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Abstract

Several schemes for linear mapping of multidimensional space have been proposed for many applications
such asaccess methodsfor spatio-temporal databases, image compression and so on. Inall theseapplications,
one of the most desired properties from such linear mappingsis clustering, which means the locality between
objects in the multidimensional space is preserved in the linear space. It iswidely believed that the Hilbert
space-filling curve achieves the best clustering [1, 13]. In this paper we provide closed-form formulas of the
number of clusters required by a given query region of an arbitrary shape (e.g., polygons and polyhedra) for
Hilbert space-filling curve. Both the asymptotic solutionfor a general case and the exact solutionfor a special
case generalize the previous work [ 13], and they agree with the empirical results that the number of clusters
depends on the hyper-surface area of the query region and not on its hyper-volume. We have also shown that
Hilbert curve achieves better clustering than the z-curve [21]. Fromthe practical point of view, the formulas
given in thispaper provide a simple measure which can be used to predict the required disk access behaviors
and hence the total access time.

Index Terms: locality-preserving linear mapping, range queries, multi-attribute access methods, data cluster-
ing, Hilbert curve, space-filling curves, fractals.

1 Introduction

The design of multidimensiona access methods is difficult compared to one-dimensiona cases because there
is no total ordering that preserves spatia locality. Once such a total ordering is found for a given spatial
or multi-attribute database, one can use any one-dimensional access method such as a BT -tree, which may
yield good performance for multidimensional queries. An interesting application of the ordering arises in a
multidimensional indexing technique proposed by Orenstein [17]. Theideaisto devel op asingle numeric index
on a one-dimensiona space for each point in multidimensiona space, such that for any given object, the range
of indices, from the smallest index to the largest, includes few points not in the object itself.

Consider alinear traversal or atypica range query for a database where record signatures are mapped with
multi-attribute hashing [22] to buckets stored on disk. Thelinear traversa specifiesthe order inwhich the objects
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are fetched from disk as well as the number of blocks fetched. The number of non-consecutive disk accesses
will be determined by the order of blocksfetched. Althoughin therange query the order of blocksfetched isnot
explicitly specified, it is reasonable to assume that the set of blocks fetched can be rearranged into a number of
groups of consecutive blocks by database server or disk controller mechanism [23]. Sinceit is preferred to fetch
aset of consecutive disk blocks rather than arandomly scattered set to reduce additional seek time, it isdesirable
that objects close together in a multidimensional attribute space also be close together in the one-dimensional
space. A good clustering of multidimensiona points on the one-dimensional sequence of disk blocks will also
reduce the number of disk accesses that are required for arange query.

In addition to the applications described above, several other applications also benefit from the mapping
which preserves locality:

1. In traditional databases, a multi-attribute space must be mapped into a one-dimensional space to alow
efficient handling of partial-match queries [20]; in numerical analysis, large multidimensional arrays [5]
have to be stored on disk, which isalinear structure.

2. In image compression, a family of methods use the mapping to transform the image into a bit string;
subsequently, any standard compression method can be applied [16]. A good clustering of pixels will
result in fewer long runs of similar pixel vaues, thus improving the compression ratio.

3. In geographic information systems (GIS), run-encoded forms of image representations are ordering-
sensitive as they are based on representations of the image as sets of runs[1].

4. Heuristicsin computationa geometry problems use the mapping. For example, for the travelling salesman
problem, the cities are linearly ordered and visited accordingly [2].

5. Locality-preserving mappings are used for bandwidth reduction of digitally sampled signals [3] and for
graphics display generation [18].

6. In scientific parallel processing, locality-preserving linearization techniques are preferred for dynamic
unstructured mesh partitioning [15].

Sophisticated mapping functions have been proposed in the literature. One, based on interleaving bits from
the coordinates, which is called z-ordering was proposed in [17]. Its improvement was suggested by Faloutsos
in [7], using Gray coding on the interleaved bits. A third method, based on the Hilbert curve [11], has been
proposed in [9]. In the mathematical context, these three mapping functions are based on different space-filling
curves. z-curve, Gray code with bit-interleaving and Hilbert curve, respectively. Figure 1 illustrates linear
orderings yielded by the space-filling curves for 4 x 4 grids.

In [13] we have studied the mapping functions from multidimensiona space to one-dimensiona space, and
showed that under most circumstances the mapping based on Hilbert space-filling curve outperformsthe others.
In this paper we provide anaytic results of the clustering effects of the Hilbert space-filling curve, focusing
on arbitrarily shaped range queries, which require the retrieval of al objects inside a given hyper-rectangle or
polyhedron in multidimensional space.

For purposes of analysis, we assume multidimensional space with finite granularity, where each point
correspondsto agrid cell. The Hilbert space-filling curveimposes alinear ordering on the grid cells, assigning a
single integer value to each cell. Idedlly, it is desirable to have mappings that result in fewer disk accesses. The
number of disk accesses, however, depends on several factors such as the capacity of the disk pages, the splitting
algorithm, the insertion order and so on. Here we shall use instead the average number of clustersor continuous
runs of grid pointswithin a subspace represented by a given query, as the measure of clustering performance of
the Hilbert space-filling curve. If each grid point is mapped to one disk block, this measure exactly corresponds
to the number of non-consecutive disk accesses, which involve additional seek time. It isalso highly correlated
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Figure 1. Illustration of space-filling curves

to the number of disk blocks accessed, since (with many grid pointsin adisk block) consecutive pointsare likely
to be in the same block while points across a discontinuity are likely to be in different blocks. This measureis
used only to render the analysistractable, and some weaknesses of this measure were discussed in [13].
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Figure 2: Illustration of clusters: (a) two clustersfor z-curve, (b) one cluster for Hilbert curve

Definition 1.1 Givena d-dimensional query, a cluster isdefined to be a group of grid pointsthat are consecutively
connected by a mapping (or a curve) inside a subspace represented by the query.

For example, there are two clustersin a z-curve (Figure 2(a)) but only one cluster in aHilbert curve (Figure 2(b))
for the same 2-dimensional rectangle 5, x .5,,. Now, the problem we will investigate is formulated as follows:

Given a d-dimensional rectilinear polyhedron represented by a query, find the average number of
clustersinside the polyhedron for the Hilbert curve.

The definition of the d-dimensional rectilinear polyhedron is given in Section 3. Note that in the d-dimensional
space with finite granularity, for any d-dimensional abject such as spheres, ellipsoids, quadric cones and so on,
there exists a corresponding (rectilinear) polyhedron that contains exactly the same set of grid pointsinside the
given object. Thus, the solution to the problem above will cover more genera cases concerning any simple
connected object of arbitrary shape. The rest of the paper is organized as follows. Section 2 surveys historical
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work on space-filling curves and other related analytic studies. Section 3 presents an asymptotic formulaof the
average number of clusters for d-dimensional range queries of arbitrary shape. Section 4 derives a closed-form
exact formula of the average number of clustersin a 2-dimensional space. In Section 5 we provide empirical
evidence to demonstrate the correctness of the analytic results for various query shapes. Finaly, in Section 6 we
discuss the contributions of this paper and suggest future work.

