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Abstract

This paper presents the development of a new stochastic approach to characterize
random tool motion during machining. The complexity of cutting mechanism is rep-
resented by a random excitation system related to physical properties of the material
being machined. A Markov-chain based stochastic approach is developed to model the
random tool motion as the response of a machining system under the random excita-
tion. In considering a turning operation, a concept of group distributions is introduced
to characterize the global effect on the cutting force due to the variation of a certain
material property. A model of segment excitation is used to describe its micro func-
tion within an individual revolution. A distribution pattern observed in the material
property is represented by a transition model. The simulation of random tool motion
during machining resembles the generation of Markov chains. Microstructure analysis
and image process are used to collect data, calculate relevant statistics, and estimate
the system parameters specified in the developed stochastic model. As illustrated in
this paper, the developed stochastic model can be effectively used to simulate the ran-
dom tool motion and to learn rich information on the performance measures of interest
such as machining accuracy and finish quality. The new approach represents a major
advance to create a fundamental scientific basis for the realization of a reliable and
effective prediction system for information processing in sensor-based manufacturing.

1 Introduction

Computer integrated manufacturing systems have emerged in response to the requirements
for great flexibility, productivity, and high quality of the product. As the computer tech-
nology advances, the manufacturing industry is now seeking a higher degree of production
automation.

Sensor-based manufacturing leads a new direction to the technological development.
Instead of relying on intelligent human operators on the shop floor, sensing devices are
intended to on-line collect signals related to the machining performance. Through signal
processing, interpretors detect the process abnormalities, and built-in controllers take ac-
tions to return the process to a normal state. In this regard, mathematical modeling of
random tool motion will be a necessity to ensure the sensitivity of monitoring systems to
improve the machining precision, efficiency, and product guality. Great efforts have been
devoted to the discovery of quantitative descriptions of random tool motion. This statistical



approach characterized by the development of a dynamic data system (DDS) was proposed
in the 1970s [Pa 83]. Discrete stochastic models, such as AR and ARMA models, are used
to identify the transfer function of the physical system which is subject to random tool exci-
tation. However, these models are in general used to describe stationary stochastic signals.
For the application to model random tool motion which is a non-stationary time-varying
process, these models are not suited and effective. Therefore, there exists a substantial
distance towards the general adoption of these methods simply because of the complexity
of manufacturing environments.

The hidden Markov model is a powerful tool in describing non-stationary time-varying
process [RabJu 86]. It has been successfully applied to the modeling, processing, and recog-
nition of speech signals which is well-known to be highly non-stationary. Due to the simi-
larities between the speech signal and the random tool motion signal, the concept of hidden
Markov model may be the best theoretical foundation to initiate the modeling of random
tool motion during machining.

In this paper, a new and stochastic approach is formulated for an analytical evaluation
of random tool motion during machining. The developed approach consists of three statis-
tical models to capture the dynamic characteristics of the cutting environment. A group
distribution model is used in a turning operation to imitate the cutting process during
one revolution as an assignment of known stochastic processes. For an assigned process,
a normal distribution model is to represent the random excitation system with mean and
variance as its two parameters characterizing its average and variation levels. A transition
model is to recognize possible patterns or inherent correlations of the tool motion between
consecutive revolutions.

The paper is organized into following sections. In section 2, the basic methodology
is described. Section 3 outlines the procedure to identify the state transition probability
matrix which is the key for modeling the transition pattern of microstructures observed in
the workpiece material. A case study through both the experiment and computer simulation
is presented in Section 4. It demonstrates the application of using the proposed approach to
study the finish quality of machined surfaces caused by random tool motion. Results from
the experiment and computer simulation to validate the proposed approach are discussed
in Section 5. Section 6 presents conclusions and future directions for this research.

2 Basic Methodology

2.1 Concept of Random Tool Motion

During a machining operation, the cutting tool moves along a path defined by the kinematic
motion of the machine tool which is determined by the cutting parameters. In the case of a
turning operation, spiral tool paths are most common. In addition to the kinematic motion,
the cutting tool vibrates about its moving path in small magnitudes. Close examination
suggests that tool vibration is of random nature and should be dealt stochastically.

