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Multicore Reuse Distance (RD) analysis is a powerful tool that can potentially
provide a parallel program’s detailed memory behavior. Concurrent Reuse Dis-
tance (CRD) and Private-stack Reuse Distance (PRD) measure RD across thread-
interleaved memory reference streams, addressing shared and private caches. Sensi-
tivity to memory interleaving makes CRD and PRD profiles architecture dependent,
preventing them from analyzing different processor configurations. However such
instability is minimal when all threads exhibit similar data-locality patterns. For
loop-based parallel programs, interleaving threads are symmetric. CRD and PRD
profiles are stable across cache size scaling, and exhibit predictable coherent mowve-
ment across core count scaling. Hence, multicore RD analysis can provide accurate
analysis for different processor configurations. Due to the prevalence of parallel
loops, RD analysis will be valuable to multicore designers.

This dissertation uses RD analysis to analyze multicore cache performance for
loop-based parallel programs. First, we study the impacts of core count scaling and

problem size scaling on CRD and PRD profiles. Two application parameters with



architectural implications are identified: C.,.. and Cypere. Core count scaling only
impacts cache performance significantly below C.,,.. in shared caches, and Cypqre iS
the capacity at which shared caches begin to outperform private caches in terms of
data locality. Then, we develop techniques, in particular employing reference groups,
to predict the coherent movement of CRD and PRD profiles due to scaling, and
achieve accuracy of 80%-96%. After comparing our prediction techniques against
profile sampling, we find that the prediction achieves higher speedup and accuracy,
especially when the design space is large. Moreover, we evaluate the accuracy of
using CRD and PRD profile predictions to estimate multicore cache performance,
especially MPKI. When combined with the existing problem scaling prediction, our
techniques can predict shared LLC (private L2 cache) MPKI to within 12% (14%) of
simulation across 1,728 (1,440) configurations using only 36 measured CRD (PRD)
profiles. Lastly, we propose a new framework based on RD analysis to optimize
multicore cache hierarchies. Our study not only reveals several new insights, but it
also demonstrates that RD analysis can help computer architects improve multicore

designs.
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Chapter 1
Introduction

1.1 Motivation

In recent years, chip multiprocessors (CMPs) dominate design trends as chip
manufacturers strive to achieve greater performance and power efficiency. CMPs
with one hundred cores are already in the market, and CMPs with more than one
hundred cores and more than one hundred MBs of on-chip cache will be available in
the near future. On multicore processors, parallel programs can use multiple cores
in parallel to solve problems more quickly. One key factor determining a multicore
processor’s performance and power consumption is how effectively programs can
utilize the on-chip cache hierarchy.

Memory performance depends on the physical characteristics of the cache sys-
tem and the parallel application’s intra-thread locality and inter-thread interactions
in the cache hierarchy. For example, data sharing may reduce the aggregate working
set size in shared caches, decreasing the cache capacity pressure. However, shared
caches have longer average access latency. In contrast, data sharing may cause repli-
cation and communication in private caches, reducing the effective cache capacity
and inducing coherence misses. However, private caches keep data locally and have
shorter average access latency.

To understand these complex effects, simulation is the de facto method for



studying multicore cache hierarchies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. These studies
simulate processors with varying core count and cache capacity to quantify how dif-
ferent designs impact memory performance. However, the number of configurations
in terms of core count, cache hierarchy, and problem size is very large. Worse yet,
detailed simulations will become more complex and time consuming as processors
and problem sizes scale to the large-scale chip multiprocessor (LCMP) level. Hence,
using detailed simulations to study this large design space becomes difficult due to
the multi-dimensional nature of the design space.

To study future CMPs, computer architects need new tools to gain deeper
insights into multicore memory performance. Reuse Distance (RD) analysis [12]
is a good potential candidate to tackle this multi-dimensional design space prob-
lem. Recently, researchers have developed multicore RD analysis to analyze mul-
ticore cache performance for shared caches and private caches. To address in-
terference and data sharing effects between threads in shared caches, Concurrent
Reuse Distance (CRD) [13, 14, 15, 16, 17] uses a global stack to measure RD
across thread-interleaved memory reference streams. On the other hand, to ad-
dress data replication and communication in private caches, Private-stack Reuse
Distance (PRD) [15, 16, 17] uses per-thread coherent stacks to measure RD sepa-
rately for individual threads. For multicore processors, we can use CRD and PRD
profiles together to evaluate an application’s memory performance for different cache
hierarchies quickly. But most importantly, it provides rich insights into how an ap-
plication’s inter-thread interactions impact its data locality.

A major problem with multicore RD analysis is that CRD and PRD profiles



are sensitive to how inter-thread memory references interleave. For example, the
number of interleaved memory streams increases as core count scales. Hence, an
application’s CRD and PRD profiles are not valid at different core counts. Even at
the same core count, the relative execution speed between threads may change across
different cache sizes, and this may change the interleaving of memory references. As
a result, the CRD and PRD profiles measured on one cache size may not be valid
for another cache size. So, strictly speaking, CRD and PRD profiles are architecture
dependent. Such profile’s instability defeats the benefits of multicore RD analysis.

Previous multicore RD research has revolved around developing techniques for
acquiring profiles and verifying accuracy. Researchers have investigated construct-
ing multicore RD profiles by using trace-based analyses [13, 14] for shared caches.
Unfortunately, these techniques are complex because they need to take into account
all the possible ways that memory references can interleave. Moreover, these tech-
niques usually require at-scale profiling. Hence, they are impractical for large core
counts and problem sizes.

In this dissertation, we will show that the complexity of analyzing memory
interleaving depends on how programs are parallelized. Tuask-level parallelism and
loop-level parallelism are two of the major parallelization techniques. In task-level
parallel programs, threads are often doing different computations, and they have
different locality characteristics. When the cache size changes, the relative speed
between threads may change, causing irregular memory interleaving and complex
thread interference. In contrast, in a loop-based parallel program, threads from the

same parallel loop are doing very similar computations. These threads have almost



identical locality characteristics. When the cache size changes, these threads all
either speed up or slow down, but by the same amount. So roughly speaking, the
interleaving does not change. In this case, CRD and PRD profiles are highly stable
across different cache sizes and can provide accurate analysis. We also find that core
count scaling makes CRD and PRD profiles shift coherently in a shape-preserving
way. The coherent movement suggests predictability. When combined with the
existing problem scaling prediction [20], we can study the entire design space from a
small number of samples very quickly, and enable practical RD analysis for LCMP-
scale systems.

In this work, we focus on loop-based parallel programs. Although this is one
restriction of our work, loop-based parallel programs are pervasive in many domains,
for example, scientific, multimedia, data-mining, and bioinformatics applications. A
lot of data-parallel applications have symmetric threads. One of the most popular
programming models, OpenMP, also provides a pragma to parallelize loops. In
addition, loop-based parallel programs can provide large amounts of parallelism
simply by increasing the problem size, so they are highly scalable. For future CMPs,
loop-based parallel programs will be very important workloads. For these reasons,
multicore RD analysis for loop-based parallel programs will be very valuable to

multicore designers, compilers, and programmers.



1.2 Contributions

This dissertation presents a thorough investigation of multicore RD analysis.
The challenges lie in developing an efficient multicore RD analysis framework to
analyze the CRD and PRD profiles for different scaling dimensions (core count
and problem size) and different cache hierarchies (multi-level private and shared
caches). This dissertation addresses these challenges and makes the following six
contributions.

(1) In-depth Analysis on CRD and PRD Profiles

We provide an in-depth analysis on inter-thread interactions in both shared
and private caches, and we show how CRD and PRD profiles capture them. We
isolate these different effects by creating several new locality profiles to analyze their
relative contributions.

First, memory reference streams are interleaved in shared caches, and the in-
terleaving degrades intra-thread’s data locality. When data sharing happens, it can
reduce the memory reference’s reuse distance and improve data locality in shared
caches. Because our benchmarks tend to share data across distant iterations, data
sharing usually impacts CRD profiles at large RD values in our benchmarks. De-
pending on where data sharing happens, inter-thread shared memory references also
tend to spread and distort the CRD profile. However, we find that this effect is not
significant in our benchmarks.

Second, read-shared data causes replication in private caches, reducing the

effective cache capacity. On the other hand, write-shared data causes invalidation



in private caches. While invalidations cause coherence misses for the reuses of vic-
timized data blocks, they can also improve locality because the holes they leave
behind can absorb stack demotions. PRD profiles can capture these effects. In
CMPs, multiple private stacks contribute to increased cache capacity. To capture
this effect, we compute the scaled PRD, or sPRD, which equals T' x PRD, where T
is the number of threads. Because both CRD and sPRD reflect total cache capacity,
we can compare the cache performance between shared and private caches across
different sizes by comparing CRD and sPRD profiles directly.

Our analysis quantify these effects, and help researchers better understand
how inter-thread interactions impact an application’s memory behavior.
(2) The Impact of Core Count Scaling

We use RD analysis to study the impact of core count scaling on an appli-
cation’s memory behavior, showing how CRD and PRD profiles evolve at different
core counts. For core count scaling, we find CRD profiles shift coherently to larger
RD values in a shape-preserving way. Shifting slows down and eventually stops at a
certain RD value, and we define this point as C.,,... Core count scaling only impacts
cache performance significantly below this stopping point in shared caches.

Core count scaling also causes sPRD profiles to shift to larger RD values in
a shape-preserving way. However, replications and coherence misses also grow as
core count scales. As a result, there is no C,,,. in sSPRD profiles, and data locality
degradation happens across all RD values.
(3) Architectural Implications

We also explore the architectural implications of our data sharing insights.



This dissertation defines Cypqre to be the cache capacity at which the data sharing
of a given application becomes noticeable. Beyond this point, shared caches show
locality advantage (lower cache misses) over private caches. We also find that the
degree of data sharing is not a fixed characteristic of a given application, but rather
is a function of RD value. So the selection between private and shared caches also
depends on cache capacities.

When considering the scaling impact, we find that C,,.. shifts to larger RD
values and Clp,qpe shifts to smaller RD values with core count scaling. This suggests
that the cache capacity at which shared caches begin to outperform private caches
decreases as core count scales. But this benefit must be weighted against the higher
access latency of shared caches which also grows as core count scales.

Problem size scaling increases the working set size, and CRD and sPRD profiles
shift to larger RD values. We also find that both C.,.. and Cyp4pe shift to larger
RD values. As a result, problem size scaling may reduce the benefit of using shared
caches at a fixed cache capacity.

(4)Profile Prediction

The CRD and PRD profiles of loop-based parallel programs show coherent
shifting with core count scaling and problem size scaling, and we develop techniques
to predict the coherent movement of CRD and PRD profiles. Reference groups [20]
is previously used to predict a sequential program’s RD profiles across problem size
scaling. We employ this technique to predict CRD and PRD profiles across core
count scaling. Because data sharing also causes spreading, we propose uniformly

distributing the portion of CRD profiles, which is associated with shared references.
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We investigate the prediction accuracy of CRD and PRD profiles under three
scaling schemes, core count scaling, problem size scaling, and core-problem scaling.
To evaluate the prediction accuracy between measured and predicted profiles, we use
two metrics, RD accuracy and RD_CMC gccyracy- The former represents the normalized
absolute difference, and the latter reflects the difference in cache performance. The
average RD accuracy a1d RD_CMC gceyracy for CRD (PRD) profiles are between 82.4%
(80.7%) and 91.5% (96.3%). We also find that the prediction accuracy decreases as
the prediction horizon increases.

Lastly, we compare our prediction technique against the RD sampling tech-
nique, which can also accelerate the acquisition of profiles. The prediction technique
and the sampling technique have similar average accuracy. However, the sampling
technique needs to collect profiles at every configuration. In contrast, the prediction
technique can predict any configuration from a small number of measurements. The
benefit of prediction becomes more significant for core-problem scaling. As a result,
our prediction technique can outperform the RD sampling technique.

(5) Profile Stability and Cache Performance Validation via Simulation

We quantify the CRD and PRD profiles” dependence on cache capacity, and we
also validate the cache performance provided by CRD and PRD profile predictions
against detailed simulations. We use the M5 simulator to model tiled CMPs and
simulate our benchmarks on processors with 2-256 cores. For shared last level
caches (LLCs), we simulate the cache capacity from 4MB to 128 MB. For private L2
caches, we simulate the per-core L2 cache capacity from 16KB to 256KB. In total,

we simulate 3,168 configurations.



Two stability metrics, RDgtqpitity and RD_CMCgiqpitiry, are used to evaluate
profile stability. The average RDgtqpitity and RD_CMCgyapisity, for CRD (PRD) pro-
files are 97.2% (99.97%) and 99.6% (99.89%), respectively. The results confirm that
CRD and PRD profiles are minimally cache-capacity dependent in our loop-based
parallel programs.

Lastly, our core count prediction techniques can predict shared LLC (private
L2 cache) MPKI to within 10% (13%) of simulation across 1,728 (1,440) configu-
rations using 72 measured CRD (PRD) profiles. When combined with the existing
prediction technique for problem size scaling, we can predict shared LLC (private
L2 cache) MPKI to within 12% (14%) of simulation using 36 measured CRD (PRD)
profiles. The results show that our prediction technique can help explore a large
design space efficiently.

(6) Multicore Cache Hierarchy Optimization

Lastly, we propose a novel framework for identifying optimal multicore cache
hierarchies for loop-based parallel programs by using reuse distance analysis. Our
framework can analyze and quantify the performance difference for different cache
hierarchies easily, providing several new insights. In this work, we focus on tiled-
CMPs.

The key to optimizing multicore cache hierarchies lies in balancing the total
on-chip and off-chip memory stalls. To achieve good performance, the capacity
of the last private cache above the last level cache must exceed the region in the
PRD profile where significant data locality degradation happens. Shared LLCs can

outperform private LLCs when the total off-chip memory stall saved in shared LLCs
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is larger than the total on-chip memory stall saved in private LLCs. At the optimal
LLC size, the average performance (AMAT) difference between private and shared
LLCs can reach as high as 15%, but it is smaller than the performance difference
caused by L2/LLC capacity partition (76% in shared LLCs, and 33% in private
LLCs). This suggests that the physical data locality is very important for multicore

cache systems.

1.3 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 provides the
background for our study on multicore RD analysis, and explains the methodology
used to acquire CRD and PRD profiles. Chapter 3 discusses the impact of data
sharing on CRD and PRD profiles by breaking down CRD and PRD profiles into
several profiles to explain how different effects change the application’s data local-
ity. We also explore the architectural implications of CRD and PRD profiles across
core count scaling and problem size scaling. The coherent movement in CRD and
PRD profiles due to different scaling schemes suggests the predictability of profiles.
Chapter 4 develops techniques to predict CRD and PRD profiles, and it evaluates
the prediction accuracy. Then, Chapter 5 validates the profile stability, and it also
demonstrates our technique’s ability to accelerate cache performance evaluation.
To study the multicore cache system design, Chapter 6 proposes a novel framework
based on multicore RD analysis for studying cache hierarchy optimization. Chap-

ter 7 compares our prediction technique against the RD sampling technique. Finally,
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Chapters 8 lists the prior work related to this research, and Chapter 9 concludes

this dissertation and suggests future research directions.
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Chapter 2

Background and Methodology

This chapter describes the essential concept of multicore reuse distance (RD)
analysis and the methodology used to acquire profiles. Section 2.1 introduces mul-
ticore reuse distance. Section 2.2 presents our modified Intel Pin tool, which we use
to profile loop-based parallel programs. Then, we introduce the 9 benchmarks and

the architecture-application design space used to drive this work.

2.1 Multicore Reuse Distance

In 1970, Mattson et al. [12] introduced reuse distance (RD) to model different
storage configurations on virtual memory pages in one pass. Later, researchers
applied RD analysis to study uniprocessor cache performance.

Reuse distance measures the number of unique data blocks referenced between
two references to the same data block in the LRU stack. When a new data block
appears in the memory reference stream, this data block is pushed onto the stack.
When a previously-accessed data block appears, the stack is searched. The reuse
distance is the depth between the referenced data block and the top of the stack.
The histogram of RD values for all references in a program is the RD profile. For an
LRU cache with capacity C, the number of cache misses is the sum of all references

counts with reuse distance > C' in the RD profile. For sequential programs, RD
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profiles are architecture independent. They can be acquired on one machine, and
then used to predict cache misses at different cache sizes without additional runs.
Multicore processors often contain both shared and private caches. For ex-
ample, Figure 2.1 illustrates a typical multicore processor consisting of 2 levels of
private cache backed by a shared last-level cache. Threads interact very differently
in each type of cache, requiring separate locality profiles. For example, data sharing
may reduce the aggregate working set size in shared caches, reducing cache capac-
ity pressure. In contrast, data sharing may cause replication and communication
across private caches, reducing the effective cache capacity and inducing coherence
misses. To model shared caches and private caches, we use Concurrent Reuse Dis-

tance (CRD) and Private-stack Reuse Distance (PRD) profiles, respectively.

2.1.1 Concurrent Reuse Distance

RD analysis can be extended for shared caches by computing reuse distance
across the interleaved memory streams from all cores on a single LRU stack—i.e., the
concurrent reuse distance (CRD) [13, 14, 15, 16, 17]. Data locality in shared caches

is affected by several different inter-thread interactions. Figure 2.2 illustrates CRD
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Figure 2.2: Two interleaved memory reference streams, illustrating dilation, overlap,
and intercept among inter-thread memory references in the shared cache.

for a sequence of interleaved memory references from two cores, showing dilation,
overlap, and intercept among inter-thread memory references in the shared cache.

In Figure 2.2(a), Core 1 accesses data blocks A and B at time 1 and 3, while
Core 2 accesses data block C at time 2. When Core 1 accesses A at time 4, Core
1’s reuse of A has RD =1, but its CRD = 2. In this case, CRD is larger than RD,
because Core 2 brings in one unique reference, C'. Hence, the interleaving causes
CRD dilation.

In many multithreaded programs, threads share data. Data sharing can reduce
dilation in two ways. First, data sharing can introduce overlapping references, which
happens when data sharing occurs inside the reuse interval of referenced data. In
Figure 2.2(b), both Core 1 and Core 2 access block C' at time 2 and time 4. So
there are only 4 unique references between the reuse of A, instead of 5, due to
the overlap. Second, data sharing can introduce intercepts, which occur when data
sharing happens on the reused data itself. For example, in Figure 2.2(c), Core 2

references A instead of D at time 5, which causes Core 1’s reuse of A to exhibit
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CRD = 1, so CRD actually becomes less than RD.
In Chapter 3, we investigate dilation, overlap, and intercept in CRD profiles.

Then we study their effects as core count and problem size scale.

2.1.2 Private-stack Reuse Distance

Private-stack Reuse Distance (PRD) profiles are measured by applying each
thread’s memory reference stream onto its own LRU stack while maintaining co-
herence across per-thread stacks [15, 16, 17]. To maintain data coherence in pri-
vate caches, write invalidation is a common mechanism. In the absence of writes,
there are not any inter-thread interactions across private stacks. For example, Fig-
ure 2.3(a) shows the PRD stacks from two cores before and after the memory access
to A at time 10. Both Core 1 and Core 2 have read data block D by this time. Read-
sharing causes duplication of D in the private stacks. Hence, replications reduce the
effective cache capacity in private caches.

When a write happens, only one data block is kept in the private stacks, as
the cache coherence protocol invalidates all other copies. In Figure 2.3(b), Core 1
writes D at time 11, and Core 1’s reuse of D has PRD = RD = 1. Core 2’s block
D is invalidated. To prevent invalidations from promoting blocks further down the
LRU stack, invalidated blocks become holes [15, 16, 17].

The depth of the hole is unaffected when referencing blocks above the hole. In
Figure 2.3(c), Core 2 accesses block J at time 12. Block J moves to the top of the

stack, and it pushes K down. The hole remains at the same position. However, when
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Figure 2.3: Two memory reference streams, illustrating replication, invalidation,
and hole in the private caches.
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Core 2 accesses H, which is below the hole, H is brought to the top of the stack.
Then the hole moves to the former depth of block H, as shown in Figure 2.3(d). So,
blocks which are deeper than H remain at the same depths in the stack.

When a new block or an invalidated block is accessed, all the data blocks above
the topmost hole are pushed down and fill the topmost hole. Figure 2.3(e) shows an
example. When Core 2 re-references invalidated block D, it causes a miss in Core
2’s private cache. Data block I — H are pushed down and fill the hole.

Invalidations always cause the reuse of a victimized data block to be a cache
miss, and these are known as coherence misses. However, invalidations may also
improve data locality because the holes they leave behind eventually absorb stack
demotions. For example, if Core 2 first accesses a new data block L instead of H in
Figure 2.3(d), the hole will be filled, and the depth of H is still 4. Next when Core
2 accesses block H, the reuse of block H has PRD = 4, instead of 5. We call this
effect demotion absorption. Hence, if victimized data blocks are not re-referenced
frequently, invalidations may actually relieve capacity pressure and improve data
locality.

In Chapter 3, we will investigate replication and invalidation in PRD profiles.

Then we will study their effects as core count and problem size scale.

2.2 Methodology

To provide an in-depth analysis on how data sharing and interleaving impact

CRD and PRD profiles for loop-based parallel programs, we develop a profiling tool
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based on the Intel Pin infrastructure to acquire CRD and PRD profiles across 9
benchmarks running 4 different problem sizes on 2-256 cores. In this section, we
first introduce our Pin-based tool. Then we present the benchmarks and the design

space that are used in this research.

2.2.1 Pin-based Profiling Tool

Intel’s Pin [21] is a dynamic binary instrumentation tool that can capture very
detailed program behavior. The instrumented binary runs natively on the hardware,
so it provides much higher performance and compatibility than simulators. Hence,
we develop our own Pin tool to acquire CRD and PRD profiles.

One challenge in acquiring multicore RD profiles by using Pin is to ensure
the accurate modeling of inter-thread interactions. We need to control the context
switch in the OS scheduler to simulate simultaneous thread execution, which is
faithful to how a CMP would execute the threads. Therefore, we adopt the fine-
grain context switch method proposed by McCurdy and Fischer [22], as illustrated in
Figure 2.4. In the McCurdy and Fischer’s method, a centralized scheduler controls
which thread is active. Only one thread can be active at a time. The other threads
are waiting for the active signal from the scheduler. The active signal is passed
in round-robin order, so the memory accesses are interleaved in a consistent order
across all threads. The scheduler also simulates the synchronization mechanism of
Pthreads.

When we acquire CRD and PRD profiles, we make several assumptions. First,
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Figure 2.4: Thread interleaving mechanism.

our Pin tool performs functional execution only, context switching between threads
every memory reference. Hence, the memory references from each thread are in-
terleaved uniformly in time. Second, in our memory interleaving model, we don’t
simulate a particular cache hierarchy or CMP architecture. So, there are no timing-
related interferences in CRD and PRD profiles. As we will show in our stability
study (Section 5.2), this assumption of uniform memory interleaving is accurate
enough to acquire profiles for loop-based parallel programs. Third, we also assume
the application is the only load on the system. The OS does not interrupt threads.

Finally, we assume 64-byte memory blocks.