2 Historical Survey and Related Work

G. Peano, in 1890, discovered the existence of a continuous curve which passes through every point of a closed
square [19]. According to Jordan’s precise notion (in 1887) of continuous curves, Peano’s curve is a continuous
mapping of the closed unit interval I = [0, 1] into the closed unit square S = [0, 1]2. Curves of this type have
come to be called Peano curves or space-filling curves [26]. Formally,

Definition 2.1 If amapping f : I — E"(n > 2) is continuous, and f(I) the image of / under f has positive
Jordan content (area for » = 2 and volume for » = 3), then f(1) is called a space-filling curve. E™ denotes an
n-dimensional Euclidean space.

Although G. Peano discovered the first space-filling curve, it was D. Hilbert in 1891 who was the first to
recoghize ageneral geometric procedure that allowsthe construction of an entire class of space-filling curve[11].
If the interval I can be mapped continuously onto the square .5, then after partitioning / into four congruent
subintervalsand 5" into four congruent subsquares, each subinterval can be mapped continuously onto one of the
subsquares. If thisiscarried onadinfinitum, 7 and S arepartitionedinto 22 congruent replicasforn = 1,2, 3,. ..
Hilbert demonstrated that the subsquares can be arranged so that theinclusionrelationshipsare preserved, that is,
if asquare correspondsto aninterval, then its subsquares correspond to the subintervals of that interval. Figure 3
describes how this processisto be carried out for thefirst three steps. 1t has been shown that the Hilbert curveis
a continuous, surjective and nowhere differentiable mapping [24].
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Figure 3. Thefirst three steps of Hilbert space-filling curve

Note that Hilbert gave the space-filling curve, in a geometric form only, for mapping 7 into 5 (i.e., 2-
dimensiona Euclidean space). Generation of a 3-dimensiona Hilbert curve was described in [13, 24]. A
generdization of Hilbert curves, in an anaytic form, for higher dimensional space was given in [4]. In this
paper, d-dimensiona Euclidean space with finite granularity is of our interest. Thus, we use the k-th order
approximation of d-dimensiona Hilbert space-filling curve (¢ > 1 and d > 2), which maps an integer set
[0, 2% — 1] into a d-dimensional integer space [0, 28 — 1]°.

Notation2.1 For £ > 1 and d > 2, let ¢ denote the k-th order approximation of d-dimensional Hilbert
space-filling curve, which maps [0, 24 — 1] into [0, 2¢ — 1],
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The drawings of the first, second and third steps of Hilbert curve in Figure 3 correspond to 72, 13 and 3,
respectively.

In[13], we have compared clustering properties of severa space mapping functions by considering only 2x 2
range queries. Among z-curve(2.625), Gray coding (2.5) and Hilbert curve(2), Hilbert curve was the best in
minimizing the number of clusters. The numbers within the parentheses are the average number of clusters for
2x2range queries. Rong and Faloutsos [21] derived a closed form expression of the average number of clusters
for the z-curve, which gives 2.625 for 2 x 2 range queries (exactly the same with the result given in [13]) and
in general approaches one third of the perimeter of the query rectangle plus two thirds of the side length of the
rectangle in the unfavored direction. Jagadish [12] derived closed form expressions of the average number of
clustersfor the Hilbert curve in a 2-dimensional grid using 2x 2 and 3 x 3 square regions only. Thisisa special
case of the more general formulae derived in this paper. Abel and Mark[1] reported empirical studiesto explore
the relative properties of such mapping functions using various metrics. They reached a conclusion that Hilbert
ordering deserves closer attention as an aternative to z-curve ordering.

Closely related analysis for the average number of d-dimensional quadtree nodes has been presented in the
literature. Dyer in [6] presented an analysis for the best, worst and average case of a square of size 2" x 27,
giving an approximate formulafor the average case. Shaffer in [25] gave aclosed formulafor the exact number
of blocksthat such a square requires when anchored at a given position (z, y); he aso gave the formulafor the
average number of blocks for such squares (averaged over all the possible positions). In[8, 10], we generalized
some of these formulae for arbitrary 2-dimensional and d-dimensional rectangles.

3 Asymptotic Analysis

In thissection, we give an asymptoticformulaof the clustering property of Hilbert space-filling curvesfor general
polyhedrain d-dimensional space. The symbols used in this section are summarized in Table 1. The polyhedra
we consider here are not necessarily convex but rectilinear in the sense that any (d-1)-dimensiona polygonal
surface is perpendicular to one of the d coordinate axes.

Definition 3.1 A rectilinear polyhedronis bounded by a set V' of polygonal surfaces perpendicular to one of the
d coordinate axes, which is a subset of R¢ and homeomor phic to (d-1)-dimensional sphere 591,

For d = 2theset V is, by definition, a Jordan curve, which is essentialy asimple closed curvein R2. The set
of surfaces of apolyhedron divides the d-dimensional space R¢ into two connected components which may be
called the interior and the exterior.

The basic intuition is that each cluster within a given polyhedron corresponds to a segment of the Hilbert
curve connecting a group of grid points in the cluster, which has two endpoints adjacent to the surface of the
polyhedron. The number of clustersisthen equal to half the number of endpoints of the segments bounded by
the surface of the polyhedron. In other words,

Remark 3.1 The number of clusterswithin a given d-dimensional polyhedron is equal to the number of entries
(or exits) of Hilbert curve into (or from) the polyhedron.

Thus, we expect that the number of clusters is approximately proportional to the perimeter or surface area of
the d-dimensional polyhedron (d > 2). Coupled with this observation, the task is reduced to finding a constant
factor of alinear function.

Our approach to derive the asymptotic solution largely depends on the self-similar nature of Hilbert curve
which stems from the recursive process of the curve expansion. Specifically, we shal show in the following
lemmas that the edges of d different orientations are uniformly distributed in d-dimensiona Euclidean space,
that is, approximately one d-th of the edges are aligned to the i-th dimensional axis for each i (1 < ¢ < d).
Here we mean by edges the line segments of the Hilbert curve connecting two neighboring points. The uniform
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Figure 5: 4-dimensional Hilbert curve (template of )

distribution of the edges provides key leverage for deriving the asymptotic solution. To show the uniform
distribution, it isimportant to understand

¢ how the k-th order approximation of Hilbert curve is derived from lower order approximations, and

¢ how thed-dimensiona Hilbert curveisextended from the 2-dimensiona Hilbert curve, whichwasdescribed
only in geometric form in [11]. Anaytic formsfor d-dimensional Hilbert curve were presented in [4].

Ina d-dimensional space, ¢ isderived from ¢ by replacing each vertex in ¢ by H¢_,, which may be rotated
about a coordinate axis and/or reflected about a hyperplane perpendicul ar to acoordinate axis. Since the number
of vertices of ¢ is2¢, H¢ is composed of 2¢ H{_,’sand (2?— 1) edges each connecting two of them.

Before describing the extension for d-dimensional Hilbert curve, we define orientations of Hi. Consider
H%, which consists of 2¢ vertices and (Zd —1) edges. No matter where Hilbert curve starts its traversal, the
coordinates of the start and end vertices of HC{ differ only in one dimension, which means both the vertices lie
on aline paralel to one of d coordinate axes. From now onwe say a4 isi-oriented if its start and end vertices
lieon aline parald to the i-th coordinate axis. For any k (k > 1), the orientation of H{ isequa to that of ¢
from which ¢ is derived.

