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Abstract

Given desired joint torques in an n-DOF tendon-driven manipulator with n+1
control tendons, the determination of tendon forces is an indeterminate problem.
Usually, the pseudo-inverse technique can be used to solve for such a problem. In
this paper, rather than using the pseudo-inverse technique, an efficient methodology
for transforming joint torques (n elements) to motor torques (n + 1 elements) has
been developed. This technique, called “torque resolver”, utilizes two circuit-like
operators to transform torques between two different vector spaces. It can be easily
programmed on a digital computer or implemented into an analog-circuit system.
It 1s hoped that this technique will make real-time control using computed torque
method feasible. The technique has been demonstrated through the dynamic sim-

ulation of a three-DOF manipulator.

1. Introduction

Tendons have commonly been used as power transmission elements in the de-
sign of dextrous hands, for they allow actuators to be installed remotely from the
joint they drive. The application of tendons for power transmission may reduce
the inertia and size of the manipulating system. A few tendon-driven mechanical
systems can be found in the literature (Jacobsen, et al., 1984; Morecki, et al., 1980;
Okada, 1977; Pham and Heginbotham, 1986; and Salisbury, 1982).

A special characteristic associated with tendon-driven manipulators is that
tendons can only exert tension. In other words, force can only be transmitted from
actuators to the joints in a unidirectional sense. This characteristic imposes certain
constraints on tendon routing (Morecki, et al., 1980; and Lee and Tsai, 1991). As a
result, it increases the complexity in the control of such manipulating systems, e.g.
the coupling of displacements, and the redundancy in tendon forces. The purpose
of this investigation is to establish a systematic methodology for the resolution of
redundancy of tendon forces. The methodology will be illustrated by three different
kinematic structures of tendon-driven manipulators. Using this concept, the control

of a tendon-driven manipulator will be demonstrated via the dynamic simulation
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of a three-DOF (Degree-Of-Freedom) tendon-driven manipulator.

First, a dynamic model and a simple control algorithm based on the computed
torque method for an n-DOF tendon-driven manipulator having (n + 1) tendons
will be reviewed. The model assumes that friction and compliance in tendons can
be neglected. Then, a methodology for transforming joint torques to motor torques
will be introduced. This procedure, called “torque resolver”, uses two circuit-like
operators to compute tendon forces in terms of joint torques. It can be easily

programmed on a digital computer or implemented into an analog-circuit system.

2. Dynamic Modelling
Figure 1 shows an n-DOF manipulator with (n + 1) tendons. The dynamics
of such a system can be formulated from two subsystems: the open-loop chain and

the rotors. The dynamic equations of an open-loop chain without gravity term can

be expressed as (Paul, 1981):
M(6) O+ h(6,6)= = 1)

where M () is an n X n inertia matrix, © an n X 1 vector representing the joint
angles 8, h(6,6) an n x 1 vector representing the Centrifugal and Coriolis terms, and
7. an n X 1 vector representing the resultant joint torques in the open-loop chain.

The motor rotor dynamics can be approximated by a second-order system.
Consider the ith motor-tendon spooling system as shown in Fig. 2. If the ith
tendon is wound around the ith pulley of radius r,,,, and the pulley is coupled to a
gear reducer having a gear ratio of n; = rg/r, (n; > 1), then torque developed by
the sth motor is equal to the sum of inertia torque, friction torque, and the torque
reflected at the motor shaft due to tendon force, i.e.

jm;ém; + Cm;ém; + Dms T = éi (20')

ng

where jm;, ¢m;, Om;, fi, and &; denote rotor inertia, viscous-friction coeflicient,
rotor angular displacement, tension in the ith tendon, and torque developed by the

1th motor, respectively.



Since there are n+1 motors for an n-DOF tendon-driven manipulator, Eq. (2.a)
can be written n + 1 times, once for each motor. These n + 1 dynamic equations

can be compiled into a matrix form as:

IO +Cm®@,, + RnF =¢ (2.5)

where Jy, Cn, and Ry, are (n + 1) x (n + 1) diagonal matrices whose diagonal
elements are ju,;, ¢m;, and %"—‘, respectively; and ©,, and £ are (n 4 1) x 1 vectors
whose elements are the rotor angular displacements and motor torques, respectively.

