
ABSTRACT

Title of dissertation: INVESTIGATIONS INTO MECHANISMS
UNDERLYING EXTREME WAVE
FORMATIONS AND COMPUTATIONALLY
INTENSIVE SIMULATIONS

Ayan Moitra, 2016

Dissertation directed by: Professor Balakumar Balachandran
Department of Mechanical Engineering

Various mechanisms have been proposed to explain extreme waves or rogue

waves in an oceanic environment including directional focusing, dispersive focusing,

wave-current interaction, and nonlinear modulational instability. The Benjamin-

Feir instability (nonlinear modulational instability), however, is considered to be one

of the primary mechanisms for rogue-wave occurrence. The nonlinear Schrödinger

equation is a well-established approximate model based on the same assumptions as

required for the derivation of the Benjamin-Feir theory. Solutions of the nonlinear

Schrödinger equation, including new rogue-wave type solutions are presented in the

author’s dissertation work. The solutions are obtained by using a predictive eigen-

value map based predictor-corrector procedure developed by the author. Features of

the predictive map are explored and the influences of certain parameter variations

are investigated. The solutions are rescaled to match the length scales of waves

generated in a wave tank. Based on the information provided by the map and the

details of physical scaling, a framework is developed that can serve as a basis for



experimental investigations into a variety of extreme waves as well localizations in

wave fields.

To derive further fundamental insights into the complexity of extreme wave

conditions, Smoothed Particle Hydrodynamics (SPH) simulations are carried out

on an advanced Graphic Processing Unit (GPU) based parallel computational plat-

form. Free surface gravity wave simulations have successfully characterized water-

wave dispersion in the SPH model while demonstrating extreme energy focusing and

wave growth in both linear and nonlinear regimes. A virtual wave tank is simulated

wherein wave motions can be excited from either side. Focusing of several wave

trains and isolated waves has been simulated. With properly chosen parameters,

dispersion effects are observed causing a chirped wave train to focus and exhibit

growth. By using the insights derived from the study of the nonlinear Schrödinger

equation, modulational instability or self-focusing has been induced in a numerical

wave tank and studied through several numerical simulations. Due to the inher-

ent dissipative nature of SPH models, simulating persistent progressive waves can

be problematic. This issue has been addressed and an observation-based solution

has been provided. The efficacy of SPH in modeling wave focusing can be criti-

cal to further our understanding and predicting extreme wave phenomena through

simulations.

A deeper understanding of the mechanisms underlying extreme energy local-

ization phenomena can help facilitate energy harnessing and serve as a basis to

predict and mitigate the impact of energy focusing.



INVESTIGATIONS INTO MECHANISMS UNDERLYING
EXTREME WAVE FORMATIONS AND COMPUTATIONALLY

INTENSIVE SIMULATIONS

by

Ayan Moitra

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Balakumar Balachandran, Chair and Advisor, Department of Mechanical
Engineering
Professor Eugenia Kalnay, Department of Atmospheric and Oceanic Science (Dean’s
Representative)
Professor Amr Baz, Department of Mechanical Engineering
Associate Professor Peter Chung, Department of Mechanical Engineering
Assistant Professor Amir Riaz, Department of Mechanical Engineering



© Copyright by
Ayan Moitra

2016



Acknowledgments

First and foremost I’d like to thank my advisor, Professor Balakumar Bal-

achandran for giving me an invaluable opportunity to work on this challenging and

extremely interesting project. He has been incredibly patient in guiding me in my

development as a researcher. His key inputs and criticisms have been an important

factor in the completion of this research in a timely manner. It has been a pleasure

to work with and learn from such an extraordinary individual.

I would also like to thank the members of my dissertation committee: Profes-

sor Eugenia Kalnay, Professor Amr Baz, Professor Peter Chung, and Professor Amir

Riaz for their time and insightful feedback during my proposal and dissertation de-

fenses. I would also like to thank Prof. Massimo Ricotti, a co-principal investigator

on the NSF project that supported this work, for his valuable insights and support.

I would especially like to thank Dr. Christopher Chabalko. Without his

cooperation, insights and computational expertise, I could not have successfully

completed this thesis on time. I would like to thank him for helping me develop a

strong foundation in the field of GPGPU-based parallel computing.

My appreciation goes to my past and present lab mates: Chris Chabalko,

Arseniy Zakharov, Tim Fitzgerald, Marcelo Valdez, Vince Nguyen, Edmon Perkins,

Hesham Ismail, Celeste Poley, Vipin Agarwal, Shane Hsu, Abdullah Zibdeh, and

Saliou Telly for all these years together on the pursuits of our goals, and for their

inputs during our uncountable group meetings.

My housemates at my place of residence have been a crucial factor in my

ii



finishing smoothly. I’d like to express my gratitude to Inderjeet Singh Khurana,

Gagandeep Singh Kohli, Shalabh Parmar and Suresh Kanagala for their friendship

and support.

Finally, and most importantly, I would like to thank my parents and my

companion-to-be, Payel Chatterjee, for their constant love, support, guidance, pa-

tience and many many other things that one takes for granted. This would not have

been possible without them.

Support received for this research through NSF Grant No. CMMI-1125285 is

gratefully acknowledged.

iii



Table of Contents

List of Figures vii

List of Abbreviations xii

1 Introduction 1
1.1 Problem of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Basic Water Wave Mechanics . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The Nonlinear Schrödinger Equation . . . . . . . . . . . . . . . . . . 7
1.5 Benjamin-Feir Instability . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Periodic Spectral Theory . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Focusing as a Mechanism for Rogue-wave Formation . . . . . . . . . 16

1.7.1 Linear Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7.2 Nonlinear Dispersive Focusing . . . . . . . . . . . . . . . . . . 17
1.7.3 Nonlinear Directional Focusing . . . . . . . . . . . . . . . . . 20

1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 The Nonlinear Schrödinger Equation and Rogue-wave Solutions 24
2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Analytical Solutions to the NSE . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Lax’s Generalization . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Nonlinear Fourier Structure of the NSE Solution Space . . . . 29
2.2.3 Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3.1 Floquet Theory Applied to the Spectral Problem of
NSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3.3 Numerical Algorithm . . . . . . . . . . . . . . . . . . 36
2.2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.4 Reconstruction of Potential . . . . . . . . . . . . . . . . . . . 46
2.2.4.1 Solutions using Hyperelliptic Functions . . . . . . . . 47
2.2.4.2 Solutions using Riemann Theta Functions . . . . . . 49

2.2.5 Solution Procedure to Explore λ Plane . . . . . . . . . . . . . 50

iv



2.2.5.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.5.2 Correction . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.5.3 Verification . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.6 New Rogue-wave Solutions . . . . . . . . . . . . . . . . . . . . 57
2.2.6.1 Near Peregrine Solution . . . . . . . . . . . . . . . . 60
2.2.6.2 Isolated Solution . . . . . . . . . . . . . . . . . . . . 61
2.2.6.3 Transition from Rogue Wave to Amplified Wave . . . 62

2.2.7 Physical Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2.7.1 Predicted Evolution of a Dimensional Wave Field . . 70

3 Computational Studies of Extreme Energy Localization using Smoothed Par-
ticle Hydrodynamics 75
3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . 80

3.2.1 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.2 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.3 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.4 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2.5 XSPH Correction . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.6 Density Reinitialization . . . . . . . . . . . . . . . . . . . . . . 91
3.2.7 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2.8 Parallel Implementation of the Algorithm . . . . . . . . . . . . 92

3.3 Numerical Studies in Two-dimensional cases . . . . . . . . . . . . . . 95
3.3.1 Smoothing Kernels . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.2.1 Dam Break . . . . . . . . . . . . . . . . . . . . . . . 97
3.3.2.2 Dispersion in the SPH Model . . . . . . . . . . . . . 100

3.3.3 Progressive Wave Generation and Dissipation in SPH Model . 102
3.3.4 Standing Waves in 1+1 Dimension . . . . . . . . . . . . . . . 106
3.3.5 Directional Focusing in 1+1 Dimension . . . . . . . . . . . . . 106

3.3.5.1 Case Study 1: f = 1.2 Hz; S = 2 cm . . . . . . . . . 109
3.3.5.2 Case Study 2: f = 1.0 Hz; S = 3 cm . . . . . . . . . 112
3.3.5.3 Case Study 3: f = 0.8 Hz; S = 4 cm . . . . . . . . . 112
3.3.5.4 Case Study 4: f = 0.6 Hz; S = 5 cm . . . . . . . . . 115

3.3.6 Dispersive Focusing in 1+1 Dimension . . . . . . . . . . . . . 120
3.3.7 Modulational Instability in 1+1 Dimension . . . . . . . . . . . 125

3.3.7.1 Case Study 1: a0 = 2.5 cm; L0 = 54 cm . . . . . . . 132
3.3.7.2 Case Study 2: a0 = 9.0 cm; L0 = 162 cm . . . . . . . 137

4 Summary and Concluding Remarks 142
4.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . 144

A Mathematical Details of Floquet Theory 147

v



B Additional Physical Forms of New Rogue Wave Solutions to the NSE 154

C Sample Codes 159
C.1 Smoothed Particle Hydrodynamics CUDA C++ Code Snippets . . . 159

C.1.1 CUDA Kernel to Initialize Density . . . . . . . . . . . . . . . 159
C.1.2 CUDA Kernel to Compute State Rates . . . . . . . . . . . . . 161
C.1.3 CUDA Kernel to Update Velocity and Position . . . . . . . . 164
C.1.4 CUDA Kernel to Reinitialize Density . . . . . . . . . . . . . . 167

C.2 Predictor-Corrector MATLAB Code Snippets . . . . . . . . . . . . . 170

Bibliography 174

vi



List of Figures

1.1 Rogue wave off of Charleston, South Carolina . . . . . . . . . . . . . 3
1.2 Small-amplitude modulation of a carrier wave. . . . . . . . . . . . . . 8
1.3 Instability diagram for small-amplitude modulations for the NSE. . . 12
1.4 Formation of the freak wave of Gaussian form in shallow water (Source:

[22]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Formation of the freak wave due to geometric focusing (Source: [23]). 18
1.6 The process of the freak wave formation from the nonlinear-dispersive

wavetrain for different times (Source: [42]). . . . . . . . . . . . . . . . 20
1.7 Snake wave maker used in directional focusing (Source: [18]). . . . . . 21
1.8 Rogue waves simulated via directional focusing (Source: [18]). . . . . 21

2.1 λ plane showing main spectrum eigenvalues with a detailed view of ǫ
and θ for a particular choice of (λR, λI) (Source: [40]). . . . . . . . . . 31

2.2 Initial modulated wave train with ǫ = 10−5 and wavelength L = 4.44 . 39
2.3 λ plane spectrum of a plane carrier wave which is modulated by unsta-

ble, small-amplitude (ǫ = 10−5) sine wave and has one (homoclinic)
unstable mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Initial modulated wave train with ǫ = 0.05 and wavelength L = 2. . . 40
2.5 λ plane spectrum of a plane carrier wave which is modulated by stable,

small-amplitude (ǫ = 0.05) sine wave and has two stable modes. . . . 41
2.6 λ plane spectrum of a plane carrier wave which is modulated by small-

amplitude (ǫ = 0.05) sine wave having a wavelength L = 4.44. . . . . 41
2.7 λ plane spectrum of a plane carrier wave which is modulated by small-

amplitude (ǫ = 0.05) sine wave having a wavelength L = 10. . . . . . 42
2.8 λ plane spectrum of a plane carrier wave which is modulated by small-

amplitude (ǫ = 0.05) sine wave having a wavelength L = 100. . . . . . 42
2.9 Initial modulated wave train with ǫ1 = 0.1i, ǫ2 = 0.1, θ1 =

π/3, θ2 = π/6, and wavelength L = 10. . . . . . . . . . . . . . . . . 43
2.10 λ plane spectrum of the initial wavetrain shown in Figure 2.9. . . . . 44
2.11 Initial modulated wavetrain with parameters shown in equations (2.34)

and (2.35) and wavelength L = 10. . . . . . . . . . . . . . . . . . . . 45
2.12 Actual envelope profile (magnified) of the initial wavetrain shown in

Figure 2.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



2.13 λ plane spectrum of the initial wavetrain shown in Figure 2.11. . . . . 46
2.14 Modulus of the space time evolution of the rogue-wave solution for

λ = ia/
√

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.15 Modulus of the space time evolution of the rogue-wave solution for

λ = ia
√

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.16 Flow chart illustrating the procedure to determine new Reimann

theta function described rogue waves. . . . . . . . . . . . . . . . . . . 51
2.17 Map of periodic Reimann theta functions as defined in equation (2.41)

for (A = 1, θ = 0, ǫ = 0.01 ,t = 0) generated by GPGPU computa-
tions. Light colored locations indicate periodic functions, while dark
colored locations indicate aperiodic functions over the interval L. A
point of interest is identified by an asterisk. . . . . . . . . . . . . . . 54

2.18 Main spectrum eigenvalues with a detailed view of ǫ and θ for a
particular choice of (λR, λI). . . . . . . . . . . . . . . . . . . . . . . . 55

2.19 Solution to the NSE for (λR = 1.2415, λI = 1.61108, ǫ = 0.006834, θ =
1.11439) and L = 4.44. This solution envelope has periodic temporal
peaks, which reach a maximum amplitude of ≈ 4.2x the background. 58

2.20 GPU maps for (L = 7, ǫ = 0.005) and (L = 12, ǫ = 0.01). . . . . . . . 58
2.21 Solution to the NSE for (λR = 0.6616, λI = 1.23660, ǫ = 0.00276, θ =

0.87385) and L = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.22 Solution to the NSE for (λR = 1.1367, λI = 1.2076, ǫ = 0.004156, θ =

0.372019) and L = 12. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.23 “Near Peregrine” solution with eigenvalues (λR = 0.0098, λI = 1.0068)

close to those associated with the Peregrine solution of the NSE. . . . 61
2.24 Predictive map for isolated solution (λR = 1.7806, λI = 0.99603). . . . 62
2.25 Solution to the NSE for (λR = 1.7806, λI = 0.99603), ǫ = 0.0027655086, θ =

0.007827789, and L = 10. This solution envelope reaches a maximum
amplitude of ≈ 3x the background height. . . . . . . . . . . . . . . . 63

2.26 Composite predictive map containing the highest solution band for
multiple values of L. Corrected pairs of (λR, λI) for generated solu-
tions are marked with an ‘x’. . . . . . . . . . . . . . . . . . . . . . . . 64

2.27 Peaked rogue-wave: L = 6; λ = 0.01178 + 2.5512i; and Amax = 6.1 . . 65
2.28 Peaked rogue-wave: L = 8; λ = 0.0107 + 1.9373i; and Amax = 4.87 . . 66
2.29 Peaked rogue-wave: L = 10; λ = 0.00609 + 1.5485i; and Amax = 4.2 . 67
2.30 Peaked rogue-wave: L = 12; λ = 0.0086 + 1.402i; and Amax = 3.8 . . 67
2.31 Peaked rogue-wave: L = 14; λ = 0.008 + 1.276i; and Amax = 3.55 . . 68
2.32 Near Peregrine solution (solid line) appears identical to the Peregrine

solution (marked with squares) over the interval examined. . . . . . . 71
2.33 Predicted temporal evolution for the near Peregrine solution (λR =

0.0098, λI = 1.0068). Surface heights are shown at various distances. . 72
2.34 A wave field showing the predicted temporal evolution of a rogue-

wave solution (λR = 1.1367, λI = 1.2076) with two localization events
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.35 Detailed view of dimensional rogue-wave solution with λ = (1.1367, 1.2076i). 74

viii



3.1 SPH simulated waves produced by a wavemaker (Source: [32]). . . . . 77
3.2 Solitary waves in a horizontal tank simulated using SPH (Source: [34]). 78
3.3 Wave packet evolution and focusing (Source: [13]). . . . . . . . . . . . 79
3.4 Wave breaking and collapsing (Source: [13]). . . . . . . . . . . . . . . 79
3.5 Representation of a smoothing kernel in three dimensions. . . . . . . 82
3.6 Schematic representation of the CUDA-enabled parallel SPH Algo-

rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.7 The 0th derivative (upper) and 1st derivative (lower) smoothing ker-

nels used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.8 The present SPH simulation results exhibit qualitatively similar be-

havior to previous SPH simulation results for the validation case of a
dam break. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.9 For a similar configuration, the results obtained from the present
method are seen to be in quantitative agreement with previous ex-
perimental [29] and numerical results [54]. . . . . . . . . . . . . . . . 98

3.10 Dam break experiment by Martin and Moyce [29]. . . . . . . . . . . . 99
3.11 Actual ω2 versus Evaluated ω2: Data consolidated from five numerical

experiments to verify dispersion relation in the current SPH model . . 101
3.12 Plot showing the variation of SPH simulated wavelength versus the

forcing frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.13 Numerical tank of length 4.5 m is simulated by using 88000 particles

with water depth of 0.35 m. Left wall is forced with a sinusoidal
function of frequency f = 1.4 Hz and stroke amplitude 2 cm. The
case study with higher smoothing length (h) exhibits considerably
lower dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.14 1+1 Dimension Standing Waves Case Study (t = 4.000 secs to t =
8.415 secs): Numerical wave tank of length 15 m and water depth 1.0
m simulated using 90000 particles. . . . . . . . . . . . . . . . . . . . . 107

3.15 1+1 Dimension Standing Waves Case Study (t = 10.230 secs to t =
13.770 secs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.16 1+1 Dimension Directional Focusing Case Study 1 (t = 3.174 secs
to t = 3.900 secs): Numerical wave tank of length 4.5 m and water
depth 0.35 m simulated using 88000 particles. Both, left and right
walls excited in a sinusoidal manner with a frequency of 1.2 Hz and
stroke amplitude of 2 cm. The wave-fronts interfere in the middle of
the tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.17 1+1 Dimension Directional Focusing Case Study 1 (t = 4.314 secs to
t = 8.160 secs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.18 1+1 Dimension Directional Focusing Case Study 2 (t = 1.536 secs
to t = 2.730 secs): Numerical wave tank of length 4.5 m and water
depth 0.35 m simulated using 88000 particles. Both, left and right
walls excited in a sinusoidal manner with a frequency of 1.0 Hz and
stroke amplitude of 3 cm. The wave-fronts interfere in the middle of
the tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



3.19 1+1 Dimension Directional Focusing Case Study 2 (t = 3.162 secs to
t = 4.122 secs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.20 1+1 Dimension Directional Focusing Case Study 3: Numerical wave
tank of length 4.5 m and water depth 0.35 m simulated using 88000
particles. Left and right walls excited in a sinusoidal manner with a
frequency of 0.8 Hz and stroke amplitude of 4 cm. . . . . . . . . . . . 116

3.21 1+1 Dimension Directional Focusing Case Study 3: Particles colored
based on velocity magnitudes. . . . . . . . . . . . . . . . . . . . . . . 117

3.22 1+1 Dimension Directional Focusing Case Study 4 (t = 2.242 secs
to t = 3.918 secs): Numerical wave tank of length 4.5 m and water
depth 0.35 m simulated using 88000 particles. Left and right walls
excited in a sinusoidal manner with a frequency of 0.6 Hz and stroke
amplitude of 5 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.23 1+1 Dimension Directional Focusing Case Study 4 (t = 4.746 secs to
t = 6.246 secs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.24 Sinusoidal Motion described by the left wall to generate waves. Con-
stant frequency for the first 9 cycles. Frequency variation commences
at t = 8.65 secs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.25 1+1 Dimension Dispersive Focusing Case Study (t = 10.700 secs to
t = 15.250 secs): Numerical wave tank of length 15 m and water
depth 1.20 m simulated using 240000 particles. . . . . . . . . . . . . . 123

3.26 1+1 Dimension Dispersive Focusing Case Study (t = 16.150 secs to
t = 16.700 secs): Numerical wave tank of length 15 m and water
depth 1.20 m simulated using 240000 particles . . . . . . . . . . . . . 124

3.27 Parametric study showing generated wave amplitude versus wave
maker amplitude for different water depths. . . . . . . . . . . . . . . 126

3.28 Parametric study showing generated wave length versus wave maker
amplitude for different forcing frequencies and water depths. These
results follow the dispersion relation. See Figure 3.11. . . . . . . . . . 127

3.29 Evolution of the dimensional form of Peregrine breather as described
by equation (3.44) (a0 = 0.01 m, L0 = 0.54 m). . . . . . . . . . . . . . 129

3.30 Predicted surface profile according to the analytic formulation of the
Peregrine breather as described by equation (3.44) (t = 6.0 secs to
t = 9.5 secs). The perturbation is introduced after 10 lead cycles.
(a0 = 0.025 m, L0 = 0.54 m). . . . . . . . . . . . . . . . . . . . . . . 130

3.31 Predicted surface profile according to the analytic formulation of
the Peregrine breather as described by equation (3.44) (t = 10.0
secs to t = 11.0 secs).The perturbation is introduced after 10 lead
cycles.(a0 = 0.025 m, L0 = 0.54 m). . . . . . . . . . . . . . . . . . . . 131

3.32 Time history of the wave maker to theoretically induce the surface
evolution shown in Figures 3.30 and 3.31. The wave maker amplitude
is 0.01 m produces a carrier wave of amplitude 0.025 m. . . . . . . . . 132

3.33 1+1 Dimension Modulational Instability Case Study 1 (a0 = 0.025
m, L0 = 0.54 m): The perturbation is introduced after 10 lead cycles
(x = 0.5 m to x = 1.8 m). . . . . . . . . . . . . . . . . . . . . . . . . 134

x



3.34 1+1 Dimension Modulational Instability Case Study 1 (a0 = 0.025
m, L0 = 0.54 m): (x = 2.0 m to x = 2.4 m). . . . . . . . . . . . . . . 135

3.35 1+1 Dimension Modulational Instability Case Study 1 (a0 = 0.025
m, L0 = 0.54 m): (x = 2.6 m to x = 3.5 m). . . . . . . . . . . . . . . 136

3.36 1+1 Dimension Modulational Instability Case Study 2 (a0 = 0.09 m,
L0 = 1.62 m): The perturbation is introduced after 10 lead cycles
(x = 1.0 m to x = 4.0 m). . . . . . . . . . . . . . . . . . . . . . . . . 139

3.37 1+1 Dimension Modulational Instability Case Study 2 (a0 = 0.09 m,
L0 = 1.62 m): (x = 5.0 m to x = 8.0 m). . . . . . . . . . . . . . . . . 140

3.38 1+1 Dimension Modulational Instability Case Study 2 (a0 = 0.09 m,
L0 = 1.62 m): (x = 9.0 m to x = 11.0 m). . . . . . . . . . . . . . . . 141

B.1 Solution to the NSE for (λR = 0.87528, λI = 1.3008), ǫ = 0.008014, θ =
0.629216906, and L = 5.44. This solution envelope reaches a maxi-
mum amplitude of ≈ 3.6x the background height. . . . . . . . . . . . 154

B.2 Solution to the NSE for (λR = 1.22, λI = 1.852), ǫ = 0.0026265, θ =
1.047105344, and L = 4.44. This solution envelope reaches a maxi-
mum amplitude of ≈ 4.7x the background height. . . . . . . . . . . . 155

B.3 Solution to the NSE for (λR = 0.7356, λI = 0.8237), ǫ = 2.53E −
03, θ = −1.051080567, and L = 20. This solution envelope reaches a
maximum amplitude of ≈ 2.65x the background height. . . . . . . . . 155

B.4 Solution to the NSE for (λR = −0.0167, λI = 0.9805), ǫ = 0.019545839, θ =
1.178877343, and L = 10. This solution envelope reaches a maximum
amplitude of ≈ 3x the background height. . . . . . . . . . . . . . . . 156

B.5 Solution to the NSE for (λR = 0.14615, λI = 0.90249), ǫ = 0.024303445, θ =
−0.835951856, and L = 10. This solution envelope reaches a maxi-
mum amplitude of ≈ 2.8x the background height. . . . . . . . . . . . 156

B.6 Solution to the NSE for (λR = 0.54774, λI = 0.654), ǫ = 0.007805263, θ =
−0.676122251, and L = 15. This solution envelope reaches a maxi-
mum amplitude of ≈ 2.3x the background height. . . . . . . . . . . . 157

B.7 Solution to the NSE for (λR = 0.60503, λI = 2.2946), ǫ = 0.000495576, θ =
1.236466627, and L = 4.44. This solution envelope reaches a maxi-
mum amplitude of ≈ 5.6x the background height. . . . . . . . . . . . 157

B.8 Solution to the NSE for (λR = 1.5948, λI = 2.5409), ǫ = 0.000160675, θ =
−0.475103634, and L = 4.44. This solution envelope reaches a maxi-
mum amplitude of ≈ 6x the background height. . . . . . . . . . . . . 158

B.9 Solution to the NSE for (λR = 0.0099, λI = 1.7498), ǫ = 0.002485633, θ =
0.14954754, and L = 9. This solution envelope reaches a maximum
amplitude of ≈ 4.5x the background height. . . . . . . . . . . . . . . 158

xi



List of Abbreviations

CUDA Compute Unified Device Architecture
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
IST Inverse Scattering Transform
KdV Korteweg-de Vries
NSE Nonlinear Schrödinger Equation
PDE Partial Differential Equation
SPH Smoothed Particles Hydrodynamics
WSPH Weakly Compressible SPH

xii



Chapter 1: Introduction

1.1 Problem of Interest

Freak, rogue, or giant waves correspond to large-amplitude waves surprisingly

appearing on the sea surface (“wave from nowhere”). Such waves can be accom-

panied by deep troughs (holes), which occur before and /or after the largest crest.

In one definition, the amplitude of rogue waves should exceed the significant wave

height in 2-2.2 times. Considering the devastating effects of such extreme waves in

an oceanic environment, the need to develop a deeper understanding of its under-

lying mechanisms become imperative. The ability to develop predictive tools and

model extreme waves can afford a wide range of benefit to the offshore and ma-

rine field. While energy focusing in systems such as fiber optics is well established,

the conditions leading to oceanic rogue waves are not well understood. Moreover,

since extreme wave formation is essentially energy localization, understanding this

phenomenon can facilitate energy harnessing as well.

Various mechanisms have been proposed to explain the rogue-wave phenomenon.

Amongst the most popular theories are Modulational Instability and Nonlinear Fo-

cusing. The Benjamin-Feir instability (nonlinear modulational instability) [8] is

considered to be the one of the reasons for rogue-wave occurrence, in which a uni-

1



form train of weak amplitude modulated wave loses energy to a small perturba-

tion of other waves with nearly the same frequency and direction. The nonlinear

Schrödinger equation (NSE) is a well-established approximate model based on the

same assumptions as required for the derivation of the Benjamin-Feir theory: a

narrow-banded spectrum of waves of moderate amplitude, propagating primarily in

one direction in a dispersive medium with little or no dissipation. The NSE solu-

tion space can be viewed to have a nonlinear Fourier structure which is comprised of

stable modes, unstable modes, and nonlinear interactions between them based on as-

sociated eigenvalues [3]. These unstable modes are potential ‘rogue-wave’ solutions.

The eigenvalue space for unstable modes has not been completely investigated.

In shallow waters, however, modulational instability is absent. In this case,

focusing of nonlinear wave packets with phase modulation is the main reason for

freak wave formation. In deep waters, a combined effect of modulational instability

and nonlinear focusing can lead to larger amplification of freak waves than suggested

by amplitude modulation only [24], [48]. Other mechanisms include directional

focusing [18], wave amplification due to blocking of water waves on the current

(wave-current interaction), and atmospheric forcing [22].

Extreme waves have been reported in the context of many systems, ranging

from ocean [10, 11] to optical fibers [50] to plasmas [36]. While infrequent, oceanic

rogue waves are gaining attention due to their destructive nature. Limited descrip-

tive quantitative data have been recorded [17]. Extreme waves occur infrequently

enough that they are difficult to analyze, but yet, they cannot be ignored [6].

