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Abstract

Several schemes for linear mapping of multidimensional space have been proposed for many applications
such as access methods for spatio-temporal databases, image compression and so on. In all these applications,
one of the most desired properties from such linear mappings is clustering, which means the locality between
objects in the multidimensional space is preserved in the linear space. It is widely believed that the Hilbert
space-filling curve achieves the best clustering [1, 13]. In this paper we provide closed-form formulas of the
number of clusters required by a given query region of an arbitrary shape (e.g., polygons and polyhedra) for
Hilbert space-filling curve. Both the asymptotic solution for a general case and the exact solution for a special
case generalize the previous work [13], and they agree with the empirical results that the number of clusters
depends on the hyper-surface area of the query region and not on its hyper-volume. We have also shown that
Hilbert curve achieves better clustering than the z-curve [21]. From the practical point of view, the formulas
given in this paper provide a simple measure which can be used to predict the required disk access behaviors
and hence the total access time.

Index Terms: locality-preserving linear mapping, range queries, multi-attribute access methods, data cluster-
ing, Hilbert curve, space-filling curves, fractals.

1 Introduction

The design of multidimensional access methods is difficult compared to one-dimensional cases because there
is no total ordering that preserves spatial locality. Once such a total ordering is found for a given spatial
or multi-attribute database, one can use any one-dimensional access method such as a B+-tree, which may
yield good performance for multidimensional queries. An interesting application of the ordering arises in a
multidimensional indexing technique proposed by Orenstein [17]. The idea is to develop a single numeric index
on a one-dimensional space for each point in multidimensional space, such that for any given object, the range
of indices, from the smallest index to the largest, includes few points not in the object itself.

Consider a linear traversal or a typical range query for a database where record signatures are mapped with
multi-attribute hashing [22] to buckets stored on disk. The linear traversal specifies the order in which the objects�This work was supported in part by the Advanced Research Projects Agency under contract No. DABT63-94-C-0049, the National
Science Foundation under contract No. NSF ASC9318183, CDR-8803012, EEC-94-02384, IRI-9205273 and IRI-8958546 (PYI), with
matching funds from EMPRESS Software Inc. and Thinking Machines Corp. The authors assume all responsibility for the contents of
the paper.yDr. Christos Faloutsos is also affiliated with Institute for Systems Research, University of Maryland, College Park, MD 20742.



are fetched from disk as well as the number of blocks fetched. The number of non-consecutive disk accesses
will be determined by the order of blocks fetched. Although in the range query the order of blocks fetched is not
explicitly specified, it is reasonable to assume that the set of blocks fetched can be rearranged into a number of
groups of consecutive blocks by database server or disk controller mechanism [23]. Since it is preferred to fetch
a set of consecutive disk blocks rather than a randomly scattered set to reduce additional seek time, it is desirable
that objects close together in a multidimensional attribute space also be close together in the one-dimensional
space. A good clustering of multidimensional points on the one-dimensional sequence of disk blocks will also
reduce the number of disk accesses that are required for a range query.

In addition to the applications described above, several other applications also benefit from the mapping
which preserves locality:

1. In traditional databases, a multi-attribute space must be mapped into a one-dimensional space to allow
efficient handling of partial-match queries [20]; in numerical analysis, large multidimensional arrays [5]
have to be stored on disk, which is a linear structure.

2. In image compression, a family of methods use the mapping to transform the image into a bit string;
subsequently, any standard compression method can be applied [16]. A good clustering of pixels will
result in fewer long runs of similar pixel values, thus improving the compression ratio.

3. In geographic information systems (GIS), run-encoded forms of image representations are ordering-
sensitive as they are based on representations of the image as sets of runs [1].

4. Heuristics in computational geometry problems use the mapping. For example, for the travelling salesman
problem, the cities are linearly ordered and visited accordingly [2].

5. Locality-preserving mappings are used for bandwidth reduction of digitally sampled signals [3] and for
graphics display generation [18].

6. In scientific parallel processing, locality-preserving linearization techniques are preferred for dynamic
unstructured mesh partitioning [15].

Sophisticated mapping functions have been proposed in the literature. One, based on interleaving bits from
the coordinates, which is called z-ordering was proposed in [17]. Its improvement was suggested by Faloutsos
in [7], using Gray coding on the interleaved bits. A third method, based on the Hilbert curve [11], has been
proposed in [9]. In the mathematical context, these three mapping functions are based on different space-filling
curves: z-curve, Gray code with bit-interleaving and Hilbert curve, respectively. Figure 1 illustrates linear
orderings yielded by the space-filling curves for 4�4 grids.

In [13] we have studied the mapping functions from multidimensional space to one-dimensional space, and
showed that under most circumstances the mapping based on Hilbert space-filling curve outperforms the others.
In this paper we provide analytic results of the clustering effects of the Hilbert space-filling curve, focusing
on arbitrarily shaped range queries, which require the retrieval of all objects inside a given hyper-rectangle or
polyhedron in multidimensional space.

For purposes of analysis, we assume multidimensional space with finite granularity, where each point
corresponds to a grid cell. The Hilbert space-filling curve imposes a linear ordering on the grid cells, assigning a
single integer value to each cell. Ideally, it is desirable to have mappings that result in fewer disk accesses. The
number of disk accesses, however, depends on several factors such as the capacity of the disk pages, the splitting
algorithm, the insertion order and so on. Here we shall use instead the average number of clusters or continuous
runs of grid points within a subspace represented by a given query, as the measure of clustering performance of
the Hilbert space-filling curve. If each grid point is mapped to one disk block, this measure exactly corresponds
to the number of non-consecutive disk accesses, which involve additional seek time. It is also highly correlated
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z-curve Gray code Hilbert curve

Figure 1: Illustration of space-filling curves

to the number of disk blocks accessed, since (with many grid points in a disk block) consecutive points are likely
to be in the same block while points across a discontinuity are likely to be in different blocks. This measure is
used only to render the analysis tractable, and some weaknesses of this measure were discussed in [13].
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Figure 2: Illustration of clusters: (a) two clusters for z-curve, (b) one cluster for Hilbert curve

Definition 1.1 Given a d-dimensional query, a cluster is defined to be a group of grid points that are consecutively
connected by a mapping (or a curve) inside a subspace represented by the query.

For example, there are two clusters in a z-curve (Figure 2(a)) but only one cluster in a Hilbert curve (Figure 2(b))
for the same 2-dimensional rectangle Sx � Sy . Now, the problem we will investigate is formulated as follows:

Given a d-dimensional rectilinear polyhedron represented by a query, find the average number of
clusters inside the polyhedron for the Hilbert curve.

The definition of the d-dimensional rectilinear polyhedron is given in Section 3. Note that in the d-dimensional
space with finite granularity, for any d-dimensional object such as spheres, ellipsoids, quadric cones and so on,
there exists a corresponding (rectilinear) polyhedron that contains exactly the same set of grid points inside the
given object. Thus, the solution to the problem above will cover more general cases concerning any simple
connected object of arbitrary shape. The rest of the paper is organized as follows. Section 2 surveys historical
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work on space-filling curves and other related analytic studies. Section 3 presents an asymptotic formula of the
average number of clusters for d-dimensional range queries of arbitrary shape. Section 4 derives a closed-form
exact formula of the average number of clusters in a 2-dimensional space. In Section 5 we provide empirical
evidence to demonstrate the correctness of the analytic results for various query shapes. Finally, in Section 6 we
discuss the contributions of this paper and suggest future work.

