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ABSTRACT

The objective of this research is to model the mammographic parenchymal, ductal pat-
terns and enhance the microcalcifications using deterministic fractal approach. According
to the theory of deterministic fractal geometry, images can be modeled by deterministic
fractal objects which are attractors of sets of two dimensional affine transformations. The
Iterated Functions Systems and the Collage Theorem are the mathematical foundations of
fractal image modeling. In this paper, a methodology based on fractal image modeling is
developed to analyze and extract various mammographic textures. We show that general
mammographic parenchymal and ductal patterns can be well modeled by a set of parame-
ters of affine transformations. Therefore, microcalcifications can be enhanced by taking the
difference between the original image and the modeled image. Our results are compared
with those of the partial wavelet reconstruction and morphological operation approaches.
The results demonstrate that the fractal modeling method is an effective way to enhance
microcalcifications, and thereby facilitate the radiologists’ diagnosis. It may also be able to
improve the detection and classification of microcalcifications in a computer system.
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I Introduction

Breast cancer is the most frequently occurring cancer and one of the leading causes
of death among women [1, 2]. However, there is clear evidence that early diagnosis and
subsequent treatment can significantly improve the chance of survival for patients with
breast cancer [1, 2, 3, 4]. Mammography is the most effective method for the detection
of early breast cancer (2, 4]. But studies have shown that radiologists do not detect all
breast cancers that are retrospectively detected on the mammograms [5, 6]. Because of
the subtle and complex nature of the radiographic findings associated with breast cancer,
errors in radiological diagnosis can be attributed to human factors such as varying deci-
sion criteria, distraction by other image features, and simple oversight. Studies suggest
that these errors may occur even with experienced radiologists [5, 6]. In order to increase
diagnostic efficiency, computer-assisted schemes based on advanced image processing and
pattern recognition techniques can be used to locate and classify possible lesions, thereby
alerting the radiologist to examine these areas with particular attention. Moreover, these
computer-assisted schemes can improve the performance of the automatic computer-aided
diagnosis systems, which can serve as a “second radiologist”, similar to the double reading

by two radiologists that is anticipated in diagnostic practice [7].

Microcalcifications are considered to be important signs of breast cancer. It has been
reported that 30% — 50% of breast cancers detected radiographically demonstrate micro-
calcifications on mammograms [8], and 60% — 80% of breast carcinomas reveal microcal-
cifications upon histologic examinations [9]. The high correlation between the presence of
microcalcifications and the presence of breast cancers indicates that accurate detection of
microcalcifications will improve the efficacy of mammography as a diagnostic procedure.
The task of detection of subtle microcalcifications for the diagnosis of breast cancer is a
difficult one. Dense breasts, improper technical factors or simple oversight by radiologists

may contribute to the failure of detecting microcalcifications.

Given a mammogram, there are three major problems in analyzing and detecting mi-

crocalcifications:
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¢ Microcalcifications are very small. They appear as small bright spots on mammo-
grams. According to the literature, the sizes of microcalcifications are from 0.1mm to
1.0mm, and the average diameter is about 0.3mm [8]. Small ones (ranging 0.1mm to
0.2mm) can hardly be seen on the mammogram due to their superimposition on the

breast parenchymal textures and noise.

e Microcalcifications often appear in an inhomogeneous background describing the
structure of the breast tissue. Some parts of the background, such as dense tissue,

may be brighter than the fatty part of the breast.

e Some microcalcifications have low contrast to the background. In other words, the
intensity and size of the microcalcifications can be very close to noise or the inhomo-

geneous background.

The above reasons make subtle microcalcifications relatively difficult to detect, even for
experienced radiologists. Consequently, computer-assisted detection of microcalcifications
has aroused a great deal of interest. Different approaches have been proposed for enhanc-
ing and segmenting microcalcifications, including various filtering and local thresholding
methods [10, 11, 12, 13], mathematical morphology [14, 15], neural networks [16, 17, 18],
the stochastic models [19, 20}, the stochastic fractal model [21], pyramidal multiresolution
image representation [22, 23, 24|, and the contour-based approach [25]. We noted that most
of the enhancement techniques used in the past research works not only enhanced micro-
calcifications, but also enhanced background structure and noise. Therefore, these kinds of
enhancement are not dependent on the shapes of microcalcifications. Our basic idea is that
if we can tell the different properties of disease patterns (such as microcalcifications) and
background patterns in both spatial and frequency domains, then we can separate the whole
image into different layers using different models according to the difference in patterns.
One layer only contains disease pattern information. The other layer contains non-disease
related background information. Hence, the disease pattern will be enhanced by taking
the background layer from the original image. In our previous study, we employed partial

wavelet reconstruction and morphological operation to remove the background information,
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thereby enhancing microcalcifications. The results were used to test the computer-aided

diagnosis system (CADx), and improved the performance of CADx [16].

