close to 80%−90%.

This result is comparable to the plots in Figure 4.7 and Figure 4.8. The drop in

performance for some manipulations such as resampling can be attributed to the

absence of the original camera make/model in training.
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Figure 4.9: Receiver operating characteristics for tampering detection when images

from Canon Powershot A75 are used in training and images from Sony Cybershot

DSC P72 are used in testing.

4.3.3 Tampering Forensics using the Estimated Manipula-

tion Filter Coefficients

The estimated filter coefficients can also be employed to quantify the likelihood

and degree of tampering, and to identify the type and parameters of the tampering

operation. In this subsection, we show that the similarity score can be used to

define a camera-model fitting score to evaluate the amount of tampering that the

test image has undergone. For our experiments, we first choose six good reference

patterns that give the highest area under the ROC curve. The camera-model

fitting score for the test image is then defined as the median of the similarity

scores obtained by comparing the estimated coefficients of the test image with the

ones obtained from each of the six reference patterns. The higher the fitting score

is, the greater the likelihood that the test image is a direct camera output without

further processing.
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We examine the variation of the camera-model fitting score as a function of the

degree of tampering for all the manipulations listed in Table 4.2. Figure 4.10(a)

and Fig 4.10(b) show the camera-model fitting score as a function of the filter

order for spatial averaging and median filtering, respectively. In both cases, we

observe that the fitting score reduces as the filter order increases and as the degree

of tampering increases. Further, the score is less than −1000 for all average filtered

images. This low value is because of the distinct nulls in the frequency spectrum

of the manipulated filter, estimated from filtered images, making it very different

from the flat reference pattern.

Figure 4.11(a) and (b) show the camera-model fitting score as a function of the

angle of rotation and the resampling rate, respectively. For manipulations such as

rotations, the average fitting scores for manipulated images are less than zero as

can be seen in Figure 4.11(a), and therefore the detection algorithm can efficiently

identify rotations by setting an appropriate threshold close to zero. For image

resampling, the results from Figure 4.11(b) indicate that the average camera-model

fitting score reduces as the resampling rate deviates from 100% and therefore these

manipulations can be detected with the threshold based classifier. Similar trend

is also observed for additive noise and the fitting score reduces as the strength of

additive noise increases.

The estimated manipulation filter coefficients can also be employed to identify

the type and parameters of post-camera processing operations. In Figure 4.12,

we show the frequency response of the estimated manipulation filter coefficients

for the different types of manipulations listed in Table 4.2. A closer look at the

manipulation filter coefficients in the frequency domain suggest noticeable differ-

ences for the different kinds of tampering operations. For such manipulations as
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Figure 4.10: Variation of the camera-model fitting score as a function of the filter

order for (a) average filtering and (b) median filtering.

average filtering, we observe distinct nulls in the frequency spectrum and the gap

between the nulls can be employed to estimate the order of the averaging filter

and its parameters. Image manipulations such as additive noise result in a white

noisy spectrum as shown in Figure 4.12(g), and the strength of the noise can be

computed from the manipulation filter coefficients. Rotation and downsampling

can be identified from the smaller values in the low-high and the high-low bands

of the frequency spectrum of the manipulation filter. In our future work, we plan

to further investigate on employing the estimated intrinsic fingerprints of post-

camera processing operations to provide forensic evidence about the nature and

parameters of the tampering that the image has undergone. Such analysis may

help re-create the original image from its corresponding tampered versions.
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Figure 4.11: Variation of the camera-model fitting score as a function of the degree

of tampering for (a) image rotations and (b) resampling.

4.3.4 Attacking the Proposed Tampering Detection Algo-

rithm

In the work presented so far, we have considered direct camera outputs as authentic

images and presented methods to distinguish them from other images that have

undergone post-camera manipulations. In this subsection, we examine the other

side of the problem from the attackers’ viewpoint. Given the knowledge of the

proposed tampering detection algorithm, the attacker could potentially come up

with better tampering operations to foil the detector. We illustrate it with a

particular attack as follows:

In Step 1 of the tampering process, the attackers estimate the color interpo-

lation coefficients using component forensics methodologies described in Section

3.2 . After estimating the color interpolation coefficients, the attacker proceeds to

Step 2 to tamper the image by applying such post-camera operations as filtering

and resampling; then in Step 3 the attacker re-enforces the camera constraints via
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Figure 4.12: Frequency response of the manipulation filter for camera outputs that

are manipulated by (a) 7× 7 averaging filter, (b) 11× 11 averaging filter, (c) 7× 7

median filter, (d) 20 degrees rotation, (e) 70% resampling, (f) 130% resampling, (g)

noise addition with PSNR 20dB, and (h) histogram equalization. The frequency

response is shown in the log scale and shifted so that the DC components are in

the center.

(4.3) using the estimated camera component parameters obtained earlier in Step 1.

Figure 4.13(a) shows the in-class and the out-class similarity scores obtained by

comparing the reference patterns with the direct camera outputs and the tampered

versions by the above three-step process, respectively, for the scenario when the

camera input is tampered by down-sampling to half its original size in Step 2, be-

fore enforcing the camera constraints in Step 3. We notice from the figure that the

in-class and the out-class distances are well separated, and an appropriate thresh-

old value τ ≈ −200 can be used to distinguish the two classes. The ROC curve

computed using the threshold based classifier is shown alongside in Figure 4.13(b).

The figure suggests that the classifier still performs well and gives a PD close to

100% even for low values of PF close to 1%. The reason behind the superior per-

formance is because the tampered images have undergone several manipulations,
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Figure 4.13: Performance results for reverse engineering attacks: down-sampling

by 50% followed by camera-constraint re-enforcement. (a) In-class and out-class

similarity scores, (b) Receiver operating characteristics for the tampering detection

problem.

each of which introduce some inherent traces in the final output image, and the

Step 3 restoration process is not able to completely disguise the attacks from the

iterative forensic analysis algorithm. Thus, the proposed techniques can efficiently

resist such attacks.

4.4 Further Discussions and Applications

The results in the previous section demonstrate that the intrinsic fingerprint traces

left behind in the final digital image by the post-camera processing operations can

provide a tell-tale mark to robustly detect global manipulations. In this section,

we show that the estimated filter coefficients can also be employed to detect other

kinds of post-camera processing operations such as steganographic embedding and

watermarking. Further, any change or inconsistencies in the estimated in-camera
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Figure 4.14: Performance results for steganalysis of (a) F5 algorithm and (b)

Steghide at different embedding rates.

fingerprints, or the presence of new post-camera fingerprints provide clues to detect

cut-paste tampering and to determine if the given image was produced using a

camera, a scanner, or a computer graphics software.

4.4.1 Applications to Universal Steganalysis

Watermarking and steganographic embedding may also be modeled as post-processing

operations applied to camera outputs, and the estimated post-camera fingerprints

can be utilized to identify them. Steganography is the art of secret communica-

tion whereby the hidden information is transmitted by embedding it on to the

host multimedia. Over the past few years, there have been a number of stegano-

graphic embedding algorithms using digital images as hosts for covert communica-

tion [44,47,60,91,142]. In the same period, several steganalysis methods have been

proposed to identify the presence of hidden data in multimedia. While embedding-

specific steganalysis [45] target specific embedding algorithms, universal steganal-
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ysis [9,88] are designed to identify more than one type of steganography. With an

increasing number of steganographic embedding algorithms, there is a strong need

for robust universal methods for blind steganalysis. As can been seen from our

results, the proposed intrinsic fingerprinting techniques facilitate blind steganalysis

by distinguishing authentic camera outputs from images with hidden content.

A common challenge of steganalysis is how to model the ground truth orig-

inal non-stego image data. In our work, we consider direct camera outputs as

non-stego data and apply the camera model to characterize its properties; image

manipulations such as watermarking and steganography are then modelled as post-

processing operations applied to camera outputs. In this subsection, we show that

these embedding algorithms leave behind statistical traces on the digital image

that can be detected by analyzing the coefficients of the manipulation filter, and

examine the performance of our proposed techniques for identifying the presence

of hidden messages in multimedia data.

We test the performance of the threshold based detector in distinguishing au-

thentic camera outputs from stego data. In our experiments, we use the same

camera data set with 100 images of size 512 × 512 from Canon Powershot A75

camera [127]. Stego images are then generated by embedding random messages of

different sizes into the cover images. Generally speaking, the maximum embedding

payload depends on the nature of the cover image and the data hiding algorithm.

For our simulations, we first find the average of the maximum embedding payload

across 100 images and then embed messages at 100%, 75%, and 50% of this value.

For our study, we consider three popular steganographic embedding methods that

employ different approaches to hide information – F5 [142], steghide [60], and

spread spectrum steganography [91].
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Performance Results for LSB Embedding

Least Significant Bit (LSB) embedding methods have been widely used for data

hiding. Many algorithms such as Jsteg, JPEG hide-and-seek [77], Outguess [113],

and F5 [142] embed a secret message into the LSB of the DCT coefficients of the

cover image. For a survey of LSB methods, see [114] and the references therein.

Most LSB embedding methods such as JPEG hide-and-seek [77] and Outguess [113]

replace the LSB of the DCT coefficients with the secret message, and statistical

steganalysis using χ2-test can be used to detect them [143]. In our work, we focus

on the embedding methods of F5 and steghide.

The F5 technique that has been shown to be resilient to such statistical attacks

based on χ2-test [142], although it was subsequently broken in [45] by histogram

analysis of DCT coefficients. The F5 embeds data through matrix encoding by

decrementing the absolute value of the DCT coefficients. In our experiments with

F5, we estimate the average maximum payload across 100 color images to be

around 12 KB. The stego images are then generated by embedding secret mes-

sages of size 12 KB, 9 KB, and 6 KB using the software [141], respectively. The

detection results are shown in Figure 4.14(a) for different embedding rates. We

notice that the proposed algorithms perform with reasonable accuracy giving an

average detection accuracy close to 62% and 50% respectively at 100% and 75%

average embedding rates for false alarm probabilities around 1%. These results

are comparable to the wavelet statistics based steganalysis technique [88], which

reports average accuracies of 62% and 52% at the embedding rates of 100% and

78%, respectively.

Steghide preserves the first-order statistics of the image and can provide high

message capacity. Steghide employs a graph-theoretic approach to embed the
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secret messages on multimedia data. The message is hidden by exchanging rather

than overwriting pixels [60]. A graph is first constructed from the cover data to

the secret message. The pixels to be modified are represented as vertices and are

connected to possible partners by edges. A combinatorial problem is then solved

to embed the secret message by exchanging samples. In our studies with steghide,

we estimate the average maximum payload across 100 color images to be around

32 KB for a 512 × 512 color image. The stego images are then generated by

embedding secret messages of size 32 KB, 24 KB, and 16 KB using the software

[59], respectively. The detection results are shown in Figure 4.14(b) for different

embedding rates. We notice that the proposed algorithms can efficiently identify

steghide at 100% and 75% embedding rates with the probability of identifying stego

data close to 100% for a false alarm probability of 1%. However, the performance

reduces significantly when the secret message length is reduced to 50% capacity

at 16 KB. These results are better than the wavelet statistics based steganalysis

technique [88], which reports average accuracies of 77% and 60% at 100% and 78%

embedding rates, respectively.

Performance Results for Spread Spectrum Embedding

Next, we study the performance of spread spectrum embedding methods. Block-

DCT based spread spectrum embedding have been widely used in literature for

data hiding, watermarking, and steganography [146] for a wide variety of applica-

tions. Detecting spread spectrum steganography has been a challenging problem

over the last decade, and statistics based schemes typically do not perform well

in distinguishing original cover data and stego pictures. To our best knowledge,

the only work that addresses spread spectrum steganalysis is by Avcibas et al. [9],
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where it was shown that image quality metrics may be used as features to identify

such embedding. In their work, the authors show that they can attain an average

probability of correct decision of 80% with 40% false alarm probability when tested

with 10 images. We test the performance of the proposed intrinsic fingerprint sys-

tem for spread spectrum embedding. In our experiments, we use the same camera

data set with 100 Canon Powershot A75 images of size 512× 512 as our authentic

set. Stego images are then generated by adding pseudo-random watermarks at

different peak signal-to-noise ratios (PSNR) of 38dB, 40dB, and 42dB. The ma-

nipulation filter coefficients are estimated for the cover and the stego data, and

classified with the threshold based classifier. Figure 4.15 shows the performance

results for different PSNRs. We note that the average identification accuracy is

close to 100% for PSNRs of 38dB and 40dB, and reduces to 91% for 42dB PSNR.

These results demonstrate the superior performance of the proposed techniques.

In addition to the three steganographic schemes mentioned above, we also

test the performance of our algorithms for such embedding techniques as stochas-

tic modulation [44] and perturbed quantization (PQ) steganography [46, 47]. In

stochastic modulation steganography [44], a weak noise signal with a noise distri-

bution chosen to mimic the noise produced by the image acquisition device is added

to the cover image to embed the message bits. In the case of digital cameras, it has

been shown that the sensor and hardware noise are best modelled to be Gaussian

distributed [44, 58] and therefore detecting stochastic modulation steganography

can be considered equivalent to detecting the presence of additive Gaussian noise

in an image captured by a digital camera. Our results suggest that such embed-

ding can be detected with a very high accuracy with a PD close to 100% for low

values of PF about 1% using the proposed forensic analysis techniques. Perturbed
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Figure 4.15: Performance results for spread spectrum embedding at different

PSNR.

quantization steganography embeds information in the DCT coefficients by quan-

tizing the values either up or down depending upon the message to embedded.

The set of changeable coefficients is first found by identifying those coefficients

whose fractional part (i.e., difference between the actual value and the quantized

value) is lower than a pre-chosen threshold [47]. For our experiments with PQ

steganography, we use the 100 Canon Powershot A75 images of size 512 × 512,

JPEG compressed in the camera with the default quality factor close to 97%, as

our authentic set. Stego images are created by randomly embedding messages into

these images and quantizing them to a quality factor of 70%. Steganalysis for this

scheme is more challenging and the proposed techniques are able to identify such

manipulations with PD close to 70-80% under a PF ≈ 25%.
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4.4.2 Distinguishing Camera Capture from Other Image

Acquisition Processes

The proposed forensics methodology can be used to authenticate the source of the

digital color image. Evidence obtained from such forensic analysis would provide

useful forensic information to law enforcement and intelligence agencies as to if

a given image was actually captured with a camera or scanner, or generated us-

ing computer graphics software. We demonstrate this application with two case

studies.

Photographs vs Scanned Images

Digital cameras and image scanners are two main categories of image acquisition

devices. While a large amount of pictures of natural scenes are taken with digital

cameras, scanners have been increasingly used for digitizing documents. Rapid

technology development and the availability of high quality scanners has in part

led to more sophisticated digital forgeries. In this case study, we are interested in

determining if a digital image is produced by a camera or a scanner. The motivation

behind employing the proposed techniques for device identification is based on the

observation that the manipulation filter coefficients for an authentic camera output

would be close to a delta function, and the corresponding coefficients for a scanned

image would represent the scan process.

For our study, we choose 25 different images from four camera models to give a

total of 100 images for the camera image data set. We then collect another set of

25 different photographic images from several cameras with diverse image content.

These photographs are printed and then scanned back using 4 different scanner

models: (a) Canon CanoScan D1250U2F, (b) Epson Perfection 2450 photo, (c) Mi-
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Figure 4.16: Receiver operating characteristics for classifying authentic camera

outputs from scanned images.

crotek ScanMaker 3600, and (d) Visioneer OneTouch 5800USB. These 25×4 = 100

images form our scanned image data set. We test our proposed methods for these

200 images. The frequency response of the manipulation filter is estimated and

compared with a reference pattern. The ROC obtained using the threshold based

classifier is shown in Figure 4.16. Here PD denotes the fraction of scanned images

that are correctly classified as scanned, and PF represents the fraction of camera

outputs mis-classified as scanned. We observe from the figure that the proba-

bility of correct decision PD is around 92% for 1% false probability rate. These

results indicate that our proposed methods can effectively distinguish between the

camera-captured and scanned images.

Photographs vs Photo Realistic Computer Graphics

With an increasing number of sophisticated processing tools, creating realistic im-

agery has become easier. Modern graphic synthesis and image rendering tools can

be used to reproduce photographs to a very high degree of precision and accuracy,
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and therefore, the problem of distinguishing camera outputs from photorealistic

computer graphics has become important. In this case study, we employ our

proposed framework to distinguish digital photographic images and photorealistic

graphics images. For our study, we use a set of 100 images from 4 camera models

to create the camera image dataset. A randomly chosen set of 100 photorealistic

computer graphics images, obtained from the Columbia dataset [101] constitute

our photorealistic computer graphics data set. We use a cropped sub-image of size

512 × 512 to estimate the coefficients of the manipulation filter. The estimated

frequency response is then compared with the reference pattern and a threshold

based classifier is used to distinguish authentic camera outputs from graphics im-

ages. The results of our analysis, in terms of the receiver operating characteristics

(ROC), are shown in Figure 4.17. Here PD denotes the fraction of graphics im-

ages that are correctly classified as photorealistic, and PF represents the fraction

of photographs classified as computer generated. A large area under the ROC

curve suggests that our proposed method can distinguish between the two classes.

These results are comparable to the geometry based features proposed in [102],

and are better than the wavelet features [36] and the cartoon features based clas-

sifiers tested in [102]. Different from the geometry based features in [102] that are

motivated by the modelling the computer graphics creation tools and the artifacts

produced therein, our method focuses on finding the algorithms and parameters of

the imaging process in digital cameras to distinguish digital photographic images

from photorealistic computer graphics.
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Figure 4.17: Receiver operating characteristics for classifying authentic camera

outputs from photorealistic computer graphics.

4.5 Chapter Summary

In this chapter, we propose a set of forensic signal processing techniques to verify

whether a given digital image is an direct camera output or not. We introduce a

new formulation to study the problem of image authenticity. The proposed formu-

lation is based on the observation that each in-camera and post-camera processing

operation leave some distinct intrinsic fingerprint traces on the final image. We

characterize the properties of a direct camera output using a camera model, and

estimate its component parameters and the intrinsic fingerprints. We consider any

further post-camera processing as a manipulation filter, and find the coefficients of

its linear shift-invariant approximation using blind deconvolution. A high similar-

ity of the estimated coefficients and the reference pattern that corresponds to no

manipulations, certifies the integrity of the given image. We show through detailed

simulation results that the proposed techniques can be used to identify different

types of post-camera processing, such as filtering, resampling, rotation, etc. Evi-
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dence obtained from such forensic analysis is used to build a universal steganalyzer

to determine the presence of hidden messages in multimedia data. Our results sug-

gest that we can efficiently detect different types of embedding methods such as

least significant bit (LSB) and spread spectrum techniques with a high accuracy.

The estimated post-camera fingerprints are also employed for image acquisition

forensics to establish if a given digital image is from a digital camera, a scanner,

or a computer graphics software. Overall, our proposed techniques provides a

common framework for a broad range of forensic analysis on digital images.

Appendix: Convexity of the Optimization Prob-

lem and Uniqueness of Solution

In this appendix, we show that the optimization formulation in (4.4) is convex if

the camera’s color interpolation coefficients are known. A function J is said to be

convex if for any u1, u2 and 0 ≤ λ ≤ 1, we have

J(λu1 + (1 − λ)u2) ≤ λJ(u1) + (1 − λ)J(u2).

Since J(u) in (4.4) is a sum of two quadratic functions, it is sufficient to show

that these two functions are convex. Let

J(u) =
3
∑

c=1

(J1
c (u) + J2

c (u)),

where

J1
c (u) =

∑

x,y

[

∑

m,n

u(m, n, c)
(

Ŝt(x − m, y − n, c) − St(x − m, y − n, c)
)

]2

,

and

J2
c (u) = (

∑

m,n

u(m, n, c) − 1)2.
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Here, Ŝt denotes the estimate of the test image St obtained by imposing the camera

constraints:

Ŝt(x, y, c) =











∑

m,n αℜi
(m, n, c)St(x − m, y − n, c) ∀{x, y} ∈ ℜi, and 1 ≤ c ≤ 3,

St(x, y, c) otherwise.

In the above equation, αℜi
denotes the color interpolation coefficients employed in

the camera to render the test image St. In the absence of additional information,

the values of αℜi
can be non-intrusively estimated from the test image as long

as St is a direct camera output or an image that has undergone minor levels of

post-interpolation processing. Now, defining

ϕi(x, y, c) =
∑

m,n

ui(m, n, c)
(

Ŝt(x − m, y − n, c) − St(x − m, y − n, c)
)

,

we get

J1
c (λu1 + (1 − λ)u2) =

∑

x,y

[λϕ1(x, y, c) + (1 − λ)ϕ2(x, y, c))]2

= λ
∑

x,y

ϕ1(x, y, c)2 + (1 − λ)
∑

x,y

ϕ2(x, y, c)2

−λ(1 − λ) ×
∑

x,y

(ϕ1(x, y, c) − ϕ2(x, y, c))2

= λJ1
c (u1) + (1 − λ)J1

c (u2)

−λ(1 − λ) ×
∑

x,y

(ϕ1(x, y, c) − ϕ2(x, y, c))2

≤ λJ1
c (u1) + (1 − λ)J1

c (u2),

where the last inequality follows from 0 ≤ λ ≤ 1. This shows that J1
c is convex.

Similarly, we can show that the quadratic function J2
c is also convex, and therefore

establish the convexity of J .

To show that the solution of the optimization problem is unique, we make use of

a theorem in optimization theory that states that solution of a convex optimization
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problem with a cost function J is unique if the cost function is unimodal [61, 74],

i.e., ∇2J(u) > 0 for all u. Defining Ψ(x, y, c) = St(x, y, c) − Ŝt(x, y, c), we can

show that

∂2J

∂u(ai, bi, c)∂u(aj, bj , c)
= 2

∑

x,y

Ψ(x − ai, y − bi, c)Ψ(x − aj, y − bj , c)

+2u(ai, bi, c)u(aj, bj , c),

= 2 < Λ(ai,bi,c), Λ(aj ,bj ,c) >,

where Λ(ai,bi,c) represents a vector of length (H×W+1) consisting of all the elements

of Ψ(x−ai, y−bi, c) for all x and y along with the element u(ai, bi, c). Arranging the

vectors Λ(ai,bi,c) column-wise, we construct the matrix Ωc = [Λ(a1,b1,c)Λ(a1,b2,c) . . .] of

dimension (H × W + 1) × (N2
u) for c = 1, 2, 3. We can then show that ∇2J(u) =

2
∑3

c=1 ΩcΩ
T
c > 0. Thus, the cost function is unimodal and therefore its solution

unique.
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Chapter 5

Theoretical Analysis of

Component Forensics

In Chapter 3 and Chapter 4, we introduced component forensics as a new method-

ology for forensic analysis, and showed that evidence obtained from component

forensic analysis can be used in a number of applications including discovering

patent infringement, authenticating image acquisition source, detecting tampering,

and for fostering evolutionary studies. When security is compromised, intellectual

rights is violated, or authenticity is forged, component forensic methodologies can

be employed to reconstruct what have happened to the content to answer who has

done what, when, where, and how. In the previous chapters, we used the intrinsic

fingerprint traces left behind in the final digital image by the different components

of the imaging device as evidence to estimate the component parameters and to

answer the forensic questions. However, as the intrinsic fingerprint traces pass

through the different parts of the information processing chain, some of them may

be modified or destroyed and some others newly created. Therefore, the goodness

of this forensic evidence depends to a great extent on the accuracy at which they
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can be obtained and this limits their usage.

Let us consider the example of bootlegging. In recent times, an increasing num-

ber of movies have been re-shot with camcorders directly from the theater where

they are screened, and sold in the market. This kind of piracy incurs a significant

loss to the copyright industry. Complementary to watermarking and fingerprinting

technologies that help track such illegal reproduction, forensic analysis can help

to trace the origin and authenticity of digital data. The knowledge of the source

camera or camcorder (and its brand/model) that was used to capture the data

and information about the the display device (such as a flat-screen or projector)

from where the image/video was recorded can help identify both the person who

illegally captured the video and the place where the video was shot. To establish

such forensic evidence regarding the source and display characteristics in courts, a

higher confidence in the decision and a higher accuracy in parameter estimation is

strongly desired. However, such accuracies may not always be attained in practice

via multimedia forensic analysis due to its inherent fundamental limits. In the

bootlegging example, some traces of the projector employed in the theater might

be lost and new fingerprint traces about the camcorder itself might be inserted.

