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 The objective of this thesis research was to determine the pathways of glucose 

metabolism and utilization in small and large egg embryos during the latter half of 

development, and whether in ovo nutrient supplementation alters glucose use. A 

further objective was to determine the contribution of glutamate, glutamine and 

glycerol to glucose, glycogen and non essential amino acid (NEAA) synthesis during 

embryo development. In ovo stable isotope ([U-13C]glucose, [U-13C]glutamate, [U-

13C]glutamine and [U-13C]glycerol) injection approaches were developed along with 

mass isotopomer distribution analysis of metabolic intermediates and end-products to 

acquire a metabolic phenotype of the fluxes and partition of these substrates through 

central pathways. Embryos developing in small and large eggs maintained similar 

rates of glucose metabolism. Thus, glucose entry and utilization gradually increased 

from day 12 to 18 embryonic. By embryonic day 20, gluconeogenesis accounted for 

>80% of glucose entry, a part (65%) of which was represented by glucose carbon 



  

recycling. Glutamate and glutamine were not found to be significant gluconeogenic 

precursors in day 19 embryos. However, catabolism of these amino acids contributed 

to ~25% of proline flux in the liver. By contrast, there was significant [M+3] 13C-

isotopomer abundance in blood glucose and in liver and muscle glycogen when [U-

13C]glycerol was injected in ovo.  These observations clearly confirmed that glycerol 

derived from triacylglycerides is a significant precursor for glucose and glycogen 

synthesis. In ovo supplementation on day 9 embryonic of glucose and/or amino acids 

(5 non-essential amino acids) did not alter gluconoegenesis. However, these 

supplemental treatments significantly reduced catabolism of glucose via glycolysis. 

13C-Mass isotopomer abundances of most substrates differed when each was 

individually compared in blood and in the various tissues, indicating differences in 

substrate utilization between tissues. In summary, this thesis research has provided 

new information on the degree and pathways of nutrient (glucose, glycerol, amino 

acids) use by the developing embryo and the rapid adjustments in the activity of 

networks of enzymes involved in non-essential amino acid, glucose and glycogen 

metabolism to support embryo survival. Most importantly, this work has 

systematically evaluated the potential substrates that the embryo utilizes for glucose 

synthesis, in particular, the significant role of glycerol.  
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INTRODUCTION 

During the first week post hatch, large losses in poultry productivity occur due to 

high mortality rates, reduced weight gain and low feed efficiency ratios (Fanguy et al., 

1980; Hager and Beane, 1983). Two of the most important factors determining optimal 

development of late term embryos and growth of chicks are: 1) nutrient availability and 

reserves in ovo and 2) the metabolic transitions in ovo just prior to hatch. This doctoral 

dissertation investigated the metabolic transition in macronutrient utilization in chicken 

embryos during the last half of incubation (day 12 to 20). 

 Chicken embryos develop in a ‘fixed’ nutrient environment from the time of 

laying to the time of hatching. On a dry matter basis, the egg contains 45% lipids, 47% 

protein and less than 3% carbohydrates (Romanoff and Romanoff, 1967). The metabolic 

machinery of the developing embryo is geared towards amino acid and lipid metabolism 

for tissue protein synthesis and energy production. However, towards the later stages of 

incubation (~ day 18), the embryo begins to adjust its metabolism for utilization of 

exogenous carbohydrates and proteins derived from feed sources post hatch. This 

metabolic transition involves a progressive increase in the use of glucose carbon as an 

energy source and also gradual up-regulation of the lipogenic machinery in the liver. The 

degree to which the gastrointestinal tract (GIT) is developed, the content of the residual 

yolk at hatch and energy reserves (glycogen stores, subcutaneous fat depots) are vital in 

aiding the metabolic shift from in ovo to post hatch development. Various post hatch 

management practices, for example delayed access to feed and water, also negatively 

impacts this transition process (Fanguy et al., 1980).  
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 Previous research would suggest that the enzyme and transport systems for 

carbohydrate metabolism (disaccharidases, Na+- D-glucose co transporter) are well 

developed at the time of hatch (Chotinsky et al., 2001). By contrast, carbohydrate 

absorption from the GIT does not begin to increase until 2-3 days post hatch (Noy and 

Sklan, 1999a; 2001). Furthermore, in ovo delivery of nutrients (glucose, amino acids, and 

peptides) has been shown to have a positive effect on body weight and GIT maturation 

and on nutrient reserves at hatch (Coles et al., 1999, 2003; Ohta et al., 1999; Tako et al., 

2004). Similarly, chicks hatched from larger eggs perform better and have higher 

glycogen stores and subcutaneous fat depots than those hatched from smaller eggs (Uni et 

al., 2005; Speake et al., 1998). These observations suggest that nutrient availability in 

ovo may be ‘limiting’ and this in turn could lead to delays in the metabolic transition for 

digestion and metabolism of exogenous feed nutrients.  

Overall Aim of Research: 

 The overall aim of this research project was to define the macronutrients utilized 

in central pathways of metabolism during the latter half (day 12 to 20) of chicken 

embryonic development and to determine the substrate fluxes in response to in ovo 

supplementation of nutrients. 

Research Hypothesis: 

 We hypothesized that chicks from small eggs perform more poorly compared to 

chicks from larger eggs because of their limited supplies of specific macronutrients 

during embryonic development.  
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 As a consequence, the nutrient deficient environment of the smaller eggs results 

in a competition for three-carbon substrates for energy and tissue protein synthesis (e.g. 

non essential amino acid synthesis). Thus, we expected higher rates of gluconeogenesis 

and an increased flux of amino acid carbon through the Krebs cycle in the embryonic 

chicks from small eggs. In turn, this will limit the availability of amino acids for tissue 

growth, glycogen synthesis and for synthesis of other vital substrates (e.g. nucleic acids).  

 It is further hypothesized that supplementation of nutrients in ovo will alleviate 

competition for three-carbon substrates and spare glucose and/or amino acid carbon for 

glycogen synthesis and conserve yolk lipids. 

 Despite the vast amount of data on the profiles of gene expression during 

embryogenesis, there is a paucity of information on the types and fluxes of nutrients 

through metabolic pathways that are the end-product (metabolic phenotype) of changes in 

gene expression. Further, with more and more evidence supporting the concepts of whole 

animal integrative metabolism and that metabolic control is distributed across related 

pathways (Veech and Fell, 1996, Fell, 1998), the determination of macronutrient 

requirements can only be defined once we have a thorough knowledge of the composition 

of substrates contributing to the metabolic phenotype of the animal at different 

physiological states. 

 In recent years, several groups, including our laboratory, have used universally 

labeled stable isotope carbon tracers (e.g. [U -13C]glucose, [U -13C]amino acids) as 

specific and general metabolic probes which has allowed the central and intersecting 

pathways of metabolism to be defined at the tissue (cellular) level (Tserng and Kalhan, 

1983, Katz et al., 1989, Wykes et al., 1998). Employing this approach, it has proven 
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possible to determine the proportional contribution of specific macronutrients to major 

metabolic pathways such as gluconeogenesis, Krebs cycle fluxes, oxidation via acetyl-

CoA and non-essential amino acid and fatty acid synthesis. In this approach, 13C-mass 

isotopomer distribution analysis is conducted on primary and secondary substrates of the 

central pathways, namely the Krebs cycle, gluconeogenesis and fatty acid metabolism. 

Thus, glucose, amino acid and fatty acid metabolism can be described in detail to provide 

information on the fluxes and metabolic organization in vivo. In consequence, the ability 

to predict changes in nutrient utilization by metabolic pathways in response to changes in 

nutrient supply (e.g. in ovo injection) and genetic selection will be possible so that the 

production potential of animals can be optimized. 

Specific Experimental Objectives 

1. Experiment 1: The objective was to determine the composition of macronutrient 

fluxes through the central pathways of metabolism in developing chick embryos 

(day 12 to 18 of incubation) using [U -13C]glucose tracer. This study tested the 

hypothesis that small eggs are nutrient limited compared to large eggs and thus 

small eggs compensate by having a higher rate of gluconeogenesis. Further, this 

study determined the relative contribution of glucose carbon towards non-

essential amino acid synthesis (NEAA) and Krebs cycle metabolism from day 12 

to 20 of incubation (Chapter 2). 

2. Experiment 2: The objective was to determine the influence of in ovo nutrient 

supplementation (glucose, amino acids) on partitioning of nutrient fluxes through 

central metabolic pathways using a [U -13C]glucose tracer. This study tested the 

hypothesis that in ovo supplementation of glucose and/or amino acids increases 
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glucose synthesis and spares glucose from catabolism for energy and NEAA 

synthesis (Chapter 3). 

3. Experiment 3: The objective was to determine the contributions of glutamate and 

glutamine to gluconeogenesis, NEAA synthesis and energy metabolism in late 

term (day 19) chicken embryos using [U-13C]glutamate and [U-13C]glutamine 

tracers. This study tested the hypothesis that the contributions of glutamate and 

glutamine to gluconeogenesis and NEAA synthesis will be reduced in small 

versus large egg embryos because of the central roles these two amino acids serve 

in nitrogen exchanges and nucleic acid synthesis (Chapter 4). 

4. Experiment 4: The objective was to determine the contribution of glycerol to 

gluconeogenesis and NEAA synthesis in developing chicken embryos using [U -

13C]glycerol tracer. This study tested the hypothesis that glycerol is the major 

precursor for gluconeogenesis and that a larger proportion of glucose synthesis 

derives from glycerol in small compared to large egg embryos (Chapter 5). 
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CHAPTER 1: LITERATURE REVIEW 

The Avian Egg 

The avian egg is a package of all essential nutrients required for development of 

the embryo into a viable chick. An egg weighing 60 g comprises, on average, 6.5 g of 

shell (11%), 18.5 g yolk (31%) and 35 g of albumen (58%) by weight. The egg yolk 

accounts for 99% of the lipids and 60% of the protein present in an egg. However, eggs 

contain very little carbohydrate (<3%), 70% of which is in the albumen. Further, ~56% of 

the carbohydrate present in albumen is protein-bound (Romanoff and Romanoff, 1967). 

The nutrient distribution in yolk and albumen is summarized in Table 1. The proportion 

of yolk to albumen varies with breed and age of the flock, egg size, maternal nutrition 

etc. For example, broiler breeders had a higher yolk: albumen ratio (0.515) compared to 

that of commercial layers (0.401; Harms and Hussein, 1993). Yolk to albumen ratio was 

also found to be higher in 55 week old hens (0.63) compared to 36 week old hens (0.47; 

Applegate and Lilburn, 1996). The nutritional and metabolic implications of an altered 

yolk: albumen ratio (Peebles et al., 2000; Vieira and Moran, 1998) on embryonic growth 

and development is not clear. 

Dynamics of Avian Embryo Development  

Subsequent to the establishment of the embryo during the first third of incubation, 

a series of synchronized events occurs within the egg until hatch. The incubation 

temperature and humidity have a profound effect on the evolving developmental patterns 

during the course of incubation and also on egg weight loss due to evaporation. Thus, 

lower the humidity, higher the weight loss during incubation (Murray, 1925). With 45% 

lipids, 47% protein and less than 3% carbohydrates (on a dry matter basis) at incubation,  
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Table 1.1: Nutrient composition of an egg* 

Nutrients (%) Yolk (31%) Albumen (58%) 

Energy (kcal/100g) 

Water 

Protein 

Carbohydrates 

Lipids 

        Cholesterol ester 

        Triglyceride 

        Free fatty acid 

        Free cholesterol 

        Phosphoglyceride 

Inorganic elements 

352  

47.5 

17.4 

0.2 

33 

0.8 

71.4 

0.9 

5.6 

20.7 

1.1 

48 

88.5 

10.5 

0.7 (50% bound) 

0.02 

- 

- 

- 

 

 

0.6 

 
                            * Burley and Vadehra, 1989; Deeming and Ferguson, 1991. 
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the developing embryo must selectively utilize the available nutrients for 

gluconeogenesis and energy metabolism. After a period of initial anaerobic glycolysis at 

the start of incubation, the embryo switches to fatty acid oxidation for energy. This 

occurs after an active chorio-allantoic membrane is established and also with access to 

oxygen. 

During the first two weeks of incubation, embryonic tissues especially liver 

accrete proteins at a rapid rate whereas lipid content of the tissues does not increase until 

day 12-13 of incubation (Romanoff and Romanoff, 1967). Thus, amino acids are 

probably the predominant metabolic substrate utilized during the initial stages of 

development. During the first week of incubation, due to an inflow of water from 

albumen, wet weight of yolk increases steadily with a concomitant decrease in wet 

weight of albumen. The loss of solids from albumen follows a gradual course with the 

rate increasing around day 13 of incubation corresponding to its flow to the amniotic sac. 

This mixture is orally consumed by the embryo resulting in partial absorption of proteins 

by the enterocytes from this mixture. The albumen-amniotic fluid mixture also enters the 

yolk sac and this process continues until pipping begins (Moran, 2007). 

Solid loss from yolk appears to occur in two phases with the first phase occurring 

around day 5 of incubation, corresponding to an increase in solid content of sub 

embryonic space (Romanoff and Romanoff, 1967). The second phase corresponds to 

utilization of yolk lipids for energy production from embryonic day 15, which has been 

predicted to supply 90% of the energy requirements of late term embryo (Turro et al., 

1994).  
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Nutrient Metabolism in Developing Chicken Embryo 

Glucose Metabolism 

  Glucose available in the egg at incubation plays an important role in the 

initiation of embryonic development and further as an energy substrate via anaerobic 

catabolism (Moran, 2007). This results in production of lactic acid, which may serve as a 

gluconeogenic precursor.  Plasma glucose can be detected as early as day 4 of incubation 

and increases steadily across incubation. Plasma glucose concentrations increase from 6 – 

8 mM early during embryonic development to 10 – 12 mM at two to three weeks post 

hatch (Hazelwood, 1971).  