Recently, both stochastic and deterministic fractal-based techniques have been applied
in many areas of digital image processing, such as image segmentation, image analysis
[21, 31, 32, 33, 34], image synthesis, computer graphics [35, 36, 39], and texture coding
[37, 38]. Based on the deterministic fractal theory, images can be modeled by determin-
istic fractal objects which are attractors of sets of two-dimensional affine transformations
[39, 40, 41]. In other words, image context can be constructed by a set of model parameters
which require fewer bits to describe than the original image. The mathematical theory of It-
erated Function Systems (I F'S), along with the ”Collage Theorem”, constitutes the broad
foundations of fractal modeling and coding. In this work, we propose the deterministic
fractal model to model the mammographic background and to enhance microcalcifications.
We observed that microcalcifications are visible as small bright spots which appear to be
added to the mammographic background. They have less structure. On the other hand,
the mammographic parenchymal and ductal patterns in mammograms possess structures
with high self-similarity which is the basic property of fractal objects. These tissue patterns
can be constructed by fractal models, and be taken out from the original image, as such
the microcalcification information will be.enhenced. The results are very encouraging com-
pared with those of partial wavelet reconstruction and morphological operation methods.
We anticipate that the proposed fractal approach is very helpful for radiologists to detect
the microcalcifications, and also facilitate the evaluation procedures in a mammographic

computer-aided diagnosis system.

The remaining part of this paper is organized as follows. In Section II, the general
enhancement techniques and the idea behind our enhancement scheme are described. The
theory and algorithm of fractal modeling are presented in Section III. Also, in this section,
the enhancement of microcalcifications based on fractal modeling approach is formulated.
Evaluation results are given and discussed in Section IV. Finally, this paper is summarized

in Section V.
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II Enhancement Techniques

Image enhancement refers to attenuation, or sharpening, of image features such as edges,
boundaries, or contrast to make the processed image more useful for analysis. Image en-
hancement includes gray level and contrast manipulation, noise reduction, edge crisping
and sharpening, filtering, interpolation and magnification, pseudocoloring, and so on. The
greatest difficulty in image enhancement is quantifying the criteria for enhancement. Im-
age enhancement techniques can be improved if the enhancement criteria can be stated
precisely. Often such criteria are application-dependent. In the following, we summarize
general enhancement techniques used in mammographic images, and then describe our pro-
posed fractal approach to the enhancement of microcalcifications, which are the important

disease pattern on mammograms, in Section III.

II.1 Conventional Enhancement Techniques

Unsharp masking [27], spatial filtering [28], region-based contrast enhancement [30], and
multiscale analysis [24] are the most useful techniques to enhance mammographic features.
But, most of the enhancement techniques used in past research enhanced not only microcal-
cifications, but also background structure and noise. Therefore, these kinds of enhancement

were not microcalcification-oriented.

I1.1.1 Enhancement by Contrast Stretching

The simplest method of increasing the contrast in a mammogram is to adjust the mam-
mogram histogram so that there is a greater separation between foreground and background
gray level distributions. Denoting the input image gray level by z, and the output gray scale
values by v, the rescaling transformation is y = f(z), where f(-) can be any designing func-

tion. (1) shows a typical contrast stretching transformation of the gray level distribution in
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the mammogram [42]:

az, 0<zr<a
Yy=94 Blz—a)+y,, a<z<b , (1)

Y@ —b)+uy, b<z<L

where the slope «, 3, and v are chosen greater than unity in the region of stretch, the
parameters a and b can be obtained by examining the histogram of the original mammogram,

and L is the maximum gray level of the original mammogram.

I1.1.2 Enhancement by Histogram Modeling

Histogram modeling techniques modify an image so that its histogram has a desired
shape. This is useful in stretching the low contrast levels of mammograms with narrow
histograms. A typical technique in histogram modeling is histogram equalization. Let us
consider the mammogram histogram as a probability distribution. Based on the information
theory, the uniform distribution achieves the maximum entropy which contains the most
information. Therefore, if we redistribute the gray levels to obtain a histogram as uniform

as possible, the mammogram information should be maximized [26, 42].

11.1.3 Convolution Mask Enhancement

Convolutional masking is one of the most commonly used methods for mammogram
enhancement. Unsharp masking and Sobel gradient operations are two examples. The
processed image is sharper because low-frequency information in the mammogram is reduced

in intensity while high-frequency details are amplified [27, 28].

I1.1.4 Fixed-Neighborhood Statistical Enhancement

The enhancement techniques we stated above are global-based approaches. For some
mammograms which contain inhomogeneous background, local-based enhancement tech-

niques can have better performance. Local enhancement techniques use statistical proper-
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ties in the neighborhood of a pixel to estimate the background, suppress it, and increase

local contrast [29].

