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ABSTRACT

Title of Dissertation: DETECTION AND CLASSIFICATION OF NEURAL
SIGNALS AND IDENTIFICATION OF NEURAL
NETWORKS

Xiaowei Yang, Doctor of Philosophy, 1989

Dissertation directed by: Shihab A. Shamma, Assistant Professor,

Electrical Engineering Department

This thesis aims to develop the theoretical and experimental means to
study the nature of the neural networks of the nervous system. The most
important parameters in a neural network are its synaptic connectivities (con-
nection weights). Once the unknown connectivities in the nervous system are
discovered, appropriate neural network models can be designed and used to
mimic their action.

To study the functional connectivity, reliable recording and identification
of the simultaneous activities of a group of neurons is essential. In the first
part of this thesis, a system for neural spike detection and classification is
presented, which does not require a prior: assumptions about spike shape
or timing. The system consists of two subsystems. The learning subsystem,
comprising a Haar transform detection scheme, a feature learning phase and
a template learning phase, extracts templates for each separable spike class.
The real-time detection and classification subsystem identifies spikes in the
noisy neural trace and sorts them into classes, according to the templates and

the statistics of the background noise. Three fast algorithms are proposed for



the real-time sorting subsystem, and comparisons are made among different
schemes. Performance of the system is illustrated by using it to classify
spikes in segments of neural activity recorded extracellularly from monkey
motor cortex and from guinea pig and ferret auditory cortices. The system
is implemented without human supervision and therefore is suitable for real-
time multichannel recording.

In the second part, analytical and experimental methods are provided for
estimating synaptic connectivities from simultaneous recordings of multiple
neurons (after separation). The results are based on detailed, yet flexible
neuron models in which spike trains are modeled as general doubly stochastic
point processes. The expressions derived can be used with nonstationary or
stationary records, and can be readily extended from pairwise to multineuron
estimates. Furthermore, we show analytically how the estimates are improved
as more neurons are sampled, and derive the appropriate normalizations to
eliminate stimulus-related correlations. Finally, we illustrate the use and
interpretation of the analytical expressions on simulated spike trains and

neural networks, and give explicit confidence measures on the estimates.
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CHAPTER

ONE

INTRODUCTION

1.1 Machine Intelligence and Neurophysiology

The brain is a powerful, versatile, and robust structure whose performance

far exceeds that of any machine and algorithm currently in existence in such
tasks as pattern recognition. It is estimated that the brain contains 10'* neu-
rons that are organized in complex unknown networks. It is not yet understood
how this system allows us to store, represent, retrieve and manipulate data such

as speech, images, smells, sensations, and thoughts.

While neurophysiologists are revealing the mechanisms of perception, atten-
tion, thinking and other functions, engineers and physicists are attempting to
mimic the parallel, distributed architecture of the mammalian nervous system,
and hence build machines that can duplicate the performance of the brain. In
order to do so, extensive research is underway to understand how the brain
works and thus to formulate theories about how computations actually oc-
cur in nature. Entirely new computational paradigms are evolving that are

based on simple models that are biologically influenced [14], [15], [18] and [19].



These systems have been used to solve difficult optimization problems and to
implement associative memories [41], [21]. Other applications such as speech
recognition, image data compression, adaptive pattern recognition, motion de-
tection, as well as VLSI and simulation implementations are developing rapidly

in the hope of achieving human-like performance.

To study the nervous system, one must observe neural activities. Suppose
that we are given a record of neural activities of a group of neurons which
is extracellularly recorded from a neural tissue (e.g. auditory cortex, visual
cortex, etc.). The question arises as to what information can be obtained from
it. There are many aspects to this question. Collections of neurons that might
be influencing each other or are affected by common input sources of stimulation
are often referred to as neural networks. Understanding the functioning of
neural networks is one of the principal aims of theoretical neurophysiology.
And engineering applications can be developed following the new discoveries in

neurophysiology.

Our goal is to find the neurophysiologically realistic structure of these
simultaneously recorded neurons. In other words, we want to discover how
neurons are connected and organized in the given stimulus environment. Once
these connectivities are discovered, appropriate neural network models can be
designed which mimic the robustness, versatility, and sensitive responses of the

mammalian nervous system.

To approach this goal, the first thing one must do is to separate activities
recorded from several neuron. Involved in the separation task are the detection
of neural signal from background noise and the classification of different sig-

nals. After the separation, one obtains spike trains from the original multiunit
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recording, each train representing the activity of a single neuron. Then the
connectivities between the neurons can be estimated through analysis of these

spike trains.

This thesis consists of two stages. The first is to provide an automated
system for the detection and classification of neural spikes so that the multi-
neuron recordings will be separated into individual spike trains. The second
is to develop analytical and experimental means for identification of neural
network connectivities based on these spike trains so as to derive logical wiring

diagrams in the network systems.

1.2 Detection and Classification of Neural Signals

In studying the functional connectivity of neural systems, reliable obser-
vation of the simultaneous activity of a group of neurons is essential. An
extracellular electrode often records such electrical activity from several adja-
cent neurons. To analyze the contribution of each individual unit, one needs
to distinguish the signals of each unit from the rest. In principle, signals from
different neurons can be classified by their characteristic spike shapes. How-
ever, these shapes are often unpredictable functions of the neuron type, the
electrode construction and placement, and the electrical characteristics of the
intervening tissue [10]. In addition, multiunit recordings are always contami-
nated by noise, which comes both from external sources and from the weaker

neural signals of more distant units.



There are several techniques available for the classification of multiunit
neural signals [1], [4], [5], [9], [10], [12], [25], [26], (28], [29], [33], [34], [37]-
[39]. Some techniques require prior information about spike shapes and epochs
[4], [5], [9], [10], and [12], which is often not available; other methods employ
time consuming computations [1], [9], [12], [25], [28], [29], [33], [34], [37] —[39],
making real-time implementation impossible without specialized hardware; and
others involve human supervision [4], [5], [26]. With the increasing availability
of multi-channel extracellular microelectrode arrays [22] and the potential large
number of simultaneous recordings, data processing capability and capacity will
become very important, and on-line neural spike-separating techniques must

strike a balance between performance and speed.

The fundamental motivation behind this work is the desire to overcome

some of limitations presented by the newly developed extracellular microelec-
trode arrays. In most such electrodes, recording sites are fabricated on the
same substrate. Consequently, the quality of the recordings obtained from a
given channel can not be improved by a simple adjustment of the electrode
position (as is the case with single electrodes) since this will necessarily affect
the position (hence the recording quality) on all other channels. Therefore, the
best strategy is to utilize these recordings the best instead of constantly at-
tempting to adjust them. Another serious problem concerns the large number
of recording sites and the presence of multiple spike shapes in every channel.
Using traditional manual spike detection methods such as threshold and win-
dow discriminators to determine which channels carry useful information and
to separate out the different spikes on each channel is tedious, extremely time
consuming, and unlikely to succeed if adjustments have to be made during a

recording session as is often the case.



Therefore, an efficient and convenient on-line multispike separation system
will be the first stage to be developed which is totally automated from de-
tection to classification, without presupposing any knowledge of spike shapes
or of interspike intervals. Examples of multiunit extracellular recording from

auditory cortex and primate motor cortex will be used to test the system.

After neural activities are separated for each neuron, the neural connectivity

analyses are the next stage.

1.3 Connectivity Identification in Neural Networks

The central nervous system (which comprises the brain and the spinal cord),
can be viewed as a highly complex communication system which receives, en-
codes, processes, transmits and retrieves a gigantic amount of information.
Within a network, neurons contact each other via synapses. It is believed that
information processing and transmission in the nervous system is carried by se-
quences of nerve-impulses called spikes generated by neurons. In other words,
a neuron receives information from other neurons through synapses and sends
its own spike train to others. The information-carrying parameters of a spike
train are the time intervals between spikes, or the impulse rates. Given the
spike trains of simultaneously recorded neurons, the question is what synaptic

connectivity information can be obtained from them.



The synaptic connections between neurons have usually been estimated
from inter-spike train correlations such as the cross-interval histogram, the
cross correlogram and the joint peri-stimulus time (PST) scatter diagram all
of which are stimulus-dependent. To destroy the stimulus effects, a shuffling
method has also been used. The qualitative interpretations for these commonly
used methodologies have been described in the literature [11], [13]. These
histograms are statistical measures on the given spike trains which reflect the
underlying neural network structure. By investigating these histograms, one
may support a hypothesis as to whether the two neurons under study interact
or not. One may also qualitatively infer that the two neurons have an excitatory
or an inhibitory connection, or a common input. However, the choice between a
direct connection and a common input is sometimes difficult [11]. Moreover, the
time-averaging cross-interval and the time-averaging cross-correlation measures
are not suitable for nonstationary neuronal firings. Therefore, a method of
time-dependent histogram has been proposed to analyze nonstationary spike

trains [40].

As a part of this work, the mathematical analysis will be established on
a given neural net model based on stochastic processes where the dynamics
and nonlinearity of each neuron is explicitly represented. Various structures
in the network will be simulated so that the investigations can be made in
different aspects. We will model spike trains as the realizations of general
doubly stochastic point processes. The objectives in this stage are (1) to de-
velop analytical and experimental methods to estimate synaptic connectivities
from simultaneous recordings of multiple neurons, (2) to express synaptic con-
nectivity in terms of probability densities of joint neuronal firings and indi-

viddal neuronal firings, (3) to extend the method from pair-wise to multiunit



correlations, and (4) to choose the appropriate normalization method used
in the correlation histograms, (5) to indicate the invalidity of time-averaging

correlation histograms in nonstationary neuronal firings.



CHAPTER

TWO

A NEURAL SPIKE SORTING SYSTEM

2.1 Introduction

An important aspect in study of neurobiological system is the reliable obser-
vation of groups of neurons. When an extracellular electrode is used to record
electrical neural activities from several adjacent neurons, the spike waveforms
attributable to each single nerve cell can be distinguished. By detecting each
of the spikes and classifying each according to its shape, the record of activity
of each of the single neural units can be recreated from the original multiunit
recordings. One can analyze each contributing unit independently to obtain
the equivalent several simultaneous single unit recordings. If the units are con-
sidered as an interactive group, correlations between the units can be studied
to discover complex information encodings not apparent in individual unit ac-
tivity. The correlation analyses are means of revealing physiology of the neural

network being observed.

As stated in section 1.2, it is desirable to use multichannel microelectrode

array to record large groups of neurons. The overriding goal of the spike sorting



algorithm to be used with these multielectrode arrays is not so much to detect
the smallest spikes in the midst of noisy traces, but rather to isolate the most

reliable spikes with no or minimal human intervention.

We propose an efficient and convenient on-line multispike separation system
which is totally automated from detection to classification, without presuppos-
ing any knowledge of spike shapes or of interspike intervals. The system is a
software realization described in section 2.2, and it consists of two parts: a
learning module which extracts templates for each class of spikes in the neural
trace, and a real-time classification module which detects the spikes and sorts
them into classes. At the beginning of the learning module, no knowledge of
spike templates is available. Hence a Haar transformation is first performed
to locate the occurrences of spikes, based on the fact that there is similarity
between Haar transform bases and spike shapes. The Haar transform detection

scheme is proposed in section 2.3.

The next step in classification problem is to extract features of entities so

that the classification can be done based on these well-selected features within

minimum errors. Section 2.4 describes a general approach to this problem.
After features are ready, we shall briefly review that a matched filter can per-
form the optimal classification in the additive Gaussian case. However, the
matched filter requires so many computations that it can hardly apply to on-
line multichannel situation. Hence one needs more economic algorithms which

have performance as nearly good as the matched filter has.

We propose three algorithms which meet our requirements. The multi-
threshold detection scheme is presented in subsection 2.5.1. The multiwindow

threshold discriminator is described in subsection 2.5.2, and the analysis of



the soft-decision discriminator is detailed in subsection 2.5.3. Any of these
algorithm can be used in the real-time sorting module. Comparisons for the
different schemes is given in subsection 2.5.4. In section 2.6, performance of the
system is illustrated by using it to classify spikes in segments of neural activity
recorded from monkey motor cortex and from guinea pig and ferret auditory
cortexes. The system is implemented without human supervision and therefore

is suitable for real-time multichannel recording.

2.2 System Description

The system is divided into two parts as indicated in the block diagram
of Fig. 2.1. The first part is a learning subsystem which extracts templates
of spikes for every class. This subsystem includes a feature learning phase
and a template learning phase. The second part is a real-time detection and
classification subsystem which detects spikes in the noisy trace and sorts them
out into classes, based on the templates that the learning subsystem provides

and the statistics of the background noise.

Assume that a segment of sampled data containing spikes from several neu-
rons is stored in a memory buffer. The learning subsystem begins with the
detection of spikes in the noise, using the discrete Haar transformation (DHT).
In the feature learning phase, specific features — the peak-to-peak amplitude
and the peak-to-peak time interval — are measured for each spike detected and

are used to construct the feature histogram. The histogram serves to determine
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the number of separable unit classes and typical feature values of each class.
In the template learning phase, the same DHT detection scheme is applied to
detect spikes which are sorted into classes by comparing their features with the
typical features. As a result, typical templates for each class are formed by

averaging all the classified spikes.

The real-time detection and classification subsystem is supported by either
a multithreshold sorting scheme, or a multiwindow sorting scheme, or a soft-
decision sorting scheme. Once the optimal threshold parameters for all classes
are derived, based on the templates and the background noise, the real-time

on-line processing begins.

2.3 Detection by Haar Transformation

In this section, we present a detection method for neural signals. The
neural signals we are dealing with are action potentials produced by cell body.
Because the action potentials are nerve electrical impulses which occur abruptly
and elapse quickly, they are often called spikes. All spikes generated by the
same neuron have essentially the same shape. The information is carried by
the time intervals between spikes and the firing rate of spikes. Theoretically,
a spike train is modeled as a series of impulses with random intervals called
a realization of a stochastic point process. The task of spike detection is to

convert noisy spike trains into the abstract realizations of point processes.
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First, the Haar transform detection (HTD) is proposed in subsection 2.3.1.
Because of the spike-like characteristics of the transform bases, the Haar trans-
form detects spikes without knowledge of spike templates. Although it is very
powerful for detecting neural spikes, the HTD has a computational require-
ments that do not allow a current mini-computer to perform on-line in real-
time, even with a fast Haar transform algorithm. Therefore, a recursive algo-
rithm for performing on-line discrete Haar transform is developed in subsection

2.3.2.

