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Abstract

We consider the problem of binary hypothesis testing for planar

Boolean random sets with radial convex primary grains. We show

that this problem is equivalent to the problem of binary hypothesis

testing for Poisson points on a subset of R3. The log-likelihood ratio

for Poisson points can therefore be applied to observation points on this

subset of R3. Several interesting results pertaining to the asymptotic

performance of the log-likelihood ratio for Poisson points are known.

A major di�culty with this approach is that the test is based on ob-

servation points on a subset of R3, and is not directly given in terms

of the observation of a realization of a Boolean random set. An ef-

�cient means of mapping realizations of planar Boolean random sets

to corresponding realizations of Poisson point processes on this subset

of R3 is needed in order to implement the test. We show that this

can be achieved via a class of morphological transformations known

as morphological skeleton transforms. These transforms are 
exible

shape-size analysis tools based on elementary morphological and set-

theoretic operations. This is the principal contribution of this paper.
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1 Introduction

The Boolean random set is an important and relatively simple example of
a random set. Its importance stems from two principal considerations: its
analytical tractability and its power in modeling many real-life applications.
Despite its simplicity, it has many interesting properties, and, in fact, there
are many unanswered questions [15, p65]. A Boolean model is a basic model
in stereology and stochastic geometry [15, 7, 13, 1]. Typical applications
include: random clumping of dust, or powder particles, or blood cells; mod-
eling of geological structures, patterns in photographic emulsion, colloids in
gel form, and structural inhomogeneities in amorphous matter [15, p68, and
references therein].

Statistical inference techniques similar to maximum likelihood, or max-
imum a posteriori are practically non-existent in random set theory [2]. In
this paper, we consider a restricted version of the Boolean random set, the
Boolean random set with radial convex primary grains. This version is still
powerfull enough to model many real-life applications, yet restricted enough
to allow for the analysis and design of e�cient algorithms for the statisti-
cal inference of various model parameters. Recently, this version has been
successfully used to model the degradation process in an attempt to derive
the \optimal" reconstruction �lters for communication of morphologically
coded images [12]. The tools needed for successfully undertaking such a task
come from the �elds of signal estimation and detection, stochastic geome-
try, image analysis, and mathematical morphology. The main tool needed
is a class of morphological transformations collectively known as morpholog-
ical skeleton transforms. This research is concerned with the application of
morphological methods to the problem of hypothesis testing for the case of
Boolean random sets with radial convex primary grains.

The rest of this paper is organized as follows. Section (2) is a brief in-
troduction to Poisson point processes and their statistical inference, as it
pertains to our case. The scope of this introduction is limited, and it merely
serves to state some concrete probabilistic de�nitions and a few relevant
results. Section (3) develops the Boolean random set with radial convex
primary grains model. Close to the end of section (3), a major result is
presented in the form of a theorem. It states that a planar Boolean random
set with radial convex primary grains, under certain assumptions, can be
viewed as a Poisson point process on a subset of R3. Section (3.1) formu-
lates the log-likelihood ratio for the case of Boolean random sets with radial
convex primary grains, in terms of the corresponding Poisson point process.

1



Section (4) presents two morphological set representation schemes, and pro-
poses their use to estimate the hidden realization of the Poisson point pro-
cess from the observation of a realization of a Boolean RS with radial convex
grains. Section (5) considers the equivalent discrete-case problem. Due to
the existence of certain asymmetries between the continous and discrete case
in the morphological formalization of the notion of size, and the inherently
continous nature of the Poisson point process, it is necessary to consider
the discrete case separately. The results are shown to be very similar with
the continous case. An interesting subtlety is thoroughly discussed towards
the end of section (5). It has to do with the non-uniqueness in representing
a closed set X as a union of overlapping \primitive" sets. A statistically
plausible solution is proposed. Finally, section (6) contains some concluding
remarks, and guidelines for future research.

2 Point Processes and related results

We begin with some background about point processes and a brief survey
of related results.

De�nition 1 [15, p96] A Point Process, �, on Rn, is a measurable map-
ping of a probability space (
;�(
); P ) into a measurable space (N;�(N)),
where N is the family of all subsets �, of Rn, satisfying the following two
regularity conditions

(i) � is locally �nite (each bounded subset of Rn must contain only a
�nite number of points in �).

(ii) � is simple (no two points in � coincide).
Here �(N) is the smallest �-algebra on N to make measurable all map-

pings � 7! �(B), as B runs through the bounded Borel sets of Rn. Infor-
mally, a Point Process on Rn can be thought of as a random pattern of
points, scattered over Rn.

Consider the measurable space (Rn;B(Rn)) and a measure � on B(Rn)
such that for all bounded B 2 B(Rn) the measure of B, �(B), is �nite. The
measure � is referred to as a Radon measure [15, p32]. If, in addition, �
gives zero mass to each point (like the Lebesgue measure) then � is called
a Di�use Radon measure [15, p33].

De�nition 2 [15, p50] A Poisson Point Process (PPP), �, on Rn, with
di�use Radon measure (or mean measure) � on B(Rn) is a point process
which is completely speci�ed by the following two properties
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(i) Poisson distribution of point counts; the number of points in a bounded
set B 2 B(Rn) has a Poisson distribution with mean �(B)

P (�(B) = m) =
(�(B))me��(B)

m!
; m = 0; 1; 2; : : :

(ii) Independent Scettering; the number of points in k disjoint Borel sets
form k independent random variables.

If the di�use Radon measure, �, is absolutely continous (admits a density)
with respect to the Lebesgue measure, then it can be written as

�(B) =

Z
B
�(z)dz; 8B 2 B(Rn)

The density �(z) � 0;8z 2 Rn, is called the intensity of the general PPP.
Henceforth we make the assumption that � is absolutely continous with
respect to the Lebesgue measure (and, therefore, the intensity �(z); z 2 Rn,
exists) and use it freely throughout the rest of the paper. In case �(z) =
� = const; 8z 2 Rn, we have the special case of a Stationary PPP (SPPP).
In the following we set up our observation model.

2.1 Observation Model and Hypothesis Testing for PPP's

We observe a single realization of a PPP, �, on Rn. The actual observations
are over B, a compact Borel subset of Rn. Asymptotic results are under-
stood to be valid as the process is observed over a sequence of compact Borel
subsets of Rn increasing to Rn. The case of a single realization of a point
process on a compact Borel subset of Rn is of theoretical and practical in-
terest, but it is notoriously di�cult! [4, p97].

