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We introduce a framework for the development of modular lumped and 

distributed parameter system models, the latter described by boundary value 

problems. The simulation of such systems requires careful analysis and a rigorous 

approach to development to provide both accuracy and computational efficiency. We 

explain the current implementation, which solves such systems in a MATLAB 

environment using object-oriented programming principles as part of the Modular 

Distributed Parameter System Analysis and Simulation (MDPSAS) package. We 

propose a mechanism for creating user-defined simulation elements using a web-

based collaborative interface. The creation of a novel semantic vocabulary built into 

an XML application language called ModSimML is presented as a tool for data 

structuring and exchange. The development of a schema for the XML application 

formalizes of our data model. The utility of this interface is described via an 

application to research in Biological Micro-Electro-Mechanical Systems 

(BioMEMS), whose simulations require assembly from modular components. 
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Preface 
 

This project was intended to help create a solution to a very generic problem. The 

engine behind MDPSAS, the classes, objects and methods that enable the 

implementation of a complete simulation are largely abstracted from end-users taken 

from a larger scientific community. It thus seemed as though the obligatory next step 

was to develop a user-friendly interface in order to scale-up the applicability of the 

MATLAB package. We believe this objective was only partially obtained because of 

the added requirement to understand the functionality and the potential of the XML 

application defined herein.  
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Chapter 1: Introduction 

 

Background 

Chemical Process Models 

 

Chemical process design and simulation tools constitute a tremendous asset 

for any engineering and analysis department. Depending on a variety of selection 

criteria, manufacturing and processing plants require such instruments both for design 

and for operational purposes. If these engineering devices are integrated with 

business-level applications, the profitability of the processing units is greatly 

enhanced. Research efforts thus benefit from any improvements in accuracy, 

reliability, scalability, computational efficiency and usability.  

 

The most commonly available process modeling software packages use 

flowsheeting interfaces. Examples of such programs include Aspen Plus
1
, PRO/II

2
 

and CHEMCAD
3
. Although practical for deriving order-of-magnitude estimates of 

steady-state solutions, they often lack the flexibility to deal with processes that cover 

a large range of time and length scales [1]. 

 

                                                 
1
 Aspen Plus

TM
: product by Aspen Technology 

2
 PRO/IITM

: product by SimSci-Essor 
3
 ChemCAD

TM
: product by Chemstations, Inc. 
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These programs typically propose proprietary black-box models for unit 

operation simulations, including reactors, heat exchangers, mixers and separators. 

The models are built on top of a set of routines combined with physical property and 

reaction databases. This has the advantage of increasing usability but does not lend 

itself to customization, often necessary in process modeling because of regular 

deviations from expected behavior. The exposure to customization demands an 

understanding of the numerical methods deployed to provide accurate multi-scale 

modeling solutions to process engineering problems [2].           

 

Distributed vs. Lumped Models 

 

A certain measure of model complexity can be derived from the dimension of 

the system’s state and parameter spaces. In a lumped parameter system, spatially 

distributed variables are approximated as single scalars. But many complex systems 

have an infinite-dimensional state-space and the behavior of the states is described by 

partial differential equations. Modeling these distributed parameter systems requires 

treating each dimension continuously, “by a continuous integration, a transform 

method (e.g. Laplace, Fourier, Bessel) or by discretization” [3]. We will review some 

these analytical techniques later in this chapter.  



 

     3 

 

 

Literature Review 

 

Mathematical Modeling of Physical Behavior 

 

Chen and Adomaitis (2006) present an overview of the available literature on 

multi-scale modeling and modular flowsheet tools [2]. The works of Lu and Kaxiras 

(2004), Maroudas (2000) and Raimondeau and Vlachos (2002) are representative of 

the mechanisms involved in computing multi-scale solutions for material and energy 

balances and reaction engineering problems [4,5,6].  