2 Historical Survey and Related Work

G. Peano, in 1890, discovered the existence of a continuous curve which passes through every point of a closed
square [19]. According to Jordan’s precise notion (in 1887) of continuous curves, Peano’s curve is a continuous
mapping of the closed unit interval I = [0; 1] into the closed unit square S = [0; 1]2. Curves of this type have
come to be called Peano curves or space-filling curves [26]. Formally,

Definition 2.1 If a mapping f : I ! En(n � 2) is continuous, and f(I) the image of I under f has positive
Jordan content (area for n = 2 and volume for n = 3), then f(I) is called a space-filling curve. En denotes an
n-dimensional Euclidean space.

Although G. Peano discovered the first space-filling curve, it was D. Hilbert in 1891 who was the first to
recognize a general geometric procedure that allows the construction of an entire class of space-filling curve [11].
If the interval I can be mapped continuously onto the square S, then after partitioning I into four congruent
subintervals and S into four congruent subsquares, each subinterval can be mapped continuously onto one of the
subsquares. If this is carried on ad infinitum, I andS are partitioned into 22n congruent replicas forn = 1; 2; 3; : : :
Hilbert demonstrated that the subsquares can be arranged so that the inclusion relationships are preserved, that is,
if a square corresponds to an interval, then its subsquares correspond to the subintervals of that interval. Figure 3
describes how this process is to be carried out for the first three steps. It has been shown that the Hilbert curve is
a continuous, surjective and nowhere differentiable mapping [24].

(a) First step (b) Second step (c) Third step

Figure 3: The first three steps of Hilbert space-filling curve

Note that Hilbert gave the space-filling curve, in a geometric form only, for mapping I into S (i.e., 2-
dimensional Euclidean space). Generation of a 3-dimensional Hilbert curve was described in [13, 24]. A
generalization of Hilbert curves, in an analytic form, for higher dimensional space was given in [4]. In this
paper, d-dimensional Euclidean space with finite granularity is of our interest. Thus, we use the k-th order
approximation of d-dimensional Hilbert space-filling curve (k � 1 and d � 2), which maps an integer set[0; 2kd � 1] into a d-dimensional integer space [0; 2k � 1]d.
Notation 2.1 For k � 1 and d � 2, let Hdk denote the k-th order approximation of d-dimensional Hilbert
space-filling curve, which maps [0; 2kd � 1] into [0; 2k � 1]d.
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The drawings of the first, second and third steps of Hilbert curve in Figure 3 correspond to H2
1, H2

2 and H2
3,

respectively.
In [13], we have compared clustering properties of several space mapping functions by considering only 2�2

range queries. Among z-curve (2.625), Gray coding (2.5) and Hilbert curve (2), Hilbert curve was the best in
minimizing the number of clusters. The numbers within the parentheses are the average number of clusters for
2�2 range queries. Rong and Faloutsos [21] derived a closed form expression of the average number of clusters
for the z-curve, which gives 2.625 for 2�2 range queries (exactly the same with the result given in [13]) and
in general approaches one third of the perimeter of the query rectangle plus two thirds of the side length of the
rectangle in the unfavored direction. Jagadish [12] derived closed form expressions of the average number of
clusters for the Hilbert curve in a 2-dimensional grid using 2�2 and 3�3 square regions only. This is a special
case of the more general formulae derived in this paper. Abel and Mark[1] reported empirical studies to explore
the relative properties of such mapping functions using various metrics. They reached a conclusion that Hilbert
ordering deserves closer attention as an alternative to z-curve ordering.

Closely related analysis for the average number of d-dimensional quadtree nodes has been presented in the
literature. Dyer in [6] presented an analysis for the best, worst and average case of a square of size 2n�2n,
giving an approximate formula for the average case. Shaffer in [25] gave a closed formula for the exact number
of blocks that such a square requires when anchored at a given position (x; y); he also gave the formula for the
average number of blocks for such squares (averaged over all the possible positions). In [8, 10], we generalized
some of these formulae for arbitrary 2-dimensional and d-dimensional rectangles.

3 Asymptotic Analysis

In this section, we give an asymptotic formula of the clustering property of Hilbert space-filling curves for general
polyhedra in d-dimensional space. The symbols used in this section are summarized in Table 1. The polyhedra
we consider here are not necessarily convex but rectilinear in the sense that any (d-1)-dimensional polygonal
surface is perpendicular to one of the d coordinate axes.

Definition 3.1 A rectilinear polyhedron is bounded by a set V of polygonal surfaces perpendicular to one of thed coordinate axes, which is a subset of Rd and homeomorphic to (d-1)-dimensional sphere Sd�1.

For d = 2 the set V is, by definition, a Jordan curve, which is essentially a simple closed curve in R2. The set
of surfaces of a polyhedron divides the d-dimensional spaceRd into two connected components which may be
called the interior and the exterior.

The basic intuition is that each cluster within a given polyhedron corresponds to a segment of the Hilbert
curve connecting a group of grid points in the cluster, which has two endpoints adjacent to the surface of the
polyhedron. The number of clusters is then equal to half the number of endpoints of the segments bounded by
the surface of the polyhedron. In other words,

Remark 3.1 The number of clusters within a given d-dimensional polyhedron is equal to the number of entries
(or exits) of Hilbert curve into (or from) the polyhedron.

Thus, we expect that the number of clusters is approximately proportional to the perimeter or surface area of
the d-dimensional polyhedron (d � 2). Coupled with this observation, the task is reduced to finding a constant
factor of a linear function.

Our approach to derive the asymptotic solution largely depends on the self-similar nature of Hilbert curve
which stems from the recursive process of the curve expansion. Specifically, we shall show in the following
lemmas that the edges of d different orientations are uniformly distributed in d-dimensional Euclidean space,
that is, approximately one d-th of the edges are aligned to the i-th dimensional axis for each i (1 � i � d).
Here we mean by edges the line segments of the Hilbert curve connecting two neighboring points. The uniform
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Figure 4: 3-dimensional Hilbert curve (template of H3k)
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Figure 5: 4-dimensional Hilbert curve (template of H4k)

distribution of the edges provides key leverage for deriving the asymptotic solution. To show the uniform
distribution, it is important to understand� how the k-th order approximation of Hilbert curve is derived from lower order approximations, and� how the d-dimensional Hilbert curve is extended from the 2-dimensional Hilbert curve,which was described

only in geometric form in [11]. Analytic forms for d-dimensional Hilbert curve were presented in [4].

In a d-dimensional space, Hdk is derived from Hd
1 by replacing each vertex inHd

1 byHdk�1, which may be rotated
about a coordinate axis and/or reflected about a hyperplane perpendicular to a coordinate axis. Since the number
of vertices of Hd

1 is 2d, Hdk is composed of 2d Hdk�1’s and (2d�1) edges each connecting two of them.
Before describing the extension for d-dimensional Hilbert curve, we define orientations of Hdk . ConsiderHd

1 , which consists of 2d vertices and (2d�1) edges. No matter where Hilbert curve starts its traversal, the
coordinates of the start and end vertices of Hd

1 differ only in one dimension, which means both the vertices lie
on a line parallel to one of d coordinate axes. From now on we say a Hd

1 is i-oriented if its start and end vertices
lie on a line parallel to the i-th coordinate axis. For any k (k > 1), the orientation of Hdk is equal to that of Hd

1
from which Hdk is derived.

