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Title of Dissertation:  LASER RANGE IMAGING FOR ON-LINE MAPPING OF 

3D IMAGES TO PSEUDO-X-RAY IMAGES FOR 

POULTRY BONE FRAGMENT DETECTION  

 

Hansong Jing, Doctor of Philosophy, 2003 

 

Dissertation Directed by: Associate Professor Dr. Yang Tao 

Department of Biological Resources Engineering 

 

A laser ranging image system was developed for on-line high-resolution 3D shape 

recovery of poultry fillets. The range imaging system in conjunction with X-ray 

imaging was used to provide synergistic imaging detection of bone fragments in 

poultry fillets.  In this research, two 5 mW diode lasers coupled with two CCD 

cameras were used to produce 3D information based on structured lights and 

triangulation.  A laser scattering phenomenon on meat tissues was studied when 

calculating the object thickness.  To obtain the accurate 3D information, the cameras 

were calibrated to correct for camera distortions.  For pixel registrations of the X-ray 



and laser 3D images, the range imaging system was calibrated, and noises and signal 

variations in the X-ray and laser 3D images were analyzed.  Furthermore, the 

relationship between the X-ray absorption and 3D thickness of fillets was obtained, 

and a mapping function based on this relationship was applied to convert the fillet 3D 

images into the pseudo-X-ray images.  For the on-line system implementation, the 

imaging hardware and software engineering issues, including the data flow 

optimization and the operating system task scheduling, were also studied.  Based on 

the experimental on-line test, the range imaging system developed was able to scan 

poultry fillets at a speed of 0.2 m/sec at a resolution of 0.8(X) x 0.7(Y) x 0.7(Z) mm3.  

The results of this study have shown great potential for non-invasive detection of 

hazardous materials in boneless poultry meat with uneven thickness. 
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Chapter 1 

INTRODUCTION 
 
 
From 1970 to 1996, the consumption of poultry products increased 90% while 

consumption of traditional red meat (beef and pork) decreased 15% (USDA, 1998).  In 

1999, the United States produced over 40 billion pounds of poultry and 41% of that 

total was boneless meat (USDA, 1999).  During the de-boning operation, bone 

fragments left in de-boned meat have been one of the major concerns of the poultry 

industry.  To avoid accidental ingestion, USDA regulations state that all boneless 

poultry products must be free of any kind of bones. 

 

The most common technological means to satisfy USDA regulations regarding 

boneless meat products is to use an X-ray inspection system to detect bone fragments, 

and then remove these fragments before the meat fillets are packaged or further 

processed.  The X-ray absorption by the fillet is different depending on the thickness, 

whether a bone fragment is present or not.  The X-ray energy reaching the image 

detector varies in proportion to the fillet thickness, thus the X-ray image does not have 

an even intensity. Consequently, X-ray absorption differences due to uneven meat 

thickness inevitably produce false patterns in X-ray images; making it very difficult to 

distinguish between bone fragments and normal meat patterns even by visual 

inspection of X-ray images.  Frequently, various bone fragments, especially the less-

calcified bone fragments, are camouflaged in the meat by false patterns; which makes 

it very difficult to find them in the X-ray image.  Actually, X-ray inspection systems 
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currently being used have a high failure rate of over 30% according to major poultry 

companies (Poultry companies, 1998). 

 

To resolve the bone fragment problem, a novel non-invasive inspection method for 

physical contaminant detection in poultry packing lines was proposed by Tao (1997), 

and Jing, et al., (1999, 2000).  The method combined laser-based range imaging and 

conventional X-ray imaging to compensate for thickness variation in poultry meat and 

provided higher sensitivity and accuracy to detect hazardous objects during bone 

fragment detection. 

 

Although laser-based range imaging has been investigated and applied in various 

applications (Rioux, et al., 1991, Borghese, et al., 1998), major difficulties remain in 

developing a range imaging system for the detection of bone fragments.  First, due to 

the physical property of poultry meat, a severe scattering phenomenon occurs when 

strong coherent laser light is projected onto the surface of the poultry meat.  As a 

result of laser light scattering in biomaterials, common methods used to recover object 

height are incapable of producing accurate measurements.  Second, in the combined 

X-ray and laser ranging image detection system, two different types of imagers are 

employed.  Thus, pixel registrations between the X-ray and laser images must be done 

so that the two images can be integrated.  Because on-line processing is required for 

the detection system, fast and accurate algorithms are essential to correct image 

distortions and align both the X-ray and laser 3D images.  Third, the imaging 

principles are different for the X-ray and 3D range systems.  In X-ray imaging, the 



 3

intensity of the image represents the absorption of the X-rays along the light travel 

path, while the 3D image intensity represents the thickness/depth information.  

Therefore, image mapping is essential when information from both images is needed.  

Due to the complexity of biological materials, the variations such as meat ages, 

compositions, and bones are inevitably coupled into the image signal. Thus, 

transformations are required to convert the 3D image into a pseudo-X-ray image 

without the influence of the variations.  Finally, in the practical system design, the 

image processing hardware and operating system data flow scheduling for real-time 

image processing must be carefully designed.  In this dissertation, the on-line 3D 

range imaging system will be presented as part of the combined X-ray bone fragment 

detection system that meets the above requirements. 

 

The dissertation is organized as follows.  A review of literature is given in Chapter 2.  

Objectives are provided in Chapter 3.  Detailed descriptions of the combined X-ray 

and laser imaging system and the laser range method are provided in Chapter 4.  Then, 

several problems encountered during the dual imaging system development are 

discussed.  In Chapter 5, the method used to recover the scattered laser lines is 

described.  Chapter 6 summarizes the approach to calibrate various optical devices 

used in the dual imaging system.  In Chapter 7, the X-ray and laser 3D image noise 

models are analyzed and a robust regression method to obtain the mapping 

coefficients is described.  The software and hardware environments are analyzed in 

Chapter 8.  The overall conclusion for the dissertation is given in Chapter 9.  

Suggestions for further study are given in Chapter 10. 
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Chapter 2 

LITERATURE REVIEW 
 
 
 
 
 

2.1 Review of Bone Fragment Detection Methods 
 
 
The X-ray imaging technique is among the major methods used for solving non-

destructive inspection problems.  The research most related to the proposed project 

was done by Schatzki, et al. (1996) and Schatzki, et al.(1997).  In their work, a 

remarkable study was conducted to test the efficacy of detecting particulate 

contaminants in processed meat samples as a function of meat thickness and texture of 

X-ray images.  Visual recognition of contaminants in meat samples as a function of 

meat thickness, size, shape, and texture of X-ray images was studied and analyzed.  It 

was found that inclusions were more difficult to recognize in textured X-ray images, 

and the errors varied with the size, shape, and thickness of the inclusions and samples.  

As a new approach, Morita, et al. (1997) proposed an X-ray system for detecting 

foreign materials in food and agricultural products by employing soft X-ray radiation 

and a high resolution image intensifier.  Also, a noteworthy study of X-ray imaging 

for the accurate detection of bone and cartilage fragments in poultry meat was 

presented by Papanicolopoulos, et al. (1992).  Their research was based on Rayleigh 

X-ray scattering and the ratio of Rayleigh and Campton (R/C) scattering.  The 

implementation, however, demanded a very precise angle (0.1 degrees) for the 

detection, because at slightly different angles, the R/C value indicated materials with 
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an atomic number different from meat.  Moreover, because scattering occurred while 

using this method, noises were coupled in the useful signal, making it difficult to 

achieve the needed resolution and accuracy for this application.  More importantly, as 

in any other method, the uneven thickness of each piece of meat (and from one piece 

to the next) caused vital problems such as incident energy variation, transmission field 

intensity variation, detection shifting, and scattering changes as realized by the 

investigators.  Papanicolopoulos’s X-ray system unit cost nearly $900,000, making it 

infeasible for the poultry processing industry.  Renesse and Klumper (1993) discussed 

the existence of food contaminated with glass and the consequent need for efficient 

inspection.  General detection methods including optical inspection, X-ray, acoustic, 

and microwave detection were addressed as possible future solutions to the problem.  

Significant work was also performed by Tollner and Murphy (1991), Tollner (1993), 

Thai, et al. (1991), Harrison, et al. (1993), Chen, et al. (1992), Brecht, et al. (1991), 

and Munier and House (1989) in X-ray inspection of agricultural materials. 

 

To overcome X-ray absorption variations due to uneven meat thickness, meat was 

submerged in water for thickness compensation.  Because poultry fillets are largely 

water, the method worked very well; however, sanitation, cross-contamination, and 

dirty water disposal were obvious problems, preventing any practical use (EG&G, 

1995). 

 

Commercial equipment exists for detection of metal and other foreign materials, but 

these inspection systems are ineffective or inaccurate when inspecting meats of 
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uneven thickness (EG&G,1995).  EG&G Inc.(1995) developed a system consisting of 

an X-ray tube and a line scan detector, but the machine had a very high error rate.  A 

pressing belt was used to press the meat to an homogeneous thickness, but meats, such 

as chicken breasts, which are thick in the center and thin on the edges, cannot be 

compressed enough to correct for uneven thickness.  The uneven thickness of meat 

causes the X-ray image to be of irregular intensity even when no foreign objects are 

present, making recognition of bone fragments very difficult. 

 

To overcome thickness variations, Thermo Goring Kerr Inc.(2003) used a pump to 

press meat into a pipe and then compress the meat into a rectangular block for viewing 

by an X-ray system.  The method worked particularly well for ground meats, but did 

not work for whole meats because of meat damage.  Furthermore, the rejection of the 

contaminated meat in the pipe becomes a problem, because a large section of meat 

flow has to be rejected, causing considerable false rejections. 

 

Another method currently under investigation is the X-ray dual energy method, which 

is frequently used in the biomedical engineering area (Devic, et al., 2000, Redus, et al., 

2002, Wagner, et al., 1989, Wojcik, et al., 1996, and Zhao and Jiang, 1992).  However, 

due to the significant variation of physical characteristics of various bone fragments, 

algorithm complexity, and high cost, this method has limited use in the detection of 

small bone fragments in poultry products. 
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2.2 Methods for Range Measurement 
 
 

Various techniques have been used to obtain object thickness information.  For 

example, there are mechanical methods such as contact-probe-type coordinate-

measuring machines (CMMs) and acoustic methods such as ultrasound used by 

Motluk (1997) to produce a three-dimensional image of the human brain. 

 

The most widely used methods for range imaging are optical-based because they are 

flexible, accurate, and non-invasive.  Strand (1985) classified the optical range sensing 

techniques into four categories: geometric range measurement, time-of-flight range 

measurement, interferometric, and diffraction range measurement. 

 

Geometric range measurement techniques are based on triangulation.  If two triangles 

are congruent to each other, their corresponding sides are in proportion and the 

corresponding angles are equal.  Then with the information of a reference triangle, all 

the parameters of the other triangle can be determined by partial knowledge of this 

triangle.  In practice, some geometric pattern is projected onto the object to help 

calculate the depth/shape of the object.  A multi-stripe structured light system 

proposed by Sorgel (1997) for the recognition of cylindrical surfaces is an example of 

the geometric range measurement technique. 

 

The time-of-flight range measurement techniques are based on the measurement of 

light wave flight time.  Usually, the light transmission speed is known in certain 
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environmental media.  The time of flight of light can be calculated by measuring the 

phase shift of a modulated light beam after the wave reflects back from the measured 

object (Strand, 1985).  Other methods have also been adopted to measure the time.  

Seta and O’ishi. (1990) proposed a distance meter utilizing the intermode beat of a He-

Ne laser instead of an optical modulator.  Its performance was tested at distances 

between 10 and 1300 m on a 300 m baseline in a tunnel.  The resolution was about 20 

µm and the total uncertainty was within 0.1 mm, if the air was stable.  Because the 

light travelled very fast, it was more suitable to measure long distances.  Using this 

method, the result was usually very accurate if the environmental media was stable, 

but a very complicated device was needed to measure the distance.  Note that this 

method measured only one point instead of an image because light beams spread out 

over distance.  

 

The interferometric techniques are based on interferometry, a method that utilizes the 

interference of waves for precise determinations of distance.  In the measurement, a 

reference plane is used.  The same light is projected on both the reference plane and 

the object by a beam splitter.  If the distance from the light source to the reference 

plane and object is different, an interference pattern can be observed by interfering 

two reflected waves from the two surfaces.  In this way, the optical path length 

variations are measured and the shape of the surface is obtained (Pratt, 1991).  

Another use of this concept is the lens-less camera suggested by Marks (1999) which 

captures planes of mutual intensity data to reconstruct an incoherently illuminated 

visible object in three dimensions.  The interferometer technique is extremely 
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sensitive, and can get the depth with an accuracy of λ /100, or better, where λ  is the 

wavelength.  The drawback of interferometric methods is that they are highly sensitive 

to temperature gradients and are easily disturbed by air turbulence and vibrations. 

 

Diffraction range measurement techniques are used the least in range measurements.  

The method is based on the diffraction of reflected incident light that strickes on the 

measured surface.  Based on this technique, Farid and Simoncelli (1998) used a single 

stationary camera and a pair of calibrated optical masks to measure this differential 

quantity directly.  After changing the aperture size, the subsequent computation of the 

range image involves simple arithmetic operations and is suitable for real-time 

implementation. 

 

In spite of the optical methods mentioned above, there are many other optical methods 

available to find the surface shape of an object.  Moiré techniques can be used to get 

depth information.  The basis of Moiré techniques is to project a set of white and black 

stripes, or gratings, on the object.  The grating can be of any shape.  Normally two 

identical gratings are used with one serving as a reference grating.  The difference of 

these two gratings is used to determine the deformation or contour of the object (Pratt, 

1991).  The resolution of this method depends on the pitch of the gratings.  Because 

two images are needed to calculate the depth, it is difficult to apply this on-line.   

 

Shapes can also be recovered from shading (Horn, et al., 1988, Frankot and Chellappa, 

1987), from a sequence of images (Poelman and Kanade, 1993), or from a video 
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stream (Zhao and Chellppa, 2001).  Although these methods can be successful in 

specific applications, they can be implemented in real-time applications to achieve 

high depth resolution only if high computation power is used.  

 

Deng and Wang (1994) used a non-interferometric technique for high-resolution 

distance measurements.  The technique utilized the theory that the wavelength of a 

broadband continuous wave (CW) laser can be changed by external feedback.  The 

design let the reflected beam feed back into the laser cavity to change the wavelength 

of the laser.  To produce a position-sensitive feedback, the ranging target was put near 

the focal point of a microscope objective.  The optical devices were designed to have a 

large numerical aperture for obtaining a short con-focal parameter.  In Deng’s 

experiment, a 20 nm longitudinal resolution and a 0.8 µm transverse resolution were 

obtained.  Among other techniques, Glaser and Konforti (1992) used a camera with an 

astigmatic lens to get the range information.  Krishnan and Ahuja (1996) used a non-

frontal imaging camera to get the range image. 

 

A high-resolution laser range system based on geometric triangulation is non-intrusive, 

can be very accurate depending on the imaging device used, and has a fast data 

acquisition rate.  These systems are widely used in industrial inspections, biomedical 

imaging, and other various applications.  In fact, most commercially available non-

contact laser-based systems are based on geometric triangulation.  This method has 

faster data acquisition rates than the probe-type CMMs and ultrasound-based systems 

and measures object depth without touching the object.  However, the ambient light, 
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the occlusion, the laser speckle and scattering phenomena, and object surface 

properties affect the accuracy of the depth information captured by the detectors in 

many of these systems.  Compared with devices designed using the time-of-flight 

method, triangulation laser range imaging systems are usually simpler and more 

compact.  But measured depth accuracy by time-of-flight systems are not affected by 

the depth of field, while the triangulation method’s measurement accuracy is limited 

by its depth of field.  Interferometric, Moiré and diffraction based methods can have 

very high depth resolution.  However, it is more suitable to use them when measuring 

small deformation or depth variation.  Because the comparison of two images is 

usually needed, these methods are not likely to be used in real-time applications.  