Hence, the data obtained from the final camcorder alone may or may not help com-

pute the parameters of the display device. This leads to further forensic questions

as to what components are identifiable and what are not.

In this chapter, we introduce a novel theoretical framework for component

forensics to quantify the accuracies at which the intrinsic fingerprints and the

component parameters can be estimated. We develop formal notions of identifia-

bility of components and investigate fundamental performance bounds. We define

a component as the basic unit of the information processing chain to facilitate
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theoretical analysis and consider two different scenarios. In the first scenario, we

assume no prior knowledge about the component or the possible subset of algo-

rithms employed by the component, and develop a framework based on estimation

theory and Cramer-Rao lower bounds to quantify the accuracies in estimating the

parameters of several components in the information processing chain [126, 134].

Details of this work are presented in Section 5.1. This theoretical framework has

useful in applications where there the forensic analyst has no prior knowledge about

the forensic system.

In some forensic applications, additional side information may be available to

the forensic analyst [130,134]. For instance, in the bootlegging example, geographic

constraints can be enforced to narrow down on a possible set of theaters (and their

display parameters) from where the movie could have been illegally recorded using

a camcorder. In the presence of such additional information, the component pa-

rameters could be found with a higher accuracy from among the available sample

set of algorithms by reformulating the estimation problem as a classification prob-

lem. In Section 5.2, we consider this scenario and develop a theoretical framework

for media forensics under the assumption that the component parameters take val-

ues from a finite set of possible algorithms. We derive conditions under which a

component is forensically classifiable and present case studies to demonstrate the

applications of this framework for a wide range of forensic tasks.

105



5.1 Theoretical Analysis via Estimation Frame-

work

In this section, we introduce a theoretical framework for component forensics and

examine the conditions under which the parameters of a component can be esti-

mated accurately. We quantify the accuracy of estimation in terms of bias and

variance of the estimator and derive performance bounds based on Fisher Infor-

mation. We first review Fisher information in Section 5.1.1 and then introduce the

theoretical formulation in Section 5.1.2.

5.1.1 Fisher Information and Cramer-Rao Lower Bound

Fisher information is the amount of information that an observable random variable

Z carries about an unobservable parameter θ [48]. It is mathematically given by

I(Z, θ) = Eθ

{

[

∂

∂θ
ln f(Z|θ)

]2
}

, (5.1)

where f(Z|θ) denotes the probability density function (pdf) of Z conditioned on

the value of the parameter to be estimated θ, and the notation Eθ denotes that

the expectation is performed conditioned on the value of the parameter θ. The

significance of the Fisher information is given by the Cramer-Rao lower bound

(CRLB). According to the CRLB, the average estimation error given an estimator

θ̂(Z) is lower bounded by

Eθ(θ̂(Z) − θ)2 ≥

[

1 + ∂
∂θ

b(θ̂, θ)
]2

Eθ

{

[

∂
∂θ

ln f(Z|θ)
]2
} + b(θ̂, θ)2, (5.2)

where b(θ̂, θ) denotes the bias of the estimator and is given by

b(θ̂, θ) = Eθ(θ̂(Z)) − θ. (5.3)
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If the estimator, θ̂(Z), is unbiased, b(θ̂, θ) = 0 and (5.2) reduces to

Eθ(θ̂(Z) − θ)2 ≥ 1

Eθ

{

[

∂
∂θ

ln f(Z|θ)
]2
} = I(Z, θ)−1, (5.4)

suggesting that the variance of the estimator is lower bounded by the inverse of

Fisher information.

5.1.2 Theoretical Analysis using Fisher Information: Back-

ground and Definitions

To facilitate theoretical analysis, let ℜx denote a super-set of all possible inputs

that can be given to the kth component Ck, and let ℜy contain the corresponding

outputs. Without loss of generality, let x ∈ ℜx be the input and y ∈ ℜy denote

the corresponding output. Now, we have the following definitions:

Definition 5.1 The parameter θk of a component Ck can be estimated intrusively

using an estimator θ̂k(y, x) with an average error Eθk
(θ̂k(y, x) − θk)

2 such that

Eθk
(θ̂k(y, x) − θk)

2 ≥

[

1 + ∂
∂θk

b(θ̂k, θk)
]2

Eθk

{

[

∂
∂θk

ln f(y|x, θk)
]2
} + b(θ̂k, θk)

2 = δk(x). (5.5)

where b(θ̂k, θk) denotes the bias term given by

b(θ̂k, θk) = Eφ(θ̂k(y, x)) − θk. (5.6)

From the CRLB, it can be shown that any other estimator T (y, x) of the parameter

θk cannot provide error values lower than δk(x), i.e.,

Eθ ((T (y, x) − θk)|x)2 ≥ δk(x). (5.7)

If the forensic analyst is not allowed to break open the device, then he/she can

either do semi non-intrusive or completely non-intrusive analysis depending on the
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availability of the device. In this case, we may extend the definition to study

multi-component devices. Let a device D with Nc components be represented as

D = {C1, C2, . . . , CNc}, and let φ = [θ1, θ2, . . . , θNc ]
T denote set of the parameters

of all the Nc components in the device. We may now define the following:

Definition 5.2 The parameter set φ of the device D can be estimated semi non-

intrusively with an average error Eφ

[

(φ̂(y, x) − φ)(φ̂(y, x) − φ)T
]

using an esti-

mator

φ̂(y, x) = [θ̂1(y, x), θ̂2(y, x), . . . , ˆθNc(y, x)]T ,

of the parameter set φ, such that Eφ

[

(φ̂(y, x) − φ)(φ̂(y, x) − φ)T
]

≥ ∆s(x) where

∆s(x)=

(

∂

∂φT
bs(φ̂, φ)

)

Is(x, φ)−1

(

∂

∂φT
bs(φ̂, φ)

)T

+ bs(φ̂, φ)bs(φ̂, φ)T . (5.8)

Here,

bs(φ̂, φ) = Eφ(φ̂(y, x)) − φ, (5.9)

represents the bias term, and Is(x, φ) denotes the Fisher information matrix for

semi non-intrusive forensics with its (i, j)th element given by

Iij
s (x, φ) = Eφ

[

d

dθi

ln f(y|x, φ)
d

dθj

ln f(y|x, φ)

]

. (5.10)

As can be seen from (5.8), the accuracy of parameter estimation depends on

the choice of the input to the system and can be improved by designing better

inputs. Motivated by this observation, we define a notion of an optimal input as

follows:

Definition 5.3 An optimal input for semi non-intrusive forensics, x̂e, is the one

that minimizes the average error in parameter estimation, i.e.,

x̂e = arg min
x∈ℜx

||∆s(x)||d, (5.11)
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where ||∆s(x)||d represents an appropriate matrix norm or a function of ∆s(x).

The lowest error that can achieved via semi non-intrusive analysis is then given by

||∆s||d = ||∆s(x̂)||d.

Several definitions of ||.||d are possible. Unless otherwise specified, in this work,

we define minimum of ||.||d to represent element-wise minima. More specifically,

for two matrices ∆1 and ∆2, we say ∆1 < ∆2 if all the elements of ∆1 are less than

the corresponding entries of ∆2; and based on this definition, find the optimal

input as the one that minimizes all the array elements. This definition of ||.||d
could be restrictive in certain applications as there might not be one single input

that minimizes all the entries of the matrix. Later in this section, we consider

particular examples for which this might be possible.

In the case of non-intrusive forensics, the forensic analyst does not have ac-

cess to the camera at hand and only has some sample images provided to him.

Therefore, in this case, the estimate is done without the knowledge of the input x.

Definition 5.4 A device D with parameter set φ can be estimated non-intrusively

with an average error Eφ

[

(φ̂(y) − φ)(φ̂(y) − φ)T
]

≥ ∆n using the estimator, φ̂(y) =

[θ̂1(y), θ̂2(y), . . . , ˆθNc(y)]T , of the parameter set φ, where

∆n =

(

∂

∂φT
bn(φ̂, φ)

)

In(φ)−1

(

∂

∂φT
bn(φ̂, φ)

)T

+ bn(φ̂, φ)bn(φ̂, φ)T . (5.12)

Here, the bias term is given by

bn(φ̂, φ) = Eφ(φ̂(y)) − φ, (5.13)

and In(φ) denotes the Fisher information matrix for completely non-intrusive

forensics with its (i, j)th element given by

Iij
n (φ) = Eφ

[

d

dθi
ln f(y|φ)

d

dθj
ln f(y|φ)

]

. (5.14)
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If the estimator is unbiased, the bias term corresponding to bs(φ̂, φ) in (5.9)

and bn(φ̂, φ) in (5.13) are zero and therefore the error terms ∆s(x) and ∆n depend

only on the Fisher information as

∆s(x) = Is(x, φ)−1, (5.15)

∆n = In(φ)−1. (5.16)

Here, the (i, i)th of the matrix ∆s(x) denotes the error in estimating the parameter

of the ith component, and the (i, j)th cross terms of the matrix represent the

interaction between the components i and j in the device.

For the case of digital cameras, the best estimates for most components such as

color interpolation and white balancing are typically unbiased in nature. There-

fore, in the rest of our work, we assume an unbiased estimator for which the best

achievable accuracies under semi non-intrusive and completely non-intrusive sce-

narios are given by (5.15) and (5.16), respectively.

5.1.3 Theoretical Analysis and Fundamental Limits

We may now theoretically establish the following results. All the results presented

in this section are for unbiased estimators.

Theorem 5.1 The average Fisher information obtained for component parameter

estimation via semi non-intrusive forensics is larger than the the corresponding

Fisher information for completely non-intrusive forensics. Expressed mathemati-

cally,

E(Is(x, φ)) ≥ In(φ), (5.17)

where the expectation is performed over all x in the input space ℜx.
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Proof : We show the proof for a single component system and the analysis can be

extended to devices with multiple components. For a device with one component

with parameter φ = θ, we have

Is(x, φ) = Eφ

{

[

∂

∂φ
ln f(y|x, φ)

]2
}

, and (5.18)

In(φ) = Eφ

{

[

∂

∂φ
ln f(y|φ)

]2
}

. (5.19)

Here, the expectations are performed over all output values y given the input x

and component parameter φ in (5.18) and over all output values y given the the

component parameter φ in (5.19), respectively. Taking expectation with respect

to x on both sides of (5.18), we have

E(Is(x, φ)) = E

(

Eφ

{

[

∂

∂φ
ln f(y|x, φ)

]2
})

,

=

∫

x∈ℜx

∫

y∈ℜy

[

∂

∂φ
ln f(y|x, φ)

]2

f(y|x, φ)p(x)dydx,

=

∫

y∈ℜy

[

∫

x∈ℜx

(

∂

∂φ
f(y|x, φ)

)2
1

f(y|x, φ)
p(x)dx

]

dy. (5.20)

Writing (5.19) as

In(φ) =

∫

y∈Rey

(

∂

∂φ
f(y|φ)

)2
1

f(y|φ)
dy, (5.21)

and expanding f(y|φ), we get

In(φ) =

∫

y∈ℜy





∫

x∈ℜx

{

∂
∂φ

f(y|x, φ)
}

√

f(y|x, φ)

√

p(x) ×
√

p(x)f(y|x, φ)dx





2

1

f(y|φ)
dy.

(5.22)
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Applying Cauchy-Schwarz inequality to the above equation gives

In(φ) ≤
∫

y∈ℜy







∫

x∈ℜx

{

∂
∂φ

f(y|x, φ)
}2

f(y|x, φ)
p(x)dx






×
(
∫

x∈ℜx

p(x)f(y|x, φ)dx

)

1

f(y|φ)
dy,

= E(Is(x, φ)) ×
(
∫

x∈ℜx

p(x)f(y|x, φ)dx

)

1

f(y|φ)
dy,

= E(Is(x, φ)). (5.23)

This completes the proof of the theorem.

Theorem 5.1 suggests, as a corollary, that for an unbiased estimator, the compo-

nent parameter estimation errors obtained using non-intrusive forensics are greater

than the average error obtained via semi non-intrusive analysis, or diag{E(∆s(x))} ≤

diag{∆n}. Here, ‘≤’ of two matrices represents element-wise comparison. Semi

non-intrusive forensics provides additional control to the forensic analyst both in

terms of designing device inputs and input conditions to give better component

parameter estimation results, and this intuitively justifies the reason behind the

result that even on an average, the performance of semi non-intrusive forensics

would be better than completely non-intrusive forensics.

Corollary 5.1 The Fisher information obtained for component parameter estima-

tion via semi non-intrusive forensics is larger than the the corresponding Fisher

information for completely non-intrusive forensics. i.e., Is(φ) = Is(x̂e, φ) ≥ In(φ).

Proof : The proof of the corollary follows from Theorem 5.1 where we showed

that E(∆s(x)) ≤ ∆n, where ‘≤’ represents element-wise inequality. By definition

of optimal input for semi non-intrusive forensics, we have

∆s = min
x∈ℜx

∆s(x) ≤ E(∆s(x)) ≤ ∆n.

This suggests that ∆s ≤ ∆n which completes the proof.
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This result suggests that for an unbiased estimator, the component parameter

estimation errors obtained via semi non-intrusive analysis would be lower than that

obtained via completely non-intrusive analysis, and semi non-intrusive forensics is

therefore better. Next, we examine the conditions under which both semi non-

intrusive and completely non-intrusive analysis give the same accuracies.

Theorem 5.2 The Fisher information obtained for component parameter estima-

tion via semi non-intrusive forensics is equal to the Fisher information for com-

pletely non-intrusive forensics when the knowledge of the component parameters

do not help in the guessing the input x given the output y. In this scenario, semi

non-intrusive forensics and completely non-intrusive analysis provides the same

accuracies.

Proof : From the definition of Fisher information for semi non-intrusive forensics,

we have

Iij
s (x, φ) = Eφ

{[

∂

∂θi
ln

(

f(x|y, φ)f(y|φ)

p(x)

)]

×
[

∂

∂θj
ln

(

f(x|y, φ)f(y|φ)

p(x)

)]}

,

= Iij
n (φ) + Eφ

{

∂

∂θi
ln(f(x|y, φ))

∂

∂θj
ln(f(x|y, φ))

}

+Eφ

{

∂

∂θi
ln(f(x|y, φ))

∂

∂θj
ln(f(y|φ))

}

+Eφ

{

∂

∂θj

ln(f(x|y, φ))
∂

∂θi

ln(f(y|φ))

}

, (5.24)

A closer look at (5.24) shows that the equality Is(x, φ) = In(φ) is attained when

∀i, ∂
∂θi

ln(f(x|y, φ)) = 0, or f(x|y, φ) is independent of the component parameters

θi for all 1 ≤ i ≤ Nc. This result also suggests that the knowledge of the component

parameters do not help in the guessing the input x given the output y; thus,

completing the proof of the theorem.

Now, let us consider an example for illustration.
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Example: Consider a device with a single component for which the input-output

relationship is given by

y = αx + n,

where x represents the input to the component, y denotes the corresponding out-

put, α is a constant, and n represents additive noise. For this example, let us

assume that n follows a Gaussian distribution with mean 0 and variance Σn.

φ = {α, Σn} is the component parameter set.

Using the definition of Fisher information for semi non-intrusive forensics, we

can show that

Is(x, φ) =







x2

Σn
0

0 3
4Σ2

n






. (5.25)

As a first step, we compute the optimal input for semi non-intrusive foren-

sics from (5.25). We observe from the equation that optimal input maximizes

I11
s (x, φ) = x2

Σn
, which is the signal-to-noise ratio (SNR) with signal power equal

to x2 and noise power given by the variance of the noise signal Σn. This suggests

that the optimal input for semi non-intrusive forensics of this component would

be the input that maximizes ||x||d. Defining ||x||d to be the norm of x, we find the

optimal input as the one that maximizes the signal power, i.e., x̂e = maxx∈ℜx |x|.

Next, we derive the Fisher information for completely non-intrusive forensics

under the premise that the input to the system follows a Gaussian distribution

with mean µx and variance Σx, i.e., x ∼ N (µx, Σx). With this assumption, it

can be shown that the output y also follows a Gaussian distribution with y ∼

N (αµx, α
2Σx + Σn) and therefore, we have

In(φ) =







3α2Σ2
x

(α2Σx+Σn)2
+ µ2

x

(α2Σx+Σn)
3αΣx

2(α2Σx+Σn)2

3αΣx

2(α2Σx+Σn)2
3

4(α2Σx+Σn)2






. (5.26)
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Now, we use the example as an illustration to verify the above mentioned

theorems. Taking expectations on both sides of (5.25) under the assumption that

x ∼ N (µx, Σx), we have

E(Is(x, φ)) =







Σx+µ2
x

Σn
0

0 3
4Σ2

n






. (5.27)

Taking the term-by-term difference of (5.26) and (5.27), we get

E(I11
s (x, φ)) − I11

n (φ) =
Σx ((α2Σx − Σn)2 + α2ΣxΣn)

Σn(α2Σx + Σn)2
+

µ2
xα

2Σx

Σn(α2Σx + Σn)
,

(5.28)

E(I22
s (x, φ)) − I22

n (φ) =
3α2Σx

4Σ2
n

[

α2Σx + 2Σn

(α2Σx + Σn)2

]

. (5.29)

Both these terms satisfy E(Iii
s (x, φ))−Iii

n (φ) ≥ 0 for i ∈ {1, 2}, verifying Theorem

5.1. This result suggests that on an average semi non-intrusive forensics can provide

higher estimation accuracies and lower estimation errors than completely non-

intrusive forensics. Further, it can be seen from (5.28) and (5.29) that the condition

E(Iii
s (x, φ)) − Iii

n (φ) = 0 is satisfied only when Σx = 0 or x is deterministic with

a value equal to µx. This confirms the result in Theorem 5.2 indicating that semi

non-intrusive forensics and completely non-intrusive forensics can provide the same

accuracies when the knowledge of the component parameters do not help in the

guessing the input x given the output y.

Theorem 5.3 For an unbiased estimator, the component parameter estimation

errors obtained via intrusive analysis is lower than or equal to the average estima-

tion errors obtained using semi non-intrusive studies.

Proof : We first consider a simple case of a device D consisting of two components

namely, C1 and C2 and prove the theorem for this case. Let x be the input to the
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device and x ∈ ℜx, and let y be the output of the device, y ∈ ℜy. For sake

of analysis, we define a variable z as the output of the first component which

is provided as an input to the second. Also, let ℜz denote the superset of all

possible intermediate outputs so that z ∈ ℜz. Let φ = [θ1 θ2]
T denote the device

parameter set with θ1 and θ2 representing the parameters of the first and the second

component, respectively. The first component C1 with parameter θ1 takes an input

x and outputs a value z with probability pθ1(z|x); and the second component

takes z as the input and outputs y ∈ ℜy with probability qθ2(y|z). The overall

input-output relationship is then given by P(y|x) where

Pφ(y|x) =

∫

z∈ℜz

pθ1(z|x)qθ2(y|z)dz. (5.30)

The (1, 1)th term of the Fisher information corresponding to semi non-intrusive

forensics, I11
s (x) can be written as

I11
s (x) =

∫

y∈ℜy

(

∂

∂θ1

Pφ(y|x)

)2
1

Pφ(y|x)
dy

=

∫

y∈ℜy

(
∫

z∈ℜz

{

∂

∂θ1

pθ1(z|x)

}

qθ2(y|z)dz

)2
1

Pφ(y|x)
dy

=

∫

y∈ℜy

(

∫

z∈ℜz

{

∂
∂θ1

pθ1(z|x)
√

pθ1(z|x)
×
√

qθ2(y|z)

}

×
√

pθ1(z|x)qθ2(y|z)dz

)2
1

Pφ(y|x)
dy

≤
∫

y∈ℜy





∫

z∈ℜz

{

∂
∂θ1

pθ1(z|x)
√

pθ1(z|x)

}2

qθ2(y|z)dz





×
(
∫

z∈ℜz

pθ1(z|x)qθ2(y|z)dz

)

1

Pφ(y|x)
dy

=

∫

z∈ℜz

{

∂
∂θ1

pθ1(z|x)
√

pθ1(z|x)

}2

×
(

∫

y∈ℜy

qθ2(y|z)dy

)

dz = I11
i (x). (5.31)

Therefore, we have I11
s (x) ≤ I11

i (x) for all x ∈ ℜx. Denoting the optimal inputs

for semi non-intrusive forensics and intrusive forensics by x̂semi
e and x̂int

e , respec-

tively, we have I11
s (x̂semi

e ) ≤ I11
i (x̂semi

e ) ≤ I11
i (x̂int

e ) = maxx∈ℜx I11
i (x). Similarly, it
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can be shown for all x ∈ ℜx that

I22
s (x) =

∫

y∈ℜy

(

∂

∂θ2
Pφ(y|x)

)2
1

Pφ(y|x)
dy

=

∫

y∈ℜy

(
∫

z∈ℜz

{

∂

∂θ2
qθ2(y|z)

}

pθ1(z|x)dz

)2
1

Pφ(y|x)
dy

=

∫

y∈ℜy

(

∫

z∈ℜz

{

∂
∂θ2

qθ2(y|z)
√

qθ2(y|z)
×
√

pθ1(z|x)

}

×
√

pθ1(z|x)qθ2(y|z)dz

)2
1

Pφ(y|x)
dy

≤
∫

y∈ℜy





∫

z∈ℜz

{

∂
∂θ2

qθ2(y|z)
√

qθ2(y|z)

}2

pθ1(z|x)dz





×
(
∫

z∈ℜz

pθ1(z|x)qθ2(y|z)dz

)

1

Pφ(y|x)
dy

=

∫

z∈ℜz

pθ1(z|x)dz

∫

y∈ℜy

{

∂
∂θ1

qθ2(y|z)
√

qθ2(y|z)

}2

dy =

∫

z∈ℜz

pθ1(z|x)I22
i (z)dz

= E(I22
i (z)|x) ≤ max

z∈ℜz

I22
i (z) = I22

i (x̂int
e ). (5.32)

Therefore, we have specifically for x = x̂semi
e that I22

s (x̂semi
e ) ≤ I22

i (x̂int
e ).

This result suggests that the diagonal elements of the Fisher information ma-

trix satisfy diag(Is(x̂
semi
e )) ≤ diag(Ii(x̂

int
e )). Therefore, for an unbiased estima-

tor, the component parameter estimation errors obtained using semi non-intrusive

forensics are greater than the average error obtained via intrusive analysis, or

diag{E(∆i(x))} ≤ diag{∆s}. This proves the theorem.

In the case of semi non-intrusive forensics the decision has to be made based on

the overall input-output response of the entire device. Therefore the final forensic

analysis is this case is dependent upon how different components in the device

interact with each other and to what extent the intrinsic fingerprint traces of

one component are lost/modified when they pass through the other components

in the information processing chain. This reduces the overall accuracies of semi

non-intrusive forensics. On the other hand, in the case of intrusive analysis, the

117



forensic analyst can break open the device and examine each and every component

individually independent of the other components in the information processing

chain. In the following theorem, we mathematically derive the conditions under

which semi non-intrusive analysis can provide the same accuracies as intrusive

analysis.

Theorem 5.4 For an unbiased estimator, the component parameter estimation

errors obtained via intrusive analysis is equal to the average estimation errors

obtained using semi non-intrusive studies only if the mutual Fisher information

between any two components in the system is equal to zero.