In the following we examine the process that generates ¢ from Hi‘l. Figure 4 and Figure 5 illustrate the
generation of 13 from 12, and 7 from H3, respectively. Each vertex of the curves represents rotated and/or
reflected H3_, in Figure 4 and H?_, in Figure 5, and is annotated by a number indicating its orientation. In
genera, when the d-th dimension is added to a (d-1)-dimensional Hilbert curve, each vertex of Hcll‘l (that is,
Hij) is replaced by 1¢_, of the same orientation except in the 2¢~1-th one (i.e., the end vertex of Hcll‘l),
whose orientation is changed from 1-orientedto d-oriented paralel to the d-th dimensional axis. For example, in
Figure5, the orientations of the two vertices connected by adotted line have been changed from 1to 4. Sincethe
orientations of all the other (2¢-1—1) 1¢_,’sremain unchanged, they are all j-orientedfor somej (1 < j < d).



Then the whole 2¢-1 H{_,’s are replicated by reflection and finally the two replicas are connected by an edge
pardlél to the d-th coordinate axis (caled d-oriented edge) to form a d-oriented H§. In short, whenever a
dimension (say, the d-th dimension) is added, two d-oriented Hi_l’s are introduced, the number of 1-oriented
H{_,’sremains unchanged as two, and the number of +{_,’s of the other orientations are doubl ed.

Symbol Definition

d Number of dimensions

(z1,...,z4) | Coordinates of agrid point in ad-dimensional grid space
Hé k-th order approximation of d-dimensional Hilbert curve
©; Number of i-oriented H$_'sinaH{
€k Number of i-oriented edgesin a d-oriented Hi
S+ Number of interior grid points which face i *-surface
ST Number of interior grid points which face : ~-surface
p Probability that the predecessor of agrid point isits :*-neighbor
P Probability that the predecessor of agrid point isits :—-neighbor
S, Total surface area of a given d-dimensional rectilinearly polyhedral query ¢
Ny Average number of clusters within agiven d-dimensional rectilinear polyhedron

Table 1: Definition of Symbols

The following lemma provides a ground for leading to a more interesting Lemma 2, which is useful in
deriving the asymptotic formula.

Notation 3.1 Let ¢, be the number of j-oriented H¢_,’s in a given d-oriented 1.

Lemmal For a d-oriented H¢ (d > 2),

2 ifi=1
P = : ’ 1
v {2d+1—2 if1<i<d @

Proof. It can be proven by inductionon d. O

In the following lemma, we show that the edges of d different orientations approaches uniform distribution
asthe order of the Hilbert curve approximation grows into infinity.

Notation 3.2 Let ¢; ;, denote the number of i-oriented edgesin a (d-oriented) Hy.

Lemma2 In d-dimensional space, for any : and j (1 < 7,j < d), ;1 /¢;,1 approaches unity as k grows to
infinity.

Proof. We begin by deriving recurrence relations among ¢; »’s and ¢;’s. As we mentioned previously, the
fundamental operationsinvolved in expanding Hilbert curve (i.e., from 7{_, to H¢) are rotation and reflection.
During the expansion of ¢, the orientation of aH¢_, in a quantized subregion is changed only by rotation; a
set of subregionsof an orientation are replicated from one of the same orientation, which leaves the directions of
their edges unchanged. Consequently, any two distinct #¢_,’s of the same orientation contain the same number
of edges ¢; 1 for each direction i (1 < 7 < d).



Therefore, the set of 1-oriented edges in ¢ consists of 2?~1 connection edges in +{, d-oriented edges in
1-oriented H{_,’s, (d-1)-oriented edges in 2-oriented H¢_,’s, (d-2)-oriented edges in 3-oriented H}_;’s and so
on. By applying the same procedure to the other directions, we obtain

E1r = P1Edp-1+ P2ea k14 -+ pacrpo1+ 2770
E2k = P2Edk-1+ P3d1p-1+ -+ prerp_1+ 2072
E3k = P3Cdk-1+ Pacd_1p_1+ -+ paerp_g 4+ 2073 (2
Edk = PdEdk-1+ P18d—1k-1+ -+ @i—1€16-1+1

Theinitial values are givenby ¢, 1 = 2¢~%, and the values of ; arein Lemma 1. The constantsin thelast terms

being ignored, the recurrence relations are completely symmetric. From the symmetry, it can be shown that for
anyiandj(1<4,j <d),

lim ok

k—oo €5k

=1
The proof is complete. O

Now we consider ad-dimensional grid space, whichisequivaent to a d-dimensional Euclidean integer space.
In the d-dimensional grid space, each grid point y = (21, ...,z4) has 2d neighbors. The coordinates of the
neighborsdiffer from those of i only in one dimension by unity. In other words, the coordinates of the neighbors
that liein aline parale to the i-th axis must be either (z1,...,2;+1,...,24) Of (21,...,2;—1,...,24). We
call them :*-neighbor and i ~-neighbor of y, respectively.

Butz showed in [4] that any unitincrement in Hilbert order produces a unit increment in one of d coordinates
and leaves the other d—1 coordinates unchanged. Theimplicationisthat, for any grid point y, both the neighbors
of y inthelinear ordering imposed by Hilbert curve are chosen from 2d neighborsof y in the d-dimensional grid
space. Of thetwo neighborsof y in Hilbert ordering, the one closer to the start end of Hilbert traversal iscalled
predecessor of y.

Notation 3.3 For a grid point y in d-dimensional grid space, let p;” be the probability that the predecessor of y
isthe :™-neighbor of y, and let p;” be the probability that the predecessor of y isthe :™-neighbor of y.

Lemma 3 In sufficiently large d-dimensional grid space, for any ¢ (1 <7 < d),

1
- =

p; +p = a4

Proof. Assume y isagrid point in d-dimensional space and = is its predecessor. Then the edge 7z adjacent
to y and = is parallel to one of the d dimensiona axes. From Lemma 2 and the recursive definition of Hilbert
mapping, it followsthat for any ¢ (1 < ¢ < d) the probability that 7z is parallel to the i-th dimensional axisis
d~1. Thisimpliesthat the probability that = is either i*-neighbor or i—-neighbor of y isd—1. The proof is now
complete. O

The d-dimensiona rectilinear polyhedra of our interest can be of arbitrary shape; the number and size of
surfaces can be arbitrary. Dueto the constraint of surface aignment, however, itisfeasibleto classify the surfaces
of a d-dimensional rectilinear polyhedron into 24 different kinds: for any 7 (1 < i < d),

o If apoint y isinsidethe polyhedron and its i ™-neighbor is outside, then the point y faces :+-surface.

¢ If apoint y isinsidethe polyhedron and its i —-neighbor is outside, then the point y faces : ~-surface.
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For example, Figure 6 illustrates grid pointswhich face surfaces in 2-dimensional grid space. The shaded region
represents the inside of the polyhedron. Assuming that the first dimensionis vertical and the second dimension
is horizontal, the grid points A and D face 1*-surface, and the grid point B (on the convex) faces both 1+-surface
and 2*-surface. Although the grid point C (on the concave) is close to the boundary, it does not face any surface
because dl of its neighbors are inside the polyhedron. Consequently, the chance that the Hilbert curve enters
the polyhedron through the grid point B is approximately twice that through the grid point A (or D). Thereisno
chance that the Hilbert curve enters through the grid point C.