It has been well known that the built-up edge, tool wear, and unevenly distributed
material properties (such as microhardness) are the major sources of observed random tool
motion. Among these sources, the random tool motion caused by the built-up edges can
be controlled by increasing the cutting speed, a common practice on the shop floor. It is



believed that random tool motion becomes severe as tool wear progresses during machining;
and at the same time, the non-uniform distribution of hardness in the material being cut
beats the cutting tool in a random manner. However, to distinguish the effects of tool wear
and distribution of material properties on random tool motion during machining seems
extremely difficult although not impossible.

As a strategy to control the random tool vibration, in this research we treat the random
tool motion from tool wear as an ’abnormal variation’ to the machining process, and the
random tool motion from other sources except tool wear as the ’natural variation’ to the
machining process. This strategy, therefore, suggests that the unevenly distributed material
properties become the main source for introducing the ’natural’ random tool motion if a
high cutting speed is used for diminishing the effects caused by the built-up edge. In the
following sections the physical meaning of the unevenly distributed material property, such
as microhardness, related to the random tool motion during machining, and the stochastic
modeling of this relation is discussed.

2.2 Dynamic Characteristics of the Cutting Environment

From the cutting dynamics point of view, it is beneficial if we treat the cutting process as a
sampling process in which the cutting tool meets a series of small samples of the workpiece
material (as illustrated in Fig. 1). Each of the small samples (or blocks) in Fig. 1 may possess
distinct characteristics in its microstructure. The cutting force generated in this process
then varies in a random nature as the microhardness value of each of the samples varies.
As a result, the random variation of the cutting force introduces random tool vibration
during machining. Accordingly, it is necessary to identify the characteristics of the cutting
environment embedded in the microstructures of workpiece material.

As a first attempt to model the cutting dynamics in microscale, microstructural analysis
of the workpiece material should be performed. Figure 2a shows the micro-photographs of
four representative samples taken from different cross-sections of a rolled AISI 1020 steel
bar. The photographs were then scanned and digitized as bitmap files (pictures in Fig. 2 are
actually bitmaps). The ferrite structures (bright part or 0’s in the bitmap file) and pearlite
structures (dark part or 1’s in the bitmap file), which are much harder than the ferrite, are
clearly shown in the photographs.

It can be proven that the microhardness distributed within each cross-section tends to
be a normal distribution [ZhKa 90] (as also shown in Fig. 2a). Moreover, depending on
the microstructures along the bar, the said distributions for different cross-sections may be
statistically different from (or similar to) each other as those shown in the group 1 or group
2 of Fig. 2a. If the microstructures are homogeneously distributed along the steel bar, the
difference of microstructures among the cross-sections may not be sensed by the cutting
tool when it passes along the bar with a preset feed rate during machining. In this case, a
single (normal) distribution will be sufficient for modeling the microhardness distribution
in the entire workpiece material.

However, if a sample was taken from the longitudinal direction of the bar, such as
the one shown in Fig. 2b, the microstructures will be quite different from those shown in
Fig. 2a. It is obvious that the pearlite structures in Fig. 2b tend to be distributed as stripes
with certain pattern along the longitudinal direction of the bar which were formed during



fabrication by the rolling process. As a result, when the tool passes from one revolution
to the next, the cutting force generated will also possess a similar pattern which is then
transmitted to the cutting tool in a form of vibration.

Based on the above observation, when the tool is cutting around one revolution of the
material, a specific distribution which is applied statistically to estimate the microhardness
of each blocks in the cross-section should be assigned. As the tool moves to the next rev-
olution of the material, a distribution which may or may not be the same as the previous
one should also be assigned. The assignment of these distributions is discussed in the next
section. On the other hand, when the microhardness of each small block around one revolu-
tion, which is next to the previous one, is to be assigned based on the current distribution, it
has to simultaneously follow the transition pattern as observed in the longitudinal direction
of the material. It should be pointed out that the cutting parameter settings (e.g., feed
rate, depth of cut, and spindle speed) will have significant effects on the determination of
the statistics for the microstructures distributed in the material (both in the cross-sectional
and longitudinal directions). These issues will be covered in detail in the following sections.