 

Hillestad and Hertzberg (1986) present the three classes of flowsheet 

simulators: equation-based simultaneous, sequential modular and simultaneous 

modular. In a modular system, each module has an associated set of algorithms and 

material properties whereas all equations are solved simultaneously in an equation-

based simulator [7]. 

 

In order to optimize both flexibility and computational efficiency, Fagley and 

Carnahan (1990) and Lee and Yoon (1994) note that a modular approach which 

solves modules sequentially while coupling certain modules into clusters that are 

solved simultaneously should be used. This strategy would provide more 
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transparency by allowing the user to make adjustments at the module level without 

affecting computing performance [8,9].   

 

Numerical Techniques 

 

The problems involved in chemical process modeling and optimization carry a range 

of complexity depending on the application. Of particular interest is the higher end of 

that spectrum, in dealing with systems of Non-Linear Algebraic Equations (NAEs), 

Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs) as 

well as non-linear Boundary Value Problems (BVPs). Regardless of type, equation 

sets can be formulated in matrix form and their solutions could be computed in a 

variety of ways.  

 

Spectral decomposition techniques permits the representation of a solution, in terms 

of a sequence of spatially defined functions. Polynomial collocation techniques can 

be used to discretize Boundary Value Problems. Quadrature-based projection 

methods help generate collocation-discretized equations that can be solved at the 

collocation points for the solutions to BVPs. Eigenfunction expansions can solve 

time-dependant linear BVPs and, in conjunction with the Galerkin projection method, 

nonlinear problems as well. In both cases, spectral filtering methods allow the 

minimization of error [10]. For a specified set of parameters, the iterative Newton-

Raphson procedure can be used to compute solutions to sets of NAEs and the Runge-

Kutta numerical integration is a common approach to solving nonlinear ODEs.   
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Chapter 2: Modular System Simulation 

 

Conceptualization 

System Definition 

 

The first step towards developing a conceptual model for a system is to 

understand the problem domain and break the system down into its components. A 

system should have a set of inputs and outputs, variables, parameters and modeling 

equations. The line between a variable (subject to dynamic state changes) and a 

parameter (a system characteristic) is often blurred. However, a computationally 

efficient system should be neither under-specified nor over-specified (no more 

variables than modeling equations) to ensure model convergence. Additionally, the 

most common cause for simulation convergence failure is that the problem is ill 

posed, which means that user specification of inputs within acceptable ranges is 

necessary [11].   

 

A Novel Approach to Modularized System Simulators 

 

Chen and Adomaitis (2006) propose a novel approach enabling the creation of 

simulators in an “evolutionary” framework [2]. The framework utilizes a library of 

routines built in MATLAB to implement global spectral projection and nonlinear 
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equation solving methods. These methods incorporate many of the numerical 

techniques mentioned earlier in order to solve physical process modeling problems 

[12]. It stands to reason that a focus on a flexible and extensible approach is most 

consistent with an object-oriented programming philosophy. As described by Chen 

and Adomaitis: 

 

Simulation problems are broken into modular components, where a module typically 

consists of a sub-element of a single manufacturing process. (…) The modules can be 

solved and analyzed individually, which is an asset in tracking the source of solution 

divergence or other numerical problems. Assemblies of modules can be formed by 

combining the modular model elements and defining how information is exchanged 

between modules. 

 

In order to ensure that a module’s information is properly encapsulated, each 

module in the system should behave like a “black box”. In accordance with object-

oriented programming best practices, the different objects of the system communicate 

only by message passing [13]. The standardization of the module-to-module interface 

provides opportunities for re-use and improves system scalability.   

 

The MDPSAS package 

 

Commercial simulation software packages are supported by proprietary source 

code in order to secure intellectual property and ensure company viability. Although 
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easy to use, this solution is limited from the standpoint of a user who requires more 

access into the underlying algorithms for either research or performance purposes.  

The MDPSAS package proposes the benefits that go along with an open, 

collaborative development environment due to its open source format, at least within 

the context of University of Maryland research.   