Although retrieving the shape from shading or video methods does not require very 

complex instruments, currently the computational power is not high enough to process 

the images on-line when high depth resolution is required. 

 
 
 
 

2.3 Structured Light-Based Laser Range Imaging 
 
 
The triangulation-based laser ranging method has wide application.  This method is 

simple to be implemented and has high accuracy.  Industrial companies often used it 

for dimension control in the 1980s (Pirlet, et al., 1986).  To allow a 360 degree 

examination of an object, Godhwani, et al. (1994) used six cameras to construct a 

multi-sensor structured light range scanner.  Six Charge Injection Device (CID) 

cameras were installed around the target and six projectors were used to project light 
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patterns onto the surface of the object.  The areas scanned by neighboring cameras 

were significantly overlapped.  The cameras and projectors were calibrated to a fixed 

configuration.  A block of known size with circular ring patterns was used to calibrate 

these optical devices.  In the overlapped segments, a linear interpolation algorithm had 

to be applied to overcome the non-continuity of data from different cameras.  This 

system scanned an object in 0.75 second with 0.25 mm accuracy.  Because twelve 

devices were used in the system, the calibration process was very complex, and 

because only co-planar points were used in the calibration, if the object to be measured 

was significantly bigger or smaller than the block used for calibration, all the cameras 

and projectors had to be calibrated again to get accurate results. 

 

Today, there are 3D scanners commercially available with accuracies from 50-200 µm 

and scan speeds up to 60,000 points/s (Headus, 2003).  However, these systems need 

specialized hardware and the object needs to be scanned several times when the object 

surface is uneven, making them unsuitable for industrial on-line inspection. 

 

One 3D scanner designed by Geng (1997) deserves special attention.  In the scanner, a 

known spatially distributed wavelength spectrum (from 420 µm to 650 µm) is used.  

To generate the continuous spectrum, a white light source (containing all visible 

wavelengths) is projected through a linear wavelength filter (LWF) is used. The LWF 

filter produces a rainbow-like spectrum pattern, where the light wavelengthλ  passing 

through a particular position of the filter is a linear function of d as shown in Figure 1. 
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If the starting wavelength (λ b), ending wavelength (λ e) and effective length of filter 

(L) are known, then 

d
L

be
b

λλ
λλ

−
+= ,                                                                                           (1) 

where λ  is the light wavelength passing through a particular position of the LWF, and 

d is the displacement of that position from blue edge of the filter glass. 

 

 

 

 

 

 

 

Figure 1.  The LWF filter used by Geng (1997) for rainbow pattern generation. 

 

 

Because the whole scanning area can be covered by the light spectrum, no moving 

parts are needed in the system, and the video scanning rates can be archived.  

Theoretically, the resolution of the obtained 3D image is infinity because the  

 

L 

d 

λ b λ λ e 
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Figure 2.  Illustration of Geng's scanner. 

 
wavelength of the projected spectrum is continuous in space.  It is only limited by the 

camera resolution.   

 

The principle of the scanner is illustrated in Figure 2.  First, from the spectrum data 

captured by the camera, the distance d can be calculated based on Equation 1.  
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Because the distance g and angle β between the light source and LWF are already 

known, the equation becomes 

g
dL −

−= − 2/tan 1βθ ,                                                                                  (2) 

Suppose the focal length of the camera is f, the position of the object image in the 

image plane is (u,v), then the space coordinates of that point can be calculated by 

Equation 3 

 

u
uctgf

bx ⋅
−⋅

=
θ

,                                                                                           (3a) 

v
uctgf
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θ

,                                                                                           (3b) 

f
uctgf

bz ⋅
−⋅

=
θ

,                                                                                         (3c) 

 
 

where, b is the baseline distance between the light source and sensor center, and x, y 

and z are actual coordinates. 

 

However, the visible light spectrum information is usually used in the scanner, and the 

surface color of the object has to be considered (Caspi, et al., 1998).  To overcome this 

problem, Geng (1997) suggested capturing images twice, with one image captured as 

the reference without the light pattern.  Although it solves the problem when the object 

is static, it introduces error when the background changes and objective moves, as is 

the case with on-line processing. 
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2.4 Encountered Problems 
 
 
Different objects have different physical characteristics and the techniques used to 

collect the depth information from each object may be different from each other.  

Designing a range image system may lead to difficulties noted below. 

 

2.4.1 System Error and Calibration 
 
 
There were four error sources involved in range imaging calibrations as given by 

Hashemi, et al. (1994): 1) Statistical errors caused by device noise; 2) drift errors 

caused by reference wave phase shift; 3) alignment errors caused by the dependence of 

the measurement offset upon the width, position, and intensity of the returned beam, 

and 4) slope error caused by an inaccuracy in the calculation of the rangefinder’s 

characteristic length that was decided by the modulation frequency and group 

refractive index of the air.  Although this system was designed based on the time-of-

flight, it is still a good reference for range system error analyses based on the 

triangulation method. 

 

When a camera is used in the range system, the system inevitably has geometric 

distortion.  Therefore, the data collected by the system exhibits a high degree of 

nonlinearity. Bumbaca, et al. (1986) thought this nonlinearity, in the form of 

interrelated range and geometric distortions could be corrected in real-time without 

imposing any severe restrictions on the type of distortion laws to which the particular 
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sensor was adhered.  If the object is sampled in the x- and y- directions, N and M 

times respectively, there are NM values of I and P with I representing uncorrected 

intensity and P representing range.  The P is a highly nonlinear function of (x,y) 

position and corrected range z.  The author proposed using a lookup table based on 

(x,y,P,z) to correct this nonlinearity and to simplify the lookup table by eliminating z 

when the object surface is in a constant-height plane.  Thus the geometric error of the 

optics device is corrected.  However, it is not always easy to get the reference points to 

calculate the look-up table in applications. 

 

Manthey, et al. (1994) presented a calibration method which used an active laser 

triangulation system.  First the system was calibrated by positioning a flat plane at a 

minimum of three different positions in the depth of the field.  These positions were 

chosen to span the entire depth of the field in order to compensate for geometrical 

nonlinearities in the system caused by optics.  Then, a standard sphere with a known 

diameter was used to calibrate the system.  The sphere was placed on a positioned 

system with linear accuracy of 6.0 µm in both the x- and y-directions.  After getting 

the reference data, a least-square regression algorithm was used to obtain the system 

calibration parameters.  When using a 75 mm lens, the reported resolution was 0.1250 

by 0.0006 by 0.0171 mm in the x, y and depth directions and the accuracy was 0.1262 

mm of the measured depth. 
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2.4.2 Image Pixel Registration 
 
 
To obtain 3D information of an object with a complicated surface shape, optical and 

electrical devices are used in range imaging systems.  Accurate image registration is 

required to integrate data from different sensors.  Different registration methods 

should be used for different applications. 

 

Zhou, et al. (2000) described a real-time image system to make continuous geometric 

measurements of 3D surfaces.  In this system, two cameras and thirty-three laser 

beams were used to improve the resolution and accuracy of the object measured.  The 

object was placed on a rotatable table.  By over-sampling the object surface and using 

a Gaussian interpolation and re-sampling operation to smooth the combined data, the 

images taken by the two cameras were integrated together and the accuracy of the 

surface depth information was improved while maintaining a given spatial resolution. 

 
 

2.4.3 Laser Scattering on Biomaterials 
 
 
In biological applications, the most serious problem occurs when light scattering takes 

place on the surface or inside of the object.  Scattering is a common phenomenon 

when the light wavelength is comparable with the object surface roughness or the 

object consists of scatters due to different refractive indices.  Because chicken fillets 

are of a relatively loose structured material, laser light easily penetrates into the meat, 

and scattering thus occurs both at and under the surface.  Laser light scattered under 
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the surface is reflected back to the surface and blurs the laser line sharpness.  Thus, 

this reflection degrades the image quality (Posudin, 1998, Popp, et al., 2003). 

 
 

2.4.4 Speckle Noise 
 
 
Speckle noise is shown to constitute a fundamental limit to laser range finders based 

on triangulation (Baribeau and Rioux, 1991b).  The speckle originates from object 

surface scattering.  When the surface is rough, the wave summation cancels each other 

out, leading to dark speckles in the image, while in the other portion of the image the 

waves reinforce each other, leading to bright speckles.  From this theory, the error 

caused by speckle is related to the wavelength, the angle between the camera and laser, 

and the diameter of the camera lens.  A method used to reduce the speckle is to 

average the image. 

 
 
 
 

2.5 Meat Characteristics 
 

 
Meat characteristics are important to the optical imaging because the meat structure 

and composition are directly related to light scattering and X-ray absorption.  Meat 

generally contains approximately 75 percent water, 19 percent protein, 3.5 percent 

soluble, non-protein substances, and 2.5 percent fat (Lawrie, 1991).  The percentage of 

water in meat varies with the type of muscle, the kind of meat, the season of the year, 

and the pH of the meat. Fat in meats is found both between muscles and within 
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muscles. In both locations, fat contributes to the overall flavor and juiciness of meats.  

Meat contains muscle, connective tissue, fat, and other biological materials.  The 

major component of poultry breast meat is skeletal muscle.  Skeletal muscle is a 

syncytium of multinucleated muscle fibers which originate from single nucleated 

mesodermal cells.  The whole muscle is surrounded by a sheath of connective tissue 

known as the epimysium.  Inside the epimysium, another layer of membranes of 

connective tissue called perimysium penetrate into the muscle and separate the muscle 

fibers into smaller fiber bundles.  The large blood vessels and nerves are also included 

in the perimysium.  Under the perimysium, each individual muscle fiber is wrapped by 

a fine connective tissue called the endomysium.  The wrapped fibers are rod-like 

contractile myofibrils, or muscle cells, which are about one millimeter in diameter.  

Furthermore, between the collagenous fibers of the endomysium and the muscle cell 

membrane, there is another microstructure referred to as the basement membrane, or 

sarcolemma complex, which connects them together (Richardson and Mead, 1999).  

The cross section of a typical skeletal muscle is illustrated below in Figure 3. 

 

Figure 3.  Illustration of skeletal muscle structure (NCI, 2003). 
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Chicken skeletal muscle fibers, similarly to mammalian muscle fibers, can be divided 

into three different types of twitch muscle fibers: type 1, type 2a, and type 2b.  Type 1 

(oxidative) muscle fibers are efficient and economical for slow repetitive movements.  

Type 2b (fast, glycolytic) muscle fibers are adapted for a high-power output over a 

short period.  Type 2a (fast, oxidative, glycolytic), on the other hand, are mainly used 

to generate high-power output over a longer period of time.  The type 1 fibers are 

particularly abundant in postural muscle which is activated during standing, walking 

and running (Lawrie, 1991). 

 

The chicken breast meat being investigated is mainly composed of the pectoralis 

major whose fibers are exclusively the fast, glycolytic (2b) type.  During the 

maturation of chickens, the composition of muscle is continuously changing as the age, 

nutrition and living environments change (Touraille, et al.,1981). 

 

2.5.1 Muscle Cell Structure 

 

A normal single nucleated cell is a very complex structure. As illustrated in Figure 3, 

it includes several components.  There is cytoplasm, a nucleus, proteins, chromatin, 

and mitochondria.  There are also other cell components such as endoplasmic 

reticulum(ER), lysomes, and peroxisomes that exist in the cell.  The component sizes 

and refraction indexes determine the scattering properties of the cell.  The total 

volume of each component related to the entire cell volume depends on many factors, 
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but, typically, the cytoplasm occupies 50-80%,  nucleus 5-10%, mitochondria 5-15%, 

and other organelles 1-10% of the cell volume. (Alberts, et al., 2002). 

Table 1.  Size and refraction index of some cell components (Dunn, 1997) 

Cell component Size (µm) Cell component Refractive index 

cytoplasm 10-30 cytoplasm 1.38 

mitochondria 0.5-1.5 mitochondria 1.40 

ER 0.2-1 lipid 1.48 

nucleus 3-10 nucleus 1.35 

peroxisomes 0.2-0.5 protein 1.50 

lysomes 0.2-0.5 melanin 1.7 

 

 

Figure 4.  Illustration of a common single nucleated cell (Michael, 2003). 
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Although the muscle fibers (muscle cells) have the same structure as the common 

single nucleated cells, they are different from normal cells in their shape and the 

number of nuclei that exist in the cell.  Pectoralis major fibers (poultry breast meat 

cells) are long cylindrical multinucleated cells which generally stretch the length of 

the muscle belly.  The muscle cells (fibers) are different from common cells due to the 

shape and number of nuclei (Lawrie, 1991). 
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Chapter 3 

OBJECTIVES 
 
 
 
 
The overall objective of this research was to develop a laser range imaging subsystem 

as one part of a combined X-ray and laser imaging system for sensitive detection of 

bone fragments and hazardous materials in de-boned poultry meat.  Specifically, the 

objectives of this research were: 

 

1) To calculate sub-pixel profiles from scattered images; 

2) To geometrically calibrate laser and X-ray imaging systems; 

3) To map the laser range image to pseudo-X-ray image for further processing; 

and 

4) To implement the laser range system for real-time on-line application. 

 

The development of the system included the basic theory, experimental verification, 

and system implementation. 
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Chapter 4 

EQUIPMENT AND SYSTEM OVERVIEW 
 
 
 
 

4.1 Dual X-ray and Laser Imaging System Setup 
 
 
 
 
The overall imaging detection system was designed and built to capture both X-ray 

and laser 3D images simultaneously at high speeds.  It included two imaging 

subsystems: an X-ray imaging subsystem and a laser 3D imaging subsystem.  Both 

subsystems were integrated in one machine.  Figure 5 illustrates the overall 

configuration of the integrated X-ray and laser imaging system. The equipment of the 

system is shown in Figure 6.  

 

 

 

 

 

 

 

 

Figure 5.  Illustration of the X-ray and laser integrated system. 
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In Figures 5 and 6, the range imaging system consisted of two laser projectors and two 

CCD cameras with C-mount lenses (16mm, Fujinon Inc. Woodstock, GA).  The 

cameras were high speed Pulnix TM-6703 (Pulnix America, Inc. Sunnyvale, CA) 

monochromatic CCD cameras.  Monochromic CCD cameras were selected because of 

their lower cost and higher signal-to-noise ratio.  The cameras were placed on each 

side of the structured laser pattern generator to reduce the influence of possible 

occlusion caused by the curvature of the poultry fillet.  These two cameras were 

connected to one Matrox Genesis LC board (Matrox Electronics Systems Ltd., Quebec, 

Canada).  The grabber was plugged into a Pentium IV 1.4GHz computer.  The 

cameras and laser structured light generator were mounted on a fixed frame in the X-

ray chamber.  Objects to be scanned were placed on the conveyor that traveled under 

the X-ray and laser lights.  The laser line generators used in this system were class 3 

lasers with wavelength of 635nm and power of 5 mW, (Lasiris SNF501L, Stockyale, 

Montreal, Canada).  Red diode lasers were selected because of their low price and 

small size.  The lasers produced a non-Gaussian, evenly illuminated line of laser light 

such that the laser beam did not have any light intensity variations or fading toward 

the ends of the beam.  When the laser pattern struck the object, the object’s profile was 

seen by the cameras.  To adjust the laser line strength reflected into the camera and 

avoid the saturation of the object profiles’ image, a polarizer was placed in front of the 

laser pattern generator. 