The force and displacement relationship between the joint space and tendon
space have been developed by Tsai and Lee (1989). The resultant joint torques,
7. = (TnyTn=1,"++,72,71 )7, is related to tendon forces, F = (f1, fo, -+, fat1)%, by
the equation

r=RTBTF - (3.0)

where it is assumed that all pulleys pivoted about one joint axis are of the same
radii, and the matrix BT whose elements consist of -1, 0, and +1is an n x (n + 1)
matrix, and the matrix RT whose non-zero elements are the radii of the pulleys is
an n X n diagonal matrix.

The linear displacement of tendons, S = (81,82, ++,5n+1)7, is related to the

joint angles, © = (8,,0n_1, - -,82,61)T, by the equation

S = BRO (3.b)

Hence, rotor angular displacements can be related to the manipulator joint
angles by R,,Q,, = BRO. Eliminating ©_, between this equation and Eq. (2.b),

one can solve tendon forces in terms of motor torques and joint angles as:
F=Rn'{ — JnRn 'BRO — Cr,Rn ™' BRO] (4)
Substituting Egs. (4) and (3.a) into (1), yields

(M + M8+ Cn +h(8,6) = RTBTRn ¢ (5)
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where M = RTBTR,, ™ JuRm 'BR and Con = RTBTR ™ 'Cr R ™' BR.
Equation (5) completely describes the dynamics of a tendon-driven manipula-
tor. The term M givés the effect of rotor inertia to the dynamics of the system
and the term C, gives the effect of rotor damping. It should be noted that tendon
tensions given by Eq.(4) must be positive at all times for the dynamic model to be
valid. In Section 5, a heuristic will be developed to guarantee positive tension in

tendons.

3. Computed Torque Controller

The “computed torque” technique can be implemented for controlling the ma-
nipulator. The technique assumes that one can accurately compute the configura-
tion dependent variables, M(§) and h(6, 9), in real time to minimize the nonlinear
effect. It uses a proportional plus a derivative feedback to servo the motors.

Let the computed torque 1., be related to the motor torques by

T.m =RIBTR, ¢ (6.0)

and let the value of 7, be computed from joint feedback signals as
Lom = (M + M8, + Koé + Kpel + Cm@ + h(6,6) (6.5)

where K, and K, are respectively n X n derivative and position feedback gain
matrices, O, is the desired joint angular displacement vector, and ¢ = O, — 0 is the
error vector. Substituting Egs.(6.a) and (6.b) into (5) and after some simplification,
yields

(M + M)(E+ Kyé+ Kpe) =0 (7)

Since (M + M ) is positive definite, cne can choose K, and K, appropriately
so that the characteristic roots of Eq. (7) have proper negative real parts and the
tracking error ¢(t) approaches zero asymptotically.

Note that since the vector spaces of 7,,,, and £ do not have the same dimensions,

the mapping from the joint torque space to the actuator torque space is not unique.
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Given 1, the solution of { can be obtained by the pseudo-inverse of Eq. (6.a). The
result can be expressed as the summation of a particular solution and a homogeneous

solution as:

E=(R"TBTR, ™)t . + )¢, (8)

where (#)* = {(#)TI(#)(#)T]7!} represents the pseudo-inverse of (#) (Strang
1980), £, lies in the null space of matrix (RTBTR,,”!), and X is an arbitrary
constant. The components of { , must be of the same sign, thus, by adjusting A,
motor torques can be increased unidirectionally to assure positive tension in all
tendons.

'The pseudo-inverse method is very inefficient in computation. In what follows,

we will develop a more efficient method to resolve the motor torques.

4. Torque Resolver

As mentioned in the previous section, given desired joint torques, the deter-
mination of tendon forces (or motor torques) is an indeterminate problem. For an
n X (n + 1) system, the pseudo-inverse technique can be used to solve for tendon
forces. The computation of the pseudo-inverse method is very time consuming,.
In addition, the constant A in Eq. (8) must be chosen properly such that all the
tendons are under tension. To achieve this, the largest ratio of all the negative
tendon forces in the particular solution to their corresponding components in the
homogeneous solution must be identified. This process will inevitably increase the
computation time and reduce the possibility for real time control of the system.

