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Abstract

The infinite server model of Cox with arbitrary service time distribution
appears to provide a very large class of traffic models — Pareto and log-normal
distributions have already been reported in the literature for several applica-
tions. Here we begin the analysis of the large buffer asymptotics for a mul-
tiplexer driven by this class of inputs. To do so we rely on recent results by
Duffield and O’Connell on overflow probabilities for the general single server
queue. In this paper we focus on the key step in this approach which is based
on large deviations: The appropriate large deviations scaling is shown to be
related to the forward recurrence time for the service time distribution, and
a closed form expression is derived for the corresponding generalized limiting
log-moment generating function associated with the input process. Two very
different regimes are identified. In a companion paper we apply these results to
obtain the large buffer asymptotics under a variety of service time distributions.
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1 Introduction

The discrete—time M|G|oo input processes discussed in this paper can be described
as follows: Time is slotted and customers arrive according to a (discrete-time)
“Poisson” process. Upon arrival customers are offered to an infinite server group,
and the required service times are i.i.d. finite mean rvs — let o denote the generic
service time random variable (expressed in number of time slots). The M|G|oo input
process is then the process {b;, t =0,1,...} that counts the number of busy servers
at the beginning of time slots.

Interest in this class of models stems from the increasing realization that Poisson
modeling (and its natural extensions) fails to capture long-range dependence effects,
including (asymptotic) self-similarity, which have been detected in traffic measure-
ments for a wide range of networking applications, e.g., Ethernet LANs [9, 13, 23],
VBR traffic [3], WAN traffic {10, 22]. These measurements are burstier at many
time scales than predicted by Poisson models. This finding has implications for con-
gestion control and traffic performance as already demonstrated in the references
[1, 8, 17] for alternative models based on fractional Gaussian noise and fractional
Brownian motion.

The class of M|G|oo traffic models is a versatile one as it accounts for a large
range of positive auto—correlation structures; in fact the process {b;, t =0,1,...} can
be shown to be associated in the sense that the rvs by, ..., b; form a set of associated
rvs for all £t = 0,1,... [7]. Interestingly enough, M|G|oco processes were mentioned
by Cox in [4] as an example of a long range dependent process. This occurs when o
has a discrete Pareto distribution with parameter o, 1 < a < 2, in which case the
stationary version of the process {b;, t =0,1,...} is an asymptotically self-similar
process with Hurst parameter H = (3 — «@)/2. In [15] Likhanov, Tsybakov and
Georganas construct an aggregate traffic model by superposing a large number of
on—off sources with Pareto distributed activity periods, and show that in the limit
the model is nothing else but the M|G|oo model of Cox. In a different context [22],
Paxson and Floyd have found that the M|G|oc model with an (integer) log—normal
service time o matches reasonably well some wide area applications (e.g., telnet
connections [22, p. 235]).

More generally, M|G|oo input processes can display time dependencies over a
wide range of time scales, the extent of which is controlled by the tail behavior of
the distribution of o. In line with the findings of several authors [14] in different
contexts, the temporal correlations in M|G|oo input processes are expected to have



a significant impact on queueing performance when such processes are offered to a
muliplexer. To gain some insights into this issue we consider a discrete-time single
server queue with infinite capacity and constant release rate of ¢ cells/slot under the
first—come first-served discipline, as a surrogate for a multiplexer, and feed it with
the traffic stream {b;, ¢t = 0,1,...}: Let ¢; denote the number of cells remaining
in the buffer by the end of slot [t — 1,¢), and let bty denote the number of new
cells which arrive at the start of time slot [¢,¢ + 1). If the multiplexer output link
can transmit c cells/slot, then the buffer content sequence {g;, ¢ =0,1,...} evolves
according to the Lindley recursion

Q0 =¢; qer1=[q+bty1— c]+, t=0,1,... (1.1)

for some initial condition gq.

It is well known [16] that the multiplexer will reach statistical equilibrium if
AE [0] < ¢, in which case ¢ =t goo for some honest rv go, which represents the
steady-state buffer content at the multiplexer. Of considerable interest are the
tail probabilities P [go, > b] for large b as a means to estimating buffer overflow
probabilities for the corresponding finite buffer system. Such asymptotics are often
the first guiding step to size up the buffer at the multiplexer in order to guarantee
quality of service requirements.

The rv go can be represented as
goo =st Sup{S; —ct, t=0,1,...} (1.2)

with
So=0; Si=bj+...+0b, t=12,... (1.3)

where {bf, t =0,1,...} is the stationary version of the busy server process. With the
representation (1.2) for g, as a point of departure, several authors [6, 11, 12] have
derived estimates on the tail probabilities by means of large deviations estimates
for the sequence {¢71(S; — ct), t =0,1,...}. Asymptotic lower and upper bounds
have both been derived in varying degrees of generality. Invariably the key step
consists of finding two monotone increasing R.—valued sequences {v;, t =0,1,...}
and {a:, t =0,1,...} increasing at infinity, i.e., lim;_,o vy = lim;y0 at = 00, such
that the limit

A(f) = lim A(9), O€eR (1.4)

t—00



exists (possibly as an extended real number), where for each ¢t = 1,2,..., we have
set

A(9) = vitlnE [exp (92—:(& - ct))] , 9€R. (1.5)

Of course, the limiting function A : R — [0, 00] is expected to satisfy various
properties [6, 11, 12]. Leaving this issue aside for the time being, we focus here on
identifying the scaling sequences {v;, t = 0,1,...} and {a:, t = 0,1,...} that lead
to a non-trivial limit (1.4). This was done for Pareto service time distributions in
[18, 19], but it is by no means obvious at the outset how to identify the scalings for
a general service time distribution.