Proof : To prove this theorem, we take a closer look at the estimation errors to

examine the conditions under which semi non-intrusive analysis gives the same

accuracies compared to intrusive analysis. For an unbiased estimator, the average

estimation errors obtained from intrusive analysis for a two component device with

parameter set φ are given by

∆i(x) =







δ11
i (x) δ12

i (x)

δ21
i (x) δ22

i (x)






= Ii(x, φ)−1 =







1/I11
i (x, θ1) 0

0 1/I22
i (x, θ2)






, (5.33)

∆s(x) =







δ11
s (x) δ12

s (x)

δ21
s (x) δ22

s (x)






= Is(x, φ)−1 =

1

|Is(x, φ)|







I22
s (x, φ) −I21

s (x, φ)

−I12
s (x, φ) I11

s (x, φ)






,

=









1

I11
s (x,θ1)−

(I12
s (x,φ))2

I22
s (x,θ2)

−I12
s (x,φ)

|Is(x,φ)|

−I12
s (x,φ)

|Is(x,φ)|
1

I22
s (x,φ)−

(I12
s (x,φ))2

I11
s (x,φ)









, (5.34)

where the last equation follows from the fact that I12
s (x, φ) = I21

s (x, φ). Moreover,

as the magnitude of I12
s (x, φ) increases, the estimation error increases. Comparing

the two equations, we notice that the equality is attained only when the following
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conditions are satisfied

I11
s (x, φ) = I11

i (x, θ1), (5.35)

I22
s (x, φ) = I22

i (x, θ2), and (5.36)

I12
s (x, φ) = 0. (5.37)

It is to be noted that the I12
s (x, φ) term represents the interactions between the

two components and higher its absolute value, the greater the interaction. A small

absolute value of I12
s (x, φ) suggests that the components are independent and its

parameters can be estimated separately. Further, from the inequalities in (5.31),

we notice that the condition I11
s (x) = I11

i (x) is satisfied only when

∀z,

{

∂
∂θ1

pθ1
(z|x)√

pθ1
(z|x)

√

qθ2(y|z)

}

√

pθ1(z|x)qθ2(y|z)
= constant

or ∀z,
∂

∂θ1
pθ1(z|x)

pθ1(z|x)
= constant(say c1), (5.38)

and the inequalities in (5.32) becomes an equality only when

∀z,
∂

∂θ2
qθ2(y|z)

qθ2(y|z)
= constant(say c2). (5.39)

Expanding on I12
s (x, φ), we have

I12
s (x, φ) =

∫

y∈ℜy

(

∂

∂θ1

Pφ(y|x)

)

×
(

∂

∂θ2

Pφ(y|x)

)

1

Pφ(y|x)
dy

=

∫

y∈ℜy

(
∫

z∈ℜz

{

∂

∂θ1
pθ1(z|x)

}

qθ2(y|z)dz

)

×
(
∫

z∈ℜz

{

∂

∂θ2

qθ2(y|z)

}

pθ1(z|x)dz

)

1

Pφ(y|x)
dy.(5.40)

Substituting for (5.38) and (5.39), we have

I12
s (x, φ) =

∫

y∈ℜy

c1c2Pφ(y|x)dy = c1c2 (5.41)
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Therefore, ∆i(x) = ∆s(x) would be satisfied only when c1c2 = 0 or either of c1 or

c2 is zero. This suggests that either pθ1(z|x) is independent of the parameter θ1 or

qθ2(y|z) is independent of θ2 or mathematically

∂

∂θ1

pθ1(z|x) = 0, or
∂

∂θ2

qθ2(y|z) = 0. (5.42)

The above equations will be satisfied only when Iij
s (x, φ) = 0. This completes the

proof of the theorem.

This theorem leads to the following definition:

Definition 5.5 Two components of the device are said to be forensically inde-

pendent if its component parameters can be estimated separately and the errors in

estimating the parameters of one component does not affect the estimation of the

other components’ parameters.

As can be seen from the previous theorem, two components would be forensi-

cally independent if and only if Iij
s (x, φ) = 0. For a device with more than two

components, this condition reduces to Iij
s (x, φ) = 0 and ∀k Iik

s (x, φ) = 0 or

Ikj
s (x, φ) = 0.

Corollary 5.2 Intrusive analysis, semi non-intrusive forensic analysis, and com-

pletely non-intrusive forensic analysis provide the same accuracies in parameter

estimation only when all the components in the device are forensically independent

of each other. i.e., Iij
s (x, φ) = 0 for all i and j such that i 6= j and 1 ≤ i, j ≤ Nc.

Proof : The proof of this corollary follows from the proofs of Theorem 5.2 and

Theorem 5.4.

Next, we consider an example of forensically independent components and to

illustrate how this theoretical analysis can be employed to compute optimal inputs,

120



and later in Chapter 6, we employ these principles to design optimal inputs for

semi non-intrusive forensics of digital cameras to identify color interpolation and

white balancing components.

Example: Consider a system with the input-output response given by

y =







y1

y2






=







a11 a12

a21 a22













x1

x2






+







n1

n2






, (5.43)

where x = [x1 x2]
T is the input to the system, y = [y1 y2]

T denotes the output from

the system, n = [n1 n2]
T represents additive Gaussian noise with E(n2

1) = E(n2
2) =

Σn and E(n1n2) = 0, and φ = [a11 a12 a21 a22]
T are the component parameters.

The goal of the forensic analyst is to compute the values of the parameter φ.

In this example of a single component system, the Fisher information matrix

under semi non-intrusive forensics can be shown to be given by

Is(x, φ) =
4

Σn



















x2
1 x1x2 0 0

x1x2 x2
2 0 0

0 0 x2
1 x1x2

0 0 x1x2 x2
2



















. (5.44)

From the matrix, we observe the following:

• A higher value of x1 and x2 can provide higher accuracies in parameter

estimation. This is because a higher value would imply that the signal power

is much larger than the noise power giving a higher SNR.

• The estimation of the component parameters a11 and a12 are dependent on

each other because of the non-zero value of I12
s (x, φ) for non-zero inputs.

This observation can be intuitively explained by the fact that the estimation
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of both the component parameters a11 and a12 needs to be done based on

the same equation

y1 = a11x1 + a12x2 + n1. (5.45)

Additionally, we notice that I12
s (x, φ) = 0 only when x1 = 0 or x2 = 0 in

which case (5.45) reduces to either y1 = a11x1 +n1 or y1 = a12x2 +n1. Under

these conditions, the component parameters a11 and a12 can be estimated

independent of each other from one of the two reduced equations.

• The estimation of the component parameters a11 and a21 (or a22) are inde-

pendent of each other as can be seen from the Fisher information matrix

(I13
s (x, φ) = I14

s (x, φ) = 0). This is because a11 is solely estimated from

(5.45) and the equation y2 = a21x1 + a22x2 + n2 does not provide any infor-

mation to aid in the estimation of a11.

Based on these observations, we can conclude that there is no single optimal

input for semi non-intrusive forensics. The best strategy for the forensic analyst

would be to first give an input x with x1 = maxx∈ℜx x and x2 = 0 and observe

the output to estimate the values of the parameters a11 and a21, and then give

the input x with x1 = 0 and x2 = maxx∈ℜx x to obtain a12 and a22. In this way,

the analyst can design good inputs to improve the overall accuracy of parameter

estimation.

5.2 Theoretical Analysis via Pattern Classifica-

tion Framework

In this section, we develop a theoretical framework for media forensics for compo-

nents with a finite number of possibilities in the parameter space. The proposed
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framework employs ideas from pattern classification theory to answer forensic ques-

tions about what components and processing operations are classifiable and what

are not. We define formal notions of identifiability of components under different

scenarios, and quantify the confidence in which the component parameters can be

computed in each case. The analysis presented in this section adds to the un-

derstanding of multimedia forensics and supplements the the theoretical analysis

based on estimation theory presented in the previous section. We that the confi-

dence in identifying the component parameters depends on the nature of available

inputs and testing conditions, and that intrusive forensics gives higher confidence

than semi non-intrusive forensics and semi non-intrusive analysis is better than

completely non-intrusive scenario.

5.2.1 Background and Definitions

As in Section 5.1, we consider a system with Nc components {C1, C2, . . . , CNc} and

let ℜx and ℜy denote the set of all possible inputs and outputs respectively. Unlike

in the previous case where we assume that the parameter of the kth component

θk can take infinite number of possibilities, in this section, we develop a new

theoretical framework under the premise that the component parameter can take a

finite number of values from the algorithm space, i.e., θk ∈ Θk = {θk
1 , θ

k
2 , . . . , θ

k
Na
},

where Nk
a is the total number of possible algorithms for the component Ck. Now,

we define formal notions of intrusively, semi non-intrusively, and completely non-

intrusively classifiable components.

Definition 5.6 A component Ck is said to be intrusively classifiable or i-

classifiable if for each possible algorithm θk
i used by the component, and for most
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inputs x ∈ ℜx,

p(θk
i |y, x) ≥ p(θk

j |y, x) ∀j ∈ {1, 2, . . . , Nk
a } and j 6= i,

and there exists at least one input x∗ ∈ ℜx and its corresponding output y∗ for

which

p(θk
i |y∗, x∗) > p(θk

j |y∗, x∗) ∀j ∈ {1, 2, . . . , Nk
a } and j 6= i.

Here, x and y denote the corresponding input and output of the component, re-

spectively, and are vectors of appropriate dimensions; and p denotes the probability

distribution function. The forensic analyst can then employ maximum a posteriori

estimation techniques [31] to identify the component parameters θ̂k as

θ̂k = arg max
j=1,2,...,Nk

a

p(θk
j |y, x).

In semi non-intrusive and completely non-intrusive forensics, analysts are not

allowed to break open the device or system. In the scenario of semi non-intrusive

forensics, the analysts have access to the system as a black box, and can design

appropriate inputs to the system and collect the corresponding output data in

order to analyze the processing techniques and compute the parameters of the in-

dividual components. To examine this scenario, we define φj = [θ1
j1, θ

2
j2 , . . . , θ

Nc

jNc
]

to represent the set of algorithms (and parameters) employed by the entire sys-

tem. Assuming that the component parameters in the kth component can take Nk
a

possibilities, we have a total of Na =
∏Nc

k=1 Nk
a possible algorithm choices for the

system. The task for the forensic analyst is now reduced to finding which of these

Na algorithms is used by the system in question.

Definition 5.7 A system is said to be semi non-intrusively classifiable or s-

classifiable if for each possible algorithm φi used by the component, and for most
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inputs x ∈ ℜx

p(φi|y, x) ≥ p(φj |y, x) ∀j ∈ {1, 2, . . . , Na} and j 6= i, (5.46)

and there exists at least one input x∗ ∈ ℜx and its corresponding output y∗ such

that

p(φi|y∗, x∗) > p(φj|y∗, x∗) ∀j ∈ {1, 2, . . . , Na} and j 6= i. (5.47)

Here, x and y denote the inputs and its corresponding outputs, respectively, of the

overall system.

In addition to computing the parameters of the internal building blocks of the

components, it is also important to know the confidence level on the parameter

estimation result. A higher confidence value would increase the trustworthiness

of the decision made by the forensic analyst in applications involving infringe-

ment/licensing to determine potential technology breach [128, 130]; and also in

cases involving tampering detection.

Definition 5.8 For an s-classifiable system with parameter set φi, the confidence

score η
(semi)
i (x, y) for correct classification under the input x and its corresponding

output y is defined by the difference between the likelihood of the correct decision

and the average of the corresponding likelihoods of the making a wrong decision.

Expressed mathematically,

η
(semi)
i (x, y) = p(φi|y, x) − 1

Na − 1

Na
∑

j=1,j 6=i

p(φj |y, x),

= p(φi|y, x) − 1

Na − 1
(1 − p(φi|y, x)),

=
Na

Na − 1

(

p(φi|y, x) − 1

Na

)

. (5.48)
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As can be seen from the equation, the confidence score η
(semi)
i (x, y) is propor-

tional to the difference between the probability of correct classification and (1/Na)

that corresponds to uniform likelihood. In our work, we define the confidence score

using (5.48) motivated by Definition 5.6 and 5.7. Several other definitions for the

confidence score in classification have been proposed in literature [104,128,130,139].

Later in Section 5.2.3, we examine other definitions of confidence score.

The equation (5.48) also suggests that the confidence score is a function of the

input x and can be improved by selecting proper inputs. To illustrate this aspect

of confidence score, we consider the following example.

Example: Consider an example of a component with parameters {ξ0, ξ1} whose

input-output relationship is given by:

y(n) = ξ0x(n) + ξ1x(n − 1).

Let x(1) = [. . . , 1, 1, 1, . . .] and x(2) = [. . . , 0, 1, 2, . . .] be two possible inputs to the

system. The corresponding outputs would be y(1) = [. . . , ξ0 +ξ1, ξ0 +ξ1, ξ0 +ξ1, . . .]

and y(2) = [. . . ,−ξ1, ξ0, 2ξ0 + ξ1, . . .], respectively. We notice that y(1) is a constant

sequence with each of its elements being equal to (ξ0 + ξ1) and knowledge of the

sum would not provide any indicative of the parameters ξ0 or ξ1. Therefore, x(1) is

not a good input for evaluating the value of the component. On the other hand,

observing the output y(2) of the system, one can formulate a system of linear

equations to compute the value of ξ0 and ξ1; thus, x(2) is a good input to obtain

the component parameter values.

More generally, let us define q(x, y) = [p(φ1|y, x), p(φ2|y, x), . . . , p(φNa|y, x)]

to facilitate discussions. If for an input, x′, q(x′, y′) = [0, . . . , 1, 0, . . . , 0] with

1 at the ith location, the decision of choosing the ith class is made with a very
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high confidence and η
(semi)
i (x′, y′) equal to 1. On the other hand, if q(x′′, y′′) =

[1−ε
Na

, . . . , 1
Na

+ Na−1
Na

ε, 1−ε
Na

, . . . , 1−ε
Na

] where ε is a small positive real number, there

is an almost equal probability that the given data sample comes from any of the

Na classes. In this case, the decision is made with a very low confidence with

η
(semi)
i (x′′, y′′) = ε ≈ 0. In this example, x′ and x′′ represent the best and the worst

possible inputs for identifying the component parameters. For other inputs, x, the

value of η
(semi)
i (x, y) would lie in the interval [0, 1], with a higher value indicating

more confidence in the decision made.

This example illustrates that the confidence score in parameter estimation can

be improved by choice of inputs, and generalizing on this observation, we define

an optimal input as the one that maximizes the confidence score [130].

Definition 5.9 An optimal input, x̂i, for semi non-intrusive forensic analysis

of the system that employs the algorithm φi is defined as the one that maximizes

the confidence score, i.e.,

x̂i = arg max
x∈ℜx

η
(semi)
i (x, y). (5.49)

The corresponding confidence score, η
(semi)
i = η

(semi)
i (x̂i, ŷi), then represents the

overall maximum confidence in semi non-intrusively classifying the parameters

of the system, where ŷi is the output of the system with input x̂i.

In the completely non-intrusive forensics scenario, the forensic analyst is pro-

vided only with some sample data produced by the device or system and does not

have access to nor other knowledge about its inputs. In this case, we can define:

Definition 5.10 A system is said to be completely non-intrusively classifiable

or n-classifiable if for each possible algorithm φi used by the component, and
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most possible outputs y ∈ ℜy,

p(φi|y) ≥ p(φj |y) ∀j ∈ {1, 2, . . . , Na} and j 6= i, (5.50)

and there exists at least one input x∗ ∈ ℜx, such that the corresponding output, y∗,

satisfies

p(φi|y∗) > p(φj|y∗) ∀j ∈ {1, 2, . . . , Na} and j 6= i. (5.51)

The confidence score for a system to be non-intrusively classifiable under the

output y when the actual algorithm employed is φi is given by

η
(non)
i (y) =

Na

Na − 1

(

p(φi|y, x) − 1

Na

)

. (5.52)

5.2.2 Major Results

We now establish the following results.

Theorem 5.5 If a system is n-classifiable, then it is s-classifiable.

Proof : If a device is n-classifiable, then for each possible algorithm φi(1 ≤ i ≤ Na)

used by the component, there exists an input x ∈ ℜx to the overall system such

that its corresponding output y satisfies

p(φi|y) > p(φj|y) for j = 1, 2, . . . , Na, j 6= i, (5.53)
∫

ℜx

p(φi|y, x)p(x)dx >

∫

ℜx

p(φj|y, x)p(x)dx for j = 1, . . . , Na, j 6= i. (5.54)

Since, all the terms on both sides of the equation are positive, there must be atleast

one x = x0 ∈ ℜx for which

p(φi|y, x0)p(x0) > p(φj |y, x0)p(x0) for j = 1, 2, . . . , N, j 6= i. (5.55)

Factoring out p(x0) completes the proof.
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Theorem 5.6 The confidence scores obtained using semi non-intrusive analysis

is greater than or equal to the ones obtained via completely non-intrusive analysis.

i.e., If a system is n-classifiable with a confidence score η
(non)
i (y) under the output

y, then it is s-classifiable with a confidence score η
(semi)
i ≥ η

(non)
i (y).

Proof : From the definition of the confidence score for semi non-intrusive forensics

for the input x, we have

η
(semi)
i (x, y) =

Na

Na − 1

(

p(φi|y, x) − 1

Na

)

. (5.56)

Multiplying the equations with p(x) and integrating over ℜx, we obtain:

E(η
(semi)
i (x, y)) =

∫

x∈ℜx

η
(semi)
i (x, y)p(x)dx

=

∫

x∈ℜx

{

Na

Na − 1

(

p(φi|y, x) − 1

Na

)}

p(x)dx

=
Na

Na − 1

(

p(φi|y) − 1

Na

)

= η
(non)
i (y). (5.57)

Thus, we have η
(semi)
i = maxx∈ℜx η

(semi)
i (x, y) ≥ E(η

(semi)
i (x, y)) = η

(non)
i (y); this

completes the proof of the theorem.

Theorem 5.5 and Theorem 5.6 suggest that if a component is non-intrusively

classifiable, then its parameters can also be identified semi non-intrusively, and

the average confidence values obtained using semi non-intrusive analysis is greater

than or equal to the ones obtained via completely non-intrusive analysis under

a given output. These results pertain to the scenario where the forensic analyst

has to make a decision based on ‘one’ output or ‘one’ input-output pair. If the

forensic analyst has access to ‘multiple’ outputs or ‘multiple’ input-output pairs,

he/she can then make a combined judgement based on studying all the available

data samples. In the following, we extend the proposed theoretical framework to

address such scenarios. We begin with the following lemma.
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Lemma 5.1 The overall confidence in estimating the component parameter(s)

given Nd inputs (and corresponding outputs) is lower than the value obtained for

the best input/output pair.

Proof : Suppose {y1, y2, . . . , yNd
} denote the Nd output data samples available to

the forensic analyst, and let {x1, x2, . . . , xNd
} be the corresponding inputs. Then,

for a given algorithm φi, the confidence in parameter estimation is given by

η
(semi)
i (x1, x2, . . . , xNd

, y1, . . . , yNd
) =

Na

Na − 1

(

p(φi|x1, y1, x2, y2, . . . , xNd
, yNd

) − 1

Na

)

.

(5.58)

Expanding the equation using the independence property, we get

η
(semi)
i (x1, x2, . . . , xNd

, y1, . . . , yNd
) =

Na

Na − 1

(

Nd
∏

m=1

p(φi|xm, ym) − 1

Na

)

. (5.59)

Now, let m̂ = arg maxm=1,2,...,Nd
p(φi|xm, ym) so that p(φi|xm̂, ym̂) ≥ p(φi|xm, ym)

for all m ∈ {1, 2, . . . , Nd}. Equation (5.59) can therefore be re-written in terms of

p(φi|xm̂, ym̂) to give

η
(semi)
i (x1, x2, . . . , xNd

, y1, . . . , yNd
) ≤ Na

Na − 1

(

p(φi|xm̂, ym̂)Nd − 1

Na

)

≤ η
(semi)
i (xm̂, ym̂). (5.60)

Thus, we have η
(semi)
i (x1, x2, . . . , xNd

, y1, . . . , yNd
) ≤ maxm=1,2,...,Nd

η
(semi)
i (xm, ym).

This completes the proof.

Lemma 5.1 suggests that the highest confidence in parameter estimation is

determined by the best input – one among the Nd inputs that gives the maxi-

mum confidence score. The remaining inputs would reduce the confidence score

and confuse the forensic analyst into possibly making a wrong decision. This re-

sult is useful to study the scenario of completely non-intrusive forensics. In this
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case, the forensic analyst does not have access to the device at hand and col-

lects the forensic evidence based on the observed output data available to him.

More specifically, if the analyst has access to Nd such outputs, the overall con-

fidence in his decision can be shown from Theorem 5.6 to be upper bounded by

η
(semi)
i (x1, x2, . . . , xNd

, y1, . . . , yNd
), i.e.,

η
(non)
i ≤ η

(semi)
i (x1, x2, . . . , xNd

, y1, . . . , yNd
). (5.61)

Additionally, the result from Lemma 5.1 gives

η
(semi)
i (x1, x2, . . . , xNd

, y1, . . . , yNd
) ≤ max

m=1,2,...,n
η

(semi)
i (xm, ym) ≤ η

(semi)
i (x̂, ŷ) = η

(semi)
i .

(5.62)

where x̂ denotes the optimal input for semi non-intrusive forensics of D. Combining

(5.61) and (5.62), we obtain η
(non)
i ≤ η

(semi)
i . This result leads to the following

theorem:

Theorem 5.7 The confidence scores obtained using semi non-intrusive analysis

under the optimal input is greater than or equal to the ones obtained via completely

non-intrusive analysis even when completely non-intrusive forensics is performed

with infinite amount of data.

Proof : The proof follows from (5.61) and (5.62).

This result is intuitively expected from the fact that semi non-intrusive foren-

sics provides more control to the forensic analyst who can design better inputs

to improve the overall performance. Next, we examine the scenario when semi

non-intrusive forensics and completely non-intrusive forensics provides the same

confidence.
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Theorem 5.8 The confidence scores for component parameter estimation via semi

non-intrusive forensics is equal to the confidence scores for completely non-intrusive

forensics when the knowledge of the component parameters do not help in the guess-

ing the input x given the output y. In this scenario, semi non-intrusive forensics

and completely non-intrusive analysis provides the same accuracies.

Proof : From the definitions of confidence scores for semi and completely non-

intrusive forensics in (5.48) and (5.52), we can show that η
(non)
i = η

(semi)
i when

p(φi|y) = p(φi|y, x), ∀i. It can be shown that this condition is equivalent to

p(x|y, φi) = p(y, x)/p(x) or p(x|y, φi) is independent of the component parame-

ters φi for all 1 ≤ i ≤ Na. This result also suggests that the knowledge of the

component parameters do not help in the guessing the input x given the output y;

thus, completing the proof of the theorem.

It is to be noted that Theorem 5.8 provides the same conditions for equality of

semi and completely non-intrusive forensics as Theorem 5.2 discussed in Section

5.1 and proved via estimation theory. While the theoretical results obtained via

estimation and pattern classification theories are based on different assumptions,

applicable for different scenarios, and are derived using different mathematical

premises, they provide the same fundamental results. This suggests that these

theories are merely two different approaches to look at the same problem.

In the remainder of this subsection, we examine the relations between semi

non-intrusive forensics and intrusive forensics.

Theorem 5.9 If a device is s-classifiable, then each of its components are i-

classifiable.

Proof : This theorem is straightforward if the device has only one component. In

this case, the definitions of s-identifiability and i-identifiability coincide.
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Now, let us consider a multi-component device. Let xk represent the individual

inputs for the kth component Ck (and outputs of the (k − 1)th component), with

x1 = x. Since the device is s-classifiable, there exists at least one input x ∈ ℜx to

the overall system such that its corresponding output y satisfies

p(φi|y, x) > p(φj|y, x) for j = 1, 2, . . . , N, j 6= i, (5.63)

for each possible algorithm φi(1 ≤ i ≤ Na) used by the component. Writing φi as

φi = [θ1
i1
, θ2

i2
, . . . , θNc

iNc
] and expanding p(φi|y, x), we have

p(φi|y, x) = p(θ1
i1
, θ2

i2
, . . . , θNc

iNc
|y, x) =

Nc
∏

m=1

p(θm
im |y, x),

=

(

Nc
∏

m=1

p(θm
im |xm+1, xm)

)

Nc
∏

m=1

p(xm+1|xm, y)p(xm|y, x). (5.64)

For (5.63) to hold for all j 6= i, each of the individual terms in the right hand side

of the (5.64) need to satisfy ∀m ∈ {1, 2, . . . , Nc}

p(θm
im |xm+1, xm) > p(θm

jm
|xm+1, xm) for all im 6= jm and 1 ≤ im, jm ≤ Nm

a , (5.65)

otherwise, we can construct another hypothesis φl by replacing the component

parameter setting for some of the components. This contradicts (5.63) as there

exists atleast one j = l for which p(φi|y, x) ≤ p(φj|y, x). Equation (5.65) also shows

the existence of alteast one input input x = xj to the jth component for which the

component would be i-classifiable. This completes the proof of the theorem.