I1.1.5 Region-Based Enhancement

The above techniques can all be classified as either fixed-neighborhood or global tech-
niques. They may adapt to local features within a neighborhood, but do not adapt the size
of the neighborhood to local properties. Many medical images, including mammograms,
possess clinically defined image features within a region of interest. These features can vary
widely in size and shape, and often cannot be enhanced by fixed-neighborhood or global
techniques. Thus there is a need for adaptive-neighborhood techniques which adaptively
change the size of regions in a given image and enhance the regions with respect to their

local background [30].

II.2 Enhancement by Background Removal

In this paper, our goal is to enhance the visibility and detectability of microcalcifications.
Background removal is considered a necessary procedure. Background removal is a direct
method of reducing the slowly varying portions of an image, which in turn allows increased
gray level variation in image details. It is usually performed by subtracting a low-pass
filtered version of the image from itself. Morphological processing [14] and partial wavelet
reconstruction [16, 23] are two methods of estimating the image background that have
been used successfully for this purpose. We will summarize these two methods in the
followings. In Section III, we propose a novel enhancement technique by background removal
method, which is based on modeling the background structure using the fractal model, and
subtracting this modeled image from the original image. The performance of the fractal

approach will be compared with those of the morphological and wavelet methods.
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I1.2.1 Morphological Operations

Morphological operations can be employed for many image processing purposes, includ-
ing edge detection, segmentation, and enhancement of images [14, 15]. The beauty and the
simplicity of the mathematical morphology approach comes from the fact that a large class
of filters can be represented as the combination of two simple operations on images: the
erosion and dilation. Let Z denote the set of integers and f(¢,) denote a discrete image
signal, where the domain set is given by {¢,5} € N1 x No, Ny x N C Z? and the range set
by {f} € N3, N3 C Z. A structuring element B is a subset in Z? with a simple geometrical
shape and size. Denote B® = {—b : b € B} as the symmetric set of B and By, ;, as the
translation of B by (¢1,%,), where (t1,t2) € Z2. The erosion f & B*® and dilation f @ B® can

be expressed as [43]

(f S Bs)(lla]) = tl,tr;linlj(f(tl’t2))7 (2)
(F @B (i) =, max (f(t,t2). 0

Opening f o B and closing f e B are defined as [43]
(f o B)(i,5) = ((f © B*) ® B)(i, ), (4)
(f e B)(i,5) = ((f ® B®) © B)(4, j)- (5)

A gray value image can be viewed as a two-dimensional surface in a three-dimensional
space. Given an image, the opening operation removes the objects, which have size smaller
than the structuring element, with positive intensity. With an appropriate structuring
element (it is usually considered to be the maximal size of microcalcifications), the spots
including microcalcifications can be recovered by taking the residual image 71 (7,5) of the

opening

Tl(iaj):f(iaj)—(foB)(iaj)a (i,j)€N1XN2- (6)

It is appropriate to ignore the negative values on the residual image 71 (4, ), because negative

value has nothing to do with the objects of interest, so we take

T2(i,j) = max(O, rl(i,j))a (Z’]) € N X Na. . (7)
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This approach belongs to the class of image feature enhancement by background removal.

11.2.2 Partial Wavelet Reconstruction

It has been demonstrated [44, 45] that if the filters h(k) and g(k), which are associated
with certain mother wavelet ¢(z) and mother scaling function ¢(z), are given, one can

decompose the digital signal ¢;; at scale j via the following recursive equations:

Cirin = Y Cikh(k—2n), djj1n =) crg(k—2n), j>0. (8)
k k

As a contrary process, c; can be reconstructed by
ik = Crinh(k—2n) + D djt1ag(k —2n), 0<j<J-1 9)
n n

It is convenient to view the decomposition as passing a signal c;j through a pair of
filters H and G with the impulse responses i(n) and §(n) and downsampling the filtered

signals by two, where i(n) and §(n) are defined as

h(n) = h(-n),  §(n) = g(-n). (10)

The pair of filters H and G correspond to the halfband lowpass and highpass filters. The
reconstruction procedure is implemented by upsampling the subsignals c¢;,1 and d;;; and
filtering with h(n) and g(n), respectively, and adding these two filtered signals together.
Usually, the signal decomposition scheme is performed recursively to the output of the
lowpass filter h. It leads to the pyramid wavelet decomposition. Thus, the wavelet transform
provides a multiresolution filter-bank decomposition of a signal with a set of orthonormal

bases.

The two-dimensional wavelet transform can be formed by the tensor product of two
one-dimensional wavelet transforms along the horizontal and vertical directions [45] if the
two-dimensional wavelet filters are separable. The corresponding two-dimensional filter

sequences can be written as

hLL(kal) = h(k)h(l)a hLH(kvl) = h’(k)g(l)v hHL(kal) = g(k)h(l)7 hgg = g(k)g(l) (11)
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where the first and second subscripts denote the lowpass or highpass filtering in the z and

y directions, respectively.

