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Abstract

Sampled-data modeling, analysis and control of load-resonant DC-DC converters in variable

frequency operation are considered. A general block diagram model is given and then used to

obtain a nonlinear sampled-data model reflecting cycle-to-cycle dynamics. An alternative model

that reflects half-cycle dynamics is also obtained. The half-cycle model is more compact than

the full cycle dynamic model. Because of this, it is used as the basis for the other derivations in

the paper. These include: a linearized half-cycle dynamic model, open-loop stability conditions,

control-to-output transfer function, open-loop audio-susceptibility, open-loop output impedance,

and discrete-time integral controllers achieving line regulation and load regulation.

1 Introduction

Sampled-data modeling, analysis and control of load-resonant DC-DC converters in variable fre-

quency operation are considered. The paper extends to load-resonant converters the work on PWM

DC-DC converters reported by the authors in the recent papers [1, 2, 3]. Sampled-data modeling is

a powerful tool since it allows representation of detailed dynamics within switching cycles as well as

over longer periods of time. The main contribution of this paper is a clear statement of a generally

applicable sampled-data model for load-resonant converters, and a formulation of this model in a

particularly compact form. The model captures the behavior of various types of load-resonant con-

verters, including the three main classes: the series resonant converter (SRC), the parallel resonant
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converter (PRC) and the series-parallel resonant converter (SPRC, also called LCC-type PRC). The

paper also includes the derivation of linearized models, stability conditions, discrete-time control

designs, and other results all based on the compact sampled-data model.

Previous work on modeling of load-resonant converters has addressed the SRC, PRC and SPRC

separately [4, 5, 6, 7, 8, 9, 10, 11]. In the sampled-data approach taken in the present paper, use

of vector-matrix notation along with exploitation of inherent symmetry in load-resonant converters

leads to a unifying and concise model.

The approach developed here builds on the work of Elbuluk, Verghese and Kassakian [12], who

also studied sampled-data modeling and control of load-resonant DC-DC converters. In the present

paper, the dynamic models are stated explicitly in a detailed analytical form, as is the symmetry

property of load-resonant converters. These features make the models given here straightforward

to apply. Moreover, the issues of controller design for line regulation and for load regulation, not

considered in [12], are addressed successfully here. (The authors of [12] considered control design

for fixed source and load, while in line and load regulation the controller must regulate the output

voltage in the presence of uncertainty in source and load.)

The output voltage in a load-resonant converter can be controlled through switching frequency

or through phase-shift modulation [13, 14, 15, 16]. This paper addresses only circuits controlled

through the switching frequency, which of course results in variable frequency operation. The

approach of the paper can also be applied to phase-shift modulated load-resonant converters, which

operate at a fixed switching frequency.

The remainder of the paper proceeds as follows. In Sec. 2, a block diagram model is given

for the power stage of the load resonant converter in variable frequency operation. In Sec. 3, the

block diagram model is used to obtain a nonlinear sampled-data model. In Sec. 4, a half-cycle

sampled-data model, more compact than the model of Sec. 3, is derived. The half-cycle model is

linearized in Sec. 5. In Sec. 6, the linearized model is used to study open-loop stability. In Sec. 7, the

control-to-output transfer function, the open-loop audio-susceptibility, and the open-loop output

impedance are derived. In Sec. 8, discrete-time integral control for line and load regulation is
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designed. Conclusions are given in Sec. 9.

2 Block Diagram Model

A general block diagram model of the power stage of a load-resonant converter (whether SRC,

PRC or SPRC) in variable frequency operation is shown in Fig. 1. In the figure, Ai ∈ RN×N ,

Bi ∈ RN×1, C,E ∈ R1×N , are constant matrices, vs and vo are the source and output voltages

respectively, and N is the state dimension, which is typically the number of energy storage elements

in the converter.

S1 : ẋ = A1x+B1vs
S2 : ẋ = A2x+B2vs
S3 : ẋ = A3x+B3vs
S4 : ẋ = A4x+B4vs
vo = Ex

Switching
Decision

?

Switch to S1, S2, S3, or S4

- vo

�
y = Cx

-τ1,n

-τ2,n

-vs

Figure 1: A general power stage model for load-resonant converters

There are generally four stages (S1 to S4) per cycle in this class of converter. Consider the

operation of the load-resonant converter of Fig. 1 within the n-th cycle. There are two control

signals in Fig. 1, τ1,n and τ2,n: τ1,n is the combined duration of the first two stages (S1 and S2); τ2,n

is the combined duration of the next two stages (S3 and S4). Thus the duration of the n-th cycle

is τ1,n + τ2,n. Switching from stage S1 to stage S2, and also switching from stage S3 to stage S4,

are controlled through feedback of a single (scalar) circuit variable y. Denote by tn the beginning

instant of the n-th cycle, i.e., let tn =
∑n−1
i=0 (τ1,i + τ2,i). Note that tn is also the switching instant

from S4 back to S1, i.e., from the end of the (n − 1)-st cycle to the beginning of the n-th cycle.