 

An extensive discussion of all the various methods developed within 

MDPSAS is most certainly better suited for the package’s user’s guide. The objective 

of this section is thus merely to succinctly present an overview of the package’s 

salient features. 

 

Classes and Object Formulation 

 

As with commercial flowsheeting software, each object in the simulation 

development environment can be thought of as an instance of a unit operations 

constructor class. The MDPSAS package allows the creation of objects in the form of 

instances of the naemodel, or non-linear algebraic equation model, class. This 

superclass has access to all the numerical solution techniques implemented in the 

MDPSAS library and serves as the template for object or sub-class definition. Indeed, 

sub-classes of the naemodel class can be specified by using ad-hoc decomposition 

techniques to establish meaningful categories within the problem domain. The 

formulation of such categories takes advantage of the encapsulation property 
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conferred by an object-oriented framework. Two examples are provided later as 

sample applications.  

 

Objects of the same class have the same methods and attributes. Unit 

operations modules inherit their properties from the naemodel superclass, and thus 

exhibit similar behavior. Objects are linked together by binomial relation statements 

whose combinations and permutations uniquely define an integrated modular 

simulation. In terms of the implementations, objects are related through instantiations 

of a relation class and object definitions, along with these relations, can be grouped 

together into an instance of a modsys, or modular system, class. Therefore, system 

integration is the procedural combination of component objects into a modular system 

for which steady-state simulation solutions can be computed.  

 

Methods and Solution Architecture 

 

From an overall standpoint, each module class has a residual method, which 

must be overloaded when defining subclasses of naemodel because the modeling 

equations are unique to the derived class. Modules classes also have analysis and 

debugging tools such as plotting methods. The data types of the parameters and 

variables which uniquely define an object are instances of an associative array class 

(assocarray) which holds both entity name and value and encapsulates methods of its 

own. As specified earlier, a pool of spectral projection methods are available to help 

solve chemical engineering problems of various nature, but generically identified as 
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boundary value problems (BVPs). These methods are used to discretize complex 

partial differential equations into simpler forms for which solver methods were either 

developed or already available in recent MATLAB library releases. The constructor 

method of the modsys class serves as the coordinator of the information exchange 

between modules and a repository to which the solver methods regularly update 

variable values on the simulation’s path to convergence. This component architecture 

ensures flexibility in manipulating child classes while providing the structure required 

for solution usability [2,12]. 

 

Existing Usability Challenge 

 

One of the outstanding challenges of this framework lies in the enabling of 

simulation development in a method-neutral environment. Conceivably, end-users 

could opt for different approaches to modular system simulation building. In a top-

down methodology, the target system is defined as whole and then decomposed into 

several layers to maximize rigidity, whereas in a bottom-up approach the building 

blocks are created piece by piece until a modular system can be defined which 

logically connects the components [14]. This perceived need for both flexibility and 

clarity requires an open development environment impartial to user expertise, to the 

extent that this is possible, and preferred model building approach. We focus on the 

design of a development interface, which potentially addresses these concerns.     
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Chapter 3: Collaborative Web-Based Interface 

 

Limitations of the Existing Interface 

 

Usability and Re-Use 

 

The MDPSAS interface uses a standard MATLAB hierarchical structure to 

organize the source code into classes. The single development interface is the 

MATLAB programming environment, intended to provide a means for engineers 

familiar with the MATLAB programming language to deploy accurate simulations 

based on the efficient of use of a library of numerical algorithms. Indeed, MATLAB 

has a strong presence among engineers and applied mathematicians, which makes the 

product an attractive platform [15]. Although many computational examples have 

demonstrated solution robustness, the need for a more interactive, seamless 

environment for development and distribution of simulation packages has been 

identified. Because of the desired range and the expected extensibility of the 

application, the design methodology should actively encourage user engagement and 

code re-use. From the user’s standpoint, the existing interface for simulation 

development lacks some of the visibility features that were intended to counteract the 

limitations of closed source flowsheeting tools. 
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Separation of Concerns 

 

The central tenet of the separation of concerns principle in software 

engineering holds that abstraction should be used effectively to hide software 

complexity. The application is assumed to chiefly address a basic concern for which 

the underlying algorithms were derived (in this case, the spectral projection and 

nonlinear equation solution implementations). So-called special purpose concerns add 

extra functionality and improve the performance and usability of the core algorithms. 