2.3 A Stochastic Approach to Simulate the Micro Cutting Dynamics
2.3.1 Assignment of Group Distributions

As mentioned earlier, it is perceivable that the microhardness in different cross-sections of
the same material has different distributions. For example, if we take ten samples from
ten different cross sections of a steel bar, it is very likely that each sample has a different
mean (p;, 1 = 1,2,...,10) and variance (¢, ¢ = 1,2,...,10) of microhardness distributions.
However, these statistics are not truely different from each other (from a statistical point of
view). If we perform the significance tests on means, the ten distributions could be statisti-
cally ’grouped’ into groups under certain criterion. Each group may then be characterized
by a new mean and variance based on the statistics of the members in each group.

Figure 3 presents such a case that the distributions of ten samples were divided into
three groups with their new means (pg,, j = 1,2,3) and variances (0921,, j=1,2,3). These
three distributions are called Group Distributions. Therefore, one can choose any of the
three group distributions to re-characterize the original ten samples as well as any other
samples from different cross-sections of the same steel bar. Beside the mean and variance,
the probability of each group distribution (pg,), such that any cross section within the
material will be characterized by the distribution, could also be estimated!. For clarity,
we use different background shadings to represent different group distributions as shown in
Fig. 3. It is emphasized that these group distributions are determined by the microstructural
analysis of the workpiece material which is technically feasible. Therefore, if there is enough
information from the microstructural analysis, the group distributions can be determined
as a known property of the material. Based on the said group distribution probabilities,
one can then assign the group distributions to the consecutive cross-sections (it can be done
by using a random number generator) which will be encountered by the cutting tool during
machining (as shown in Fig. 3).

1For example, in Fig. 3 three out of ten samples arc grouped as distribution one; hence, the probability
that distribution one will occur in any cross section is 0.3.



2.3.2 Segment Model for Single Revolutions

After the assignment of group distributions to each of the cross sections, it is intuitive that
one can then determine the microhardness of each block within a specific revolution (or
segment) as previously shown in Fig. 1. For example, if the first revolution is assigned by
group distribution two, the microhardness of each block in this revolution can be directly
determined by the mean and variance of the group distribution two (since it is a normal
distribution). Therefore, it is possible to determine the microhardness of each block in any
other segments of the material in the same fashion.

As observed earlier, there exists a certain pattern in the microstructures along the longi-
tudinal direction of the steel bar. In other words, there is an underlying correlation between
the consecutive segments. This pattern has to be identified before the microhardness in the
blocks of consecutive segments can be further assigned. This issue is discussed in the next
section. ‘

2.3.3 Transition Model for Pattern Recognitions

Research in the speech recognition process by applying the basic theory of Markov chains
[RabJu 86] has provided the insight in this work to model the pattern of microstructures
as seen in Fig. 2b. With a good model, we can predict the outcome and learn as much as
possible via simulation of the process. How does one apply the Markov chains as a tool
to model the transition pattern encountered during a machining process? We need first to
understand the basic mechanism of Markov chains. A brief description and definitions of a
Markov chain are presented as follows.

Consider a system which may be described at any time as being in one of a set of mutually
exclusive states (S, S9, ..., Sn). According to a set of probabilistic rules, the system may, at
certain discrete instants of time, undergo changes of state (or state transition). One could
number the particular event of a time instant (¢, g2, ..., ¢;) at which transitions may occur.
A Markov chain or discrete-state Markov process is a random process {¢;,¢ = 1,2,...} that
takes on a finite or countable number of states (e.g., Sy, 52, .... Sn) and satisfies the following
condition:

P(qe = Sjlgi-1 = Si, gt—2 = Sks eyt = Sm) = P@t = Sjlqe—1 = %) (1)

for all ¢ > 0 and all possible states (say, N of them) [Dr 67]. In other words, a Markov
chain is a discrete random process in which the next state entered depends only on the
current state, but not on the previous states. The transitions between states are governed
by a set of state transition probabilities {p;;}, where p;; is the probability of going directly
from state ¢ to state j as 7 and j vary over all possible states, or

pij = P(qe = Sjlqi-1 = i) = P(5;|5:), YV i,j € [1, N]; pi; independent of ¢ (2)

with the following properties

N
pij > 0and Y pij=1,Vie[l,N] (3)

i=1



It is often convenient to display these transition probabilities as members of a square matrix,
ie.,

pir P12 ... PN
P21 P22 ... MmN

[p] = e e (4)
PN1 PN2 -+ PNN

As a simple example, a two-state (N = 2) Markov process with a 2 x 2 transition
probability matrix:
P11 P12
[p) = [ ]