In the following we examine the process that generates Hdk from Hd�1k . Figure 4 and Figure 5 illustrate the
generation of H3k from H2k , and H4k from H3k , respectively. Each vertex of the curves represents rotated and/or
reflected H3k�1 in Figure 4 and H4k�1 in Figure 5, and is annotated by a number indicating its orientation. In
general, when the d-th dimension is added to a (d-1)-dimensional Hilbert curve, each vertex of Hd�1

1 (that is,Hd�1k�1) is replaced by Hdk�1 of the same orientation except in the 2d�1-th one (i.e., the end vertex of Hd�1
1 ),

whose orientation is changed from 1-oriented to d-oriented parallel to the d-th dimensional axis. For example, in
Figure 5, the orientations of the two vertices connected by a dotted line have been changed from 1 to 4. Since the
orientations of all the other (2d�1�1)Hdk�1’s remain unchanged, they are all j-oriented for some j (1 � j < d).
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Then the whole 2d�1 Hdk�1’s are replicated by reflection and finally the two replicas are connected by an edge
parallel to the d-th coordinate axis (called d-oriented edge) to form a d-oriented Hdk. In short, whenever a
dimension (say, the d-th dimension) is added, two d-oriented Hdk�1’s are introduced, the number of 1-orientedHdk�1’s remains unchanged as two, and the number of Hdk�1’s of the other orientations are doubled.

Symbol Definitiond Number of dimensions(x1; :::; xd) Coordinates of a grid point in a d-dimensional grid spaceHdk k-th order approximation of d-dimensional Hilbert curve'i Number of i-oriented Hdk�1’s in a Hdk"i;k Number of i-oriented edges in a d-oriented HdkS+i Number of interior grid points which face i+-surfaceS�i Number of interior grid points which face i�-surfacep+i Probability that the predecessor of a grid point is its i+-neighborp�i Probability that the predecessor of a grid point is its i�-neighborSq Total surface area of a given d-dimensional rectilinearly polyhedral query qNd Average number of clusters within a given d-dimensional rectilinear polyhedron

Table 1: Definition of Symbols

The following lemma provides a ground for leading to a more interesting Lemma 2, which is useful in
deriving the asymptotic formula.

Notation 3.1 Let 'i be the number of i-oriented Hdk�1’s in a given d-oriented Hdk .

Lemma 1 For a d-oriented Hdk (d � 2),'i = (2 if i = 1,

2d+1�i if 1 < i � d.
(1)

Proof. It can be proven by induction on d.

In the following lemma, we show that the edges of d different orientations approaches uniform distribution
as the order of the Hilbert curve approximation grows into infinity.

Notation 3.2 Let "i;k denote the number of i-oriented edges in a (d-oriented) Hdk .

Lemma 2 In d-dimensional space, for any i and j (1 � i; j � d), "i;k="j;k approaches unity as k grows to
infinity.

Proof. We begin by deriving recurrence relations among "i;k’s and 'i’s. As we mentioned previously, the
fundamental operations involved in expanding Hilbert curve (i.e., from Hdk�1 to Hdk) are rotation and reflection.
During the expansion of Hdk , the orientation of a Hdk�1 in a quantized subregion is changed only by rotation; a
set of subregions of an orientation are replicated from one of the same orientation, which leaves the directions of
their edges unchanged. Consequently, any two distinctHdk�1’s of the same orientation contain the same number
of edges "i;k�1 for each direction i (1 � i � d).
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Therefore, the set of 1-oriented edges in Hdk consists of 2d�1 connection edges in Hd
1 , d-oriented edges in

1-oriented Hdk�1’s, (d-1)-oriented edges in 2-oriented Hdk�1’s, (d-2)-oriented edges in 3-oriented Hdk�1’s and so
on. By applying the same procedure to the other directions, we obtain"1;k = '1"d;k�1 + '2"d�1;k�1 + � � �+ 'd"1;k�1 + 2d�1"2;k = '2"d;k�1 + '3"d�1;k�1 + � � �+ '1"1;k�1 + 2d�2"3;k = '3"d;k�1 + '4"d�1;k�1 + � � �+ '2"1;k�1 + 2d�3 (2)

..."d;k = 'd"d;k�1 + '1"d�1;k�1 + � � �+ 'd�1"1;k�1 + 1

The initial values are given by "i;1 = 2d�i, and the values of 'i are in Lemma 1. The constants in the last terms
being ignored, the recurrence relations are completely symmetric. From the symmetry, it can be shown that for
any i and j (1 � i; j � d),

limk!1 "i;k"j;k = 1:
The proof is complete.

Now we consider a d-dimensional grid space, which is equivalent to a d-dimensional Euclidean integer space.
In the d-dimensional grid space, each grid point y = (x1; : : : ; xd) has 2d neighbors. The coordinates of the
neighbors differ from those of y only in one dimension by unity. In other words, the coordinates of the neighbors
that lie in a line parallel to the i-th axis must be either (x1; : : : ; xi+1; : : : ; xd) or (x1; : : : ; xi�1; : : : ; xd). We
call them i+-neighbor and i�-neighbor of y, respectively.

Butz showed in [4] that any unit increment in Hilbert order produces a unit increment in one of d coordinates
and leaves the other d�1 coordinates unchanged. The implication is that, for any grid point y, both the neighbors
of y in the linear ordering imposed by Hilbert curve are chosen from 2d neighbors of y in the d-dimensional grid
space. Of the two neighbors of y in Hilbert ordering, the one closer to the start end of Hilbert traversal is called
predecessor of y.

Notation 3.3 For a grid point y in d-dimensional grid space, let p+i be the probability that the predecessor of y
is the i+-neighbor of y, and let p�i be the probability that the predecessor of y is the i�-neighbor of y.

Lemma 3 In sufficiently large d-dimensional grid space, for any i (1 � i � d),p+i + p�i = 1d:
Proof. Assume y is a grid point in d-dimensional space and z is its predecessor. Then the edge yz adjacent
to y and z is parallel to one of the d dimensional axes. From Lemma 2 and the recursive definition of Hilbert
mapping, it follows that for any i (1 � i � d) the probability that yz is parallel to the i-th dimensional axis isd�1. This implies that the probability that z is either i+-neighbor or i�-neighbor of y is d�1. The proof is now
complete.

The d-dimensional rectilinear polyhedra of our interest can be of arbitrary shape; the number and size of
surfaces can be arbitrary. Due to the constraint of surface alignment, however, it is feasible to classify the surfaces
of a d-dimensional rectilinear polyhedron into 2d different kinds: for any i (1 � i � d),� If a point y is inside the polyhedron and its i+-neighbor is outside, then the point y faces i+-surface.� If a point y is inside the polyhedron and its i�-neighbor is outside, then the point y faces i�-surface.
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For example, Figure 6 illustrates grid points which face surfaces in 2-dimensional grid space. The shaded region
represents the inside of the polyhedron. Assuming that the first dimension is vertical and the second dimension
is horizontal, the grid points A and D face 1+-surface, and the grid point B (on the convex) faces both 1+-surface
and 2+-surface. Although the grid point C (on the concave) is close to the boundary, it does not face any surface
because all of its neighbors are inside the polyhedron. Consequently, the chance that the Hilbert curve enters
the polyhedron through the grid point B is approximately twice that through the grid point A (or D). There is no
chance that the Hilbert curve enters through the grid point C.

A B

C D

Figure 6: Illustration of grid points facing surfaces

For any d-dimensional rectilinear polyhedron, it is interesting to see that the aggregate area of i+-surface is
exactly as large as that of i�-surface. In a d-dimensional grid space, we mean by surface area the number of
interior grid points that face a given surface of any kind.

Notation 3.4 For a d-dimensional rectilinear polyhedron, letS+i andS�i denote the aggregate number of interior
grid points that face i+-surface and i�-surface, respectively.

Before proving the following theorem, we state without proof an elementary remark.

Remark 3.2 Given a d-dimensional rectilinear polyhedron, S+i = S�i for any i (1 � i � d).
Notation 3.5 Let Nd be the average number of clusters within a given d-dimensional rectilinear polyhedron.