These additional concerns are separated from the basic concern in an effort to take all 

stakeholders into consideration and make the source code easier to write and modify 

[16]. We believe an extra layer of abstraction, provided by a familiar, easy to 

manipulate interface, is an achievable objective, which would serve as an 

enhancement to the MDPSAS development environment. 

 

Requirements for a new Graphical User Interface (GUI) 

 

Ease of Use 

 

There are two goal-scenario entities that drive the generation of interface 

requirements.  
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 Goal Scenario 

Module Goal-Scenario To create a new module 

- Specify object parameters, 

variables and initial guesses 

- Construct 

- Obtain steady-state solution 

System Goal-Scenario To create a new system 

- Specify object instances and 

relations 

- Construct 

- Obtain steady-state solution 

 

Table 1: Goal / Scenarios for Requirements Generation 

 

 

The path to a developed system is complete when all individual objects and 

relations are fully specified. Specification entails that the user states the module 

(naemodel object) parameters and initial variable values as the attributes that define 

the instance of the template class. The center of data interchange among objects of a 

simulation solution is the modular system, which acts as a mediator between objects 

and the solution space. As mentioned previously, the user must specify properties of 

the binomial relations between objects in a multi-component system in order to 

instantiate the modsys class. Essentially, this involves detailing the flow path between 

consecutive objects.  

 

The previously defined goal scenario statements generalize the typical use-

cases for the MDPSAS simulation development framework. Creating a modular 

system requires undergoing an ad-hoc building process but the life cycle can loosely 

be viewed as an iterative pseudo-prototype model of system development because of 

the emphasis on extensibility. 
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Figure 1: Model Development Life Cycle 

 

 

We derive requirements from our assessment of design objectives and based 

on the limitations of the current solution environment. We decompose them into four 

Engineering Key Process Areas (KPAs), which correspond to a group of related 

activities within the Capability Maturity Model [17]. These interface requirements are 

intended to resolve system usability. Consequently, the KPAs are grouped into 

categories that mimic the conceptual system life cycle. The core focus is thus to 

improve usability during the conceptual phases of analysis, development, testing and 

maintenance. 
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KPA Id Requirement Description 

1.1 
Required Inputs Shall Be Made Explicit 

1.2 Outputs Shall Be Clearly Available to the User 
Analysis 

1.3 Simulation Overview (Path to Solution) Shall Be Provided 

   

2.1 
Minimum Required User Involvement Shall Be No More Than 2 

Steps (Define / Run) 

2.2 Module Definition Shall Require No More Than 5 Data Entries 

2.3 System Definition Shall Require No More Than 5 Data Entries 
Development 

2.4 
Simulation Execution Shall Provide Feedback at No Less Than 5 

Second Intervals 

   

3.1 
Module and System Definition Validation Shall Require No More 

Than 5 Steps of User Involvement 

3.2 System Shall Provide Result Analysis Mechanisms to User 
Testing 

3.3 System Shall Provide User-Friendly Debugging Environment 

   

4.1 System Shall Encourage Multi-User Collaboration 

4.2 System Shall Permit Easy Access 

4.3 System Shall Have Good Documentation 
Re-use 

4.4 Source Code Shall Have Clear Comments Throughout 

Table 2: Key Process Areas 

 

Collaboration and Inter-Operability 

 

In addition to usability requirements, we propose that interface enhancement 

should address the increasingly dominant concerns of collaboration-friendliness and 

inter-operability. Although there are many competing viewpoints to take into 

consideration, the combination of available resources and emphasis on user 

involvement lead to the selection of a web-based technology for the development of a 

new user interface. 
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Implementation of WikiMDPSAS  

 

Internet access is already ubiquitous and yet still growing. Familiarity with 

web technology is also high, especially amongst the research community, the 

project’s chief target population. Many packages, including Mu’s PDE.mart, 

capitalize on advances in network-based computing to create equation solvers with a 

web-browser interface [18]. 