P21 P22

is demonstrated here. Suppose that a coin tossing experiment is performed, and a se-
quence of observations are given; e.g., an observed sequence of the outcome would be
@ = {51,951, 592, 92,91}, where 5y stands for heads and Sy stands for tails. It is desired to
determine the probability of @ if the model is given (namely, it follows Eqgs. 2 and 3). This
probability can be expressed as

P(Q|M0del) = P({S],Sl,SQ,52,51}|]V10d€l)
= P(81)P(51]51)P(52]51)P(52152) P(51]52)

= €@ pripPi12P22P21

where the notation
€& =Pl =5;),Vie[l,N] (5)

stands for the initial state probabilities (it is usually set to 1) [RabJu 86, Ro 83].

It is also important to find out what the probability would be if a known state is fixed in
that state for exactly d observations [RabJu 86]. This probability can be evaluated as the
probability of the observation sequence @ = {q1 = Si,q2 = Sis- - -5 qd; = Sisqa;+1 = Sjj#i}s
given the model, which is

P(Q|Model,q1 = 8;) = (pii)“ (1 — pir) = F(dy) (6)

The quantity f(d;) is the discrete probability density function of duration d in state 2.
Therefore, the expected number of observations (duration) in a state conditioned on starting
in that state is

B) = Y dif(d) = 3 di(pa)* (1 pi) = =

3
di=1 d,=1 "

Viell, N (7)

As long as the state transition probabilities {p;;, V i,j € [1, N]} are defined, the pat-
tern existing in the microstructures along the longitudinal direction of the steel bar can be
recovered. Suppose that a two state Markov process (assuming that state one possesses the
softest microhardness distribution) is given as the transition model, and a sample block of
the first revolution has been identified being under state one. Then the state of a neigh-
boring sample block in the second revolution which is just next to the first one can be



determined based on the transition probabilities of p;;, 7 = 1,2. For example, if the tran-
sition probability from state one to itself, py1, is 0.8, and the transition probability from
state one to state two, pyg, is 0.2 (recall Eq. 3), the next state will most likely be still under
state one. This work can be easily done by using a random number generator.

From the proposed stochastic approach, the relation between the microstructures of
workpiece material and the random tool motion could be studied through computer simula-
tion. This study could then serve as a tool for us to learn more about the random nature of
a machining process. Before doing so, it is imperative to develop a method for identifying
the parameters of the transition model, i.e., the states and transition probability matrix.
Such a method is presented in the next section.

3 Identification of the Transition Model Parameters

The states and state transition probabilities are important to model a Markov process.
This section will present a method about how to identify them from an observed image of
microstructures of the workpiece material similar to the one shown in Fig. 2b.

3.1 Determination of State Boundaries and States

Suppose that the cutting parameter settings, such as feed and cutting speed in a turning
process are given. The image in Fig. 2b can be divided into subdivisions along both the
longitudinal (feed) and vertical (cutting) directions based on the settings. For example,
the microstructures shown in Fig. 4a is divided into six subdivisions along the longitudinal
direction and two subdivisions along the vertical direction (based on the cutting parameter
settings). Since the image is stored as a bitmap file (0’s and 1’s), one can calculate the ratio
of the number of black pixels (hard spots) to the total number of pixels in each subdivision.
We call this a state ratio and is defined as

_ Number of Black Pixels within the (k,1)th Subdivision
~ Total Number of Pizels within the (k,l)th Subdivision’

' E<m,l<n. (8)

where m is the number of subdivisions in the cutting speed direction, and n is the number
of subdivisions in the feed direction. The purpose of evaluating these ratios is to determine
the state of each subdivision associated with the hardness variation within the given image
area. If the number of states are determined in advance (the number of states could be
two, three, four, or even more), the state of each subdivision can be determined based on
the state ratios.

To fix the idea, a map of state ratios, calculated in each subdivision based on Iq. 8, is
shown in Fig. 4b. The mean (7) and standard deviation (o,) of these ratios can also be
evaluated. It is true that if the number of observations (i.e., the total number of subdivi-
sions in the image) are very large, the distribution of state ratios will tend to be a normal
distribution.