The main results are now described qualitatively; precise statements are available
in Section 3: If we choose a; = ¢, then the appropriate scaling turns out to be given
by

nw=-mImP[g>t, t=1,2,... (1.6)
where & is the forward recurrence associated with the service time rv o, and has
distribution Plo>r]

o>r
a = o = = —_— = 2 PR 17
g’l‘ P [0' 7‘] E [0_] ’ r 17 7 ( )
To state the results more conveniently, we set
1 Ve
WOESS'S: [exp(YGSt) . 6eR (1.8)
¢
for each t =1,2,.... Obviously, if the limit
Ay(8) = tl_lglo Api(0), 6€R (1.9)
exists, so does (1.4) with
AO) =Apy(0) —cf, R (1.10)

and it suffices to concentrate on finding (1.9).
Our first result in that direction [Theorem 3.1] is that we always have

Jlim Ays(6) =00, 6> 1. (1.11)

For the range 6 < 1, the asymptotics depend on whether v; = o(t) or vy = O(¢).
If v; = O(¢) with limy_,o v¢/t = C > 0, then we show [Theorem 3.2] that

As(8) = lim As(8) = AE[o] (“"COC“ 1) 26), 6<1 (1.12)
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for some finite quantity X(6) given by (3.3) which depends on G. It is easy to check
that the condition v; = O(t) is tantamount to G having an exponential tail.

When v; = o(t) the situation is technically more involved, and additional growth
assumptions are required on the scaling sequence {v;, t = 1,2,...}. Under the
appropriate conditions [Theorem 3.3] we prove that

Ab(e) = tl—lglo Ab’t(e) = AE [O’] f, O0<1. (1.13)

The set of conditions under which (1.13) holds are satisfied by many classical dis-
tributions. This shown in the companion paper [20] where we apply the results of
Theorems 3.2 and 3.3 to obtain asymptotic lower bounds on the tail probabilities
P [goo > b] for large b for a variety of choices of o, including the geometric, Pareto,
log-normal and Weibull distributions (or their natural analogs on IN).

Several remarks are in order concerning these results: The case § = 1 appears
to depend crucially on the pmf G. In the case v; = o(t) the limit (1.9) depends on
the distribution of o only through its mean, in sharp contrast to the case v; = O(¢)
where that limit depends on the entire distribution of o. The temporal correlations
of M|G|oo input processes are controlled by the tail behavior of the distribution of
o. This is made more apparent through the relation

cov[by, b, ;] = AB[o]le™™, h=12,... (1.14)

for the covariance function of the stationary version {4}, t =0,1,...} [Lemma 4.1].

The paper is organized as follows: The M|GI|oo input processes are formally
introduced in Section 2 together with some useful facts concerning them. The
main results are stated in Section 3, and additional facts concerning the correlation
structure of the M|GI|oco input processes are discussed in Section 4. The analysis
begins with the preliminary expressions for (1.8) in Section 5; proofs of the necessary
technical steps are available in Sections 9 and 10. The proof of (1.11) is given Section
6; the limits (1.12) and (1.13) are established in Sections 7 and 8, respectively.

A few words on the notation used in this paper: All rvs are defined on some
probability triple (2, F,P), with E denoting the corresponding expectation opera-
tor. Two rvs X and Y are said to be equal in law if they have the same distribution,
a fact we denote by X =5 Y. Weak convergence is denoted by —.



2 M|GI| input processes

We summarize various facts concerning the busy server process {b;, t =0,1,...} of
a discrete~time M|G|oo system. Some of these facts are standard while others are
discrete—time analogs of properties which are well known for the continuous-time
infinite server queue; details are available in [21]:

Consider a system with infinitely many servers. During time slot [¢,% + 1), Bt+1
new customers arrive into the system. Customer %, ¢ = 1,...,B¢+1, is presented
to its own server and begins service by the start of slot [t + 1,¢ + 2); its service
time has duration o4+1;. Let b; denote the number of busy servers, or equivalently
of customers still present in the system, at the beginning of slot [¢,¢ + 1), with b
denoting the number of busy servers initially present in the system at ¢ = 0.

The IN-valued rvs b, {ft+1, t = 0,1,...} and {044, t =0,1,...; i =0,1,...}
satisfy the following assumptions: (i) The rvs are mutually independent; (ii) The
rvs {Bi+1, £t =0,1,...} are i.i.d. Poisson rvs with parameter A > 0; (iii) The rvs
{oti, t=1,...;1=1,2,...} are i.i.d. with common pmfG on {1,2,...}. We denote
by o a generic IN-valued rv distributed according to the pmf G. Throughout we shall
assume that this pmf G has a finite first moment, or equivalently that E [o] < 0.

No additional assumptions are made on the rvs {op;, ¢ =1,2,...} which repre-
sent the service durations of the b customers present in the system at the beginning
of the slot [0, 1), so that various scenarios can in principle be accommodated: If the
initial customers start their service at time ¢t = 0, then it is appropriate to assume
that the rvs {oq;, ¢ = 1,2,...} are also i.i.d. rvs which are distributed according to
the pmf G. On the other hand, if we take the viewpoint that the system has been in
operation for some time, then these rvs {og;, ¢ = 1,2,...} may be interpreted as the
incomplete work (expressed in time slots) that the b “initial” customers require from
their respective servers before their service is completed. In general, the statistics
of the rvs {og,, 1 = 1,2,...} cannot be specified in any meaningful way, except for
the situation when the system is in steady state.