The low amounts of glucose in the egg at the start of incubation and the 

subsequent steady increase in blood glucose concentration implies that gluconeogenic 

pathways are active from early in embryo development. Gluconeogenic enzymes, (viz. 

pyruvate carboxylase, phosphoenolpyruvate carboxykinase, glucose-6-phosphatase) 

increase in activity, reaching a peak by embryonic day 17-20 and decreasing thereafter 

(Pearce, 1977). Gluconeogenic activity in the embryo versus the hatchling appears to be 

regulated by localization of the rate limiting enzyme phosphoenolpyruvate carboxykinase 

(PEPCK), which can be expressed in the mitochondria or cytosol, or both. Thus during 

embryonic development, cytosolic form of PEPCK may predominate with the 

contribution of Krebs cycle intermediates (lipids, amino acids) higher towards de novo 

gluconeogenesis (Brady et al., 1979).  Glucose synthesis primarily occurs in liver which 

can produce glucose both by gluconeogenesis and glycogenolysis. The contribution of the 

kidney to gluconeogenesis ranges from 5-50% (Corssmit et al., 2001) and is significant 

during periods of nutrient deprivation or prolonged fasting. A distinct distribution of 
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PEPCK isoforms was also observed in the liver and the kidney of day old chicks with the 

mitochondrial form predominating in the liver and the cytosolic form in the kidney 

(Watford et al., 1981). 

Glucose can be metabolized through glycolysis, pentose phosphate pathway, 

UDPG glycogen synthetic pathway or uronic acid pathway. The relative significance of 

these pathways varies with stage of incubation, with uronic acid pathway being active 

during first week of incubation and glycolytic pathway later during incubation. In 

general, glycolysis and the activities of glycolytic enzymes increase with embryonic 

development thus preparing the embryonic metabolism to utilize a high carbohydrate diet 

post hatch (Pearce, 1977). Goodridge, 1968 demonstrated that glucose oxidation in 

embryonic (day 16 to hatch) liver slices were low. However the oxidation rates were 

found to be 20 times greater in liver slices from 4-wk old chicks.   

Pentose phosphate pathway is not known to play any major role in degradation of 

glucose during embryonic development except during the initial stages of incubation. 

Pentose phosphate pathway may be more important in providing pentose units towards 

nucleic acid biosynthesis, while most of the NADPH supplies come from malic enzyme 

activity (Hazelwood, 1971).  

The role of other carbohydrates in the intermediary metabolism of the embryo is 

not well known. Even though fructose, galactose, xylose and arabinose are known to be 

absorbed from intestines of chicken, the relative amounts in comparison with glucose are 

very low.  

Tissue Glycogen Storage. Hepatic glycogen starts accumulating early (day 6) 

during embryonic development (by the uronic acid pathway), peaks by day 12, declines 
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to 50% by day 13 and then increases to over 400% by day 18 (Hazelwood, 1971). The 

small drop at day 12 is attributed to the increase in activity of thyroid hormones and/or 

epinephrine. This glycogen store has been proposed to be a vital source of energy for the 

hatchling and by the first day of life heart and liver glycogen drops to 40% and 16% 

respectively of pre hatch levels (Freeman, 1969). Glycogen stores are especially 

important at hatch to provide glucose for energy through anaerobic glycolysis as the 

amount of oxygen available at this stage is limited until the onset of pulmonary 

respiration (Moran, 2007). Various authors have also reported a positive correlation 

between glycogen reserves in various tissues and body weight at hatch (John et al., 1988; 

Christensen et al., 1999; Christensen et al., 2001), the reason being attributed to sparing 

catabolism of muscle protein for energy (Uni et al., 2005).  

Amino acid Metabolism 

The embryo utilizes amino acids from the egg contents for tissue accretion at a much 

higher rate during the latter half of incubation. Even with a high rate of amino acid 

accretion by the embryo during the final stages of incubation, a significant amount of 

both essential and NEAA remain unused in the egg by day 19 of incubation (Figure 1.1). 

However, during the final stages of incubation, concentrations of certain amino acids in 

the egg (e.g. Glycine, Proline; Figure 1.2) do not seem sufficient to support embryonic 

development (Ohta et al., 1999). Thus synthesis of these amino acids must occur from 

other substrates, the potential candidates being glutamate and glutamine in the case of 

proline. 

Apart from protein synthesis, amino acids can be synthetic precursors for 

gluconeogenesis. This has been demonstrated in various species (Yeung and Oliver, 
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1967; Mallette et al., 1969; Heitmann et al., 1973) with glutamate, glutamine, alanine and 

aspartate being the major contributors followed by glycine, serine and threonine (Lobley, 

1992). Amino acids also play a variety of roles in different tissues which include: 

Nitrogen shuttling between tissues, Ammonia metabolism, Nucleotide synthesis and 

Substrates for energy metabolism. However our knowledge of embryonic amino acid 

utilization for different purposes is very limited. 

Lipid Metabolism 

During embryonic development, the respiratory quotient stays around 0.7 

confirming the fact that 90% of energy requirement of the embryos is derived from 

oxidation of yolk lipids (Sato et al., 2006). During the latter half of incubation, lipids are 

preferentially absorbed from the yolk contents, as evidenced by a decrease in percentage 

of lipids in the yolk (65% on day 13, 44% on day 21; Deeming and Ferguson, 1991). This 

preferential fatty acid utilization could be sparing protein and carbohydrate use for 

biosynthetic purposes at the same time providing twice the energy per unit weight for 

metabolism. Lipid modifications in the yolk sac membrane could also provide glycerol 

moieties as a potential gluconeogenic precursor.  

During initial stages of incubation, the yolk sac membrane and the embryo take 

up only relatively small amount of yolk lipids. However, during the latter stages of 

incubation, (after day 13) uptake of yolk contents into the embryo increases significantly 

(Figure 1.3). In fact, lipid uptake by the embryonic liver has been shown to increase 

significantly between day 15 and 18 of incubation, accounting for a 15% increase in liver 

weight (Peebles et al., 1999). This is visually evident due to the yellowish, greasy texture 

of the liver just prior to hatch and in day old chicks. 
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Figure 1.1: Amino acid content in the egg and the developing chicken embryo at 
different stages of incubation (Adapted from Ohta et al., 1999). 
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Figure 1.2: Proline utilization by the developing chicken embryo between day 14 and day 19 of 
incubation (Adapted from Ohta et al., 1999). 
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Intact lipid droplets are engulfed by the yolk sac membrane by phagocytosis. 

Within the yolk sac membrane there is extensive hydrolysis and re-esterification of lipid 

droplets before assimilation by the embryo. Once the lipid enters the embryo, it is broken 

down to free fatty acids by the action of lipoprotein lipase. Lipoprotein lipase expression 

is highest in adipose tissue followed by heart and muscle and very low in liver and brain. 

During the latter half of incubation, subcutaneous fat depots start appearing and it is 

estimated that 25 % of yolk lipids are stored in the subcutaneous adipose tissue of the 

embryo. These provide a source of energy for hatching. Large egg embryos are found to 

accumulate more subcutaneous fat compared to small egg embryos (Speake et al., 1998).  

As the embryo develops in a high fat environment, lipogenesis is very low. This 

rapidly changes upon consumption of dietary nutrients, at which point the activity of 

lipogenic enzymes in the liver increase rapidly (Pearce, 1971). Contrary to mammalian 

fatty acid synthesis, which takes place in both liver and adipose tissue, avian liver 

accounts for 90 – 95% of de novo fatty acid synthesis. 

Nutrient Metabolism in the Post hatch Chick 

Newly hatched chicks are fed a starter diet with greater than 30% carbohydrates. 

Upon consumption of this high carbohydrate diet, the activities of glucogenic and 

glycogenic pathways begin to decline. This is in contrast to the mammalian neonates 

where gluconeogenesis and glycogen synthesis peak after birth. In newborn chicks, 

excess glucose is thus rapidly incorporated into fatty acids in the liver and this increase 

during the first 6-7 days after hatching. This is concomitant with an increase in activities 

of lipogenic enzymes, acetyl-Co A carboxylase, fatty acid synthetase, ATP citrate lyase 

and malate dehydrogenase (Pearce, 1977). Numerous factors, including residual yolk  
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Figure 1.3: Transfer of yolk contents to the yolk sac membrane and to the developing 
chicken embryo with advancing stages of incubation (Adapted from Deeming and 
Ferguson, 1991). 
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content, levels of pancreatic and intestinal enzymes, maturity of the GIT, nutrient 

transporters, exogenous nutrient intake and digestibility affect early growth rate of 

hatchlings. 

Residual Yolk 

The residual yolk contains 50% lipids and accounts for 20 – 30 % of the chick’s 

body weight at hatch (Noy et al., 1996). It is considered it to be the primary energy 

source for the neonatal chicks, with 90% being utilized within the first two days of hatch. 

The residual yolk is utilized via two routes: 1) transfer to the bloodstream via endocytosis 

of lipid droplets and 2) transfer to the intestines via the yolk stalk (Noy and Sklan, 1998). 

The presence of feed nutrients in the GIT promotes the transfer of the residual yolk to the 

intestinal lumen. By contrast, in fasted chicks, the residual yolk is not transferred to the 

intestinal lumen (Noy and Sklan, 2001). In addition to acting as an energy source, the 

residual yolk is suggested to have other functions, including transfer of maternal 

antibodies to the newborn and maturation of GIT. Therefore, utilization of yolk 

components as an energy source in fasted chicks may in turn be compromising the 

development of the immune system and digestive tract.  

Enteric Development 

Enteric development during the perinatal period (embryonic day 18 to post hatch 

day 4-5) is one of the most investigated aspects of nutrient utilization in poultry. Most of 

the research has involved characterization of intestinal morphology, measurements of 

specific activities and mRNA expression of the enzymes involved in carbohydrate 

digestion. Sklan et al. (2003) observed sucrase-isomaltase mRNA expression by 
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embryonic day 15, which peaked at day 19 and decreased considerably at hatch before 

again slowly increasing in expression post hatch. Concurrently, a parallel pattern of Na+- 

D-glucose cotransporter (SGLT-1) mRNA expression was observed beginning at 

embryonic day 19 (Uni et al., 2003). The authors suggested that SGLT-1 expression 

immediately post hatch may limit the uptake of glucose from the small intestines. In 

general, disaccharidase (maltase, lactase etc) activities peaked by embryonic day 18 and 

decreased after hatch (Chotinsky et al., 2001). Furthermore, the activity of trypsin, 

amylase and lipase increased only upon ingestion of exogenous feed and did not change 

in starved chicks (Sklan and Noy, 2000). Rapid physical (length, surface area) and 

morphological changes (enterocyte proliferation and migration) occur during the 

perinatal period and have been suggested by various authors to be more limiting than the 

enzyme systems (Nitsan et al., 1991; Ritz et al., 1995). 

 

Post hatch Nutrient Uptake 

Maximum utilization of nutrients post hatch depends on a variety of factors 

including the nutrient reserves available to the hatchling (e.g. glycogen, residual yolk), 

access to feed, maturity of GIT, and nutrient content of the diet. Sulistiyanto et al. (1999) 

observed an increase in metabolizability with dextrin, starch and casein from day 1 to 10 

post hatch and concluded energy utilization to be age dependent. This age dependency 

could be contributed to the immature pancreatic and brush border enzyme systems and/or 

lack of sodium for the co-transporters (Noy and Sklan, 1999). Further, glucose and 

methionine absorption increased only 24-48 h post hatch and absorption rates of 

methionine, glucose and oleic acid were higher in fed hatchlings compared to fasted ones 
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(Noy and Sklan, 1999a; 2001). Oleic acid absorption is elevated in day-old hatchlings 

and does not change with age. High proline to glucose uptake ratios was also observed in 

chicks immediately post hatch, which may suggest the importance of amino acids as 

metabolic fuels (Obst and Diamond; 1992). 

Hormonal Regulation of Embryo Metabolism  

The endocrine system starts developing very early during incubation, with 

hormone producing cells in pituitary, hypothalamus and pancreas appearing between 3-8 

days of incubation. There is a close association between hormone levels and the changing 

metabolic patterns throughout incubation. 

 Plasma insulin increases from 130pg/ml at day 10 to 389 pg/ml at 16 days of 

incubation. During the later stages of embryogenesis the insulin levels showed two peaks 

with a peak of 460 pg/ml on day 17 and a second peak of 488 pg/ml at hatch (Lu et al., 

2007). Insulin reduces glycogenolysis and incorporates glucose molecules into glycogen. 

Hyperaminoacidemia or leucine, isoleucine, lysine, phenylalanine or arginine perfusion 

into the liver increases insulin release in various species suggesting glucose and amino 

acids promote insulin release in identical ways (Floyd et al., 1966; Hohlweg et al., 1999).  

Glucagon levels increase from 59 pg/ml at 10 days of incubation to 428 pg/ml at 

hatch (Lu et al., 2007). At around 13-14 day of incubation glycogen levels drop suddenly 

and again increase rapidly by day 18 of incubation. This sudden drop is thought to be due 

to the sudden increase in the circulating levels of glucagon and/or epinephrine and also 

due to release of pituitary thyroid stimulating hormone and its target hormone, thyroxine 

(Hazelwood, 1971). Glucagon decreases hepatic glycogen levels by activating the 



 

 20 
 

enzyme glycogen phosphorylase. In adipose tissue, glucagon mobilizes glycerol and fatty 

acids, and this action is potentiated by insulin.  

The insulin to glucagon ratio from 14 to 17 days of incubation ranged from 1.7 to 

2.2, which is significantly greater than normal insulin to glucagon ratio in the post-hatch 

chicks (1.2-1.7). Thus insulin seems to be an important promoter of chick embryo growth 

by promoting protein deposition during the rapid growth period (Lu et al., 2007). 

Catecholamines can be detected as early as 9 days of incubation, and the levels 

increase progressively for the next 12 days. Noradrenaline is the dominant partner during 

incubation whereas the ratio predominantly changes to adrenaline at hatch and in post 

hatch chicks implying its primary role in metabolic functions like glycogenolysis. Even 

though adrenaline has the same metabolic effects as that of glucagon, it is less potent in 

chicken compared to rats.  

Corticosteroids increase lipogenesis and gluconeogenesis in the liver and also 

increase glycogen deposition. Circulating levels of corticosteroids can be detected from 

day 9 in ovo with plasma glucocorticoid showing two distinct peaks, one at day 14 

(contains both cortisol and corticosterone) and one immediately before hatch which 

contains principally corticosterone (Jenkins and Porter, 2004).  

The thyroid hormone triiodothyronine increased significantly at pipping and hatch 

after remaining relatively unchanged during incubation. Thyroxine, after a gradual 

increase up to day 16, showed a rapid increase up to day 19 (Lu et al., 2007).   

