

ABSTRACT

Title of Document: AN XML APPLICATION-BASED

INTERFACE TO DEVELOPING MODULAR

SYSTEM SIMULATIONS

 Jens Nguema Weisflog, Master of Science in

Systems Engineering, 2008

Directed By: Dr Ray Adomaitis, Institute for Systems

Research and Department of Chemical

Engineering

We introduce a framework for the development of modular lumped and

distributed parameter system models, the latter described by boundary value

problems. The simulation of such systems requires careful analysis and a rigorous

approach to development to provide both accuracy and computational efficiency. We

explain the current implementation, which solves such systems in a MATLAB

environment using object-oriented programming principles as part of the Modular

Distributed Parameter System Analysis and Simulation (MDPSAS) package. We

propose a mechanism for creating user-defined simulation elements using a web-

based collaborative interface. The creation of a novel semantic vocabulary built into

an XML application language called ModSimML is presented as a tool for data

structuring and exchange. The development of a schema for the XML application

formalizes of our data model. The utility of this interface is described via an

application to research in Biological Micro-Electro-Mechanical Systems

(BioMEMS), whose simulations require assembly from modular components.

AN XML APPLICATION-BASED INTERFACE TO DEVELOPING MODULAR

DISTRIBUTED PARAMETER SYSTEM SIMULATIONS.

By

Jens Nguema Weisflog

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science in Systems

Engineering

2008

Advisory Committee:

Professor Raymond Adomaitis, Chair

Professor Mark Austin

Professor Panagiotis Dimitrakopoulos

© Copyright by

Jens Nguema Weisflog

2008

 ii

Preface

This project was intended to help create a solution to a very generic problem. The

engine behind MDPSAS, the classes, objects and methods that enable the

implementation of a complete simulation are largely abstracted from end-users taken

from a larger scientific community. It thus seemed as though the obligatory next step

was to develop a user-friendly interface in order to scale-up the applicability of the

MATLAB package. We believe this objective was only partially obtained because of

the added requirement to understand the functionality and the potential of the XML

application defined herein.

 iii

Foreword

This project draws extensively on the work of Dr Ray Adomaitis and the students

who have been a part of his team over the years. Although merely an extension of

their work, I hope the solutions proposed and the ideas presented here form a basis for

future enhancement and perhaps a better understanding of how to build and deploy

complex simulations.

 iv

Dedication
I would like to dedicate this work to the people who matter most in my life: my soon-

to-be wife Jeanette, my parents and my three sisters, Sheryl, Rebecca and Sarah.

 v

Acknowledgements

Thank you very much to all those who have helped me complete this project,

including my advisor, Ray Adomaitis, my committee members, Dr Mark Austin, a

steadying influence, and Dr Panogiotis Dimitrakopoulos. I would also like to thank

Sue Frazier of ISR for guiding me through the labyrinth of graduate school policy and

deadlines.