Model

(a) Sample Space (
;�(
)) = (N;�(N)).

(b) We consider two candidate probability laws, P�0 and P�1 . Under
P�j ; j = 0; 1 the PPP has di�use Radon measure �j .

(c) The data representing complete observation of � over B are the �-
algebra

�(NB) = �(�(A);8A 2 B(Rn) \B)
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i.e. the smallest �-algebra on NB = fN \ B;N 2 Ng to make measurable
all mappings � 7! �(A), as A runs through B(Rn) \B.

We assume that there is a single operative probability measure present.
We wish to make a statistically \correct" decision upon which one of the two
probability measures is actually operative, based on the observation model
which we have just set forward. We cast this problem as a simple-vs-simple
binary hypothesis test.

H0 : � = �0 (\null" hypothesis)

vs:H1 : � = �1 (\alternative" hypothesis)

This problem has been studied extensively [4, p230]. Under our assump-
tions, �0 and �1 are both absolutely continous with respect to the Lebesgue
measure, that is

�j(A) =

Z
A
�j(z)dz; 8A 2 B(Rn); j = 0; 1

Furthermore, assume that �1 is absolutely continous with respect to �0

(henceforth denoted by �1 << �0) on the �-algebra B(Rn)\B, where B is
the observation window. By the Radon-Nykodym theorem, this is equivalent
to the following condition

�0(A) = 0 =) �1(A) = 0; 8A 2 B(Rn) \B

i.e. Z
A
�0(z)dz = 0 =)

Z
A
�1(z)dz = 0; 8A 2 B(Rn) \B

Then [4, p231], P�1 << P�0 on �(NB), and the log-likelihood ratio is given
by

log
dP�1
dP�0

=

Z
B

�
1�

d�1

d�0

�
d�0 +

Z
B
log

d�1

d�0
d�

i.e.

log
dP�1
dP�0

=

Z
B

�
1�

d�1

d�0

�
d�0 +

X
z2�\B

log
d�1

d�0
(z)

Under the absolute continuity assumptions

log
dP�1
dP�0

=

Z
B
(�0(z)� �1(z)) dz +

X
z2�\B

log
�1(z)

�0(z)
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Under our assumptions, all Bayesian tests can be shown to reduce to testing
the log-likelihood ratio against a precomputable threshold, which depends
on the particular choice of di�erential costs and prior probabilities, but not
on the likelihood itself [11]. For example, assuming equal priors and equal
di�erential costs the Maximum Likelihood (ML) test is given by

decide H1 iff :

Z
B
(�0(z)� �1(z)) dz +

X
z2�[B

log
�1(z)

�0(z)
> 0 (1)

There exists an interesting asymptotic result for our observation model.

Theorem 1 [4, pp230-235] Suppose that �1 << �0 and �0 << �1 on the
entire space Rn (In this case the two measures are called equivalent, and
we denote this by �1 � �0), and, furthermore, �0(Rn) = �1(Rn) = 1.
Then, on �(N), either P�0 � P�1 , or P�0 ? P�1 (in the later case, the two
probability measures are called singular

9D 2 �(N) 3 P�0(D) = P�1(D
c) = 0

i.e. singular measures are concentrated on disjoint subsets) according to
whether the integral

Z
Rn

 
1�

�
d�1

d�0

�1=2!2

d�0

converges or diverges. In the former case, there exists a �nite log-likelihood
ratio

log
dP�1
dP�0

=

Z
B

�
1�

d�1

d�0

�
d�0 +

Z
B
log

d�1

d�0
d�

that can be used to perform Bayesian decision tests. In the later case, error-
free discrimination is possible. For additional results refer to [4].

3 Random Set preliminaries

In this section we formally develop the Boolean Random Set model directly
from scratch. Let O;F ;K denote the space of open, closed and compact
subsets of Rn, for some n. Consider the following collections of sets in F

FG = fF 2 F 3 F \G 6= ;g; G 2 O

FK = fF 2 F 3 F \G = ;g; K 2 K
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The former collection comprises of all sets in F which \hit" an open set G,
while the later collection comprises of all sets in F which \miss" a compact
set K. The collection of sets fFG; G 2 Og and fFK ;K 2 Kg generates
a Topology, T (F), on F . This is known as the hit-or-miss topology,
and it allows the study of convergence and continuity in F [2]. By taking
countable unions and intersections of the open sets of the topological space
(F ; T (F)), a �-algebra, �(F), is generated on F .

De�nition 3 A Random Set (RS), X, is a measurable mapping of a
probability space (
;�(
); P ) into the measurable space (F ;�(F)).

De�nition 4 The capacity functional, TX(K), of a RS X, is de�ned by

TX(K) = PX(X 2 FK) = PX(x \K 6= ;); K 2 K

The capacity functional TX(K), for all K 2 K, contains all the information
about the RS X.

Theorem 2 [2, Choquet] Given TX(K); 8K 2 K, there exists a unique
probability measure, PX , on �(F), such that PX(X 2 FK) = TX(K); 8K 2
K

De�nition 5 Two compact sets K1;K2 2 K are separated by a compact
set K 2 K i�

Lk1;k2 \K 6= ;; 8(k1; k2) 3 k1 2 K1; k2 2 K2

Here, Lk1;k2 denotes the straight line segment connecting the points k1 and
k2.

De�nition 6 A RS X is convex i�

PX(X 2 FK
K1;K2

) = 0

for all K1;K2;K 2 K such that K1 and K2 are separated by K. Here,
FK
K1;K2

is the collection of all sets in F which hit K1 and K2, and miss K.

If the RS X is convex and W is a closed convex set then X \W is also a
convex RS [2].
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De�nition 7 The RS X de�ned by

X =
[

i=1;2;:::

Gi � fpig

where P = fp1; p2; � � �g is a Point Process and fG1; G2; � � �g is a set of non-
empty, bounded RS's, is a germ-grain RS. The points pi; i = 1; 2; : : : are
the germs, whereas the RS's Gi; i = 1; 2; : : : are the primary grains of
the germ-grain RS X.