2.2.2 Benchmarks

Table 2.1 lists our benchmarks used in this research: FFT, LU, Radix, Barnes,
FMM, Water, and Ocean from the SPLASH2 suite [23], KMeans from MineBench [24],
and BlackScholes from PARSEC [25]. For each benchmark, we employ 4 problem
sizes, S1-S4 (2"¢ column of Table 2.1). We run initialization code on a single core,

optionally simulate the beginning of the parallel region, and then turn on CRD and
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Table 2.1: Parallel benchmarks used in our study.

Benchmark Problem Sizes(S1/S2/S3/S4) Insts Profiled (M)(S1/S2/S3/S4) | Profiled Region
FFT 216 /218 /920 /222 clements 29/129/560/2,420 whole program
LU 2562 /5122 /10242 /2048% elements 43/344/2,752/22,007 whole program
RADIX 218 /920 /922 /924 keys 53/211/843/3,372 whole program
Barnes 213 /215 /917 /219 particles 214/1,015/4,438/19,145 1 timestep
FMM 213 /215 /917 /219 particles 235/1,006/4,109/16,570 1 timestep
Ocean 1302 /2582 /5142 /10262 grid 30/107/420/1,636 1 timestep
Water 103 /163 /253 /403 molecules 43/143/553/2,099 1 timestep
KMeans 216 /218 /220 /222 ghjects, 18 features 186/742/2,967/11,874 1 timestep
BlackScholes 216 /218 /920 /922 options 60/242/967/3,867 1 timestep

PRD profiling and continue parallel region simulation for some number of instruc-
tions (3" column of Table 2.1). In FFT, LU, and Radix, profiles are acquired for the
entire program. For the other benchmarks, profiles are acquired for only 1 timestep

of the algorithm, so we skip the 1°* timestep and profile the 2"¢ timestep.

2.2.3 Architecture-Application Design Space

Processor scaling defines a design space consisting of multicore processors with
varied core counts and cache organizations with different capacities. These are
architecture design parameters. As processors scale to large core counts and cache
capacities, problem size scales, too. Hence, our work also considers the problem size
as an independent parameter that can be varied as well. The number of threads
and problem sizes are application parameters. Together, these scaling dimensions of
architecture and application form a multi-dimensional designed space, as illustrated
in Figure 2.5. We call this architecture-application design space (AADS).

In this research, each benchmark has 4 problem sizes running on 8 core counts
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Figure 2.5: Multi-dimensional architecture-application design space (AADS).

from 2 to 256 cores. We also study private and shared caches with varying cache
capacities. By comparing CRD (PRD) profiles along any axis, we can characterize
profile sensitivity to the corresponding type of scaling.

In our profile prediction study, each benchmark has 32 configurations, and we
have a total of 288 configurations across our 9 benchmarks. When we evaluate the
accuracy of using CRD and PRD profile predictions to estimate the multicore cache
performance (MPKI), we simulate 6 different shared LLC sizes and 5 different private

L2 cache sizes. In this case, the design space has a total of 3,168 configurations.
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Chapter 3

Multicore Reuse Distance Analysis

The memory behavior on multicore cache systems is the result of intra-thread
data locality and inter-thread interferences. In Section 2.1, we review different
thread interactions in private and shared caches, and we show how CRD and PRD
capture them. In Section 3.1, we further separately quantify these effects by creating
several new locality profiles that isolate these thread interactions. This analysis pro-
vides rich information about how inter-thread interactions impact an application’s
memory behavior in private and shared caches.

In Section 3.2-Section 3.4, we study three sources of inter-thread interaction
perturbation. The first one is cache capacity scaling; for this, we present our inter-
action insights at a fixed core count and problem size. The second one is core count
scaling, which increases the number of interleaving memory reference streams. The
third one is problem size scaling, which increases the memory footprint.

The impact of core count scaling and problem size scaling on CRD and PRD
profiles has implications for multicore cache performance. In Section 3.5, we identify
two important cache capacities, C.pre and Cypere. Then we study their architectural

implications.
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3.1 Quantifying Thread Interactions

For shared caches, inter-thread interactions cause dilation, overlap, and inter-
cept in CRD profiles. On the other hand, for private caches, inter-thread interactions
cause replication and invalidation in PRD profiles. To study inter-thread interac-
tions, we isolate these different effects by creating several new locality profiles. To
further separate the different locality characteristics of each parallel region in a pro-
gram, our Pin tool records profiles in between every pair of barrier calls—i.e., per
parallel region. Although there might be several parallel loops in the same parallel

region, per-parallel region profiling is sufficient for our study.

3.1.1 CRD profiles

Within each parallel region, we acquire CRD profiles for mostly private data
and mostly shared data separately. We call the former profiles “private-date CRD
(CRDp) profiles”, and we call the latter profiles “shared-data CRD (CRDg) pro-
files”. We employ a single global LRU stack for computing CRDp and CRDg, as
illustrated in Figure 3.1(a).

To separate private and shared data blocks, we record each memory block’s
CRD values separately and the number of times the block is referenced by each
core. In our benchmarks, because individual memory blocks tend to exhibit a small
number of distinct CRD values, this bookkeeping does not increase storage appre-
ciably. After a parallel region completes, we use a fixed threshold to determine each

memory block’s sharing status. If a single core is responsible for 90% or more of
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Figure 3.1: Acquiring CRDp, CRDg, CRDp¢, and CRDg¢ profiles.

a memory block’s references, the block is private; otherwise, it is shared. Then we
accumulate all memory blocks” CRD counts into either the CRDp profile or CRDg
profile based on each block’s sharing status.

As mentioned in section 2.1.1, data sharing introduces overlapping references
and reduces the dilation. Although the CRDp profile only has the mostly private
data, data sharing still occurs in between data reuses. This is because we measure
CRD values from the same stack. Hence, the CRDp profile represents the combined
effect of dilation and overlap, and the amount of intercepts is small. The CRDg
profile also captures data sharing that happens on the reuse data itself. As a result,
the CRDg profile not only contains the dilation and overlap effects, but it also has
the intercept effect.

Next, we isolate the sharing-based interactions. We maintain a second global
LRU stack, and we prepend every memory block’s address with the ID of the core

(CID) that performs this memory access, as illustrated in Figure 3.1(b). We call
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the profiles acquired on this CID-extended stack CRDpc and CRDg¢ profiles. In
these two profiles, inter-thread references are always unique. Comparing CRD p¢
and CRDp profiles shows the impact of overlap. Similarly, the effect of intercepts
due to shared data is also removed. Comparing CRDgc and CRDg profiles shows

the combined impact of overlap and intercept.

3.1.2 PRD profiles

For PRD profiles, each core has its own private LRU stack, and the coherent
mechanism mentioned in Section 2.1.2 is implemented. We acquire PRD profiles for
mostly private data and mostly shared data separately within each parallel region.
We call the former profiles “private-data PRD (PRDp) profiles”, and we call the
latter profiles “shared-data PRD (PRDyg) profiles”. After a parallel region com-
pletes, we sum up these per-thread PRDp profiles to create a single PRDp profile,
and we sum up these per-thread PRDg profiles to create a single PRDg profile, as
illustrated in Figure 3.2(a). These two profiles represent overall per-thread memory
behavior for mostly private data and mostly shared data.

As mentioned in section 2.1.2, read-shared data causes replications, and write-
shared data causes invalidations in private stacks. Both PRDp and PRDg profiles
contain the combined effect of replication and invalidation because we measure PRD
values on the same per-core stack. The re-reference of invalidated data causes cache
misses. These “coherence misses” appear at the infinite PRD value.

Next, we remove write-sharing to isolate hole-related interactions. This is done
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Figure 3.2: Acquiring PRDp, PRDg, PRDpg, and PRDgg profiles.

by converting writes to reads, as illustrated in Figure 3.2(b). The only effect left in
profiles is replication. Profiles acquired on read-conversion stacks are called PRDpg
and PRDgg profiles. Comparing PRDp with PRDpg profiles shows the absorption
impact due to holes. Comparing PRDg and PRDgp profiles shows the impact of

holes and coherence misses.

3.2 Thread Interactions Analysis at a Fixed Core Count and Problem
Size

This section applies the isolation techniques introduced in Section 3.1 to the
study of inter-thread interactions. We analyze two specific benchmarks, FFT and
Barnes. Although each benchmark has different interactions, all parallel regions
exhibit very similar behavior. The insights gathered from FFT and Barnes can
generally represent inter-thread interactions for our benchmarks.

Although PRD profiles are based on per-core stacks, the multiple private stacks
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still contribute to increased cache capacity on multicore processors. To capture this
effect, we compute the scaled PRD, or sSPRD, which equals T' x PRD, where T is
the number of threads. Because both CRD and sPRD reflect total cache capacity,
we can compare the cache performance between shared and private caches across
different cache sizes by comparing CRD and sPRD profiles directly.

Figure 3.3 and Figure 3.4 shows different CRD and PRD profiles for the most
important parallel region in Barnes and FFT running on 16 cores at the S2 problem
size. In each graph, the Y-axis is the reference count in logl0 scale, and the X-axis
is the RD value in terms of cache capacity. This is done by multiplying RD values
by the cache block size, 64 bytes. In this study, for each profile, reference counts
from multiple adjacent RD values are summed into a single RD bin, and plotted as
a single Y value. For capacities 0-128KB, bin size grows logarithmically; beyond

128KB, all bins are 128 KB each.

3.2.1 Private-data Profiles

Figure 3.3(a) and Figure 3.4(a) plot CRDpc and sPRDpp profiles along with
PRDpg profile. As described in Section 3.1, there are no sharing-induced inter-
actions in CRDpc and sPRDpg profiles. Comparing CRDpe and PRDpg profiles
shows the dilation effect, and comparing sPRDpr and PRDpg profiles shows the
scaling effect.

In Figure 3.3(a) and Figure 3.4(a), the sPRDppg profile is a 16x scaling of

the PRDpg profile. This is because sPRD profiles are the scaled versions of PRD
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Figure 3.3: Barnes’ locality profiles for the most important parallel region running
on 16 cores at the S2 problem size.
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Figure 3.4: FFT’s locality profiles for the most important parallel region running
on 16 cores at the S2 problem size.
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profiles. An interesting observation is that the CRDp¢ profile is almost identical
to the SPRDpg profile, and the CRD p¢ profile is also a 16x scaling of the PRDpg
profile. This is because symmetric threads are interleaved systematically in the same
parallel region. In the shared cache, the intra-thread data reuse at a particular RD is
interleaved by the same amount of RD from each of the other simultaneous threads.
This effect is called dilation. In this example, the dilation is by exactly a factor
of 16x. As a result, scaling and dilation both shift the PRDpg profile in a shape-
preserving way and degrade data locality at the same rate, i.e., linear with the
number of threads.

When there is no data sharing, shared and private caches show the same
data locality behavior. However, when data sharing happens, shared and private
caches have different sharing-related interactions. Figure 3.3(b) and Figure 3.4(b)
illustrates the CRDp, sSPRDp, and PRDp profiles of Barnes and FF'T, respectively.
As described in Section3.1, comparing CRD ps and CRD p profiles shows the impact
of overlapping references, and comparing sSPRDpr (PRDpr) and sPRDp (PRDp)
profiles shows the impact of invalidated references.

CRDp profiles terminate before CRD p¢ profiles. As discussed in Section 3.1,
data sharing introduces overlap that reduces dilation in CRD profiles, and the
amount of reduction depends on the degree of data sharing. CRDp and CRDp¢c
profiles are almost identical at small RD values. As RD value increases, the CRDp
profile exhibits less shift. In our benchmarks, programmers tend to share data across
distant loop iterations, so data sharing tends to happen at large reuse windows only.

As a result, overlapping references rarely happen in small reuse distance windows
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for CRD profiles.

Data sharing introduces demotion absorption in sSPRD profiles. At small RD
values, SPRDp and sSPRD pp profiles are almost identical. This is because invalidated
references rarely happen in small reuse windows for sPRD profiles. As RD value
increases, sSPRDp profiles exhibit less shift and terminate before sSPRDpg profiles.
When there are few invalidations as in FFT, sPRDpgr and sPRDp are practically
identical, even at large RD values. However, when there are more invalidations, as
in Barnes, the holes reduce the shift significantly.

Lastly, the amount of contraction in CRDp and sPRDp profiles varies with
reuse distance. Because the contraction comes from the inter-thread interactions
of sharing data, its presence or absence along CRDp and sPRDp profiles permits
assessing the degree of data sharing as a function of reuse distance. As illustrated in
Figure 3.3(b) and Figure 3.4(b), CRDp and sPRDp profiles are almost identical at
small RD values. Then data sharing begins to affect CRDp and sSPRDp profiles. The
contraction increases as RD value grows, and finally causes the different termination
of CRDp and sPRDp profiles. CRDp profiles end earlier than sPRDp profiles.
Although invalidations create holes and reduce the reuse distance, this absorption
effect is smaller than the overlap effect. The is because write-shared data makes
up only a portion of the total shared data, and replications caused by read-shared
data also degrades data locality in private caches. Figure 3.5(a) illustrates the

relationship between profiles for private data.
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Figure 3.5: Quantifying individual thread interaction effects.

3.2.2 Shared-data Profiles

Figure 3.3(c)-(d) and Figure 3.4(c)-(d) plot the shared-data profiles of Barnes
and FFT. The shared-data profiles exhibit behavior very similar to the corresponding
private-data profiles. First, the dilation and scaling are equivalent for parallel loops
in the absence of data sharing. As a result, CRDgc and sPRDgg profiles are almost
identical, and both show the coherent shift by a factor of 16x in a shape preserving
way with respect to the PRDgg profile. The CRDg profile has the effect of overlap,
and the sPRDg profile has the effect of demotion absorption. Both profiles show
contraction, but the CRDg profile shrinks more than the sSPRDg profile. The reasons
are described in Section 3.2.1.

Figure 3.3(d) and Figure 3.4(d) also show the effect of intercepts in CRDg pro-
files, and the effect of invalidations in SPRDg profiles. As described in Section 2.1.1,
the intercept splits intra-thread reuse windows, with the resulting CRD value de-
pending on the intercepted location. Because intercepts can happen randomly at
any location, the CRD values of intercepted data blocks can be any value between 0

and the max CRD value. In our benchmarks, because data sharing usually happens
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at large reuse windows, intercept tends to spread the reference counts at large RD
values in CRDg profiles. This effect is visible clearly in FFT.

Invalidations create holes in private stacks, and the consequent references to
the already-invalidated blocks have infinite reuse distance. So the increasing cache
misses at infinite reuse distance show the cache performance degradation due to
coherence misses. Another important observation is that the holes have the same
impact on sPRDg and sPRDp profiles, because holes reduce the depth for both
shared and private data in stacks. Figure 3.5(b) summarizes the relationship be-
tween profiles for shared data.

Lastly, in our benchmarks, we find private-data profiles dominate shared-data
profiles. For example, the amount of private references is 6x and 259x more than the
amount of shared references in Barnes and FF'T, respectively. As a result, dilation
and overlap in CRD profiles along with scaling and demotion absorption in sPRD

profiles determine overall shared/private cache performance.

3.3 Thread Interactions Analysis for Core Count Scaling

When core count increases but problem size stays fixed (i.e., strong scaling),
core count scaling reduces each thread’s working set size. More threads also increase
inter-thread interactions. Figure 3.6 depicts a simple example which parallelizes a
vector operation for P cores. In the sequential program, each cache block contains
four data elements, so there are a total of M /4 cache blocks. Each cache block is

referenced four times (re-referenced three times) before the inner for-loop advances
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Sequential Code Core 1 Core P

for i=1.1:N for i=1:1:N for i=1:1:N
forj=1:1:M forj=1:1:(M/P) ... ... forj= (M/P)(P-1)+1:1:M
Al =A[] +1 Paralielizedby P Cores All] = All] +1 All]=A[] +1
[A1-as | [As-as | oo | Acwa)-aAwm
Cache Block 1 Cache Block M/4
Sequential RD Profile CRD Profile PRD Profile
= AX(MI4)xN A3 (M/4)XN 3x(M/4)xN
5 5
Q Q
8 (N-1)xM/4 8 (N-‘Iixl\/lm (N-1)xM/4
[0) Q
« RD e RD Y ] RD
0 (M74)-1 P-1 (M/4)-1 0 (M74/P)-1

Figure 3.6: A simple example showing how CRD and PRD shift with core count
scaling. Each cache block contains 4 elements.

to the next cache block. The outer for-loop re-accesses each cache block with reuse
distance (M/4) — 1, and there are N — 1 re-references for each block.

In the parallel program, the inner loop is partitioned into P chunks, and each
core has M/ P elements. For the CRD profile, the uniform interleaving causes the RD
value of re-references at the inner-loop to move to P — 1. However, the re-references
at the outer-loop stay at the same RD value, (M/4) — 1. This is because core count
scaling does not increase the total amount of global data, so the theoretical max
RD value doesn’t change. As a result, when core count increases, the references at
small RD values move to larger RD values. However, the CRD profiles of different
core counts eventually end at the same RD value.

In contrast, PRD profiles truncate as core count increases. The references
at small RD values do not move due to the absence of interleaving. However, the
re-references at the outer-loop move to smaller RD values due to the reduction of per-
thread working set size. In this example, the max RD value of the PRD profile moves

from (M/4) —1to (M/4/P)/ —1. As a result, when core count increases, the PRD
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profile truncates. This simple example shows the major inter-thread interactions
as core count scales. In the following sections, we conduct a detailed study to

understand how core count scaling impacts CRD and PRD profiles.

3.3.1 Private-data Profiles

Figure 3.7 and Figure 3.8 illustrate the private-data profiles for the most im-
portant parallel region in Barnes and FFT running on 4 cores and 16 cores at the
S2 problem size. First, we compare PRDps and PRDpy¢ profiles to study the per-
thread locality impact due to core count scaling. In Figure 3.7(a) and Figure 3.8(a),
PRDps and PRDpg profiles exhibit very similar shapes because threads on 4 and
16 cores execute the same code. At small RD values, PRDps and PRDpyg profiles
are almost identical. This is because this region reflects memory references exe-
cuted within contemporaneous computation. So core count scaling doesn’t affect
the locality. Then PRDps and PRDpg profiles split at a certain RD value, and
finally the PRD pyg profile ends earlier than the PRDp4 profile due to the reduction
of per-thread working set size.

This truncation, along with overlapping references at large RD values, almost
perfectly cancel the dilation due to core count scaling in CRD profiles, as illustrated
in Figure 3.7(b) and Figure 3.8(b). Because symmetric threads are interleaved
systematically, the CRD pig profile is not only a coherent shift of the PRD py4 profile,
but it is also a coherent shift of the PRD p4 profile and the CRDp4 profile. At small

RD values, the CRDpy¢ profile coherently scales the CRDp4 profile by a factor of
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(c) sSPRDp on 4 and 16 cores.
Figure 3.7: Barnes’ private-data locality profiles running on 4 cores and 16 cores at
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4x. At large RD values, shifting slows down and eventually stops due to the effects
of truncation and overlap. So CRDp;g and CRD p4 profiles merge, and end at about
the same RD value. This makes sense: because core count scaling does not change
the amount of global data, the theoretical maximum RD value is roughly the same.
This analysis shows core count scaling degrades data locality for shared caches, but
its impact is limited to small capacities. We will discuss this further in Section 3.5.1.

Lastly, Figure 3.7(c) and Figure 3.8(c) show the 4- and 16-core sPRDp profiles.
Because the sPRDp profile is a scaled version of PRDp profile, the sSPRDp profile
shifts to larger RD values with respect to the PRDp profile. Again, because the
PRDp4s and PRDpg profiles are almost identical at small RD values, the sPRD p4
profile exhibits the coherent shift by a factor of 4x compared to the sPRDp, pro-
file. At large RD values, the truncation and demotion absorption reduce the effect of
scaling, but the sPRD p4 profile still maintains some shifting relative to the sPRD py4
profile due to the smaller degree of contraction caused by demotion absorption com-
pared to overlap. So, like CRDp profiles, sSPRDp profiles also shift non-uniformly.
However, our analysis shows that core count scaling degrades data locality in private
caches more than in shared caches, since core count scaling affects sSPRDp profile

across a larger range of cache capacities.

3.3.2 Shared-data Profiles

Core count scaling also impacts shared-data profiles. Figure 3.9 and Fig-

ure 3.10 plot Barnes’ and FFT’s shared-data profiles at 4 cores and 16 cores. In
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Figure 3.9(a) and Figure 3.10(a), PRDgs and PRDg;4 profiles exhibit very similar
shapes. At small RD values, PRDg4 and PRDg;¢ profiles are almost identical. Then
PRDg4 and PRDg;4 profiles split at a certain RD value, and finally the PRDgy¢ pro-
file ends earlier than the PRDgy profile due to the truncation of per-thread working
set size. As a result, when we scale the PRDg profile across core counts, the sPRD g6
profile exhibits the coherent shift by a factor of 4x compared to the sPRDg, profile
at small RD values. At large RD values, the truncation reduces the sPRDg¢ pro-
file’s scaling, but the sPRDg4 profile still maintains some shifting relative to the
sPRDg, profile, as illustrated in Figure 3.9(c) and Figure 3.10(c). In addition, core
count scaling also leads to a higher number of replications and invalidations. In
Barnes, the total reference counts of sSPRDp and sPRDg profiles at the infinite RD
value increase from 137,873 to 224,410 as core count scales from 4 to 16.

The intercept effect in CRDg profiles is more complicated. Figure 3.9(b) and
Figure 3.10(b) plot Barnes’ and FFT’s CRDg profiles at 4 and 16 cores, and show
how the effect of intercept changes with core count scaling and applications. First,
at small RD values, the CRDg4 profile exhibits the coherent shift by a factor of
4x compared to the CRDg4 profile. This is because that data sharing tends to
occur across distant loop interactions. So the effect of intercepts, like overlap, rarely
appears within small reuse windows. As a result, when there are few intercepts,
CRDg profiles scale like CRDp profiles.

And second, at large RD values, intercepts happen more often. As described in
Section 2.1.1, intercepts induce spreading and change CRDg profiles. However, the

spreading depends on where intercepts appear within intra-thread reuse windows
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(¢) sSPRDg running on 4 and 16 cores.
Figure 3.9: Barnes’ shared-data locality profiles running on 4 cores and 16 cores at
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(c) sPRDg running on 4 and 16 cores.
Figure 3.10: FFT’s shared-data locality profiles running on 4 cores and 16 cores at
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and on the frequency of intercepts. In Figure 3.9(b), intercepts in Barnes don’t
cause significant spreading. The major effects of core count scaling are dilation and
overlap. In contrast, as illustrated in Figure 3.10(b), intercepts in FFT cause a
significant spreading. This spreading stretches CRDgy profiles toward both smaller
and larger RD values. Although intercepts in shared caches may cause more com-
plicated shifting on CRDg profiles, CRDg profiles contain fewer memory references
than CRDp profiles in our benchmarks. As a result, while the exact percentage is

application dependent, we find CRDp profiles always dominate in our benchmarks.