 vi

Table of Contents

Preface... ii

Foreword .. iii

Dedication .. iv

Acknowledgements... v

Table of Contents... vi

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ... 1

Background ... 1

Chemical Process Models .. 1

Distributed vs. Lumped Models.. 2

Literature Review.. 3

Mathematical Modeling of Physical Behavior ... 3

Numerical Techniques ... 4

Chapter 2: Modular System Simulation.. 5

Conceptualization ... 5

System Definition.. 5

A Novel Approach to Modularized System Simulators... 5

The MDPSAS package ... 6

Classes and Object Formulation.. 7

Methods and Solution Architecture ... 8

Existing Usability Challenge .. 9

Chapter 3: Collaborative Web-Based Interface .. 10

Limitations of the Existing Interface .. 10

Usability and Re-Use ... 10

Separation of Concerns .. 11

Requirements for a new Graphical User Interface (GUI) 11

Ease of Use ... 11

KPA... 14

Table 2: Key Process Areas .. 14

 vii

Collaboration and Inter-Operability .. 14

Implementation of WikiMDPSAS.. 15

The Wiki Collaborative Environment.. 16

Chapter 4: ModSimML: An XML-Application.. 19

A New Semantic Vocabulary.. 19

Understanding Meta-Data .. 19

Data Structuring .. 20

Document Validation .. 21

The ModSimML Schema ... 21

Data Manipulation .. 23

Chapter 5: Application to Research in BioMEMS .. 25

Sample Simulation: A Tri-Modular System ... 25

Problem Formulation ... 25

Specifying a module .. 26

Specifying a modular system .. 27

Results.. 27

BioMEMS Simulation .. 29

Background... 29

Abstraction as Modular Systems... 30

Example: Duct Flow with One Reactive Site ... 30

Path for Future Collaboration ... 35

Chapter 6: Conclusion.. 36

Chapter 7: Future Work ... 38

Bibliography ... 40

 viii

List of Tables

Table 1: Goal / Scenarios for Requirements Generation…………………………. 12

Table 2: Key Process Areas………………………………………………………. 14

 ix

List of Figures

Figure 1: Model Development Life Cycle………………………………………. 13

Figure 2: System Architecture……………………..……………………………. 17

Figure 3: Development Interface System Class Diagram……………………….. 18

Figure 4: Lumped Parameter Reactor Module Document Type Definition……... 22

Figure 5: Modsys Document Type Definition…………………………………… 22

Figure 6: Sequence Diagram of Expected Behavior…………………………….. 24

Figure 7: Sample Lumped Parameter System with 3 Modules………………….. 25

Figure 8: Simple Reactor Module Object XML…………………………………. 26

Figure 9: 1Mixer_1Separator_1Reactor Modsys Object XML………………….. 27

Figure 10: Simulation Convergence: MATLAB Command Window Output….... 28

Figure 11: Arc-length Continuation of Steady-State Solutions………………….. 29

Figure 12: Simple Duct Flow BioMEMs Model…………………………………. 31

Figure 13: Ductrxr Module Object XML………………………………………… 32

Figure 14: Simple_Duct_Flow Modsys Object XML……………………………. 32

Figure 15: Extended Module DTD based on New Allowable Content…………... 33

Figure 16a: Fluid Flow Profile and Mixing of Components A (Red) and B (Blue).

Reactive Site Length = 1000 µm…………………………………………………. 34

Figure 16b: Fluid Flow Profile and Mixing of Components A (Red) and B (Blue).

Reactive Site Length = 100 µm…………………………………………………… 34

 1

Chapter 1: Introduction

Background

Chemical Process Models

Chemical process design and simulation tools constitute a tremendous asset

for any engineering and analysis department. Depending on a variety of selection

criteria, manufacturing and processing plants require such instruments both for design

and for operational purposes. If these engineering devices are integrated with

business-level applications, the profitability of the processing units is greatly

enhanced. Research efforts thus benefit from any improvements in accuracy,

reliability, scalability, computational efficiency and usability.

The most commonly available process modeling software packages use

flowsheeting interfaces. Examples of such programs include Aspen Plus
1
, PRO/II

2

and CHEMCAD
3
. Although practical for deriving order-of-magnitude estimates of

steady-state solutions, they often lack the flexibility to deal with processes that cover

a large range of time and length scales [1].

1
 Aspen Plus

TM
: product by Aspen Technology

2
 PRO/IITM

: product by SimSci-Essor
3
 ChemCAD

TM
: product by Chemstations, Inc.

 2

These programs typically propose proprietary black-box models for unit

operation simulations, including reactors, heat exchangers, mixers and separators.

The models are built on top of a set of routines combined with physical property and

reaction databases. This has the advantage of increasing usability but does not lend

itself to customization, often necessary in process modeling because of regular

deviations from expected behavior. The exposure to customization demands an

understanding of the numerical methods deployed to provide accurate multi-scale

modeling solutions to process engineering problems [2].

Distributed vs. Lumped Models

A certain measure of model complexity can be derived from the dimension of

the system’s state and parameter spaces. In a lumped parameter system, spatially

distributed variables are approximated as single scalars. But many complex systems

have an infinite-dimensional state-space and the behavior of the states is described by

partial differential equations. Modeling these distributed parameter systems requires

treating each dimension continuously, “by a continuous integration, a transform

method (e.g. Laplace, Fourier, Bessel) or by discretization” [3]. We will review some

these analytical techniques later in this chapter.

 3

Literature Review

Mathematical Modeling of Physical Behavior

Chen and Adomaitis (2006) present an overview of the available literature on

multi-scale modeling and modular flowsheet tools [2]. The works of Lu and Kaxiras

(2004), Maroudas (2000) and Raimondeau and Vlachos (2002) are representative of

the mechanisms involved in computing multi-scale solutions for material and energy

balances and reaction engineering problems [4,5,6].

Hillestad and Hertzberg (1986) present the three classes of flowsheet

simulators: equation-based simultaneous, sequential modular and simultaneous

modular. In a modular system, each module has an associated set of algorithms and

material properties whereas all equations are solved simultaneously in an equation-

based simulator [7].

In order to optimize both flexibility and computational efficiency, Fagley and

Carnahan (1990) and Lee and Yoon (1994) note that a modular approach which

solves modules sequentially while coupling certain modules into clusters that are

solved simultaneously should be used. This strategy would provide more

 4

transparency by allowing the user to make adjustments at the module level without

affecting computing performance [8,9].

Numerical Techniques

The problems involved in chemical process modeling and optimization carry a range

of complexity depending on the application. Of particular interest is the higher end of

that spectrum, in dealing with systems of Non-Linear Algebraic Equations (NAEs),

Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs) as

well as non-linear Boundary Value Problems (BVPs). Regardless of type, equation

sets can be formulated in matrix form and their solutions could be computed in a

variety of ways.