With the two-dimensional wavelet filters, the image can be decomposed into specific
subimages which contain information in different frequency regions. Therefore, one can
reconstruct the specific information by partially selecting specific subimages. For example,
in order to enhance microcalcifications in a high frequency region, one can reconstruct a
filtered version of the mammogram by ignoring the subimages which represent the low

frequency background [16, 23].

IIT Fractal Modeling Enhancement

II1.1 Theoretical Background

Let us first define an affine transformation in a mathematical fashion.

Definition 1: An affine transformation 7 : R® — R"™ can be written as 7(Z) = AZ + b,
where A € R™" s an n x n matriz and b € R™ is an offset vector. Such a transformation
will be contractive exactly when its linear part is contractive, and this depends on the metric

used to measure distances. If we select a norm ||-|| in R™ then £ — AT is contractive when

Al = sup [lAZ||/[lZ]|] <1. (12)
TER™

Let (X, d) denote a metric space of digital images, where X isaset, d: X x X — R is
a given metric - distortion measure, and let f € X be an original image to be modeled. We
want to construct a contractive image affine transformation 7, defined from (X, d) to itself,
for which f is an approximated fixed point which is called an attractor. In other words, we

wish to find 7 : X — X, satisfying the requirement

Is<l, Vfi,foe€X, d(7(f1),7(f2)) < sd(f1,f2), (13)

such that

da(f,7(f)) <6, (14)
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where 4 is a tolerance which can be set to different values according to different applications.
The scalar s is called the contractivity of 7. 7 can be a set of contractive mappings 7, i.e.,
7 =UN | 7;. According to the deterministic fractal theory, a set of contractive mappings 7;

is the main part of an iterated function system (IFS). The definition of IFS is given as

follows.

Definition 2: An iterated function system (IFS) consists of a complete metric space (X, d)
with a finite set of contraction mappings 7, : X — X, with respective contractivity factors
i, fori=1,2,---, N, and its contractivity factor is s = max{s; :1=1,2,---,N}.

With the definition of IF'S, one can state the important property of IF S in the following
)

theorem.

Theorem 1: (The Collage Theorem) Let (X,d) be a complete metric space. Let
L € H(X) be given, and let € > 0 be given. Choose an IFS {X;(79), 71,72, *+, TN} with

contractivity factor 0 < s < 1, so that
h(L,UR_o7a(L)) < €. (15)

Then h(L,A) < €/(1 —s), for all L € H(X), where A is the attractor of the IF'S.

The proof of the Collage Theorem can be found in [39]. The Collage Theorem shows
that, once an IF'S is found, i.e., 7 is known such that d(f,7(f)) < § is satisfied, then from

any given image fy and any positive integer n, one can get

A, (o)) < gzl (1)) + 57, o). (16)

Since s < 1, we see that after a number of iterations, the constructed image f, = 7"(fo)

will be close visually to the original image f.

The key point of fractal modeling is to explore the self-similarity property of images.
Real world images are seldom self-similar, so it is impossible to find a transformation 7 for
an entire image. But almost all real images have a local self-similarity. We can divide the
image into n small blocks, and for each block find a corresponding 7;. So finally, we can

define 7 = Ul 7.
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Now we introduce a mathematical representation for digital gray-level images. Let
N, =1[0,1,---,M], N, =[0,1,---,N], N3 = [0,1,---, L], respectively, then for any digital
gray-level image f(k,!), we have (k,[, f(k,1)) € Ny x NaxN3. Let Dy,---,Dy and Ry, -+, R,
be subsets of Ny x N3, such that U R; = N; x N and R; N R; = ¢,i # j. We call
R; the range squares, and D, the domain squares. We define a set of mixing functions
m; : Ny X N3 = Ny X Na, such that m,(R;) = D; using an affine mapping. So, 7, can be

defined as

Ti(f(k,1)) = sif (mi(k,1)) + o4, (17)

where s; is a scaling factor and o; is an offset factor; they are blockwise constants on each
R;. Also, let us denote f|g, as the restriction of the function f to the set R,. The goal is:

for each R;, a D; C N1 x Ny and 7; : N1 X Ny x N3 — N3 are sought such that

a(f|r,> Ti(f)IR,) (18)

is minimized. In practice, we use d(-,-) as the mean square root metric. Let f;, fo € X be

two digital images, then the mean square root metric d,,s is given by

drms(f1, £2) = |1 — fallo = \/z S (fuk, 1) — falk, D)2 (19)
k !