De�nition 8 Let � be a PPP with intensity �(x) � 0; 8x 2 Rn, and let
fG1; G2; � � �g be a set of non-empty, bounded, and convex i.i.d. RS's, each
with capacity functional TG(K), which are statistically independent of �. If

E

�Z
Rn

1G1�K(x)�(x)dx

�
<1; 8K 2 K

then the resulting germ-grain RS X is called a Boolean RS with convex

primary grains.

In the following, we further restrict the nature of the primary grains. We
assume that the primary grain G is of �xed shape (e.g. disc, square, hexagon,
octagon) and only its size varies. More formally, we assume that G = RH,
where H is a non-empty, compact, convex, \simple", �xed shape of unit size
that contains the origin (H is a special case of a structuring element, in the
nomenclature of Mathematical Morphology). Here, R is a random variable
that measures the size of the primary grain, i.e.

rH
4
=

(
fz 2 Rn 3 z

r 2 Hg; r > 0
f�0g; r = 0

(2)

We assume that R is distributed according to the pdf fR(r), which is as-
sumed to be a distribution of compact support over R, whose support is
bounded by (0; �R), i.e. sprtfR � (0; �R). Under these conditions G is a
non-empty, bounded, convex RS containing the origin, of the same shape as
H, but of size R times the size of H.

A primary grain restricted as above is a radial random set [12]. The
Boolean RS X produced by using these grains, strictly speaking, is not a
radial random set (for example, it does not necessarily contain the origin).
Nevertheless, with some abuse of terminology, we shall call the resulting
Boolean RS a Radial Boolean RS (RBRS), to emphasize the nature of
the underlying grain process.
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Even though it is not necessary, we shall restrict ourselves to planar

RBRS's, i.e. RBRS's de�ned on R2. This choice is simply made for clarity
of presentation and also because of the importance of this special case in
many applications. The results easily extend to higher dimensional spaces.
Such a planar RBRS is completely speci�ed by the triple

(�(x); x 2 R2; H; fR(r); r 2 (0; �R))

where �(x); x 2 R2 is the intensity of the germ PPP, H is the unit size
structuring element, and fR(r) is the density of the radius R. We will
denote it by (�; H; fR)-RBRS. For the moment let us �x H and use the
simpli�ed notation (�; fR)-RBRS, where it is understood that H is given
and � is a function and not a constant. With all this background in place,
we are now ready to proceed to the �rst major result.

Theorem 3 Assume we have a PPP, �, on R3, with intensity �(z); z 2
R3; z = (x; r); x 2 R2; r 2 R, satisfying the following conditions

�(x; r) = �s(x)fR(r); 8x 2 R
2; 8r 2 R

with
�s(x) � 0; 8x 2 R2

and Z
W
�s(x)dx <1; 8W 2 B(R2)

fR(r)

(
� 0; 8r 2 (0; �R)
= 0; elsewhereZ �R

0
fR(r)dr = 1

(such an intensity will be called space-size separable) Then � induces a
unique (for �xed H) (�s; fR)-RBRS, X, on R2, via

X =
[

(x;r)2�

rH � fxg (3)

Conversely, a (�s; fR)-RBRS, X, on R2, induces a unique PPP, �, on
R3, with intensity measure

�(x; r) = �s(x)fR(r); 8x 2 R
2; 8r 2 R
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via
� =

[
rH�fxg2X

f(x; r)g (4)

Remark: There exists an apparent subtlety in this theorem. The recon-
struction formula (4) is valid (i.e. the PPP � is indeed unique) only if we
know the exact locations of the germs and the corresponding radii of the pri-
mary grains (\marks"). Otherwise � is not unique. In other words, here we
treat X as a marked point process. We will discuss this point in detail
later on.

Proof (of theorem 3)

If, as remarked above, we treat X as a marked point process, the result
is a well known one [14, p145]. For completeness purposes, we proceed here
with a proof which is heavily based on the de�ning properties of a PPP and
also those of a RBRS.

By de�nition, (see (3) above), X is a germ-grain RS, with corresponding
germ point process 	, given by

	 =
[

(x;r)2�

fxg

First, we show that 	 is a PPP on R2 with intensity �s. Let B be any
bounded Borel subset of R2. Let CB denote the set f(x; r) 3 x 2 B; r 2 Rg.
Clearly, for B1; B2 bounded, Borel subsets of R2 we have that

B1 \B2 = ; () CB1 \ CB2 = ; (5)

Let W be any Borel subset of R3. Let �(W ) denote the number of points of
� inW . Since � is a PPP with intensity �(x; r), �(W ) is a Poisson r.v. with
mean �(W ) =

R
W �(x; r)d(x; r). Clearly, CB 2 B(R3). Therefore, �(CB) is

a Poisson r.v. with mean �(CB) =
R
CB

�(x; r)d(x; r). Now, let 	(B) denote
the number of points of 	 in B.

Claim:

	(B)
M:S:
= �(CB) (6)

Proof (of claim)

By the Radon-Nykodym theorem, the assumed absolute continuity of
the di�use Radon measure � with respect to the Lebesgue measure implies
that � assigns zero mass to all events that have zero Lebesgue measure.
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Therefore, given that (x�; r�) 2 � the event �(f(x; r) 3 x = x�; r 2 Rg) > 1
has zero measure. The validity of the representation as a limit in the mean
square sense can be shown using a limiting procedure which parallels that
used in [14, p144].

Thus, by (6), 	(B) is a Poisson r.v. with meanZ
CB

�(x; r)d(x; r) =

Z
CB

�s(x)fR(r)d(x; r)

=

Z
B
�s(x)dx

Z
R
fR(r)dr =

Z
B
�s(x)dx

as expected (i.e. Poisson points with intensity �s). Furthermore, the in-
dependence of 	(B1) and 	(B2), for any two disjoint Borel B1 and B2, is
directly implied by the independence of �(CB1) and �(CB2), which in turn
is implied by the fact that � is a PPP and (5) (independent scattering).
Therefore, the germ point process, 	, is a PPP on R2, with intensity �s.

The fact that the radii of the primary grains are i.i.d. and independent
of 	 is a direct consequence of the fact that � is a PPP, and � is space-size
separable

�(x; r) = �s(x)fR(r); 8x 2 R
2; 8r 2 R

The fact that they are non-empty, bounded and convex follows from the
restrictions posed on fR and H. For the same reasons,

E

�Z
R2

1G1�K(x)�s(x)dx

�
<1; 8K 2 K

Therefore, X is a (�s; fR)-RBRS.