A

([ ] (] (] (] ® ([ ]
C D

Figure 6: Illustration of grid points facing surfaces

For any d-dimensional rectilinear polyhedron, it is interesting to see that the aggregate area of :*-surfaceis
exactly as large as that of i —-surface. In a d-dimensional grid space, we mean by surface area the number of
interior grid pointsthat face a given surface of any kind.

Notation 3.4 For a d-dimensional rectilinear polyhedron, let S;" and S;~ denotethe aggregate number of interior
grid points that face ¢ -surface and : ~-surface, respectively.

Before proving the following theorem, we state without proof an elementary remark.

Remark 3.2 Given a d-dimensional rectilinear polyhedron, 577 = S for anyi (1 < i < d).
Notation 3.5 Let NV, be the average number of clusterswithin a given d-dimensional rectilinear polyhedron.

Theorem 1 In a sufficiently large d-dimensional grid space mapped by ¢, let S, be the total surface area of a
given rectilinearly polyhedral query ¢. Then,

: S

| =1 3

Jim Na =2, ®)

Proof. Assumeagrid point y faces :*-surface (or i —-surface). Then the probability that the Hilbert curve enters
the polyhedron through y is equivalent to the probability that the predecessor of y is:*-neighbor (or : ~-neighbor)
of y. Thus, the expected number of entries through i+-surface (or i~-surface) is S; p (or S p;). Since the
number of clustersis equal to thetotal number of entries into the polyhedron through any of 2d kinds of surfaces
(Remark 3.1), it follows that

d
lim Ny = > (Sl +57p7)

k—o0 P

d
= S SHpr+p7)  (byRemak3.2)
=1



ll
L=
n

+
Ul =

(by Lemma 3)

N

The proof is complete. O

Theorem 1 confirms our early conjecture that the number of clustersis approximately proportiona to the
surface area of a d-dimensional polyhedron, and provides (2d)~* as the constant factor of alinear function. In
2-dimensional space, the average number of clusters for z-curve approaches one third of the perimeter of the
guery rectangle plustwo thirds of the side length of the rectangle in the unfavored direction [21]. Now it comes
clear that Hilbert curve achieves better clustering than z-curve because the average number of clustersfor Hilbert
curve is approximately equal to one fourth of the perimeter of a 2-dimensional query rectangle.

Corollary 1 Inasufficientlylarged-dimensional grid space mapped by ¢, thefollowing properties are satisfied:

(i) Givenan sy x spx---x sy hyper-rectangle, limg_..o Ny = 3511 (E 101 55)-
(i) Given a hypercube of sidelength s, lim;_.. Ny = 1.

For a square of side length 2, Corollary 1(ii) provides 2 as an average number of clusters, which is exactly the
same with the result given in [13].

4 Exact Analysis: A special case

In this section, we give a closed-form exact formulafor the average number of clustersin 2-dimensional space.
Specifically, we assumethat grid spaceis mapped by HZ_ | and query regionsare square of size 2% x 2. Wefirst
describe our approach and then the formal derivation of the solutionis presented in the following lemmasand a
theorem. Table 2 summarizes the symbolsused in this section.

4.1 Basic concepts

In Remark 3.1, we stated that the number of clusters within agiven region is equa to the number of entriesinto
the region made by Hilbert curve traversal. Since each entry eventually yields an exit out of the region, an entry
isequivaent to two cuts of Hilbert curve by boundary of the region. We restate Remark 3.1 asfollows:

Remark 4.1 Thenumber of clusterswithina givenregion isequal to half the number of edgescut by theboundary
of theregion.

Here we mean by edges the line segments of the Hilbert curve connecting two neighboring grid points. Now we
know from Remark 4.1 that deriving the exact formulais reduced to counting the number of edge cuts by the
boundary of square windows of al possible positions. Then the average number of clustersis simply obtained
by dividing this number by twice the number of possible positions of the window.

Notation 4.1 Let N(k, k + n) betheaveragenumber of clustersinsidea 2* x 2* squarewindowin a 2k+7 x 2k+n
grid region.
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Figure 7: HZ, , divided into nine subregions

The difficulty of counting the edge cutsliesin the fact that, for each edge within the grid region, the number
of cuts varies depending on the location of the edge. Intuitively, the edges near the boundary of the grid region
are cut less often than those near the center. Thisis because aless number of square windows can cut the edges
near the boundary. Thusitis useful to consider a2+ x 2*" grid region 1%, asacollection of 22" 12'seach
of which is connected to one or two neighbors by connection edges. From now on, we mean by an internal edge
one of 22* — 1 edgesin aH2, and by a connection edge one connecting two +2's.

We divide the grid region 12 +,, INto nine subregions as depicted in Figure 7. The width of the subregions
on the boundary is 2*. Then, for example, subregion F includes only one 742 and connected to subregions B and
D by a horizontal connection edge and a vertical connection edge, respectively. Subregion B includes (2" — 2)
H?2's connected to each other by (2" — 3) horizontal connection edges inclusiveto the subregion, and connected
to subregions F and H by two other horizontal connection edges straddling the boundaries of subregions.

Now consider an edge (either aninternal or aconnection edge) near the center of subregion A, and a horizontal
edge in subregion B. The edge in the subregion A can be cut by 2*+1 square windows whose positionswithin the
region are mutually distinct. On the other hand, the horizontal edge in the subregion B can be cut by different
number of distinct windows depending on the position of the edge. Specifically, if the edge is on the i-th row
from the topmost, then it is cut 2 x ¢ times. The observations we have made are summarized as follows:

Al. Every edge (either horizontal or vertical) at |east one of whose end pointsresidein subregion Ais cut 2¥+1
times.

A2. Every vertical edgein subregionsB and Ciscut 2* times by top or bottom sides of windows.
A3. Every horizonta edgein subregions Dand E iscut 2* times by |eft or right sides of windows.

A4. Every connection edgein subregions {B, F, H} ishorizontal and residesin the 2°-th row from the topmost
and hence cut 251 times by left and right sides of windows. Every connection edge in subregions
{C, G | } ishorizonta and residesin the 2*-th row from the topmost and hence cut twice by left and right
sides of windows.

A5. Every connection edgein subregions{D, F, G} isvertica and residesin thefirst column from the | eftmost
and hence cut twice by top and bottom sides of windows. Every connection edge in subregions {E, H, | }
isvertical and resides in the first column from the rightmost and hence cut twice by top and bottom sides
of windows.
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AG6. Every horizontal edge in the :-th row from the topmost of the subregion B iscut 2 x : times by both left
and right sides of windows, and every horizonta edge in the ¢-th row from the topmost of the subregion C
iscut 281 — 2 x i 4 2 times by both |eft and right sides of windows.

A7. Every vertical edge in the ¢-th column from the leftmost of the subregion Dis cut 2 x 7 times by both top
and bottom sides of windows, and every vertical edgein the ¢-th column from the leftmost of the subregion
Eiscut 2¥+1 — 2 x i + 2 times by both top and bottom sides of windows.

A8. Every horizonta edge in the i-th row from the topmost of subregions {F, H} iscut i timesby either | eft or
right sides of windows.

A9. Every horizontal edge in the i-th row from the topmost of subregions {G, | } iscut 2 — i + 1 times by
either left or right sides of windows.

A10. Every vertica edge in the i-th column from the leftmost of subregions {F, G} iscut i times by either top
or bottom sides of windows.

All. Every vertical edge in the i-th column from the leftmost of subregions {H, | } iscut 2° — i 4+ 1 times by
either top or bottom sides of windows.

