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Quantum electromagnetic field fluctuations result in the well-documented

Casimir-Lifshitz force between macroscopic objects. If the objects are anisotropic,

theory predicts a corresponding Casimir-Lifshitz torque that causes the objects to

rotate and align. In this work, we report the first measurements of the

Casimir-Lifshitz torque, which confirm the predictions first made decades ago. The

experimental design uses a nematic liquid crystal separated from a birefringent

crystal by an isotropic Al2O3 layer with a thickness ≤ 25 nm. The molecular

orientation of the liquid crystal is fixed with a rubbed counterplate, and, by

varying the rubbing and Al2O3 thickness, we measured the Casimir-Lifshitz torque

as a function of angle and distance.

Along the way, we developed a simpler formulation for calculating the

Casimir-Lifshitz interaction in planar systems, which facilitated further theoretical

study of the Casimir-Lifshitz torque. Using this method, we outline the conditions

for a repulsive Casimir-Lifshitz force between birefringent materials that would

allow for an angularly-dependent sign of the force. We also report an unexpected



enhancement of the torque from two sources: an intermediate dielectric medium

and the finite speed of light.
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Chapter 1: Introduction to Casimir-Lifshitz Interactions

1.1 Overview

In an introductory physics or chemistry course, students learn that charged

particles of opposite sign are attracted while those of alike signs are repelled.

Molecules or macroscopic objects experience an electrostatic force depending on

their net charge, which depends on the number of stray electrons that have been

added to or removed from the object. Beyond the static case, there exists an

electromagnetic force between uncharged objects as well. This force arises from

the random motion of negatively-charged electrons, which are relatively mobile

compared to the positively-charged atomic nuclei. As two uncharged objects are

brought near, the random motion of their electrons becomes correlated. That is,

an instantaneous dipole in the first object causes an instantaneous dipole of

opposite direction in the other. These anti-aligned dipoles contribute to an

attractive force in the brief moment of their existence. This process happens

continuously in bulk materials, but the resulting force is small compared to that

between objects with a net charge.

In 1948, Casimir derived an attractive force between two uncharged, metallic

plates at zero temperature caused by quantum fluctuations of the electromagnetic

1



field [1]. In his calculation, he considered the ground state free energy of an infinite

number of modes confined by the metal boundaries. Although this energy is infinite,

it changes by a finite amount as the plates are brought closer together. This results

in a finite force per unit area:

Fc = − π2~c
240d4

, (1.1)

where ~ is the reduced Planck constant, c is the speed of light in vacuum, and d is

the separation between two plates. We can make sense of Eq. 1.1 with dimensional

analysis: ~ has units of energy times time (eV s), c has units of speed (m s−1), and d

has units of length (m). Together, ~c/d4 has units of eV m−3 = N m−2, or pressure.

The force between two uncharged atoms or molecules is known as the

London force [2]. The London force is part of a family of intermolecular forces that

includes the attraction between two randomly-oriented permanent dipoles (Keesom

force) and between a permanent dipole and an uncharged molecule (Debye

force) [3]. In chemistry, this group is often referred to as van der Waals forces,

although sometimes this name refers to the London force only (and sometimes to

additional forces as well). Before Casimir’s derivation of the attractive force

between conductors, Hamaker calculated the attractive force between bulk

polarizable materials by integrating the molecular London force over spherical

particles [4]. Casimir also helped to generalize the short-range London force to

include the finite speed of light, the effect of which is referred to as retardation [5].

In the same work, he and coauthor Polder derived the force between a neutral

2



atom and a perfectly conducting plane, which is called the Casimir-Polder force 1.

The close connection between the London/van der Waals/Hamaker forces

and the Casimir force was made explicit by Lifshitz in 1956 [6] (which was

generalized in a follow-up work written with Dzyaloshinskii and Pitaevskii in

1961 [7]). He considered the simple geometry of three materials, two half-spaces

separated by vacuum. He then added a randomly-fluctuating electric field to

Maxwell’s equations and solved for the stress tensor, thereby deriving an

electromagnetic force. The resulting formulation can be used to calculate the

dispersion force between arbitrary planar dielectrics, accounting for the materials’

polarizability (i.e., dielectric functions), temperature, and separation. The Casimir

force is recovered in the case where the materials are perfect conductors (ε → ∞

for all frequencies) and temperature is 0 K. Lifshitz’s formulation also includes the

effect of retardation, which generally weakens the force at larger separations.

The Casimir force between metals, the Casimir-Lifshitz force between

dielectrics, the London force betwen neutral atoms, and the Casimir-Polder force

between a plate and an atom all have the same underlying mechanism of randomly

fluctuating electric fields. The difference in nomenclature refers to the geometry,

material properties, and separation of the materials in question (see Table 1.1).

Along with the London, Debye, and Keesom forces, the phrase “van der Waals

force” often includes the Casimir, Casimir-Lifshitz, and Casimir-Polder forces as

1In the same work, they also derived the force between two neutral atoms (London force) in the

retarded/long-range regime. In the literature, Casimir-Polder typically refers to the plate-particle

geometry.

3



well. Several books have succinctly derived and described the Casimir-Lifshitz/van

der Waals interactions from a variety of physical pictures [3, 8–10].

4



Table 1.1: Summary of some the nomenclature used to describe electromagnetic fluctuation forces between uncharged objects
in various systems. The phrase “van der Waals force” is used ambiguously, but, depending on context, can refer to the entire
table, the London, Debye, and Keesom forces, the London force alone, or all of these plus additional forces. When the separation
distance d is small, retardation effects are usually ignored.

Name Geometry Objects Distance Power law of free energy

Casimir plate-plate ideal, uncharged conductors large d−3

Casimir-Lifshitz plate-plate uncharged dielectrics any d−2 → d−3

Casimir-Polder particle-plate uncharged dielectrics large d−7

London particle-particle induced dipole + induced dipole small d−6

Debye particle-particle permanent dipole + induced dipole small d−6

Keesom particle-particle permanent dipole + permanent dipole small d−6

5



1.2 Casimir-Lifshitz torques

In 1972, Parsegian and Weiss calculated the nonretarded interaction between

two anisotropic materials separated by a third anisotropic material as a function of

their orientations [11]. Because the free energy depends on the relative orientation

of the materials, there arises a torque that causes the materials to rotate. Barash

later independently calculated the interaction between two anisotropic materials

across an isotropic medium including retardation effects, a feat which required the

solving of a homogeneous system of 18 equations by hand and resulted in a

page-long expression [12]. A major result from the present work has been to

simplify and generalize Barash’s calculation, which has charitably been referred to

as “very lengthy” [13] 2. The Casimir torque in the planar geometry was rederived

by van Enk [16], Kenneth and Nussinov [17], Shao [18], and Torres-Guzmán and

Mochán [19, 20]. Several authors have derived the Casimir torque in other

geometries and configurations, such as the torque between thin rods [21],

ellipsoidal particles [22], metallic nanorods in fluid [23], corrugated metal

plates [24], rotating, isotropic plates [25], and anisotropic layered media [26].

Dryden, Hopkins et al. have developed a free-to-use software package called

“Gecko Hamaker” for the calculation of van der Waals effects with retardation,

and have used it to study the effects of dielectric media, geometric anisotropy,

optical anisotropy, and retardation [27, 28]. Several theoretical and numerical

2it has also been referred to as intractable [14] and “algebraically very complicated and

untransparent, with little hope of a fundamental simplification” [15].
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studies have suggested that the anisotropic van der Waals interaction can cause

oriented adsorption of anisotropic particles on anisotropic substrates [29–31]. The

nonretarded van der Waals torque is also believed to have an effect on liquid

crystal alignment. We discuss the relevant literature in Section 4.4.

1.2.1 Proposed measurement methods

The field of Casimir force measurements is mature compared to theoretical

discussions of Casimir-Lifshitz torques, let alone torque measurements. However,

several groups have proposed various experiments that could feasibly measure the

Casimir-Lifshitz torque. Munday et al. proposed an experiment that would measure

the torque on microscopic disks of a birefringent crystal, such as lithium niobate

(LiNbO3) or calcite (CaCO3) [32, 33]. The birefringent disks would float in ethanol

above a birefringent plate, held in place by a balance of gravitational and repulsive

Casimir forces. Chen and Spence calculated the effect of the Casimir torque on the

oscillation of a torsion pendulum, and concluded that the torque could be measured

with such a system [34]. Esquivel-Sirvent and Schatz suggested that the torque

between BaTiO3 slabs and arrays of silver nanoparticles could be measurable [35].

Guérout et al. designed an experiment in which a gold grating suspended by fibers

would twist as it is lowered towards a second gold grating [36]. We proposed a liquid-

crystal based experiment in 2015, the results of which comprise the latter part of

this work [37]. Our experiment is similar in spirit to an earlier proposal by Smith

and Ninham [38]. Xu and Li suggested that the torque on a nanorod suspended

7



above a birefringent with optical tweezers could be measured [39]. To the best of

our knowledge, the only experiment that has been carried out to completion is our

own, which is presented in Chapters 6 and 7.

1.3 Device applications

Currently, most research in the field of Casimir physics is either theoretical or

focuses on precision measurements to check the validity of various approximations

and models. However, some researchers have proposed potential applications in

the field of Micro- and Nanoelectromechanical systems (MEMS/NEMS). Capasso

wrote a review that included many such devices that could operate using Casimir

forces and torques [40]. Chan et al. have constructed a number of on-chip MEMS

devices that measure or use the Casimir force [41–43]. Emig suggested that the

Casimir force could be used in a microscopic ratchet device [44]. Sheehan suggested

that the Casimir-Lifshitz interaction could even catalyze chemical reactions [45].

The Casimir force can also cause unwanted stiction in MEMS devices [46], which

helped motivate measurements of a repulsive Casimir force [47]. In nature, the

van der Waals/Casimir-Lifshitz force is the means by which geckos’ feet stick to

surfaces [48]. Because this work represents the first Casimir torque measurements,

there are relatively few device designs that employ it. But, for example, the Casimir

torque could potentially be used for non-contact power transmission in a MEMS or

NEMS device.
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1.4 Anisotropic Casimir force

There have been several studies on the effect of anisotropy on the Casimir

force, beginning with Parsegian’s pioneering work that predicts an

orientation-dependent sign of the force [11]. In Chapter 3, we expand on

Parsegian’s work and outline the necessary conditions for Casimir repulsion in

planar, anisotropic systems [49]. Romanowsky et al. predicted a

strongly-dependent orientation effect [50], and Banishev et al. measured the

angular dependence of the force between corrugated plates [51]. In other

theoretical works, Shao et al. considered the combined effects of anisotropy and

magnetic permeability [52], and Rosa et al. and Zeng et al. considered the force

between anisotropic metamaterials [53, 54].
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Chapter 2: Calculation of Casimir-Lifshitz free energy in planar

systems

2.1 Overview

Two objects experience a Casimir-Lifsthiz force whenever the free energy of

the fluctuating electromagnetic fields depends on the separation of the objects.

Analogously, a torque exists whenever the free energy depends on the relative

orientation of the objects. This requires the materials to have either optical or

geometric anisotropy. The effects of optical and geometric anisotropy are

intertwined, but in this work we limit our focus to optically anisotropic systems

only. In particular, we consider planar slabs separated by an isotropic medium

(Fig. 2.1). The planar slabs can be layered media and have any thickness in the

z−direction but must be uniform and infinite in the xy-plane. We also assume

that the materials are indistinguishable from vacuum to magnetic fields (µ(ω) = 1)

and consider the electric field contributions only. The Helmholtz free energy per

unit area is typically written in terms of a dispersion equation D(ω) = 0 for

surface waves (those that decay exponentially away from the interface) [11]. That

is, after writing out Maxwell’s equations with the appropriate boundary conditions

10



"3 d isotropic medium

slab 1

slab 2

x
z

...

Figure 2.1: We calculate the Casimir-Lifshitz interaction between two slabs of
infinite expanse in the xy-plane separated by an isotropic medium. The slabs can
be optically anisotropic, layered, and arbitrarily thick (slab 1 continues indefinitely
in the z−direction), so long as the reflection coefficients of polarized light from their
surface can be calculated.

for some configuration of materials, the resulting equations can be combined into

one and rearranged into the form D(ω) = 0. At zero temperature, the free energy

(per unit area, here and throughout this work) is [20]

Ω0 K(d) =
~

8π3

∫ ∞

0

dξ

∫ ∞

0

rdr

∫ 2π

0

dϕ logD(d, r, ϕ, ξ), (2.1)

where r and ϕ are azimuthal components of a wavevector, ξ = iω is a complex

frequency, and D(d, r, ϕ, ξ) = 0 represents the dispersion condition. At finite

temperatures, the integral over ξ becomes a finite sum evaluated at complex

11



frequencies iξn = in (2πkBT/~):

Ω(d) =
kBT

4π2

∞∑

n=0

′
∫ ∞

0

rdr

∫ 2π

0

dϕ logDn(d, r, ϕ), (2.2)

where the prime on the summation indicates that the n = 0 term is to be halved.

Curiously, Eq. 2.2 exactly corresponds to a trapezoidal integration of Eq. 2.1

with variable transform dξ → dn (2πkBT/~), with abscissae spacing proportional to

T [55]. The effect of temperature is mathematically equivalent to the error of a left

Riemann sum integration.

For any real material, the integral over ξ (or sum over n at finite temperature)

converges because all materials are transparent beyond some frequency, which is

manifest by a decay of Dn(ξ) to 0 as ξ → ∞. As T increases, the n = 0 term

contributes a larger and larger fraction to the total interaction as the Dn(n > 0)

terms are evaluated at higher and higher frequencies.

The rest of this chapter is dedicated to relatively simple expressions for Dn,

which for decades has been a source of anguish for any researcher studying the

Casimir-Lifshitz torque.

2.2 Dispersion relation for planar systems

Lambrecht et al., following the work of Kats [56], demonstrated that the

dispersion relation in the Casimir-Lifshitz calculation can be written in terms of

the Fresnel reflection matrices of the two surfaces that bound the medium of

thickness d [57]:

Dn = det
(
1− r1r2e

−2ρ3d
)

(2.3a)
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ri =



rss,i rsp,i

rps,i rpp,i


 , (2.3b)

where d is the distance between the two materials, ρ3 is the z-component of the

k-vector in the intervening medium, rsp indicates the ratio of the reflected electric

field with s−polarization (transverse electric, or TE) to an incident electric field

with p−polarization (transverse magnetic, or TM) (and likewise for rss, rpp, and

rps), and the index i refers to the interface between the ith slab and the isotropic

medium. Torres-Guzmán and Mochán rederived the same result, explicitly

including anisotropic materials [20]. This formulation clarifies the connection

between Casimir’s derivation of the force with Lifshitz’s bulk calculation: even

though Lifshitz considered field fluctuations in infinitely thick materials, the

calculated force depends only on the reflection at the boundaries between the

materials and the intervening dielectric medium (Fig. 2.2).

In fact, Torres-Guzmán’s effective cavity approach allows for a relatively simple

calculation of any planar Casimir-Lifshitz interaction across an isotropic medium.