Conversely:

Assume X is a (�s; fR)-RBRS on R2. By de�nition

� =
[

rH�fxg2X

f(x; r)g

and, therefore, � is a point process on R3. Let W be any bounded Borel
subset of R3. Then

�(W ) =
���W \ [rH�fxg2Xf(x; r)g

���
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where j j denotes set cardinality. Then

�(W ) =
���[rH�fxg2Xf(x; r)g \W ��� = jf(x; r) 2W 3 rH � fxg 2 Xgj

= jfx 2Wx 3 x 2 	 and (x;R(x)) 2Wgj

where Wx is the projection of W onto the subspace spanned by x, 	 is
the germ process of the RBRS X on R2, and the r.v. R(x) is the radius
(size) corresponding to the site x 2 	. Clearly, �(W ) is a Poisson r.v. with
parameter Z

W
�s(x)fR(r)d(x; r)

In order to see this, we use the constructive de�nition for PPP's on bounded
subsets, to set up the following, completely equivalent, experiment [14, p69].
First select a nonnegative integer N , according to the Poisson distribution,
and with parameter

R
Wx

�s(x)dx. Then, select N points, independently over
Wx � (0; �R), each with probability density function

�s(x)fR(r)R
Wx

�s(x)dx
; x 2Wx; r 2 (0; �R)

Then [14, p69] the resulting point process is a PPP on Wx � (0; �R) with
intensity �s(x)fR(r); x 2Wx; r 2 (0; �R). Therefore, �(W ) is a Poisson r.v.
with parameter Z

W
�s(x)fR(r)d(x; r)

The independent scattering property of � is implied by the properties of
the underlying RBRS X. If W1 and W2 are two disjoint Borel subsets of
R3 such that W1x \ W2x = ; then the independence of the r.v.'s �(W1)
and �(W2) is implied by the independence of 	(W1x) and 	(W2x) and the
i.i.d. assumption on the corresponding radii. In case W1x \W2x 6= ; then
independence is guaranteed by the fact that 	(W1x \W2x) is a Poisson r.v.,
and, given 	(W1x \ W2x) = n, each site makes an independent decision
in regard to its corresponding radius. To see this, set up the following,
completely equivalent, experiment. Let N be a Poisson r.v. with parameter

� =

Z
W1x\W2x

�s(x)dx

Given N = n, select n real-valued, i.i.d. r.v.'s, each distributed in the
interval (0; �R) according to the pdf fR. Then the resulting process is a PPP
on (0; �R), with intensity �fR, and, therefore, the independent scattering
property holds for disjoint subsets.
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3.1 Binary Hypothesis Testing for RBRS's

Consider the following simple-vs-simple binary hypothesis testing problem

H0 : Y � (�
(0)
s ; H; f

(0)
R )-RBRS (\null" hypothesis)

vs:H1 : Y � (�
(1)
s ; H; f

(1)
R )-RBRS (\alternative" hypothesis)

Assume that we observe the true marked point process corresponding to

X
4
= Y \ B, where B is bounded, Borel. According to our results, this is

equivalent to observing the corresponding PPP on B � (0; �R). Therefore,
the log-likelihood ratio is given by

Z
B�(0; �R)

�
�(0)s (x)f

(0)
R (r)� �(1)s (x)f

(1)
R (r)

�
d(x; r)+

X
rH�fxg2X

log
�
(1)
s (x)f

(1)
R (r)

�
(0)
s (x)f

(0)
R (r)

=

Z
B

�
�(0)s (x)� �(1)s (x)

�
dx

+
X

r 39x2B 3rH�fxg2X

X
x2B 3rH�fxg2X

log
�
(1)
s (x)f

(1)
R (r)

�
(0)
s (x)f

(0)
R (r)

The �rst term is a constant that can be precomputed and does not a�ect the
test statistic (only a�ects the choice of threshold). Let fL1; � � � ; LNg denote
the set of ordered lists of sites with corresponding radii fr1; � � � ; rNg, where
�R > r1 > r2 > � � � > rN > 0. Let jLij denote the cardinality of Li. Then
the second term can be written as

X
r2fr1;���;rNg

X
x2Lr

log
�
(1)
s (x)f

(1)
R (r)

�
(0)
s (x)f

(0)
R (r)

=
X

r2fr1;���;rNg

0@X
x2Lr

log
�
(1)
s (x)

�
(0)
s (x)

+
X
x2Lr

log
f
(1)
R (r)

f
(0)
R (r)

1A

=
X

r2fr1;���;rNg

0@X
x2Lr

log
�
(1)
s (x)

�
(0)
s (x)

+ jLrjlog
f
(1)
R (r)

f
(0)
R (r)

1A
=

X
x2[r2fr1;���;rN gLr

log
�
(1)
s (x)

�
(0)
s (x)

+
X

r2fr1;���;rNg

jLrjlog
f
(1)
R (r)

f
(0)
R (r)
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Therefore, the information that is needed comprises of two parts: (1) the
collection of sites, regardless of the corresponding radii, and, (2) the relative
distribution (histogram data) for the measured radii, regardless of the places
where they occur. The complete log-likelihood ratio is given byZ

B

�
�(0)s (x)� �(1)s (x)

�
dx

+
X

x2[r2fr1;���;rN gLr

log
�
(1)
s (x)

�
(0)
s (x)

+
X

r2fr1;���;rNg

jLrjlog
f
(1)
R (r)

f
(0)
R (r)
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4 Morphological Skeleton and Shape Decomposi-

tion

In the previous section we have treated the RBRS X as a marked point
process, i.e. we assumed that the observations consist of the visible germ
locations and the corresponding radii. This assumption is not plausible,
because in practice we are presented with a realization of the RBRS X, and
the actual germ locations and corresponding radii are unknown. Except for
a somewhat degenerate case, it is not possible to recover the germ locations
and radii with certainty, and, therefore, we have to estimate these data
from the available observations. This ambiguity is due to an inherent non-
uniqueness in representing a set X as a union of \simple" subsets of the
form

X =
[
i

Li � riH (7)

even if X is a realization of a RBRS and the structuring element H is
�xed. In fact, there exists a class of morphological transforms that allow
for invertibility via dilation, as in (7). Reference [3] states a necessary and
su�cient condition (for the discrete case) for invertibility via dilation for a
fairly general class of morphological transforms. As if this was not enough,
other approaches [10, 8] also allow for reconstruction via dilation. These
di�erent approaches represent the di�erent ways in which we can perceive
a realization of a RBRS with overlapping grains. The natural question,
then, is which particular representation to pick (or, \believe"). From a
statistical point of view, we should pick the \most probable" one. This is
very di�cult, both analytically, and computationally, because it implies the
use of a spatially and/or radially adaptive representation scheme. For the
shake of simplicity, a \nearly optimal" strategy needs to be pursued, but
even this is not a trivial choice. For these reasons, we shall consider two
possible representation schemes, the morphological skeleton transform, and
morphological shape decomposition.