From the above distribution, the state ratios are then divided into regions based on the
number of states to be considered. The boundaries of each region can be determined by
using the 3o criteria; i.e., a) divide the ratios between [F — 30,,7 + 3a,] by N (the number



of states) and call this number dr (= 60,/N); b) the boundaries will be (—o0, 7 — 30, + dr],
(T — 30, + dr, 7 — 30, + 2dr],..., and (T + 30, — dr, +00).

Suppose that the number of states of the hardness variation is two, the hardness of each
subdivision can be either at state I (soft) or state IT (hard). Therefore, any ratio in the map
which is smaller than the mean value () can be assigned at state I, and those larger than
the mean value can be assigned at state II. In other words, the mean value of the ratios
is the state boundary for a two-state model. The upper-right corners of each subdivision
in Fig. 4b shows the states after they are assigned. This specific assignment of states is
called a state map. The state map of a three-state model is also shown in Fig. 4b (lower-left
corners) for comparison.

It is obvious that if the cutting parameters (feed or speed) are changed, the state ratios
(and hence the state map) will also be changed. For example, if the feed rate is reduced by
one half, the same image will have more subdivisions (as those divided by dashed lines in
Fig. 4a). Thus, the pixels in each subdivision will be different, and the state ratios as well
as the state maps will also be different.

3.2 Estimation of Transition Probability Matrix, [p]
3.2.1 Two-State Markov Process

How can one evaluate the transition probabilities or the transition probability matrix [p]
from the observed state map? It is clear from Eq. 7 that as long as the expected duration
of a state ¢ is estimated, the probability for transition from state ¢ to itself can be estimated
by

1

E(d;) ®)

pi=1-

The evaluation of £(d;) can be done by counting the number of occurrences of state i' and
the duration of each occurrence of state ¢ observed from the state map; i.e.,

K;
Z]‘:1 di,

E(d;) = e

(10)

where d,-j is the jth duration of occurrence at state 7 and K; is the number of occurrences
of state 7. For example, there are three occurrences of state Iin the map of Fig. 4b (i.e.,
Ky = 3). The duration of each occurrence can also be counted; i.e.,

d;, = Length(I,1,1,1)=4,d;, = Length(I) =1, d;; = Length(I,1)=2

where ¢ = 1 (at state I). Therefore, the estimated expectation of duration at state I from
the observation is

dy, + dy, + dy, 44142 7

E(dy) =

Number of occurrencesof state I - 3 3

11t should be noted that an occurrence of state i is defined as the continuous observation of staying at
state ¢ without changing to any other states.



The meaning of the above number (7/3) is that the expected duration of staying in state
Iis about 2.3 (feeds) in the feed direction. The probability for transition from state I to
itself is then calculated from Eq. 9:
1
E(dy)

« 4

Similarly, there are four occurrences of state Il in the map of Fig. 4 (Ko = 4). The
estimated expectation of duration at state II from the observation is

dy, + da, +dy, + d, _ 1414241 5

E(dy) = - 2.
(d2) Numberof occurrencesof state I'l 4 4’
therefore,
11
P22 = 5/4 5

It is obvious that from Eq. 3 the transition probabilities of p12 and po1 can also be estimated.
Therefore, the estimated transition probability matrix of this two-state Markov process
based on the image given in Fig. 4a is

[Pl = 4/5 1/5

417 3/7 ]

3.2.2 N-State Markov Process (N > 2)

If the number of states is not two but three, four, or even more, how does one estimate
the transition probability matrix? Based on the state map of a three-state Markov process
(Fig. 4b), and follow the calculations similar to that of the two-state model, the estimated
expectation of duration at state I, I, and [T are

. 142 . 142 - 142
B(dy) = —12“-— = 1.5, B(dy) = iig—i- — 2.0, and E(ds) = —1;——— - 15,
respectively. Therefore, from Eq. 9, we can estimate the following transition probabilities:
1 1 1 1 1 1
pp=1 - == fgg =1l == and fg3 = 1 — = = =.
P11 Bldy) 3 P22 E(dy) 5 P33 B(ds) 3

Since the transition probabilities of p;;’s have been estimated, the problem now is how to
estimate other transition probabilities, p;; ;+;, in the [p] matrix.