Spectral decomposition techniques permits the representation of a solution, in terms

of a sequence of spatially defined functions. Polynomial collocation techniques can

be used to discretize Boundary Value Problems. Quadrature-based projection

methods help generate collocation-discretized equations that can be solved at the

collocation points for the solutions to BVPs. Eigenfunction expansions can solve

time-dependant linear BVPs and, in conjunction with the Galerkin projection method,

nonlinear problems as well. In both cases, spectral filtering methods allow the

minimization of error [10]. For a specified set of parameters, the iterative Newton-

Raphson procedure can be used to compute solutions to sets of NAEs and the Runge-

Kutta numerical integration is a common approach to solving nonlinear ODEs.

 5

Chapter 2: Modular System Simulation

Conceptualization

System Definition

The first step towards developing a conceptual model for a system is to

understand the problem domain and break the system down into its components. A

system should have a set of inputs and outputs, variables, parameters and modeling

equations. The line between a variable (subject to dynamic state changes) and a

parameter (a system characteristic) is often blurred. However, a computationally

efficient system should be neither under-specified nor over-specified (no more

variables than modeling equations) to ensure model convergence. Additionally, the

most common cause for simulation convergence failure is that the problem is ill

posed, which means that user specification of inputs within acceptable ranges is

necessary [11].

A Novel Approach to Modularized System Simulators

Chen and Adomaitis (2006) propose a novel approach enabling the creation of

simulators in an “evolutionary” framework [2]. The framework utilizes a library of

routines built in MATLAB to implement global spectral projection and nonlinear

 6

equation solving methods. These methods incorporate many of the numerical

techniques mentioned earlier in order to solve physical process modeling problems

[12]. It stands to reason that a focus on a flexible and extensible approach is most

consistent with an object-oriented programming philosophy. As described by Chen

and Adomaitis:

Simulation problems are broken into modular components, where a module typically

consists of a sub-element of a single manufacturing process. (…) The modules can be

solved and analyzed individually, which is an asset in tracking the source of solution

divergence or other numerical problems. Assemblies of modules can be formed by

combining the modular model elements and defining how information is exchanged

between modules.

In order to ensure that a module’s information is properly encapsulated, each

module in the system should behave like a “black box”. In accordance with object-

oriented programming best practices, the different objects of the system communicate

only by message passing [13]. The standardization of the module-to-module interface

provides opportunities for re-use and improves system scalability.

The MDPSAS package

Commercial simulation software packages are supported by proprietary source

code in order to secure intellectual property and ensure company viability. Although

 7

easy to use, this solution is limited from the standpoint of a user who requires more

access into the underlying algorithms for either research or performance purposes.

The MDPSAS package proposes the benefits that go along with an open,

collaborative development environment due to its open source format, at least within

the context of University of Maryland research.

An extensive discussion of all the various methods developed within

MDPSAS is most certainly better suited for the package’s user’s guide. The objective

of this section is thus merely to succinctly present an overview of the package’s

salient features.

Classes and Object Formulation

As with commercial flowsheeting software, each object in the simulation

development environment can be thought of as an instance of a unit operations

constructor class. The MDPSAS package allows the creation of objects in the form of

instances of the naemodel, or non-linear algebraic equation model, class. This

superclass has access to all the numerical solution techniques implemented in the

MDPSAS library and serves as the template for object or sub-class definition. Indeed,

sub-classes of the naemodel class can be specified by using ad-hoc decomposition

techniques to establish meaningful categories within the problem domain. The

formulation of such categories takes advantage of the encapsulation property

 8

conferred by an object-oriented framework. Two examples are provided later as

sample applications.

Objects of the same class have the same methods and attributes. Unit

operations modules inherit their properties from the naemodel superclass, and thus

exhibit similar behavior. Objects are linked together by binomial relation statements

whose combinations and permutations uniquely define an integrated modular

simulation. In terms of the implementations, objects are related through instantiations

of a relation class and object definitions, along with these relations, can be grouped

together into an instance of a modsys, or modular system, class. Therefore, system

integration is the procedural combination of component objects into a modular system

for which steady-state simulation solutions can be computed.

Methods and Solution Architecture

From an overall standpoint, each module class has a residual method, which

must be overloaded when defining subclasses of naemodel because the modeling

equations are unique to the derived class. Modules classes also have analysis and

debugging tools such as plotting methods. The data types of the parameters and

variables which uniquely define an object are instances of an associative array class

(assocarray) which holds both entity name and value and encapsulates methods of its

own. As specified earlier, a pool of spectral projection methods are available to help

solve chemical engineering problems of various nature, but generically identified as

 9

boundary value problems (BVPs). These methods are used to discretize complex

partial differential equations into simpler forms for which solver methods were either

developed or already available in recent MATLAB library releases. The constructor

method of the modsys class serves as the coordinator of the information exchange

between modules and a repository to which the solver methods regularly update

variable values on the simulation’s path to convergence. This component architecture

ensures flexibility in manipulating child classes while providing the structure required

for solution usability [2,12].