4.1 Basic morphological operators

Basic morphological operators are de�ned in terms of a \simple" set, H,
which is bounded, and, for our purposes, convex. In morphological terms,
H is called a structuring element, and, in our setup, it is exactly the unit
size primary grain which is used to construct the RBRS.
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De�nition 9 The erosion, X 	Hs, of a RS X, by a structuring element
H, is de�ned as

X 	Hs =
\
h2H

X�h = fz 2 Rn 3 Hz � Xg

De�nition 10 The dilation, X�Hs, of a RS X, by a structuring element
H, is de�ned as

X �Hs =
[
h2H

X�h = fz 2 Rn 3 Hz \X 6= ;g

De�nition 11 The opening, XH , of a RS X, by a structuring element H,
is de�ned as

XH = (X 	Hs)�H

De�nition 12 The closing, XH , of a RS X, by a structuring element H,
is de�ned as

XH = (X �Hs)	H

If X is a RS then X 	Hs; X �Hs; XH ; X
H are RS's. Also, if X1 and X2

are RS's, then X1 \X2; X1 [X2 are RS's [2].

4.2 Morphological Skeleton Transform

The Morphological Skeleton, SK(X), of a set X, with respect to a (�xed)
structuring element, H, is given by

SK(X) =
[
r>0

Sr(X) =
[
r>0

[(X 	 rHs)� (X 	 rHs)drH ]

where H is an open, bounded, convex structuring element, and drH is the
closure of a replica of H of in�nitesimaly small radious. Reconstruction from
the skeleton subsets, fSr(X); r > 0g, is possible, via

X =
[
r>0

[Sr(X)� rH]

The morphological skeleton is the locus of the centers of the maximal in-
scribable replicas of the structuring element, H, inside the closed set X.
A replica of the structuring element is maximal in X, if it is not properly
contained in any other replica totally included in X.

There exist many excellent references for morphological skeletonization.
However, at least within our scope, the most useful one is [3].
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4.3 Morphological Shape Decomposition

TheMorphological Shape Decomposition is another approach which has been
proposed in [10]. It has subsequently been enhanced and used for pattern
recognition purposes in [8]. A recursive formulation of the morphological
shape decomposition algorithm is now presented.

Xi =
�
(X � eXi�1)	 riH

s
�
� riH = (X � eXi�1)riH ; i = 1; 2; : : :

where
ri = sup

n
r 3 (X � eXi�1)	 rHs 6= ;

o
and the reconstruction is given byeXi =

[
0�j�i

Xj ; eX0 = ;; X =
[
j�0

Xj

The Xi's are the (clearly disjoint) subsets of the decomposition. Each Xi is
the union of a �nite number of primitives (translated and scaled replicas of
the structuring element, or, primary grain), each of (�xed for each subset)
size ri. The �rst cluster of the decomposition,X1, is the union of all maximal
inscribable replicas of H in X. X1 is subsequently subtracted from X, and
the procedure is executed recursively on the remaining set. Observe that,
under our assumptions, r1 is �nite. In fact, r1 < �R.

Because of the special structure of the input RBRS X, each Xi can be
written as

Xi = Li � riH

where Li is a set of isolated points (i.e. the germ locations of those primary
grains having size exactly ri). Each subset, Xi, is (morphologically) open set
with respect to riH [7], i.e. (Xi)riH = Xi. Therefore, Li can be recovered
from Xi via

Li = Xi 	 riH
s

Hence we have the following, completely equivalent, formulation of the mor-
phological shape decomposition algorithm

Li =

0@X �
[

0�j�i�1

(Lj � rjH)

1A	 riH
s; ; i = 1; 2; : : :

where

ri = sup

8<:r 3
0@X �

[
0�j�i�1

(Lj � rjH)

1A	 riH
s 6= ;

9=;
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and
L0 = ;; eXi =

[
0�j�i

(Lj � rjH)

The subsets Li are the \spine" subsets of the morphological shape decom-
position.

4.4 Comparative Discussion

The two representation schemes presented above map the input RBRS into
a collection of ordered lists of sites, fL1; � � � ; LNg (the skeleton subsets,
Sr, or the morphological shape decomposition \spine" subsets Li), with
corresponding radii fr1; � � � ; rNg, where �R > r1 > r2 > � � � > rN > 0. As we
mentioned above, these two (generally distinct) mappings, correspond to two
possible ways of viewing the input RBRS X. However, if the primary grains
of the input RBRS X are not overlapping, then the two representations are
identical and, in fact, map X to the true underlying marked point process.
This is because the rth skeleton subset of the union of non-overlapping sets
is the union of the rth skeleton subsets of the non-overlapping sets, and
the same is true for morphological shape decomposition \spine" subsets
(for the later, the union is taken over the spine subsets corresponding to
the same (given) radius not the same index). Furthermore, the skeleton
of rH � fxg consists of the unique point x with corresponding radius r,
and it is the same as its morphological shape decomposition. Therefore,
the true log-likelihood ratio can be computed using either one of the two
representations, and a truly Bayesian test can be formed. This assumption
(i.e. that the primary grains are not overlapping) is sometimes plausible (e.g.
when the intensity of the germ point process is low, and/or �R is small). It is
common practice to make such an assumption when the RBRS X is used to
model a degradation process [12]. If this is not the case, then a probabilistic
treatment is appropriate. Since this later approach is more suited for the
discrete case, we shall consider it in detail in the corresponding section.

5 The Discrete Case

Up to this point, our development has focused on the continous case. In
practical terms, though, we observe discretized data. The utility of the
approach lies on its power to model the problem rigorously. First, the prob-
lems and the results are stated in terms of continous domains that model
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the applications. The accuracy of the implementation is then understood to
depend on the sampling rate, with convergence as sampling rates increase.
Nevertheless, the intrinsic continuity of the PPP model, plus an inherent
incompatibility between the continous and discrete cases in formalizing the
notion of size of a structuring element, make it necessary to consider the
discrete case in its own right.