Substrate Selection for Metabolism 

Selection of a substrate for a metabolic process depends on its availability, 

localization and compartmentalization of the pathway enzymes in the tissue of interest, 



 

 21 
 

the physiological status, etc. Depending on these factors, a wide variety of metabolites 

can act as substrates for a synthetic or degradative pathway. Further, in the fed state, an 

active GIT can alter the profile of the metabolites appearing in the portal blood from the 

luminal side. For example, most of aspartate, glutamate etc in the diet is oxidized by the 

gut tissues. These amino acids have to be de novo synthesized for utilization by 

peripheral tissues (Stoll et al., 1999; El-Kadi et al., 2006).   

With respect to gluconeogenesis, lactate, gluconeogenic amino acids and 

triglyceride glycerol are all potential substrates for gluconeogenesis. The relative 

contributions of these substrates at different stages of embryonic growth are not well 

defined. However, lactate concentrations are high at the start of incubation and prior to 

hatch due to anaerobic glycolysis (Moran, 2007), thus making it a good candidate to 

donate carbons for glucose synthesis at these stages. Glutamate and glutamine are central 

to intermediary metabolism and can donate their carbons towards gluconeogenesis, non-

essential amino acid synthesis and other functions (e.g. glutathione synthesis, Krebs cycle 

metabolism etc). They together comprise ~14% of egg protein (1.2 g, Ohta et al., 1999). 

Further, the role of glutamine and glutamate in the proliferation and differentiation of 

intestinal mucosa and as an oxidative fuel is widely acknowledged (Windmueller and 

Spaeth, 1974; Wu, 1998; Reeds and Burrin, 2001). 

Substrate preference also varies with the tissue concerned. Brady et al., (1979) 

found lactate to be the greatest contributor to gluconeogenesis in isolated chicken 

hepatocytes, followed by pyruvate, dihydroxyacetone, glyceraldehydes and fructose. In 

kidney, however, the major metabolic substrates were found to be amino acids and 

glycerol (Watford et al., 1981, Magnuson et al., 2003). As a further illustration of tissue 
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substrate preference; branched chain amino acids which can constitute up to 50% of the 

non-dispensable amino acids in the diet do not undergo extensive degradation in the liver 

and are extensively oxidized by the peripheral tissues (muscle; Harper et al., 1984). 

Factors Affecting Macronutrient Utilization 

The avian embryo is solely dependent on the macronutrient content of the egg to 

meet its metabolic requirements. A variety of factors contribute to the relative utilization 

of these macronutrients for energy and tissue synthesis. These include egg size and 

composition, breeder age, nutrient supplementation, maternal nutrition, turning of eggs 

during incubation, etc. A clear understanding of how these factors affect the metabolic 

organization and regulation should provide a framework for predicting growth responses 

when dietary nutrient supply and composition are altered.   

Egg size, Composition and Breeder Age 

Egg size has a positive effect on body weight at hatch and subsequent growth rate 

of hatchlings; however this correlation decreases with increasing chick age (Applegate et 

al., 1999; Applegate and Lilburn, 1999). Small eggs have a greater proportion of albumen 

than yolk and large eggs have more yolk than albumen (Vieira and Moran, 1998).  

Further, yolk deposition in the egg increases with breeder age (Peebles et al., 2000). 

Lourens et al., (2006) found a larger proportion of the egg’s energy content left in the 

residual yolk sac of embryos from large eggs and concluded that this is due to the surplus 

nutrient milieu of large eggs.   
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Nutrient Supplementation 

In ovo administration of nutrients has been found to accelerate embryonic enteric 

development and increase body weight at hatch (Coles et al., 1999, 2003; Ohta et al., 

1999; Tako et al., 2004). It has been hypothesized that the reason for the improvements in 

chick growth relates to the greater maturity of the GIT at hatch which, in turn, supports 

higher rates of nutrient absorption. Uni et al. (2005) found significantly higher glycogen 

reserves, increased weight at hatch and increased breast muscle size following in ovo 

supplementation on day 17.5 of incubation with a solution containing maltose, sucrose, 

dextrin, and β-hydroxy-β-methylbutyrate. They attributed the improved energy status of 

in ovo fed embryos to reduced muscle protein mobilization for gluconeogenisis. In ovo 

injection of an amino acid mixture increased the crude protein content of the day 19 

embryos (Ohta et al., 1999). However, in ovo administration of amino acids, 

carbohydrates or peptides gives very similar growth responses. Thus, these external 

nutrients may be altering fluxes through metabolic pathways, thereby alleviating 

competition for three carbon units and sparing essential nutrients (amino acids or 

glucose) for tissue synthesis.   

Integration of Macronutrient Metabolism 

The central pathways of carbohydrate, amino acid and lipid metabolism intersect 

with great regularity with resulting exchange of carbon skeletons (Figure 1.4). Thus it is 

apparent that there is extensive nutrient flux through connected pathways that ultimately 

determines the availability of a nutrient for tissue needs. Not surprisingly, many of these 

pathways have a high degree of metabolic flexibility that allows the cell, tissue and 

animal to alter the choice of substrates depending upon the prevailing nutrient 
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environment (e.g. fed vs. fasted) or stage of development (e.g. in ovo vs. post hatch). An 

example of the flexibility of metabolic pathways is demonstrated by the fact that  2-day-

old chicks, when starved for 48 hours appear to conserve glucose carbon by lowering 

carbon flux through pyruvate dehydrogenase and, instead increasing the oxidation of fatty 

and amino acids (Sunny et al., 2004). Embryonic metabolic machinery undergoes a 

transition from utilizing amino acids and fat for gluconeogenesis to utilizing dietary 

carbohydrates and proteins for lipogenesis post hatch (Pearce, 1977, Noy and Sklan, 

1997). 

A further point which needs consideration in this regard is that nutrient needs of 

the whole animal are an integration of the metabolic needs of different tissues and organ 

systems. In that sense, individual tissue substrate utilization through central pathways of 

metabolism has to be considered. The rate of flux of a particular nutrient through these 

pathways may differ between tissues depending on nutrient availability, developmental 

stages or the physiological stages. In post hatch chicks, PEPCK is predominantly 

mitochondrial in liver. However in kidneys, a significant portion of PEPCK is found in 

cytosol and this portion can go up from 21% in fed chicks to 40-50% in fasted chicks. 

This difference in the PEPCK isoforms allows the liver and kidney to utilize different 

substrates, lactate and amino acids respectively for gluconeogenesis (Watford et al., 

1981). Nuclear magnetic resonance experiments with 2H2O and [13C]propionate showed a 

66% gluconeogenic flux from phosphoenolpyruvate in  mice lacking hepatic PEPCK 

(Magnuson et al., 2003). This further substantiates the flexibility of tissues in maintaining 

glucose homeostasis. 
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More and more scientific evidence is being generated suggesting that ‘true’ rate 

limiting steps in metabolic networks may be seldom present. Metabolic control analysis 

suggests that the control of flux is most likely distributed across numerous enzymes and 

thus altering a single enzyme does not affect the flux of a metabolite even though it may 

affect its concentrations (Veech and Fell, 1996, Fell, 1998).  Thus we have to look at a 

pathway as a whole to understand its nutrient or genetic regulation.  

Metabolic Investigations 

Various approaches have been used to investigate substrate utilization and net 

fluxes through different pathways of metabolism at the tissue or whole animal level. 

These include use of stable isotopes (2H2O, 13C-lactate, 2-13C1-glycerol, U-13C6-glucose 

etc), radio isotopes (3-14C-lactate, 3-14C-alanine, 2-14C-acetate), liver biopsy, splanchnic 

catheterization and arterial-venous concentration difference and 13C-NMR (Nuclear 

magnetic resonance).  Even though these methods have provided a wealth of information 

in recent years, they have limitations. The following are some of the limitations of the 

methods mentioned above; 

1. Radioisotopes, in addition to being radioactive provide only a measure of total 

radioactivity compared to stable isotopes which provide the specific activity of the 

chemical mass which is a direct measure of its enrichment (Rennie, 1999).   

2. Most of the compounds labeled at one or two specific carbons or hydrogens (e.g. 2- 

13C1-glycerol, 1, 2-13C2-glucose) may only provide information about a single 

pathway or metabolite, whereas uniformly labeled compounds provide a profile or 

metabolic signature of multiple pathways (Bequette et al., 2006).  

 



 

 26 
 

 

 

Figure 1.4: Integration of Macronutrient metabolism through central pathways of 
metabolism including glycolysis, Krebs cycle and fatty acid oxidation. 
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3. Measuring glucose turnover with 2H2 tracers will result in an over estimate due to futile 

cycling, where as 13C tracers give an under estimate due to recycling (Kalhan,1996).  

4. NMR, with its numerous advantages in determining the detailed structural information 

of a compound, is however plagued by low sensitivity and high operating costs.  

Mass Isotopomer Distribution Analysis with Stable Isotopes 

Investigation of metabolic pathways and measuring nutrient fluxes using stable 

isotopes has contributed immensely to our knowledge of intermediary metabolism. 

Advances in mass spectrometry have increased the precision and sensitivity with which 

these measurements can be made. Some of the advantages of using stable isotopes in 

metabolism research are: a. non radioactive (safe to use in infants and pregnancy) b. with 

sufficient enrichment, stable isotopes can be traced for a long time as they do not decay 

over time c. samples can be stored indefinitely d. multiple labels can be used 

simultaneously to measure pathway fluxes e. relatively easy to determine the position of 

the label (Reeds et al., 1997; Coggan, 1999). 

Coupled with mass isotopomer distribution analysis (MIDA), stable isotopes have 

been used to investigate a wide range of nutrient metabolic pathways in a variety of 

species and have provided a wealth of information (Brunengraber et al., 1997, Bequette 

et al., 2006). However, a major assumption when applying MIDA is that the precursor 

originates from a single pool, which is not always the case. Thus, the method has its 

limitations in that it provides an underestimate of the contribution of the precursor to the 

product as other substrates can also contribute to the same cause (Landau, 1999).   

To define macronutrient needs of the developing chicken embryo, we employed a 

novel in ovo [U-13C] tracer approach. [U-13C] labeled compounds (e.g. glucose, amino 
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acids, and glycerol) were administered by injection into developing eggs and before 

conducting 13C-MIDA analysis. [U-13C] labeled compounds have a definite advantage 

over other stable isotopes labeled at one or two positions in that, upon catabolism, labeled 

13C-skeletons distribute amongst several pathways, thereby providing a ‘snap shot’ of the 

metabolic profile of a particular tissue and the activity of the pathways in that tissue 

(Bequette et al., 2006).  

To demonstrate the above point, we took [U-13C] Glucose as an example. [U-13C] 

Glucose has been used in a number of studies to quantify glucose and Krebs cycle 

metabolism (Tserng and Kalhan, 1983, Katz et al., 1989, Wykes et al., 1998).  [U-13C] 

Glucose (M+6) is heavier by six mass units, and yet it is indistinguishable from unlabeled 

glucose and metabolized through and by the same pathways as unlabeled glucose (M). 

Metabolism of U-13C glucose through glycolysis and Krebs’s cycle produces specific 

isotopomer patterns (M+1, M+2, M+3 ….) in intermediates along the pathway. The 

relative labeling patterns of two intermediates can be used for deriving relative 

contributions of metabolites towards energy metabolism based on the precursor to 

product relationship.  

[U-13C] Glucose, when given in diet or introduced in ovo, undergoes metabolism 

through glycolysis to yield pyruvate (M+3; three mass units heavier). The probability of 

two uniformly labeled pyruvate combining together to form U-13C glucose is considered 

negligible. This pyruvate can either enter Krebs’s cycle as acetyl CoA (M+2) or form 

oxaloacetate (M+3) by carboxylation. The latter gives rise to phosphoenol pyruvate 

(M+3) which is then re-incorporated into glucose (M+3). The ratio of M+3 glucose and 

M+6 glucose thus provides a minimum estimate of glucose recycling. This value is an 
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under estimate due to dilutions from unlabeled carbon sources at pyruvate and 

oxaloacetate and also due to the presence of oxaloacetate-fumarate substrate cycle (Reeds 

et al., 1997). This approach has been extended to investigate the organization of 

Krebs’s cycle by MIDA (Figure 1.5). This is accomplished by monitoring the isotopomer 

patterns in Krebs’s cycle intermediates or their transamination partners (Katz et al., 1989; 

Wykes et al., 1998). The underlying assumption is equilibrium between pyruvate (3 

carbon pools) and alanine, α-ketoglutarate and glutamate and also oxaloacetate and 

aspartate.  

Simultaneously with determining the labeling of the amino acids, we can 

determine the isotopomer patterns in Krebs cycle intermediates viz. citrate, α- 

ketoglutarate, succinate, fumarate, malate and oxaloacetate. Measurement of both citric 

acid cycle intermediates and their transamination partners provides a good comparison of 

the nutrient fluxes and insights into compartmentalization of these metabolites. The 

relative labeling patterns of lower isotopomers, for example M+1, 2, 3 in glutamate after 

injection of a [U-13C] Glucose tracer also provide us with an indication of the activity of 

Krebs cycle. Thus a higher amount of labeling of M+1, 2, 3 in glutamate indicates a 

higher recycling of the tracer carbon and thus a higher activity of Krebs cycle (Reeds et 

al., 1997). 
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Figure 1.5: Mass isotopomer distribution patterns in gluconeogenic and Krebs cycle 
metabolic pathways after in ovo injection of [U-13C] glucose tracer. M+1, M+2 etc 
represents the isotopomers of each metabolite which are heavier by 1, 2, etc mass units 
respectively. 
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Summary 

From the available literature it is clear that macronutrient (amino acids, glucose 

and fatty acids) metabolism during embryonic development follows complex patterns of 

substrate utilization that continually must adapt throughout the incubation period. It is 

also clear that various external (e.g. environmental temperature and humidity) and 

internal (e.g. nutrient availability, hormonal changes) factors have a profound effect on 

nutrient uptake by and growth of the embryo. However, very little information exists in 

the literature to answer the following questions, 1). What are the major metabolic 

substrates for gluconeogenesis and NEAA synthesis during embryonic development?  2). 