2.3.1 Neural Spike Detection

The discrete Haar transform detection scheme plays a key role in the learn-
ing subsyétem. Similar to the Fourier transform, the Haar transform is an
orthogonal transformation with spike-like bases. The Haar function [16], origi-
nally proposed in 1910 by Alfred Haar, a famous Hungarian mathematician, is

defined in [0, 1) as

har(r, m, t) = —25 m—;}Q <t< (2.1)

0, otherwise

and

har(0,0,%) = 1, t € [0, 1)

wherer =0, 1, -+, loggN,and m =1, 2, ---, 27,

12



It is shown that the Haar function {har(n,m,t)} is orthogonal for any N

which is a power of two. If {har(n,m,t)} is sampled at rate N, then an N x N

orthogonal matrix is obtained [2]

( ’LUQ(O) 'wo(].) wo(N - 1) \
w1(0) wl(l) ’U)1(N — 1)
W = (2.2)
\ wna(0) wyea(l) - wnoa(N—1) )
where each element is a sample of the Haar function
(0, i=0, .., Yl
' | 2%, i = MG, .. N
’LUk(Z) = 'LU2m+n_1(2) = (2.3)
_2_"1 i = N(n—1/2) Nn -1
? m I » gm
—. Nn
\ 0, = om 3 N -1
and
we(?d) =1, 1 =10,1,:---, N-1

for k =1,2,-.--,N — 1, where the ranges of m and n are 0 < m < log,N — 1
and 1 < n < 2™, respectively. Every row of the transform matrix is a basis of

the Haar transform. Notice that the inverse Haar matrix is

wt=_—wT 2.4
5 (2.9
where T' denotes the transpose.
Let us denote the sampled time trace as x = [z(0), (1), ---, =(N — 1)]T
and the discrete Haar transformed sequence as y = [yo, y1, ***, yn-1]T, they

13



are related by y = Wx. In transforming the original neural trace, a large com-
ponent appears in the Haar-transformed domain if the basis for that component
is similar in width and phase to the spike in the time trace. By thresholding
these outstanding components, spikes are detected in the transformed domain.
To determine the corresponding time of the spike occurrences, we do the follow-
ing. First, a filtering procedure in the transform domain is performed (which
will be described by the following second example). Then the filtered sequence
is transformed back to the original time domain, resulting in noise-free step-like
spikes at their original time in the trace. Finally, time of occurrence is defined
by the zero-crossing of the step-like spike. The following simple cases shows

how the Haar transform locates a spike.

Example 1: An ideal spike.

An ideal spike is an artificial spike with a bipolar rectangular shape which
is similar to a Haar transform basis. If an ideal spike occurs at the beginning

of a trace,

a, 1 = 0,1
z(1) = § —a, t = 2,3
0, otherwzse

there is a pulse corresponding to the spike in the transform domain,

ay , k= N/4

Ye =
0 , otherwise

where ay = aV/N.

14



Example 2: A more realistic spike.

Figure 2.2 illustrates this example. An artificial spike has the shape

asin[2r(1—3)/5], ¢+ = 4,5,6, 7
z(i) = {

0, otherwise.

The resulting transformed sequence becomes

4

154ay , k = N/4+1
036 ey , kK = N/2+2
Ye =
—036any , £ = N/2+3
0 , otherwise

where, again, ay = av/N. It is seen that the largest component (1.54ay)
occurs in the transform domain corresponding to the basis having the same
width as the spike has. There are “harmonic” components (0.36 ayn, and
—0.36 ay) in high portion of the transform domain due to the imperfectness
of the spike. This example corresponds to the case where no noise is present.
Experimentally, there is always an additive noise process in the background
of neural recordings. The noise may be removed by a “threshold filtering”
method, using a properly selected threshold in the transform domain. To per-
form the threshold filtering, set every component below the threshold equal to
zero and leave components above the threshold unchanged. Then the threshold
filtered sequence is transformed back to the original time domain, resulting in
noise-free, step-like spikes at their original positions in the trace. Thus time of

occurrence is defined by the zero-crossing of the step-like spikes.
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Let us continue to use Example 2 to illustrate how the procedure works.

The threshold ¢ in the transform domain is set to a value, say, |t| = 0.5ay, so

that the filtered transformed sequence ¥ = [Fo, 71, +**, Un-1]7 is expressed as

154ay , k = N/4+1

0 , otherwise

which is transformed back to the time domain by X = W1, yielding the time
sequence X = [Z(0), (1), +--, F(N —1)]T as
0.77a , i = 4, 5

@) =4 —0TTa, i =67

0, otherwise.

It is seen that the reconstructed spike appears at the original time with
a step-like shape (ideal in this case). We can also image that if there were
noise, the noise amplitude in the transform domain below threshold would be
filtered out. One likes the threshold to be large when the noise level is high,

and vice versa. In fact the threshold for the filter can be selected accord-

ing to the noise variance. Assume that the noise sequence {n(i)}Xg' is inde-

pendent and identically distributed (iid) with common Gaussian distribution
N(0, o?). It can easily be shown that if { yx } is the transformation of the noise
only, then the components of {y;}-' are identically distributed with common
Gaussian distribution MN(0, No?). Since P (|yx| > 3.00/N) < 0.0028, and
P.(Jyx| > 4.16/N) = 0.000042, a nonlinear transform domain threshold is set
to be t = C(0)ov/N, where C(o) is a nondecreasing function varying within

range 3.0, 4.1]. Thus the probability that |yx| exceeds the threshold ¢ is very

16



small. The noise will, therefore, be filtered out by setting every component

below the threshold to be zero.

Figure 2.3 demonstrates the HTD procedure. A segment of neural data from
monkey motor cortex extracellular recording in Fig. 2.3(a) was transformed by
the discrete Haar transform. In the transform domain (Fig. 2.3(b)) there
are two large components in the low “frequency” portion and two in the high
“frequency” portion, indicating two spikes in the original trace. After filtering
out noise in the transform domain, the spikes were reconstructed without the

high frequency components and noise, as shown in Fig. 2.3(c).

The Haar transform is a powerful tool for detecting neural spikes without
knowledge of spike templates. The DHT at this stage serves to detect spikes
with the goal of accumulating enough of them to construct the histogram and

templates for the totally automated spike classification system.

2.3.2 A Recursive Algorithm of Haar Transform

To perform an N point discrete Haar transform (DHT), one needs
N(logsN ~ 1) multiplications and Nlog,N additions. Even for the fast al-
gorithm by Andrews and Caspari [3], one still needs N multiplications and
2(N — 1) additions. These expensive computational costs prohibit a real-time
implementation. To overcome this problem, we propose a recursive algorithm

for the Haar transform.

Suppose that a spike is represented by an M-point template. We look

through an M-point-wide window to observe signals when the spike trace keeps

moving to the left (or the window is sliding to the right). If an M-point DHT

17



is performed, a large component at the 2-nd transform basis is expected. If a
2M-point DHT is performed, then we expect a large component at the 4-th
transform basis first, and it will appear at the 3-rd basis after M shifts. If a
4M-point DHT is performed, then we expect a large component at the 8-th
transform basis first, then it will appears at the 7-th basis, the 6-th basis, and
finally the 5-th basis, after every M shifts.

Let x denote an N-point segment of the spike trace and y the corresponding
transformed data. The components of y can be expressed as
N-1
ye= > z(Dwr(i), k=0,1,---,N-1. (2.5)
1=0
Let u be the shifted version of x, i.e.,

u(t) ==z(t+1), Vi (2.6)

and v be the transformed data of u, then

v = Nz__:l u(2)wi(7)
=+ (VO a2 1/2) 1)—u(m—;n})—N—1)—u(’;—f—1)],
k=1,2---,N -1, (2.7)

vo=7yo+ u(N —1) —u(-1)
where m, n and k are related by ¥k = 2" +n -1, 1 < n < 2™, and
0 < m < log, N — 1. This is the recursive form of the Haar transforma-

tion. At each shift, we compute the current Haar transform data v, based on

the previous Haar transform data yx and up-to-date information

1)N

(\/‘)m[g ((__yl)__ 1)_u((_n_—____

niN
i~ 1) - - 1L
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For every vy (k # 0, 1), one needs one multiplication and four additions;
for vy, four additions only. But it is not necessary to calculate vy for every k.
Only v, is needed, for example, if an M-point Haar transform is performed. Or
only v, and vz are useful for a 2M-point transform, etc. In this way, one can

avoid a lot of computations and obtain a real-time performance.

In contrast to the long sequence Haar transform, the recursive algorithm
detects one spike at a time. This may be another advantage of the algorithm

besides the computational savings.

2.4 Feature Extraction and Classification

Signals from different neurons can be classified by characteristic spike shapes,
which are unpredictable functions of the neuron type, electrode construction,
placement, and the electrical characteristics of the intervening tissue [10]. In
order to classify spikes, one may either use the complete templates, or instead
base it on selected unique features of those spikes. In principle, spikes belonging

to the same class possess relatively similar features.

The features are carefully selected so that they can best represent spikes of
a class. After enough spikes are collected, an M-dimensional feature histogram
h(i1,%2, -+ ,ta) is generated with index ix as the ordered bin number for the
k-th feature. If the resolution of the bins is high enough, the histogram will ap-
proximately reflect the joint probability density function (pdf) f(&1,8&2,--,¢&m)

of the M features. Let us denote £ = (¢;,&2,---,&nm) as the feature vector and
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f(&) = f(&, &2, -+, Em) as the joint pdf of the features. By the motivation of
the maximum likelihood estimation, we pick the particular value of the vector
€ at which f(€) has a peak as the typical features for a class. We consider only
those peaks that are separated by a minimum distance e. For example, suppose
that f(£) has peaks at ¢’ and ¢”. We say that peaks at ¢’ and at £” represent

different units, if

g — €"|
min][¢']], [1¢”]])

> € (2.8)

where € > 0 is a specific value. Peaks within the minimum distance are con-

sidered as the same class with the features at which f(£) has the highest peak.

An important question which arises here is how accurate are the typical fea-
ture values determined in this way, assuming there are no classification errors?
Suppose that there are S classes with a priori probabilities P, 1 =1, 2 ,-- -, S,
and that the histogram is made from n observations of feature ¢ , of which

approximately n; = nP; observations belong to class i. The feature has a pdf

16 = SPAE) 29)

i=1

where f;(€), is the pdf of ¢ under class ¢. In the Gaussian case, let ¢ have
a Gaussian distribution with unknown mean p; and variance o? under class i.
Thus f;(€) has its peak at £ = y; . Therefore, according to the feature selection

criterion, p; is chosen as the typical feature value for class ;. The maximum

likelihood estimator of p; is the sample mean of class i, and it can be written

as

=T b ()

ExeCy
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If one uses the confidence interval estimation argument, it is easy to see that

A g N g
PT(,U,,' - —ﬁta S M S i + _\/ﬁ_ita) = 1—-c«. (211)

In words, one has (1 — «)100 percent confidence that the true value p; is in
the interval [ fii — Fta, fi+ Frta ]. The length of the interval is 20t //n;,

where t, is chosen so that P.(|N(0,1)] < t,) = 1—a, where N(0,1) is a
normalized Gaussian random variable. Clearly, fi; is a consistent estimator of
i . The final step is to show that f; is the value at which f;(¢) has a peak
with probability 1. This is true because E(f;) = p; and Var(jl;) = ¢?/n; . The
strong law of large numbers says that ji; converges to u; almost surely, and it is
apparent that P,(lim,,_. Var() =0) =1 ie., fi; will approach p; with no
variation so that f;(ji;) is definitely the peak as n; goes to infinity. Now, it is
in confirmation of Gaussian cases that one can make the typical feature values

as accurate as one wants providing that the sample size n is sufficiently large.

In the case of insufficient sample size, local averaging is used to smooth the

histogram. The resulting histogram is revised by

Toe . 1 o .
h(llaz27”',7‘M7) = W Z wi—jh(.yl’.h,""JM) (212)
G EN[(), 7]

where

W = E wj
(F)eN[(0), 7]

and N[(i), r] is defined as the r-neighborhood of (i) (the ball centered at

i = (41,32, **,im) with radius r).
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To classify spikes, one may consider either the complete templates, or the
selected unique features of these templates as signals. In general, it is a mul-
tiple hypothesis testing problem and one likes to make the assumption that
the observation data are additively composed by signal and noise. That is,
the observed time series x = {2(1),2(2),--+,z(M)} under hypothesis H; is

represented as
z(m) = si(m)+n(m), m=1,2,--- M (2.13)

where {s;(m)} is the template (or partial template) of class i, and {n(m)} is

the contaminating noise.

The classification problem is stated as follows. S classes are assumed to
have a prior probabilities P;, ¢ = 1,2,---,5, and the noise class has a prior
probability P,. Using the risk function concept [36], we associate a risk r;; with
choosing class ¢ when the correct classification is class j. The average risk is
given by

5 s
R = Y ri;P;P.(Di|H;) (2.14)

i=0 j=0
where P,(D;|H;) is the probability of choosing class ¢ when the true hypothesis
is H;. The feature space A is partitioned into exhaustive and mutually exclusive
subset A;, 1 =0,1,-.-,5, so that spikes with feature x are classified to be in
class ¢ if x € A;. Noting that A; = A — U;x 4; and [, fi(x)dx = 1,
j=0,1,---,5, the average risk can be expressed as

s 8
R = EZ’P,‘_,’PJ' A‘ fj(x)dx

1=0 j=0

S S S
= ZT,’,’R’ + Z /A Z(Tij — r;;) P; fi(x)dx

1=0 1=0 §ogekd
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s s
= Y rib; +Z/A. Ai(x)dx (2.15)

=0
where \i(x) = X54(rij — ri;)Pifi(x) (¢ = 0,1,--+,5 ) are the decision vari-
ables. In order to minimize the risk R, we like to minimize the integrals

Ja, Mi(x)dx for each class. It can be done by the following. The observed

value x is claimed to be in class 4, if i = argmin;{A;(x)}. Therefore, the

optimal partition of A is

Ar = {x : N(x) < \(x), Vi}, i=0,1,---,5 (2.16)

T

It can be shown that under minimum error probability criterion, the matched
filter performs the optimal classification if the noise is white Gaussian. The

risk R is equal to the probability of error P. if the risk ry; is set to be
1, i#J
Tij = (2.17)
0, 21=3.
In this case we have

S
P.=R=Y /A Ai(x)dx (2.18)

where \;(x) is reduced to
s s '
X(x) = S Pifi(x) = Y Pifi(x) - Bifi(x), i=0,1,---,5  (2.19)
i i=1

Notice that the first term is invariant for 7, hence A;(x) < A;(x) is equivalent

to P;fi(x) > P;f;(x). Define the decision variable di(x) as

di(x) = o°In(F; fo(x))’ (2.20)
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the optimal partition can be expressed in terms of the decision variable:
A = {x : di(x) > d;(x),Vj}, :=0,1,---,5 (2.21)

Under the assumption that the noise is white Gaussian distributed with zero-

mean and variance o2, the decision variable can be simplified as

1 M
di(x) = o%ln P,~+5 E(2s,~(m)w(m)—s,~(m)2) = ¢’ln R—%||si||2+ < sp,X > .
m=1

(2.22)

Therefore, the decision variable is nothing but the output of a matched filter
di(x) = PP+ <sj,x>, ¢=0,1,--+,8 (2.23)

where

1
P? =a2lnP,-—§|lsi||2, i=0,1,---,5. (2.24)

For performance measurement, we now compute the probability of error for

the matched filter. Since

P. = l—zS:P,-Pc*(i), (2.25)

1=0

let us compute the probability of the optimal correct decision P*(j) for each
hypothesis ;. This is the probability that d;(x) exceeds all other decision

variables d;(x) under hypothesis Hj, and it can be expressed as
Pr(j) = P(di(x) < di(x), Vi|Hy) (2.26)

= Ej[P(di(x) £ dj(x), Vi|d;(x), Hj)l- (2.27)
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We see that do(x) = P§ = o?InP, is a constant. And under hypothesis H;, the

expectation and the variance of d;(x) are written as

ti; = Ejldi(x)] = P+ <sj85>, 1=1,2,-++,85 (2.28)
and
M M
o = Varj[di(x)] = mz=:1nz=:1 Covj(z(m),z(n)) = o*||si|?, i=1,2,---,8
(2.29)

respectively. By the same token, the covariance of di(x) and d;(x) is
e = Covi(dy,d)) = spCovi(x)s; = 0° < sg,81 > . (2.30)

Hence under hypothesis H;, the decision variables obey the Gaussian distribu-

tion
d1 (X)
da2(x)
) ~ N(pj, 2q) (2.31)
ds(x)
where the mean value is
B
K = "”:2.7 , j=0,1’...,5 (232)
bsj
and the covariance matrix is
i1 C12 - COs
c c . u c
Sa=| 2P i=01,.,8 (2.33)
€s1 Cs2 '+ Css



with ¢;; = 0?, i=1,2,---,5. The probabilities of the optimal correct decisions

can be expressed further with these statistical quantities

PO) = Gy [ [ op gt o) ST b = poldt s,
(2.34)

F:(5) =

/ P'r(dOST, dlSTy Tty dj—1_<_T7 djo, dj+1 ST7 T dSSTIH])dT

1 5 T T 1 S
- @T)W/do /.w"'/.wexpi—a(t—ﬂﬁ 23t (6 — p)lley=r

. dtl ce dtj—-ldtj+1 ce dtSdT 3 .7 = 1)2> v ’S' (235)

Consider a special case where all templates are mutually orthogonal, re-
sulting in the covariance matrix Xy to be diagonal. The probabilities of the

optimal correct decisions P7(¢) can be reduced further to

H@( — Hioy (2.36)

=1
and
Py = [T (e (g = i)
do i=1,i#j oi V27a; 20¢
i=12,---,5. (2.37)

If S = 1, the classification is reduced to the detection, and the above integrals

have a closed analytical form

P(0) = (=) (2.38)
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and

1

r = [
-(1) do V2mon

1 do — K
eXP(-z—J?(T—un)z)dT =1- ‘P(-Tu)- (2.39)

Because pio = ollnP; — %”31[]2 , p11 = ollnP, + %||31“2 and dy = o?lnkb,,

the probabilities of the optimal correct decisions for equal prior probabilities

(Po = P,) become
w1\ _ YN oa YN s
) = 1-9(-1) = o(L) = P:(0) (2.40)
and the total probability of error is
. _ gl
P =1~ @(5-) (2.41)
where v* = ||s1||/o is signal-to noise ratio.