Suppose that each state can only change to its neighboring states or to itself (e.g., state
i can only change to state ¢ + 1, ¢ — 1, or 7), the transition probability matrix will have a
form as follows

[
by
0

1-pn
P22
by

0
1 —pa—by
P33

0

0
0

1—p3z—by
bn_2
0

0 )
0
0

PN—iN-1 1—=DPN-oiN-1—bNn_2
1—-pNN PNN ]

(11)



where b;, ¢t = 1,2,..., N — 2, are the probabilities for transition from state ¢ 4+ 1 to state i.
This type of transition pattern is sometimes referred as the birth and death Markov process
[Ch 67]. It is obvious that the estimation of above [p] is much easier than the estimation of
Eq. 4 since only the b;’s are to be determined in the above [p] matrix. Actually, based on
the observed microstructures of the workpiece material, this type of transition seems the
most favorable for our purpose.

To determine the b;’s, a stationary distribution of the (N) states, & = [ry 7g ... Tn] where
m; is the "long-term fraction’ of state ¢ observed in the state map (e.g., Fig. 4b), should be
first defined, and it should satisfy the matrix equation [Ch 67]

7 = x[p]. (12)
The 7;’s can be estimated by )
E?—il d;,
Ty = — 13
T Iiobs ( )

where d; is the 7" duration of occurrence at state 7, K; is the number of occurrences of

state 7, and K, is the total number of observations in the state map (i.e., the number of
subdivisions in the cutting speed direction, m, times the number of subdivisions in the feed
direction, n). For example, from the state map of Fig. 4b, the estimated 7;’s are

s d11+d12 _1+2_l
1™ Total Number of Observations in the State Map ~ 2x 6 4’
similarly,
- _3+1i+2 1 and # _1+2 1
T oxe T2 YT 2x6 4

From Eq. 12, one can manipulate the matrix equation such that b;’s can be evaluated based
on the linear regression method. The derivation of b,’s is explained in the Appendix. After
solving the b; (=1/4) in this three-state model, the transition probability matrix is

1/3 2/3 0.0
pl=| 1/4 1/2 1/4
0.0 2/3 1/3

4 Case Study

A turning operation of machining an AISI 1020 steel bar with diameter of 72 mm and
length of 300 mm was studied to verify the developed stochastic approach for modeling the
random tool vibration during machining. The study consists of both the experimental work
and computer simulation. They are discussed in this section.

4.1 Experimental Work

To verify the basic methodology used to simulate the micro cutting dynamics, experiments
were carried out and the experimental results were compared with the results from computer
simulation. The experimental work consists of:

10



1. Microstructural analysis: This analysis provides the information regarding the micro-
hardness distributions in the workpiece material, as discussed in previous sections.
Samples taken from the steel bar were polished and etched for taking micropho-
tographs under an optical microscope or a scanning electron microscope. Pictures
of each sample were then scanned and image data files were stored. Statistical anal-
ysis was performed on the image files to get the related statistics for further study.

2. Machining tests: The machining of the AISI 1020 steel bar was performed on a lathe
with the following settings:

e Cutting data: feed=0.23 mm/rev, depth of cut=0.5 mm, spindle speed=470 rpm
(the built-up edge was insignificant at this speed).

e Cutting tool: nose radius=0.6 mm, rake angle=0°, lead angle=20°.
o Cutting fluid: none.

e Cutting time: less than one minute (no tool wear was observed).

3. Measurement of surface profiles: The surface roughness along the feed direction (axial
direction of the steel bar) was measured using a Talysurf surface profilometer. Twenty
five surface profiles were taken in parallel with a 0.2mm interval inside a rectangular
area of 4.8 X 4.0 mm? to form a surface topography as the one shown in Fig. 5a.
A representative surface profile from the experiment is shown in Fig. 5b. The mea-
sured surface roughness indices, such as the roughness average values (R,), root mean
squared values (R,), peak to valley values (PTV), and the standard deviation of each
of them are listed in Table 1.

4.2 Computer Simulation

From the basic methodology described in Section 2.3, computer programs were written to
simulate the micro cutting dynamics. The programs were all written using the FORTRAN
77 language and compiled on a Unix based operating environment. They are portable.
to any system with a FORTRAN 77 compiler (except that a graphics display module is
device dependent). The main structure of the programs is based on previous research of
the analysis of cutting dynamics which has been presented in the reference [ZhHw 90].