2Source: http://www.opc.ncep.noaa.gov/perfectstorm/

2



Figure 1.1: Rogue wave estimated at 60 feet moving away from ship after crashing
into it a short time earlier. In the Gulf Stream off of Charleston, South Carolina,
with light winds of 15 knots. 2

1.2 Objectives

The principal objective of this work is to develop a better understanding of the

complexities of extreme wave phenomena through analytical methods, mathematical

models, and computational simulations. It is the expectation that the insights

derived from this effort can be utilized towards the development of a predictive tool

for forecasting purposes or the generation of a localized wave-field in a controlled

environment for energy harnessing. Specific objectives broadly include the following:

• Study NSE as a model to describe modulational instability leading to rogue-

wave behaviour. Explore the NSE main spectrum eigenvalue space (λ plane)

to find new forms of rogue-wave solutions to the NSE with the aid of parallel

GPGPU computations. Subsequently, predict initial conditions that lead to

3



energy localizations using the insight obtained from the NSE solution space.

• Perform Lagrangian based N-particle computational simulations in two dimen-

sions to provide further insights into the mechanisms underlying rogue-wave

formation. Smoothed Particle Hydrodynamics (SPH) is chosen as a numerical

tool to study the hydrodynamics processes related to rogue-wave formation.

The simulations are carried out using an in-house developed GPU-based mas-

sively parallel SPH code.

1.3 Basic Water Wave Mechanics

The differential form of the basic equation of fluid mechanics are as follows

[12], [21]

ρt + ∇.(ρv) = 0 : conservation of mass

vt + (v.∇)v = −1
ρ

∇p+ f +
ν

ρ
∇2v : conseravtion of momentum

(1.1)

where ρ is the density, v is the fluid velocity, p is the pressure, f is the sum of

body forces acting on the fluid, and ν is the coefficient of viscosity called kinematic

viscosity.

It is assumed that the depth of the fluid is h and it is bounded from below

by a hard horizontal bed. The upper fluid surface is assumed to be free. The

unperturbed free surface is at z = 0. When the upper surface is perturbed, there is

vertical displacement η(x, y, t) of each point of the surface. Then, the free surface

boundary condition is at z = η(x, y, t). On the other lower solid surface, the normal

4



component of velocity should be zero. i.e, no flux is permitted at the bottom. That

is, vz = 0 at z = −h.

The quantity ω = ∇ × v is called vorticity of the flow, and when ω = 0

the flow is called irrotational. For an irrotational flow, the velocity is a potential

field: v = ∇φ, where φ is the velocity potential. In addition, for gravity waves

f = −gk̂, where g is the acceleration due to gravity. For small amplitude waves and

irrotational flow approximation, equations (1.1) and boundary conditions(B.C.’s)

can be reduced as follows:

∇2φ = 0; −h < z < η(x, y, t) → from mass conservation

φt = −
[

1
2

(φ2
x + φ2

y + φ2
z) + ηg

]
; z = η(x, y, t) → from momentum conservation

φz = ηxφx + ηyφy + ηzφz; z = η(x, y, t) → from B.C. on the free surface

φz = 0; z = −h → from bottom B.C.

(1.2)

Thus, the model equations becomes linear (Laplace equation) but the boundary

conditions are nonlinear.

For small amplitudes (but long wave lengths) water waves, the nonlinear rela-

tionships from the equations (1.2) can be linearized. If the mean surface displace-

ment and the mean velocity potential are small with respect to the wavelength and

to wave period scales, then, the nonlinear terms in the boundary conditions can

be neglected. After a Taylor series expansion of the small quantity η and keeping

only the leading order terms, the free surface boundary condition can be written as

condition on z = 0. Thus, one obtains the following simplified (and linear) equations

5



∇2φ = 0; −h < z < 0,

φt = −gφz; at z = 0,

φz = 0; at z = −h.

(1.3)

Next, it is assumed that the waves propagate in x−direction and are uniform

in y−direction. Thus, this becomes a one-dimensional problem. Let the traveling

wave solution to equation (1.3) have a frequency ω and wavenumber k:

φ(x, t) = Ā(x, z) sin(kx− ωt) (1.4)

The substitution of equation (1.4) in equation (1.3) leads to the following solutions

for velocity potential φ and for the surface displacement η

η = A cos(kx− ωt),

φ = ωA
cosh(k(z + h))
k sinh(kh)

sin(kx− ωt),

A = 2
ak

ω
exp(−kh) sinh(kh)

(1.5)

where a is a constant of integration, A, k, and ω denote the wave amplitude, the

wavenumber and wave frequency, respectively. The dispersion relationship for the

small amplitude surface water waves is given by

ω2 = gk tanh(kh) (1.6)

Their phase velocity c and group velocity cg are as follows

c = ω/k =
√
g/k tanh(kh),

cg = dω/dk =
c

2

[
1 +

2kh
2 sinh(2kh)

] (1.7)

6



The relationship R = depth
wavelength

= h/λ = kh has two limiting cases: R << 1

corresponding to shallow water and R >> 1 corresponding to deep water. For

shallow-water waves, the dispersion relation (1.6) can be approximated by

ω = k
√
gh

[
1 − k2h2

6
+ · · ·

]
= k

√
gh (1.8)

Thus, for shallow water waves, c = cg =
√
gh. Similarly, for deep water waves, the

dispersion in by

ω =
√
gk (1.9)

The phase velocity and group velocity are c =
√
g/k and cg =

√
g/4k.respectively.

That is, the phase velocity is twice the group velocity.

1.4 The Nonlinear Schrödinger Equation

A weakly nonlinear approximation to the nonlinear deep-water problem is the

Stokes waves. However, these waves are unstable to modulation perturbations. This

is called the Benjamin-Feir Instability, which will be discussed in the next section.

The dispersion of the Stokes waves to second-order steepness is

ω =

√

gk(1 +
k2a2

2
) (1.10)

where a denotes the wave amplitude. Consider a slowly modulated Stokes wavetrain

η = Re[A(X, T )exp(i(ω0t− k0t))] (1.11)

7



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

space

am
pl

itu
de

Modulation

Carrier Wave

Figure 1.2: Small-amplitude modulation of a carrier wave.

where ω0 and k0 are the frequency and wave number of Stokes carrier wave and

A(X, T ) is the modulation amplitude of the wavetrain as shown in Figure 1.2. In

addition, X = ǫx and T = ǫt(ǫ << 1) are the slowly varying space and time vari-

ables, respectively. Physically, ǫ := Ak0 is the steepness of the wave and is assumed

to be small. Now consider a Taylor series expansion around the wavenumber k0 and

the amplitude A0 = A(0, 0) · · · The dispersion relation of the carrier Stokes wave is

ω =
√
gk(1 + k2|A|2) (1.12)

where |A| is the amplitude of the Stokes wave (and the amplitude of the envelope).

The Taylor series expansion about the wavenumber k0 of the carrier wave and about

the envelope A = A0 = 0 [43].

ω = ω0 +
∂ω

∂k
(k − k0) +

1
2
∂2ω

∂k2
(k − k0)2 +

∂ω

∂|A|2 (|A|2 − |A0|2) (1.13)

8



Let Ω = ω − ω0 and K = k − k0. In addition, from equation (1.12),

∂ω

∂k

∣∣∣∣∣
k=k0

= cg =
ω0

2k0

,

∂2ω

∂k2

∣∣∣∣∣
k=k0

= − ω0

8k2
0

,

∂ω

∂A2

∣∣∣∣∣
A0=0

=
1
2
ω0k

2
0

Then, from equation (1.13)

Ω = cgK − ω0

16k2
0

K2 +
1
2
ω0k

2
0|A|2 (1.14)

The Fourier and inverse Fourier transforms of the envelope function are

A(K,Ω) = F [A(X, T )] =
∞∫

−∞

dXdT A(X, T ) exp[i(ΩT −KX)],

A(X, T ) = F−1[A(K,Ω)] =

(
1

2π

)2 ∞∫

−∞

dXdT A(K,Ω) exp[−i(ΩT −KX)]

(1.15)

From equations (1.15),

∂A

∂X
= iKF−1[A(K,Ω)],

∂A

∂t
= iΩF−1[A(K,Ω)]

(1.16)

Ω and K are of order ǫ. Then from equation (1.16),

K = −iǫ ∂
∂X

,

Ω = iǫ
∂

∂T

(1.17)

The substitution of the relationships from equation (1.17) into equation (1.14) and

application of the resulting operator equation to the envelope amplitude A leads to

the nonlinear Schrödinger equation for the evolution of the amplitude of the envelope

of the wavetrain (ǫ is incorporated in T and X by appropriate rescaling). In order

9



to maintain uniformity throughout this document, A,X, T have been replaced by

ψ, x, t. Thus, the NSE can be written as

i

(
∂ψ

∂t
+

ω0

2k0

∂ψ

∂x

)
− ω0

8k2
0

∂2ψ

∂x2
− 1

2
ω0k

2
0|ψ|2ψ = 0 (1.18)

1.5 Benjamin-Feir Instability

The normalized form of equation (1.18) in a frame of reference moving with

linear group velocity cg is

iψt −
(
ω0

8k2
0

)
ψxx − 1

2
ω0k

2
0|ψ|2ψ = 0 (1.19)

One of the simplest solutions of equation (1.19) is given by

A(t) = a0exp(−1
2
iω0k

2
0a

2
0t) (1.20)

where a0 is a constant, the amplitude of the carrier wave. This essentially represents

the fundamental component of the Stokes wave. Next, consider a perturbation of

equation (1.20) in the form

a(x, t) = A(t)[1 + B(x, t)] (1.21)

where B(x, t) is the perturbation function. On substituting this result in equation

(1.20), one obtains

i(1 +B)At + iABt −
(
ω0

8k2
0

)
ABxx

=
1
2
ω0k

2
0a

2
0t[(1 +B) +BB∗(1 +B) + (B +B∗)B

+ (B +B∗)]A (1.22)

10



where B∗(x, t) is the complex conjugate of the perturbed quantity B(x, t). Neglect-

ing squares of B, equation (1.22) reduces to

iBt −
(
ω0

8k2
0

)
Bxx =

1
2
ω0k

2
0a

2
0(B +B∗). (1.23)

The perturbed quantity B(x, t) can be expressed in the form

B(x, t) = B1exp(Ωt+ iKx) +B2exp(Ω∗t− iKx) (1.24)

where B1 and B2 are complex constants, K is a real wavenumber and Ω is a growth

rate to be determined. Ω is also the modulational frequency. On substituting the

solution for B in equation (1.23), one obtains a pair of coupled equations:

(
iΩ +

ω0K
2

8k2
0

)
B1 − 1

2
ω0k

2
0a

2
0(B1 +B∗2) = 0, (1.25)

(
iΩ∗ +

ω0K
2

8k2
0

)
B2 − 1

2
ω0k

2
0a

2
0(B

∗
1 +B2) = 0 (1.26)

The complex conjugate of equation (1.26) can be transformed into

(
− iΩ +

ω0K
2

8k2
0

)
B∗2 − 1

2
ω0k

2
0a

2
0(B1 +B∗2) = 0 (1.27)

The pair of linear homogeneous equations (1.25) and (1.27) for B1 and B∗2 admits a

nontrivial eigenvalue for Ω provided

∣∣∣∣∣∣∣∣∣

iΩ + ω0K2

8k2

0

− 1
2
ω0k

2
0a

2
0 −1

2
ω0k

2
0a

2
0

−1
2
ω0k

2
0a

2
0 −iΩ + ω0K2

8k2

0

− 1
2
ω0k

2
0a

2
0

∣∣∣∣∣∣∣∣∣
= 0 (1.28)

which is equivalent to

Ω2 =
1
2

(
ω0K

2k0

)2(
k2

0a
2
0 − K2

8k2
0

)
(1.29)

11



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

dimensionless wavenumber

di
m

en
si

on
le

ss
 m

od
ul

at
io

n 
fr

eq
ue

nc
y

Figure 1.3: Instability diagram for small-amplitude modulations for the NSE.

The growth rate Ω is purely imaginary or real (and positive) depending whether

K2 > 8k4
0a

2
0 or K2 > 8k4

0a
2
0. The former case represents a wave solution for B

and the latter corresponds to the Benjamin-Feir [8] or modulational instability with

criterion given as

0 < K < 2
√

2k2
0a0 (1.30)

Equation (1.29) can be written as

Ω = ω0k
2
0a

2
0

(
K

2
√

2k2
0a0

)√√√√1 −
(

K

2
√

2k2
0a0

)2

(1.31)

Let 2Ω/ω0k
2
0a

2
0 be the dimensionless modulation frequency Ω̃ and K/2k2

0a0 be the

dimensionless wavenumber K̃. Then equation (1.31) can be written as

Ω̃ =
√

2K̃

√

1 − K̃2

2
(1.32)

As shown in Figure 1.3, the maximum instability occurs at K = 2k2
0a0 that cor-

12



responds to the maximum growth rate of Ωmax = 1
2
ω0k

2
0a

2
0. Thus, it can be con-

cluded that Stokes waves are definitely unstable to modulation perturbations in the

Benjamin-Feir range.

1.6 Periodic Spectral Theory

Equation (1.18) can be rescaled to a non-dimensional form. The details of this

rescaling have been presented in Section 2.1.7. The scaled NSE is given by

iut − uxx + 2σ|u|2u = 0 (1.33)

The deepwater (known as ”focusing”) case corresponds to σ = −1. The shallow

water (known as ”defocusing”) case corresponds to σ = 1. Equation (1.33) can

be divided into a spatial scattering problem and a time dependence problem. The

solution space of focusing NSE with periodic boundary conditions can be viewed to

have a nonlinear Fourier structure which is comprised of stable, unstable modes and

nonlinear interactions between them based on the eigenvalues of the spatial problem.

The unstable modes are unstable in a Benjamin-Feir sense and correspond to what

one calls ‘rogue waves’. Details of nonlinear Fourier structure of the NSE solution

space are presented in Section 2.1.2. Periodic boundary conditions are assumed

so that u(x, t) = u(x + L, t) for 0 6 x 6 L. The NSE can be solved by using a

method called the Inverse Scattering Transform Method (IST). This method was

first devised for the infinite line case by Zakharov and Shabat [46] and then later

extended to periodic boundary conditions [52]. A brief overview of the IST method

for the periodic boundary condition (or periodic spectral theory) is presented in this

13



section.

The direct problem of periodic spectral theory is that of constructing the

spectral data of certain linear operators with periodic coefficients; that is, the de-

termination of the spectrum of this operator and of the associated eigenfunctions.

The inverse problem of periodic spectral theory is the problem of the reconstruction

of such an operator (and thus its coefficients) from given spectral data. The history

of periodic spectral theory starts with the investigations of Sturm and Liouville on

the eigenvalues of certain differential equations of second order with given bound-

ary conditions, now referred to as Sturm-Liouville theory [19]. Sturm and Liouville

examined independently different aspects of this problem, such as the asymptotics

of eigenvalues, different comparison theorems on the solutions of similar equations

with different coefficients, and theorems on the zeros of eigenfunctions. For the

class of equations Sturm and Liouville considered, these results imply the existence

of an infinite sequence of real, increasing eigenvalues, and orthogonality of eigen-

functions corresponding to different eigenvalues. Although their investigations did

not as such deal with periodic spectral theory, many of their results carry over to

this case. Consider an ordinary differential operator of order n

L = qn(x)
dn

dxn
+ qn−1(x)

dn−1

dxn−1
+ ...+ q1(x)

d

dx
+ q0(x)

where the coefficients qj(x), j = 0, ..., n are periodic functions of x, sharing a common

period: qj(x + L) = qj(c), j = 0, ..., n and qn−1(x) = 0. They are referred to as

potentials. Using this operator L, the following differential equation is defined

Lψ = λψ, (1.34)

14



This is similar to the spectral problem of the NSE shown in Section 2.1 equation

(2.1). Thus, the direct spectral problem is the problem of

1. determining the set of all λ ∈ C for which this differential equation has at

least one bounded solution, and

2. for each such λ, the determination of all bounded solutions

Most of the times, one is interested in the periodic solutions of ψ : ψ(x+L) = ψ(x)

or anti-periodic solutions ψ(x+L) = −ψ(x). These and other choices lead to spectra

that are subsets of the spectrum as obtained without making these choices.

One approach to solve the direct spectral problem is Floquet Theory. Rewriting

equation (1.34) as a first-order linear system ( as in equation (2.6)), one gets:

ψ′ = X(x, λ)ψ, X(x+ L, λ) = X(x, λ) (1.35)

It follows from qn−1 = 0 that trX(x, λ) = 0. Define the monodromy matrix of this

system as M(x0, λ) = (x0 + L, x0, λ), where ψ(x, x0, λ) is a fundamental matrix of

system (1.35) such that ψ(x0, x0, λ) is the identity matrix. Thus, M(x0, λ) is the

operator of translating x by L: M(x0, λ)ψ(x) = ψ(x+L). This operation commutes

with d/dx, since X(x, λ) is periodic in x with period L. Thus, the system (1.35)

has a set of solutions φ(x) which are also eigenvectors of M(x0, λ). These solutions

(as mentioned in section 2.1) are known as Bloch functions or Floquet functions.

If the eigenvalue of M(x0, λ)) for any Bloch function has magnitude greater than

one, than this Bloch function is unbounded as x → +∞ or x → −∞. Thus, the

spectrum of the system (1.35) is the set of all λ such that at least one eigenvalue

15



of M(x0, λ) has magnitude one. This will be discussed in detail in section 3.2. The

periodicity of X(x, λ) = X(x + L, λ) and the requirement trX(x, λ) = 0 guarantee

that the spectrum is independent of the choice of x0.

− ψ′′ + q(x)ψ = λψ, q(x+ T ) = q(x) (1.36)

The above equation is known as the Hill’s equation or the time-dependent Schrödinger

equation. Its spectrum is bounded from below. It is a collection of intervals such

that the length of the separating gaps between intervals → 0 as λ → ∞. After

using Floquet theory, the condition for λ to be in the spectrum is found to be

| trM(x0, λ |6 2. The endpoints of the intervals are given by | trM(x0, λ |= 2.

Since equation (1.36) is a second-order equation, there are two linearly independent

Bloch functions. A similar result will be derived for the NSE spectral eigenvalue

problem in the upcoming sections. In this case, q(x) is the potential of the system,

and λ plays the role of energy. In equation (2.9), u is the potential and λ are the

eigenvalues. It may be noted that the intervals constituting the spectrum are known

as allowed (energy)bands and the gaps between them as forbidden (energy) bands.

The inverse periodic spectral problem is the reconstruction of the potential given

by the spectral data dicussed in Section 2.1.4.

1.7 Focusing as a Mechanism for Rogue-wave Formation

Amongst the most popular theories proposed to explain rogue-wave formation,

Modulational Instability and Focusing are the most popular ones. In deep waters,

a combined effect of both these mechanisms might lead to an energy localization.

16



However, in shallow waters modulational instability is absent. In this case, focusing

of nonlinear wave packets with phase modulation is the main reason for freak or

extreme wave formation. Other mechanisms include directional focusing [18], wave-

current interaction and atmospheric forcing [22].

1.7.1 Linear Focusing

From the dispersion relation, it is evident that the phase velocities and the

group velocities depend on a frequencies in a way that in a wave group, the long

waves (low frequency) lead and short waves (high frequency) lag. If during the initial

moment the short waves with small group velocities are located in front of the long

waves having large group velocities, then in the phase development, a significant

focusing of the wave energy can occur only if all the quasi-monochromatic groups

merge at a fixed location. This is spatio-temporal or dispersive focusing as shown in

Figure 1.4. Geometric focusing is when multiple wave fronts arrive (superimpose)

at a point from different directions. An example of geometric focusing is shown in

Figure 1.5. Locations of focal points for various curvatures of focusing cylindrical

waves are shown.

1.7.2 Nonlinear Dispersive Focusing

Modulation instability does not occur with shallow water waves. Hence, non-

linear focusing phenomenon is the predominant cause of freak wave formation in

shallow water. Focusing occurs in a significantly phase modulated wave packet. In

17



Figure 1.4: Formation of the freak wave of Gaussian form in shallow water (Source:
[22]).

Figure 1.5: Formation of the freak wave due to geometric focusing (Source: [23]).

18



shallow water, it is studied based on Korteweg-de Vries (KdV) equation:

∂η

∂t
+ c

(
1 +

3η
2h

)
∂η

∂x
+
ch2

6
∂3η

∂x3
= 0 (1.37)

where c is the wave celerity and h is the water depth. The KdV equation is invariant

with respect to the reversal of time and abscissa which implies that we can choose

the expected form of the freak wave as the initial condition for the KdV equation

and calculate the surface elevation for anytime t. Subsequently, one can reverse its

evolution that should lead to the freak wave as shown in Figure 1.6. E. Pelinovsky

et al. [42] proved this by using the dimensionless KdV equation:

∂ζ

∂τ
+

3
2
ζ
∂ζ

∂y
+

1
6
∂3ζ

∂y3
= 0

ζ =
η

h
, y =

x− ct

h
, τ =

ct

h

(1.38)

The initial condition representing the freak wave is given by [42]

ζ(y, 0) = A0exp

[
−
(
x− 5L/6

d

)2]
(1.39)

where the amplitude A0 and characteristic width d are parameters varied in numer-

ical experiments.

Nonlinear focusing phenomenon in deep water is similar to that in shallow

water within the framework of NSE due to its invariance with respect to space

and time. In deep water, a rogue-wave formation can be due to a combination of

modulational instability and focusing.

19



Figure 1.6: The process of the freak wave formation from the nonlinear-dispersive
wavetrain for different times (Source: [42]).

1.7.3 Nonlinear Directional Focusing

Fochesato et al. [18] simulated and analyzed three-dimensional (3D) directional

wave focusing phenomenon leading to the generation of rogue waves. These authors

generated extreme waves via realistic fully nonlinear 3D simulations in a numerical

wave tank, by specifying the motion of a snake wave maker shown in Figure 1.7. A

two-dimesional (2D) longitudinal cross-section through extreme wave crest looked

similar to characteristic rogue-wave shape (crests followed by holes) as shown in

Figure 1.8.

20



Figure 1.7: Snake wave maker used in directional focusing (Source: [18]).

Figure 1.8: Rogue waves simulated via directional focusing (Source: [18]).

21



1.8 Outline

The rest of the dissertation is organized in the following manner. In Chapter

2, the author deals with the analytical and computational study of the nonlinear

Schrödinger equation and its associated “rogue-wave” solutions. To begin with, a

brief literature review has been presented. In the following section, existing an-

alytical solution methodology to periodic NSE has been described. The existing

mathematical formulations have been used to develop a new predictor-corrector

based algorithm to determine parameters governing periodic Riemann theta func-

tion rogue-wave solutions to the nonlinear Schrödinger equation. A detailed expla-

nation of this novel algorithm has been presented in the subsequent sections. By

using the predictor-corrector algorithm, new physical forms of rogue-wave solutions

to the NSE have been generated. Several interesting features of the predictive map

and the generated rogue-wave solutions have been presented. The solutions then

are rescaled to match the length scales of waves generated in a wave tank. Based on

these new rogue-wave like solutions and the details of physical scaling, it is believed

that the presented framework could serve as a basis for experimental investigations

into a variety of rogue waves as well localizations in wave fields.

In Chapter 3, the author deals with computational simulation study of ex-

treme wave localizations. First, a Lagrangian based N-particle method, namely,

Smoothed Particle Hydrodynamics (SPH) is described. Its application to free sur-

face flows is discussed. The equations governing the SPH simulation and details

of the parallel CUDA implementation is then described. The author’s formulation

22



closely follows the formulation presented in an earlier work [54]. In the following

section, an improved smoothing kernel applied to the pressure forces is described.

This smoothing kernel prevents particle overlap more successfully than the kernel

described previously in reference [54]. Subsequently, results from the current SPH

formulation are validated through a comparison to a classic “dam break” simulation

from prior studies. The robustness of the dispersion relation is then evaluated over

a quiescent surface through numerical experiments. The issue of wave attenuation

due to algorithmic dissipation in SPH is then addressed and a possible solution has

been suggested. This is followed up with results obtained from various case stud-

ies on standing waves and directional focusing in 1+1 dimension. Results of free

surface gravity wave simulations carried out to demonstrate dispersive focusing are

presented in the next section. Finally, simulation case studies have been presented

to realize modulational instability or self focusing a numerical wave tank.

Appendices that provide some additional technical details and references are

included at the end.

23



Chapter 2: The Nonlinear Schrödinger Equation and Rogue-wave

Solutions

2.1 Literature Review

In this work, mainly modulational instability has been investigated as a mech-

anism for formation of rogue waves. The periodic nonlinear Schrödinger equation

(NSE) has been used to model extreme waves in many domains. Several families of

analytical solutions have been determined for the NSE. Shabat and Zakharov [46]

were the first to use the Inverse Scattering Transform (IST) to develop analytic solu-

tions of the NSE with infinite line boundary conditions. Analytical solutions to the

periodic NSE were presented by Tracy [52]. The NSE solution space can be viewed

as having a nonlinear Fourier structure, which is comprised of stable and unstable

modes. Nonlinear interactions can occur between these modes based on associated

eigenvalues [39]. The unstable modes are potential “rogue-wave” solutions. Several

solutions to the NSE are already known, and motivate the search for more solutions.

The Peregrine breather is a well-known extreme wave solution [15]. Akhmediev et

al. [2, 3] have also determined a family of rational solutions to the NSE. The ratio-

nal solutions are determined by taking a modified Darboux transform of a specially

24



chosen seed solution. They have successfully tested for the presence of rational so-

lutions in a randomly perturbed wave field. A system governed by the NSE was

excited with a plane wave with random perturbations. Regions of large amplitudes

were identified and found to match almost identically to the envelope predicted by

the rational solutions. It may be noted that the Peregrine solution is a first or-

der rational solution to the NSE. Ma and Ablowitz [28] have provided a solution

methodology for obtaining spectral solutions for periodic boundary conditions for

both the focusing and defocusing cases. Given the current state of understanding

of solutions of the NSE, as of yet unknown rogue-wave solutions may be critical to

further the understanding of instabilities and extreme behaviors of many systems.

Other contributions to determining analytical solutions of the NSE include

those due to Akhmediev and Korneev [4], who determined a family of single param-

eter solutions. Based on finite gap integration, Smirnov [49] constructed a family of

two-gap solutions and derived conditions under which they behave as rogue waves.

A review of nonlinear optical waves, including exact solutions to the nonlin-

ear Schrödinger equation, nonlinear interference, and soliton behavior in dispersive

media is available in the book by Akhmediev and Ankiewicz [1]. Different groups

have determined other families of rogue-wave type solutions to the standard NSE.

Notably, Akhmediev, Soto-Crespo, and Ankiewicz [5] identify the interference of

Akhmediev breathers (ABs) as leading to a type of rogue-wave solution. They show

that properly phased AB collisions can result in rogue waves and suggest it as a

method to explain and possibly provoke rogue waves in optical fibers [50].

Several groups have verified the analytically predicted solutions with experi-

25



mental results. The Peregrine breather, which is a limiting form of several families of

analytical rogue-wave solutions, has been studied in a fiber optic cable [25]. In turn,

several analytically predicted extreme waves have been demonstrated experimen-

tally in optical fibers [50] and water wave tanks [11], [10]. In each case, the observed

rogue waves have been modeled after solutions to the NSE. Finally, Dysthe [16] has

introduced a higher order approximation to the wave equation, and this equation is

called the Dysthe equation. This equation is considered to provide a more accurate

model of extreme wave behavior under certain conditions. A comprehensive review

of past contributions and the state of the art related to rogue waves can be found

in several review papers (e.g., [22], [56], and [44]).

2.2 Analytical Solutions to the NSE

2.2.1 Lax’s Generalization

Peter Lax, in 1968, paved the way to generalize the IST technique as a method

for solving other partial differential equations by dividing the PDE into a spectral

and a temporal problem. Consider operators L and A, where L is the operator of the

spectral problem and A is the operator governing the the associated time evolution

of the eigenfunctions.

Lv = λv, (2.1)

vt = Av, (2.2)

26



Now taking ∂/∂t of equation (2.1), leads to

Ltv + Lvt = λtv + λvt

Hence, using equation (2.2),

Ltv + LAv = λtv + λAv

= λtv + Aλv

= λtv + ALv

Thus, it is obtained that

[Lt + (LA − AL)]v = λtv

and hence in order to solve for nontrivial eigenfunctions v(x, t)

Lt + [L,A] = 0 (2.3)

where

[L,A] := LA− AL

if and only if λt = 0. equation (2.3) is called the Lax’s Equation and the operators are

called the Lax pair and are said to be compatible if they satisfy the Lax’s equation.