3.4 Thread Interactions Analysis for Problem Size Scaling

Problem size scaling at a particular core count increases each thread’s working
set size. Hence, the total number of references increases, and the reuse distance
profile shifts to larger RD values. Figure 3.11 uses the same example as in Figure 3.6
to explain these two effects. When vector length increases from M to M’, the total
references increase by a factor of M’/M. For CRD profiles, the uniform interleaving
causes the RD value of re-references at the inner-loop to remain at P — 1, but the
RD values of re-references at the outer-loop moves to (M’/4) —1. For PRD profiles,
the RD value of re-references at the inner-loop remains at 0, but the RD value of
the re-references at the outer-loop moves to (M’/4/P) — 1. Hence, the problem size
scaling at a particular core count does not move the references at small RD values
because these references’ locality are insensitive to the input data. However, the

problem size scaling increases the reuse window at large RD values.
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Sequential Code Core 1 Core P
for i=1:1N for i=1:1:N for i=1:1:N

forj=1.1.M forj=11.(M/P) ........ for j = (M/P)(P-1)+1:1:M'
Alll = AliT + 1 Paralielzed by P Cores Al1= Afl] +1 Alll = Alil + 1
[A1-aa | [As-as | o | Aw-s)-aw
Cache Block 1 Cache Block M'/4
Sequential RD Profile CRD Profile PRD Profile
A3 (M'/4)xN A (M74)xN 3x(M'14)xN
5 5
[S) 2
q('_). (N-1)xM'/4 8 (N-1ixl\/l'/4 (N-1)xM'/4
© [0]
@ RD el | rD L —, RD
(M'74)-1 P-1 | (M'/4)-1 0 |(M'/4/P)-1
(M74)-1 (M/4)-1 (M/4/P)-1

Figure 3.11: A simple example showing how CRD and PRD shift with problem size
scaling. Each cache block contains 4 elements.

Figure 3.12 and Figure 3.13 show the private-data and shared-data profiles of
FFT’s most important parallel region running on 16 cores at the S1 and S2 problem
sizes. Figure 3.12(a) plots PRDp profiles at the S1 and S2 problem sizes. PRDpg;
and PRDp gy profiles show two major effects due to problem size scaling. First,
PRDpgs; and PRDpgy profiles have similar shapes, but the PRDpgo profile has
higher reference counts. Second, problem size scaling causes the PRDpgo profile
to end at a large RD value. This is because the memory footprint increases, and
the max RD value increases by about a factor of 4x. As a result, in problem size
scaling, the profile shift along the X-axis occurs at large RD values. The reason
shifting stops below a certain RD is because these references are often associated
with computations that do not scale with problem size. Problem size scaling causes
the same impact on CRDp and sPRDp profiles, as illustrated in Figure 3.12(b) and
Figure 3.12(c).

Figure 3.13 plots the PRDg, sPRDg, and CRDg profiles at the S1 and S2

problem sizes. For shared data, problem size scaling induces the same stretching
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Figure 3.12: FFT’s private-data locality profiles running on 16 cores at the S1 and
S2 problem sizes.
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behavior. As a result, problem size scaling causes less complicated movement com-

pared to core count scaling.

3.5 Architectural Implications

The impact of core count scaling and problem size scaling on CRD and PRD
profiles has implications for multicore cache performance. To illustrate this, we
compare cache miss count (CMC) profiles derived from CRD and sPRD profiles.
The number of cache misses incurred at capacity ¢ in a CRD and sPRD profile are

defined in Equation 3.1, where N is the number of bins.

N-1
CRD_CMCIi] = > CRD[j] + CRD[Inf]
o (3.1)
sPRD_CMCli] = Y~ sPRD[j] + sPRD[Inf]
j=i

In this section, we first characterize how core count scaling (i.e., strong scaling)
impacts performance of shared caches and private caches. Then we extend the study

to problem size scaling, and core-problem scaling (i.e., weak scaling).

3.5.1 Core Count Scaling

As described in Section 3.3, the data locality degradation within a shared cache
is limited to smaller cache capacities. This implies core count scaling has very little
impact on cache performance when the shared cache is beyond a certain capacity. To
illustrate, Figure 3.14(a) shows the whole-program CRD_CMC profiles for the FFT

benchmark running the S2 problem size on 1 and 16 cores. Because CRD profiles
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(b) CRD-CMC and SPRD_CMC profiles running on 1 core and 64 cores.

Figure 3.14: FFT’s CMC profiles running on 1, 16, and 64 cores at the S2 problem

size.

eventually stop shifting, their associated CMC profiles merge at a certain point.
In this study, we call this point “Clyre.” As Figure 3.14(a) shows, Ceore delineates
cache-miss impact. At RD < C.,.., cache misses increase significantly with core
count scaling, but cache misses do not increase much when RD > C,,... In other
words, core count scaling degrades locality, but its impact is confined to smaller RD
values. This implies caches smaller than C,,.. will incur large cache-miss increases
with core count scaling, but caches bigger than C.,.. will not. Because the shifting

region grows as core count scales, C.,.. grows as core count scales, too. Figure

3.14(b) shows that the C.y.. grows from 210KB to 688KB when scaling from 16 to

64 cores.
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In contrast, core count scaling degrades the data locality of private caches
across all cache capacities. As a result, there exists a gap between the CRD_CMC
and sPRD_CMC profiles that represents the difference between shared and private
cache performance which is a function of cache capacity. To illustrate, Figure 3.14(a)
plots sSPRD_CMC profiles on top of CRD_CMC profiles. Figure 3.14(a) shows that
private and shared caches incur very similar cache misses at small cache capacities.
As described in Section 3.2, this is because there is little data sharing in this region.
The effects of dilation and scaling are very similar, so CRD and sPRD profiles are
almost identical. At larger capacities, the overlap effect in CRD profiles cause more
contraction than the demotion absorption effect in sPRD profiles. Private caches
also have cache misses due to replications and invalidations. As a result, CRD_CMC
and sSPRD_CMC profiles begin to diverge at a certain cache capacity. Beyond this
capacity, shared caches begin to show an advantage over private caches in terms of
cache misses. We call this point “Cypape.”

Because core count scaling increases the amount of replication and invalidation,
the gap between SPRD_CMC and CRD_CMC profiles indeed increases when scaling
from 16 to 64 cores. In addition, core count scaling also moves the sharing point,
Cshare, to smaller RD values. Comparing Figure 3.14(a) and Figure 3.14(b), we see
that as SPRD_CMUC increases relative to CRD_CMC, Cy,4r moves to the smaller RD
value. This makes sense. Because core count scaling distributes the same amount
of work across more cores, the data sharing frequency is likely to increase, too.

We measured C,,.. and Cypqre across the entire architecture-application design

space (AADS),which is illustrated in Figure 2.5. This was done as follows. For
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every core count and problem size in the AADS, we derive the CMC profiles for
1-256 cores. At a given cache capacity, we define AM to be the ratio of cache-
miss counts between the P- and 1-core CMC profiles. We first compute AM at
CRD = %bm, well beyond C,,,. where the CMC profiles have almost merged. We

mazbin where

call this AM,,ergeq. Then, we identify the cache capacity closest to
AM =1.5 XAMpergea—i-e., the tail-end of shifting where very large AM transition
to AM pergea. This capacity is Ceore. Then, we compute AM at every cache capacity
between 1MB and C,,,., recording the average and maximum values. These are
the average and maximum cache-miss increases between 1MB and C,,.., AM, and
AM,,, respectively. Lastly, we also quantify Cypere. We begin from the end of
CRD_CMC and sPRD_CMUC profiles, and we trace these two profiles backward until
we reach the point where CRD_CMC and sPRD_CMC are within 10%. This capacity
is Cshare-

Figure 3.15 reports Ceore and Cypgare across all of our benchmarks. Each graph
in Figure 3.15(a) reports C.,.. when scaling from 2 cores to 256 cores for a particular
benchmark at 4 different problem sizes. One result from Figure 3.15(a) is that Ctype
indeed increases with core count scaling at each problem size. Table 3.1 reports
Clore for 256 cores. As this data shows, C,,,. varies between 131.0KB and 13.2MB.
On average, Coe is between 529.7KB and 6.1MB for different problem sizes. These
results show that the impact of core count scaling is confined to smaller shared cache
sizes, usually < 16MB. The larger shared cache sizes beyond C.,,. will not experience
significant cache-miss increases due to core count scaling. C,,.. is particularly small

for LU, KMeans, and BlackScholes, never exceeding 746.8 KB. The working sets for
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these benchmarks are extremely small and fit inside a 1 MB cache size. For programs
with such good locality, the profile shift due to core count scaling is minimal. So,
core count scaling never significantly impacts the cache misses of reasonable shared-
cache sizes in these programs.

Table 3.1 reports AM, and AM,,. Results are only presented for cases where
Ceore > 1MB. As Table 3.1 shows, AM, varies between 1.2 and 5.1, while AM,,
varies between 1.7 and 8.8. On average, AM, (AM,,) is between 2.5 (3.2) and
3.4 (4.5) across different problem sizes. These results show core count scaling can
increase cache misses significantly for cache sizes below Ci .

Figure 3.15(b) reports Cgpqre for 2 to 256 cores on the S1 to S4 problem sizes.
The result confirms that core count scaling reduces Cypqre in general. Although
in some benchmarks, we see that core count scaling increases Cipqre, these cases
happen when Cjpare is very small, below 128KB. Table 3.1 reports Cgpare for 256
cores. As this data shows, Cypere varies between 0.4KB and 122.9MB. On average,
Cihare 18 between 133.0KB and 17.3MB for different problem sizes. This result
shows, for different benchmarks, that the impact of data sharing begins at different
cache capacities. As a result, each benchmark has different sharing characteristics
which impacts the multicore cache hierarchy optimization. A detailed discussion of
this is in Chapter 6.

Lastly, Figure 3.16 reports CRD,,,q, and sPRD,,,, across our AADS. CRD,,,,»
is roughly constant across 2-256 cores. On the other hand, sPRD,,,, grows as
core count scales. Most importantly, sPRD,,.. is always larger than CRD,,q,.
This confirms that the overlap effect in CRD profiles causes more contraction than
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Table 3.1: Ceore, Cshares CRD oz, SPRD gy, AM,, and AM,, for our benchmarks.

H Benchmark \ s1 \ s2 \ s3 \ sS4 H s1 \ 2 \ s3 \ 4 H
Cch‘e Csha're
FFT 1.0MB 2.2MB 5.0MB 10.5MB 108.2KB 168.1KB 4.1MB 32.1MB
LU | 131.0KB | 207.8KB | 374.1KB | 746.8KB 04KB | 53.1KB | 51.0KB | 22.8KB
RADIX 42MB | 105MB | 13.2MB || 881.3KB | 24MB | 17.0MB | 122.9MB

Barnes | 573.5KB 1.8MB 3.6MB 5.9MB 32.7KB 33.9KB 34.9KB 35.2KB
FMM | 715.9KB 1.3MB 7.1MB 8.7MB 18.2KB 22.2KB 22.6KB 22.7KB
Ocean | 715.6KB 1.5MB 4.8MB 13.0MB 15.9KB 72.6KB 86.7KB | 128.0KB
Water | 283.0KB | 592.3KB 1.5MB 2.5MB 8.3KB 8.9KB 19.3KB 36.3KB

KMeans | 495.9KB | 495.8KB | 494.9KB | 489.2KB 115.6KB | 112.6KB | 104.5KB | 102.9KB

BlackS. | 266.2KB | 266.6KB | 266.8KB | 266.8KB 16.0KB 16.0KB 16.0KB 16.0KB

Average | 529.7KB 1.4MB 3.7MB 6.1MB 133.0KB | 326.5KB 2.5MB 17.3MB

H Benchmark ‘ S1 ‘ s2 ‘ s3 ‘ s4 H S1 ‘ s2 ‘ S3 ‘ s4 H
CRDmagj SPRDmax
FFT 4.3MB 14.3MB 52.3MB 200.3MB 11.2MB 33.9MB 90.1MB | 305.9MB
LU | 785.8KB 2.3MB 8.3MB 32.4MB 82.8MB | 335.0MB 1.3GB 5.4GB
RADIX 18.3MB 30.3MB 78.3MB 270.3MB 77.8MB 102.2MB 198.2MB 580.9MB
Barnes 2.1MB 6.9MB 26.5MB | 105.3MB 21.3MB 40.3MB 98.7MB | 309.2MB
FMM 3.9MB 12.2MB 42.7MB 163.0MB 121.4MB | 408.3MB 1.5GB 5.8GB
Ocean 6.4MB 18.7MB 63.9MB 237.2MB 11.9MB 26.9MB 75.6MB 249.6MB
Water 1.2MB 3.4MB 11.5MB 45.5MB 9.9MB 18.7MB 34.2MB 119.2MB
KMeans 5.3MB 19.5MB 76.5MB | 304.5MB 99.6MB | 113.9MB | 170.9MB | 398.9MB
BlackS. 1.7MB 6.2MB 24.2MB 96.2MB 5.8MB 10.8MB 28.7MB | 100.7MB
Average 4.9MB 12.6MB 42.7MB | 161.6MB 49.1MB | 121.1MB | 397.4MB 1.5GB
AM, AMp,
FFT 3.0 3.4 3.3 3.5 3.2 3.7 4.0 4.4
LU - - - - - - - -
RADIX - 5.1 3.0 2.6 - 7.2 6.0 5.6
Barnes - 3.3 3.6 3.7 - 5.2 7.3 8.8
FMM - 2.3 2.0 2.1 - 2.6 2.8 3.0
Ocean - 2.8 1.5 1.2 - 3.6 1.9 1.7
Water - - 1.7 1.8 - - 2.0 2.1
KMeans - - - - - - - -
Blacks. - - - - - - - -
Average 3.0 3.4 2.5 2.5 3.2 4.5 4.0 4.3
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the demotion absorption effect in sSPRD profiles. Table 3.1 reports CRD,,q, and
SPRD, . for 256 cores. In LU and FMM, sPRD,,.. can reach as high as 5.4GB

and 5.8GB.

3.5.2  Problem Size Scaling

As described in Section 3.4, CRD and sPRD profiles shift to larger RD values
with problem size scaling due to the increased memory footprint. Figure 3.16 reports
CRD,,.. and sPRD,,,, at different problem sizes. The results show C'RD,,,, indeed
increases by roughly 4x with each problem size increment—i.e., linearly with problem
size. sSPRD,,,, increases at a sub-linear rate at large core counts. Most importantly,
SPRD,,., is always larger than C'RD,,,.,. Table 3.1 reports CRD,,,, and sPRD 4.
for each benchmark and problem size on 256 cores. C'RD,,,, varies between 785.8KB
and 304.5MB. On average, CRD,,,. is between 4.9MB and 161.6MB for different
problem sizes. sPRD,,,, varies between 5.8MB and 5.8GB. On average, sPRD,, ..
is between 49.1MB and 1.5GB for different problem sizes. This result confirms
that data locality degradation affects private caches across a large range of cache
capacities.

As Figure 3.15 shows, Ceyre and Cypere generally increase with problem size
scaling. For benchmarks which have very good locality (i.e., KMeans and BlackSc-
holes), problem size scaling has little impact on Cye and Cypare. Table 3.1 reports
Creore and Cypgre for each benchmark and problem size on 256 cores. On average, Cype

increases from 529.7KB to 6.1MB and Cj},,. increases from 133.0KB to 17.3MB as

o4



problem size scales from S1 to S4. Table 3.1 shows C,,,. increases at a sub-linear
rate, roughly as the square root of problem size for our benchmarks. In contrast,
Csnare may increase at a super-linear rate. Hence, for a fixed cache capacity, problem

size scaling may reduce the benefit of using shared caches.

3.5.3 Core-Problem Scaling

When core count and problem size scale together, the shifting region associ-
ated with core count scaling will itself shift to larger RD values due to problem
size scaling. Hence, continued problem size scaling beyond S4 would increase Cope
beyond the 746.8KB-13.2MB in Table 3.1. Assuming the same rate of increase at
larger problems, we see that another 64x increase in problem size would cause Clype
in many of our benchmarks to grow to 64-128MB. With modest increases in prob-
lem size, core count scaling will impact much larger cache capacities, not just those
below 16MB.

Although core count scaling reduces Cypqre, problem size scaling increases
Cshare- In general, the combined effect causes Cgpare to increase when we scale
core count and problem size together, as illustrated in Figure 3.15(b). As a result,
weak scaling may reduce the benefit of using shared caches in multicore processors,

and we confirm this in Chapter 6.

95



Chapter 4

Multicore Reuse Distance Profile Prediction

In Chapter 3, the coherent movement in CRD and PRD profiles suggests
the predictability of profiles. This chapter studies techniques for predicting CRD
and PRD profiles across core count scaling, problem size scaling, and core-problem
scaling. First, we describe our techniques and introduce the evaluation methodology.

Then, we present results.

4.1 Prediction Techniques

Section 3.3 shows that CRDp and CRDg profiles change differently across
core count scaling, so we predict them separately. Based on our insights, we employ
two techniques. We use reference groups [20] for CRDp profile prediction, and we
employ a uniform spread model for CRDg profiles prediction. Section 3.3 shows
demotion absorption causes the same effect on PRDp and PRDg profiles, so we use
reference groups to predict the coherent shift in both PRDp and PRDg profiles.

In Section3.4, we find that problem size scaling also causes CRD and PRD
profiles to shift coherently. We employ the same technique (reference groups) to

predict CRD and PRD profiles at different problem sizes.
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Figure 4.1: Detecting alignment and shifting using reference groups.

4.1.1 Coherent Shift

For sequential programs, Zhong et al [20] found that RD profiles exhibit co-
herent shift due to problem size scaling. They proposed reference groups to predict
the coherent shift at different problem sizes. We extend their technique to predict
CRD and PRD profiles across core count scaling.

Figure 4.1 illustrates Zhong’s technique. Zhong divides RD profiles into groups
along the RD axis, with each group containing an equal fraction of the program’s
total references. Reference groups are aligned via association: the i group in
the first profile is aligned with the i*" group in the second profile. Aligned reference
groups are assumed to shift together with their own shifting rates. Zhong’s technique
employs the pattern function, p(z) = 2%, and allows 5 shift rates: constant (k = 0),
cube root (k = 3), square root (k = 1), cube-root squared (k = 2), and linear
(k = 1). The group shift rate cannot be greater than linear because reuse distance
cannot increase by more than the number of unique memory references, which is
proportional to problem size.

For each pair of reference groups, 7, the shift is measured and compared against
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each allowed shift rate. Let S1 and S2 be the problem sizes of first and second RD
profiles. dy; and dy; are the average RD values at reference group i of first and second

RD profiles. The shift rate with the closest match (i.e., there exists a p(z) such that

Z g;g is closest to j—;?) is assigned to the reference group. After solving Equation 4.1

for each reference group, we can predict RD profiles for different problem sizes. Each

reference group is shifted by its shift rate and desired problem scaling factor.

dii = ¢; + e; X pi(S1) (1)
4.1

doi = ¢; + €; X pi(S2)

We apply Zhong’s technique to predict core count scaling as follows. To predict
CRD profiles (either CRDp or CRDg), we use the 2- and 4-core CRD profiles as
samples to predict the CRD profiles at the remaining core counts. These measured
profiles are divided into 200,000 groups, each containing an equal fraction (0.0005%)
of the profile’s references. While Zhong originally divided each profile into 1,000
reference groups, we find the increased resolution provides better accuracy for core
count scaling. We detect the inter-group shift as discussed above, but instead of
multiplying this shift rate by the problem scaling factor, we multiply it by the
core count scaling factor. We also increase the granularity of the pattern function
(Equation 4.2). We use reference groups to predict CRDp profiles at larger core
count from measured CRDp profiles. We also use reference groups to predict CRDg
profiles. We call the predicted profiles CRDggp;f¢. Then we combine the CRD ggp, #¢

profile with spread prediction in the next section to derive CRDg profiles.
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p(z) = 2" k= 0,0.01,0.02,...,0.99, 1.00 (4.2)

For PRD profiles, we use the same technique to predict profiles at larger core
counts from the 2- and 4-core PRD profiles. However, because PRD profiles shift
to smaller RD value as core count scales, we need to change the pattern function to
support this truncation behavior. We use Equation 4.3 as the new pattern function

to predict the coherent shift in PRD profiles.

1
pla) = — k =0,0.01,0.02,...,0.99,1.00 (4.3)
X

For problem size scaling, we employ the same technique and use the patter
function in Equation 4.2 to predict both CRD and PRD profiles. We also divide

each profile into 200,000 reference groups.

4.1.2 Spread

Section 3.3.2 shows that intercepts spread CRDg profiles, with individual
reuses moving to CRD values between 0 and P x RD, where P is the core count. Al-
though the actual distribution within this range is application dependent, we make
the simplifying assumption that references are spread uniformly across the range. To
predict spread, we sample the CRDg profile at 4 cores (the same sample used in shift

prediction), and uniformly distribute the reference counts (C'RDg score[k] X Pd[k])
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at each CRD between 0 and min(k x €reeunt ¢ ), where k is a particular CRD

value, and Pd[k] k (Cpnas is the CRD profile’s maximum CRD value). We call

Cmaa:

this prediction CRDggpreqd- Then, we predict the CRDg profile as follows:

CRDS[IC] = (1 — Pd[/{?]) X CRDSshz’ft[k] —+ CRDSspread[k]

This predicts CRDg by averaging CRDggpirr and CRDggpreqd, Weighting the
former more heavily at small CRD values (where intercepts happen rarely) and the

latter more heavily at large CRD values (where intercepts happen often).

4.2 Prediction Methodology

Machine scaling defines a design space consisting of multicore processors with
varying core counts and cache capacities. When processors scale to the LCMP
level, they will also execute larger problems. So, it is very important to under-
stand the impact of problem size scaling. Our work also considers problem size as
an independent parameter that can be varied as well. Figure 2.5 illustrates our
architecture-application design space (AADS). In our study, we acquire CRD and
PRD profiles at every core count and problem size as illustrated in Figure 4.2. For
each benchmark, we have 32 configurations, and we acquire CRD and PRD profiles
for each configuration. By comparing measured and predicted profiles along any
axis, we can compute the prediction accuracy to the corresponding type of scaling.
In this study, we employ two metrics, RD accuracy and RD_CMC pccyracy to quantify

the prediction accuracy.
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Figure 4.2: Design space across 8 core counts and 4 problem sizes.

4.2.1 Acquiring Profiles

We use the in-house built Pin tool to acquire CRD and PRD profiles for our
study. Figure 4.3(a) shows how we acquire and predict CRD profiles. First, we ac-
quire the per-parallel region CRDp and CRDg profiles, as described in Section 3.1.1,
for 2- and 4-core executions. Then, at each parallel region, we use the techniques
from Section 4.1 to predict the CRDp and CRDg profiles for 8256 cores from the
2- and 4-core samples. For CRDp, we use reference groups to predict the coherent
movement. For CRDg, we further include the spread model to predict intercept
effects. After the program finishes, we sum up all the per-loop predicted profiles to
get program-wide CRDp and CRDg profiles at different core counts. Then we sum
CRDp and CRDg profiles together to get the whole-program CRD profile. We call
this CRDp, g.

In our benchmarks, CRDp profiles dominate CRDg profiles. This implies
that predicting coherent shift alone may be sufficient in many cases. In addition
to predicting CRDp and CRDg profiles separately, we also employ whole-program

CRD profile prediction. We use Pin to acquire the whole program CRD profiles
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at 2- and 4- cores. Then, we use reference groups to predict the whole-program
profiles for 8256 cores directly from the measured whole-program profiles. We call
these profiles CRDy;et. The advantage of this approach is that it does not require
profiling individual parallel regions.