Theorem 1 In a sufficiently large d-dimensional grid space mapped by Hdk , let Sq be the total surface area of a
given rectilinearly polyhedral query q. Then,

limk!1Nd = Sq
2d (3)

Proof. Assume a grid point y faces i+-surface (or i�-surface). Then the probability that the Hilbert curve enters
the polyhedron through y is equivalent to the probability that the predecessor of y is i+-neighbor (or i�-neighbor)
of y. Thus, the expected number of entries through i+-surface (or i�-surface) is S+i p+i (or S�i p�i ). Since the
number of clusters is equal to the total number of entries into the polyhedron through any of 2d kinds of surfaces
(Remark 3.1), it follows that

limk!1Nd = dXi=1

(S+i p+i + S�i p�i )= dXi=1

S+i (p+i + p�i ) (by Remark 3.2)

9



= dXi=1

S+i 1d (by Lemma 3)= Sq
2d:

The proof is complete.

Theorem 1 confirms our early conjecture that the number of clusters is approximately proportional to the
surface area of a d-dimensional polyhedron, and provides (2d)�1 as the constant factor of a linear function. In
2-dimensional space, the average number of clusters for z-curve approaches one third of the perimeter of the
query rectangle plus two thirds of the side length of the rectangle in the unfavored direction [21]. Now it comes
clear that Hilbert curve achieves better clustering than z-curve because the average number of clusters for Hilbert
curve is approximately equal to one fourth of the perimeter of a 2-dimensional query rectangle.

Corollary 1 In a sufficiently larged-dimensional grid space mapped byHdk, the following properties are satisfied:

(i) Given an s1�s2�� � ��sd hyper-rectangle, limk!1Nd = 1dPdi=1( 1si Qdj=1 sj).
(ii) Given a hypercube of side length s, limk!1Nd = sd�1.

For a square of side length 2, Corollary 1(ii) provides 2 as an average number of clusters, which is exactly the
same with the result given in [13].

4 Exact Analysis : A special case

In this section, we give a closed-form exact formula for the average number of clusters in 2-dimensional space.
Specifically, we assume that grid space is mapped byH2k+n and query regions are square of size 2k�2k. We first
describe our approach and then the formal derivation of the solution is presented in the following lemmas and a
theorem. Table 2 summarizes the symbols used in this section.

4.1 Basic concepts

In Remark 3.1, we stated that the number of clusters within a given region is equal to the number of entries into
the region made by Hilbert curve traversal. Since each entry eventually yields an exit out of the region, an entry
is equivalent to two cuts of Hilbert curve by boundary of the region. We restate Remark 3.1 as follows:

Remark 4.1 The number of clusters within a given region is equal to half the number of edges cut by the boundary
of the region.

Here we mean by edges the line segments of the Hilbert curve connecting two neighboring grid points. Now we
know from Remark 4.1 that deriving the exact formula is reduced to counting the number of edge cuts by the
boundary of square windows of all possible positions. Then the average number of clusters is simply obtained
by dividing this number by twice the number of possible positions of the window.

Notation 4.1 LetN2(k; k+ n) be the average number of clusters inside a 2k�2k square window in a 2k+n�2k+n
grid region.
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Figure 7: H2k+n divided into nine subregions

The difficulty of counting the edge cuts lies in the fact that, for each edge within the grid region, the number
of cuts varies depending on the location of the edge. Intuitively, the edges near the boundary of the grid region
are cut less often than those near the center. This is because a less number of square windows can cut the edges
near the boundary. Thus it is useful to consider a 2k+n�2k+n grid regionH2k+n as a collection of 22n H2k’s each
of which is connected to one or two neighbors by connection edges. From now on, we mean by an internal edge
one of 22k � 1 edges in a H2k , and by a connection edge one connecting two H2k’s.

We divide the grid region H2k+n into nine subregions as depicted in Figure 7. The width of the subregions
on the boundary is 2k. Then, for example, subregion F includes only one H2k and connected to subregions B and
D by a horizontal connection edge and a vertical connection edge, respectively. Subregion B includes (2n � 2)H2k’s connected to each other by (2n � 3) horizontal connection edges inclusive to the subregion, and connected
to subregions F and H by two other horizontal connection edges straddling the boundaries of subregions.

Now consider an edge (either an internal or a connection edge) near the center of subregionA, and a horizontal
edge in subregion B. The edge in the subregion A can be cut by 2k+1 square windows whose positions within the
region are mutually distinct. On the other hand, the horizontal edge in the subregion B can be cut by different
number of distinct windows depending on the position of the edge. Specifically, if the edge is on the i-th row
from the topmost, then it is cut 2� i times. The observations we have made are summarized as follows:

A1. Every edge (either horizontal or vertical) at least one of whose end points reside in subregion A is cut 2k+1

times.

A2. Every vertical edge in subregions B and C is cut 2k times by top or bottom sides of windows.

A3. Every horizontal edge in subregions D and E is cut 2k times by left or right sides of windows.

A4. Every connection edge in subregions fB,F,Hg is horizontal and resides in the 2k-th row from the topmost
and hence cut 2k+1 times by left and right sides of windows. Every connection edge in subregionsfC,G,Ig is horizontal and resides in the 2k-th row from the topmost and hence cut twice by left and right
sides of windows.

A5. Every connection edge in subregions fD,F,Gg is vertical and resides in the first column from the leftmost
and hence cut twice by top and bottom sides of windows. Every connection edge in subregions fE,H,Ig
is vertical and resides in the first column from the rightmost and hence cut twice by top and bottom sides
of windows.
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A6. Every horizontal edge in the i-th row from the topmost of the subregion B is cut 2� i times by both left
and right sides of windows, and every horizontal edge in the i-th row from the topmost of the subregion C
is cut 2k+1 � 2� i+ 2 times by both left and right sides of windows.

A7. Every vertical edge in the i-th column from the leftmost of the subregion D is cut 2 � i times by both top
and bottom sides of windows, and every vertical edge in the i-th column from the leftmost of the subregion
E is cut 2k+1 � 2� i+ 2 times by both top and bottom sides of windows.

A8. Every horizontal edge in the i-th row from the topmost of subregions fF,Hg is cut i times by either left or
right sides of windows.

A9. Every horizontal edge in the i-th row from the topmost of subregions fG,Ig is cut 2k � i + 1 times by
either left or right sides of windows.

A10. Every vertical edge in the i-th column from the leftmost of subregions fF,Gg is cut i times by either top
or bottom sides of windows.

A11. Every vertical edge in the i-th column from the leftmost of subregions fH,Ig is cut 2k � i+ 1 times by
either top or bottom sides of windows.

A12. Two connection edges through which the Hilbert curve enters into and leaves from the grid region are cut
once each.

From these observations, we can categorize the edges within the H2k+n grid region into the following five
groups:

(i) E1: a group of edges described in the observations A1. Each edge is cut 2k+1 times.

(ii) E2: a group of edges described in the observations A2 and A3. Each edge is cut 2k times.

(iii) E3: a group of edges described in the observations A4 and A5. Each connection edge on the top boundary
(i.e., subregions fB,F,Hg) is cut 2k+1 times and any other connection edge is cut twice.

(iv) E4: a group of edges described in the observations A6 to A7. Each edge is cut 2i or 2(2k � i+ 1) times if
it is in the i-th row (or column) from the topmost (or leftmost).

(v) E5: a group of edges described in the observations A8 to A11. Each edge is cut i or 2k � i+ 1 times if it
is in the i-th row (or column) from the topmost (or leftmost).

Notation 4.2 Ni denotes the number of edge cuts from an edge group Ei.
Within the H2k+n region, the number of all possible positions of 2k�2k windows is (2k+n � 2k + 1)2. Since,
in addition to N1; : : : ; N5, there are two more cuts from observation A12, the average number of clustersN2(k; k+ n) is given by N2(k; k+ n) = N1 +N2 +N3 +N4 +N5 + 2

2(2k+n � 2k + 1)2 : (4)

In the following, we give closed-form expressions for individual edge groups N1; : : : ; N5.