Switching from stage S2 to S3 occurs at time tn+τ1,n. Note that this switching instant is an explicit
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function of the control signal τ1,n. However, the switching instants from S1 to S2 and from S3 to

S4 are not explicit, but are determined implicitly by the condition y(t) = 0. Denote by d1,n and

d2,n the duration of stage S1 and S3, respectively. The dynamics within the four stages of the n-th

cycle are given as follows:

S1 : ẋ = A1x+B1vs for t ∈ [tn, tn + d1,n) (1)

S2 : ẋ = A2x+B2vs for t ∈ [tn + d1,n, tn + τ1,n) (2)

S3 : ẋ = A3x+B3vs for t ∈ [tn + τ1,n, tn + τ1,n + d2,n) (3)

S4 : ẋ = A4x+B4vs for t ∈ [tn + τ1,n + d2,n, tn+1) (4)

along with

y(tn + d1,n) = 0 (5)

y(tn + τ1,n + d2,n) = 0 (6)

The above completes the description of the basic block diagram model. However, for the

three main types of load-resonant converters (SRC, PRC and SPRC), circuit symmetry implies

an interesting and useful relationship among the matrices appearing in the block diagram. This

relationship is as follows. The matrices Ai and Bi are related by

A3 = WA1W B3 = WB1

A4 = WA2W B4 = WB2
(7)

here W ∈ RN×N is a projection matrix (WW = I) and satisfies CW = ±C, EW = E.

A stronger relationship also exists for the the three main types of load-resonant converter,

which is stated next but is not needed for the general results to follow. The relationship is useful in

computations, however, since it facilitates determination of the matrices for stages S2 to S4 from

those for stage S1.

A2 = WA1W B2 = B1

A3 = WA1W B3 = WB1

A4 = A1 B4 = WB1

(8)

The next lemma records the fact that relationship (8) is stronger than relationship (7).
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Lemma 1 Relationship (8) implies relationship (7).

Proof: From (8),

A4 = A1 = W (WA1W )W = WA2W

B4 = WB1 = WB2

2

Example 1 Take the SPRC of Fig. 2. Let the state be x = (ils, vcs, vcp, iL, vC)′. The matrices A1,

B1, C, E and W for the SPRC can be verified to be

A1 =


0 −1

Ls
−1
Ls

0 0
1
Cs

0 0 0 0
1
Cp

0 0 1
Cp

0

0 0 −1
L 0 −1

L

0 0 0 1
C

−1
RC

 (9)

B1 =


1

2Ls
0
0
0
0

 (10)

C =
[

0 0 1 0 0
]

(11)

E =
[

0 0 0 0 1
]

(12)

W =

[
−I3×3 03×2

02×3 I2×2

]
(13)

The remaining matrices A2, B2, A3, etc., are now easily obtained from Eq. (8).

3 Sampled-Data Dynamics

The following two lemmas are useful in deriving the sampled-data dynamic model. The first lemma

gives a relationship between the dynamics in stage S1 and S3, and between the dynamics in stage

S2 and S4. Let φi(ξ, t) denote the solution for the state x at time t in the i-th stage starting from
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Figure 2: Series-parallel resonant converter with source voltage and resistive load

an initial value ξ with t = 0 representing the beginning of the i-th stage. Mathematically, this

means

φi(ξ, t) = eAitξ +

∫ t

0
eAiσdσBi (14)

Lemma 2

φ1(ξ, t) = Wφ3(Wξ, t) (15)

φ3(ξ, t) = Wφ1(Wξ, t) (16)

φ2(ξ, t) = Wφ4(Wξ, t) (17)

φ4(ξ, t) = Wφ2(Wξ, t) (18)

Proof:

φ1(ξ, t) = eA1tξ +

∫ t

0
eA1σdσB1vs

= WeA3tWξ +W

∫ t

0
eA3σdσWWB3vs (from (7))

= Wφ3(Wξ, t)

The other claims follow similarly. 2

The second lemma asserts that stage S3 started at ξ will have the same duration as stage S1

started at Wξ.

6



Lemma 3 If Cφ3(ξ, d) = 0, then Cφ1(Wξ, d) = 0.