 

Free resource material is readily available, along with open solutions to help 

implement this project. This includes an active and available online development 

community, adding to the attractiveness of a web-oriented solution. These different 

factors contribute to the conjecture that, in the long term, a solution that focused on 

web-awareness would yield the most benefits.  

 

The proposed interface is inspired by two concepts closely associated with 

web 2.0: extensibility and collaboration. We choose to build simulation models on top 

of the Extensible Markup Language (XML) by developing a novel XML application 

named ModSimML. ModSimML defines and describes the human-readable semantic 

vocabulary that will be used for data interchange, simulation execution and data 

archiving. The implementation makes use of XML parsing functionalities available in 

MATLAB and inherited from the publicly available (open source) Xerces-JAVA 
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XML Parser
4
. ModSimML specifies the format of the inputs and outputs that will be 

used to create modules and develop modular systems.  

 

This approach may not be as aesthetically pleasing as the graphical depiction 

of simulation components that commercial flowsheet software generally provides. 

Nonetheless, the ability to combine an XML format with scalable-vector graphics, 

another XML application, leaves open the possibility to use XML Stylesheet 

Transformations to create add-ons for graphical purposes. This methodology was 

selected because it lends itself more easily to simulation data interchange on the web. 

Indeed, module and system information stored in XML format are posted on a Wiki 

designed for both project archiving and information exchange, located at 

http://wikimdpsas.wikidot.com/.  

 

The Wiki Collaborative Environment 

 

A wiki is a website that allows users to easily create new pages for 

information sharing purposes. Object pages are instantiated from templates much like 

objects are built from classes in object-oriented programming. Consequently, users 

can simply post data for recently configured modules or modular systems and the 

templatization of the online repository ensures that the new resource is rapidly shared 

among peers. The single semantic syntax ensures data consistency and integrity. The 

form-like appearance of XML increases usability since electronic forms are often 

                                                 
4
 Information Available at: http://xerces.apache.org/xerces2-j/ 
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considered to be “the most natural form of system description” (Vilz et al, 2006) due 

to end-user familiarity and ease of transition to a semantic model [19]. Additionally, 

the XML platform encourages the development of plug-ins, add-ons, applets and 

other third-party software built on top of a single application interface format.  

 

Valid data posted on the Wiki can be extracted in a quasi-automatic manner 

into the simulation constructor routines for model execution. At the physical layer, 

this system has a client-server architecture with the specification data held on the 

server while the source code and therefore the execution is operated on the client.  

 

 

 

 

Figure 2: System Architecture 

 

Conceptually, the complete interface system is the combination of a problem 

space mapped to an XML implementation structure and a solution space mapped to a 

MATLAB implementation structure. 
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Figure 3: Development Interface System Class Diagram 

  

We believe the Wiki’s accessibility, features and simplicity of use favorably 

reconcile the three components contributing to user satisfaction with a web interface: 

features in the web environment, user’s information seeking tasks and information 

seeker characteristics. Indeed, the web environment features are essentially limited to 

the information seeking tasks (the creation and editing of modules and objects) and 

we propose that an information seeker, typically an individual involved in the project, 

should be properly motivated by the simplicity and the lack of feature creep [20].   
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Chapter 4: ModSimML: An XML-Application 

 

A New Semantic Vocabulary 

Understanding Meta-Data 

 