It is known that under minimum error probability criterion, a matched
filter performs the optimal classification if the noise is white Gaussian. Except
with specialized hardware, implementing a matched filter is costly because
of its computational complexity (multiplication and addition operations are
proportional to template points). Faster implementation speeds are possible,
however, if performance is compromised by using the following real-time sorting

schemes.
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2.5 Real-Time Sorting

Three different schemes are proposed for real-time sorting. The theoretical

comparisons will be made at the end of the section.

2.5.1 Multithreshold Scheme

The multithreshold method is a fast real-time on-line spike detection scheme.
Unlike the single-threshold detection that is commonly used, the multithreshold
technique provides more reliable detection, especially when the signal-to-noise
ratio is low. To see the effectiveness of the scheme, a comparison is made with

the single-threshold scheme by an example later in this section.

The method can be described as a hypothesis test problem. The underlying
assumption is that the observed data trace is an additive combination of spikes
and noise. Suppose that the spike is deterministic neural signal and has shape
{s(t) : t = 1,2,.---,M}. Denote the observations and the noise as z(t), and

n(t), respectively. The hypotheses are stated as follows.

&
8
—~
o~
N
i
o~
I

n(t), 1,2, .-+, M

Hi o z(t) = s(t)+n(t), t=1,2,---, M

The null hypothesis, Ho, is that there is no spike in the observation, and
the alternative hypothesis, H;, means that there is a spike in the observation.
The decision as to whether there is a spike is made by M comparisons with
the following rule. If z(t) > ¢, forallt = 1, 2, ---, M, then we

accept Hi, otherwise reject Hi, where 7; ’s are M independent thresholds. Our
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aim is to optimize the thresholds according to a set of performance objectives.
There are two types of error in a statistical hypothesis test. The false alarm
is the first type of incorrect decision, rejecting the hypothesis Ho when that
hypothesis is true. The second type of error, accepting Ho when Hj is false, is

called the missing detection. For convenience, it is assumed that the noise is
white Gaussian distributed with zero-mean and variance o2. This assumption
does not lose generality because (i) the noise consists of many weak signals of
distant units so that it is Gaussian distributed by the central limit theorem;
(i) the colored noise can be transformed into white by passing it through a
whitening filter. In practice, therefore, we can pass z(t) through a whitening
filter of which the output Z(t) is composed by 7i(t), the white version of the
noise, and 3(t) , a transformed version of the spike. Under this assumption,

the probability of the false alarm Pr can be expressed as
Pr = PT(D1IH0) = P.,.(:I:(l) > M, $(2) >Ny :E(M) > T]MIHQ) (242)

Because n(t) is white, and z(t)’s are mutually independent and with identical

Gaussian distribution A'(0, ¢?). Therefore, Pr can be further expressed in

terms of the error function ®(y) = f¥, T=121r e~ /2dz as
M M m
Pp = [] P(a(t) > n/Ho) = JT®(- 2 (2.43)
t=1 t=1

Similarly, the probability of the missing Pjs can be written as
Py = P.(Do|Hy) = Pi(a(t) < ms, for somet |Hi). (2.44)

For the mathematical manipulation, we write it in terms of the probability of
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the complement of the missing

Py = 1= P (Di|H1) = 1= P(2(1) > n1, 2(2) > 12, - -+, (M) > qar|Hy).
(2.45)

Therefore, in terms of the error function, Pys may be written as

Py =1- ﬁ@(i@ﬂ—t). (2.46)

t=1 g

It is not difficult to see that if one wishes Pr to be small, then one chooses
thresholds 7, to be large, thus increasing Pys. Conversely, by choosing #; to be
small, Pps decreases while Pr increases. This implies that minimizing both Pg
and Py is a conflicting objective. One may reach a compromise by constructing

an objective function J,
J = 0Pr+ Py, for somef > 0. (2.47)

The goal is now to minimize J.

The necessary condition for achieving a minimum of J is to set
— =0, k=12 .- M (2.48)
which results in M simultaneous equations

M M
0 H Q)(— i) — e(2")k--9(k))-¥(’¢)/20-2 H @(S_(l_)_—_n_l) , k=1,2,-.., M.
I#k a1 i#k g

(2.49)

The possible optimal set of thresholds 5 ’s is obtained by solving those equa-

tions.
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Theorem 2.1. There exists a unique minimum of the objective function J if

a spike is detected, and if a false alarm is more costly than a missing detection.

A proof of the theorem is given in the Appendix. The existence and unique-
ness of the minimum of J guarantees the risk-free solution of the M simulta-

neous equations.

The significance of § may be explained as follows. If the false alarm is as
costly as the missing detection, one sets § = 1; § > 1 means that the false
alarm is more costly than the missing detection, and # < 1 otherwise. If the
a priori probability P(Hg) is known, then the total error probability is P, =
P(Ho)Pr+ P(H1)Par and the objective function becomes J = P./P(H;) with
60 = P(Ho)/P(H:). Thus minimizing J is equivalent to the minimum error
probability criterion. Obviously, the higher the signal to noise ratio s(t)/o, the

smaller the error probabilities Pr and Pyy.

Only partial information about the template of spikes {s(t)}}, is needed
to generate the optimal multithresholds. From (2.42) and (2.46) we know that
the threshold 7;’s should be between s(t) and o for each ¢, which indicates that
one only chooses such points in the spike template {s(t)}}, that s(t) is well
above the noise level . The multithresholds are optimized by using the values
of these well chosen template points and the value of . The real-time on-line
implementation is simple: Compare the observation datum at every instant ¢
with the corresponding threshold 7;; we announce that there is a spike if all

thresholds are exceeded by the data.
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2.5.2 Multiwindow Scheme

The multiwindow method is another fast real-time on-line spike classifica-
tion scheme since no arithmetic operations other than comparisons are involved.
Here, for each test, an upper and a lower threshold is chosen to construct a
window. As in the previous case, the method can also be described as a multi-
ple hypothesis test problem. The underlying assumption about the noise is the
same as in the multithreshold scheme. The decision as to which class a spike

belongs is made by M comparisons with the following rule.

There are M amplitude windows for each class. The m-th window for

class 4 is [lim, uim ). If all selected components in the observed time series data,

{z(m)}M_,, pass through their windows for class ¢, we claim that a spike in

class 7 occurs. This decision rule may be expressed as
D =™H;, if x € A (2.50)

where

A,‘ = {X . x(m) € [limauim), m = 1,2,-..,M} (251)

is another exhaustive and mutually exclusive partition of A.

As before, we can compute the probabilities of correct decision for each

class,

M im — Si\Mm m — Silm
RG) = [ fidx = T[o(tm =2 - gin=sdmly,

m=1

j=12,---,8 (2.52)
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5§ M u: l.
PO = [, fibdx = 1= [ s = 1= 3 [][8(°7%) - 8(7)
(2.53)

where ®(y) = [¥ 71576_t2/2dt.

Our aim is to optimize the window thresholds according to some criterion.
Since the best performer is the matched filter, the probabilities of correct clas-
sification for each class, P}(5),7 = 0,1,---,S, are the ultimate performance
that can be achieved. Therefore, one chooses window thresholds such that the
P,(j)’s are arbitrarily close to the corresponding PX(j)’s. Suppose that the cri-
terion is chosen to be the weighted squared error, with weight P;, the a prior:

probability. Then we want to minimize
S .
SB[ fix)dx— P (2.54)
j=0 J

with respect to l;;,’s and u;,’s, subject to constraints
A # ¢, 1=1,2,---,8 (2.55)
and
Ai(YA; = ¢, for i3], &, j=1,2,---,8. (2.56)

By the Lagrange multiplier method, it is equivalent to minimize the objective
function J

s 5 M
J = LRI £xdx =BG +a X 3 (U = lim — )’

j=0m=1
M

s s
+03°5° > (lim — tjm — B5)* Lijm (2.57)

=1 j=0m=1
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with respect to lim, Uim, im and B, 4,5 =1,2,---,8; m=1,2,---, M, where

1, m=my and s;(m) > s;(m)
Tijm = (2.58)
0, otherwise

where m;; is the index for the component in which the templates between class

¢ and class j differ the most.

The optimization of the multiwindow thresholds has an interesting geome-
tric interpretation. Imagine that the M-dimensional Euclidean space R™ = A
consists of S+1 exhaustive and mutually exclusive subspaces A¥, ¢ =0,1,---,5
with arbitrary shapes. The multiwindow threshold partitions the same space
with S+ 1 super-rectangles A;. Moreover, there is a one-to-one correspondence
between A¥ and A;. The optimization of the multiwindow thresholds tends to
make each super rectangle A; closely approach its corresponding optimally par-
titioned subspace A?¥. It is apparent therefore that the multiwindow threshold
sorting scheme would perform as well as the matched filter if the templates s;’s

are such that every optimal subspace A} is rectangular.

2.5.3 Soft-Decision Scheme

Now borrowing from communication technology, we turn to another eco-
nomical detection and classification scheme called soft-decision sorting. The
sums of the selected points of templates, rather than individuals of these
points as in previous schemes, are taken as the decision variables that will be
examined in order to make a decision. As in previous cases, S classes of spikes

are to be sorted. The decision rule is described as
D = H‘ia ‘lf d(x) € ["7%'—17 771)’ i = Oa 1’ te )S (259)
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where d(x) is the decision variable. The decision is made in favor of the spike
class corresponding to the decision variable within the partition of the decision
space for that class. Using the same underlying assumptions about the noise,
the decision variable is Gaussian distributed with mean v and variance Mo?,

leading to S + 1 hypotheses.

Under H; :
M
d(x) = Z w(m)z(m) ~ N(vi,Mo?), i=0,1,--+,8 (2.60)
m=1

where w(m) = sign(s(m)), and v; = = M_, w(m)s;(m) is defined as the signal
intensity for class . Having these statistics, one can compute the probabilities

of a correct decision (j = ) and of an error (j # 1)

P.(D;|H:) = P(d(x) € [nj-1, n5)|H:)

/m_l git)dt = o(L_2 NP g (%%) (2.61)

with n_; = —o0, and ng = 0o. Therefore, the total probability of error can be

written in terms of P,(D;|H;) as

S S
P. = Y PP (Di|H;) = 1- Y P.P,(DilH,)
i=0 j#i

=0

S P8 ’f/_”'>—¢>( S ). (2.62)

i=0
To optimize the scheme, the necessary condition for achieving a minimum of

P, is to set

0P,

=0, k=201,---,5-1. (2.63)
Ok
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This results in S simultaneous equations

Pind(ZE=T2) k= 0,1,---, S— 1. (2.64)

Pk¢(\/—— ) VMo

Notice that ¢(t) = %(D(t) and the even property of ¢(t) has been used. For

equal prior probabilities, P, = Pi41, then we have

vy +V
m = —’”——QE (2.65)

Without loss of generality, one can rank the classes so that
rn<ry<wv- - vs,

hence

o< <m<wvr<n-<vs_1<nNs-1 S vs.

In the equal prior probability case, equation (2.65) is valid for

k = 0,1, ---, S—1, thus the minimal error probability is calculated to be
S—1 2 s Vi1 — Vg
inP, =1 - ————e 2.66
i T511 S+1,§J (Sovat ) (2.66)
We can see in the extreme cases that
minP. — 0 asoc—0 (2.67)
and
min P, — S as o — 0o (2.68)
¢ S+1 ' '

If there is only one class, S§ = 1, it becomes a detection problem, min P is
reduced to

min P, = 1 —&(

n _ _ "_)’_
o) = L %(3) (2.69)
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where v = fﬁzfﬂ s1(m)/o is the signal-to-noise ratio. We can also show

that the error probability of the matched filter is

Pr=1- @(7?) (2.70)

where v* = /TM_ s3(m)/o is the signal-to-noise ratio for the matched filter

in the same situation. It is important to note that
7<y" (2.71)

and equality holds iff the signal is time invariant, i.e., s1(1) = 5;(2) = -+ =
81(M), which implies that the matched filter is always superior to the soft-

decision except for time invariant signals, in which case the soft-decision be-

comes a matched filter too.

We can view the soft-decision scheme as a special case of the Haar trans-
formation. This is because d(x) has the form which is equivalent to the second
component in the transformed domain of an M-point Haar transformation if
_the entire templates are used to form the decision variable. In other words,
with knowledge of spike templates of S classes, the Haar transform can be

used in the classification — a soft-decision classifier.

2.5.4 Comparisons Among the Schemes

In order to evaluate the performance of these different schemes, the following
comparisons were made. Consider an artificial spike with template s.(7) =
8sin(27kT) contaminated by white Gaussian noise with zero-mean and variance

0% = 3.5%. The data are sampled at frequency 12 kHz. Let M = 3, i.e., only
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three points are taken from the template, s(1) = 8.0000, s(2) = —8.0000, and
s(3) = 6.9282.

For the detection case, the comparisons of false detection Pp, missing
detection Py, and the computational complexity are given in Table 2.1. For
example, with § = 1, the optimal threshold values of the multithreshold scheme
are calculated to be 9, = 1.470, n; = —0.215, and 53 = 1.450. This results in
the error probabilities Pr < 0.0599 and Py < 0.0802. For single-threshold de-
tection with s(1) = 8.0, o = 3.5 and the optimal threshold 7, = s(1)/2 = 4.0,
the error probabilities are Pr = Py = 0.1265. It can also be seen from Table
2.1 that the soft-decision scheme performs almost as optimally as the matched
filter while saving M multiplication operations. This increases implementation

speed considerably.