A12. Two connection edges through which the Hilbert curve entersinto and leaves from the grid region are cut
once each.

From these observations, we can categorize the edges within the H?2 +,, grid region into the following five
groups:
(i) E1: agroup of edges described in the observations A1. Each edgeis cut 25+ times.

(i) E,: agroup of edges described in the observations A2 and A3. Each edgeis cut 2* times.

(iii) F3: agroup of edges described in the observations A4 and A5. Each connection edge on the top boundary
(i.e., subregions {B, F, H}) iscut 2"+ timesand any other connection edgeis cut twice.

(iv) E4: agroup of edges described in the observations A6 to A7. Each edgeiscut 2i or 2(2F — i + 1) timesif
itisinthe¢-th row (or column) from the topmost (or leftmost).

(v) Es: agroup of edges described in the observations A8 to A11. Each edgeiscut i or 28 — i 4 1 timesif it
isinthe i-th row (or column) from the topmost (or leftmost).

Notation 4.2 N; denotes the number of edge cuts from an edge group F;.

Within the HZ_ . region, the number of all possible positions of 2 x 2¥ windowsis (25t — 2% 4 1)2. Since,
in addition to Ni,..., N5, there are two more cuts from observation A12, the average number of clusters

No(k,k + n)isgiven by

N1+ No+ N3+ Ng+ Ns+2

NZ(kvk +n)= 2(2k—|—n _ 2k 4 1)2

(4)
In the following, we give closed-form expressionsfor individual edge groups Vy, .. ., Vs.

4.2 Formal derivation

We adopt the notion of orientations of 7¢ given in Section 3 and extend so that it can be used to derive
inductions.

Notation 4.3 An i-oriented 1¢ is called i*-oriented (or i~-oriented) if the i-th coordinate of its end point is
greater (or less) than that of its start point.
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Symbol Definition
th Number of connection edges in the top boundary of a 2+-oriented 12 in
by Number of connection edgesin the bottom boundary of a 2*-oriented 1%,
Sy, Number of connection edgesin the side boundary of a 2+-oriented 2, ,
F; A group of edges between grid points
N; Number of edge cuts from an edge group
%{57}1 Number of i *-oriented H2's in the subregion R of a 2™-oriented H2
Qbi{f% i Number of i ~-oriented 2's in the subregion R of a 2*-oriented HZ
0, Number of horizontal edgesin a 2-oriented H?
Vi Number of vertical edgesin a 2-oriented 12
hi(7) Number of horizontal edges in the i-th row from the topmost of a 2*-oriented 12
vg(7) Number of vertical edgesin the i-th column from the Ieftmost of a 2+-oriented 12
No(k, k + n) | Exact number of clusters covering a2* x 2% square in a 28+ x 2547 grid region

Table 2: Definition of Symbols

(@) I™-oriented (b) 1~-oriented (c) 2*-oriented (d) 2~-oriented

Figure 8: Four different orientations of 3

Figure 8 illustrates 1t-oriented, 1--oriented, 2+-oriented and 2~-oriented H3's, respectively from Ieft to right.
Note here that the vertical axisis considered as thefirst dimensional axis and the horizontal axisis considered as
the second dimensional axis.

We begin by deriving N1 and N3. It appearsat thefirst glancethat the derivation of N1 issimplebecause each
edgein Fy iscut 2°+1 times. However, the derivation of Ny involves counting the number of connection edges
straddling the boundaries between subregion A and the other subregions, which is not quite straightforward, as
well as the number of edges inclusive to the subregion A. We approach this with counting the number of edges
in the complementary set o1 (that is, {edgesin HZ, , } — E1). Since E1 consists of edgesin 4(2" — 1) HZ'sin
boundary subregions B through | and connection edgesin E3, [Fq] isequal to 4(2% — 1) x (2% — 1) + |E3].
To find the number of connection edgesin F'3, we define the number of connection edges in different parts of
the boundary subregions. In the following, without loss of generality, we assume that the given grid region is
2*+-oriented H7 ..

Notation4.4 Let ¢,, b, and s,, denote the number of connection edges in the top boundary (i.e., subregions
{B, F, H}), inthebottomboundary (i.e., subregions{C, G | }), andintheleft or right boundary (i.e., subregions
{D,F, Gt or {E, H,1}) of a 2*-oriented HZ _, respectively.

Note that the number of connection edges in the subregions {D, F, G} and the number of connection edgesin
the subregions {E, H, | } areidentical because the 2*-oriented H? +,, Isverticaly self-symmetric.
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Lemma4 For any positiveinteger n,
t,=2""1 and b, +2s, =2(2" - 1). (5)
Proof. Givenin Appendix A. O

From Lemma4, the number of connection edges inclusive to the boundary subregions (i.e., £3) is given by
t, + b, + 25, = 5x 271 — 2. From this, we can obtain the number of edgesin £, aswell as F5 and hence the
number of cutsfrom F1 and F3. Theresults are presented in the following lemma.

Lemma5 The numbers of edge cuts from F; and F53 are

Ny = 2(2" —2)22%F 1 3(2" — 2)2F (6)
Ny = 2vh 4427 — 1) ()

Proof. ‘HZ,, and HZ contain 22*+™) — 1 and 22* — 1 edges, respectively. Since the number of #2's in the
boundary subregionsis4(2" — 1), the total number of edgesin £ isgiven by

(2241 _ 1) — 42" —1)(2% — 1) — (5x 2"t —2) = 2% (2" — 2)2 4 3(2n "1 — 1),
From the fact that each edge in 1 iscut 25+ times, it follows that
Ny = 28122 (2n — 2)2 4 3(2771 — 1)) = 2(2" — 2)22% 4 3(2" — 2)2F,
Among 5x 2! — 2 edgesin Fs, ¢,, edges are cut 2°+! times and the other b,, 4+ 2s,, edgestwice. Therefore,
Nz = 2", 4+ 2(b, 4 2s,) = 2% 4 427 — 1).
]

Now al that we need to derive N isto count the number of vertical edges in subregions {B, C} and the
number of horizontal edgesin subregions {D, E}. No connection edges in these subregions are involved. Since
the number of horizontal (or vertical) edgesin a +2 is determined by its orientation, it is necessary to find the
number of H%’s of different orientations in the subregions {B, C, D, E}. In the following, we give notations
for the number of horizontal and vertical edgesin aH?2, and the number of H%’s of different orientationsin the
boundary subregionsin Figure 7.

Notation 4.5 Let H . and V;, denote the number of horizontal and vertical edgesin a 2-oriented H2 , respectively.

By definition, the numbers of horizontal and vertical edgesin a 1-oriented 2 are v, and Hy,, respectively.

Notation 4.6 For a set of subregions{ R1, R2, ..., R;} inFigure7, let ¢jfj;R2""’RJ}

the number of jT-oriented and i —-oriented H2's in those subregions, respectively.

and Qbf ;’RZ"“’RJ} denote

Lemma 6 Givena 2*-oriented M2, asdepicted in Figure7,

vi = 202 ®
Ure F U b, = 202 (©)
vl 4 el 4l D 2 2 - 2), (10)
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Proof. Givenin Appendix A. O

From Lemma 6, a closed-form expression of N isderived in the following lemma.