We note that

b =00+, t=0,1,... (2.1)

where the rvs b§°) and b§“) describe the contributions to the number of customers in

the system at the beginning of slot [t,t + 1) from those initially present (at ¢t = 0)



and from the new arrivals, respectively. It is plain that

b
B0 =3 1og; >4, t=0,1,... (2.2)

i=1

and that the rv b§“) can also be interpreted as the number of busy servers in the
system at the beginning of slot [¢,t 4+ 1) given that the system was initially empty
(i.e., b=0).

Although the busy server process {b;, t = 0,1,...} is in general not a (strictly)
stationary process, it does admit a stationary and ergodic version in the sense now
stated.

Proposition 2.1 There exists a stationary and ergodic IN—valued process {b}, t =
0,1,...} such that

{bt+k, t=0,1,}=>{b:, t=0,1,..} (k—)OO) (2.3)
for any choice of the initial condition rv b and of the service times {og;, 1 = 1,2,...}.

It can be shown [21] that this stationary version {b}, t =0, 1,...} can represented
through (2.2) with

b
B =316, >1, t=0,1,... (2.4)
n=1

where (i) the rvs {G,, n = 1,2,...} are independent of the rv b which is Poisson
distributed with parameter AE [o], and (ii) the rvs {G,, n =1,2,...} are i.i.d. rvs
distributed according to the forward recurrence time & associated with . This
distribution is given by (1.7).

During the analysis we shall find it useful to give the M|G|oo system an alter-
native interpretation: Assume that on arrival customers declare the length of their
service times. We shall then say that an arriving customer is of type r, r =1,2,.. .,
if it requires r units of service time (or slots). By keeping track of customer types,
we can then view the original Poisson process {8:+1, t =0, 1,...} as being the aggre-
gate of an infinite number of arrival processes, say {6;,;, t=0,1,...},r=1,2,...,
with 8], ; denoting the number of customers arriving in time slot [¢,¢ + 1) with a
service requirement of r slots. Obviously, we have

x
:8t+1 = Z ﬁ;‘,r+17 t= 01 17 ... (25)
r=1
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Under the enforced independence assumptions, the arrival processes {8{,;, t =
0,1,...}, » = 1,2,..., are mutually independent, and for each r = 1,2,..., the rvs
{Bis1, t=0,1,...} are i.i.d. Poisson rvs with parameter Ag;.

In short, instead of having a single Poisson arrival stream, we now have an
infinite number of independent Poisson arrival streams, each feeding into an infinite
server queue with a deterministic service time. Therefore, if ] denotes the number
of type r customers in the system at the beginning of slot [¢,¢ + 1), we have

o0
K =30 (2.6)
r=1

with

min(r,t)

= > Blomryrrir T=12,... (2.7)
=1

The sequence {b], t =0,1,...}, r=1,2,..., are mutually independent.
Using these facts it is quite easy to show the following properties of {b}, t =
0,1,...} [4, 5, 21].

Proposition 2.2 The stationary and ergodic version {b}, t = 0,1,...} of the busy
server process has the the following properties:
1. For eacht=0,1,..., the rv b} is a Poisson rv with parameter AE [c];

2. Its covariance structure is given by

T'(h) = cov[t},bj p] = AE [(0 = R)"], t,A=0,1,... (2.8)

3 Main results

We begin with the asymptotics for 8 > 1. The result holds without any additional
conditions on the scaling v;, and is established in Section 6.

Theorem 3.1 Under no additional assumptions, we always have
tl_l_glo Apt(0) =00, 0>1. (3.1)

In view of Theorem 3.1 it remains only to consider the case 8 < 1. However, for
that range the result depends crucially on whether v; = O(%) or v; = o(t) as should
be apparent from Theorems 3.2 and 3.3 below; their proofs can be found in Sections
7 and 8, respectively.



Theorem 3.2 Assume vy = O(t) with lim;—,oo v¢/t = C > 0. Then, for each 6 # 1
in R, the limit Ay(0) = limy_,o, Ap () exists and is given by

As(8) = { ME[o] () 2(0) o<1

3.2
o0 ifg>1, (3.2)

where
£(0) =1+ (1) (Zexp( oo——)), HER. (3.3)

Moreover, () < oo for 8 < 1.

We say that the sequence {v;/t, t = 1,2,...} is monotone decreasing (resp.
increasing) in the limit if there exists a finite integer T such that the tail {v¢/t, t =
T+1,T+2,...} is monotone decreasing (resp. increasing).

Theorem 3.3 Assume v; = o(t) with {v;/t, t = 1,2,...} monotone decreasing in
the limit. Assume further that there exists a mapping I' : IN — IN such that (i)
v T(¢

T(t) <t forall t = 1,2,..., (ii) im0 vt 2 = co and (ifi) lims—yeo ¥ s =0

Then, for each 0 # 1 in IR, the limit Ay(8) = lim¢_,oo Ap+(0) exists and is given by

AE[0]f iff<1

3.4
00 ifé > 1. (3-4)

Ay(0) = {

No general result appears to hold for at the boundary point # = 1, but we

suspect from various examples that & — Ay(6) is either left— or right- continuous

[21]. We conclude with a result that complements Theorems 3.2 at the boundary
point 4 = 1.

Theorem 3.4 Under the assumptions of Theorem 3.2, we also have (3.1) for § =1
if either (i) v; < Ct infinitely often or (ii) vy > Ct fort = T, T +1, ... for some finite
T and limsup;_,,(v; — Ct) = K for some finite K > 0.

Conditions (i) and (ii) are non overlapping, and do cover most distributions of in-
terest. However, Theorem 3.4 does not cover the situation in (ii) with lim sup;_, o (vs—
Ct) = oo. Indeed, with C = 1, for v; = t + v/t we find Ay(1) = oo, while for
vy =t + &3, we have Ap(1) < oo. Details are available in [21].