II1.2 Algorithm Implementation
I111.2.1 Fractal Modeling

Given an Ny x N pixels N3 gray levels digital image, let R be the collection of subsets
of N1 X N5 from which the R; are chosen, and let D be the collection of subsets of N x N
from which the D; are chosen. The set R is chosen to consist of 8 x 8,16 x 16, 32 x 32 pixels
of nonoverlapping subsquares of N x No. The set D consists of 16 x 16, 32 x 32, 64 x 64 pixels
of overlapping subsquares of N1 x Ny. That is, only domains D; with a block side twice that
of the ranges R; are allowed, resulting in contraction in the z — y plane. Therefore, each
range pixel in R; corresponds to a 2 x 2 pixel area in the corresponding domain D;. The

average of the four domain pixel intensities are mapped to the area of the range pixel when
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computing 7;(f). Now, for each R;, search for all of D to find a D; € D which minimizes
(18), that is, find the part of the image that looks most similar to that of R;. Note that each

D; can be rotated to four orientations and flipped and rotated into four other orientations.

Minimization of (18) can be divided into two steps. First, it is necessary to find the
optimal s; and o; for 7,. For each D, € D, we compute the optimal s; and o, using the
least squares estimation method. From (18), we construct an unconstrained optimization

problem as follows:

min || f(k, D)k pyer, — (876, Dl pen, +0i)l3, (20)

where

Fe,)+ fk+ L0+ fk,i+1)+ fk+1,1+1)

Fk1) = - , (21)
for all (k,l)U(k+1,l)U(k,l+1)U(k+1,l+1) € D;. Thus (20) can be rewritten as
mine; = minz Z(f(k,l) — (sif (k1) + 0)))2. (22)
k1
Through solving g—zf =0 and % =0, we get the optimal values of s; and o; as
' N3k 32 f2R 1) — (S 220 f (K, D)2 ’

i N )
where N is the total number of pixels in R;. We put §;, 6; into (22), and obtain the minimum
error é;. Then, we set a uniform tolerance §; = §, and select the best D; € D, such that
é < J.

Suppose there is a cluster of microcalcifications or some single isolated ones on the
image block above R;, our intention is to find an area D; on which the image has a similar
structure as on R; but does not have similar microcalcification patterns. Then when a

difference between the original image and modeled image is taken, the microcalcifications

will be enhanced. This means that when searching for D,, the suitable D; should not cover



Li, Liu and Lo: Fractal Modeling and Segmentation for the Enhancement of ... 13

the region of R;. In our algorithm, for each given R;, we constrain the search way of D, by

R;ND; = ¢.

The modeling process is summarized in the following algorithm:

Step 1: Initially, the range squares R; are chosen to be nonoverlapping subsquares of
size 32 x 32. A search is then performed for the domain squares which best minimized

(22) and satisfied the constraint of D, by R; N D; = ¢.

Step 2: If the value of (22) is less than a predetermined tolerance, then the corre-
sponding D, and 7; are stored and the process is repeated for the next range square. If
not, the range square is subdivided into four equal squares. This quadtreeing process
was repeated until the tolerance condition was satisfied, or a range square of minimum

size (here we set 8 x 8 pixels) is reached.

Step 3: The process is continued until the whole image is modeled. A choice of D,,
along with a corresponding s; and o;, determines the 7; on R;. Once all 7; are found,
we can define 7 = U™, 7;, such that d(f,7(f)) < 6, where § = nd, and n is the block

number of R;.

Step 4: Finally, based on the Collage Theorem, the modeled image can be easily
obtained by performing the iteration for any starting image of the same size according
to D; and 7;. The iteration stops while the predetermined tolerance between the

original image and modeled image is achieved.

I11.2.2 Enhancement of Microcalcifications

Based on the above algorithm development, we can enhance microcalcifications by using
the fractal modeling approach. Let f(k,!) be the original image, and g(k,!) be the modeled

image after n iterations. The procedure is summarized as follows:
Step 1: First, we take the difference operation between f(k,!) and g(k,!):

fl(kal) =f(k,l)—g(k,l), (k’l) GNI XN27 (25)
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where fi(k,1) is the residue image.

Step 2: It is appropriate to ignore the negative value of the difference image f;(k,1),

because negative value has nothing to do with the object of interest, so we take
fa(k,l) = max(0, fi(k, 1)), (k,1) € N1 x Ng, (26)
where fa(k,!) is the enhanced image from which background structures were removed.

Step 3: Image f2(k,l) contains useful signals and noises. Below a certain threshold
T, any signal is considered unreliable. The threshold 7" is estimated from the image
itself as o times the global standard deviation of the noise in an image f2(k,!). Thus,
the value of « is the same for all images, but T' depends on each individual image. T
can be determined by a two-step estimation process. First the standard deviation of
the whole image f3(k,!) is taken, and the initial threshold Ty is chosen to be about
2.5 times this global standard deviation. Second, only those pixels in which the gray
values are below the initial threshold are used to recalculate the standard deviation of
the noise. This is a simplified version of a robust estimation of the standard deviation
[46]. The final threshold T is determined by adjusting the value of « so that no subtle
cases are missed using human judgement. In our experiment, we found o = 3 is a

suitable choice. The final enhanced image f3(k,1) is

fg(k‘,l) - f2(k’l)’ fQ(kvl) > T . (27)
0, fa(k,l) <T

IV  Evaluation Results and Discussion

Ten real mammograms with clustered and single microcalcifications were chosen as test-
ing images. The areas of suspicious microcalcifications were identified by a highly experi-
enced radiologist. The selected mammograms were digitized with an image resolution of
100pm x 100pm per pixel by the Lumisys DIS-1000. The image sizes are about 1.5K X 1 K.