To classify one spike, the matched filter requires MS multiplications,
(M —1)S additions and S comparisons, and the soft-decision operates (M —1)S
additions and S comparisons while the multiwindow sorting needs only 2M S

comparisons.

Table 2.2 illustrates the classification comparisons, calculated using data
from an epoch of extracellular recording from monkey motor cortex. The noise
level was estimated to be o = 2.8604, and three classes were extracted with
three most significant points (in terms of signal-to-noise ratio) in each template:
s1 = (24.1917, -14.7333, 19.8833) for class 1, sz = (12.6188, -8.8000, 12.0250)
for class 2, s3 = (6.6200, -4.2800, 6.3600) for class 3. Also estimated was a
prior probability for every class to be P, = 0.1, P, = 0.1, P; = 0.2, and that

for noise class to be Py = 0.6.
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The matched filter is the best scheme for classification in the additive white

Gaussian case. Its computational complexity, however, leads to slower process-
ing speed. The alternative classification schemes are inferior in performance
but superior in speed to the matched filter. In particular cases such as shown

in Table 2.2, however, they can perform as well as the matched filter.

2.6 Testing Examples

Several epochs of extracellular recording from guinea pig and ferret auditory
cortexes were used to test the system. The neural signals were recorded via
distributed microelectrode sensor arrays developed in collaboration with the
Microelectronics Facility of the Naval Research Laboratories (NRL). The data
were stored on tape and later sampled at 10 kHz. This guarantees that a spike
was represented by sufficient samples, necessary for choosing M points in the

templates properly to get maximal signal-to-noise ratio.

The first 60,000 samples (corresponding to 6 s of data) were used to gener-
ate templates for each class. The whole algorithm was written in a high level
programming language and run on a Masscomp 5500 computer. The computer
required about 1 — 5 min (depending on the length of learning data) to com-
plete the extraction of templates. It took few seconds to determine the optimal
thresholds for the soft-decision scheme; or about 0.5 min to finish the calcula-
tion of the optimal multithresholds for multithreshold scheme. The mean value

and the variance of noise were then estimated. After that, the real-time sorting

39



subsystem was invoked to detect and classify spikes simultaneously.

A display routine was implemented as part of the real-time sorting subsys-
tem in which different classes of spikes are separated and highlighted in different
colors on the neural activity trace as shown in Figs. 2.4 — 2.6. Figure 2.4 shows
an epoch of extracellular recording from guinea pig auditory cortex using one
channel of a silicon-based 40-channel microelectrode. Fig. 2.4(a) shows 200 ms
of original data. Fig. 2.4(b) shows the original data contaminated by band-
limited noise with a bandwidth of 2.5 kHz. Clearly, it is impossible to detect
both spikes in this trace by a single-threshold device. Fig. 2.4(c) demonstrates
the detection of the spikes in noisy trace 2.4(b) by the multithreshold scheme.
In Fig. 2.4(d), a much noisier trace is formed by adding 60 Hz and 90 Hz
sinusoids to the trace in Fig. 2.4(b) and both spikes are now totally buried in
the waves. We see in Fig. 2.4(e) that both spikes in 2.4(d) can still be detected
by the powerful soft-decision scheme. Figure 2.5 shows spikes from monkey
motor cortex extracellular recordings, kindly provided by Dr. E. M. Schmidt.
Classes were determined in the learning subsystem and separated in the real-
time sorting subsystem by the multithreshold scheme, we are only interested in
the first three most significant classes for this data. Figure 2.6 shows 1 second
of data extracellularly recorded from ferret auditory cortex with corresponding
sorted four classes performed by the soft-decision scheme, again, the first four

most significant classes are interesting in this case.

A comparison of the performance of the automatic system with that of ex-
perienced human observers indicates that most spikes are detected and that the
discrepancies between classifications done by human observers and the recogni-

tion system are small. In particular, for the first four most significant classes of
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the ferret data the rate of missing detection was 2 % and that of false detection

was 1 % and the discrepancies between classifications were 4 %.

2.7 Summary

A software-based neural spike sorting system has been developed to im-
plement detection and classification of signals from multiple neurons without
human supervision. After the spike templates for each class are estimated from
original data and the optimal multithresholds are selected based on the tem-
plates and the noise level, the real-time subsystem starts spike sorting. Testing
examples show the potential of the system. Further improvements under con-
sideration include expanding the dimension of the feature space in the template
learning subsystem and developing classifiers using recursive algorithm for Haar

transform detection and classification.
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Schemes Pr Pps || Multiplications | Additions | Comparisons
Single-threshold [f .1265 | .1265 0 0 1
Multithreshold { [| .0599 | .0802 0 0 M

Soft-decision .0599 | .0140 0 M-1 1
Matched filter || .0599 | .0139 M M-1 1

Table 2.1: Performance Comparisons for Detection with Noise Level ¢ = 3.5 and

M (=3) Points from the Template s = (8.0000, -8.0000, 6.9282).  For § = 1.
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Schemes P,(0) | P.(1) | P(2) | P:(3) | min P, Speed

Multiwindow | .9318 | .9527 | .8318 | .7778 | .1069 | 2M S comparisons
Soft-decision | .9802 | .9948 | .9171 | .8907 | .0426 | (M — 1)S additions

and § comparisons
Matched filter || .9802 | .9967 | .9175 | .8909 | .0423 | M .S multiplications,
(M —1)S additions

and S comparisons

Table 2.2: Performance Comparisons for Classification with Noise Level o = 2.8604.
S (=3) units are separated with each having M (=3) points from the templates s1 =
(24.1917,-14.7333, 19.8833), s2 = (12.6188, -8.8000, 12.0250), s3 = (6.6200, -4.2800,
6.3600) with prior probabilities Pp = 0.6, P, = 0.1, P, = 0.1, P3 = 0.2.

43



Buffer

| Feature Learning Phase

Figure 2.1; Schematic Diagram of the System.
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Figure 2.2: Nllustration of Haar transform detection by using an artificial spike, where

z(i) = asin(27 (s — 3)/5), ¢ = 4,5,6,7; z(3) = 0, otherwise.
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! (b)
J!

Figure 2.3: Spikes detected by the Haar transform:

(a) The original trace.

(b) The transform domain equivalence; large components indicate presence of spikes.
(¢) Reconstructed spikes in the time domain with noise filtered out. Spike times are

determined by zero-crossing detection.
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(2)

WWMWWWMWWM

(d)

(e)
Figure 2.4: Neural spikes recorded by a silicon-based multielectrode from guinea pig
auditory cortex:
(a) 200 ms of original data. -
(b) The original data contaminated by band-limited noise with a bandwidth of
2.5 kHz.
(c) Spikes in noisy trace (b) detected by the multithreshold scheme.
(d) Much noisier trace formed by adding 60 Hz and 90 Hz sinusoids to the trace
in (b); both spikes are totally buried in the waves.
(e) Both spikes in d are detected by the soft-decision scheme.

47



(a)
(b)
(c) \M
| )
VV V
(d)

Figure 2.5: Classes of neural spikes from monkey motor cortex identified by multi-
threshold sorting; Only the first three most significant units are plotted:

(a) 100 ms of original data.

(b) Unit 1.

(c) Unit 2.

(d) Unit 3.
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(e)ll 1

Figure 2.6; One second of data containing neural spikes from ferret auditory cortex
separated by soft-decision sorting, chopped into five frames with 200 ms of data each;
Only the first four most significant classes are plotted:

(a) 1 second of original data.

(b) Unit 1.

(c) Unit 2.

(d) Unit 3.

(e) Unit 4.
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CHAPTER

THREE

IDENTIFICATION OF CONNECTIVITY
IN NEURAL NETWORKS

3.1 Introduction

Most functions of the mammalian nervous system are performed by net-
works of highly interconnected neurons. In the experimental study of these
networks, extracellular recordings are often employed to sample the patterns
of action potentials simultaneously generated by several neurons [1], [13], and
[42]. The correlations among the recorded firings of the different cells are then
used as measures of the type and strength of their interconnections. Many such
measures have been proposed to accomplish the latter task; they include the
cross-interval histograms, the cross-correlation histograms, the cross-covariance
histogram, and the joint peri stimulus time (PST) histogram (the scatter
diagram) [11], [13]. In all cases, the histograms provide statistical measures
in support of various hypotheses such as whether the two (or more) neurons
under study directly influence each other or simply share common inputs, and

whether the influences are excitatory or inhibitory.
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There are three basic difficulties with these methods that we tackle in this

chapter. The first concerns the lack of flexible general analytical treatments
that outline the relations between the synaptic connectivities and the corre-
lation measures that are used to estimate them. Thus, while various features
in the above mentioned histograms may reflect qualitatively the underlying
connections, several parameters and conditions can render these measures in-
adequate. Examples of such difficulties are the differing integrating dynamics
of different cell types, and the potentially severe errors due to stimulus-induced
(rather than synaptic) correlations. Attempts to overcome these problems, as
in the use of the shuffling method to reduce stimulus effects, are shown here to

be largely inadequate.

The second basic shortcoming of the above correlation methods stems from
the nonstationarity of the neural records. In constructing cross-interval and
cross-correlation histograms, counts are usually obtained not only by averaging
over different stimulus presentation but also by averaging over the time duration
of each presentation period. This makes these two estimates inadequate when
working with nonstationary records and, instead, measures based on time-
dependent histograms such as the joint PST scatter diagram should be used
for the analysis [17], [40].

Finally, it is unclear in many existing methods how to extend the analysis
to more than two neurons, and how to evaluate the degree to which a pairwise
estimate is improved when the records from many other neurons are included.
This is a particularly important criterion as progress in multiunit recording
technologies which promises to increase significantly the number of records of

simultaneously active neurons.
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To summarize, the objectives of this chapter are (1) to provide rigorous
analytical and experimental methods to estimate synaptic connectivities from
simultaneous recordings of multiple neurons that are based on accurate and
flexible neuron models; (2) to express synaptic connectivity in terms of proba-
bility densities of joint neuronal firings and individual neuronal firings that
can be used with nonstationary (or stationary) records; (3) to extend these

methods from pairwise to multiunit correlations.

The chapter is organized as follows. In the next section (3.2), a stochas-
tic nonlinear neuron model is proposed, and the spike train generated by the
model is expressed by a doublely stochastic process. This model will serve as
the fundamental tool upon which the analytical results are based. In section
3.3, quantitative analyses of neuronal connectivities are carried out through
the model. These include derivations of the relations between the synaptic
connectivity and the firing probability densities, and extending the pairwise
correlations to the multineuron case. In section 3.4, the results are summarized
and discussed in the context of practical implementations and considerations
of the accuracy of the estimates. Finally, the analytical results are simulated
and discussed in section 3.5. The proofs of lemmas and theorems are given in

the Appendix.

All the analytical treatments are contained within sections 3.2 and 3.3. For
the reader interested only in using the final expressions, section 3.4 outlines the

results and is sufficient as a guide for their experimental applications.
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3.2 The Neuron Model

The basic unit of the nervous system which receives and transmits neural
signals is the neuron. The interactions of neurons in a network occur in most
cases through synaptic connections between them. Most synapses are found
between the axon terminals of a presynaptic neuron and the soma or dentritic
tree of a postsynaptic neuron. Since there can be many synapses between any
two neurons, it is impractical in modeling the neural network to account for
individual synapses; rather, it is more fruitful both for experimental investiga-
tion and mathematical description to consider the total effective influence of

one cell on another.

A synaptic connection from a presynaptic neuron B to postsynaptic neuron
A is said to be excitatory (inhibitory) if the firing rate of neuron A increases
(decreases) when neuron B fires. For the purposes of the model, we assume that
the postsynaptic potentials due to many presynaptic inputs are continuously
integrated to produce a change in postsynaptic membrane potential. A neuron
fires an action potential when its membrane potential exceeds a threshold level.
After each action potential, there is a period during which the probability of
firing is reduced. This period is divided into two intervals: The first is the
absolute refractory period, in which the neuron cannot fire again; the second is
the relative refractory period where the neuron may generate a spike only when

the stimulus is fairly strong.

Since the action potentials of a given neuron are similar in shape, we assume
that the transmitted information is carried only through the temporal patterns
of the spike trains, and hence we use a sequence of impulses to abstract a train

of action potentials. Because the instantaneous firings of a neuron are not
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deterministic, a stochastic point process is adopted to model the firings [31],

[32].

All the stochastic processes and random variables to be discussed are defined
on some probability space (2, F, P). Let (@, F, P) be a probability space, and
let {F; :t > 0} be a non-decreasing family of sub o-fields of F (i.e., F, C F;,
for every s < t). The family {F;} is called a history, and F; represents the
information collected during [0,¢]. Let {V; : ¢ > 0} be a stochastic process
(representing the semi-membrane potential process) defined on (Q, F, P). The
family of the sub o-fields generated by {V; : ¢ > 0}, H; = o{V; : 0 < s < ¢},
is called the history of {V; : ¢t > 0} if H; C F;, for ¢t > 0. And in this case,
{V; :t > 0} is said to be adapted to {F;}. Let Rt be the o-field generated by
set [0,00). A function f from (©, H,) into ([0,00), R*) is measurable if for

every S € Rt, f~1(S) € H,.

Consider that neuron A is influenced by a family of neurons B;, i =
1,2,--+,n. The model we use is depicted in Fig. 3.1; it is similar in many
respects to that studied by Knox [20] and by Van Den Boogaard et al. [7]. A
sequence of impulses from neuron B; is transformed into a membrane potential
in neuron A. If the integrated membrane potential exceeds a threshold value
6(t), an impulse (spike) is generated while the membrane potential discharges
to a resting level v,. h;(t,s) is the impulse response (not necessarily time-
invariant) which describes the total temporal influence of neuron B; on neuron
A from past up to present, including the conduction and transmission delay. A
synaptic connection is said to be excitatory if A(t,s) > 0 for all ¢, all s in the

real line R; it is said to be inhibitory if h(t,s) < 0 for all ¢, all s in R.
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The somatic (membrane) potential (W) of neuron A is represented
by a linear spatial-temporal superposition of all input action potentials of
neurons By, Bs,---, B, (including self-inhibition and/or self-excitation), and
an unknown random potential U; which represents the influence of all other
unobservable neurons and biophysical factors. A sigmoid function g is used to
map the somatic potential as follows:

n NB,' (t)

Wi = gl 4 / il dNa() =g(Ui+ Y 3 WLTE) ()

=1 =1 k=1

where {T}”* : k = 1,2,---} are the epoch times of spike train from neuron B;,
and {Np,(t) : t > 0} is the associated counting process, i.e., the number of

spikes arriving from neuron B; in the interval (0, ¢].