How do the nutrient fluxes vary and adapt at these different stages of development to 

satisfy specific metabolic and tissue needs? This type of information is particularly 

important, considering that the embryo undergoes a metabolic transition from lipid (yolk) 

and protein (albumin) use during embryo development to carbohydrate (starch) and 

protein consumption and use post hatch. Research in various species has provided 

evidence regarding the integrative nature of substrate metabolism and also the flexibility 

of the metabolic pathways during various physiological states. Thus, knowledge of the 

patterns of substrate use will improve our understanding of the overall nutrient needs of 

the embryo, and by extension, the required nutrient composition of the egg contents at 

lay. In this connection, it may be possible to formulate diets for laying broilers that 

optimizes the composition of the egg contents for embryo growth and survival at hatch.  

Based on the available literature, a general hypothesis that the nutrient deficient 

environment of the smaller eggs results in a competition for three-carbon substrates for 

energy and tissue protein synthesis (e.g. non essential amino acid synthesis) was 
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developed. Furthermore, it was hypothesized that small egg embryos will have higher 

rates of gluconeogenesis and an increased flux of amino acid carbon through the Krebs 

cycle thus limiting the availability of amino acids for tissue growth and glycogen 

synthesis. Thus, the embryo may possess the ability to sense changes in its nutrient 

environment and adjust the relative flux and choice of nutrients through various pathways 

of metabolism to achieve a balance between the anabolic and catabolic processes and 

maintain whole body homeostasis. This hypothesis was tested in this dissertation with 

four experiments using a novel in ovo stable isotope injection approach. This approach 

allowed us to determine the relative contributions of various classes of macronutrients to 

various pathways of metabolism (gluconeogenesis, glycogen synthesis and NEAA 

synthesis).  
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CHAPTER 2: EXPERIMENT 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GLUCONEOGENESIS AND GLUCOSE CARBON UTILIZATION IN 

EMBRYOS FROM SMALL AND LARGE CHICKEN EGGS1, 2 
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2 Presented in part at the annual meetings of the Federation of American Societies for 
Experimental Biology: April 28–May 2, 2007, Washington DC, USA [Sunny NE, 
Adamany J, Bequette BJ. 2007. Gluconeogenesis and carbon utilization in embryos from 
small and large chicken eggs.] 
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Abstract 

The objective of this study was to quantify glucose metabolism and the 

contribution of glucose to non-essential amino acid synthesis during day 12 to 18 of 

embryonic development in small and large egg embryos. [U-13C]Glucose (15 mg in 75 

µL water) was injected into the chorio-allantioic fluid of small (mean ± standard 

deviation, 51.1 ± 3.46g) and large (65 ± 4.35g) eggs for three consecutive days prior to 

tissue and blood collection on day 12, 14, 16 and 18 of embryonic development (5 

eggs/age group). Blood and liver were analyzed by gas chromatography mass 

spectrometry for 13C-mass isotopomer distribution in glucose, non-essential amino acids 

and Krebs cycle intermediates. On days 16 and 18, the weight of embryos from small 

eggs was less than that for large eggs (17.1 and 20.5 g vs. 23.4 and 26.8 g; P<0.05). For 

both small and large embryos, rates of glucose entry (0.16 to 0.92 g/d), glucose carbon 

recycling (7 to 33%) and gluconeogenesis (21 to 68%) increased (P < 0.05) from day 12 

to 18. These rates were significantly different between small and large embryos only on 

days 12 (P < 0.05) and 14 (P < 0.1) embryonic. From day 12 to 18 for both sizes of eggs, 

glucose made a small but increasing (P < 0.05) contribution to liver alanine (5 to 20%), 

aspartate (0.2 to 6%) and glutamate (0.9 to 13%) synthesis and to Krebs cycle 

intermediate fluxes. In conclusion, small egg embryos, despite their smaller size, 

maintained similar rates of gluconeogenesis compared to large egg embryos. 

Furthermore, the gradual increase in metabolic utilization of glucose during incubation 

suggests that chick embryos may be adapting their metabolism for post hatch 

carbohydrate utilization.  

Key words: In ovo, Chicken, Embryo, Glucose, Amino acid, Metabolism  
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Introduction 

The avian embryo develops in a macronutrient environment that is comprised of 

mainly lipids and proteins and with very little carbohydrates (<3%; Romanoff and 

Romanoff, 1967). This low carbohydrate content of the egg would necessitate high rates 

of gluconeogenesis by the developing embryo and this is consistent with the observation 

that the activity of key gluconeogenic enzymes increases with embryonic age (Pearce 

1971). To date, however, there have been no direct measures of the quantitative aspects 

of glucose metabolism and utilization during chicken embryonic development. 

Furthermore, because there is a high degree of connectivity between gluconeogenesis/ 

glycolysis and the Krebs cycle, glucose carbon would be predicted to be a significant 

contributor to non-essential amino acid (NEEA) synthesis, as has previously been 

observed in the neonatal humans (Miller et al., 1996).  

To date, it is clear that during chicken embryonic development glucose is not a 

significant oxidative substrate as compared to the post hatch chick where glucose 

oxidation is 20-fold greater (Goodridge, 1968). However, the embryonic metabolic 

machinery undergoes a transition during the later stages of incubation adapting from in 

ovo lipid metabolism to carbohydrate metabolism post hatch. Thus with increasing in ovo 

availability of glucose via gluconeogenesis, the contribution of glucose carbon to NEAA 

synthesis and energy metabolism also increases with embryo development.  

Egg size and the albumen: yolk ratio has been shown to correlate with body 

weight at hatch and growth rate in poults and chicks (Applegate et al., 1999; Applegate 

and Lilburn, 1999; Lourens et al., 2006). Lourens et al., (2006) concluded that the 

differences in body weight at hatch of chicks from small vs. large eggs is due to the 
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surplus supply of nutrients in the large eggs and the size of the residual yolk sac at hatch. 

Consistent with this view is the demonstration that in ovo administration of nutrients 

increased the glycogen content of the liver, accelerated embryonic enteric development 

and increased body weight at hatch (Coles et al., 1999, 2003; Ohta et al., 1999; Tako et 

al., 2004). Uni et al. (2005) hypothesized that the basis for these responses was that the 

administered glucose and amino acids reduced the catabolism of albumin derived amino 

acids for gluconeogenesis, thus sparing them for muscle and tissue protein synthesis. 

Furthermore, Speake et al., (1998) observed an increase in subcutaneous fat in large egg 

embryos compared to their smaller counterparts, and suggested that these larger fat stores 

could provide an easily available energy source during the first 1 to 2 days post hatch 

when feed intake is limited.  

The main objective of this study was to quantify glucose metabolism by small and 

large chicken embryos during the latter period (days 12 to 18) of incubation. A secondary 

objective was to determine the contribution of glucose carbon to NEAA synthesis and 

Krebs cycle metabolism.  We hypothesized that the macronutrient environment of the egg 

may be limiting for optimal embryonic metabolism and development. Thus, we predicted 

that small egg embryos would not be able to maintain the high rates of gluconeogenesis 

required for normal metabolism and glycogen synthesis compared to embryos from large 

eggs. To test this hypothesis, we developed and employed a novel stable isotope ([U-13C] 

glucose) approach in ovo to acquire quantitative rates of glucose metabolism and the 

contribution of glucose to NEAA synthesis in small compared to large egg embryos 

between days 12 and 18 of incubation. 
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Materials and Methods 

Egg Incubation and Experimental Protocol  

Fertilized eggs were obtained from Perdue Farms, Inc.(Salisbury, MD) from two 

broiler flocks of different ages, one flock 30 weeks old (small eggs; mean ± standard 

deviation, 51.1 ± 3.46g; n = 40) and the other 40 weeks old (large eggs; 65 ± 4.35g; n = 

40). Small and large eggs were incubated at standard temperature (37° C) and relative 

humidity (65%). On day 9 of incubation, all the eggs were candled for viable embryos. 

The minimum sample size required to detect a significant treatment effect with standard 

alpha (0.05) and power (80%) was determined to be five based on measured standard 

deviations of various response variables from a similar study from our lab (Sunny et al., 

2004). In order to attain a minimum sample size of 5 at each sampling time point and to 

account for potential hatchability losses (35%) due to in ovo injection procedures, 8 

viable eggs were randomly selected as a group. Four groups each from small and large 

eggs were incubated for collection on days 12, 14, 16 and 18 (blocks) of incubation.  

In ovo [U-13C]Glucose Tracer Validation 

A pilot study was conducted to determine the time-course for enrichments of 

glucose and NEAA to reach isotopic (e.g. M+2, M+3, M+6) and isotopomer (e.g. M+2: 

M+3) steady-states following in ovo injection of [U-13C] glucose. [U-13C] glucose (15 mg 

in 75 µL of sterile water) was injected into the chorio-allantoic fluid of 4 eggs of the 

similar weight starting on day 14 of incubation. The air space end of the egg was 

sterilized with 70% ethanol before piercing the egg shell. A 25 gauge needle was used to 

inject the [U-13C] glucose solution, which was deposited 2-3 mm beneath the egg shell 
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membrane into the chorio-allantoic fluid. The tracer was assumed to mix uniformly with 

the fluid compartment to which it was injected and absorbed by the developing embryo 

through the extensive chorio-allantoic capillary network. After 1, 2, 3 and 4 days of 

administering the [U-13C] glucose, one egg was removed and sampled for blood glucose 

and liver NEAA isotopomer enrichments. 

In ovo [U-13C]Glucose Injection 

One group each from small and large eggs was randomly selected on day 9, 11, 

13 or 15 for injection of [U-13C] glucose (99 atom percent 13C, Cambridge Isotope 

Laboratories, Inc., Andover, MA). Based on the pilot study, it was determined that 

isotopic and isotopomer steady state is achieved after three consecutive days of 

administering [U-13C] glucose. Thus, in the main experiment, each egg was administered 

[U-13C] glucose (15 mg in 75 µL of sterile water) into the chorio-allantoic fluid for three 

consecutive days before sample collection on the fourth day.  

Sample Collection and Analysis 

Following [U-13C] glucose injection for three days, each group of eggs was 

dissected on the fourth day to collect blood and tissue samples. Thus, a group each of 

small and large eggs was dissected on days 12, 14, 16 and 18 of incubation. After 

removing the egg shell surrounding the air cell, the egg shell membrane was carefully 

peeled off to expose the extra embryonic membranes. Whole egg contents were then 

carefully transferred to a petri-dish, taking care that the vitelline vessels (artery and vein) 

were on the top and clearly visible. Embryos were blood sampled by making a small nick 

on the vitelline vessels and blood was withdrawn into a glass pasture pipette with a 
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rubber bulb. Blood was then transferred into a 2 ml tube and frozen immediately at -20ºC 

for later analysis. Liver, intestine and muscle tissues were dissected, rinsed with ice-cold 

normal saline to remove excess blood and other debris, and transferred into 2 ml plastic 

tubes for storage at -80ºC.  

Amino Acid Enrichments 

For all blood (100 µL) and tissue (50 mg) samples, NEAA were isolated by 

cation-exchange (AG 50W-X8 resin, 100-200 mesh; Bio-Rad Laboratories, Hercules, 

CA) and amino acids eluted from the resin with 2 volumes of 2 M NH4OH followed by 

one volume of water. The eluate was freeze dried, reconstituted in 250 µL of double 

distilled water, dried under a stream of N2 gas, and amino acids converted to their 

heptafluoro-butyryl isobutyl derivatives (MacKenzie and Tenaschuk, 1979ab) prior to 

separation by GC (Heliflex® AT™-Amino acid, 25 m × 0.53 mm × 1.20 µm, Alltech). 

Selected ion monitoring was done by gas chromatography-mass spectrometry (GC-MS; 

5973N Mass Selective Detector coupled to a 6890 Series GC System, Agilent, Palo Alto, 

CA) under methane negative chemical ionization conditions. The following ions of mass-

to-charge (m/z) were monitored: Alanine 321 – 324, Aspartate 421 – 425, Glycine 307 – 

309, Serine 533 – 536, Proline 347 – 352, Glutamine 361 – 366, Glutamate 435 – 440 

and Arginine 778 – 784.  

Glucose Enrichments 

For determination of blood glucose enrichments, samples (100 µL) were acidified 

with ice-cold 15% sulpho salicylic acid (w/v) and centrifuged for 10 min at 10,000 rpm to 

precipitate proteins and other debris. The elute containing free glucose was collected after 
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passing the supernatant over 0.5g of cation exchange resin. The solution was 

concentrated by freeze drying and analysed by GC-MS for glucose enrichment after 

forming the di-O-isopropylidene acetate derivative of glucose. After separation using a 

fused silica capillary column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard) with 

helium as carrier gas, selective ion monitoring of ions with m/z 287 – 292 was performed 

with MS under electrical ionization mode (Hannestad and Lundblad, 1997).  

Glucose and Amino Acid Concentrations 

For determination of glucose and amino acid concentrations in embryonic blood, 

isotope dilution with mass spectrometry was employed (Calder et al., 1999). To a known 

weight (0.1 g) of blood was added an equivalent known weight of a solution containing 

400 mg hydrolyzed [U-13C]algae protein powder (99 atom % 13C; Martek Biosciences 

Corp., Columbia, MD), 0.874 µmol [indole-D5]tryptophan, 1.18 µmol [methyl-

D3]methionine, 1.94 µmol [U-13C]glutamate, 5.42 µmol [U-13C]glutamine, 2.15 µmol [U-

13C]arginine and 53.6 µmol [U-13C; 1, 2, 3, 4, 5, 6, 6- D7]glucose and the samples frozen 

at -20° C.  Subsequently, these samples were processed for measurement of amino acid 

concentrations by forming the tertiary-butyldimethylsilyl derivative prior to GC-MS 

under electron ionization conditions (El-Kadi et al., 2006) using a fused silica capillary 

column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard) with helium as carrier gas. 

Calibration curves were generated from gravimetric mixtures of labeled and unlabeled 

amino acids. For all the NEAA that had become 13C-labelled, a correction was made to 

account for isotopomer (M+1, M+2 and M+3) abundances. 