4 Correlation structure

Before establishing these results, we make a slight detour discussing the correlation
structure of the M|G|oo process. The first indication that the rvs {b;, t=0,1,...}
exhibit some form of dependence can already be traced to the fact that these rvs
are indeed positively correlated in a strong sense: For all ¢t = 0,1,..., we write

b= (bg,bl, oes ,bt).

Proposition 4.1 For any choice of the initial condition rv b and of the service
times {oo4, ¢ = 1,2,...}, the rvs {bs, t = 0,1,...} are associated, in that for any
t =0,1,... and any pair of non-decreasing mappings f,g : IN**! - R,

E [f(6)9(t")] > B [£(0)] B [o0")] (41)
provided the expectations exist and are finite.

The notion of association was introduced by Esary, Proschan and Walkup in
[7], and the reader is invited to consult this reference for additional material on the
topic.

Proof. Recall that the collections of rvs {bgo), t=0,1,...} and {bga), t=0,1,...}
are independent. Hence, in view of (2.1), we need only show the association (4.1)
for each of these two collections [7, (P2), p. 1467).

Fix i = 1,2,.... For each t = 0,1,..., we have 1[og; > t] = fi(oo;) for some
non—decreasing mapping f; : R — IR. It is now plain that the rvs {1{oo; > £], t =
0,1,...} are associated as we recall that the rv oo is associated by itself [7, (P4),
p. 1467). By independence, for each n = 1,2,..., the rvs {371 1[o0; > t], t =
0,1,...} are therefore associated [7, (P2),(P4), p. 1467], or to put it differently, the
rvs {30, 1[o0; > t], t=0,1,...} are conditionally associated given b.

Next, for any ¢ = 0, 1, ... and any pair of non—decreasing mappings f,g : IN oy
R, we find from this last remark that

E[f6@4900Y] = B[E[fO9O)|]
E [E [7(6)[6] B [g(6)jo]]
E[E[f(6O)p]|E[E [ e]] (4.2)

and the desired conclusion on {b§°), t =0,1,...} follows. The passage to (4.2) is

v

v

a consequence of the fact that the rv b is associated, and of the non-decreasing
character of the mappings n — E [f(b(o)’t)lb = n] and n = E [g(b(o)’t)|b = n]
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For each r = 1,2,..., the rvs {b], t = 0,1,...} are clearly associated by virtue
of (2.7) and of the independence of the rvs {f},,, t =0,1,...} [7, (P4), Thm 2.1,
p. 1467]. In view of (2.6) and property (P4) in [7, p. 1467], the association of
the rvs {b§“), t = 0,1,...} now follows from that of the independent collections
{67, t=0,1,...}, r=1,2,... [T, (P2), p. 1467]. n

From (4.1), we already get
COV[bt, bt+h] > 0, t, h= 0, 1, e (43)

On the other hand, by suitably selecting the initial conditions (2.4) we see that
Proposition 4.1 holds for the stationary version {bf, t =0, 1,...}, and the expression
(2.8) is clearly compatible with (4.3).

The strength of the positive correlation exhibited by the sequence {b}, t =
0,1,...} can be formalized as follows: We say that the sequence {b}, t =0,1,...}
exhibits short range dependence if

> T(h) < oo. (4.4)

Otherwise, the sequence {b}, t =0,1,...} is said to be long range dependent [2, 3].
As we now show, for M|G|oo processes this dependence can be partially character-
ized through the scaling {v, t =1,2,...}.

Lemma 4.1 We have

T(h) = AE[o]e™", h=1,2,... (4.5)

Proof. Fix h =1,2,..., and note that
L(R) = XE[(o—h)T]
= AY Ploc—h)" >r]

r=0

= XY Plo>h+r]
r=0

= A Z Plo > 7]
r=h+1

= AE|[o] Z Pc=r]
r=h+1
= M)E[o]P [¢ > h]

i1



and (4.5) follows from (1.6). [ ]

Consequently, if v; = O(t), then the process {b%, t = 0,1,...} is short range
dependent; in that case, using the fact

Plo>t]|=E[o](e™™ —e™™+), t=1,2,... (4.6)

derived from (1.6)—(1.7), we readily see that G has an exponential tail. On the other
hand, if v; = o(t), the situation is not as clear cut and the process {b7, t =0,1,...}
can be either short or long range dependent. As we now show, this ambiguity is
resolved through the finiteness of E [02].

Proposition 4.2 We have the relation
Z T'(h) = AE[0] E[6] = %E [o(c +1)], (4.7)

so that the stationary sequence {bf, t = 0,1,...} is short range dependent (resp.
long range dependent) if and only if E [0?] is finite (resp. infinite).

Proof. From (4.5), we see that

iI‘(h) = AE[o] ip[a— > h)
h=0 h=0
= AE[0]E[F]

= AE[a]irP[E:r]

r=1

= AE[o](E[0])™ i rP o > 7]

o0 [o.¢]
=AY r) Plo=
r=1 t=r
= /\ZP[G =] (Zr)
N e
= EZ (t+1)P[o =1
t=1
and the conclusion (4.7) is now immediate. |

12



5 Evaluation of A:(0) (¢t =1,2,..., 8 € R)

Foreacht =1,2,..., we set
t 0
Lyt(6) =InE {exp(@ Z b:)} feR (5.1)
s=1

where {b}, t =0,1,...} is the stationary and ergodic version of the busy server pro-
cess. In that case the rvs b§°) and b§“) are given by (2.4) and (2.6)—(2.7), respectively.
Our interest in (5.1) stems from the fact that

Api(0) = %Lb,t(et) (5.2)

with the notation
9tzf’t£9, fER, t=1,2,... (5.3)

being used throughout the discussion.
From (2.1) and the independence of the rvs b§°) and bﬁ“), we get

Los(0) = LO®) + LP®6), R (5.4)
where we have set
L) = nE -exp(e ztj bg"))q , 6eR (5.5)
s=1 J
and ) . -
L) = E |exp(0 _0?)|, 6eR (5.6)
s=1 J

Therefore, in order to evaluate Ay ;(0) as given by (1.8) it suffices to evaluate L§°) (9)
and L{”(6).