The statistical approach mentioned in Section 2.3 is coded as subroutines and appended
to the original programs. The same cutting parameter settings as chosen in the experiment,
the digitized images from samples of the material, and the group distributions!, are read as
input data files. The state transition probability matrix is then estimated. The assignment
of group distributions, the prediction of segment microhardness values and state map of
the first revolution, assignment of the state maps of consecutive revolutions (or segments),
and prediction of the microhardness values of all segments are then carried out one after
another. As long as the microhardness values of each revolution are available, they are
stored as one of the input data files for the evaluation of dynamic random tool motion. We
call this set of input data as Case 1.

YThree group distributions were estimated from the microstructural analysis, they are: pg, = 110.0 BHN,
Pg1 = 0.2, pg, = 143.0 BHN, pg, = 0.5, pg, = 165.0 BHN, py, = 0.3, and the standard deviations are the
same (0g; ;; ,, = 12.0 BHN).

11



Table 1: Surface Roughness Indices

Units in ym | Experiment | Case 1 | Case 2 | Case 3
R, 4.20 413 | 4.00 | 3.65
OR, 0.32 0.22 0.19 0.06
R, 5.04 5.05 4.88 4.37
OR, 0.44 0.28 0.27 0.09
PTV 20.28 16.97 | 16.93 | 15.38
oPTV 1.70 0.94 0.91 0.50

In order to see the effects of different microstructures on the random tool motion and
simulated surface topographies, two other sets of microstructural models are also used (recall
Section 2.2). The characteristics of these two input sets are:

e Case 2: Instead of assigning group distributions to each segment, only one normal
distribution (g, = 143.0 BHN, o, = 12.0 BHN) is applied as the segment model
in this case, and the transition model is still kept to simulate the pattern along the
longitudinal direction. This case assumes that the microhardness distribution in one
cross section of the material is similar to that of any other cross section.

e Case 3: This case assumes that the distribution of microhardness in the entire work-
piece material is characterized by a single normal distribution and there is even no
transition pattern along the longitudinal direction [ZhKa 90]. For example, we can
heat treat a steel bar to spheroidize the pearlite structure into a matrix of soft, machin-
able ferrite structure [As 84]. Thus, the transition pattern existed along the longitudi-
nal direction is destroyed and microstructures are almost homogeneously distributed
as a single distribution in this case.

The cutting force, dynamic response of tool vibration, surface profiles, and surface
topography are part of the outputs available from the computer simulation. To check the
validity of the proposed models, we compare the surface profiles and surface quality indices
with experimental results (since they also represent the outcome of a machining process).
A simulated surface topography from Case I is shown in Fig. 5a. From the three cases of
simulation, representative surface profiles along the feed direction are also shown in Fig. 5b.
Based on the simulated surface profiles, we can then evaluate the surface roughness indices
as those listed in Table 1.

5 Discussion of Results

A qualitative comparison is made by first looking at the two surface topographies shown
in Fig. 5a. The common characteristics are the waviness of the surface texture along the
cutting speed direction which is caused by tool vibration and the arc chain pattern which
is caused by the tool motion along the feed (or longitudinal) direction. By comparing the
surface profiles shown in Fig. 5b, it is found that profiles from Case 7 and 2 are closer to
the profile from the experiment because the height variations of profiles from Case 1, 2,
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and experiment are more prominent than that from Case 3. This can be explained by the
transition pattern observed in the steel bar which is considered during simulation in Case
1 and 2 but not in Case 3. The difference between Case 1 and 2 is not easy to tell from the
profiles. However, it is anticipated that the height variation of Case 1, where three group
distributions are used, is more prominent than that of Case 2, where only one distribution
exists (refer to the shaded bars of Case 1 and 2 in Fig. 5b). This qualitative comparison
suggests that the validity of proposed models is very promising.