We formulate an ontology as part of the ModSimML application which 

captures the salient features of the objects we wish to represent. This approach is 

consistent with the collaboration-focused software engineering practices, which are 

becoming the norm in today’s economy [21]. The specification of the XML 

application is drawn from an understanding of the meta-data, or “data about data”, 

which conceptually defines the problem domain. In the case of chemical engineering 

boundary value problems and their simulation solutions, the meta-data would include 

such tags as “modules”, “modular systems”, and “relations”. The main advantage of 

this data model-oriented framework is the extensible nature of the markup language, 

which allows us to add data structures as the supported application matures. In 

addition, XML is an open standard adopted by the W3C consortium and consequently 

has pre-built parsing and validation functionalities which simplify software 

development. It is fast becoming an ideal format for capturing and representing data 

formats [22]. 
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Data Structuring 

 

The XML platform proposes object abstraction into a hierarchical nodal 

structure [23]. In light of the conceptual need to identify components as either 

modules or modular systems, we establish two XML document templates whose 

respective root nodes are <module> and <modsys>. 

 

The <module> tree has child node <title> as its unique identifier, which is 

conceptually akin to the primary key of a relational database. The other child nodes, 

in the context of lumped parameter systems, are <feed> and <reactant>, thereby 

specifying the flow path. The cardinality for such systems is one module to one or 

more feeds and one module to one or more reactants. The feed and reactant are flows 

whose child nodes are the upstream and downstream properties of <flowrate> and a 

<componentArray> of one or more <component> child nodes. A <reaction> may be 

specified as an attribute, and therefore a child node, of the feed because of the general 

position that parameters are inputs to the objects in contrast to calculated variables, 

which are outputs.                        

 

The <modsys> tree also has a unique <title> identifier. Its child nodes are 

<modules>, encompassing the subset of available modules with the system, and 

<connections>, which hold the information about the integrated model connectivity 

grid. The cardinality for a valid modular system is one <modules> to two or more 
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<module> child nodes, and one <connections> parent node to one or more 

<connection> child nodes.    

 

Document Validation 

 

A simulation solution cannot be computed unless a valid system configuration 

is specified. XML validation involves matching configuration documents to 

application language-specific schemas using a variety of widely available tools. The 

two most common XML schema languages are the Document Type Definition (DTD) 

and the aptly named XML Schema language. Both schema specifications define the 

allowable document content based on expected hierarchy and data attributes. Among 

the freely available tools, user-created XML documents can be validated on the web 

using Brown University’s STG XML Validation form
5
.  

 

The ModSimML Schema  

 

We propose the following Document Type Definition files for the extensible 

ModSimML application language. The first document describes the allowed content 

of a lumped parameter reactor module and the second document applies to all 

modular system definitions. 

 

                                                 
5
 Located at: http://www.stg.brown.edu/service/xmlvalid/ 
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Figure 4: Lumped Parameter Reactor Module Document Type Definition 

 

 

Figure 5: Modsys Document Type Definition 

 

The two DTD files explicitly define the allowed data structures as previously 

described. Note that the level of detail required for the schema to be complete 
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includes the definition of such attributes as the “id” or index “idx” of elements. 

Additionally, because of the extensible nature of the XML data format, data structures 

can be added to the ModSimML schema specification as a better understanding of 

how parameters affect simulation results forces an expansion of the XML application.  

   

Data Manipulation 

 

Based on the data posted on the web, we extract information using XML 

Stylesheet Language (XSL) operations to create a document that is valid against 

ModSimML’s schema. Assuming valid configuration format, the simulation 

development environment has parsing capabilities implemented in MATLAB that are 

used to instantiate the constructor classes of the user-specified objects. Thus modular 

systems described in ModSimML are parsed and simulated using the MDPSAS 

package tools and utility tools can then be used to analyze and archive results. A 

simulation solution is executed by running the program from the MATLAB execution 

prompt. 
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Figure 6: Sequence Diagram of Expected Behavior 
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Chapter 5:  Application to Research in BioMEMS 

 

Sample Simulation: A Tri-Modular System 

 

Problem Formulation 

 

A sample illustrative system combines a simple reactor, a simple mixer and a 

simple separator. Each unit can be viewed as an instance of an object of type 

simplerxr, simplemxr and simplesep, each of which is an implementation of the 

naemodel template. Each module is considered a lumped parameter system, since no 

variables are spatially distributed. The overall system has a feed stream I and a 

product stream P. 