 

To reduce occlusion caused by the uneven and random surface shape, two cameras 

were set up facing each other, making an angle with respect to the conveyor belt.  The 
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angle was determined by the accuracy requirement, view of the field, and space 

availability in the chamber.  Both cameras were calibrated and attached to the 

stationary frame.  The distance between the two cameras and the distance from the 

camera plane to the object plane were decided by the angle.  To synchronize the 

cameras, one of the cameras was set as master and the other one as slave, where the 

master camera sent the synchronization signal to the slave camera.  Also, to reduce the 

image processing time, both cameras were connected to a single image board through 

two signal channels.  An encoder mounted on the conveyor belt shaft was used to 

provide the signal to synchronize the master camera and the conveyor. Related details 

about the synchronization and configurations can be found in Tao (1996, 1999). The 

laser 3D subsystem was entirely hosted in an X-ray chamber.  To correctly align 

images and reduce the mismatch of the two images by possible slipping of the 

conveyor, the laser beam was arranged to stay as close to the X-ray beam as possible. 

 

 

Figure 6.  Illustration of dual system setup. 
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The images were grabbed and saved in the computer using software written with 

Microsoft Visual C/C++ (Microsoft Corp., Redmond, Wash.).  The software utilized a 

Matrox (Matrox Electronics Systems Ltd., Quebec, Canada) library to interface with 

the frame grabber.  The software was capable of simultaneously grabbing images from 

the X-ray system and computing the 3D laser images from the two cameras.  Laser 

images were grabbed and calculated with eight bits resolution.  The 3D laser image 

and X-ray image were fully synchronized by an encoder pulse.  All the image 

grabbing and processing was done on-line.  The operating system used in this 

application was Windows 2000 (Microsoft Corp. Redmond, Washington). 

 
 
 
 

4.2 Three Dimensional Laser Range Imaging 
 
 
In this study, a laser range imager using one structured light beam plane (two beams in 

the same plane) was used as illustrated in Figure 7.  Two diode laser pattern generators 

were used to project a laser light line onto the chicken fillet.  The thickness variation 

of the sample was registered by the shift in the stripe lines.  The geometry of the 

structured light system is shown in Figure 8.  If the laser beam is perpendicular to the 

conveyor, and the angle between the camera z axis and the conveyor surface is θz, the 

laser beam illuminates the object at the coordinates 

( ) zss zzxx θtan00 −−= ,                                                                                 (4) 
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Figure 7.  Schematic of a laser-based structured light system for surface shape 
determination. 

 
where f is the distance between the receiving lens and detector, which is equal to the 

focal length of the camera lens.  If this image point is compared to that produced by an 

point at a distance zref, the displacements of the image are given by 
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The x displacement can be used to calculate the object distance: 
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where T is the thickness of the meat at that point. 

 
Figure 8.  Triangulation geometry in a structured-light system. 

 

Figure 9.  Sketch of two camera coordinates. 
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As illustrated in Figure 9, two cameras capture laser line images without occlusion.  

When two cameras were calibrated, the pictures in each camera mirror each other as 

shown in Figure 9.  In fact, the coordinates of the second camera are translated 2Z 

distance from the coordinates of the first camera and are rotated 1800 in the first 

camera coordinate x-axis.  Thus, 

12 ctzc TTTT ××= ,                                                                                               (9) 
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Suppose [ ]11111 cccc zyxT = T, then [ ]11112 cccc zyxT −= T. 

 

The thickness image was obtained by moving the object and calculating each pixel 

shift, z0, of each stripe continuously.  The lateral resolution was the distance, d, that 

the conveyor belt traveled between the two encoder pulses.  The d was set at 0.8 mm.  

The horizontal resolution was determined by the pixel resolution, typically being 0.7 

mm/pixel (field of view 16” x 25.4 mm / 600 effective pixels of CCD camera).  The 

depth resolution was 0.7 mm/pixel (field of view 6” x 25.4 mm / 200 pixels of CCD 

camera). 
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To test the effect of using two cameras, a plastic doll face with similar geometrical 

complexity to a poultry fillet was scanned.  Figure 10(b) is the original object.  Due to 

object curvature, the view to center part of the face was blocked in one direction.  

Figure 10(a) clearly shows the occlusion effect.  However, the center part of the object 

was not blocked if viewed from another side of the object, as shown in Figure 10(c).  

If two cameras were placed looking in opposite directions, the occlusions were 

removed in this case.  Figures 10(d) and (e) are reconstructed 3D images.  

                             
(a)                                             (b)                                               (c) 

      

(d)                                                                    (e) 

Figure 10.  Example images to illustrate the effect of using two cameras.  (a) Range 
image captured with one camera, (b) doll face, (c) range image captured with two 
cameras, (d) picture of (a) after rendering, and (e) picture of (c) after rendering.
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Chapter 5 

SUBPIXEL ACCURACY CALCULATION OF SCATTERED 
LASER PROFILE 

 
 
 
 

5.1 Introduction 
 
 
 
 
In order to develop a chicken bone fragment detection system, a laser range imager 

was developed to be used in conjunction with the X-ray imaging.  The range imager 

was designed based on the triangulation method.  A laser pattern was projected onto 

the surface of the chicken fillet to obtain information regarding the depth of the meat.  

Because the laser profile had a certain width that occupied several pixels in the image, 

image processing was needed to accurately obtain the center of the profile. There were 

image processing methods that addressed this issue in the literature.  Huertas (1986) 

used a complex Laplacian-Gaussian mask to obtain the profile center with sub-pixel 

accuracy. Valkenburg, et al. (1994) gave detailed descriptions of a centroid algorithm 

using a restricted polynomial model and Gaussian reconstruction.  Similarly, Shortis, 

et al. (1994) presented a centroid algorithm with sub-pixel methods such as ellipse 

fitting.  The performances of various methods were also compared by Shortis.  

Alexander and Ng (1991) presented an algorithm to eliminate systematic error in 

centroid estimation.  Fillard (1992) examined the method presented by Alexander and 

Ng (1991) and introduced Fourier phase shift analysis to eliminate the error that 

existed in the depth calculation. 
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The laser profile formed on the object surface needed to be thin, clear, and free of 

noise.  However, the center of the profile detected by the methods mentioned above 

did not generate an accurate result when the profile was corrupted by noise.  The most 

common causes of noise were: 1) Laser speckling if the surface roughness was 

comparable to the incident coherent light wavelength (Baribeau and Rioux, 1991a, and 

1991b); 2) The variation of object surface reflection; and 3) light scattering (Kim and 

Lin, 1998). 

 

When coherent light strikes an object with a rough surface, reflected light is typically 

superimposed on incident or other reflected light.  If the phases of two light sources 

are opposite, they cancel each other.  Speckles on the surface of the object are formed 

where phases alternately cancel and reinforce each others.  In speckle-corrupted 

images, Baribeau and Rioux (1991a) analyzed the influence of laser speckle on line 

image centroid identification and derived an analytical expression for centroid 

fluctuation.  It was concluded that applying a linear filter to the speckle corrupted 

image did not improve the image quality.  In another paper, Baribeau and Rioux 

(1991b) suggested superimposing uncorrelated corrupted gray-scale images to 

improve the image quality.  However, this method could not be used in on-line 

applications. 

 

In biological applications, the most serious problem occurs when light scattering takes 

place on the surface or inside the object.  Light scattering is a very complicated 

phenomenon (Chu, 1974).  It occurs when light passes through a medium that contains 
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fluctuations in the refractive index (n).  Fluctuations can be caused by discrete 

particles or more continuous variations in n.  Scattering is different depending on the 

ratio of the incident light wavelength to the size of the particles in the media.  When 

the wavelength is much larger than the media particles, Rayleigh scattering occurs.  In 

this case, the light scatters in all directions (Posudin, 1998).  Because chicken fillets 

are of a relatively loose structured material, laser light easily penetrates into the meat, 

and scattering thus occurs both at and under the surface.  Laser light scattered under 

the surface is reflected back to the surface and blurs the laser line sharpness.  Thus, 

this reflection degrades the image quality (Popp, et al., 2003).   

 

To describe the laser light pattern reflected into the cameras, the Bidirectional 

Reflectance Distribution Function (BRDF) was used (Cohen and Wallace, 1993).  

BRDF gives the reflectance of a target as a function of illumination geometry and 

viewing geometry.  BRDF was broadly used in areas such as computer graphics (Cook 

and Torrance, 1981) and remote sensing (Gao, et al., 2002). 

 
 
 
 

5.2 Objectives 
 

In this chapter, the study objective was to analyze laser scattering on poultry fillets and 

to develop methods to calculate the fillet depth from the scattered laser profile.  

Furthermore, methods used to calculate the laser profiles were compared and their 

performances were evaluated. 
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5.3 Materials and Methods 
 

 

5.3.1 Image System Setup 
 
 
The laser range image system used to capture the 3D images was built as one of the 

two subsystems for a bone fragment detection system.  The laser 3D subsystem 

consisted of two high-speed Pulnix TM-6703 (Pulnix America, Inc. Sunnyvale, CA) 

monochromatic CCD cameras and two laser beam generators (635nm, Lasiris 

SNF501L, Stockyale, Montreal, Canada).  The cameras were equipped with C-mount 

lenses (16 mm, Fujinon Inc. Woodstock, GA).  The cameras and laser pattern 

generators were mounted on a frame that was firmly fastened in the stainless steel X-

ray chamber.  The laser patterns from the two generators were manually adjusted to be 

in the same plane.  The pattern generated by the laser was a line with its strength 

evenly distributed along the line length direction with a Gaussian profile in the cross 

section of the profile.  The width of the laser line was about 1.75 mm when the laser 

was 1.5 m away from the object.  Two cameras were used, one on each side of the 

structured laser pattern generator to reduce the influence of possible occlusion caused 

by curvature of the poultry fillet.  The angle between the camera view plane and laser 

pattern plane was approximately 450.  The cameras were connected to a Matrox 

Genesis LC board (Matrox Electronics Systems Ltd., Quebec, Canada) and they were 

triggered by the same encoder trigger signal.  The image grabber was plugged into a 

Pentium IV computer.  
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Figure 11.  The inside view of the image system setup. 

 
 

5.3.2 Laser Profile Analysis 
 
 
In the laser range imaging system, the pattern generated by the laser pattern generator 

was a straight line with a bell shaped symmetrical cross section.  The line was 

composed of continuously connected points.  So, if every point’s position was 

computed, the whole cross-section profile could be recovered.  At the same time, a 2D 

line problem was changed to a 1D point problem.  A line defined by f(x) was modeled 

by continuously connected points represented by a function I(x), convoluted over the 

whole image: 

 f(x) = I(x)⊗h(x) + n(x),                                                                                    (12) 

Lasers Cameras 

X-ray beam slit 

Object 
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where h(x) was the impulse response of system, n(x) was the noise added to the 

original signal, and ⊗  represents convolution.  Ideally, I(x) was expected to be a 

symmetric Gaussian distribution (Posudin, 1998) 
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πδ
−−= xeIxI ,                                                                          (13) 

where 0/)( IdxxI  gave the probability that a variable with a Gaussian distribution took 

on a value in the range of (x, x+dx).  µ was the mean value and δ was the standard 

deviation. I0 was the total incident intensity. 

 

However, because of scattering and absorption of the light energy, the reflected light 

strength is 
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where ξ  is an index used to represent the energy lost by absorption and scattering. 

The function s(x) is scattered light.  The absorbed energy changes to heat that is not 

detected by the camera. 

 

Suppose that the object surface is flat and that the incident light shoots straight to the 

object, then part of the incident laser light is reflected back in the direction 

perpendicular to the object surface.  However, scattered laser light is reflected in every 

direction as illustrated by Figure 12.  The scattered laser light is seen to be 

symmetrical about the light incident plane.  Although both reflected light directions 

are different, their addition is still symmetrical.  So when the camera lens axis is in the 
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same plane as the laser beam, a centroid method can be used to find the peak of the 

profile, and based on that point it is possible to find the height of the object.  

 

Figure 12.  Illustration of reflected signal.  The scattered laser light is 
reflected in every direction (Posudin, 1998).    

 
 

5.3.3 Laser Profile Calculation Method 
 
 
Centroid methods are broadly used to get sub-pixel accuracy.  It can be shown that if 

there is no quantification error or noise, centroid methods are the exact representation 

of the edge points.  All centroid methods bear a similar form, 
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where c(x,y) and q(x,y) are functions of x- or y-coordinates, g(x,y) is the function of 

the intensity of the respective pixel, and R is the area where the centroid method is 

applied. 

 

Frequently used centroid methods include median, squared median and binary centroid 

methods.  When using the median method, g(x,y) represents the image intensity of the 

corresponding point, and c(x,y) and q(x,y) are both x- and y-coordinates of points 

whose intensity is the median value of all the points in area R.  In some cases, when 

considerable noise exists in the image, the squared median method will increase the 

signal to noise ratio (SNR), thus increasing the accuracy of the detected edge.  Here, 

g(x,y) is the squared intensity value of each point, and c(x,y) and q(x,y) still indicate 

the x- and y-coordinates of the points.  Because the signals normally have a 

symmetrical bell curve (Posudin, 1998), the binary centroid method is also used to 

detect edge points. For the binary centroid method, the g(x,y) and q(x,y) in Equation 

15 are set to one, and c(x,y) is the x- or y-coordinates of the points. 

 

Another method used to find the peak of the line is based on the profile’s derivatives.  

If the profile has the Gaussian shape, its first derivative is zero and the second 

derivative is maximum at the ridge point.  Different directional masks are applied to 

the image by: 

S = R ⊗ M,                                                                                                       (16) 
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where R is a vector that represents a local region. M is the mask used to enhance the 

edge.  S represents the resulting image, which is then processed to find the presence of 

the ridge point. ⊗  represents convolution. 

 

If the angle between the camera’s lens axis and the laser beam plane is not zero, the 

actual light received by the camera from the laser profile is different from the reflected 

light intensity and has the form (Cohen and Wallace, 1993) 

θθβ cos)(),()( ⋅⋅= xIfxCR ,                                                                         (17) 

where, CR(x) is the light intensity received by the camera, f(β,θ ) is the Bi-directional 

Reflectance Distribution Function (BRDF) (Foley, et al., 1990) which is determined 

by the physical characteristics of the object, β is the angle between the camera lens 

axis and horizontal plane, θ is the angle between light incident direction and the 

horizontal plane as illustrated in Figure 13, and I(x) is the incident laser light strength. 

 

.  

Figure 13.  Illustration of camera setup and scattering cross section image. 

β

θ

Camera Light incident direction 
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When β was not equal to θ , because portions of the light were scattered in every 

direction, the image intensity distribution at the camera was different from its actual 

distribution.  This is demonstrated in Figure 14.  When the angles were equal to each 

other, the cross profile was symmetrical.  In some portion of the laser profile, all the 

light is reflected back without major scattering.  When the angles were different, such 

as shown in Figure 14(a), the cross profile was biased to one side of the image.  For 

this reason, the calculated line location was shifted to one side of the image.  Because 

the scattering function was very complicated, the exact shape of the scattering was not 

known, but the shift amount was constant when the scattering had the same pattern. 

 

   
(a) 

   
(b) 

Figure 14.  Illustration of effect of angle of the camera β.  (a) The β-θ  difference is 60 

degree, and (b) the β-θ  difference is approximately zero degree.  

 
  



 43

Because the scattered light only occupies a small portion of the total light energy, two 

methods modified from the centroid method were proposed to calculate the real profile 

center from the skewed image. 