For determining the glucose concentrations, blood samples were processed and 

GC-MS performed as discussed above for glucose enrichments with m/z 287 and 300.  
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Enrichment of Krebs Cycle Intermediates in Liver 

After deproteinising the liver (100mg) with 1.5mL of 15% sulpho-salicylic acid 

(w/v), 5 mmol of freshly prepared hydroxylamine hydrochloride (1 mL) was added to the 

supernatant and neutralized with 2 mol/L potassium hydroxide. These samples were then 

sonicated (15 min) and allowed to react at 65º C for 1 h. The solution was then titrated to 

pH < 2 with hydrochloric acid (6 mol/L), saturated with sodium chloride and Krebs cycle 

acids extracted twice with 3 ml ethyl acetate. The organic phase was blown down under a 

stream of N2 and the tertiary butyldimethylsilyl derivative formed prior to separation on a 

fused silica capillary column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard; helium 

as carrier gas) and selective ion monitoring by MS under electrical ionization mode (Des 

Rosiers et al., 1994).  Ions with m/z were monitored: lactate 261 – 264, pyruvate 274 – 

277, succinate 289 – 293, malate 419 – 423, oxaloacetate 432 – 436 and ketoglutarate 

446 – 451. 

Calculations 

The normalized crude ion abundances for glucose, amino acids and Krebs cycle 

intermediates were corrected for the natural abundance of stable isotopes present in the 

original molecule and that contributed by the derivative 13C using the matrix approach 

(Fernandez et al., 1996). Natural isotopomer distributions in unlabelled glucose and 

amino acids were quantified from blood samples taken from embryos that had not 

received the isotopic tracer. Corrected enrichments are reported as moles of tracer (M+n) 

per 100 moles of tracee (M+0) for the calculations described below.  

Apparent glucose entry was calculated as: 

(93/ [M+6]glucose) × [U-13C] glucose injected (g/d)           (1) 
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where 93 is the isotopic purity of the [U-13C] glucose tracer. 

Glucose carbon recycling was calculated as described previously by Pascual et al. (1997). 

([M+1] + [M+2] × 2 + [M+3] × 3)/([M+1] + [M+2] × 2 + [M+3] × 3 + [M+6] × 6) 

       (2) 

where [M+n] is moles of tracer per 100 moles of tracee for blood glucose. 

The minimum estimate of gluconeogenesis was calculated as: 

([M+1] + [M+2] + [M+3]) / ([M+1] + [M+2] + [M+3] + [M+6])                        (3) 

where [M+n] is moles of tracer per 100 moles of tracee for blood glucose. 

Catabolism of glucose and glucose carbon recycling leads to the synthesis of [M+3] and 

[M+6]glucose. Thus, metabolism of these 2 glucose isotopomers leads to the synthesis of 

[M+3]pyruvate isotopomer, and subsequently [M+3]pyruvate, [M+3]alanine, 

[M+3]oxaloacetate and [M+3]aspartate. Because these [M+3] isotopomers can only arise 

from catabolism of [M+3] and [M+6]glucose, product:precursor relationship can be 

caluated to determine the contribution of glucose to alanine and aspartate fluxes as: 

[M+3]alanine or asparate / ([M+6]glucose + 0.5 × [M+3]glucose)                (4, 5) 

The assumption applied here is that the intracellular labeling of the amino acid arises only 

by synthesis from extracellular (blood) glucose and not by uptake of the labeled NEAA 

from blood (Pascual et al., 1998). 

Furthermore, the contribution of glucose to glutamate flux can be calculated as: 

2 × [M+3]glutamate / ([M+6]glucose + 0.5 × [M+3]glucose)                             (6) 

Here, [M+3]glutamate is multiplied by a factor of two because the [M+3] glutamate 

isotopomer enrichment is 50% lower as a consequence of the equilibrium reaction 
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between oxaloacetate and fumarate and the subsequent loss of half the [M+3] isotopomer 

enrichment between citrate and α-ketoglutarate (Pascual et al., 1998). 

Statistical Analysis 

After verifying the assumptions of normality and homogeneity of variance, results 

were analyzed by ANOVA using mixed procedure of SAS (version 8.0, SAS Institute, 

Inc. Cary, NC) with small and large eggs as treatment groups and days of incubation as 

the blocking factor. Treatment means were compared by Tukey-Kramer multiple 

comparison test. Data are presented as least square means ± SEM and the differences are 

considered significant at P < 0.05 while P < 0.1 was considered a trend. 

Results 

Embryo Weights 

On days 12 and 14 of incubation, embryonic weights (Table 2.1) of the small and 

large eggs did not differ. From day 16 onwards, however, embryos from large eggs were 

heavier than those from small eggs (P < 0.05). On day18 of incubation, embryos from 

large eggs were 14.7% heavier than those from small eggs. 

Glucose Metabolism 

Figure 2.1 shows the time-course of enrichments of [M+3] and [M+6] glucose 

isotopomers in embryonic blood after 1, 2, 3 or 4 days of daily injection of [U-13C] 

glucose into incubating eggs. By day 3, glucose isotopic and isotopomer steady state had 

been attained. Thus, in the main study, glucose tracer was administered for 3 consecutive 

days prior to blood and tissue sampling.   
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 On day 12 of incubation, blood [M+6] glucose enrichments were higher (P < 

0.05) compared to those on days 14, 16 and 18 (Figure 2.2). Furthermore, on day 12, 

[M+6] glucose enrichment was higher (P < 0.05) in the blood of embryos from large 

compared to small eggs.  Enrichments of [M+1], [M+2] and [M+3] glucose isotopomers 

were not different between small and large egg embryos. However, there was a 

significant increase (P < 0.05) in the enrichment of these lower mass isotopomers 

between days 12 to 18 of incubation. 

 Glucose metabolism in small and large egg embryos is summarized in Table 2.1. 

Blood glucose concentrations increased (P < 0.5) from day 12 to 16 of incubation, and 

these did not differ between small and large egg embryos. Small egg embryos had a 

higher rate of glucose entry (P < 0.5), glucose carbon recycling (P < 0.1) and 

gluconeogenesis (P < 0.1) on day 12 and 14 of incubation compared to large egg 

embryos. From day 16 of incubation onwards, small and large egg embryos had similar 

rates of glucose entry, glucose carbon recycling and gluconeogenesis.   
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Figure 2.1: Enrichments of M+3 and M+6 isotopomers during 4 days of [U-13C] glucose 
injection for validating the tracer approach. Glucose isotopomers were in metabolic steady state 
by three days of tracer injection. 
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Figure 2.2: Enrichments of A. Glucose isotopomers, B. Alanine isotopomers, C. 
Aspartate isotopomers and D. Glutamate isotopomers in blood of small and large chicken 
embryos during 12 to 18 days of incubation after 3 days of [U-13C]glucose injection. 
Enrichments are expressed as moles of tracer per 100 moles or tracee. Each bar 
represents an average of five embryos
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C. Blood Aspartate Isotopomer Enrichments
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Table 2.1: Embryonic weights and metabolism of glucose in small and large embryos during day 12 to 18 of development1. 

Day of Incubation3 
  Egg type2 

12 14 16 18 SEM 

Day of 
Incubation 

effect 

Egg type 
Effect4 

S 5.78d 10.53c 17.07b 23.36a 0.388 
Embryo weights (g) L 5.99d 12.35c 20.45b 26.80a 0.768 

< 0.001 <0.001 

S 84.6b . 112.6a 107.8a 3.77 Blood Glucose 
Concentration (mg/dL) L 90.2b . 118.4a 111.4a 3.36 

< 0.001 NS 

S 0.211b 1.29a 0.522b 0.884ab 0.222 
Glucose entry (g/d) L 0.077b 0.812a 0.699a 0.823a 0.188 

< 0.001 NS 

S 11.1c 45.7a 21.4bc 30.5ab 5.36 Glucose carbon 
recycling (%) L 3.8c 34.5a 14.8b 36.6a 3.62 

< 0.001 NS 

S 30.0c 77.7a 54.9b 66.9ab 4.77 Fractional 
Gluconeogenesis (%) L 12.2c 68.9a 47.6b 68.9a 3.37 

< 0.001 0.011 

 
1Values are means of five embryos 
2S = small egg embryos, L = large egg embryos 
3Means with different superscripts are significantly different from each other 
4NS = non-significant 
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Contribution of Glucose to NEAA Synthesis 

The enrichments of M+1, M+2 and M+3 isotopomers of alanine, aspartate and glutamate 

in blood and liver free pools did not differ between small and large egg embryos at any 

stage of incubation. However it was of interest that the enrichments of most of these 

isotopomers were higher in the blood and liver of small embryos on day 18. Further there 

were significant differences (P < 0.5) in the enrichments of these isotopomers of all the 

three amino acids in blood (Figure 2.2) and liver with increasing days of incubation. 

Thus in the blood, a greater proportion of alanine (5 to 20%), aspartate (0.2 to 6%) and 

glutamate (0.9 to 13%) was derived from glucose carbon between day 12 to 18 of 

embryonic development (Figure 2.3) with a similar scenario in the liver.  

Enrichments of Krebs Cycle Intermediates in Liver 

Due to limited amounts of tissue samples, the enrichments of M+1, M+2 and M+3 

in lactate, pyruvate and α-keto glutarate were measured in livers from day 16 and 18 

embryos (Appendix 1E). Lactate, pyruvate and α-keto glutarate isotopomers were more 

highly enriched (P < 0.05) on day 18 except for M+3 α-keto glutarate which was not 

significantly different. In general there were no differences between small and large 

embryos in the enrichments of M+1, M+2 and M+3 in lactate, pyruvate and α-keto 

glutarate.  
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Figure 2.3: Contribution of glucose to alanine (Ala), aspartate (Asp) and glutamate (Glu) in 
chicken embryos form days 12 to 18 of embryonic development 
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Amino Acid Concentrations 

Amino acid concentrations in the embryonic blood are presented in Table 2.2 for 

the NEAA and Table 2.3 for essential amino acids. There was a significant effect with 

days of incubation (P < 0.05) on the concentrations of all the amino acids measured 

except tyrosine. A significant difference (P < 0.05) was observed between small and large 

egg embryos for arginine, glutamine, glycine, proline, isoleucine, leucine, threonine, 

tyrosine and valine, with embryonic blood from large egg embryos having higher 

concentrations of these amino acids.  
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Day of Incubation4  Amino 
acid2 

Egg 
Type3 12 14 16 18 SEM 

Period 
effect5 

Treatment 
Effect5 

S 282.4b 293.3b 391.5a 280.3b 24.08 
Ala 

L 350.6a 232.1b 322.5a 324.7a 29.69 
0.005 NS 

S 132.1a 83.2b 123.0a 58.6b 13.85 
Asp 

L 120.0a 56.6c 85.1b 79.4b 6.46 
< 0.001 NS 

S 435.0a 155.2b 176.5b 150.3b 28.83 
Glu 

L 392.8a 153.9c 202.0b 161.0c 11.48 
< 0.001 NS 

S 1103.1a 770.7b 1021.1a 943.8ab 74.63 
Gln 

L 1354.3a 1143.4b 1501.2a 1468.2a 61.65 
< 0.001 < 0.001 

S 743.3b 949.3a 767.9b 408.9c 43.02 
Gly 

L 733.6c 971.0b 1179.7a 595.8c 55.69 
< 0.001 < 0.001 

S 241.2b 258.4b 342.2a 375.5a 24.38 
Pro 

L 269.5c 307.9c 405.5b 520.4a 29.23 
< 0.001 < 0.001 

S 630.0ab 533.1b 587.8ab 699.6a 42.19 
Ser 

L 644.2b 435.3d 574.7c 734.5a 23.23 
< 0.001 NS 

Table 2.2: Blood non-essential amino acid concentrations (µmol/L) in small and large 
embryos during day 12 to 18 of incubation1 

1Values are means of 5 to 10 embryos 
2Ala = alanine, Asp = aspartate, Glu = glutamate, Gln = glutamine, Gly = glycine, Pro =  

proline, Ser = serine 
3S = small egg embryos, L = large egg embryos 
4Means with different superscripts are significantly different from each other 
5NS = non-significant 
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Table 2.3: Blood essential amino acid concentrations (µmol/L) in small and large 
embryos during day 12 to 18 of incubation1 

1Values are means of 5 to 10 embryos 
2Arg = arginine, Ile = isoleucine, Leu = leucine, Lys = lysine, Met = methionine, Phe = 

phenylalanine, Thr = threonine, Trp = tryptophan, Tyr = tyrosine, Val = valine 
3 S = small egg embryos, L = large egg embryos 
4 Means with different superscripts are significantly different from each other 
5 NS = non-significant 
 

 
 

Day of Incubation4  Amino 
Acid2 

Egg 
Type3 12 14 16 18 SEM 

Period 
effect5 

Treatment 
Effect5 

S 358.4ab 315.0ab 367.9a 287.3b 23.37 
Arg 

L 346.3b 350.7b 491.4a 382.3b 24.08 
< 0.001 < 0.001 

S 283.4a 279.2b 256.1ab 179.7c 15.33 
Ile 

L 282.1b 230.5b 388.7a 297.9b 18.47 
< 0.001 < 0.001 

S 277.8a 228.0b 282.2a 188.7b 19.62 
Leu 

L 299.2c 326.4bc 425.1a 359.2b 17.70 
< 0.001 < 0.001 

S 460.1b 399.0b 844.6a 226.3c 40.98 
Lys 

L 457.0b 482.4b 944.2a 267.2c 45.67 
< 0.001 NS 

S 86.4a 68.4b 83.5ab 90.5a 6.82 
Met 

L 67.7b 58.8b 67.5b 119.7a 6.53 
< 0.001 NS 

S 119.1ab 98.9b 126.3a 120.3ab 9.40 
Phe 

L 123.0a 103.2b 117.9ab 132.0a 5.58 
0.007 NS 

S 427.1a 414.7a 361.5a 464.4a 36.55 
Thr 

L 324.3b 525.8a 574.7a 577.7a 44.03 
0.010 0.010 

S 153.7a 126.1b 126.2b 106.7b 8.33 
Trp 

L 130.8a 129.3a 133.5a 130.9a 2.39 
0.008 NS 

S 412.1a 371.2ab 296.6bc 246.3c 38.31 
Tyr 

L 370.6b 467.9a 406.0ab 433.7ab 26.96 
NS < 0.001 

S 458.5a 356.7b 363.7b 423.0ab 23.16 
Val 

L 442.5b 435.9b 478.4b 603.4a 25.45 
< 0.001 < 0.001 
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Discussion 

The primary goal of this study was to characterize adaptations in glucose 

metabolism during the latter half of chicken embryonic development using a new in ovo 

[U-13C]glucose stable isotope injection approach. [U-13C]glucose was selected as the 

metabolic tracer as it distributes its carbon skeleton through central metabolic pathways 

including glycolysis and Krebs cycle metabolism thus allowing simultaneous 

quantification of glucose and amino acid metabolism (Bequette et al., 2006). Assuming 

that a 60g egg has a minimum of 250mg of free glucose (Romanoff and Romanoff, 

1967), the 15mg [U-13C]glucose injected per day in ovo in this study was only 6% of the 

available glucose in the egg and thus would not have accounted for any significant 

metabolic effects due to in ovo tracer.   