Figure 4.3(b) shows how we acquire and predict PRD profiles. As described
in Section 3.3, demotion absorption causes the same impact on PRDp and PRDg
profiles. At each parallel region, we use reference groups to predict the PRDp and
PRDg profiles for 8256 cores from the 2- and 4-core samples. After the program
finishes, we sum up all the per-loop predicted profiles to get program-wide PRDp
and PRDg profiles at different core counts. Then we sum PRDp and PRDg together
to get the whole-program PRD profile, PRDp, 5. We also acquire the whole program
PRD profiles at 2- and 4- cores, and we use reference groups to predict the whole-
program profiles for 8256 cores directly from the measured whole-program profiles.

We call these profiles PRD g;yect.

4.2.2  Accuracy Metrics

We use two metrics, RD sccuracy and RD_CMC gccyracy, to assess prediction
accuracy. The first metric is similar to metrics used in previous work [26, 14].
RD Accuracy is defined in Equation 4.4, where /N is the number of bins. RD ccuracy

%, where F is the sum of the normalized absolute differences between every

is1—
pair of reference counts from a predicted and measured RD profile. E can be at

most 200%, so RD sccuracy s between 0-100%. The RD accyraey for predicted CRD
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and PRD profiles are CRD accuracy @and PRD accuracy-

N—
1 measured ] RD Tedzcted[ZH
RD cecurac Y § £ 4.4
A v 2 — total references (44)

The second metric is RD_-CMC gccyracy. CMC (cache-miss count) accuracy is
computed from CMC profiles, which present the number of cache misses predicted
by a RD profile at each of its cache capacities. We compute RD_-CMC gceyracy by av-
eraging the error between pairs of RD values from the entire predicted and measured

CMC profiles as specified in Equation 4.5.

1N

N

RD CMCmeasured[ ] RD—CMCpredicted [Z] |

4.
RchMOmeasured [Z] ( 5)

RDfoMOAccu’/‘acy -

gh

1=0

RD_CMC 4ccuracy reflects cache performance. Because RD accuracy is an absolute
metric, it more heavily weights error at the first few RD values where reference
counts are enormous but which occur well below small cache capacities. In contrast,
RD_CMC gceuracy €qually weights error across CMC profiles. So RD_CMC gccuracy
can reflect the cache performance more fairly. The RD_CMC gccyracy for predicted

CRD and PRD profiles are CRD_CMC 4ccuracy and PRD_CMC 4ccuracy-

4.3 Prediction Accuracy Results for Core Count Scaling

To evaluate the prediction accuracy of core count scaling for each benchmark
and problem size, we use the measured profiles at 2 and 4 cores to predict the profiles

for 8256 cores, yielding predicted profiles for 24 configurations per benchmark.
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Figure 4.4: Profile prediction for core count scaling.

Figure 4.4 illustrates the measured and predicted points.

4.3.1 CRD Profiles

Figure 4.5 compares Barnes’ measured CRD i e profiles (dotted lines) with
predicted CRD et profiles (solid lines) running on 16 and 64 cores at the S3 problem
size. In Figure 4.5(a) and Figure 4.5(c), predicted CRD and measured CRD profiles
are very similar. However, the predicted CRD profiles show saw-tooth oscillation
at large RD values. This is because a reference group collects the reference counts
across several bins into one group when the reference counts are small. After we shift
the reference group to the new RD value, these references have the same RD value.
So we lose some detailed information. However, reference groups can still capture
the major shifting behavior for core count scaling. As a result, in Figure 4.5(a)
and Figure 4.5(c), the CRD 4ccuracy Of 16 cores and 64 cores are 95.0% and 90.7%,
respectively.

For CMC profiles, we also predict the compulsory misses which have infinite

reuse distance. In our prediction, we assume that compulsory misses grow pro-
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(d) Measured and predicted CRD_CMC profiles on 64 cores at the S3 problem size.
Figure 4.5: Examples for measured and predicted CRDy; ..o profiles with core count

scaling.



portionally with respect to core count. Figure 4.5(b) and Figure 4.5(d) show the
corresponding CRD_CMC profiles running on 16 and 64 cores. Although reference
groups lose some detailed information at large RD values in the predicted CRD pro-
file, integration makes this impact insignificant. As a result, the CRD_-CMC sccuracy
of 16 cores and 64 cores are 97.8% and 96.5%, respectively.

Figure 4.6 presents our full CRD profile prediction results. In Figure 4.6(a),
the “CRDp” (“CRDg") bars show results for predicting CRDp (CRDg) profiles
separately. For each benchmark, problem size, and core count, we sum all predicted
per-parallel region CRDp (CRDg) profiles into a single CRDp (CRDg) profile. Then,
we compare this against the measured aggregate CRDp (CRDg) profile. Each bar
in Figure 4.6(a) reports the average CRD accuracy achieved over the 24 predictions
per benchmark. The rightmost bars report the average across all benchmarks.

As Figure 4.6(a) shows, CRDp profiles are predicted with high accuracy. For
all benchmarks except LU, CRDp accuracy is between 90.3% and 98.1%. For LU,
CRDp accuracy is 70.4%. Across all benchmarks, the average CRDp accuracy is
91.3%. CRDp profiles exhibit coherent shift across core count scaling which reference
groups can effectively predict.

LU is the only benchmark with lower CRDp accuracy. In LU, blocking is
performed to improve cache locality, but for S1 and S2 problem sizes, the default
blocking factor does not create enough parallelism to keep more than 32 cores busy.
This introduces error when predicting large core counts.

Compared to CRDp profiles, CRDg profiles are predicted with lower accuracy.

In Figure 4.6(a), CRDg accuracy is between 25.0% and 77.9%. Across all bench-
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marks, the average CRDg accuracy is only 66.4%. CRDg profiles suffer poor spread
prediction. While intercepts induce spreading in the range we expect, the actual
distribution across this range is highly application dependent. Unfortunately, our
simple uniform spread model does not capture general behavior, leading to lower
prediction accuracy.

Although CRDg profiles are predicted with lower accuracy, the impact on over-
all prediction accuracy is minimal. In Figure 4.6(a), the bars labeled “CRDp.g”
report the average CRD 4ccuraey for whole-program CRD profiles predicted by com-
bining CRDp and CRDg predictions. For all benchmarks except LU, CRDp g
accuracy is between 89.0% and 98.1% (for LU, it is 70.8%). The average CRDp g
accuracy for all benchmarks is 89.7%. These results confirm that CRDp dominates
CRDg. So, predicting CRDp profiles effectively leads to accurate whole-program
CRD profile prediction.

In our benchmarks, there is usually one parallel region that dominates the
whole program, so one would expect that predicting whole-program CRD profiles
directly to be the same as (and hence, achieve similar accuracy compared to) predict-
ing CRDp, g profiles. This is in fact the case. The last set of bars in Figure 4.6(a),
labeled “CRDygirect,” report the average CRD 4ccyracy for direct whole-program CRD
profiles prediction. Figure 4.6(a) shows CRD et is very similar to CRDpig. On
average, CRDy;,ee: accuracy is 89.4%, compared to 89.7% for CRDp,g. The re-
sults in Figure 4.6(a) demonstrate the pervasiveness of coherent shift across our
benchmarks, and confirm the accuracy of reference groups for this type of profile

movement. Figure 4.6(b) shows the accuracy breakdown by different core counts.
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Because we use 2 cores and 4 cores to predict the larger core counts, the predic-
tion accuracy degrades when the predicted point is farther away from the measured
points.

Finally, Figure 4.6(c) illustrates the whole-program prediction results using the
CRD_CMC gccuracy metric. CRDpyg and CRDgjpeer have similar CRD_CMC gccyracy-
They are between 81.5%-99.0% for 8 benchmarks, and are roughly 35.4% for LU.
On average, CRDp,g and CRDgyjer achieve a 91.0% and 91.4% accuracy, respec-
tively, without LU, and 84.8% and 83.6% accuracy, respectively, for all benchmarks.
This result suggests that our predicted CRD profiles can provide good cache-miss
predictions. Figure 4.6(d) breaks down CRD_CMC 4ccyracy at different core counts.

Again, the larger error happens at large core counts.

4.3.2 PRD Profiles

Figure 4.7 compares Barnes’ measured PRD ;... profile (dotted lines) with
predicted PRDgjeet profile (solid lines) running on 16 and 64 cores at the S3 prob-
lem size. In Figure 4.7(a) and Figure 4.7(c), predicted PRD profiles capture the
major shifting behavior for core count scaling, but predicted PRD profiles also lose
some detailed information at large RD values due to insufficient resolution. Overall,
predicted PRD profiles and measured PRD profiles have very similar shapes. As a
result, in Figure 4.7(a) and Figure 4.7(c), the PRD accuraey 0f 16 cores and 64 cores
are 95.6% and 95.0%, respectively.

For CMC profiles, we also predict the compulsory misses and coherence misses,
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(b) Measured and predicted PRD_CMC profiles on 16 cores at the S3 problem size.
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which have infinite reuse distance. We assume that these cache misses grow pro-
portionally with respect to core count. Figure 4.7(b) and Figure 4.7(d) show the
corresponding PRD_CMC profiles at 16 and 64 cores. Although reference groups
lose some detailed information at some RD values in predicted PRD profiles, inte-
gration makes this impact insignificant. As a result, the PRD_CMC 4ccurqaey Of 16
cores and 64 cores are 94.1% and 93.6%, respectively.

Figure 4.8 presents our PRD profile prediction results under core count scaling.
In Figure 4.8(a), each benchmark has four bars, “PRDp", “PRDg”, “PRDp,s",
and “PRDgireer”. Each bar reports the average PRD 4ccuracy achieved over the 24
predictions per benchmark. The rightmost bars report the average accuracy across
all benchmarks.

As Figure 4.8(a) shows, PRDp profiles are predicted with high accuracy, be-
tween 94.5% and 99.97%. Across all benchmarks, the average PRDp accuracy is
96.3%. PRDp profiles exhibit coherent shift across core count scaling, which refer-
ence groups can effectively predict. Compared to PRDp profiles, PRDg profiles are
predicted with lower accuracy. In Figure 4.8(a), PRDg accuracy is between 61.9%
and 99.9%. Across all benchmarks, the average PRDg accuracy is only 83.7%.

Although PRDg profiles are predicted with lower accuracy, the impact on
overall prediction accuracy is minimal. In Figure 4.8(a), the bars labeled “PRDp. 5"
illustrate the average PRD accuracy for whole-program PRD profiles predicted by
combining PRDp and PRDg predictions. For all benchmarks, PRDp,g accuracy
is between 94.3% and 99.9%. The average PRDp, g accuracy for all benchmarks is

96.3%. These results confirm that PRDp profiles dominate PRDg profiles.

72



1031Ipgad

o
=
o
2
<
)
=
o
ey
m
»
o
@
o
=
X

RADIX | Barnes

Nlo\ov>om_:oo<DN_n_

(a) PRD accuracy of predicted PRD p and PRDg profiles, and indirectly and directly predicted

whole-program PRD profiles.

6'C6 I— 0105-957
Z'S6 I 5.00-87 |
0 mm— 01099
mwmm _— 2100-7¢
0'2 m— o105
mhmm — 92100-g

'+t m— 2100557
o
106 IE— 210059
o5 mm—— o100-2¢
thm — 2109-9|
© o m— 105G

0'de ] 5100-957
25 mmm— 010567
&GS m—— 01099
S
—«m_w —_— 2100-9|
wmm“ Ll 2100-g

o 5
256, I 0.00-57 |
o0 mmm— 010579
m®@m — 2100-7¢
o1 m— 0100-01
mwmw — 2100-g

PRDs PRDp+s PRDdirect

PRDp

[ejojoe )=
QW OTAN

ﬁ\ov?m_:oo(n_m_n_

(b) The breakdown of PRD prediction accuracy by core counts.

oce J021PQXd
2
|50 I 10°1PQxd
i
2o, | 100 1P
fjunna oy
6°co! INE 1221 Qd
mE s+dqyd
mt J021PQXd
ot
6°03 I 10°1P 2
o e
1"¢6! I 10°1PQHd
ipann
£'L2 E— 10510
|

b to ] voo1pad

{
£S5 N 1001P Qi
£"25 I s +Iqud

Avg.

KMeans | BlackS.

Water

Ocean

LU RADIX | Barnes

FFT

D000 00
O 0 O N

(9)°8 1N NS~ qxd

FMM
(¢c) PRD_CMC accuracy of indirectly and directly predicted whole-program PRD profiles.

LALY 8100-95¢
£} M 0100-57| _
L've —] o007 O
REEE =
S84 2loo-z¢
RN o
'L 2100-9|
P 2
5 6; NE— 00 E
2o, mmm o005z £
ANEEE s
218 2109-97|
BEERE »
m.m_w 1 1 1 1 w\_oulvo +D|I
' m — aloo-z¢ W
NN“ HEE ©
0.0m. 2102-9|
€'Z6 I ©109-9
o', i 2100-957
66, M—) 0109-57|
m.nw_ s o009 8
BEREE b=
1’53 mmm— 0i00-2¢
[ o
v'eg 2100-9|
L'z6 I 109-3 2
P £
veL M 010957 S
LgLi 2100-37|
NRERE »
08 M ©100-79 &
‘bh 2109-7¢ m
0vh - K
§'/8 NN °100-9)
O._\mm — 2102-g

The breakdown of PRD_CMC prediction accuracy by core counts.

)

d

[ojejojo)oYe)
QWO N

(9%)°8 1Y 5N T qud

Figure 4.8: PRD profile prediction accuracy for core count scaling.

73



The last set of bars in Figure 4.8(a), labeled “PRD i ect,” report the average
PRD Accuracy for direct whole-program PRD profile prediction. Figure 4.8(a) shows
that PRD gjee; is very similar to PRDp,g. On average, PRDyj s accuracy is 96.0%,
compared to 96.3% for PRDp,g. The results in Figure 4.8(a) demonstrate the
pervasiveness of coherent shift across our benchmarks, and confirm the accuracy of
reference groups for this type of profile movement. Figure 4.8(b) shows the accuracy
breakdown by different core counts. Because we use 2 cores and 4 cores to predict
the larger core counts, the prediction accuracy degrades as the predicted point is
farther away from the measured points.

Finally, Figure 4.8(c) illustrates the whole-program prediction results using the
PRD_CMC gccuracy metric. PRDpig and PRDgjyer have similar PRD_CMC sccuracys
between 76.2%-98.1% for 8 benchmarks, and are roughly 61.1% for LU. On average,
PRDp,s and PRDg;t achieve a 85.2% and 86.5% accuracy, respectively, without
LU, and 82.5% and 83.6% accuracy, respectively, for all benchmarks. This result
suggests that our predicted PRD profiles can also provide good cache-miss predic-
tions. Figure 4.8(d) breaks down PRD_CMC 4ccyracy by different core counts. Again,
the larger error happens at large core counts.

Comparing the prediction accuracy of CRD and PRD profiles, our prediction
techniques can predict CRD and PRD profiles with similar accuracy for core count
scaling. However, at large core counts, PRD_CMC gccyracy 1S less accurate than
CRD_CMC gccuracy- This is because we also need to predict compulsory misses and

coherence misses for PRD profiles, and this induces higher error.
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Figure 4.9: Profile prediction for problem size scaling.

4.4 Prediction Accuracy Results for Problem Size Scaling

To study the prediction accuracy of problem size scaling for each benchmark
and core count, we use the measured profiles at the S1 and S2 problem sizes to
predict the profiles for the S3 and S4 problem sizes, yielding predicted profiles for
16 configurations per benchmark. Figure 4.9 illustrates the measured and predicted

points.

4.4.1 CRD Profiles

Figure 4.10 compares Barnes’ measured CRD gj.ec; profiles (dotted lines) with
predicted CRD gjpeer profiles (solid lines) running on 16 cores at the S3 and S4 prob-
lem sizes. In Figure 4.10(a) and Figure 4.10(c), predicted CRD profiles capture the
major shifting behavior for problem size scaling at small RD values. At large RD
values, the CRD profile usually has a long tail with small reference counts. Prob-
lem size scaling causes the profile shift to larger RD values, and the region which

contains small reference counts becomes longer. Because we use a fixed number of

5



reference groups (200,000), the resolution in the long tail decreases as problem size
scales. In predicted profiles, some bins have 0 reference counts, and some bins have
higher reference counts than the measured reference counts. However, predicted
CRD profiles and measured CRD profiles still have very similar shapes. As a result,
in Figure 4.10(a) and Figure 4.10(c), the CRD 4ccyracy of 16 cores at the S3 and S4
problem size are 95.2% and 93.1%, respectively.

Figure 4.10(b) and Figure 4.10(d) show the corresponding CRD_CMC profiles
at the S3 and S4 problem sizes. The resolution of reference groups causes some
distortion in CRD profiles, but integration reduces the impact of distortion. We
also assume that compulsory misses grow proportionally as problem size scales. As
a result, the CRD_CMC 4ccuracy 0f the S3 and S4 problem sizes is 92.5% and 85.0%,
respectively. The predicted and measured profiles are also very similar for problem
size scaling.

Figure 4.11 presents our full CRD profile prediction results. Each bar illus-
trates the average CRD 4ccyracy achieved over the 16 predictions per benchmark. The
rightmost bars report the average accuracy across all benchmarks. As Figure 4.11(a)
shows, CRDp profiles are predicted with high accuracy, between 79.8% and 99.7%.
Across all benchmarks, average CRDp accuracy is 90.7%. CRDp profiles exhibit
the coherent shift across problem size scaling, which reference groups can effectively
predict.

Compared to CRDp profiles, CRDg profiles are predicted with lower accuracy.
In Figure 4.11(a), CRDg accuracy is between 72.7% and 94.1%. Across all bench-

marks, the average CRDg accuracy is 85.4%. CRDg profiles for problem size scaling
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(a) CRD accuracy of predicted CRDp and CRDg profiles, and indirectly and directly pre-
dicted whole-program CRD profiles.
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(b) The breakdown of CRD prediction accuracy by problem sizes.
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Figure 4.11: CRD profile prediction accuracy for problem size scaling.
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has better prediction accuracy than core count scaling. This is because shared-data
profiles show the coherent shift for problem size scaling, as described in Section 3.4.

In Figure 4.11(a), the bars labeled “CRDp " show the average CRD 4ccuracy
for whole-program CRD profiles predicted by combining CRDp and CRDg predic-
tions. For all benchmarks, CRDp,g accuracy is between 82.6% and 99.3%. The
average CRDp,g accuracy for all benchmarks is 91.5%. The last set of bars in
Figure 4.11(a), labeled “CRDgjpect,” show the average CRD gceuracy for direct whole-
program CRD profile prediction. Figure 4.11(a) shows that CRDgjec; is very sim-
ilar to CRDp,g. On average, CRDyj et accuracy is 89.3%, compared to 91.5% for
CRDp, 5.

Finally, Figure 4.11(c) illustrates the whole-program prediction results using
the CRD_CMC pceuracy metric. Qualitatively, the CRD 4ccuracy and CRD_CMC gccyracy
results are the same. CRDpyg and CRDgjreer have similar CRD_CMC gceyracy, be-
tween 82.0%-97.5% for 8 benchmarks, and are roughly 70% for RADIX. In RADIX,
the per-thread private data is large. For large core counts, reference groups detect
small shift at the S1 and S2 problem sizes. However, the global data at the S3 and
S4 problem sizes is large compared to per-thread private data, and the profiles do
have large shift. So RADIX has low prediction accuracy. On average, CRDp,g
and CRDyjreet achieve an 88.0% and 86.1% accuracy, respectively. Figure 4.11(b)
and Figure 4.11(d) breaks down CRD 4ccuracy and CRD_CMC gccyracy by different

problem sizes. Again, the error increases as problem size scales.
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4.4.2 PRD Profiles

Figure 4.12 compares Barnes’ measured PRD y;,.¢¢; profiles (dotted lines) with
predicted PRD g;e profiles (solid lines) running on 16 cores at the S3 and S4 prob-
lem sizes. In Figure 4.12(a) and Figure 4.12(c), predicted PRD profiles capture the
major shifting behavior for problem size scaling. At large RD values, predicted PRD
profiles show distortion due to insufficient resolution. However, the region where dis-
tortion happens has very small reference counts compared to total reference counts.
It is less important to predict this region with high accuracy. In Figure 4.12(a) and
Figure 4.12(c), the PRD gccuracy 0f 16 cores at the S3 and S4 problem sizes is 99.9%
and 68.9%, respectively.

For CMC profiles, we also predict compulsory misses and coherence misses,
which have infinite reuse distance. In our prediction, we assume the cache misses
at infinite reuse distance grow proportionally as problem size scales. Figure 4.12(b)
and Figure 4.12(d) show the corresponding PRD_CMC profiles on 16 cores at the
S3 and S4 problem sizes. Although reference groups lose some detailed information
at some RD values in predicted PRD profiles, integration reduces the impact. As a
result, the PRD_CMC gccuracy Of the S3 and S4 problem sizes is 89.8% and 79.7%,
respectively. Although the error is 20% at S4, the predicted PRD_CMC profile still
captures the trend of the application’s cache performance.

As Figure 4.13(a) shows, PRDp profiles are predicted with high accuracy,
between 81.7% and 99.9%. Across all benchmarks, the average PRDp accuracy is

94.0%. Compared to PRDp profiles, PRDg profiles are predicted with slightly lower
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Figure 4.13: PRD profile prediction accuracy for problem size scaling.
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accuracy. PRDg accuracy is between 83.0% and 99.7%. Across all benchmarks, the
average PRDg accuracy is 92.3%. PRDp, g accuracy is between 84.0% and 99.9%.
The average PRDp, g accuracy for all benchmarks is 94.1%. The last set of bars,
PRDyirect, shows PRDyjreet is less accurate than PRDp,g. On average, PRDyjrect
accuracy is 91.8%.

Finally, Figure 4.13(c) illustrates the whole-program prediction results using
the PRD_CMC 4gccuracy metric. PRDpyg and PRDgjpecr have similar CMC accuracy.
They are between 70.0%-95.3%. On average, PRDp, s and PRDgyj.x achieve an
82.6% and 80.7% accuracy, respectively. Figure 4.13(b) and Figure 4.13(d) breaks
down the PRD 4ccuracy and PRD_CMC gccyracy by different problem sizes. Again, the
error increases as problem size scales.

Comparing the prediction accuracy of CRD and PRD profiles, the reference
groups technique can predict CRD and PRD profiles with similar accuracy for prob-
lem size scaling. However, at large problem sizes, PRD_CMC sccyracy 1s less accurate
than CRD_CMC gccyracy.- This is because we need to predict compulsory misses
and coherence misses for PRD profiles. The growing rate of these misses varies
at different configurations, and it is not very regular. The reference groups tech-
nique also under-predicts the shift of PRD profiles at the S4 problem size. Hence,

PRD_CMC gccuracy has a higher error.
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Figure 4.14: Profile prediction for core-problem scaling.