In general, the converse of Theorem 5.9 is not true. To examine the conditions

under which an i-classifiable component is s-classifiable, we introduce the notion

of an ǫ-consistent component.

Definition 5.11 A component is said to be ǫ-consistent if the following two con-

ditions are satisfied:
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1. for most outputs y1 and y2 with dY (y1, y2) ≤ ǫ, the estimates of the cor-

responding inputs x1 and x2 satisfy dX(x1, x2) ≤ ǫ, where dX and dY are

appropriately chosen distance metrics in the input and the output space, re-

spectively,

2. for most inputs x1 and x2 with dX(x1, x2) ≤ ǫ, the estimates of the corre-

sponding outputs y1 and y2 satisfy dY (y1, y2) ≤ ǫ.

We now have the following theorem that relates the confidence in intrusively clas-

sifying a component and the confidence values obtained for semi non-intrusively

classifying the same component.

Theorem 5.10 If all the components in a system are ǫ-consistent and the kth

component with parameter θk
i is i-classifiable with a confidence score η

k(int)
i , then

the kth component is s-classifiable with confidence score η
k(semi)
i approximately

given by

η
k(semi)
i ≈ η

k(int)
i − 2(Nc − 1)ǫ

∣

∣

∣

∣

∣

∂η
k(int)
i (x, y)

∂x

∣

∣

∣

∣

∣

x=x̂k
i ,y=ŷk

i

. (5.66)

Proof : In the ideal case, highest confidence η
k(int)
i is attained when the input

to the kth component is the optimal input denoted as x̂k
i (with its corresponding

output ŷk
i ). However, since the (k−1) prior to Ck are ǫ-consistent, it would not be

possible to exactly attain x̂k
i , but only (k−1)× (2ǫ) close to it. This would lead to

a confidence drop of (k− 1)× (2ǫ)

∣

∣

∣

∣

∂η
k(int)
i (x,y)

∂x

∣

∣

∣

∣

x=x̂k
i ,y=ŷk

i

. Since, the forensic analyst

can only observe the final output y, he/she would incur an additional error of from

the remaining (Nc − k) components equal to (Nc − k) × (2ǫ)

∣

∣

∣

∣

∂η
k(int)
i (x,y)

∂x

∣

∣

∣

∣

x=x̂k
i ,y=ŷk

i

.

Thus, the total error incurred from first-order approximation, ignoring the higher-

order terms, would be

(

(Nc − 1) × (2ǫ)

∣

∣

∣

∣

∂η
k(int)
i (x,y)

∂x

∣

∣

∣

∣

x=x̂k
i ,y=ŷk

i

)

, which establishes

the desired result.
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Theorem 5.10 gives the conditions under which the knowledge about the intru-

sive forensics can be extended to semi non-intrusive forensics. The theorem also

suggests that η
k(int)
i ≥ η

k(semi)
i , and therefore the confidence score for parameter

identification from semi non-intrusive forensics is lower than (or at most equal to)

the ones that can be attained from intrusive forensics. This result is expected

because intrusive forensic methodology gives more control than semi non-intrusive

forensics, as the forensic analyst can break the device or system open to examine

each of its individual components in greater detail. On the other hand, in the case

of semi non-intrusive forensic analysis, the analyst would need to come up with

good inputs to be given to the overall system and study the interactions between

various system components based on the overall input/output response. Next, we

examine the conditions when semi non-intrusive forensics and intrusive forensics

provide the same accuracies.

Corollary 5.3 The confidence scores for component parameter estimation via semi

non-intrusive forensics is equal to the confidence scores for intrusive forensics when

the knowledge of the component parameters do not help in the guessing the input

x given the output y.

Proof : From (5.66), we notice that equality among the confidence scores for semi

non-intrusive forensics and intrusive forensics is obtained only when all the com-

ponents in the system are 0−consistent. A component is said to be 0−consistent,

by definition, when its input can be uniquely determined given its output, and

viceversa. Further, for a 0−consistent component, the knowledge of the compo-

nent parameters do not help in the guessing the input x given the output y. This

completes the proof.
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Corollary 5.4 Intrusive analysis, semi non-intrusive forensic analysis, and com-

pletely non-intrusive forensic analysis provide the same confidence scores in param-

eter classification only when all the components in the device are 0−consistent.

Proof : The proof of this corollary follows from the proofs of Theorem 5.8 and

Corollary 5.3.

Comparing Corollary 5.2 and Corollary 5.4, we observe that the concept of

forensic independence is equivalent to 0−consistency. Further, it can be shown

that if all the components of the device are forensically independent of each other,

then all the components of the device are also 0−consistent, and viceversa. This

indicates the parallels between estimation and pattern classification theories.

Next, we re-consider the example discussed in Section 5.1.3 to illustrate pattern

classification framework to forensically classify component parameters.

Example: Consider a system with the input-output response given by

y =







y1

y2






=







a11 a12

a21 a22













x1

x2






+







n1

n2






, (5.67)

where x = [x1 x2]
T is the input to the system, y = [y1 y2]

T denotes the output from

the system, n = [n1 n2]
T represents additive Gaussian noise with E(n2

1) = E(n2
2) =

Σn and E(n1n2) = 0, and φ = [a11 a12 a21 a22]
T are the component parameters.

The goal of the forensic analyst is to compute the values of the parameter φ.

Contrary to the example in Section 5.1.3 where we assume that φ can take

infinite possible values in the parameter space, in this example, we restrict the φ

to take one of the two values in the parameter space Φ, i.e., φ ∈ Φ = {φ1, φ2}.

The parameter sets φ1 and φ2 are assumed to be of the form φ1 = [α1 0 0 α2]
T and

φ2 = [0 β1 β2 0]T , where the values of the parameters α1, α2, β1, and β2 are known
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apriori. For our analysis, we assume that there is no apriori knowledge about the

likelihood of choosing either φ1 or φ2 so that p(φ1) = p(φ2) = 0.5; and let φ1 be the

actual parameter set employed in the component without any loss in generality.

• s-classifiability: We first show that the component is semi non-intrusively

classifiable. A component is s-classifiable, by definition, if for most inputs x and

corresponding outputs y,

p(φ1|y, x) ≥ p(φ2|y, x). (5.68)

Imposing the assumption that noise follows a Gaussian distribution, the require-

ment for s-classifiability in inequality (5.68) reduces to

(2β1x2 − 2α1x1)y1 + (2β2x1 − 2α2x2)y2 ≤ (β2
1 − α2

1)x
2
1 + (β2

2 − α2
2)x

2
2. (5.69)

This inequality indicates that the component is s-classifiable under the input x =

[x1 x2]
T with the actual parameter φ1 if the output y = [y1 y2]

T lies on the correct

side of the straight line given by (5.69). Considering a specific case, if α1 = α2 =

β1 = β2 = 1, the inequality in (5.69) reduces to (y2 − y1)(x2 − x1) ≥ 0; suggesting

that for an input x2 > x1, the component is s-classifiable under the hypothesis

φ = φ1, if the corresponding output satisfies y2 > y1. Now, we quantify the

probability of y2 > y1 under the hypothesis φ = φ1. It can be shown that

Pr(y2 > y1|φ1) = Pr(n2 − n1 > x1 − x2|φ1)

=
1

2

(

1 + erf

(

x2 − x1

2Σn

))

. (5.70)

where ‘erf’ is the error function. When x2 > x1, the ‘erf’ term is approximately

equal to ‘1’ giving Pr(y2 > y1|φ1, x2 > x1) ≈ 1. Thus, for most inputs satisfying

x2 > x1, the probability of deciding φ = φ1 is close to ‘1’. Similarly, we can show

that for inputs satisfying x2 < x1, Pr(y2 < y1|φ1, x2 < x1) ≈ 1; thus, establishing

the s-classifiablility of the component for all range of inputs.
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• Confidence score and optimal inputs for semi non-intrusive forensics:

The confidence score attained via semi non-intrusive forensic analysis is given by

(5.48) and can be reduced to

η(semi)(x, y) = 2p(φ1|y, x) − 1,

=
p(φ1)p(y|φ1, x) − p(φ2)p(y|φ2, x)

p(φ1)p(y|φ1, x) + p(φ2)p(y|φ2, x)
. (5.71)

As can be seen from the equation, the confidence score is a function of the input

and can be improved by appropriate choice of the input. Under the condition that

p(φ1) = p(φ2) = 0.5, we get

η(semi)(x1, x2, y1, y2) =
exp

(

− (y1−α1x1)2+(y2−α2x2)2

2Σn

)

− exp
(

− (y1−β1x2)2+(y2−β2x1)2

2Σn

)

exp
(

− (y1−α1x1)2+(y2−α2x2)2

2Σn

)

− exp
(

− (y1−β1x2)2+(y2−β2x1)2

2Σn

) .

=
1 − exp(A(x1, x2, y1, y2))

1 + exp(A(x1, x2, y1, y2))
.

where

A(x1, x2, y1, y2) =
(y1 − α1x1)

2 + (y2 − α2x2)
2 − (y1 − β1x2)

2 − (y2 − β2x1)
2

2Σn
.

(5.72)

Optimal inputs can be computed by maximizing A(x1, x2, y1, y2) with respect to

x1 and x2. For the specific case of α1 = α2 = β1 = β2 = 1, the equation reduces to

A(x1, x2, y1, y2) =
(x2 − x1)(y2 − y1)

2Σn

. (5.73)

Therefore, the best input for semi non-intrusive forensics of this component is the

one that maximizes |x2 − x1|, i.e., choose x1 = minx∈ℜx x and x2 = maxx∈ℜx x or

viceversa.

• n-classifiability: In this part, we assume that the input x follows a Gaussian

distribution with mean µx = [µ1 µ2]
T and E(x2

1) = E(x2
2) = Σx with E(x1x2) = 0.
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Under this scenario, we have

p(φ1|y)

p(φ2|y)
= exp(B(y)). (5.74)

where

B(y) = B(y1, y2) =
(y1 − β1µ1)

2

(β2
1Σx + Σn)

+
(y2 − β2µ2)

2

(β2
2Σx + Σn)

− (y1 − α1µ1)
2

(α2
1Σx + Σn)

− (y2 − α2µ2)
2

(α2
2Σx + Σn)

(5.75)

If α1 = α2 = β1 = β2 = 1, then B(y) = 0 and p(φ1|y) = p(φ2|y). The component is

not non-intrusively classifiable under this scenario as there exists no input x∗ for

which the corresponding output y∗ satisfies p(φ1|y∗) > p(φ2|y∗).

5.2.3 A Note on the Definition of Confidence Score

We define the confidence score for parameter estimation according to (5.48) as the

difference between the probability of correct classification and the average of the

corresponding likelihoods of the making a wrong decision as

η
(1)
i (x, y) = p(φi|y, x) − 1

Na − 1

∑

j=1,2,...,Na,j 6=i

p(φj|y, x). (5.76)

Several other definitions for the confidence score in classification have been pro-

posed in literature and have been employed in practice to judge the confidence in

classification. In [139], Wan defined confidence score as the Kullback-Leibler dis-

tance between the estimated probability density function and uniform distribution

as

η
(2)
i (x, y) = D(p(φi|y, x)||U), (5.77)

where U represents uniform distribution. The equation can therefore be reduced

to

η
(2)
i (x, y) =

Na
∑

i=1

p(φi|y, x) log(Nap(φi|y, x)). (5.78)
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In the Chapter 3, we developed a confidence score based on the symmetric

Kullback-Leibler divergence as [128]

η
(3)
i (x, y) = D(p(φi|y, x)||U) + D(U||p(φi|y, x)),

=

Na
∑

i=1

(

p(φi|y, x) − 1

Na

)

log(Nap(φi|y, x)), (5.79)

and in [130], we defined a confidence metric as the difference between the proba-

bility of correct classification and the maximum of the corresponding likelihoods

of the making a wrong decision:

η
(4)
i (x, y) = p(φi|y, x) − max

j=1,2,...,Na,j 6=i
p(φj|y, x). (5.80)

Although the definitions of confidence score in η
(1)
i (x, y) to η

(4)
i (x, y) are differ-

ent, they provide different approaches to evaluate the goodness in decision making

and can provide different insights into the classification result. However, many of

the theorems, corollaries, and lemmas derived and proved proved in Section 5.2.2

are fundamental and hold true invariant of the choice of the confidence score metric

as shown in the following example.

Example: In this example, we show that the result in Theorem 5.7 holds true

even a different choice of confidence measure. Specifically, we consider the case

ηi(x, y) = η
(2)
i (x, y). The confidence score for semi non-intrusive forensics and

completely non-intrusive forensics for this case are given by

ηsemi
i (x, y) = log(Na) +

Na
∑

i=1

p(φi|y, x) log(p(φi|y, x)). (5.81)

ηnon
i (y) = log(Na) +

Na
∑

i=1

p(φi|y) log(p(φi|y)). (5.82)

To show that ηsemi
i (x, y) ≥ ηnon

i (y), we start with the identity: E(p(φi|y, x)) =

p(φi|y). This identity implies that there exists at least one input x0 ∈ ℜx for
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which p(φi|y, x0) ≥ p(φi|y), and therefore for this input ηnon
i (y) ≤ ηsemi

i (x0, y) ≤

ηsemi
i (x̂, ŷ) = ηsemi

i . Here, x̂ is the optimal input to the component with ŷ denoting

its corresponding output.

5.3 Chapter Summary

In this chapter, we develop two new theoretical frameworks for analyzing infor-

mation forensics to analyze component forensics depending on the nature of the

component. In the first scenario, we assume that the parameter values of a com-

ponent can take infinite number of possibilities. Under this scenario, we introduce

a framework based on estimation theory, Fisher information, and the Cramer-Rao

lower bound. We define formal notions of identifiability of components under in-

trusive, semi non-intrusive, and completely non-intrusive forensic analysis cases

and quantify the accuracies at which the component parameters can be estimated

in each case using Fisher information as a criterion.

In the second scenario, we assume that the forensic analyst has some apriori

knowledge about the component and has information about the possible superset

of parameter values employed in the component. For this scenario, we employ ideas

from pattern classification theory to answer forensic questions about what com-

ponents and processing operations are classifiable and what are not; and quantify

the confidence in which the component parameters can be classified.

Building on the proposed theoretical analysis frameworks, we establish a num-

ber of fundamental results. Our theoretical analysis suggests that intrusive foren-

sics gives superior estimation accuracies and classification confidence over semi

non-intrusive forensics, and this is better than completely non-intrusive scenario.

We demonstrate that the accuracy in estimating the component parameter and
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the confidence in classifying the component algorithms depend on the nature of

available inputs and testing conditions, and can be improved by better choice of

inputs. We then apply the theoretical framework in case studies to design optimal

inputs for semi non-intrusive forensics; and show that the confidence in parameter

identification can be improved via such an approach. The proposed theoretical

model can also be extended to study post-device processing operations such as

tampering, and to provide a theoretical foundation for media forensics to answer a

number of forensic questions related to who has done what to the content, when,

and how.
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Chapter 6

Case Studies and Applications of

Theoretical Forensics Framework

In this chapter, we present case studies and applications of the proposed theoretical

analysis frameworks presented in Chapter 5. Specifically, we focus on the problem

of semi non-intrusive forensics. We briefly describe the imaging model in digital

cameras and define the notations used in Section 6.1. In Section 6.2, we show that

the parameters of such important components as color interpolation and white

balancing can be better estimated via semi non-intrusive forensics compared to

completely non-intrusive forensics. Based on a detailed modeling of the imaging

process and knowledge of the possible algorithms employed in such components

as color interpolation and white balancing, in Section 6.3, we design a heuristic

input for semi non-intrusive forensics of digital camera components and show that

the designed pattern can provide better accuracies. The pattern is then optimized

in Section 6.4 using metrics from theoretical analysis and simulation results are

presented to demonstrate the goodness of the pattern. The chapter is summarized

in Section 6.5.
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To our best knowledge, this is the first work to address the problem of semi

non-intrusive component forensics. Related work fall into two basic categories. In

the forensics literature, there have been work that aim to find the parameters of

post-camera processing operations [84,110] such as JPEG compression, resampling,

and brightness change; and to non-intrusively estimate the parameters of camera

components such as lens distortions, color filter array [123], and color interpolation

[112,123]. However, the accuracy of these non-intrusive techniques is limited by the

nature of the available data. A second group of prior art concerns television and

camera manufacturing technologies. Among these work, there have been studies

that focus on designing test patterns to tune the parameter settings of television

sets by analyzing its response to specific inputs [89]. However, these work are not

intended for estimating the parameters of internal device components.

6.1 Signal Processing Model of Camera Compo-

nents

In this section, we develop a signal processing model of camera components. Fig-

ure 2.1 shows the image acquisition model in digital cameras. Let x be the input

to the camera’s color interpolation module. For our work, we divide the image

into different types of regions based on the local gradient directions, and approx-

imate color interpolation in each region to be linear.1 The output y1 after color

interpolation can be written as

y1(m, n, c) =
∑

k,l

α(k, l, c)x(m − k, n − l, c) + n1(m, n, c), (6.1)

1In Chapter 3, we show that this linear approximation is good for estimating the color inter-

polation coefficients.
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for each texture region. Here, α denotes the color interpolation coefficients and the

summations over variables k and l are done in the regions where the filter α(k, l, c)

has support. The noise term n1(m, n, c) is used to simulate the model fitting error,

and in our analysis, we assume that n1 follows a Gaussian distribution.

After color interpolation, the interpolated image y1 undergoes white balancing

to give y2. White balancing and color correction are typically done in the camera as

part of the post-processing block to remove unrealistic color casts from the image.

White balancing is typically multiplicative in nature, where the output is obtained

by scaling the input by the chosen scaling factor. In manual white balancing, the

user chooses the appropriate multiplication constants for each color channel so

that a white colored object looks white after compensation. On the other hand,

auto white balancing algorithms compute the multiplication factors based on the

estimated illuminance of the scene [7] and use these estimates for scaling the input.

White balancing operations can be mathematically represented as

y2(m, n, c) =

3
∑

j=1

β(c, j)y1(m, n, j), for c = 1, 2, 3. (6.2)

where β are the white balancing coefficients.

Finally, the image may be JPEG compressed to reduce storage space. Compres-

sion can be modeled as quantization in the DCT domain, and can be represented

as additive noise in the pixel domain. Denoting this compression noise as n2, the

final image is given by

y(m, n, c) = y2(m, n, i) + n2(m, n, c). (6.3)

Combining (6.1), (6.2), and (6.3), we obtain the input-output response of the
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digital camera

y(m, n, c) =
3
∑

j=1

∑

k,l

α(k, l, c)β(i, j)x(m−k, n−l, c)+
3
∑

j=1

β(i, j)n1(m, n, c)+n2(m, n, c).

(6.4)

The goal of the forensic analyst is now to estimate the device parameters α(., ., .)

and β(., .).

6.2 Theoretical Analysis of Digital Camera Com-

ponents

In this section, we employ the theoretical frameworks presented in Chapter 5 to

analyze the parameters of such camera components as color interpolation, white

balancing, and JPEG compression. We analyze these components from both es-

timation and pattern classification perspectives and determine the accuracies in

computing the component parameters.

6.2.1 Color Interpolation

Color interpolation is an important processing stage in digital cameras. Most cam-

eras of different brands/models employ a different algorithm for color interpolation

and therefore estimating the interpolation parameters provides very useful infor-

mation to build a robust camera identifier as shown in Chapter 3 and [128]. In

this subsection, we examine the conditions under which the color interpolation

component parameters are identifiable.

Typically, the data recorded by the CFA are interpolated using its neighbor-

ing pixel values to form the interpolated image as represented by equation (6.1).

Obtaining the component parameters α in a general case involves solving a blind
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deconvolution problem. However, additional information about the sampling pat-

tern could be used to simplify the problem as the knowledge of the CFA gives

the locations of the set of pixels that are interpolated and those that are di-

rectly obtained from the CCD sensor. With this information and with the as-

sumption that the color interpolation coefficients, α, has support in the range

[−⌊Nα

2
⌋, ⌊Nα

2
⌋]× [−⌊Nα

2
⌋, ⌊Nα

2
⌋]× [1, 3], (6.1) can be equivalently re-written for the

‘red’ color under no-noise case as











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




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

y1(1, 1, 1)

y1(1, 2, 1)

y1(1, 3, 1)
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...
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








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
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




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









1 0 0 0 . . .

α(0, 1, 1) 0 α(0,−1, 1) 0 . . .
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...
...

...
...

. . .
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
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



















, (6.5)

where W and H denote the width and the height of the image. In constructing

these equations, we assume that the camera employs Bayer CFA [13] to sample

the real-world scene and similar equations can be obtained for other CFA.

In the absence of post-interpolation processing, such as white balancing and

JPEG compression, there would be no additive noise and y = y1. Further, under

these conditions, the values of the camera output image at locations corresponding

to {y1(1, 1, 1), y1(1, 3, 1), y1(1, 5, 1), . . .} are obtained directly from the ‘red’ color

component of camera input, and the values at the remaining intermediate pixel

locations corresponding to {y1(1, 2, 1), y(1, 4, 1), y1(1, 6, 1), . . .} are obtained inter-

polated. Therefore, with the knowledge of the color filter array, the output y1 = y
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gives complete information about the input and we obtain













y1(1, 2, 1)

y1(1, 4, 1)

...




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





=













α(0, 1, 1) α(0,−1, 1) . . .

α(0, 3, 1) α(0, 1, 1) . . .

...
...

. . .

























y1(1, 1, 1)

y1(1, 3, 1)

...













. (6.6)

This final set of equations in (6.6) are dependent only on the camera outputs and

can be solved by least squares method to estimate the component parameters.

Therefore, in the absence of noise and post-interpolation processing, the average

error in estimating the cameras’ color interpolation parameters with an input x

via semi non-intrusive forensics is equal to the average estimation error obtained

via completely non-intrusive forensics with the knowledge of just the component

output y1, i.e., ∆s(x) = ∆n.

Equation (6.6) also suggests that the component is n-classifiable, s-classifiable,

and i-classifiable in the absence of noise and post-interpolation processing. Color

interpolation component is therefore a particular example of a component for which

n-classifiability implies s-classifiability which is not true in a general case. This

property of color interpolation can be attributed to the fact that the component is

0−consistent, and the knowledge of the output y gives full information about the

input x, and p(y|φi) = p(y|φi, x), where φi are the component parameters.

In the presence of noise and post-interpolation processing, the component would

no longer be 0−consistent and semi non-intrusive analysis would provide better

accuracies than completely non-intrusive analysis. In the subsequent sections, we

design a heuristic input and optimize it to increase the estimation accuracy and

classification confidence in computing the color interpolation parameters.
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6.2.2 White Balancing

In this part, we theoretically analyze the white balancing component under the

presence and absence of additive noise. We begin with the ‘no-noise’ case.

• No Noise case: The input-output relationship for the white-balancing operation

under no noise is given by (6.2) and can be expressed in the matrix form as

y = y2 = θy1, (6.7)

where θ is the white balancing parameter, and y1 and y represent the input and

the output of the white balancing component, respectively.

In the noiseless case case, the component is i-classifiable and s-classifiable be-

cause the forensic analyst can accurately estimate θ given one instantiation of

the input and output, as θ = y × y−1
1 . However, the component may not be n-

classifiable in a general scenario because, in the absence of the knowledge about the

input y1, the values of y1 and θ may be appropriately swapped and the information

about the output y would not resolve the ambiguity.2

• Under Additive Noise: Most often, white balancing precedes processing such

as JPEG compression in digital cameras. Operations such compression add noise

to the final output and under this scenario, and therefore the final output can be

written as

y = θy1 + n2, (6.8)

where n2 models the additive noise.

To simplify mathematical analysis of the white balancing component, we con-

sider a specific case with y1 = y1 of unit length and E(n2
2) = σn. Under this

2The white balancing component may be n-classifiable if there is a restriction on the parameter

space Θ and/or the input space ℜx that would help resolve the ambiguity.
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scenario,

p(y|y1, θ) =
1

(2πσ2
n)1/2

exp

(

−(y − θy1)
2

2σ2
n

)

, (6.9)

and the Fisher information for semi non-intrusive forensics can be derived as:

Is(y1, θ) =
y2

1

σ2
n

. (6.10)

This equation suggests that the Fisher information is equal to the signal to noise

ratio (SNR); this satisfies intuition as we notice that as the SNR increases, the

Fisher information increases and the overall accuracy improves.