The Lax pair for the NLS equation is given by

L :=



i∂x −iu

iσu∗ −i∂x


 (2.4)

A :=




2iλ2 + iσuu∗ −2λu− iux

−2λσu∗ + iσu∗x −2iλ2 − iσuu∗


 (2.5)

27



According to equation (2.1), the spectral operator L follows

Lφ = λφ

or

φx = Qφ (2.6)

where

Q =




−iλ u

σu∗ iλ


 (2.7)

According to equation (2.2), the temporal operator follows

φt = Aφ

where φ is a two component eigenfunction also known as the Bloch eigenfunction

φ =



φ1

φ2




It may be noted that equation (2.3) can also be written as

Qt −Ax + [Q,A] = 0 (2.8)

Substituting Q from equation (2.7) and A from equation (2.5) into equation (2.8),

one gets back the scaled NSE which is equation (1.33). The eigenvalue problem

φx =




−iλ u

σu∗ iλ


φ (2.9)

can be solved for the main spectrum eigenvalues, λ, using Floquet Analysis.

28



2.2.2 Nonlinear Fourier Structure of the NSE Solution Space

According to Osborne [41], all solutions of the NLS can be decomposed into

two fundamentally distinct kinds of wave modes, stable and unstable. The stable

modes are modulationally stable to perturbations of their envelope functions. The

unstable modes are instead modulationally unstable in the Benjamin-Feir sense.

Formally, the following nonlinear Fourier decomposition holds for all solutions of

the NLS equation:

ψ(x, t) = ψunstable(x, t) + ψstable(x, t) + ψnonlinearinteractions(x, t)

In linear fourier analyis, the sine wave components are characterized by the

parameters consisting of amplitude, wavenumber, frequency and phase and there-

fore, withh all the variaties of these parameters possible there are effectively an

infinite number of kinds of linear fourier components, all being sine waves. In the

nonlinear theory for the periodic NSE the same is true, except that the shape of the

spectral components is different depending upon the parameters. Not only is the

shape of the nonlinear fourier components different, but there are also two types:

stable components (or modes) that are classical Stokes waves and unstable compo-

nents that are ‘breather’ or ‘rogue-wave’ solutions of the NSE. There can be infinite

number of nonlinear fourier components of the periodic IST each characterized by

the five parameter family (a, λR, λI , |ǫ|, θ) as shown in Figure 2.1. On the λ-plane,

λ = λR + iλI , correspond to the main spectrum eigenvalues evaluated from the

eigenvalue problem shown in equation (2.9). It is the centroid of a non-degenerate

29



pair of eigenvalues. The two points of this non-degenerate pair are given by λ ± ǫ,

where ǫ is a complex number, ǫ = |ǫ|exp(iθ). To have a degree of freedom these

eigenvalues must be connected by a spine, a curve that connects the two simple

eigenvalues. These spines, shown in Figure 2.1, are curves in the complex plane

with values of λ which ensure that the Bloch eigenfunctions φ in equation (2.9)

are stable. Further details about spines can be found in reference [40]. When two

points of main spectrum are connected by a spine, the combination of the spectral

information is called a ‘nonlinear mode’. There are two kinds of nonlinear modes:

1. When two points of the spectrum are connected by spine that crosses the real

axis, one has a ‘stable mode’ or ‘stable Stokes mode’.

2. When two points of the spectrum are connected by a spine that does not cross

the real axis, one has an ‘unstable’ or ‘rogue’ mode in the spectrum.

λI axis can be phyisically charaterized as a spectral amplitude while λR axis

corresponds to spatial or temporal frequency for the NSE. When 0 < λ < ia on the

imaginary axis, |ǫ| is the actual (small - amplitude) modulation amplitude. When

λI > a, no small initial modulation generates the motion of the wave; only large-

amplitude modulations occur. Also, when θ = 0 the unstable mode is denoted by a

‘cross state’. When θ = π/2 the unstable mode is ’slot state’. Any other value of θ

corresponds to a ‘slant state’.

30



Figure 2.1: λ plane showing main spectrum eigenvalues with a detailed view of ǫ
and θ for a particular choice of (λR, λI) (Source: [40]).

2.2.3 Floquet Theory

2.2.3.1 Floquet Theory Applied to the Spectral Problem of NSE

The mathematical proof and details of Floquet theory are discussed in Ap-

pendix A. Here, Floquet analysis is applied to the spectral eigenvalue problem of

the NSE (2.9). Rewriting the equation, one has

Φx =




−iλ u

σu∗ iλ


Φ (2.10)

The matrix Q(λ), equivalent to A(t) in equation (A.8) is a 2 × 2 with Q(x, λ) =

Q(x+ L, λ) (since u in equation (1.33) has periodic boundary conditions)

Q(λ) =




−iλ u

σu∗ iλ




31



It can be noted that here trQ = 0. Next, the fundamental matrix Φ(t) for equation

(2.10) is formed such that Φ(0) = I. Hence

Φ =



φ1

1 φ2
1

φ1
2 φ2

2


 (2.11)

where φ1 and φ2 are linearly independent solutions of equation (2.10)such that

φ1
1 = 1, φ2

1 = 0

φ1
2 = 0, φ2

2 = 1

(2.12)

The monodromy matrix M given by equation (A.12), where here Φ(0) = I, so

that

M =



φ1

1(L) φ2
1(L)

φ1
2(L) φ2

2(L)


 (2.13)

It can be noted that the trQ = 0, and as a result of equation (A.11),

detM = 1 (2.14)

The floquet multipliers ρ are the eigenvalues of M and, hence, are given by

ρ2 − 2[
1
2

trM ]ρ+ detM = 0 (2.15)

Let 1
2
M = β. Thus, the eigenvalues ρ1,2 are functions of a single parameter β and

these eigenvalues are given by

ρ1,2 = β ±
√
β2 − 1 (2.16)

From equation (2.15),

ρ1ρ2 = 1, ρ1 + ρ2 = 2β (2.17)

32



The floquet exponents are µ1,2 where ρ1,2 = eµ1,2L, and consequent to equation

(2.17),

µ1 + µ2 = 0, cosh µ1L = β (2.18)

2.2.3.2 Stability

(i) β > 1: Here, in equation (2.16), ρ1,2 are both real and positive and ρ1 > 1 >

ρ2 > 0. Consequently µ1 in equation (2.18) is real and positive, while µ2(= −µ1) is

real negative. From the general theory of section 3.2 (for instance equation (A.18))

it can be deduced that the general solution of equation (2.10)is

Φ = c1e
µ1xp1(x) + c2e

−µ1xp2(x) (2.19)

where for all x,

p1,2(x+ L) = p1,2(x)

There are no periodic solutions and, in general, | Φ |→ ∞ as t → ∞. Thus equation

(2.10) describes unstable behavior.

(ii) β < −1: Here, equation (2.16), ρ1,2 are both real and negative and ρ2 <

−1 < ρ1 < 0. Substituting

µ1 =
iπ

L
− γ, cosh µ1γL = −β (2.20)

The general solution of equation (2.10) is now

Φ = c1e
−γ1xq1(x) + c2e

γ1xq2(x) (2.21)

where

q1,2(x+ 2L) = q1,2(x)

33



In contrast to case(i), the underlying period is 2L. Again there are no periodic

solutions and in general | Φ |→ ∞ as t → ∞, so that equation (2.10) describes

unstable behavior.

Thus both cases (i) and (ii) have ρ real for which | ρ1,2 |6= 1. This implies that

the Bloch eigenfunctions Φ are unstable to spatial translations along x axis.

(iii) −1 < β < 1: Here ρ1,2 are both complex-valued,with unit magnitude (i.e.

| ρ1,2 |= 1). Indeed,

ρ1,2 = exp(±iσL), µ1 = iσ (2.22)

where

cos σL = β, (0 < σL < π)

The general solution of equation (2.10) can be given as

Φ = c1Re[eiσxp(x)] + c2Im[eiσxp(x)] (2.23)

where for all x

p(x+ L) = p(x)

Here, of course, p(x) is a complex-valued periodic function. The solutions are

bounded and oscillatory, and thus equation (2.10) describes stable behavior. There

are no periodic solutions of period L, or 2L, there are exceptionally, periodic solu-

tions of period mL whenever σL = 2π/m for m = 3, 4...

Case (iii) implies that the Bloch eigenfunctions are stable under spatial trans-

lation. In this context, the entire real λ axis is a band of stability. All other stable

bands in the complex λ plane are called spines.

34



(iv) β = 1: This case is boundary between cases (i) and (iii). There is just a

single characteristic multiplier, ρ1 = 1, and a single characteristic exponent µ1 = 0.

It can be regarded as the limit µ1 → 0 in case (i),or σ → 0 in case (iii). The general

solution is

Φ = c1p1(x) + c2[kxp1(x) + p2(x)] (2.24)

where for all x

p1,2(x+ L) = p1,2(x)

Here k is a constant, which may equal zero. This case is one of marginal stability

and significantly, choosing c2 = 0, there exists a solution of period L.

(v) β = −1: This case is boundary between cases (ii) and (iii). There is again

just a single characteristic multiplier, ρ1 = −1, and a single characteristic exponent

µ1 = iπ/L. It can be regarded as the limit γ → 0 in case (ii),or σ → π/L in case

(iii). The general solution is

Φ = c1q1(x) + c2[kxq1(x) + q2(x)] (2.25)

where for all x

q1,2(x+ 2L) = q1,2(x)

Again k is a constant, which may equal zero. This case is also one of marginal

stability and significantly, choosing c2 = 0, there exists a solution of period 2L.

Case (iv) and (v) correspond to discrete points in the λ plane where β = ±1

and the Bloch eigenfuctions are either periodic or antiperiodic (see section 2.2). This

set of eigenvalues in the λ domain is called the main spectrum of the periodic NLS

35



equation which can be obtained by

1
2

TrM = ±1 (2.26)

2.2.3.3 Numerical Algorithm

It has been shown that the monodromy matrix for the NSE floquet problem

Φx = Q(λ)Φ, Q =




−iλ u

σu∗ iλ




is given by M(λ, u), where

Φ(x+ L) = M(λ, u)Φ(x) (2.27)

Thus, M is effectively a state transition matrix operator which translate x by L.

Let us consider a narrow-banded, periodic nonlinear wave train η(x, 0) with

complex envelope function u(x, 0) = A(x, 0)exp[iφ(x, 0)](assumed to be a solution

of the NSE). The wave train is assumed to have periodic boundary conditions, so

that η(x, 0) = η(x+ L, 0), and u(x, 0) = u(x+ L, 0) on the interval (0 6 x 6 L)

A piecewise-constant discretization is then assumed for the wave envelope

function u(x, 0), divided into N constant values un = un(xn, 0) (1 6 n 6 N) inside

spatial intervals ∆x = L/N, xn = x0, x1, x2, ...xN−1, xN as described in reference [38].

Here xN = x(x0 + L).

36



Thus, one can arrive at

Φ(x0 + ∆x) = Φ(x1) = e∆xQ(λ,u1)Φ(x0) = U(u1)Φ(x0)

Φ(x1 + ∆x) = Φ(x2) = e∆xQ(λ,u2)Φ(x1) = U(u1)Φ(x1)

...
...

...

Φ(xN−1 + ∆x) = Φ(x0 + L) = e∆xQ(λ,uN )Φ(xN−1) = U(uN )Φ(xN−1)

Combining the above, one arrives at

Φ(x0 + L) = U(u1)U(u2)...U(uN )Φ(x0)

=
1∏

j=N

U(uj , λ)Φ(x0)
(2.28)

Thus, the monodromy matrix is given by

M(x0, λ) =
1∏

j=N

U(uj, λ) (2.29)

where U(un,∆x) is the exponential of the trace vanishing matrix Q(λ):

U(u) = e∆xQ(λ) = exp


∆x




−iλ u

σu∗ iλ







=




cosh(k∆x) − iλ
k

sinh(k∆x) u
k

sinh(k∆x)

σu∗

k
sinh(k∆x) cosh(k∆x) + iλ

k
sinh(k∆x)




(2.30)

Here k2 = σ|u|2 − λ2 is constant inside an interval ∆x.

The trace of the monodromy matrix is used to determine the main spectrum

eigenvalues, λk for k = 1, 2, ..., 2N , by equation (2.26) as

1
2
TrM =

1
2

(M11 +M22) = aR(x0, λ) = ±1 (2.31)

37



The main spectrum eigenvalues can be used to reconstruct the potential u or

the solution to the NSE using Riemann theta functions. However, this is beyond

the scope of the current work. The main spectrum eigenvalues having non-zero

imaginary parts correspond to the ’unstable modes’ that give rise to rogue-wave

solutions.

2.2.3.4 Results

The numerical algorithm described above has been implemented using a MAT-

LAB code. The results shown in this section are for the focusing NSE i.e. σ = −1.

The initial condition chosen is a cosine perturbed wave given by

u(x, 0) = a
[
1 +

N∑

n=1

ǫn cos(nKx− θn)
]

(2.32)

The complex wave train is obtained by taking the Hilbert transform. The surface

elevation is given by

η(x, 0) = a
[
1 +

N∑

n=1

ǫn cos(nKx− θn)
]

cos(k0x) (2.33)

where k0 is the carrier wave number corresponding to a wavelength of L/10 where L

is the wavelength (one period) of the complex envelope.Without loss of generality,

the unmodulated carrier wave amplitude a has been taken to be 1. Note that the

carrier wavelength is chosen in an adhoc manner since it doesn’t affect the solution.

Periodic inverse scattering theory tells us that unstable modes occur only when

aL >
√

2π [52]. Hence, L has been taken to be greater or equal to 4.44.

The spectral eigenvalue problem has been solved for various initial conditions

(2.32) by varying parameter values for ǫn, θn, and L.

38



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1.5

−1

−0.5

0

0.5

1

1.5

space (x)

am
pl

itu
de

 

 
carrier wave
modulation

Figure 2.2: Initial modulated wave train with ǫ = 10−5 and wavelength L = 4.44 .

To begin with, a small-amplitude modulation has been considered with ǫ =

10−5, L = 4.44 and θ = 0. Thus, the initial envelope has the form 1 + ǫ cosKx.

Shown in Figure 2.2 is the initial modulated wave train for this case.

The λ plane for this wave train has been shown in Figure 2.3. The eigenvalues

on the real axis correspond to stable Stokes waves. The unstable mode below the

carrier wave is at λ = ia/
√

2. In reality there are two ×’s spaced slightly apart

(ǫ = 10−5), but the distance is so small that we cannot see it.

Now, shown in Figure 2.4 with ǫ = 0.05, a = 1 and L = 2 is considered. Since

in this case aL < 4.44, shown in Figure 2.5, there are no unstable modes on the

imaginary axis. Only two stable Stokes modes that appear on the real axis.

However, when the wavelength L is increased to 4.44 for the same ǫ (i.e ǫ =

0.05) and a , the unstable modes appear as can be seen in Figure 2.6

39



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Im
ag

in
ar

y 
ax

is stable modes
carrier modes

unstable modes below carrier

Figure 2.3: λ plane spectrum of a plane carrier wave which is modulated by unstable,
small-amplitude (ǫ = 10−5) sine wave and has one (homoclinic) unstable mode.

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

space (x)

am
pl

itu
de

 

 
carrier wave
modulation

Figure 2.4: Initial modulated wave train with ǫ = 0.05 and wavelength L = 2.

40



−1.5 −1 −0.5 0 0.5 1 1.5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Im
ag

in
ar

y 
ax

is
Stable Stokes modes

carrier wave modes

Figure 2.5: λ plane spectrum of a plane carrier wave which is modulated by stable,
small-amplitude (ǫ = 0.05) sine wave and has two stable modes.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Im
ag

in
ar

y 
ax

is

Figure 2.6: λ plane spectrum of a plane carrier wave which is modulated by small-
amplitude (ǫ = 0.05) sine wave having a wavelength L = 4.44.

41



−1.5 −1 −0.5 0 0.5 1 1.5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Im
ag

in
ar

y 
ax

is

Figure 2.7: λ plane spectrum of a plane carrier wave which is modulated by small-
amplitude (ǫ = 0.05) sine wave having a wavelength L = 10.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Im
ag

in
ar

y 
ax

is

Figure 2.8: λ plane spectrum of a plane carrier wave which is modulated by small-
amplitude (ǫ = 0.05) sine wave having a wavelength L = 100.

42



0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

space (x)

am
pl

itu
de

 

 
carrier wave
modulation

Figure 2.9: Initial modulated wave train with ǫ1 = 0.1i, ǫ2 = 0.1, θ1 =
π/3, θ2 = π/6, and wavelength L = 10.

As shown in Figure 2.7 and Figure 2.8, the number of main spectrum eigen-

values on the λ plane increases with the increase in wavelength L (from L = 10 to

L = 100).

Next, a case with non-zero phases and complex ǫ is considered. Let

ǫ1 = 0.1i, ǫ2 = 0.1 θ1 = π/3, θ2 = π/6

Thus, as shown in Figure 2.9

u(x, 0) = 1 + 0.1i cos(Kx− π/3) + 0.1 cos(2Kx− π/6)

where L = 10 and K = 2π/L = π/5.

In Figure 2.10, the main eigenvalue spectrum plot for this wave train is shown.

43



Finally, another similar case with following parameter values is considered:

ǫ1 = 0.05, ǫ2 = 0.1i ǫ3 = 0.05i (2.34)

θ1 = π/3, θ2 = π/3, θ3 = π/6 (2.35)

Shown in Figure 2.11 is the initial modulated wavetrain. The actual envelope profile

is shown in Figure 2.12. The eigenvalue plot has been shown in Figure 2.13.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Im
ag

in
ar

y 
ax

is

Figure 2.10: λ plane spectrum of the initial wavetrain shown in Figure 2.9.

44



0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

space (x)

am
pl

itu
de

 

 
carrier wave
modulation

Figure 2.11: Initial modulated wavetrain with parameters shown in equations (2.34)
and (2.35) and wavelength L = 10.

0 2 4 6 8 10
0.94

0.96

0.98

1

1.02

1.04

1.06

space (x)

am
pl

itu
de

 

 

modulation using Hilbert transform
actual modulation

Figure 2.12: Actual envelope profile (magnified) of the initial wavetrain shown in
Figure 2.11.

45



−1.5 −1 −0.5 0 0.5 1 1.5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Im
ag

in
ar

y 
ax

is

Figure 2.13: λ plane spectrum of the initial wavetrain shown in Figure 2.11.

2.2.4 Reconstruction of Potential

The eigenvalue solutions to equation (2.9) constitute the main spectrum. They

are complex parameters which determine the global nature of the wave potential u

such as the periods in space and time and their amplitudes. Algorithm for solving for

these main spectrum eigenvalues algebraically is discussed in references [20] and [51].

Another set of spectral data called the ‘auxiliary spectra’ and their ‘sheet

indices’, denoted by (µj; σj) j = 1, 2, ..N − 1 are required to completely reconstruct

the potential. The complex variables µj(x, t) obey a set of ordinary differential

equations in space and time. These variables generate the wave’s dynamic behavior

in space-time. The sheet indices σj are required because the auxiliary variables

reside on two-sheeted Riemann surface. They take values ±1.

46



2.2.4.1 Solutions using Hyperelliptic Functions

The auxiliary variables µj are hyperelliptic functions, the equations of motion

of which are given by

µjx =
−2iσj

√∏2N
k=1(µj − λk)

∏
m6=j(µj − µm)

µjt = −2(
∑

m6=j

µm − 1
2

2N∑

k=1

λk)µjx

(2.36)

where λk are the main spectrum eigenvalues. It can be shown by calculating the

crossed derivatives in x and t that these equations are self consistent. That is to

say that a solution to these equations always exists. These equations can be solved

analytically by using Abel transform [51].

From these variables we can construct the potential u by solving the following

set of differential equations:

∂tlnu(x, t) = 2i(
∑

j>k

λjλk − 3
4

(
2N∑

k=1

λk)2)

− 4i((−1
2

2N∑

k=1

λk)(
N−1∑

j=1

µj) +
∑

j>k

µjµk)

(2.37)

∂xlnu(x, t) = 2i(
N−1∑

m6=j

µj(x, t) − 1
2

2N∑

k=1

λk) (2.38)

An analytic form of the solution can be constructed using equations (2.36), (2.37),

and (2.38). For example, the analytic expression for a single unstable ‘rogue’ mode

corresponding to main spectrum eigenvalue λ = ia/
√

2 [39] is given by

u(x, t) = a

[
cos(

√
2ax) sech(2a2t) + i

√
2 tanh(2a2t)√

2 − cos(
√

2ax) sech(2a2t)

]
e2ia2t (2.39)

The space time dynamics of this solution for a = 1 is shown in Figure 2.14.

47



Figure 2.14: Modulus of the space time evolution of the rogue-wave solution for
λ = ia/

√
2 .

Figure 2.15: Modulus of the space time evolution of the rogue-wave solution for
λ = ia

√
2 .

48



Another analytic expression for a single unstable ‘rogue’ mode corresponding

to main spectrum eigenvalue λ = ia
√

2 [39] is given by

u(x, t) = a

[
1 +

2(cos(4
√

2a2t) + i
√

2 sin(4
√

2a2t))
cos(4

√
2a2t) +

√
2 cosh(2ax)

]
e2ia2t (2.40)

The space time dynamics of this solution for a = 1 is shown in Figure 2.40

2.2.4.2 Solutions using Riemann Theta Functions

Space periodic spectral solutions to the NSE can be described by

u(x, t) = a
Θ(x, t|τ, δ−)
Θ(x, t|τ, δ+)

e2ia2T . (2.41)

where Θ(x, t|τ, δ±) is a Riemann theta function [52], [40]. The Θ(x, t|τ, δ±) are

generalized Fourier series known as N-dimensional Riemann theta functions:

Θ(x, t|τ, δ±) =
∞∑

m1=−∞

∞∑

m2=−∞

exp i

[
N∑

n=1

mnKnx+

N∑

n=1

mnΩnT +
N∑

n=1

mnδ
±
n +

N∑

j=1

N∑

k=1

mjmkτjk


 (2.42)

A single unstable mode can be considered by taking Θ(x, t|τ, δ±) as a two-dimensional

theta function defined as

Θ(x, t|τ, δ±) =
∞∑

m1=−∞

∞∑

m2=−∞

exp i

[
2∑

n=1

mnKnx+

2∑

n=1

mnΩnT +
2∑

n=1

mnδ
±
n +

2∑

j=1

2∑

k=1

mjmkτjk


 (2.43)

49



The parameters governing the theta function (Kn, Ωn, and δ±) are defined in terms of

five spectral parameters a, λR, λI , ǫ0, and θ where a is the carrier wave amplitude, λ

is the main spectrum eigenvalue and ǫ0, and θ are as shown in Figure 2.18. Following

the notation used in earlier work [40], the spectral parameters are defined as

ǫ1 = ǫ0e
iθ, ǫ2 = ǫ∗1, σ1 = 1, σ2 = −1 (2.44)

λ1 = λR + iλI , λ2 = λ∗1 (2.45)

Kn = −2
√
a2 + λ2

n , Ωn = 2λnKn (2.46)

δ±n = π + i ln(λn ∓ 1
2
Kn) + i ln(σnλn − (−1)n 1

2
Kn) (2.47)

τ11 =
1
2

+
i

π
ln

(
K2

1

ǫ1

)
, τ22 =

1
2

+
i

π
ln

(
K2

2

ǫ2

)

τ12 = τ21 =
i

2π
ln

(
1 + λ1λ2 + 1

4
K1K2

1 + λ1λ2 − 1
4
K1K2

) (2.48)

2.2.5 Solution Procedure to Explore λ Plane

A procedure which allows the discovery of a certain form of rogue-wave solu-

tion to the NSE is presented. It is based on a predictor-corrector style framework.

The steps involved in are summarized in the flowchart given in Figure 2.16 and ex-

plained with the aid of equations included in the previous sections. Through GPU

50



Figure 2.16: Flow chart illustrating the procedure to determine new Reimann theta
function described rogue waves.

computing, this procedure allows an investigator to explore the parameter space

which governs possible solutions of the form of equation (2.41). In the predictor

step, a map of parameters which result in periodic functions, u(x, 0), is generated.

A particular combination of parameters that has a high likelihood of resulting in

a rogue-wave can then be determined. In the corrector step, the parameters are

conclusively refined by solving the spectral eigenvalues problem, shown in equation

(2.9), based on the initial guess. In the verification step, a candidate solution is

formed by substituting the corrected parameters into equation (2.41). The candi-

date solution is verified by numerical evaluating the NSE to see if a zero residual is

obtained. Upon passing two numerical tests, the candidate solution is accepted as

a solution. These steps are described further below.

51



2.2.5.1 Prediction

In this step, the solution space has been reduced by choosing a = 1, θ = 0,

and various reasonable values for ǫ0 < 0.05. The choice of θ and ǫ0 are refined

in the corrector step. These choices leave λR and λI as the only free parameters

governing the initial function selection. While the mathematical relationships refer

exclusively to (λR, λI), these values are chosen in the predictor step, and later ex-

plicitly computed in the corrector step. Based on these two distinct classifications,

in the text,these values which are chosen by an investigator are refered to as (λRC ,

λIC) and those that are determined as solutions to the eigenvalue problem as (λR,

λI). The two-dimensional space can be evaluated for periodic functions by direct

numerical evaluation of u(x, 0) using equation (2.41) over an interval nL (where

n = 1, 2, 3). Each function evaluation of u(x, 0) is computationally expensive; how-

ever, each evaluation is independent of another one. This allows a large domain to

be evaluated rapidly through a GPGPU implementation. For this reason, equation

(2.41) with (t = 0) is implemented in a CUDA kernel. A single thread is assigned to

compute the function at a given coordinate (λRC , λIC). The periodicity of u(x, 0) is

also determined in the GPGPU kernel, according to the metric presented in equation

(2.51).

C0 =

∣∣∣∣∣
U(L, 0) − U(0, 0)

U(0, 0)

∣∣∣∣∣ (2.49)

C1 = Ux(x, 0)|x=0 − Ux(x, 0)|x=L (2.50)

52



Cf =





C1 C0 ≤ 0.01

N/A otherwise

(2.51)

The resulting map of λ pairs that form periodic u(x, 0) functions is shown in

Figure 2.17. Parameter combinations resulting in periodic functions are displayed

in white. Combinations, which do not meet the periodicity criteria, are displayed in

progressively darker colors. The thresholds are admittedly ad hoc. The solutions are

constructed and verified in the corrector procedure. In Figure 2.17, the particular

value of (λRC = 1.2495, λIC = 1.6125) is identified as a solution of interest (shown

as an example).

The accelerations experienced by the GPU implementation increase with in-

creasing domain size. For typical (λRC , λIC)domain sizes of 256 × 256, the basic

Matlab implementation required 133.0 seconds (baseline), the codegen implementa-

tion required 25.8 seconds (5.15×), and the CUDA kernel implementation required

0.0573 seconds (2, 321×).

2.2.5.2 Correction

The parameters governing the periodic u(x, 0) function chosen above need to

be refined to yield a solution to the NSE. The spectral eigenvalues are determined

by solving the spectral eigenvalue problem given by equation (2.9). The eigenvalue

problem of equation (2.9) is recast as a Floquet problem by appropriately discretizing

the complex wavetrain as described in section 2.2.3.1. The choice of λRC and λIC

from the GPU map implies periodic boundary conditions. The solution of the

53



L = 4.44; ε = 0.01

 

 

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.17: Map of periodic Reimann theta functions as defined in equation (2.41)
for (A = 1, θ = 0, ǫ = 0.01 ,t = 0) generated by GPGPU computations. Light
colored locations indicate periodic functions, while dark colored locations indicate
aperiodic functions over the interval L. A point of interest is identified by an asterisk.

spectral eigenfunction φ in each interval ∆x is then obtained by integrating the

eigenvalue problem for a constant potential as described in section 2.2.3.3. Finally,

the main spectrum eigenvalues are obtained by solving for λ in equation (2.31).