4.5 Prediction Accuracy Results for Core-Problem Scaling

Lastly, we combine core count prediction and problem scaling prediction to-
gether. At the S1 and S2 problem sizes, we used the measured profiles at 2 and
4 cores to predict the profiles at the S3 and S4 problem sizes. Then from these 8
profiles, we use core count prediction techniques to predict the other 24 profiles.
This technique predicts 28 profiles from only 4 profiles. Figure 4.14 illustrates the

measured and predicted points.

4.5.1 CRD Profiles

Figure 4.15 presents our full CRD profile prediction results for scaling core
count and problem size together. Each bar reports the average CRD accuracy
achieved over the 28 predictions per benchmark. The rightmost bars report the
average accuracy across all benchmarks.

As Figure 4.15(a) shows, CRDp profiles are predicted with high accuracy. For

all benchmarks, CRDp accuracy is between 74.9% and 98.4%. Across all bench-
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marks, average CRDp accuracy is 90.3%. CRDp profiles exhibit coherent shift
across problem size and core count scaling which reference groups can effectively
predict. Compared to CRDp profiles, CRDg profiles are predicted with lower ac-
curacy. In Figure 4.15(a), CRDg accuracy is between 36.0% and 79.6%. Across all
benchmarks, the average CRDg accuracy is only 70.3%.

In Figure 4.15(a), the bars labeled “CRDp.g” show the average CRD 4ccuracy
for whole-program CRD profiles predicted by combining CRDp and CRDg predic-
tions. For all benchmarks, CRDp, g accuracy is between 75.6% and 98.3%. The
average CRDp,g accuracy for all benchmarks is 89.4%. The last set of bars in
Figure 4.15(a), labeled “CRDgj ect,” report the average CRD accuracy for direct
whole-program CRD profile prediction. Figure 4.15(a) shows CRD ;e is very sim-
ilar to CRDpys. On average, CRDyj et accuracy is 89.1%, compared to 89.4% for
CRDp, 5.

Finally, Figure 4.15(c) illustrates the whole-program prediction results using
the CRD_CMC gccyracy metric. CRDpyg and CRDgjre have similar accuracy, be-
tween 67.5%-98.9% for 8 benchmarks, and roughly 30% for LU. LU has low predic-
tion accuracy due to core count scaling. On average, CRDp g and CRD g;..s achieve
a 87.5% and 90.3% accuracy, respectively, without LU, and 82.4% and 83.5% ac-
curacy, respectively, for all benchmarks. Figure 4.15(b) and Figure 4.15(d) break
down the CRD sccuracy and CRD_CMC 4ceurqey by different core counts and problem

sizes. The prediction accuracy degrades as the prediction horizon increases.
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4.5.2 PRD Profiles

Figure 4.16 presents our PRD profile prediction results under core-problem
scaling. As Figure 4.16(a) shows, PRDp profiles are predicted with high accuracy,
between 86.9% and 99.9%. Across all benchmarks, the average PRDp accuracy is
95.1%. Compared to PRDp profiles, PRDg profiles are predicted with lower ac-
curacy. PRDg accuracy is between 65.9% and 99.8%. Across all benchmarks, the
average PRDg accuracy is only 84.8%. PRDg profiles have lower prediction accuracy
due to core count scaling. PRDp,g accuracy is between 88.2% and 99.9%. The av-
erage PRDp, g accuracy for all benchmarks is 95.0%. The last set of bars, PRDgj et
shows that PRD gjees is slightly worse than PRDp,g. On average, PRD gt accu-
racy is 94.2%.

Finally, Figure 4.16(c) illustrates the whole-program prediction results using
the PRD_CMC gccuraey metric. PRDpyg and PRDgire: have similar CMC accu-
racy, between 65.7%-97.0%. On average, PRDp_,s and PRD;,c: achieve 80.9% and
80.8% accuracy, respectively. Figure 4.16(b) and Figure 4.16(d) break down the
PRD 4ccuracy and PRD_CMC gceyracy by different core counts and problem sizes. The
prediction accuracy degrades as the prediction horizon increases.

In general, the prediction accuracy results of core count scaling, problem size
scaling, and core-problem scaling are qualitatively similar. However, the CMC pre-
diction accuracy of PRD profiles at large core counts and problem sizes is lower than
the prediction accuracy of CRD profiles. This is because we need to predict com-

pulsory misses and coherence misses for PRD profiles. The growing rate varies at
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different configurations, and it is harder to predict accurately. The reference groups
also under-predict the shift of PRD profiles at the S4 problem size. In contrast,
the compulsory misses in CRD profiles can be predicted with higher accuracy. As a

result, CRD profiles have higher CMC prediction accuracy.
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Chapter 5

Multicore Cache Performance Prediction

In Chapter 2, we assume that CRD and PRD profiles are minimally cache
capacity dependent for loop-based parallel programs, so our Pin tool interleaves
inter-thread memory references uniformly. To prove our assumption is valid, we use
our M5 simulator to investigate the profile stability across cache capacity scaling.
Then we evaluate the accuracy of using CRD and PRD profile predictions to estimate

the multicore cache performance, in particular MPKI (misses per kilo-instructions).

5.1 Architecture Assumptions

In Intel’s tera-scale project[27], Mani et al. point out that one of the basic
requirements for the on-chip interconnection is scalability. The average commu-
nication distance should be sub-linear with respect to the number of cores. One
possible solution is to distribute the communication across the chip on different
paths. The tiled CMP with a 2D-mesh network provides this capability. Recently,
Tilera Corporation has shipped tiled CMPs[28] with 16 to 100 cores.

A tiled CMP, illustrated in Figure 5.1, consists of several identical replicated
tiles. Each tile contains a processor core, a multi-level cache hierarchy, and a switch
for a 2D mesh network. The switch connects four directions with its neighbors.

When the requesting node is not the neighbor of the requested node, multiple hops
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Figure 5.1: Tiled CMP.

are required. Different configurations can be achieved easily by replicating tiles. As
a result, tiled CMPs are regarded as a scalable CMP organization [29, 30], and we
can use tiled CMPs to study a large design space.

We use the M5 simulator[31] to model tiled CMPs. Our simulator’s core
is in-order, with each core executing one instruction per cycle in the absence of
memory stalls. Each core has its own dedicated private caches, and the last level
cache (LLC) is shared. We permit replication of data in each tile’s private caches,
and cache coherence is maintained by the MESI directory-based cache coherence
protocol. For the shared LLC, LLC slices are managed as a simple shared cache,
with no migration or replication across LLC slices. Fach cache block resides in a
fixed LLC slice which is known as the cache block’s home tile. Each cache block’s
directory entry is also co-located with its associated data. We assume cache block
homes are page-interleaved (with 8KB page size) across LLC slices according to
their physical address.

We assume full-map directories, though this approach can lead to large direc-
tories. Several scalable directory schemes can be applied to reduce the directory size,

for example, limited directories or sparse directories [32, 33, 34, 35]. Although the
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directory size plays an important role in architecture designs, this issue is beyond
the scope of our research.

The M5 simulator is also modified to support 4 DRAM channels, each con-
nected to a memory controller on a special memory tile. Four memory tiles are
evenly spaced on the north and south edges of the chip. We accurately model cache
access, hops through the network, and DRAM access. We also model queuing at
the on-chip network and memory controllers.

All of our experiments simulate application code only without any operating
system code (i.e., the OS is emulated) due to the difficulty of performing full-
system simulations at 256 cores. During simulation, our simulator records the direct-
measured whole-program CRD and PRD profiles (CRDgjrect and PRD gjpeet) for the
pre-L1 memory reference stream across all cores. CRD and PRD are computed at
the granularity of 64 bytes, the block size for the caches.

To drive our simulations, we use the same benchmarks and problem sizes from
Table 2.1. For benchmarks that run one time-step, we warm-up caches in the first
time-step, then we begin recording performance and profiles at the second time-step.
For benchmarks running the entire parallel phase, we do not perform any explicit
cache warm-up.

Table 5.1 lists the parameters used in our simulations for the shared cache
performance study. As Table 5.1 shows, we use a two-level cache hierarchy. Each
core has its own private 32KB instruction cache and 32KB data cache. The L2 slices
form a logically distributed shared last level cache. We simulate processors with 2—

256 cores and 4-128MB of total L2 cache (LLC). There are 192 configurations per
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Table 5.1: Simulator parameters used in the shared cache performance experiments.

Number of Tiles 2,4, 8, 16, 32, 64, 128, 256
Core Type Alpha ISA, Single issue, In-order, CPI = 1, clock speed = 2GHz
IL1/DL1 32KB/32KB, 64B block, 8-way, 1 CPU cycle
Total L2 Cache Size 4MB, 8MB, 16MB, 32MB, 64MB, 128MB
L2 Slice 64B blocks, 32-way, 10 CPU cycles
2-D Mesh 3 CPU cycles per-hop, bi-directional channels, 256-bit wide links
Memory channels latency: 200 CPU cycles, bandwidth: 32GB(1-16cores) and 64GB(32-256cores)

Table 5.2: Simulator parameters used in the private cache performance experiments.

Number of Tiles 2,4, 8, 16, 32, 64, 128, 256
Core Type Alpha ISA, Single issue, In-order, CPI = 1, clock speed = 2GHz
IL1/DL1 8KB/8KB, 64B block, 4-way, 1 CPU cycle
Per-core L2 Cache Size 16KB, 32KB, 64KB, 128KB, 256KB
Per-core L2 64B blocks, 8-way, Latency = 4 CPU cycles
Total L3 Cache Size 32MB(1-16cores) and 128MB(32-256cores)
L3 Slice 64B blocks, 32-way, 10 CPU cycles
2-D Mesh 3 CPU cycles per-hop, bi-directional channels, 256-bit wide links
Memory channels latency: 200 CPU cycles, bandwidth: 32GB(1-16cores) and 64GB(32-256cores)

benchmark, and 1,728 configurations across our 9 benchmarks.

Table 5.2 lists the parameters used in our simulations for the private cache
performance study. To study the private cache performance, we use a three-level
cache hierarchy. Each core has its own private 8KB instruction cache, 8KB data
cache, and a unified L2 cache. The L2 cache capacity varies from 16KB to 256KB.
The L3 slices form a logically distributed shared last level cache. There are 160

configurations per benchmark, and 1,440 configurations across our 9 benchmarks.

5.2 Profile Stability

Before presenting our prediction results, we first revisit the issue of architec-
ture dependence. The multicore cache performance not only depends on intra-thread
data locality, but also depends on inter-thread interactions. At different cache ca-
pacities, the relative execution speed between threads may change, and this may

change the memory reference interleaving. As a result, the CRD and PRD profiles
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measured on one cache size may not be valid for other cache sizes. So, strictly speak-
ing, CRD and PRD profiles are not even valid across different cache sizes at the same
core count. This instability defeats the benefits of multicore RD analysis. However,
when threads exhibit similar locality behavior, this instability becomes minimal.
For example, loop-based parallel programs often employ symmetric threads. When
the cache size changes, these threads tend to either speed up or slow down, but by
the same amount . For such programs, CRD and PRD profiles are practically stable
and can provide accurate analysis for different cache capacities. In this section, we

study the stability of CRD and PRD profiles across cache capacity scaling.

5.2.1 CRD Profiles

To study the stability of CRD profiles across LLC capacity scaling, we use a
two-level cache hierarchy (Table 5.1). Figure 5.2 plots CRD profiles from the FFT
benchmark, all running on 64 cores with the S2 problem size, but varies the LLC
size at SMB, 32MB, and 128MB. As Figure 5.2 shows, CRD profiles change with
LLC capacity, so they are indeed architecture dependent. However, these profiles
are almost identical, and they exhibit low sensitivity to LLC scaling. This is because
LLC scaling speeds up or slows down symmetric threads by similar amounts. So,
profiles tend to remain the same.

To quantify this stability, we compare CRD profiles measured at different LL.C
capacities. For each benchmark, core count, and problem size, we compare the CRD

profiles at capacities C' = 4, 8, 16, 64, and 128 MB against the baseline CRD profile
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Figure 5.2: CRD profiles from the FFT benchmark running on 64 cores at the S2
problem size across 8M, 32M, and 128M LLC capacity.

at capacity C' = 32MB. For each pairwise profile comparison, we use two metrics.
RD stapitity is defined in Equation 5.1, and N is the number of bins. RDgtqpitity is
1— %, where F is the sum of the normalized absolute differences between every pair
of reference counts from a measured and baseline RD profile. The second metric is
RD_CMCstapitity- We compute RD_CMCgapirity by averaging the error between pairs
of RD values from the entire measured and baseline CMC profiles, as illustrated in
Equation 5.2. The RDgtapitity and RD_CMCgyapitity for CRD profiles are CRD gapitity

and CRD_CMCgyapitity-

1 z_: ’RDC[Z] - RDbaseline[i” (5 1)
total references '

1 Ni |IRD_CMCeli] — RD-CM Chasetine[i]

RD_CM Clsiapitity = 1 — — RD_CMChyseri [Z]

- (5.2)

=0

Figure 5.3 reports the stability measurement across our 9 benchmarks. In Fig-
ure 5.3(a), the CRDgtqpirity i between 92.7% and 99.5%. Across all benchmarks, the

average CRD gtqpiity 15 97.2%. Figure 5.3(c) shows the breakdown of CRDgapitity by

95



M~ N~ 1N 0O - 0 T - o
T © & @ N © © D D I
o O R R I R )

S
;\5‘100 o] »ﬁQOO
§80
560
C§)40
3 20
o 0
F D x 9 S 5@ g o o < w P e T
L35 £82§58£¢2 8 b33 §2E¢ez
- g 5@ 62 8 ¢ < L g £ 82 8 g <
€ Q o z o X o o g m
(a) CRD profiles. (b) CRD_-CMC profiles.
~ ~ ~ ~ ~ © © A
o [=)] [=2] [=2] (=] [=)] [=2] [«2] [=)]
20+ 8. O D O O D O
>
=80
je)
%60
QO 40
]
o 3 20
O 0 e o o o o e o o o % e e e 2 2 0
5 &6 © © ©8 &8 & o o 3 & & &6 & ©6 © o
$ 3 8§ § ¢ 5 ¢ 8 o6 & 3 ¢ 5 g & & 9
A T @ © N ¥ O @ AT @ © T o ©
(¢) CRD profile stability by core count. (d) CRD_CMC profile stability by core count.

Figure 5.3: Stability measurement of CRD profiles and CRD_CMC profiles.

core count. The stability decreases as core count increases, from 98.5% to 94.8%.
This is because larger core counts have a higher probability to have idle cores due to
the timing effect, and this might cause more irregular memory reference interleav-
ing. In Figure 5.3(b), the CRD_CMCgyapitity is between 99.1% and 99.9%. Across
all benchmarks, the average CRD_CMCgygpisity is 99.6%. The results suggest that
CRD_CMC profiles are more stable than CRD profiles. The reason is that the
variation is minimized when integrating cache-miss counts. Figure 5.3(d) shows the
breakdown of CRD_CMCggpirity by core count. The stability decreases as core count
increases, from 99.7% to 99.4%. These results demonstrate that the vast majority

of CRD profiles exhibit low sensitivity to LLC capacity scaling.
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Figure 5.4: PRD profiles from the FFT benchmark running on 64 cores at the S2
problem size across 32K, 64K, and 128K per-core L2 capacity.

5.2.2 PRD Profiles

To study the stability of PRD profiles across L2 capacity scaling, we use a
three-level cache hierarchy (Table 5.2). Figure 5.4 plots PRD profiles from the
FFT benchmark, all running on 64 cores with the S2 problem size, but varies the
L2 size at 32KB, 64KB, and 128KB. As Figure 5.4 shows, these PRD profiles are
almost identical, and they exhibit very low sensitivity to L2 size scaling. This is
because PRD profiles are not sensitive to inter-thread memory reference interleaving.
Although inter-thread interactions cause invalidations at large RD values in PRD
profiles, the number of invalidations is usually small compared to the total number
of memory references. As a result, PRD profiles are more stable than CRD profiles.

To quantify this stability, we compare PRD profiles measured at different L2
capacities. For each benchmark, core count, and problem size, we compare the PRD
profiles at capacities C' = 16, 32, 128, and 256KB against the baseline PRD profile
at capacity C' = 64KB. Figure 5.5 illustrates the stability measurement across our 9
benchmarks. In Figure 5.5(a), the PRDgiqpiity is between 99.8416% and 99.9997%.

Across all benchmarks, the average PRDgsapitity 15 99.97%. Figure 5.5(c) shows the
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Figure 5.5: Stability measurement of PRD profiles and PRD_CMC profiles.

breakdown of PRDgapiity by core counts. The stability is very high across core
count, from 99.93% to 99.99%. This is because the number of invalidations is rela-
tively small compared to total reference counts, and the timing effect is insignificant.
In Figure 5.5(b), the PRD_CMCgtqpitity is between 99.7365% and 99.9987%. Across
all benchmarks, the average PRD_CMCgtqpirity is 99.89%. The results suggest PRD
and PRD_CMC profiles are very stable. Figure 5.5(d) shows the breakdown of
PRD_CMCstapitity by core count. The stability decreases as core count increases,
from 99.92% to 99.77%, but still higher than 99%. These results demonstrate that

PRD profiles are indeed more stable than CRD profiles.
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5.3 MPKI Prediction Accuracy

Chapter 4 evaluates the profile prediction accuracy for different scaling schemes.
In this section, we evaluate the accuracy of using CRD and PRD profile predictions

to estimate the cache performance, in particular MPKI.

5.3.1 Prediction Approach

Performance prediction is a three-step process. First, we acquire the CRD
and PRD profiles at some configurations. Second, we use the prediction techniques
described in Section 4.1 to predict the CRD and PRD profiles at different configu-
rations. Finally, we use CRD profiles to predict shared cache performance, and use
PRD profiles to predict private cache performance. In this study, we consider three
prediction strategies: “No-Pred,” “C-Pred,” and “CP-Pred.”

No-Pred does not perform any profile prediction. For each benchmark, it
acquires the CRD or PRD profiles on the 32 configurations across core count and

problem size in the “A” plane of Figure 5.6. The “A” plane is at 32MB LLC size
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when acquiring the CRD profiles, and it is at 64KB L2 size when acquiring the PRD
profiles. At each measured point, No-Pred uses the profile to predict the MPKIs at
different cache sizes.

C-Pred extends No-Pred with core count prediction to reduce the profiles
needed along the X-axis in Figure 5.6. At each problem size within the “A” plane, C-
Pred predicts the 8- to 256-core profiles using the 2- and 4-core profiles, as illustrated
in Figure 4.4. So C-Pred uses 8 measured profiles to predict the other 24 profiles
for each benchmark. Then just like No-Pred, C-Pred uses the profiles in the “A”
plane to predict the MPKIs at different cache sizes.

Lastly, CP-Pred extends C-Pred with problem scaling prediction to reduce
the profiles needed along the Y-axis in Figure 5.6. CP-Pred acquires 2- and 4-core
profiles at the S1 and S2 problem sizes, and it predicts the S3 and S4 profiles from
the S1 and S2 profiles. Then just like C-Pred, CP-Pred predicts across core count
to acquire all profiles in the “A” plane. Then, CP-Pred uses the profiles in the “A”
plane to predict the MPKIs at different cache sizes. For each benchmark, CP-Pred
only needs 4 measured points.

Once all 36 profiles within the “A” plane have been acquired (under No-Pred,
C-Pred, or CP-Pred), we use Qasem and Kennedy’s model [36] to predict capacity
and conflict misses together at the desired capacity, C'. This model takes the RD
profile as input, and uses a binomial distribution to predict the number of capacity
and conflict misses for a given capacity and associativity. Finally, we divide the
predicted cache misses by instruction count to derive MPKI. For No-Pred, we use

the measured instruction count at the same configuration that contributed the RD
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profile for MPKI prediction. For C-Pred and CP-Pred, we make the assumption
that instruction count grows proportionally with core count and problem size.
There are 1,728 configurations in the shared LLC design space, and there are
1,440 configurations in the private L2 design space. We simulate all of them using
our M5 simulator and obtain their MPKIs and profiles. When computing MPKIs,
we exclude compulsory misses, since there is no cache warm-up in reuse distance
profiles. Then, we use Equation 5.3 to compute the MPKI prediction accuracy.
When the measured MPKI is small, the prediction error often blows up. However,
the small MPKI doest not really affect CPU performance. To address this, we add
a small offset to the predicted and measured values. This offset is selected to be the
MPKI value which can cause 1% CPI difference by assuming the memory latencies

from Table 5.2.

|(MPK[measu7“ed + Offset> - (MPK[predicted + Offset)‘
(MPK[measured + Offset)

Error = (5.3)

5.3.2 Shared LLC MPKI Prediction Accuracy

Figure 5.7 shows MPKI prediction error with a small offset, 0.05. Each bar in
Figure 5.7 reports the average percent error across all predictions for a particular
prediction strategy and benchmark. The rightmost group of bars reports averages
across all 9 benchmarks.

As Figure 5.7 shows, No-Pred is able to predict shared LLC MPKI within
10.4% of simulation for 8 out of 9 benchmarks, and within 26.7% for RADIX. Across

all benchmarks, prediction error is 9.4%. These results reflect baseline prediction
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Figure 5.7: Percent shared LLC MPKI prediction error with 0.05 offset.

errors (i.e., without profile prediction), and include three error sources. First, we
find one of the main sources of error is the cache conflict model, especially for
machines with large core count and small LLC. These machines incur pathologic
conflicts that the conflict model cannot predict. Second, our error metric does not
always address numeric instability. In some cases, LLC MPKI is near 0.05. These
are not eliminated by our 0.05 offset, but are small enough to make percent error
very sensitive to minute prediction errors. This is responsible for the high errors in
RADIX. If we change the offset to be 0.5, No-Pred achieves 9.3% error for RADIX.
And third, M5 profiles include timing effects. However, this error is very small.
Section 5.2.1 demonstrates that CRD profiles are vary stable across cache capacity
scaling. Overall, Figures 5.7 shows that No-Pred error is very low, so we can use
CRD profiles to predict MPKI for loop-based parallel programs accurately.

Figure 5.7 also shows that C-Pred and CP-Pred are both less accurate than
No-Pred. They are able to predict MPKI within 17.3% of simulation for 8 out of 9
benchmarks, and within 25.3% for RADIX. On average, prediction error is within
11.2%. Like No-Pred, C-Pred and CP-Pred incur cache conflict model errors. But

they also incur errors due to CRD profile prediction. Sometimes the profile pre-
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diction errors are additive, so total error increases. However, in some cases, errors
cancel each other out. This is because the cache conflict model usually under-
predicts cache misses, whereas CRD profile prediction sometimes over-predicts ca-
pacity misses. This explains why C-Pred and CP-Pred have errors similar to those
of C-Pred (and in some cases even lower).

Figure 5.8 illustrates MPKI prediction error, just like Figure 5.7, but only
for the S4 problem and caches with 4-16MB capacity. The results are still using
2-256 cores. Most of these configurations have cache size < C.,,... Hence, Figure 5.8
examines prediction accuracy in the region of CRD profile shift. However, because
LU, KMeans, and BlackScholes have small C.,.., which are always smaller than
4MB, we omit these three benchmarks. As Figure 5.8 shows, prediction error in the
shifting region is comparable to prediction error in the entire design space.