4.2 Formal derivation

We adopt the notion of orientations of Hdk given in Section 3 and extend so that it can be used to derive
inductions.

Notation 4.3 An i-oriented Hdk is called i+-oriented (or i�-oriented) if the i-th coordinate of its end point is
greater (or less) than that of its start point.
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Symbol Definitiontn Number of connection edges in the top boundary of a 2+-oriented H2k+nbn Number of connection edges in the bottom boundary of a 2+-oriented H2k+nsn Number of connection edges in the side boundary of a 2+-oriented H2k+nEi A group of edges between grid pointsNi Number of edge cuts from an edge group Ei fRgi+;n Number of i+-oriented H2k’s in the subregion R of a 2+-oriented H2k+n fRgi�;n Number of i�-oriented H2k’s in the subregion R of a 2+-oriented H2k+nHk Number of horizontal edges in a 2-oriented H2kVk Number of vertical edges in a 2-oriented H2khk(i) Number of horizontal edges in the i-th row from the topmost of a 2+-oriented H2kvk(i) Number of vertical edges in the i-th column from the leftmost of a 2+-oriented H2kN2(k; k+ n) Exact number of clusters covering a 2k�2k square in a 2k+n�2k+n grid region

Table 2: Definition of Symbols

Axis 2

A
xi

s 
1

(a) 1+-oriented (b) 1�-oriented (c) 2+-oriented (d) 2�-oriented

Figure 8: Four different orientations of H2
2

Figure 8 illustrates 1+-oriented, 1�-oriented, 2+-oriented and 2�-oriented H2
2’s, respectively from left to right.

Note here that the vertical axis is considered as the first dimensional axis and the horizontal axis is considered as
the second dimensional axis.

We begin by derivingN1 andN3. It appears at the first glance that the derivation ofN1 is simple because each
edge in E1 is cut 2k+1 times. However, the derivation of N1 involves counting the number of connection edges
straddling the boundaries between subregion A and the other subregions, which is not quite straightforward, as
well as the number of edges inclusive to the subregion A. We approach this with counting the number of edges
in the complementary set E1 (that is, fedges in H2k+ng � E1). Since E1 consists of edges in 4(2n � 1)H2k’s in
boundary subregions B through I and connection edges in E3, jE1j is equal to 4(2n � 1)� (22k � 1) + jE3j .
To find the number of connection edges in E3, we define the number of connection edges in different parts of
the boundary subregions. In the following, without loss of generality, we assume that the given grid region is
2+-oriented H2k+n .

Notation 4.4 Let tn, bn and sn denote the number of connection edges in the top boundary (i.e., subregionsfB,F,Hg), in the bottom boundary (i.e., subregions fC,G,Ig), and in the left or right boundary (i.e., subregionsfD,F,Gg or fE,H,Ig) of a 2+-oriented H2k+n , respectively.

Note that the number of connection edges in the subregions fD,F,Gg and the number of connection edges in
the subregions fE,H,Ig are identical because the 2+-oriented H2k+n is vertically self-symmetric.
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Lemma 4 For any positive integer n,tn = 2n�1 and bn + 2sn = 2(2n � 1): (5)

Proof. Given in Appendix A.

From Lemma 4, the number of connection edges inclusive to the boundary subregions (i.e., E3) is given bytn + bn + 2sn = 5� 2n�1 � 2. From this, we can obtain the number of edges inE1 as well as E3 and hence the
number of cuts from E1 and E3. The results are presented in the following lemma.

Lemma 5 The numbers of edge cuts from E1 and E3 areN1 = 2(2n � 2)223k + 3(2n � 2)2k (6)N3 = 2n+k + 4(2n � 1) (7)

Proof. H2k+n and H2k contain 22(k+n) � 1 and 22k � 1 edges, respectively. Since the number of H2k’s in the
boundary subregions is 4(2n � 1), the total number of edges in E1 is given by(22(k+n) � 1)� 4(2n � 1)(22k � 1)� (5� 2n�1 � 2) = 22k(2n � 2)2 + 3(2n�1 � 1):
From the fact that each edge in E1 is cut 2k+1 times, it follows thatN1 = 2k+1(22k(2n � 2)2 + 3(2n�1 � 1)) = 2(2n � 2)223k + 3(2n � 2)2k:
Among 5�2n�1 � 2 edges in E3, tn edges are cut 2k+1 times and the other bn + 2sn edges twice. Therefore,N3 = 2k+1tn + 2(bn + 2sn) = 2n+k + 4(2n � 1):

Now all that we need to derive N2 is to count the number of vertical edges in subregions fB,Cg and the
number of horizontal edges in subregions fD,Eg. No connection edges in these subregions are involved. Since
the number of horizontal (or vertical) edges in a H2k is determined by its orientation, it is necessary to find the
number of H2k’s of different orientations in the subregions fB,C,D,Eg. In the following, we give notations
for the number of horizontal and vertical edges in a H2k , and the number of H2k’s of different orientations in the
boundary subregions in Figure 7.

Notation 4.5 LetHk and Vk denote the number of horizontal and vertical edges in a 2-orientedH2k , respectively.

By definition, the numbers of horizontal and vertical edges in a 1-oriented H2k are Vk and Hk, respectively.

Notation 4.6 For a set of subregions fR1; R2; : : : ; Rjg in Figure 7, let  fR1;R2;:::;Rjgi+;n and  fR1;R2;:::;Rjgi�;n denote

the number of i+-oriented and i�-oriented H2k’s in those subregions, respectively.

Lemma 6 Given a 2+-oriented H2k+n as depicted in Figure 7, fBg2+;n = 2n � 2 (8) fDg1+;n +  fEg1�;n +  fCg2+;n = 2n � 2 (9) fCg1+;n +  fCg1�;n +  fD;Eg
2+;n +  fD;Eg

2�;n = 2(2n � 2): (10)
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Proof. Given in Appendix A.

From Lemma 6, a closed-form expression of N2 is derived in the following lemma.

Lemma 7 The number of edge cuts from E2 isN2 = 2(2n � 2)23k � 2(2n � 2)2k: (11)

Proof. Every H2k in subregion B is 2+-oriented, and no 2�-oriented H2k exists in subregion C. Thus the number

of vertical edges in subregions fB,Cg is the sum of  fB;Cg2+;n Vk and ( fCg1+;n +  fCg1�;n)Hk. Likewise, the number

of horizontal edges in subregions fD,Eg is the sum of ( fD;Eg
2+;n +  fD;Eg

2�;n )Hk and ( fDg1+;n +  fEg1�;n)Vk, because

no 1�-oriented H2k exists in the subregions D and no 1+-oriented H2k exists in the subregions E. Thus, the total
number of edge in E2 is given by( fB;Cg2+;n +  fDg1+;n +  fEg1�;n)Vk + ( fCg1+;n +  fCg1�;n +  fD;Eg

2+;n +  fD;Eg
2�;n )Hk= 2(2n � 2)(Hk + Vk) (by Lemma 6).

Each edge in E2 is cut 2k times and Hk + Vk = 22k � 1. Therefore,N2 = 2(2n � 2)(22k � 1)2k = 2(2n � 2)23k � 2(2n � 2)2k:
Now we consider the number of cuts from E4 and E5. The edges in these groups are cut different times

depending on their relative locations within the H2k to which they belong. Consequently, the expressions of N4

and N5 include such terms as i� vk(i) and i� hk(i). The definition of vk(i) and hk(i) is given below. We callH2k’s having such terms gradients.

Notation 4.7 Let hk(i) be the number of horizontal edges in the i-th row from the topmost, and vk(i) the number
of vertical edges in the i-th column from the leftmost of a 2+-oriented H2k .