Each image is 12 bits per pixel. In this study, we selected 512 x 512 regions of interest which
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contain microcalcifications. In addition, we used one computer generated image which has

a cluster of spots and a single spot embedded in the simulated background structure.

IV.1 Evaluation of Enhancement

In order to evaluate the enhancement results of different approaches, we computed the
contrast, the contrast improvement index, the background noise level, the peak signal to
noise ratio, and the average signal to noise ratio. The definitions of these indexes are
given in the following. All computations were based on the selected regions of interests in
the original images, fractal enhanced images, wavelet enhanced images, and morphological

enhanced images.
The contrast C of an object is defined by [30]

== (28)
where f is the mean gray-level value of a particular object in the image, called the fore-
ground, and b is the mean gray-level value of a surrounding region called background. This
definition of contrast has the advantage of being independent of the actual range of gray

levels in the image. We computed the contrast of specific regions of interest by manually

selecting the foreground and background.
A quantitative measure of contrast improvement can be defined by a contrast improve-
ment index (CIT) [24]

CII = Cprocessed (29)
Corigmal ’

where Cprocessed and Corigina are the contrasts for the regions of interest in the processed

and original images, respectively.

The background noise level can be measured by the standard derivation o in the back-

ground region which is defined as

1 N
o= NZ(bz‘—b)z, (30)

=1
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where b; is the gray-level value of a surrounding background region, and N is the total

number of pixels in the surrounding background region.

Since our work focused on specific microcalcification enhancement, we defined two new
evaluation indexes, the peak signal to noise ratio (PSNR) and the average signal to noise
ratio (ASNR). These definitions were based on the general criteria used by radiologists for

the detection of microcalcifications.

The peak signal to noise ratio (PSNR) in our work is defined as

psNp=P—? (31)

o ?
where p is the maximum gray-level value of a foreground.

The average signal to noise ratio (ASNR) in our work is defined as

ASNR = % (32)

IV.2 Results and Discussion

We have applied the fractal modeling approach to all real mammograms and the simu-
lated images. Fig. 1 shows the modeled and enhanced results of the simulated image and
one of the real mammograms. As we can see in Fig. 1 (b) and (e), the background structure
in the simulated image and the general mammographic parenchymal and ductal patterns in
mammograms were well modeled. In Fig. 1 (¢) and (f), we can see that all less-structured
spots, which include clusters of microcalcifications, single microcalcifications, and film de-

tects, were clearly enhanced.

In our study, we found that the block size of R, and predetermined tolerance § are two
very important parameters which can affect the modeling process. Too large block size
would result in visible artificial edge effects on the modeled image, which would increase
background noises in the residue image. On the other hand, an R; of too small size would
have less-structured information, therefore making it difficult to search for the correct D;.

A similar situation occurred when we chose §. Too large § would introduce more noise and
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wrong structures on the modeled image. But too small § would result in no solution of
the search process. In our experiment, we found that the suitable block size of R; is from
32 x 32 to 8 x 8, and the range of ¢ is from 10.0 to 20.0. In addition, in our experiments, we
found that the sharp edge information was also enhanced (it is clearly seen on the simulated
texture image in Fig. 1(c)), as well as the bright spots on the image. It implies that this

algorithm can also be used for edge detection.

For the purpose of evaluating the performance of our proposed fractal enhancement
method, we chose for comparison two similar enhancement techniques of background re-
moval: the morphological and partial wavelet reconstruction methods which were described
in Section II. In the morphological approach, a disk with a diameter of 11 pixels was chosen
as the structuring element B. This is considered to be the maximal size of microcalcifica-
tions (1mm) on our testing mammograms. In the partial wavelet reconstruction method,
we investigated the wavelet decomposition of mammograms which contained microcalcifi-
cations at different levels by using Daubechies 8-tap orthonormal wavelet filters [44]. We
found that all high frequency noise which included film defects was mainly located at the
first level of decomposed subimages. On the other hand, all microcalcification information
was shown in the second and third levels of decomposed subimages. The low frequency back-
ground structure of the mammogram was concentratedly located in the fourth and higher
levels. A similar report was also in [23]. In our study, we decomposed mammograms into
four levels, and partially selected subimages in the second and third levels to reconstruct
a filtered version of the image. After reconstruction, the microcalcifications were enhanced

and low frequency background structure was removed.