Existing Usability Challenge

One of the outstanding challenges of this framework lies in the enabling of

simulation development in a method-neutral environment. Conceivably, end-users

could opt for different approaches to modular system simulation building. In a top-

down methodology, the target system is defined as whole and then decomposed into

several layers to maximize rigidity, whereas in a bottom-up approach the building

blocks are created piece by piece until a modular system can be defined which

logically connects the components [14]. This perceived need for both flexibility and

clarity requires an open development environment impartial to user expertise, to the

extent that this is possible, and preferred model building approach. We focus on the

design of a development interface, which potentially addresses these concerns.

 10

Chapter 3: Collaborative Web-Based Interface

Limitations of the Existing Interface

Usability and Re-Use

The MDPSAS interface uses a standard MATLAB hierarchical structure to

organize the source code into classes. The single development interface is the

MATLAB programming environment, intended to provide a means for engineers

familiar with the MATLAB programming language to deploy accurate simulations

based on the efficient of use of a library of numerical algorithms. Indeed, MATLAB

has a strong presence among engineers and applied mathematicians, which makes the

product an attractive platform [15]. Although many computational examples have

demonstrated solution robustness, the need for a more interactive, seamless

environment for development and distribution of simulation packages has been

identified. Because of the desired range and the expected extensibility of the

application, the design methodology should actively encourage user engagement and

code re-use. From the user’s standpoint, the existing interface for simulation

development lacks some of the visibility features that were intended to counteract the

limitations of closed source flowsheeting tools.

 11

Separation of Concerns

The central tenet of the separation of concerns principle in software

engineering holds that abstraction should be used effectively to hide software

complexity. The application is assumed to chiefly address a basic concern for which

the underlying algorithms were derived (in this case, the spectral projection and

nonlinear equation solution implementations). So-called special purpose concerns add

extra functionality and improve the performance and usability of the core algorithms.

These additional concerns are separated from the basic concern in an effort to take all

stakeholders into consideration and make the source code easier to write and modify

[16]. We believe an extra layer of abstraction, provided by a familiar, easy to

manipulate interface, is an achievable objective, which would serve as an

enhancement to the MDPSAS development environment.

Requirements for a new Graphical User Interface (GUI)

Ease of Use

There are two goal-scenario entities that drive the generation of interface

requirements.

 12

 Goal Scenario

Module Goal-Scenario To create a new module

- Specify object parameters,

variables and initial guesses

- Construct

- Obtain steady-state solution

System Goal-Scenario To create a new system

- Specify object instances and

relations

- Construct

- Obtain steady-state solution

Table 1: Goal / Scenarios for Requirements Generation

The path to a developed system is complete when all individual objects and

relations are fully specified. Specification entails that the user states the module

(naemodel object) parameters and initial variable values as the attributes that define

the instance of the template class. The center of data interchange among objects of a

simulation solution is the modular system, which acts as a mediator between objects

and the solution space. As mentioned previously, the user must specify properties of

the binomial relations between objects in a multi-component system in order to

instantiate the modsys class. Essentially, this involves detailing the flow path between

consecutive objects.

The previously defined goal scenario statements generalize the typical use-

cases for the MDPSAS simulation development framework. Creating a modular

system requires undergoing an ad-hoc building process but the life cycle can loosely

be viewed as an iterative pseudo-prototype model of system development because of

the emphasis on extensibility.

 13

Figure 1: Model Development Life Cycle

We derive requirements from our assessment of design objectives and based

on the limitations of the current solution environment. We decompose them into four

Engineering Key Process Areas (KPAs), which correspond to a group of related

activities within the Capability Maturity Model [17]. These interface requirements are

intended to resolve system usability. Consequently, the KPAs are grouped into

categories that mimic the conceptual system life cycle. The core focus is thus to

improve usability during the conceptual phases of analysis, development, testing and

maintenance.

 14

KPA Id Requirement Description

1.1
Required Inputs Shall Be Made Explicit

1.2 Outputs Shall Be Clearly Available to the User
Analysis

1.3 Simulation Overview (Path to Solution) Shall Be Provided

2.1
Minimum Required User Involvement Shall Be No More Than 2

Steps (Define / Run)

2.2 Module Definition Shall Require No More Than 5 Data Entries

2.3 System Definition Shall Require No More Than 5 Data Entries
Development

2.4
Simulation Execution Shall Provide Feedback at No Less Than 5

Second Intervals

3.1
Module and System Definition Validation Shall Require No More

Than 5 Steps of User Involvement

3.2 System Shall Provide Result Analysis Mechanisms to User
Testing

3.3 System Shall Provide User-Friendly Debugging Environment

4.1 System Shall Encourage Multi-User Collaboration

4.2 System Shall Permit Easy Access

4.3 System Shall Have Good Documentation
Re-use

4.4 Source Code Shall Have Clear Comments Throughout

Table 2: Key Process Areas

Collaboration and Inter-Operability

In addition to usability requirements, we propose that interface enhancement

should address the increasingly dominant concerns of collaboration-friendliness and

inter-operability. Although there are many competing viewpoints to take into

consideration, the combination of available resources and emphasis on user

involvement lead to the selection of a web-based technology for the development of a

new user interface.