Lemma 7 The number of edge cutsfrom F is
Ny = 2(20 —2)2%F — 2(2" — 2)2~. (11)

Proof. Every 12 in subregion B is 2+-oriented, and no 2--oriented H?2 existsin subregion C. Thus the number
of vertical edgesin subregions {B, C} is the sum of @f Ty and (ﬁfi + ¢{C} )Hj. Likewise, the number

of horizontal edges in subregions {D, E} is the sum of (qbéan} + ¢{D E}) and (qﬁﬁ)i + ¢{E} )V}, because

no 1~-oriented H? exists in the subregions D and no 1*+-oriented 2 exists in the subregions E. Thus, the total
number of edge in F,isgiven by

R A LR (O A S M L
= 2(2"-2)(Hi+ Vi) (by Lemma6).
Each edgein £, iscut 2* timesand H, + Vj, = 2% — 1. Therefore,
Ny = 2(2" — 2)(2%% — 1)2F = 2(2" — 2)2%F — 2(2" — 2)2%,
O

Now we consider the number of cuts from £, and Fs. The edges in these groups are cut different times
depending on their relative locations within the 2 to which they belong. Consequently, the expressions of N4
and Ns include suchtermsas: x vy (¢) and ¢ x hk( ). The definition of v (7) and . (¢) is given below. We call
H?2's having such terms gradients.

Notation 4.7 Let hx(¢) be the number of horizontal edges in the i-th row fromthe topmost, and v (7) the number
of vertical edgesin the i-th column from the I eftmost of a 2+-oriented H2.

(a) u-gradient, (b) d-gradient, (c) s-gradient,

Figure 9: Three different gradients and cutting windows

To derive closed-form expressions of V4 and N5, wefirst give the definitionsfor different types of gradients.
Consider 2*+-oriented H%’s in subregions {B, C, D, E}. From the observations A6 and A7, the number of cuts

from horizontal edges in a 2+-oriented H? in the subregion B is Zfil 2ihi(¢). Likewise, the number of cuts
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from horizontal edgesin a 2*-oriented 742 in the subregion Cis Y2 2 1 2(2’“ — i+ 1)h(¢), and the number of cuts

from vertical edgesin a 2+t-oriented H? in the subregion Dor E is "2 _1 2ivi (). The reason the number of cuts
from vertical edgesisthe samein both the subregions D and E isa 2F-oriented 12 is vertically self-symmetric.
Based on this, we define three types of gradientsfor a 2+-oriented H2:

Definition4.1 (i) A 2*-oriented 12 is called u-gradient, if its horizontal edges in the i-th row from the
topmost are cut ¢ or 2i times.

(i) A 2+-oriented H2 is called d-gradient, if its horizontal edges in the i-th row from the topmost are cut
28 —i4lor2(28 —i+1)times.

(iii) A2*-oriented? iscalled s-gradient, ifitsvertical edgesinthei-th columnfromtheleftmost (or rightmost)
arecut ¢ or 2; times.

Figure 9 illustrates the three different gradients (u-gradient,, d-gradient, and s-gradient, from left to right) and
the cutting boundaries of sliding windows. These definitions can be applied to 7{2’s of the other orientations
as well just by rotating the directions. For example, a 1T-oriented H? in the subregion D is d-gradient, , and a
2~-oriented H? in the subregion Dis s-gradient, .

Lemma8 Letay, = 2 ihy(i), Bk = S24(2% — i + 1)hy(i) and vy, = 521 ivg(4). Then,
1
ar+ =2+ D)H, and v, = E(zk + 1)V (12)
Proof. Givenin Appendix A. O

Next we need to know the number of gradients of each typein the boundary subregionsB through| to derive
N4 and Ns. For H2'sinthe subregions {B, C, D, E},

o Every 2*-oriented 2 in Bis u-gradient, .
o Every 2*-oriented 12 in C, 1*-oriented H2 in D, and 1~-oriented HZ in E is d-gradient, .
o Every It-oriented or 1--oriented H% in C, and 2*-oriented or 2~-orientedin {D, E} is s-gradient, .
The H%’s inthesubregions {F, G H, | } are dua-type gradients. In other words,
o Each of the 2+-oriented H2's in {F, H} isboth u-gradient, and s-gradient, .
e The’H2 in Gisboth d-gradient, and s-gradient,, because the subgrid is either 2*-oriented or 1*-oriented.

e The’H2in| isboth d-gradient, and s-gradient, because the subgrid is either 2*-oriented or 1~-oriented.

Thus, in the subregions {B, C, D, E}, the number of u-gradient,’s is ¢2+} the number of d-gradient,’s is
@fi + qbﬁ)i + ¢{E} and the number of s-gradient,’s is%f B} + ¢{D B} + ¢{C} + ¢{C} In the subregions
{F,GH I } the number of u-gradient,’s is two, the number of d- gradlentk s is two, and the number of
s-gradient,’s isfour. From this observation and Lemma 6 and Lemma§, it follows that

Lemma 9 The numbers of edge cuts from F4 and F5 are

Ny = 22" -2)(2F+1)(2% - 1) (13)
Ns = 2(2"+1)(2% - 1) (14)
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Proof. In F4, the number of horizontal cuts from asingle u-gradient,, is2 x ay, the number of horizontal cuts
from asingle d-gradient,, is2 x 3, and the number of vertical cuts from asingle s-gradient, iS2 x ;. Thus,

No = 200870 + 2600+ wll) + 62 4 om0 4 o 4 o{ 4 ol
= 204(2" — 2) + 264(2" — 2) + dy(2" — 2) (by Lemma 6)
2(2" = 2)(ag + Br + 2vk)
2(2" = 2)(2F + 1)(Hp + Vi) (by Lemma)

; 2(2" — 2)(2° + 1)(2% - 1)

In E5, the number of horizontal cuts from a single u-gradient,. is o, the number of horizontal cuts from
a single d-gradient, is 3, and the number of vertical cuts from a single s-gradient, is v;. Thus, N5 =
20y, + 28k + 4y = 2(2F + 1)(2% - 1). O

Finally, in the following theorem, we present a closed-form expression of the average number of clusters.
Theorem 2 Given a 28t7 x 2¥+7 grid region, the average number of clusterswithin a 2* x 2% query window is

(Zn _ 1)223k + (Zn _ 1)22k + o

No(k,k+n) = ZF IR (15)
Proof. From Equation (4),
No(k,k+n) = (Ni4 No+ Na+ Ng+ Ns+2)/2(287 - 28 1 1)2
= (2= 122% + (2" - 1)2%F 4 27/ (2 — 28+ 1)%
]

Inthelimit asn growslarge, NV2(k, k + n) asymptotically approaches alimit of 2*, which isthe side length
of the square query region. This matches the asymptotic solution given in Corollary 1(ii) for d = 2.

5 Experimental Results

To demonstrate the correctness of the asymptotic and exact analyses presented in the previous sections, we
carried out simulation experiments for query regions of various sizes and shapes in both 2-dimensional and
3-dimensional grid spaces.

Arrangements of experiments

Theaobjective of our experimentswasto evaluatethe accuracy of theformulasgivenin Theorem 1 and Theorem 2.
Specifically, we intended to show that the asymptotic solution provides excellent approximation for general d-
dimensiona query regions of arbitrary sizes and shapes as well as showing the correctness of the exact solution
for 2-dimensional 2* x 2 query regions. To obtain exact measurementsof actual number of clusters, we averaged
the number of clusters within query regions of all possible positionsin a given grid space. Such exhaustive
simulation runs allowed us to validate empirically the correctness of the exact formula given in Theorem 2 for
2% x 2F query squares.