The discrete \analog" of a planar PPP, 	, observed through a bounded
Borel window, B, is de�ned in what follows.

De�nition 13 Let B be a bounded subset of Z2. Let �(B) denote the power
set (i.e. the set of all subsets) of B. A Discrete Point Process (DPP),
	, on B, is a measurable mapping of a probability space (
;�(
); P ) into
the measurable space (B;�(B)).

Informally, 	 can be thought of as a random pattern of points scattered
over B. The continous case PPP can be derived from a generalization of
the continous case Binomial Point Process [15, pp36-38], by using a limiting
argument. Alternatively, the continous case PPP can also be derived from
a generalization of the Bernoulli Lattice Process (BLP) [15, pp40-42], again
by using a limiting argument. This, then, is the correct discrete-case analog
of the PPP.

De�nition 14 A Generalized Bernoulli Lattice Process (GBLP), 	,
on B, is a discrete point process on B which is constructively de�ned in the
following manner. Each point x 2 B is contained in 	 with probability
p�s(x), independently of all others. Here, p 2 (0; 1] and �s(x) 2 [0; 1]; 8x 2
B.

Clearly, the GBLP enjoys the independent scattering property. In contrast
with equation (2), in the discrete case the notion of size is formalized via
the operation of set dilation

rH =

(
f�0g �H �H � � � � �H; (r dilations) ; r = 1; 2; : : :

f�0g ; r = 0
(8)

Observe that in the continous case r 2 R+; r < �R, whereas in the discrete
case r 2 Z+; r < �R. Further observe that in the discrete case (at least in
principle) there is no distinction between random point processes and ran-
dom sets; in fact discrete random sets are discrete random point processes,
because the regularity conditions are automatically satis�ed here (discrete
random sets are locally �nite and simple). Therefore, even though one could
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mimic the continous case construction of the RBRS, we will skip this part
for compactness. It su�ces to say that discret RS's can be formally de�ned
as discrete point processes. We have the following de�nition.

De�nition 15 Let 	 be a GBLP on B with parameters (p; �s). Let fG1; G2; � � �g
be a set of nonempty, bounded and convex i.i.d. discrete RS's, on B

0
� B,

jB
0
j << jBj, each given by Gi = RiH, where fR1; R2; � � �g form an i.i.d. se-

quence of Z+-valued r.v.'s which is independent of 	, Ri < �R; 8i, and each
Ri is distributed according to the pmf fR(r), which is compactly supported
on f0; 1; : : : ; �R� 1g. De�ne

X =
[

i=1;2;:::

Gi � fyig

where 	 = fy1; y2; � � �g. Then X will be called a Discrete Radial Boolean
RS (DRBRS) , with parameters (p; �s;H; fR), and will be denoted by
(p; �s;H; fR)-DRBRS.

Remark: Here we assume that �R and B
0
are su�ciently small relative to

B such that all grains that are visible (i.e. intersect B) are entirely visible
(i.e. fall completely inside B).

5.1 Binary Hypothesis Testing for the case of DRBRS's

The problem of hypothesis testing for DRBRS's is more directly amenable
to analysis than the corresponding continous case problem, mainly because
it only involves pmf's instead of sample density functions. Therefore, stan-
dard tools are su�cient to characterize the solution. In particular, there
is no need to map this problem to an equivalent binary hypothesis testing
problem for GBLP's. We consider the simple vs simple hypothesis testing
problem

H0: X � (p(0); �
(0)
s ;H; f

(0)
R )-DRBRS

vs H1: X � (p(1); �
(1)
s ;H; f

(1)
R )-DRBRS

Here, again, we assume that we observe the corresponding marked point
process, i.e. an ordered list of sites, fL1; � � � ; LNg corresponding to radii
fr1; � � � ; rNg respectively, where �R > r1 > r2 > � � � > rN � 0, ri 2 Z+,
where N � �R. Under hypothesis j; j = 0; 1, look at the conditional prob-
ability Prjf(L1; r1); � � � ; (LN ; rN )g. The crucial observation is that the sets
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fLig
N
i=1 are disjoint, because the underlying GBLP is a simple point process.

Prjf(L1; r1); � � � ; (LN ; rN )g =

Y
x2B3x=2[N

i=1
Li

(1� p(j)�(j)s (x))
NY
i=1

Y
x2Li

p(j)�(j)s (x)f
(j)
R (ri)

=
Y

x2B3x=2[N
i=1

Li

(1� p(j)�(j)s (x))
NY
i=1

8<:hp(j)f (j)R (ri)
ijLij Y

x2Li

�(j)s (x)

9=;
Therefore, the likelihood ratio

Pr1f(L1; r1); � � � ; (LN ; rN )g

Pr0f(L1; r1); � � � ; (LN ; rN )g

is equal to

Y
x2B3x=2[N

i=1
Li

(1� p(1)�
(1)
s (x))

(1� p(0)�
(0)
s (x))

NY
i=1

8<:
"
p(1)f

(1)
R (ri)

p(0)f
(0)
R (ri)

#jLij Y
x2Li

�
(1)
s (x)

�
(0)
s (x)

9=;
The log-likelihood ratio

log
Pr1f(L1; r1); � � � ; (LN ; rN )g

Pr0f(L1; r1); � � � ; (LN ; rN )g

is given by

X
x2B3x=2[N

i=1
Li

log

 
1� p(1)�

(1)
s (x)

1� p(0)�
(0)
s (x)

!
+

NX
i=1

jLijlog

 
p(1)f

(1)
R (ri)

p(0)f
(0)
R (ri)

!

+
NX
i=1

X
x2Li

log
�
(1)
s (x)

�
(0)
s (x)

5.2 Discrete Morphological Skeleton Transforms and Shape

Decomposition

The de�nitions of the basic morphological operators for the discrete case are
identical to the corresponding de�nitions for the continous case, except for
the obvious change of domain. Nevertheless, the transition from continous
skeletons to discrete skeletons is a troublesome one. Within our scope, the
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di�culty arises from the fact that the discrete-case skeleton of a realization
of a DRBRS does not comprise of isolated (in the 8-nearest neighbor sense)
points, but it generally consists of very thin \stripes" whose width is smaller
than the diameter of the unit size structuring element. In a sense, the width
of these stripes corresponds to a resolution threshold (constraint) which is
set by the size of the unit structuring element.