Lemma 5.1 For each t =1,2,..., we have the expressions
L (8) = —\E[o] (1 — E [exp(6 min (¢, 5 — 1))]) (5.7)

for all  in R.
Proof. Fix0inR and t=1,2,..., and recall that the i.i.d. rvs {G,, n=1,2,...}

13



are independent of the rv b. From these facts we readily conclude that

I t
L§°)(9) = InE [exp (9 bgo))]
L s=1

= InE -exp (Oi Xb: 16, > s])

s=1ln=1

= hE E [exp <9zb: thl[an > s]) | b”

n=1s=1

= InE :I‘(t, 0)"] ‘ (5.8)

where

I't6) = E [exp (OZt: 1[ > s])]

s=1

= E/[exp (d min(¢,& — 1))]. (5.9)
Finally, because the rv b is Poisson with parameter AE [o], we get
InE [T(t,6)!] = -)E 0] (1 - T'(t,6)), (5.10)

and the desired result is an immediate consequence of (5.8)—(5.10). n

The next lemma evaluates the contribution due to arrivals; its proof is given in

Section 9.
Lemma 5.2 For eacht =1,2,..., we have the expressions
(@) gy — _ A\t 00
LPO) = - M+AE[(t-o)te™|
+ A(1-e®) 7 B [efmint) 1] (5.11)

for all 8 in R.

In the remainder of this section, we seek to simplify the expressions (5.7) and
(5.11), and to do so we find it useful to define several auxiliary quantities: For each
B>0andforallt=1,2,..., we set

¢
Fs(t,0) = zrﬁegrP [>7], #€eR. (5.12)

r=1

14



Lemma 5.3 For allt=1,2,..., we have
L{%(6) = AE o] (1- ) Fo(t,0), O€R. (5.13)
Proof. Fixt=1,2,... and # in IR. Starting with (5.7) we get
¢
L) = IE[] (Z 05, + P[5 > 1] - 1)
r=1
¢
= AE]o] (Z L VPGE>r—1-Pe>r])+Pe >t - 1)
r=1
t—1 t
= AE[0] (Z PG> - VPG > ]+ P[5 > 1] - 1)
r=0 r=1
and the conclusion (5.13) follows by simple algebra as we note P [¢ > 0] = 1.

The expression (5.11) can also be simplified and the final result is stated in the
following lemma, the proof of which can be found in Section 10.

Lemma 5.4 For allt=1,2,..., we have
L{(9) = XEo] (¢ - 1)5(t,6), R (5.14)
where
%(t,0) =t + (H(1 - e™) — e7®) Fy(t,6) — (1-e) Fi(t,9). (5.15)

By combining Lemmas 5.3 and 5.4 via (5.4), and grouping like terms, we obtain
the following compact expression.

Lemma 5.5 For eacht =1,2,..., we have

Ly4(8) = AE[o]t(e? — 1) (1 +(1-e% [Fo(t,o) - ﬁ(—fle , 0eR. (5.16)

The easy calculations leading to (5.16) are omitted in the interest of brevity.
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6 Asymptotics for 6 > 1

We can now start proving the main results of this paper, namely, Theorems 3.1, 3.2
and 3.3. In this section we present asymptotics which are common to both regimes,
viz. v = O(t) and v; = o(%). Proposifion 6.1 provides the key towards establishing
the asymptotic behavior for 8 > 1 described in Theorem 3.1.

Proposition 6.1 We always have

lim L20(6) =00, 8> 1. (6.1)
]

t—=o0 P

Proof. Going back to the proof of Lemma 5.3, we find that
L6 > \E[o] ("P[z > 1] -1), 6eR (6.2)

foreach t =1,2,..., so that
1

L0 1 (0=1yve _
LLV) 2 B[] (e 1)
e(@—l)vt 1
= AE|0] -—1], 8€R. (6.3)
U Vg
The stated result (6.1) is now immediate once we note that
e(()—l)vt
lim =00, 0>1 (6.4)
t—o0 (3
n

A proof of Theorem 3.1. Fix t = 1,2,.... By Jensen’s inequality we have

t
viLg")(ot) > e% SE[EY], 6eRr 6.5)
t s=1
and in Section 9 we show that the arguments leading to Lemma 5.2 also imply
¢ t
S E 5] =AY Elmin(s,s)]. (6.6)
s=1 s=1
Because lim;_, o, E [min(o, t)] = E [o], we conclude that
LS~ g @
. o] _
Jim ;EE 6] = 2B 0] (6.7)
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by Cesaro convergence — as expected of course from the ergodic properties of the
process {b;, t =0,1,...}. In short, we have

el (e
lim inf E;L‘ (6;) > AE[0]8, 6€R (6.8)
and the conclusion (3.1) follows from (6.1). [ |

By Theorem 3.1 we need only consider the case § < 1. However the analysis for
that range depends crucially on whether v; = O(t) or v; = o(t). We shall take on
these two cases separately in the next two sections. To prepare for this analysis, we
note that

¢
Fs(t,0,) = Erﬂeo”e_”’
r=1

Ur

¢ 5 v,
= Er exp (r(@—t— - —)) , 8€R (6.9)
r=1

r

foreacht=1,2,....