Glucose Metabolism 

Plasma glucose can be detected as early as 4 days of incubation with the 

embryonic gluconeogenic enzymes increasing to hatch with a corresponding increase in 

plasma glucose from 60 mg/dL early during embryonic development to 150 mg/dL at 

hatch (Hazelwood, 1971). Consistent with the evolving metabolism of the embryo, 

glucose metabolism differed considerably between days of incubation in this study. 

Glucose entry, glucose carbon recycling and gluconeogenesis were at the highest on day 

14 of incubation, decreased from day 14 to 16 and remained unchanged on day 16 and 

18.  These changes in glucose metabolism observed in this study correlate well with the 

hormonal changes during embryonic development. Around day 13-14, hypophyseal and 

adrenocortical activity develops together with an increase in the release of epinephrine 

and a concomitant release of glycogen from the liver (Hazelwood 1971; Jenkins and 
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Porter, 2004). Around the same time the insulin: glucagon ratio starts increasing together 

with high circulating corticosterone, favoring deposition of glucose into glycogen (Lu et 

al., 2007).  Further, these changes are associated with an increase in the blood glucose 

concentrations, as activities of gluconeogenic enzymes increase and attain maxima by 

day 16 to 17 of embryonic development and thereafter decrease towards hatch (Pearce, 

1977). Thus an influx of glucose from glycogen breakdown in liver and the rapid increase 

in activities of gluconeogenic enzymes may be responsible for the high rates of glucose 

metabolism observed on day 14 in this study. Further, with the negative feedback exerted 

by corticosterone on hypophyseal and adrenocortical activity (Jenkins and Porter, 2004), 

glucose metabolism stabilizes over day 16 and 18.  

Glucose to NEAA Synthesis 

As glucose is a major energy substrate in various species and distributes its 

carbon via glycolysis and Krebs cycle metabolism, it can be a significant contributor to 

NEAA synthesis (Miller et al., 1996; Pascual et al., 1998). In this study, glucose carbon 

was not a major source for NEAA synthesis.  Only 5-20% of alanine, 0.2-6% of aspartate 

and 0.9-13% glutamate flux derived from glucose carbon during day 12 to 18 of 

incubation. Further, no significant enrichments could be detected in serine, glycine, 

proline and arginine. On day 19 of embryonic development, the egg has more than one 

third of the total amino acid content still available for the embryo (Ohta et al., 1999). 

Thus synthesis of these amino acids may not be a priority for the late term embryo even 

with high rates of utilization for protein synthesis.  

Despite the fact that only a small proportion of glucose carbon was recovered in 

the NEAA, the isotopomer profile (M+1, M+2, M+3) of alanine, aspartate and glutamate 
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in blood and liver showed a progressive increase in incorporation of glucose carbon with 

embryonic development (Figure 2). This is particularly true for the M+1 and M+2 of 

glutamate in the blood and liver with the moles tracer per 100 moles tracee increasing 

from 0.53 to 3.5 for M+1, 0.23 to 3.5 for M+2 in blood and 0.92 to 1.9 for M+1, 0.44 to 

1.3 for M+2 in liver from day 12 to 18 of embryo development. Even though glucose can 

contribute to glutamate synthesis via oxaloacetate and acetyl co-A, the M+2 signal in 

glutamate arises predominantly due to the decarboxylation of the 3-carbon end product 

(pyruvate) of glycolysis by pyruvate dehydrogenase enzyme to form acetyl co-A. Thus 

the ratio of M+2 / M+3 of glutamate is a crude indicator of the activity of the flux of 

glucose carbon into Krebs cycle via pyruvate dehydrogenase (Pascual et al., 1998). In 

this study, this ratio showed a significant increase in blood (4.9 to 11.3) and liver (2.6 to 

7.1) from 12 to 18 days of embryonic development. Similarly a higher day 18 enrichment 

profile was observed with the M+1 to M+3 isotopomers of α-keto glutarate, the 

corresponding Krebs cycle intermediate of glutamate compared to day 16. Goodridge, 

(1968) had observed higher rates of 14CO2 production from [U-14C]glucose in liver slices 

with increasing age of the embryo. Together with the data from this study, this indicates a 

progressive increase in the flow of glucose carbon through glycolysis and Krebs cycle 

metabolism with embryonic development. This is also evidence of a shift in metabolism 

where the embryo is evolving towards utilizing a predominantly carbohydrate rich diet 

post hatch from a lipid rich in ovo environment. The possibility that, higher incorporation 

of glucose carbon into amino acids and Krebs cycle intermediates is related to the altered 

or increased availability of the substrate, (glucose or three carbon units) needs further 

investigation.  
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Small and Large Embryos 

In general, the small and large egg embryos maintained similar rates of 

gluconeogenesis and NEAA synthesis in spite of the fact that significant differences in 

embryonic weights were observed on day 16 and 18 of incubation. In this study the 

amino acid concentrations of glycine, glutamine, valine, leucine, isoleucine, threonine, 

arginine and tyrosine were lower (P < 0.05) in the blood of small embryos on day 16 and 

18 and those of proline, aspartate and tryptophan were lower (P < 0.05) on day 18 of 

incubation. Thus the low embryonic weights of the small embryos could be partially 

explained by the lower availability of these amino acids for tissue protein synthesis. 

Further, the similar rates of gluconeogenesis maintained by small and large eggs in this 

study would be consistent with the observation of Lourens et al., 2006 that small and 

large embryos are equally efficient in energy transfer from the egg and that the 

differences in embryonic weights are due to the differences in available nutrients in ovo. 

Thus in ovo nutrient supplementation could be alleviating this nutrient limitation by 

increasing nutrient availability, thus increasing glycogen stores in the liver or accelerating 

the development of the gut. A further factor attributing to the differences in embryonic 

weights between small and large eggs could be the differences in yolk composition and 

the glycerol availability for glucose synthesis which is beyond the scope of discussion in 

this paper.  

In conclusion, glucose metabolism changed with stages of development consistent 

with the evolving metabolic and hormonal patterns. However, despite differences in 

embryonic weight, glucose metabolism and the contribution of glucose carbon to NEAA 

synthesis did not differ between small and large embryos from day 12 to 18 of 
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incubation. Lastly, although there was a progressive increase in the incorporation of 

glucose carbon into NEAA, glucose was not the major source of carbon skeletons for 

NEAA synthesis in developing chicken embryos.  
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CHAPTER 3:  EXPERIMENT 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GLUCONEOGENESIS AND GUCOSE CARBON UTILIZATION 
IN CHICKEN EMBRYOS SUPPLEMENTED IN OVO WITH 

GLUCOSE AND AMINO ACIDS1, 2 
 
 
 
 
 
 
 
 
 
 
 
 

 

1Funded by a Maryland Agricultural Experiment Station grant to Brian J. Bequette. 
2 Presented in part at ADSA PSA AMPA ASAS joint annual meeting, 2007. San 
Antonio, TX, USA [Sunny NE, Adamany J, Owens SL, Bequette BJ. 2007. 
Gluconeogenesis and carbon utilization in day 20 chicken embryos supplemented in ovo 
with glucose and amino acids] 
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Abstract 

The aim of this study was to quantify gluconeogenesis and glucose carbon 

utilization on day 12 and 20 of embryonic development in small vs. large embryos 

supplemented in ovo glucose and/or amino acids. Groups of small (n = 5 to 9; mean ± 

standard deviation, 55.3 ± 0.98g) and large (n = 5 to 9; 66.8 ± 1.18g) eggs were randomly 

dosed into the chorio-allantoic fluid (250µL) on day 9 of embryonic development with 

either sterile water (C), glucose (100mg; G), an amino acid mixture (75 mg; AA) or a 

mixture of glucose and amino acids (50mg + 37.5mg; G+AA). Beginning day 9 or 17, 

each egg was given a daily dose of [U-13C]glucose (15 mg/d in 75 µL sterile water) into 

the chorio-allantoic fluid followed by tissue and blood collection on day 12 and 20 

respectively. Blood and tissues were analyzed by mass spectrometry for 13C-mass 

isotopomer distribution in glucose, alanine, aspartate and glutamate. Embryonic weights 

on day 12 and 20 were lower (P < 0.001) for the small vs. large eggs, and in ovo nutrient 

treatments did not affect weights in either group. In ovo nutrients did not affect glucose 

metabolism; however, glucose entry (0.4 ± 0.06g/d vs. 0.8 ± 0.11g/d), glucose carbon 

recycling (16.9 ± 2.25% vs. 61.4 ± 2.12%) and gluconeogenesis (37.9 ± 3.60% vs. 84.6 ± 

1.32%) increased (P < 0.05) from day 12 to day 20. The contribution of glucose carbon to 

alanine was greater (P < 0.001) for C (42.7%) and G (39.1%) compared to AA (28.2%) 

and G+AA (15.5%) treatments. Glucose flux to alanine was lowest (P < 0.05) in the liver 

when compared to other tissues. However, glucose flux to aspartate and glutamate were 

higher (P < 0.05) in liver compared to other tissues.  Thus, despite differences in embryo 

weights, absolute rates of gluconeogenesis were similar for the small and large eggs. 

Further, fluxes of glucose to amino acids were different between blood and tissues 
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suggesting that the metabolic profile in blood is not always a true indicator of tissue 

nutrient needs.  

Key words: In ovo, Chicken, Embryo, Glucose, Amino acid, Metabolism  

Introduction 

The final stages of chicken embryonic development (day 18-21) are characterized 

by rapid transition of the embryonic metabolic machinery, which maintains high rates of 

gluconeogenesis in ovo from amino acids and/or triglyceride-glycerol to maintain high 

rates of lipogenesis post hatch from dietary carbohydrates and amino acids (Pearce, 

1977). At the same time, the embryo rapidly accumulates glycogen reserves in liver and 

muscle and also builds up subcutaneous fat as energy reserves for hatching (Hazelwood, 

1971). Further, this phase is also characterized by rapid development of organ systems, 

especially the intestines thus rapidly depleting in ovo lipid and amino acid resources. A 

positive correlation has been noticed between glycogen reserves in various tissues and 

body weight at hatch (Christensen et al., 1999, 2001; John et al., 1988). Further, small 

egg embryos have lower subcutaneous fat depots compared to their larger counterparts 

(Speake et al., 1998). These observations raise the question; how does in ovo 

macronutrient availability affect the metabolic partitioning of substrates for various 

biosynthetic purposes?    

In ovo administration of nutrients have been found to accelerate embryonic 

enteric development and increase body weight at hatch (Coles et al., 1999, 2003; Ohta et 

al., 1999; Tako et al., 2004). Uni et al. (2005) found significantly higher glycogen 

reserves, increased weight at hatch and increased breast muscle size following in ovo 

supplementation on day 17.5 of incubation, a solution containing maltose, sucrose, 
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dextrin, and β-hydroxy-β-methylbutyrate into the amniotic fluid. Even though the 

metabolic basis for these responses is not clear, the authors attributed the improved 

energy status of in ovo fed embryos to reduced muscle protein mobilization for 

gluconeogenisis. In another study, in ovo injection of an amino acid mixture increased the 

crude protein content of day 19 embryos (Ohta et al., 1999). In ovo administration of 

amino acids, carbohydrates or peptides may be altering fluxes through metabolic 

pathways, thereby alleviating competition for three carbon units for gluconeogenesis and 

sparing essential nutrients (amino acids or glucose) for tissue synthesis.   

The aim of this study was to quantify glucose metabolism in small and large egg 

embryos (day 12 and 20) supplemented in-ovo with glucose and/or amino acids. We 

hypothesized that in ovo supplementation of glucose and/or amino acids will alleviate the 

competition for three-carbon units for gluconeogenesis, thus sparing amino acids for net 

tissue synthesis. Eggs supplemented in ovo with glucose and/or amino acids were 

hypothesized to maintain higher rates of gluconeogenesis. A further objective of this 

study was to characterize the flow of glucose carbon in to non-essential amino acids 

(NEAA) in day 20 embryos in response to in ovo glucose and/or amino acid 

supplementation. In ovo [U-13C]glucose  tracer injection coupled with mass isotopomer 

distribution analysis (MIDA) of blood glucose and tissue NEAA isotopomers were used 

to investigate the metabolic basis of the in ovo nutrient treatment responses.  
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Materials and Methods 

Egg Incubation and Experimental Protocol 

The experimental protocol was approved by the Animal Care and Use Committee 

of the University of Maryland. Fertilized, small (mean ± standard deviation, 55.3 ± 0.98g; 

n = 80) and large (66.8 ± 1.18g; n = 80) broiler eggs were obtained from Perdue Farms, 

Inc., Salisbury, MD from the same broiler flock (40 weeks of age) and incubated at 37°C 

temperature and 65% relative humidity. On day 9 of incubation, eggs were candled for 

viable embryos and randomly grouped into eight groups (n = 9) each of small and large 

eggs. Two groups each from small and large eggs were randomly allotted one of the 4 

treatments (two sets/ treatment/ group) viz. sterile water (250µL, C), glucose (100mg in 

250µL, G), an amino acid mixture (75mg in 200µL, AA; Table 1) or a mixture of 

glucose and amino acids (37.5mg AA plus 50mg G in 250 µL, G+AA). All the eggs were 

injected in ovo into the chorio-allantoic fluid, according to their respective treatments on 

day 9 of incubation.  

In ovo [U-13C]Glucose Injection 

One group from each treatment was randomly selected from the small and large 

egg groups to receive an injection of a solution (75 µL) containing 15 mg [U-13C]glucose 

(99 atom percent 13C, Cambridge Isotope Laboratories, Inc., Andover, MA) on day 9, 

daily for three days before blood and tissue collection on day 12 of incubation. The 

remaining treatment groups from small and large eggs were administered [U-13C]glucose, 

as described above from day 17 of incubation for the next three days before blood and 

tissue collection on day 20.  
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The site of in ovo treatment and tracer injection was wiped sterile with 70% 

ethanol and the egg shell pierced to insert a 25 gauge needle. The treatments and [U-

13C]glucose tracer solution  was deposited from the air cell side into the chorio-allantoic 

fluid for eggs sampled on day 12. However, as the embryos were larger in size during the 

last week of incubation, [U-13C]glucose solution  was deposited from the narrow end for 

the eggs sampled on day 20 to avoid injection of the tracer into the embryonic tissues. 