Whether the interacting materials are anisotropic, layered, or inhomogenous, the

Casimir-Lifshitz free energy can be calculated using Eq. 2.3 for any materials whose

properties are independent of x and y. Fresnel reflection coefficients for various

systems can be determined analytically; for example, Lekner has calculated them for

uniaxial materials with arbitrarily rotated axes [58]. The calculation is complicated

but not intractable when the intervening medium is anisotropic: a similar procedure

can be used with the new eigenmodes of the medium (which will no longer be

13



"3 d "3 d

r1

r2

Figure 2.2: Effective cavity model for Casimir-Lifshitz interactions. The dispersion
relation used to calculate the Casimir-Lifshitz interaction depends on the Fresnel
reflection matrices
bmr1 and r2 at the interfaces of the isotropic medium. These matrices can be
calculated independently for the two slabs in order to find the dispersion relation.

TE and TM waves). This is the method used by Jiang and Wilczek to derive a

repulsive, switchable Casimir force between conductors separated by an optically

active medium with circularly-polarized eigenmodes [59].

Our strategy for generating expressions for the Casimir-Lifshitz free energy

between thick slabs is as follows:

1. calculate the Fresnel reflection matrices from the formulae below

2. transform the expressions into the laboratory coordinate frame (if, for example,

one material is to be rotated)

3. compute the Casimir-Lifshitz free energy using Eqs. 2.2 and 2.3.
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2.3 Fresnel reflection coefficients

In the following sections, we calculate the reflection coefficients for a system

of experimental relevance: a thick, homogeneous, nonmagnetic material with

arbitrary dielectric tensor covered with an isotropic film of thickness f (Fig. 2.3).

We then apply various simplifications to the somewhat complicated result.

Following the method of Lekner [58], the reflection coefficients can be written in

terms of the polarization eigenmodes of the anisotropic material. We note that

"i

"3

"f

r

r

r

x

z
i⇢f

i⇢A

i⇢B

i⇢3

f

Figure 2.3: Isotropic film on an arbitrary, uniform dielectric. The Fresnel reflection
matrix ri between materials 3 and the film of thickness f can be combined with a
second interface to calculate the Casimir-Lifshitz interaction between two dielectrics
with films.

most derivations of Fresnel reflection coefficients (such as Lekner’s) assume waves
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that propagate in z rather than decay. To convert between the two, the

z-component of the eigenmodes and wavevector must be multiplied or divided by i.

That is, if the wavevector is derived for incoming wave k = (u, v, q), then we

substitute q = iρ. As derived by Barash, ρi =
√
r2 − εik for an isotropic material,

where k = ω/c is the wavenumber in vacuum and r =
√
u2 + v2 is the radial

component of the wavevector. In anisotropic materials, there are two eigenmodes

with different wavevectors. Though they are referred to as the fast and slow wave,

we denote their z-components as ρA and ρB. In a uniaxial system, these

correspond to ordinary and extraordinary waves.

2.3.1 Arbitrary anisotropic material with isotropic film

Consider a homogeneous, nonmagnetic material with arbitrary dielectric

tensor εi (which physically must be symmetric). Let the (unnormalized)

eigenmodes be of the form FA ∼
(
1, FA

y , F
A
z

)
and FB ∼

(
1, FB

y , F
B
z

)
. The

reflection coefficients, which share the common denominator rD, are then:

rsprD = + 2ik
√
ε3ρ3

[
ir(FA

z − FB
z )+

(
ρA − ρB )] sech2 (fρf ) (2.4a)

rpsrD =− 2ik
√
ε3ρ3F

A
y F

B
y (ρA − ρB) sech2 (fρf ) (2.4b)

rssrD = + FA
y

[
ΛA
− +QA

− tanh (fρf )
] [
gB− + iFB

z rρ3 −
(
hB− − iFB

z µ
)

tanh (fρf )
]

− FB
y

[
ΛB
− +QB

− tanh (fρf )
] [
gA− + iFA

z rρ3 −
(
hA− − iFA

z µ
)

tanh (fρf )
]

(2.4c)
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rpprD =− FA
y

[
ΛA

+ +QA
+ tanh (fρf )

] [
gB+ + iFB

z rρ3 −
(
hB+ + iFB

z µ
)

tanh (fρf )
]

+ FB
y

[
ΛB

+ +QB
+ tanh (fρf )

] [
gA+ + iFA

z rρ3 −
(
hA+ + iFA

z µ
)

tanh (fρf )
]

(2.4d)

rD = + FA
y

[
ΛA

+ +QA
+ tanh (fρf )

] [
gB− + iFB

z rρ3 −
(
hB− − iFB

z µ
)

tanh (fρf )
]

− FB
y

[
ΛB

+ +QB
+ tanh (fρf )

] [
gA− + iFA

z rρ3 −
(
hA− − iFA

z µ
)

tanh (fρf )
]

(2.4e)

with

µ = rρfε3/εf (2.5a)

Λi
± = ρ3 ± ρi (2.5b)

Qi
± = ρ3ρi/ρf ± ρf (2.5c)

gi± = ρ3ρi ± ε3k
2 (2.5d)

hi± = εfk
2ρ3/ρf ± ε3ρiρf/εf . (2.5e)

The eigenmodes FA and FB themselves are algebraically unwieldy for arbitrary

biaxial materials, but nevertheless are analytically solvable. We will focus our

attention on in-plane uniaxial materials, which represent the experimental reality

of our measurements.
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2.3.1.1 Removal of the film

The forms of Eqs. 2.4 and 2.5 permit immediate removal of the isotropic

film, yielding the reflection coefficients for a thick, uniform, arbitrary dielectric. By

setting f = 0, tanh(ρff) = 0, and sech(ρff) = 1, the simplified reflection coefficients

are

rsprD = + 2ik
√
ε3ρ3

[
ir(FA

z − FB
z )+

(
ρA − ρB )] (2.6a)

rpsrD =− 2ik
√
ε3ρ3F

A
y F

B
y (ρA − ρB) (2.6b)

rssrD = + FA
y ΛA
−
(
gB− + iFB

z rρ3

)
− FB

y ΛB
−
(
gA− + iFA

z rρ3

)
(2.6c)

rpprD =− FA
y ΛA

+

(
gB+ + iFB

z rρ3

)
+ FB

y ΛB
+

(
gA+ + iFA

z rρ3

)
(2.6d)

rD = + FA
y ΛA

+

(
gB− + iFB

z rρ3

)
− FB

y ΛB
+

(
gA− + iFA

z rρ3

)
. (2.6e)

2.3.2 Polarization eigenmodes for in-plane uniaxial material

For a uniaxial birefringent material with its optical axis in the xy-plane, the

dielectric tensor is of the form

εi = Rθi




εi‖ 0 0

0 εi⊥ 0

0 0 εi⊥



R−1
θi
, (2.7)

where Rθi is the rotation matrix of angle θi about the z-axis. The incident ray is

in the xz-plane, so that θi represents the angle between the incident ray and the

optical axis of the crystal. As derived by Lekner, the polarization eigenmodes and
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ρ′s in such a material are of the form

FA ∼ (1,− cot (θi) , ir/ρA) (2.8a)

FB ∼
(
1,−εi⊥ tan (θi) k

2/ρ2
A, irρB/ρ

2
A

)
(2.8b)

ρA =
√
r2 − εi⊥k2 (2.8c)

ρB =
√
r2 − εi‖k2 +

(
εi‖/εi⊥ − 1

)
r2 cos2 θi (2.8d)

where, in this case, ρA is the ordinary ray and ρB is the extraordinary ray.

2.3.3 Isotropic materials, with and without a film

For isotropic materials, there are two degenerate ordinary waves. It is clear

upon examination of Eq. 2.4 that näıve substitution of B → A will yield nothing.

A careful derivation yields the same result as simply striking out the second (or

first) term in each sum for Eqs 2.4c–e. On physical grounds, there should be no

polarization mixing from an isotropic surface, so the off-diagonal terms in the Fresnel

reflection matrix are 0. After some simplification, we find

rsp = rps = 0 (2.9a)

rss =
ΛA
− +QA

− tanh (fρf )

ΛA
+ +QA

+ tanh (fρf )
(2.9b)

rpp =
gA+ + iFA

z rρ3 −
(
hA+ + iFA

z µ
)

tanh (fρf )

gA− + iFA
z rρ3 − (hA− − iFA

z µ) tanh (fρf )
. (2.9c)

Again setting f = 0 to remove the film, these reduce (after substitutions) to the

well-known expressions

rsp = rps = 0 (2.10a)
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rss =
ρ3 − ρA
ρ3 + ρA

(2.10b)

rpp =
ε3ρA − εAρ3

ε3ρA + εAρ3

. (2.10c)

We note that an overall (−) sign may appear in expressions for rpp in other works;

this is merely a sign convention and has no effect on any calculated results.

2.4 In-plane uniaxial materials

To demonstrate the utility of this method, we pause here to derive the Casimir-

Lifshitz free energy for the system considered by Barash (two uniaxial, birefringent

half-spaces with extraordinary axes in xy−plane, separated by an isotropic medium).

This formulation was first published in [49] with slightly different notation. Using

the polarization eigenmodes and wavevectors from Eq. 2.8 and the film-free Fresnel

coefficients from Eq. 2.6,

rsprD = rpsrD = k
√
ε3ε⊥ρAρ3 (ρA − ρB) sin (2θi) (2.11a)

rssrD = sin2 (θi) ΛB
−γ+ + cos2 (θi) ΛA

−ν+ (2.11b)

rpprD = − sin2 (θi) ΛB
+γ− + cos2 (θi) ΛA

+ν− (2.11c)

rD = sin2 (θi) ΛB
+γ+ + cos2 (θi) ΛA

+ν+, (2.11d)

where we have introduced the substitutions

ν± = ε3ρ
3
A ± ε⊥ρAρBρ3 (2.12a)

γ± = ε⊥k
2 (ε⊥ρ3 ± ε3ρA) . (2.12b)

This represents the r-matrix for one material. To combine two materials in Eq.

2.3 to calculate the Casimir-Lifshitz free energy using Eq. 2.2, we write out the

20



r-matrix for each material, using the appropriate dielectric functions. It is

convenient to set the optical axis of the first material along x, such that θ1 = ϕ

(the azimuthal direction of the integrated wavevector) and θ2 = ϕ + θ, where θ is

now the relative twist between the two materials’ optical axes. This formulation

produces an algebraically equivalent expression to Barash’s but is more

transparent and easily implemented in just a few lines of code.

2.5 Summary of Casimir-Lifshitz calculations for planar systems

With Equations 2.2, 2.3, and Fresnel reflection coefficients from Section 2.3

(or from any other method), one can calculate the Casimir-Lifshitz free energy in

the planar geometry with relative ease. Though the calculation is still somewhat

cumbersome, this formulation is modular, more general, and massively simplified

from Barash’s expression, which was used from 1978 to the present day. This

formulation led to new insights in the field of Casimir physics, some of which are

outlined in the next chapter.
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Chapter 3: Forces and torques in anisotropic systems

3.1 Overview

The formulation in the previous chapter permits the calculation of

Casimir-Lifshitz interactions for complex planar systems and allows for the

exploration of interesting phenomena. One feature, first noted by Parsegian and

Weiss in the nonretarded calculation [11], is the possibility of a free energy with an

orientation-dependent sign. In plain terms, they demonstrated that, with an

appropriate intervening dielectric, anisotropic materials could switch between an

attractive and repulsive Casimir-Lifshitz force by rotating. We discuss this

phenomenon in further detail in [49], outlining the necessary conditions for the

attractive/repulsive transition. The intervening dielectric can also enhance the

Casimir-Lifshitz torque significantly. We first reported this effect in [60]. In the

same work, we examined the surprising effect of retardation in anisotropic systems.

Like the dielectric medium, retardation is usually assumed to weaken

Casimir-Lifshitz interactions of all kinds. However, we found that the torque is

generally enhanced by retardation at the experimentally accessible separations of

0–40 nm. In this chapter, we summarize the results from [49,60].

22



3.2 Conditions for repulsive Casimir forces between identical

birefringent materials

The work in this section was originally published in [49]. Because attractive

Casimir-Lifshitz forces can cause stiction in MEMS or NEMS devices [46], there has

been significant effort to engineer systems that exhibit Casimir-Lifshitz repulsion. So

far, repulsion has only been measured between two dissimilar materials separated by

a third material which has a dielectric response intermediate to the other materials

[47, 61]. Some theoretical works have proposed other systems that could exhibit

Casimir repulsion. The most common approach among these includes metamaterials

with strong magnetic responses at optical frequencies, such as in [62–65]. Rosa et al.

considered uniaxial out-of-plane metamaterials (among other anisotropic materials),

but focused on planar systems separated by vacuum [53]. These systems all require

at least one of the plates to have a strong magnetic response. There have also

been numerical and analytical studies of geometries that could produce repulsion

between metals separated by vacuum, but these systems are unstable to lateral

perturbations and therefore difficult to realize experimentally [66, 67]. Deng et al.

predicted an attractive-repulsive transition of the force between an aligned, uniaxial,

in-plane material and a conducting surface separated by vacuum as a function of

distance [68]. This system also relies on the magnetic response of the plates to

produce repulsion.

However, there is another less commonly discussed system that exhibits
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different isotropic materials identical rotated materials
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(a) (b)
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"1 "3 "2 "1 "3 "2

x̂

ŷ
ẑ

a b

Figure 3.1: Schematic of the systems under investigation. Two infinite dielectric
slabs interact across a third dielectric of width d. We compare the Casimir-Lifshitz
interaction in (a) the case of two isotropic slabs with dielectric functions ε1 and ε2

to (b) the case with two identical birefrigent materials with dielectric function ε‖
along the principal axis and ε⊥ in the other directions. In (b) the optical axis for
material one is along the x-axis while that of material two is rotated by θ = π/2.

Casimir repulsion: nonmagnetic dielectrics with uniaxial in-plane birefringence

separated by a dielectric medium, as first noted in [11]. For this case, two identical

materials can exhibit Casimir-Lifshitz repulsion under specific orientations.

Although two planar dielectric bodies with reflective symmetry are almost always

attracted [69], a rotational displacement between the two anisotropic materials

breaks the reflective symmetry of the system. The force is always attractive when

the axes of symmetry are aligned, but can become repulsive when the symmetry is

broken. Here we expand on [11] to outline the conditions for which

Casimir-Lifshitz repulsion may occur for two identical, anisotropic materials.
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3.2.1 Nonretarded Hamaker coefficients for anisotropic systems

We consider two identical, semi-infinite slabs of uniaxial birefringent materials

with optical axes in the xy−plane, but rotated with respect to each other (Fig.

3.1b). Their permittivity tensors are:

ε1 =




ε‖ 0 0

0 ε⊥ 0

0 0 ε⊥



, (3.1a)

ε2 =




ε‖ cos2 θ + ε⊥ sin2 θ (ε⊥ − ε‖) sin θ cos θ 0

(ε⊥ − ε‖) sin θ cos θ ε‖ sin2 θ + ε⊥ cos2 θ 0

0 0 ε⊥



, (3.1b)

where θ is the relative angle between the optical axes of the materials. When their

axes are aligned, θ = 0 and ε1 = ε2. The Helmholtz free energy per unit area of

this system can be calculated using the methods of Chapter 2. In the nonretarded

limit (corresponding to the van der Waals regime), the Casimir-Lifshitz free energy

per unit area is often expressed in terms of a Hamaker constant AHam, which is

independent of d:

Ω(d, θ) = −AHam

12πd2
, (3.2)

resulting in a force given by

F (d, θ) = −∂Ω(d, θ)

∂d
= −AHam

6πd3
. (3.3)

The sign of the Hamaker coefficient gives the sign of the force, with AHam > 0

indicating attraction and AHam < 0 indicating repulsion.
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The dispersion condition can be written as a function of the Fresnel reflection

matrices of the two interfaces. In the nonretarded approximation, rssi = rspi = rpsi =

0, and only rppi (corresponding to TM modes) remains, so that:

Dn = 1− rpp1 r
pp
2 e
−2ρ3d, (3.4a)

rppi =
ε3 − ε⊥

√
1 +

(
ε‖/ε⊥ − 1

)
cos2 (θi + ϕ)

ε3 + ε⊥

√
1 +

(
ε‖/ε⊥ − 1

)
cos2 (θi + ϕ)

, (3.4b)

where θ1 = 0, θ2 = θ, and ϕ is an integration variable. In this approximation, the

integral over r can be carried out analytically, and the nonretarded Casimir-Lifshitz

interaction energy per unit area is proportional to 1/d2.