Figure 5.8 does not contain RADIX’s poorly predicted cases. As a result,
No-Pred is able to predict shared LLC MPKI within 11.7% of simulation for 6
benchmarks, and prediction error is 5.5% on average. C-Pred is able to predict
shared LLC MPKI within 8.4% of simulation for 6 benchmarks, and prediction error
is 6.4% on average. The results show that our core count prediction techniques are
effective in the shifting region. However, CP-Pred is less effective, with 12.5% error
due to more significant miss-prediction.

Figure 5.9 reports the prediction error for the same problem and cache sizes
in Figure 5.8 broken down by prediction strategy and core count. Like Figure 5.8,
Figure 5.9 shows that C-Pred is very similar to No-Pred, while CP-Pred is worse.

More importantly, Figure 5.9 also shows that prediction error increases with core
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Figure 5.9: Prediction error for S4 and 4-16MB shared LLCs by core count.

count, reaching 13.9% for No-Pred, 18.7% for C-Pred, and 25.7% for CP-Pred at
256 cores. This illustrates that the cache conflict model errors mentioned earlier
tend to increase with core count. Nevertheless, Figure 5.9 shows that prediction
error at large core counts is still reasonable.

Figure 5.10 uses the FFT benchmark running at the S4 problem size as an
example to present the predicted MPKI curves by using No-Pred, C-Pred, and CP-
Pred. In Figure 5.10(a), the predicted MPKIs and simulated MPKIs are almost
identical at 16 cores. When core count increases, the cache conflict model cannot
predict cache misses accurately. Hence, the predicted MPKIs at 256 cores have
higher errors. However, the predicted MPKI curves still capture the cache perfor-
mance trends for core count scaling. C-Pred has the similar results, as illustrated in

Figure 5.10(b). CP-Pred is the least accurate. In Figure 5.10(c), errors also happen
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Figure 5.10: FFT’s predicted LLC MPKI curves for No-Pred, C-Pred, and CP-Pred
at the S4 problem size.

at 16 cores. However, the relative cache performance is correct, and the prediction
results are still useful to study the impact of core count and problem size scaling.
Finally, we report the average MPKI difference (MPKI;¢s) across all predic-
tions for a particular prediction strategy and benchmark in Figure 5.11. MPKI g/
is calculated as %Ef\;ﬂM PK I neasured — M PK Ly cdictea|, where N is the number of
configurations. The rightmost group of bars shows averages across all 9 benchmarks.
The MPKI4; ¢ shows how close the predicted MPKI is to the simulated MPKI. No-
Pred is able to predict within 0.1 MPKI for 8 out of 9 benchmarks, and within 0.28
MPKI for RADIX. On average, the MPKIy; ;¢ is 0.06 MPKI. Figure 5.11 also shows
that C-Pred and CP-Pred are both less accurate than No-Pred. C-Pred can predict
within 0.14 MPKI for 8 out of 9 benchmarks, and within 0.28 MPKI for RADIX.
CP-Pred can predict within 0.19 MPKI for 7 out of 9 benchmarks, and within 0.26
MPKI for RADIX and 0.37 MPKI for Ocean. On average, prediction is within 0.10

MPKI. These results show that most of the predicted MPKIs via CRD profiles are
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Figure 5.11: MPKI difference for shared LLC MPKI prediction.

very close to simulated MPKIs.

5.3.3 Private L2 Cache MPKI Prediction Accuracy

Figure 5.12 reports percent error with 1.0 offset for private L2 MPKI predic-
tion. Each bar in Figure 5.12 reports the average percent error across all predictions
for a particular prediction strategy and benchmark. The rightmost group of bars
reports averages across all 9 benchmarks. We also predict coherence misses, which
have infinite reuse distance. In our experiments, we assume that coherence misses
increase proportionally with respect to core count and problem size.

As Figure 5.12 shows, No-Pred predicts private L2’s MPKI within 15.4% of
simulation for 9 benchmarks. Across all benchmarks, prediction error is 8.5%. These
results reflect baseline prediction errors (i.e., without profile prediction). Except the
3 error sources which are mentioned in Section 5.3.2, we also find that the instruction
working set is replicated in private L2 caches, reducing the effective cache capacity
for data working set. Hence, the error is usually large at small L2 capacities.

Figure 5.12 also shows that C-Pred and CP-Pred are less accurate than No-

Pred. C-Pred and CP-Pred predict MPKI within 24.4% and 25.5% of simulation,
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Figure 5.12: Percent private L2 MPKI prediction error with 1.0 offset.
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Figure 5.13: Prediction error by core count.

respectively. On average, C-Pred has 12.5% error and CP-Pred has 13.9% error.
Like No-Pred, C-Pred and CP-Pred incur cache conflict model errors. But they
also incur errors due to PRD profile prediction and coherence-miss prediction. In

general, C-Pred and CP-Pred usually under-predict the amount of cache misses.

Figure 5.13 reports the prediction error broken down by prediction strategy

core counts is still reasonable.

and core count. For No-Pred, prediction error increases as core count scales, reaching
16.2% at 256 cores. C-Pred and CP-Pred have higher prediction error than No-Pred.
Prediction error increases with core count, reaching 21.4% for C-Pred and 23.5% for

CP-Pred at 256 cores. Nevertheless, Figure 5.13 shows that prediction error at large

Figure 5.14 uses the FFT benchmark running at the S4 problem size as an
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Figure 5.14: FFT’s predicted L2 MPKI curves for No-Pred, C-Pred, and CP-Pred
at the S4 problem size.

example to present the predicted MPKI curves by using No-Pred, C-Pred, and
CP-Pred. In Figure 5.14(a), the predicted MPKIs and simulated MPKIs are very
similar, and No-Pred’s predicted MPKI curves can capture the cache performance
trend. C-Pred is less accurate, as illustrated in Figure 5.14(b). Prediction error
increases with core count, but the cache performance trend is still valid. CP-Pred
is the least accurate. However, the relative cache performance is correct, and the
prediction is still useful to study the impact of core count and problem size scaling.

Figure 5.15 reports the MPKIy;¢¢ across all predictions for a particular pre-
diction strategy and benchmark. No-Pred is able to predict within 0.54 MPKI
difference for 8 out of 9 benchmarks, and within 2.01 MPKI for Ocean. Ocean has
a large degree of error at 256 cores with 16KB L2 size. On average, the MPKIy s
is 0.49 MPKI. Figure 5.15 shows that C-Pred and CP-Pred are both less accurate
than No-Pred. C-Pred can predict within 0.62 MPKI for 7 out of 9 benchmarks,

and within 2.03 MPKI for RADIX and 1.77 MPKI for Ocean. CP-Pred can predict
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Figure 5.15: MPKI difference for private L2 MPKI prediction.

within 0.80 MPKI for 7 out of 9 benchmarks, and within 2.12 MPKI for RADIX
and 2.53 MPKI for Ocean. On average, prediction is within 0.81 MPKI. These
results show that private L2 MPKI prediction is less accurate then shared LLC
MPKI prediction. However, the trend can still provide useful information to help
us understand scaling impacts.

Overall, we find our prediction techniques for core count scaling can accelerate
cache analysis without sacrificing accuracy. When combined with problem scaling
prediction, analysis effort is further reduced, though error increases when predicting

large core counts.

5.3.4 Sensitivity to Cache Associativity

In Section 5.3.2, the shared LLC is a 32-way set associative cache. In this sec-

tion, we use the S2 problem size to study the impact of different cache associativities.

Figure 5.16 reports percent shared LLC MPKI difference ('MPKI?’}"\Z]?}?AQ{ZEHG‘”““)
between 32-way and 16-way set associative caches. We add a small offset, 0.05, to
the measured values, so the metric does not blow up. In Figure 5.16, the X-axis

is broken down by core count and shared LLC size. The value of each bar is the
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Figure 5.16: Shared LLC MPKI difference between 32-way and 16-way set associa-
tive LLCs by core count and cache capacity.

average percent difference across our 9 benchmarks.

Figure 5.16 shows that the MPKI difference between 32-way and 16-way set
associative caches is large at large core counts and small cache sizes. For example,
the MPKI difference for 256 cores and 4MB cache achieves 14.6%. As a result,
when the cache capacity is small or the number of cores is large, lower associativity
usually has a significant impact on cache performance.

Figure 5.17 illustrates MPKI prediction error for the S2 problem size with a
small offset, 0.05. Each bar in Figure 5.17 reports the average percent error across
all predictions for a particular prediction strategy, benchmark, and associativity.
The rightmost group of bars reports averages across all 9 benchmarks.

As Figure 5.17(a) shows, for 16-way set associative LLCs, No-Pred is able to
predict shared LLC’s MPKI within 23.6% of simulation for 8 out of 9 benchmarks,
and within 56.1% for RADIX. On average, prediction error is 15.8%. On the other
hand, for 32-way set associative LLCs, No-Pred is able to predict shared LLC’s
MPKI within 13.6% of simulation for 8 out of 9 benchmarks, and within 30.8% for
RADIX. On average, prediction error is 9.8%.

No-Pred has lower prediction accuracy for 16-way set associative LLCs. Upon
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(b) C-Pred

Figure 5.17: MPKI prediction error for S2 and 4-128MB 16-way/32-way set asso-
ciative LLCs.

closer examination, there are two main sources of error. First, we find one of the
main sources of error is the cache conflict model. In our results, 16-way set asso-
ciative LLCs have more cache misses than those of 32-way set associative LLCs.
Although the cache conflict model also predicts more cache misses for 16-way set
associative LLCs, the cache conflict model has higher prediction error for 16-way set
associative LLCs at small cache sizes and large core counts. And Second, our error
metric does not always address numeric instability. If we change the offset to be
0.5, No-Pred achieves 16.9% and 11.3% error for RADIX with 16-way and 32-way
set associative LLCs, respectively.

In Figure 5.17(b), for 16-way set associative LLCs, C-Pred is able to predict

shared LLC’s MPKI within 27.1% of simulation for 8 out of 9 benchmarks, and
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within 37.3% for RADIX. On average, prediction error is 13.6%. On the other hand,
for 32-way set associative LLCs, C-Pred is able to predict MPKI within 12.4% of
simulation for 8 out of 9 benchmarks, and within 25.1% for RADIX. On average,
prediction error is 9.1%. These results show that C-Pred has errors similar to those
of No-Pred. The reasons are discussed in Section 5.3.2.

As Figure 5.17 shows, the prediction accuracy of 16-way set associative LLCs
is about 5% worse than the prediction accuracy of 32-way set associative LLCs. The
major reason is that the cache conflict model has higher prediction error for 16-way
set associative LLCs at small cache sizes and large core counts, especially at 4MB
and 256 cores. However, these results show that CRD profiles can also be used to
study the cache performance of set associative caches without sacrificing prediction
accuracy too much. As a result, our prediction techniques can be used to study

many different architecture designs quickly.
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Chapter 6
Optimizing Multicore Cache Hierarchies Using Reuse Distance

Analysis

CRD profiles and PRD profiles present an application’s memory behavior for
shared caches and private caches. This suggests we can use these profiles to study
and identify the optimal cache hierarchy. In this chapter, we develop a novel frame-
work that employs whole-program CRD and PRD profiles to study the trade-offs of
multicore cache system design. We also study how core count scaling and problem

size scaling impact the optimal cache hierarchy.

6.1 Performance Models

To study different cache hierarchies, we select the tiled architecture due to its
scalability. Figure 5.1 depicts an example tiled CMP. Each tile contains a core, a
private L1 cache, a private L2 cache, and an LLC module. The LLC module can
either be a private cache, or a slice of a shared cache. Tiles are connected by a 2D
mesh network.

In our study, we assume caches are inclusive and allow data blocks to be
replicated in private caches. Hence, when a cache miss happens in the L1 and L2
caches, the cache sends a request to the next-level cache directly. However, when

a cache miss happens in the private LLC, the coherence protocol first checks the
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Figure 6.1: CRD_CMC, sPRD_CMC, and sPRD;_CMC profiles for FFT running on
16 cores at the S3 problem size.

on-chip directory. If the cache block resides in the private LLC of the other tiles, the
cache block will be forwarded to the requesting tile. Otherwise, the request will be
sent to the off-chip DRAM. To model the data-forwarding in the private LLC, we
need another profile (PRDy) to indicate whether the cache block resides in the other
tiles or not. To compute PRD profiles, we find the minimum reuse distance among
per-thread stacks for a given memory access. The intuition is that this minimum
RD is the smallest cache size that contains the replication of a cache block. The
collected RD values form the PRD data-forwarding profile, PRDy.

Figure 6.1 uses FFT running on 16 cores at the S3 problem size to summarize
how we compute the cache misses at each cache level. For private L1 and L2 caches,
the total cache misses are sSPRD_CMC[T x Llg,.| and sPRD_CMC[T X L2g;..|.
L1,.. and L2,;.. are the private L1 and L2 cache sizes per core, and 7' is the number
of tiles. For the private LLC with total LLC;,. capacity, the directory-access traffic
is sSPRD_CMC|LLC;..], and the access latency is (DI Ry, + HOP,,;). We assume
data blocks are distributed uniformly on the LLC slices, so network messages incur

VT 4 1 hops on average [37]. Hence, HOP,,; is per-hop latency x average hops.
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After checking the directory, the data-forwarding traffic is (sPRD_-CMC [LLCy;,.]—
sPRD; CMC|LLCy..]), and the access latency is (LLCj, + 2 x HOP,;) which
contains two-way data forwarding communication and one cache access to acquire
the data. The off-chip traffic is sSPRD s CMC[LLCj;,.]. We also model the two-way
communication when accessing the memory controller. Hence, the average memory
access time (AMAT) for the tiled processors with private LLCs can be modeled using

Equation 6.1, where sPRD_CMC0] is the number of total memory references.

SPRD_CMC|T x Ll..]

AMATP = L]-lat -+ L2lat X

sPRD_CMC|0]
+ LLClq X SPRngg g[]j\;[é[é;fsize]
(DI + HOPy) x *¥ }553% MCCJ\%[%M
(LLCuy +2 % HOPyy) X sPRDCMC[LZ;%ZeZ]) —Cﬁg’[lgchMC[LLCsize]
+ (DRAMi + 2 x HOP) x ¥ Z%gﬂé ?\‘%L[g]

(6.1)

For shared LLCs, the LLC accesses are sPRD_CMC|T x L2,.] with ac-
cess latency (LLCjy + 2 X HOPyy). In shared LLCs, the data always resides on
the home tile, so there is two-way communication. The off-chip cache misses are
CRD_CMCI|LLCg.]. The average memory access time (AMAT) for the tiled pro-

cessors with shared LLCs can be modeled using Equation 6.2.
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sPRD_CMCIT x Ll..]
sPRD_CMC0]
sPRD_CMCIT x L2,:..]
sPRD_CMCI0]
CRD_.CMC[LLCl;.]
sPRD_CMC0]

AMATS :Lllat —+ L2lat X

+(LLCq +2 x HOPyy) X (6.2)

+(DRAMyy +2 x HOP;) X

These two simple performance models do not consider queuing in the on-
chip and off-chip networks, but they provide insights about an application’s cache

performance on different cache hierarchies.

6.2 Performance Analysis

At the same cache capacity, the shared cache has the best on-chip miss-rate,
but it has longer access latency. In contrast, the private cache has the worst miss-
rate, but it keeps data locally. In this section, we first study when shared LLCs
perform better than private LLCs. Then we study the trade-off between L2 and
LLC capacities. We also study how core count scaling and problem size scaling

impact the cache system design.

6.2.1 Private vs. Shared LLCs

Shared LLCs are better than private LLCs when AM AT, > AMAT,. Given

Equation 6.1 and Equation 6.2, this occurs when:
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(DRAM gy + 2 x HOP,yy) X (sPRD;_ CMC|[LLCl;..] — CRD_CMC|[LLC...))
> (2 x HOPjy) X sSPRD_CMC|T x L24:..]—
((DIRyy + HOPyy) x sSPRD_CMC[LLC;..]+

(LLCjay + 2 x HOP,yy) % (sPRD_CMC[LLCj..] — sPRD; CMC[LLCj:.]))
(6.3)

Equation 6.3 shows that shared LLCs are better when the total off-chip mem-
ory stall saved via sPRDy CMC/CRD_-CMC gap in shared LLCs (the LHS of
Equation 6.3) exceeds the total on-chip memory stall saved in private LLCs (the
RHS of Equation 6.3). The shared LLC’s on-chip access latency is weighted by the
LLC access frequency—i.e., the L2’s misses. Hence, the choice between private and
shared LLCs not only depends on the program behavior, but it also depends on L2
and LLC capacities.

To illustrate, Figure 6.2 plots AMAT, and AMAT; as a function of total LLC
size for the FFT benchmark running on 16 cores at the S3 problem size. Different
pairs of curves show results for different L2 sizes. When computing AMAT, we
assume an S8KB L1 cache with 1-cycle latency, 4-cycle L2 latency, 10-cycle LLC
latency, 10-cycle directory latency, 200-cycle DRAM latency, and 3-cycle per-hop
network latency. Figure 6.2 shows that the choice between private and shared LLCs
depends on two major effects. The first effect is L2 cache capacity. At small L2

capacities, the first term in the RHS of Equation 6.3 always dominates due to the
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Figure 6.2: FFT’s AMAT, and AMAT, for different L2 and LLC capacities.

high shared LLC accesses. So private LLCs are always better. This occurs in
Figure 6.2 when the L2 is 16KB. For larger L2 caches, the first term in the RHS
of Equation 6.3 reduces, and it allows the LHS of Equation 6.3 to dominate when
the sSPRD; CMC/CRD_CMC gap is sufficiently large. This occurs in Figure 6.2 for
the 64KB L2 with a private-to-shared LLC cross-over at 20.4MB. Finally, at large
private LLC capacities that can contain replications, CRD_CMC[LLCj;,.|, and
sPRD; CMC|LLCj;,.] are almost identical. As a result, the LHS of Equation 6.3
is close to 0 again. This diminishes the advantage of shared LLCs. In fact, private
LLCs may regain a performance advantage when the total on-chip memory stall in
shared LLCs is higher than the total on-chip memory stall in private LLCs. This
occurs in Figure 6.2 for the 64KB L2 with a shared-to-private LLC cross-over at

62.0MB.

6.2.2 Scaling Private-vs-Shared LLCs

In this section, we extend the architecture insights from Section 6.2.1 by in-

corporating the core count scaling and problem size scaling effects discussed in Sec-
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tion 3.5. Figure 6.3 and Figure 6.4 present the results for our 9 benchmarks. In
Figure 6.3 and Figure 6.4, we plot three problem sizes, S2—S4, per benchmark. Each
problem size has two graphs: the top graph shows tiled CMPs with 8KB L1 caches
and 16KB L2 caches, while the bottom graph shows tiled CMPs with 8KB L1 caches
and 64KB L2 caches. Within each graph, the LLC capacity is varied from 0-128MB

along the X-axis. The core count scaling is studied along the Y-axis for 2-256 cores.

AMAT,

rar 1s plotted at different colors. We do

For each CMP configuration, the ratio
not consider CMPs with less total LLC capacity than total L2 capacity. These cases
are shaded black in Figure 6.3 and Figure 6.4.

All basic insights from Figure 6.2 are also visible in Figure 6.3 and Figure 6.4.
Shared LLCs are best only when conditions make the LHS of Equation 6.3 dominate.
Hence, the L2 capacity must be sufficiently large to reduce LLC access frequency.
The total off-chip memory stall saved in shared LL.Cs must also be greater than the
total on-chip memory stall saved in private LLCs.

For our benchmarks and the tiled CMP configurations, 16KB L2 is usually not
large enough for FFT, RADIX, Barnes, FMM, Ocean, and BlackScholes to reduce
LLC access frequency; so private LLCs are usually best in these cases. Increasing
the L2 cache size can benefit shared LLCs. We also see that most configurations
for which shared LLCs are best occur around or beyond their corresponding Cipare
value in Figure 3.15(b).

Because the CRD_CMC/PRDy CMC gap varies across the LLC capacity,
preference may change from private LLC to shared LLC and back to private LLC

again. FFT, LU, RADIX, Barnes, FMM, and Water show this behavior. Kmeans
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Figure 6.3: Private vs. shared LLC performance across L2 capacity, LLC capacity,
core count, and problem size for FFT, LU, RADIX, Barnes, and FMM.
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and BlackScholes have very good data locality. Hence, LLC capacity doesn’t affect
the preference of private LLCs or shared LLCs.

Figure 6.3 and Figure 6.4 also show the impact of core count scaling on the
private vs. shared LLCs selection. As described in Section 3.3, both CRD_CMC and
sPRD_CMC profiles shift coherently with core count scaling at small RD, which can
increase cache capacity pressure on L1 and L2 caches. As we add cores to our tiled
CMP, we also increase total L1 and L2 cache capacity linearly, and this cancels the
effect of the shift. However, core count scaling also increases the average commu-
nication hops, making shared LLC accesses more costly than private LLC accesses.
These scaling trends tend to make private caches more desirable for larger core
counts. For example, FFT, RADIX, FMM, Ocean, KMeans, and BlackScholes show
this effect at the S4 problem size. On the other hand, core count scaling also shifts
Cshare to smaller RD and increases the gap between sPRD_CMC and CRD_CMC
profiles, as illustrated in Figure 3.14. These scaling trends tend to make shared
caches more desirable for larger core counts when the gap is large. For example, LU
and Barnes show this effect at the S2-S4 problem sizes. Hence, the choice between
private LLCs and shared LLCs is highly application- and architecture-dependent.

Lastly, Figure 6.3 and Figure 6.4 show the impact of problem size scaling on
the private vs. shared LLCs selection. As described in Section 3.5, both C.,,. and
Cshare move to larger RD values as problem size scales. So the region where shared
caches are best tends to move to larger cache capacity. For example, FFT, LU,
Radix, Barnes, FMM, and Water show this effect. In addition, large problem size
also causes higher pressure on the cache, and 64KB L2 might not be large enough
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to reduce the cost of shared LLC access. As the problem size increases, private LLC

usually prevails. We see this effect in FFT, Radix, FMM, and Ocean.

6.2.3 Trade-off Between L2 and LLC Capacities

In the previous section, we find that the L2 capacity has significant impact
on cache performance. In this section, we study the trade-off between L2 and LLC
capacities when the on-chip cache capacity (C) is fixed (i.e., T' X L2g;,c + LLCl;,e =
C)and T x L24,. < LLCy;,.. We assume L1 is closely coupled with the core, so
its size is fixed. The trade-off between L2 and LLC capacities impacts the balance
between on-chip and off-chip traffic. For a fixed capacity, there exists an optimal
[L24;.¢,LLCY;,e] point. In this section, we examine how different scaling schemes
impact this optimal point.