(a) u-gradient2 (b) d-gradient2 (c) s-gradient2

Figure 9: Three different gradients and cutting windows

To derive closed-form expressions ofN4 and N5, we first give the definitions for different types of gradients.
Consider 2+-oriented H2k’s in subregions fB,C,D,Eg. From the observations A6 and A7, the number of cuts

from horizontal edges in a 2+-oriented H2k in the subregion B is
P2ki=1 2ihk(i). Likewise, the number of cuts
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from horizontal edges in a 2+-orientedH2k in the subregion C is
P2ki=1 2(2k� i+ 1)hk(i), and the number of cuts

from vertical edges in a 2+-oriented H2k in the subregion D or E is
P2ki=1 2ivk(i). The reason the number of cuts

from vertical edges is the same in both the subregions D and E is a 2+-oriented H2k is vertically self-symmetric.
Based on this, we define three types of gradients for a 2+-oriented H2k:

Definition 4.1 (i) A 2+-oriented H2k is called u-gradientk if its horizontal edges in the i-th row from the
topmost are cut i or 2i times.

(ii) A 2+-oriented H2k is called d-gradientk if its horizontal edges in the i-th row from the topmost are cut
2k � i+ 1 or 2(2k � i+ 1) times.

(iii) A 2+-orientedH2k is called s-gradientk if its vertical edges in the i-th column from the leftmost (or rightmost)
are cut i or 2i times.

Figure 9 illustrates the three different gradients (u-gradient2, d-gradient2 and s-gradient2 from left to right) and
the cutting boundaries of sliding windows. These definitions can be applied to H2k’s of the other orientations
as well just by rotating the directions. For example, a 1+-oriented H2k in the subregion D is d-gradientk, and a
2�-oriented H2k in the subregion D is s-gradientk.

Lemma 8 Let �k =P2ki=1 ihk(i), �k =P2ki=1(2k � i+ 1)hk(i) and 
k =P2ki=1 ivk(i). Then,�k + �k = (2k + 1)Hk and 
k = 1
2
(2k + 1)Vk (12)

Proof. Given in Appendix A.

Next we need to know the number of gradients of each type in the boundary subregions B throughI to deriveN4 and N5. For H2k’s in the subregions fB,C,D,Eg,� Every 2+-oriented H2k in B is u-gradientk.� Every 2+-oriented H2k in C, 1+-oriented H2k in D, and 1�-oriented H2k in E is d-gradientk .� Every 1+-oriented or 1�-oriented H2k in C, and 2+-oriented or 2�-oriented in fD,Eg is s-gradientk.

The H2k’s in the subregions fF,G,H,Ig are dual-type gradients. In other words,� Each of the 2+-oriented H2k’s in fF,Hg is both u-gradientk and s-gradientk .� The H2k in G is both d-gradientk and s-gradientk because the subgrid is either 2+-oriented or 1+-oriented.� The H2k in I is both d-gradientk and s-gradientk because the subgrid is either 2+-oriented or 1�-oriented.

Thus, in the subregions fB,C,D,Eg, the number of u-gradientk’s is  fBg2+;n, the number of d-gradientk’s is fCg2+;n+ fDg1+;n+ fEg1�;n, and the number of s-gradientk’s is  fD;Eg
2+;n + fD;Eg

2�;n + fCg1�;n+ fCg1+;n. In the subregionsfF,G,H,Ig, the number of u-gradientk’s is two, the number of d-gradientk’s is two, and the number of
s-gradientk’s is four. From this observation and Lemma 6 and Lemma 8, it follows that

Lemma 9 The numbers of edge cuts from E4 and E5 areN4 = 2(2n � 2)(2k + 1)(22k � 1) (13)N5 = 2(2k + 1)(22k � 1) (14)
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Proof. In E4, the number of horizontal cuts from a single u-gradientk is 2� �k , the number of horizontal cuts
from a single d-gradientk is 2� �k, and the number of vertical cuts from a single s-gradientk is 2� 
k. Thus,N4 = 2�k fBg2+;n + 2�k( fCg2+;n +  fDg1+;n +  fEg1�;n) + 2
k( fD;Eg

2+;n +  fD;Eg
2�;n +  fCg1�;n +  fCg1+;n)= 2�k(2n � 2) + 2�k(2n � 2) + 4
k(2n � 2) (by Lemma 6)= 2(2n � 2)(�k + �k + 2
k)= 2(2n � 2)(2k + 1)(Hk + Vk) (by Lemma 8)= 2(2n � 2)(2k + 1)(22k � 1)

In E5, the number of horizontal cuts from a single u-gradientk is �k , the number of horizontal cuts from
a single d-gradientk is �k, and the number of vertical cuts from a single s-gradientk is 
k. Thus, N5 =
2�k + 2�k + 4
k = 2(2k + 1)(22k � 1):

Finally, in the following theorem, we present a closed-form expression of the average number of clusters.

Theorem 2 Given a 2k+n�2k+n grid region, the average number of clusters within a 2k�2k query window isN2(k; k+ n) = (2n � 1)223k + (2n � 1)22k + 2n(2k+n � 2k + 1)2 (15)

Proof. From Equation (4),N2(k; k+ n) = (N1 +N2 +N3 +N4 +N5 + 2)=2(2k+n � 2k + 1)2= ((2n � 1)223k + (2n � 1)22k + 2n)=(2k+n � 2k + 1)2:
In the limit as n grows large, N2(k; k+ n) asymptotically approaches a limit of 2k, which is the side length

of the square query region. This matches the asymptotic solution given in Corollary 1(ii) for d = 2.

5 Experimental Results

To demonstrate the correctness of the asymptotic and exact analyses presented in the previous sections, we
carried out simulation experiments for query regions of various sizes and shapes in both 2-dimensional and
3-dimensional grid spaces.

Arrangements of experiments

The objective of our experiments was to evaluate the accuracy of the formulas given in Theorem 1 and Theorem 2.
Specifically, we intended to show that the asymptotic solution provides excellent approximation for general d-
dimensional query regions of arbitrary sizes and shapes as well as showing the correctness of the exact solution
for 2-dimensional 2k�2k query regions. To obtain exact measurements of actual number of clusters, we averaged
the number of clusters within query regions of all possible positions in a given grid space. Such exhaustive
simulation runs allowed us to validate empirically the correctness of the exact formula given in Theorem 2 for
2k�2k query squares.

However, the number of all possible queries is exponential on the dimensionality. Consequently, for a large
grid space and high dimensionality, each simulation run may require processing an excessively large number of
queries, making the simulation take too long. Thus, in our experiments, we limited the dimensionality of the grid
space to two and three. For query shapes, we chose squares, concave polygons and circles for 2-dimensional
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Figure 10: Illustration of sample query shapes

cases, and cubes, concave polyhedra and spheres for 3-dimensional cases. Figure 10 illustrates some of those
query shapes used in our experiments.

Theorem 1 only states that as the size of grid space grows the average number of clusters approaches half
the surface area of a given query region divided by the dimensionality. It does not provide details as to how
rapidly the number of clusters converges to the asymptotic solution. To address this, we repeated the same set of
simulation runs over grids of different sizes N�N (or N�N�N ) with N = 32; 40; 48; 56; 64; 128. The side
length s of square or cubic queries and the bounding boxes of the other query shapes was varied from 1 to 32 for
both 2-dimensional and 3-dimensional cases.

Results

The first set of experiments were carried out in a 2-dimensional grid space. Figure 11(a)-(c) shows the measured
average number of clusters for query regions of squares, concave polygons and circles, respectively. The sizes
and shapes of the query regions are illustrated in Figure 10(a)-(c). To minimize confusion, only the results for
grid size N = 32=48=64 have been shown. Figure 11(d) gives the relative errors of the asymptotic solution
given in Theorem 1 for a fixed query size s = 32. Note that, in Figure 11(d), we usedN = 33 instead ofN = 32
to avoid the cases where the query region and grid are identical and hence the asymptotic solution is far away
from its corresponding exact number. Such situations are shown in Figure 11(a) and (b). When s = N = 32, it
is obvious that the number of clusters is exactly one for the square query region, and exactly two for the concave
polygonal query region, while the asymptotic solution is 32.