For mathematical simplicity, let us assume that the nonlinearity ¢ has the
form of g(z) = ae®, a > 0, ie., that neuron A is operating around threshold
and is thus not strongly driven. Suppose further, without loss of generality,
that we are interested in finding the connectivity between two neurons A and
B;. In the following discussion, we write B = B, and h(t,s) = hy(t,s) for

simplicity. Then we write

n NB,' (t)

gUe+3 3 h(t,T) Vit (3.2)

1=2 k=1

Wi =

R+

where VA is called here the semi-membrane potential due to neuron B and is

defined as

Np(t)
VA =g( ; h(t, TE)). (3.3)

In order to account for the firings of neuron A that are due to V;4, we can think

39



of the factor 2g(U; + T, EkN:{ 2 hi(t,T},*)) as a continuous random variable

Z, such that a random threshold 6(t) is formed, which is defined as
0(t) = Z0,(t) (3.4)

where 0,(t) is a time function. Due to the refractory period r during which a
neuron is unable to produce a successive spike, the time function can be taken

as simple as
00, Tpr<t<Tp+r

00, Tk+TSt<Tk+1

where 6, > 0 is a constant, and T} and T4, are the times at which the k-th

and (k + 1)-st spike occur, respectively.

A spike occurs whenever the threshold is exceeded by the accumulated semi-

membrane potential, i.e.,
b4
/ VAdr > 0(t) (3.6)
to

where 1o is the instant of the preceding spike. Because the firing rate of a
neuron is finite, the threshold is bounded below by the resting level v, > 0.
Denoting by N4(t) the number of spikes in train A during time interval (0, ],
a stochastic counting process {N4(t) : t > 0} is associated with spike train
A with N4(0) = 0. Let AN4(t) = Na(t + At) — N4(t) be the number of
spikes in an infinitesimal duration At. We say that a process is orderly if

P.(AN4(T) > 1) = o(At).

Figure 3.2 shows a common input model structure where neurons A and B

are simultaneously influenced by a source D which may represent a stimulus

source or a neuron. The source generates stimuli or spikes with rate V;P.
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Armed with these general neuron models, we are ready for the analysis of

the interneuronal connectivities deduced from the stochastic firing of several

neuromns.

3.3 Analytical Results

In this section, we shall derive and elaborate on four basic results. We
shall first consider the simple case of two observable neurons, and show how
the connectivity between them can be expressed analytically in terms of the
neuron model outlined above. We then consider the sources of uncertainty in
this estimate and how they can be reduced through added information from
neighboring neurons. Thirdly, we shall comment on the critical normalization
procedures used to remove the confounding effects of stimulus artifacts. Finally,
we show that the correlation peak due to a common input spreads more than

that due to a synaptic connection.

In the following discussion, we will make use of the PST histogram of a
single cell spike train which measures the firing rate of a neuron with respect
to the stimulus onset. Each bin of the PST histogram is an unbiased estimator
for the probability density of the average neuron firing over a short period At
at instant ¢ corresponding to that bin. Let AN4(t) = Na(t + At) — Ny(t) be
the number of spikes in train A in time interval At. Let us denote by Pa(t)
the conditional firing probability density of the postsynaptic neuron given the

history of the intensity process of the presynaptic neuron, HZ = o{V? : s < t},
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and the history N* = 0{Na(s) : s < t} of spike train A, that is,

_ o P(ANa(t) = IHE, N
Py(t) = A%r_r}O 7 . (3.7)
The firing probability density of neuron A is defined as
_ . P(AN4(t) =1)
P (A) = E[P4(t)] = lim A7 (3.8)

where the second equality is obtained by interchanging the limitation and the
expectation operations. It is interchangeable because the firing rate of a neuron
is finite. This means that there exists a random variable @ with E|Q| < oo
such that

- P.(AN4(t) = HB,NP)
" <Q

almost surely for any At > 0. Hence this interchangeability is guaranteed by
the dominated convergence theorem. This argument applies to every similar

situation throughout Chapter 3.

Likewise, denote by Pg(s) is the conditional firing probability density of the
presynaptic neuron given the history of the intensity process of the presynaptic

neuron and the history of spike train B, that is,

P,(ANp(s) = 1/HZ, V)

Pg(s) = Alir_r}o s (3.9)
We have
. P.(AN, =1
P.(B,) = E[PB(S)] = AI%I-EO ( Z.(SS) ) (3.10)

Note that the individual PST histograms of neurons A and B estimate
E[P4(t)]At and E[Pg(s)]As, respectively, and that Pp(s) is not defined

symmetrically to P4(t).
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Moreover, the joint PST histogram of the two neurons estimates
E[Psp(t,s)|AtAs where P4p(t,s) represents the conditional joint probability

density of firing of neurons A and B,

P"(ANA(t) = 17ANB(S) = llemx(t,s)"AftA’N.;B)

PAB(t,S) = At}j{?—b() At As (311)
and
P.(Ay, B)) = E[P4g(t,s)) = lim F(ANAY) =1,ANp(s) =1) (3.12)

At,As—0 At As

Recall that A(t,s) represents the synaptic connectivity between neurons A

and B. The four basic results derived are as follows.

Result 1. The joint probability density of firing of a presynaptic and post-
synaptic neuron pair can be expressed as the product of individual firing pro-
bability densities and the pairwise connectivity, and a corrupting (uncertainty)
factor due to other unobservable influences on the firing of A:
()

P.(As, B,) = P.(A)P.(B,)A(t, s)e®?) (3.13)

where (%, s) is the corrupting factor (y > 0) given by

(ii)
_ E[fa(t,6{)Pp(s)]
702) = B74(6,68)] EPs(s)] (314
where
(i)
fof(at)
fat,08) = V2 T— Fya) (3.15)
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where a; = [} VAdr, and fata(-),‘ Fya(-) are the density and the distribution

functions of the threshold of neuron A, respectively.

Result 2. The uncertainty can be reduced (i.e., the corrupting factor can be
made closer to 1) if more interacting neurons Cy, Cs, - - -, Cp, are observed simul-
taneously. If P.(A;, C;) # 0 and P,(B,, C;) # 0, then the pairwise connectivity

becomes

P'r(At, Bsa Ct)Pr(Ct)
Pr(Ata Ct)Pr(B.fn Ct)

h(t,s) = log — log ™ (3.16)

with C; = {N™,C; fires in [t,t + At)}, where

E[fa(t,8;)Ps(s)|Ci]

7(9) = FlFa, 651C BIPs()[CH (3.17)

is a quantity satisfying |y* — 1| < |y — 1|. If 4* is very close to 1, then log~*

can be negligited.

Result 3. In order to minimize the effects of the stimulus on the estimators

of the connectivity, the normalized joint probability of firing given by :
Ny(t,) = Py(Aw, B,)/ P.(A)P.(B,) (3.18)

leads to estimators superior to those produced by the often employed shuffle

method (normalization by difference):
Ny(t,s) = P.(As, B;) — P.(A:)P.(B,), (3.19)

which is the quantity that the cross-covariance histogram estimates.

Result 4. This result is for the common input model illustrated in Fig. 3.2. We

assume that the thresholds in neurons A and B are statistically independent.
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Denote by HP = o{VP : s <t} the history of the intensity process of the

common input source D. Define

PT(ANA(t) = llHrll)mx(t,s))

Pr(AtlHr?]ax(t,s)) = A]'ir_r,lo At (320)
and
 R(ANA®) =1, ANa(s) = 112
Pr(At, BalHanax(t,s)) = At:,hAIgl_,o At As e .
(3.21)

Assume further that P,(Ad|H2,0)) # 0 and Pr(Bs|Hp,yt,s)) # 0, we have the

following

(a) If D represents a deterministic stimulus source, then

P.(Ay, BJ/HD ..
(As = Momase) 1. (3.22)
P,(A:/HP) P.(B,|HD)

(b) If D represents a neuron with firing rate V,2, then

Py (At Bo| Hpaxt,s)

max(t,s)

P, (A HP) Pr(Bs|HP)

min(t,s)
= exp{ /0 (eh4tn) —1)(ehBlem — 1)V Pdr}. (3.23)

3.3.1 Further Relationships

In order to discuss the derivation of the above stated results, we will need
to utilize a few more relationships. Given a pair of interacting neurons (A and
B), the following lemmas will play an important role in the analysis below. Let

us first define an auxiliary function

— B.1/B B
fB(taotB) = lim PT(ANB(t) - ]'let aHt ,M )

Am Az (3.24)
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Lemma 3.1. Pp(t) can be expressed as a map from the semi-membrane poten-

tial space of neuron B onto [0, c0),

Ps(t) = VB E[fs(t,07)] (3.25)

with

fo5(be)

By _ /B
fB(tvat ) - V; 1— thB(bt)

(3.26)

where b; = [; V.Pdr, and fs5(-), Fgs(-) are the density and the distribution
functions of the threshold of neuron B, respectively. The expectation Ep,[-] is
taken with respect to 2. The function Pg(-) can have a very simple form. For
example, if the threshold is an exponentially distributed independent random
variable with mean ), then Pg(t) = AV;B. And in this case, {Np(t) : t > 0} is

a doubly stochastic Poisson process.

Lemma 3.2. The conditional expectation of the product of the semi-membrane

potential of neuron A and the firing rate of neuron B can be expressed as

B ) - e ppyA o) (3.27)

The proofs of the lemmas are given in the Appendix. Lemma 3.1 gives
the expression of the conditional firing probability density of the presynaptic
neuron given the history of the intensity process of that neuron. Lemma 3.2
relates the connectivity, the membrane potential of the postsynaptic neuron,

and the firing rate of the presynaptic neuron.
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3.3.2 Discussion of Result 1

We will first need to derive an expression for the firing rate of the post-

synaptic neuron (A). In general, the threshold 6 of this neuron is not an
independent variable, since it depends on all other unobservable inputs to the

neuron. Given an arbitrary value for 63, we can write

P,(AN4(t) = 1|02 =¢c) =

t+At A
Pr(/t VAdr > 62162 =c) ~ P, (VA > %w;‘ = c). (3.28)

Since 67 is a positive threshold, by the Markov inequality we have

A pivAA = o) (3.29)

Cc

P(ANA() = 1]6} = ) <

Averaging for all possible 6/ and taking limit as At goes to zero result

_ P(dNa() =1)

P(Al) dt

1
< BlgzVe! (3.30)
where the expectation exists because 87 is bounded below by the resting level
v, > 0. In fact, we have a precise expression as follows. By a symmetry to
fB(t,08) defined in (3.24), we have
P,(AN(t) = 110 M, M)

Ay 1
£a(t,68) = lim . . (3.31)

Note that whereas fa(t,0{) is not Pa(t) defined in (3.7), by Lemma 3.1 we

have

for(ar)

P(A) = Blfu(t,00) = BV =505

] (3.32)
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where a; = ftto VAdr, and foa (), Fya(-) are the density and the distribution

functions of the threshold of neuron A, respectively.

Similarly, the conditional joint probability of firing can be expressed as
P,(ANs(t) =1,ANp(s) = 1|8 = ¢) =

t+At
P,( /t VAdr > 02 ANg(s) = 1|02 = ¢) < %E[Vﬂxz\rﬁg(s)w;1 = d.

(3.33)

By Lemma 3.2, we therefore have

P,(dN4(t) = 1,dNg(s) = 1)
dt ds

1
P.(A,B,) = < eh(t'“)E[@VtAPB(s)]. (3.34)

As in Eq. (3.32) above, a more precise expression can be written as

P.(At, B,) = "™ E[f4(t,0{) Ps(s)]. (3.35)

Since the firing probability density of the presynaptic neuron is
F.(B,) = E[Ps(s)], (3.36)
then combining equations (3.35), (3.32) and (3.36) gives Result 1 with

 Elfa(t,04)Pa(s)]
1(59) = 7, G, 00)] ElPa(s)]

(3.37)

3.3.3 Discussion of Result 2

The factor (%, s) reflects our ignorance of the input to neuron B, or that of

the knowledge of the threshold 8. For a completely known input {V2} (hence
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Pg(s) is determined), v(t,s) = 1; for a completely known threshold, (%, s) is
a constant. When the activity of more neurons are known, the uncertainty in
the input and/or threshold decreases, and 4(t,s) approaches 1. For instance,
if the activities of more interacting neurons (Cy,Cs,- -, Cy,) are available, we
can use a multiunit PST histogram in addition to the conventional joint and

individual histograms to estimate

Pr(At)Bs,Ct)Pr(Ct) — Pr(At,BsICt) — *(t 8)6
P.(A;,Ci)P(B,,C:)  P(AdC)P(B,ICy) ~

h(tis) (3.38)
where v*(t, s) is defined in Eq. (3.17).

Because neurons (Cy,Cs,-:+,Cy) may contain information about Pg(s)
and/or 62 (for instance, if these neurons influence the activity of either or both
neurons A and B), observing more interacting neurons makes f4(t,84) less
correlated with Pg(s). Consequently, observing more neurons makes v* closer
to one than 7 is in Eq. (3.37), and hence the estimator for A(t,s) is more

reliable.

3.3.4 Discussion of Result 3

An important factor in correctly interpreting the correlations among the
activities of different cells concerns the effects of the stimulus. Specifically, this
refers to the fact that unconnected cells may exhibit strong correlations in their
firings purely due to the fact that they are driven by the same stimulus. In
order to eliminate these effects, some form of normalization is necessary. In
Result 3 we show how the stimulus shuffle alone fails to accomplish this task.
In order to illustrate this with explicit analytic expressions, three simplify-

ing assumptions will be adopted concerning the properties of the postsynaptic
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neuron threshold 7 (used in Theorem 3.1 below) and the distribution of the
presynaptic potential (used in Theorem 3.3). We start by stating two of these
assumptions and the theorems associated with them, and then proceed to relate
the correlation functions explicitly to the inter-neuronal connectivity (h(%, s))

in a pair of neurons (A and B).

Assumption 3.1. The random variable Z of the threshold in Eq. (3.4) is

independent of V4, and has an exponential pdf:

f e~ (0oz=v0) V,/0, < 2 < 00

0, z < v,/0,

where 8, > 0, and v, is a resting level of the membrane potential.

This assumption is typically valid in cases where neuron A is only related
to neuron B, i.e., it is weakly related to any other neuron. It can be veri-
fied that under Assumption 3.1, the output spike train of the neuron A is a

doubly stochastic Poisson process {N4(t) : t > 0} with the intensity process

{A{ : t > 0}, where

0, T <t<Ti+r
Ad = (3.40)
VA, Ti+r<t<Tin
where r is the refractory period.
For a doubly stochastic Poisson process {N4(t)}, we have
P.(ANA(t) = O/HA,NA) = 1—AAL+o(AY),) (3.41)
P.(AN4(t) = 1|HA,NA) = AAAL+o(AY), (3.42)
P,(AN4() > 1HANA) = o(Ab)) (3.43)
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Note that Aff depends on N, and hence {N4(t) : ¢ > 0} is a self-exciting

process with the intensity function E[A#|NV], [35].

Assumption 3.2. The refractory period is much smaller than any interspike

interval and hence is negligible.

Under this assumption Afl does not depend on N, and hence the inten-
sity process becomes the membrane potential process. And in this case, the

conditional probabilities in (3.41), (3.42), and (3.43) do not depend on V.

Theorem 3.1. Under Assumptions 3.1 and 3.2, {Na(t) : ¢ > 0} is a doubly

stochastic Poisson process with the intensity process {V;4 : ¢ > 0}. Further-
more, the conditional joint probability density of firing of neurons A and B can

be expressed as

Pag(t,s) = Pa(t)Pg(s)e"®? (3.44)

for all ¢ and all s, where h(t, s) is the inter-neuronal connectivity with non-zero

transmission delay.

Theorem 3.1 states that the joint probability density of firing can be ex-
pressed as the product of the individual firing densities and the connectivity.