The three dielectric constants in rppi can be expressed in terms of two variables,

such as ε‖/ε3 and ε⊥/ε3. Using Eq. 3.4a, the integral over r in Eq. 2.2 can

be performed analytically, and we can write the Hamaker coefficient as a sum of

contributions from each Matsubara frequency:

AHam =
∞∑

n=0

′
AHam,n, (3.5a)

AHam,n =
3kBT

4π

∫ 2π

0

dϕ Li3 (rpp1 r
pp
2 ) , (3.5b)

where Li3 is the third-order polylogarithm function. The integration over ϕ is carried

out numerically as a function of the ratios ε‖/ε3 and ε⊥/ε3 in Fig. 3.2.

The total Hamaker coefficient can be found by summing the values of the

dielectric functions at each of the Matsubara frequencies. For comparison, we also

consider the interaction between isotropic materials with ε1 = ε‖ and ε2 = ε⊥

(Fig. 3.1a). The nonretarded free energy is given by Eq. 3.5, with rppi,iso = εi−ε3
εi+ε3

.

This expression yields Dzyaloshinskii’s condition for repulsion between isotropic
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Figure 3.2: The contribution of a single Matsubara term to the total Hamaker
coefficient is plotted as a function of the dielectric coefficients. The red regions
represent a positive energy (attractive force) and the blue regions represent a
negative energy (repulsive force). (a) shows the contributions when the interacting
materials are isotropic and not necessarily identical. (b) shows the contributions
for two anti-aligned identical birefringent materials. The blue regions correspond
to a negative contribution to the free energy (repulsion) for both (a) and (b).
For anti-aligned birefringent materials, the greatest negative contribution possible
from a single Matsubara term is approximately −0.45 zJ. The points indicate the
contributions from the first 1000 Matsubara terms for the gold/ethanol/vacuum
system (or gold gratings interacting across ethanol in (b)) at room temperature
(Matsubara terms n = 10, 100, 1000 are indicated by +,2,#, respectively).
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materials: ε1 < ε3 < ε2 or ε2 < ε3 < ε1. These conditions correspond to the

blue region in Fig. 3.2a.

By analogy, one might suspect that the repulsion condition for birefringent

materials is ε⊥ < ε3 < ε‖ or, for materials with negative birefringence, ε‖ < ε3 <

ε⊥. However, the repulsive condition depends on ϕ (the azimuthal direction of the

mode’s k-vector), and these inequalities are a necessary (but not sufficient) condition

for repulsion. In the nonretarded case, the repulsion condition rpp1 r
pp
2 < 0, which

yields a negative integrand in Eq. 3.5, simplifies to

(
ε⊥

√
1 +

(
ε‖
ε⊥
− 1

)
cos2 ϕ− ε3

)
×

(
ε⊥

√
1 +

(
ε‖
ε⊥
− 1

)
cos2 (θ + ϕ)− ε3

)
< 0.

(3.6)

Systems that exhibit Casimir-Lifshitz repulsion (and, as a result, an attractive-

repulsive transition with θ) will have materials that satisfy Eq. 3.6 for a range

of ϕ at many Matsubara frequencies. In the anti-aligned case where θ = π/2,

this is achieved for combinations of dielectric functions that fall in the blue regions

of Fig. 3.2b. As an example of such a system, we consider a fictional material

with high birefringence that has ε‖ modeled by the dielectric response of gold and

ε‖ = 1. We use the dispersion models from [32] and [70] for ethanol and gold,

respectively. The points in Fig. 3.2b correspond to the AHam,n that contribute to

the repulsive nonretarded Casimir-Lifshitz force for this system. For comparison,

the points in Fig. 3.2a correspond to the nonretarded Casimir-Lifshitz interaction

in a gold/ethanol/vacuum system.
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Figure 3.3: The ratio of the zero-temperature, long-range Casimir force for two
systems scaled to the Casimir force between two perfect conductors, (FCasimir =
−~cπ2240/d4), with ε‖,0 and ε1,0 taken to infinity (as for a perfect conductor). In
this case, DC the dielectric constants of the other materials determine the sign of the
force. For the isotropic case (a), the condition for repulsion is the usual ε2,0 < ε3,0.
For the case with identical, anti-aligned birefringent materials (b), the repulsive
condition is numerically found to be ε⊥,0 . 0.27ε3,0.

3.2.2 Long-range repulsive Casimir force between anisotropic

materials

At separations greater than a few nanometers, retardation effects become

significant. The Hamaker coefficient usually decreases monotonically with distance,

although it may be slightly increased in special cases [27]. The Casimir-Lifshitz

force is a result of quantum fluctuations as well as thermal fluctuations, and the

quantum fluctuations alone can cause repulsion between anti-aligned, birefringent

materials. To illustrate this, we consider the long-range, zero-temperature Casimir

effect. In this regime, the force between metals approaches the original expression

derived by Casimir [1]: FCasimir(d) = −~c π2

240
1
d4 . Lifshitz derived the force between
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Figure 3.4: The room temperature, nonretarded Hamaker constant between infinite
half-spaces of 1D conductors (ε⊥ = 1, ε‖ = εAu) separated by ethanol. The slabs
experience an attractive force when the conduction axes are aligned, and a repulsive
force when the axes are anti-aligned.

dielectrics in the long-range case [6]. Physically, the DC dielectric constant εi,0 is

used to describe the dielectric function over all frequencies because the high

frequency terms are damped by retardation. With this approximation, we

calculate the long-range Casimir force of anti-aligned gratings when the material is

an ideal conductor (ε → ∞) along its ordinary axes or extraordinary axis, which

correspond to 2D and 1D conductors, respectively. When the material is a 1D

conductor (Fig. 3.3), there is Casimir repulsion for anti-aligned materials when

ε⊥,0 . 0.27ε3,0. We note that long-range interactions at finite temperatures are

dominated by the nonretarded n = 0 Matsubara term, which is strictly attractive

for 1D conductors (ε‖ → ∞). However, birefringent materials with finite dielectric

functions at zero frequency may still exhibit long-range Casimir repulsion if the

materials satisfy the conditions in Fig. 3.2b for the n = 0 term.
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3.2.3 Example with gold, ethanol, and vacuum

To illustrate some of the consequences of an orientation-dependent sign change

in the Casimir force, we further consider the interaction between 1D gold conductors

across ethanol with retardation effects: ε‖ = εAu, ε⊥ = 1, ε3 = εethanol at room

temperature. The anisotropic materials can be thought of as idealized arrays of

gold nanowires. As noted in [71], the dielectric models used in calculation can have

a nontrivial effect on the calculated results, so these calculations do not precisely

represent the physical system. Instead, we present them to demonstrate the sign

change in the Casimir force as a function of separation and relative orientation, and

emphasize that this effect can occur for other combinations of materials.

At short ranges, this system exhibits attraction for aligned materials and

repulsion for anti-aligned materials. The Hamaker coefficient is plotted as a

function of relative orientation in Fig. 3.4. The extreme values of AHam correspond

to ≈ 6 kBT at room temperature, which is a typical value for dielectrics interacting

across a medium [3]. We also show the energy of the aligned and anti-aligned

materials as a function of distance in Fig. 3.5, noting that the energy has the

approximate form of Ω(d, θ) ∼ sin2 θ at a fixed distance. The anti-aligned plates

exhibit Casimir repulsion up to a separation of 70 nm. At greater distances the

Casimir force is attractive. This sign change is a result of the dispersion of the

materials, as in [72].
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Figure 3.5: The distance dependence of the Casimir-Lifshitz force between two
idealized 1D conductors separated by ethanol. When the conductance directions
are perpendicular, the two plates are repelled at short distances (d . 70 nm) and
attracted at long distances.

3.2.4 Casimir-Lifshitz repulsion between real materials

We have calculated the repulsive force between the hypothetical gold/vacuum

gratings in ethanol to demonstrate a strong version of this effect. However, the

gratings would surely have different dielectric properties than the simple ε⊥ = 1,

ε‖ = εAu system we have described here. In reality, one might consider the effect

between two identical, uniaxial crystals with high optical anisotropy. The calculation

of Casimir-Lifshitz forces requires the knowledge of ε(iξ) for a very large range of

frequencies. These dielectric functions can be constructed from optical data with the

Kramers-Kronig relations but usually carry a large degree of uncertainty [3,73–75].

The repulsive force discussed here requires an intervening dielectric of intermediate

strength at a large number of Matsubara terms so given the limited availability of

experimentally determined optical properties, it is difficult to confidently predict a
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combination of materials that could achieve repulsion.

However, we can suggest properties of materials that could achieve a repulsive

force. With an eye towards satisfying Eq. 3.6, we suggest that the uniaxial crystals

should have high birefringence. If the intervening material is a liquid, then uniaxial

crystals with low indices may make the repulsion condition easier to satisfy (as many

liquids have 1 < ε(iξ) < 2 for the relevant Matsubara frequencies [75]). A system

that satisfies Eq. 3.6 for the n = 0 Matsubara term, for which static dielectric

constants are often well-known, would likely achieve repulsion at large separations

where the n = 0 term dominates.

In Fig. 3.6, we plot dielectric models of ε(iξ) for four birefringent materials

along with ε(iξ) models for liquids that satisfy Eq. 3.6 for some Matsubara terms.

We construct Ninham-Parsegian models for ε(iξ) of BaB2O4 and LiIO3 using the

method of [73], the static dielectric constants from [76], and the optical data

from [77] and [78]. The model for CaCO3 is from [74], and the models for

iodobenzene and diiodomethane are from [75]. With these dielectric models, the

systems with BaB2O4, LiIO3, and CaCO3 and chosen liquids would not experience

Casimir-Lifshitz repulsion for any relative orientation of the crystals. However,

given our limited knowledge of the ε(iξ) functions, it is possible that the proposed

systems or others like them could exhibit the repulsive effect described here for

slightly modified optical properties.

A system that often satisfies Eq. 3.6 is the intervening ‘melt’ between two

birefringent solids considered by Parsegian [11], which has ε3 = (2ε⊥+ε‖)/3. This is

a common model for liquid crystals in the isotropic state [79]. The lower right figure
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Figure 3.6: The black lines represent the birefringent crystals with solid and dashed
lines corresponding to the ordinary (⊥) and extraordinary (‖) axes, respectively.
The gray band represents values of ε3(iξ) that satisfy Eq. 3.6. The blue lines
represent a liquid chosen to maximize the number of Matsubara terms that satisfy
Eq. 3.6. Inset are the values used in the Ninham-Parsegian oscillator model, with
values for ωUV and ωIR in eV.
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in Fig. 3.6 shows the interaction between anti-aligned 5CB nematic liquid crystal

when separated by isotropic 5CB. This uses the dispersion model for 5CB developed

in [80]. However, measuring a repulsive force between two liquid layers (separated by

a third liquid at a different temperature) presents obvious experimental difficulties.

3.2.5 Summary of Casimir-Lifshitz repulsion between anisotropic

materials

We have detailed the conditions for a repulsive Casimir-Lifshitz force to exist

between identical birefringent materials in the retarded and nonretarded regimes.

The constraint on the dielectric functions (Eq. 3.6) is more restrictive than the

ε1 < ε3 < ε2 condition for isotropic dielectrics. However, repulsion between identical

birefringent materials is achievable. Furthermore, because the force can be changed

from attractive to repulsive by rotating one of the materials, it could be used as a

switchable force in MEMS or NEMS devices. Because repulsion between identical

birefringent dielectrics exists for certain materials over a large range of separations,

this effect could be important in many physical systems.

3.3 Casimir-Lifshitz torque enhancement by retardation and

intervening dielectrics

The work in this section was originally published in [60]. At small

separations, the Casimir-Lifshitz effect is equivalent to a van der Waals

interaction. The connection between the Casimir-Lifshitz and van der Waals

35



formulations is summarized in a recent review by Woods [15]. The van der Waals

free energy per unit area between two optically isotropic, planar dielectrics is often

written in terms of a Hamaker constant A0:

Ω(d) = − A0

12πd2
. (3.7)

To account for the finite speed of light, the Hamaker constant becomes a distance-

dependent Hamaker coefficient in the Casimir-Lifshitz formulation: A0 → A(d).

The Hamaker coefficient reduces to the Hamaker constant at short ranges [3, 81].

This distance dependence encodes the effect of retardation, or the finite speed of

light. Retardation weakens Casimir-Lifshitz interactions between isotropic slabs,

and A(d) decays from A0 to 0 as d increases. For two birefringent plates, the

Hamaker coefficient depends on the relative angle between the plates, resulting in

an angular dependence of the free energy per unit area:

Ω(d, θ) = −A(d, θ)

12πd2
, (3.8)

and hence a torque per unit area M(d, θ) arises between the two materials:

M(d, θ) = −∂Ω(d, θ)

∂θ
. (3.9)

In this section, we explore the effect of retardation on the Casimir-Lifshitz

torque and find two surprising situations that lead to an enhancement of the

torque. The geometry of the system is shown in the inset of Fig. 3.7, and the two

effects in question are apparent in the plotted torques per unit area between

parallel TiO2 slabs at a separation of 30 nm. First, we demonstrate that the
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Figure 3.7: Casimir-Lifshitz torque per unit area between two TiO2 slabs separated
by 30 nanometers of vacuum (black) or water (green). In the nonretarded
approximation (dashed), the Casimir-Lifshitz torque reduces to the van der Waals
torque. The calculated torque is increased by the intervening dielectric as well as
by retardation effects. Inset: geometry of the system in question.

anisotropic part of the Hamaker coefficient (corresponding to the Casimir-Lifshitz

torque) between semi-infinite dielectric slabs is generally increased by retardation

at small separations. For common birefringent crystals such as TiO2, the

enhancement is most prominent when the slabs are separated by tens of

nanometers. As a result, the calculated torque is significantly greater when

retardation effects are included than when they are neglected. Furthermore, we

demonstrate that the insertion of a dielectric medium can increase the

Casimir-Lifshitz torque at small separations. We demonstrate that common

dielectric materials (such as liquids with optical refractive indices near 1.5), can

increase the calculated Casimir-Lifshitz torque between TiO2 slabs by as much as

a factor of two. This effect persists throughout the experimentally accessible

regime of separations on the order of 1–100 nm.
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Heuristically, we can describe this effect by noting that the Casimir-Lifshitz

torque depends on the relative orientation of the two plates. Even if the strength of

the Casimir-Lifshitz interaction Ω(d, θ) is decreased for all θ by inserting a dielectric

medium, it may be decreased more for θ = π/2 than for θ = 0. As a result, the

energy difference between the two orientations is increased, which corresponds to an

enhancement of the torque.