A global thresholding, which was described in Section III, was applied to reduce unreli-
able noise in the fractal, morphological and wavelet approaches. Since some subtle microcal-
cifications are embedded in very inhomogeneous background, these microcalcifications may
be missed after thresholding. So, we used local thresholding based on local gray-level statis-
tics (mean and standard derivation) of image pixels to improve the enhancement results in

the region of interest.
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Except for the real mammograms and the simulated image, we created a phantom
mammogram by adding three small spots embedded on the normal breast tissue background.
As shown in Fig. 2 (a) and its one-dimensional profile (Fig. 3 (a)), the intensities of spots
are almost comparable to the intensity of the background, the intensity of the left spot is
even lower than its surrounding background. This is a typical subtle case which is easy
to be missed by radiologists. After processing all images by the three background removal
methods, we cut the local small blocks, which contained microcalcifications and film defects,
as the regions of interests (ROIs). The sizes of ROIs are 64 x 64 pixels. Fig. 2 shows the
enhancement results of ROIs in the phantom image. Fig. 4 shows the enhancement results
of file defects in the mammograms. Fig. 5 shows the enhancement results of clustered and
single microcalcifications in the mammograms. The first, second, third, and fourth columns
in Fig. 2, Fig. 4, and Fig. 5 correspond to original ROIs, fractal enhancement, wavelet
enhancement, and morphological enhancement, respectively. The results indicated that
all three approaches removed the background, and in turn enhanced less-structured spots,
including microcalcifications and film defects. We noted that even for the spots embedded
in the bright background (such as dense tissues), the enhancement results were still very
promising. Furthermore, we observed that the fractal and morphological approaches can
remove more background structures than the wavelet approach does, especially for those
ROIs with very low contrast compared with the surrounding background (for example, see
in the last row of Fig. 5). But the wavelet approach can preserve the overall shape of spots
better than the other two approaches. This phenomenon is also clearly observed in Fig. 3
and Fig. 6. For example, the normalized intensity of the left spot in Fig. 3 increased more by
using the fractal and morphological approaches than those of using the wavelet approach.
But, compared with the profile of the original case, the wavelet method reserved the shape

of the profile better than those of the other two approaches.

In order to quantitatively measure the enhancement performance with different ap-
proaches, we computed the contrast, the contrast improvement index, the noise level, the
peak signal to noise ratio, and the average signal to noise ratio. Table 1, Table 2, Table 3,

Table 4, and Table 5 showed the evaluation results. As we can see in Table 1, the noise



Li, Liu and Lo: Fractal Modeling and Segmentation for the Enhancement of ... 19

levels of all enhancement ROIs by these three approaches were much lower than the orig-
inal ROIs. It is reasonable because background structures were removed. Among these
three approaches, the noise level of the fractal approach was the lowest. From the other
tables, we can see that the contrast, the contrast improvement index, the PSNR, and the
ASNR of the fractal approach were better than those of the wavelet and morphological
approaches. All results obtained in this study are very encouraging, and indicate that the
fractal modeling and segmentation method is an effective technique to enhance microcalci-

fications embedded in inhomogeneous breast tissues.

V Conclusion

In this paper, we proposed a pattern-dependent enhancement algorithm based on the
fractal modeling scheme. The proposed approach was applied to enhance microcalcifications
in mammograms. We compared the enhancement results with those based on morphological
operations and partial wavelet reconstruction methods. Our study showed that in terms
of contrast, contrast improvement index, peak signal to noise ratio, and average signal
to noise ratio, the fractal approach was the best compared to the other methods. The
noise level in the fractal approach was also lower than the other two methods. These results
demonstrated that the fractal modeling method is an effective way to extract mammographic
patterns and to enhance microcalcifications. Therefore, the proposed method can facilitate
the radiologists’ diagnosis of breast cancer. We expect that the proposed fractal method
can also be used for improving the detection and classification of microcalcifications in a

computer system.
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l ROIs l Ooriginal ] O fractal I Tyavelet | Omorphology |
Phantom 104.49 29.04 29.77 46.25
Mammograml | 38.75 6.95 7.29 6.37
Mammogram?2 | 59.44 14.15 27.98 28.23
Mammogram3 | 285.04 39.79 66.33 60.82
Mammogram4 | 101.37 17.87 39.94 22.60
Mammogramb | 93.28 17.60 33.39 31.88

Mammogram6 | 352.95 55.36 95.22 70.27
Mammogram?7 | 154.83 31.16 53.84 62.75
Mammogram8 | 374.99 44.93 87.53 70.45
Mammogram9 | 291.30 40.83 66.60 62.08
Mammograml10 | 180.43 24.04 51.19 41.96