Thus the inter-neuronal connectivity h(t, s) can be directly identified by
h(t,s) = log Pag(t,s) — log P4(t) — log Pg(s). (3.45)
This is an ideal case.

Experimentally, if only neurons A and B are recorded, the semi-membrane
potential of the presynaptic neuron B is generally unknown (hence Pap, Pa,

and Pp are unknown), because the membrane potentials are unobservable in
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extracellular recordings. Therefore, one must instead evaluate the normalized

unconditional joint probability density

___E[P4p(t,9)]
N,(t,s) = E[PA(t’;fE[PB ot (3.46)

Let us recall that the PST histogram of neuron A estimates E[P4(t)]At and
that of neuron B estimates E[Pg(t)]At, and the joint PST histogram estimates
E[P4B(t,s)]AtAs. Therefore, N,(t,s) can be estimated by these three

histograms.

Lemma 3.3. Under Assumptions 3.1 and 3.2, the conditional firing probability

density of the postsynaptic neuron can be expressed as

PA(t) = EIVAMP] = aexp{ [ (467 — 1)V dr}. (3.47)

Theorem 3.2. If Assumptions 3.1 and 3.2 hold, the uncertainty - in Result 1

can be expressed as

+ o = _EVE exp{f5(eM) — 1)VPdr}]
") = BB Blexp (0~ DVEdr]

(3.48)

Theorem 3.3. If the semi-membrane potential process of the presynaptic
neuron can be decomposed in the form of V;B = X f() where X is a positive

random variable, and f(t) is a deterministic time function, then

1,9 = FRT s (3.49)
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where M(-) is denoted as the moment generating function of X, and M'(n,) is

the first derivative of M(-) with respect to 5, which is expressed by

i
m= [~ Df(ryar (3.50)
0
Furthermore, 4(¢,s) — 1 when Var(X) — 0.

Assumption 3.3. The presynaptic membrane potential X is Gamma distributed

with parameters (), v).

One consequence of Theorem 3.3 is that if Assumption 3.3 holds — a rela-
tively common occurrence [6], [27], and [8] — the normalized unconditional

joint probability density N,(¢,s) can be explicitly evaluated in terms of these

parameters as

A
Np(t,s) = m—eh(t’s), m< A (351)

Comparing this expression with that of Theorem 3.2 suggests that y(¢,s) =
M/ (A —n;). Therefore, for a given Gamma distribution (of degree v), as the
variance of X (= v/A?) becomes smaller, ) increases, and ¥(¢,s) — 1. In
other words, the more is known about V2 (e.g., from recordings of additional
neurons), the more accurate is the estimate of the connectivity between neurons

A and B. We will illustrate these result through simulations later in section

3.5 (see Fig. 3.5).

If the membrane potential does not vary much for different stimulus

presentation (small variance of X), then A > n,. Consequently, we have
Ny(t,s) = eht®), (3.52)
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This confirms the conclusions established in Result 2 earlier.

In contrast to the normalization used in Eq. (3.18), the conventional cross-
covariance histogram (which is the modified joint PST diagram using the

shuffling method) uses a difference normalization which estimates [11], [17]
Na(t, s) = E[PAB(t,-S)] - E[PA(t)] E[PB(S)]. (3.53)

In general, this expression is very complicated. However, if we make use of the
assumptions in Theorem 3.3 for the intensity process of the presynaptic neuron

(i.e., a Gamma distribution), it reduces to

h(t,s) 1

Ghlt,
R 3)- (3.54)

Na(t,s) = av f(s)M (n:)(

If the membrane potential is not varying too much for different stimulus

presentation (A 3> ), then Ny(¢,s) can be approximately written as
Ny(t, s) ~ gyi”;L‘g)-(e’““) —1). (3.55)

This expression suggests that identifying the connectivity here is considerably
more difficult than that of the normalization N,(¢, s) used earlier, since quanti-
ties a, v, A and function f(s) are generally unknown. Nevertheless, Eq. (3.55)
suggests that the shuffling method remains effective in indicating the absence of
a direct connection (i.e., when h(t, s) is very small), since in that case Ny(t,s) is
approximately zero regardless of the confounding terms («, v, A and function

f(s)). We will illustrate this in simulations in section 3.5 (see Fig. 3.6).
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3.3.5 Discussion of Result 4

In the following discussion we consider the case where the observed neurons
have no direct connections, but a common input source as depicted in Fig. 3.2.

Hence neurons A and B are parallel with respect to the common source.

Gerstein pointed out in [11] that the narrow peaksin histograms would favor
direct connection between two observed neurons over common input to the two

neurons. This observation is confirmed quantitatively as the result indicates.

Now we prove part (a). If the common input source represents a determini-

stic stimulus, and if thresholds 87 and 6% are statistically independent, then

neurons A and B fire independently for the given stimulus. In this case,
P"(At’ BSIHI[t)mx(t,s)) = P"'(AtIHIII)mx(t,s)) ' P"‘(BSIHIDnax(t,s))

= P,(AHD) - P(B,|H) (3.56)

where the second equality is due to the fact that A; (or B;) does not depend
on future information of the intensity process V,” (or VP). This characteristic

describes a physically realistic system. Therefore, part (a) of Result 4 is true.

Next, suppose that the common input represents another neuron with
firing rate V,?, and spike train D is represented by {T? : k¥ = 1,2,---} and
{Np(t) : t > 0}. For simplicity, we make use of Assumptions 3.1 and 3.2.
Then by Theorem 3.1, spike trains A and B are represented by doubly stochas-

tic Poisson processes. Therefore,

P, (AdHY) = E[VAHY] (3.57)
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and

P.(B,|H?) = E[VEIHD]. (3.58)

Without loss of generality, we assume ¢ > s. Thus
P,(Aty B[ Hpax(e,) = EIV* VPIHD

Np(s) Np(t)

= o’Blexp{ Y [ha(t,T")+he(s, T))} cexp{ 3 ha(t,T9)}. (3.59)
k=1 k=Np(s)+1

Define an event D,,,, = {Np(t) = n+m, Np(s) = m} which has the probability

— [5 VP dr™ [J; VP dr] e fotV,Ddr.

P.(Dmn) - o (3.60)
Hence, we have
D 2 %= ol D
Pr(At,leme(t,,,)) =« Z E Elexp{ Z [ha(t, T2) + ha(s, TP)1} Dumal
n=0 m=0 k=1
Np(?) D

xElexp{ >  ha(t,T%’)} Dmn] Pr(Dimn)

k=ND(8)+1

= o?exp{ / ? elhaltr)+haGly Dy 4 / {haltmyD gy / “VPdr)
0 8 0

t
=a? exp{/s(e[’u(trr)+hB(sfr)] —1)VPdr + / (ehA(tﬂ') —-1)VPdr}. (3.61)
0 8
And using Lemma 3.3 proves part (b) of the result.

A simple glance at the above equation confirms that the joint
PST histograms of two neurons are more spread with common input than

with direct connection. By result 4 the area far from the principal diagonal in
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the normalized joint PST diagram should be flat because |t — s| > 1 implies

that one of the factor in the integral of (3.23) is close to zero.

Let us investigate further for the time invariant connectivities. Suppose
that ha(t) = wae " and hp(t) = wge™%, and VP =1, V¢. It turns out that

Egs. (3.23) and (3.61) can be expressed as

Pr(At’ leHIIx)w.x(t,s))
Pr(AtIHP) Pr(BaIH.sD)

1 & w?
— ol _ _ p—no(tAs)y_TA
= exp{a nEﬂ(an 1)(1—e )n : n!} (3.62)
and

1 oo Y3
Py (At Bul M) = o exp{=> Y (an + 1)(1 = ) =43 (3.63)

n=1
respectively, where

an=(a+1)"—a; a=—Le oMl (3.64)
w4

Figure 3.3 compares three curves: one for the direct synaptic excitatory
connectivity (e"**)), one for the common input connection without the
normalization procedure (Eq. (3.63)), and the other for the common input
connection with the normalization procedure (Eq. (3.62)). All the connectivi-

ties in Fig. 3.3 have the form
ha(t) = hp(t) = h(t) = 2.4¢71%%,

and the time bin width is At = 0.002. It is shown that the common input
correlation has a wider peak than the synaptic correlation does, and that the

normalization procedure makes the common input correlation peak smaller.
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3.4 Experimental Considerations

In the analysis of multineuronal connectivities, spike trains from several
neurons are recorded in response to the repeated presentation (e.g., R times)
of a stimulus. Spikes are usually sampled and parsed into (i.e., labeled by)
small time bins, using the onset of the stimulus as the initial bin. The bin
width At is always chosen to be so small that at most one spike may occur in
each bin (which corresponds to the orderliness of the point process). Thus each
spike train is converted into a discrete 0-1 process, and is further segmented

into R segments, each for one stimulus presentation.

Let A,, be the time bin corresponding to the n-th bin associated with the
r-th stimulus presentation. A spike train can then be represented by a R x N
random matrix A with elements (A, r = 1,2,---,R; n = 1,2,--- N) —
called here a spike matriz. Let us assume that the firing activity during each
stimulus presentation is statistically independent. Therefore, each element is a
random variable taking values {0,1}, and the elements in the same column are

independent and identically distributed.

The PST histogram (H,, n = 1,2, -, N) reflects the stimulus-locked firing
rate of each single neuron, and it is formed by taking average over every column
of the spike matrix,

1 R

HA = EZAM, n=1,2,---,N. (3.65)

r=1

The value of H” counts the average spikes over R stimulus presentations in the

n-th bin in a spike train A.
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The joint PST scatter diagram of two neurons A and B (HAB, m =

mn’

1,2.---,N; n = 1,2,---, N) measures the coincidence spikes in train A and
in train B relative to stimulus onset. It is a two-dimensional histogram with

one axis (m) for train A and the other axis (n) for train B, and hence it is an N

B

square matrix H. Element HAZ

represents the average count for coincidence
of a spike in the m-th bin of train A and a spike in the n-th bin of train B over

R stimulus presentations, that is,
1 R
H;:f = 'R'ZArmBrmmzla2'”>N;n=1)2,"'7N (366)
r=1

where A,n, and B,, are the elements of spike matrices for trains A and B,
respectively. Therefore, the matrix presentation of the joint PST scatter

diagram is

H= %ATB (3.67)

where T' denotes transposition. The expanded joint PST histogram for multi-

unit recordings (of M neurons) is then

1 & M
r=
where C¢,., (¢ = 1,2,---, M), is the element of the spike matrix for the i-th
neuron.
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3.4.1 Using the Scatter Plot to Determine Neuronal Connectivities

The correlations between a pair of recorded neurons (A and B) can be

computed from the experimental estimate of the expression of Result 1, i.e.,

bt ) = log(223) = g

E[P4p(t, )]
E[Pa(t)] E[PB(S)]) — log(v(2, 5))

where E[P4(t)] and E[Pp(s)] represent the PST histograms of firings of the
neuron pair, E[Psp(t,s)] is their scatter plot, and 4 (> 0) is the corrupting
factor representing the uncertainty in the estimate due to the influences of other
unobserved neurons and biophysical factors. Thus in terms of bin numbers m

and n, the above equation can be written as

AB

log( Hfjmj’} ) = h(mAt, nAt) + log(1(mAt, nAt)). (3.69)

m n

In the case of time invariant connectivities, h(t,s) becomes h(t — s), and the
correlation peak becomes a band that runs parallel to the principal diagonal

(t—s=0).1

In the practical application of Eq. (3.69), the confounding (2, s) contribu-
tions are not known. However, the analysis shows that additional simultaneous
recordings can be used to reduce these uncertainties. Therefore, by using the

additional data, the improved estimator for h(¢,s) becomes

ABC3--C Ca-C
H 3-UM Hm:f‘.m M

log (SR BB L) = h(mAt,nAY) +log(y'(mAL nAY)  (370)

1Note that one can detect further correlations in the unnormalized scatter plot, such
as the more diffuse bands of time-invariant common inputs. Of course, these features are
intentionally removed by the normalization since they do not reflect direct connectivities

between the neuron pair (see Result 4).
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where H,?;l,f’;z_,‘_‘,ﬁy are simply the joint multidimensional scatter plots defined
in Eq. (3.68), and the uncertainty factor v* (better than v) is defined in Eq.
(3.17). The estimates of Egs. (3.69) and (3.70) are illustrated in network

simnulations in section 3.5.

3.4.2 Establishing Confidence Measures on the Estimates

The histograms are random variables subject to fluctuations. Hence, it
is important to determine upper and lower bounds such that we assume a
connection between neurons A and B whenever these bounds are surpassed.

By the law of large numbers, HAZ converges to E[P4p(t,s)], so does H to

E[P4(t)] and HE to E[Pg(s)] almost surely as R — oo. Therefore, if neurons

\

A and B are independent, by theorems on limiting distributions,

HAB
T{_‘GI_nB_—)l as R— o0 (3.71)

almost surely.

The hypothesis Hy is that the two neurons are statistically independent,

which is supported by
E[P4p(t,s)] = E[Pa(t)] E[P5(s)]. (3.72)

And the alternative hypothesis H; is that the two neurons depend, which is
described by

E[P4p(t,s)] # E[Pa(t)] E[Pp(s)]. (3.73)

One expects HAZ /(HA HP) to be close to 1 if hypothesis Ho is true. Conversely,

if the amount it deviates from 1 exceeds a bound b, one accepts hypothesis H;.
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Now for a given significance level a, we need to find the bound b satisfying

HAZ
13,(11,]%}]31B —1|>b| HA HB, Hy) = o (3.74)

The hypothesis testing is stated as the following theorem.

Theorem 3.4. Let b be a bound which divides a critical region for the hy-
pothesis testing. One announces that there is a dependence between the two

observed neurons if

HAB
s — 1> b. (3.75)

For the given significance level a of false announcement of dependence, the

bound can be approximately calculated by

’ 1 — HAHB

where the value of ¢, is determined from

Bey) =1 - (3.77)

e

and &(z) = A= [, e~ /?da.

The function ®(z) is usually available as the standard normal distribution

table. For example, a = 0.05 gives &, = 1.96.

The above theorem implies that element HAB /(HAHP) of the normalized
joint PST diagram has a conditional expectation value 1 and an approximate

conditional variance

, _1—HAHP

mn "R (3.78)

g
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given the values of H/: and HZ under hypothesis Ho. Since HA and HZ are
usually very small and R is fairly large, this approximation is close to a recent
result by Palm et al. [30] where their conditional variance is

: _ (1—H7)(1 - HP)

under hypothesis Hj.

The bound dividing the hypothesis regions can be made more useful in neu-
ral networks with time invariant connectivities. Let w,, reflect the fluctuation
in the normalized joint PST diagrams such that

AB
H mn

Fags = 1mAtnAt)eM A 4y, (3.80)

and the mean of w, is zero. Let ¥k = m — n. A collapsed version can be
generated by averaging over diagonals of the normalized joint PST diagram.

This collapsed version is a 1-dimensional histogram G}, expressed by

1 min(N,N—k)  [rAB

Gk — n+k,n
N - |k| n=max(1,1-k) H'f’i'anB
k=—N41,--,=1,0,1,---,N -1 (3.81)

where k = 0 is the collapsed point of the principal diagonal.