As a result of these two effects, the calculated Casimir-Lifshitz torque can be

greatly increased when retardation effects and intervening dielectric media are

included. The enhancement of the torque by retardation implies that calculations

that neglect retardation should be reexamined, as they may significantly

underestimate the torque. A similar retardation effect was predicted for the

Casimir-Lifshitz force in special cases involving systems with thin metallic

films [82] or high anisotropy [27, 28]. The enhancement of the torque by insertion

of a dielectric implies that an intermediate dielectric may be helpful in

experiments designed to measure the Casimir-Lifshitz torque. To our knowledge,

there is no analogous effect for the Casimir-Lifshitz force. Together, these results

open new venues for manipulation of fluctuation forces at the nanoscale and have

major implications for the design of Casimir-Lifshitz torque experiments.

3.3.1 Small anisotropy approximation

We consider a system of two parallel, semi-infinite, half-spaces of birefringent

materials separated by distance d, as shown in the inset of Fig. 3.7. The materials
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have their optic axes in the xy plane but are rotated by angle θ relative to each

other. The Hamaker coefficient A(d, θ), can be split into isotropic and anisotropic

parts A(0)(d) and A(2)(d), respectively:

A(d, θ) ≈ A(0)(d) + A(2)(d) cos (2θ) . (3.10)

The cosine-like dependence in Eq. 3.10 is valid for materials with small birefringence.

We define the isotropic and anisotropic parts of the Hamaker coefficient as in [28]:

A(0)(d) = A(d, π/4), A(2)(d) = A(d, π/2) − A(d, 0). The Casimir-Lifshitz torque is

then approximated by:

M(d, θ) ≈ −A
(2)(d) sin (2θ)

6πd2
. (3.11)

The effects of retardation on the Casimir-Lifshitz torque are encoded in A(2)(d).

With substitution of the dimensionless χ = rd in Eq. 2.2, the retarded

Hamaker coefficient can be written as a sum of contributions at the Matsubara

frequencies:

A(d, θ) =
∞∑

n=0

′An(d, θ) (3.12a)

An(d, θ) = −3kBT

π

∫ ∞

0

χdχ

∫ 2π

0

dϕ lnDn (χ, ϕ) . (3.12b)

To examine the effects of retardation, we consider the dependence of a single

Matsubara term An(d, θ) on the dimensionless rn = 2
√
ε3ξnd/c. Physically, rn is

the ratio of round-trip travel time for light between the plates (2
√
ε3d/c) to the

characteristic decay time of the Matsubara frequency (1/ξn) [3]. Therefore, rn is a

measure of retardance: as d/c → 0, rn → 0. The contribution from a Matsubara
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term depends only on rn and the dielectric properties at the corresponding

imaginary frequency ξn. Each Matsubara term is split into isotropic and

anisotropic terms as above: A
(0)
n (rn) = An(rn, 0),

A
(2)
n (rn) = An(rn, π/2)−An(rn, 0). By isolating A

(2)
n (rn), we can examine the effect

of retardation on individual Matsubara terms that contribute to the

Casimir-Lifshitz torque.

Following the notation of [27,28], we define the anisotropy of the ith material

as:

δi⊥ =
εi⊥ − ε3

ε3

, δi‖ =
εi‖ − ε3

ε3

, (3.13)

where ε is the real part of the dielectric function evaluated at imaginary frequency

iξ. As in [28], we expand the integrand of Eq. 3.12b for small δi⊥ and δi‖ to second

order (there is no zeroth or first order contribution). The integral over wavevectors is

carried out analytically with the use of the exponential integral Ei(x) = −
∫∞
−x

e−t

t
dt:

An(rn, θ) = A(0)
n (rn) + A(2)

n (rn) cos (2θ) + ... (3.14a)

A(2)
n (rn) =

3kBT

256

(
δ1‖ − δ1⊥

) (
δ2‖ − δ2⊥

)
ζ (rn) (3.14b)

ζ(rn) =
1

2

[
e−rn

(
−r3

n + r2
n + 2rn + 2

)

− Ei (−rn)
(
r4
n + 4r2

n

) ]
. (3.15)

To second order in δi⊥ and δi‖, the cos(2θ) dependence is exact. The A
(0)
n (rn)

term is independent of θ and does not contribute to the torque. In the nonretarded
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Figure 3.8: For small birefringence, contributions of Matsubara terms to the
anisotropic part of the Hamaker coefficient (and therefore the Casimir-Lifshitz
torque), which is proportional to ζ(rn), are increased by retardation at small
separations.

limit, ζ(rn → 0) = 1, Eq. 3.14b reduces to:

A
(2)
n,NR =

3kBT

256

(
δ1‖ − δ1⊥

) (
δ2‖ − δ2⊥

)
. (3.16)

Now we examine the dependence of A
(2)
n (rn) on rn, which is wholly contained within

ζ(rn) (Eq. 3.15). This function is plotted in Fig. 3.8. The nonmonotonicity of

ζ(rn) is surprising—it implies that for small values of rn, the contribution of a single

Matsubara term to the Casimir-Lifshitz torque is increased by retardation. We can

make an even stronger claim: for small d, the total Casimir-Lifshitz torque is also

increased by retardation. This behavior is because for real materials, a finite number

of Matsubara terms contribute to Casimir-Lifshitz interactions (all materials become

optically transparent as ξ →∞). As the distance between two materials approaches

0, the set of rn’s corresponding to this finite set of Matsubara terms will fall in the

retardation-enhancement region where rn . 1.82 and ζ(rn) > 1. This means that
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the sum of Matsubara terms will also be enhanced by retardation in this limit.

Therefore, for small separations and small birefringence, retardation will generally

cause an increase in the Casimir-Lifshitz torque.

3.3.2 Numerical demonstration of retardation enhancement

This calculation is to second order in δi,⊥ and δi,‖, but for materials with

higher anisotropy (such as those chosen to maximize the Casimir-Lifshitz torque)

the approximation is less accurate. However, this nonmonotonicity persists in the

analytic expansion to third order in δi⊥ and δi‖ as well. Furthermore, numerical

exploration of the parameter space shows that all combinations of dielectric

constants produce a nonmonotonic dependence on rn of the anisotropic part of the

Hamaker coefficient. To demonstrate the generality of this effect, we calculate the

anisotropic part of the Casimir-Lifshitz interaction for two BaTiO3 slabs (strong

birefringence), two TiO2 slabs, and one BaTiO3 and one TiO2 slab in Fig. 3.9.

The material dispersions in this paper are modeled using the parameters from [74]

and [75]. The anisotropic part of the Hamaker coefficient A
(2)
n (d) is plotted for

these material combinations in Fig. 3.9a. The nonmonotonicity of A
(2)
n (d) and the

increase due to the inclusion of water is clear. The effect of retardation is even

clearer in Fig. 3.9b, which plots the ratio of the full calculation to the nonretarded

approximation: the full calculation yields a torque several times stronger than the

nonretarded calculation (by nearly a factor of 12). When the plates are separated

by ≈ 30 nm, the calculated torque is typically & 50% stronger when retardation
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Figure 3.9: The effects of retardation and insertion of a water layer on the anisotropic
part of the Casimir-Lifshitz energy. (a) Anisotropic part of the Hamaker coefficient
for three material combinations (BaTiO3–BaTiO3, BaTiO3–TiO2, and TiO2–TiO2

in black, blue, and orange) when the materials are separated by vacuum (solid)
and water (dashed). (b) Ratio of the anisotropic part of Hamaker coefficients with
retardation effects to the nonretarded approximation. (c) Ratio of the anisotropic
part of Hamaker coefficients for materials separated by water to those separated
by vacuum. For d . 90 nm, the torque is enhanced by retardation and by the
intervening water for all three material combinations.
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effects are included. However, the magnitude of the enhancement is highly

dependent on the choice of birefringent material.

3.3.3 Torque enhancement by dielectric media

Retardation effects are always an experimental reality, so the difference

between the nonretarded and full calculations cannot be measured. However, one

could choose to include an intervening dielectric medium between two birefringent

materials. This addition modifies the dispersion relation Dn(r, ϕ), which can

significantly increase the Casimir-Lifshitz torque. Figures 3.9a and 3.9c show the

effect of filling the vacuum gap with water, which causes a significant increase in

the torque over a broad range of separations.

We examine the effect of the intervening dielectric in more detail by

comparing A(2)(d) for two TiO2 slabs separated by vacuum and several distinct

fluids in Fig. 3.10. The inclusion of dielectrics with higher refractive indices at

optical frequencies (which dominate short-range Casimir-Lifshitz interactions)

results in higher Casimir-Lifshitz torques at small separations. In fact, torques are

enhanced for most experimentally accessible separations (≈ 75 nm for these

materials—beyond this separation, the torques are extremely weak). For d . 100

nm, the torque is also enhanced by retardation effects. Beyond this point,

retardation effects weaken the torque (affecting the systems with dielectric media

the most). At very large separations at room temperature, only the n = 0

Matsubara term contributes—this term is dominated by thermal fluctuations and
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Figure 3.10: (a) The combined effects of retardation and an intervening dielectric
media on anisotropy of Casimir-Lifshitz free energy between two parallel slabs of
TiO2. The anisotropic part of the Hamaker coefficient is increased by these two
effects for d . 100 nm. (b) The effect of the intervening dielectric media are isolated
by scaling A(2)(d) to the value when the plates are separated by vacuum. At small
separations (d < 50 nm), the liquids with higher optical refractive indices cause the
greatest increase in the torque. At very large separations (d > 50 µm), the n = 0
Matsubara term dominates, so only the DC dielectric constant is relevant.
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Figure 3.11: Each Matsubara term contributes A
(2)
n,NR to the anisotropy of the

Casimir-Lifshitz interaction. For two identical birefringent slabs, the ε3 that
maximizes A

(2)
n,NR (and therefore the Casimir-Lifshitz torque) is between ε⊥ and

ε‖.

is not affected by retardation [3,81]. Therefore, the same torque enhancement seen

at short ranges reappears for three of the materials for d > 2 µm. The DC

dielectric constant for water and ethanol, however, are so high that the long-range

torque is reduced instead of enhanced. We note that the Casimir-Lifshitz torque at

separations > µm may be too small to measure in currently proposed experiments

when a dielectric medium is introduced. At a separation of d = 30 nm, the

maximum nonretarded torque between the plates across vacuum is 3.6 × 10−10

Nm/m2. This is increased by a factor of 1.9 when retardation effects are included,

and by a factor of 2.2 when retardation effects and an intervening diiodomethane

medium are included. Although intervening media can cause other experimental

difficulties, a large increase in the torque may represent a worthwhile trade-off.

In Fig. 3.11, we calculate how the nonretarded torque is affected, more
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generally, by a dielectric medium. The torque is increased by inserting a medium

with a dielectric function somewhere between ε⊥ and ε‖ of the birefringent

material. For a given choice of ε⊥ and ε‖, ε3 = 1 does not typically maximize the

torque. For example, with ε⊥ = 5.81 and ε‖ = 6.62 (as for the DC dielectric terms

of TiO2 in Bergström’s model [74]), the optimal ε3 is about 6. In this case, the

contribution to the Casimir-Lifshitz torque is nearly tripled by the insertion of

such a dielectric (compared to vacuum).

The distance dependence of Casimir-Lifshitz interactions is further

complicated by retardation screening of high frequency contributions at larger

separations. The interplay of dielectric functions can lead to a rich variety of

unusual effects, as demonstrated in Refs. [72, 83]. However, we emphasize that the

effects we demonstrate here are distinct from those that rely on particular

combinations of dielectric materials. The torque enhancement by retardation is

independent of dielectric functions, and the enhancement by the inclusion of a

dielectric medium is quite general and appears even in the nonretarded calculation.

In this section we have shown that, at short distances, the Casimir-Lifshitz

torque between parallel slabs is increased by retardation. The nonretarded

approximation can underestimate the torque by as much as an order of magnitude.

This is the case even at separations on the order of 10 nm, a regime in which

retardation effects are often ignored. Furthermore, an intervening dielectric

medium often increases the Casimir-Lifshitz torque by a significant amount. A

carefully selected dielectric liquid can make the torque stronger and more

experimentally accessible. We encourage researchers to include the effects of
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retardation and an intervening medium, as they may make measurements

realizable in surprising conditions.
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Chapter 4: Nematic liquid crystals

4.1 Overview

In this section, we provide a brief overview of the physics of liquid crystals,

which act as both the measurement probe and as one of the birefringent materials

in our experiment. There are many useful primers on the subject of liquid crystals

[84,85], but here we briefly outline their properties relevant to the present work.

For some materials, there exists a liquid crystal phase at a temperature

between the solid and liquid phases. It is characterized by long-range molecular

ordering, even as the individual molecules jitter. Though there are several types of

liquid crystals, we restrict our focus to nematic liquid crystals, the molecules of

which exhibit orientational but not positional ordering (Fig. 4.1).

4.2 Oseen-Frank theory

Liquid crystals molecules tend to align with their neighbors, and there is an

elastic free energy penalty associated with spatial variations of the director (the

locally-preferred molecular orientation). The phenomenological Oseen-Frank

theory provides a convenient formulation to describe this free energy [86, 87]. In
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Figure 4.1: a) 5CB molecule. The extraordinary axis is along the long axis of the
molecule. b) The 5CB molecules are depicted as lines. In the nematic state, the
liquid has average molecular orientation along the director n̂. Optically, the liquid
crystal can behave as a solid birefringent crystal with extraordinary axis parallel to
the director.

a b c

x
z

Figure 4.2: The three elastic modes in the Oseen-Frank free energy. a) Bend mode
b) Twist mode c) Splay mode.

this formulation, the free energy density associated with elastic distortions is split

into “bend,” “twist,” and “splay” modes with corresponding elastic constants k11,

k22, and k33 (Fig. 4.2):

FOF =
k11

2
|∇ · n|2 +

k22

2
|n · (∇× n)|2 +

k33

2
|n× (∇× n)|2 . (4.1)

In the twisted-nematic geometry (depicted in Fig. 4.2b), the director can be written

as n̂ = (cos(θ(z)), sin(θ(z)), 0), where θ(z) is the azimuthal angle from x-axis. In

this configuration, only the twist mode is present. This yields a Frank-Oseen free
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energy density reminiscent of a simple harmonic oscillator:

FTN =
k22

2
θ′(z)2. (4.2)

We use the twisted nematic geometry for Chapters 5–7.

4.3 Twisted nematic liquid crystal displays

In a typical application, a liquid crystal layer of a few µm is sandwiched

between transparent electrodes. The substrates are also treated in a way to cause

uniform alignment of the liquid crystal in a chosen direction in the plane of the

substrates. This alignment can be achieved by many means, including a rubbed

polymer layer, oblique deposition of columnar structures, or photoalignment (in

which a polymer layer is cured with polarized UV light) [88]. In the

twisted-nematic display, these substrates are rotated 90° from each other. Using

calculus of variations, it can be shown that the liquid crystal orientation with

minimal free energy is a linear twist through the thickness of the cell:

n̂ = (cos(θ(z)), sin(θ(z)), 0) (4.3)

θ(z) = θi + (θf − θi)z/t (4.4)

where t is the thickness of the cell, θi is the anchoring angle at z = 0, and θf is

the anchoring angle at z = t. This results in a twisted birefringent material; in the

following section we show how this can rotate the polarization direction of linearly

polarized light from θi to θf .