Although many eigenvalues are determined, a pair of eigenvalues will be close

to the single complex eigenvalue which is used to construct the original u(x, 0), as

shown in Figure 2.18. From this pair of complex eigenvalues, the parameter ǫ is

determined to be half the distance between the pair, and θ is determined as the

angle between the pair and the horizontal, beginning from the line adjoining the

pair, as shown in the detailed portion of Figure 2.18. Based on experience, ǫ is

recognized to be of the same order as ǫ0.

54



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

λ
r

λ
i 1.23 1.24 1.25

1.605

1.61

1.615

1.62
ε

θ

Figure 2.18: Main spectrum eigenvalues with a detailed view of ǫ and θ for a par-
ticular choice of (λR, λI).

55



2.2.5.3 Verification

A candidate solution, û(x, t), is determined by evaluating equation (2.41) with

the new set of parameters. The candidate solution is then verified by numerical

integration into the NSE, equation (2.52) as

iût − ûxx + 2σ|û|2û = r (2.52)

Eighth order central finite differences are used to evaluate both the spatial

and temporal derivatives. Due to discretization and finite precision approximations,

the numerical solution may not identically satisfy the equation, resulting in a non-

zero residual. Two criteria were used to verify the solution. First, the ‖r(x, t)‖2 is

compared to ‖û(x, t)‖2, where ‖ · ‖2 denotes the ℓ2 norm, as

ρ =
‖r(x, t)‖2

‖û(x, t)‖2
(2.53)

All solutions presented in this work passed this test with ρ ≪ 1.00%. Second,

a grid convergence test was performed. In this test, the quantity ‖r(x, t)‖2∆x∆t

was verified to decrease as the grid size was refined in time and space for all solutions

presented. Continuing with the procedure, after passing both tests, the candidate

solution, û(x, t), is accepted as a solution u(x, t) to the nonlinear Schrödinger equa-

tion, as shown in Figure 2.19.

The solution can be analyzed in terms of its maximum amplitude defined in

reference [40] as

56



γ = a+ 2λI (2.54)

where a = 1 for all cases presented in this work. As of yet, unknown solutions with

maximum amplitudes even slightly greater than the background can be of interest in

systems where extreme waves are of interest. Solutions with large maximum ampli-

tudes are of interest for other practical reasons. The GPU map allows identification

of likely regions of solutions with selectable maximum amplitudes.

2.2.6 New Rogue-wave Solutions

The GPU map shown in Figure 2.17 contains several branches of candidate

periodic solutions. Several horizontal bands can be discerned in this map, the major

features of which are symmetric about the x and y axes. Although many solutions

have been computed by using this procedure, only three solutions are featured here

for brevity. First, focusing on the point (λRC = 1.2495, λIC = 1.6125) with L =

4.44, the corrected parameter set of (λR = 1.2415, λI = 1.61108, ǫ = 0.006834, θ =

1.11439) is obtained. Based on this parameter set, the solution, shown in Figure 2.19

has been generated. The maximum amplitude is approximately 4.2x the background

modulation (a = 1). The peaks are more compact in time than in space, dropping

to the background level between adjacent crests as time increases.

The next solution examined is for L = 7. The GPU map for L = 7 is shown

in Figure 2.20. This solution exists on the second branch above the real axis in the

corresponding GPU map. The starting point of (λRC = 0.6653, λIC = 1.2368) yields

57



Figure 2.19: Solution to the NSE for (λR = 1.2415, λI = 1.61108, ǫ = 0.006834, θ =
1.11439) and L = 4.44. This solution envelope has periodic temporal peaks, which
reach a maximum amplitude of ≈ 4.2x the background.

Figure 2.20: GPU maps for (L = 7, ǫ = 0.005) and (L = 12, ǫ = 0.01).

58



Figure 2.21: Solution to the NSE for (λR = 0.6616, λI = 1.23660, ǫ = 0.00276, θ =
0.87385) and L = 7.

the corrected parameters (λR = 0.6616, λI = 1.23660, ǫ = 0.00276, θ = 0.87385)

after solving the spectral eigenvalue problem. The corresponding solution is shown

in Figure 2.21. The maximum amplitude is 3.47x the background amplitude. This

solution is characterized by localized peaks in time separated by flat regions of unit

amplitude. The fluctuations again have compact support in the temporal domain.

The final example shown has been computed for L = 12. The parameter

space map for L = 12 is shown in Figure 2.20. The initial point was chosen near

(λRC = 1.135, λIC = 1.206) for which the spectral eigenvalue problem yields the

corrected parameters as (λR = 1.1367, λI = 1.2076, ǫ = 0.004156, θ = 0.372019).

This solution is illustrated in Figure 2.22. The peaks reach a maximum amplitude

of 3.4x of the background and are less compact in time and space than the other

59



Figure 2.22: Solution to the NSE for (λR = 1.1367, λI = 1.2076, ǫ = 0.004156, θ =
0.372019) and L = 12.

solutions presented. Additional rogue-wave solutions to the NSE are presented in

Appendix B.

2.2.6.1 Near Peregrine Solution

A singularity exists in the mapped space at (0, i). This eigenvalue is associ-

ated with the Peregrine solution, in which the temporal and spatial periods → ∞.

Numerically, the Peregrine solution has only a single unique eigenvalue and does not

conform to the eigenvalue solution procedure detailed above. Interestingly, solutions

can exist near (0, i). These solutions appear to be quite similar to the Peregrine so-

lution, but demonstrate periodic fluctuations. The solutions also tend to decrease

in residual error as L increases, which is consistent with the spatial support and

temporal support of the Peregrine solution.

60



Figure 2.23: “Near Peregrine” solution with eigenvalues (λR = 0.0098, λI = 1.0068)
close to those associated with the Peregrine solution of the NSE.

One example of a “near Peregrine” solution defined by λR = 0.0098, λI =

1.0068, ǫ = 0.0075, θ = −0.3617, L = 15 with error ρ = 0.04% is examined more

closely in Figure 2.23. The λi values are extremely close to (0, i), but remain far

enough to be resolved through the corrector procedure. The near Peregrine solution

exhibits similar features to the peak of the Peregrine solution such as the peak

amplitude and decay profile. This solution is compared to the exact Peregrine more

closely in Section 2.2.7.

2.2.6.2 Isolated Solution

The bands that appear in the predictive map are sources of many solutions.

However, for some combinations of spectral parameters, isolated points exist between

the bands. The predictive map containing one such solution for L = 10 is shown

61



λ
R

λ
I

L = 10; ε = 0.01

 

 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.78 1.79

0.995

1.005

Figure 2.24: Predictive map for isolated solution (λR = 1.7806, λI = 0.99603).

in Figure 2.24. A detailed view of the isolated point is provided in the inset. The

spectral parameters of the corrected solution are (λR = 1.7806, λI = 0.99603),

ǫ = 0.0027655086, and θ = 0.007827789. This solution satisfied the original NSE

with an extremely low error of ρ = 0.001%. The solution, which is depicted in

Figure 2.25, is found to exhibit large peaks and minor troughs.

2.2.6.3 Transition from Rogue Wave to Amplified Wave

As a final feature of the predictive map, the qualitative transition of a rogue-

wave to a wave with less pronounced undulations is discussed. The direct relation-

ship between the wave amplitude and the value of λI is provided by equation (2.54).

The amplitude decreases along with the λI value. Solutions are readily determined

62



Figure 2.25: Solution to the NSE for (λR = 1.7806, λI = 0.99603), ǫ =
0.0027655086, θ = 0.007827789, and L = 10. This solution envelope reaches a
maximum amplitude of ≈ 3x the background height.

on quantized bands; however, they do not exist for arbitrary variations in λI values.

As the spectral parameter L increases, the solution bands tend to compress towards

the real axis. Therefore, solutions with a desired λI can be obtained by choosing

L appropriately so that a solution band exists at the desired value of λI . Such a

variation in L is presented below. For L = [6, 8, . . . , 14], solutions from the highest

band of each solution space near the imaginary axis (λR ≈ 0) are compared. A

composite map containing only the top branch of the predicted space for the given

values of L is shown in Figure 2.26. The corrected (λR, λI) pairs of the progression

are indicated with a white colored ’x’ in the figure.

A measure of the “peakedness” of a solution, Pk, can be estimated by defining

ξ as the height of the solution’s maximum and ζ as the height of the solution’s

maximum saddle point, as shown in Figure 2.27, and calculating

63



Composite map; ε = 0.01

λ
R

λ
I

.

.

.

−0.5 0 0.5
0

0.5

1

1.5

2

2.5 L = 6

L = 7

L = 8

L = 14

Figure 2.26: Composite predictive map containing the highest solution band for
multiple values of L. Corrected pairs of (λR, λI) for generated solutions are marked
with an ‘x’.

64



Figure 2.27: Peaked rogue-wave: L = 6; λ = 0.01178 + 2.5512i; and Amax = 6.1

Pk =
ξ − ζ

ξ
(2.55)

An observation similar to equation (2.54) for the value of the wave’s maximum

saddle was determined to be Asaddle = 2λI − 1. Stated differently, and combined

with equation (2.54), the wave’s maximum is always two units higher than the

height of the saddle point. This relationship was found to be consistent for solutions

throughout the λ plane, including the Peregrine breather solution and solutions with

λI < 1. The theoretical origin of this relationship and its required conditions will

be considered in a future effort. Beginning with a solution on the highest branch of

L = 6, the solution exhibits minimal peakedness, as depicted in Figure 2.27.

A collection of solutions from the top branch for several different values of L

are shown in subsequent Figures 2.28 to 2.31. In the progression as L is increased,

the values of λI is found to decrease. A solution chosen from the next higher value

65



Figure 2.28: Peaked rogue-wave: L = 8; λ = 0.0107 + 1.9373i; and Amax = 4.87

Table 2.1: Summary of the peakedness and spectral parameters for the rogue-wave
solutions from the upper most band with λR ≈ 0 for L as indicated.

case Pk L (λR, λI) ǫ θ

1 0.33 6 (0.0118, 2.551) 0.00259 0.0826
2 0.41 8 (0.0107, 1.937) 0.00252 0.1159
3 0.48 10 (0.0061, 1.549) 0.00259 0.1584
4 0.53 12 (0.0086, 1.402) 0.00260 0.1874
5 0.56 14 (0.008, 1.276) 0.00267 0.2359

of L (lower λI) in Figure 2.28 exhibits a lower maximum saddle, and thus a smaller

difference from the saddle to the background. As one progresses down the branches

of the predictive map, the maximum saddle for a solution is found to decrease and

the undulation of the peaks become more prominent as shown in the collection of

figures. The Peregrine solution represents a limiting case where the maximum saddle

and the background are coincident (i.e., 1) and L → ∞.

66



Figure 2.29: Peaked rogue-wave: L = 10; λ = 0.00609 + 1.5485i; and Amax = 4.2

Figure 2.30: Peaked rogue-wave: L = 12; λ = 0.0086 + 1.402i; and Amax = 3.8

67



Figure 2.31: Peaked rogue-wave: L = 14; λ = 0.008 + 1.276i; and Amax = 3.55

2.2.7 Physical Scaling

In order to physically observe the solutions to the NSE, the solutions must be

rescaled to physically meaningful dimensions. The dimensional form of the NSE for

deep water can be described by

i(ψt +
ω0

2k0

ψx) − ω0

8k2
0

ψxx − ω0k
2
0

2
|ψ|2ψ = 0 (2.56)

where t and x are time and spacial coordinates, and k0 and ω0 denote the wave num-

ber and the frequency of the carrier wave, respectively. Here, the surface elevation

η(x, t) of the water surface is then given by η(x, t) = Re[ψ(x, t)exp[i(k0x − ω0t)].

Solutions determined from the predictive map are in nondimensional form, since the

governing equation is nondimensional. Several choices exist for rescaling the solu-

tions based on physical length and time scales. The NSE given by equation (2.56)

68



can be scaled into equation (1.33) by using the rescaling variables

T = − ω0

8k2
0

t, X = x− ω0

2k0
t, ψ =

√
2k2

0u

where X is the coordinate in the frame moving with the wave group velocity, and

T is the time variable. It is noted that if u(X, T ) is a solution of equation (1.33),

then with the rescaling X → aX and T → a2T , so is au(aX, a2T ) where a ∈ R.

Chabchoub et al. [11] rescaled the Peregrine breather

up(X, T ) =

(
1 − 4(1 + 4iT )

1 + 4X2 + 16T 2

)
e2iT (2.57)

by using the transformation

aX →
√

2k2
0a0(x− cgt), a2T → −k2

0a
2
0ω0

4
t

for appropriate reproduction in a water tunnel experiment. Thus, the resulting

Peregrine solution is given by

ψp(x, t) = a0 exp

(
− ik2

0a
2
0ω0

2
t

)

×
(

1 − 4(1 − ik2
0a

2
0ω0t)

1 + [2
√

2k2
0a0(x− ω0/2k0t)]2 + k4

0a
4
0w

2
0t

2

)
(2.58)

In this case, the rescaling procedure took place in two steps. Here, in the present

work, the following single step transform is applied for rescaling to a dimensional

form, as this may be more useful for an experimentalist. This collection of transforms

is a composite of already existing rescaling procedures presented in previous studies

[11, 41].

T = −k2
0a

2
0ω0

4
t, X =

√
2k2

0a0(x− ω0

2k0
t), ψ = a0u (2.59)

69



Making use of the above transformations in equation (2.57) leads to the same form

of the dimensional Peregrine solution shown in equation (2.58). Thus, the general

solution to the dimensional NSE (2.56) can be given by

ψ(x, t) = a0
Θ(x, t|τ, δ−)
Θ(x, t|τ, δ+)

e−
k2

0
a2

0
ω0

2
t. (2.60)

where Θ(x, t|τ, δ±) is determined by substituting equation (2.59) in equation (2.43).

The rescaling procedure with (a0 = 0.01m,ω0 = 10.7s−1, k0 = 11.63m−1) was

applied to the near Peregrine case of Figure 2.23, phase shifted to align its peak

location to t = 0. It is compared to the Peregrine case, which was obtained from

equation (2.58). The two solutions appear to be identical, as shown along with the

surface elevation in Figure 2.32. Both solutions exhibit similar maxima and minima.

Over a larger domain, the periodic nature of the near Peregrine case would become

evident.

2.2.7.1 Predicted Evolution of a Dimensional Wave Field

The evolution of a wave field governed by the NSE can be predicted based on

the solutions and the dimensionalization procedure presented above. The temporal

fluctuations observed at specific spatial locations in the wave field of the dimen-

sionalized near Peregrine case defined in equation (2.60) are illustrated in Figure

2.33. The wave field matches closely with that observed in previous work [11], as

similar dimensional parameters are used. The near Peregrine case could serve as

the basis for an experimental investigation into rogue waves in a similar manner

70



−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time (s) 

am
pl

itu
de

 (
m

)

 

 
Near Peregrine
Peregrine

Figure 2.32: Near Peregrine solution (solid line) appears identical to the Peregrine
solution (marked with squares) over the interval examined.

as the Peregrine case [11]. The expected result would be quite similar to the pure

Peregrine case, with the exception of periodicity in the near Peregrine case. It is

believed that further valuable insights can be gained by studying a solution which

is far from the Peregrine case. Such far away solutions could potentially have quite

different behavior.

The rogue-wave solution presented in Figure 2.22, has been rescaled with pa-

rameters a0 = 0.04m,ω0 = 4.8308s−1, and k0 = 2.3813m−1 for a similar wave field

analysis.

The wave field evolution contains several wave packets that mutually interfere

with each other, as shown in Figure 2.34. The spatio-temporal localization of wave

energy of one of the wave packets is highlighted in the figure at (t = 40s, distance =

27m). The evolution of this localization can be tracked from a perturbation with two

71



0 10 20 30 40 50

0.0m

0.1m

2.1m

4.1m

6.1m

8.1m

9.1m

9.45m

time (s)

di
st

an
ce

 (
m

)

Figure 2.33: Predicted temporal evolution for the near Peregrine solution (λR =
0.0098, λI = 1.0068). Surface heights are shown at various distances.

0 20 40 60 80

9m

15m

21m

27m

33m

40m

46m

Time (s)

di
st

an
ce

 (
m

)

Figure 2.34: A wave field showing the predicted temporal evolution of a rogue-wave
solution (λR = 1.1367, λI = 1.2076) with two localization events highlighted.

72



distinct peaks close to (t = 22s, distance = 9m). This fluctuation localizes into a

single large fluctuation at the time highlighted, and then delocalizes at a later time.

An additional evolution is highlighted beginning at (t = 15s, distance = 21m). A

similar localization takes place as the wave packets convect in time and space. The

localization leading to maximal amplitude can be identified at (t = 38s, distance =

40m).

A detailed view of the surface height and envelope of the first localization is

shown in Figure 2.35. While this solution appears to have a similar character to

a Peregrine breather, its eigenvalues are quite different, and its peak is more than

3x the surface height, higher than that of the Peregrine solution. This solution is

one of many that could be used to gain insights into the degree to which waves in a

medium can be modeled by the NSE. Since this wave field is a solution to the NSE, a

system which is governed by the NSE should be capable of propagating this solution

as predicted. The above wave field predictions may inform an experimentalist to

impose an appropriate initial excitation in a wave tank experiment or other medium.

Furthermore, similar wave field evolutions may be used to predict a localization event

based on limited set of measurements at a single spatial location.

73



0 5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

0.15

time (s) 

am
pl

itu
de

 (
m

)

Figure 2.35: Detailed view of dimensional rogue-wave solution with λ =
(1.1367, 1.2076i).

74



Chapter 3: Computational Studies of Extreme Energy Localization

using Smoothed Particle Hydrodynamics

3.1 Literature Review

Rogue waves are commonly defined as waves greater than 2.2 times the signif-

icant wave height. These waves occur more frequently than predicted by accepted

ocean wave models [6]. While the Benjamin-Fier modulational instability is often

cited as the primary mechanism that causes rogue waves, a variety of external in-

teractions can occur in the open ocean [22]. These include wind interactions, linear

focusing, and interactions with features of the sea floor [23]. Linear wave focusing

can predictably produce waves that are greater than 2.2 times the background wave

height, and hence, can be classified as rogue waves [23]. Wave interactions can be

better understood, predicted, and modeled through advanced computing resources

and modeling efforts. In the current work, the focus is on fundamental simulations

of wave interactions. Grid based numerical hydrodynamic simulations are resource

intensive, and one can experience difficulties in resolving free surface waves with

these simulations [26]. Lagrangian methods, such as smoothed particle hydrody-

namics (SPH), in which the domain moves with the material being simulated, offer

75



several advantages for this type of simulation. First, Lagrangian methods naturally

capture the free surface in a hydrodynamic simulation. Second, the simulation do-

main matches the domain of interest [32]. By contrast, grid based schemes often

require the inclusion of cells that only briefly contain useful information; that is, the

domain above the free surface that may briefly contain a wave. For these reasons,

the authors have chosen SPH to simulate the free surface under several conditions.

The original development of the SPH method was for application to com-

pressible flows. Subsequently, Monaghan [32], Monaghan and Kos [34] indicated

the extension to free surface flows using a slightly compressible artifical fluid. This

modification, known also as “Weakly Compressible SPH”(WSPH), is being utilized

in the present work. In reference [32], Monaghan showed examples of its application

to a breaking dam, a bore, the simulation of a wavemaker, and the propagation of

waves towards a beach. Arbitrary moving boundaries were included by modelling

the boundaries by particles which repel fluid paricles as shown in Figure 3.1. In

reference [34], Monaghan and Kos described experiments and SPH simulations of

the run-up and return of a solitary wave traveling over shallowing water and then

onto a dry beach backed by a vertical wall.

In reference [54], Vorobyev used SPH method for studying the hydroynamics

processes related to nuclear engineering problems. The numerical model included

the XSPH correction (as discussed in Section 3.2.5) which is incorporated in this

work.

In reference [13], the authors use SPH to reproduce linear focusing induced

extreme waves to study the dynamics of wave breaking process. The authors sim-

76



Figure 3.1: SPH simulated waves produced by a wavemaker (Source: [32]).

77



Figure 3.2: Solitary waves in a horizontal tank simulated using SPH (Source: [34]).

ulated a high resolution air-water breaking wave as shown in Figures 3.3 and 3.4

using parallelized SPH code. The parallelization was achieved using Message Passing

Interface or MPI.

Lo and Shao [27] studied wave motion impinging on a vertical wall. They

found the SPH simulation to agree with analytic predictions of the same event.

The impact of a wave on a semi-submersible platform has also been studied by

using SPH [45]. In this case, the wave height as it impacted the semi-submersible

platform was examined. Wave breaking was also observed.

78



Figure 3.3: Wave packet evolution and focusing (Source: [13]).

Figure 3.4: Wave breaking and collapsing (Source: [13]).

79



3.2 Smoothed Particle Hydrodynamics

An alternative way to describe fluid dynamics problems is through the La-

grangian description. Unlike the Eulerian description, where the system of coordi-

nates is spatially fixed, the Lagrangian approach uses moving coordinates attached

to the material. As the computational nodes move with the simulated medium, the

Lagrangian approach has several attractive features compared with the Eulerian

approach [26]:

- Convective transfer of physical parameters such as mass, momentum, veloc-

ity, energy, etc., is simulated natively by the movement of the nodes. The

convective term is thus excluded from the governing equations;

- The time history of all field parameters can be easily tracked, since the com-

putational nodes are rigidly connected to the moving material

- There is no need for computational mesh generation, which significantly sim-

plifies the handling of problems with complicated geometries of the computa-

tional domain;

- Since the computational nodes move together with the simulated material, the

free surfaces and interfaces are treated natively, without applying particular

tracking techniques;

- In contrast to the Eulerian description, where the computational mesh should

overlap all regions that would be occupied by the moving material during the

80



computational period, the nodes in the Lagrangian formulation only represent

the volume where the simulated medium is located at the beginning of simula-

tion. This allows using a higher resolution to obtain more detailed information

about the simulated system. At the same time, the movement of the computa-

tional nodes is not limited by the size of the computational domain, and thus

the moving parts of material can be tracked, in principal, as far as desired.

Smoothed Particle Hydrodynamics is a Lagrangian based method capable of

effectively simulating free surface flows and gravity waves. It is based on an in-

terpolation technique, which allows the value of any function obtained at a given

point, using its values at a number of neighboring points. Following Liu G.R and

Liu M.B [26], the approximation can be described in two steps: the continuous in-

tegral representation (also referred to as the kernel approximation) and the discrete

particle approximation. The following integral representation of a function is used:

f(r) =
∫

Ω
f(r’)δ(r − r’)dr’ (3.1)

where f(r) is a continuous function, r is radius vector, δ(r − r’) is the Dirac delta

function, defined as:

δ(r − r’) =





1, r = r’

0, r 6= r’

(3.2)

In the first step, the delta function δ(r − r’) in equation (3.1) is replaced by the

function W (r − r’, h), which is called the smoothing function or smoothing kernel

81



Figure 3.5: Representation of a smoothing kernel in three dimensions.

[31]:

f(r) ∼= 〈f(r)〉 =
∫

Ω
f(r’)W (r − r’, h)dr’ (3.3)

where h is a smoothing radius, W (r − r’, h) is a smoothing kernel, and the angular

brackets mark the approximated value of the function of the function f at the

position defined by position vector r.

To ensure the correctness of the approximation in equation (3.3), the smooth-

ing function should satisfy several conditions. The first is the normalization condi-

tion, which requires the integral of the smoothing kernel over the function domain

to be equal to unity:
∫

Ω
W (r − r’, h)dr’ = 1 (3.4)

A normalized smoothing kernel ensures invariance of the function f to changes in

smoothing length h or the number of interactions per particle. The second condi-

tion is the delta-function property, which is observed when the smoothing radius

approaches zero [26]

W (r − r’, h) h→0−−→ δ(r − r’) (3.5)

82



In particular cases, besides the conditions in equations (3.4) and (3.5), addi-

tional conditions should be applied to the shape of the smoothing kernel, such as

the even condition (in which the kernel must be an even function) or compact sup-

port domain condition (according to which the kernel must be defined on a compact

domain).

In the second step, the continuous integral approximation is converted into

the discrete approximation on a number of computational nodes (particles). Fol-

lowing the Lagrangian approach, the continuous medium is represented by a set of

particles (computational nodes). For a discrete number of computational nodes, the

integration in equation (3.3) can be replaced by a summation, giving the following

expression for the function value at the ith computational node (particle):

fi(r) =
∑

j

fjW (ri − rj , h)∆Vj (3.6)

where ∆Vj = mj/ρj is the volume related to the jth computational node(particle).

After substituting the expression for the volume into equation (3.6), the final

SPH approximation of the arbitrarily continuous function can be derived:

fs(r) =
∑

j

fj
mj

ρj
W (ri − rj, h) (3.7)

where mj and ρj are the jth particle mass and density, respectively; fs(r) is the

approximated value of the function f at the point defined by the radius vector r.

In general, the summation in equation (3.7) is performed over all particles in the

computational domain. When smoothing kernels with compact support domains

are applied, the summation is limited to a number of neighboring particles.

83



An approximation of the function gradient ∇f(r) is obtained by the use of the

gradient of the smoothing kernel. The approximation is as follows:

∇fi(r) =
∑

j

fj
mj

ρj
∇W (ri − rj , h) (3.8)

where ∇W (ri − rj , h) is the gradient of the kernel function. The gradient of the

kernel function is calculated using an algebraic derivative of the kernel:

∇W (ri − rj , h) =
(ri − rj)
|ri − rj |

∂W (ri − rj, h)
∂(ri − rj)

(3.9)

where ∂W (ri−rj ,h)

∂(ri−rj)
is an algebraic derivative of the smoothing kernel.

The smoothing radius is a key parameter in the SPH approximation. It defines

the distance within which particles interact with each other or, in other words, the

distance with a non-zero value of the smoothing kernel (the so called support domain

of the kernel). In general, a support domain value is a multiple of a smoothing radius

value:

Rs.domain = k.h (3.10)

The value of the constant k is determined by the choice of the smoothing kernel.

For a common case with k = 2, particles separated at a distance greater than

two smoothing radii will have no influence on the parameters at the current point

(particle). This is exactly correct when the value of the smoothing function is zero,

if the distance to the neighbor point is greater than or equal to 2h.

The choice of the smoothing function has an impact on the accuracy of ap-

proximation in equation (3.3). Following is an example of a smoothing kernel based

84



on the cubic spline functions [31],

W (r, h) = CD





1 − 3
2
(r/h)2 + 3

4
(r/h)3, 0 < r/h ≤ 1

1
4
(2 − r/h)3, 1 < r/h ≤ 2

0, r/h > 2

(3.11)

where CD is a constant depending on the number of problem dimensions. For this

kernel, the approximation in equation (3.3) has an order of O(h2).

The main equations describing the motion of a viscous incompressible Newto-

nian fluid are;

- the Navier-Stokes equations (Momentum equation), and

- the Continuity equation.

The Navier-Stokes equations govern the conservation of momentum, while the con-

tinuity equation states the conservation of mass. This system of equations can be

closed by addition of:

- the Energy equation, and

- the Equation of state.

According to the Lagrangian description, the above equations are written in a co-

ordinate system rigidly connected to a moving medium. This results in the elim-

ination of the advective term in the momentum equation, so long as the system

of coordinates moves together with the simulated medium. It is assumed that the

computational domain is divided into N small volumes represented by particles.

85



Each particle is assigned mass, density, pressure, velocity, acceleration, and other

physical parameters. The equations are written for the ith particle interacting with

all other particles representing the system (the j index).

In order to model solid boundaries in SPH, various methods have been used

for different problems. In this work, solid boundaries are modeled as ‘fixed’ fluid

particles. The parameters (mass, density, pressure, etc.) of these ‘fixed’ fluid parti-

cles are the same as the parameters of the particles representing the liquid medium.

During simulation, the interactions of the fluid particles with the wall particles are

calculated using equation (3.15) and equation (3.18). Further, coordinates and other

parameters are updated only for the fluid particles, while the parameters of the wall

particles remain unchanged.