 15

Implementation of WikiMDPSAS

Internet access is already ubiquitous and yet still growing. Familiarity with

web technology is also high, especially amongst the research community, the

project’s chief target population. Many packages, including Mu’s PDE.mart,

capitalize on advances in network-based computing to create equation solvers with a

web-browser interface [18].

Free resource material is readily available, along with open solutions to help

implement this project. This includes an active and available online development

community, adding to the attractiveness of a web-oriented solution. These different

factors contribute to the conjecture that, in the long term, a solution that focused on

web-awareness would yield the most benefits.

The proposed interface is inspired by two concepts closely associated with

web 2.0: extensibility and collaboration. We choose to build simulation models on top

of the Extensible Markup Language (XML) by developing a novel XML application

named ModSimML. ModSimML defines and describes the human-readable semantic

vocabulary that will be used for data interchange, simulation execution and data

archiving. The implementation makes use of XML parsing functionalities available in

MATLAB and inherited from the publicly available (open source) Xerces-JAVA

 16

XML Parser
4
. ModSimML specifies the format of the inputs and outputs that will be

used to create modules and develop modular systems.

This approach may not be as aesthetically pleasing as the graphical depiction

of simulation components that commercial flowsheet software generally provides.

Nonetheless, the ability to combine an XML format with scalable-vector graphics,

another XML application, leaves open the possibility to use XML Stylesheet

Transformations to create add-ons for graphical purposes. This methodology was

selected because it lends itself more easily to simulation data interchange on the web.

Indeed, module and system information stored in XML format are posted on a Wiki

designed for both project archiving and information exchange, located at

http://wikimdpsas.wikidot.com/.

The Wiki Collaborative Environment

A wiki is a website that allows users to easily create new pages for

information sharing purposes. Object pages are instantiated from templates much like

objects are built from classes in object-oriented programming. Consequently, users

can simply post data for recently configured modules or modular systems and the

templatization of the online repository ensures that the new resource is rapidly shared

among peers. The single semantic syntax ensures data consistency and integrity. The

form-like appearance of XML increases usability since electronic forms are often

4
 Information Available at: http://xerces.apache.org/xerces2-j/

 17

considered to be “the most natural form of system description” (Vilz et al, 2006) due

to end-user familiarity and ease of transition to a semantic model [19]. Additionally,

the XML platform encourages the development of plug-ins, add-ons, applets and

other third-party software built on top of a single application interface format.

Valid data posted on the Wiki can be extracted in a quasi-automatic manner

into the simulation constructor routines for model execution. At the physical layer,

this system has a client-server architecture with the specification data held on the

server while the source code and therefore the execution is operated on the client.

Figure 2: System Architecture

Conceptually, the complete interface system is the combination of a problem

space mapped to an XML implementation structure and a solution space mapped to a

MATLAB implementation structure.

 18

Figure 3: Development Interface System Class Diagram

We believe the Wiki’s accessibility, features and simplicity of use favorably

reconcile the three components contributing to user satisfaction with a web interface:

features in the web environment, user’s information seeking tasks and information

seeker characteristics. Indeed, the web environment features are essentially limited to

the information seeking tasks (the creation and editing of modules and objects) and

we propose that an information seeker, typically an individual involved in the project,

should be properly motivated by the simplicity and the lack of feature creep [20].

 19

Chapter 4: ModSimML: An XML-Application

A New Semantic Vocabulary

Understanding Meta-Data

We formulate an ontology as part of the ModSimML application which

captures the salient features of the objects we wish to represent. This approach is

consistent with the collaboration-focused software engineering practices, which are

becoming the norm in today’s economy [21]. The specification of the XML

application is drawn from an understanding of the meta-data, or “data about data”,

which conceptually defines the problem domain. In the case of chemical engineering

boundary value problems and their simulation solutions, the meta-data would include

such tags as “modules”, “modular systems”, and “relations”. The main advantage of

this data model-oriented framework is the extensible nature of the markup language,

which allows us to add data structures as the supported application matures. In

addition, XML is an open standard adopted by the W3C consortium and consequently

has pre-built parsing and validation functionalities which simplify software

development. It is fast becoming an ideal format for capturing and representing data

formats [22].