However, the number of all possible queriesis exponential on the dimensionality. Consequently, for alarge
grid space and high dimensionality, each simulation run may require processing an excessively large number of
gueries, making the simulationtake too long. Thus, in our experiments, we limited the dimensionality of thegrid
space to two and three. For query shapes, we chose squares, concave polygons and circles for 2-dimensional
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Figure 10: Illustration of sample query shapes

cases, and cubes, concave polyhedra and spheres for 3-dimensional cases. Figure 10 illustrates some of those
guery shapes used in our experiments.

Theorem 1 only states that as the size of grid space grows the average number of clusters approaches half
the surface area of a given query region divided by the dimensiondlity. It does not provide details as to how
rapidly the number of clusters converges to the asymptotic solution. To addressthis, we repeated the same set of
simulation runs over grids of different sizes N x N (or N x N x N) with N = 32,40, 48,56, 64,128. The side
length s of square or cubic queries and the bounding boxes of the other query shapeswas varied from 1 to 32 for
both 2-dimensional and 3-dimensional cases.

Results

Thefirst set of experimentswere carried out in a2-dimensional grid space. Figure 11(a)-(c) shows the measured
average number of clustersfor query regions of squares, concave polygons and circles, respectively. The sizes
and shapes of the query regions are illustrated in Figure 10(a)-(c). To minimize confusion, only the results for
grid size N = 32/48/64 have been shown. Figure 11(d) gives the relative errors of the asymptotic solution
givenin Theorem 1 for afixed query size s = 32. Notethat, in Figure 11(d), weused N = 33instead of N = 32
to avoid the cases where the query region and grid are identical and hence the asymptotic solution is far away
from its corresponding exact number. Such situationsare shown in Figure 11(a) and (b). When s = N = 32, it
is obviousthat the number of clustersis exactly onefor the square query region, and exactly two for the concave
polygonal query region, while the asymptotic solutionis 32.

With afew exceptiona caseswhere s isvery closeto N, the number of clustersformsalinear curve for each
guery shape and is almost identical for the three query shapes despite their covering different areas. A sguare
covers s2 grid points, a concave polygon 3s2/4 grid points and a circle approximately =s2/4 grid points. This
should not be surprising because they have the same perimeter for agiven s. For example, we can dwaysfind a
rectilinear polygon that contains the same set of grid points as a given circle of diameter s, and it is always the
case that the perimeter of the rectilinear polygon is equal to that of asquare of side length s. (See Figure 10(c).)
In general, in a 2-dimensiona grid space, the perimeter of a rectilinear polygon is greater than or equa to that
of the minimum bounding rectangle (MBR) of the polygon. Thisfact justifies the genera approach of using the
minimum bounding rectangle of a given query region because it does not increase the actual number of clusters
(i.e., the number of non-consecutive disk accesses).

It is interesting to see that the average number of clusters for circular query regions is very close to the
asymptotic solution even when s approaches to V, and the relative error is always far smaller than those of the
other query shapes. It is aso observed that the measured numbers of clusters shown in Figure 11(a) for square
guery regionsof sidelength power of two exactly match the exact solutionin Theorem 2 when N isalso a power
of two.

The same set of experiments were carried out in a 3-dimensiona grid space. Figure 12(a)-(c) shows the
measured average number of clustersfor query regionsof cubes, concave polyhedraand spheres, and Figure 12(d)
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Figure 11: Average number of clusters and relative error of asymptotic solution

givestherelative errors of the asymptotic solution for afixed query size s = 32. Note again that, in Figure 12(d),
weused N = 33instead of N = 32for thesamereason asin the previous 2-dimensional simul ation experiments.
Like the 2-dimensional case, similar trends are observed in both the average number of clusters and relative
errors for al the three query shapes. The number of clusters forms a quadratic curve for each query shape, and
the relative error for spheresis far smaller than that for the other query shapes. However, if we look closer, the
constant factors of the quadratic functions are slightly different among different query shapes.

To determine the quadratic functions for each query shape, we applied the least-square curve fitting method
to the results from grid of size N = 64. The approximate quadratic functions were obtained as follows:

fa(s) = 0.973818s% + 0.354112s — 1.309880
fs(s) = 0.883308s%+ 0.471050s — 1.975170
fo(s) = 0.78435s? 4+ 0.112668s + 0.768710.

The approximatefunction f,(s) for cubic query regions confirmsthe asymptotic solution given in Corollary 1(ii)
because it is quite close to s2. In contrast, f,(s) and f.(s) the functions for concave polyhedral and spherical
guery regions are much lower than that. The reason is that, unlike the 2-dimensional case, the surface area of a
concave polyhedron or asphereis smaller than that of its minimum bounding hyper-rectangle. For example, the
surface area of the polyhedronillustrated in Figure 10(e) is %52 whilethat of the corresponding cubeis 6s2. The
surface area of the rectilinear polyhedron that contains the same set of grid points inside a sphere of diameter
s = 32154872, which isfar smaller than 6x 322 grid pointsfor the corresponding cube (s = 32). Note that the
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coefficients of the quadratic termsin £, (s) and f.(s) are fairly closeto 33 and §55, respectively.

Thisindicatesthat, in a d-dimensional space (d > 3), accessing the minimum bounding hyper-rectangle of a
given query region may incur additional non-consecutive disk accesses, and hence supports the argument made
in [14] that the minimum bounding rectangle may not be a good approximation to a non-rectangular object.

The main conclusions from our experiments are:

¢ The exact solution given in Theorem 2 matches exactly the experimental resultsfor square queries of size
2k % 2k,

¢ The asymptotic solutions given in Theorem 1 and Corollary 1 provide excellent approximation for d-
dimensiona queries of arbitrary shapes and sizes. For example, whend = 3, ¥ = 64, and s = 32, the
relativeerrorswere lessthan 4 percent for cubic and polyhedral queriesand lessthen 1 percent for spherical
gueries.

¢ Assumingthat blocksarearranged ondisk by Hilbert ordering, accessing the minimum boundingrectangles
of d-dimensional (d > 3) query regions may increase the number of non-consecutive accesses, whereas
thisis not the case for 2-dimensiona queries.

20



6 Conclusions

We have studied the clustering property of the Hilbert space-filling curve asalinear mapping of multidimensiona
space. Through agebraic anaysiswe have provided simpleformulaswhich state the expected number of clusters
for a given query region, and aso validated their correctness through simulation experiments.  The main
contributions of this paper are:

o Our result presented in Theorem 2 generalizes the previous work done only for 2x 2 query regions[13] by
providing an exact closed-form formulafor 2% x 2% for any & (k > 1).

¢ The asymptotic solution given in Theorem 1 further generalizes it for d-dimensiona polyhedral query
regions.

¢ We have shownthat, in a 2-dimensional space, the Hilbert curve achieves better clustering than thez-curve;
the number of clustersfor the Hilbert curveisonefourth of the perimeter of aquery rectangle, whilethat of
the z-curve is onethird of the perimeter plustwo thirds of the side length of therectangle in the unfavored
direction [21]. We conjecture that thistrend will hold even in higher dimensional spaces.