The tracer was assumed to mix uniformly with the fluid compartment to which it was 

injected and absorbed by the developing embryo through the extensive chorio-allantoic 

capillary network.  

Sample Collection and Analysis 

Following [U-13C] glucose injection for three days, the egg shell around the air 

cell was removed and the egg shell membrane was carefully peeled off exposing the extra 

embryonic membranes on the forth day. Whole egg contents were then carefully 

transferred to a petri-dish taking care that the vitelline vessels (artery and vein) were on 

the top and clearly visible. Embryos were bled by making a nick across the vitelline 

vessels and blood was drawn using a glass pasture pipette with a rubber stopper, 

transferred into a 2 ml tube and frozen at immediately at -20ºC for later analysis. Liver, 

intestine, muscle and kidney tissues were harvested, rinsed with cold normal saline to 

wash off excess blood and other debris, transferred into 2 ml plastic tubes and 

immediately frozen at -80ºC. 
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Table 3.1: Composition of the amino acid mixture injected in ovo into small and large 
eggs on day 9 of embryonic development1. 

 

 

 

 

 

 

 

 

 

1The amino acid mixture was dissolved in 100 mL of double distilled water, pH adjusted 
to 7.4 and 250µL of the solution containing 75mg of amino acids was injected into each 
egg.  
 

 

 

 

 

 

Amino acid Amount (g) 

Alanine 7.5 

Arginine 5.3 

Aspartic acid 3.0 

Asparagine 2.0 

Glutamate 3.5 

Glutamine 3.5 

Proline 5.2 
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Glucose Enrichments 

For determination of blood glucose enrichments, samples (100 µL) were acidified 

with ice-cold 15% sulpho-salicylic acid (w/v) and centrifuged for 10 min at 10,000 rpm 

to precipitate proteins and other debris. The elute containing free glucose was collected 

after passing the supernatant over 0.5g of cation exchange resin. The solution was 

concentrated by freeze drying and analysed by GC-MS for glucose enrichment after 

forming the di-O-isopropylidene acetate derivative of glucose. After separation using a 

fused silica capillary column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard) with 

helium as carrier gas, selective ion monitoring of ions with mass-to-charge (m/z) 287 – 

292 was performed with MS under electrical ionization mode (Hannestad and Lundblad, 

1997). 

Amino acid Enrichments 

For all blood (100 µL) and tissue (50 mg) samples, NEAA were isolated by 

cation-exchange (AG 50W-X8 resin, 100-200 mesh; Bio-Rad Laboratories, Hercules, 

CA) and amino acids eluted from the resin with 2 volumes of 2 M NH4OH followed by 

one volume of water. The eluate was freeze dried, reconstituted in 250 µL of double 

distilled water, dried under a stream of N2 gas, and amino acids converted to their 

heptafluoro-butyryl isobutyl derivatives (MacKenzie and Tenaschuk, 1979ab) prior to 

separation by GC (Heliflex® AT™-Amino acid, 25 m × 0.53 mm × 1.20 µm, Alltech). 

Selected ion monitoring was done by gas chromatography-mass spectrometry (GC-MS; 

5973N Mass Selective Detector coupled to a 6890 Series GC System, Agilent, Palo Alto, 

CA) under methane negative chemical ionization conditions. The following ions of m/z 

were monitored: Alanine 321 – 324, Aspartate 421 – 425, Glycine 307 – 309, Serine 533 
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– 536, Proline 347 – 352, Glutamine 361 – 366, Glutamate 435 – 440 and Arginine 778 – 

784.  

Glucose and Amino acid Concentrations 

For determination of glucose and amino acid concentrations in embryonic blood, 

isotope dilution with mass spectrometry was employed (Calder et al., 1999). To a known 

weight (0.1 g) of blood was added an equivalent known weight of a solution containing 

400 mg hydrolyzed [U-13C]algae protein powder (99 atom % 13C; Martek Biosciences 

Corp., Columbia, MD), 0.874 µmol [indole-D5]tryptophan, 1.18 µmol [methyl-

D3]methionine, 1.94 µmol [U-13C]glutamate, 5.42 µmol [U-13C]glutamine, 2.15 µmol [U-

13C]arginine and 53.6 µmol [U-13C; 1, 2, 3, 4, 5, 6, 6- D7]glucose and the samples frozen 

at -20° C.  Subsequently, these samples were processed for measurement of amino acid 

concentrations by forming the tertiary-butyldimethylsilyl derivative prior to GC-MS 

under electron ionization conditions (El-Kadi et al., 2006) using a fused silica capillary 

column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard) with helium as carrier gas. 

Calibration curves were generated from gravimetric mixtures of labeled and unlabeled 

amino acids. For all the NEAA that had become 13C-labelled, a correction was made to 

account for isotopomer (M+1, M+2 and M+3) abundances. 

For determining the glucose concentrations, blood samples were processed and 

GC-MS performed as discussed above for glucose enrichments with m/z 287 and 300.  

Calculations 

The normalized crude ion abundances for glucose, amino acids and Krebs cycle 

intermediates were corrected for the natural abundance of stable isotopes present in the 
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original molecule and that contributed by the derivative 13C using the matrix approach 

(Fernandez et al., 1996). Natural isotopomer distributions in unlabelled glucose and 

amino acids were quantified from blood samples taken from embryos that had not 

received the isotopic tracer. Corrected enrichments are reported as moles of tracer (M+n) 

per 100 moles of tracee (M+0) for the calculations described below.  

Apparent glucose entry was calculated as: 

(93/ [M+6]glucose) × [U-13C] glucose injected (g/d)                     (1) 

where 93 is the isotopic purity of the [U-13C] glucose tracer. 

Glucose carbon recycling was calculated as described previously by Pascual et al. (1997). 

([M+1] + [M+2] × 2 + [M+3] × 3) / ([M+1] + [M+2] × 2 + [M+3] × 3 + [M+6] × 6)  

                  (2) 

where [M+n] is moles of tracer per 100 moles of tracee for blood glucose. 

The minimum estimate of gluconeogenesis was calculated as 

([M+1] + [M+2] + [M+3]) / ([M+1] + [M+2] + [M+3] + [M+6])         (3) 

where [M+n] is moles of tracer per 100 moles of tracee for blood glucose. 

Catabolism of glucose and glucose carbon recycling leads to the synthesis of [M+3] and 

[M+6]glucose. Thus, metabolism of these 2 glucose isotopomers leads to the synthesis of 

[M+3]pyruvate isotopomer, and subsequently [M+3]pyruvate, [M+3]alanine, 

[M+3]oxaloacetate and [M+3]aspartate. Because these [M+3] isotopomers can only arise 

from catabolism of [M+3] and [M+6]glucose, product:precursor relationship can be 

caluated todetermine the contribution of glucose to alanine and aspartate fluxes as: 

[M+3]alanine or asparate / ([M+6]glucose + 0.5 × [M+3]glucose)                (4, 5) 
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The assumption applied here is that the intracellular labeling of the amino acid arises only 

by synthesis from extracellular (blood) glucose and not by uptake of the labeled NEAA 

from blood (Pascual et al., 1998). 

Furthermore, the contribution of glucose to glutamate flux can be calculated as: 

2 × [M+3]glutamate / ([M+6]glucose + 0.5 × [M+3]glucose)         (6) 

Here, [M+3]glutamate is multiplied by a factor of two because the [M+3] glutamate 

isotopomer enrichment is 50% lower as a consequence of the equilibrium reaction 

between oxaloacetate and fumarate and the subsequent loss of half the [M+3] isotopomer 

enrichment between citrate and α-ketoglutarate (Pascual et al., 1998). 

Statistical Analysis 

After verifying for assumptions of normality and homogeneity of variance, results 

were analyzed by ANOVA using mixed procedure of SAS (version 8.0, SAS Institute, 

Inc. Cary, NC). Data was analyzed with the four in ovo nutrient supplements as treatment 

groups and small and large eggs as the blocking factor. Treatment means were compared 

by Tukey-Kramer multiple comparison test. Blood and tissue means were compared to 

each other using a t-test. Results are presented as least-squares means ± SEM and the 

differences are considered significant at P ≤ 0.05 while P ≤ 0.1 is considered a trend.  

Results 

Embryonic weights were different (P < 0.001) between small and large embryos 

both on day 12 (5.2 ± 0.09g verses 6.3 ± 0.09g) and 20 (31.9 ± 0.27g verses 37.0 ± 0.26g) 

of embryo development. However, in-ovo nutrient treatments did not affect embryonic 

weights on day 12 or 20 (Table 3.2 and 3.3). 
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Glucose Metabolism 

The enrichment of [U-13C]glucose isotopomers in blood of day 12 and day 20 

chicken embryos following in ovo nutrient supplementation is presented in appendix 2A 

and 2B respectively. In general the [U-13C]glucose (M+6) enrichment in the blood of day 

12 embryos was higher (P < 0.05) than those of day 20 embryos. The metabolism of 

glucose was more than two fold higher (P < 0.05) in day 20 embryos compared to that of 

day 12 embryos (Table 3.2 and 3.3). Thus the entry of glucose increased from 0.39g /d 

in day 12 embryos to 0.79g /d in day 20 embryos with a corresponding increase in 

glucose carbon recycling (16.9% to 60.8%) and fractional gluconeogenesis (37.8% to 

84.2%). 

For both day 12 and day 20 embryos, the metabolism of glucose was similar between the 

C group and the nutrient supplemented groups. However, on day 12, small and large 

embryos showed differences in glucose entry rates (P = 0.016) and glucose carbon 

recycling (P = 0.048) while on day 20, small and large embryos maintained similar rates 

of glucose metabolism. 

Blood glucose concentrations also increased (P < 0.05) form 123.9mg /dL on day 

12 to 153.7mg /dL on day 20 of development. Blood glucose concentrations between in 

ovo nutrient treatment groups were different for both small (P = 0.005) and large (P = 

0.003) egg embryos on day 12. However glucose concentrations between in ovo 

treatment groups on did not show any statistical significance on day 20 of incubation.  
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Table 3.2: Embryonic weights and metabolism of glucose in small and large embryos on day 12 of development after  
in ovo nutrient supplementation1 

 
In ovo nutrient treatments3 

  Egg 
type2 

C G AA G+AA SEM 

In ovo 
nutrient 
Effect4 

Egg type 
Effect4 

S 5.27a 5.29a 4.96a 5.44a 0.199 NS 
Embryo weights (g) L 6.39a 6.22a 6.42a 6.28a 0.151 NS 

< 0.001 

S 117.9b 124.0b 114.2b 139.8a 4.60 0.005 Blood Glucose 
Concentration (mg/dL) L 114.0c 128.6ab 120.3bc 132.9a 3.44 0.003 

NS 

S 0.45a 0.35ab 0.12c 0.22bc 0.065 0.014 
Glucose entry (g/d) L 0.43a 0.59a 0.31a 0.51a 0.150 NS 

0.016 

S 9.8b 18.9a 12.1ab 13.5ab 2.56 NS Glucose carbon recycling 
(%) L 15.3a 19.3a 27.0a 19.0a 5.76 NS 

0.048 

S 24.8b 44.0a 31.3ab 34.4ab 4.93 NS Fractional 
Gluconeogenesis (%) L 34.5a 42.1a 52.1a 39.4a 8.60 NS 

NS 

 
1Values are means of five embryos 
2S = small egg embryos, L = large egg embryos 
3C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids; Means with different superscripts are significantly 

different from each other 
4NS = non-significant
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Table 3.3: Embryonic weights and metabolism of glucose in small and large embryos on day 20 of development after 

in ovo nutrient supplementation1 

 
In ovo nutrient treatments3 

  Egg 
type2 

C G AA G+AA SEM 

In ovo 
nutrient 
Effect4 

Egg type 
Effect4 

S 31.4a 32.6a 31.5a 32.5a 0.630 NS 
Embryo weights (g) L 36.7a 37.5a 37.5a 37.9a 0.551 NS 

< 0.001 

S 158.4a 160.4a 151.8ab 144.9b 4.12 0.050 Blood Glucose 
Concentration (mg/dL) L 148.0a 154.8a 158.7a 152.9a 5.54 NS 

NS 

S 0.82a 0.88a 0.82a 0.68a 0.233 NS 
Glucose entry (g/d) L 0.81a 0.67a 0.79a 0.81a 0.173 NS 

NS 

S 54.9a 61.3a 62.2a 58.0a 4.83 NS Glucose carbon recycling 
(%) L 68.4a 63.9ab 65.1ab 57.2b 3.61 NS 

NS 

S 80.1a 84.7a 85.1a 82.6a 3.16 NS Fractional 
Gluconeogenesis (%) L 88.8a 85.7ab 86.8ab 82.2b 2.18 NS 

NS 

 
1Values are means of five embryos 
2S = small egg embryos, L = large egg embryos 
3C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids; Means with different superscripts are significantly 

different from each other 
4NS = non-significant



 

 72 
 

Contribution of Glucose to Alanine, Aspartate and Glutamate 

The enrichments of alanine, aspartate and glutamate isotopomers (M+1, M+2, 

M+3) in blood and tissues of day 20 embryos after in ovo nutrient supplementation, is 

presented in appendices 2C, 2D and 2E. In general, the enrichments of isotopomers in 

all the three amino acids were similar between small and large embryos in the blood and 

tissues measured. However with in ovo nutrient treatments, differences in isotopomer 

enrichments (P ≤ 0.1) were observed for alanine in blood, liver and kidney; for aspartate 

in liver, intestine and kidney; and for glutamate in blood, liver and kidney. Further, with 

the C treatment and all the three in ovo nutrient treatments the isotopomer enrichments of 

all the three amino acids showed significant differences (P ≤ 0.05) between the different 

pools sampled (blood and tissues). 

The main results from the isotopomer profile of amino acids are presented below. 