With the assumption that the input to the component, y1, follows a Gaus-

sian distribution with mean µy1 and variance σ2
y1

, the pdf of the output y can be

computed as

p(y|θ) =
1

√

2π(θ2σ2
y1

+ σ2
n)

exp

(

− (y − θµy1)
2

2(θ2σ2
y1

+ σ2
n)

)

(6.11)

and the Fisher for completely non-intrusive forensics can be calculated to be

In(θ) =
3θ2σ4

y1
(θ2σ2

y1
+ σ2

n)2 + µ2
y1

(θ2σ2
y1

+ σ2
n) + 2θ2σ4

y1

(θ2σ2
y1

+ σ2
n)2

. (6.12)

Comparing (6.10) and (6.12), we notice that for any input y1 that satisfies y1 ≥

σn

√

In(θ), the Fisher information for semi non-intrusive forensics would be higher

than the Fisher information for completely non-intrusive forensics. Therefore,

by choosing such an input, the overall estimation errors obtained via semi non-

intrusive forensics can be made lower compared to non-intrusive studies. Thus,

the white balancing parameters can be better estimated semi non-intrusively by

appropriate choice of inputs.

6.2.3 JPEG compression

JPEG compression can be considered as quantization in the Discrete Cosine Trans-

form (DCT) domain. The compression parameters and the quality factors can be
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reasonably estimated via statistical analysis based on binning techniques just based

on the output image [33,84]. Therefore, the component is n-classifiable for non-zero

inputs.

6.3 Semi Non-Intrusive Forensics with Heuristic

Pattern

In the previous section, we have shown that the parameters of such important

components as color interpolation and white balancing can be estimated with a

higher accuracy and confidence via semi non-intrusive forensics compared to com-

pletely non-intrusive forensics. In this section, we design a heuristic pattern for

semi non-intrusive forensics of digital cameras and show that the heuristic pattern

can provide better accuracies in parameter estimation.

6.3.1 Heuristic Pattern Design

Lets consider the imaging model discussed in Section 6.1. Concatenating all the

elements of y(m, n, c) to form y, and representing (6.4) in matrix form, we obtain

y = Aαβx + Bβn1 + n2. (6.13)

where Aαβ and Bβ denote the matrices of appropriate dimension and are formed

from the parameters α and β. The sub-scripts in these matrices are used to indi-

cate their dependence on the appropriate component parameters. The goal of the

forensic analyst in semi non-intrusive forensics is to design an input that would

help increase the confidence (or accuracy) in classifying (or estimating) the device

parameters φ = [Aαβ Bβ ].
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Suppose Na is the total number of possible algorithms employed by the com-

ponent such that φ ∈ Φ = {φ1, φ2, . . . , φNa}, the forensic analyst computes the

optimal input as the one that maximizes the confidence score

ηi(x) =
Na

Na − 1

(

p(φi|x, y) − 1

Na

)

. (6.14)

Assuming the noise terms n1 and n2 to be independent and Gaussian distributed

with mean zero and variance σ2
n1

and σ2
n2

, respectively, it can be shown that finding

an input that maximizes (6.14) is equivalent to computing the input that maxi-

mizes the distance, (Aαβ(i) − Aαβ(j))x, between the means of every two pairs of

distributions. In this subsection, we develop heuristics to achieve this property.

As seen from the analysis, choosing the optimal input pattern would depend

on the nature of the algorithms in the parameter space Φ. In the case of the

color interpolation component, the algorithm space Φ can be mainly classified

into two categories as adaptive and non-adaptive methods depending on the way

they handle edge regions (see Appendix I of Chapter 3 for a brief summary).

Therefore, a good input to identify the interpolation category would be a pattern

with significant edge patterns, either in the horizontal or vertical direction. A

sample is shown in Figure 6.1(a). The corresponding images interpolated with

non-adaptive and adaptive methods are shown in Figure 6.1(b) and (c) and their

magnified versions are shown in Figure 6.1(d) and (e) respectively. As can be seen

from the figures, there are significant artifacts for images interpolated using non-

adaptive methods, and no such distortions are present in the images interpolated

using gradient based adaptive techniques. This result is expected because the non-

adaptive methods to not use any kind of edge sensing algorithms to avoid averaging

across the edge. In this case, we would be able to easily distinguish between the

two kinds of interpolation methods only by visually examining the outputs under
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Figure 6.1: A possible input pattern to identify the interpolation type. The figure

shows (a) sample input pattern; (b) image obtained after non-adaptive interpo-

lation techniques; (c) image obtained after edge based adaptive methods; (d) a

magnified version of (b) showing the artifacts; (e) a magnified version of image in

(c).

this input. This illustration indicates that the choice of an optimal input would in

general depend on the type of possible interpolation algorithms that we intend to

identify (or differentiate). For instance, the sample pattern in Figure 6.1 may not

be able to distinguish between two different types of adaptive methods that use

different set of coefficients for interpolation.

Generalizing on this observation, we define a set of properties required for an

optimal input pattern based on a detailed study of the imaging process and possible

algorithms employed in each component.

• Identifying Color Interpolation Methods:

– To help distinguish between different kinds of adaptive interpolation

methods, it would be necessary to study the similarity and differences
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in the way each of the interpolation methods handle different types

of directional edges. Thus, a converging wedge pattern as shown in

Figure 6.2 would be useful.

– Chirp signals can be used to capture the variations in the frequency do-

main as they have been known to have a very good frequency response.

The basic equation for generating a chirp signal is of the form

s(m, n) = a1cos(a2m
2 + a3n

2).

where a1, a2, and a3 are suitably chosen constants. These patterns also

provide us with a simple method to construct symmetric and circular

patterns with gradually decreasing widths and thickness, and in turn

facilitating performance studies of the interpolation methods under var-

ious frequency levels.

– Some interpolation methods have different ways to handle smooth re-

gions. Generally, bilinear or bicubic interpolation methods are used in

smooth regions due to their ease in implementation and because they

do not produce pronounced visual distortions in these areas. Thus, the

ideal pattern should also have reasonable sized smooth and gradually

varying regions to help identify the type of interpolation used here.

– Naturalness: Many of the interpolation methods are designed to work

well for natural images taken using a camera with a gradually changing

smooth hue. Some of them further assume that the edges of the three

color channels are aligned, and some others suppose that the differences

between the color channels (red-green, red-blue, blue-green) are contin-

uous. Hence, it would be necessary that have a smooth hue in order to

achieve maximum accuracy in identification.

154



• Identifying White Balancing methods: Most of the cameras use white-patch

algorithm or the grey-world methods for white balancing. The white patch

method is based on relative normalization of the individual color channels

based on assumption that a particular region (in the image) is white. Thus,

introducing large sections of all-black and all-white regions with constant

intensity would enable us to find if the white-patch methods were used. To

identify the grey-world algorithms, it would be necessary to see if the average

pixel value in the output image is close to the mid-grey value of 128.

• Identifying Gamma Correction: The best input pattern to find the value

of Gamma is the varying grey scale pattern. Thus, comparing the output

grey scale values with the input, one can obtain a very good and reasonable

estimate of the value of the parameter gamma.

• Identifying Lens distortions: The best pattern to help identify any kind of

lens distortions is the checkerboard pattern with long straight lines. We

would also be able to estimate the parameters of the lens distortions by

studying the transformations undergone by a straight line. The checkerboard

pattern also helps align the captured image with the original image.

Based on the requirements outlined above, a possible input pattern is con-

structed as shown in Figure 6.3 by combining different patterns each satisfying

some of the requirements listed above. As can be seen from the figure, it has

the variable frequency chirp patterns at the center, the wedge patterns have been

repeated twice to help provide more information about the variability in handling

gradients along different directions. Gradually changing smooth regions border the

chirp patterns to help identify the interpolation methods used in smooth regions.

The image has been post-processed by fine tuning the hue and the ratios red/green
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Figure 6.2: Wedge patterns for semi non-intrusive forensics.

and the blue/green components have been smoothened to introduce naturalness.

Finally, the difference images (red-green and blue-green) have also been spatially

averaged to obtain good performance.

6.3.2 Component Forensics Analysis of Color Interpolation

As shown in Section 6.2.1, in the absence of noise and post-interpolation process-

ing operations, color interpolation module is 0−consistent and completely non-

intrusive analysis would provide the same accuracies as semi non-intrusive analy-

sis and the knowledge of the input does not provide any additional information to

aid forensic analysis in this case. However, in the presence of noise, the compo-

nent would no longer be 0−consistent and semi non-intrusive analysis would pro-

vide better accuracies than completely non-intrusive analysis. In this subsection,

we examine the effectiveness of the heuristic input pattern for semi non-intrusive

forensics of color interpolation module and compare the results obtained with nat-

ural images under completely non-intrusive forensics scenario in the presence of

post-interpolation processing.

We employ the proposed heuristic pattern for semi non-intrusive forensic anal-
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Figure 6.3: Heuristically designed input pattern.

ysis. In order to simulate completely non-intrusive forensic scenario for compari-

son studies, we select 20 representative images corresponding to different natural

scenes [129, 133]. These images are first down-sampled to remove the effects of

previously applied filtering and interpolation operations, sampled on the Bayer fil-

ter array [13], and then interpolated using six different interpolation algorithms to

reproduce the scene capture process in cameras. The interpolation methods that

we consider are: (a) Linear types of interpolation, including Bilinear and Bicubic,

and (b) Non-linear interpolation methods including Smooth Hue, Median Filter

based approach, Gradient based, and Adaptive Color Plane [7]. These 120 images

obtained using these six different interpolation techniques form the non-intrusive
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Figure 6.4: Results for color interpolation showing (a) mean and (b) variance of

estimation error.

forensic dataset. We test the efficiency of semi non-intrusive forensics from both

an estimation and pattern classification perspective.

Performance Evaluation from Estimation Perspective

For each image in the dataset, we estimate the interpolation coefficients from

each type of region ℜm(m = 1, 2, 3) by solving the least squares problem [128],

re-interpolate the image using the estimated coefficients, and find the estimation

error. We compare the estimation results obtained semi non-intrusively using the

proposed heuristic pattern with the ones got by employing natural images under

non-intrusive scenarios. Figure 6.4(a) and (b) compare the results in terms of

the mean and variance of the estimation error, respectively, for the two linear

and four non-linear interpolation algorithms. As can be seen in the figure, the

proposed heuristic pattern gives an average estimation error close to 0.007 per pixel

that is much lower compared to natural images for which the values are around

0.015 − 0.03. This suggests the effectiveness of the proposed heuristic pattern for

improving the estimation of the color interpolation coefficients and demonstrates
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the performance gains of semi non-intrusive forensics over the completely non-

intrusive scenario.

Performance Evaluation from Classification Perspective

In this part, we study the performance of the heuristic pattern for classifying the

interpolation type. For our experiments, we estimate the interpolation coefficients

from each of the 120 synthetic images in the dataset and classify them with a

SVM classifier [148]. We compute the confidence value as a difference between

the probability of correct classification and the maximum of the corresponding

likelihoods of the making a wrong decision, i.e.,

ηi(x, y) = p(φi|y, x) − max
j=1,2,...,Na,j 6=i

p(φj|y, x), (6.15)

and use this as a metric to examine the classification results.

We study the robustness in parameter classification under JPEG compression.

In Table 6.1, we show the confidence scores obtained on ‘correct’ classification

under different quality levels of JPEG compression. We note that the maximum

confidence is attained under ‘no compression’ for most of interpolation algorithms,

and the confidence score reduces as the JPEG quality factor reduces. The ‘∗’

marks in the table under low JPEG quality indicate mis-classification. Upon a

closer look at these results, we find that these bilinear and smooth hue interpolated

images have been wrongly classified as bicubic. This result is expected because

bilinear and bicubic employ very similar interpolation approaches, and smooth

hue uses bicubic for the ‘green’ component as discussed in Appendix I of Chapter

3. The confidence values obtained for the heuristic pattern, in all scenarios, are

significantly higher than those obtained for natural images which are in the range

of 50− 60% even under 100% JPEG quality. This demonstrates the superiority of
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Table 6.1: Variation of the classification confidence score as a function of JPEG

quality factor for the heuristic pattern in Figure 6.3. ∗ indicates mis-classification.

Algorithm No Compr. 90% 80% 70% 60% 50% 40% 30%

Bilinear 74% 68% 35% * * * * *

Bicubic 77% 39% 55% 65% 60% 44% 25% 3%

Smooth Hue 94% 25% 16% * * * * *

Median Based 64% 72% 68% 73% 77% 78% 67% 29%

Gradient Based 99% 92% 89% 83% 76% 71% 66% 69%

ACP 87% 50% 35% 22% 27% 25% 14% *

the designed pattern for semi non-intrusive analysis.

A Closer Look at Estimation and Classification Results

We take a closer look at the estimation and the classification results to understand

the reasons for superior performance. More specifically, we divide the heuristic

pattern, shown in Figure 6.3 into various 512 × 512 regions depending on the

location of wedge, chirp, horizontal, and vertical gradient patterns. The image

blocks are then interpolated with each of the 6 different interpolation methods,

and the interpolation coefficients are estimated from these blocks for classification.

In Figure 6.5 (a)–(f), we show the images obtained from the six interpolation

algorithms and highlight in green the regions that have been correctly classified by

the SVM classifier. For instance, when interpolated with the bilinear method, all

the regions except the wedge regions and the horizontal/vertical gradient regions

are correctly classified to be bilinearly interpolated and the remaining regions were

mis-classified.
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Comparing the highlighted regions in all the six images, we note that different

types of regions are correctly classified when interpolated with different techniques.

For example, the chirp patterns in the center can help identify the bilinear, bicubic,

smooth hue, gradient based, and adaptive color plane methods. However, they

may not be very good for identifying median based methods. On the other hand,

converging wedge patterns are very good in identifying the median interpolation

and gradient based methods. The horizontal and vertical gradient patterns can

help distinguish adaptive versus non-adaptive methods, but cannot help separate

two different types of adaptive methods or two different kinds of non-adaptive

methods. Thus, our results indicate that while the individual patterns may not

be separately good for identifying the exact interpolation algorithm, the proposed

heuristic pattern is very good. When the entire image is given as an input, the

coefficients obtained from each of the regions contribute to improve the overall

classification accuracy; thus, improving the confidence in forensic analysis.

6.3.3 Forensics Analysis of White Balancing Parameters

In this subsection, we focus on white balance parameter estimation. We begin

by describing the estimation algorithm and then present simulation results and

analysis.

Proposed Algorithm to Estimate White Balance Parameters

A brief survey of white balancing methods are included in Appendix of this chapter.

White balancing operations are typically multiplicative [39,150] as shown in (6.2)

and each color in the photograph is multiplied by an appropriately chosen constant

in the camera color space. Using U to represent the transformation matrix that
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(a) Bilinear Interpolation (b) Bicubic Interpolation (c) Smooth Hue

(d) Median based (e) Gradient based (f) ACP

Figure 6.5: A closer look at the heuristic pattern highlighting the regions that are

correctly classified under different types of color interpolation algorithms.

is used to convert the RGB color coefficients to camera color space, the white

balancing operation can be modeled as
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, (6.16)

where y1(., ., .) represents the raw pixels, y2(., ., .) represents the white-balanced

pixels, and the 3 × 3 diagonal matrix Λ denotes the white-balancing coefficients

that are chosen based on the lighting conditions of the scene.3 In most commercial

3Diagonal transformation matrix is preferred for Λ as it follows the Von-Kries hypothesis [39],

and has only 3 parameters to be estimated from the scene.
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cameras, white balancing is done in the XYZ color space [150], and U in this case

would correspond to the color transformation from RGB to XYZ space. Some

modern digital cameras may perform sensor sharpening, and appropriate modifi-

cations are done to the matrix U to include these effects. Some sample values of

the transformation matrix, U , for FujiFilm FinePix S5000 and Canon EOS Digital

Rebel are shown in Figure 6.6(a) and (b), respectively. Note that U is tied to a

camera, while the value of Λ varies for each picture taken by the device.

As shown in Section 6.2, it would be difficult to non-intrusively estimate the

white balancing parameters U and Λ accurately from the output images without

the knowledge of the actual raw values captured by the sensor. However, they can

be semi non-intrusively estimated. If the digital camera can produce raw images,

the pixel values as captured by the CCD sensors can be read out from the captured

image. These values can be used alongwith the actual white balanced output to

estimate U and Λ by solving (6.16). For digital cameras that do not produce the

raw format, the values of U can be estimated by a two-step process [129,133]. The

first step obtains two images with approximately the same raw data but different

white balanced processed versions. This can be done by manually choosing different

built-in white balancing options while taking the pictures, for example, one image

with white balancing setting fixed to “tube light” and another with “tungsten

light.” Let the white balanced RGB pixel values in the first image be denoted

as R
(1)
wb , G

(1)
wb , and B

(1)
wb and let R

(2)
wb , G

(2)
wb , and B

(2)
wb represent the corresponding

values in the second image. Denoting the corresponding white balancing constants

employed in generating the two images by Λ(1) and Λ(2), respectively, we can show
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1.503428 -0.424598 -0.078830 1.591484 -0.645577 0.054094

-0.056807 1.369831 -0.313025 -0.083807 1.479398 -0.395591

0.032900 -0.403764 1.370864 0.069723 -0.473899 1.404176

(a) FujiFilm FinePix S5000 (b) Canon EOS Digital Rebel

Figure 6.6: Actual values of the transformation matrix (U) for two different camera

brands.
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Here, the notation Λ(2)/Λ(1) represents a diagonal matrix with each diagonal ele-

ment obtained as an element-wise division of the corresponding terms in Λ(2) and

Λ(1).

In the following, we test our proposed estimation techniques for simulated data

and study its robustness to JPEG compression with both synthetic data and actual

images taken from the camera.

Testing with Synthetic Data

To reproduce the experimental setup in digital cameras, we generate two images

by applying two different white balancing parameters both with the same U corre-

sponding to the ones employed in Canon EOS Digital Rebel (shown in the Figure

6.6(b)). The diagonal values of the matrix Λ for the first image are chosen to

be equal to {1.436, 1, 1.763} and as {2.442, 1, 1.073} for the second image. These

values correspond to the ones used for daylight and tungsten light settings respec-

tively. The coefficients of A1→2 = U−1(Λ(2)/Λ(1))U and the transformation matrix
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Figure 6.7: Results for white balancing showing the error in estimation of (a) A1→2

and (b) normalized transformation matrix Unorm.

U are then estimated from these two white balanced images.

We study the robustness of the estimation techniques as the final images are

JPEG compressed. More specifically, we JPEG compress the white balanced im-

ages with different quality factors and use these images for estimation. The es-

timation error in A1→2 is computed as the squared Forbenius norm between the

actual and the estimated values, and is shown in Figure 6.7(a) as a function of

the JPEG quality factor. The figure shows the error for the synthetic pattern

alongside the average error recorded from 20 natural images. We notice that the

error reduces as the quality factor increases for both natural images and the de-

signed pattern as expected. We also observe that the overall value of error for the

designed pattern is an order of magnitude lower than that obtained for natural

images. This result demonstrates the superiority of the proposed heuristic pattern

for semi non-intrusive estimation of white balancing parameters.

Eigen value decomposition is applied to the estimated matrix A1→2, and the

eigenvector matrix Ûnorm is computed with each of the eigenvectors normalized to

unit energy. The Frobenius norm between the actual normalized matrix Unorm and
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the estimated matrix is shown in Figure 6.7(b) as a function of the JPEG quality

factor. We notice that error values are lower than 0.1, suggesting the effectiveness

of the proposed heuristic pattern for estimating the white balance parameter Unorm.

Similar results were also obtained when tested with camera data.

Comparing Figure 6.4(a) and Figure 6.7(a), we also find that while the estima-

tion results obtained in the semi non-intrusive scenario with the proposed heuristic

pattern are better than the ones obtained using natural images in both cases, the

performance improvement is more significant in the case of white balancing than

for the case of color interpolation. This result can be attributed to the multi-

plicative nature of the white balance operation (see (6.16)), that requires more

information to produce more accurate estimates, and such additional information

may be available in controlled test conditions in a semi non-intrusive scenario.

These results also suggest that the performance improvements obtained with semi

non-intrusive forensics depends on the nature of processing that is to be identified.

Testing with Camera Images

We use the proposed estimation techniques for obtaining the white balancing pa-

rameters from camera data. In our experiments, we display the pattern in the

Liquid Crystal Display (LCD) monitor and capture it with several digital cam-

eras. All images are captured under the same constant uniform illumination under

incandescent lights. The Gamma of monitor is set to 1 and the ISO setting and

focal length are maintained to be similar for all images. A tripod is used to re-

move the effects of other kinds of such random distortions as the ones introduced

by hand shaking, and distinct horizontal (and vertical) lines as shown in Figure 6.3

is used as a reference lines and to fix the center of the camera to the center of the
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Figure 6.8: Results for estimating white balancing parameters for Canon EOS Dig-

ital Rebel: the estimated and the actual values of the normalized transformation

matrix (Unorm) are shown alongside for comparison.

image. Several snapshots of the input image were taken by changing the white

balance setting on the camera manually.

As a preliminary pre-processing step, registration is performed on the two

JPEG images. The corners in checker-board registration pattern is employed to

give good set of corresponding points, and the homographies [57] are computed by

matching these corners. One of the two images is then projected using the esti-

mated homography and the projected image is used for subsequent analysis. We

formulate a set of linear equations using the projected image and solve it using the

least squares technique to obtain A1→2. We then compute its eigenvalues and nor-

malized eigenvector matrix Ûnorm. The estimated values are shown in Figure 6.8.

The actual value of the transformation matrix U is also obtained by reading the

header of the corresponding raw files captured solely for testing purposes. The

closeness in the estimated and the normalized actual coefficients demonstrate that

our proposed simulation setting, pattern, and the estimation technique is good.
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6.4 Optimal Pattern Design for Semi Non-Intrusive

Forensics

In this section, we employ metrics from the estimation and pattern classification

frameworks presented in Chapter 5 to optimize the heuristic pattern for semi non-

intrusive analysis.

6.4.1 Optimizing the Heuristic Pattern via Estimation Frame-

work

We optimize the input pattern for semi non-intrusive forensics by solving a min-

imization problem that minimizes the parameter estimation accuracies, ∆s(x,y),

where x and y are the input and the output to the component, respectively. As de-

scribed in the imaging model in Section 6.1, color interpolation in digital cameras

can be expressed mathematically as (6.1) and can be represented in the matrix

form as

y = Xα + n1. (6.18)

where y denotes the component output, X represents a matrix with component

input values, α = [α(−Nα,−Nα, 1), . . . , α(Nα, Nα, 3)]T is a vector containing all

the component parameters to be estimated, and n1 is the additive white noise that

models any post-interpolation processing operations. Under the assumption that

the noise follows an independent and identically distributed Gaussian distribution,

it can be shown that the estimation error for semi non-intrusive forensics under

the input x is equal to the inverse of the signal-to-noise ratio, i.e.,

∆s(x,y) = σ2
n1

(XTX)−1. (6.19)
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Figure 6.9: Digitally magnified versions of a 32 × 32 part in the original and

optimized input patterns.

where σ2
n1

is the variance of the additive noise.

An iterative technique based on gradient-descent algorithm is employed to min-

imize the cost function ∆s(x,y) and to optimize the pixel values of the input pat-

tern [126]. In Figure 6.9, we show the results of the optimization algorithm for a

32×32 part the original input along with the optimized version for comparison. To

test the goodness of the designed pattern and the optimized pattern for estimating

the cameras’ color interpolation parameters, we first interpolate both the original

and the optimized images shown in Figure 6.9 using different kinds of adaptive

interpolation algorithms such as gradient based [92] and adaptive color plane [56].

We then post-process the interpolated images by JPEG compressing them under

different quality factors [126]; and finally re-estimate the interpolation coefficients

from the compressed versions. Figure 6.10 shows the estimation error as a func-

tion of the JPEG quality factor for both the heuristically designed input and the

optimized input image. The figure shows the average error is significantly lower for

the case of the optimized pattern compared with the original pattern. This result

suggests that the theoretical framework can be employed to design optimal input

patterns for estimating the color interpolation parameters with improved efficiency

and robustness to post-interpolation operations such as JPEG compression.
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Figure 6.10: Average estimation error for semi non-intrusive forensics as a function

of JPEG quality factor.