By applying a voltage difference across the electrodes, the liquid crystal
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director is aligned in the z-direction, resulting in a material that appears isotropic

when viewed along z. Modern display technologies use many refinements of this

method to increase contrast, viewing angle, and switching rate, but the basic

principles are largely the same [89].

4.4 Van der Waals alignment of liquid crystals

Short-range anisotropic van der Waals interactions have long been suspected

to cause liquid crystal alignment [90]. Okano et al. calculated the effect of short-

range van der Waals interactions between a liquid crystal and substrate, using the

molecular size of a liquid crystal molecule as the separation distance [91]. Blinov and

Sonin carried out a clever experiment with liquid crystal droplets on mica surfaces

covered with stearic acid monolayers, that showed that there was some effective

range (10–50 nm) of these interactions [92]. Schadt et al. were the first to show

that van der Waals interactions alone were sufficient to align liquid crystals [102].

Gwag et al. suggested that the mechanism of liquid crystal alignment caused by

a rubbed polyimide is a nonretarded van der Waals interaction [93]. Nishikawa et

al. compared the dichroism and alignment strength of polyimide layers cured with

linearly-polarized UV light [94]. Hwang et al. demonstrated that the in-plane or out-

of-plane alignment of liquid crystals on inorganic substrates depends on the sign of

the liquid crystal birefringence, consistent with a van der Waals interaction [95]. In

a review article, Ishihara includes van der Waals torques as a mechanism for liquid

crystal alignment [88]. As a whole, these works demonstrate that the alignment
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of liquid crystals is influenced by the anisotropic van der Waals/Casimir torque.

However, none of them quantitatively measure the distance or angular dependence

of the torque, and none of them consider the effects of retardation.

4.5 Jones analysis of twisted liquid crystals

In this section, we describe the effect of twisted liquid crystals on the

polarization of transmitted light using Jones calculus [96]. Consider transverse

light propagating through a planar material in the z-direction. A birefringent

crystal of thickness t and refractive indices nx and ny imparts phase φx and φy to

Ex and Ey, respectively, and has the Jones matrix:

Mbrf =



eiφx 0

0 eiφy


 = ei

(φx+φy)

2



e−

i∆φ
2 0

0 e
i∆φ

2


 (4.5)

∆φ = φy − φx =
2π(ny − nx)t

λ
=

2π∆nt

λ
(4.6a)

∆n = ny − nx (4.6b)

where λ is the wavelength of the light. The overall phase ei
(φx+φy)

2 is irrelevant in

our analysis, and will be ignored whenever convenient.

A twisted nematic has a rotation angle that varies linearly across the cell from

θi to θf , according to Oseen-Frank theory. It has the Jones matrix [97].

MLC = Rθf




cosX − i∆φ
2

sincX ∆θ sincX

−∆θ sincX cosX + i∆φ
2

sincX


R−θi (4.7a)
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X =
√

∆θ2 + ∆φ2/4 (4.7b)

∆θ = θf − θi (4.7c)

For thick liquid crystal layers, ∆φ� ∆θ and, to leading order, the the liquid

crystal matrix reduces to

MLC,0 = Rθf



e−

i∆φ
2 0

0 e
i∆φ

2


R−θi . (4.8)

This approximation is well-justified for our experiment; typical values for the twisted

nematic layer are ∆n = 0.2, t = 50 µm, λ = 0.5 µm, and ∆θ = π/4, which yield

∆θ/∆φ = 1/80. This formulation clarifies the roles of the liquid crystal layer in

display technologies. The effect of a thick, twisted liquid crystal on light incident

with polarization angle θi (matching the alignment of the liquid crystal upon entry)

is:

MLC,0Rθi




1

0


 =Rθf



e−

i∆φ
2 0

0 e
i∆φ

2


R−θiRθi




1

0


 (4.9a)

=Rθf



e−

i∆φ
2

0


 , (4.9b)

which is linearly polarized along θf (modulo some overall phase). The polarization

of linearly polarized light follows the liquid crystal twist. In the twisted-nematic

display, this is used to pass polarized light through a second polarizer rotated to

90°. When a voltage is applied across the electrodes, the liquid crystal director is

aligned in the propagation direction of light and the layer appears isotropic, having

no effect on the polarization state. In the on state, the second polarizer blocks the
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transmission of light.
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Chapter 5: An experimental proposal for measuring Casimir-Lifshitz

torques

5.1 Introduction

We published the experimental design for a Casimir torque measurement in

2015 [37]. Since then, we changed and updated several aspects of the experiment.

They are detailed in Section 5.8. We include the original proposal here for

completeness.

5.2 Overview of experimental design

Experiments that use a torsion pendulum can measure torques with very

high sensitivity [98], so they seem a natural choice for measuring a Casimir torque.

Munday et al. considered a measurement of the Casimir torque between a BaTiO3

plate and CaCO3 using a torsion pendulum, but concluded that it would be

technically difficult to hold large plates (1 cm in diameter) in parallel at submicron

distances [32]. Chen and Spence considered a similar experiment, which replaced

one of the plates with a curved surface [34]. The Casimir torque would affect the

period of natural oscillations of the torsion pendulum, allowing for its detection.
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They considered carefully several sources of noise and error and concluded that a

measurement with a torsion pendulum was feasible; however, they have not

published any experimental results to date.

Here we propose a method that is in analogy to a static torsion pendulum

with a thick liquid crystal layer as the twisted bulk. As the uniformly aligned

liquid crystal is brought near a birefringent crystal, the Casimir torque aligns the

liquid crystal molecules with the solid crystal’s optic axis, which in turn causes a

twist through the bulk of the liquid crystal. A similar experiment was proposed by

Smith and Ninham in 1973 [38] but, to our knowledge, was never carried out. Here

we provide a calculation of the expected results for a similar geometry including

retardation effects, as well as detailed experimental considerations.

Instead of using the liquid crystal in the isotropic phase as a spacer layer

(which is experimentally unfeasible), a thin layer of SiO2 separates the liquid crystal

from the solid crystal. Varying the SiO2 thickness is equivalent to changing the

distance between parallel plates. If both the liquid crystal and birefringent crystal

have positive uniaxial anisotropy, then the Casimir torque causes the liquid crystal

molecules to twist towards the extraordinary axis of the solid crystal. Because the

liquid crystal is anchored at the glass interface, the director is twisted through the

bulk by the Casimir torque at the boundary at the opposite interface. This geometry

is depicted in Fig. 5.1. This experimental design is similar to methods for measuring

the azimuthal anchoring energy of liquid crystals on treated substrates [99].

The mechanism of liquid crystal alignment induced by a rubbed polymer layer

itself is the subject of much study but is thought to include physical grooves, aligned
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Figure 5.1: Experimental setup. The liquid crystal director is fixed at 45◦ at the top
surface, but a Casimir torque at the bottom surface causes a linear twist throughout
the bulk (thickness t = 50 µm). Incident light polarized at 45◦ is adiabatically
twisted with the liquid crystal director to a final polarization state θf which can be
measured optically. Stronger Casimir torques cause a greater director twist. The
inset shows a flat projection of the x-y plane.
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polymer chains, and the van der Waals torque for surfaces in contact [88,94,100,101].

The last of these is equivalent to the short-ranged Casimir torque of our proposed

study, though distinguishing the van der Waals effect from other alignment effects

is difficult. However, previous experiments have suggested the anisotropic van der

Waals effect as the mechanism of liquid crystal alignment at a surface.

Schadt et al. used linearly photopolymerized layers to align liquid crystals

with a van der Waals interaction [102]. Lu et al. also provided evidence that the

van der Waals interaction is an important component of the liquid crystal alignment

at treated polymer layers [103]. However, these experiments do not isolate the van

der Waals torque from other surface effects, because the liquid crystal is in contact

with the substrate. Our proposed experiment would demonstrate this effect over a

distance of tens of nanometers (and in doing so measure the long-range retardation

effects of the Casimir torque). Finally, we can relate measured data to Casimir

torques calculated from the dispersive properties of the materials.

Smith and Ninham considered the non-retarded case of this system and

predicted measurable distortions of the liquid crystal director. Here we carry out

the full retarded calculation of the Casimir torque, by considering its effect on a

thin boundary layer. That is, in comparison to the liquid crystal bulk with

thickness t > 50 µm, most of the Casimir torque is felt by a thin layer of thickness

δt < 50 nm. Also, because the total liquid crystal twist through the bulk is less

than 45◦, the liquid crystal in the region of δt is nearly uniformly aligned.

Therefore, we approximate the Casimir torque on this layer from the uniaxial

crystal to be the same as that experienced by a uniformly aligned and semi-infinite
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Figure 5.2: Calculated torque between BaTiO3 and uniform 5CB bulk separated
by 10 nm of SiO2 as a function of angle θ between the extraordinary axes of the
birefringent materials. The line is a fit to a sin(2θ) dependence. The difference
between the fit and full calculation is at most 2%, and is less than 0.1% for θ = π/4.

liquid crystal slab. These approximations are treated with more detail in Section

5.5.

5.3 Casimir interaction between two infinite slabs

In our regime of interest, the energy has sin(2θ) dependence to an excellent

approximation, as in Fig. 5.2. The Casimir torque is then

M(d, θ) = −∂Ω

∂θ
≈ a(d) sin(2θ), (5.1)

where a(d) is a negative for the materials considered here (which have positive

birefringence). We use the Ninham-Parsegian oscillator model to describe the

dispersion of the solid crystals [104]:

ε(iξ) = 1 +
N∑

j=1

Cj

1 + ξ2

ω2
j

. (5.2)

60



Table 5.1: Model parameters for dielectric functions of relevant materials. Oscillator
data for BaTiO3, CaCO3, TiO2, and SiO2 are from Ref. [74].

C1 ω1 (eV) C2 ω2 (eV) C3 ω3 (eV) C4 ω4 (eV)
5CB ⊥ 0.0374 4.40 0.1075 5.91 0.414 9.19 – –

|| 0.0612 4.40 0.1025 5.91 0.460 9.19 – –
BaTiO3 ⊥ 3595 0.056 4.128 5.54 – – – –

|| 145.0 0.138 4.064 5.90 – –
CaCO3 ⊥ 5.3 0.177 1.683 10.92 – – – –

|| 6.3 0.177 1.182 10.92 – – – –
TiO2 ⊥ 4.81 5.069 – – – – – –

|| 5.62 4.516 – – – – – –
SiO2 iso. 0.829 0.057 0.095 0.099 0.798 0.133 1.098 13.39

For the 5CB liquid crystal, we use the dispersive properties at 298.2 K calculated

by Kornilovitch using data from Wu [80, 105]. There, the index of refraction is fit

with a three-oscillator model, so the dielectric function is:

ε5CB(iξ) = 1 + 2
3∑

j=1

Cj

1 + ξ2

ω2
j

+




3∑

j=1

Cj

1 + ξ2

ω2
j




2

. (5.3)

For the birefringent materials, there are separate functions describing the ordinary

and extraordinary axes. The model data used for our calculations is summarized in

Table 5.1.

The results for the calculated Casimir torque between an infinite half-space

of 5CB liquid crystal and an infinite half-space of several birefringent crystals for

θ = 45◦ are shown in Fig. 5.3. Note that torques per unit area on the order of

10−9 Nm/m2 are found for separations of d = 10 nm.

5.4 Torque balance method for measuring liquid crystal anchoring

The Casimir torque causing a director twist at one boundary competes with

the restoring torque from the twisted liquid crystal. The latter is modeled using
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Figure 5.3: Casimir torque per unit area between a half-slab of aligned 5CB and
various birefringent crystals, when separated by a SiO2 layer of thickness d with a
relative angle of 45◦ between the extraordinary axes.

the Frank free energy density, as described in Section 4.2 [87]. In our geometry,

the director is always aligned in the xy−plane so its orientation can be written in

Cartesian coordinates as n = {cos θ(z), sin θ(z), 0}. There is no bend or splay of

the liquid crystal, so only the twist term contributes to the distortion energy. The

twist contribution is given by:

Fd =
k22

2
(n · ∇ × n)2, (5.4)

where k22 = 3.6 pN is the twist elastic constant of the 5CB [106]. Substituting our

expression for n, the Frank free energy density is

Fd =
k22

2

(
∂θ

∂z

)2

, (5.5)

and the Frank free energy per unit area is:

Eelastic =

∫ t

0

Fddz =
k22

2

∫ t

0

(
∂θ

∂z

)2

dz, (5.6)
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where t is the thickness of the liquid crystal layer. In our geometry (as in Fig. 5.1),

the extraordinary axis of the solid crystal is along the x-axis, so the top boundary

at z = d + t (where the liquid crystal is in contact with glass) is treated to induce

alignment along θ(t+ d) = π/4.

A torque applied at z = d twists the director to θ(d) = θf . Using calculus

of variations, the lowest energy configuration is given by a linear twist, θ(z) =

π
4

+ ∆θ
t

(z − d − t), where ∆θ = π/4 − θf . The elastic energy of the bulk per unit

area is then:

Eelastic =
k22

2

∆θ2

t
. (5.7)

If the director at z = d is twisted to θf , there is an energy penalty and associated

restoring torque at that boundary. The restoring torque of the elastic bulk is given

by:

Melastic = −∂Eelastic

∂∆θ
= −k22∆θ

t
. (5.8)

Melastic is the torque that must be applied at the boundary z = d to twist the

director to θ(d) = θf . The torque applied at the boundary twists the director until

the torque balance equation is satisfied: Melastic+Mexternal = 0. If the Casimir torque

is in the approximate form Melastic ≈ a sin(2θ), where θ is the angle between the two

extraordinary axes of the birefringent materials, then the torque is approximately

MCasimir = a sin(2θf ) = a cos(2∆θ) (which has the same form as the planar Rapini-

Papoular approximation [107]), and the torque balance equation yields:

−k22∆θ

t
+ a(d) cos (2∆θ) = 0. (5.9)

To predict the director twist for our proposed experiment, we calculate a(d) then
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numerically solve Eq. 5.9 to find the twist caused by the Casimir torque, ∆θ. In

the proposed experiment, ∆θ (or θf ) will be measured to obtain a(d) via

a(d) =
k22

t
∆θ sec(2∆θ). (5.10)

5.5 The boundary layer approximation

The liquid crystal can be treated as an anisotropic bulk material for the

calculation because the twisting is small throughout the thickness that experiences

the Casimir interaction. The spacing between the liquid crystal and solid

birefringent crystal is on the order of ∼ 10 nm, and the liquid crystal layer is

about 100 µm thick. Following Parsegian [3], the penetration depth of the Casimir

interaction is on the order of the material separation. So, the most important

region of the liquid crystal is the 10 nm in contact with the SiO2 (or

conservatively, 100 nm). This 100 nm is the 0.1% of the liquid crystal nearest the

birefringent crystal. Because the liquid crystal will be twisted a maximum of π/4

radians throughout the bulk, the liquid crystal director will vary by a maximum of

∼ 0.05◦ in the relevant region for the Casimir torque, which has no appreciable

effect on the torque’s magnitude.

This approximation can also be justified by considering the reflection matrix

of the liquid crystal stack. The Casimir energy of the system is a function of the

reflection matrices of the two materials at the Matsubara frequencies. Our method

assumes that, at the Matsubara frequencies, the reflection matrix of the slowly

twisted liquid crystal is nearly the same as that of an untwisted, bulk liquid crystal
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with the same alignment at the boundary. The first Matsubara frequency at room

temperature, ξ1 = 2πkBT/~ ≈ 39 THz, corresponds to a wavelength of λ1 ≈ 7.7 µm.