 1)()( Κ+= xCxCI ,                                                                                          (18) 

 ϕ⋅Κ+= 2)()( xCxCI ,                                                                                    (19) 

where CI(x) is the center of the profile and C(x) is the centroid calculated by Equation 

15.  K1 and K2 are constants that represent the shift of the scatter.  K1 and K2 can be 

experimentally computed.  Because scattering at every point may not be the same, ϕ, a 

symmetrical index is used to modify K2 in the equation.  It is expressed by 
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where x(P) represents the peak position of the profile.  When φ is equal to one, the 

profile is symmetrical; otherwise, it is skewed to one side of the profile.  Equation 18 

is referred to as the shifted centroid method while Equation 19 is called the modified 

centroid method. 

 
 

5.3.4 Reference Profile 
 
 
Poultry meat is a viscoelastic material, making it difficult to produce a reference 

object with a specific size in order to calibrate the image detection method.  To 

overcome this problem, a thin coating of paint was applied to the surface of the meat, 

making most of the laser light reflect back and reducing most scattering.  Figure 15 
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demonstrates the difference between the images before and after the coating was 

applied. 

 
(a) 

       
(b) 

Figure 15.  The comparison of image before and after the coating was applied.  (a) 
Image with coating, and (b) image without coating. 

 
 
Because scattering disappeared after applying the coating, the images taken with the 

coating were used as the reference to compare the results from the proposed method. 
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5.3.5 Laser Wavelength Selection 
 
 
The laser is well known for its mono-chromaticity, coherence, directionality, and 

brightness.  When a laser light is projected onto biological materials, light scattering 

inevitably results.  Because the sizes of the cell components range in size from 0.2 to 1 

µm (Alberts, et al., 2002)  and the visible light wavelength falls between 400 nm and 

700 nm, the light wavelength is almost on the same scale as the cell components.  In 

this situation, Mie scattering (Chu, 1974) is the predominant scattering phenomenon 

(Dunn, 1997).  Changing the laser light wavelength does not reduce scattering as long 

as the wavelength remains in the visible range.  To verify this conclusion, two 

commercially available lasers, one red laser with wavelength of 635 nm, and the other 

a green laser with a wavelength of 532 nm, were used.  Both laser lights were 

projected on the same location on the same objects.  Figure 16 shows the scattered 

images. 

 

Although the spectral response of the camera (Pulnix TM-6703) used peaks at 480 nm, 

the intensity of the red laser profile image is higher than that of the green laser profile.  

This shows that poultry meat absorbs more energy in the green than in the red 

wavelengths.  The scattering of the green and red laser lights are almost the same as 

shown by the symmetrical indices.  Considering that the green laser is far more 

expensive and bulkier than the red laser, the red laser was selected as the laser source. 
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(a)   (b) 

 
 (c)    (d) 

Figure 16.  Cross section comparison of red laser and green laser profile.  (a) Green 
laser profile, (b) green laser profile cross section, (c) red laser profile, and 
(d) red laser profile cross section 

 
 
 
 

5.4 Results and Discussions 
 
 

5.4.1 Symmetrical Assumption of Laser Profile 
 
 
Biological materials are normally heterogeneous materials at the microscopic level, so 

scattering may not be symmetrical.  Chicken breasts, which are mainly composed of 

skeletal muscle, have the structure shown in Figure 17. 
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Figure 17.  Illustration of poultry breast muscle (Chynoweth, 2003). 
 
 

Skeletal muscle is different from cardiac and smooth muscles.  It is symmetrical in the 

longitudinal direction except for the nucleus and tissues between the myofibril.  It can 

be considered to be symmetrically arranged.  To verify this assumption, a laser light 

was projected onto the surface of the poultry meat which was arranged in several 

directions.  Then the shape of the scattered image was observed and the symmetrical 

index along the profile direction was calculated.  Figure 18 clearly demonstrates that it 

was symmetrical.  Therefore, the assumption that the scattered laser profile of the 

poultry breast meat is approximately symmetrical can be accepted.   

 

       
(a)                                                             (b) 

Figure 18.  Illustration of symmetrical profile.  (a) Original image, and (b) cross 
section profile. 
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5.4.2 Determination of K1 and K2 
 
 
The key step in the proposed method is to determine the constant value K1 and K2 in 

Equations 18 and 19.  Twenty poultry fillets were randomly selected from a poultry 

processing facility.  First, the fillets were scanned without applying the coating, then 

the coating was applied on the surface and the object was scanned again to get the 

reference profile  To obtain both constants K1 and K2, a total of 80 sample profiles 

(40 scattered laser profiles and 40 reference profiles, 4 profiles from different 

locations in one sample fillet) were taken.  Each profile was about 200 pixels long.  

Twenty scattered profiles were used to calculate the K1 and K2.  Another twenty 

scattered profiles were used to evaluate the performance of proposed profile 

calculation methods.  To calculate K1, the difference between corresponding points on 

the reference profiles and the scattered profiles were compared, and the mean 

differences were calculated and used as K1.  To calculate K2, because ϕ  was not 

constant, an iteration method had to be adopted.  Based on the sample profiles, the K1 

value was .47 and the K2 value was 0.39. 

 

5.4.3 Performance comparison of poultry profile calculation methods 
 
 
To evaluate the performance of the proposed method, the proposed methods were 

applied to the twenty scattered profiles and their results were compared with the 

reference profile.  In Figure 19(a), the profile obtained by the normal centroid method 

is compared with the reference profile.  Due to the scattering influence, the whole 
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profile was obviously shifted in one direction.  If the image is shifted a distance K1 

(pixels), as illustrated in Figure 19(b), the system error due to the scattering was 

eliminated.  However, scattering acts as a low pass filter causing some detailed 

information to be lost (Figures 19 (a) and (b)).  In Figure 19(c), the scattering effect 

was considered in the form of the symmetrical index, and the variation from the 

reference profile is decreased.  This can be seen clearly in Figure 20.  

 

To quantitatively compare the performance of these two methods, the deviation index 

is used 

 
n

Pp
dev ni

ii∑
=

−
= ,..2,1 ,                                                                                          (21) 

where pi is the calculated depth, Pi is the depth of reference object depth, and i is the 

index of the point.  Numerical results appear in Table 2. 

 

Table 2.  Quantitative evaluation of modified centroid method and shifted 
centroid method (pixels*) 

 dev Variance Mean Minum 
deviation 

Maxum 
deviation

Modified centroid method 0.2021 0.0671 0 -0.8698 0.5411 

Shifted centroid method 0.2219 0.0709 0 -0.8400 0.7471 

 (*1 pixel = 0.7 mm x 0.7mm) 
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(a) 

 
(b) 

 
(c) 

Figure 19.  Result comparison from twenty samples.  (a) Reference profile vs. centroid 
profile, (b) reference profile vs. shifted centroid profile, and (c) reference 
profile vs. modified centroid profile 
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Figure 20.  Detailed comparison between modified centroid method and shifted 
centroid method 

 
 

From Table 2, both methods performed well but the modified centroid method was 

slightly better than the shifted centroid method.  The results of both methods were 

only 0.2 pixels deviated from the ideal reference point.  From Figure 20, the modified 

centroid method can be seen to have less variation than the shifted centroid method.  

Therefore, the modified centroid method was selected.  

 
 

5.4.4 3D Image Repeatability Test 
 
 
Because the scattering phenomenon occurred when the laser beam struck the surface 

of the poultry product and scattering is not a stable phenomenon, the repeatability of 

the obtained results was tested.  The experiment tested two aspects, one with the 
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conveyor belt in a static position and the other one when the conveyor belt was 

moving.  In the first experiment, a piece of poultry meat was placed on the conveyor 

belt.  The image profile was captured five times in short intervals.  Then the depth was 

calculated and the results of the study were compared.  To compare the results, the 

average of the five trials was calculated, and then every trial was compared with the 

average value.  The total of 20 sample lines were scanned and compared.  The results 

of the repeatability test, shown in Table 3, were very stable, and there was no 

fluctuation between trials. 

Table 3.  Static reproducibility test (pixels) based on 
20 poultry fillet samples. 

Test dev Variance Min. 
deviation

Max. 
deviation

1 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 

        (one pixel represents 0.7 mm by 0.7 mm). 

 

In the second test, a whole piece of meat was scanned by the laser imager.  As in the 

single line test, one piece of meat was put on the belt and it was repeatedly scanned 

five times.  A total of 20 boneless poultry breast fillets were scanned.  Because the 

trigger pulse interval was not uniform, the scanned image length was not the same and 

the normalization had to be made. 
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Table 4.  Test of dynamic reproducibility (pixels) based 
20 poultry fillet samples. 

Test dev index Variance Min. 
deviation 

Max. 
deviation 

1 0.18 0.13 -0.56 0.56 

2 0.11 0.05 -0.3 0.37 

3 0.11 0.05 -0.37 0.37 

4 0.16 0.1 -0.6 0.56 

5 0.09 0.02 -0.2 0.2 

 

The standard deviation of the residual was less than 0.18 pixels (Table 4).  The 

minimum and maximum deviations were less than 0.6 pixels.  The residuals were 

larger than those in the static condition because of vibration and slight variation of the 

conveyor belt. 

 
 
 
 

5.5 Conclusions 
 
 
In the laser 3D range image system, light scattering occurs when the laser light strikes 

the poultry fillet surface.  Because the light scatter in the poultry meat was on the same 

scale as the visible light wavelength, using any visible wavelength laser source will 

not reduce the scattering.  Although biological materials are heterogeneous, skeletal 

muscle cells demonstrate some symmetry, and the cross sectional shape of the laser 

profile reflected from the poultry breast meat surface can be considered symmetrical.  
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Because part of the reflected light scatters in every direction, although it is symmetric 

to the incident light plane, the laser profile collected by the camera is not symmetrical.  

To compensate for the profile skew, a modified centroid method with a symmetrical 

index was proposed to obtain the correct profile center based on the biased image 

captured by CCD camera.  The proposed modified centroid method is capable of 

reducing the influence of the scattering.  Based on experimental results, the calculated 

profile has an accuracy of 0.14 mm by 0.14 mm and it was stable in the sense that it 

can be repeated. 
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Chapter 6 

CALIBRATION OF LASER AND X-RAY SYSTEMS 
 
 
 
 

6.1 Introduction 
 
 
Bone fragments left in boneless poultry meat are a big health concern to consumers.  

As the consumption of boneless poultry products increases every year, methods to 

accurately detect bone fragments are desired by the poultry industry.  X-ray 

technology is traditionally used by the industry for bone fragment detection.  Based on 

the principle that meat and bone have different X-ray absorption rates, the X-ray 

image intensity is different when the thickness is different.  However, due to the 

thickness variation of individual poultry fillets, it is impossible to detect the presence 

of bone fragments using X-ray technology alone (Chen, 2003).  Tao and Ibarra (2000) 

suggested adding a laser 3D subsystem and combining the depth information from the 

laser 3D image with the X-ray image to reduce the influence of the thickness 

irregularity of the fillet.  The calibration of the optical devices used in the laser 

subsystem is critical to the success of the new detection technology.  

 

Camera calibration is very important for an accurate description of geometrical 

features of a measured object.  Normally, the pin-hole model is adopted to calibrate 

the camera.  The calibration parameters are classified as intrinsic and extrinsic 

parameters (Tsai, 1987).  Intrinsic parameters model the internal structure of the 
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camera, such as focal length and aberration correction, while extrinsic parameters 

represent the relationship between the camera coordinate system and the world 

coordinate system, such as relative translation and rotation.  Much work has been done 

to calibrate cameras based on the pin-hole model.  Tsai et al. (1987) proposed a very 

accurate method to resolve the calibration problem, but the reference object had to be 

built with high accuracy.  Similarly, Zhang (1999) used a checkerboard pattern printed 

on paper by a normal laser printer to calibrate the camera, and obtained a similar 

resolution.  Reimar and Lenz (1988), Heikkila (2000), and Shen and Meng (2001) all 

developed their own techniques based on specific applications.  

 

X-ray imaging is different from normal optical imaging devices, such as a CCD 

camera.  The X-ray image intensity reflects the total absorption of the X-ray in its path 

by the measured object.  The X-ray image of an object is defined by a combination of 

perspective and affine transformations (Nobel, et al., 1998).  Thus the X-ray image is 

warped due to this transformation (Grant, et al., 2001).  Nevertheless the 

transformation process can still be modeled by the pin-hole camera model and 

corrected by coordinate transformation (Gronenschild, 1997). 

 

In general, the calibration and registration of multiple sensors is difficult.  There are 

numerous reports on sensor data fusion and registration (Cortelazzo, et al., 1998, 

Hastreiter and Ertl, 1998, and Shen and Meng., 2001).  In this chapter, a model based 

on the camera’s optical characteristics is established first.  Then, with the help of 

reference objects, the relationship between world coordinates and camera coordinates 



 57

is found, and the parameters describing the established model are calculated.  

Calibrated range imaging data are used for mapping thickness information in the 

consequent chapter.  

 

 

6.2 Objectives 
 
 
In this combined X-ray and laser 3D range system, three sensors were included. To 

ensure the accuracy of the calibration result, the geometrical relationship between the 

X-ray and laser beams was investigated.  The objective of the research presented in 

this chapter was to develop a geometrical calibration method for the laser range 

imaging and the X-ray, and to obtain the relationship between the X-ray and laser 

beams, enabling the pixel registration of the X-ray and laser images. 

 
 
 
 

6.3 Materials and Methods 
 
 

6.3.1 Dual Imaging System Setup 
 
 

The dual imaging system was designed and built to capture both X-ray and laser 3D 

images simultaneously.  It included two imaging subsystems: an X-ray imaging 

subsystem and a laser 3D imaging subsystem.  The laser 3D subsystem was  
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Figure 21.  The setups of the dual imaging system. The laser range imaging 
system (a) is housed inside the X-ray Chamber as shown in (b).  

Lasers Cameras 

X-ray beam slit 

Object 

X-ray 
Chamber

(a) 

(b) 



 59

 housed entirely in an X-ray chamber.  To correctly align images and reduce the 

mismatch of two images by possible slipping of the conveyor belt, the laser beam was 

arranged to stay as close to the X-ray beam as possible.  The laser system is shown in 

Figure 21.  For X-ray image acquisition, an X-ray tube and detector were used.  The 

voltage and current of the X-ray tube were optimally adjusted for poultry fillet 

imaging (Chen, 2003).  To obtain the 3D image, two cameras (Pulnix TM-6703, 

Pulnix America, Inc. Sunnyvale, CA) and two laser beam generators (635 nm, Lasiris 

SNF501L, Stockyale, Canada) were used.  The two cameras were connected to one 

Matrox Genesis LC board (Matrox Electronics Systems Ltd., Quebec, Canada), and 

they were placed on each side of the structured laser pattern generator to reduce the 

influence of possible occlusion caused by curvature of the poultry fillet.  The frame 

grabber was hosted in a Pentium IV computer.  The cameras and laser structure light 

generator were mounted on a frame that was fixed in the X-ray chamber.  The test 

object was placed on the conveyor belt that traveled under the X-ray and laser light. 