3.2.1 Momentum Equation

The equation of momentum conservation for viscous incompressible fluid takes

the following form written in the Lagrangian formulation:

dv

dt
= −1

ρ
∇P + VT + F (3.12)

where v is the flow velocity, ρ is the fluid density, P is pressure, VT is a viscous

term, and F is the total volumetric force acting on unit mass. The mathematical

expression for the derivative of the ratio P/ρ can be written in the following form:

∇Pi

ρi

= ∇
(
P

ρ

)
+
Pi

ρ2
i

∇ρi (3.13)

By using the gradient approximation of the field function (pressure in this case)

in equation (3.8) and substituting equation (3.13), we get the following pressure

86



gradient:

∇Pi = ρi

∑

j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇iW (rij , h) (3.14)

where Pi = P abs
i −P0 is the difference between the absolute pressure at a given point

and the initial pressure P0, rij = ri − rj is a vector directed from the position of

particle j to the position of particle i, h is a smoothing length (smoothing radius),

and ∇iW (rij , h) is the gradient of the smoothing function.

Finally, applying the momentum equation (3.12) for the ith particle constitut-

ing the computational domain, and substituting equation (3.14), the equation for

the particle acceleration becomes:

dvi

dt
= −

∑

j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇iW (rij, h) + VT i + F (3.15)

VT i is the viscous term dicussed in a later section. For gravitational flows, the

only external force F is gravity. Where necessary, additional external forces (e.g.

wall-on-fluid interaction) can be added to the last term of equation (3.15).

3.2.2 Continuity Equation

The continuity equation, which represents the conservation of mass in fluid

flow, is usually written in the following form:

dρ

dt
= −∇.(ρv) (3.16)

The mathematical expression for the derivative product ρ.v can be rewritten as”

ρi∇.v = ∇.(ρv) − v∇ρi (3.17)

87



Using equations (3.8) and (3.17), the final continuity expression in SPH can be

written as:

dρi

dt
=
∑

j

mjvij.∇iW (rij, h) (3.18)

where vij = vi − vj is the relative velocity of the ith particle w.r.t jth particle.

The densities are initialized using the following:

ρi =
∑

j

mjW (rij, h) (3.19)

3.2.3 Equation of State

The equation of state proposed by Batchelor [7] to describe the change of

pressure with change of density in real water is used:

P = B

((
ρ

ρ0

)γ

− 1

)
(3.20)

where γ = 7, ρ is current density, ρ0 is the reference density (defined under initial

pressure P0), and B is a constant which is given as

B =
ρ0c

2
s

γ
(3.21)

cs =
Vf√
η

(3.22)

where η = 0.01 is the compressibility factor, cs is the speed of sound corresponding

to chosen compressiblity and Vf is the maximal velocity of the fluid medium in the

given problem.

The constant B, also known as the bulk modulus, is a measure of the stiffness

of the system and governs the relative density fluctuations during simulations. High

88



stiffness ensures incompressibility (weakly compressible) of the fluid and low density

fluctuations, both of which are crucial for successful free surface gravity wave simu-

lations. Higher order time integration schemes like predictor-corrector and leap-frog

allow the use of high bulk modulus. Stable simulations using lower order schemes

such as Euler integration are only possible for low B values which make the fluid

compressible and unphysical.

3.2.4 Viscosity

The viscous term in the momentum equation (3.15) depends on the second

derivative of the velocity. In principle, the direct approximation of the second

derivative in the SPH formulation can be obtained using the second derivative of the

smoothing kernel. However, the approximation of the second derivative is sensitive

to particle disorder, and can lead to instability of the numerical solution [33]. An

artificial viscosity was introduced by Monaghan in reference [30] which guarantees

stability for the simulations of high velocity flows and for the simulation of free

surface. But at the same time it creates high viscous forces and therefore cannot

predict correct velocity profiles for low velocity flows. In order to counter these

issues, Morris et al. [35] proposed a different estimation of the viscous term given

by:

V Mor
T i =

∑

j

mj(µi + µj

ρiρj

(
1

|rij|
∂Wij

∂ri

)
vij (3.23)

where µ is the dynamic visocity, and ∂Wij

∂ri
= ∂W (rij)

∂ri
. However, Morris’s viscosity

model could not guarantee supression of numerical fluctuations. Taking advantage

89



of both the viscosity models, a combination of both was proposed in reference [55].

The final expression for the combined viscous term reads as following:

VT i =





V Mor
T i +

∑
j mj

βµ2

ij

ρ̄ij
∇iW (rij, h), vij.rij < 0

V Mor
T i , vij.rij > 0

(3.24)

µij =
hvij.rij

r2
ij + 0.01h2

(3.25)

where β = 0.1 is a constant, ρ̄ij = (ρi + ρj)/2 is the density averaged between

particles i and j.

3.2.5 XSPH Correction

To close the system of governing equations, an equation of motion (written in

the so-called XSPH formulation) is added to the momentum equation (3.15), the

continuity equation (3.18) and the equation of state (3.20):

dri

dt
= vi + ǫ

∑

j

mj

ρ̄ij
vjiW (rij , h) (3.26)

where ρ̄ij is the average density of the interacting pair of particles (i− j), vji = vij

is the velocity of the jth particle w.r.t particle i, and ǫ is a constant between 0 and

1. The value of ǫ is usually chosen from numerical experience. Using this XSPH

correction in the equation of motion makes particle movement more ordered, thus

stabilizing the free surface of liquid. It also prevents the unphysical penetration of

particles through each other.

90



3.2.6 Density Reinitialization

The evolution equation for the density (equation (3.18)) cannot ensure consis-

tency between mass, density, and area occupied by the particles [21]. To overcome

this problem, the density should be periodically reinitialized using a so-called Shep-

ard filter, based on the interpolation technique proposed by Shepard [47]:

ρi =
∑

j

mjW
∗
ij(rij , h) (3.27)

where W ∗
ij is defined as:

W ∗
ij(rij , h) =

Wij(rij , h)
∑

j Wij(rij, h)mj

ρj

(3.28)

This is called the density reinitialization technique.

3.2.7 Time Integration

A leap-frog time integration scheme has been implemented to allow higher

stiffness and maintain incompressibility in model. The velocities and positions are

computed as

vi+1/2 = vi−1/2 + aidt

vi+1 = vi+1/2 + aidt/2

(3.29)

ri+1 = ri + vi+1/2dt (3.30)

It should be noted that the leap-frog scheme presented here is a slightly modi-

fied version of the conventional formulation. In order to compute the acceleration at

time t, the velocity at time t is required. However, a leap-frog scheme is used only

91



to compute velocities at half steps. Therefore, to speed up calculations and reduce

step complexity, the integer step velocity vi+1 is computed by taking another half

step using the acceleration ai (equation (3.29)). This approximation is valid since

very small time steps (order of 10−5 secs) are used for the current simulations.

3.2.8 Parallel Implementation of the Algorithm

The SPH method is in a class of particle methods, which can be accelerated

by general purpose computing on a graphics processor unit (GPGPU). The model

equations have been implemented in CUDA 6.5, compiled with Visual Studio 2010,

and executed on a Tesla C2070 hosted on an Intel Xeon E5607 quad core processor

with sufficient RAM, running Win7 x64.

Particle methods such as SPH are well suited to capture “mobile discrete in-

teractions,” which are characterized by elements that undergo local interactions and

whose adjacency can change throughout a simulation. A spatial binning algorithm

was implemented in order to exploit the local nature of the particle interactions,

as detailed in reference [9]. With the help of binning and sorting algorithms to

allocate computational resources on mutually close particles, the asymptotic com-

putational complexity can be reduced from O(N2) for a full field N body simulation

to O(NlogN).

Boundary conditions are enforced by constrained boundary particles. Bound-

ary particles are treated similarly to free particles with the exception that their

motions are constrained. For example, the wave maker is simulated by moving the

92



boundary particles that represent the sides of the tank in a sinusoidal manner rather

than according to the equations of motions stated above. Imposing boundary con-

ditions in this manner is common in SPH techniques. It has the benefit that only

a single set of equations is required to compute the inter-particle forces. The dif-

ferences in boundary particles are seen only in the convection equations. However,

an explicit no-penetration boundary is absent in the simulation. Therefore, under

certain conditions, free particles can penetrate or leak through the walls in the sim-

ulation. Several techniques, such as specifically chosen boundary particle spacing,

can be applied to mitigate free particle boundary penetration.

A schematic representation of the steps involved in the SPH method is shown

in Figure 3.6. Some of the CUDA kernels (implemented in parallel) are provided in

Appendix C.1.

93



Figure 3.6: Schematic representation of the CUDA-enabled parallel SPH Algorithm.

94



3.3 Numerical Studies in Two-dimensional cases

3.3.1 Smoothing Kernels

The smoothing kernel Wpoly6 from Muller, Charypar, and Gross [37], adapted

for a two dimensional domain is given by

Wpoly6(r, h) =





4
πh2 (1 − r2

h2 )3, 0 < r/h ≤ 1

0, r/h > 1

(3.31)

This smoothing kernel results in a smooth Gaussian like profile that decreases

to zero at r = h, as shown in Figure 3.7. Next, an improved smoothing kernel

is used in the pressure force computation, for which the derivative of the kernel is

required. This kernel was adapted from Muller et al.’s Wspiky. Renormalizing Wspiky

for two dimensions helps maintain its characteristic quadratic behavior. A linear

response to particle spacing was found to be more desirable for this work, as it

helps reduce the intermittent large spikes that occur when particles come into close

proximity. The improved smoothing kernel, which has been reformulated to yield a

linear response, is given by

Wspiky(r, h) =





10
πh2 (1 − r

h
)3, 0 < r/h ≤ 1

0, r/h > 1

(3.32)

95



∂

∂r
Wspiky(r, h) =





− 30
πh3 (1 − r

h
)2, 0 < r/h ≤ 1

0, r/h > 1

(3.33)

WImprovedspiky(r, h) =





6
πh2 (1 − r

h
)2, 0 < r/h ≤ 1

0, r/h > 1

(3.34)

∂

∂r
WImprovedspiky(r, h) =





− 12
πh3 (1 − r

h
), 0 < r/h ≤ 1

0, r/h > 1

(3.35)

The linear tendency of the derivative of the improved smoothing kernel as

compared to the quadratic response of the derivative of the original smoothing

kernel can be identified in Figure 3.7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

r/h

W
(r

,1
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

r/h

|∂
 W

(r
,1

)/
 ∂ 

r|

 

 

spiky
spiky improved

Figure 3.7: The 0th derivative (upper) and 1st derivative (lower) smoothing kernels
used in this work.

96



3.3.2 Model Validation

3.3.2.1 Dam Break

Several validation and benchmarking case studies have been carried out in

order to validate the computational model. A classic dam break using 7600 free

particles is simulated, as shown in Figure 3.8. The tank is chosen to be large

enough to contain the fluid. The fluid (water) is allowed to settle down first to form

a square column of dimensions 0.25 × 0.25 units at the left end of the tank. The

column is then released at t = 0. As the simulation proceeds, the water column

collapses and eventually splashes against the far wall of the tank. After about 1.5

secs of simulated time, the fluid field settles to a uniform surface.

−0.2 0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

t = 0.0000s

distance (m)

he
ig

ht
 (

m
)

(a) t = 0 secs

−0.2 0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

t = 0.1950s

distance (m)

he
ig

ht
 (

m
)

(b) t = 0.195 secs

−0.2 0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

t = 0.3800s

distance (m)

he
ig

ht
 (

m
)

(c) t = 0.38 secs

−0.2 0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

t = 0.5800s

distance (m)

he
ig

ht
 (

m
)

(d) t = 0.58 secs

Figure 3.8: The present SPH simulation results exhibit qualitatively similar behavior
to previous SPH simulation results for the validation case of a dam break.

97



0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

T

X

 

 

exp 2.25 x 2.25
exp 4.5 x 4.5
Vorobyev 1680
Vorobyev 63000
Present Model

Figure 3.9: For a similar configuration, the results obtained from the present method
are seen to be in quantitative agreement with previous experimental [29] and nu-
merical results [54].

The present simulation results compare well with dam break simulations pre-

sented in previous published experimental and numerical results. In each case, the

distance traversed by the front of the collapsing water column is compared to the

elapsed time. Nondimensionalized values of time are defined as T = t
√
g/lo, where

t is wall time, g is gravity, and lo is the initial horizontal width of the water col-

umn. The nondimensionalized distance is computed as X = x/lo, where x is the

instantaneous distance of the most downstream component of the water column.

As shown in Figure 3.10, Martin and Moyce [29] completed a series of experimen-

tal studies upon which this dam break configuration was modeled. The results of

two experiments are almost identical over the time span of interest as indicated by

the solid lines with dots and diamonds in Figure 3.9. In addition, Vorobyev [54],

98



presented results of his model for a similar configuration shown with dotted lines

and dots for 1680 particles and diamonds for 63000 particles as shown in Figure 3.9.

Results from the present model, shown with a thick line with dots, agree well with

the other numerical model as indicated in the figure. Several parameter variations

have been studied including variation of ǫ over [0.1, 0.25, 0.3] and variation of the

number of particles. All the variations return similar results to those shown. While

a noticeable small offset exists between the experimental results and the present

model results, the trends agree well. Overall, the present numerical method shows

good quantitative agreement with the other two methods.

Figure 3.10: Dam break experiment by Martin and Moyce [29].

99



3.3.2.2 Dispersion in the SPH Model

In order to validate dispersion relation allowed by the SPH model, the wave-

lengths in several numerical experiments are mapped to their corresponding forcing

frequencies and compared with predicted values. As shown in Figure 3.11, five dif-

ferent frequencies are chosen for different water depths to realize dispersion for this

SPH model. The abscissa of the plot represents ‘Actual ω2’ calculated directly using

the forcing frequencies as ω = 2πf , where f is the forcing frequency. ‘Evaluated ω2’

shown on the y-axis is given by

ω2 = gkSP H; Deep Water

= gkSP H tanh(kSP Hd); Intermediate Depth

= gk2
SP Hd; Shallow Water

(3.36)

where kSP H = 2π/λSP H and λSP H is evaluated from the simulations as shown in

Figure 3.12.

As an example, one of the cases is discussed here. Waves are simulated in

a 15 m numerical tank with a water depth of 1 m. The left wall is forced with

a sinusoidal function at frequency f = 1.0 Hz. Thus, the generated waves have a

temporal angular frequency of ω = 2πf = 6.2832 or ω2 = 39.478. A median measure

of the simulated wavelength (λSP H) is obtained from the surface profile and zero

crossing periods evaluated at each time step. In this case, it is found to be 1.605

m. Since the water depth is greater than half the calculated wavelength, this case

qualifies as a deep water simulation. For deep water waves, the dispersion relation

is given by

100



Actual ω2
20 30 40 50 60 70 80 90 100 110 120

E
va

lu
at

ed
  ω

2

20

30

40

50

60

70

80

90

100

110

120

SPH Dispersion Relation
Analytical Dispersion Relation

Intermediate

Deep

Deep

Deep

Intermediate

Figure 3.11: Actual ω2 versus Evaluated ω2: Data consolidated from five numerical
experiments to verify dispersion relation in the current SPH model

Forcing Frequency (Hz)
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

W
av

e 
Le

ng
th

 (
m

)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 3.12: Plot showing the variation of SPH simulated wavelength versus the
forcing frequency.

101



ω2 =
2πg
λSP H

(3.37)

Thus the value ω2 calculated using the wavelength obtained from the simulation is

38.0094 which has a less than 4% deviation from the predicted value of 39.478. For

a forcing frequency of 0.8 Hz for the same tank configuration, the error is less 2%.

It is evident that the current SPH model admits dispersion relation, thus making it

an effective tool to study extreme energy localizations.

3.3.3 Progressive Wave Generation and Dissipation in SPH Model

Although SPH has several advantages over grid based methods in simulating

free surface waves, actually generating persistent, progressive waves in a numerical

wave tank using SPH is non-trivial. Due to inherent characteristics of the SPH

method, for the choice of inappropriate parameters, the waves generated using a

paddle or a piston wavemaker tend to dissipate almost immediately even before

exhibiting a discernible wave structure. This issue has not been explicitly dealt

with in the SPH literature.

Through several numerical experiments it has been realized that dissipation

experienced by an SPH model primarily depends on three factors: number of par-

ticles (N) in the interaction domain defined by the smoothing length, the average

measure of the distance between two spatially adjacent particles (rmin) and the

smoothing length (h). Although, it might appear that all the three factors imply

the same thing, there is a subtle difference. For example, the number of particles

102



within the interaction domain can be increased or decreased by either changing the

smoothing length or by altering the total number of free particles, thus affecting

rmin. Through several validation case studies, it was found that the dissipation in

an SPH model is inversely proportional to the number of particles in the interac-

tion domain. In other words, the higher the number particles within the smoothing

radius, the longer the progressive waves persist.

To illustrate this conclusion, a case study has been presented in Figure 3.13.

A 4.5 m numerical wave tank is simulated using 88000 particles for two different

smoothing lengths. The water depth for both cases is around 0.35 m, forcing fre-

quency(left wall used as piston wavemaker) 1.4 Hz and stroke amplitude of 2 cm.

As shown in Figures 3.13(a) and 3.13(c), the simulation with h = 2.8 × 10−3 m

shows no discernible waves and ones generated at the left wall die out immediately.

On the other hand, the wave simulation with h = 10−2 m produce persistent pro-

gressive waves as shown in Figures 3.13(b) and 3.13(d). It should be noted that

increasing the smoothing length to get a better result is only viable when the tank

configuration and the number of particles remain the same. If the size of the tank

is increased, a proportional increase in the number of particles would be a better

choice than a proportional increase in smoothing length. Thus, the average measure

of the distance between two spatially adjacent particles plays a significant role.

In order to quantify the effect of the three factors N , rmin and h, a metric has

been devised. This metric is called the Interaction Measure and given by:

103



I =
Nh

rmin
(3.38)

The case with h = 2.8 × 10−3 m has an Interaction Measure (I) = 12, N = 8

and roh = rmin/h = 0.65. However, the simulation with h = 10−2 m has I = 465,

N = 88 and roh = 0.19. Thus, higher interaction measure indicates lower dissipation

and better progressive wave generation in a numerical SPH wave tank. It must be

noted that arbitrarily increasing I would not continue to produce better results as

the effects would converge after a point and further increase in I would only increase

computation time.

104



(a) t = 5.000 secs, h = 2.8 × 10−3 m

(b) t = 5.000 secs, h = 10−2 m

(c) t = 6.000 secs, h = 2.8 × 10−3 m

(d) t = 6.000 secs, h = 10−2 m

Figure 3.13: Numerical tank of length 4.5 m is simulated by using 88000 particles
with water depth of 0.35 m. Left wall is forced with a sinusoidal function of frequency
f = 1.4 Hz and stroke amplitude 2 cm. The case study with higher smoothing length
(h) exhibits considerably lower dissipation.

105



3.3.4 Standing Waves in 1+1 Dimension

In a numerical experiment, standing waves are generated in a 15 m tank using

90000 particles as shown in Figures 3.14 and 3.15. The left and right walls act as

piston wave-makers. Both walls are excited with sinusoidal functions 180 deg out

of phase having a frequency of 1.0 Hz and Stroke amplitude of 3 cm The initial in-

cident wave-fronts traveling towards each other attenuate as shown in Figure 3.14.

However, as the waves interfere, they reach a steady state standing wave forma-

tion (Figure 3.15). As expected, the waveheight of the standing waves are twice

that of the unattenuated incident waves. The execution time for this simulation is

approximately 47 ms per time step for a smoothing length (h) of 3.7 × 10−2 m.

3.3.5 Directional Focusing in 1+1 Dimension

In order to simulate wave interference, a 4.5 m numerical wave tank is simu-

lated using 88000 particles having a water depth of 0.34 m and several numerical

experiments are carried out. The simulations take approximately 32 ms per time

step to execute for a smoothing length (h) of 10−2 m. Two case studies for different

forcing frequencies and stroke lengths are discussed in this section to demonstrate

1 + 1D directional focusing using SPH. The equilibrium state for the wave tank is

shown in Figure 3.20(a). The topology of the wave tank is chosen to allow for waves

from opposite ends to convect over the surface and interfere away from the walls.

Opposite vertical walls are forced 180◦ out of phase in a sinusoidal manner. The

traveling waves coalesce in the middle of the tank where they exhibit observable in-

106



(a) t = 4.000 secs

(b) t = 5.865 secs

(c) t = 6.900 secs

(d) t = 8.415 secs

Figure 3.14: 1+1 Dimension Standing Waves Case Study (t = 4.000 secs to t = 8.415
secs): Numerical wave tank of length 15 m and water depth 1.0 m simulated using
90000 particles.

107



(a) t = 10.230 secs

(b) t = 10.800 secs

(c) t = 13.230 secs

(d) t = 13.770 secs

Figure 3.15: 1+1 Dimension Standing Waves Case Study (t = 10.230 secs to t =
13.770 secs).

108



terference behavior. This configuration allows the observation of wave focusing and

the associated energy focusing. Validation of the traveling waves with respect to

linear wave maker theory is not possible with the current model and configuration.

The observed waves are dominated by edge effects and strong interactions with the

moving wall.

3.3.5.1 Case Study 1: f = 1.2 Hz; S = 2 cm

In the first numerical experiment as shown in Figures 3.16 and 3.17, the walls

are forced with a sinusoidal function at f = 1.2 Hz and forcing amplitude of 0.02 m

or 2 cm. After a warmup cycle, the initial wave-fronts can be seen traveling toward

each other in Figure 3.16(a). The wave height of these wave-fronts at t = 3.174 secs

is estimated to be 0.043 m as shown in Figure 3.16(a). The waves convect toward

each other and focus in the center of the tank. Focusing in this sense is a transient

phenomenon wherein a coalesced peak can observed. A view of this interference is

shown in Figure 3.16(b). In this case, the focused wave has a height of 0.5 units, as

measured from the base of the tank. As shown in Figure 3.20(a), the mean water

level is around 0.35 m. Since the crests of the initial and surrounding waves are

at a height of 0.4 m (as measured from the base of the tank) and the initial wave

height is 0.043 m, the focused wave height is more than 3× that of the incident wave

fronts. As the system settles down to a steady state, standing waves are formed as

shown in Figures 3.16(c) - 3.17(c). As the simulation progresses and the standing

waves reach a steady state, it may be noted that the waves exhibit a cnoidal form.

109



(a) t = 3.174 secs

(b) t = 3.522 secs

(c) t = 3.900 secs

Figure 3.16: 1+1 Dimension Directional Focusing Case Study 1 (t = 3.174 secs
to t = 3.900 secs): Numerical wave tank of length 4.5 m and water depth 0.35 m
simulated using 88000 particles. Both, left and right walls excited in a sinusoidal
manner with a frequency of 1.2 Hz and stroke amplitude of 2 cm. The wave-fronts
interfere in the middle of the tank.

110



(a) t = 4.314 secs

(b) t = 7.740 secs

(c) t = 8.160 secs

Figure 3.17: 1+1 Dimension Directional Focusing Case Study 1 (t = 4.314 secs to
t = 8.160 secs).

111



3.3.5.2 Case Study 2: f = 1.0 Hz; S = 3 cm

In the second case study shown in Figures 3.18 and 3.19, the walls are forced

with a sinusoidal function at f = 1.0 Hz and forcing amplitude S = 3 cm. The

initial wave-fronts travel towards each other from opposite directions as shown in

Figure 3.18(a). However, due to dissipation, they exhibit slight attenuation before

coalescing as seen in a snapshot at t = 2.346 secs (Figure 3.18(b)). The focused

wave, shown in Figure 3.18(c), although larger than the incidents waves, does not

attain a significant height due to the dissipation in the incident waves. Subsequently,

as shown in Figure 3.19, the waves exhibit a standing wave pattern with the wave

amplitude twice that of the incident waves as expected.

3.3.5.3 Case Study 3: f = 0.8 Hz; S = 4 cm

In another case study shown in Figure 3.20, the forcing frequency is f = 0.8 Hz

and forcing amplitude is 0.04 m. Longer waves generated in this case do not allow

stable standing waves and sloshing effect is observed. However, the focusing of initial

wave-fronts can be seen at t = 2.820 secs as shown in Figure 3.20(c). Considering

a transient wave height of the incident wave front at t = 2.166 secs (as shown in

Figure 3.20(b) of 0.15 m, the focused wave is around 1.5× higher. However, this

is not an accurate measure since the wave breaks as shown in Figure 3.20(c). A

breaking wave can also be observed in Figure 3.20(d) at t = 3.504 secs. It should

be noted that through numerical experiments in larger wave tanks, the steady state

wave height for a 4 cm forcing amplitude was found to be approximately 0.12 m.

112



(a) t = 1.536 secs

(b) t = 2.346 secs

(c) t = 2.730 secs

Figure 3.18: 1+1 Dimension Directional Focusing Case Study 2 (t = 1.536 secs
to t = 2.730 secs): Numerical wave tank of length 4.5 m and water depth 0.35 m
simulated using 88000 particles. Both, left and right walls excited in a sinusoidal
manner with a frequency of 1.0 Hz and stroke amplitude of 3 cm. The wave-fronts
interfere in the middle of the tank.

113



(a) t = 3.162 secs

(b) t = 3.642 secs

(c) t = 4.122 secs

Figure 3.19: 1+1 Dimension Directional Focusing Case Study 2 (t = 3.162 secs to
t = 4.122 secs).

114



A detailed view of particle velocity for the incident wave is shown in Figure

3.21. Particle motion near the bottom of the tank is sufficiently small, so that

interaction with the lower horizontal boundary can be ignored. The particles at the

surface of the tank experience the largest velocities, while the velocity magnitude

decreases rapidly below the nominal height of the fluid surface for undisturbed flow.

3.3.5.4 Case Study 4: f = 0.6 Hz; S = 5 cm

In the final case study discussed in this section, the walls are forced in a

sinusoidal manner, 180 deg out of phase, with a frequency of f = 0.6 Hz and a

forcing amplitude of S = 5 cm. The incident wave fronts can be seen approaching

each other at t = 2.424 secs (Figure 3.22(a)). The transient wave height of these

initial wave-fronts measured at this instant is around 7 cm. The wave-fronts focus at

the middle of the tank to produce a coalesced wave which is around 3× higher than

the incident waves as shown in Figure 3.22(b). Post interference, the waves travel

away from each other in opposite directions and interfere with the incoming wave-

fronts to produce two peaks (Figures 3.22(c) and 3.22(d)). A standing wave sort of

formation can be observed in Figures 3.22(b), 3.22(d) and 3.23(a). However, since

the length of the tank is not large enough, the standing wave formation disintegrates.

As more energy is transferred to the system through the wavemakers, the incident

waves are much larger (Figure 3.23(b)) than the ones shown in Figure 3.22(a). As

shown in Figure 3.23(c), the waves focus, creating a larger and steeper wave that

eventually breaks. After this, the waves settle into a standing wave pattern for

115



(a) t = 0.000 secs

(b) t = 2.166 secs

(c) t = 2.820 secs

(d) t = 3.504 secs

Figure 3.20: 1+1 Dimension Directional Focusing Case Study 3: Numerical wave
tank of length 4.5 m and water depth 0.35 m simulated using 88000 particles. Left
and right walls excited in a sinusoidal manner with a frequency of 0.8 Hz and stroke
amplitude of 4 cm.

116



(a) t = 2.166 secs

(b) t = 2.820 secs

(c) t = 3.504 secs

Figure 3.21: 1+1 Dimension Directional Focusing Case Study 3: Particles colored
based on velocity magnitudes.

sometime before subsequently exhibiting sloshing.

117



(a) t = 2.424 secs

(b) t = 3.156 secs

(c) t = 3.420 secs

(d) t = 3.918 secs

Figure 3.22: 1+1 Dimension Directional Focusing Case Study 4 (t = 2.242 secs
to t = 3.918 secs): Numerical wave tank of length 4.5 m and water depth 0.35 m
simulated using 88000 particles. Left and right walls excited in a sinusoidal manner
with a frequency of 0.6 Hz and stroke amplitude of 5 cm.