The higher frequences correspond to shorter wavelengths, so this first term has the

longest penetration depth. We calculated the reflection matrices at this frequency

between the twisted and untwisted stacks using the Berreman 4×4 matrix method,

and found them to be numerically identical to several significant figures [108]. The

Casimir interaction energy is largely unaffected by the slow twist of the liquid crystal

throughout the bulk. Hence, to several significant figures, the torque experienced by

the liquid crystal layer is felt entirely at the nearest boundary and is only a function

of the director orientation at that boundary.

5.6 Proposed experiment

Common methods for fabricating single liquid crystal cells have been

previously reported in [109, 110] and can be used for this experiment. A rubbed

alignment layer of polyvinyl alcohol (PVA) can be used to cause the liquid crystal

molecules to align along the rubbed direction at the surface. The birefringent

crystal with a thin, isotropic SiO2 layer (with thickness d ∼ 20 nm) is sandwiched

with the PVA-treated glass with a spacing of t ≈ 100 µm (this value can be

measured optically). Liquid crystal is then introduced into the cell via capillary

action. The filling process may induce some alignment along the direction of liquid

crystal flow; however, baking the sample above the liquid crystal clearing

temperature (35◦ C for 5CB) and allowing it to cool slowly will eliminate this
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effect. As the liquid crystal cools to room temperature, the director settles into the

lowest energy state described in Sec. 5.4. The magnitude of the Casimir torque

effect can then be measured by observing the twist of the liquid crystal director.

The final director twist θf can be measured optically. This method is similar

to a technique for measuring azimuthal surface anchoring strengths of liquid

crystals [111, 112]. When linearly polarized light is incident on an adiabatically

twisted nematic liquid crystal stack (in which the pitch of the twist is much larger

than the wavelength of light), the polarization state is rotated to follow the liquid

crystal director. This is known as the adiabatic approximation for twisted

nematics and is the principle behind twisted-nematic liquid crystal displays [108].

In this experiment, white light polarized at 45◦ shines onto the stack as in Fig. 5.1.

The Jones vector of this light is
√
I/2




1

1


 , where I is the intensity. The light

polarization follows the director of the twisted nematic and is incident on the

transparent SiO2 layer with polarization θf . Its Jones vector is now
√
I




cos θf

sin θf


.

In a typical measurement of an anchoring force, the liquid crystal is sandwiched

between two glass slides that do not interfere with the polarization state of the

light, as in [99]. Then, the polarization state θf can be measured with a second

polarizer.

To calculate the expected results from an experiment, we consider a liquid

crystal layer thickness of 100 µm and calculate the lowest energy state of the system

using Eq. 5.9. Figure 5.4 shows expected results for this case. The liquid crystal bulk

is predicted to twist by over 35◦ when the stack is separated by 5 nm from BaTiO3,
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Figure 5.4: Calculated twist of a 100 µm layer of 5CB caused by a Casimir torque
induced by various birefringent crystals at distance d from one end of the liquid
crystal stack. The incident light is polarized at 45◦ to the ordinary axis at the top
of the 5CB stack, but the director is twisted by the Casimir torque, which causes
the light polarization to rotate ∆θ towards the extraordinary axis at 0◦.

and a twist of several degrees is expected for separations of d ∼ 50 nm (well into the

Casimir regime). When near a birefringent material that has negative birefringence

over a large frequency range (such as lithium niobate), the liquid crystal would twist

towards the ordinary axis instead of the extraordinary axis. This would provide

further confirmation that dispersion effects are causing the director to twist.

5.7 Summary of proposed experiment

We have proposed an experiment for measuring a Casimir torque between a

birefringent crystal and a liquid crystal separated by an isotropic spacer layer. We

provide complete calculations of the expected results for several materials at a range

of separations and include details for a proposed experiment. This experimental

design avoids many of the difficulties involved with a torsion pendulum or levitating
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microdiscs. Using oscillator models for dispersion fit to experimental data, we have

predicted a measurable effect at separations of several tens of nanometers. The

Casimir torque could cause a liquid crystal stack to twist by as much as 40◦ through

its bulk. The result would be the first explicit measurement of a Casimir torque.

5.8 Updated experimental details

The Casimir torque measurement evolved in the time since the publication of

our first proposal to measure the torque, although the general idea remains the same.

Most notably, the spacer layer of SiO2 deposited with plasma-enhanced chemical

vapor deposition (PE-CVD) was not smooth or uniform enough to measure the

distance dependence of the torque. The SiO2 thickness could vary by several nm

over even a small cell. Instead, we used a spacer layer of Al2O3 deposited with

atomic layer deposition (ALD), which reproducibly deposits layers that vary by less

than a nm over a cm2 area. We also used Kapton tape masks to achieve several

different thicknesses of Al2O3 on each sample. Instead of only using linearly-rubbed

PVA alignment layers, we also include circularly-rubbed layers. These allow us to

probe the angular dependence of the torque and visualize the broken symmetry

caused by the torque. Typically, twisted nematic liquid crystal cells are only a few

µm thick. We found that 100 µm thick cells produced nonuniform and unpredictable

liquid crystal configurations. We decreased the cell thickness to 50 µm, sacrificing

some sensitivity (as the liquid crystal twist is proportional to the thickness) but

gaining reproducibility and robustness.
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The optical measurement is carried out slightly differently than described in

this chapter. It is easier to flip the sample over and set the first polarizer so that

the incident light is polarized along the solid crystal’s extraordinary axis. This

eliminates any additional retardance effect from the thick birefringent crystal, which

confounds any polarization measurement. In light of this modification, we clearly

define the angles used in the rest of the text in the next section. Lastly, we used

different substrates for convenience and cost. The expensive BaTiO3 substrates were

replaced with LiNbO3 and YVO4. The measurement apparatus, which is detailed

in the next chapter, was also built after the publication of the paper described in

this Chapter.
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Chapter 6: Experimental methods for Casimir-Lifshitz torque

measurements

6.1 Overview of experiment

An early version of our experimental design, described in Chapter 5, was first

published in 2015 [37]. In this chapter and the next, the experiment is described as

it was carried out. Figure 6.1 shows the angular variables used in the rest of this

work. The coordinate axes are defined such that the extraordinary axis of the solid

crystal θ2 is along the x-axis so that θ2 = 0. For graphical clarity, this schematic is

upside-down compared to the sample as measured on our inverted microscope. The

incident white light is linearly polarized along the x-axis so that the birefringent

crystal has no effect on its polarization state. The relevant parameters that must

be measured optically to extract the Casimir torque are the liquid crystal thickness

t and anchoring directions θ1 and θrub. In many liquid crystal measurements, a

laser is used as the light source. By using white light, we avoid additional effects of

coherent interference. Furthermore, the measurement with white light allows us to

simultaneously measure liquid crystal thickness and anchoring directions.
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Figure 6.1: a) Illustration showing liquid crystal twist caused by the Casimir torque
from a solid birefringent crystal (not to scale, t � d). b) Zoom on the region of
interaction between the solid and liquid crystals c) Optical path and sample cross
section.

6.2 Sample fabrication

The samples are created in the Maryland Nanocenter FabLab and

characterized in the Munday lab in IREAP. The recipe for constructing a Casimir

torque measurement cell is outlined in Appendix A. For all samples in Chapter 7,

the 5CB liquid crystal is mixed with FC-4430 fluorosurfactant (3M) at a

concentration of 0.5% to prevent sticking to the Al2O3 surface [113]. This adds an

additional layer between the solid and liquid crystals; we measure its effective

thickness with atomic force microscopy in Section 7.5.

6.3 Experimental apparatus

The optical measurement takes place on a Nikon Ti-U Eclipse inverted

microscope with a Thorlabs XYR1 stage mounted on top (Fig. 6.2). The XYR1
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Figure 6.2: XYR stage mounted on Nikon Ti-U Eclipse inverted microscope.
Coupling plates were machined to mount the XYR stage at 45° due to space
constraints. Stepper motors controlled with Arduino and LabVIEW allow for
automated xy-translation. The XYR stage has a 1” threaded hole in the center,
and a sample is mounted on the underside near the objective lenses.

stage allows for precision actuation of xy-translation and rotation. The

micrometer heads that drive the translation are coupled to stepper motors to allow

for automated measurements. A lens tube screws into the bottom of the XYR1

stage, and a retaining ring holds in place a 3D-printed sample mount (Fig. 6.3).

Below the objective lens is a rotatable analyzer. The analyzer provided by Nikon

is smaller than the slot provided for optical devices, so an adapter was 3D printed

(Fig. 6.4). Another stepper motor with attached gear turns the analyzer. A

3D-printing shield that couples an Arduino Nano with three A4988 stepper motor

drivers is used to control the motors. This allows us to step any of the three

motors with a digital pulse from the Arduino Nano. The Arduino Nano is
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Figure 6.3: A 3D-printed sample mount holds (22 mm)2 cover slips (the substrates
for our samples) and is held by a lens tube with a retaining ring. When the lens
tube is screwed into the underside of the XYR stage, the sample can be translated,
rotated, and quickly removed by loosening the retaining ring. The small crystal in
the center is a (1 cm)2 birefringent crystal attached to the cover slip.

rotating analyzer mount

3D-printed adapter

analyzer with LC 
depolarizer underneath

stepper motor coupled to 
analyzer’s rotation gear

Figure 6.4: Analyzer mounted in a 3D-printed adapter plate and coupled to stepper
motor.
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Figure 6.5: Front panel of the LabVIEW program that controls the xy-translation
motors, analyzer motor, spectrometer, and CCD camera. The plot shows spectral
scans of 25 different spectral measurements of a twisted liquid crystal as the analyzer
rotates.

controlled with LabVIEW (National Instruments) using LINX (Digilent). In this

way, we can scan over a sample and rotate the analyzer using LabVIEW, which is

also used to control a Photometrics CoolSNAP CCD camera and ThorLabs

CCS175 spectrometer. Custom macros allow for automated scanning across the

sample, rotating the analyzer and taking spectral measurements at each location

(Fig. 6.5). The microscope aperture is narrowed to a 400 µm diameter spot size to

permit local measurements of liquid crystal behavior. For most of the cm2 cells,

measurements are taken in a 25×25 grid with 25 analyzer angles from 0° to 180°

and 25x objective lens. This means that for each sample, 15,625 spectral

measurements are taken in about one hour. Before the spectral measurement, a
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7×9 grid of images are taken with the camera with a 5x objective lens. These

images are are then stitched together to form one large image of the sample. In

this way, the xy-location of the measurement can be correlated to a point in an

image of the cell.

6.4 Data analysis

Data analysis is carried out in Mathematica. For each sample, the images are

stitched together. A locator panel is used to draw regions on the stitched image

corresponding to a measurement region (for example, a region with a given Al2O3

thickness or the usable region of the sample), as demonstrated in Fig. 6.6. Because

Figure 6.6: In Mathematica, a locator panel is used to define measurement regions of
a given sample. Regions with different Al2O3 thickness are separated, and unusable
regions with obvious defects and scratches (such as the glue spots in the corners or
the scratch in the lower, center of this sample) are excluded.

the image coordinates can be correlated to local spectral measurements, the spectral

measurements can be separated according to the regions defined in the locator panel.
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6.4.1 Fitting procedures

At each measurement location, there are several spectral measurements with

different analyzer angles. First, the intensity at each wavelength is normalized by

dividing by double the mean intensity across all angles. The maximum intensity

cannot be used for normalization because the light is elliptically polarized, but the

intensity oscillates about the mean value as the analyzer rotates. Using the Jones

analysis developed in Section 4.5, this 2D measurement (intensity I vs. wavelength

λ and analyzer angle θa) will be fit to the following intensity:

I(θa, λ) =

∣∣∣∣∣∣∣∣




cos2 θa sin θa cos θa

sin θa cos θa sin2 θa


MLC




1

0




∣∣∣∣∣∣∣∣

2

, (6.1)

where

MLC = Rθf




cosX − i∆φ
2

sincX ∆θ sincX

−∆θ sincX cosX + i∆φ
2

sincX


R−θi , (6.2)

X =
√

∆θ2 + ∆φ2/4, ∆θ = θrub − θ1, and ∆φ = 2π∆nt/λ (the retardance of the

liquid crystal layer). Explicitly, the intensity function becomes

I(θa, λ) =
1

4
∆φ2sinc(X)2 cos2 (θa + ∆θ − 2θrub)

+ [∆θsinc(X) sin (∆θ − θa) + cos(X) cos (∆θ − θa)]2
(6.3)

Several steps are used in the fitting procedure to avoid local minima. The first

of these relies on the expansion of ∆φ� ∆θ, which using Eq. 4.8 yields

I(θa, λ) =
1

2
+

1

2
cos (2θ1) cos (2 (θa − θrub))− 1

2
cos(∆φ) sin (2θ1) sin (2 (θa − θrub)) .

(6.4)
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Figure 6.7: The first step of the fitting procedure uses the spectral data at one
θa (black), fits a thickness using the known ∆n of 5CB (blue), then refits for ∆n
(orange) to ensure that the fit is not confounded by slight variations in birefringence.

Note that the wavelength dependence is wholly contained in the cosine of the

retardance ∆φ = 2π∆nt/λ. Ignoring for now θ1 and θrub, we fit for the thickness of

the cell by rewriting this equation as I(θa, λ) ≈ a + b cos(∆φ), selecting a

particular θa with highly oscillatory intensity across wavelengths, and fitting the

intensity at this θa with the known ∆n of 5CB [114]. This procedure yields the

liquid crystal thickness t independently from its anchoring or twist angles. The

next step is somewhat counterintuitive, but can be crucial. After fitting for the

thickness, ∆n is refit to a phenomenological Cauchy equation1 (Fig. 6.7). The ∆n

curve is highly sensitive to small changes in temperature, so even with a good

thickness fit, there can be some error in ∆n that can have a dramatic effect on the

rest of the fitting procedure. As a consistency check, any data where the refitted

∆n varies from the known ∆n by more than 0.3% at any wavelength is excluded.

With the fitted t and ∆n, the measured spectra at all analyzer angles are fit

with a least-squares nonlinear fitting algorithm to yield θ1 and θrub with a standard

error on the order of < 1°. The measurement uncertainty corresponding to liquid

crystal angles at a single location (< 10%) is small compared to variations across

1∆n(λ) = B0 +B1/λ
2 +B2/λ

4, with fit parameters B0, B1, and B2.
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Figure 6.8: Demonstration of the polarized spectrometry measurement. a) Polarized
micrograph of a sample with nine measurement regions. b–c) Measured spectra at
varying analyzer angles at two locations. d–e) Corresponding fit results to the
measured spectra. f–g) Individual measured spectra at the θa corresponding to θrub

and θrub − 90°.

a measurement region; the measured torques in a single region (consisting of ∼ 60

separate measurements) in aggregate typically have a standard deviation of at least

50% of the mean. Therefore, the measurement uncertainty is dominated by the

aggregate statistics on measurements in a region, and we ignore the uncertainties

from individual measurements.

Figure 6.8 summarizes the measurement procedure on a linearly-rubbed

sample with nine different Al2O3 thicknesses. Figure 6.8a is a polarized image of

the sample with circles corresponding to the spot size of individual measurements.