 

6.3.2 Calibration Algorithms 
 
 
The following procedures were conducted in the whole system setup: 

1. Calibration of intrinsic and extrinsic parameters of the two cameras; 

2. Correction of errors due to the camera lens distortion and projection 

transformation;  

3. Computation of X-ray parameters; 
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4. Correction of X-ray geometrical distortion introduced by the cone beam 

effect; 

5. Calculation of the relation between the two cameras; 

6. Attainment of the relationship between the laser and X-ray beams. 

 
 

6.3.2.1 Camera Pin Hole Model 
 
 
To calibrate a camera, the pin-hole model is normally adopted.  The pin-hole model 

(Tsai, 1987) is represented in Figure 22.  In this model, parameters are 

 

Figure 22.  Illustration of a typical Pin-Hole camera model (Tsai, 1987). 

 
divided into extrinsic parameters and intrinsic parameters.  The extrinsic parameters 

correspond to the translation and rotation transformations of the camera coordinates 
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into the world coordinates.  The translation and rotation transformations can be 

expressed by the homogeneous transformation 
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where (x, y ,z ,1)' is the object position in the world coordinate system; T=(tx,ty,tz)' is 

the translation of the world coordinate center to the lens coordinate system and R=(r1, 

r2, r3, 0) is the rotation of the world coordinate to the lens coordinate system.  Further, 

the rotation matrix can be decomposed into the form 
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( )αcos=A ,                                                                                                    (24a) 
( )γcos=B ,                                                                                                    (24b) 

)sin(α=C ,                                                                                                    (24c) 
)sin(γ=D ,                                                                                                    (24d) 
)cos(β=E ,                                                                                                    (24e) 
)sin(β=F ,                                                                                                    (24f) 

 
where α, β, and γ  are angles with which each sensor plane rotates around the Z, X, 

and Y axes of the world coordinates, respectively.  Then, points in the world 

coordinate system are transformed to the image coordinate system. 

 

In the intrinsic transformation, several parameters are considered.  First, image points 

are projected onto the image plane and the projection transformation can be described 

by following equation 
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where f is the focal length of the lens. 

 

Furthermore, the actual image plane (CCD sensor) may have different scales in the 

horizontal and vertical directions and the angle between the two lens axes may not be 

a perfect right angle due to manufacturing tolerance.  In this case, another matrix is 

introduced to correct for these errors (Figure 23). 
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where θ is the actual angle between the two lens axes, and du and dv represent the scale 

factors in the horizontal and vertical directions, respectively.  u0 and v0  are the 

deviations of the center of the actual coordinates from the center of the ideal 

coordinates center of the image sensor plane. 

 

Overall, any point in the world coordinate system can be projected onto an image 

sensor by the transform 

PEIp ××= ,                                                                                                   (27) 

where p(u’,v’,1) is the position in the obtained image, P(x,y,z,1) is the point in the 

world coordinate system, both p and P are expressed in homogeneous form,  I is the 

intrinsic parameter matrix, and E is the extrinsic transform matrix. 
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Lens distortion should also be accounted for.  There are five aberrations introduced by 

lens distortion: spherical aberration, coma, astigmatism, curvature of the field, and 

distortion.  The last two distortions have the largest effects on image deformation 

(Jeffrey, et al., 1994).  To allow for lens distortion, nonlinear parameters were added 

to the model.  According to Tsai (1987), only coupling second order radial distortion 

to the calibration model can obtain a very accurate result.  In the normalized image 

plane, which is an ideal virtual plane with z equal to one, the position can be expressed 

by (Brown, 1971, Wei and Ma, 1994, and Zhang, 1999) 

 
Figure 23.  Illustration of actual image sensor coordinates 
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where x” and y” are distorted normalized image coordinates, xi and yi are coordinates 

in the ideal normalized image coordinate system.  k1 and k2 are two non-linear indices 

that need to be calculated, and r2 =x2 +y2 is the distance from that point to the lens 

center. 

 

In the sensor plane, incorporating Equation 26 into Equation 28, and after some 

simplification, the equation can further be expressed by 

)]()[(' 64
2

2
10 rOrkrkuuuu ++−+= ,                                                            (29a) 

)]()[(' 64
2

2
10 rOrkrkvvvv ++−+= ,                                                          (29b) 

 
where u’ and v’ are actual coordinates in the sensor plane, and u, v are ideal 

coordinates.  u0 and v0 are the shifted sensor center from the ideal center position. 

 
 

6.3.2.2 Camera Calibration 
 
 
Because lens distortion has been introduced into the calibration, it is impossible to get 

a closed form solution to the calibration of all of the parameters.  A large amount of 

research has been done to calculate the intrinsic and extrinsic parameters (Abdel-Aziz 

and Karara 1971; Tsai, 1987; Zhang 1999; and Heikkila, 2000).  The process of 

calibration is divided into two steps.  First, an initialization is made based on some 

criteria and then a maximum likelihood estimation is applied to the initialization to 

find the best estimation of calibration parameters. 
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Assuming the calibration points are all in the X-Y plane of the world coordinate 

system, Z will be zero and the transformation in Equation 27 can be simplified as 

(Zhang, 1999) 
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Because the exact values of (u’, v’, 1)T and (X, Y, 1)T are known, Equation 30 is 

simplified into the following form 
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where [ ]trrIQ 21×= . 

 

There are 11 unknowns in Equation 31.  The closed form estimation is available as 

suggested by Tsai (1987), Zhang (1999), and Forsyth and Ponce (2002).  With the 

presence of lens distortion, the solution will always be the estimation of the real value.  

Then the nominal values of the intrinsic parameters in Equation 31 are used to 

calculate the rotation and translation parameters.  Equation 31 is further simplified to 

[ ]trrQI 21
1 =− .                                                                                            (32) 

 Then, the extrinsic matrix columns are calculated with 

1
1

1 )( QIr −= ,                                                                                                    (33a) 

2
1

2 )( QIr −= ,                                                                                                   (33b) 

213 rrr ×= ,                                                                                                       (33c) 

3
1 )( QIt −= ,,                                                                                                   (33d) 
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Because R calculated in this way is likely not orthonormal, further calibration is 

needed to extract the actual rotation matrix R’ (Kanatani, 1993 and Zhang, 1999). 

min'
1

2 →−∑
N

RR , subject R’R’T=1.                                                             (34) 

 

Because only intrinsic and extrinsic parameters are considered in the above calculation, 

the result can only be used as initialization.  Due to the nonlinear nature of lens 

distortion, maximum likelihood estimation (MLE) (Tsai, 1987; Zhang 1999; and 

Heikkila, 2000) has to be applied to find the optimal estimation for all the intrinsic, 

extrinsic and distortion parameters.  The estimation can be expressed as 

( )
2

,

,,'∑ −
ji

PEIpp ,                                                                                       (35) 

 

Normally, the Levenberg-Marquardt method is used to minimize Equation 35 (Bates 

and Watts, 1988), which converges after several iterations. 

 
 
 
 

6.3.2.3 X-ray Image System Calibration 
 

Geometrically, X-ray imaging can also be described by the pin-hole model (Figure 24).  

In Figure 24, the distance between the X-ray source and the detector was considered as 

the focal length of the imaging device, the image plane as the detector plane, and the 

object coordinates as the world coordinates.  There were six unknowns: f, the focal 
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length of the X-ray image;θ , the angle between the x-axis of the world coordinates 

and X-ray detector plane ux0, the deviation from the ideal coordinates center; xtx, xty, 

the translation of origin of the world coordinates to the X-ray coordinates; and dx, the 

scale factor of the X-ray detector.  Then Equation 26 is simplified to 
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Figure 24.  Illumination of X-ray model.  

 
The same method as the camera calibration was used to calibrate this function and the 

optimal minimization method was used to calibrate the X-ray subsystem. 
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6.3.2.4 X-ray Cone Beam Effect Elimination 
 
 
Although X-ray can be simulated by the pin-hole model, its imaging principle is 

different from normal camera imaging where image intensity represents the surface 

reflection of incident light.  If the X-ray’s incident intensity is I0, and it travels through 

a medium of density ρ  and the travel length is t, the exponential attenuation law 

(Beer’s Law) predicts that the detected X-ray energy has intensity I given by  



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
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


−= ∫ dt

zyx
zyxII

T ),,(
),,(exp0 ρ

µ ,                                                                            (37) 

where µ/ ρ  is the mass-energy absorption coefficient that characterizes the medium 

(Ryon, et al., 1988).  That means the X-ray image intensity is related to the travel 

length of the X-ray and not simply the thickness of the object.  Therefore, the cone-

beam effect should be considered when a laser 3D image is used to correct for the 

thickness variation.  From Figure 24, the real X-ray path is not only determined by the 

distance from the object surface to the detector plane, it is also influenced by the angle 

between the X-ray beam and X-ray detector plane 

  ∫=
T

dtdfT ),( θ ,                                                                                              (38) 

where d is the geometrical thickness of the object, and θ  is the angle between a single 

X-ray beam and the v axis in the X-ray coordinate system (Figure 24).  In Figure 24, if 

(ua,va) is the real image position in the X-ray coordinate system, its projection is 

located at (ub,vb), and the X-ray path is  

T= 22 )()( vbvaubua −+−  or )cos(/ θdT = ,                                              (39) 
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Therefore, the points with the same height to the detector plane have different X-ray 

absorptions, and hence the image intensity is different at the points that are the same 

distance to the detector plane but at a different position.  Accordingly, the laser image 

height needs a similar transformation to correct the warping of the X-ray image 

intensity by 

v"= v’/cos(θ ),                                                                                                (40) 

where v” represents the transformed height, and v’ represents the original height of the 

object. 

 

6.3.2.5 Laser and X-ray Beam Geometrical Relation 
 
 

In the combined imaging system, both X-ray and laser light beams are 

projected on the object.  To match the X-ray image with the laser image, the laser 

beam and X-ray beam should be parallel to each other.  In reality, the X-ray plane and 

laser light sheet plane may not be parallel, and their relationship to each other needs to 

be calculated.  Suppose that the X-ray beam plane is in the y-z plane of the coordinate 

system as illustrated in Figure 25.  Their relation can be determined by the anglesα  

and β angles 
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where α  represents the rotation angle of the laser plane around the z-axis and β 

represents the angle of its rotation around the y-axis. 
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Figure 25.  Illumination of laser and X-ray beam model and its relation. 

x 

y 

α 

β

Laser(x1, y1) 
X-ray 
source

z 



 71

To calibrate the X-ray and laser beam plane, a calibration object is needed.  To 

determine the angle α, an object of known size is scanned by the dual imaging system.   

 

Because the distance the object moves, l, and object height, h, are already known , the 

angle α can be calculated by 


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



=

h
larctanα ,                                                                                                (42) 

and the resolution of α is determined by 

p
lh

nh
∆

+
=∆ 22α ,                                                                                             (43) 

where n is the total number of pulses generated when the object travels distance l 

along the conveyor belt, and p is the encoder resolution.  The resolution of α is 

determined by the encoder resolution p. 

 

The same approach is used to obtain the angle β.  Because the angle α is known and 

the relative positions of laser and X-ray beams have been adjusted, the effects of the 

positions do not need to be considered when computing the angle β.  Again, a known 

size rectangular block is used as the reference.  The block is placed on the conveyor 

belt at approximately the same direction as the conveyor belt (the exact direction of 

conveyor belt is not known and does not need to be known, because only the X-ray 

and laser images are of importance).  Suppose A, B, and C are three corners of the 

rectangle, the distance from A to B is D1, and from B to C is D2.  After scanning, the 

3D image (Figure 26) is warped.  But the distance between point C and point F has not 
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changed, as well as the distance between point A and point E.  Based on this condition, 

the angle α is found by 

)arctan(
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ddDD

dD
−−

=α .                                                                         (44) 

After all of these calibrations, the laser light sheet plane is parallel to the X-ray beam 

plane. 

 

Figure 26.  Illustration of angle α calculation. 

 
 

6.3.2.6 Back Projection Calculation 
 
 
All of the parameters have been calculated and now the point located in the image 

plane can be calculated from its world coordinates by the equation 

δ+= IEPp ,                                                                                                    (45) 

where δ is the distortion caused by the lens. 
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In actual application, the coordinates in the sensor plane are known, but the world 

coordinates need to be determined by inverse computation.  Because δ is nonlinear, it 

is difficult to obtain an accurate result without time-consuming iterative searching.  

Heikkila (2000) proposed a very accurate non-iterative model to compute the 

distortion.  In his method, the following equation was used to calculate the ideal object 

coordinates in the image coordinate system from its distorted image 
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where 1)''( 2
876

2
5 ++++= rkvkukrkG , and k1 to k8 are non-linear indices. 

 

Although the average error of this method was less than 0.01 pixels and an iteration 

calculation was not used, it still required a lot of calculation and it cannot be applied to 

real-time applications. 

 

Based on the distortion model as indicated in Equation 29, we can have 
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where δ µ, δ ν are the error values in the u and v directions.  δ u and δ v are functions 

of (u,v,r).  After applying Taylor expansion (Askey and Haimo,1996) to Equation 47,  
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where δ∆ u and δ∆ v are the distortion rates in the u and v directions.  Because the 

measured object’s size is relatively small compared with its distance to the camera 
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lens, r is much smaller than 1 (Appendices D and E), the influence of the r3 term in 

Equation 47 is negligible.  Furthermore, replacing r with 22 yx + in Equation 48 

gives  
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Now, the distortion can be calculated based on its neighboring points’ distortion, and 

distortion can be eliminated from Equation 45.  At this stage, the intrinsic parameters, 

extrinsic parameters and distortion parameters are all known, and a point’s coordinates 

in the world coordinate system can be calculated from its coordinates in the image 

(sensor plane) coordinate system. 

 

To make this method accurate, a look-up-table is constructed.  The data in the look-

up-table represents the distortion at that point in the sensor plane.  The data points 

cover the sensor plane and form an evenly spaced 2D grid.  Because a Taylor 

expansion was used to derive Equation 48, the accuracy of the result depends on the 

size of the grid.  The smaller the size of the grid, the more accurate the result. 

 
 

6.3.2.7 Calibration Procedures 
 
 
 The whole system calibration was calibrated by the following steps: 

1. The camera’s intrinsic and extrinsic parameters were calibrated using 

calibration patterns.  First, the intrinsic parameters were calculated, then, the 
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extrinsic parameters were calculated when the cameras were mounted in the X-

ray chamber (Appendices D and E). 

2. The geometrical relation of the laser beam and X-ray beam were revealed by 

scanning a calibration block placed on the conveyor belt.  The laser position 

was then adjusted to be parallel with the X-ray beam. 

3. The X-ray image was calibrated using the calibration pattern.  Due to the X-ray 

imaging characteristics, a special calibration object was made by the Computer 

Numerical Controlled (CNC) machine machine as shown in Figure 27. 

4. The extrinsic parameters of the camera were re-calibrated in the X-ray 

chamber using the calibration block.  The laser beam plane coincided with one 

plane of the world coordinate system.  One look-up table was generated for the 

distortion correction after this step.  Because computed coordinates in the 

world coordinate system were not necessarily evenly distributed in the 2D grid, 

linear interpolation was used to find those values.  

5. Based on the X-ray imaging transformation matrix, the laser 3D image was 

transformed. 

 

Because the conveyor only carried the object, its direction of motion affected the 

image but not the geometrical relationship of those sensors.  Thus the direction of 

travel was not considered in the calibration process. 
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(a) 

 

(b) 

Figure 27.  Images of object used for X-ray calibration.  (a) The top view of 
calibration object, and (b) The side view of the steel pins inserted 
into the calibration object of (a). 