Proof: If Cφ3(ξ, d) = 0, then

Cφ1(Wξ, d) = CWφ3(ξ, d) (from Lemma 2)

= ±Cφ3(ξ, d) (from (7))

= 0

2

Now consider the operation of the load-resonant converter of Fig. 1 within the n-th cycle.

Generally the switching frequency is sufficiently high that the variations in vs within a cycle can

be neglected. Thus, take vs to be constant within the cycle, and denote its value by vs,n. Let

xn = x(tn), xn+ 1
2

= x(tn + τ1,n), and vo,n = vo(tn).

From Eqs. (1)-(6), Lemma 2 and Lemma 3, the load-resonant converter of Fig. 1 has the

following sampled-data dynamic model

xn+ 1
2

= f(xn, vs,n, d1,n, τ1,n)

= eA2(τ1,n−d1,n)(eA1d1,nxn +

∫ d1,n

0
eA1(d1,n−σ)dσB1vs,n)

+

∫ τ1,n

d1,n

eA2(τ1,n−σ)dσB2vs,n (19)

xn+1 = Wf(Wxn+ 1
2
, vs,n, d2,n, τ2,n) (20)

g(xn, vs,n, d1,n) = C(eA1d1,nxn +

∫ d1,n

0
eA1(d1,n−σ)dσB1vs,n)

= 0 (21)

g(Wxn+ 1
2
, vs,n, d2,n) = 0 (22)

vo,n = Exn (23)

To distinguish this model from the “half-cycle” model given in the next section, the model

above will be referred to as the full-cycle dynamic model.
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4 Half-Cycle Sampled-Data Dynamics

In this section, a half-cycle dynamic model is derived. The main advantage of this model over the

full-cycle model (19)-(23) is its compactness. It is also more accurate in that it places less stringent

assumptions on the source voltage (vs assumed constant over half of the switching period).

4.1 Nonlinear Model

The authors of [17] used symmetry to simplify their sampled-data model. In the foregoing section,

the symmetry property has been stated in the explicit form (7) (or, alternatively, in the stronger

form (8)). Motivated by [17], the sampled-data dynamic model (19)-(23) is now simplified using

(7).

In Eqs. (19)-(23), the state xn is mapped to xn+1 through an intermediate mapping to xn+ 1
2
.

Examining the equations, it can be seen that this involves a mapping first by f (in Eq. (19), then

by W (in Eq. (20)), followed again by mappings by f (in Eq. (20)) and W (in Eq. (20)). The

repetition of the pattern of f followed by W facilitates rewriting of the model in a more compact

form.

Let

w2k−1 := xk
w2k := Wxk+ 1

2

(24)

Also let τ2k−1 := τ1,k, τ2k := τ2,k, d2k−1 := d1,k, d2k := d2,k, and vo,k := vo(
∑k−1
i=0 τi). Take vs to be

constant within the half-cycle, with value denoted by vs,k. With this notation, the sampled-data

dynamic model (19)-(23) can be simplified as

wk+1 = Wf(wk, vs,k, dk, τk)
g(wk, vs,k, dk) = 0

vo,k = Ewk

(25)

This simplified model is called the half-cycle dynamic model to distinguish it from the full-cycle

dynamic model (19)-(23).
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4.2 Linearized Model

To obtain a linearized dynamic model from the half-cycle model (25), the fixed point corresponding

to the nominal operating condition of the converter must first be found. Given the nominal source

voltage Vs and the nominal half switching period τ , the fixed point (wk, vs,k, dk, τk) = (w0, Vs, d, τ)

satisfies

w0 = Wf(w0, Vs, d, T ) (26)

g(w0, Vs, d) = 0 (27)

This set of nonlinear equations can be solved by Newton’s method. Once the fixed point is obtained,

the nominal periodic solution x0(t) of Fig. 1 can be obtained from Eq. (24) along with Eqs. (1)-(4).

Linearizing (25) at the fixed point (w0, Vs, d, τ) now gives

ŵk+1 = W (Φoŵk + Γsv̂s,k + Γτ τ̂k)
v̂o,k = Eŵk

(28)

where

Φo =
∂f

∂wk
−

∂f

∂dk
(
∂g

∂dk
)−1 ∂g

∂wk

∣∣∣∣
�

= eA2(τ−d)(I −
((A1 −A2)x

0(d) + (B1 −B2)Vs)C

C(A1x0(d) +B1Vs)
)eA1d

= eA2(τ−d)(I −
(ẋ0(d−)− ẋ0(d+))C

Cẋ0(d−)
)eA1d (29)

Γs =
∂f

∂vs,k
−

∂f

∂dk
(
∂g

∂dk
)−1 ∂g

∂vs,k

∣∣∣∣∣
�

= eA2(τ−d)(I −
(ẋ0(d−)− ẋ0(d+))C

Cẋ0(d−)
)

∫ d

0
eA1σdσB1 +

∫ τ−d

0
eA2σdσB2 (30)

Γτ =
∂f

∂τk

∣∣∣∣
�

= A2x
0(τ) +B2Vs

= ẋ0(τ−) (31)
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and where � indicates evaluation at the fixed point.