6.4.2 Optimizing the Heuristic Pattern via Pattern Clas-

sification Framework

In the previous subsection, we employed estimation error as a metric for optimiz-

ing the heuristic pattern for semi non-intrusive analysis. The optimized images

obtained therein can be employed to estimate the coefficients with a higher accu-

racy as shown in the experimental results; and can be widely deployed for forensic

analysis when the knowledge of possible set of color interpolation algorithms is not

known apriori.

In this subsection, we show that with the knowledge of the possible set of color

interpolation algorithms, ideas from pattern classification theory can be employed

for optimizing the heuristic pattern and find the one that maximizes the overall

confidence in decision making. As shown earlier in Section 6.3.1, the optimal input

for camera component forensics is the one that maximizes the distance, ||(Aαβ(i)−

Aαβ(j))x||. Here, Aαβ(i) and Aαβ(j) correspond to two different possible values

for the Aαβ from the algorithm space. It can be shown that the solution for this
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Figure 6.11: Confidence score as a function of JPEG quality factor for (a) natural

images (b) designed pattern.

maximization problem, x̂, is along the direction of the eigenvector corresponding

to the largest eigenvalue of the matrix (Aαβ(i) − Aαβ(j)). Based on the above

observations, we optimize the heuristic pattern in Figure 6.3 and modify in such a

way that the optimal input approximately follows the direction of the maximum

eigenvector [130, 133]. The optimized input is employed for testing.

To simulate the camera capture process, the optimized input image is interpo-

lated using two different interpolation techniques: bicubic that does not adapt to

image content, and the adaptive color plane interpolation method (see Appendix

I of Chapter 3 for detailed description of interpolation algorithms) that adapts to

image gradient values. The interpolation coefficients are estimated and used as

an input to a two-class support vector machine (SVM) classifier [148] for identi-

fication. This SVM has been trained with the coefficients obtained from natural

images correspondingly interpolated with each of the same two different techniques.

We study the robustness in parameter estimation under JPEG compression. In

Figure 6.11, we plot the confidence values obtained on classification under different
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quality levels of JPEG compression both for the designed pattern and for natu-

ral images. We notice from the figure that as the JPEG quality factor reduces

and compression noise becomes stronger, the confidence of correctly identifying

the interpolation coefficients reduces. Additionally, we observe that the confidence

score obtained with the designed pattern is higher than the average scores obtained

with natural images; demonstrating the superiority of designed pattern for semi

non-intrusive analysis.

6.5 Chapter Summary

In this chapter, we present several applications of the theoretical framework and

show its applicability for semi non-intrusive component forensics of digital cam-

eras. We present case studies to examine digital camera components and theo-

retically derive the requirements for intrusive, semi non-intrusive, and completely

non-intrusive forensics of digital camera components. Motivated by the conclusions

from the theoretical analysis, we identify the basic requirements of a good input

pattern for semi non-intrusive forensics, and construct an input pattern satisfying

these conditions. We present a systematic methodology to estimate the parame-

ters of the cameras’ color interpolation and white balancing algorithms, and show

through simulations that the proposed heuristic input pattern in controlled testing

conditions provides an overall higher accuracy in parameter estimation. Compar-

isons with natural images obtained under non-intrusive forensic conditions suggest

the need for robust semi non-intrusive forensics, and the superiority of the heuristic

input pattern for parameter estimation. We then apply the theoretical framework

to optimize the input pattern using estimation error and confidence score as met-

rics; and show that the accuracy in parameter identification can be improved via
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such an approach. The features obtained from semi non-intrusive analysis provide

useful evidence to analyze infringement/licensing, to construct good training sets

for camera identification, and to provide ground-truth information for tampering

detection.

Appendix: Brief Survey of Some Popular White

Balancing Algorithms

There are many algorithms for white balancing [32]. In manual white balancing

techniques, the scale factors are chosen based on the chosen illuminance options

such as tube light, sunlight, incandescent lamps, cloudy lights, night vision, etc.

On the other hand, auto white balancing algorithms compute these values from

the picture based on estimate of the illuminance of the scene [12,140]. Auto white

balancing can be very broadly classified into three main categories based on their

inherent assumptions - gray world, white patch, and retinex methods. The Gray

world techniques work by assuming that average of all the pixel values in the world

is gray. These techniques find the the scale factors by normalizing with respect

to the mean of the image, mean of all images in the database, weighted mean of

the image, or by using the image mean after truncation [49]. The white patch

algorithms on the other hand assume that the maximum value of the scene is

white, and normalize the pixel values to achieve it. Retinex methods are one of

the oldest known techniques [18]. In this case, a path is first chosen, and the ratio

between the pixel values to the maximum in the path is computed. Such process

is repeated for many possible paths and the average ratio is found to be used as a

normalization factor.
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Chapter 7

Extrinsic Fingerprinting via

Robust and Secure Image

Hashing

In the previous chapters, we discussed forensic approaches to image authenti-

cation. In addition to these methods, when the original image is available at

hand, traditional techniques based on cryptography and watermarking can also

be employed to authenticate multimedia, verify content integrity, and prevent

forgery [24, 28, 29, 146]. In this chapter, we focus on addressing the problem of

multimedia forensics via extrinsic fingerprinting. Extrinsic fingerprints are exter-

nal signals that are added to the image by the device after the image has been

captured. These external signals can then be used to establish the authenticity

of digital data and determine possible tampering. Compared with non-intrusive

forensic analysis via intrinsic fingerprints, the use of extrinsic fingerprints necessi-

tates the presence of the device at hand as the fingerprint needs to be added at

the time of image acquisition. While this requirement imposes some additional
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Figure 7.1: Hash functions for image authentication.

constraints on their applicability, extrinsic fingerprinting techniques help build an

content-based image authentication scheme that is collision-resistant, robust to

common signal processing operations, and secure against estimation and forgery

attacks as will be shown in the chapter.

There are two popular approaches to multimedia authentication via extrinsic

fingerprinting. These include semi-fragile watermarking [40, 52, 146] and robust

image hashing [122]. In this work, we mainly focus on robust image hash functions

as a means for extrinsic fingerprinting. A multimedia hash is a content-based

digital signature of the media data. To generate a multimedia hash, a secret

key is used to extract certain features from the data. These features are further

processed to form the hash. The hash is transmitted along with the media either

by appending or embedding it to the primary media data. At the receiver side, the

authenticator uses the same key to generate the hash values, which are compared

to the ones transmitted along with the data for verifying its authenticity. This

process is illustrated in Figure 7.1.

In addition to content authentication, multimedia hashes are used in content

based retrieval from databases [82]. To search for multimedia content, näıve meth-

ods such as sample-by-sample comparisons are computationally inefficient. More-
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over, these methods compare the lowest level of content representation and do not

offer robustness in such situations as geometric distortions. Robust image hash

functions can be used to address this problem [138]. A hash is computed for ev-

ery data entry in the database and stored with the original data in the form of a

look-up table. To search for a given query in the database, its hash is computed

and compared with the hashes in the look-up table. The data entry corresponding

to the closest match, in terms of certain hash-domain distance that often accounts

for content similarity, is then fetched. Since the hash has much smaller size with

respect to the original media, matching the hash values is computationally more

efficient.

Image hash functions have also been used in applications involving image and

video watermarking. In non-oblivious image watermarking, the need for the orig-

inal image in watermark extraction can be substituted by using hash as side in-

formation [20,28,30]. The hash functions have also been used as image-dependent

keys for watermarking [41, 62]. In video watermarking, it has been shown that

adversaries can employ “collusion attacks” to devise simple statistical measures

to estimate the watermark if they have the access to multiple copies of similar

frames [119]. A solution to this problem is to use secure, content-dependent hash

values as a key to generate the watermark [42].

The rest of the chapter is organized as follows. In Section 7.1, we introduce the

general framework for image hashing and present prior art. We then present the

proposed image hashing scheme and compare its performance with several existing

schemes in Section 7.2. We evaluate the security for a number image hashing

schemes in Section 7.3. Finally, discussions are provided in Section 7.4 and the

chapter is summarized in Section 7.5.
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7.1 General Framework and Prior Art

There are two important design criteria for image hash functions, namely, robust-

ness and security [42, 120–122, 138, 147]. By robustness, we mean that when the

same key is used, perceptually similar images should produce similar hashes. Here,

the similarity of hashes is measured in terms of some distance metric, such as the

Euclidean or Hamming distance. In this work, we consider two images to be similar

if one image can be obtained from the other through a set of content-preserving ma-

nipulations. This set of manipulations includes moderate levels of additive noise,

JPEG compression, geometric distortions (such as the common rotation, scaling,

and translation operations, or more generally affine transformations), cropping, fil-

tering operations (such as spatial averaging and median filtering), and watermark

embedding.

The security of image hash functions is introduced by incorporating a secret key

in generating the hash. Without the knowledge of the key, the hash values should

not be easily forged or estimated. Additionally, some design criteria for generic

data hash also applies to image hash functions, namely, the one-way and collision-

free properties. A hash is one-way if given a hash h and a hash function g(·), it

is computationally expensive to find an image I such that h = g(I). Collision-free

property refers to the fact that given an image I and a hash function g(·), it is

computationally hard to find a second image Î such that g(I) = g(Î). Although

some generic data hash functions such as MD5 satisfy these criteria [96], they

are highly dependent on every bit (or pixel) of the input data rather than on the

content. Hence, most of the them are not suitable for the emerging multimedia

applications and the need for building robust and secure image hash is paramount.

To achieve robustness and security in image hashing, most of the existing
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Figure 7.2: The three-step framework for generating a hash.

schemes follow a three-step framework to generate a hash. As shown in Figure 7.2,

these three steps include

1. Generating a key-dependent feature vector from the image,

2. Quantizing the feature vector, and

3. Compressing the quantized vector.

The most challenging part of this framework has been the feature extraction

stage [79, 98, 138]. A robust image feature extraction scheme should withstand

minor distortions to the image that do not alter the semantic content [41, 41,

42, 78, 79, 98, 100, 120, 122, 138, 147, 151]. A typical approach is to extract image

features that is invariant to allowed content-preserving image processing opera-

tions [41,42,78,100,151]. These features are then used to generate the hash values.

Some of the features that have been proposed in the literature include block-

based histograms [38, 64, 117], image edge information [115], relative magnitudes

of the DCT coefficients [80], and the scale interaction model with the Mexican-

Hat wavelets [16]. However, these features are both sensitive and publicly known.

The sensitivity against minor distortion can be mitigated by preprocessing signals

via low-pass filtering [138], applying quantization or extracting most-significant

bits [151], and clustering [99]. As these resilient features are publicly known, us-

ing them alone makes the scheme susceptible to forgery attacks [42], even when

the final hash is obtained by encrypting these features [16, 80]. This is because
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the attacker may create a new image with different visual content, while still pre-

serving the feature values. As the resulting hash will be the same, such hashing

approaches may lead to mis-classifications in database applications, and would also

be vulnerable to counterfeiting attacks in authentication applications. Therefore,

the security mechanism should be combined into the feature extraction stage.

By jointly considering security and robustness, Fridrich et al. propose to gen-

erate image hash by projecting an input image onto zero-mean random smooth

patterns, generated using a secret key [42]. While the resulting hash is resilient to

filtering operations, it does not perform very well for geometric distortions and is

not collision-free as shown in [116]. In [138], Venkatesan et al. use the principal

values calculated from the wavelet transform of the image blocks to generate a fea-

ture vector invariant to general gray scale operations. The resulting features are

then randomly quantized and compressed to produce the final hash [97]. Recently,

it has been shown that this scheme does not perform well for some manipulations

such as contrast changes, gamma correction [95]. An iterative key-dependent image

hash based on repeated thresholding and spatial filtering was proposed in [98]. All

these algorithms [42,98,138] described above perform well under additive noise and

common filtering operations, but not under desynchronization and geometric dis-

tortions. Considering these disadvantages, the Radon soft hash algorithm (RASH)

based on the properties of the Radon transform was proposed in [78,79]. Recently,

other transform domain features have been employed for perceptual hashing. Fea-

tures obtained from the singular value decomposition (SVD) of pseudo-randomly

chosen regions of the image [71] and Randlet transform coefficients [90] have been

shown to have good robustness properties especially for rotation and cropping

attacks.
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To enable fast comparison and searches, it is usually preferred that the final

hash be a short sequence of bits rather than a set of real numbers. Therefore, the

output of the feature extraction stage is usually quantized, converted to binary

representation, and further compressed. Uniform, Lloyd-Max, or key-dependent

randomized quantizers have been used for hash quantization [97,138]; and the de-

coding stages of error correcting codes have been used for compressing the quan-

tized hash [17, 97, 138]. These methods reduce the length of the hash vector; yet

preserving the Hamming distance. Some work also secure the compression stage

by performing a key-dependent random selection from the quantized hash val-

ues [97,151]. A detailed survey of image hashing algorithms can be found in [147].

In this work, we introduce a new method to construct robust and secure image

hash functions. Since the feature extraction stage is the most important stage in

the general image hashing framework, we will investigate the feature extraction

stage in greater detail in this chapter. We design a randomized hashing scheme

based on the rotation invariance of the Fourier-Mellin transform. We show that the

proposed scheme is robust to geometric distortions, filtering operations, and various

content-preserving manipulations. We then present a framework to systematically

study the security aspects of existing image hashing schemes. We propose to

evaluate the security from an information theoretic perspective by measuring the

amount of randomness in the hash vector using the differential entropy as a metric.

We show that the suggested security evaluation framework is generic and can

be used to analyze and compare the security of several classes of image hashing

algorithms. We derive analytical expressions of security using an entropy-based

metric for several representative image hashing schemes and demonstrate that the

proposed hashing algorithm is more secure in terms of this metric. Finally, we
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use the proposed security metric to discuss the trade-offs between robustness and

security that is exhibited in most existing image hashing algorithms.

7.2 Image Hashing Algorithms Based on Polar

Fourier Transform

In this section, we present the proposed image hashing algorithm [122]. Our pro-

posed scheme is based on the Fourier-Mellin transform, which has been shown to

be invariant to 2D affine transformations [41, 63, 81, 105]. We incorporate key-

dependent randomization into the Fourier transform outputs to form secure and

robust image hash.

7.2.1 Underlying Robustness Principle of the Proposed Al-

gorithm

Consider an image i(x, y) and its 2D Fourier transform I(fx, fy), where fx and fy

are the normalized spatial frequencies in the range [0, 1]. We denote a rotated,

scaled and translated version of the i(x, y) as i′(x, y). We can relate them as

i′(x, y) = i(σ(xcosα + ysinα) − x0, σ(−xsinα + ycosα) − y0), (7.1)

where the rotation, scaling, and translation (RST) parameters are α, σ, and (x0, y0)

respectively. The magnitude of the 2D Fourier transform of i′(x, y) can be written

as

|I ′(fx, fy)| = |σ|−2|I(σ−1(fxcosα + fysinα), σ−1(−fxsinα + fycosα))|. (7.2)

Consider now a polar coordinate representation in the Fourier transform domain,

i.e. fx = ρcosθ and fy = ρsinθ, where ρ ∈ [0, 1] is the normalized radius and
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θ ∈ [0, 2π) is the angle parameter. The (7.2) can be written using polar co-

ordinates as

|I ′(ρ, θ)| = |σ|−2|I(ρσ−1, θ − α)|. (7.3)

In (7.3), we observe that the magnitude of the Fourier transform is independent of

the translational parameters (x0, y0). Observing that a rotation in image domain

leads to a rotation by the same amount in the Fourier transform domain, we inte-

grate the transform magnitude |I ′(ρ, θ)| along a circle centered at zero frequency

with a fixed radius ρ to obtain

h(ρ) =

∫ 2π

0

|I ′(ρ, θ)|dθ ≈
∫ 2π

0

|I(ρ, θ − α)|dθ ≈
∫ 2π

0

|I(ρ, θ)|dθ. (7.4)

These properties of the Fourier transform enable us to construct robust features.

In the next subsection, we present the detail steps of the proposed algorithms.

7.2.2 Basic Steps of the Proposed Algorithms

The basic steps of the proposed algorithm include preprocessing, feature genera-

tion, and post processing.

1. Preprocessing: We first apply a low-pass filter on the input image and down-

sample it. We then perform histogram equalization on the down-sampled

image to get i(x, y). We take a Fourier transform on the preprocessed image

to obtain I(fx, fy). The Fourier transform output is converted into polar

co-ordinates to arrive at I ′(ρ, θ) as in (7.3).

2. Feature generation: We sum up I ′(ρ, θ) along the θ-axis at K equidistant

points in the range of [0, 2π), i.e. for θ ∈ { π
K

, 3π
K

, . . . , (2K−1)π
K

}, to obtain an

image feature vector hρ. K = 360 is used in our implementation. Since the
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Figure 7.3: 2-D Fourier transform of the Lena image. The jth hash value−hj , is

obtained by a random weighted summation along the circumference of chosen radii

ρ ∈ Γj in scheme−2. Some of the constant radii circles used in the summation are

displayed in the figure. The magnitude of the Fourier transform is shown in the

log-scale and has been appropriately scaled for display purposes.

feature hρ is only dependent on the image content, we propose two random-

ization methods to obtain key-dependent features using hρ:

• Scheme 1:

We obtain |I ′(ρ, θ)| as in (7.3) and compute a weighted sum along the

θ-axis to obtain the jth hash value:

hj =

K−1
∑

i=0

βρj ,i

∣

∣

∣

∣

I ′

(

ρj ,
(2i + 1)π

K

)∣

∣

∣

∣

, (7.5)

where {βρj ,i} are key-dependent pseudo-random numbers that are nor-

mally distributed with mean m and variance σ2.

• Scheme 2:

We first use a secret key to generate random sets of radii {Γj}. We then

take |I ′(ρ, θ)| obtained in (7.3) and do a summation along the θ-axis
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for each radii in this set. A random linear combination of the resulting

summations gives the jth hash value. This can be represented as

hj =
∑

ρ∈Γj

βρ

K−1
∑

i=0

∣

∣

∣

∣

I ′

(

ρ,
(2i + 1)π

K

)∣

∣

∣

∣

, (7.6)

where βρ are key-dependent pseudo-random numbers that are normally

distributed with mean m and variance σ2. This method is illustrated in

Figure 7.3.

3. Post processing: We quantize the resulting statistics vector and apply

Gray coding to obtain the binary hash sequence [51]. This bit sequence

is then passed through the decoding stage of a order-3 Reed-Muller decoder

for compression [97]. This step may also be replaced with the Wyner-Ziv

encoder [65, 149]. Furthermore, we can enhance the security of the hash

by making the quantization and compression stages key-dependent. For ex-

ample, randomized quantization algorithms may be used to quantize the

hash [97]; for the compression stage, we can randomly select the hash values

from the quantized hash vector [98] or randomly choose the order of the Reed-

Muller decoder used for different sub-sections of the hash. These techniques

would further enhance the security of the resultant hash vector. Finally, the

compressed hash is randomly permuted according to a permutation table

generated using the key.

7.2.3 Performance Study and Comparison
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Performance Metrics and Experiment Setup

To measure the performance of image hashing, we choose the Hamming distance

between the binary hashes, normalized with respect to the length (L) of the hash

as a performance metric. The normalized Hamming distance is defined as

d(h1, h2) =
1

L

L
∑

k=1

|h1(k) − h2(k)|, (7.7)

which is expected to be close to 0 for similar images and close to 0.5 for dissimilar

ones. As more parts of a picture is changed, the manipulated image and the orig-

inal image become more dissimilar. For an ideal hashing scheme, the normalized

Hamming distance between the corresponding hashes should increase accordingly.

We test the proposed schemes on a database of around 157,200 images. In

this database, there are 1200 original grey scale images each of size 512 × 512.

This includes around 50 classic benchmark images (such as Lena, Baboon, Pepper,

etc.), and a variety of scenery and human activity photos taken by digital cameras.

These camera photos were cropped, converted to grey scale, and downsampled to

512× 512. For each original image in this set, we generate 130 similar versions by

manipulating the original image according to a set of content-preserving operations

listed in Table 7.1. We measure the normalized Hamming distance between the

hashes of the original image and the manipulated images. The results obtained for

the proposed schemes are compared with three representative existing schemes by

Fridrich et al. [42], by Venkatesan et al. [138], and by Mihçak et al. [98]. These three

schemes are chosen because they adopt different ways to extract the robust image

feature as well as different methods to randomize these features. We also consider

the normalized Hamming distance between the hashes of dissimilar images, which

indicates the discriminative capability of the hashing algorithm. We note that the

computed hashes of all these schemes are short in length. For a 512 × 512 image,
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Figure 7.4: Performance of various hashing schemes under desynchronization at-

tacks. To generate a point on the curve, the input image was first rotated (or

sheared) to give a larger image padded appropriately with zeros. This image was

then cropped to exclude the zeros and resized to a pre-determined canonical size.

The hash of the resulting image was computed and the normalized Hamming dis-

tance from the hash of original image is shown in the Y -axis.

the hash lengths are on the order of a few hundred bits, as shown in Table 7.2.

Experimental Results on Robustness of the Hash

To examine the robustness properties, we consider the performance of various

hashing schemes to different content-preserving manipulations such as moderate

RST, filtering, and image compression.1 We show the comparison results in terms

of normalized Hamming distance in Figure 7.4−Figure 7.8. Our results indicate

1In all the experiments, we use our implementation of the hashing methods [42, 98, 138] for

the comparison study. Whenever possible, we verified the performance results with the ones

reported in the paper. In all cases, the parameters of the hashing algorithms were chosen so as

to maintain similar values for the security metric in order to facilitate a fair comparison. Refer

Section 7.3 for details on the security metric.
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Table 7.1: Set of content-preserving manipulations.

Manipulation Operation Parameters of the Operation Number of Images

Additive Noise

Gaussian distributed Variance 0-0.2 10

Uniform distributed Variance 0-0.5 10

Filtering Operations

Spatial Averaging Filter order 2-6 5

Median Filter Filter order 2-11 10

Wiener Filter Filter order 2-11 10

Sharpening Filter order 3-11 5

Geometric Distortions

Rotation Degrees 1-20 20

Scaling Percentage 0.5-1.5 10

Cropping Percentage 1-30 10

Shearing Percentage 1-10 10

Random deletion of lines Percentage 1-20 10

Luminance Non-Linearities

Gamma correction Iγ, γ ∈ [0.75-1.25] 10

JPEG compression Compression Ratio 10-99 10

Total 130
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Table 7.2: Hash lengths for various hashing schemes.

Hashing method used Hash Length

Mihçak’s algorithm B [98] 1000

Venkatesan’s scheme [138] 805

Fridrich’s scheme [42] 420

Proposed scheme 1 420

Proposed scheme 2 420

that the proposed schemes perform well under desynchronization distortions. The

performance for rotation and shearing distortions, averaged over the 1200 images,

are shown in Figure 7.4. In the case of rotation distortions, we observe that the

Hamming distance between the quantized feature vectors of the proposed schemes

is smaller than those of the existing schemes, especially for large rotation angle.

This is expected since the summation along the θ-axis reduces the effects of ro-

tation. We can also observe that scheme−2 gives better results than scheme−1,

in terms of the normalized Hamming distance. This is attributed to the fact that

performing a weighted sum along the θ-axis as in the proposed scheme−1 no longer

preserves rotation invariance. The proposed algorithms also achieve comparable

performance with most existing algorithms under shearing distortions. The perfor-

mance results for random bending [107] and cropping are shown in Figure 7.5(a)

and (b) respectively. We observe that the proposed schemes perform very well

for both these distortions. This is because the magnitude of the low frequency

coefficients of the Fourier transform that contribute to the hash does not change

much under moderate bending and cropping.

We show the performance of the hash algorithms under additive noise in Fig-
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Table 7.3: Performance of the algorithm for dissimilar images under the type of

manipulation shown in Figure 7.9. Here, dAB denotes the distance between images

(a) and (b).