7 Asymptotics when v; = O(¢)

We assume v; = O(t) with lim; % = C > 0, and for each § > 0, we set

24(0) = irﬂ exp (r(oc - -1;—)) , 6cR. (7.1)

r=1

The following preliminary result plays a key role in establishing Theorem 3.2.

Lemma 7.1 For each 8 > 0, the quantity X3(0) is finite (resp. infinite) if § < 1
(resp. 8 > 1). Moreover, we have

Jim Fs(t,0;) =$5(0) < o0, 6<1. (7.2)

Proof. A simple application of Cauchy’s convergence criterion already yields the
fact that Xg(6) is finite (resp. infinite) if 6 < 1 (resp. 8 > 1).

Fix 8 < 1. By the finiteness of ¥5(8), the conclusion (7.2) follows if we show
that .
lim S 8| exp (7‘(90 — t‘—r)) — exp (r(Bv— _r ) |=0. (7.3)

t
t o0 t T
r=1

17



Upon making use of the fact that
b
e — ¢%) = | / dz| < |b—ale™@8) 4 bR, (7.4)
a

we conclude that

¢
B oo _ ) - ( L )
Z:lr | exp (r( r) exp r(Ot - |
Vt | v
< 9||C - ?t| Zrﬂ'*'le"”' exp (r max(C#, ?tB)) , t=12,... (7.5)
r=1
Hence, for ¢ large enough we have

1
lim (rﬂ'*'le_“' exp (7‘ max(C4, %0))) ’

r—x

. 3 ) v
= lim (rﬂ“) exp (—?T + max(C4, —;—0))

= exp (—C + max(C4, %9)) <1, (7.6)

and Cauchy’s convergence criterion again implies

o0
> rPtle v exp (r max(C4, %’59)) < 00. (7.7)
r=1

The conclusion (7.3) follows now from (7.5) and (7.7). ]

The results in Theorem 3.2 are all straigthforward consequences of the following
simple observation.

Lemma 7.2 Fix 6 in R. The limit Ay(0) = limy o0 Ap1(6) exists (resp. exists and
is finite) if and only if the limit

- Fi(t,6
L(6) = Jim (Fo(t, o) - D120 (7.)
exists (resp. exists and is finite), in which case
eCf _ 1 —co
Ay(6) = AE[0] ( 5 ) (1+ (1-¢7°) L(6)). (7.9)
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Proof. Fixfin R and t=1,2,.... It is plain from (5.16) and (5.2)-(5.3) that
; R ~
Ap4(6) = AE [0] v—(eo‘ —1) (1 + (1 —e%) [Fo(t, 0;) — El(i—et)D . (7.10)
t

The conclusion (7.8)—(7.9) now follows immediately from the assumption lim; o % =

C, so that lim,_,o et = e*C0, "]

A proof of Theorems 3.2 and 3.4: In view of Theorem 3.1, we need only consider
the case # < 1. For # < 1, Lemma 7.1 yields the existence of the limit (7.8), with

t—00

L(0) = lim (ﬁo(t, 9t) - El(i’—gt)) = tl_l)l'g) ﬁo(t,gt) = 20(9) < 0. (7.11)

Therefore, by Lemma 7.2, Ap(0) = limo0 Ap¢(6) exists, is finite and given by (3.3).

Consider now the boundary case § = 1. By monotonicity we note that for
all t = 1,2,..., the inequality Ap;(8) < Apy(1) holds whenever § < 1, whence
Ap(9) < liminf; o0 Ap (1) for 8 < 1. Next, letting 6 go to 1, we see that

B%nAb(e) < litIE,ci,ngb’t(l) (7.12)
where
lim Ay (8) = AE [0] e~ 1 (1 +(1- 6_0)20(1)) (7.13)
o1 b C ) .
as we note that
10111_11120 =Xo(1) = Zexp ( (C—-— ) (7.14)

by monotone convergence.

From (7.12)-(7.14) it is clear that if we establish the fact Xg(1) = oo, then
liminfy , o0 Apt(1) = o0, and the limit Ap(1) = limg 00 Apy(1) thus exists and is
infinite. To carry out this last step, we consider separately the two sets of conditions
stated in Theorem 3.4: Under (i), the set R={t =1,2,...: v; < Ct} is countably
infinite, so that

To(l) > ZTER exp (r(C - %)) > ZreRl = 00. (7.15)

Under (ii), the condition limsup,_, (v, — Cr) = K for some finite K > 0 implies
for any ¢ > 0, the existence of an integer t* = t*(¢) such that 0 < v, —Cr < K +¢
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for all r > t*, whence

To(l) = Y e ) = oo, (7.16)

r=t*

We note in passing that it is also possible to show that

S O
tl—lglo ’U_tLt (6) =0, <1 (7.17)
and co
. 1 e’ -1
Jim ;;Lg“)(ot) = AE 0] ( z ) %), 6<1 (7.18)

where () is given by (3.3). These limiting results are easy consequences of Lemmas
5.3 and 5.4, with the details left to the interested reader.

8 Asymptotics when v; = o(?)

We assume v; = o(t) with lim; % = 0, so that now

lim =1, 9eR. (8.1)

Moreover, the sequence {v:/t, t = 1,2,...} is monotone decreasing in the limit, and
conditions (i)—(iii) are enforced. The counterpart to Lemma 7.1 is first presented.