For a tiled CMP with the constraints, T'x L2;..+ LLCy;,. = C and LLC;., >
T'x L2, the LLCy;,c ot €xists when the change in the LLC size causes A AM AT, >
0and A AM AT, > 0. After replacing T'x L2, by C— LLCj;.. in Equation 6.1 and

Equation 6.2, Equation 6.4 and Equation 6.5 show the inequalities for A AM AT,, > 0

and A AM AT, > 0.
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A AMAT, >0
= (LLCjqt) x (sPRD-CMC|C — LLCj;..] — sSPRD_-CMC|[C — LLCyjzc opt))
+ (DIRjq + HOPy;) x (sPRD_CMC[LLC;.e] — sPRD_ CMC[LLClizc.0p1))
+ (LLCjt + 2 X HOP,gy) x

((sPRD_CMC|LLCl;,.] — sSPRD; CMC|LLCl;..])

— (sPRD_CMC|[LLCyze opt] — SPRD; CMC[LLClsize opt]))
> (DRAM4; + 2 x HOPyy) X

(sPRD; CMC[LLClsc0pt) — sSPRD; . CMC[LLCl;..))

AN AMAT, >0
= (LLCat + 2 X HOPy4t) X
(sPRD_CMC|C — LLCyjze] — sSPRD_CMC[C — LLCj;ze opt])

> (DRAMiq; + 2 X HOPyyy) x (CRD_CMC[LLClze.0p) — CRD_CMC|[LLC..))
(6.5)

Equation 6.4 and Equation 6.5 show that there exists an optimal LLC cache
capacity—i.e., LLCg e opt. For all LLCy;,e > LLCgize opt, the increase of on-chip
memory stall is greater than the decrease of off-chip memory stall. For all LLC;,. <
LLCygize opt, the increase of off-chip memory stall is greater than the decrease of on-

chip memory stall. As aresult, LLCy;.. o €xists when the change of the total on-chip
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memory stall is equal to the change of the total off-chip memory stall.

Figure 6.5(a) plots AMAT, and AMAT, as a function of LLCy;,. for the FFT
benchmark running on 16 cores at the S3 problem size. Figure 6.5(b) plots the
corresponding CRD_CMC, sPRD_CMC, and sPRD;_.CMC profiles to explain the
insights. Figure 6.5(a) is divided into three regions to represent three total cache
capacities, marked as DT X L2, + LLCy;,e = 32M B, QT x L2, + LLCy;,e =
64M B, and QT X L2, + LLCy;,. = 128M B. For each region, the leftmost point
represents 1" X L2g.. = LLC,,. = %C. As LLC,;.. increases along the X-axis,
L2, decreases as T x L2, = C — LLCy;,.. The rightmost point represents
L2g.. =2 x Lly,, and LLCy;,, = C — T x L2... In the graph, the dotted lines
represent AMAT),, and the solid lines represent AMAT;.

Figure 6.5(a) provides three major insights that are valid for all of our bench-
marks. First, when L2, is close to Llg,. (8KB in our study and marked in Fig-
ure 6.5(b)), high LLC accesses cause high AMAT. AMAT is higher than AMAT, at
small L2;,.. This is because shared LLCs have a higher on-chip communication cost
than private LLCs (the first term in the RHS of Equation 6.3 always dominates).

Second, as L2, increases, the AMAT drops rapidly. When L2, is large
enough to capture the major working set, further increasing L2;,. doesn’t reduce
LLC accesses significantly, as illustrated in Figure 6.5(b). Hence, off-chip traffic
grows as L2g;.. keeps increasing, and the AMAT goes up again. There exists an
optimal LLCy;,. which has the lowest AMAT. In Figure 6.5(a), region ) and (2) show
this behavior. For AMAT, (AMAT,), the optimal LLCj;.. are 30.9MB (30.9MB)
and 48.4MB (62.9MB) in region (D and @), respectively.
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Figure 6.5: The trade-off between L2,;.. and LLC,;.. for FFT running on 16 cores
at the S3 problem size.

In region (D, when LLCy;,, is between 17.7MB and 31.7MB, shared LLCs al-
ways outperform private LLCs. This is because the gap between CRD_CMC and
sPRD;_CMC profiles causes the total off-chip memory stall saved in shared LLCs
to be higher than the total on-chip memory stall saved in private LLCs. Decreas-
ing the LLCj;,. reduces the gap, and AMAT, approaches AMAT,. Finally, private
LLCs outperform shared LLCs at 17.5MB. In region @), shared LLCs always out-
perform private LLCs between 32MB and 62.9MB LLC due to the gap between
CRD_CMC and sPRD;_.CMC profiles. Because CRD_CMC also decreases faster

than sSPRD_CMC inside this range, increasing L2,;.. has more benefit for shared
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LLCs. Hence, the shared LLCyg;.c ot is smaller than the private LLCg;ze opt-

Lastly, when the LLC capacity is large enough (region @) in Figure 6.5(a)),
the LLC misses only change slightly with respect to LLCj;.., as illustrated in Fig-
ure 6.5(b). The decrease of LLCy;,. doesn’t impact the off-chip traffic significantly,
but the increase of L2,;.. reduces the number of LLC cache accesses. Hence, the
LLCgjzeopt is close to LLCgi,e = T X L24,e = %C’. For AMAT, (AMAT)), the
LLCgjze 0pt 1s 64.0MB (64.7MB) in Figure 6.5(a). Shared LLCs also outperform pri-
vate LLCs between 64MB and 115.5MB, because the total on-chip memory stall in
private LLCs is high.

Figure 6.6, Figure 6.7, and Figure 6.8 show the LLCg;.¢ op: for our 9 bench-
marks. In Figure 6.6, Figure 6.7, and Figure 6.8, we plot three T'x L2;..+ LLC;.. ,
32MB, 64MB, and 128MB per benchmark. Each cache capacity has two graphs: the
top graph shows the shared LLCg;.c opt, While the bottom graph shows the private
LLCgize 0pt- For each graph, the X-axis is the number of cores, and the Y-axis is the
corresponding LLCg;.c ope. We report the LLCg; ¢ ot for three problem sizes, S2-54.

All basic insights from Figure 6.5 can be applied to Figure 6.6-Figure 6.8.
First, for both shared and private LLCy;.c opt, the L2, must be sufficiently large to
reduce LLC access frequency. Second, the optimal LLCy;,. depends on the balance
between on-chip memory stall and off-chip memory stall. Because the LLCg;.c opt
shows different behaviors for shared and private LLCs, we discuss these two cases
separately.

Shared LLCs

As described in Section 3.3, core count scaling only impacts cache performance
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Figure 6.6: Optimal LLCy;,. at different problem sizes (S2-S4), total cache sizes
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(32M-128M), and the number of cores for FFT, LU, and RADIX.
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Figure 6.7: Optimal LLCy;,. at different problem sizes (S2-S4), total cache sizes
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(32M-128M), and the number of cores for Barnes, FMM, and Ocean.
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Figure 6.8: Optimal LLCy;,. at different problem sizes (S2-S4), total cache sizes

(¢) BlackScholes

(32M-128M), and the number of cores for Water, KMeans, and BlackScholes.
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significantly below a particular cache capacity in shared caches, and this cache
capacity grows with core count. When core count scales, the routing distance also
increases in shared LLCs. To offset these effects, the optimal T x L2, (LLCj;..)
must grow (decrease) with core count scaling. Figure 6.6-Figure 6.8 confirm this
effect across our 6 benchmarks, FFT, RADIX, Barnes, FMM, Ocean, and Water
at the S4 problem size with 32MB. LU, KMeans, and BlackScholes have good data
locality, so the optimal LLCy;,. is almost constant across core counts.

Problem size scaling affects the LLCj;z¢ o selection in two ways. First, when
the problem size is small compared to the total cache capacity, the optimal cache
configuration usually happens at T' x L2;.. = LLCy;,. = %C’ across different core
counts. For example, the optimal LLC,;,. for the S2 problem size is around half of
the total cache size—i.e., 16MB, 32MB, and 64MB.

Second, because problem size scaling increases the memory footprint, the
LLCgize 0pt grows as problem scales to reduce expensive off-chip accesses. For the S3
and S4 problem sizes, the 32MB total cache capacity is usually too small, and the
LLCgize0pt varies with core count. The LLCg;e ope 0f S3 and S4 are almost identical
at small core counts, but the LLCg;.c ot 0f S3 is larger than that of S4 at larger core
counts. For example, FF'T shows this behavior at 32MB. This is because the high
reference counts region is large enough to affect the LLC access frequency. So, we
need large L2, to keep memory access locally at the S4 problem size. In contrast,
for a large cache capacity that can contain the major working set of the S3 problem
size, the LLCgjze opt Of S4 is larger than the LLC;. opr 0f S3 across all core counts.
For example, we see this behavior in FFT, RADIX, Barnes, FMM, and Ocean when
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the total cache capacity is 128MB.
Private LLCs

For private LLCs, the total L2 size should also contain the major working set
which grows as core count scales. However, core count scaling also degrades data
locality at large RD values due to increased replications and invalidations, which
prefer a larger LLC,;... These combined effects complicate the LLCg; e op¢ behavior.

We use the FFT’s graph at 32MB as an example to explain this complicated
behavior. For the S2 problem size, the major working set size is small and can be
contained within a small L2,,.. So the LLCg;.c op¢ usually increases as core count
scales to reduce the directory-access and off-chip traffic. However, at large problem
sizes (i.e., S4), the major working set shifts to larger RD values. Reducing private
LLC accesses has more benefit—i.e., the decreasing rate of the total on-chip memory
stall is faster than the increasing rate of the total off-chip memory stall. So the
LLCgjze 0pt usually decreases as core count scales. We see this in FFT, LU, RADIX,
Barnes, FMM, Ocean, and Water.

For benchmarks with good data locality in private caches, KMeans and BlackSc-
holes, the optimal LLC,;,. is almost constant across core counts, and the values are
vary similar to the shared LLCg;.c opr - LU is an interesting benchmark. It has good
locality in shared caches, but it has very bad data locality in private caches due
to massive replications. Hence, the optimal LLCy;,. usually increases as core count
scales.

AMAT Variation for L2/LLC Partition

For a given core count, problem size, total cache size, and benchmark, we
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Figure 6.9: AMAT difference between the highest and the lowest AMAT.

use our models to compute the highest AMAT and the lowest AMAT. We report
the largest performance variation due to L2/LLC capacity partition, so we can
understand the impact of capacity partition.

Figure 6.9 shows the percentage difference between the highest and the lowest
AMAT, (AMAT,) across our 9 benchmarks. The percentage difference is defined

highest AM AT —lowest AM AT x 100%.

as owes i AN AT Each benchmark reports the average difference

across 2-256 cores, S2-S4 problem sizes, and 32MB-128MB total cache sizes. The
last bar is the average across all benchmarks.

When applications have very good locality (i.e., KMeans and BlackScholes),
the percentage difference is close to 0. This is because 8KB L1g;,. can capture the
main working set. For shared LLCs, the variation can reach 236% in Barnes, as
illustrated in Figure 6.9(a). On average, the difference is between 3.4% and 76.0%,
and the overall average difference across benchmarks is 33.4%.

Figure 6.9(b) illustrates the percentage difference for private LLCs. The largest
difference is 85.6% in RADIX. On average, the difference is between 1.0% and 33.3%,

and the overall average difference across benchmarks is 10.3%. The percentage
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difference of private LLCs is smaller than the difference of shared LLCs. This is
because the higher access latency in shared LLCs causes higher AMAT variations.
So the L2, has greater impact for shared LLCs than for private LLCs.

Private vs. Shared LLC at the Optimal LLC Capacity

Lastly, Figure 6.10 and Figure 6.11 illustrates the percentage difference be-
tween AMAT, and AMAT, ( % x 100%) at LLCgjze opt- We plot three
T x L2, + LLCy;.. , 32MB, 64MB, and 128MB, per benchmark. For each graph,
the X-axis is the core count, and the Y-axis is the corresponding percentage differ-
ence. We also report the difference for three problem sizes, S2-S4. Private LLCs
outperform shared LLCs when the Y-axis value > 0.

Although the preference of shared or private LLCs depends on core count and
problem size, there are two important trends. First, because problem size scaling
increases both C.,,.. and Cypqe, continued problem size scaling usually prefers private
LLCs (i.e., curves move toward > 0) at the same on-chip cache capacity. Second,
when the problem size is small compared to the on-chip cache capacity, the total
on-chip memory stall (directory access + data forwarding) in private LLCs grows
as core count scales and can be worse than the total on-chip memory stall in shared
LLCs. Hence, core count scaling prefers shared LLCs in this case. For example, we
see this in FFT, LU, RADIX, Barnes, FMM, Ocean, and Water at the S2 problem
size with 64MB capacity. When problem size is large compared to cache capacity,
core count scaling prefers private LLCs due to a high access penalty in shared
LLCs. For example, we see this in FFT, RADIX, FMM, Ocean, Water, KMeans,

and BlackScholes at 32MB and 64MB capacity for the S4 problem size. LU always
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prefers shared LLCs due to the large number of replications in private LLCs.

Figure 6.12(a) summarizes the highest, the lowest, and the average percentage
difference between private and shared LLCs in Figure 6.10 and Figure 6.11. Shared
LLCs can outperform private LLCs by 39.5% in LU, and private LLCs can outper-
form shared LLCs by 29.0% in Ocean. On average, the difference is between -14.9%
and 9.1%.

We can also model the IPC as 1/(1 + TEIZEE28E 5 AMAT') by assuming
CPI = 1 in the absence of memory stall. Figure 6.12(b) reports the percentage
difference (% x 100%). Private LLCs outperform shared LLCs when the
Y-axis value < 0. The shared LLC’s IPC can outperform the private LLC’s TPC
by 25.7% in LU, and the private LLC’s IPC can outperform the shared LLC’s IPC
by 28.2% in Ocean. The average IPC difference is between -8.0% and 9.2%. From
Figure 6.9 and Figure 6.12, we find that the capacity-partition has a larger impact

than private-vs-shared-LLC selection on the cache performance. This suggests that

physical data locality is vary important for future CMPs.
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Figure 6.10: AMAT difference between private and shared LLCs at LLCg;¢ op for

FFT, LU, RADIX, Barnes, and FMM.
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Figure 6.11: AMAT difference between private and shared LLCs at LLCg;e op for
Ocean, Water, KMeans, and BlackScholes.
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Chapter 7

Prediction versus Sampling

In Section 2.2.1, we introduce our in-house built Pin tool. There are two
major effects that slow down the reuse distance profiling. First, we use the fine-
grain context switch at every memory reference, and the context switch is slow.
Second, RD analysis maintains the depth information of every memory reference
in LRU stacks. The splay tree[38] is a common algorithm to implement the LRU
stack. However, the amortized complexity of the splay tree is O(log(n)). Reducing
the number of references to track in LRU stacks can reduce the profiling time.
Acquiring RD profiles with sampling is a technique for reducing the number of
tracked memory references. In this chapter, we first introduce the RD sampling

technique, then we compare the sampling technique with our prediction technique.

7.1 Multicore Reuse Distance Sampling

Instead of continuously tracking every memory reference, the sampling tech-
nique divides the entire profiling period into a sequence of interleaved fast-forward
periods and profiling periods [39, 17]. In the fast-forward period, the profiler only
does minimal maintenance to gather necessary information. In the profiling period,
the profiler selects memory references from the dynamic memory reference stream

and collects the reuse distances based on the selected references. The switching be-
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tween the fast-forward period and the profiling period is controlled by the sampling
rate. The sampling rate Rgumpling 1 defined as Rgampiing = TpTTpr’ where T, and T%
are the number of memory references in the profiling period and in the fast-forward
period, respectively. A high sampling rate tracks more memory references and often
gives higher accuracy. However, a high sampling rate also causes a longer profiling
time. The sampling rate is adjustable to balance accuracy and performance.
Completely turning off the profiling in fast-forward periods can affect the accu-
racy for the references which have reuse windows > 7,. Because memory references
that have long reuse distances can exist across a large number of fast-forward pe-
riods, one way to improve accuracy is to continue the profiling period until all of
the references that have appeared in a profiling period have been reused. However,
if a reference has been touched in the first profiling period and can only be reused
at the end of the program, this outstanding reference will force the profiler to stay
in the profiling period for the entire execution. Schuff et al[17] proposed a pruning
technique to prevent this problem. The pruning procedure checks the oldest refer-

ence. If this reference’s current reuse distance is sufficiently large, it is pruned and

recorded as if it were a cold miss. We adopt their technique and make some modi-

reused unique references
total unique references

fications. We define the pruning rate, Rpruning,; 8 Rpruning =
in the profiling period.

In our Pin tool, the profiler begins in a profiling period. In the profiling period,
the memory references from P threads are interleaved uniformly, and each thread
executes % memory references. In our experiments, T, is 100K memory references.

Once T), reaches 100K references and the desired Rpyyning, the profiler switches to
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the fast-forward period. There are no fine-grain context switches and LRU stack
updates in this period. After each thread executes % memory references, the profiler
switches back to the profiling period.

In our experiments, we first acquire the whole-program CRDg;,ct and PRD et
profiles for 2-256 cores at the S1-S4 problem sizes directly for each benchmark.
Then, we use the sampling technique to acquire the whole-program CRD g...; and
PRDy;,eet profiles for each configuration. After we acquire the sampled profiles, we
normalize the sampled profiles by the total number of references counts. Finally,

to determine the accuracy of sampled profiles, we use two metrics, RD sccuracy and

RD_CMC 4ccyracy, Which are defined in Equation 4.4 and Equation 4.5.

7.2 Sampling Accuracy and Performance

In our experiments, T, is 100K memory references, and T is 900K memory
references (Rsampling = 0.1). We set Rpryning to be 0.99.

Figure 7.1(a) compares FFT’s measured CRDg; et profile (dotted line) and
sampled CRDg;e: profile (solid line) running on 16 cores at the S3 problem size.
In Figure 7.1(a), the measured CRD profile and the sampled CRD profile are very
similar at small RD values. However, the sampled CRD profile has fewer reference
counts at large RD values, and it ends earlier than the measured CRD profile. This
is because in FFT, more than 99% of the unique memory references are reused in the
same profiling period, and 0.99 R pyyning discards the references which have large RD

values. The actual sampling rate is 9.5%. As a result, significant distortion happens
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at large RD values, and the corresponding CMC profile also shows significant errors,
as illustrated in Figure 7.1(b).

Figure 7.1(c) (Figure 7.1(d)) shows Barnes’ measured and sampled CRD girect
(CRD_CMC gjreet) profiles running on 16 cores at the S3 problem size. In contrast to
FFT, Barnes” measured and sampled CRDy;,: profiles are almost identical across
all RD values. This is because in Barnes, less than 99% of unique memory references
are reused in the same profiling period, and the profiler spends most of the time in
the profiling period (almost never pruning). As a result, the actual sampling rate
is 98.5%. Hence, the same sampling parameters, Rgampiing and Rppuning, cannot
sample Barnes’ profile efficiently.

The sampled PRDg; et profiles show the same behavior, as illustrated in Fig-
ure 7.2. FFT’s sampled PRD profile also ends earlier than the measured PRD profile
due to pruning. On the other hand, Barnes’ sampled PRD profile is almost iden-
tical to the measured PRD profile because of the low pruning trigger-rate. These
examples show the major challenge of sampling techniques. Sampling efficiency and
accuracy highly depend on sampling parameters, and the same parameter cannot
be used on different benchmarks.

Figure 7.3(a) presents the accuracy results of sampled CRD profiles by using
the CRD gccuracy metric. Each bar in Figure 7.3(a) reports the average CRD accuracy
achieved over the 32 sampled CRD profiles per benchmark. The rightmost bar
reports the average accuracy across all benchmarks. As Figure 7.3(a) shows, sampled
CRD profiles have high accuracy. For all benchmarks, the CRD profile accuracy is

between 83.2% and 98.7%. Across all benchmarks, the average accuracy is 94.2%.
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Rpruning = 0.99.
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The high CRD 4ccuraey is because the sampling technique has better accuracy at
small RD values and the metric, CRD 4ccuracy, weights the small RD values that have
high reference counts more heavily. At large RD values where the pruning happens,
sampled profiles have larger errors. CRD_CMC gccyracy treats each RD value equally,
so it can reflect the error that happens at large RD values. Figure 7.3(b) reports
CRD_CMC 4ccuracy, and the accuracy is much lower, between 39.9% and 99.2% for
all benchmarks. On average, the accuracy is 70.5%. This result shows that pruning
can cause significant errors.

Figure 7.3(c) reports the actual sampling rate. The actual Rggmpiing varies
between 10.0% to 99.4%. Higher Rgumpiing means that the profiler stays in the pro-
filing period longer. However, comparing Figure 7.3(c) and Figure 7.3(b) shows that
a high sampling rate doesn’t always guarantee high accuracy. For example, Barnes’
profiler spends 95.6% of its time in the profiling period, but the CRD_CMC gccuracy 18
69.0%. In contrast, KMeans’ profiler spends 10.4% of its time in the profiling period,
but the CRD_CMC accuracy s 99.2%. Hence it is difficult to use the actual sampling
rate to predict the accuracy. Figure 7.3(d) reports the actual speedup, which is re-
lated to the actual sampling rate. Lower sampling rate means higher speedup. On
average, the speedup is 3.4x. Figure 7.3(e) and Figure 7.3(f) shows the CRD accuracy
and CRD_CMC gceyracy breakdown by different core counts. In general, different core
counts do not affect the sampling accuracy.

Figure 7.4(a) illustrates our accuracy results for sampled PRD profiles by us-
ing the PRD 4ccuracy metric. Sampled PRD profiles also have high accuracy. For

all benchmarks, the PRD profile accuracy is between 81.8% and 98.8%. Across all
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Figure 7.4: Accuracy of the sampling technique with Rsampiing = 0.1 and Rpruning =
0.99 for PRD profiles.

benchmarks, the average accuracy is 94.9%. Figure 7.4(b) illustrates the CMC pro-
files accuracy using the PRD_CMC gceyracy metric. The accuracy is lower, between
71.0% and 97.0% for all benchmarks. On average, the accuracy is 85.0%. The re-
sults show that pruning can cause significant error. Figure 7.4(c) and Figure 7.4(d)
report the PRD gccuraey and PRD_CMC 4ccyracy breakdown by different core counts.
In general, core counts do not affect accuracy.

We can increase the sampling speed by relaxing Rsumpiing and Rpruning. Fig-
ure 7.5 illustrates the sampling accuracy and speedup with Rggmpiing = 0.01 and
Rpruning = 0.90. The average CRD accuracy; CRD_-CMC accuracy, PRD accuracy, and
PRD_CMC sccuracy drops to 86.6%, 64.0%, 89.2%, and 77.7%, respectively, compared

to 94.2%, 70.5%, 94.9%, and 85.0% when using Rsumpiing = 0.1 and Rppuning = 0.99.
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However, the average speedup increases about 10x, achieving 34.2x. The results
show that the sampling technique usually need to sacrifice accuracy for better

speedup.

7.3 Compare with Prediction

Table 7.1 compares the accuracy and speedup of the sampling technique and
the prediction technique. The three columns represent three different predictions,
core count scaling, problem size scaling, and core-problem scaling as illustrated
in Chapter 4. For each design space, we report CRD ccuracy, CRD-CMC Accuracys
PRD accuracy; PRD_-CMC 4ccuraey, and the speedup of the sampling technique and
the prediction technique.