A quantitative comparison is done by comparing the surface roughness indices between
the measured and simulated surface profiles. As listed in Table 1, the surface roughness
average (R,), the root mean square of roughness (R,), and the mean of the peak to valley
value (PT'V'), which are mostly used in practice, are chosen as the surface roughness indices
for comparison. It can be seen that the simulation results from Case 1 are well matched
with those from the experiment. For instance, the mean values of R,, E,, and PTV from
the measured surface are 4.20 pm, 5.04 um, and 20.28 pum; and those from Case 1 are
4.13 pm, 5.05 um, and 16.97 um, respectively. The tests on means were carried out to see
the statistical difference between the mean values of surface indices. It turned out that R,
and R, are statistically the same (it is 95% confident to say so) between those from Case
1 and those from the experiment. Similarly, if tests were carried out for Case 2 and also
for Case 3, only the R, from Case 2 is statistically the same as that from the experiment.
This comparison, therefore, provides a much stronger evidence that Case I is the most
likely situation happened during the machining of the AISI 1020 steel bar as performed in
the experiment. It is, however, very interesting to observe that the PTV values from all
simulation cases do not match that from the experiment. This relates to an elastoplastic
interaction between the material and cutting tool and is beyond the scope of this paper.

To some extent, the above quantitative comparison has shown that through the proposed
stochastic models ( Case 1) and computer simulation, we can almost reconstruct the finished
surface texture obtained from a turning process. On the other hand, the random tool
motion during machining can also be characterized by the proposed stochastic approach
if the nonhomogeneous material hardness distribution is considered as the most significant
source for random excitation.

6 Conclusions

A stochastic approach to characterize the random tool motion during machining has been
proposed. It is based on the Markov chain theory to characterize the non-stationary and
time-varying signal process. The group distributions, segment model, and transition model
are proposed to quantitatively evaluate the random tool motion caused by a random exci-
tation related to microstructures of the workpiece material being cut. A method has also
been developed to determine the states and state transition probabilities defined in the tran-
sition model. Results from experiments confirm the predictions obtained from computer
simulation. It is believed that this research may become an essential part to quantify the
random tool vibration during machining, a task which nowadays seems difficult but critical
for developing a sensor-based machining system to improve the quality and productivity in
the manufacturing industry.
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Appendix - Derivation of b;’s

Equation 12 can be rewritten as

where b = [by,bg, ...,bn—2], Il is a (N — 2) x N matrix defined as

oIl = =T (14)

9 0 —Ty 0 0 0
0 w3 0 —m3 0 0

II = 0 0 Ty 0 —T4 ... 0 (15)
0o ... .. 0 7ny-1 0 —mwN_a
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and I" is a N X N matrix defined as

(1—])11) —(1—])11) 0 0
0 (1-—])22) —(1—])22) 0
r= (16)
0 0 (1-pn-inv-1) —(1—pN-1n-1)
0 0 —(1—pNnN) (1—pnNN)

The matrices II and T’ can be estimated based on the estimations of 7;’s and p;;’s as derived
in the paper (Egs. 13, 10, and 9), respectively. In other words, o= I(#) and I'= L'(pii)-
Finally, the b can be estimated by minimizing the mean square error of (bll — zI'); i.e.,
choose b such that

|| 61T — AT ||= min (|{ oI - £ ||)

where || . || stands for the mean-squared norm. Actually, the solution for b is given by

Oy
O'Ra

b= #rmT ().

Nomenclature
state transition probability from state 1 + 1 to ¢ d;
#'* duration of occurrence at state i f(dz)
number of subdivisions in the n
cutting speed direction
number of samples in one revolution Py,
state transition probability from state ¢
to state 7 [p]
observed event at time ¢ Tkl
mean of the state ratios D
number of occurrences of state 2 K ops
number of states PTV
an observation sequence R,
root mean squared value S,
initial state probability of state 2 Hg,
mean microhardness value in the itP T
cross-section
7" group standard deviation of g;
microhardness
standard deviation of the state ratios opTV
standard deviation of R, OR,
a matrix consisting of m,’s T

15

(1mn)

duration of occurrence at state ¢

discrete probability density function of d;
number of subdivisions in the

feed direction

probability of 5% group distribution

for assignment

transition probability matrix

I** subdivision

state ratio within the k,
workpiece (feature) diameter

total number of observations in a state map
peak to valley value

roughness average value

the '* state

7™ group mean microhardness value
long-term fraction of state ¢ observed

in a state map

standard deviation of microchardness

in the 1*" cross-section

standard deviation of PTV

standard deviation of R,

a matrix consisting of 1 — p,,’s
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