118



(a) t = 4.746 secs

(b) t = 5.466 secs

(c) t = 6.246 secs

Figure 3.23: 1+1 Dimension Directional Focusing Case Study 4 (t = 4.746 secs to
t = 6.246 secs).

119



3.3.6 Dispersive Focusing in 1+1 Dimension

Due dispersion in water waves, as validated in the previous section, sine waves

travel with different frequency-dependent velocities. Trailing longer, lower frequency

waves overtake shorter, high frequency waves, inducing wave growth due to spatio-

temporal superposition. The idea of dispersive enhancement of wavetrains being a

possible mechanism for rogue-wave generation was first suggested by Draper [14].

In this section, dispersive focusing is demonstrated using a time-varying excitation

rather than a Fourier combination of multiple sine waves [13]. A linear time-varying

frequency can be described as

ω(t) = f0 + kt (3.39)

The resulting phase modulation is given by

ϕ(t) = ϕ0 +
∫ t

0
ω(τ)dτ (3.40)

Thus, a wave maker motion corresponding to a frequency described by equation

(3.39) would be given by sin(ϕ(t)).

For the numerical experiment described in this section, the left wall of a 15

m water tank, with water depth of 1.2 m, is excited in sinusoidal manner with a

time-varying frequency of the form

ω(t) = α(k0 − t) (3.41)

This form is chosen so that longer waves fronts are produced after the shorter ones.

120



For an effective characterization of dispersive focusing, the parameters α and k0 are

chosen to be 1.63 and 4 respectively. Several case studies have been carried out

to arrive at these values. 240000 free particles are used in the simulation and the

execution time is approximately 274 ms per time step for a smoothing length (h) of

3.7 × 10−2 m.

Integrating equation (3.41), the phase modulation is given by

ϕ(t) = α

(
k0t− t2

2

)
(3.42)

Therefore, as shown in Figure 3.24, the paddle motion of the left wall is described

by

x(t) = al sin(2πf0t) t <= N/f0

= a sin(ϕ(t)) N/f0 < t <= tf

= x(tf ) t > tf

(3.43)

where N is the number of constant frequency warm-up cycles before the onset of

chirped oscillations, f0 is the frequency and al is the amplitude of the lead cycles.

f0 is calculated such that there is discontinuity between the lead cycles and the

time-varying oscillations. a is the amplitude of the chirped paddle motion and tf is

the time at which the wave maker stops. In this case, a = 0.05 m, al = 0.04 m and

N = 9. a is chosen to be greater than al in order the accentuate the focusing effect.

The first wave-front (say wave-front A) produced after the onset of time-

varying frequency reaches x = 2 m at t = 10.70 secs, as shown in Figure 3.25(a). The

121



Time (secs)
0 2 4 6 8 10 12 14 16

D
is

pl
ac

em
en

t (
cm

)

-6

-4

-2

0

2

4

6

Figure 3.24: Sinusoidal Motion described by the left wall to generate waves. Con-
stant frequency for the first 9 cycles. Frequency variation commences at t = 8.65
secs.

second wave-front (say wave-front B) generated by the chirped motion of the wave

maker reaches x = 3 m at t = 12.8 secs as shown in Figure 3.25(b). The coaleasing

of wave-fronts A and B and subsequent wave growth due to dispersion in captured

in Figures 3.25 and 3.26. The initial attenuation of wave-front A, as seen in Figure

3.25(b), is due to the counteracting particle velocities of the lead cycles that are

just in front of it. Due to dispersion, the low frequency wave-front B travels faster

than A and catches up it, as shown in Figure 3.25(c). Wave-fronts A and B can be

seen at around x = 8 m and x = 7 m respectively. At t = 15.25 secs, wave-fronts A

and B can be seen at the verge of coalescing (Figure 3.25(d)). Due to interference,

the energy of wave-front B is transferred to wave-front A and it exhibits growth as

shown in Figures 3.26(a) - 3.26(c). This grwoth is a transient phenomenon taking

place between t = 16.10 secs and t = 16.70 secs while the wave-front travels from

122



x = 10.2 m to x = 10.8 m. The wave begins to break t = 16.70 secs as shown in

Figure 3.26(c).

(a) t = 10.700 secs

(b) t = 12.800 secs

(c) t = 14.500 secs

(d) t = 15.250 secs

Figure 3.25: 1+1 Dimension Dispersive Focusing Case Study (t = 10.700 secs to
t = 15.250 secs): Numerical wave tank of length 15 m and water depth 1.20 m
simulated using 240000 particles.

123



(a) t = 16.150 secs

(b) t = 16.450 secs

(c) t = 16.700 secs

Figure 3.26: 1+1 Dimension Dispersive Focusing Case Study (t = 16.150 secs to
t = 16.700 secs): Numerical wave tank of length 15 m and water depth 1.20 m
simulated using 240000 particles .

124



3.3.7 Modulational Instability in 1+1 Dimension

By using the insights gained from the study of the Nonlinear Schrödinger

equation, the next step is to carry out computational simulations to derive further

insights into complexity of extreme wave conditions. Thus, the objective of this

section is to identify and qualitatively realize modulational instability through SPH-

based numerical experiments.

In Section 2.2.7.1, the predicted evolution of a dimensional wave field has

been described. The techniques described in that section can be used to induce a

localization based on a single mode solution of the NSE. For the purpose of this

study however, the analytical dimensional form of the Peregrine breather has been

used to investigate modulational instability. The dimensional form of the Peregrine

breather is given by

ψp(x, t) = a0 exp

(
− ik2

0a
2
0ω0

2
t

)

×
(

1 − 4(1 − ik2
0a

2
0ω0t)

1 + [2
√

2k2
0a0(x− ω0/2k0t)]2 + k4

0a
4
0w

2
0t

2

)
(3.44)

where ω0, k0, a0 are the angular frequency, wave number and amplitude of the carrier

wave respectively. As shown in Figure 3.29, the Peregrine solution breathes (reaches

its maximum height) at x = 0 m and t = 0 secs. Moreover, the solution is symmetric

about x = 0 m. Hence, theoretically, using an appropriate variable transformation,

the localization can be shifted to a desired location. In such a configuration where

the localization target has been shifted, the time history characterized by equation

125



Forcing Amplitude (m)
0.01 0.015 0.02 0.025 0.03 0.035 0.04

W
av

e 
A

m
pl

itu
de

 (
m

)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 3.27: Parametric study showing generated wave amplitude versus wave maker
amplitude for different water depths.

(3.44) at x = 0 governs the wave maker motion. In other words, a wave maker

motion (perturbation at x = 0 m) described by Figure 3.29(a) (or Figure 3.29(g))

would theoretically grow and produce localization at x = 8.1 m.

A parametric study has been carried out to determine the amplitude and

wavelength of generated waves as a function of the wave maker stroke length for

a given excitation frequency and water depth. The results are shown in Figure

3.27 and Figure 3.28 respectively. According to this study, in order to produce a

carrier wave of amplitude (say) 0.025 m, the wave maker stroke amplitude should

be 0.01 m. A diagnostic case study is presented where the wave maker motion

time history is shown in Figure 3.32 and the theoretical predicted evolution of the

initial perturbation (according to equation (3.44)) is shown in Figures 3.30 and 3.31.

126



Forcing Amplitude (m)
0.01 0.015 0.02 0.025 0.03 0.035 0.04

W
av

e 
L

en
gt

h 
(m

)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 3.28: Parametric study showing generated wave length versus wave maker
amplitude for different forcing frequencies and water depths. These results follow
the dispersion relation. See Figure 3.11.

Although, the wave maker motion is described by equation (3.44), its amplitude

of motion is reduced by a factor to generate a carrier wave of desired amplitude

according to Figure 3.27.

Using the approach described above, several numerical experiments have been

carried out to realize modulational instability. Two case studies are presented in

this section. Before discussing the case studies in detail, it is critical to understand

that the simulation results are not expected to quantitatively match the theoretical

results. This is primarily because of two reasons: Firstly, the Nonlinear Schrödinger

equation does not provide a complete description of full-field water waves. Although,

unstable solutions to the NSE (such as the Peregrine breather) can be used to

induce modulational instability in certain cases, it is extremely difficult to tune the

127



Time (s)
-60 -40 -20 0 20 40 60

H
ei

gh
t (

m
)

-0.04

-0.02

0

0.02

0.04
x = -8.1 m

(a) x = −8.1 m

Time (s)
-60 -40 -20 0 20 40 60

H
ei

gh
t (

m
)

-0.04

-0.02

0

0.02

0.04
x = -4.1 m

(b) x = −4.1 m

Time (s)
-60 -40 -20 0 20 40 60

H
ei

gh
t (

m
)

-0.04

-0.02

0

0.02

0.04
x = -2.1 m

(c) x = −2.1 m

Time (s)
-60 -40 -20 0 20 40 60

H
ei

gh
t (

m
)

-0.04

-0.02

0

0.02

0.04
x = 0 m

(d) x = 0.0 m

128



Time (s)
-60 -40 -20 0 20 40 60

H
ei

gh
t (

m
)

-0.04

-0.02

0

0.02

0.04
x = 2.1 m

(e) x = 2.1 m

Time (s)
-60 -40 -20 0 20 40 60

H
ei

gh
t (

m
)

-0.04

-0.02

0

0.02

0.04
x = 4.1 m

(f) x = 4.1 m

Time (s)
-60 -40 -20 0 20 40 60

H
ei

gh
t (

m
)

-0.04

-0.02

0

0.02

0.04
x = 8.1 m

(g) x = 8.1 m

Figure 3.29: Evolution of the dimensional form of Peregrine breather as described
by equation (3.44) (a0 = 0.01 m, L0 = 0.54 m).

129



distance (m)
0 5 10 15

am
pl

itu
de

 (
m

)

-0.1

-0.05

0

0.05

0.1
t = 6 secs

(a) t = 6.0 secs

distance (m)
0 5 10 15

am
pl

itu
de

 (
m

)

-0.1

-0.05

0

0.05

0.1
t = 8 secs

(b) t = 8.0 secs

distance (m)
0 5 10 15

am
pl

itu
de

 (
m

)

-0.1

-0.05

0

0.05

0.1
t = 9.5 secs

(c) t = 9.5 secs

Figure 3.30: Predicted surface profile according to the analytic formulation of the
Peregrine breather as described by equation (3.44) (t = 6.0 secs to t = 9.5 secs).
The perturbation is introduced after 10 lead cycles. (a0 = 0.025 m, L0 = 0.54 m).

130



distance (m)
0 5 10 15

am
pl

itu
de

 (
m

)

-0.1

-0.05

0

0.05

0.1
t = 10 secs

(a) t = 10.0 secs

distance (m)
0 5 10 15

am
pl

itu
de

 (
m

)

-0.1

-0.05

0

0.05

0.1
t = 10.5 secs

(b) t = 10.5 secs

distance (m)
0 5 10 15

am
pl

itu
de

 (
m

)

-0.1

-0.05

0

0.05

0.1
t = 11 secs

(c) t = 11.0 secs

Figure 3.31: Predicted surface profile according to the analytic formulation of the
Peregrine breather as described by equation (3.44) (t = 10.0 secs to t = 11.0
secs).The perturbation is introduced after 10 lead cycles.(a0 = 0.025 m, L0 = 0.54
m).

131



time (secs)
0 5 10 15

am
pl

itu
de

 (
m

)

-0.05

0

0.05
Time history of wave maker at x = 0 m

Figure 3.32: Time history of the wave maker to theoretically induce the surface
evolution shown in Figures 3.30 and 3.31. The wave maker amplitude is 0.01 m
produces a carrier wave of amplitude 0.025 m.

simulation parameters to generate results that perfectly match the predictions made

by the mathematical model. Secondly, due to the inherent dissipation prevalent

in the SPH model, it is rather difficult to detect growth. Instead modulational

instability has been realized by observing the fact that the unstable perturbation

resists decay unlike the rest of the carrier wave.

3.3.7.1 Case Study 1: a0 = 2.5 cm; L0 = 54 cm

For the first case study, a numerical wave tank of length 4.5 m is simulated

using 90000 particles having a mean water depth of 0.35 m. The execution time for

this simulation is approximately 32 ms per time step for a smoothing length (h) of

10−2 m. The left wall is excited according to a phase shifted version of equation

(3.44) such that the theoretical self-focusing location of the initial perturbation is

2.1 m. The carrier amplitude is a0 = 0.025 m and the carrier wavelength (according

to Figure 3.28) is L0 = 0.54 m. Time histories are recorded at various locations

132



along the length of the numerical wave tank. The propagation of the perturbation

is highlighted in each subfigure. A very small perturbation is introduced into the

system as shown in Figure 3.33(a). At this stage, the perturbation amplitude is

comparable to that of the carrier wave. Initially the perturbation and the rest of

the carrier wave decays at the same rate maintaining a comparable wave height upto

x = 1.0 m as shown in Figure 3.33(b). Subsequently, due to modulational instability,

the perturbation strives to grow unlike the rest of the carrier wave. This growth,

however, is stymied by the algorithmic dissipation in SPH. This counteraction of self-

focusing and dissipation spawns a differential rate of decay and a distinct modulated

wave form begins to appear at x = 1.5 m (Figure 3.33(c)). Thus, the attenuation

tendencies due to the inherent dissipation in the SPH algorithm is resisted by the

modulation instability of the perturbation. As the wave propagates (as shown in

Figures 3.33(d) - 3.35(d)), the modulated waveform loses energy but maintains its

rough shape before almost completely disappearing into the background at around

x = 3.5 m. At this point, the amplitude of the perturbation is again comparable to

that of the background carrier wave.

133



time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 0.500m

(a) x = 0.5 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 1.000m

(b) x = 1.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 1.500m

(c) x = 1.5 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 1.800m

(d) x = 1.8 m

Figure 3.33: 1+1 Dimension Modulational Instability Case Study 1 (a0 = 0.025 m,
L0 = 0.54 m): The perturbation is introduced after 10 lead cycles (x = 0.5 m to
x = 1.8 m).

134



time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 2.000m

(a) x = 2.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 2.100m

(b) x = 2.1 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 2.200m

(c) x = 2.2 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 2.400m

(d) x = 2.4 m

Figure 3.34: 1+1 Dimension Modulational Instability Case Study 1 (a0 = 0.025 m,
L0 = 0.54 m): (x = 2.0 m to x = 2.4 m).

135



time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 2.600m

(a) x = 2.6 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 2.800m

(b) x = 2.8 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 3.000m

(c) x = 3.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

0.3

0.35

0.4

x = 3.500m

(d) x = 3.5 m

Figure 3.35: 1+1 Dimension Modulational Instability Case Study 1 (a0 = 0.025 m,
L0 = 0.54 m): (x = 2.6 m to x = 3.5 m).

136



3.3.7.2 Case Study 2: a0 = 9.0 cm; L0 = 162 cm

A numerical wave tank of length 15 m is simulated using 240000 particles

having a water depth of 1.2 m. The execution time for this simulation is approxi-

mately 273 ms per time step for a smoothing length (h) of 3.7 × 10−2 m. The left

wall is excited such that the theoretical self-focusing location is 2.1 m. The carrier

amplitude is a0 = 0.09 m and the carrier wavelength (according to Figure 3.28) is

L0 = 1.62 m. The wave maker stroke length is 0.03 m based on the parametric

study shown in Figure 3.27. An evolution similar to the previous case can be seen

here. The perturbation amplitude is comparable to the rest of the carrier wave at

x = 1.0 m as shown in Figure 3.36(a). As explained earlier, due to modulational

instability, the perturbation retains its amplitude till x = 4.0 m while the rest of the

carrier wave decays due numerical dissipation (Figure 3.36(d)). Subsequently, the

perturbation decays and its amplitude becomes similar to the background carrier

amplitude at around x = 8.0 m.

A careful observation of Figures 3.33 - 3.35 in case study 1 would suggest that

the relative height of the perturbation with respect to the background carrier wave

is maximum at around x = 2.1 m or x = 2.2 m. This is also the target localization

point according to the mathematical model. However, for case study 2 (Figures

3.36 - 3.38), relative height of the perturbation seems to be maximum at around

x = 4.0 m. This would suggest that for a relatively shorter wave tank, a modulated

wavetrain with smaller carrier wave amplitude and large wave number is a better

candidate to examine modulational instability as described by NSE. However, this

137



conclusion is subject to further investigations.

As mentioned before, it should be noted that due to significant dissipation in

the current model, it is not possible to quantitatively establish a singular focusing

point or a maximum height as predicted by the mathematical model. However, the

observations made in the numerical experiments suggest that it is indeed possible to

identify modulational instability in water waves using SPH, albeit only to a certain

extent.

138



time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 1.000m

(a) x = 1.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 2.000m

(b) x = 2.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 3.000m

(c) x = 3.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 4.000m

(d) x = 4.0 m

Figure 3.36: 1+1 Dimension Modulational Instability Case Study 2 (a0 = 0.09 m,
L0 = 1.62 m): The perturbation is introduced after 10 lead cycles (x = 1.0 m to
x = 4.0 m).

139



time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 5.000m

(a) x = 5.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 6.000m

(b) x = 6.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 7.000m

(c) x = 7 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 8.000m

(d) x = 8 m

Figure 3.37: 1+1 Dimension Modulational Instability Case Study 2 (a0 = 0.09 m,
L0 = 1.62 m): (x = 5.0 m to x = 8.0 m).

140



time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 9.000m

(a) x = 9.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 10.000m

(b) x = 10.0 m

time (s)
0 5 10 15 20 25

he
ig

ht
 (

m
)

1

1.2

1.4
x = 11.000m

(c) x = 11.0 m

Figure 3.38: 1+1 Dimension Modulational Instability Case Study 2 (a0 = 0.09 m,
L0 = 1.62 m): (x = 9.0 m to x = 11.0 m).

141



Chapter 4: Summary and Concluding Remarks

In this dissertation work, mechanisms leading to rogue-wave or extreme wave

formations have been investigated through analytic studies of mathematical models

as well as Lagrangian based massively parallel N-particle simulations. It should

be noted that this work is phenomena based, focused mainly on the qualitative

study of the mechanisms. Further advancement of this study can lead to more

quantitatively accurate results. Analytical (rogue-wave solutions to the nonlinear

Schrödinger equation) and simulational (SPH simulations of mechanisms of extreme

wave formation) results presented in this dissertation can act as a precursor to future

efforts aimed at enhancing predictive capabilities in the field of extreme wave clima-

tology. Contributions made in this dissertation can also aid the study of structural

response to extreme waves and energy harnessing from wave localizations.

4.1 Summary of Contributions

The key aspects and contributions of this dissertation are the following:

1. A Predictor-Corrector type algorithm, not available elsewhere in the litera-

ture, is presented in this dissertation which allows for the identification of

spectral parameters of single mode near homoclinic theta function based so-

142



lutions to the NSE. While this solution family is already known, examples

of variations in the parameters governing the solutions are not readily avail-

able in the literature. Furthermore, connections between the features of the

numerically generated eigenvalue space and the solutions appearing therein

have been seldom highlighted. The eigenvalue map presented in this work

provides a quantitatively accurate overview and context of the behavior of the

solution space from which these solutions originate. The particular solutions

presented here, and the insights provided by the mapping procedure, can sub-

stantially enhance the understanding and stimulate further investigation of

the NSE and associated rogue waves. Although the computations required to

determine the map are quite demanding, it is shown that these computations

can be efficiently accelerated with a parallel computing architecture. This is

the first time that the power of GPU computing has been used in a combined

analytical-numerical study of extreme waves.

2. New wave fields for near homoclinic, single mode rogue-wave solutions of the

periodic nonlinear Schrödinger equation are presented. Features of the predic-

tive map are explored and the influences of certain parameter variations are

presented.

3. The solutions are rescaled to match the length scales of waves generated in a

wave tank. Based on the information provided by the map and the details of

physical scaling, it is believed that the framework presented here could serve

as a basis for experimental investigations into a variety of rogue waves as well

143



localizations in wave fields.

4. Dissipation inherent to SPH models makes it extremely difficult to simulate

persistent progressive waves. This issue has never been explicitly discussed

in the literature. In this dissertation, an observation-based solution to this

problem has been provided thus making it feasible to study localization in

water waves.

5. One of the primary objectives of this dissertation work was to investigate

the mechanisms underlying rogue-wave formation through simulations. Direc-

tional focusing, dipersive enhancement and modulational instability have been

studied in 1+1 dimensions through advanced SPH simulations to realize the

underpinnings of extreme wave localization in a hydrodynamic environment.

This is the first time SPH has been used as a simulation tool in such a study.

Although an extensive quantitative study has not been carried out, the results

obtained in this dissertation work can serve as a precursor to the development

of a more advanced simulation based predictive tool for extreme waves.

4.2 Recommendations for Future Work

There is a great deal of possible future directions for this research.The unique

predictor-corrector type algorithm and GPU-computing based technique developed

in this dissertation work to find rogue-wave solutions to NSE can be extended to

other mathematical models with similar characteristics such as the Korteweg-de

Vries or KdV equation. Moreover, this study can be extended to other systems

144



such as optical fibers and plasmas. Analytic investigations in rogue-wave formation

in 1+1 dimensions can be continued using more advanced mathematical models

such as the Dysthe equation. The extended Dysthe equation, which is a weakly

nonlinear model like the NSE, provides a better approximation of modulational

instability. Analytic studies can also be extended to 2+1 dimensions using Coupled

nonlinear Schrödinger Equation. Coupled NSE the interaction of slowly modulated

wave trains in two dimensions, thus providing a more realistic picture of rogue-wave

formation in the open ocean. Initial conditions described in Section 2.2.7 can be used

in experiments to realize modulational instability and energy localization governed

by the NSE.

Based on the work done in this dissertation, significant advances can be made

in area of SPH based rogue-wave simulations. The massively parallel GPU based

SPH code, developed to study extreme waves, has scope of optimization and tuning

to better capture extreme wave phenomenon. Further use of shared memory, asyn-

chronous streams and multi-GPU models can significantly improve the performance

of this program. Although studies carried out during the course of this dissertation

work have been able to address the SPH dissipation issue to some extent, it is es-

sential to carry out further investigations in this area to improve the accuracy of

results. The SPH code can be used to simulate various other unstable rogue-wave

modes of the NSE as well as realize the insights developed from the study of other

mathematical models.

The area of extreme wave simulations is still wide open in 3D. A 3D version

of the SPH code has already been developed which can be used to study directional

145



focusing and modulational instability induced extreme wave formation in 2+1 di-

mensions. The SPH code can be further modified to incorporate fluid-structure

interaction problems to study the impact of extreme waves on offshore structures.

146



Chapter A: Mathematical Details of Floquet Theory

The general form for a first-order homogeneous linear system is

x′ = A(t)x (A.1)

where A(t) is an n × n matrix function of t, continous for t ∈ E, a ≤ t ≤ b. The

homogeneous system in equation (A.1) has two important properties. The first is

that the identically zero function x(t) = 0 for all t ∈ E, is a solution of equation

(A.1), and is the unique solution such that x(t0) = 0 for any t0 ∈ E. The second is

that, if x1(t), ..., xm(t) are solutions of equation (A.1), the so is

c1x
1(t) + ... + cmx

m(t)

Let x1(t), ..., xn(t) be n solutions of equation (A.1)on an interval I, and put

X(t) = [x1(t), ..., xn(t)], (A.2)

where X(t) is an n× n matrix solution of

X ′ = AX (A.3)

If x1, ...xn are also linearly independent, then X is a fundamental matrix and,

if X(t0) = I, the identity matrix, then X(t) is the principal fundamental matrix.

147



Further,

W (t) = detX(t) (A.4)

is called the Wronskian. If X(t) is a fundamental matrix solution of equation

(A.3), then so is X(t)C for any non-singular constant matrix C. Let,

Y (t) = X(t)C (A.5)

Then Y (t) is non-singular, and

Y ′ = X ′C = AXC = AY

The columns of Y are linear combinations of the columns of X. Also, the general

solution c1x
1(t) + ...+ cmx

m(t) can be written in the form

x(t) = X(t)c, (A.6)

where c is an arbitrary n-vector, with components c1, ..., cn.

We observe that, as t → t0,

X(t) = X(t0) + (t− t0)X ′(t0) + o(t− t0)

or

X(t) = X(t0) + (t− t0)A(t0)X(t0) + o(t− t0)

where equation (A.3) is used to calculate X ′(t0). But, using equation (A.4) for

W (t), it follows that

W (t) = W (t0)det[I + (t− t0)A(t0)] + o(t− t0)

Now since,

det(I + ǫC) = 1 + ǫtr(C) +O(ǫ2)

148



We have

W (t) = W (t0)[1 + (t− t0)trA(t0)] + o(t− t0)

Now, it can also be written

W (t) = W (t0) + (t− t0)W ′(t0) + o(t− t0)

Hence, on taking the limit t → t0, we see that

W ′(t0) = W (t0)trA(t0)

But t0 can be any point in E and hence, for all t in E,

W ′(t) = W (t)trA(t)

Integration with respect to t now gives

W (t) = W (t0)exp
[ t∫

t0

trA(s)ds
]

(A.7)

Now, let us consider a general form for a linear homogeneous system with

periodic

x′ = A(t)x (A.8)

where

A(t+ T ) = A(t) (for all t) (A.9)

Thus the coefficient matrix is periodic with a period T . It may be noted that al-

though the coefficient matrix in equation (A.8) is periodic, in general the solutions

are not periodic.

149



Now, since X(t) is a fundamental matrix, it follows from equation (A.3)

X ′(t) = A(t)X(t)

Let Y (t) = X(t+ T ). Then

Y ′(t) = X ′(t+ T )

= A(t+ T )X(t+ T )

= A(t)Y (t)

where the last line is a consequence of equation (A.9) and definition of Y (t). Thus

Y (t) is also a fundamental matrix and, hence, has the form X(t)M for some constant

non-singular matrix M (from equation (A.5)). Thus,there exists a non-singular

constant matrix M for all t such that

X(t+ T ) = X(t)M (A.10)

Further, using equation (A.7) it can also be shown that

detM = exp
[ T∫

0

trA(s)ds
]

(A.11)

Since, equation (A.10) is true for all t, the constant matrix M can be expressed in

terms of the fundamental matrix by putting t = 0:

M = X−1(0)X(T ) (A.12)

It is often useful to choose X(t) to be the principal fundamental matrix, so that

X(0) = I , and then M = X(T ). Here, M is called the monodromy matrix.

150



Let the eigenvalues of M be ρ1, ..., ρn called the Floquet multipliers for

equation (A.8). The Floquet exponents µ1, ..., µn are defined by

ρ1 = eµ1T , ....., ρn = eµnT (A.13)

The Floquet exponents are not unique as we can replace µi by µi + 2πik/T (i =

1, ..., n) for any integer k = ±1,±2, ... without altering the definition in equation

(A.13). It may be noted that the Floquet multipliers and, hence, the characteristic

exponents, do not depend on the particular choice of fundamental matrix X(t) and

are intrinsic properties of the equation (A.8).

If ρ and µ are as defined by equation (A.13), then there exists a solution x(t)

of equation (A.8) such that for all t

x(t+ T ) = ρx(t) (A.14)

Further, there exists a periodic function p(t)(i.e. p(t+ T ) = p(t) for all t) such that

x(t) = p(t)eµt, (A.15)

The above can be proved as follows:

Let b be an eigenvector of M corresponding to the eigenvalue ρ, so that

Mb = ρb

Then put

x(t) = X(t)b

151



and so x(t) is a solution of equation (A.8). But now

x(t+ T ) = X(t+ T )b = X(t)Mb = X(t)ρb = ρx(t)

where the first step uses equation (A.10). Next put

p(t) = x(t)e−µt,

so that

p(t+ T ) = x(t+ T )e−µte−µT = ρx(t)e−µte−µT = p(t)

where equation (A.13) and equation (A.14) have been used.