The different colors indicate different regions that have been distinguished as

described above (Fig. 6.6). The rest of the figure examines measurements at the

two highlighted regions in more detail. In Fig. 6.8b–c, the normalized, measured

transmission is plotted as a function of analyzer angle and wavelength at regions

with thick (b) and thin (c) Al2O3 layers. The dashed lines indicate θrub and

θrub − 90°. Figure 6.8d–e plots a simulated spectra from the fit parameters,
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showing good agreement to the measured data. The effect of the torque is most

easily seen at the measurement where θa = θrub and θa = θrub − 90°. These

transmission spectra are plotted in Fig. 6.8f–g. Transmitted intensities (black dots

for measured values, solid colored lines for theory fits) along θa = θrub = 135° and

θa = θrub − 90° = 45° are shown for the thick (f) and thin (g) Al2O3 layers. A

strong torque causes a larger difference in transmission between θa = θrub and

θa = θrub − 90° (for example, see (g) compared to (f)). The slight offset between fit

and measurement in Figure 6.8g is because only two out of 25 measurements used

in the fit are plotted. Combining all measurements, the error in the angle is < 4°.

6.5 Dielectric models

Calculations of Casimir-Lifshitz interactions require the dielectric properties

of the relevant materials at all frequencies. The dielectric functions are evaluated at

imaginary frequencies ω = iξ. The Ninham-Parsegian model for dielectric functions

is convenient and consistent with the Kramers-Kronig relations:

ε(iξ) = 1 +
∑

j

dj
1 + ξτj

+
∑

j

fj
ω2
j + gjξ + ξ2

, (6.5)

where the first sum corresponds to microwave-frequency Debye oscillations (with

strength dj and relaxation time τj) and the second sum corresponds to damped

oscillations (with strength fj, resonance frequency ωj, and damping constant

gj) [3]. At room temperature, the first Matsubara frequency is

ξ1 = 2πkB (298 K) /~ = 0.161 eV, well beyond the characteristic frequencies of

Debye oscillations (for example, 1/τ = 65 µeV for water) [74]. Therefore, the
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contributions corresponding to these terms appear only in the zero-frequency

terms ε(0). According to Parsegian and Bergström, inorganic materials can be

modeled with reasonable accuracy by considering only two undamped oscillations:

one in the infrared and one in the ultraviolet. In this case, the dielectric model can

be written

ε(iξ) = 1 +
CIR

1 + ξ2/ω2
IR

+
CUV

1 + ξ2/ω2
UV

, (6.6)

where Cj = fj/ω
2
j is the contribution of the jth oscillation to ε(0).

Bergström summarizes a method developed by Hough and White for fitting

the measured refractive indices at visible wavelengths to produce complete models

in the form of Eq. 6.6 [73]. The visible refractive index is assumed to be dominated

by the UV term, so Eq. 6.6 is rewritten (substituting ξ = ω/i and ε = n2) as

n2 − 1 =
(
n2 − 1

)
ω2/ω2

UV + CUV. (6.7)

Using the measured refractive index, Eq. 6.7 is fit for CUV and ωUV. These

coefficients are combined with a known ε(0) and an ωIR estimated from the

characteristic absorption frequency to form the complete model. To summarize, ε0

and ωIR are taken from the literature, CUV and ωUV are fit from the refractive

index in the visible regime, and CIR is calculated from ε0 = 1 + CUV + CIR. The

parameters resulting from this procedure are listed in Table 6.1. The model used

for the intervening dielectric has less effect than those of the birefringent materials;

for the Al2O3, we use Bergström’s model [74].

The liquid crystal 5CB is a special case: some of the assumptions made

above do not apply for an organic liquid. We use a dielectric model assembled by
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Table 6.1: Oscillator parameters used to model the birefringent crystals and Al2O3.
ε0 CUV CIR ωUV (eV) ωIR (eV)

CaCO3 ⊥ 7.98 1.69 5.30 11.07 0.177
‖ 8.48 1.18 6.30 14.12 0.177

LiNbO3 ⊥ 43.69 3.86 38.83 6.65 0.019
‖ 25.60 3.54 21.06 6.96 0.031

TiO2 ⊥ 85.77 4.80 80.00 4.97 0.066
‖ 170.01 6.04 163.00 4.79 0.066

YVO4 ⊥ 8.93 2.75 5.18 7.19 0.183
‖ 14.02 3.56 9.46 6.56 0.183

Al2O3 10.1 2.07 7.03 13.16 0.066

Kornilovitch using data and fits from Wu et al. [80,105,115]. We note that Table 1

in Ref. [80] contains typographical errors, confirmed by Kornilovitch in private

communication. At 298.2 K, the dielectric models are:

ε5CB,⊥ =

[
1 +

0.414

1 +
(

ξ
9.19 eV

)2 +
0.05960

1 +
(

ξ
5.91 eV

)2 +
0.03737

1 +
(

ξ
4.40 eV

)2

]2

(6.8a)

ε5CB,‖ =

[
1 +

0.460

1 +
(

ξ
9.19 eV

)2 +
0.10253

1 +
(

ξ
5.91 eV

)2 +
0.11110

1 +
(

ξ
4.40 eV

)2

]2

(6.8b)

The dielectric models for all materials are plotted in Fig. 6.9.

Of these materials, CaCO3 is unique in that it has ε(0) < 0 but ε(ξn) > 0

for the first few hundred Matsubara frequencies. Consider separately the frequency

contributions to the Casimir-Lifshitz torque M =
∑∞

n=0

′
Mn(ξn). Because CaCO3

has a different sign of M0 than for Mn>0, and the relative contributions of the Mn’s

depends on the separation of the materials, the sign of the torque between CaCO3

and some another material can change as a function of separation. The possibility

of a sign change due to a change in the retardation-dependence frequency sampling

was first pointed out by Thiyam et al. in a system with black phosphorous and

2D-monolayer phosphorous [14].
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Figure 6.9: The Casimir-Lifshitz free energy is calculated using the dielectric
functions of the materials evaluated at imaginary frequencies. For each material,
the solid and dashed lines indicate the dielectric function along the ordinary and
extraordinary axis, respectively. Al2O3 is isotropic and represented by a solid gray
line.
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Chapter 7: Measured Casimir-Lifshitz torques

7.1 Overview

In this chapter, we summarize the results of the experiment outlined in Chapter

6. With this experiment, we validate the theoretical dependence of the Casimir

torque on separation, angle, and optical properties.

7.2 Angular dependence

The measured Casimir torque has a sin(2θ1) dependence for all four

birefringent substrates, and the sign and magnitude of the torque depends on the

optical properties of the crystals (Fig. 7.1). To probe the angular dependence, we

deposit 6 nm of Al2O3 on four different birefringent substrates and assemble cells

with circularly-rubbed PVA counterplates as described in Chapter 6. This

produces a uniform distribution of θrub, which allows us to measure the torque as a

function of θ1 (see Fig. 6.1). All four crystal substrates show a sin(2θ1)

dependence of the torque with a sign corresponding to the rotation needed to align

the principal optical axes with the highest refractive index in the visible portion of

the spectrum. The microscope images of the samples between crossed polarizers
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Figure 7.1: Top: Polarized optical micrographs of cells with circularly rubbed PVA
and four different birefringent substrates separated by ∼18 nm from the birefringent
liquid crystal. In each case, the dark brushes along the preferred axis are narrowed:
ordinary axis for CaCO3 and LiNbO3 (∆n < 0), and extraordinary axis for TiO2

and YVO4 which (∆n > 0). Bottom: Measured torque across each cell as a function
of θ1 (dots). Overlaid are fits (solid lines) to sin(2θ1).

(Fig. 7.1, top panel) show the broken symmetry caused by the Casimir torque: in

each case, the dark regions are narrowed along the preferred alignment axis. The

data are fit to a sin(2θ1) function to determine the amplitude of the torque (solid

lines in bottom panel of Fig. 7.1). We also build circularly-rubbed cells with an

isotropic glass substrate replacing the birefringent substrate to demonstrate a null

result (Fig. 7.2). For these samples, θ1 ≈ θrub and ∆θ ≈ 0. The glass slides are

coated with either unrubbed PVA, which is known to yield degenerate planar

anchoring [93], or 6 nm of Al2O3 (as in Fig. 7.1), which should also yield no
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Figure 7.2: Glass substrates are coated with 6 nm of Al2O3 (orange) or ∼6 nm PVA
(purple). A fit to a sin(2θ1) dependence (solid lines) yields no measurable torque.

preferred azimuthal direction. These measurements confirm that the Al2O3 by

itself has no anchoring effect on the 5CB.

7.3 Separation dependence

We determine the distance dependence of the Casimir torque using 27 different

Al2O3 thicknesses (0–25 nm) per crystal substrate and measure the rotation angle

to discern the maximum torque at each separation. For these experiments, the

PVA layer is rubbed to θrub ∼ 45°, and nine separations are measured on a single

1 cm2 sample. Three samples are constructed for each of the four crystal types to

achieve 27 distinct separations (Fig. 7.3). The maximum torque per area a for each

separation is obtained by calculating the torque associated with the liquid crystal

twist and assuming a sin (2θ) dependence of the torque:

a sin (2θ1) = k22∆θ/t (7.1a)
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a =
k22∆θ

t sin (2θ1)
(7.1b)

To compare these measurements with the full Casimir torque calculation, we

include a 12 nm offset to the distance between the interacting crystals due to the

surfactant (which we assume to form an isotropic layer of constant effective

thickness on the substrate) and sample roughness (Sec. 7.5). Agreement is found

between the measured (symbols) and calculated (solid lines) values of the torque

to within the uncertainties in the measurements and tabulated optical properties.

7.4 Comparison of measured Casimir torque to calculations

The sign of the Casimir torque depends on the optical properties of the

interacting birefringent crystals and can be changed from positive to negative. We

categorize these birefringent materials by the sign of the difference in refractive

index n (and dielectric constant ε0) between the ordinary and extraordinary axes

for wavelengths in the visible, ∆n = ne − no, and at DC, ∆ε0 = ε0,‖ − ε0,⊥. TiO2

and YVO4 crystals, for which ∆n > 0 and ∆ε0 > 0, cause 5CB (∆n > 0 and

∆ε0 > 0) to twist towards the extraordinary axis, resulting in a negative torque

(Fig. 7.3). LiNbO3 has ∆n < 0 and ∆ε0 < 0 but weaker anisotropy, which causes

a smaller twist towards the ordinary axis and a positive torque. CaCO3 (∆n < 0,

∆ε0 > 0) is a special case: low frequency fluctuations should contribute to a torque

on 5CB towards the extraordinary axis, while higher frequency fluctuations should

contribute to a torque of opposite sign towards the ordinary axis. The full Casimir

torque calculation using the available dielectric data predicts that the higher
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Figure 7.3: Amplitude of the Casimir torque between 5CB and four different
birefringent substrates: CaCO3, LiNbO3, TiO2, or YVO4, as function of separation.
The separation includes the known Al2O3 thickness and a constant offset of 12 nm
due to the surfactant and surface roughness. Solid lines represent the calculated
torque with shaded regions corresponding to the value resulting from a range of
constant offsets from 8 nm to 16 nm. Error bars denote the standard deviation of
the torques measured at different locations within each region and the symbols (•,
�, H) represent different samples of the same crystal type. The open circles (◦)
represent the torque amplitudes of the fitted sin(2θ1) curves from Fig. 7.1.
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frequency terms should dominate at the separations in our experiment, leading to

a positive torque. This is also consistent with our measurement, which

demonstrates a torque towards the ordinary axis. At larger separations, the lower

frequency terms dominate and the sign of the torque should be reversed [14];

however, no crossover behavior is observed (or predicted) within one standard

deviation of the data in the distance regime probed in our experiments. Our

results are all consistent with the expected signs and relative strengths of the

calculated torque. For comparison, the fitted torque amplitudes from the

circularly-rubbed samples (Fig. 7.1) are also plotted (open circles) in Fig. 7.3,

showing consistency between these different methods.

7.5 Effective distance offset

An atomic force microscope (AFM) is used to probe the thickness of the FC-

4430 surfactant layer that forms between the 5CB liquid crystal and solid substrate.

The sample was prepared by spreading the 0.5% FC-4430 in 5CB mixture across the

substrate (glass or template-stripped Au) to allow for segregation of the materials.

The results of these measurements are summarized in Fig. 7.4. In Fig. 7.4a, an

AFM topography scan shows the formation of a thin, uniform layer on the glass.

We conclude that this layer, which does not appear when 5CB without FC-4430 is

spread on a sample, is a monolayer of FC-4430 molecules. In Fig. 7.4b, a line scan

across this monolayer shows the step height of the surfactant film on glass (dashed

red line in a) to be 4.5± 0.3 nm. This measurement puts a minimum bound on the
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surfactant layer thickness, because when immersed in 5CB (as done in the torque

experiments), the surfactant molecules will likely extend further from the surface.

To determine the total extent of the surfactant in situ, a second set of experiments

is performed. In Figs. 7.4c, and 7.4d, a platinum AFM tip approaches and retracts

from a gold surface while immersed in 5CB without (c) and with (d) the added

FC-4430. Figure 7.4c shows smooth amplitude curves except where the tip sticks

to the surface after contact (tip-sample separation of zero). Figure 7.4d, shows an

amplitude that is observed to decrease rapidly at a certain separation (∼20 nm for

this scan), indicating the distance at which the surfactant layers on each surface

(substrate and tip) join together (i.e., “jump” to contact). On retraction, multiple

features are observed at locations where molecules attached to both surfaces separate

(i.e., “rupture”). Figure 7.4e contains a histogram that shows separations at which

jumps occur over several distinct distance sweeps for samples with the tip immersed

in the FC-4430/5CB mixture. A jump is observed in 21 of 31 approach/retract

curves and occurs at an average tip-sample separation of 16.6 nm, which would imply

a 8.3 nm surfactant layer on each surface when immersed in 5CB. Considering the

measured surface roughness of 4–5 nm, we use a distance offset of 12± 4 nm. This

offset is added to the Al2O3 thickness to yield the separation between liquid and

solid crystals. We also note that we calculate the torque as if this spacer layer was

entirely Al2O3. This has a relatively small effect on the calculated torques. Lacking

a dielectric model for the FC-4430, we also calculate the torque with a 12 nm layer

of water (a notably strong dielectric) using the dielectric model from Ref. [3]. The

calculated torque between YVO4 and 5CB, for example, decreases by only 6% when
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12 nm of Al2O3 is replaced with water.

7.6 Measurement sensitivity

In order of decreasing importance, the sensitivity of our measurement is

limited by nonuniformities in the liquid crystal cells, the optical measurement

technique, and Brownian motion. The first of these is the dominating factor in our

measurements and can be estimated by the large-separation torques in Fig. 7.3.

At large separations for the LiNbO3, TiO2, and YVO4, we can resolve torques of

magnitude 3× 10−9 Nm/m2. The CaCO3 substrates, which are softer than the

others, are more susceptible to surface defects in fabrication, which limits the

sample quality. With an ideal fabrication process that produces uniform and

defect-free samples, the optical measurement would limit the sensitivity. From the

torque balance equation a sin(2θ1) = k22∆θ/t, the smallest measurable torque is

limited by the smallest measurable twist angle ∆θ. For a cell with t = 50 µm, a

measurement of ∆θ with a resolution of 0.1° corresponds to a torque sensitivity of

10−10 Nm/m2. The resolution of the torque measurement can be improved by

increasing t, but this introduces other practical experimental issues, such as

polarization-dependent absorption and long-range liquid crystal defects. If all

other factors were mitigated, the minimum noise level of our measurement

technique would be dominated by thermal noise of magnitude kBT . The measured

torque per unit area is k22∆θ/t, and the free energy associated with the dependent

variable ∆θ is k22∆θ2/(2t). Setting this equal to kBT/S (where S is the area of the
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measured spot size), we find that the minimum resolvable ∆θ due to thermal noise

is
√
kBTt/(Sk22). With T = 300 K, t = 50 µm, and S = 1 mm2, this is about 0.01°,

which corresponds to a best possible torque per unit area sensitivity of

10−11 Nm/m2.