 
 
 

6.4 Results and Discussion 
 
 
In the calibration process, the conveyor surface plane was used as the reference plane, 

all the calculated height was based on this surface.  To evaluate the performance of the 

calibration approach, the following experiments were conducted to investigate its 

accuracy. 
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6.4.1 Camera Reverse Calculation Accuracy 
 
 
This experiment was used to test the accuracy of the inverse calculation under current 

settings.  One thousand points were randomly generated in the sensor plane, and the 

distortion was calculated by Equation 47.  Then Equation 49 was used to estimate the 

distortion from the distorted image points.  The differences between the actual and 

estimated distortion were compared.  Figure 28 shows that the error increased as the 

point’s distance to the lens center increased.  Because the proposed method was not 

rotation invariant, the distortion was different at points even when their distances to 

the center are the same.  The worst case difference of the estimated method was only 

0.21 pixels (1 pixel = 0.7 mm × 0.7 mm) when the points was 250 pixels away from 

the center.  This demonstrated that the proposed method was very accurate under the 

current settings. 

 
Figure 28.  Illustration of reverse computing accuracy.  The error increases as the 

point’s distance to the lens center increases. 
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6.4.2 Camera Calibration  
 
 
In this experiment, the camera image calibration precision was investigated.  In the 

experiment, metal staircase blocks with height from 5 mm to 50 mm (Figure 29) were 

used.  To ensure the accuracy of the result, the staircase blocks were made with an 

accuracy of 0.025 mm ( 0.036 pixels) by a Computer Numerical Controlled (CNC) 

machine.  The blocks were placed on the conveyor and scanned.  To each height plane, 

one thousand points were taken, and the calculated heights were compared with actual 

height value.  Because the thickness of a chicken fillet is normally smaller than 50 mm, 

only the thicknesses equal or below 50mm are shown in Table 5.  Table 5 shows that 

the calibration precision was accurate with a maximum error of 0.291mm.  The data 

from the two cameras was very close, although one camera’s data had a larger 

variation.  However, the variation was still small compared to the real thickness.   

 

Figure 29.  One of the blocks used in the calibration. It was milled by a CNC 
machine at an accuracy of 0.025 mm (0.036 pixels) in the x, y, and z 
directions.  
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Table 5.  Camera calibration precision based on the 10 depth step test. 

First Camera Second Camera Depth 

(mm) Mean(mm Std*(mm) Error*(mm) Mean(mm) Std*(mm) Error*(mm)

5 4.836 0.0335 -0.164 4.804 0.0922 -0.196 

10 9.743 0.0249 -0.257 10.033 0.0652 0.033 

15 14.772 0.0263 -0.228 14.769 0.0760 -0.231 

20 19.974 0.0359 -0.026 19.896 0.0691 -0.104 

25 24.99 0.0202 -0.01 24.823 0.0614 -0.176 

30 30.226 0.0291 0.226 30.036 0.0454 0.036 

35 35.291 0.0329 0.291 35.067 0.0434 0.067 

40 40.141 0.0344 0.141 40.072 0.0500 0.072 

45 44.995 0.0313 -0.005 45.032 0.0484 0.032 

50 50.012 0.0284 0.012 50.023 0.0442 0.023 

 *Std means standard deviation. Error means the difference between the measured and 
the actual heights. 
 
 
 
 

6.4.3 Result of Corrected Laser 3D Image 
 

In the combined bone fragment detection system, the ultimate goal was to combine 3D 

and X-ray imaging together.  Because the 3D imaging was more flexible, the 3D 

images were transformed into a pseudo-X-ray image by Equations 36 and 40.  In this 

experiment, the result of the transformation was examined by comparing the corner 

position of the calibration block in the 3D and X-ray images.  As in the camera 

calibration, calibration objects with an accuracy of 0.025 mm × 0.025mm × 0.025mm 
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in x-, y-, and z-direction were used.  The calibration objects had different sizes and 

their heights ranged in size from 5 mm to 50 mm.  The calibration blocks were placed 

on the conveyor at randomly selected locations.  Both the X-ray and laser 3D images 

were grabbed, and were transformed by Equations 36 and 40.  The horizontal positions 

of transformed 3D images were compared with the corresponding X-ray image points.  

Fifty points were compared.  The results (Figure 30) show that the error became larger 

as the point’s distance to the image center increased.  The mean error was 0.183 mm 

and the largest error is 0.5 mm.  Taking into account the 0.4mm resolution of the X-

ray detector, it was about one pixel. 

 

Figure 30.  Error after the Laser 3D geometrical correction. The error became larger 
as the point’s distance to the image center increased. 
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6.4.4 Typical Sample Image Results 
 
 

A calibration block was scanned, and its calibrated image was shown in Figure 31.  

Figure 31(c) was the reconstructed image of the calibration block. 

 

 

(a) 

 
(b) 

 
(c) 

Figure 31.  The 3D and reconstructed images of a calibration block.  (a) Original 
image, (b) the calibrated 3D image, and (c) the reconstructed image. 
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Figure 32 shows images of a poultry meat.  On the right is the calibrated 3D image.  In 

the 3D image, the thicker the meat was, the brighter the image. 

 

 
Figure 32.  A typical example of poultry meat (left) and its 3D image (right).  

 

The resulting laser range image was later transferred into a pseudo x-ray image for 

combined X-ray and laser bone fragment detection system. The pseudo X-ray image 

transformation will be described in Chapter 7.  

 
 
 

6.5 Conclusion 
 
 
In this chapter, the modeling and calibration of a multi-type multi-sensor system was 

conducted.  The calibration was performed in four steps.  First the calibration of the 
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camera was carried out.  In the camera calibration model, the calibration parameters 

were separated into intrinsic and extrinsic parameters.  To obtain these parameters, a 

known-shaped object was used as a reference object and maximum likelihood 

estimation was applied to the computation.   

 

Based on the experimental results, an accuracy of approximately 0.2 pixels 

(0.7mm/pixel in laser 3D image) was obtained from the calibration.  To reduce the 

time spent on computing the image distortion, a reverse computing method was 

proposed and the accuracy was approximately 0.02 pixels using current settings.  

Second, the X-ray beam was modeled using a simplified pin-hole camera model, and 

the same algorithm that was used to calibrate the camera was applied to the calibration 

of X-rays.  At the same time, the distortion caused by the fan beam effect was readily 

calculated.  Third, the geometrical relationship of the X-ray beam and the laser beam 

was revealed, and the laser beam was adjusted accordingly.  Finally, the performance 

of the calibration was evaluated.  By using different objects of different shapes, the 

transformed 3D images matched the X-ray images very well.  The average error was 

0.183 mm. 

 

Therefore, although some errors existed in the calibration, the proposed method was 

capable of producing an accurate range image for the input to the combined X-ray 

imaging system for the bone fragment detection.  
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Chapter 7 

MAPPING OF 3D IMAGE TO PSEUDO-X-RAY IMAGE 
 
 

7.1 Introduction 
 
 
 
According to USDA regulations (USDA, 1999), de-boned meat is required to be free 

of any foreign parts and bone fragments.  Extensive effort has been devoted to 

developing techniques to accomplish this difficult task.  One of the frequently 

investigated techniques is X-ray technology.  X-ray technology is widely used in areas 

where non-destructive detection is needed.  However, it has had limited success in 

poultry bone fragment detection because the X-ray image intensity difference between 

bone and meat is small and the poultry fillet has an uneven thickness that results in 

false patterns in the X-ray images (Tao, et al., 2001).  To tackle this difficult problem, 

a combined laser 3D range image and X-ray image system was proposed to provide 

higher sensitivity and accuracy and to eliminate the false patterns (Tao and Ibarra, 

2000).  To use the thickness information, the laser range image had to be transformed 

into a pseudo-X-ray image because the X-ray image represents the absorbed energy as 

X-ray passed through a material.  Because the absorption index of X-ray by poultry 

meat was unknown (Hubbell and Seltzer, 1997), it had to be obtained through 

experiment. 

 

X-ray signals are noisy by nature.  The noise comes from sources such as photon 

fluctuation, heat accumulation, and electronic signal amplification and digitization 
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(Boerner and Strecker, 1988).  These noises normally have high frequencies, lack 

spatial correlation, and are signal dependent (Alison, et al., 1998).  The presence of 

noise in the X-ray image made the absorption index calculation difficult.  Various 

temporal and spatial averaging methods were used to decrease the noise in the X-ray 

image (Boerner and Strecker, 1988).  Depending on the application, other filters such 

as low pass, median and Gaussian filters were also employed for noise reduction 

(Chan, et al., 1993, and Mery and Filbert, 2002). 

 

Usually, small patches of grease, remnant skin, and air pockets are found in poultry 

fillets.  Because the densities of these materials are lower than that of meat, their 

presence causes image intensity variations.  Additionally, the muscles from different 

parts of the chicken and from different chicken species have different compositions.  

Thus, differences in X-ray absorptions are expected.  These variations affect the 

mapping accuracy of the laser image to the X-ray image. 

 

Laser images also contain noise.  Poultry meat is a heterogeneous material with 

approximately the same density as water.  When the laser beam hits the meat, the laser 

light easily penetrates into the meat and is scattered.  The resultant 3D image 

inevitably contains noise, although the noise is low compared to the real 3D 

information. 

 

In a normal regression model, one variable is treated as a response variable and the 

other as a predictor variable.  By modeling the expectation of the response variable as 
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a function of the predictor variable, the response variable is related to the predictor 

variable by the regression equation.  The least squares procedure is only used when 

predictor variables are not subject to any random variations.  Because the estimation 

procedure is based on minimizing the least squares error in one variable, it leads to an 

error in the other variable, and the estimation error is not orthogonal to the estimated 

curve.  In such cases, the least squares estimate is not optimal even if the errors in both 

variables are white and Gaussian.  However, if the variance of the predictor variable is 

small compared to the variance of the response variable, or the ratio is known, the 

least squares method (Norman and Draper, 1998) can still be used.  Several methods 

have been proposed to find an optimal solution to this problem (Weiss, 1989, Qjidaa 

and Radouane, 1999, and Gibson, et al., 2000).  The presence of outliers or heavy-

tailed error distribution also affects the performance of the least squares method.  In 

these cases, robust estimation is applied to spot the abnormal points and exclude them 

from the regression (Zhang, 1996, and Norman and Draper, 1998). 

 

7.2 Objectives 
 
 
The objectives of this study were to analyze the sources of variation and noise in the 

X-ray and laser 3D images and to develop an image model to find the optimal 

mapping relationship between the laser 3D and X-ray image.  The purpose of the 

mapping was to produce the pseudo-X-ray image from the laser range image of 

poultry fillets for the overall integrated imaging detection of bone fragments, as 

presented in the dissertation by Chen (2003). 
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7.3 Materials and Methods 
 
 

7.3.1 Dual Imaging System Setup 
 
 
The dual imaging system was designed and built to capture both X-ray and laser 3D 

images simultaneously.  It consisted of two imaging subsystems: an X-ray imaging 

subsystem and a laser 3D imaging subsystem.  The laser 3D subsystem was located 

entirely in the X-ray chamber.  To reduce mismatch of images from both sources by 

possible slipping of the conveyor belt, the laser beam plane was arranged to overlap 

the X-ray beam plane.  The combined system setup is depicted in Figure 33.  For X-

ray image acquisition, an X-ray tube and detector were used.  They connected to a 

Matrox Genesis board (Matrox Electronics Systems Ltd., Quebec, Canada).  The 

voltage and current of the X-ray tube were optimally adjusted according to the poultry 

fillet.  To obtain the 3D image, two cameras and two laser beam generators were used.  

The cameras were connected to a Matrox Genesis LC board (Matrox Electronics 

Systems Ltd., Quebec, Canada), and they were placed on each side of the structured 

laser pattern generator to reduce the influence of possible occlusion caused by 

curvature of the poultry fillet.  Both frame grabbers were plugged into a Pentium 

computer.  Both cameras and the laser structure light generator were mounted on a 

frame that was fixed in the X-ray chamber.  The test object was placed on a conveyor 

belt that traveled under the X-ray and laser light. 
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Figure 33.  The setups of dual imaging system 
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The images were grabbed and saved in the computer using software written with 

Microsoft Visual C/C++ (Microsoft Corp., Redmond, Wash.).  The software utilized a 

Matrox (Matrox Electronics Systems Ltd., Quebec, Canada) library to interface with 

the frame grabber.  It was capable of simultaneously grabbing images from the X-ray 

and computing the 3D laser images from two cameras.  The X-ray image had 12 

effective bits.  Laser images were grabbed and calculated with 8 bits resolution.  The 

3D laser images and the X-ray image were fully synchronized by an encoder.  The 

image grabbing and processing was done on-line. 

 
 

7.3.2 Model of X-ray Image Intensity Variations 
 
 
A typical imaging system can be modeled by (Jain, 1989) 

),()],([),( yxyxwgyxv η+= ,                                                                        (50a) 

∫ ∫
∞

∞−

= '')','()',';,(),( dydxyxuyxyxhyxw ,                                                      (50b) 

 
where v(x,y) is the image obtained and η (x,y) is the noise added to the system for 

various causes.  u(x,y) is the original image, w(x,y) is the image after the original 

image is convoluted by a image system’s impulse response h(x,y), and g is the 

function that models the characteristics of the image system. 

 

Normally, the noise generated in photo-electronic systems can be modeled by  

)( ) ( ) ),(,.( 21 yxyxyxgf ηηη += ,                                                                    (51) 
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where f depends on the imaging device, and η 1 and η 2 are mutually independent 

Gaussian white noises with zero mean (Jain, 1989).  In this model, the noise comes 

from two sources: η 2 represents an additive wideband thermal noise, and η 1 is 

multiplicative and signal dependent.  Because the detection and recording processes in 

X-ray imaging involve random electron emission, which obeys a Poisson distribution 

with a mean value of g, η 1 can be simulated by a Gaussian distribution with its 

standard deviation proportional to the square root of the signal.  In practice, g is 

replaced by its spatial average to simplify the calculation, so f can be replaced by g , 

where g  is the spatial average of g. 

 

If the X-ray’s incident intensity is I0, and travels through a medium with density ρ  

and thickness t, the exponential attenuation law predicts that the detected X-ray energy 

has intensity I given by  










−= ∫ dt

zyx
zyxII

T ),,(
),,(exp0 ρ

µ ,                                                                            (52) 

where µ/ ρ  is the mass-energy absorption coefficient that characterizes the medium 

(Ryon, et al., 1988).  This holds true when the object is a perfect homogeneous 

material.  However, in poultry fillets, when other materials such as grease, air pockets, 

and various bone fragments are present, then; 
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and IR is the X-ray energy that reaches the X-ray detector. 

 

Incorporating the noise (Equations 51 and 53) into the image model (Equation 50) 

produces 

21
2

0 )exp()exp( ηηββ ++∆= ∏
=

R

n

i
iiA ITTII ,                                                 (57) 

where, RI  is the spatial average of IR , IA is the actual signal X-ray detector received. 

 

From Equation 57, both the noises and foreign inclusions will cause X-ray image 

intensity variation.  The variation due to foreign inclusions was greater than compared 

to the other two variation sources.  From Equation 53, it can be observed that, when 

the same bone fragment is placed in a fillet of varied thickness, the X-ray image 

intensity variation is smaller when the bone is in the thicker part of the meat.  
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However, in the thinner part of the meat, the X-ray image variation level is larger.  

This suggests that different thresholds might be used to differentiate the bone 

fragments from meat with thickness variation.  Otherwise, transformation is needed to 

ensure data uniformity. 