 

 

Figure 7: Sample Lumped Parameter System with 3 Modules  
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Specifying a module  

 

We declare a simplerxr module whose data attributes as specified in variable 

and parameter associative arrays are as follows: 

var   = assocarray({'xR' [0.1; 0.45; 0.45] 'R' 1}); 

param = assocarray({'xF' X 'F' 1 'k' 50}); 

 

The parameter value X associated to the name xF is an array built from data 

posted on the wiki in a module title Med_Feed_Flow. After XSL transformations 

parse the XHTML page posted on the wiki, the XML configuration file valid against 

the ModSimML schema for lumped parameter systems presented earlier is as follows: 

 

 

Figure 8: Simple Reactor Module Object XML 
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Specifying a modular system  

 

Similarly, we establish relationships which define the modular system by utilizing 

information stored on the Wiki in a modular simulation titled 

1Mixer_1Separator_1Reactor. The corresponding configuration file, valid against the 

modsys schema, is:   

 

 

Figure 9: 1Mixer_1Separator_1Reactor Modsys Object XML 

 

Results 

 

After execution, the following figure depicts the MATLAB command window 

output during the convergence of the modular system when using the Newton 

method.  
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Figure 10: Simulation Convergence: MATLAB Command Window Output  

 

The results from arc-length continuation of the steady-state solutions is also 

depicted:
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Figure 11: Arc-length Continuation of Steady-State Solutions 

 

BioMEMS Simulation  

Background 

 

Micro-Electro-Mechanical systems (MEMs) is the term conferred to a range 

of procedures and applications generally targeted to embedded systems at the 

microscopic scale. BioMEMS in particular is a subcategory of the field whose related 

technologies are confined to the bioengineering field. Currently research in 

BioMEMs aims at developing applications for drug delivery systems, biomedical 

sensors and bio-chemical analytical instruments [24]. In the case of biosensors, for 

instance, they offer the promise of faster bio-agent detection at a lower cost per test, 

though currently existing products have yet to gain market share on older, and still 

popular laboratory-based assay techniques [25]. 
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Abstraction as Modular Systems 

 

A typical BioMEM chip is a network of micro-fluidic channels etched by 

various processes to behave as an integrated circuit of bio-chemical reactions. A 

bioMEM system can be conceptually decomposed into duct sections, typically with 

rectangular cross-sections, and identified by their reaction sites. These sections are 

sequentially ordered as an arrangement of reacting ducts such that we can formulate 

2-dimensional models for each section. Because the state variables and some of the 

parameters used to define boundary conditions require spatially discretized 

definitions, additional simulation inputs defining the modules are necessary relative 

to the lumped parameter modeling modules. For example, in addition to feed and 

reactant specifications, we declare the length of cross-sections, the use of a reactive 

site and the number of collocation points employed for the discretization of partial 

differential equations.     

 

Example: Duct Flow with One Reactive Site 

 

We pose an illustrative problem where two non-reacting duct modules serve 

as the inlet and outlet to two middle ducts, one without a reactive site and one with a 

reactive site, each contiguously connected in series. A single reactant is introduced as 

a pure component into the system with a simple first-order reaction as follows:   
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A � B 

 

Figure 12: Simple Duct Flow BioMEMs Model 

 

The inlet module is a pre-reactor section used chiefly to set the boundary 

conditions of the overall system and the outlet similarly sets the overall system’s 

boundary is employed as a means to observe post-reaction mixing. The short pre-

reaction section allows us to concentrate a large number of collocation points just 

upstream of the reactive section, resulting in better numerical performance of the 

overall simulation.  