Another method proposed by Jacobsen et al. (1984, 1989) is to use the “rec-
tifier” concept to determine appropriate tendon tensions. This method, without
going through the pseudo-inverse formulation, uses circuit-like operators to convert
joint torque signals to tendon tension signals. It provides a closed-form-like solu-
tion to determine the necessary tendon tensions and can be implemented by analog

circuits. Nonetheless, the result developed by Jacobsen, et al. is solely applicable

to the Utah/MIT hand in which the tendon forces are less coupled than that of
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the n x (n + 1) systems. In what follows, this concept will be generalized for the
n X (n 4+ 1) systems. It will be shown that this concept can be systematized.

Basic Principle

A one-DOF system is used to illustrate the basic principle. Figure 3 shows
the schematic of a one-DOF manipulator controlled by two tendons. Defining the
positive direction of rotation for the joint to be pointing out of the paper and 7
the resultant joint torque to be generated, then the force equation for the system

can be written as:
f2—f1 =7'0/T0 (9)

where rg is the pulley radius.

Equation (9) contains only two unknown variables, f; and f2, both of which
must be positive at all times. If 7y is positive (counterclockwise), the minimum
forces required will be 79/ry for f; and zero for f;. On the other hand, if 74 is
negative (clockwise), the minimum forces will be —7o/rg for f; and zero for fs.

This simple relation can be written in a mathematical form as shown below:

=6 :
{}2 _ ,—2/7«0 L6 if 70 >0 (10.q)
and
{;1 ~ ET"/”’ + if <0 (10.5)
2 — U0,

where 6y is a positive biased force which has no net effect on the resultant joint
torque 79.

Define the operators Ot and O~ as

; > 0
O+(;c):{g’ . Z e (11.a)

and

0"(w)={_x’ i i 8; (11.b)



where x is a dummy variable. The characteristics of O"(z) and O~ (z) can be
described graphically as shown in Fig. (4). Mathematically, O*(z) and O~ (z) can

also be written as

0*(z) = [z + |z[}/2 (11.c)

and

O~ (z) = [~z + |z]]/2 (11.d)

Note that O*(z) + O~ (z) = |z|, and O*(z) — O~ (z) = z.
Expressing Eqs. (10.a) and (10.b) in terms of O" and O~ operators, yields

f1=07(r/ro) + b0
{f2 =0+E7’0§T03+50 (12)

We note that the OF operator goes with the variable with a positive sign and
the O~ operator goes with the variable with a negative sign in Eq. (9). The physical
meaning of Eq. (12) can be readily seen from Fig. 3. If the joint torque required
is positive, then tendon f» must have a minimum pull of magnitude 7o/ry while
f1 remains zero. On the other hand, if the joint torque required is negative, then
tendon f; must have a pull of magritude |ry/ro| while f, remains zero. Adding a
biased force &y to both f; and f, has no influence on the equilibrium of 75. The
ratio of the biased forces in two tendons, 1:1 for this simple system, is proportional

to the homogeneous solution to Eq. (9).

5. Application to Multi-DOF Systems

The application of OF(z) and O~(z) operators to a general n-DOF system
leads to a systematic approach for the determination of tendon forces without using
the pseudo-inverse technique. In general, the system of equations shown in Eq.
(3.a) will be reduced to such an extent that one of the equations contains only two
unknown variables. Then, the solution for the two unknown forces can be obtained

by applying the O*(z) and O~(z) operators. This process can be repeated until
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all the variables are solved. The following three examples are designed to illustrate
the methodology.
Example 1. Structure Matrix in.Pseudo—Triangular Form

Consider the planar representation (Tsai and Lee, 1989) of a spatial three-DOF
manipulator shown in Fig. 5(a). The structure matrix BT has a pseudo-triangular

form (Lee and Tsai, 1991):

-1 1 0 0
BT=|-1 -1 1 0
-1 -1 -1 1

The homogeneous solution is given by [1 1 2 4]7. Substituting the structure matrix
into Eq. (3.a) and inverting the radius matrix RT to the left-hand-side of the

equation, yields

~fit fa=T3/r3 (13.a)
—fi=fotfa=12/r2 (13.0)
—h-fi-fitfa=n/n (13.c)

Since Eq. (13.a) contains only two unknowns, fi and fa, and they must be positive

at all times, we can write f; and f, in terms of O and O~ operators as

f1=0‘(73/r3 + & .
{f2=0+(T3/T3§+51 (14)

To determine f3, we substitute Eq. (14) into Eq. (13.b) and apply the relation
O~ (z) + O*(z) = |z|. This yields

—261 + f3 = T2 /re + |T3/73] (15)