 
 

7.3.3 Model of Laser 3D Range Image  
 
 

Noise also occurs in laser 3D images.  In laser 3D images, noise mainly comes from 

calculation error caused by scattering.  Scattering is a phenomenon that occurs when 

strong coherent light strikes a medium that contains components that have different 

refractive indices and whose sizes are on the same scale as the light wavelength.  It is 

very difficult to describe scattering accurately.  Although the image quality is 

corrupted by scattering, thickness information can still be recovered by sub-pixel 

techniques that were described in previous chapters.  The noise, some caused by 

scattering, can be considered as a Gaussian white noise with variance σε and zero 

mean. Then the 3D image is described as 

δ+= ),( yxTTA ,                                                                                             (58) 

where, TA is the obtained image intensity, T(x,y) is the original image, and δ is the 

additive Gaussian noise. 
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7.3.4 Laser 3D Image to X-ray Image Mapping 
 

It is difficult to measure the attenuation index when an X-ray passes through a poultry 

fillet unless the meat block is of a uniform height.  As an alternative, least squares 

procedures are used to obtain the attenuation index.  Inevitably, noise has to be 

considered in the regression.  Due to the fan beam effect of X-ray imaging, the T in 

Equation 58 is replaced by the actual X-ray path instead of the meat thickness. 

 

Because the noise is small, Equation 60 is equal to 

∏
=

∆=∆−
n

i
iiAA TTIII

2
0 )exp()exp( ββ ,                                                            (59) 

where 21 ηη +=∆ RA II ,                                                                                             (60) 

 

Applying a logarithmic transformation to both sides of Equation 59, we have 
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Expanding the left side of Equation 61 by Taylor expansion, incorporating Equation 

60 and making a proper transformation, it now becomes; 
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,                                                (62) 

where, 00 ln I=β .  Furthermore, IA can be replaced by its spatial average RI .  It can 

further be simplified as 
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εββ ++= TY 0 ,                                                                                             (63) 

where Y=ln(IA),  

and 21
2

11 ηηβε
RR

i

n
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i II
T ++∆= ∑

=

,                                                                              (64) 

However, for use in the bone fragment detection application, it may be incorrect to 

assume that ε follows normal distribution. 

 

Incorporating Equation 58 into Equation 63 gives 

)(0 βδεββ −++= TY ,                                                                                  (65) 

where δ~N(0,σδ).  Because the errors ε and δ are independent, they are not correlated 

and cov(ε,δ) should be zero. 

 

As mentioned before, small patches of grease, tissue and skin are present in the 

poultry fillets.  The absorption and density of these materials is lower than that of meat 

muscle.  On the contrary, bone fragments and other items such as metal have higher 

densities and higher absorption indices compared to the muscle.  Thus, it is not 

difficult to find that the residuals are not normally distributed and may contain outliers.  

In this case, a weighted least squares is adopted method to robustly find the relation 

between the X-ray and 3D laser images.  

 

Using the matrix form of Equation 65, the robust estimation can be deduced from 

(Fuller, 1987) 
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where Y is an (n×1) vector of observations of the response variable; T (n×2) contains 

the n observations on the p predictors (including the intercept term); β (2×1) is the 

regression vector to be estimated, and 
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where W is a diagonally weighted matrix.  W depends on the variance of that point, 

and can be expressed as 
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where s is a scale factor and 

6745.0/)( ii emedianemedians −= ,                                                               (69) 

is selected as suggested by Andrews et al. (1972).  ei in Equation 69 is the residual.  

The biweight function, due to Tukey (1977), was adopted as the ψ -function. 
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with c = 5. 
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The robust estimation procedure was iterative and proceeded in the following steps: 

1) Apply ordinary least squares to the data.  

2) Calculate W0. 

3) Based on W0, calculate β. 

4) Re-compute W1 based on newly calculated β. 

5) Repeat until W k converges. 

A detailed description of the robust regression algorithm can be found in Farebrother 

(1988) and Norman and Draper (1998). 

 
 
 
 

7.4 Results and Discussion 
 
 

7.4.1 Reason for making the transformation 
 
 
At the beginning of the mapping operation, a transformation needs to be made to the 

X-ray image.  In a normal regression model  

Y = Xβ+ε,                                                                                                         (71) 

where ε is one dimensional vector of error terms, which are to be independent and 

identically distributed (IID).   Using the least squares method, the function 

)()()( YXYXf T −−= βββ ,                                                                           (72) 

is minimized.  Its solution is simply given by  

XYXX T 1)( −=β .                                                                                            (73) 
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The result is not biased and is the maximum likelihood estimation only when 1) there 

are no outliers, which is a data point that is far away from the rest of the data, 2) 

residuals are uncorrelated (i.e. E(εiεj)= iji δσ 2 ), and 3) variances are constant (i.e. 

],...,1[2 ni
i

∈∀=Λ σε ) (Norman and Draper, 1998). 

 

For this application, the relationship between the X-ray signal and laser signals is 

shown by Equation 52.  Using Taylor expansion  

)()exp( 22
0 YTOYTTIf ∆+∆+∆−∆=∆ ββ ,                                                (74) 

Ignoring the second and larger order terms, the variance becomes 

22 )1)2(exp()( σε +=∆=Λ TfE
i

,                                                                    (75) 

Obviously, the variance is not the same at every point.  Thus the least squares method 

does not yield the optimal solution, so a linearization (Equation 61) is necessary. 

 
 

7.4.2 Residual non-normality check 
 
 
In the previous discussion, it was assumed that the error distribution was not normal.  

To check whether that assumption was correct, two plots were used.  The first one was 

a residual histogram, and the second one a normal plot (Barnett and Lewis, 1994).  

 

The residual histogram plot (Figure 34) showed a normal distribution.  However, from 

the normalized plot (Figure 35), it was clear that the residual was short tailed, thus 

robust estimation had to be used to make the resolution optimal. 
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Figure 34.  A typical distribution of residual errors of the X-ray intensity image and 
the pseudo X-ray image produced from the laser range image.  

 
 

 
 

Figure 35.  Normalized plot of accumulative residual errors of Figure 34 (normal plot 
to a sale of 100). 
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7.4.3 Experimental Results  
 
 
One hundred and thirty chicken fillets were imaged and processed in this experiment.  

All of the fillets were directly obtained from a poultry processing plant.  They were 

fresh cut and de-boned, but not trimmed, so that the meat condition and bone fragment 

size and distribution were comparable to an actual inspection process.  In the 

experiment, three to five fillets were placed on the conveyor and consecutively 

scanned as a batch.  To each piece of meat, the mapping relationship was found by the 

method mentioned before.  Based on this relationship, the laser 3D image was 

transformed into pseudo-X-ray image, and the pseudo-X-ray image was compared 

with the original X-ray image.  Before processing, the system was fully calibrated to 

ensure the accuracy of the observed data. 

 
Figure 36 shows a sample obtained from the designed system.  In Figure 36(b), there 

were air pockets and small bone fragments in the meat.  Because the absorption index 

of air was lower than that of the meat, the air pockets had higher intensities in the 

image. The bone fragments appeared to be dark in the X-ray image.  Reflected in 

scatter plots below (Figures 36(c) and 36(d)), the points corresponding to bone 

fragments were far below the regression line; whereas the points reflecting air pockets 

were above the regression line.  Also from these two figures, it can be clearly seen that 

the data was scattered in a “funnel” shape, i.e. one end was wider than the other.  This 

was because X-ray noise was proportional to signal strength itself.  If the signal was 

strong, as was the case when the meat is thin, the noise was high.  The presence of 
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 (d)  

                                                                    

(e)                                                  (f)  

Figure 36.  Images and results of the whole procedure.  (a)  Reversed 3D image, (b) 

original X-ray image, (c) scatter plot of X-ray and 3D image intensity 

without transformation, (d) scatter plot of X-ray and 3D image intensity 

after transformation.  The dashed line is the robust fitting result, and the 

solid line is the regular linear fitting result, (e) pseudo-X-ray image from 

3D image, and (f) compensated X-ray image whose intensity variation was 

reduced. 
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this effect makes linearization of the X-ray signal essential in obtaining optimal results.  

Transformations from nonlinear to linear forms also suppressed noise.   In Figure 

36(d), ordinary least squares were obviously influenced by outliers, while robust 

estimation followed the bulk of the data and was not strongly biased towards outliers.  

After applying the robust estimation, the mapping relationship between the 3D and X-

ray images was known and 3D image could then be transformed to pseudo-X-ray 

image (Figure 36(e)).  When X-ray and pseudo-X-ray images were combined, the 

intensity variation of the resulting image due to thickness variation was reduced. 

 

Ideally, the intensity of the combined image should be zero.  Because of the presence 

of the noise, the actual image intensity was not zero.  To all the combined sample 

images, their average intensity was 23.7307 and their standard deviation was 29.6.  

Because the X-ray image had 12 bits depth, the noise level occupied only 1.5% of the 

total image dynamic range (Appendix J and I). 

 

 

7.5 Conclusion 
 
 
Noise models of X-ray images and 3D laser images were developed and analyzed.  

The noises in X-ray image were not uniform. The X-ray noise came from the imaging 

device, heat accumulation, variations in the inspected material, and inclusion of 

foreign objects.  The noise was proportional to the signal strength and was difficult to 

eliminate from the X-ray images.  In the laser 3D image, the noise mainly came from 
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calculation errors due to light scattering.  The distribution of residuals of the X-ray 

image was “shorter-tailed” than normal, while residuals of the 3D images were 

modeled as Gaussian white noise fields with zero mean.  The relationship between X-

ray image intensity and thickness of an object is nonlinear by nature.  It was necessary 

to transform the X-ray image to a linear form.   

 

Because the X-ray noise was short tailed and contained outliers and the X-ray image 

intensity was not linear with the thickness, using an ordinary least squares regression 

method could not get an unbiased solution.  Therefore, a robust fitting procedure was 

important to fit the data set.  The robust fitting successfully revealed the relationship 

between the X-ray image and 3D information.  The pseudo-X-ray image transformed 

from 3D image can be used to reduce the X-ray image intensity variation due to the 

thickness variation.  The residual image’s intensity average was 23.7302 with standard 

deviation of 29.6, and only occupied 1.5% of the dynamic range of the X-ray image.  

This built the foundation for the performance of a combined bone fragment detection 

system. 
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Chapter 8 

SOFTWARE AND HARDWARE DEVELOPMENT 
 

 
 
 

8.1 Introduction 
 
 
 
 
The designed bone fragment detection system was a very complicated system.  It 

consisted of X-ray and the laser 3D imaging systems.  Consequently, the system had 

to be able to handle the data coming from both sources and finish all calculations in a 

very short time.  In the dual imaging system, the desired conveyor belt speed was 0.2 

m/sec.  If the 3D image resolution was one millimeter in the conveyor belt moving 

direction, the system had to be able to process an image frame, perform calculations, 

combine the data from both sources and detect the bone fragments in 1.6 milliseconds, 

which posed a big challenge to the software, hardware, and operating system. 

 

In this chapter, the real-time characteristics of Windows NT, and the architecture of 

the image grabber and data flow structure are introduced.  At the end of the chapter, 

results are discussed of tests performed to make sure the designed system was capable 

of performing all these operations at the speed desired. 
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8.2 Window NT Real-Time Feature Introduction 
 
 
Windows NT has been adopted due to its portability, reliability and robustness, 

(Curster, 1993).  Windows NT offers users many conveniences, including an easy-to-

use graphical interface interoperability with Windows-based applications, network 

communications, easy information access, and powerful information processing 

capabilities.  In addition, its preemptive multitasking and multithreading features meet 

some of the real-time requirements of a variety of industrial applications.  Therefore, 

Windows NT has been considered as an alternative for operating systems used for 

real-time applications. 

 
 

8.2.1 Architecture of Windows NT 
 
 
Windows NT is a complex operating system.  Figure 37 illustrates the architecture of 

Windows NT.  It is divided into two parts: the user-mode portion and the kernel 

portion.  In the user-mode portion, there are various subsystems.  Each provides a user 

interface and is fundamental to the system’s operation.  However, the application that 

runs under the user mode has a limited set of available interfaces and limited ability to 

access system data.  The kernel mode is composed of five modules: Windows NT 

executive, Windows NT kernel, hardware abstraction layer (HAL), device driver, and 

windowing and graphics system (Solomon, 1998).  This part of the operating system 

has the ability to access the system data, and some parts of it can communicate 

directly with the hardware. 
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Figure 37.  The Windows NT architecture (Solomon, 1998). 

 
The design of Windows NT borrows concepts both from the layered model and the 

client/server model (Solomon, 1998).  In the client/server model, the client and server 

communicate through a message-passing facility.  First, the client sends a message to 

the message-passing facility.  Then the message is dispatched to the server, and the 

server performs the operation and returns the results to the client through the message-

passing facility.  Each server can be developed separately as long as the message 

interface is clearly defined.  Updates and upgrades to the operating system can be 

easily managed, and it is more likely to be reliable because smaller, independent 

modules are easier to program than large, interconnected complex systems.  In the 

Windows NT environment, application programs are clients, and protected subsystems 

are servers.  The application program clients send messages to the protected subsystem 
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servers through the NT executive, which provides a set of shared services for all the 

servers.  The servers again reply though the NT executive. 

 
 
8.2.2 Real-time Feature of Windows NT 
 
 
Windows NT is known as a general-purpose operating system.  However, it provides 

certain features for real-time applications. 

 

Interrupting is used by a real-time application to ensure that external events are 

noticed by the operating system.  Responses to interrupt are critical to real-time 

applications.  Within Windows NT, there are 32 possible interrupt levels, as shown in 

Table 6.  Interrupts are handled on a preemptive basis, that is to say, when a higher 

level interrupt occurs, all executions at lower interrupt levels are suspended and 

execution begins immediately on the higher level interrupt request.  Processing 

continues until the higher level interrupt is completed or an even higher level interrupt 

occurs.  In this way, the operating system ensures that the higher level interrupt always 

has the privilege to run, allowing a quick response to the external event. 

 

Within Windows NT, user applications are defined as processes.  A process is 

composed of several threads.  Associated with the process property is its priority class 

that defines the basic priority at which the application will run.  There are four classes, 

or 32 priority levels, of which 16 are reserved for the operating system and real-time 

processes.  Among them, the zero (idle) is the lowest, while 31 (real-time time critical) 
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Table 6.  Windows NT interrupt levels (Custer, 1993). 

Interrupt Level(s) Definition 

31 Hardware error interrupt 

30 Power-fail interrupt 

29 Inter-processor interrupt 

28 Clock interrupt 

12-27 These levels map to the traditional interrupt 
levels 0-15 

4-11 These levels are not generally used 

3 Software debugger interrupt (DPC) 

0-2 Reserved for software-only interrupts 

 

 

Figure 38.  Windows NT priority spectrum (MSDN, 1998). 
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is the highest level.  Every process has a base priority class.  As shown in Figure 38 

below, there are seven priorities allocated to real-time applications.  Real-time 

applications can run with a base priority class of 31 (time critical), 24 (normal), or 16 

(idle).  Typically, real-time processes run at priority 24.  Other applications (dynamic 

classes) have a base priority class of 15, 13, 9 (normal foreground process), 7,4,1, or 0. 

 

The priority of the process thread changes slightly around the base priority level.  For 

example, a process running at real-time priority 24 can have threads that run from 

classes 22 to 26, depending on each independent priority.  These threads will always 

stay within the real-time priority class.  In general, real-time processes have priority 

over almost all other activities or system events.  Moreover, Windows NT contains 

features such as multitasking and periodic callback routines that also support real-time 

applications. 

 

However, the complexity of Windows NT introduces some unpredictability and time 

latency to the application that severely affect its real-time characteristic.  Suppose that 

NT detects an interrupt or an exception, the processor stops what it is doing and lets 

the trap handler deal with it.  After the trap handler determines the condition, it 

transfers control to the Interrupt Service Routine (ISR) if the interrupt is time-critical.  