Since averaging reduces the fluctuations (the average of w,, has a smaller
variance), Gy is a better estimator for the time invariant connectivity h(t,s) =
h(t — s). This enables us to establish a bound such that

P.(|Gk — 1| > b | Ho) = (3.82)
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Theorem 3.5. Given a significance level ¢, let b be a bound of critical region

satisfying the above equation, then b, may be approximately written as

in(N,N —k
b \/ E:::x(mx(l,l—)k) o 3L+k,n
e

N — k] &b (3.83)

where ¢, is the the same as in Theorem 3.4, and o2, is given by (3.78). Fur-

thermore, by will reduce to

b

=
1

(3.84)

when o2, ’s are taken as constants.

This theorem indicates that the critical region is enlarged (the bound value
decreases) when the collapsed version of the normalized joint PST histogram

is used.

3.5 Simulations and Discussion

In order to illustrate the nature of the estimates, uncertainties, and bounds
derived earlier, we show the results from simulations of networks of excitatory
and inhibitory neurons. The neuron model used for the simulations is depicted
in Fig. 3.1(c) where the nonlinearity g(z) = ae® and the random threshold has

an exponential distribution with mean 1.

In the first case (Fig. 3.4), pairwise excitatory and inhibitory, time invariant

connections are estimated using the normalized scatter plots; the uncertainty

80



factor () is equal to 1. The upper plots show the two-dimensional normalized
scatter plots. The correlations appear as bands along the principal diagonal
because h(t,s) is time-invariant. Hence, the scatter plot can be collapsed along
this axis to produce the lower histograms. Note that time-variations in h(%, s)
(e.g., due to poststimulus adaptation) do not allow this reduction. Conse-
quently, it should only be performed on the portions of the neural record that
display obvious stationary behavior. In both simulations of Fig. 3.4, the pre-
dicted analytical estimates are also plotted for comparison, together with the

bound lines for the confidence measures (determined by Theorem 3.5).

In order to illustrate the effects of the uncertainty factor v, we examine in
Fig. 3.5 the interactions among three neurons with time invariant connectivi-
ties. Here, neuron A is inhibited by neuron B and excited by neuron C, and
neuron C' is in turn excited by neuron B. Because of the interactions between
B and C, the threshold in neuron A is no longer independent of the firings
of B. Thus, if we attempt to identify the connectivity between neurons A
and B from pairwise recordings, the estimates will be contaminated by the v
uncertainty factor. The top curve in Fig. 3.5 first shows the “target” theoreti-
cal connectivity obtainedl from the multi-recording estimate given by formula
(3.38) with v*(¢,s) = 1 (i.e., e"*48(=9)), If neuron C is ignored, the pairwise
estimate of e"45(!=%) is shown as the middle curve in Fig. 3.5 (corresponding to
formula (3.69)). The correlation is so distorted that actual inhibition becomes
false excitation because of the strong excitatory activity from neuron C. To
correct the erroneous correlation, we have to use the information from the third
neuron. The tripartite correlation according to formula (3.70) is displayed at

bottom of Fig. 3.5, which is much closer to the analytical estimate.

81



Fig. 3.6 compares the preferred normalization with the difference normali-
zation (shuffle method) under two situations. In the absence of a direct con-
nection, the shuffle method provides accurate indication of the lack of synaptic
inputs between the two neurons. However, in the presence of a direct connec-
tion, the shuffle method fails to remove completely the stimulus correlations as
indicated by the deviation from the analytical results. Instead, the normaliza-

tion suggested in this paper performs well in both cases.

In conclusion, the above simulations confirm the proposed theory. The
neuron model adopted is quite general because (1) the synaptic connectivity
h(t,s) represents a time-varying system; (2) the processes representing spike
trains are not necessarily Poisson processes, and (3) the nonlinear function
g(z) = ae® is an approximation of ae”/1 + ae® when ae® « 1, meaning that
the neuron is operating at low firing rates. Moreover, our analytical Results
1 and 2 do not dependent on any further assumptions. Although the three

simplifying assumptions were made in order to see Result 3 more clearly, we

did not use these assumptions in the simulations of Fig. 3.6.

The analysis presented in this paper also points to the following sobering
conclusion: For multiunit correlation analysis to play a useful role in estab-
lishing the basic circuitry of the nervous system, new technologies have to be
developed for stable, multiunit recordings. These requirements stem from the
need for extended simultaneous recordings from many cells in order to con-
struct adequate scatter histograms and to minimize inherent uncertainty due
to unobserved but related activities. Unfortunately, neither of these require-
ments are easily met at present, although extensive efforts towards this goal

are underway through the use of silicon-based microelectrode arrays [22).
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Figure 3.3: A dynamical nonlinear neuron model, where neuron A is considered as

the postsynaptic neuron.

(a) Neuron A is influenced by presynaptic neurons By, Ba,- -, B,,.

(b) A synaptic connection between neurons A and Bj; the influences of other neurons

on neuron A are summarized by Us.

(c) An equivalent probabilistic version of the neuron model. The impact of the

random input U; is now moved to the spike generator where the threshold becomes

random.
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Figure 3.2: A pair of Neurons (A4 and B) are stimulated by a common input source,

train D. The common input may represent a stimulus source or a neuron. The

average rate of train D is V,P.
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Figure 3.3: The common input correlation vs. the snaptic correlation. The time axis
represents k = ¢t — s. All the connectivities have the form of h4(t) = hp(t) = h(t) =
2.4¢100t and the time bin width At = 0.002.

(a) Narrow correlation peak due to the synaptic connectivity.

(b) Wide correlation peak due to the common input connection.

(c) The normalization procedure makes the wide peak smaller.
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Figure 3.4: Simulations for pairwise excitatory and inhibitory correlations.

(a) Excitatory coupling h(t,s) = 0.8¢~2%(:=2) t > s. Shown is the two-dimensional
normalized scatter plot generated by the spike trains of the two neurons; below it
is the histogram Gy that results from collapsing the scatter plot along the principal
diagonal. It corresponds to the function Ny(k) = e"¥), The upper and lower bound
lines represent the 95 % confidence measure.

(b) Inhibitory coupling, similar to (a) for h(t,s) = ~3.0e~20(t-9) ¢ > s,
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-64 k=0 64
Figure 3.5: Interaction among three neurons. The network structure is displayed on

the top graph: neuron B inhibits neuron A and excites neuron C, and neuron C
excites neuron A. hap(t) = —1.8¢72% h,o(t) = 3.6e~2%, and hop(t) = 2.0e~ 20
The top curve gives the theoretical connectivity from formula (3.38) with ¥*(t,s).
The middle one is the correlation curve corresponding to formula (3.69) generated
from spike trains A and B only. The correlation is so distorted that actual inhibition
becomes a false excitation (which is actually due to a strong excitatory input from
neuron C). The bottom curve shows the tripartite correlation according to formula

(3.70), which displays the correct inhibitory sign for the connectivity.
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Figure 3.6: Comparison of the preferred with the difference normalizations.

(a) The absence of a direct connection case (h = 0): neurons A and B have a common
input source — a neuron driven by a stimulus. The connection strength from the
common input is w = 1. The top curve gives the collapsed version of the joint
PST histogram without any normalization. The correlation peak is purely due to
stimulus effects. The middle curve represents the difference normalized correlation.
The bottom curve shows the preferred normalized correlation curve. Both methods
perform well in indicating the absence of connection between A and B.

(b) The presence of a ajrect connection case (h # 0): neurons A and B have a
common input source as in (a), and in addition, a direct synaptic connectivity from
B to A, hap(t) = 0.4e~20¢, The top curve gives the theoretical correlation predicted
from N,(k) = e*¥). The middle curve shows the difference normalized correlation.
Although the connectivity is weak (only 0.4), the large sharp peak in the correlation
leads to a false impression of high excitatory connectivity, which is in fact due to
stimulus effects. The bottom curve shows the preferred normalized correlation, which

is very close to the theoretical function 0.4e=20t,
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CHAPTER

FOUR

CONCLUDING REMARKS

This dissertation aimed to develop the theoretical and experimental means
to study the nature of the neural networks of the nervous system. It covered
two areas: the detection and classification of neural signals, and the synaptic

connectivity identification of neural networks.

To study the functional connectivity, reliable recording and identification
of the simultaneous activities of a group of neurons is essential. In Chapter
2, a totally automated system for neural spike detection and classification was
presented which did not require a priori assumptions about spike shape or
timing. Such a system is desired to overcome some of limitations presented by
newly developed extracellular microelectrode arrays where the automation and

the signal processing speed are essential.

The system is divided into two parts: a learning subsystem and a real-time
detection and classification subsystem. Because its bases have shapes simi-
lar to neural spikes, the Haar transform can be used to detect spikes without

the knowledge of spike templates. The learning subsystem, comprising a Haar

89



transform detection scheme, a feature learning phase, and a template learning
phase, extracts templates for each separable spike class. The real-time detec-
tion and classification subsystem identifies spikes in the noisy neural trace and
sorts them into classes, according to the templates and the statistics of the
background noise. Three fast algorithms are proposed for the real-time sorting
subsystem, and comparisons are made among different schemes. Performance
of the system is illustrated by using it to classify spikes in segments of neural
activity recorded from monkey motor cortex and from guinea pig and ferret
auditory cortices. The system is implemented without human supervision and

therefore is suitable for real-time multichannel recording.

In Chapter 3, analytical and experimental methods have been provided
for estimating inter-neuronal connectivities from simultaneous recordings of

multiple neurons (after separation).

The results are based on detailed, yet flexible nonlinear neuron models in
which spike trains are modeled as general doubly stochastic point processes.
The expressions derived can be used with nonstationary or stationary records,
and can be readily extended from pairwise to multineuron estimates. Further-
more, we have shown analytically how the estimates are improved as more
neurons are sampled, and derived the appropriate normalizations to elimi-
nate stimulﬁs—related correlations. In short, the following results have been
obtained:

(1) The connectivity can be approximately estimated by the pairwise joint PST
histogram and individual histograms.
(2) The connectivity identification can be improved if a third, a forth or more

interacting neurons are examed.
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(3) It is very important to choose an appropriate normalization method used
in the correlation histograms to remove efficiently the stimulus effects.
(4) The correlation peak spreads more for common input connections than for

synaptic connections.

Finally, we illustrate how to use analytical expressions for interpreting
experiment data, and give explicit confidence measures for detecting inter-

neuronal connectivity.

This dissertation suggests that several areas need further investigation. In
the spike classification part, it is not infrequent that two or more spikes from
different neurons occur simultaneously, causing a superposition of these spike
in the recording trace, and hence reducing the reliability of spike separation.
Therefore, developing a real-time algorithm to deal with the superposition and

integrating it into the automated spike sorting system are important objectives.

In the connectivity identification aspect, the identification accuracy depends
on the amount of data collected. This results in two problems: One is the need
for huge amount of data; the other is the computational burden. We wish to
investigate a new approach for connectivity identification, which is universal for
stationary or nonstationary neural firings, and is in addition extremely efficient.
This new approach will utilize a hidden Markov model to estimate the intensity
process (membrane potentials) of a doubly stochastic process (spike train) so
that the synaptic connection between a pair of neurons is readily revealed.
At first, we could use the observed spike train of the post-synaptic neuron to
estimate the semi-membrane potential process V; (the states of the neuron at

each instant). Then the estimate will be compared with the actual (unknown)
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states determined by the observed spike train {T%}>1 of the presynaptic neuron

expressed as

N()

Ve=g(3 h(t,Ti))
k=1
so as to find the form of the synaptic connectivity A(,-).

The future objectives of research will focus on investigating the organization
of the nervous system. And based on further neurobiological evidence, we
hope to develop models with more biological fidelity that can perform various

cognitive tasks.
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APPENDIX

In this appendix, we prove the theorems and the lemmas in the text.

Proof of Theorem 2.1:

We need to prove that there exists a unique minimum of the objective

function J = 0Pr + Puy, if not all s(k) are zero and if § > 1.

Let us set

oJ

Oz, -

0, n=1,2-,M. (0.1)

Since Pr = [[M_, ®(—2n), and Py = 1-TIM_, ®(0—2m), Where T = /0,

am = 8(m)/o, and ®(y) = [¥, 715-;6'”2/2&10, we have

M M
06(—z,) [[ ®(—2m) = dlan — 2n) I1 ®(om — 2m), » =1,2,--+, M. (0.2)

m#n m#n

Using the facts that § > 0, 0 < ®(z) < 1, and ¢(z) = 712;6””2/2, therefore, the

M simultaneous equations are equivalent to
vpe=S? = e=lEn=anll2 g =19 M. (0.3)

where 1,’s are positive numbers. Suppose that s(n) # 0, hence a, # 0, then
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Eq. (0.2) has one and only one solution, which implies that there is only one

extremum for J.

To see the extremum is the minimum, notice that

Jim J =1, Vm (0.4)
and
1lim lim .-+ lim J = 4. (0.5)
Ty=+r—00 L2——00 T —00

It suffices to show that there exists an z*, such that J(z*) < 1. It is easy to

see that for fixed z,, 73, -+, 257, J can be expressed as
J =0y / T b(a)de+1-8 / T $(2)da (0.6)

=(61-6) [ @)= [ d(@)da+1 (0.7)

where 0 < v < f < 1, and ; > 0. Because &(—z) < e~2*, for z > 0, we

have

J < (6y — 23 _ B _ap 1 <1 0.8
(6 — B)e or + (0.8)

for z; sufficiently large. This completes the proof.

Proof of Lemma 3.1:

The threshold of neuron B, which is a continuous random variable, has the

probability density function and the distribution function denoted fyz(z) and
thB(:c), respectively. Let b; = ftto V.Bdr, where t, is the occurrence instant of

the previous spike. From definition of Pg(t) we have

Pg(t) = By [f5(t,07)] (0.9)
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where the expectation Ej,[-] is taken with respect to 8. And

Pr(bt+At 2> 0tB|bt < 9tB§Hfaa~MtB)
At

By __ 1
fp(t,67) = lim

— im P.(b; < 08 < bipns|HE, 2) _ B f‘??(b’)

a0 At P (b, < OF[HP,NP) " 1—Fy(b) (0.10)

Furthermore, if the threshold is exponentially distributed with mean A, then
fop(b)/1 — Fyp(b;) = A, and hence Pp(t) = AV,P. In this case, Pp(t) does not

depend on {Np(t)}, and {Ng(t)}i>0 evolves without aftereffects.

Proof of Lemma 3.2:

Because ANp(t) can take values 0 and 1 only, by Eq. (3.3) we have

VA ANB(S)

E[ IHtv.saNsB] =

B(t
anP{NZ)h(t T2)}ANg(s) = 1;Hy,,, V7] (ANB(S)A-SHH N

k=1

(0.11)

For t > s, the conditional expectation in the above equation can be written as

Np(t)
Elaexp{ E h(t,T,f)}lANB(s) = I;HtB,'HsB] =
k=1

Ng(s) Np(t)
Elaexp{ 3 h(t,T?)}exp{h(t,s + As)}exp{ > h(t, TE)} | HE, NEB]
k=1 k=Np(s+As)+1
(0.12)
which becomes
! E[VAIH? , VY (0.13)
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as As goes to 0. Since Pp(s) is a measurable function with respect to

o(HB x N'B), we obtain
dN,
BVASE) - 0 BV, NP Po(s) = M EVAPR(s). (014

For t < s, we have

e 20 s o) = my e ) RS g v
PT(ANB(S) = 1|H3B’N3B)
= E[VAHE, NP = , (0.15)
hence
BVATES)) < pEVANE, NPIBs() = EVAPs(s). (0.0

Since h(t, s) represents a synaptic connectivity, which is a causal system with
non-zero transmission delay, h(t,s) = 0 for t < s. Thus Lemma 3.2 holds for

all £ and s.