 20

Data Structuring

The XML platform proposes object abstraction into a hierarchical nodal

structure [23]. In light of the conceptual need to identify components as either

modules or modular systems, we establish two XML document templates whose

respective root nodes are <module> and <modsys>.

The <module> tree has child node <title> as its unique identifier, which is

conceptually akin to the primary key of a relational database. The other child nodes,

in the context of lumped parameter systems, are <feed> and <reactant>, thereby

specifying the flow path. The cardinality for such systems is one module to one or

more feeds and one module to one or more reactants. The feed and reactant are flows

whose child nodes are the upstream and downstream properties of <flowrate> and a

<componentArray> of one or more <component> child nodes. A <reaction> may be

specified as an attribute, and therefore a child node, of the feed because of the general

position that parameters are inputs to the objects in contrast to calculated variables,

which are outputs.

The <modsys> tree also has a unique <title> identifier. Its child nodes are

<modules>, encompassing the subset of available modules with the system, and

<connections>, which hold the information about the integrated model connectivity

grid. The cardinality for a valid modular system is one <modules> to two or more

 21

<module> child nodes, and one <connections> parent node to one or more

<connection> child nodes.

Document Validation

A simulation solution cannot be computed unless a valid system configuration

is specified. XML validation involves matching configuration documents to

application language-specific schemas using a variety of widely available tools. The

two most common XML schema languages are the Document Type Definition (DTD)

and the aptly named XML Schema language. Both schema specifications define the

allowable document content based on expected hierarchy and data attributes. Among

the freely available tools, user-created XML documents can be validated on the web

using Brown University’s STG XML Validation form
5
.

The ModSimML Schema

We propose the following Document Type Definition files for the extensible

ModSimML application language. The first document describes the allowed content

of a lumped parameter reactor module and the second document applies to all

modular system definitions.

5
 Located at: http://www.stg.brown.edu/service/xmlvalid/

 22

Figure 4: Lumped Parameter Reactor Module Document Type Definition

Figure 5: Modsys Document Type Definition

The two DTD files explicitly define the allowed data structures as previously

described. Note that the level of detail required for the schema to be complete

 23

includes the definition of such attributes as the “id” or index “idx” of elements.

Additionally, because of the extensible nature of the XML data format, data structures

can be added to the ModSimML schema specification as a better understanding of

how parameters affect simulation results forces an expansion of the XML application.

Data Manipulation

Based on the data posted on the web, we extract information using XML

Stylesheet Language (XSL) operations to create a document that is valid against

ModSimML’s schema. Assuming valid configuration format, the simulation

development environment has parsing capabilities implemented in MATLAB that are

used to instantiate the constructor classes of the user-specified objects. Thus modular

systems described in ModSimML are parsed and simulated using the MDPSAS

package tools and utility tools can then be used to analyze and archive results. A

simulation solution is executed by running the program from the MATLAB execution

prompt.

 24

Figure 6: Sequence Diagram of Expected Behavior

 25

Chapter 5: Application to Research in BioMEMS

Sample Simulation: A Tri-Modular System

Problem Formulation

A sample illustrative system combines a simple reactor, a simple mixer and a

simple separator. Each unit can be viewed as an instance of an object of type

simplerxr, simplemxr and simplesep, each of which is an implementation of the

naemodel template. Each module is considered a lumped parameter system, since no

variables are spatially distributed. The overall system has a feed stream I and a

product stream P.

Figure 7: Sample Lumped Parameter System with 3 Modules

 26

Specifying a module

We declare a simplerxr module whose data attributes as specified in variable

and parameter associative arrays are as follows:

var = assocarray({'xR' [0.1; 0.45; 0.45] 'R' 1});

param = assocarray({'xF' X 'F' 1 'k' 50});

The parameter value X associated to the name xF is an array built from data

posted on the wiki in a module title Med_Feed_Flow. After XSL transformations

parse the XHTML page posted on the wiki, the XML configuration file valid against

the ModSimML schema for lumped parameter systems presented earlier is as follows:

Figure 8: Simple Reactor Module Object XML

 27

Specifying a modular system

Similarly, we establish relationships which define the modular system by utilizing

information stored on the Wiki in a modular simulation titled

1Mixer_1Separator_1Reactor. The corresponding configuration file, valid against the

modsys schema, is:

Figure 9: 1Mixer_1Separator_1Reactor Modsys Object XML

Results

After execution, the following figure depicts the MATLAB command window

output during the convergence of the modular system when using the Newton

method.