First, we compare the sampling technique (Rsampling=0.1 and Rp,uning=0.99)
with the prediction technique. For each design space, the sampling technique and
the prediction technique have very similar CRD 4ccuracy and PRD aceyracy- This is be-
cause both techniques can provide very high accuracy at small RD values. However,
the sampling technique has lower CRD_CMC 4¢curqaey than the prediction technique.
This is because the CRD profile usually has a long tail, and pruning causes higher
error at large RD values. Hence, CMC accuracy is lower across a wide range of
cache capacities. In contrast, the sampling technique has better PRD_CMC 4ccuracy
than the prediction technique. There are two reasons for this. First, the prediction
technique has to predict the compulsory misses and coherence misses, which have in-

finite reuse distance. But the sampling technique can measure these reference counts
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Table 7.1: Accuracy and speedup comparison between the sampling technique and
the prediction technique.

H Scaling method Core count scaling | Problem size scaling | Core-Problem scaling H

CRDAccu'r'acy / CRDfCMCAccuracy

Sampling(Rsampting=0-1,R Rruning=0.99) 93.9%/71.1% 94.6%/65.4% 94.1%/70.1%
Sampling(Rsampting=0-01,R pruning=0.9) 85.9%/64.3% 90.8%/61.6% 86.9%/63.9%
Prediction 89.4%/83.6% 89.3%/86.1% 89.1%/83.5%

PRDAccuracy / PRD*CMCAccuracy

Sampling(Rampting=0-1,R Pruning=0.99) 94.9%/86.5% 95.4%/84.0% 95.0%/85.4%
Sampling(Rsampting=0-01,R pruning=0.9) 88.9%/78.6% 92.4%/80.5% 89.6%,78.4%
Prediction 96.0%/83.6% 91.8%/80.7% 94.2%/80.8%

Speedup compared to full measurement

Sampling(Rsampling=0-1,RPruning=0.99) 3.3 3.2 3.4
Sampling(Rsampling=0.01,R pruning=0.9) 34.4 33.2 34.7
Prediction 4.6 25.2 140.0

more precisely. Second, PRD profiles are shorter than CRD profiles. Although prun-
ing also causes distortion at large RD values in RD profiles, the affected region is
shorter. As a result, the sampling technique has higher PRD_CMC 4ccuracy -

For core count scaling, the prediction technique has 4.6x speedup, and the
sampling technique only has 3.3x speedup. This is because the prediction tech-
nique uses 8 profiles to predict the other 24 profiles for each benchmark. However,
the sampling technique has to measure all 24 profiles, and pruning doesn’t always
provide a stable speedup.

For problem size scaling, the prediction technique uses profiles at the S1 and S2
problem sizes to predict the profiles at the S3 and S4 problem sizes. The prediction
technique avoids the long profiling time at the S3 and S4 problem sizes. However,
the sampling technique still needs to profile every configuration. So the prediction

technique shows higher speedup (25.2x) than the sampling technique (3.2x). Lastly,
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for core-problem scaling, the prediction technique achieves 140.0x speedup, because
it only requires 4 profiles for each benchmark to predict the other 28 profiles. The
sampling technique has to profile these 28 profiles and only provides 3.4x speedup.

We can relax Rgampiing a0d Rpruning (Rsampling=0.01 and R ppyning=0.90) to
increase the sampling performance. As Table 7.1 shows, accuracy decreases, but
performance increases about 10x. This shows that the sampling technique is 7.5x
and 1.3x faster than the prediction technique for core count scaling and problem
size scaling, but it is still 4x slower for core-problem scaling.

Although the sampling technique can improve the profiling performance, one
drawback is that the same parameters cannot be applied to all benchmarks. Fur-
thermore, we don’t know how good the parameters will be when we profile a new
application. Usually, we need to try several different parameters to achieve good
accuracy and performance at the same time. These drawbacks reduce the benefit
of using the sampling technique. Some adaptive sampling techniques may be devel-
oped to help solve these issues. However, this topic is beyond the scope of this work.
In contrast, the prediction technique is more stable than the sampling technique.
The main drawback of the prediction technique is that accuracy decreases as the
prediction horizon increases. We may need to measure more profiles to increase the
prediction accuracy. However, the strength of the prediction technique is that it
can predict any configuration without measuring them. As a result, we believe our

prediction technique is more efficient than the sampling technique.
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Chapter 8

Related Work

This chapter surveys background material and related work. First, it intro-
duces recent developments in multicore reuse distance analysis. It then focuses on

the design space exploration.

8.1 Reuse Distance Analysis

Multicore RD analysis is relatively new, but it is becoming a viable tool as the
result of recent research.
Multicore Reuse Distance

Jiang et al [14] propose a probabilistic model for deriving CRD profiles from
per-thread traces. They find that for the special case of parallel programs, the
relative execution speed of threads does not change across different multicore archi-
tectures. Hence, CRD profiles remain the same. We find that the CRD and PRD
profiles of loop-based parallel programs exhibit low sensitivity to cache capacity
scaling is a very similar observation. However, Jiang’s model requires knowing all
per-thread traces, and it cannot explore multicore configurations that have not yet
been profiled.

Suh et al [40] have developed the locality model to capture the effect that the

reuse distance of a memory reference is inflated by memory accesses from another
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program. Chandra et al [41] have also developed statistical models to predict the
impact of cache sharing on co-scheduled threads. They focus on a two-core system,
and don’t consider scaling up to more cores. They calculate the related execution
speed between threads and compute how many distinctive memory blocks from the
second thread should be inserted into the reuse distance profile of the co-running
thread. They focus on multi-programmed workloads, whereas our work focuses on
parallel programs.

Ding and Chilimbi [13] extend Chandra’s techniques and present techniques to
construct CRD profiles for multi-threaded programs. They analyze memory traces
to extract statistics on per-thread locality and data sharing to reconstruct CRD
profiles. Their approach is general, because it can handle non-symmetric threads.
However, it requires at-scale profiling to obtain the memory traces for analysis. Fur-
thermore, their algorithm needs to consider the possible ways that memory refer-
ences can be interleaved, incurring exponential time complexity. Ding and Chilimbi
can also predict CRD profiles for machine scaling, but the additional threads must
be identical to the already profiled threads. As a result, for parallel programs where
per-thread computation changes with core count scaling and problem size scaling,
their model does not work.

Ding and Chilimbi [42] also develop a method for measuring the footprint of
concurrent execution applications. Xiang et al [43, 18] follow Ding and Chilimbi’s
work [42], and they propose a more efficiently composable model that uses the
all-window footprint of each program to predict its cache interference with other
programs. However, their model only considers multi-program workloads, and they
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have to gather all the traces. We do not require traces, and our analysis is simple,
allowing our approach to handle loop-based parallel programs running on LCMP-
sized machines.

Shi et al [15] propose a stack simulation method to study the performance of
multiple cache organizations in a single-pass. Their method uses a shared stack and
per-core private stacks to collect the reuse distances. Instead of acquiring full reuse
distance profiles, they organize shared and private stacks as groups [44], and these
groups can represent various cache sizes. Another work by Schuff [16] investigates
the accuracy of RD analysis for multicore processors, and they predict the miss-
rate of shared and private caches. They also propose using multicore RD analysis
and communication analysis to model memory systems [45]. However, they don’t
provide detailed methods and analyses.

Both Shi and Schuff predict cache performance at different cache sizes, but
they cannot predict configurations for varied core counts and problem sizes. In
contrast, we focus on studying and predicting the cache performance impact under
different scaling schemes—i.e., core count scaling, problem size scaling, and core-
problem scaling.

Time Distance

Reuse distance analysis tracks every memory reference and maintains the
depth information of every memory reference in LRU stacks. The splay tree[38]
is a common algorithm for implementing the LRU stack, but the amortized com-
plexity of the splay tree is O(log(n)). Another approach is to use time distance to

estimate reuse distance. Time distance is defined as the number of intermediate
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memory references between data reuse, and the cost of counting is constant. Berg
and Hagersten [46, 47] propose a probabilistic model, StateCache, for computing
cache miss rate from time distance. Based on their work, Eklov and Hagersten [48]
propose a new model, StatStack, to estimate an application’s reuse distance and
cache miss rate. Shen et al [49, 50] also propose a statistical model to approximate
a reuse distance histogram from time distance. However, these works focus on the
sequential programs.

Sampling

Recently, researchers also propose using sampling techniques to improve the
performance of reuse distance profiling. Berg and Hagersten [46, 51, 52| propose
using sampling to gather the time distance information. Their method uses SPARC
hardware performance counters and watch-points to track the selected addresses.
Time distance is easier to collect than reuse distance, and can use the performance
counter to count the number of memory references passed.

Zhong and Chang [39] use sampling to reduce the time overhand in the reuse
distance collection. Their system utilizes the structure of bursty tracing [53], which
divides the memory reference stream into a sequence of interleaved sampling in-
tervals and hibernating intervals. The reuse distance is collected in the sampling
interval, and the hibernating interval only has minimum maintenance. They also
apply Ding and Zhong’s tree-based approximate reuse distance analysis to save pro-
filing time and space[26]. The average speedup is 7.5x compared with non-sampled
profiling.

Beyls and D‘Hollander [54] apply the sampling technique on their measurement
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and visualization tool to identify the causes of cache misses. The reuse distances are
measured for 20 million references, then the next 180 million accesses are skipped.
The slowdown is between 15x and 25x. Their later work uses reservoir sampling to
reduce the execution time and memory requirements of the reuse path analysis [55].
Their main goal is to find the most appropriate refactorings of single-threaded pro-
grams and to optimize the data locality [54, 56, 55, 57, 58].

Schuff et al [17] use the Intel Pin tool along with sampling and parallelization
to accelerate CRD and PRD profiles acquisition for a 4-threads application running
on a 4-cores machine. They use hash tables to track the unique memory references
between the reuse of selected samples. However, their parallelization cannot exceed
the machine’s core counts. To profile the application that has more threads, the
memory streams from threads must be serialized, hence reducing the benefit of
parallel profiling.

Our work is orthogonal to sampling techniques. We reduce the number of
needed profiles, whereas the sampling technique reduces the profiling time per pro-
file. Our experiments show that the sampling time indeed increases as core counts
and problem sizes increase. Hence, even with profiling acceleration, it is still very
difficult to exhaustively explore LCMP design spaces that can easily reach more
than 1000 configurations.

Reuse Distance Prediction

RD analysis has also been used to analyze uniprocessor caches across all data

input sets [26, 20, 59, 60]. As discussed earlier, our work uses reference groups from

Zhong et al [20] to predict the profile shift under core count scaling.
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8.2 Design Space Exploration

Several researchers have conducted CMP design space explorations to under-
stand the performance, energy and temperature of different CMP architectures.
Detailed Simulation

Hu et al [1] consider the area and performance trade-offs for LCMPs in order to
determine the number of cores and core type for future server CMPs. They conclude
that out-of-order cores will maximize jobs throughput on future CMPs, because out-
of-order cores are more area efficient than in-order cores. Ekman and Stenstrom [2]
study the trade-off between the issue-width of the cores and the number of cores on
a chip. They find four-issue cores achieve a good balance between ILP and TLP.
Hsu et al [3] explore the cache hierarchy requirements of LCMP platforms. They
find on-chip and off-chip bandwidth demands play a significant role in optimizing
LCMP cache hierarchy.

Li and Martinez [4] show that parallel computation on a CMP can improve
energy efficiency, compared to the same performance achieved by a uniprocessor
setup. They also find that a limited power budget can cause significant performance
degradation beyond a certain core count. Li et al [5] explore the multi-dimensional
design space across a range of possible chip sizes and thermal constraints. They
conclude that thermal constraints dominate other physical constraints such as off-
chip bandwidth and power. It is important to consider thermal constraints while
optimizing other parameters. Monchiero et al [7] explore the design space related

to core count, cache size, and core complexity up to 8 cores, and they show how
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different configurations impact performance, energy, and thermal distribution. They
conclude that LLC is an important factor in determining performance and thermal
behavior. To achieve the best energy-delay, LCMPs should consist of a large number
of fairly narrow cores.

Zhao et al [8] study cache design space for 32 cores LCMP by considering
area constraints and on-chip/off-chip bandwidth limitations. They introduce a
constraints-aware analysis methodology to narrow down the design space and ex-
plore LCMP cache design options. They also recommend an LCMP architecture
which has a three-level cache hierarchy with 512KB to 1MB of L2 cache per node,
and each node has 4 cores. The LLC size should be a minimum of 16MB. The
platform should also support at least 64GB/s of memory bandwidth and 512GB/s
of interconnect bandwidth. Davis et al [6] consider CMTs with up to 34 cores
and 8MB LLCs, but studied large-scale parallelism—up to 240 threads—when factor-
ing in per-core multithreading. They explore the design space for core type, core
count, cache size, and the degree of multithreading. They find that the best CMT
performance happens when using simple cores with 4-8 threads per core.

Wu and Yeung [61] study tiled CMPs scaling from 1-256 cores and 4-128MB
of total L2 cache. They evaluate the impact of scaling on off-chip bandwidth and
on-chip communication. Their results show that there should be ample on-chip
bandwidth. However, for memory intensive programs, off-chip memory overheads
dominate.

Analytic Model
Rogers et al [9] develop an analytical model in order to study the bandwidth
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wall problem for CMP systems. They find that the bandwidth wall problem can
severely limit core scaling. Esmaeilzadeh et al [10] model multicore scaling and show
that regardless of chip organization and topology, multicore scaling is power limited.
21% of a fixed-size chip must be powered off at 22nm, and this number grows to
more than 50% at 8nm.

Hill and Marty [62] apply Amdahl’s law to build a cost model for a CMP. They
assume that a CMP can support at most n base core equivalents (BCEs) for a given
size and technology generation. They use their cost model to study the speedups
for symmetric, asymmetric, and dynamic CMPs. However, they do not consider the
impact of cache organizations. Sun et al [11] develop a model to optimize a cache
hierarchy under a power constraint. They apply the so-called-2-to-v/2 rule [63]—i.¢.,
if the cache size is doubled, the miss rate drops by a factor of v/2. Ho et al [64]
study the trade-offs between core counts and cache capacities. They also employ the
square-root-rule cache-miss model to estimate the trade-offs between shared, private,
and hybrid cache organizations. They find that different cache organizations have
different optimal core counts and cache capacities. At its peak performance, shared
caches can contain more cores than private caches.

Wentzlaff et al [65] develop a system-level IPC model to evaluate a large range
of cache and core count configurations. To model cloud computing applications,
they assume a workload of running independent SPEC Int 2000 programs on each
core. Hence, they don’t consider about data sharing. They find the increased area
provided by technology advances is better used for cache due to the off-chip band-

width constraints. They also suggest using embedded DRAM as L2 caches, because
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the area density of embedded DRAM can outcome the latency overhead. Krishna
et al [66] extend Wentzlaff’s model [65] to take multi-threaded data sharing in to
account. They find that data sharing can significantly improve system throughput
when compared to a parallel application which has no data sharing. However, the
benefit from data sharing is diminished in an off-chip bandwidth constrained system.

These analytic models usually simplify an application’s memory behavior when
driving the models because it is difficult to gather the detailed cache performance at
many cache capacities. However, multicore RD profiles can provide detailed memory
behavior (locality and data sharing) at any cache capacity, and allow to build more
realistic models.
Machine Learning

These previous studies show that multicore design spaces are very large and
complex. Using detailed simulation to study many combinations of different archi-
tecture parameters is very time consuming. Some researchers propose using ma-
chine learning techniques to speed up design space exploration [67, 68, 69]. Ipek et
al [67] use artificial neural networks to train the approximation models. Lee and
Brooks [68] develop regression models to build approximation functions. Cook and
Skadron [69] propose using genetically programmed response surfaces (GPRS) to
address this challenge.

Our work is closely related to these previous studies. However, we apply mul-
ticore RD analysis to study how different scaling schemes impact multicore cache
performance. Our approach learns more per sample (CRD and PRD profiles), re-

ducing the number of needed simulations. Our prediction technique can also explore
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the complete cross product of design space (core count, cache size, and problem size)
very efficiently. Finally, our work investigates performance scaling only; we do not
consider how power scales, and other physical constraints. Understanding the limi-
tations on scaling LCMPs due to physical constraints is critical, and an important

direction for future work.
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Chapter 9

Conclusion and Future Work
In this chapter, we first summarize our work, then we propose possible direc-

tions for future research.

9.1 Summary

Recently, researchers have extended reuse distance analysis to parallel pro-
grams running on multicore processors. A major problem is memory reference in-
terleaving. Hence, CRD and PRD profiles are architecture dependent. However,
such architecture dependency is minimal when threads have similar access patterns.
For example, loop-based parallel programs contain symmetric threads. For these
programs, CRD and PRD profiles are minimally architecture dependent and can
provide accurate analysis. Our study confirms this characteristic, and it enables us
to develop an efficient multicore RD analysis.

In this work, we investigate different inter-thread interactions in CRD and
PRD profiles. We find that dilation and overlap are the major effects in CRD
profiles. Scaling and demotion absorption are the major effects in sSPRD profiles. In
addition to the insights of inter-thread interactions, we notice that the gap between
CRD_CMC and sPRD_CMC profiles represents the cache performance difference

between shared and private caches. This dissertation defines an important split
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point between CRD_CMC and sPRD_CMC profiles, Cypare. Beyond this point,
shared caches show the locality advantage over private caches. Most importantly,
the degree of data sharing is not a fixed characteristic of a given application; it is a
function of RD value. So the choice between private and shared caches also depends
on the cache capacity.

Because machines and problem sizes will continue to scale in the future, it
is important to understand the scaling characteristics of parallel programs. When
core count increases, CRD profiles shift coherently to larger RD values in a shape-
preserving way. Shifting slows down and eventually stops at a certain RD value. We
call this point C,... Core count scaling only impacts cache performance significantly
below this stopping point in shared caches. When core count increases, sPRD
profiles also shift to larger RD values in a shape-preserving way. However, core
count scaling increases the amount of replications and coherence misses in private
caches. In contrast to CRD profiles, there is no C,,,. in sPRD profiles, and data
locality degradation happens across all RD values. In this work, we find that C.,..
shifts to larger RD values and Cyj4pe shifts to smaller RD values with core count
scaling. When considering problem size scaling, both C,,,. and Cypqe shift to larger
RD values. Hence, problem size scaling may reduce the benefit of using shared
caches at a fixed cache capacity.

Because the CRD and PRD profiles of loop-based parallel programs show the
coherent shifting with core count scaling and problem size scaling, we develop tech-
niques to predict the coherent movement of CRD and PRD profiles under different

scaling schemes. The average profile prediction accuracy is between 80.7% and
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96.3%. Then, we use M5 simulator to model tiled CMPs, and we simulate a total of
3,168 configurations to validate profile stability and MPKI prediction. We confirm
that CRD and PRD profiles are minimally architecture dependent for cache capac-
ity scaling. Hence, it is valid to assume uniform memory interleaving for loop-based
parallel programs. Our core count prediction techniques can predict shared LLC
(private L2 cache) MPKI to within 10% (13%) of simulation across 1,728 (1,440)
configurations using 72 measured CRD (PRD) profiles. When combined with the
existing prediction technique for problem size scaling, we can predict shared LLC
(private L2 cache) MPKI to within 12% (14%) of simulation using 36 measured
CRD (PRD) profiles. The results show that our prediction technique can help ex-
plore a large design space efficiently. Overall, we find our prediction techniques for
core count scaling can accelerate cache analysis without sacrificing accuracy. When
combined with problem scaling prediction, analysis effort is further reduced, though
error increases when predicting large core counts.

We also develop a novel framework to identify optimal multicore cache hier-
archies for loop-based parallel programs by using multicore reuse distance analysis.
Although CRD profiles show better data locality over sPRD profiles beyond Cipgpre,
this benefit must be weighted against the higher access latency of shared caches. The
optimal cache hierarchy exists when the total on-chip and off-chip memory stalls are
balanced. We find that the capacity of the last private cache above the last level
cache (LLC) must exceed the region in the PRD profile where significant data local-
ity degradation happens. Shared LLCs can outperform private LLCs when the total

off-chip memory stall saved in shared LLCs s larger than the total on-chip mem-
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ory stall saved in private LLCs. At the optimal LLC size, the average performance
(AMAT) difference between private LLCs and shared LLCs can reach as high as
15%, but it is smaller than the performance difference caused by L2/LLC partition
(76% in shared LLC, and 33% in private LLC). This suggests that physical data
locality is very important for multicore cache designs.

Lastly, we compare our prediction technique against the RD sampling tech-
nique, which can also accelerate the acquisition of profiles. The prediction technique
and the sampling technique have similar average accuracy. However, the sampling
technique needs to collect profiles at every configuration in the design space. In con-
trast, the prediction technique can predict any configuration from a small number of
measurements. The benefit of prediction becomes more significant for core-problem
scaling. As a result, our prediction technique can outperform the RD sampling

technique.

9.2 Future Directions

In this research, we show that multicore RD analysis can provide extremely rich
information about the memory behavior of parallel programs. We also implement
prediction techniques to predict profiles under different scaling schemes. We believe
this work builds a solid foundation for several possible future avenues.

Dynamic Multicore Resource Management
Time distance can also be used to estimate an application’s memory behav-

ior [46, 47, 48, 49, 50]. The nature of time distance means that it can be measured
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by using hardware performance counters easily. Fedorova [70] uses Berg and Hager-
sten’s model [47] to estimate the cache-miss ratios of co-running programs and drive
the OS scheduler to improve processor throughput. Jiang et al [71] develop a local-
ity model based on concurrent reuse distance for shared-cache contention prediction.
Their contention-aware scheduling system for co-running programs can achieve per-
formance and fairness.

For parallel programs running on LCMPs, we can use performance counters
and Berg’s technique to estimate reuse distance profiles. After profiling a few sam-
ples, the OS scheduler can use our prediction technique to predict memory perfor-
mance across different machine configurations. Depending on the predicted memory
stress, the OS scheduler can decide how many cores and cache slices should be ac-
tive, and it can then shut down the other cores or cache slices to improve power
efficiency.

Multicore Performance Analysis and Optimization Tool

High performance processors have performance monitoring counters (PMCs)
to gather the runtime information of applications—e.g., instruction counts and cache
miss counts. Several performance tools have been developed to help programmers
profile their applications on the real hardware. For example, Intel’s VTune [72] is
a widely used tool. However, the profiling information only reflects the machine
performance where the tool is running on. There is no information as to how the
application will perform on different machines.

Multicore RD analysis provides a good visualization tool. Our multicore RD

analysis framework can easily help programmers understand the application’s mem-
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ory behavior on different processors. The locality information can also provide in-
depth information about how to optimize the data locality. Several works have been
done to provide visualization tools and to optimize the data locality for sequential
programs [54, 56, 55, 57|. The same techniques can be extended to multicore RD
analysis.
Irregular Memory Reference Interleaving

In this work, we focus on loop-based parallel programs on homogeneous CMPs.
The symmetric threads make the interleaving of memory reference streams system-
atically, and profiles are predictable for different scaling schemes. However, for
asymmetric-thread programs or heterogeneous CMPs, it is difficult to acquire CRD
and PRD profiles due to the irregular memory reference interleaving. Although
there exist several composable models [13, 14] to handle this issue, the analysis
usually requires exponential time and cannot scale up to large core counts. Hence,

multicore RD analysis needs to be further investigated to handle these challenges.
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