With a few exceptional cases where s is very close toN , the number of clusters forms a linear curve for each
query shape and is almost identical for the three query shapes despite their covering different areas. A square
covers s2 grid points, a concave polygon 3s2=4 grid points and a circle approximately �s2=4 grid points. This
should not be surprising because they have the same perimeter for a given s. For example, we can always find a
rectilinear polygon that contains the same set of grid points as a given circle of diameter s, and it is always the
case that the perimeter of the rectilinear polygon is equal to that of a square of side length s. (See Figure 10(c).)
In general, in a 2-dimensional grid space, the perimeter of a rectilinear polygon is greater than or equal to that
of the minimum bounding rectangle (MBR) of the polygon. This fact justifies the general approach of using the
minimum bounding rectangle of a given query region because it does not increase the actual number of clusters
(i.e., the number of non-consecutive disk accesses).

It is interesting to see that the average number of clusters for circular query regions is very close to the
asymptotic solution even when s approaches to N , and the relative error is always far smaller than those of the
other query shapes. It is also observed that the measured numbers of clusters shown in Figure 11(a) for square
query regions of side length power of two exactly match the exact solution in Theorem 2 whenN is also a power
of two.

The same set of experiments were carried out in a 3-dimensional grid space. Figure 12(a)-(c) shows the
measured average number of clusters for query regions of cubes, concave polyhedra and spheres, and Figure 12(d)

18



0

5

10

15

20

25

30

4 8 12 16 20 24 28 32

A
ve

ra
ge

 n
um

be
r 

of
 c

lu
st

er
s

The side length of query squares (s)

Average Number of Clusters (Grid: N x N)

N=64
N=48
N=32

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32

A
ve

ra
ge

 n
um

be
r 

of
 c

lu
st

er
s

The side length of query concave polygon (s)

Average Number of Clusters (Grid: N x N)

N=64
N=48
N=32

(a) square (b) concave polygon

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32

A
ve

ra
ge

 n
um

be
r 

of
 c

lu
st

er
s

The diameter of query circles (s)

Average Number of Clusters (Grid: N x N)

N=64
N=48
N=32

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

33 40 48 56 64

(a
sy

m
pt

ot
ic

-e
xa

ct
)/

ex
ac

t

Size of grid regions (N)

Relative errors of the asymptotic solution (2D; s=32)

Square
Polygon

Circle

(c) circle (d) relative error

Figure 11: Average number of clusters and relative error of asymptotic solution

gives the relative errors of the asymptotic solution for a fixed query size s = 32. Note again that, in Figure 12(d),
we usedN = 33 instead ofN = 32 for the same reason as in the previous 2-dimensional simulation experiments.
Like the 2-dimensional case, similar trends are observed in both the average number of clusters and relative
errors for all the three query shapes. The number of clusters forms a quadratic curve for each query shape, and
the relative error for spheres is far smaller than that for the other query shapes. However, if we look closer, the
constant factors of the quadratic functions are slightly different among different query shapes.

To determine the quadratic functions for each query shape, we applied the least-square curve fitting method
to the results from grid of size N = 64. The approximate quadratic functions were obtained as follows:fa(s) = 0:973818s2 + 0:354112s� 1:309880fb(s) = 0:883308s2 + 0:471050s� 1:975170fc(s) = 0:78435s2 + 0:112668s+ 0:768710:
The approximate function fa(s) for cubic query regions confirms the asymptotic solution given in Corollary 1(ii)
because it is quite close to s2. In contrast, fb(s) and fc(s) the functions for concave polyhedral and spherical
query regions are much lower than that. The reason is that, unlike the 2-dimensional case, the surface area of a
concave polyhedron or a sphere is smaller than that of its minimum bounding hyper-rectangle. For example, the
surface area of the polyhedron illustrated in Figure 10(e) is 11

2 s2 while that of the corresponding cube is 6s2. The
surface area of the rectilinear polyhedron that contains the same set of grid points inside a sphere of diameters = 32 is 4872, which is far smaller than 6�322 grid points for the corresponding cube (s = 32). Note that the
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Figure 12: Average number of clusters and relative error of asymptotic solution

coefficients of the quadratic terms in fb(s) and fc(s) are fairly close to 11
12 and 4872

6�322 , respectively.
This indicates that, in a d-dimensional space (d � 3), accessing the minimum bounding hyper-rectangle of a

given query region may incur additional non-consecutive disk accesses, and hence supports the argument made
in [14] that the minimum bounding rectangle may not be a good approximation to a non-rectangular object.

The main conclusions from our experiments are:� The exact solution given in Theorem 2 matches exactly the experimental results for square queries of size
2k�2k.� The asymptotic solutions given in Theorem 1 and Corollary 1 provide excellent approximation for d-
dimensional queries of arbitrary shapes and sizes. For example, when d = 3; N = 64, and s = 32, the
relative errors were less than 4 percent for cubic and polyhedral queries and less then 1 percent for spherical
queries.� Assuming that blocks are arranged on disk by Hilbert ordering, accessing the minimum bounding rectangles
of d-dimensional (d � 3) query regions may increase the number of non-consecutive accesses, whereas
this is not the case for 2-dimensional queries.

20



6 Conclusions

We have studied the clustering property of the Hilbert space-filling curve as a linear mapping of multidimensional
space. Through algebraic analysis we have provided simple formulas which state the expected number of clusters
for a given query region, and also validated their correctness through simulation experiments. The main
contributions of this paper are:� Our result presented in Theorem 2 generalizes the previous work done only for 2�2 query regions [13] by

providing an exact closed-form formula for 2k�2k for any k (k � 1).� The asymptotic solution given in Theorem 1 further generalizes it for d-dimensional polyhedral query
regions.� We have shown that, in a 2-dimensional space, the Hilbert curve achieves better clustering than the z-curve;
the number of clusters for the Hilbert curve is one fourth of the perimeter of a query rectangle, while that of
the z-curve is one third of the perimeter plus two thirds of the side length of the rectangle in the unfavored
direction [21]. We conjecture that this trend will hold even in higher dimensional spaces.� We have shown that accessing the minimum bounding hyper-rectangles of d-dimensional (d � 3) non-
rectangular query regions may incur extra overhead by adding to the number of clusters (i.e., non-
consecutive disk accesses).

From the practical point of view, it is important to predict and minimize the number of clusters because it
determines the number of non-consecutive disk accesses, which in turn incur additional seek time. Assuming
that blocks are arranged on disk by Hilbert ordering, now we can provide a simple measure comprising only the
perimeter or surface area of a given query region and its dimensionality, which can then be used to predict the
required disk access behaviors and hence the total access time. Future work includes the extension of the exact
analysis for d-dimensional space.

A Appendix: proofs

Lemma 4 For any positive integer n,tn = 2n�1 and bn + 2sn = 2(2n � 1):
Proof. A 2+-oriented H2k+n is composed of four H2k+n�1’s and three connection edges. TwoH2k+n�1’s on the
top half are 2+-oriented and two H2k+n�1’s on the bottom half are 1+-oriented on the left and 1�-oriented on the
right, respectively. Among the three edges connecting the four H2k+n�1’s, the horizontal edge is not included
in the boundary subregion of the H2k+n because the edge resides on the 2k+n�1-th row from the topmost of theH2k+n . The other two vertical connection edges are on the leftmost and rightmost columns and hence included
in the boundary subregion of the H2k+n . Thus the main observations are:

(i) The number of connection edges in top boundary subregion of H2k+n is the sum of those in top boundary
subregions of two 2+-oriented H2k+n�1’s.