 

The configuration XML documents for one module (ductrxr) and the modular 

system (Simple_Duct_Flow) are as follows:  
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Figure 13: Ductrxr Module Object XML 

 

 

Figure 14: Simple_Duct_Flow Modsys Object XML 
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Note that the appearance of new elements in the configuration file for ductrxr 

requires an extension to the module Document Type Definition file in order to check 

the validity of the XML against the ModSimML schema. The extended schema is 

provided.  

 

 

Figure 15: Extended Module DTD based on New Allowable Content 

 

The following results were obtained for the 2-dimensional flow profile and 

spatial distribution of the feed component along the duct, with the variation of one 

design parameter (the reactive site length) based on information posted on the Wiki. 
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Figure 16a: Fluid Flow Profile and Mixing of Components A (Red) and B 

(Blue). Reactive Site Length = 1000 µm 

 

 

Figure 16b: Fluid Flow Profile and Mixing of Components A (Red) and B 

(Blue). Reactive Site Length = 100 µm 
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Path for Future Collaboration 

 

The results of different simulation runs as well as information about modules 

to test can be posted on WikiMDPSAS. A user can simply select one of two 

component types (“ModCreator” for modules and “SimCreator” for modular 

systems). The user then specifies the properties of a new object by using the template 

provided in the editor. Using the title of the components as inputs, multiple 

simulation runs can be computed and contrasted.      
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Chapter 6:  Conclusion 

 

This project intended to develop a framework for modular system simulation 

development operating from a web-based interface. The simulations involved 

concerned mostly boundary-value problems, weighted residual methods, and 

nonlinear equation solving techniques, implemented in requiring implemented in 

MATLAB as part of the MDPSAS package. Problem specification involved the 

definition of component modules and the relationships between them, which uniquely 

describes the modular system.   

 

The objective was to improve usability by reducing the semantic gap between 

users and developers. Despite a robust implementation, from the end-user’s 

viewpoint, the main limitations of the current MDPSAS package were in the 

interface. The focus on the interface system forced us to think of the transformations 

required to enable cross-viewpoint cooperation, with the principal stakeholders here 

being the researcher and the developer.  

 

The solution was found in the specification of an Extensible Markup 

Language application language labeled ModSimML, which serves as the data model. 

This XML specification confers the double advantage of improving visibility at the 

logical abstraction layer, by describing simulations in a human-readable and 

interpretable format, as well as providing an interface standard at the application 
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level. A Wiki website was created to enable users to collaborate in the definition of 

new modular systems posted in XML. We believe the use of an open format 

combined with a meaningful vocabulary increases the usability and the extensibility 

of the MDPSAS package.     
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Chapter 7:  Future Work 

 

The project would greatly benefit from more development both on the server-

side and on the client.  A client application could be developed which would allow 

the users to assemble modular systems in a graphically friendly interface, and then 

upload the newly created components or systems to the web. Such an application 

could alternatively be developed as an applet that would run on the server. 

 

We could use the Java Architecture for XML Binding (JAXB) tool to generate 

JAVA classes from the XML representations of modules and modular systems 

defined on the server. These classes could then be used to generate software 

specification diagrams. The Violet GUI is an example of an open source application 

which we could integrate into the MDPSAS development environment to provide the 

capability to build diagrams in UML. This enhancement would facilitate the process 

of systematically verifying the validity of the constructed models, an existing 

limitation of the current approach, particularly with respect to rules of connectivity 

between modules. The implementation of a better method of defining classes of 

parameters and variables would also facilitate model checking. Finally, we could 

develop a units schema that would ensure consistency in the unit system used within 

the configuration documents. 
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All these improvements would enhance the collaboration and data 

standardization goals this project seeks to resolve. 
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