 28

Figure 10: Simulation Convergence: MATLAB Command Window Output

The results from arc-length continuation of the steady-state solutions is also

depicted:

 29

Figure 11: Arc-length Continuation of Steady-State Solutions

BioMEMS Simulation

Background

Micro-Electro-Mechanical systems (MEMs) is the term conferred to a range

of procedures and applications generally targeted to embedded systems at the

microscopic scale. BioMEMS in particular is a subcategory of the field whose related

technologies are confined to the bioengineering field. Currently research in

BioMEMs aims at developing applications for drug delivery systems, biomedical

sensors and bio-chemical analytical instruments [24]. In the case of biosensors, for

instance, they offer the promise of faster bio-agent detection at a lower cost per test,

though currently existing products have yet to gain market share on older, and still

popular laboratory-based assay techniques [25].

 30

Abstraction as Modular Systems

A typical BioMEM chip is a network of micro-fluidic channels etched by

various processes to behave as an integrated circuit of bio-chemical reactions. A

bioMEM system can be conceptually decomposed into duct sections, typically with

rectangular cross-sections, and identified by their reaction sites. These sections are

sequentially ordered as an arrangement of reacting ducts such that we can formulate

2-dimensional models for each section. Because the state variables and some of the

parameters used to define boundary conditions require spatially discretized

definitions, additional simulation inputs defining the modules are necessary relative

to the lumped parameter modeling modules. For example, in addition to feed and

reactant specifications, we declare the length of cross-sections, the use of a reactive

site and the number of collocation points employed for the discretization of partial

differential equations.

Example: Duct Flow with One Reactive Site

We pose an illustrative problem where two non-reacting duct modules serve

as the inlet and outlet to two middle ducts, one without a reactive site and one with a

reactive site, each contiguously connected in series. A single reactant is introduced as

a pure component into the system with a simple first-order reaction as follows:

 31

A � B

Figure 12: Simple Duct Flow BioMEMs Model

The inlet module is a pre-reactor section used chiefly to set the boundary

conditions of the overall system and the outlet similarly sets the overall system’s

boundary is employed as a means to observe post-reaction mixing. The short pre-

reaction section allows us to concentrate a large number of collocation points just

upstream of the reactive section, resulting in better numerical performance of the

overall simulation.

The configuration XML documents for one module (ductrxr) and the modular

system (Simple_Duct_Flow) are as follows:

 32

Figure 13: Ductrxr Module Object XML

Figure 14: Simple_Duct_Flow Modsys Object XML

 33

Note that the appearance of new elements in the configuration file for ductrxr

requires an extension to the module Document Type Definition file in order to check

the validity of the XML against the ModSimML schema. The extended schema is

provided.

Figure 15: Extended Module DTD based on New Allowable Content

The following results were obtained for the 2-dimensional flow profile and

spatial distribution of the feed component along the duct, with the variation of one

design parameter (the reactive site length) based on information posted on the Wiki.

 34

Figure 16a: Fluid Flow Profile and Mixing of Components A (Red) and B

(Blue). Reactive Site Length = 1000 µm

Figure 16b: Fluid Flow Profile and Mixing of Components A (Red) and B

(Blue). Reactive Site Length = 100 µm

 35

Path for Future Collaboration

The results of different simulation runs as well as information about modules

to test can be posted on WikiMDPSAS. A user can simply select one of two

component types (“ModCreator” for modules and “SimCreator” for modular

systems). The user then specifies the properties of a new object by using the template

provided in the editor. Using the title of the components as inputs, multiple

simulation runs can be computed and contrasted.

 36

Chapter 6: Conclusion

This project intended to develop a framework for modular system simulation

development operating from a web-based interface. The simulations involved

concerned mostly boundary-value problems, weighted residual methods, and

nonlinear equation solving techniques, implemented in requiring implemented in

MATLAB as part of the MDPSAS package. Problem specification involved the

definition of component modules and the relationships between them, which uniquely

describes the modular system.

The objective was to improve usability by reducing the semantic gap between

users and developers. Despite a robust implementation, from the end-user’s

viewpoint, the main limitations of the current MDPSAS package were in the

interface. The focus on the interface system forced us to think of the transformations

required to enable cross-viewpoint cooperation, with the principal stakeholders here

being the researcher and the developer.

The solution was found in the specification of an Extensible Markup

Language application language labeled ModSimML, which serves as the data model.

This XML specification confers the double advantage of improving visibility at the

logical abstraction layer, by describing simulations in a human-readable and

interpretable format, as well as providing an interface standard at the application

 37

level. A Wiki website was created to enable users to collaborate in the definition of

new modular systems posted in XML. We believe the use of an open format

combined with a meaningful vocabulary increases the usability and the extensibility

of the MDPSAS package.

 38

Chapter 7: Future Work

The project would greatly benefit from more development both on the server-

side and on the client. A client application could be developed which would allow

the users to assemble modular systems in a graphically friendly interface, and then

upload the newly created components or systems to the web. Such an application

could alternatively be developed as an applet that would run on the server.