Note that Eq. (15) contains two unknowns, 6; and f3. Following the same reasoning,
one can conclude that if the value of (72 /ry + |73/73]|) is positive, then the minimum

force will be (72/r2 + |r3/r3|) for f3 and zero for §;. On the other hand, if (r2/r2 +
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|73/73]) is negative, then the minimum forces will be zero for f3 and (—7/r; —
|73 /r3|) for 26;. This can be mathematically expressed as:

For (12/re + |73/r3]) > 0, then

281 = b9 ‘
{f3=72/7‘2+|73/7‘31+52, (16.a)

else

251=—T2/7‘2—lT3/T3|+52 .
16.5
{ﬁ=& (16.5)

where &, is a positive biased force which will result in no net joint torque about

joint 2. Writing Egs.(16.a) and (16.b) in terms of the Ot and O~ operators, yields

{61ZO—(TQ/T'Q-F|T3/T‘3|)/2+(52/2 (17)
fs = 0% (ry/ry +|73/73]) + &2

Combining Eqs. (14) and (17), yields

f1 = O_(T3/7'3) + O_(TQ/’I‘Q -+ IT3/’I“31)/2 + 52/2 (18&)
fg = 0+(7‘3/T'3) + O_(TQ/T2 + ITg/T'gl)/2 +62/2 (181))
f3 = 0% (ra/ry + |73 /r3]) + 62 (18.¢)

The physical meaning of Egs. (16.a) and (16.b) can also be explained from the
tendon routing shown in Fig. 5(b). Both fi and f; pull to the right while f3 pulls
to the left of the pulleys at joint 2. The two tendons f; and f; always produce a
net force of |73/rs| in addition to that from the biased force. Hence, to generate
a desired torque of 72 at joint 2, the force difference between f; and that from
the biased force 26; must be equal to (72 /r2 + |r3/rs|). If it is positive, then the
minimum forces will be (73 /ry + |73/r3]) for f; and zero for ;. If it is negative,
then the minimum forces will be zero for f3 and one-half of (72 /r2 + |73/r3]) for 6;.
The biased force 65 is added to adjust torque about the first joint axis. Note that
adding 62/2, 62/2, and &, to fi, f2, and f3, respectively has no effect on the net

joint torques 73 and 73.



Likewise, substituting Egs. (18.a,b,c) into Eq. (13.c), yields
26+ fa=T1i/r1 + ‘7’2/7"2 + ‘Tg/r;{|| + |13 /73| (19.a)

Following the same reasoning, one concludes that

{62 = O~ (r1/r1 + |ra/ra + |73 /rs|| + s /rs])/2 + 83/2 (19.5)

fo=0%(m1/r1 +|m2/re + |13 /rs]| + |73/73]) + &

where é3 is a positive biased force.

Combining Eqgs. (19.b) and (18), yields

( fr =07 (m3/r3) + O~ (1o /o + |T3/73])/2
+0~ (1 /r1 + |72/7‘2 + |7'3/7“3|| + |m3/r3])/4 + 63 /4
fa = 0% (r3/r3) + O~ (12/r2 + |73/73])/2
+0~ (1 /r1 + |T2/T2 + |T3/7“3H + |3 /r3|)/4 + 83 /4
f3 = 0% (ra[ry + |3 /rs]) + O~ (/71 + |r2/r2 + |3 /73| + |73/73])/2 + 63/2
 fa = 0+(7'1/7‘1 + sz/T2 + |T3/7‘3|| + |7'3/T3D + 63

-

(20)
Equation (20) provides an alternative method for the transformation of joint
torques to tendon forces other than the pseudo-inverse formulation. The result
guarantees that each tendon force is greater than or equal to zero. It can be seen that
the computation is more straight forward than that of the pseudo-inverse technique.
It should be noticed that the biased force §3 can be chosen arbitrarily beforehand
and its effect on the joint torques is in accordance with that of the homogeneous
solution.
Example 2. The Stanford/JPL Finger
The planar representation of the kinematic structure of the Stanford/JPL finger

is shown in Fig. 6. The corresponding structure matrix is given by

-1 1 0 O
-1 1 -1 1}1.