Lemma 8.1 We have

.U _
tl_l)Ig.) ?Fo(t, Ht) =0, <1 (82)
and
.Ut s
tl—l—>xono %—Z'Fl(t, 0t) =0, 0 <1. (83)

Proof. The conclusion (8.3) is an easy consequence of (8.2) once we note the
obvious inequality
Fi(t,0) < tFy(t,0), 0cR (8.4)

forallt=1,2,....
We now turn to the proof of (8.2). In the interest of clarity, we discuss only the
case when the sequence {v;/t, t = 1,2,...} is monotone decreasing, and leave it to
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the reader to extend the arguments to the asymptotically monotone case, an easy
but tedious exercise. Moreover, for each ¢t = 1,2,..., ﬁo(t, 6;) is a non—decreasing
function of 8, so that we need only establish (8.2) in the range 0 < 6 < 1.

Fixing @ in the interval (0,1) and t =1, 2,..., we begin with the decomposition

r(t ¢
%Fg(t, 8,) = %X(j)ef’%“-vr +2 S gE (8.5)
r=1 r=C(t)+1
where I'(¢) is as described in Theorem 3.3. The analysis successively considers the
two terms in this last expression.
We first discuss the second term of (8.5): From the monotonicity of the sequence
{ve/t, t =1,2,...}, we get

Vg Vg Ur Ut Ut
- = - 1)=r—(——- =)< - 1) =1,... .
Otr v = (60 l)tr (r t)r_(9 l)tr, r=1,...,t (8.6)
and it is now plain that
Ut d ¥ Ui t v
“t Z 69 =T =Vr < = Z 6(0—1) =T
r=I(t)+1 r=I(t)+1
o c@-Du ) (9-1)%T(t)
- t 6(0—1)2} — ]_
o-1)% -1
- (E(_)_L_‘—_l) (ew-nm‘iﬁl _ e(o—x)%tr(t)) ,
t
Using (8.1) and condition (ii) of Theorem 3.3, we readily conclude
¢
.Ut 9% r—y, _
Jim = >, € = 0. (8.7)
r=0(t)+1
'Next, going back to the first term of (8.5), we note for 0 < § < 1 that

9%7’ —v < GUTTT —v, < (60— l)vr(t) =1,...,I'(¥) (8.8)

<= Dry”
by the monotonicity of the sequence {v:/t, t =1,2,...}. Therefore,

Vi P(t) gl Ut F(t) (0 1) ul"(t),'.
— e’ T—0r < —_— e - r(t)
PRAE R P

_ g (000 1
t e(e-l)ﬂfﬁtﬁ)l 1

v -1
Y (0_1) F!t!
= 6(0—1) l'r“(tt; (_____.______e v:(:)) — 1) ﬁ_r(t) (e(e“l)vl‘(t) _— 1) .
t Ur(t)

T(@)
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This time, (8.1) and condition (iii) of Theorem 3.3 lead to

v I(t) "

o F fitr—y, _

tl_lglo ; TE=le t =0. (8.9)
Combining (8.5), (8.7) and (8.9) readily yields (8.2). (]

Here, the counterpart to Lemma 7.2 is the following observation which depends
only on the fact that vy = o(t).

Lemma 8.2 Fix 6 in R. The limit Ay(8) = limy 0 Ap 1 (0) exists (resp. exists and
is finite) if and only if the limit

K(0) = lim % (ﬁb(t,ot) - F—l(itg—*)) (8.10)

exists (resp. exists and is finite), in which case

Ay(8) = AE [0]8 (1 + 6K (6)). (8.11)

Proof. FixfinRandt=1,2,.... It is plain from (5.16) and (5.2)-(5.3) that
8 _ — o0t ~ [
Ao:(6) = AE[0] 0 (e ; 1) (1+ (1 < )9t [Fo(t,et) - ﬂ%f’t—)]) (8.12)
¢ ¢

The conclusion (8.10) and the expression (8.11) follow immediately from (8.1) and
(8.12). ]

A proof of Theorem 3.3: Here too, in view of Theorem 3.1, we need only consider
the case § < 1. For § < 1, we get from Lemma 8.1 that the limit (8.10) exists with

T vi = ﬁl (t7 6t) _
K(g) = tl_l)I& : <F0(t, 0t) b —-—t—— =0 (813)
and the desired conclusion (3.4) follows from (8.11). [ ]

More precise information can be obtained for the various contributions to the
limit (3.4). In particular, by relying on Lemmas 5.3 and 5.4, we can easily derive
the limiting results

lim ~2®() =0, 6 < 1. (8.14)

t—0o0 'Ut
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and
lim —L(“) (6;) = AE[0]0, 6<1. (8.15)

t—o0 v

9 A proof of Lemma 5.2

Fixt =1,2,...and  in R. Using (2.6) and the fact that thervs {b], t =1,2,...;r =
1,2,...} are mutually independent, we have

InE lexp (0 i bg‘”)jl
s=1
= InE [exp <92t: i b;)jl
s=1lr=1
= ilnE [exp <Ozt:b§>]
t min(r,s)
= z InE [exp (92 z Bls— T)++z>} (9.1)

Fixing r = 1,2,..., we carry on with the analysis by considering two separate cases:
a. Assume t < r: We note that

L ()

t min(r,s)

Z Z 'B(s—r)++z Z Z,Br = Z t +1- 'l)ﬂzr (92)
s=1 1i=1 i=1

s=1i=1

and by the independence of the rvs involved, we get

t min(r,s) t
InE [exp (02 Z B(s- T)++,>} = ZIHE[EXP 0t +1-14)57)]

s=1 i=1

¢
= In (e=29r(1-€°¢+179)
3 )
=1
= —=Agr (t —é Z e‘)’)

=0
eto -1 9
= =)Agr (t—- 7-1¢ |- (9.3)
b. Assume t > r: Set h =t — r. Elementary algebra yields
t min(r,s)
> 2 Blomrprui = Z Zﬂr + Z Zﬁ’_rﬂ
s=1 i=1 s=1i=1 s=r+li=l
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=1
> 8
i=1
h+i
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J

t—r

=1

r

+2LQ 0 -

J=

r h4i

SOOI ZZﬁT

i=1j=1

"
7

T

r

h+41i

it 2 B

i=1 j_h+1

"+Z>2ﬁh+g

7

i=1j=

r

j=1

t min(r,s)
InE I:exp (92 Z 'B(s—r)++1')j|

s=1 =1

M=

<.
Il
—

1—e +Z —Ag-(1

'M*

<
1l
=

|
S
e

—Agr ((t )1 - +r-
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69(r+1—j))

e —1

e -1

+Z7’+1— IBh-I-j

InE [exp (6v5)] + Z InE [exp(6(r + 1 — )B44)]

(h(l — ) 47— D) E e_9j>
Jj=1

ee> .