We could use the Java Architecture for XML Binding (JAXB) tool to generate

JAVA classes from the XML representations of modules and modular systems

defined on the server. These classes could then be used to generate software

specification diagrams. The Violet GUI is an example of an open source application

which we could integrate into the MDPSAS development environment to provide the

capability to build diagrams in UML. This enhancement would facilitate the process

of systematically verifying the validity of the constructed models, an existing

limitation of the current approach, particularly with respect to rules of connectivity

between modules. The implementation of a better method of defining classes of

parameters and variables would also facilitate model checking. Finally, we could

develop a units schema that would ensure consistency in the unit system used within

the configuration documents.

 39

All these improvements would enhance the collaboration and data

standardization goals this project seeks to resolve.

 40

 Bibliography

[1] Peters, M.S., Timmerhaus, K.D. & West, R.E. Plant Design and Economics for

Chemical Engineers. McGraw-Hill, 2003

[2] Chen, J. and Adomaitis, R. “An object-oriented framework for modular chemical

process simulation with semiconductor processing applications”, Computers

& Chem. Eng, vol. 30, pp. 1354-1380, 2006

[3] McCann Science, Distributed Parameter Systems [online]. Available:

http://www.mccannscience.com/distributed.htm, 2003 [Accessed: October 2007]

[4] Lu, G., & Kaxiras, An overview of multiscale simulations of materials.

http://arxiv.org/abs/cond-mat/0401073. arXiv:condmat/

0401073, v1, 2004 [Accessed: October 2007]

[5] Maroudas, D., “Multiscale modeling of hard materials: Challenges and

opportunities for chemical engineering”, AIChE Journal, vol. 46(5), pp. 878–882,

2000

[6] Raimondeau, S., & Vlachos, D. G., “Recent developments on multiscale,

hierarchical modeling of chemical reactors”. Chemical Engineering Journal, vol.

90(1–2), pp. 3–23, 2002

[7] Hillestad, M., & Hertzberg, T., “Dynamic simulation of chemical engineering

systems by the sequential modular approach”. Computers and Chemical Engineering,

vol. 10(4), pp. 377–388, 1986

[8] Fagley, J. C., & Carnahan, B., “The sequential-clustered method for dynamic

chemical plant simulation”. Computers and Chemical Engineering, vol. 14, pp. 161–

177, 1990

[9] Lee, K. J., & Yoon, E. S., “The flexible modular approach in dynamic process

simulation”. Computers and Chemical Engineering, vol. 18(Suppl.), pp. s761–s765,

1994

[10] Adomaitis, R., Numerical Methods for Chemical Engineers. University of

Maryland, 2007

[11] Turton, R. et al, Analysis, Synthesis, and Design of Chemical Processes, 2
nd

 Ed.

Prentice-Hall, 2003

[12] Adomaitis, R., “Objects for MWR”, Computers and Chemical Engineering, vol.

26, pp. 981–998, 2002

 41

[13] Eckel, B., Thinking in Java, 4
th

 Ed. Prentice-Hall, 2006

[14] Dennis, A. et al, Systems Analysis and Design with UML Version 2.0, 2
nd

 Ed.

Wiley, 2005

[15] Mathews, J & Fink, K., Numerical Methods Using MATLAB, 4
th

 Ed. Prentice-

Hall, 2004

[16] Alencar, P. and Lucena, C., “A Logical Theory of Interfaces and Objects”, IEEE

Transactions on Software Engineering, vol. 28(6), 2002

[17] Austin, M., Lecture Notes for ENSE 623. University of Maryland, 2007

[18] Mu, M., “PDE.Mart: A Network-Based Problem-Solving Environment for

PDEs”, ACM Transactions on Mathematical Software, Vol. 31(4), 2005.

[19] Vilz, J. et al, “Data Conceptualisation for Web-Based Data-Centred

Application Design”, E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp.

205 – 219, 2006.

[20] Zhang, P. et al, “Websites that Satisfy Users: A Theoretical Framework for Web

User Interface Design and Evaluation”, Proceedings of the 32nd Hawaii International

Conference on System Sciences, 1999

[21] Wongthongtham, P. et al, “Towards 'Ontology'-based Software Engineering

for Multi-site Software Development”, 3rd IEEE International Conference on

Industrial Informatics, pp. 362-365, 2005

[22] Rajugan, R. et al, “Semantic Modeling of e-Solutions Using a View Formalism

with Conceptual & Logical Extensions”, 3rd IEEE International Conference on

Industrial Informatics, pp. 286-293, 2005

[23] Harold, E.R., XML 1.1 Bible 3
rd

 Ed., Wiley, 2004

[24] Maluf, N., An Introduction to Microelectromechanical Systems Engineering,

Artech House, 2000

[25] Campitelli, A., and Parton, E., “BioMEMS: Marrying ICs and Biotech”, Solid

State Technology, Vol. 45 Issue 7, p87, 2002