[ Mean [18517 [ 20.25 [49.92 | 46.23 |

Table 1: Background Noise Evaluation
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I ROIs i Coriginal | Cfractal | Cwa'uelet | Cmorphalogy ’
Phantom 0.0349 0.7470 0.7410 0.6997
Mammograml | 0.0975 0.6489 0.6265 0.5061
Mammogram2 | 0.1264 0.8806 0.8048 0.5581
Mammogram3 | 0.0766 0.7764 0.6231 0.7731
Mammogram4 | 0.1141 0.8596 0.8326 0.8819
Mammogram5 | 0.0678 0.8588 0.7771 0.8458
Mammogram6 | 0.1413 0.6952 0.4473 0.4102
Mammogram7 | 0.1879 0.7420 0.7382 0.6677
Mammogram8 | 0.1542 0.8471 0.8156 0.6679
Mammogram9 | 0.1455 0.8491 0.7892 0.7849
Mammogram10 | 0.0090 0.6450 0.3916 0.5402

| Mean | 0.1050 | 07772 10.6897 | 0.6669 |

Table 2: Contrast Evaluation

I ROIs | CIIfractal| CIIwavelet[ CIImorphology
Phantom 21.39 21.22 20.04
Mammograml | 6.65 6.42 5.18
Mammogram?2 | 6.96 6.37 4.41
Mammogram3 | 10.13 8.31 10.08
Mammogram4 | 7.53 7.30 7.72
Mammogramb | 12.66 11.46 12.47
Mammogram6 | 4.91 3.16 2.90
Mammogram7 | 3.94 3.93 3.55
Mammogram8 | 5.49 5.29 4.32
Mammogram9 | 5.83 5.43 5.39
Mammogram10 | 71.52 43.42 59.90

| Mean | 14.27 | 11.10 | 12.36

Table 3: Contrast Improvement Index (CII) Evaluation
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| ROIs I PSNRoriginal | PSNRfractal l PSNRwavelet | PSNRmorphology
Phantom 1.7527 5.9073 6.1106 5.2989
Mammograml | 1.7846 6.2728 6.3367 5.1478
Mammogram?2 | 7.3597 16.4347 13.7755 13.7713
Mammogram3 | 1.6667 9.1802 5.8286 7.2354
Mammogram4 | 10.6939 56.0720 35.7184 47.3344
Mammogramb | 6.5640 27.1960 26.0890 27.7183
Mammogram6 | 2.4290 8.0159 3.8389 6.3515
Mammogram7 | 3.0944 7.9080 7.3634 4.9245
Mammogram8 | 2.1348 9.7862 7.2125 8.7916
Mammogram9 | 2.8060 8.1719 6.3825 6.4690
Mammogram10 | 0.9189 5.1178 2.3513 3.0158

| Mean | 3.7459 ] 15.1616 [ 11.0006 | 12.3690

Table 4: Peak Signal to Noise Ratio (PSNR) Evaluation

| ROIs | ASNRorzginal | ASNRfractal l ASN Rygyelet l ASNRmorphology
Phantom 0.5883 2.6414 1.8697 1.9067
Mammograml | 0.7296 1.4267 1.6210 1.5007
Mammogram?2 | 2.2443 5.0962 3.1083 2.8387
Mammogram3 | 0.6542 2.7932 1.5498 1.9591
Mammogram4 | 1.0143 4.1203 3.1156 4.0698
Mammogramb | 1.4528 2.8024 2.7969 3.2415
Mammogramé6 | 1.4059 2.1200 0.7302 1.4510
Mammogram?7 | 1.6213 2.2672 1.8043 1.7599
Mammogram8 | 1.1235 2.9150 3.1222 3.6577
Mammogram9 | 1.9133 3.0026 2.9266 2.1941
Mammogram10 | 0.2155 0.7295 0.2380 0.5383

| Mean | 1.1785 | 2.7195 | 2.0803 | 2.2835

Table 5: Average Signal to Noise Ratio (ASNR) Evaluation
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(a) Original Image (b) Modeled Image (c) Enhanced Image

(d) Original Mammogram (e) Modeled Mammogram (f) Enhanced Mammogram

Figure 1: The modeling and enhancement results of the simulated texture image and one
real mammogram using the fractal modeling approach.

Figure 2: The enhancement results of the simulated spots on normal breast tissue back-
ground. (a) original ROI; (b) enhancement by the fractal approach; (c) enhancement by
the wavelet approach; (d) enhancement by the morphological approach.
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Figure 3: The one-dimensional profiles of original and enhanced spots embedded on normal

breast tissue background by the fractal, wavelet, and morphological approaches.

(b) () (d)

(a)

Figure 4: The enhancement results of film defects on selected ROIs on mammograms. (a)
original ROI; (b) enhancement by the fractal approach; (¢) enhancement by the wavelet

approach; (d) enhancement by the morphological approach.
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(a) (b) (©) @

Figure 5: The enhancement results of clustered microcalcifications on selected ROIs on
mammograms. (a) original ROI; (b) enhancement by the fractal approach; (c) enhancement
by the wavelet approach; (d) enhancement by the morphological approach.
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Figure 6: The two-dimensional surfaces of original and enhanced clustered microcalcifi-
cations on one selected ROI of mammograms by the fractal, wavelet, and morphological
approaches.