¢ We have shown that accessing the minimum bounding hyper-rectangles of d-dimensional (d > 3) non-
rectangular query regions may incur extra overhead by adding to the number of clusters (i.e., non-
consecutive disk accesses).

From the practica point of view, it isimportant to predict and minimize the number of clusters because it
determines the number of non-consecutive disk accesses, which in turn incur additional seek time. Assuming
that blocks are arranged on disk by Hilbert ordering, now we can provide a simple measure comprising only the
perimeter or surface area of a given query region and its dimensionality, which can then be used to predict the
required disk access behaviors and hence the total access time. Future work includes the extension of the exact
analysisfor d-dimensiona space.

A Appendix: proofs
Lemma 4 For any positiveinteger =,
t,=2""1 and b, +2s, =2(2" - 1).

Proof. A 2*-oriented’H% ., iscomposed of four 72, _,’sand three connection edges. Two 2, _,’sonthe
top half are 2*-oriented and two 1, _,'s on the bottom half are 1™-oriented on the |eft and 1~-oriented on the
right, respectively. Among the three edges connecting the four #2 +n_1'S the horizontal edge is not included
in the boundary subregion of the H2 +,, because the edge resides on the 2k+7=1_th row from the topmost of the
H%_.,.. The other two vertical connection edges are on the |eftmost and rightmost columns and hence included

in the boundary subregion of the HZ, . Thusthe main observations are:

(i) The number of connection edges in top boundary subregion of 72 +,, Isthe sum of those in top boundary
subregions of two 2*-oriented H2,,_,’s.

(ii) The number of connection edges in bottom boundary subregion of +2 +n, 1ISthe sum of those in bottom
boundary subregionsof a 1*-oriented 1%, _, and a1 --oriented HZ, ;.

(iii) The number of connection edges in left (or right) boundary subregion of 2 +,, ISthesum of those in left
(or right) boundary subregions of a 2+-oriented 12 +n—1 and a I-oriented (or 1~-oriented) H? +n_1 PlUs
one for a connection edge.

21



Since the bottom boundary subregion of a 1+-oriented H?2 +n—1 ISequivalent to theright boundary subregion of
a2™-oriented HZ, ,_, and so on, it follows that

t, = 2Xt,_1
bn = 2x Sp—1
Sp = Sp—1+t bn—l + 1

Sincet; = 1,b; = Oand s; = 1, weobtaint,, = 2"~ and b,, + 2s, = 2(b,,_1 + 2s,_1) + 2, which yields
by + 25, = 2(2" — 1). O

Lemma 6 Given a 2+-oriented HZ,,, asdepicted in Figure 7,

Ui = 202

e A A
pisd + i 4 D 4 2% (2" - 2).

Proof. Consider a 2*-oriented HZ, ,, which is composed of four %%, _,’s and three connection edges.
The number of 2*-oriented H2's in the subregions {B, F, H} of the 2+-oriented H2 ,, Is twice the number of
2+- orlentede’smthesubreglons{B F, H} of the 2*-oriented HZ becausethetop haf of the 2*-oriented

HZ_, containstwo 2*-oriented HZ,  _,’s. Thus the recurrence relatlon is ¢{B FHY 9 ¢{Bf;ﬁ[}. Since

@ff}[} = 2, weobtain

HEE =2

The bottom half of the 2+-oriented 1%, containsa 1™-oriented HZ, ,_, anda 1™-oriented 1%, _,. Thus,
on the bottom boundary subregions {C, G, i } each 1~-oriented H2 in the H2 _,'sturnsa 1~-oriented H2 and
a 2*-oriented HZ in the 2*+-oriented 1%, ; each 1™-oriented HZ inthe HZ, _, 'sturnsa 2*-oriented H? and a
I*-oriented H2 in the 2*-oriented 7., . No subgrid other than 1~-oriented H2's and 1t-oriented Hz’s in the
H% . ,_,'sturns 2*™-oriented HZ's in the H%M . Thusit follows that

¢{O,G,I} _ ¢{C,G,I}+¢{CG1}‘

2t n 1-n-1 1t
In addition, ¢{O &I} _ 0 because no 2--oriented H? exist on the bottom boundary subregions. Thus,

¢§f§[}+¢{OGl}+¢{OGl} on

1t .n

Similarly, on the left boundary subregion, we obtain the following recurrence relations.

D,F.G {D,F,G D,F.G
Qb;',n b= ¢2+ n— l} + ¢§ ,n—l}

¢iDFG}+¢{DFG}_I_¢{DFG} _ o

Then from the above four recurrence re ations,

R R CAu R )

1t.n 2t n—1 1+t ,n—1

n— C.G,I n— D, F,G
= (272400 1220 4 )

= 3x 224 (@i 4 20T,
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Since o071 4 Zﬂff@ = 2and ¢{CGI} 1 2¢ﬁ)’ZF’G} — 4, we obtain

e g 2 = 2

From ¢{E Iy zbﬁ) F5) dueto the salf- -symmetry of 2+- orlentedeJr , it follows that

Qbéffl}_l_lb{DFG}_l_lb{EHI} ¢{CGI}+2¢{DFG} on

1t.n

Now consider subregions {F, G H, 1 }. The H2’sin F, H are dways 2*-oriented, the H2 in Gis either
2+-oriented or 1*-oriented, and the 2 in | is either 2+-oriented or 1~-oriented. Thus, ¢{FH} = 2and

Vil b 4 g iO = 2. Therefore,

2tn 2t.n 2+ n
A R W =l el el
= 2'-2

So far we have derived the first two equations given in thislemma.
Finally, to derive the third equation, consider subregions {B, C, D, E}. Since the total number of H%’s in
those subregionsis 4(2" — 2),

¢{B,O,D,E}+¢{B ODE}_Hb{B ODE}_Hb{B C.D.E} _ 42" - 2).

2t.n 1t,n
There exist no 2~--oriented 12 in {B, C}, no 1--oriented 12 in {B, D}, and no 1*-oriented H2 in {B, E}. That
is, ¢{B - {B D} ¢{B E} = 0. Therefore,

O} + ¢{B O} ¢{B D,E} ¢{B,D,E})

n 1t .n
= 42— 2) - (i 1l gt
= 2(2"-2).

¢§?E}+¢{DE} el bl = a2 -2 - (0

n 1t .n

Lemmas8Let ay = 521 ihi(i), B = S22 4(2F — i + 1)hg(i) and v, = 52 dvx(7). Then,

1

§ﬁ+nw

Proof. First, ok + 6 = Y2 1zhk( D l( — i+ Dh(t) = zfil(zk + 1)hg(7). From the definition of
Hy, Hy = "2 hy(4). Therefore,

ap+ =2+ )H, and 7, =

g + B = ( ’f+1)Hk.

Second, v = ZZ 1 top(e) + Z _ok-1,1 10K(2) = ZZ 1 ive(d) + X (25 4+ d)op(28-1 4+ 4). Since
2-oriented H2's are verticaly self-symmetric, v, (2¥ — i + 1) = v (4) holds for any i (1 < i < 2F1). Thus,
%_zzﬂmm+z%%%1+mwﬁlw+n—z%ﬁmm+z%%%—H4)(ymmme
definition of V, and self-symmetry, V;, = 22 —1 vk( ). Therefore,

Zk—l

3= 3254 i) = 52+ DV
=1

2k—1
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