-1 -1 1 1

BT =
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The homogeneous solution is given by [1 1 1 1]T. Substituting BT into Eq. (3.a),

yields the force equations

~fit+ fa=713/r3 (21.a)
—fitfo—f3+ fa=m72/r2 (21.b)
—fi-fo+fat+fa=7/m1 (21.¢)

Since Eq. (21.a) contains only two unknowns, f; and f; can be written in terms of
Ot and O~ as,

fi =07 (r3/r3) +é1 (22)
fa =O+(T3/7‘3)+51 -

where 6, is a positive biased force which has no influence on joint torques 7 and

T3.

9

Substituting Eq. (22) into (21.b), yields

—fat+ fa=12/r2 —T3/73 (23)

Hence, f;3 and f; can be written as

{fs =07 (ro/ry — 13/7r3) + b2 (24)
fa=0%(r2/ra — 13/r3) + 62 -

where 62 is a positive biased force which has no influence on torque 5.

Substituting Eqs. (22) and (24) into (21.c), yields
—261 +262=T1/7‘1+!T3/’f'3l—-|7'2/7’2—-7‘3/7‘3] (25)
Hence, 6; and 8, can be written in terms of the OF and O~ operators as

{51 = O—_(Tl/'r'l + IT3/7'3| -_ |T2/T'2 -—T3/7‘3|)/2+63 (26)
by = O+(7‘1/r1 + |T3/7”3| - |T2/7‘2 - 73/7'3|)/2+53

where 83 is a positive biased force which has no effect on joint torques 7y, 75, and

T3,
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Substituting Eq. (26) into (22) and (24), yields

fi=0"(r3/r3) + O~ (m1/r1 + |m3/r3| — |r2/r2 — T3/73])/2 + 63

fo=0% (r3/r3) + O (r1/r1 + |m3/ra| — |72/r2 — 73/73])/2 + &3 (27)
f3 = O-(TQ/T2 — 7'3/7'3) + O+(7'1/7'1 + lT3/?“3] - |7'2/T'2 - 7'3/7‘3')/2 + 63 N
fo =0 (rafry —73/r3) + OF (1 /ry + |73/r3| — |72/r2 — T3/73])/2 + &3

Note that the value §3 can be used as a pretensioning force for the tendons.
Example 3. Fully Coupled Kinematic Structure
The kinematic structure shown in Fig. 7 is a fully coupled kinematic structure.

The structure matrix is given by

-1 -1 1 1
BT=|1 -1 -1 1
-1 1 -1 1

The homogeneous solution is given by [1 1 1 1),

Substituting the structure matrix into Eq. (3.a), yields

—fi—f+fit+fa=73/r3 (28.a)
fi=fo—=fit+ fa=12/ra (28.0)
~fitfo—fa+fa=m1/m1 (28.c)

In this case, none of the fi, f2, f3, and f4 can be determined by using just one

of the above equations. Thus, some algebraic manipulations are necessary. Adding

Eq. (28.a) to (28.b), yields
fo = f2=(r3/rs + m2/r2)/2 (29)
Therefore, f; and fy can be written in terms of the O and O~ operators, i.e.

{f2=0—(‘r3/7“3+7'2/7”2)/2+51 (30)

fa=0%(r3/r3s + m2/m2)/2+ 61

where §; is a positive biased force which produces no net torques about joints 2 and

3.



Subtracting Eq. (28.a) from (28.b), yields

fi — f3 = (12/r2 — 13/73)/2 (31)

Therefore, f; and f3 can be obtained in terms of the O and O~ operators as,

fi= 0% (r2/ra —73/73)/2+ 8
{ f;. = o—<rﬁ/r§ —13/73)/2 + 52 (32)

where §, is a positive biased force which produces no net torque about joints 2 and

3.
Substituting Egs. (30) and (32) into (28.c), yields
261 ——262 = T1/7‘1 + [7'2/7'2 —7’3/7‘3‘/2 — ‘Tg/Tg +T2/T21/2
=b (33)

Hence, §; = O1(b)/2 + 63 and §2 = O~ (b)/2 + b3, where 63 is a biased force which
has no effect on joint torques 71, 7o, and 73. Substituting §; and 8 into Eqgs. (30)

and (32), yields

f1 = O+(T’2/7‘2 —T3/T‘3)/2+0_(b)/2+63
f2 ZO—(T;:,/’I‘;; +7'2/7‘2)/2+O+(b)/2+53
f3 :O—(TQ/T2 —T3/7‘3)/2+O_(b)/2+63
f4 =O+(T3/7‘3+T2/7‘2)/2+0+(b)/2+63

(34)

It can be seen that the above procedure is general and can be applied to any kind

of n X (n + 1) systems.