(9.4)

Therefore, again making use of the independence of the rvs involved, we see that

(9.5)



We can now combine (9.3) and (9.5) into a single expression

t min(r,s)
InE [exp (02 Z ﬂ(s_,)++i)j‘

s=1 1i=1 /
dmin(t,r) _
e————1> (9.6)

= =Ag, (t —(t—r)ter? - T

where the last equality used the fact that (¢ — r)* + min (¢,7) = ¢, and the desired
conclusion immediately follows from (9.1) and (9.6). [ ]

Before closing this section we note from (2.6) that

(@ co min(r,t)
E[bta] - TZ; 21 E[ﬂ(’t_r)+ +,.]
= 1=
o0
= Z’\gr min(r, t)
r=1
= JAE[min(c,t)], t=1,2,... (9.7)

and the relation (6.6) holds.

10 A proof of Lemma 5.4

Foreach § > 0and forallt=1,2,..., we set
¢
Ps(t,0) = ZTﬂgreer, feR. (10.1)
r=1

Fix 8 in R and ¢ = 1,2,.... In order to establish (5.14) we begin by rewriting
(5.11) as

t
L0 = M+ (t—r)gre

r=1

+A (1 - e'o) - (Zt: g:¢" + P o > 1] - 1)
r=1
A (#(@o(t,6) — 1) — 1(t,0))
FAQ —e~0)! (@0(::, 6) — 1+ e"Bo]Git1) - (10.2)
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The basic idea behind the passage from (10.2) to (5.14) consists in expressing
the quantities ®4(t,0) in terms of F’g(t, ). To do so, we first note from (1.7) that
the relations

g = Plo>r—1]-Plo>r]
= E[o](gr — Gr+1)
= E[](P[g>r—-1+P[G>r+1]-2P[F>r]) (10.3)

hold for all r = 1,2,.... Therefore, substituting for (10.3) in (10.1), for each 5 > 0,

we have

5(t,0

~—

= zt:rﬁ P[Gg>r—1+PG>r+1]-2P[>r]) ¢’

r=1

t—1 t+1
eoz r+1PP G >r|e +e” GZ r—1)PP 6 > r] e — 2F4(t, 9))

el 2
= EJo] (e”i r+1PP[G > r]e +e 9}: (r—1)°P[G > | 9’—2F5(t 9))
1 r=1
a] e" —1[8=0]P[¢ > 1] — (t+1)PHVP[6 > ¢] + tPe”" P[5 > ¢t + 1]) .
Next, we specialize this last relation for 3 =0 and 8 = 1: For 8 =0, we get
B(t,0) = Elo](e? +e? —2)Fy(t,9)
+E[o] (& - P[5 > 1]+ P[5 > t+1] - LHIP [ > f]).
Hence, using the fact
Plg>1=1-g1=1-(E[o])™" (10.4)

in this last expression for ®4(t, d), we conclude that

®o(t,0) =1 = E[o](? —1)(1 —e0)Fy(t,0) — 1
+E[0] (P[5 > t+1] - !HIP[G> |+’ — (1 -E o]™))
= Efo](’ —1)(1 - e™?)Fo(t,6)
+E [o] (eetP [6>t+1] VPG> 6]+ - 1) . (10.5)
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Similarly, for 3 = 1 we now find

(I:'l(ta 9)
= Elo] (¢! (Fi(t,0) + Fo(t,0)) + e (Bi(t,0) - FoCt, 6)) — 2F1(t,6)) |
+E 0] (¢ +te”P[6 >t +1] - (t + D’ IP 5 > f])
= Eo] (" 1)1 =) Fi(t,0) + (¢ — e ™)) Focs, 0)
+E[o] (t"P 3 > t+1] - (¢ + D’ IP 5 > ] + &) (10.6)
Injecting (10.5) and (10.6) into (10.2), we get
t(q)O(tv 9) - 1) - q)l(ta 0)
= Eo] (" —1)(1 - ") Fo(t,6) + t(e’ — 1) — t’ P[5 > )
+E [o] (te"tP B> t+1]— (& ~ 1)1 — e ) Fi(t,0) — (¢ — ™) Fy(t,0) )
+B[o] (~te"P [6 > t+1]+ (t + 1)e’TIP [5 > 1] - &)
= Efo](f -1) (t — (1= F(t,0) + (t(1 —e %) — e~ — 1) By (¢, 9))
+E [o] (!CIP 5 > 1] - ) (10.7)
and
®o(t,0) — 1 + €”E [0] Gia
= Elo] (¢ - 1)1 - ) Fo(t,0) + (" - 1))
+E|[o] (e"tP G>t+1]-IPE > +(PE >t -Pe>t+ 1]))

= Elo](1-e? ((e" ~1)Fp(t,6) + ¢ — LEHIP G > t]) : (10.8)

We are now ready to conclude: Substitute (10.7) and (10.8) into (10.2) we get
(5.14) after some simple algebra. [ ]
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