Hashing method used dAB dAC dBC

Mihçak’s algorithm B [98] 0.50 0.20 0.28

Venkatesan’s scheme [138] 0.37 0.15 0.31

Fridrich’s scheme [42] 0.41 0.26 0.34

Proposed scheme 1 0.49 0.28 0.37

Proposed scheme 2 0.48 0.32 0.39

ure 7.6. We observe from the figure that the proposed scheme−2 does well com-

pared to the proposed scheme−1 and other existing schemes. We further note

that the normalized Hamming distance between the hashes of the noisy image and

the original image is very small and on the order of 0.02. This performance is

attributed to the low pass filtering in the preprocessing step of the hash genera-

tion. The results for filtering and JPEG compression are shown in Figure 7.7 and

Figure 7.8. We observe that the performance of the proposed schemes under these

distortions is comparable to the existing schemes.

The Discriminative Capability of Hash

Since image hash should be able to distinguish malicious manipulations from

content-preserving ones, its performance in differentiating images with different

contents is an important performance aspect. For images with different contents,

an ideal hash algorithm should produce two statistically independent binary hash

vectors, where half of the hash bits are expected to be the distinct and the other
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half the same. This would result in a normalized Hamming distance of around 0.5.

Our experiments with a set of 1200 different images indicate that the mean of nor-

malized Hamming distance of the resulting 719,400 combinations was around 0.48.

To further demonstrate the performance of the proposed scheme to inauthentic

modifications, we consider the following cut-and-paste image editing as shown in

Figure 7.9, where a new image (c) is created by combining approximately equal

parts from image (a) and (b). An ideal image hashing scheme should classify

(c) as inauthentic. We perform this test on 500 images and list the normalized

Hamming distance between the obtained hash vectors for different algorithms in

Table 7.3. We can see from the table that the proposed schemes find the image (c)

to have large distances from (a) and (b), and thus correctly declare it inauthentic;

on the other hand, the existing algorithms suggest a smaller distance and have

lower reliability to distinguish (c) from (a) and (b).

Image Authentication as a Hypothesis Testing Problem

Generally speaking, the problem of image authentication can be considered as a

hypothesis testing problem with the following two hypotheses

• H0: Image is not authentic; and

• H1: Image is authentic.

Now, we examine the robustness and discriminative capabilities of various hashing

schemes in terms of the Receiver Operating Characteristics (ROC) [109,145]. The

ROC curve characterizes the receiver’s performance by classifying the received

signal into one of the hypothesis states. For each original image, we compute and

store the hash values, which we denote as h1. Given the received image, we find its

hash value h2 and declare it to be authentic if the normalized Hamming distance
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Figure 7.5: Performance of various hashing schemes under (a) bending and (b)

cropping. Cropped images were obtained by retaining the central portion of the

image and removing the boundaries. The cropped image is resized to a pre-

determined canonical size before computing the hash.

between the hashes satisfies d(h1, h2) < η where η is a decision threshold. Based

on ground truth, we record the number that are correctly classified as authentic

to give us an estimate of the probability of correct detection (PD). For a given η,

we also record the number of processed versions of other images that are falsely

classified as original image and obtain an estimate of the probability of false alarm

(PF ). We repeat this process for different decision thresholds η, and arrive at

the ROC. The ROC obtained from the experiments using 1200 different images is

shown in Figure 7.10. We can observe from the ROC curves that the proposed

schemes attain a PD = 0.95 when the PF is 0.05, while the other schemes attain

the same PD when PF is close to 0.15. Hence, the proposed scheme has a higher

probability of correct detection for a given probability of false alarm and hence

achieves a better performance. This further demonstrates the advantages of the

proposed hashing schemes over the existing schemes.
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Figure 7.6: Performance of various hashing schemes under additive noise. The

noisy images were artificially generated by adding uniform/Gaussian distributed

noise of different variances to the original image.
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Figure 7.7: Performance of various hashing schemes under filtering.
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Figure 7.8: Performance of various hashing schemes under JPEG compression.

7.3 Security Analysis

In addition to robustness, another important performance aspect of image hashing

is security, i.e. the hash values should not be easily forged or estimated without

the knowledge of the secret key. In this section, we introduce a framework to

evaluate and compare the security of image hashing schemes. We propose to use

differential entropy as a metric to study the security of randomized image features

and derive analytical expressions of the proposed metric for some representative

classes of image hashing algorithms. Further extensions of the proposed framework

and other possible approaches to study security are described later in Section 7.4.3.

7.3.1 The Proposed Security Evaluation Framework

We propose to evaluate the security of image hashing schemes from an adversary

view point. The adversary knows the hashing algorithm g(·) and the image I, and

tries to estimate the hash values without the knowledge of the secret key. The

degree of success that can be attained by the adversary depends on the amount of
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(a) (b) (c)

Figure 7.9: An example of inauthentic manipulations obtained by combining parts

of multiple images. (a) and (b) are two original 512 × 512 images. Image (c) is

obtained by combining parts of image (a) and (b).

randomness in the hash values. The higher the amount of randomness in the hash

values, the tougher it would be to estimate or duplicate the hash without knowing

the key. In the subsequent discussions, we shall focus on the security of the output

of the feature extraction stage. Since the quantization and the compression stages

are chained with feature extraction stage, once the entropy of this stage is obtained,

the entropy measure for the following stages can be obtained subsequently.

We start the discussion by reviewing the definition of differential entropy [27].

The differential entropy of a continuous random variable X is denoted by ℵ(X)

and given by

ℵ(X) =

∫

Ω

f(x) log2

(

1

f(x)

)

dx (7.8)

where f(x) is the probability density function of X and Ω is the range of support

of f(x). In most image hashing schemes, the output of the feature extraction

stage consists of two components – a deterministic part and a random part. The

deterministic part is contributed by the image content, which we will consider to

be known or can be well approximated from the test version of the image that

the attacker can acquire. The random part is contributed by the pseudo-random
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Figure 7.10: Receiver Operating Characteristics of the hypothesis testing problem.

The plots display the probability of correct decision (PD) with respect to the

probability of false alarm (PF ). A greater the value of PD for the same PF indicates

more robustness. The original curve is shown on the left and the magnified version

is shown on the right.

numbers generated using the secret key. In our analysis, we model the output of

the feature extraction stage as random variables and find the degree of uncertainty

in terms of the differential entropy to arrive at the security metric [121]. In the

following sections, we present the security analysis for our proposed scheme, and

compare it with the results obtained for a number of representative prior work on

image hashing [42, 98, 138].

7.3.2 Analytic Expressions of the Security Metric for the

Proposed Schemes

In this part, we derive analytic expressions of the security metric for the proposed

schemes. In the proposed scheme−1, the randomness in the hash is introduced by

the variables {βρk,i}, which are key-dependent pseudo-random numbers, normally
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distributed with mean m and variance σ2. The final hash can be considered as a

weighted summation of these Gaussian distributed random variables as shown in

(7.5), where the weights of the summation are determined by the image content and

known to the users. Since the sum of Gaussian random variables is also Gaussian,

the hash value hk will be Gaussian distributed with mean and variance given by

E(hk) = m

K−1
∑

i=0

∣

∣

∣

∣

I ′

(

ρk,
(2i + 1)π

K

)∣

∣

∣

∣

, (7.9)

V ar(hk) = σ2

K−1
∑

i=0

∣

∣

∣

∣

I ′

(

ρk,
(2i + 1)π

K

)∣

∣

∣

∣

2

. (7.10)

Therefore, the differential entropy of the feature extraction stage for the proposed

scheme−1 can be written as

ℵ(hk) =
1

2
log2

(

(2πe)σ2
K−1
∑

i=0

∣

∣

∣

∣

I ′

(

ρk,
(2i + 1)π

K

)∣

∣

∣

∣

2
)

. (7.11)

We observe that the differential entropy increases as the variance σ2 becomes large

and the scheme becomes more secure as expected. Additionally, we note that the

differential entropy rises as the number of sample points K is increased. This is also

expected since a higher value of K implies that we involve more random numbers

for generating each hash value as shown in (7.5); and hence the hash would be

more difficult to forge.

Next, we derive the security metric for the proposed scheme−2. In this scheme,

we use the secret key to generate random sets of radii {Γk}, and the weights (βρ)

for the summation in (7.6). To facilitate discussions, we define qρ as the summation

of the polar Fourier transform coefficients at the radius ρ given by

qρ =

K−1
∑

i=0

∣

∣

∣

∣

I ′

(

ρ,
(2i + 1)π

K

)∣

∣

∣

∣

. (7.12)

The ρ values chosen for generating the hash are from Γρ = {ρ1, ρ2, . . . , ρN}. Let

λik be Bernoulli distributed random variables such that P (λik = 0) = P (λik =
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1) = 0.5. We rewrite (7.6) in terms of qρ and λik to obtain

hk =
N
∑

i=1

λikβikqρi
. (7.13)

We observe that each hash value obtained is a weighted summation of N terms and

each of these terms is a product of a Bernoulli and a Gaussian distributed random

variable. Therefore, the hash value hk is not Gaussian. To find the differential

entropy of hk, we first find the probability density function (pdf) of hk using the

(7.13) and then use the pdf to find the entropy. To derive the pdf, we compute the

characteristic function of hk and apply its inverse Fourier transform [106]. It can

be shown that the pdf, fhk
(x), has a rather complicated form with 2N terms and

is given by

fhk
(x) =

1

2N
δ(x) +

1

2N

1√
2π

N
∑

i=1

e
−

(x−mqρi
)2

2σ2q2ρi +
1

2N

1√
2π

N
∑

i1=1

N
∑

i2=1

i2 6=i1

e
−

(x−m(qρi1
+qρi2

))2

2σ2(q2ρi1
+q2ρi2

)

+
1

2N

1√
2π

N
∑

i1,i2,i3=1

i1 6=i2 6=i3

e
−

(x−m(qρi1
+qρi2

+qρi3
))2

2σ2(q2ρi1
+q2ρi2

+q2ρi3
)

+ . . . +
1

2N

1√
2π

e
−

(x−m
∑N

i=1 qρi
)2

2σ2(
∑N

i=1
q2ρi

) ,

(7.14)

where δ(·) denotes the dirac delta function. We observe that the pdf of hk is a sum

of many Gaussian pdf’s and finding the exact expression for the differential entropy

by integrating (7.8) would not be feasible. We instead find the lower and upper

bounds of the differential entropy. Using the concavity property of the entropy, we
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arrive at a lower bound for the differential entropy

ℵ(hk) ≥ 1

2N

N
∑

i=1

1

2
log2(2πeσ2q2

ρi
) +

1

2N

N
∑

i1=1

N
∑

i2=1

i1 6=i2

1

2
log2(2πeσ2(q2

ρi1
+ q2

ρi2
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+
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2N+1

N
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i1,i2,i3=1

i1 6=i2 6=i3

log2(2πeσ2(q2
ρi1

+ q2
ρi2

+ q2
ρi3

)) + . . .

+
1

2N+1
log2

(

2πe
N
∑

i=1

σ2q2
ρi

)

. (7.15)

This lower bound can be simplified using the following energy compaction property

of the Fourier transform. Without any loss of generality, we assume that the radii

are ordered as ρ1 < ρ2 < ρ3 < . . . < ρN . Now, since qρi
is the summation of the

absolute values of the Fourier transform coefficients along the circumference of the

circle of radius ρi, we have

qρ1 ≥ qρ2 ≥ . . . ≥ qρN
(7.16)

for most natural images. Using this inequality, (7.15) can be simplified to give a

compact lower bound

ℵ(hk) ≥
2N − 1

2N+1
log2(2πe σ2q2

N) +
1

2N

N
∑

i=1

(

N
i

)

log2(i). (7.17)

Next, to derive the upper bound, we use the fact that the Gaussian distribution

has the maximum differential entropy among all distributions with the same vari-

ance. Moreover, the differential entropy of a Gaussian distributed random variable

depends only on its variance. Therefore, we obtain an upper bound on ℵ(hk) by

finding variance of the hash values hk, from the pdf. in (7.14), to arrive at

ℵ(hk) ≤
1

2
log2

(

(2πe)

(

σ2

2
+

m2

4

) N
∑

j=1

q2
ρj

)

. (7.18)

In Figure 7.11, we show the derived lower and upper bounds along with the

actual value, for different number of sampling points (N). The true values were
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Figure 7.11: The entropy of the hash values for the proposed scheme−2 plotted

with respect to the number of sampling points N. The plots show the lower bound,

the upper bound and the actual value. The actual plot is shown on the left and

the magnified version is shown on the right.

obtained by numerically computing the differential entropy from the pdf. of the

hash values. We observe that the upper bound plotted using (7.18) is very tight

and is almost equal to the actual value. This is because the true pdf. of the hash

values is close to Gaussian with the same mean and variance as those used in the

upper bound calculation.

7.3.3 Extending the Security Evaluation to Other Image

Hashing Schemes

In this subsection, we show that the proposed security metric can be extended to

study the security of various classes of image hashing schemes and is thus generally

applicable. For our study, we consider two representative methods, namely, the

scheme by Fridrich et al. [42] and the hashing algorithm by Venkatesan et al. [138].

These schemes were chosen as they have very different approaches to introduce

199



randomness in the feature extraction stage. For instance, the Fridrich’s scheme [42]

secures the hash by projecting the image onto random low-pass images; and the

Venkatesan’s scheme [138] introduces security by extracting image features from

randomly chosen regions of the image.

Security of Fridrich’s scheme [42]

This scheme is based on the observation that any significant change made in the

transform domain would be reflected as visible changes in the image domain. Key-

dependent pseudo-random patterns {X(r)}, of the same size of the image, are

initially generated. These patterns are then spatially averaged with a m × n low-

pass filter {αij} to generate zero-mean smoothened random patterns [Y (r)]kl. The

rth hash value hr is obtained by projecting the input image on to Y (r), as given by

hr =

H
∑

k=1

W
∑

l=1

Y
(r)
kl Ikl. (7.19)

To analyze the security of this scheme, we consider the hash values {hr} as random

variables and find their distributions. Using this estimated pdf, we compute the

differential entropy as

ℵ(hr) ≈
1

2
log2

(

2πe
1

12

H
∑

p=1

W
∑

q=1

IpqI
(αα)
pq

)

. (7.20)

Here, I(αα) is the image obtained by filtering I twice with the filter {αij}. The

details of the analysis is presented in Appendix I of this chapter.

Figure 7.12 shows the plot of the differential entropy of the Fridrich’s scheme for

different orders of averaging filter. We observe from the plot that the differential

entropy decreases as the order of the filter is increased. This result is expected

because on increasing the order of the averaging filter, the degree of uncertainty in

the smoothened patterns {Y (r)} decreases, as the original random images {X(r)}
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Figure 7.12: Differential entropy of the hash for different orders of averaging filters

in Fridrich’s scheme [42].

are low-pass filtered to a greater extent. Thus, the amount of randomness of the

final hash values reduce as a consequence.

Security of Venkatesan’s Scheme [138]

In this scheme, the authors first perform a 3-level DWT of the image and then a

random tiling of each DWT sub-band of the image is generated. The mean (or

variance) of the pixel values in the random rectangle is used to form the feature

vectors [138]. These features are then randomly quantized and compressed to

generate the hash.

There are two aspects of security in this scheme. To estimate the hash values,

the adversary has to first find the locations and sizes of the random partitions and

compute the image statistics in these partitions. Then, the adversary needs to

arrange the estimated hash values in the correct order to obtain the hash vector.

In our analysis, we consider these two aspects separately and obtain the differential
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entropy in each case.

We first show that the exact size and location of the random partitions is not

required to estimate the hash. The attacker can instead make an intelligent guess

of the image statistics by replacing the random partitions with uniformly spaced,

equal sized partitions. In [138], the width of the random partition is uniform

in [wmin, wmax], where wmin and wmax are the minimum and maximum widths

of the random block. Therefore, a good estimate of the partition width would

be its expected value Ew =
(

wmin+wmax

2

)

. Similarly, the height is uniform in the

range [hmin, hmax] and its expected value is Eh =
(

hmin+hmax

2

)

. The attacker can

calculate the image statistics using uniform size partitions of the size Ew × Eh

to obtain an estimate for the hash values. In Figure 7.13(a), we plot the actual

hash values, our estimates and the corresponding difference (i.e. the estimation

error). Here, the estimates are obtained by computing the statistics from the

closest uniform spaced partition. We note that the error has a much lower dynamic

range than the actual value even though the location and size of the estimated

partitions are not exactly the same as those used in hash generation. The amount

of randomness in the hash values can be characterized by the degree of uncertainty

in our estimation. Therefore, the differential entropy of the first aspect of security,

h(1), can be numerically obtained by first finding the pdf of the estimation error

and then computing the entropy from the pdf For the Lena image, h(1) can be

numerically computed to be around 5.74. We also note that h(1) only characterizes

one aspect of randomness in the hash values. Therefore, the actual differential

entropy of the hash values ℵ(hk) would be greater than h(1).

The second aspect of the hash security that we consider here is the randomness

associated with the order in which the individual hash values are concatenated
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Figure 7.13: Security analysis results for Venkatesan’s scheme.

together while creating the hash vector. Here, we compare the true hash vec-

tors generated using the randomized block partitions and the ones estimated using

uniform partitions and assume that both these hash vectors are obtained using a

raster-scan order of the partitioning blocks. It is to be noted that any further per-

mutation of the hash can be factored into the post-processing stage which we shall

not consider here as indicated before. A good uniform partition that emulates the

randomized partition can be obtained as follows. We model the two-dimensional

randomized partitioning as a combination of first partitioning the input image

along the vertical direction into rows and then further partitioning each row into

blocks. Let M denote the number of rows and Ni denote the number of partitions

in the ith row. We can show that the expected value of M and Ni are

E(M) =
2H

hmin + hmax
, E(Ni) = E(N) =

2W

wmin + wmax
∀ 1 ≤ i ≤ M (7.21)
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The derivation is presented in Appendix II of this chapter.

Since, we use a uniform partition to approximate the randomized partition,

there will be synchronization errors in each row of the estimated partition. Let

us now denote the amount of synchronization errors in the nth row by Yn. The

synchronization error is cumulative and can be written as

Yn =

n
∑

i=1

(Ni − mN). (7.22)

In order to facilitate combining the security analysis of the synchronization error

with the differential entropy h(1) derived for first security aspect, we provide a

continuous approximation of Yn and bound its maximum amount of uncertainty.

We note that among all continuous random variables with the same variance,

the Gaussian distribution has the maximum differential entropy; and that the

differential entropy is completely specified by the determinant of its correlation

matrix. So we construct a M × M correlation matrix RY for the set of random

variables {Y1, Y2, . . . , YM},

RY (i, j) = E(YiYj) = min(i, j)σ2
N . (7.23)

Here, σ2
N denotes the variance of Ni and can be computed from its probability mass

function (pmf) given in (7.38) of Appendix II of this chapter. It can be shown that

|RY | = σ2M
N . Therefore, using the Gaussian upper bound, the differential entropy

of the stage (h(2)) considering the synchronization errors alone is given by

h(2) ≤ 1

2
log2(2πeσ2

N) +
1

2mM

log2

(

1 +
1

12σ2
N

)

. (7.24)

In Figure 7.13(b), we show the plot of the upper bound as given by the RHS of

(7.24) for different values of wmin and wmax. We observe that the upper bound

heavily depends on the value of the variance σ2
N . For very small wmax, we have

204



Table 7.4: Comparison of differential entropy of various hashing schemes shown

for three different images.

Hashing algorithm Differential entropy

Lena Baboon Peppers

Proposed scheme−1 8.2 − 15.6 13.58 − 16.18 8.76 − 15.46

Proposed scheme−2 16.28 16.39 16.18

Fridrich’s scheme [42] 8.31 8.32 8.14

Venkatesan’s scheme [138] 5.74 − 11.48 5.96 − 11.70 5.65 − 11.39

Mihçak’s algorithm B [98] 8 8 8

σ2
N → 0 and therefore h(2) → −∞, suggesting that the hashing algorithm becomes

insecure for low σ2
N . This result is expected because when wmax ≈ wmin, the

window widths and locations become approximately deterministic and the errors

caused by synchronization are small.

Overall, when an attacker replaces the random partitions by uniformly spaced

partitions to estimate the hash values, the two aspects of security will both con-

tribute to the uncertainty of the hash algorithm. Thus, the final differential entropy

can be approximated by (h(1) + h(2)).

The above analysis method can be generalized and extended to other hashing

schemes alike. For example, analysis can be applied to the hashing scheme by

Mihçak et al. [98], which also introduces security by the choice of random regions

in the image.
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7.3.4 Comparison Results

In this subsection, we compare the security of image hashing schemes in terms

of the differential entropy as a metric. We compute the differential entropy of

the hash values on the Lena image for various schemes and present the results in

Table 7.4.

The differential entropy of the proposed scheme−1 lies in the range 8.2− 15.6.

This is due to the fact that each hash value in the scheme−1 has different amount

of randomness based on the radius on which the summation in (7.5) is performed.

If the corresponding Fourier transform coefficients have a higher magnitude, then

the variance of the hash values would be larger. Thus some of the hash values

can be estimated easily, while it might be difficult to estimate some others. This

can be considered as one of the disadvantages of the proposed scheme−1. The

disadvantage is overcome in the proposed scheme−2 because the summation is

done over randomly chosen subsets and thus all the hash values would have a

similar amount of randomness. We note that the differential entropy of the feature

extraction stage of the proposed scheme−2 is higher than that of the scheme−1.

This is expected because in the proposed scheme−2, the random weights are scaled

by larger factors and thus the overall variance of the hash values would be higher

Next, we observe that the differential entropy of the proposed scheme−2 is

greater than that of Fridrich’s scheme. This can be attributed to the low-pass

filtering operations in Fridrich’s scheme that reduces the variance of the random

variables and hence its entropy. The differential entropy of Venkatesan’s scheme is

lower than those of proposed schemes. This is because, even without the knowledge

of the exact block partitions, the image statistics in Venkatesan’s scheme can be

estimated to reasonable accuracy. On the other hand, in the proposed schemes,
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the attackers need to guess the random variables in computing features (such as

βik).

Notice that we only consider the security of the feature extraction stage in this

work. It should be noted that while random permutation or other techniques alike

can be applied to any scheme to bring further randomness, such post-processing

does not change the relative security results obtained in this work. If the type of

quantization and/or quantization step size employed by various schemes are not

identical, the gap between the security metric for these schemes may change and

can be further analyzed.

7.4 Discussions

7.4.1 Trade-off Between Robustness and Security

In this section, we jointly consider the two main performance criteria for image

hashing, namely, robustness and security. We observe a trade-off between the

two criteria for each hashing scheme and illustrate this phenomenon with some

examples.

In Figure 7.14(a), we show the trade-off between robustness and security for the

Fridrich’s scheme [42]. The scheme was simulated for different orders of averaging

filter; and the ROC and the differential entropy was obtained in each case. The

ROC was sampled to obtain the probabilities of correct decisions PD for three

different probabilities of false alarm PF , and plotted with respect to the differential

entropy. We observe that as the robustness increases, the scheme becomes less

secure and vice-versa. This trend is expected because on increasing the order of the

averaging filters, the patterns Y (r) become more smooth making the scheme more
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robust to content-preserving manipulations like the ones in Table 7.1. However,

the scheme becomes less secure because the smooth patterns Y (r) would be less

random.

Similar behavior can also be observed for the proposed scheme−2. The perfor-

mance of the scheme was studied for different parameter values; and the ROC and

the differential entropy were obtained in each case. As shown in the Figure 7.14(b),

we observe that for a fixed PF , as we increase the variance of the random weights

βik, the differential entropy increases and the robustness decreases. However, it is

to be noted that proposed scheme exhibits a better trade-off compared to Fridrich’s

scheme. This is evident by comparing the X-axis of Figure 7.14(a) and (b). We

observe that proposed scheme−2 is more secure than the Fridrich’s scheme for the

same amount of robustness. This demonstrates the advantages of the proposed

scheme.

The robustness results in Figure 7.10 and the differential entropy values in Ta-

ble 7.4 show that the proposed scheme−2 provides better tradeoff between robust-

ness and security against guessing than the proposed scheme−1. This is attributed

to the fact that the circular summation along the θ-axis in proposed scheme−2 can

generate more robust features. In the mean time, we also remark that the circular

summation is a double-edged sword and may reduce the resilience against collision

and forgery attacks. It is possible for malicious attackers to perform meaningful

changes by altering individual values of the Fourier transform coefficients while

preserving the overall sum. In contrast, the proposed scheme−1 is more resilient

to such collision attacks, as the weights of the summation are random and depend

on a secret key unknown to adversaries. A possible improvement is to employ a

weighted circular summation with gradually changing weights, where the varying
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Figure 7.14: Robustness and security trade-off for (a) Fridrich’s scheme (b) Pro-

posed scheme−2.

trend of the weights is specified by a secret key. This hybrid scheme can combine

the advantages of the two proposed schemes, improving the collision resistance

compared to scheme−2 and also the robustness compared to scheme−1.