It follows from equation (A.14) and equation (A.15) that there exist n linearly

independent solutions of equation (A.8) given by

xi(t) = eµitpi(t) (A.16)

where each pi(t) is a periodic function with period T . Also, we have that

xi(t+ T ) = ρixi(t)

xi(t+NT ) = ρN
i xi(t)

Let

P0(t) =




p1


...


pn




 (A.17)

Then P0(t) is an n×n matrix function of t is non-singular and is a periodic function

of t, so that P0(t+T ) = P0(t) for all t. Now, let X0(t) be the fundamental matrix for

equation (A.8) from the n linearly independent solutions shown in equation (A.16),

152



so that

X0(t) =




x1


...


xn






= P0(t)Y0(t),

(A.18)

where

Y0(t) =




eµ1T 0

. . .

0 eµnT




and Y0(t) satisfies the equation

Y ′0 = D0Y0

where D0 = diag[µ1, ...µn]. This is a matrix differential equation with constant co-

efficients. We can now see that equation (A.8) will have periodic solutions of period

T if and only if there exists a characteristic exponent µ = 0 or, correspondingly,

characteristic multiplier ρ = 1.

Each characteristic(or Floquet) multipliers fall into one of the following categories:

1. If | ρ |< 1, then Re(µ) < 0 and so x(t) → 0 as t → ∞

2. If | ρ |= 1, then Re(µ) = 0 and so we have a psuedo-periodic solution. If

ρ = ±1, then the solution is periodic with period T .

3. If | ρ |> 1, then Re(µ) > 0 and so x(t) → ∞ as t → ∞

The entire solution is stable if all the characteristic multipliers satisfy | ρi |6 1

153



Chapter B: Additional Physical Forms of New Rogue Wave Solutions

to the NSE

Figure B.1: Solution to the NSE for (λR = 0.87528, λI = 1.3008), ǫ = 0.008014, θ =
0.629216906, and L = 5.44. This solution envelope reaches a maximum amplitude
of ≈ 3.6x the background height.

154



Figure B.2: Solution to the NSE for (λR = 1.22, λI = 1.852), ǫ = 0.0026265, θ =
1.047105344, and L = 4.44. This solution envelope reaches a maximum amplitude
of ≈ 4.7x the background height.

Figure B.3: Solution to the NSE for (λR = 0.7356, λI = 0.8237), ǫ = 2.53E−03, θ =
−1.051080567, and L = 20. This solution envelope reaches a maximum amplitude
of ≈ 2.65x the background height.

155



Figure B.4: Solution to the NSE for (λR = −0.0167, λI = 0.9805), ǫ =
0.019545839, θ = 1.178877343, and L = 10. This solution envelope reaches a maxi-
mum amplitude of ≈ 3x the background height.

Figure B.5: Solution to the NSE for (λR = 0.14615, λI = 0.90249), ǫ =
0.024303445, θ = −0.835951856, and L = 10. This solution envelope reaches a
maximum amplitude of ≈ 2.8x the background height.

156



Figure B.6: Solution to the NSE for (λR = 0.54774, λI = 0.654), ǫ =
0.007805263, θ = −0.676122251, and L = 15. This solution envelope reaches a
maximum amplitude of ≈ 2.3x the background height.

Figure B.7: Solution to the NSE for (λR = 0.60503, λI = 2.2946), ǫ =
0.000495576, θ = 1.236466627, and L = 4.44. This solution envelope reaches a
maximum amplitude of ≈ 5.6x the background height.

157



Figure B.8: Solution to the NSE for (λR = 1.5948, λI = 2.5409), ǫ =
0.000160675, θ = −0.475103634, and L = 4.44. This solution envelope reaches a
maximum amplitude of ≈ 6x the background height.

Figure B.9: Solution to the NSE for (λR = 0.0099, λI = 1.7498), ǫ =
0.002485633, θ = 0.14954754, and L = 9. This solution envelope reaches a max-
imum amplitude of ≈ 4.5x the background height.

158



Chapter C: Sample Codes

C.1 Smoothed Particle Hydrodynamics CUDA C++ Code Snippets

C.1.1 CUDA Kernel to Initialize Density

The densities of particles are initialized using the following:

ρi =
∑

j

mjW (rij, h) (C.1)

where rij = ri −rj is a vector directed from the position of particle j to the position

of particle i, h is a smoothing length (smoothing radius), and W (rij , h) is the the

smoothing function. The positions of the particles are read from the sorted array

and their x, y addresses in the grid of bins are calculated. For every neighboring bin

(including its own), a device function, densityInCell2, is called to compute density.

For the computed hash value of the neighbor cell passed in, density is computed

using an all pairs approach.

1 #i n c l u d e <cuda . h>
2 #i n c l u d e ”math . h”
3 #i n c l u d e ” cuda runtime . h”
4 #i n c l u d e ” dev i ce l aunch par ameter s . h”
5 #i n c l u d e ”SPH2DCPPCuda . h”
6 #i n c l u d e <i ostream>
7 #i n c l u d e ” smoothingKernels . cuh ”
8
9

10 __device__ double densityInCell2 ( int2 neighboor , i n t index , double posX , double posY←֓
, s t r u c t particleStructure ∗ pparticles , s t r u c t paramsType ∗ pparams ) ;

11
12 __global__ void initializeDensity ( s t r u c t particleStructure ∗ pparticles , s t r u c t ←֓

paramsType ∗ pparams ) {
13

159



14 i n t index = blockIdx . x∗ blockDim . x+threadIdx . x ;
15
16 i f ( index >= (∗ pparams ) . nTotal ) r e tur n ;
17
18 // read p a r t i c l e data − host p a r t i c l e
19 double posXi = pparticles−>sortedX [ index ] ; // these are sorted , I i s the ←֓

r e c e i v e r
20 double posYi = pparticles−>sortedY [ index ] ;
21
22 // get addr es s i n g r i d
23 i n t tempX = floor ( ( posXi−(∗ pparams ) . globalOriginX ) ∗(∗ pparams ) . cellSizeRecip ) ;
24 i n t tempY = floor ( ( posYi−(∗ pparams ) . globalOriginY ) ∗(∗ pparams ) . cellSizeRecip ) ;
25
26 int2 gridPos = {tempX , tempY } ; // g r i d p o s i t i o n o f host p a r t i c l e
27
28 // examine ne i ghboor i ng c e l l s
29 double density = 0 ; // need dens i ty
30 f o r ( i n t y = −1;y<=1;y++) {
31 i n t currentY = gridPos . y+y ;
32 i f ( ( currentY >−1) && ( currentY <(∗ pparams ) . nCellsY ) ) {
33
34 f o r ( i n t x = −1;x<=1;x++) {
35 i n t currentX = gridPos . x+x ;
36 i f ( ( currentX >−1) && ( currentX <(∗pparams ) . nCellsX ) ) {
37 int2 neighboor = {currentX , currentY } ; //2D index i n g r i d
38 density += densityInCell2 ( neighboor , index , posXi , posYi , ←֓

pparticles , pparams ) ;
39 }
40 }
41 }
42 }
43
44
45 // wr i te the dens i ty to the sor ted p o s i t i o n to be used l a t e r i n the f o r c e s ←֓

r o u t i n e
46 pparticles−>sortedRho [ index ] = density ; // t h i s one i s not used
47
48 i n t originalIndex = pparticles−>gridParticleIndex [ index ] ;
49 pparticles−>density [ originalIndex ] = density ; // t h i s one i s used
50
51 // a l s o i n i t i a l i z e dRhodt = 0 f o r a l l p a r t i c l e s ; order doesn ' t matter
52 pparticles−>sorteddRhodt [ index ] = 0 ;
53
54 r etur n ;
55 }
56
57
58 // loop over the p a r t i c l e s i n the host c e l l and surrounding c e l l s ; compute ←֓

dens i ty
59 __device__ double densityInCell2 ( int2 neighboor , i n t index , double posXi , double ←֓

posYi , s t r u c t particleStructure ∗ pparticles , s t r u c t paramsType ∗ pparams ) {
60
61 //compute 1D hash value
62 i n t hash = neighboor . y ∗(∗ pparams ) . nCellsX+neighboor . x ;
63
64 i n t startIndex = pparticles−>cellStart [ hash ] ;
65 double density = 0 ;
66 i f ( startIndex != 0 xffffffff ) {
67 i n t endIndex = pparticles−>cellEnd [ hash ] ;
68
69 f o r ( i n t ind1 = startIndex ; ind1 < endIndex ; ind1++) {
70
71 //remember to i n c l u d e s e l f dens i ty
72 double posXj = pparticles−>sortedX [ ind1 ] ; // get p o s i t i o n o f sending ←֓

p a r t i c l e s
73 double posYj = pparticles−>sortedY [ ind1 ] ;
74 double m2 = pparticles−>mass [ 0 ] ; //mass ; r i g h t now these are ←֓

i d e n t i c a l f o r a l l p a r t i c l e s

160



75 //compute dens i ty ; We use Monaghan ' s f o r mul at i on with Muller ' s ←֓
skPoly6 smoothing k e r n e l normal ized to 2D

76 //The k e r n e l i s W =
77 double rSq = ( posXi−posXj ) ∗( posXi−posXj )+(posYi−posYj ) ∗( posYi−←֓

posYj ) ;
78 double diffSq = (∗ pparams ) . h2−rSq ;
79 i f ( diffSq >=0) {
80 double r = sqrt ( rSq ) ;
81 double rOh = r/pparams−>h ;
82 density += m2∗ poly6 ( (∗ pparams ) . constDensity , rOh ) ; // 4/( p i hˆ2)←֓

∗(1− r ˆ2/hˆ2) ˆ3
83
84 } ; //end checking c l o s e n e s s
85 } ; //end the f o r loop
86 } ; //end the i f statement
87
88 r etur n density ;}

C.1.2 CUDA Kernel to Compute State Rates

Although the kernel is named computedVdt, it actually computes pressure,

dv
dt

, dρ
dt

, and XSPH influence. These computations are carried out by using the

formulation provided in Sections 3.2.1 to 3.2.5. The positions of the particles are

read from the sorted array and their x, y addresses in the grid of bins are calculated.

For every neighboring bin (including its own), a device function, forcesInCell2, is

called to evaluate the different state rates into a states vector. states[0] = fx,

states[1] = fy, states[2] = XSPHx, states[3] = XSPHy, and states[4] = dρ
dt

. For

the computed hash value of the neighbor cell passed in, the above mentioned state

rates are computed using an all pairs approach. The computed state rates are

assigned to corresponding locations in the unsorted arrays. These unsorted arrays

are subsequently used to update the actual states.

1 #i n c l u d e <cuda . h>
2 #i n c l u d e ”math . h”
3 #i n c l u d e ” cuda runtime . h”
4 #i n c l u d e ” dev i ce l aunch par ameter s . h”
5 #i n c l u d e ”SPH2DCPPCuda . h”
6 #i n c l u d e <i ostream>
7 #i n c l u d e ” smoothingKernels . cuh ”

161



8
9 __device__ void forcesInCell2 ( int2 neighboor , i n t index , double posX , double posY , ←֓

double velX , double velY , double rho , double pressurei , s t r u c t ←֓
particleStructure∗ pparticles , s t r u c t paramsType ∗ params , double ∗ stateRates )←֓
;

10
11
12 __global__ void computedVdt ( s t r u c t particleStructure ∗ pparticles , s t r u c t ←֓

paramsType ∗ pparams ) {
13
14 i n t index = blockIdx . x∗ blockDim . x+threadIdx . x ;
15
16 i f ( index >= (∗ pparams ) . nTotal ) r e tur n ;
17
18 double rhoRef = pparams−>rRef ;
19 double tenVMaxSq = pparams−>tenVMaxSq ;
20
21 // read primary p a r t i c l e data − t h i s i s sor ted data
22 double posXi = pparticles−>sortedX [ index ] ;
23 double posYi = pparticles−>sortedY [ index ] ;
24 double velXi = pparticles−>sortedVx [ index ] ;
25 double velYi = pparticles−>sortedVy [ index ] ;
26 double rhoi = pparticles−>sortedRho [ index ] ;
27 double pressurei = computePressure ( rhoi , rhoRef , tenVMaxSq ) ;
28
29 // get addr es s i n g r i d
30 i n t tempX = floor ( ( posXi−(∗ pparams ) . globalOriginX ) ∗(∗ pparams ) . cellSizeRecip ) ;
31 i n t tempY = floor ( ( posYi−(∗ pparams ) . globalOriginY ) ∗(∗ pparams ) . cellSizeRecip ) ;
32 int2 gridPos = {tempX , tempY } ;
33
34 // examine ne i ghboor i ng c e l l s
35 double stateRates [ 5 ] = {0 , 0 , 0 , 0 , 0} ; // p o i n t e r to array o f { fx , fy ,XSPHx, ←֓

XSPHy, drhodt}
36
37 f o r ( i n t y = −1;y<=1;y++) {
38 i n t newY = gridPos . y+y ;
39 i f ( ( newY>−1) && ( newY <(∗ pparams ) . nCellsY ) ) {
40
41 f o r ( i n t x = −1;x<=1;x++) {
42 i n t newX = gridPos . x+x ;
43 i f ( ( newX >−1) && ( newX <(∗ pparams ) . nCellsX ) ) {
44 int2 neighboor = {newX , newY } ; //2D index i n g r i d
45 forcesInCell2 ( neighboor , index , posXi , posYi , velXi , velYi , rhoi , ←֓

pressurei , pparticles , pparams , stateRates ) ;
46 }
47 }
48 }
49
50 }
51
52 // r e v i s e d − no l onger r e q u i r e s copmute dRhoDt and SPHinf luence
53 i n t originalIndex = pparticles−>gridParticleIndex [ index ] ;
54 pparticles−>fx [ originalIndex ] = stateRates [ 0 ] ;
55 pparticles−>fy [ originalIndex ] = stateRates [ 1 ] ;
56
57 pparticles−>XSPHVelX [ originalIndex ] = stateRates [ 2 ] ;
58 pparticles−>XSPHVelY [ originalIndex ] = stateRates [ 3 ] ;
59
60 pparticles−>sorteddRhodt [ index ] = stateRates [ 4 ] ;
61
62 r etur n ;
63 }
64
65
66 // loop over the p a r t i c l e s i n the host c e l l and surrounding c e l l s ; compute ←֓

dens i ty
67 __device__ void forcesInCell2 ( int2 neighboor , i n t index , double posXi , double posYi , ←֓

double velXi , double velYi , double rhoi , double pressurei , s t r u c t ←֓

162



particleStructure∗ pparticles , s t r u c t paramsType ∗ pparams , double ∗ stateRates ←֓
) {

68
69 //compute 1D hash value
70 i n t hash = neighboor . y ∗(∗ pparams ) . nCellsX+neighboor . x ;
71
72 // r e q u i r e d parameters
73 double rhoRef = pparams−>rRef ;
74 double tenVMaxSq = pparams−>tenVMaxSq ;
75 double constantSpikyImprovedD = pparams−>spikyImprovedD ;
76 double constantPoly6 = pparams−>constDensity ;
77
78 i n t startIndex = pparticles−>cellStart [ hash ] ;
79 // double2 f o r c e s = {0 , 0} ;
80 i f ( startIndex != 0 xffffffff ) {
81 i n t endIndex = pparticles−>cellEnd [ hash ] ;
82 f o r ( i n t ind1 = startIndex ; ind1 < endIndex ; ind1++) {
83 //remember to exclude s e l f −f o r c e ; s tay within d e s i r e d domain
84 //many SPH r e f e r e n c e s c i t e pAB = pA − pB; where A i s the primary ←֓

p a r t i c l e .
85 // f o l l o w i n g t h i s convention we have
86 // This g i v e s a vector po i nt i ng from p a r t i c l e B to p a r t i c l e A
87
88 double posXj = pparticles−>sortedX [ ind1 ] ; // get p o s i t i o n o f sending ←֓

p a r t i c l e s
89 double posYj = pparticles−>sortedY [ ind1 ] ;
90 double dx = ( posXi−posXj ) ;
91 double dy = ( posYi−posYj ) ;
92 double rSq = dx∗dx+dy∗dy ;
93
94 i f ( ( rSq <(∗ pparams ) . h2 ) && ( rSq >0) ) { // i f they are c l o s e enough , ←֓

proceede
95
96 double h = pparams−>h ;
97 double dist = sqrt ( rSq ) ; // expens i ve but neces sar y
98 double dvxij = velXi−pparticles−>sortedVx [ ind1 ] ; // v e l o c i t y ←֓

o f sending p a r t i c l e
99 double dvyij = velYi−pparticles−>sortedVy [ ind1 ] ;

100 double rOh = dist/h ;
101 double mj = pparticles−>mass [ 0 ] ;
102 double rhoj = pparticles−>sortedRho [ ind1 ] ; // rho o f sender
103 double pressurej = computePressure ( rhoj , rhoRef , tenVMaxSq ) ;
104
105 double normalizedGradientInfluence = 1/ dist∗ spikyImprovedD (←֓

constantSpikyImprovedD , rOh ) ;
106
107 double vMorTiInner = mj ∗2∗( pparams−>mu ) /( rhoi∗rhoj ) ∗←֓

normalizedGradientInfluence ;
108 double vMorTiX = vMorTiInner ∗ dvxij ;
109 double vMorTiY = vMorTiInner ∗ dvyij ;
110 double dirVel = dvxij ∗dx+dvyij ∗dy ;
111 double rhoBarij = ( rhoi+rhoj ) /2 ; // used i n XSPH as w e l l
112
113 double vTix = vMorTiX ; // i t gets vTi r e g a r d l e s s
114 double vTiy = vMorTiY ;
115
116 i f ( dirVel <0) // i t may get a d d i t i o n a l terms
117 {
118 double muij = ( h /2) ∗ dirVel /( rSq +0.01∗(h /2) ∗( h /2) ) ;
119
120 double addedViscosity = mj∗pparams−>viscoBeta ∗ muij∗muij /←֓

rhoBarij ∗ normalizedGradientInfluence ;
121 vTix += addedViscosity∗dx ; // a l r eady has 1/ | r i j |
122 vTiy += addedViscosity∗dy ;
123 }
124
125 double sharedTerm = mj ∗( pressurei /( rhoi∗rhoi )+pressurej /( rhoj∗←֓

rhoj ) ) ∗ normalizedGradientInfluence ;

163



126
127 double term1X = sharedTerm ∗dx ;
128 double term1Y = sharedTerm ∗dy ;
129
130
131 // these are a c t u a l l y a c c e l e r a t i o n s
132 stateRates [ 0 ] += −term1X+vTix ; // f x
133 stateRates [ 1 ] += −term1Y+vTiy ; // f y
134
135 // f o r c e s . x += −term1X+vTix ;
136 // f o r c e s . y += −term1Y+vTiy ;
137
138 //XSPH
139 double mutualInfluence = pparams−>epsilon ∗mj/ rhoBarij ∗poly6 (←֓

constantPoly6 , rOh ) ;
140 stateRates [ 2 ] += −mutualInfluence∗dvxij ; //XSPHx; dxv i j = −dvxj i ←֓

; dvx j i i s c a l l e d f o r i n the d e f i n i t i o n
141 stateRates [ 3 ] += −mutualInfluence∗dvyij ; //XSPHy; dxv i j = −dvxj i ←֓

; dvx j i i s c a l l e d f o r i n the d e f i n i t i o n
142
143 //DRho/dt
144 stateRates [ 4 ] += mj∗ normalizedGradientInfluence ∗dirVel ;
145
146 } ; //end exc l ud i ng s e l f
147 } ; //end l oop i ng over the c e l l
148 } ; // i f s t a r t index i s not empty
149
150 // r etur n f o r c e s ;
151 r etur n ;
152 }

C.1.3 CUDA Kernel to Update Velocity and Position

The velocities and positions are updated using Leap-frog time integration

scheme described in Section 3.2.7.

1 #i n c l u d e <cuda . h>
2 #i n c l u d e ”math . h”
3 #i n c l u d e ” cuda runtime . h”
4 #i n c l u d e ” dev i ce l aunch par ameter s . h”
5 #i n c l u d e ”SPH2DCPPCuda . h”
6 #i n c l u d e ” s t d i o . h”
7
8 __global__ void updateVelWithXSPH ( s t r u c t particleStructure ∗ pparticles , s t r u c t ←֓

paramsType ∗ pparams ) {
9

10 i n t index = blockIdx . x∗ blockDim . x+threadIdx . x ;
11
12 i f ( index <(∗ pparams ) . nFree ) { // oper ate over f r e e p a r t i c l e s
13
14 // c o r r e c t the v e l c o i t y with the XSPH c o r r e c t i o n
15 pparticles−>vx [ index ] += pparticles−>XSPHVelX [ index ] ;
16 pparticles−>vy [ index ] += pparticles−>XSPHVelY [ index ] ;
17 }
18 r etur n ;
19 }

164



1 #i n c l u d e <cuda . h>
2 #i n c l u d e ”math . h”
3 #i n c l u d e ” cuda runtime . h”
4 #i n c l u d e ” dev i ce l aunch par ameter s . h”
5 #i n c l u d e ”SPH2DCPPCuda . h”
6 #i n c l u d e <i ostream>
7
8 __global__ void updateVelocity ( s t r u c t particleStructure ∗ pparticles , s t r u c t ←֓

paramsType ∗ pparams ) {
9

10 i n t index = blockIdx . x∗ blockDim . x+threadIdx . x ;
11
12 i f ( index <(∗ pparams ) . nFree ) { // only oper ate over f r e e p a r t i c l e s
13 // the a c c e l e r a t i o n s are s tor ed ; s imply add g r a v i t y to the y−d i r
14 //and i n c o r p o r a t e the XSPH terms
15
16 //F = m a ;
17 //a = F/m
18
19 // Euler 1 s t order
20 #i f 0
21 double accelX = pparticles−>fx [ index ] ; // f x a c t u a l l y s t o r e s an ←֓

a c c e l e r a t i o n ; no need to d i v i d e by mass
22 double accelY = pparticles−>fy [ index ]+pparams−>gravity ; // need to add ←֓

g r a v i t y
23
24 double dt = pparams−>dt ;
25 double vNewx = pparticles−>vx [ index ]+accelX ∗dt ; //XSPH i s i ncor por ated ←֓

p r e v i o u s l y
26 double vNewy = pparticles−>vy [ index ]+accelY ∗dt ; //
27 // s t o r e the updated v e l o c i t y
28 pparticles−>vx [ index ] = vNewx ;
29 pparticles−>vy [ index ] = vNewy ;
30 #e n d i f
31
32 // Leapfrog
33 #i f 1
34
35 double dt = pparams−>dt ;
36 i f ( pparams−>ind1 == 0) {
37 pparticles−>vxH [ index ] = pparticles−>vx [ index ] + pparticles−>fx [ index←֓

] ∗ dt /2 ;
38 pparticles−>vyH [ index ] = pparticles−>vy [ index ] + ( pparticles−>fy [ ←֓

index ]+pparams−>gravity ) ∗dt /2 ;
39 pparticles−>vx [ index ] = pparticles−>vxH [ index ] + pparticles−>fx [ index←֓

] ∗ dt /2 ;
40 pparticles−>vy [ index ] = pparticles−>vyH [ index ] + ( pparticles−>fy [ ←֓

index ]+pparams−>gravity ) ∗dt /2 ;
41 }
42 e l s e {
43 pparticles−>vxH [ index ] += pparticles−>fx [ index ] ∗ dt ;
44 pparticles−>vyH [ index ] += ( pparticles−>fy [ index ]+pparams−>gravity ) ∗dt←֓

;
45 pparticles−>vx [ index ] = pparticles−>vxH [ index ] + pparticles−>fx [ index←֓

] ∗ dt /2 ;
46 pparticles−>vy [ index ] = pparticles−>vyH [ index ] + ( pparticles−>fy [ ←֓

index ]+pparams−>gravity ) ∗dt /2 ;
47 }
48 #e n d i f
49
50 }
51 r etur n ;
52 }

165



1 #i n c l u d e <cuda . h>
2 #i n c l u d e ”math . h”
3 #i n c l u d e ” cuda runtime . h”
4 #i n c l u d e ” dev i ce l aunch par ameter s . h”
5 #i n c l u d e ”SPH2DCPPCuda . h”
6 #i n c l u d e ” s t d i o . h”
7
8 __global__ void updatePositionFreeParticles ( s t r u c t particleStructure∗ pparticles , ←֓

s t r u c t paramsType ∗ pparams ) {
9

10 i n t index = blockIdx . x∗ blockDim . x+threadIdx . x ;
11
12 i f ( index <(∗ pparams ) . nFree )
13 { // only oper ate over f r e e p a r t i c l e s
14
15 double dt = pparams−>dt ;
16 //1 s t order Euler
17 #i f 0
18 pparticles−>x [ index ] += pparticles−>vx [ index ] ∗ pparams−>dt ;
19 pparticles−>y [ index ] += pparticles−>vy [ index ] ∗ pparams−>dt ;
20 #e n d i f
21
22
23 // Leapfrog
24 #i f 1
25 pparticles−>x [ index ] += pparticles−>vxH [ index ] ∗ dt ;
26 pparticles−>y [ index ] += pparticles−>vyH [ index ] ∗ dt ;
27 #e n d i f
28
29 } //end l oop i ng over f r e e
30
31 r etur n ;
32 }

166



C.1.4 CUDA Kernel to Reinitialize Density

Density re-initialization computations are carried out by using the formulation

provided in Section3.2.6. Similar to other functions, the positions of the particles are

read from the sorted array and their x, y addresses in the grid of bins are calculated.

For every neighboring bin (including its own), a device function, computeCompo-

nents, is called to evaluate the components of filtered density. For the computed

hash value of the neighbor cell passed in, the above mentioned state rates are com-

puted using an all pairs approach. The function returns a double2 type variable,

numDenom, where numDenom.x = numerator and numDenom.y = denominator.

The filtered density is given by the ratio of the numerator to the denominator.