Once the ISR is running, it is not interrupted until the end of its service routine, unless 

a higher level interrupt occurs.  If the second condition occurs, the system will save 

some data about the interrupt.  This will cause some unpredictable latency.  In the 

same way, the use of deferred procedure calls (DPC) introduces another unpredictable 
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delay.  Windows NT mainly uses DPC to handle the interrupts generated by the device 

driver.  Also, the kernel employs them to handle the time-quantum expiration.  The 

interrupt request levels (IRQL) of DPC belong to the third interrupt level.  The 

isolations of ISR and DPC are beneficial to interrupt latency, but are harmful to the 

thread latency.  The DPC routines that are waiting to execute are stored in a kernel-

managed first-in-first-out queue called the DPC queue.  So, all DPC have the same 

priority level, but can be preempted by an interrupt.  As a result, the interrupt is 

responded to immediately, but the executions of threads of the DPC are delayed.  

Furthermore, it is possible that an interrupt occurs during the execution of the kernel.  

Typically, user level threads cannot preempt the thread which is executing in kernel 

mode.  During the process of execution of the kernel thread, the processor’s current 

IRQL can be changed.  Thus, some interrupt can be allowed to execute.  If the IRQL is 

too low, even an unimportant interrupt could execute, and thus could adversely affect 

a real-time priority user level thread. 

 

Windows NT is a general-purpose operating system.  Some helpful features in the 

operating system are harmful to real-time applications.  For example, Windows NT is 

built around a virtual memory (VM) system.  Under normal conditions, it resolves the 

problem encountered by general applications that need large amounts of RAM to run.  

But if the process is very big, the processing speeds become very slow.  It is 

intolerable for real-time applications.  The cache management is the same.  For the 

general operating system, it increases the average system performance, but it 

introduces an element of timing unpredictability in a real-time environment. 
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8.2.3 Reported real-time performance 
 
 
A series test was performed to evaluate under what condition the Windows NT could 

be used as a real-time operating system (Timmerman, 1998, Jones and Regehr, 1999; 

and Ramamritham and Shen, 1998).  Among these tests, tasks such as the I/O 

interference, time taken to process/thread system calls, supported clock rates, interrupt 

handling, and semaphores were examined.  The time used for each task was different.  

However, the minimum time needed was ten to several thousand nanoseconds; the 

maximum time needed was several thousand nanoseconds to several hundred 

milliseconds; and the mean general latency was several hundred microseconds.  Thus, 

for normal millisecond level soft real-time applications, Windows NT was fully 

capable. 

 
 
 
 

8.3 Hardware Architecture 
 
 
In this application, a Genesis LC frame grabber was used.  The Genesis LC board was 

a high-throughput PCI grabber for color or monochrome acquisition.  This board was 

capable of simultaneously capturing the data to an integrated display and transferring 

the data to the host computer.  Its architecture is shown in Figure 39. 
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The board was composed of two parts: a Mezzanine grab module, which was mainly 

used to grab both digital and analog videos, and a display module.  It was a 32 bit 

board with a 33MHz bus-master.  To conveniently connect with other image boards, it 

had a grab port interface and VM channel, making the data exchange with other 

boards very easy without consuming any PCI bus bandwidth.  There was also 8 M 

memory on the board, and although it was mainly designed for display, it could be 

adapted using software to be used as an onboard buffer to facilitate the double buffer 

which is very important in real-time grabbing and processing.  There were 

programmable look-up tables on the board.  Both the onboard memory and look-up 

tables provided the possibility to do parallel calculations. 

 
 
 
 

8.4 Data flow Design 
 
 

In the proposed system, two Pulnix TM-6703 cameras capable of taking up to 200 

frames per second were used.  The system was set to capture 100 frames per second.  

To make the depth detector work at that speed, the data flow was designed with the 

capabilities of both the operating system and image grabber in mind.   

 

To decrease access times to the host, a ring buffer was set up on the frame grabber.  

The ring buffer, also called a circular queue, worked in the first-in-first-out (FIFO) 

manner.  The ring buffer was a fixed size buffer with two pointers.  One pointer 

introduced to the place where the data was to be written in, and the other pointed to  
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Figure 40.  Illustration of data flow of laser range image generation. 
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place where the data was to be read out.  Because the write-pointer and read-pointer 

pointed to different positions, it was safe even if two processes reached the ring buffer 

simultaneously.  The grabbed image was stored on the buffer first.  Then, when a copy 

command was issued by another process, the buffered image was transferred to the 

host memory, where the images were processed and depth information was calculated 

to be used by the X-ray subsystem. 

 

Since the frequencies of the synchronization pulse were not fixed and the time needed 

to process every image was not predictable, it was possible that the processing speed 

was faster than the grabbing speed, in which case, the system would overrun.  If the 

grabbing speed was faster than the processing speed, the processing was not able to 

keep pace and some data would have been lost.  To deal with the second situation, 

multiple-thread technology was used in the software design.  If the existing thread 

could not finish the work in the synchronization interval, another thread was generated 

that took over the task, and the existing tasks co-existed until each task was finished.  

The tasks had their own resources and shared the CPU time.  In this system, 

communication between the X-ray and laser subsystems was achieved through a 

global structure variable.  The two subsystems were designed as two parallel and 

independent processes.  When the 3D image was ready, it was stored in the global data 

area, and the X-ray subsystem could fetch it when necessary.  The global data area 

was also arranged as a ring buffer, so even when X-ray and laser subsystems accessed 

the data simultaneously, a deadlock would not occur. 
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8.4.1 Critical Speed Measurement 
 
 
As shown in Figure 40, the data was processed using the following procedure. First, 

the data was copied from the image grabber to host memory; then, the data was sent to 

a thread to process the image.  Based on this structure, there were two uncertainties in 

the system that could possibly make the system not respond not in a timely manners.  

One was in the process of copying the data from the board to host memory.  Since the 

PCI bus was also used by other I/O operations, it was possible that the PCI could be 

occupied by other tasks and delay the copying request.  However, it was possible to 

decrease its influence by increasing the ring buffer size and making other adjustments 

to the software.  The copying speed was tested when the PCI bus was in idle, medium 

traffic, and heavy traffic conditions.  Two images were used to test the performance.  

One image was 120 kilobytes and the other was 9216 kilobytes.  The time used to 

copy these two images is shown in Table 7.  Although the second image is eight times 

larger than the first one, the time used to transfer the image was almost the same under 

the idle condition.  However, in the heavy traffic condition, it required 21 

microseconds on average to copy the small image to the host memory and 135.6 

microseconds to copy the large image.  Usually, when the system was working under 

the medium traffic condition, the time spent to transfer the images was about two 

times that of the idle condition.  Obviously, time was saved if the bigger buffer was 

used. 
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I/O (Input/Output) operations mentioned above were the tasks that would use the PCI 

bus and memory, such as the communication between the computer and its users, its 

storage devices, the outside world, or other computers (via a network). Here the I/O 

idle was defined as the situation when only minimum operations were done to access 

I/O, such as mouse and keyboard activity.  The medium condition was when large 

files were being saved, opened and copied from one place to another.  Under the heavy 

traffic condition, large files were being transferred from one computer to another 

device using both the PCI bus and memory access bandwidths. 

Table 7.  Time used to transfer an image from the board to the host memory.  

Computer Load File Size 

(kilobyte) 

Time Used 

(µ second) Idle Medium Heavy 

Average 11.18 12.18 21 120 
Worst 17.65 33.093 63.84 

Average 12.64 25.93 135.6 9216 
Worst 13.52 48.32 183.6 

 

The second time delay concern was during the thread generating or switching.  Such 

typical delays are shown in Table 8.  The NT operating system can respond at the 

millisecond level.  The thread switching time under different conditions was tested.  

Under normal conditions, the time consumed in thread switching in the worst case was 

0.15 microseconds.  Under heavy load conditions, the time needed was 266.1 

microseconds.  When the whole task’s priority level was increased, the time used in 

thread switching was not reduced too much.  When the thread priority was set to real-
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time, the program froze and no data were measured.  Overall, under the medium load, 

thread spawning/switching did not have much influence on the system performance. 

 

Table 8.  Thread spawning/switching time measurement. 

Computer Load 
Task Priority Thread Priority 

Time 

(µ second) Medium Heavy 

Average 0.121 24.5 Normal 
Worst 0.15 266.1 

Average 0.117 23.2 High 
Worst 0.132 224.3 

Average ---- ---- 

Normal 

Real Time 
Worst ----- ------ 

Average 0.115 21.8 Normal 
Worst 0.16 250.3 

Average 0.112 20.9 High 
Worst 0.162 212.5 

Average ----- ----- 

High 

Real Time 
Worst ------ ------ 

 
 
 
 
 
 

 

8.5 Conclusion 
 
 
In the bone fragment system, the on-line process requirement, the NT’s real-time 

features, the architecture of the image grabber, and the data flow were analyzed.  
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Although Windows NT was designed as a general operating system, it can be used in 

the designed system.  The Genesis image grabber provided helpful features for parallel 

processing.  Based on the tests, the time needed to copy a big image and small image 

from the image grabber to the host memory was almost the same, and thread 

spawning/switching time was negligible.  Based on these results, laser 3D imaging can 

be implemented in real-time. 
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Chapter 9 

OVERALL CONCLUSIONS 
 
 
 
 
In conclusion, the designed laser 3D system met the desired requirements. The 

following conclusions were drawn from the research: 

 

1. The laser range image profile can be calculated with reduced scattering 

influence and the accuracy of the profile was 0.14 mm by 0.14 mm; 

2. The laser 3D and X-ray systems were calibrated with sub-pixel accuracy, 

which is an important factor in finding the mapping relation between the laser 

and X-ray image; 

3. The algorithms of converting laser range image to pseudo x-ray image were 

found effective.  The residual image’s intensity average is 23.7302 with 

standard deviation of 29.6, and only occupied 1.5% of the dynamic range of 

the X-ray image.  This method built the foundation for the performance of a 

combined bone fragment detection system.  

4. Finally, the laser 3D system developed was able to provide the accurate pseudo 

X-ray image for real-time detection of bone fragments using combined X-ray 

and laser ranging imaging techniques.  
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Chapter 10 

SUGGESTIONS FOR FURTHER STUDY 
 
 
 
 
In the thesis, a dynamic laser 3D imager for poultry products was designed.  Future 

work needs to be done in the following areas: 

1. Since the X-ray signature of cartilage bone is similar to that of normal meat, it 

is difficult to classify cartilage bones.  Another method needs to be developed 

to resolve this problem. 

2. Although the whole system calibration was very accurate, it was not fully 

automatic.  A fully automatic method needs to be developed.   

3. Currently, a prototype one-lane system was developed.  A multi-lane system 

needs to be developed without reducing the speed and resolution. 

4. Bone fragment tracking and ejecting methods need to be developed, for use 

after a bone fragment is detected. 

5. Scattering is a very complicated phenomenon, and it has been broadly used in 

the biomedical area.  Possible applications in food and agricultural products 

need to be investigated. 
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APPENDICES 
 
 
 
 
 
 
Appendix A 
 

Spectral response 
 
 

 
Figure 41.  Pulnix TM-6703 camera spectral response 
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Appendix B 
 

 

 
Figure 42.  Laser intensity profile along line length 
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Appendix C 
 

Equation 26 deduction. 
 
 
From Figure 23, point P(v,u) is a point in vu coordinate system.  It can be deducted 

that 
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From Equation 75, Equation 26 can be deducted. 
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Appendix D 
 

Calibrated Camera Parameters 
 
 
Left Camera: 
Extrinsic parameters: 

Translation matrix: T = [ -71.722027   4.371491   578.226395 ] 

Rotation matrix:     R = [ 0.999983   -0.005376   -0.002233 

                                       -0.002182   -0.701870   0.712302 

                                       -0.005397   -0.712285   -0.701869 ] 

Intrinsic parameters: 

Focal Length:          f = [ 1780.10076   894.26278 ] 

Principal point:        c = [ 319.50000   99.50000 ] 

Skew:                      α = [ 0.00000 ]  

Distortion:               k =[ -0.21403   -2.60592 ] 
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Appendix E 
 

Calibrated Camera Parameters 
 

Right Camera: 

Extrinsic parameters: 

Translation matrix: T = [ 80.040955   -19.352696   578.761503 ] 

Rotation matrix:     R = [ -0.999933   -0.003121   -0.011189 

                                          0.005432   0.725837   -0.687845 

                                          0.010268   -0.687860   -0.725771 ] 

Intrinsic parameters: 

Focal Length:          f = [ 1803.65762   902.53550 ]  

Principal point:       c = [ 319.50000   99.50000 ] 

Skew:                     α = [ 0.00000 ] 

Distortion:              k = [ -0.43360   5.38559] 
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Appendix F 
 

Table 9.  X-ray data used for calibration. 

H(mm) 
 

L(mm) 
10 20 30 40 50 60 70 

10 25.841 24.165 22.489 20.759 17.493 14.889 12.779 

20 54.252 52.830 51.408 49.805 46.802 44.304 42.472 

30 82.500 81.307 80.115 79.172 76.3095 74.310 72.9687 

40 109.920 109.457 108.991 107.951 106.132 104.312 102.7593

50 137.840 137.818 137.801 137.040 135.185 133.804 132.864 

60 167.110 166.629 166.145 166.442 164.294 163.255 162.860 

70 194.990 195.092 195.192 194.935 193.981 193.218 192.967 

80 222.570 223.298 224.029 224.409 223.338 222.934 223.049 

90 251.510 252.099 252.683 253.190 252.332 252.492 253.136 

100 279.340 280.389 281.440 282.830 282.358 282.493 283.419 

110 307.450 308.819 310.186 311.379 311.8485 312.7885 313.8945

120 335.410 337.187 338.967 340.726 340.978 342.103 344.114 

130 363.410 365.288 367.163 369.549 370.522 371.807 373.325 

140 390.590 393.275 395.958 398.703 399.731 401.463 403.759 

150 418.950 421.890 424.835 427.911 429.226 431.044 433.801 

160 448.170 451.071 453.977 456.891 458.751 461.057 463.955 
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Appendix G 
 

Table 10. Data used to produce result in Figure 30 showing error after the Laser 
3D geometrical correction. 

Distance to 

center(pixel) 
Error (pixel) 

Distance to 

center(pixel) 
Error (pixel) 

4.2 0.05 173.1 0.37 
10.2 0.05 182.0 0.25 
16.3 0.14 183.6 0.49 
33.6 0.16 199.8 0.52 
49.8 0.16 201.6 0.66 
51.6 0.07 216.5 0.56 
66.5 0.08 217.2 0.59 
68.4 0.09 218.4 0.46 
78.5 0.17 227.8 0.67 
84.4 0.39 228.5 0.40 
85.7 0.32 234.4 0.75 
90.7 0.43 235.1 0.56 
91.8 0.08 235.7 0.70 
107.8 0.39 240.7 0.82 
115.1 0.21 241.3 0.74 
121.3 0.21 241.8 0.85 
124.8 0.23 244.8 0.66 
128.6 0.25 248.6 0.89 
135.5 0.26 255.5 0.79 
150.8 0.28 270.8 1.20 
154.2 0.28 279.8 0.93 
156.3 0.19 284.9 0.90 
160.2 0.31 290.6 0.84 
164.9 0.27 293.1 0.96 
170.6 0.37 302.0 0.79 

1 pixel = .4 mm x .4 mm 
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Appendix H 

 

 
Figure 43.  Camera connection graph. 
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Appendix I 

Sample Laser Range images 
(The image intensity indicates the thickness of the object) 
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Figure 44.  Typical laser 3D images (The image intensity indicates the 
thickness of the object) 
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Appendix J 

Typical Pseudo-X-ray images 
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Figure 45. Selected Pseudo-X-ray images. 
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