The Discrete Morphological Skeleton of a set X 2 Z2, with respect
to a (�xed) convex and bounded structuring element, H 2 Z2, is given by

SK(X) =
N[
n=0

Sn(X) =
N[
n=0

[(X 	 nHs)� (X 	 nHs)H ]

where
N = max fn 3 X 	 nHs 6= ;g

Reconstruction from the skeleton subsets is possible via dilation

X =
N[
n=0

[Sn(X)� nH]

The Reduced Discrete Morphological Skeleton of a set X 2 Z2, with
respect to a (�xed) convex and bounded structuring element, H 2 Z2, is
given by

RSK(X) =
N[
n=0

RSn(X) =
N[
n=0

h
(X 	 nHs)� ((X 	 nHs)H)

nH
i

where
N = max fn 3 X 	 nHs 6= ;g

Reconstruction from the reduced skeleton subsets is possible via dilation

X =
N[
n=0

[RSn(X)� nH]

The Discrete Morphological Shape Decomposition of a set X 2 Z2,
with respect to a (�xed) convex and bounded structuring element, H 2 Z2,
is given by

Xi =
�
(X � eXi�1)	 niH

s
�
� niH = (X � eXi�1)niH ; i = 1; 2; :::
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where
ni = max

n
n � 0 3 (X � eXi�1)	 nHs 6= ;

o
and the reconstruction formula

eXi =
i[

j=0

Xj ; eX0 = ;; X =
[
j�0

Xj

Again, each subset, Xi, is a (morphologically) open set with respect to
niH [7], i.e. (Xi)niH = Xi. Therefore, Li can be recovered from Xi via

Li = Xi 	 niH
s

Hence we have the following, completely equivalent, formulation of the dis-
crete morphological shape decomposition algorithm

Li =

0@X �
[

0�j�i�1

(Lj � njH)

1A	 niH
s; ; i = 1; 2; : : :

where

ni = max

8<:n � 0 3

0@X �
[

0�j�i�1

(Lj � njH)

1A	 niH
s 6= ;

9=;
and

L0 = ;; eXi =
[

0�j�i

(Lj � njH)

The subsets Li are the \spine" subsets of the discrete morphological shape
decomposition.

Let Q denote the nine pixel square structuring element, depicted in �gure
(1). The following de�nition will be useful.

De�nition 16 [12] Two sets X1 and X2 are said to be disconnected sets

if
X1 �Q \X2 = ; () X1 \X2 �Q = ;

This condition essentially guarantees that no two or more grains can com-
pose to form a structuring element, or a connected (in the 8-nearest neighbor
sense) component.

If the visible primary grains, fGi � fyigg, of the observed realization of
the DRBRS X are pairwise disconnected, then there exists a unique rep-
resentation i.e. all three representations above map X to the true marked
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Figure 1: Square structuring element comprising of 9 pixels.

point process. A brief explanation is given below. The opening of the union
of disconnected sets with respect to any given structuring element equals
the union of the openings of the disconnected sets with respect to the given
structuring element [12]. The nth skeleton subset of the union of discon-
nected sets can be easily shown to be the union of the nth skeleton subsets
of the disconnected sets. The same is true for reduced skeleton subsets, or
morphological shape decomposition \spine" subsets (for the later, the union
is taken over the spine subsets corresponding to the same (given) radius not
the same index). Finally, the skeleton of nH � fxg consists of the unique
point x with corresponding radius n, and it is the same as its reduced skele-
ton or its morphological shape decomposition.

5.3 Discussion

The three transformations presented above map the input DRBRS X into
three (generally di�erent) representations, except for the case when the
grains of X are disconnected. In the later case, all three representations
are identical, and map X to the true underlying marked point process. In
all other cases, since the true marked point process is \hidden", one would
like to form an estimate of it, based on the observation X. The three trans-
formations above correspond to three nonlinear estimates of the true marked
point process, but, in fact, one can form many other estimates. Observe,
though, that all three representations form su�cient statistics, in the sense
that they all allow for complete reconstruction of the original observation
(i.e. the realization of the input DRBRS X).

In principle, one would like to base the test on the actual observation,
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which is a realization of the DRBRS X. By the independence assumptions,
this reduces to collectively testing for the connected components of X, i.e.
the likelihood under a given hypothesis is equal to the product of the like-
lihoods for each connected component, under the same hypothesis. This
approach is extremely di�cult, both analytically, and computationally, be-
cause usually there exists a very large number of germ-grain con�gurations
that can give rise to the same connected component. Furthermore, the con-
nected components need to be found and speci�ed in an e�cient manner.
Therefore, this approach is not practical.

The morphological shape decomposition provides an estimate which can
be very unreasonable, especially in the case of two just slightly overlapping
grains. In fact, the smaller one of the two grains will never be recovered, and
instead it will be represented as a union of many more grains of smaller size.
In e�ect, this introduces spurious germs (\responses"), and shifts the size
distribution to the lower end of the pattern spectrum (the pattern spectrum
is a transform that measures the size distribution of its input set. There
exist many similarities between the pattern spectrum and frequency domain
spectra. The lower end of the pattern spectrum corresponds to small sizes,
while the upper end corresponds to bigger sizes. The pattern spectrum is
related to the morphological skeleton transforms. Several important results
appear in [3, 6]). Furthermore, the morphological shape decomposition is
more computationally intensive than the skeleton transforms. For these
reasons, this representation is not (generally speaking) a good choice.

The morphological skeleton gives a reasonable representation, and it
avoids the problem discussed above. This is because maximal inscribable
replicas of the structuring element are allowed to overlap with other maximal
inscribable replicas, even though they can not be properly contained in other
maximal inscribable replicas. A fast skeletonization algorithm has been
proposed [5]. The morphological skeleton computes a \dense" estimate of
the underlying germ point process, in the sense that it computes as many
maximal grains as possible. The representation favors the upper end of the
pattern spectrum (i.e. large grains), because it computes maximal grains.