5 Open-Loop Stability

The next result follows immediately from the half-cycle linearized dynamic model (28).

Theorem 1 The nominal periodic solution x0(t) of the load-resonant converter in Fig. 1 is open-

loop asymptotically orbitally stable [18] if all of the eigenvalues of WΦo are inside the unit circle

of the complex plane.

A necessary condition for the load-resonant converter to be open-loop asymptotically orbitally

stable is given next.

Theorem 2 Suppose the nominal periodic solution x0(t) is open-loop asymptotically orbitally sta-

ble. Then the following inequality holds:

∣∣∣∣∣Cẋ0(d+)

Cẋ0(d−)

∣∣∣∣∣ ≤ etr[A2−A1]d−tr[A2]τ (32)

Proof:

|det[WΦo]| =
∣∣∣det[eA1deA2(τ−d)] det[I − (ẋ0(d−)−ẋ0(d+))C

Cẋ0(d−)
]
∣∣∣

= e−tr[A2−A1]d+tr[A2]τ
∣∣∣Cẋ0(d+)
Cẋ0(d−)

∣∣∣
≤ 1

The claim follows from the last inequality in the sequence above. 2

6 Control-to-Output Transfer Function, Open-Loop Audio-Susceptibility

and Output Impedance

From Eq. (28), the control to output (τ to vo) transfer function is

Toc(z) =
v̂o(z)

τ̂(z)
= E(zI −WΦo)

−1WΓτ (33)
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Equivalently, with the switching frequency (fs = 1/2τ) is viewed as the control variable in place of

τ , the control-to-output transfer function becomes

Toc,f (z) =
v̂o(z)

τ̂(z)

τ̂(z)

f̂s(z)
= −Toc(z)

1

2f2
s

(34)

where fs is the nominal switching frequency.

From Eq. (28), the open-loop audio-susceptibility is

Tos(z) =
v̂o(z)

v̂s(z)
= E(zI −WΦo)

−1WΓs (35)

To calculate the open-loop output impedance, add a fictitious current source io (as a perturba-

tion) in parallel with the load. Then the dynamical equations describing the dynamics within S1

and S2 are replaced by

S1 : ẋ = A1x+B1vs +Bi1io (36)

S2 : ẋ = A2x+B2vs +Bi2io (37)

The open-loop output impedance is

Too(z) =
v̂o(z)

îo(z)
= E(zI −WΦo)

−1WΓi (38)

where

Γi = eA2(τ−d)(I −
(ẋ0(d−)− ẋ0(d+))C

Cẋ0(d−)
)

∫ d

0
eA1σdσBi1 +

∫ τ−d

0
eA2σdσBi2 (39)

Given a transfer function in the z domain, say T (z), its effective frequency response [19, p. 93]

is

Teffective(jω) = T (ejωτ ) (40)

valid in the frequency range |ω| < π
τ .

Example 2 (Control-to-output frequency response of SPRC, [20]) Consider again the SPRC power

stage of Example 1, shown in Fig. 2, with Vs = 100V , Ls = 5.2µH, Cs = Cp = 5.5nF , Lf = 13µH,
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Cf = 1µF , R = 26.507Ω, the nominal switching frequency fs = 1.6713MHz, and τ = 1/2fs =

2.9917 × 10−7sec.

Take the switching frequency as the control variable. From Eqs. (34) and (40), and performing

a normalization as in [20]), the normalized control-to-output frequency response is

1

2π
√
LsCs

Toc,f(e
jωτ ) = −E(ejωτI −WΦo)

−1WΓτ (
1

2f2
s

)(
1

2π
√
LsCs

) (41)

where 1/(2π
√
LsCs) is a normalizing factor.

In obtaining the control-to-output frequency response above, the sampled-data model was used

directly along with the formula (40). This approach is called the S method in [21, 2]. In an alterna-

tive approach [21, 2], the sampled-data model can first be “lifted” to a continuous-time linear model

that is consistent under sampling with the sampled-data model. The transfer function of interest

is then evaluated for the obtained continuous-time model. If the pair (WΦo,−WΓτ/(4π
√
LsCsf

2
s ))

is transformed (“lifted”) to a continuous-time pair (Φc,Γc), then the control-to-output frequency

response is

E(jωI − Φc)−1Γc (42)

This approach is called the SC method in [21, 2].