(ii) The number of connection edges in bottom boundary subregion of H2k+n is the sum of those in bottom
boundary subregions of a 1+-oriented H2k+n�1 and a 1�-oriented H2k+n�1.

(iii) The number of connection edges in left (or right) boundary subregion of H2k+n is the sum of those in left
(or right) boundary subregions of a 2+-oriented H2k+n�1 and a 1+-oriented (or 1�-oriented) H2k+n�1 plus
one for a connection edge.
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Since the bottom boundary subregion of a 1+-oriented H2k+n�1 is equivalent to the right boundary subregion of
a 2+-oriented H2k+n�1 and so on, it follows thattn = 2� tn�1bn = 2� sn�1sn = sn�1 + bn�1 + 1:
Since t1 = 1; b1 = 0 and s1 = 1, we obtain tn = 2n�1 and bn + 2sn = 2(bn�1 + 2sn�1) + 2, which yieldsbn + 2sn = 2(2n � 1).
Lemma 6 Given a 2+-oriented H2k+n as depicted in Figure 7, fBg2+;n = 2n � 2 fDg1+;n +  fEg1�;n +  fCg2+;n = 2n � 2 fCg1+;n +  fCg1�;n +  fD;Eg

2+;n +  fD;Eg
2�;n = 2� (2n � 2):

Proof. Consider a 2+-oriented H2k+n, which is composed of four H2k+n�1’s and three connection edges.
The number of 2+-oriented H2k’s in the subregions fB,F,Hg of the 2+-oriented H2k+n is twice the number of
2+-orientedH2k’s in the subregions fB,F,Hg of the 2+-orientedH2k+n�1 because the top half of the 2+-orientedH2k+n contains two 2+-oriented H2k+n�1’s. Thus the recurrence relation is  fB;F;Hg2+;n = 2 �  fB;F;Hg2+;n�1 . Since fB;F;Hg2+;1 = 2, we obtain  fB;F;Hg2+;n = 2n:

The bottom half of the 2+-oriented H2k+n contains a 1+-oriented H2k+n�1 and a 1�-oriented H2k+n�1 . Thus,
on the bottom boundary subregions fC,G,Ig, each 1�-oriented H2k in the H2k+n�1’s turns a 1�-oriented H2k and
a 2+-oriented H2k in the 2+-oriented H2k+n ; each 1+-oriented H2k in the H2k+n�1’s turns a 2+-oriented H2k and a
1+-oriented H2k in the 2+-oriented H2k+n . No subgrid other than 1�-oriented H2k’s and 1+-oriented H2k’s in theH2k+n�1’s turns 2+-oriented H2k’s in the H2k+n . Thus it follows that fC;G;Ig2+;n =  fC;G;Ig1�;n�1 +  fC;G;Ig1+;n�1 :
In addition,  fC;G;Ig2�;n = 0 because no 2�-oriented H2k exist on the bottom boundary subregions. Thus, fC;G;Ig2+;n +  fC;G;Ig1�;n +  fC;G;Ig1+;n = 2n:
Similarly, on the left boundary subregion, we obtain the following recurrence relations. fD;F;Gg

1+;n =  fD;F;Gg
2+;n�1 +  fD;F;Gg

2�;n�1 fD;F;Gg
1+;n +  fD;F;Gg

2+;n +  fD;F;Gg
2�;n = 2n:

Then from the above four recurrence relations, fC;G;Ig2+;n + 2 fD;F;Gg
1+;n = (2n�1 �  fC;G;Ig2+;n�1 ) + 2(2n�1 �  fD;F;Gg

1+;n�1 )= (2n�2 +  fC;G;Ig2+;n�2 ) + 2(2n�2 +  fD;F;Gg
1+;n�2 )= 3� 2n�2 + ( fC;G;Ig2+;n�2 + 2 fD;F;Gg

1+;n�2 ):
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Since  fC;G;Ig2+;1 + 2 fD;F;Gg
1+;1 = 2 and  fC;G;Ig2+;2 + 2 fD;F;Gg

1+;2 = 4, we obtain fC;G;Ig2+;n + 2 fD;F;Gg
1+;n = 2n:

From  fE;H;Ig
1�;n =  fD;F;Gg

1+;n due to the self-symmetry of 2+-oriented H2k+n, it follows that fC;G;Ig2+;n +  fD;F;Gg
1+;n +  fE;H;Ig

1�;n =  fC;G;Ig2+;n + 2 fD;F;Gg
1+;n = 2n:

Now consider subregions fF,G,H,Ig. The H2k’s in F,H are always 2+-oriented, the H2k in G is either

2+-oriented or 1+-oriented, and the H2k in I is either 2+-oriented or 1�-oriented. Thus,  fF;Hg2+;n = 2 and fG;Ig2+;n +  fG;Ig1+;n +  fG;Ig1�;n = 2. Therefore, fBg2+;n =  fB;F;Hg2+;n �  fF;Hg2+;n = 2n � 2 fCg2+;n +  fDg1+;n +  fEg1�;n = ( fC;G;Ig2+;n +  fD;F;Gg
1+;n +  fE;H;Ig

1�;n )� ( fG;Ig2+;n +  fG;Ig1+;n +  fG;Ig1�;n )= 2n � 2:
So far we have derived the first two equations given in this lemma.

Finally, to derive the third equation, consider subregions fB,C,D,Eg. Since the total number of H2k’s in
those subregions is 4(2n � 2), fB;C;D;Eg

2+;n +  fB;C;D;Eg
2�;n +  fB;C;D;Eg

1�;n +  fB;C;D;Eg
1+;n = 4(2n � 2):

There exist no 2�-oriented H2k in fB,Cg, no 1�-oriented H2k in fB,Dg, and no 1+-oriented H2k in fB,Eg. That

is,  fB;Cg2�;n =  fB;Dg1�;n =  fB;Eg1+;n = 0. Therefore, fD;Eg
2+;n +  fD;Eg

2�;n +  fCg1�;n +  fCg1+;n = 4(2n � 2)� ( fB;Cg2+;n +  fB;Cg2�;n +  fB;D;Eg
1�;n +  fB;D;Eg

1+;n )= 4(2n � 2)� ( fB;Cg2+;n +  fEg1�;n +  fDg1+;n)= 2(2n � 2):
Lemma 8 Let �k =P2ki=1 ihk(i), �k =P2ki=1(2k � i+ 1)hk(i) and 
k =P2ki=1 ivk(i). Then,�k + �k = (2k + 1)Hk and 
k = 1

2
(2k + 1)Vk

Proof. First, �k + �k =P2ki=1 ihk(i) +P2ki=1(2k � i+ 1)hk(i) = P2ki=1(2k + 1)hk(i). From the definition ofHk, Hk =P2ki=1 hk(i). Therefore, �k + �k = (2k + 1)Hk:
Second, 
k = P2k�1i=1 ivk(i) + P2ki=2k�1+1 ivk(i) = P2k�1i=1 ivk(i) + P2k�1i=1 (2k�1 + i)vk(2k�1 + i). Since

2-oriented H2k’s are vertically self-symmetric, vk(2k � i+ 1) = vk(i) holds for any i (1 � i � 2k�1): Thus,
k = P2k�1i=1 ivk(i) +P2k�1i=1 (2k�1 + i)vk(2k�1 � i+ 1) = P2k�1i=1 ivk(i) +P2k�1i=1 (2k � i + 1)vk(i). From the

definition of Vk and self-symmetry, Vk = 2
P2k�1i=1 vk(i). Therefore,
k = 2k�1Xi=1

(2k + 1)vk(i) = 1
2
(2k + 1)Vk:
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