7.7 Summary of results

We have experimentally verified the existence of the Casimir torque between

two optically anisotropic materials and have quantified the distance and angular

dependence of this phenomenon. With our technique, we can measure torques as

small as a few nNm/m2 and have found the results to agree with calculations of the

Casimir torque both in terms of sign and magnitude.
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Chapter 8: Future research directions

8.1 Overview

The experimental design and apparatus described in Chapters 6–7 open the

door for more measurements of the Casimir torque. During their development, we

came across several promising ideas and phenomena that warrant further

exploration.

8.2 Next steps for the current measurement apparatus

The results of Chapter 7 represent the first measurements of the Casimir

torque, but there are many more measurements that could be carried out

immediately. We could explore different sample cleaning procedures and improve

the fabrication of the liquid crystal cells. Because sample consistency has the

largest effect on our measurement sensitivity, we may be able to resolve smaller

torques with less uncertainty by using higher quality samples. With high enough

sensitivity, we could test the predictions of Section 3.3, which outlines increases in

the torque due to intervening dielectrics and retardation. As an example, we could

replace the Al2O3 layer with different dielectric films, such as TiO2, to see if there
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is a measurable change in the torque.

With different solid or liquid crystals, we could further explore the role of the

dielectric function on the Casimir torque. For example, the common liquid crystal

MBBA has ∆ε0 < 0 but ∆n > 0. Like CaCO3, the Casimir torque would depend

on a balance between low-frequency and high-frequency contributions of opposite

sign. Further exploration of the torques using materials with mismatched signs of

∆ε0 and ∆n may yield a torque that switches sign with a change in separation.

Instead of a birefringent crystal, we could fabricate a surface with metal

corrugations or nanorods. A flat surface with 1D conduction should also cause a

Casimir torque on liquid crystals. With such an experiment, we could explore the

effects of geometric anisotropy on the torque as well as optical anisotropy. The

same measurement described in the previous chapters could be used, although the

incident light would be polarized perpendicular to the conduction direction in

order to transmit into the cell.

8.3 Microdroplets

One promising direction for measuring small torques involves “microdroplets”

of liquid crystal on an aligning surface. [92,116]. The work in this section was done

with undergraduate researchers Patrick Goggins and Bart Tararuj as part of PHYS

299B, a research-based course.

A liquid crystal droplet on an aligning surface has a director configuration

that depends on the bulk elastic energy and surface anchoring energy. These two
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Figure 8.1: Simulation (a,c) and polarized microscopy images (b,d) of liquid crystal
hemispheres without (a,b) and with (c,d) alignment on the flat surface. The droplet
in b) rests on a substrate that has not been treated for any alignment. The droplet
in d) rests on a PVA layer that has been rubbed vertically.

contributions scale differently with the droplet size. The bulk elastic energy will scale

with the Oseen-Frank elastic terms (r−2 dependence) integrated over the volume

(r3), so Ebulk ∼ r. The surface anchoring energy contributes a constant amount per

unit area so, after integrating over the aligning surface, Esurf. ∼ r2. Large droplets

have configurations dominated by the surface anchoring and small droplets have

configurations dominated by the elastic free energy. At the air interface, the liquid

crystal director aligns normal to the liquid-crystal/air interface. With no aligning

torque on the flat surface, the droplets form a “hedgehog” structure. With a strong

torque, a disclination line forms normal to the direction of the torque. These two

orientations are easily distinguished under a polarizing microscope (Fig. 8.1.).

By dimensional analysis, we can estimate that the droplet radius r at which
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the two energies are comparable satisfies

Ebulk ≈ Esurf. (8.1a)

kr ≈Mr2 (8.1b)

r ≈ k/M (8.1c)

where k is the the elastic constant in the one-constant approximation, i.e.

k = k11 = k22 = k33, and is on the order of 5 pN. From our dimensional analysis,

we can predict that for a Casimir torque of 0.5 nNm/m2 (smaller than the torques

resolved in Chapter 6), there may be a transition from hedgehog orientation to

disclination orientation when r ≈ 100 µm. Droplets of this size could be easily

imaged with our polarizing microscope. By spraying liquid crystal on a surface

and taking a large image with hundreds of droplets of different size, we could use

image processing techniques to determine the transition size of the droplets.

Figure 8.2 is a demonstration of this method. As a 5CB droplet on an aligning

surface cools from the isotropic phase, various configurations are apparent. A

four-brush texture indicates a hedgehog orientation, while a disclination line

indicates an aligned droplet.

Although this experiment is relatively simple, we have made a number of

simplifying assumptions. In order to extract a torque from this technique, more

careful theoretical work is necessary. For example, the dimensional analysis above

needs to be verified with numerical simulations of liquid crystal director orientations.

The wetting angle will also play a factor, as the droplets would not have heights

equal to their radii. Undergraduate researcher Sean Gillen developed numerical tools

96



Control of Liquid Crystal Alignment in Microscopic Geometries 

Patrick Goggins1, Bartosz Tararuj1, David Somers1,2  
1UMD Department of Physics, 2Institute for Research in Electronics and Applied Physics 

        Sponsored by the Department of Physics, University of Maryland, College Park 

BACKGROUND 
Liquid crystal (LC) has molecular alignment 
while remaining in a fluid state. The most 
common use of LC is in the development of 
display technologies like LCD screens.   
Despite their common use there is much to learn 
about LC’s, such as the mechanism that causes 
their alignment at it’s boundaries.  
We analyze these alignment forces by observing 
LC alignment in microscopic geometries as a 
function of size and temperature.  
We focus on the geometries of cylinders and 
hemispheres. 
 
 
 

As temperature increases, the alignment of 
molecules shifts from ordered through an 
intermediate phase to completely disordered.  
We can qualitatively measure this ordering using 
polarized light because of the birefringent 
property of LCs. 

PROCEDURE 
•  Using a microscope with crossed polarizers, 
we observe our samples mounted on a piece of 
ITO coated glass. ITO is a transparent 
conductor. 
•  We create an aligning force by evaporating a 
polymer layer onto glass then rubbing it in one 
direction with a piece of cloth.  
•  We then spray LC onto the slide to create a 
dispersion of droplets . 
•  To make a column, we sandwich a dispersion 
of droplets between two cover slides with 50µm 
spacers between them.  
•  We then run a current through the ITO, which 
heats the surface. 

100 
�m 

Heating Stage 

The above is a sequence of a cooling LC droplet 
paired with estimated cross sections of the 
molecular orientation at given time. By 
controlling the temperature from the bottom of 
the slide, we were able to slow down the cooling 
process in the middle of the droplet while 
achieving alignment from the surface and the air. 

Top view of hemisphere aligned by a rubbed surface 

“Hedgehog” hemisphere caused by air-LC interface 

     CRYSTAL  NEMATIC    LIQUID 

TEMPERATURE 

Above are different views of a LC column that 
has its two surfaces rubbed perpendicularly to 
form a twisted nematic. When observing 
columns with competing boundary conditions 
you can see the disclination regions meeting in 
the center, and a rudimentary hedgehog 
alignment caused by the circular air interface 
when the LC between the two rubbed surfaces is 
melted. 

ITO 

C
opper Tape C

op
pe

r T
ap

e 

Geometry for “twisted 
nematic” as found in LCD’s 

PRELIMINARY RESULTS 
•  “layering” of melted and not melted portions 
•  simple geometries are easy to create and             
model 
•  can selectively melt different layers of the LC 
•  can differentiate short and long-range torques     
acting on liquid crystals, such as surface 
interaction vs. Casimir torque 

50μm 50μm 
50μm 

a b c d e f g

time

Figure 8.2: Top: Polarized photographs of a single droplet on an aligning surface
as it cools from the melted state in a) to an aligned nematic state in g). The top
of the droplet appears to cool to the nematic phase, followed by the bottom, then
finally the center. b), the bottom layer is still melted and the cooled top layer
forms a hedgehog texture. f), a small hedgehog texture in the center is surrounded
by a texture that indicates uniform alignment. g) the droplet is cooled to the
nematic state and exhibits uniform alignment. Bottom: hypothesized liquid crystal
alignment corresponding to the observed textures.

with which we can calculate the director configuration of minimal energy for liquid

crystal hemispheres of varying dimensions with varying surface energies, based on

the Q-tensor formulation outlined in Ref. [117]. With these calculations, it may be

possible to extract a measured Casimir torque from this experiment. Although there

are many complications that require further study, the high precision and striking

visual effect make this a promising experiment.

8.4 Devices

Because the Casimir torque can cause strong and weak liquid crystal

alignment, it may be useful in liquid crystal displays. A birefringent crystal causes

liquid crystal alignment with no processing step, which could be appealing

compared to fabrication methods that require multiple coatings and rubbing or
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UV curing. Twisted nematic displays with weak alignment (which can be achieved

with an isotropic spacer layer) can switch more quickly and with lower voltage

than those with strong alignment [113]. With a particular cleave of birefringent

crystal, the liquid crystal could be aligned at a well-determined tilt angle. The

cost of single-crystal birefringent substrates is prohibitive for use in display

technologies for the time being, but any birefringent material could be used for

liquid crystal alignment.

8.5 Concave droplets

We end this thesis with an open mystery. On several occasions, we noticed a

strange behavior of MBBA and 5CB liquid crystals. When a small amount (∼10 µL)

was expelled from a pipette tip, it would often form a crater-like droplet as it hung

from the tip (8.3). Sometimes, this was preceded by an air bubble that filled out the

crater before popping. In an ordinary liquid, the crater-like droplet would collapse

to a smooth curved surface due to surface tension. Evidently, this force is somehow

opposed by an elastic force unique to liquid crystals. Perhaps the elastic tension

due to the director configuration is strong enough to oppose the surface tension.

With a repeatable apparatus that could produce this structure under a polarizing

microscope, it may be possible to solve this little puzzle.
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quasistable 

stable 

Figure 8.3: A droplet of MBBA liquid crystal hangs from a pipette tip. Sometimes,
a quasistable crater-like droplet forms before “popping” to form an ordinary liquid
droplet.

8.6 Conclusions

In this Thesis, we have outlined an easier method for calculating

Casimir-Lifsthiz interactions in planar systems, demonstrated a few theoretical

oddities relating to anisotropic systems, and demonstrated the first working

experiment for Casimir torque measurements. We hope that it leads to continued

advancements in the field of fluctuation forces and helps to open the door to

advanced technologies.
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Appendix A: Fabrication techniques

A.1 Atomic layer deposition

The separation between the solid and liquid crystal is controlled by depositing

Al2O3 layers of varying thickness onto the solid birefringent crystal substrate via

atomic layer deposition (ALD). To produce a range of Al2O3 thicknesses on a single

sample, regions of the substrate are masked using Kapton tape. The Kapton tape

prevents Al2O3 growth by prohibiting gas flow at the surface and can be easily

removed without residue after the deposition process. With Kapton tape masking,

nine different thicknesses on a single cell can be achieved with four deposition steps

(Fig. A.1). The ALD is done in the Beneq ALD machine in the UMD FabLab at

150 ◦C and 3 mbar using the recipe “Al2O3 Baseline 150C 1000Cy”. The following

procedure is carried out for each deposition step:

1. Rinse substrate in acetone, methanol, then IPA.

2. Blow dry with N2.

3. Place substrates in Ossila UV/ozone cleaner for 3 min.

4. Remove substrates and pressurize the ALD.
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A: B: C:
Resulting number of cycles is m times:

Figure A.1: Process to achieve 27 thicknesses in six ALD processes on three cm2

substrates (A, B, and C). Kapton tape is used to mask different regions of the
substrates in steps 1–4, then additional thin layers are deposited on two of the three
substrates in steps 5–6. The Kapton tape leaves visible lines at the edges, so, by
applying it at an angle, the front and back of the samples are easily determined. The
inset shows the total number of cycles deposited in each region from this process for
some integer m.
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5. Place Kapton tape on the substrates, taping them onto a clean silicon carrier

wafer to prevent sliding.

6. Blow with N2 to remove dust.

7. Load the samples.

8. Follow the ALD instructions to deposit the desired thickness using the recipe

“Al2O3 Baseline 150C 1000Cy” (0.12 nm/cycle).

9. When done, remove the sample from the ALD and peel off the Kapton tape.

The substrates are handled by the edges only to minimize scratches and other

defects.

A.2 Polyvinyl(alcohol) alignment layer

The rubbed PVA layers are created on 1” square borosilicate glass cover slides

(Ted Pella). The procedure begins in the cleanroom in UMD’s FabLab:

1. Wipe slides with dust-free wipes soaked in IPA to remove large particulate.

2. Rinse slides in acetone, methanol, then IPA and dry with N2.

3. Place slides in UV/ozone cleaner to promote wetting.

4. On the polymer spin coater, static dispense 1% PVA in H2O to cover the

center of the slide.
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5. Spin at 2000 rpm for 30 s with 5 s acceleration/deceleration time1.

6. Bake on hot plate at 105 ◦C for 30 min to ensure the water has evaporated.

The rubbing is done in our lab. For unidirectional rubbing, the samples are rubbed

at least 20 times with a velvet cloth. For circular rubbing, the samples are mounted

on a motor while a cloth is lowered into contact with the PVA. The cloth is raised

after the sample has completed at least 20 revolutions.

A.3 Cell construction

The samples are assembled in the cleanroom:

1. Reclean the crystal substrate with Al2O3 layers (solvent rinse and UV/ozone).

While the substrate is in the UV/ozone cleaner,

2. Blow the rubbed PVA slide with N2 to remove dust.

3. Mix NOA68 UV-curable adhesive (Norland Optics, purchased from Thorlabs)

with 50 µm spacer beads (Cospheric).

Taking the substrate from the UV/ozone cleaner and moving quickly,

4. Place a small dot of NOA68/spacer bead mixture at each corner of the crystal

substrate.

1the thickness of this layer does not need to be precisely controlled, but this recipe produces

thicknesses of ∼150 nm (measured with atomic force microscopy)
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5. Use a Milty Zerostat gun on both PVA slide and substrate to reduce static

charging (this prevents unwanted static attraction and may also mitigate

alignment effects from static charges).

6. Place the rubbed PVA slide facedown on the substrate and gently press

together.

7. Use a UV light to cure the glue. A handheld UV light takes about 3 min, and

the contact aligner can cure the glue in about 30 s.

8. Place the sample on a hotplate at 50 ◦C (well above the clearing point of 5CB)

with crystal substrate on top.

9. While the sample heats for 1 min, use a pipette to stir the FC-4430/5CB

mixture in case the surfactant has settled.

10. Inject the FC-4430/5CB mixture into the cell.

11. Once the capillary action has caused the cell gap to fill completely, carefully

wipe away the excess liquid crystal.

12. Turn off the hotplate and allow the cell to slowly cool to room temperature (1

hour).

13. Carry out the optical measurement immediately to avoid long-term

degradation of the sample.
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