Figures 3 and 4 show the control-to-output frequency response obtained using the S and SC

methods, both of which agree well with the results in [20]. The agreement of the S or SC methods

is due to the high switching frequency.

7 Discrete-Time Integral Control of Load-Resonant Converters

In this section, a discrete-time integral controller is proposed for achieving line and load regulation.

Most feedback loops in DC-DC converters contain an integrator (continuous-time) to ensure line

and load regulation [22]. Here a discrete-time integral controller is proposed:

vk+1 = vk + VSET −Ewk+1

τk = −K1wk −K2vk
(43)

12



S 
SC

10
2

10
3

10
4

10
5

10
6

10
7

−60

−40

−20

0

20

40

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 3: Control-to-output magnitude response obtained using the S and SC methods
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Figure 4: Control-to-output phase response obtained by the S and SC methods
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where vk is the state of integral controller, and VSET is the set-point output voltage. If the closed-

loop system (25), (43) is stabilized, then vo = Ew = VSET in steady state. Thus output voltage

regulation is achieved.

Since different switching periods will cause the circuit to operate in different modes, a limiter

on τn needs to be imposed, which is not shown explicitly in Eq. (43). For example in the above-

resonance mode, an upper limit on τn must be imposed.

The closed-loop system (25), (43) has the following linearized dynamic model at the fixed point

(wk, vs,k, dk, τk) = (w0, Vs, d, τ):

[
ŵk+1

v̂k+1

]
=

[
WΦo 0
−E 1

][
ŵk
v̂k

]
+

[
WΓτ

0

]
τ̂k +

[
WΓs

0

]
v̂s,k

v̂o,k = Eŵk

(44)

To stabilize the system, the pair (

[
WΦo 0
−E 1

]
,

[
WΓτ

0

]
) should be stabilizable. This is equiv-

alent to the pair (WΦo,WΓτ ) being stabilizable and the matrix

[
WΦo − I WΓτ

E 0

]
being of full

rank [23].

From Eq. (44), the audio-susceptibility of the closed-loop system (25), (43) is

Tos(z) =
[
E 0

]
(zI − (

[
WΦo 0
−E 1

]
−

[
WΓτ

0

] [
K1 K2

]
))−1

[
WΓs

0

]

Similarly, the output impedance of the closed-loop system (25), (43) is

Too(z) =
[
E 0

]
(zI − (

[
WΦo 0
−E 1

]
−

[
WΓτ

0

] [
K1 K2

]
))−1

[
WΓi

0

]

Example 3 (Integral control of an SPRC) In this example, line and load regulation of the SPRC

in Example 2 is considered. The goal of the control design here is to regulate the output voltage

at 24V , under 20% variation from the nominal values of the source voltage and load.

From Eqs. (28) and (29), the circuit has open-loop poles at −0.6949, 0.6915± 0.68i, 0.5731 and
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0.9808. Because of the complex poles close to the unit circle, the open-loop dynamics is expected

to be slow.

Figures 5 and 6 show the output voltage response without control as the source voltage and the

load respectively are step-changed. The response is slow, and the line and load regulation are not

good.

Next, integral control is applied to the system. To prevent the control signal from being too

large, the closed loop poles are assigned at 0, 0, 0, 0, 0.5, and 0.5.

Figures 7 and 8 show the output voltage response under integral control as the source voltage

and the load, respectively, are step-changed. The response is fast and the output voltage is regulated

at 24V .

Figures 9 and 10 show the audio-susceptibility and output impedance, respectively, with and

without control. A significant improvement is achieved with integral control.
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Figure 5: Output voltage response without control when the source voltage changes from 100V to

120V at t = 2.7× 10−6s
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Figure 6: Output voltage response without control when the load changes from 26.5Ω to 21.2Ω at

t = 2.7× 10−6s
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Figure 7: Output voltage response with control when the source voltage changes from 100V to

120V at t = 2.7× 10−6s
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Figure 9: Audio-susceptibility of uncontrolled and controlled SPRC
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Figure 10: Output impedance of uncontrolled and controlled SPRC

8 Concluding Remarks

The load-resonant DC-DC converter in variable frequency operation has been modeled, analyzed

and controlled using the sampled-data approach. The paper extends to load-resonant converters

recent work of the authors on sampled-data modeling and analysis of PWM converters. Nonlinear,

linearized and simplified half-cycle sampled-data models were given. These models are expressed

in concise vector-matrix form. The sampled-data approach employed is systematic and applies to

different types of load-resonant converters. By using discrete-time integral control, line and load

regulation of the converter has been achieved.
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