Proof of Theorem 38.1:

Suppose that Assumptions 3.1 and 3.2 hold, and that the threshold 6, has

an exponential distribution with mean 1. By (3.42),

— A
i DrANA() = UHELNS

Jim, N VA, (0.17)

hence spike train N4(t) represents a doubly stochastic Poisson process with the

intensity process {V;4 : ¢t > 0}. Therefore, by Egs. (3.40) and (3.42) we have

Pa(t) = E[VAH/). (0.18)
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We choose At and As such that s < s+ As <t <t+At,ort <t+ At <
s < s+ As. Because Poisson process is an independent increments process,
the conditional probability given the firing histories of neurons A and B can

be split into

P,(AN4(t) =1,ANp(s) = 1|H{, Hz,,)
= P,(AN4(t) = 1|H}) P.(ANg(s) = 1|/H:, HE ). (0.19)
By Egs. (3.40) and (3.42), the first factor is
P.(AN4(t) = 1|HA) = VAAL + o At). (0.20)
We write the second factor as
P.(ANs(s) = 11, HE,) = EIANs(s)/HAHE,),  (0:21)
and we have

P.(AN4(t) = 1,ANp(s) = I/H{, HE,,) = B[V ANp(s)IH', 1) + o(At).

(0.22)
By taking average over the o-field H#, we obtain
dNp(s
Pas(t, ) = EVA D2z ) (029
which is, by the proof of Lemma 3.2,
Pas(t,s) = "t BVAIHE Pg(s) = M4 Py (1) Ps(s). (0.24)
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Proof of Lemma 3.3:

Under Assumptions 3.1 and 3.2, P4(t) becomes the conditional expectation

of the postsynaptic membrane potential, which can be expressed as

NB(t)
E[VAH?) = Elaexp{ 3 h(t,T¢)}H] (0.25)
k=1
Define an event D, = {Np(t) = n}, which has a conditional Poisson
distribution
B n
P.(Dn|HB) = U-Q—‘;—df]— - vFPar (0.26)

Because {Np(t) : t > 0} is an inhomogeneous Poisson process with the asso-
ciated point process {T : k = 1,2,---} for the given realization of the intensity
process {V;Z : t > 0}, it can be shown that [24]
Np(t) [t ehtm Y By
Elexp( 3 HLTENa() = n W) = (R Grm . 02
o'

k=1
Therefore, we have

Np(t)
E[E[exp{ Z h(t, TE)}|Ne(t) = n ,HE

Np(?)
= ZE[eXP{ Z h(t, TP)}Na(t) = n, HY 1P (DalH7)

n=0

[fo VBdT]n VBdT

n!

(0.28)

n=0
and the summation in the above equation is a series expression for an

exponential function. Thus rewriting it proves the lemma.
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Proof of Theorem 3.2:

By Lemma 3.1, Pg(s) = V2; by Theorem 3.1, fa(t,04) = V;A. Since VA
and VP are always positive, we write

E[VAV?]

1(t,s) = EVABVE] (0.29)

Note that E[V#] = E[Pa(t)] and E[VAVP] = E[E[VAIHEIV?] =
E[P4(t)VE]. This is because E[VA|HE,] = Pa(t). Hence, applying Lemma

3.3 completes the proof.

Proof of Theorem 3.3:

In the expression (3.48), the numerator of ~v(¢,3) can be written as
E[X f(s)e*™]; the denominator can be written as E[X f(s)]E[eX™]. Eq. (3.49)
is true by canceling f(s). Furthermore, we want to show that as the variance
of X decays to zero, M'(n;) — pe*™ and M(n) — €™, and consequently

v(t,8) — 1.
Let fu(z,0?) be the pdf of X with mean y and variance 0. Define

$usony(e — p) = fulz,0?) (0.30)

where [z] = the largest integer no bigger than z, hence {¢r(z—p): £ =0,1,---}
is a Dirac sequence with shrinking support [23]. Assume that the moment

generating function of X is defined on A as

M(t) = / e 1, (z, 0?)dz. (0.31)
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First, we prove that M(t) — e*’. Define

Mi(t) = / e pu(z — p)da. (0.32)

It suffices to show that limg_.., My(t) = e*t. Since

et = gt / iz — p)dz = / ¥ u(z — p)de, (0.33)

we have

Mi(t) — e = /[ewt — e"|éi(2z — p)dz

- + /Iz_“lzs[eﬂ — Mgz — p)de. (0.34)

je—ul<é

For any € > 0, there exists § such that if |z — u| < ¢ then for any ¢t € A
we have |e®* — e#'| < e. For k large, the support of ¢; is contained in the

interval of radius § centered at y, whence the integral expressing M (t) — e#* is
concentrated on that interval, and is obviously bounded up by €. This proves

that limg,co Mi(t) = e,

By the same token, we prove that

klim /we”t¢k(w — p)dz = pe** (0.35)

which completes the proof.

Proof of Theorem 3.4:

For a given significance level a, we need to find a bound b satisfying

HAB
HAHP

P.(| ~1|>b| HA HB; Hy) = a. (0.36)
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Let us remember that RHAB i3 binomially distributed with parameters

(R, E[Pag(t,s)]) and that HAB — HAHB almost surely under H,. By the

central limiting theorem and theorems on limiting distributions,

RHAP — RE[HAP]
VRHZE(T— H22)

N(0,1) as R — oo (0.37)

where N(0,1) is denoted as a standard Gaussian random variable. Then if

spike trains A and B are uncorrelated, we approximately write

RH;? — RE[H2B] ~ RHAP — RHAHP

VRHAB(1— HAB) ~ \/[RHAHB(1 — HAHE) (038
This means that Eq. (0.36) can be approximately written as
P.(IN(0,1)] > &5 | Ho) = « (0.39)
where
6 bRHAHE (0.40)

\[RHAHB(I HAHB)

which results in an expression of the bound as

' 1 - HAQB
b~ €y ._R—H-—T‘ﬁ-j_{:B—. (041)

The value of ¢, is determined by

D) =1-73 (0.42)

where ®(z) = ﬁffoo e~%*2dyg.
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The above arguments imply that element HAB /(H2 HP) of the normalized
joint PST diagram has a conditional expectation value 1 and an approximate

conditional variance

2 L-HAHE

under hypothesis H,.

Proof of Theorem 3.5:

Let us note that under hypothesis Ho, HAB/(HAHP) is approximately
Gaussian distributed with mean 1 and variance oZ,,. Hence

| win(NN-R)
G ~ 1| = |5—3 > Tk Nn(0,1)] (0.44)

N - ]kl n=max(1,1-k)
where each N,(0,1) approximately has a standard Gaussian distribution
expressed by

RHAB — RHZ , HP
N,,,(O, 1) - n+tk,n n+ktn ,
JRHA HE(1 — H7l\ HE)

(0.45)

and o2, is given in Eq. (3.78). Therefore, G} — 1 is approximately Gaussian

distributed with zero-mean and variance

1 min(N,N —k) \
“NN= 0.46
Var(Gk 1) (N _ ik‘)g n=ma:[_(;’1_k) Ontk,n ( )

where mutual independence of N,(0,1) is assumed. Let

by
Ep = ’
v Var(Gr — 1)
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we obtain

Po(|Gx — 1] > b | H, HY 3 Ho) = 2(1 — ®(es)). (0.48)

If all 62, ’s are the same, observing the bound b in Theorem 3.4 completes the

proof.

103



BIBLIOGRAPHY

[1] M. Abeles and M. H. Goldstein, “Multispike train analysis,” Proc. IEEE,
vol. 65, pp. 762-772, 1977.

[2] N. Ahmed, T. Natarajan, and K. R. Rao , “Some considerations of
the modified Walsh-Hadamard and Haar transforms,” Proc. 1978 Symp.

Applications of Walsh Functions, pp. 91-95.

[3] H. C. Andrews and K. L. Caspari, “A generalized technique for spectral
analysis,” IEEE Trans. Computers, vol. C-19, pp. 16-25, 1970.

[4] J. Bak and E. M. Schmidt, “An analog delay circuit for on-line visual
confirmation of discriminated neuroelectric signals,” IEEE Trans. Biomed.

Eng., vol. BME-24, pp. 69-71, 1977.

[5] J. Bak and E. M. Schmidt, “An improved time-amplitude window discri-
minator,” JEEE Trans. Biomed. Eng., vol. BME-24, pp. 486-489, 1977.

[6] P. B. Bishop, W. R. Levick and W. O. Williams, “Statistical analysis of
the dark discharge of lateral geniculate neurones,” J. Physiol., vol. 170,
pp- 598-612, 1964.

104



[7]

[8]

[9]

[10]

[11]

[12]

[13]

H. Van den Boogaard, G. Hesselmans and P. Johannesma, “System

identification based on point processes and correlation densities. I. The

nonrefractory neuron model,” Math. Biosci. vol. 80, pp. 143-171, 1986.

M. J. Correia and J. P. Landolt, “A point process analysis of the spon-
taneous activity of anterior semicircular canal units in the anesthetized

pigeon,” Biol. Cybern., vol. 27, pp. 199-213, 1977.

J. C. Dill, P. C. Lockeman and K. Naka, “An attempt to analyze multiunit

recordings,” Electroenceph. Clin. Neurophysiol., vol. 28, pp. 79-82, 1970.

G. J. Dinning and A. C. Sanderson, “Real-time classification of multiunit

neural signals using reduced feature sets,” IEEE Trans. Biomed. Eng.,

vol. BME-28, pp. 804-812, 1981.

G. L. Gerstein, “Functional association of neurons: Detection and in-
terpretation,” pp. 648-661 in The Neurosciences. Second Study Program,
F. O. Schmitt(ed). Rockefeller Univ. Press, New York, 1970.

G. L. Gerstein and W. A. Clark, “Simultaneous studies of firing patterns

in several neurons,” Science, vol. 143, pp. 1325-1327, 1964.

G. L. Gerstein and D. H. Perkel, “Simultanously recorded trains of action
potentials: Analysis and functional interpretation,” Science (Washington),

vol. 148, pp. 828-830, 1969.

S. Grossberg, “Pattern formation, contrast control, and oscillations in the

short term memory of shunting on-center off-surround neural networks,”

Biol. Cybern., vol. 20, pp. 69-98, 1975.

105



[15] S. Grossberg and E. Mingolla, “Neural dynamics of form perception:

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Boundary completion, illusory figures, and neon color spreading,” Psych.

Rev., vol. 92, pp. 173-211, 1985.

A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Math. Ann.,

vol. 69(1910), pp. 334-371, 1910; vol. 71(1912), pp. 38-53, 1912.

M. K. Habib, P. K. Sen, “Non-stationary stochastic point-process models
in neurophysiology with applications to learning,” Biostatistics: statistics

in biomedical, public health and environmental sciences, P. K. Sen (ed),

Elsevier/North-Holland, Amsterdam, pp. 481-509, 1985.

J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
pp- 2554-2558, 1982.

J. J. Hopfield, “Neurons with graded response have collective computa-

tional properties like those of two-state neurons,” Proc. Nat. Acad. Sci.

USA, vol. 81, pp. 3088-3092, 1984.

C. K. Knox, “Cross-correlation functions for a neuronal model,” Biophys.

J., vol. 14, pp. 567-582, 1974.

T. Kohonen, Self-Organization and Associative Memory, Berlin: Springer-

Verlag, 1984.

J. Kriiger, “Simultaneous individual recordings from many cerebral
neurons: techniques and results,” Rev. Physiol. Biochem. Pharmacol.,

vol. 98, pp. 177-233, 1983.
S. Lang, Real Analysis, 2nd ed., Addison-Wesley, London, 1983, p. 358.

106



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

H. J. Larson and B. O. Shubert, Probabilistic Models in Engineering

Sciences (Vol. II) Random Noise, Signals, and Dynamic Systems, John
Wiley, 1979, p. 591.

G. D. McCann, “Interactive computer strategies for living nervous system

research,” IEEE Trans. Biomed. Eng., vol. BME-20, pp. 1-11, 1973.

D. J. Mishelevich, “On-line real-time digital computer separation of extra-

cellular neuroelectric signals,” IEEFE Trans. Biomed. Eng., vol. BME-17,
pp. 147-150, 1970.

H. Nakahama, H. Suzuki, M. Yamamoto, S. Aikawa and S. Nishioka,
“A statistical analysis of spontaneous activity of central single neurons,”

Physiol. Behav., vol. 3, pp. 745-752, 1968.

R. O’Connell, W. A. Kocsis, and R. L. Schoenfeld, “Minicomputer identi-
fication and timing of nerve impulses mixed in a single recording channel,”

Proc. IEEF, vol. 61, pp. 1615-1621, 1973.

M. N. Oguztoreli and R. B. Stein, “Optimal filtering of nerve signals,”
Biol. Cybern., vol. 27, pp. 41-48, 1977.

G. Palm, A. M. H. J. Aertsen and G. L. Gerstein, “On the signifi-
cance of correlations among neuronal spike trains,” Biol. Cybern., vol. 59,

pp. 1-11, 1988.

D. H. Perkel, G. L. Gerstein and G. P. Moore, “Neuronal spike trains and
stochastic point processes, I. The single spike train,” Biophys. J., vol. 7,
pp. 391-418, 1967.

107



[32] D. H. Perkel, G. L. Gerstein and G. P. Moore, “Neuronal spike trains
and stochastic point processes, II. Simultaneous spike train,” Biophys. J.,

vol. 7, pp. 419-440, 1967.

[33] V. J. Prochazka and H. H. Kornhuber, “On-line multi-unit sorting with
resolution of superposition potentials,” Electroenceph. Clin. Neurophysiol.,

vol. 34, pp. 91-93, 1973.

[34] W. M. Roberts, “Optimal recognition of neuronal waveforms,” Biol.

Cybern., vol. 35, pp. 73-80, 1979.
[35] D. L. Snyder, Random Point Processes, John Wiley, New York, 1975.

[36] M. D. Srinath and P. K. Rajasekaran, An Iniroduction to Statistical
Signal Processing with Applications, John Wiley & Sons, New York, 1979,
p- 79-83.

[37] D. Stagg, “Computer acquisition of multiunit nerve-spike signals,” Med.

Biol. Eng., vol. 11, pp. 340-347, 1973.

[38] R. B. Stein, S. Andreassen and M. N. Oguztoreli, “Mathematical analysis
of optimal multichannel filtering for nerve signals,” Biol. Cybern., vol. 32,

pp. 19-24, 1979.

[39] R. B. Stein, S. Andreassen and M. N. Oguztorelia, “Application of optimal

multichannel filtering to simulated nerve signals,” Biol. Cybern., vol. 32,

pp. 25-33, 1979.

[40] I. H. M. van Stokkum, P. I. M. Johannesma and J. J. Eggermont,

“Representation of time-dependent correlation and recurrence time func-

tions,” Biol. Cybern., vol. 55, pp. 17-24, 1986.

108



[41) D. W. Tank and J. J. Hopfield, “Collective computation in neuronlike

circuits,” Scientific American, pp. 104-114, Dec. 1987.

[42] X. Yang, S. A. Shamma, “A totally automated system for the detec-
tion and classification of neural spikes,” IEEE Trans. Biomed. FEng.,

vol. BME-35, pp. 806-816, 1988.

109