1
2 #i n c l u d e <cuda . h>
3 #i n c l u d e ”math . h”
4 #i n c l u d e ” cuda runtime . h”
5 #i n c l u d e ” dev i ce l aunch par ameter s . h”
6 #i n c l u d e ”SPH2DCPPCuda . h”
7 #i n c l u d e ” s t d i o . h”
8 #i n c l u d e ” smoothingKernels . cuh ”
9

10
11 __device__ double2 computeComponents ( int2 neighboor , i n t index , double posX , double ←֓

posY , s t r u c t particleStructure∗ pparticles , s t r u c t paramsType ∗ pparams ) ;
12
13
14 __global__ void reinitializeDensity ( s t r u c t particleStructure ∗ pparticles , s t r u c t ←֓

paramsType ∗ pparams ) {
15
16 i n t index = blockIdx . x∗ blockDim . x+threadIdx . x ;
17
18 i f ( index >= (∗ pparams ) . nTotal ) r e tur n ;
19
20 // read p a r t i c l e data − host p a r t i c l e
21 double posXi = pparticles−>sortedX [ index ] ; // these are sor ted
22 double posYi = pparticles−>sortedY [ index ] ;
23
24 // get addr es s i n g r i d
25 i n t tempX = floor ( ( posXi−(∗ pparams ) . globalOriginX ) ∗(∗ pparams ) . cellSizeRecip ) ;
26 i n t tempY = floor ( ( posYi−(∗ pparams ) . globalOriginY ) ∗(∗ pparams ) . cellSizeRecip ) ;
27
28 int2 gridPos = {tempX , tempY } ; // g r i d p o s i t i o n o f host p a r t i c l e
29
30 // examine ne i ghboor i ng c e l l s
31 double2 numDenom = {0 , 0} ; // need
32 double2 temp = {0 , 0} ;

167



33 f o r ( i n t y = −1;y<=1;y++) {
34 i n t currentY = gridPos . y+y ;
35 i f ( ( currentY >−1) && ( currentY <(∗ pparams ) . nCellsY ) ) {
36
37 f o r ( i n t x = −1;x<=1;x++) {
38 i n t currentX = gridPos . x+x ;
39 i f ( ( currentX >−1) && ( currentX <(∗pparams ) . nCellsX ) ) {
40 int2 neighboor = {currentX , currentY } ; //2D index i n g r i d
41 temp = computeComponents ( neighboor , index , posXi , posYi , ←֓

pparticles , pparams ) ;
42 numDenom . x += temp . x ;
43 numDenom . y += temp . y ;
44 }
45 }
46 }
47 }
48
49
50 // i f p a r t i c l e s exceede the boundar ies they w i l l have denom = 0 and r h o i = 0 ;
51 // In t h i s case , they are no l onger an important part o f the c a l c u l a t i o n , so
52 // s e t t h e i r r h o i = dens i ty o f a s i n g l e p a r t i c l e
53
54 double filteredDensity = numDenom . x/ numDenom . y ;
55
56 i f ( numDenom . y==0)
57 {
58 //maybe keeping i t the same i s the answer
59 filteredDensity = 2∗ pparticles−>mass [ 0 ] ∗ ( ∗ pparams ) . constDensity ;
60 printf ( ” p a r t i c l e exceeded boundary \n” ) ;
61 }
62
63
64 i f ( filteredDensity==0) {
65 printf ( ” something i s wrong\n” ) ;
66 }
67
68
69 // s t o r e the dens i ty i n a temporary array
70 pparticles−>sortedRhoFiltered [ index ] = filteredDensity ; // sor tedRhoFi l te r ed ←֓

no l onger e x i s t s
71
72 }
73
74
75 // loop over the p a r t i c l e s i n the host c e l l and surrounding c e l l s ; compute ←֓

dens i ty
76 __device__ double2 computeComponents ( int2 neighboor , i n t index , double posXi , double←֓

posYi , s t r u c t particleStructure ∗ pparticles , s t r u c t paramsType ∗ pparams ) {
77
78 //compute 1D hash value
79 i n t hash = neighboor . y ∗(∗ pparams ) . nCellsX+neighboor . x ;
80
81 i n t startIndex = pparticles−>cellStart [ hash ] ;
82 double2 numDenom = {0 , 0} ;
83 i f ( startIndex != 0 xffffffff ) {
84 i n t endIndex = pparticles−>cellEnd [ hash ] ;
85
86 f o r ( i n t ind1 = startIndex ; ind1 < endIndex ; ind1++) {
87 //no reason to i n c l u d e s e l f i n drhodt
88 double posXj = pparticles−>sortedX [ ind1 ] ; // get p o s i t i o n o f sending ←֓

p a r t i c l e s
89 double posYj = pparticles−>sortedY [ ind1 ] ;
90 double m2 = pparticles−>mass [ 0 ] ; //mass ; r i g h t now these are ←֓

i d e n t i c a l f o r a l l p a r t i c l e s
91
92 //The k e r n e l i s W =
93 double dxij = ( posXi−posXj ) ;
94 double dyij = ( posYi−posYj ) ;

168



95
96 double rSq = dxij∗dxij+dyij∗ dyij ;
97 double diffSq = (∗ pparams ) . h2−rSq ;
98 i f ( diffSq >=0)
99 {

100 double rhoj = pparticles−>sortedRho [ ind1 ] ;
101 double dist = sqrt ( rSq ) ;
102 double rOh = dist/pparams−>h ;
103
104 double kernelInfluence = poly6 ( pparams−>constDensity , rOh ) ;
105 numDenom . x += kernelInfluence∗m2 ; // numerator
106 numDenom . y += kernelInfluence∗m2/rhoj ; // denominator
107
108 } ; //end the f o r loop
109 } ; //end the i f statement
110 } ;
111
112 r etur n numDenom ;}

169



C.2 Predictor-Corrector MATLAB Code Snippets

Based on the candidate Eigenvalue chosen from the prediction step, this func-

tion generates the initial condition which then undergoes Floquet analysis.

1 f u n c t i o n [ actualEigval , Actualepsilon , Actualtheta ] = spectralEigenvalue ( L , epsilon , ←֓
CandidateEigVal )

2
3
4 g l o b a l ComplexEnvelope dx x SurfaceElavation Xplot

5 g l o b a l k0 w0 A

6
7 %D i s c r e t i z a t i o n
8 M = 500 ; % Number o f d i s c r e t i z e d Points
9 X = l i n s p a c e (0 ,0+L , M ) ; % S p a t i a l Domain

10 dx = X (2)−X (1) ;
11 Xplot = l i n s p a c e (0 ,0+3∗L , 3∗ M ) ;
12
13 % Evaluate the s p e c t r a l parameters
14 theta =0;
15 e (1)=epsilon ∗exp (1 i∗theta ) ; % 1 i ;
16 e (2)=conj ( e (1) ) ;
17 sigma (1) =1; sigma (2) =−1;
18
19 lamda (1)= CandidateEigVal ;
20 lamda (2)=conj ( lamda (1) ) ;
21
22 f o r k=1:2
23 K ( k )=−2∗ s q r t ( Aˆ2+lamda ( k ) ˆ2) ;
24 Omega ( k )=2∗lamda ( k ) ∗K ( k ) ;
25 delplus ( k )=pi+1i∗ l og ( lamda ( k ) −(1/2)∗K ( k ) )+1i∗ l og ( sigma ( k ) ∗ lamda ( k )−((−1)ˆk←֓

∗1/2∗ K ( k ) ) ) ;
26 delminus ( k )=pi+1i∗ l og ( lamda ( k ) +(1/2) ∗K ( k ) )+1i∗ l og ( sigma ( k ) ∗ lamda ( k )−((−1)ˆk←֓

∗1/2∗ K ( k ) ) ) ;
27 end
28 k=0;
29 f o r k=1:2
30 f o r j=1:2
31 i f k==j

32 Tau ( j , j ) =1/2+(1i/ p i ) ∗ l og ( K ( j ) ˆ2/ e ( j ) ) ;
33 e l s e Tau ( k , j ) =(1i /(2∗ p i ) ) ∗ l og ((1+ lamda ( k ) ∗lamda ( j ) +(1/4) ∗K ( k ) ∗K ( j ) ) /(1+←֓

lamda ( k ) ∗ lamda ( j ) −(1/4)∗K ( k ) ∗K ( j ) ) ) ;
34 end
35 end
36 end
37
38
39 Tau=pi ∗Tau ;
40 j=0;k=0;
41 Cg=1/2∗w0/k0 ;
42 beta=w0 /(8∗ k0 ˆ2) ;
43 lambda=s q r t (2) ∗k0 ˆ2 ;
44
45 T = [ 0 ] ;
46
47 x=Xplot ;
48 t=T ;
49
50 % Evaluate complex envelope based on the candidate e i genva l ue at T = 0
51 f o r j=1: l ength ( x )

170



52 f o r k=1: l ength ( t )
53 S1=0; S2=0;
54 f o r m1=−10:10
55 f o r m2=−10:10
56 S1=S1+exp (1 i ∗( m1∗K (1) ∗x ( j )+m2∗K (2) ∗x ( j )+m1∗ Omega (1) ∗t ( k )+m2∗Omega←֓

(2) ∗t ( k )+m1∗ delplus (1)+m2∗ delplus (2) ) +(1i /1) ∗( m1∗m1∗ Tau ( 1 , 1 )←֓
. . .

57 +m2∗m1∗Tau ( 2 , 1 )+m1∗m2∗Tau ( 1 , 2 )+m2∗m2∗Tau ( 2 , 2 ) ) ) ;
58
59 S2=S2+exp (1 i ∗( m1∗K (1) ∗x ( j )+m2∗K (2) ∗x ( j )+m1∗ Omega (1) ∗t ( k )+m2∗Omega←֓

(2) ∗t ( k )+m1∗ delminus (1)+m2∗ delminus (2) ) +(1i /1) ∗( m1∗m1∗Tau←֓
( 1 , 1 ) . . .

60 +m2∗m1∗Tau ( 2 , 1 )+m1∗m2∗Tau ( 1 , 2 )+m2∗m2∗Tau ( 2 , 2 ) ) ) ;
61
62 end
63 end
64 U ( j )=A ∗ ( ( ( S2/S1 ) ∗exp (1 i ∗2∗( A ˆ2) ∗t ( k ) ) ) ) ;
65 end
66 end
67
68
69 ComplexEnvelope=U ( 1 : 1 , 1 : M ) ;
70 s i z e ( ComplexEnvelope )
71 save initalCond U

72 SurfaceElavation=U . ∗ exp (1 i ∗( k0∗x ) ) ; % Complex Free Sur f ace E l evat i on
73 x = x ( 1 : 1 , 1 : M )
74 Plots ( U , dx , Xplot , SurfaceElavation ) ;
75
76 SolveEigValue ;
77
78 [ actualEigval , Actualepsilon , Actualtheta ] = CheckEigValue ( lamda (1) ) ;
79
80 save CorrectedParameters actualEigval Actualepsilon Actualtheta

1 f u n c t i o n SolveEigValue

2
3 % The i n i t i a l cond i t i on i s run through Floquet Ana l ys i s at every g r i d point i n ←֓

the % domain o f s ear ch to gener ate the e i genva l ue map
4
5 g l o b a l ComplexEnvelope dx x SurfaceElavation

6
7 % Domain o f s ear ch
8 lambdaR = −1 . 5 : 0 . 1 : 1 . 5 ;
9 lambdaI = −1 . 5 : 0 . 1 : 1 . 5 ;

10 i=1;
11
12 options = optimset ( ' Display ' , ' o f f ' ) ; % Turn o f f d i s p l a y
13 f o r ind1 =1: l ength ( lambdaR )
14 f o r ind2 =1: l ength ( lambdaI )
15
16 % Solve f o r 1/2∗ Tr (Monodromy Matrix ) = +1
17 [ q , fval , exitflag ] = fsolve ( @floquet1_mex , lambdaR ( ind1 )+1i∗ lambdaI ( ind2 ) ,←֓

options ) ;
18
19
20 i f exitflag==1
21 EigVal ( i )=q ;
22 i=i+1;
23 end
24 end
25 end
26
27 m=l ength ( EigVal ) ;

171



28 ind1=0; ind2 =0;i=m+1;
29 f o r ind1 =1: l ength ( lambdaR )
30 f o r ind2 =1: l ength ( lambdaI )
31
32 % Solve f o r 1/2∗ Tr (Monodromy Matrix ) = −1
33 [ q , fval , exitflag ] = fsolve ( @floquet2_mex , lambdaR ( ind1 )+1i∗ lambdaI ( ind2 ) ,←֓

options ) ;
34
35 i f exitflag==1
36 EigVal ( i )=q ; i=i+1;
37 end
38 end
39 end
40
41
42 save EigVal EigVal

43 fName =' e i g v a l u e s 1 . txt ' ;
44 fid = fopen ( fName , ' wt ' ) ;
45 f c l o s e ( fid ) ;
46 dlmwrite ( fName , EigVal ' , '−append ' , . . . %# Print the matrix
47 ' d e l i m i t e r ' , ' \ t ' , . . .
48 ' newl ine ' , ' pc ' ) ;
49
50 f i g u r e
51 p l o t ( r e a l ( EigVal ) , imag ( EigVal ) , ' kx ' )
52 g r i d on

53 x l a b e l ( ' r e a l ' )
54 y l a b e l ( ' imaginary ' )
55 hold on

1 f u n c t i o n F=floquet1 ( l )
2
3 g l o b a l ComplexEnvelope dx x

4 S=[1+0∗1i 1+0∗1i ;
5 1+0∗1i 1+0∗1i ] ;
6 %t i c
7 lengthComplexEnv = l ength ( ComplexEnvelope ) ;
8 f o r ind =1: l ength ( x )
9 k=s q r t (−(( abs ( ComplexEnvelope ( lengthComplexEnv+1−ind ) ) )ˆ2+l ˆ2) ) ;

10
11 T=[ cosh ( k∗dx )−(1i∗l/k∗ s i nh ( k∗dx ) ) ComplexEnvelope ( lengthComplexEnv+1−ind ) /k∗←֓

s i nh ( k∗dx ) ;
12 −(ComplexEnvelope ( lengthComplexEnv+1−ind ) ) '/ k∗ s i nh ( k∗dx ) cosh ( k∗dx ) +(1i∗l←֓

/k∗ s i nh ( k∗dx ) ) ] ;
13 %S=S∗T;
14
15 S=[S ( 1 , 1 ) ∗T ( 1 , 1 )+S ( 1 , 2 ) ∗T ( 2 , 1 ) S ( 1 , 1 ) ∗T ( 1 , 2 )+S ( 1 , 2 ) ∗T ( 2 , 2 ) ;
16 S ( 2 , 1 ) ∗T ( 1 , 1 )+S ( 2 , 2 ) ∗T ( 2 , 1 ) S ( 2 , 1 ) ∗T ( 1 , 2 )+S ( 2 , 2 ) ∗T ( 2 , 2 ) ] ;
17 end
18 %toc
19 F=1/2∗( S ( 1 , 1 )+S ( 2 , 2 ) )−1;

1 %program to numer i ca l l y v e r i f y s o l u t i o n s ot the NLSE
2 %equation de f i ned as shown
3 %
4 %i ∗ u t+s i g 1 ∗ u xx+s i g 2 ∗abs ( u) ˆ2 u=0
5 %
6 %
7 %r e s = ver i fySolut ionNLSE (u , s )

172



8 %where
9 %u i s the proposed s o l u t i o n with time running down the columns

10 %and space a c r o s s the rows
11 %
12 %s i s a s t r u c t u r e with f i e l d s :
13 %s . dt − d e l t a time
14 %s . dx − d e l t a space
15 %s . s i g 1 − parameter o f the equation
16 %s . s i g 2 − parameter o f the equation
17 %
18 %
19 %and r e s i s the r e s i d u a l from the numer ical d i f f e r e n t i a t i o n
20 %r e s should be i d e n t i a l l y zer o f o r actua l s o l u t i o n s and
21 %p e r f e c t d i f f e r e n t i a t i o n
22
23
24
25 f u n c t i o n respercentage = verifySolutionNLSE ( u , s )
26
27 orderOfDifferentiation = 8 ; %2 , 4 , 6 , or 8
28 oodp1 = orderOfDifferentiation +1;
29 oodo2 = orderOfDifferentiation /2 ;
30
31 [ nt , nx ] = s i z e ( u ) ;
32
33 c{2} = [−1/2 0 1 / 2 ] ;
34 c{4} = [1/12 −2/3 0 2/3 −1/12] ;
35 c{6} = [−1/60 3/20 −3/4 0 3/4 −3/20 1 / 6 0 ] ;
36 c{8} = [1/280 −4/105 1/5 −4/5 0 4/5 −1/5 4/105 −1/280] ;
37
38 %O(6) c e n t r a l 1 s t d e r i v a t i v e
39 u_t = z e r o s ( nt−oodp1 +1,nx ) ;
40 f o r ind1 = 1 : orderOfDifferentiation+1
41 u_t = u_t+c{ orderOfDifferentiation }( ind1 ) ∗u ( ind1 : nt−oodp1+ind1 , : ) ;
42 end
43 u_t = u_t /s . dt ;
44
45
46 %O(6) c e n t r a l 2nd d e r i v a t i v e
47 c{2} = [ 1 −2 1 ] ;
48 c{4} = [−1/12 4/3 −5/2 4/3 −1/12] ;
49 c{6} = [1/90 −3/20 3/2 −49/18 3/2 −3/20 1 / 9 0 ] ;
50 c{8} = [−1/560 8/315 −1/5 8/5 −205/72 8/5 −1/5 8/315 −1/560] ;
51
52 u_xx = z e r o s ( nt , nx−oodp1+1) ;
53 f o r ind1 = 1 : orderOfDifferentiation+1
54 u_xx = u_xx+c{orderOfDifferentiation }( ind1 ) ∗u ( : , ind1 : nx−oodp1+ind1 ) ;
55 end
56 u_xx = u_xx /( s . dx ˆ2) ;
57
58 %now reduce the s i z e o f each component to match
59 u = u ( oodo2 +1:nt−oodo2 , oodo2 +1: nx−oodo2 ) ;
60 u_t = u_t ( : , oodo2 +1:nx−oodo2 ) ;
61 u_xx = u_xx ( oodo2 +1:nt−oodo2 , : ) ;
62
63
64 res = 1i . ∗ u_t+s . sig1∗u_xx+s . sig2 ∗( u . ∗ conj ( u ) ) . ∗ u ;
65
66 sumsumRes = sum(sum( abs ( res ) ) )
67 sumsumU = sum(sum( abs ( u ) ) )
68 respercentage = sumsumRes / sumsumU ∗100;
69 f p r i n t f (1 , 'sum of r e s i d u a l s i s %5.5 f \n ' , sumsumRes ) ;
70 f p r i n t f (1 , 'sum of s o l u t i o n i s %5.5 f \n ' , sumsumU ) ;
71 f p r i n t f (1 , ' per centage o f r e s from t o t a l i s %5.5 f \n %' , sumsumRes / sumsumU ∗100) ;

173



Bibliography

[1] N. N. Akhmediev and A. Ankiewicz. Solitons: nonlinear pulses and beams,
volume 4. Chapman & Hall London, 1997.

[2] N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo. Rogue waves and
rational solutions of the nonlinear schrödinger equation. Physical Review E,
80(2):026601, 2009.

[3] N. N. Akhmediev, A. Ankiewicz, and M. Taki. Waves that appear from nowhere
and disappear without a trace. Physics Letters A, 373(6):675–678, 2009.

[4] N. N. Akhmediev and V. I. Korneev. Modulation instability and periodic so-
lutions of the nonlinear schrödinger equation. Theoretical and Mathematical
Physics, 69(2):1089–1093, 1986.

[5] N. N. Akhmediev, J. M. Soto Crespo, A. Ankiewicz, et al. How to excite a
rogue wave. Physical Review A, 80(043818), 2009.

[6] B. Baschek and J. Imai. Rogue wave observations off the us west coast. Oceanog-
raphy, 24, 2011.

[7] G. K. Batchelor. An introduction to fluid dynamics. Cambridge university
press, 2000.

[8] T. B. Benjamin and J. E. Feir. The disintegration of wave trains on deep water.
J. Fluid Mech, 27(3):417–430, 1967.

[9] C. Chabalko and B. Balachandran. GPU based simulation of physical system
characterized by mobile discrete interactions. B. H. V. Topping and P. Ivanyi
(Editor), “Developements in Parallel, Distributed, Grid and Cloud Comput-
ing for Engineering”, Saxe-Cobrug Publications, Stirlingshire, UK, Chapter 5,
pages 95–124, 2013.

[10] A. Chabchoub, N. Hoffmann, M. Onorato, and N. N. Akhmediev. Super rogue
waves: Observation of a higher-order breather in water waves. Phys. Rev. X,
2:011015, Mar 2012.

174



[11] A. Chabchoub, N. P. Hoffmann, and N.N. Akhmediev. Rogue wave observation
in a water wave tank. Phys. Rev. Lett., 106:204502, May 2011.

[12] R. A. Dalrymple and R. G. Dean. Water wave mechanics for engineers and
scientists. Prentice-Hall, 1991.

[13] M. H. Dao, H. Xu, E. S. Chan, and P. Tkalich. Numerical modelling of extreme
waves by smoothed particle hydrodynamics. Natural Hazards and Earth System
Science, 11(2):419–429, 2011.

[14] L. Draper. Freak ocean waves. Weather, 21(1):2–4, 1966.

[15] A. I. Dyachenko and V. E. Zakharov. Modulation instability of stokes wave-¿
freak wave. Journal of Experimental and Theoretical Physics Letters, 81(6):255–
259, 2005.

[16] K. B. Dysthe. Note on a modification to the nonlinear schrodinger equation for
application to deep water waves. Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences, 369(1736):105–114, 1979.

[17] K. B. Dysthe, H.E. Krogstad, and P. Müller. Oceanic rogue waves. Annu. Rev.
Fluid Mech., 40:287–310, 2008.

[18] C. Fochesato, S. Grilli, and F. Dias. Numerical modeling of extreme rogue
waves generated by directional energy focusing. Wave Motion, 44(5):395–416,
2007.

[19] R. Grimshaw. Nonlinear ordinary differential equations, volume 2. CRC Press,
1991.

[20] O. R. Its and V. P. Kotliarov. Explicit formulas for the solutions of a nonlin-
ear schroedinger equation. Akademiia Nauk Ukrains koi RSR Dopovidi Seriia
Fiziko Matematichni ta Tekhnichni Nauki, 1:965–968, 1976.

[21] R. S. Johnson. A modern introduction to the mathematical theory of water
waves, volume 19. Cambridge University Press, 1997.

[22] C. Kharif and E. Pelinovsky. Physical mechanisms of the rogue wave phe-
nomenon. European Journal of Mechanics-B/Fluids, 22(6):603–634, 2003.

[23] C. Kharif, E. Pelinovsky, and A. Slunyaev. Rogue waves in the ocean. Advances
in Geophysical and Environmental Mechanics and Mathematics. Springer-
Verlag, Berlin-Heidelberg, 2009.

[24] C. Kharif, E. Pelinovsky, T. Talipova, and A. Slunyaev. Focusing of nonlinear
wave groups in deep water. Journal of Experimental and Theoretical Physics
Letters, 73(4):170–175, 2001.

175



[25] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. N. Akhmediev,
and J. M. Dudley. The peregrine soliton in nonlinear fibre optics. Nature
Physics, 6(10):790–795, 2010.

[26] G. R. Liu and M. B. Liu. Smoothed particle hydrodynamics: a meshfree particle
method. World Scientific, 2003.

[27] E. Y. Lo and S. Shao. Simulation of near-shore solitary wave mechanics by an
incompressible sph method. Applied Ocean Research, 24(5):275–286, 2002.

[28] Y. C. Ma and M. J. Ablowitz. The periodic cubic schrödinger equation. Studies
in Applied Mathematics, 65:113–158, 1981.

[29] J. C. Martin and W. J. Moyce. Part iv. an experimental study of the collapse
of liquid columns on a rigid horizontal plane. Philosophical Transactions of
the Royal Society of London. Series A, Mathematical and Physical Sciences,
244(882):312–324, 1952.

[30] J. J. Monaghan. On the problem of penetration in particle methods. Journal
of Computational physics, 82(1):1–15, 1989.

[31] J. J. Monaghan. Smoothed particle hydrodynamics. Annual review of astron-
omy and astrophysics, 30:543–574, 1992.

[32] J. J. Monaghan. Simulating free surface flows with sph. Journal of computa-
tional physics, 110(2):399–406, 1994.

[33] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on progress in
physics, 68(8):1703, 2005.

[34] J. J. Monaghan and A. Kos. Solitary waves on a cretan beach. Journal of
waterway, port, coastal, and ocean engineering, 125(3):145–155, 1999.

[35] J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low reynolds number incom-
pressible flows using sph. Journal of computational physics, 136(1):214–226,
1997.

[36] W. M. Moslem, P. K. Shukla, and B. Eliasson. Surface plasma rogue waves.
EPL (Europhysics Letters), 96(2):25002, 2011.

[37] M. Muller, D. Charypar, and M. Gross. Particle based fluid simulation for
interactive applications. Eurographics/SIGGRAPH Symposium on Computer
Animation, 2003.

[38] A. R. Osborne. The hyperelliptic inverse scattering transform for the periodic,
defocusing nonlinear schroedinger equation. Journal of Computational Physics,
109(1):93–107, 1993.

[39] A. R. Osborne. The random and deterministic dynamics of Śrogue wavesŠ in
unidirectional, deep-water wave trains. Marine structures, 14(3):275–293, 2001.

176



[40] A. R. Osborne. Nonlinear Ocean Waves & the Inverse Scattering Transform,
volume 97. Access Online via Elsevier, 2010.

[41] A. R. Osborne, M. Onorato, and M. Serio. The nonlinear dynamics of
rogue waves and holes in deep-water gravity wave trains. Physics Letters A,
275(5):386–393, 2000.

[42] E. Pelinovsky, T. Talipova, and C. Kharif. Nonlinear-dispersive mechanism of
the freak wave formation in shallow water. Physica D: Nonlinear Phenomena,
147(1):83–94, 2000.

[43] M. Remoissenet. Waves called solitons: concepts and experiments. Springer,
1999.

[44] V. Ruban, Y. Kodama, M. Ruderman, J. Dudley, R. Grimshaw, P. V. E. Mc-
Clintock, M. Onorato, C. Kharif, E. Pelinovsky, T. Soomere, et al. Rogue
waves–towards a unifying concept?: Discussions and debates. The European
Physical Journal-Special Topics, 185(1):5–15, 2010.

[45] M. Rudman, P. Cleary, J. Leontini, M. Sinnott, and M. Prakash. Rogue wave
impact on a semi-submersible offshore platform. In ASME 2008 27th Interna-
tional Conference on Offshore Mechanics and Arctic Engineering, pages 887–
894. American Society of Mechanical Engineers, 2008.

[46] A. Shabat and V. E. Zakharov. Exact theory of two-dimensional self-focusing
and one-dimensional self-modulation of waves in nonlinear media. Soviet
Physics JETP, 34:62–69, 1972.

[47] D. Shepard. A two-dimensional interpolation function for irregularly-spaced
data. In Proceedings of the 1968 23rd ACM national conference, pages 517–
524. ACM, 1968.

[48] A. Slunyaev, C. Kharif, E. Pelinovsky, and T. Talipova. Nonlinear wave focusing
on water of finite depth. Physica D: Nonlinear Phenomena, 173(1):77–96, 2002.

[49] A. O. Smirnov. Solution of a nonlinear schrödinger equation in the form of two-
phase freak waves. Theoretical and Mathematical Physics, 173(1):1403–1416,
2012.

[50] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali. Optical rogue waves. Nature,
450(7172):1054–1057, 2007.

[51] E. R. Tracy. Topics in nonlinear wave theory with applications. dissertation,
University of Maryland, College Park, 1984.

[52] E. R. Tracy and H. H. Chen. Nonlinear self-modulation: An exactly solvable
model. Phys. Rev. A, 37:815–839, Feb 1988.

177



[53] N. K. Vitanov, A. Chabchoub, and N. Hoffmann. Deep-water waves:
On the nonlinear schrödinger equation and its solutions. arXiv preprint
arXiv:1301.0990, 2013.

[54] A. Vorobyev. A Smoothed Particle Hydrodynamics Method for the Simulation
of Centralized Sloshing Experiments. KIT Scientific Publishing, 2012.

[55] A. Vorobyev and V. Kriventsev. Particle method for liquid-in-liquid interaction
simulation. 2009.

[56] H. C. Yuen and B. M. Lake. Instabilities of waves on deep water. Annual
Review of Fluid Mechanics, 12(1):303–334, 1980.

178


	List of Figures
	List of Abbreviations
	Introduction
	Problem of Interest
	Objectives
	Basic Water Wave Mechanics
	The Nonlinear Schrödinger Equation 
	Benjamin-Feir Instability
	Periodic Spectral Theory
	Focusing as a Mechanism for Rogue-wave Formation 
	Linear Focusing
	Nonlinear Dispersive Focusing
	Nonlinear Directional Focusing

	Outline

	The Nonlinear Schrödinger Equation and Rogue-wave Solutions
	Literature Review
	Analytical Solutions to the NSE
	Lax's Generalization
	Nonlinear Fourier Structure of the NSE Solution Space
	Floquet Theory
	Reconstruction of Potential
	Solution Procedure to Explore  Plane
	New Rogue-wave Solutions
	Physical Scaling


	Computational Studies of Extreme Energy Localization using Smoothed Particle Hydrodynamics
	Literature Review
	Smoothed Particle Hydrodynamics
	Momentum Equation
	Continuity Equation
	Equation of State
	Viscosity
	XSPH Correction
	Density Reinitialization
	Time Integration
	Parallel Implementation of the Algorithm

	Numerical Studies in Two-dimensional cases
	Smoothing Kernels
	Model Validation
	Progressive Wave Generation and Dissipation in SPH Model
	Standing Waves in 1+1 Dimension
	Directional Focusing in 1+1 Dimension
	Dispersive Focusing in 1+1 Dimension
	Modulational Instability in 1+1 Dimension


	Summary and Concluding Remarks
	Summary of Contributions
	Recommendations for Future Work

	Mathematical Details of Floquet Theory
	Additional Physical Forms of New Rogue Wave Solutions to the NSE
	Sample Codes
	Smoothed Particle Hydrodynamics CUDA C++ Code Snippets
	CUDA Kernel to Initialize Density
	CUDA Kernel to Compute State Rates
	CUDA Kernel to Update Velocity and Position
	CUDA Kernel to Reinitialize Density

	Predictor-Corrector MATLAB Code Snippets


	Bibliography