6. Implementation of the Torque Resolver

In this section, the design of the controller for a three-DOF tendon-driven ma-
nipulator using the above control algorithm is presented. The kinematic structure
shown in Fig. 7 is used for illustration. Figure 8 shows the control block diagram
for the system.

The controller is designed according to Eq. (7). Figure 9(a) shows the detailed
diagram of the controller shown in Fig. 8, where kjp,, ky;, and m;; are the elements

of matrices K,, I{,, and (M + M ), respectively.
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As mentioned in Section 2, it is necessary to keep tendon forces positive at
all times in order for the dynamic modelling to be valid. The following heuristic
has been implemented to ensure positive tendon forces. In view of Eq. (4), to
compensate for the uncertainty due to rotor inertia and viscous friction torques, the
computed joint torques, Eq. (6.b), are first rectified through a “torque resolver”,

then the maximum desirable joint acceleration and velocity, © and © are

maz mac
used to estimate additional motor torques, Jm(ém)m“ and C’m(ém)maz, needed for
pretensioning the tendons. These added values can be thought as the biased force
03 shown in Eq. (34). Figure 9(b) shows the detailed design of the resolver in
accordance with Eq. (34). It can be seen that the transformation from joint signals
to motor signals has been replaced by a circuit-like procedure which can be easily
programmed on a digital computer or implemented into an analog circuit.

A computer program has been developed for the simulation of the response of
motor torques and tendon forces using the above-mentioned heuristic. Figure 10
shows the schematic of the three-DOF manipulator used for simulation. Applying
simultaneous step inputs to the three joint angles, Figs. 11 and 12 respectively
depicts the response of motor torques and tendon forces for the routing shown in Fig.
7. Detailed numerical values of the manipulating system used for the simulation are
given in Lee (1991). Note that an amount of pretensioning torque has been added
to each motor to ensure positive tension in every tendon. The differences in motor
torques and tendon forces responses are due to the inertia and viscous effect of the
rotors. It can be concluded that without proper biased forces, negative tension may

occur in tendons.

7. Summary

A systematic methodology for the resolution of joint torque signals to motor
torque signals in tendon-driven manipulators has been developed. This technique
uses circuit-like equations to transform torques from the joint space and the tendon
(or motor) space. Three different kinematic structures have been used to illustrate

the methodology.
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The technique has also been demonstrated by the simulation of a three-DOF
manipulating system. The technique can be easily programmed on a digital com-
puter or implemented into an analog-circuit éystem. It is hoped that this technique

can make real-time control using computed torque method feasible.
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Figure Captions

Fig. 1 An n-DOF tendon-driven manipulator with n 4+ 1 tendons

Fig. 2 Schematic of the motor-tendon spooling system

Fig. 3 A one-DOF system

Fig. 4 Characteristics of O7(z) and O~ (z)

Fig. 5 Free-body diagrams of a three-DOF tendon-driven manipulator
Fig. 6 Kinematic structure of the Stanford/JPL Finger

Fig. 7 A fully coupled kinematic structure

Fig. 8 Control block diagram of a three-DOF tendon-driven manipulator
Fig. 9(a) Design details of the controller shown in Fig. 8

Fig. 9(b) Design details of the torque resolver shown in Fig. 8

Fig. 10 The schematic of a spatial three-DOF manipulator

Fig. 11 Motor torque response for the kinematic structure shown in Fig. 7, peak
value = 7.64 x10* dyne-cm

Fig. 12 Tendon force response, B = 1.67 x10* dyne



Fig. 1 An n-DOF tendon-driven manipulator
with n+1 tendons
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Fig. 2 Schematic of the motor-tendon spooling system
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Fig. 3 A one-DOF tendon-driven manipulator
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Fig. 5 Free-body diagrams of a three-DOF
tendon-driven manipulator
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Fig. 6 Kinematic Structure of the Stanford/JPL Finger



Fig. 7 A fully coupled kinematic structure
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Fig. 10 Schematic of a spatial three-DOF manipulator
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Fig. 11 Motor torque response for the kinematic structure shown in Fig. 7, peak

value= 7.64 x10* dyne-cm
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Fig. 12 Tendon force response, B= 1.67 x10* dyne