Even though a statistical viewpoint has been adopted throughout this
work, it is useful to pause here and elaborate on what we perceive as a
\reasonable" representation. In gestalt psychology, the law of simplicity
states that every stimulus pattern is seen in such a way that the resulting
structure is as simple as possible. In an attempt to quantify this law, we
model the realization of the input DRBRS X as a minimal union of max-
imal inscribable replicas of the structuring element, where minimal means
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that the total number of replicas needed to represent X should be mini-
mum. This implies the use of the so-called Globally Minimal Skeleton
Transform. This transform does not posess several nice properties of the
skeleton transform, and it is di�cult to obtain. A compromise would be to
use the reduced skeleton transform, which removes some, but not all, of the
redundancy present in the skeleton transform. The reduced skeleton trans-
form has another interesting feature: it is strongly related to the pattern
spectrum [6, 3].

Assume that, under both hypotheses, the observed data are spatially
sparce and the degree of overlap (or clustering) of the primary grains is

low. This is plausible if the product p(j)�
(j)
s , for j = 0; 1, is uniformly small

over the observation window B, and �R is relatively small. This assumption
is justi�ed if the DRBRS is used to model a degradation process. The
stronger assumption that the primary grains are disconnected is frequently
used in such cases [12]. Then a statistically good approach is to choose
the representation that gives subsets of minimal cardinality. The reduced
morphological skeleton subsets have the smallest cardinality among a fairly
large class of morphological representations [3, 6]. Therefore, the reduced
morphological skeleton is a statistically good choice, which also happens to
be relatively consistent with the perceptual arguments of gestalt psychology.

Extensive simulations have shown that, on the average, the cardinality
of the union of the morphological shape decomposition spine subsets of a
given set is smaller than the cardinality of the union of the skeleton subsets
of the same set [8]. This is because the former representation does not allow
maximal inscribable replicas to overlap. Therefore, were it not for the fact
that it sometimes produces unreasonable representations, the morphological
shape decomposition would have been a good candidate too.

Some task-speci�c improvements can also be pursued. Depending on the
particular combination of parameters that characterize a given problem, one
can discard some reduced skeleton subsets, or weight the reduced skeleton
subsets according to the assumed distribution for the radii. For example, if
the radii are all �xed and equal to a constant, then one should only keep
the reduced skeleton subset with radius equal to this constant. Another ap-
proach is to apply a thinning operation on the reduced skeleton subsets [13].

Finally, if �
(0)
s = �

(1)
s the only test statistic needed is the relative distribu-

tion (histogram data) of the radii, and therefore one need only compute the
pattern spectrum of the DRBRS X.

In any case, these approximations result in a test which is not optimal.

25



If the degree of overlap (or clustering) of the primary grains is small, then
using the reduced morphological skeleton will result in a test which is almost
optimal (almost Bayesian). In case the primary grains are disconnected, the
test is truly optimal (truly Bayesian).

Simulation results have demonstrated the power of this approach, even
when the primary grains overlap a lot, and the morphological skeleton rep-
resentation is used instead of the reduced morphological skeleton represen-
tation. The test is able to decide correctly for inputs that a human observer
would probably �nd hard to distinguish. It seems that even when there
exists a signi�cant overlap of primary grains, the test is balanced by the
in
uence of those grains that are entirely visible. The best case seems to

be when f
(0)
R = f

(1)
R . In this case, the size distribution is of no concern,

and the introduction of spurious germs actually enhances the distinguishing

power of the test. The worst case is when �
(0)
s = �

(1)
s . In this case, the

introduction of spurious germs can distort the size distribution signi�cantly,
and, therefore, the power of the test can be reduced. Extensive simulations
are needed, in order to determine empirical rules for the power of the test,
relative to the various representations and design parameters involved.

In the three �gures that follow, (2), (3), (4), the 21 pixel discrete struc-
turing element octagon, a realization of a DRBRS with parameters p =
0:001; �s(i; j) = j=511, H = octagon, and fR = uniform in f0; � � � ; 9g,
and its morphological skeleton are shown. The resolution is 512�512 pixels.
As it can be seen, a signi�cant amount of overlap is present. The hypothesis
of �s(i; j) = j=511; 8i was tested vs. the hypothesis �s(i; j) = 0:5; 8i; j,
where all the other parameters were assumed to be identical, as above. The
morphological skeleton points were used as the estimate of the true under-
lying germ point process and the log-likelihood ratio was computed, based
on these points. The result was then compared to 0. This procedure corre-
sponds to a test which is \close" (in the sense outlined above) to the true
Maximum Likelihood test. The test resulted in the correct decision, and did
so with a signi�cantly wide margin. The value of the log-likelihood ratio
was of the order of 106.

6 Conclusions and further research

We have employed several techniques from the areas of statistical inference
for point processes, random set theory, and mathematical morphology, to
come up with an almost Bayesian binary hypothesis testing procedure, for
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Figure 2: Octagon structuring element comprising of 21 pixels

the case of Boolean random sets with radial convex primary grains. We have
considered both the continous and the discrete case, and we have derived
explicit formulas for approximately Bayesian tests. In the continous case, the
tests are truly Bayesian if the primary grains are not overlapping, whereas,
in the discrete case, the tests are truly Bayesian when the primary grains
are disconnected. In case of limited overlap, the tests are quite robust, and
very close to the optimal Bayesian tests.

The random set models that we have considered are \purely random" in
the sense that no interaction is allowed between neighboring germs. There-
fore, they are suitable for modeling \noise" processes. However, one usually
wants to test the presence of a known signal (shape), which is hidden in
such a noise process. One possible approach is to use some �ltering scheme,
such as those proposed in [12] to get rid of as much of the noise as pos-
sible, while preserving the essential characteristics of the hidden signal. A
deterministic set-matching algorithm can be applied as the last stage of the
analysis [8]. This approach is conceptually simple, but clearly non-optimal.
A much more rigorous approach would be to look at the combined problem,
and cast it within a statistical framework. Since this approach is di�cult,
a �rst step would be to incorporate statistical information in the matching
process. A more general scheme would suggest the use of feedback from the
matching process to the preprocessing �lter. In this way, the �lter param-
eters can be trimmed to improve the con�dence margin of the matching
process. Research is currently underway to pursue these ideas.
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Figure 3: Realization of a (0:001; j=511; octagon; uniform in f0; � � � ; 9g)-
DRBRS
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Figure 4: Morphological Skeleton of the DRBRS realization shown in the
previous �gure
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