7.4.2 Extending the Security Analysis to Quantization Al-

gorithms

We have shown that the differential entropy can be used as a metric to study the

security of the feature extraction stage in image hashing. In this section, we extend

the security analysis beyond the feature extraction stage and show that entropy

can be used as a metric to study the degree of security of the quantization stage

that follows feature extraction.

As an example, we consider the randomized quantization algorithm proposed

in [97], which is an adaptive quantization algorithm that takes into account the
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distribution of the input data. The quantization bins [∆i−1, ∆i] are designed so

that
∫ ∆i

∆i−1
pX(x)dx = 1

Q
, where Q is the number of quantization levels and pX(·)

is the pdf of the input data X. The central points {Ci} are defined so as to make
∫ Ci

∆i−1
pX(x)dx =

∫ ∆i

Ci
pX(x)dx = 1

2Q
; and the randomization interval [Ai, Bi] are

chosen such that
∫ ∆i

Ai
pX(x)dx =

∫ Bi

∆i
pX(x)dx = r

Q
, where r ≤ 1

2
is a randomization

parameter. The overall quantization method can be expressed as

q(x) =



































i − 1 w.p. 1 if Ci ≤ x ≤ Ai,

i − 1 w.p.
(

Q
2r

∫ Bi

x
pX(t)dt

)

if Ai ≤ x ≤ Bi,

i w.p.
(

Q
2r

∫ x

Ai
pX(t)dt

)

if Ai ≤ x ≤ Bi,

i w.p. 1 if Bi ≤ x ≤ Ci+1.

(7.25)

We again use the conditional entropy ℵ(hk|I) as a security metric. Based on

the detailed derivation in Appendix III of this chapter, we can show that

H(q(X)|X) = r log2(e), (7.26)

which quantifies the amount of randomness introduced by the randomized quan-

tization. We note that the conditional entropy is directly proportional on the

randomization parameter r, and is independent of the source distribution. Other

quantization algorithms can be analyzed similarly using conditional entropy as a

metric.

7.4.3 Further Discussions on Hash Security

In this work, we have considered the conditional entropy of the hash values as a

metric to study security. Our analysis is based on the premise that the adversary

knows the image and the hashing algorithm being used and does not know the key
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used in generating the hash. Therefore, in our analysis, the adversary does not have

access to the actual hash values and tries to estimate them based on his knowledge.

Alternatively, we can evaluate the security of a hashing scheme by measuring the

conditional entropy of the hashing key when the image, the hashing algorithm

and output hash values are known. This conditional entropy can be written as

ℵ(K|(I, h)), where K denotes the key, I the image, and h the corresponding hash

value. In reality, if more information is available to the adversary, he/she may be

able to come up with more sophisticated attacks to break the hashing algorithm.

In such a case, the conditional entropy of the key will reduce with the increase in

the number of observed image/hash pairs. Thus, ℵ(K|(I1, h1), (I2, h2), ...(In, hn))

is a monotonically decreasing function with n. When n is large enough, it would

be possible to uniquely identify the key K with very high probability. This is

analogous to Shannon’s discussion on secrecy system and his definition of unicity

distance [118]. Along these lines, we may define another notion of hashing security

by requiring that the conditional entropy ℵ(K|(I1, h1), (I2, h2), ...(In, hn)) is not

negligible as long as the number of observed image/hash pairs, n, is upper bounded

by a polynomial in key length. We note that for image hashing and other types of

multimedia hashing, an adversary may not need to exactly recover the key in order

to estimate a hash. The estimation type of attack introduced in [116] is clearly an

example.

7.5 Chapter Summary

Robustness and security are two important requirements for image hashing algo-

rithms in applications involving authentication, watermarking, and image databases.

In this chapter, we have developed a new image hashing schemes that has improved
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robustness and security features. We show that the proposed schemes is resilient

to moderate filtering, and compression operations, and common geometric oper-

ations up to 10 degrees of rotation and 20 percent of cropping. The proposed

hashing scheme also has good discriminative capabilities and can identify mali-

cious manipulations, such as cut-and-paste type of editing, that do not preserve

the content of the image. In addition to the study on robustness, we have intro-

duced a general framework for analyzing the security in image hashing. We derive

analytical expressions using differential entropy as a metric to study the security

of the feature extraction stage for both the proposed schemes and several existing

representative schemes. Our studies have shown that the proposed image hashing

algorithm is highly secure in terms of this metric. The analysis can also be ex-

tended to incorporate other stages of the hashing operation, such as randomized

quantization.

Overall, we developed a new image hashing algorithm. It is more robust com-

pared to existing image hashing schemes, and at the same time, it is also secure

against estimation and forgery attacks. Thus, it can provide a robust and secure

representation of images for numerous applications.

Appendix: Details on Modeling and Derivations

Appendix I: Deriving the Security Metric for the

Fridrich’s scheme [42]

In Fridrich’s scheme, key-dependent pseudo-random patterns X(r)(r = 1, 2, . . . N)

of the same size of the input image are first generated. These pseudo-random
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patterns have uniform distributed pixel values. These patterns are then spatially

averaged with a m × n low-pass filter {αij} to obtain zero-mean random images

[Y (r)]kl

Y
(r)
kl =

⌊m
2
⌋

∑

i=−⌊m
2
⌋

⌊n
2
⌋

∑

j=−⌊n
2
⌋

αijX
(r)
i+k,j+l. (7.27)

The input image I is projected on the N smooth patterns {Y (r)} to obtain the

intermediate hash values hr as given by

hr =

H
∑

k=1

W
∑

l=1

Y
(r)
kl Ikl. (7.28)

These intermediate hash values are then quantized to generate the final hash. In

our analysis, we model the intermediate hash values hr as random variables and

find its differential entropy to generate the security metric. The hash values hr in

(7.28) can be rewritten as

hr =

⌊m
2
⌋

∑

i=−⌊m
2
⌋

⌊n
2
⌋

∑

j=−⌊n
2
⌋

αijV
(r)
ij , (7.29)

where the random variables V
(r)
ij are defined as

V
(r)
ij =

H
∑

k=1

W
∑

l=1

X
(r)
i+k,j+lIkl. (7.30)

We observe that V
(r)
ij is a weighted sum of W × H uniformly distributed ran-

dom variables {X(r)
ij } with the weights determined by the image pixel values (Ikl).

According to the Central Limit Theorem, we approximate V
(r)
ij to be Gaussian

distributed, with mean m
(r)
ij and variance σ

2(r)
ij that can be shown to be

m
(r)
ij = E(V

(r)
ij ) =

1

2

(

H
∑

k=1

W
∑

l=1

Ikl

)

,

σ
2(r)
ij =

1

12

(

H
∑

k=1

W
∑

l=1

I2
kl

)

. (7.31)
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We also note that all {V (r)
ij } are identically distributed, but are not independent

since the same random variables {X(r)
ij } are used to generate various V

(r)
ij . The de-

pendence among the variables {V (r)
ij } can be expressed in terms of their correlation

given by

E(V
(r)
ij V

(r)
ab ) =

1

12

H
∑

k=1

W
∑

l=1

IklIi+k−a,j+l−b +

(

1

2

H
∑

k=1

W
∑

l=1

Ikl

)2

. (7.32)

Now, from (7.29), we see that hr is a weighted sum of m× n Gaussian distributed

random variables. So hr is also Gaussian and its differential entropy is completely

specified by its variance. The variance of hr can be computed as

σ2
hr

= E(h2
r) − m2

hr

= E





⌊m
2
⌋

∑

i=−⌊m
2
⌋

⌊n
2
⌋

∑

j=−⌊n
2
⌋

αijV
(r)
ij





2

−
(

1

2

H
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k=1

W
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l=1

Ikl

)2

=
1

12

H
∑

p=1

W
∑

q=1

IpqI
(αα)
pq , where (7.33)

I(αα)
pq =

⌊m
2
⌋

∑

i,k=−⌊m
2
⌋

⌊n
2
⌋

∑

j,l=−⌊n
2
⌋

αijαklIi+p−k,j+q−l. (7.34)

Note that I(αα) is the image obtained by filtering I the image twice with the filter

{αij}. Using the result in (7.33), we obtain the differential entropy of hr as

ℵ(hr) ≈
1

2
log2

(

2πe
1

12

H
∑

p=1

W
∑

q=1

IpqI
(αα)
pq

)

. (7.35)

Appendix II: Model for Block partitioning in Venkate-

san’s scheme [138]

As indicated in Section 7.3.3, we approximate the 2-D block partitioning as a com-

bination of two 1-D problems, namely, partitioning along the horizontal direction
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and then along the vertical direction. To model the partition along the width of

the image, we divide the space (0, W ) into several regions by successively gen-

erating random numbers {Uk} as shown in Figure 7.15, uniformly distributed in

[wmin, wmax], and wmin and wmax are the minimum and the maximum widths of the

random blocks. The location of the nth partition is then given by a set of random

variables Tn, where Tn =
∑n

k=1 Uk. Since Tn is the sum of n uniformly distributed

random variables, we approximate Tn with a Gaussian distribution. Its mean mTn

and variance σ2
Tn

can be shown to be

mTn =
n

2
(wmin + wmax), σ2

Tn
=

n

12
(wmax − wmin)2. (7.36)

Let Ni denote the number of partitions in the ith row. Using the distribution of

Tn and noting that Ni is also the index for the last partition in the row, we can

write the pmf of Ni as

P (Ni = n) = Pr (Tn < W < Tn+1) = Pr (max(W − Tn, wmin) < Un+1 < wmax)

=

∫ W−wmin

W−wmax

P (W − t < Un+1 < wmax)fTn(t) dt

+

∫ W

W−wmin

P (wmin < Un+1 < wmax)fTn(t) dt, (7.37)

where fTn(·) is the pdf of Tn. Using the Gaussian assumption on Tn, the above

expression can be simplified as

P (Ni = n) =
σn√

2π(wmax − wmin)
exp

(

−(W − wmax − mTn)2

2σ2
Tn

)

− σn√
2π(wmax − wmin)

exp

(

−(W − wmin − mTn)2

2σ2
Tn

)

+
wmax + mTn − W

wmax − wmin
(FTn(W − wmin) − FTn(W − wmax))

+ (FTn(W ) − FTn(W − wmin)), (7.38)
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Figure 7.15: Simplified model of the block partitioning algorithm in Venkatesan’s

scheme [138]
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Figure 7.16: The plot of the pmf of Ni−the number of blocks in ith row, where

the parameters are wmin = 10, wmax = 40, and W = 512. Note that the random

variable Ni has a very small variance and hence the mean would be a good estimate.

where FTn(x) is the cumulative distribution function (cdf) of Tn, and is given by

FTn(x) =
1√
2π

∫

(

x−mTn
σTn

)

−∞

exp

(

−z2

2

)

dz. (7.39)

The plot of the pmf of Ni is shown in Figure 7.16. From this pmf, we can derive

the expected value of Ni as E(Ni) = 2W
wmin+wmax

.
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Appendix III: Deriving the Security Metric for

Randomized Quantization [97]

In this appendix, we provide the detailed derivations of the conditional entropy for

the randomized quantization algorithm [97]. The conditional entropy H(q(X)|X)

can be written as

H(q(X)|X) =

∫

x∈ℜ

H(q(X)|X = x)pX(x)dx

=

Q
∑

i=1

∫ Ci+1

Ci

H(q(X)|X = x)pX(x)dx

=

Q
∑

i=1

∫ Bi

Ai

H(q(X)|X = x)pX(x)dx, (7.40)

where pX(·) denotes the pdf of the input data X. The last step follows from (7.25)

since the quantizer q(X) is random only in the interval Ai ≤ x ≤ Bi. Now, we note

that in this interval, q(X) takes a value i with probability pi = (PX(x)−PX(Ai))
Q
2r

,

and a value (i − 1) with probability (1 − pi). Therefore, (7.40) can be calculated

and simplified as

H(q(X)|X) = −
Q
∑

i=1

∫ Bi

Ai

(pi log2(pi) + (1 − pi) log2(1 − pi))pX(x)dx

= r log2(e). (7.41)
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Chapter 8

Conclusions and Future

Perspectives

In this dissertation, we have introduced two new frameworks for forensic analysis

of digital camera images based on intrinsic and extrinsic fingerprints.

We consider the problem of component forensics and propose a set of forensic

signal processing techniques based on intrinsic fingerprinting to identify the algo-

rithms and parameters employed in the individual processing modules of digital

devices. We particularly focus on digital cameras for this dissertation and propose

a non-intrusive methodology to estimate the parameters of camera’s color filter

array and color interpolation modules; these parameters form the intrinsic finger-

print traces of the digital camera. We show through detailed simulations with 19

camera models of nine different brands that the proposed algorithms can authen-

ticate the source camera and identify the exact brand with 90% accuracy. Our

analysis also suggests that there is a considerable degree of similarity within the

cameras of the same brand and some level of resemblance among cameras from

different manufacturers.
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Building upon component forensics, we introduce a new formulation to study

the problem of image authenticity. The proposed formulation is based on the

observation that each in-camera and post-camera processing operation leave some

distinct intrinsic fingerprint traces on the final image. Using appropriate models,

we present techniques to estimate the in-camera component parameters and the

linear shift-invariant approximation of the post-camera manipulations. We show

that evidence obtained from such forensic analysis is used to build a forensic testbed

to identify the image acquisition source (whether the image was captured using

a camera, cell phone camera, scanner, or generated via computer graphics?), the

brand and model of the imaging device, and to determine if there has been any

post-device processing such as tampering or steganographic embedding. Overall,

our proposed techniques provides a common framework for a broad range of forensic

analysis on digital images.

We then present a generalized theoretical analysis to gain a concrete under-

standing about component forensics and to answer a number of fundamental ques-

tions related to what processing operations can and cannot be identified and un-

der what conditions. We define formal notions of classifiability of components and

present bounds on parameter estimation accuracies. Developing upon notions from

the theoretical analysis, we present techniques for robustly estimating the compo-

nent parameters via semi non-intrusive forensics. We believe that such component

forensic analysis would provide a great source of information for patent infringe-

ment cases, intellectual property rights management, and technology evolution

studies for digital media and push the frontiers of multimedia forensics to gain a

deeper understanding of information processing chain.

While the presented component forensics and intrinsic fingerprinting techniques
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can be employed to determine the source and the authenticity of images just based

on the output data, their accuracies are limited by theoretical performance bounds.

Extrinsic fingerprinting helps bridge the performance gap by employing external

signals, added to the image after capture, to establish the authenticity of the image.

In this dissertation, we design a new content-based image authentication scheme

based on image hashing and show that the proposed scheme is collision-resistant,

robust to common signal processing operations, and secure against estimation and

forgery attacks. Combined with intrinsic fingerprint techniques, extrinsic finger-

printing provides a universal framework for digital image forensics for a wide range

of applications.

The main contributions of the thesis are as follows:

• Introduced component forensics as a new methodology for multimedia foren-

sics, aiming at identifying algorithms and parameters in each component of

an information processing chain.

• Proposed algorithms to non-intrusively estimate the parameters of in-camera

components such as the color filter array and the color interpolation based

solely on the output data.

• Applied the estimated in-camera parameters for several forensic tasks, in-

cluding camera identification and technology infringement/licensing foren-

sics, and to design a universal framework for image acquisition forensics.

• Introduced methods to detect post-camera processing operations by modeling

them as a linear shift invariant system and casting the problem into a blind

deconvolution framework; and showed that the estimated manipulation filter

coefficients can efficiently differentiate between processed images and direct
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camera outputs.

• Developed a new theoretical framework for multimedia forensics based on

estimation and pattern classification theories. This is the first work in liter-

ature to look into theoretical analysis of multimedia forensics.

• Introduced the concept of semi non-intrusive forensics and devised methods

to design optimal inputs for semi non-intrusive forensics.

• Presented a new robust and secure hash as an extrinsic fingerprint and

showed that the proposed hash is resilient to geometric and filtering op-

erations in images.

• Introduced a systematic evaluation of the security of image hash functions

and demonstrated the trade-offs between robustness and security in several

hashing schemes.

Based on the study of this dissertation, there are several aspects of multimedia

forensics that can be further explored. In our work, we have mainly focussed on

digital cameras. However, the fundamental principles of intrinsic fingerprinting and

component forensics can be widely applicable to a range of other imaging devices

such as scanners, cell phone cameras, and video recorders; and display devices

including projectors and Liquid Crystal Display (LCD) screens. In our recent work,

we have extended the forensic methodology beyond cameras and employed it for cell

phone cameras [94] and with image scanners [54,55] with very encouraging results.

A promising next step is to go beyond still images and apply the analysis to digital

video data. Video brings in several additional challenges due to its time domain

features. Therefore, a more sophisticated imaging model incorporating the effects

of time domain would be necessary to perform forensic analysis of video. The time
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domain also allows for better attacks and more possibilities for the attackers, and

it would be interesting to design and introduce methods for component forensics

of digital video that would be robust to improved and more targeted attacks.

The research on component forensics and intrinsic fingerprinting presented in

this thesis can also be applicable to a number of interesting problems from com-

munications and networking to biology and web design. For instance, transmitting

data from the sender to the receiver involves a series of processing operations that

include source coding, channel coding, message modulation onto a carrier signal,

physical transmission over a channel (wireline or wireless), demodulation, and de-

coding. Forensic analysis on the various components of the information processing

chain, to estimate the parameters such components as source coding, channel cod-

ing, the message modulation scheme, and the channel parameters, just based on

the received signal can help identify the nature of the source and further help es-

tablish the integrity of the message. The proposed theoretical framework can also

be extended to other applications such as to analyze biological processes.

In this thesis, we have examined both intrinsic and extrinsic fingerprint ap-

proaches for multimedia forensics and demonstrated the applicability, advantages,

and drawbacks of these frameworks. A natural extension of this work is to exam-

ine a joint intrinsic-extrinsic framework for forensic analysis that can combine the

advantages of the two frameworks. One step in this direction is to design foren-

sic hashes. Just as the image hash is a content-based compact representation of

an image with applications in image authentication, the forensic hash is a short

representation of the data focussed on gaining a better understanding of the infor-

mation processing chain to answer forensic questions regarding how an image was

generated; from where an image was from; what has been done on the image since
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its creation, by whom, when and how. The forensic hash can be designed to be an

intrinsic device-specific fingerprint or an extrinsic fingerprint that is added to the

image at the time of capture. This new hash can then be employed to identify the

tell-tale clues about the various processing operations that the image/video has

gone through. It would be interesting to examine the design and performance of

these joint fingerprints for various forensic tasks.

————————————————————————–
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Hashing via Matrix Invariants. In IEEE International Conference on Im-
age Processing (ICIP), volume 5, pages 3443–3446, Singapore, Singapore,
October 2004.

229



[72] D. Kundur and D. Hatzinakos. Blind Image Deconvolution. IEEE Signal
Processing Magazine, 13(3):43–64, May 1996.

[73] D. Kundur and D. Hatzinakos. Blind Image Deconvolution Revisited. IEEE
Signal Processing Magazine, 13(6):61–63, November 1996.

[74] D. Kundur and D. Hatzinakos. A Novel Blind Deconvolution Scheme for Im-
age Restoration using Recursive Filtering. IEEE Trans. on Signal Processing,
46(2):375–390, February 1998.

[75] T. V. Lanh, K-S. Chong, S. Emmanuel, and M. S. Kankanhalli. A Survey on
Digital Camera Image Forensic Methods. In IEEE International Conference
on Multimedia and Expo (ICME), pages 16–19, Beijing, China, July 2007.

[76] C. A. Laroche and M. A. Prescott. Apparatus and Method for Adaptively
Interpolating a Full Color Image Utilizing Chrominance Gradients. In U.S.
Patent no. 5,373,322, December 1994.

[77] A. Latham. Jpeg Hide and Seek, Software available at linux01.gwdg.de/

alatham/stego.

[78] F. Lefbvre, J. Czyz, and B. Macq. A Robust Soft Hash Algorithm for Digital
Image Signature. In IEEE International Conference on Image Processing
(ICIP), volume 2, pages 495–498, Barcelona, Spain, September 2003.

[79] F. Lefbvre, B. Macq, and J-D. Legat. RASH: RAdon Soft Hash Algorithm.
In Proceedings of the European Signal Processing Conference (EUSIPCO),
Toulouse, France, September 2002.

[80] C. Y. Lin and S. F. Chang. A Robust Image Authentication Method Distin-
guishing JPEG Compression from Malicious Manipulation. IEEE Transac-
tions on Circuits and Systems for Video Technology, 11(2):153–168, February
2001.

[81] C-Y. Lin, M. Wu, J. A. Bloom, M. L. Miller, I. J. Cox, and Y-M. Lui.
Rotation, Scale, and Translation Resilient Public Watermarking for Images.
IEEE Trans. on Image Processing, 10(5):767–782, May 2001.

[82] S. Lin, M. T. Ozsu, V. Oria, and R. Ng. An Extendible Hash for Multi-
precision Similarity Querying of Image Databases. In Proceedings of Very
Large Data Bases (VLDB) Conference, pages 221–230, Roma, Italy, Septem-
ber 2001.

[83] Y. Long and Y. Huang. Image Based Source Camera Identification using De-
mosaicking. In IEEE Workshop on Multimedia Signal Processing (MMSP),
pages 419–424, Victoria, Canada, October 2006.

230



[84] J. Lukas and J. Fridrich. Estimation of Primary Quantization Matrix in
Double Compressed JPEG Images. In Proceedings of the Digital Forensics
Research Workshop, Cleveland, OH, August 2003.

[85] J. Lukas, J. Fridrich, and M. Goljan. Determining Digital Image Origin
Using Sensor Imperfections. In Proceedings of the SPIE, image and video
communications and processing, volume 5685, pages 249–260, San Jose, CA,
January 2005.

[86] J. Lukas, J. Fridrich, and M. Goljan. Detecting Digital Image Forgeries using
Sensor Pattern Noise. In Proceedings of the SPIE Conference on Security,
Stegonography, and Watermarking of Multimedia Contents, volume 6072,
pages 362–372, San Jose, CA, Feburuary 2006.

[87] S. Lyu and H. Farid. How Realistic is Photorealistic? IEEE Trans. on Signal
Processing, 53(2):845–850, February 2005.

[88] S. Lyu and H. Farid. Steganalysis using Higher-Order Image Statistics. IEEE
Trans. on Information Forensics and Security, 1(1):111–119, March 2006.

[89] W. Macy and O. Rashkowskiy. Software Correction of Image Distortion in
Digital Cameras. In U.S. Patent no. 6,538,691, March 2003.

[90] M. Malkin and R. Venkatesan. The Randlet Transform: Applications to
Universal Perceptual Hashing and Image Authentication. In Proceedings of
the Allerton Conference on Communications, Control, and Computing, pages
367–378, Monticello, IL, September 2004.

[91] L. M. Marvel, C. G. Boncelet Jr., and C. T. Retter. Spread Spectrum Image
Steganography. IEEE Trans. on Image Processing, 8(8):1075–1083, August
1999.

[92] T. A. Matraszek, D. R. Cok, and R. T. Gray. Gradient Based Method for
Providing Values for Unknown Pixels in a Digital Image. In U.S. Patent no.
5,875,040, February 1999.

[93] D. F. McGahn. Copyright Infringement of Protected Computer Software: An
Analytical Method to Determine Substantial Similarity. Rutgers Computer
and Technology Law Journal, 21(1):88–142, 1995.

[94] C. E. McKay, A. Swaminathan, H. Gou, and M. Wu. Image Acquisition
Forensics: Forensic Analysis to Identify Imaging Source. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 1657–1660, Las Vegas, NV, March 2008.

231



[95] A. Meixner and A. Uhl. Analysis of a Wavelet Based Robust Hash Algo-
rithm. In Proceedings of the SPIE Conference on Security, Stegonography,
and Watermarking of Multimedia Contents, volume 5306, pages 772–783,
San Jose, CA, January 2004.

[96] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.
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