For the C, G and AA treatments, [M+3] aspartate enrichment in liver and kidney was 

similar and significantly higher (P < 0.05) than blood, intestine and muscle (Appendix 

2D). For the G+AA treatment, [M+3] aspartate enrichment in the kidney was lower 

compared to the liver. With all the treatments, [M+3] glutamate in the liver was higher (P 

< 0.001) than the [M+3] glutamate enrichments in other tissues and blood. Further, 

among the in ovo nutrient treatments, G injection resulted in the highest (P < 0.001) 

[M+3] aspartate enrichment in liver (Appendix 2E). 

The proportional contributions of glucose to alanine, aspartate and glutamate are 

presented in Table 3.4. The calculation for the contribution of glucose carbon to amino 

acids is based on the precursor to product relationship of the [M+3] amino acid 

isotopomer in blood or tissues and the M+3 and M+6 isotopomers of blood glucose. The 
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cumulative errors (e.g. due to tracer injection techniques, blood sampling etc) in 

measurement of the enrichment of blood glucose isotopomers is higher compared to the 

errors in the measurement of amino acid enrichments. Further, the isotopomer 

enrichments of the amino acids were similar between small and large egg embryos. Thus 

the proportional contributions are presented as a combined average of the values from 

both small and large egg embryos.  

The contribution of glucose to alanine was different with in ovo nutrient 

supplementation only in blood (P < 0.05) and liver (P = 0.02), whereas significant 

differences in the contribution of glucose to glutamate was detected only in the liver (P < 

0.05). No differences were detected in the contribution of glucose to aspartate with 

nutrient supplementation. Significant differences (P < 0.05) however existed for the 

contribution of glucose to amino acids between blood and the different tissues sampled. 

Thus, the average contribution of glucose to alanine in kidney (38%) was greater than 

that in the liver (20%) with a lower proportion of aspartate (11% and 8%) and glutamate 

(14% and 9%) deriving from glucose carbon in liver and kidney respectively (Table 3.4).  
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Table 3.4: Contribution of glucose to alanine, aspartate and glutamate in blood  and tissues in day 20  chicken embryos  
supplemented with  in ovo nutrients1. 

 In ovo nutrient 
treatments2 

Blood Liver Intestine Muscle Kidney SEM Blood and 
tissue effect3 

C 42.7 25.1 43.6 43.1 34.1 5.97 NS 
G 39.1 13.4 32.5 29.6 44.7 3.29 < 0.001 

AA 28.2 24.7 33.0 37.1 41.9 3.47 0.006 

Glucose to 
alanine 
(%) 

G+AA 15.5 16.9 29.7 34.9 29.8 4.24 0.005 

 Treatment effect < 0.001 0.020 NS NS NS   

C 1.7 10.7 5.0 4.8 8.9 1.34 < 0.001 
G 2.2 8.6 4.2 2.4 7.0 0.85 < 0.001 

AA 2.0 12.6 5.1 4.2 9.5 1.28 < 0.001 

Glucose to 
aspartate 
(%) 

G+AA 1.7 12.1 5.2 3.8 5.3 1.00 < 0.001 

 Treatment effect NS NS NS NS NS   

C 13.3 25.6 7.9 10.9 15.5 3.13 0.002 
G 12.0 36.8 6.7 7.9 7.2 2.09 < 0.001 

AA 11.8 15.9 7.6 2.1 7.8 2.16 NS 

Glucose to 
glutamate 
(%) 

G+AA 6.7 10.2 4.4 8.4 7.0 1.65 NS 
 Treatment effect NS < 0.001 NS NS NS   

1Values are means both small and large embryos  
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids 
3 NS = non-significant
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Amino acid Concentrations 

Concentrations of non essential and essential amino acids in day 12 embryonic 

blood are presented in Tables 3.5 and 3.6 and those in day 20 embryonic blood are 

presented in Tables 3.7 and 3.8. The concentrations of the amino acids present in the in 

ovo nutrient mixture were significantly higher (P < 0.05) on day 12 in the AA and G+AA 

treatment groups compared to C and G treatments. However on day 20, this effect was 

not present and the concentrations between treatments were similar for most of the amino 

acids in the injection mixture.  The branched chain amino acids leucine, isoleucine and 

valine showed significant treatment effects on day 12 (P < 0.05) with the concentrations 

of these amino acids higher than the C for the G and G+AA treatments. On day 20 the 

concentrations of the three branched chain amino acids were higher (P < 0.05) for all the 

nutrient treated groups compared to the C. In ovo nutrient supplementation, in general did 

not affect the concentrations of any other essential amino acids.  
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In ovo nutrient treatments4  
Amino 
acid2 

Egg 
Type3 C G AA G+AA SEM 

In ovo 
nutrient 
Effect5 

 

Egg type 
Effect5 

 

S 281.2c 278.9c 1006.2a 611.4b 55.52 < 0.001 
Ala 

L 293.7b 323.9b 630.5a 547.2a 43.55 < 0.001 
0.008 

S 118.9c 116.8c 369.9a 277.2b 14.4 < 0.001 
Asp 

L 122.6b 92.2b 265.3a 226.6a 14.72 < 0.001 
< 0.001 

S 266.1d 328.4c 578.5a 505.2b 21.95 < 0.001 
Glu 

L 255.4b 258.0b 434.5a 411.5a 20.23 < 0.001 
< 0.001 

S 1608.7b 1716.5b 1797.9ab 2015.5a 79.34 0.012 
Gln 

L 1414.1c 1814.1b 2049.5a 1934.8ab 74.35 < 0.001 
NS 

S 759.9b 896.3a 670.6b 973.0a 41.54 < 0.001 
Gly 

L 722.0b 798.8ab 879.0a 853.3ab 45.10 NS 
NS 

S 249.8c 275.4c 616.5a 391.4b 36.56 < 0.001 
Pro 

L 240.3c 311.1bc 413.4a 373.1ab 31.10 0.002 
0.047 

S 690.9a 727.8a 524.6b 730.6a 46.85 0.019 
Ser 

L 689.7a 663.8a 491.7b 641.9a 32.17 < 0.001 
NS 

Table 3.5: Blood non-essential amino acid concentrations (µmol/L) in small and large 
embryos on day 12 of incubation following in ovo nutrient supplementation1 

1Values are means of 5 to 10 embryos 
2Ala = alanine, Asp = aspartate, Glu = glutamate, Gln = glutamine, Gly = glycine, Pro =  

proline, Ser = serine 
3S = small egg embryos, L = large egg embryos 
4C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids; Means  
 with different superscripts are significantly different from each other 
5NS = non-significant
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Table 3.6: Blood essential amino acid concentrations (µmol/L) in small and large 
embryos on day 12 of incubation following in ovo nutrient supplementation1 

 
1Values are means of 5 to 10 embryos 
2Arg = arginine, Ile = isoleucine, Leu = leucine, Lys = lysine, Met = methionine, Phe = 

phenylalanine, Thr = threonine, Trp = tryptophan, Tyr = tyrosine, Val = valine 
3 S = small egg embryos, L = large egg embryos 
4C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids; Means 

with different superscripts are significantly different from each other 
5 NS = non-significant
 

In ovo nutrient treatments4  
Amino 
Acid2 

Egg 
Type3 C G AA G+AA SEM 

In ovo 
nutrient 
Effect5 

 

Egg type 
Effect5 

 

S 375.1c 378.2c 623.0a 480.4b 26.33 < 0.001 
Arg 

L 355.2c 408.4bc 455.9ab 507.8a 23.10 0.001 
NS 

S 275.1c 318.1b 280.6bc 358.4a 13.23 < 0.001 
Ile 

L 262.3b 338.9a 349.2a 350.4a 12.73 < 0.001 
NS 

S 261.9c 295.8b 284.8bc 364.6a 11.86 < 0.001 
Leu 

L 241.5b 338.3a 330.2a 359.8a 13.42 < 0.001 
NS 

S 459.5a 449.1a 382.0a 411.2a 32.35 NS 
Lys 

L 437.1ab 429.2ab 361.9b 511.1a 31.52 0.035 
NS 

S 74.5a 80.0a 81.4a 89.6a 5.97 NS 
Met 

L 84.5a 82.3a 87.7a 78.0a 5.01 NS 
NS 

S 120.9b 127.8ab 129.2ab 143.6a 6.32 NS 
Phe 

L 120.4a 132.0a 134.9a 135.3a 8.28 NS 
NS 

S 347.2ab 390.8a 316.5b 367.6ab 20.63 NS 
Thr 

L 379.1a 401.3a 448.6a 417.3a 31.50 NS 
0.007 

S 127.3b 133.3ab 140.1ab 148.5a 7.01 NS 
Trp 

L 147.1a 139.9a 140.1a 145.2a 8.48 NS 
NS 

S 382.9a 363.9ab 322.2b 386.8a 16.95 NS 
Tyr 

L 409.7a 466.2a 424.8a 425.4a 23.21 NS 
< 0.001 

S 460.5b 502.6b 464.3b 574.9a 23.88 0.011 
Val 

L 459.8c 546.9b 603.9a 559.0ab 19.59 < 0.001 
0.009 
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Table 3.7: Blood non-essential amino acid concentrations (µmol/L) in small and large 
embryos on day 20 of incubation following in ovo nutrient supplementation1 

 
1Values are means of 5 to 10 embryos 
2Ala = alanine, Asp = aspartate, Glu = glutamate, Gln = glutamine, Gly = glycine, Pro =  

proline, Ser = serine 
3S = small egg embryos, L = large egg embryos 
4C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids; Means 

with different superscripts are significantly different from each other 
5NS = non-significant

In ovo nutrient treatments4  
Amino 
acid2 

Egg 
Type3 C G AA G+AA SEM 

In ovo 
nutrient 
Effect5 

 

Egg type 
Effect5 

 

S 442.6a    410.3ab 442.4a 331.4b 34.69 NS 
Ala 

L 517.8a 517.5a 316.9b 311.5b 30.83 < 0.001 
NS 

S 148.4a 114.2b 121.6b 132.8ab 7.84 0.035 
Asp 

L 137.6a 93.0b 99.1b 120.6ab 10.18 0.022 
0.013 

S 252.1a 218.4a 218.4a 220.7a 14.45 NS 
Glu 

L 240.0a 202.5a 216.6a 221.8a 16.30 NS 
NS 

S 2251.0a 2398.1a 2575.0a 2650.8a 150.2 NS 
Gln 

L 1754.4b 2058.3b 2678.5a 2598.6a 146.3 < 0.001 
NS 

S 613.0b 819.7a 754.1ab 736.3ab 49.02 0.06 
Gly 

L 691.1a 742.2a 780.4a 779.2a 47.02 NS 
NS 

S 512.4a 544.5a 557.5a 463.9a 39.19 NS 
Pro 

L 547.2a 573.6a 533.2a 490.4a 48.08 NS 
NS 

S 909.1a 932.4a 838.1ab 758.7b 42.39 0.024 
Ser 

L 990.1a 1019.0a 725.8b 750.2b 49.63 < 0.001 
NS 
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Table 3.8: Blood essential amino acid concentrations (µmol/L) in small and large 
embryos on day 20 of incubation following in ovo nutrient supplementation1 

 
1Values are means of 5 to 10 embryos 
2Arg = arginine, Ile = isoleucine, Leu = leucine, Lys = lysine, Met = methionine, Phe = 

phenylalanine, Thr = threonine, Trp = tryptophan, Tyr = tyrosine, Val = valine 
3 S = small egg embryos, L = large egg embryos 
4C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids;  

Means with different superscripts are significantly different from each other 
5 NS = non-significant 

In ovo nutrient treatments4  
Amino 
Acid2 

Egg 
Type3 C G AA G+AA SEM 

In ovo 
nutrient 
Effect5 

 

Egg type 
Effect5 

 

S 351.4b 369.9b 537.5a 453.2ab 37.88 0.005 
Arg 

L 345.8b 473.4ab 532.5a 436.2ab 46.23 0.055 
NS 

S 193.5b 288.6a 311.9a 290.3a 16.38 < 0.001 
Ile 

L 212.6c 231.6c 364.7a 302.6b 20.58 < 0.001 
NS 

S 200.6b 367.6a 372.8a 363.1a 19.28 < 0.001 
Leu 

L 235.7b 297.3b 426.3a 378.2a 24.76 < 0.001 
NS 

S 227.2a 299.1a 248.1a 243.1a 29.97 NS 
Lys 

L 260.4a 236.3a 252.2a 242.9a 35.23 NS 
NS 

S 93.7ab 108.1a 94.4ab 84.8b 6.53 NS 
Met 

L 119.8a 110.3ab 81.2c 90.7bc 8.18 0.007 
NS 

S 147.1a 132.4a 143.0a 113.3a 11.31 NS 
Phe 

L 150.0a 167.0a 102.5b 123.3b 8.65 < 0.001 
NS 

S 511.1a 498.6a 505.4a 453.4a 48.60 NS 
Thr 

L 505.7a 525.3a 491.3a 459.7a 42.9 NS 
NS 

S 121.8ab 126.0ab 118.3b 127.8a 3.30 NS 
Trp 

L 115.7a 124.6a 129.3a 123.2a 5.91 NS 
NS 

S 260.4a 330.7a 269.6a 301.9a 37.75 NS 
Tyr 

L 363.9a 364.1a 322.8a 394.0a 40.99 NS 
0.015 

S 470.8b 628.1a 642.0a 621.0a 24.90 < 0.001 
Val 

L 469.4b 535.0b 722.8a 650.9a 37.42 < 0.001 
NS 
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Discussion 

Lipids are the major substrates for energy metabolism in late term chicken 

embryos accounting for more than 90% of the energy needs of the embryo (Deeming and 

Ferguson, 1991; Sato et al., 2006). At the same time, the gluconeogenic and glycolytic 

enzyme activities also increase in the embryo (Pearce, 1977) increasing the availability of 

glucose via gluconeogenesis and subsequently providing an alternate carbon source for 

the central metabolic pathways as demonstrated in Chapter 2 of this dissertation. The 

objective of this study was to obtain estimates of glucose metabolism on day 12 and 20 

embryonic and transfer rates of glucose carbon to NEAA, in response to in ovo nutrient 

supplementation using an in ovo [U-13C]glucose tracer injection approach.  

As expected glucose availability was higher for day 20 embryos compared to their 

day 12 counterparts. This higher glucose availability was a result of a more than two fold 

increase (38% on day 12 vs. 84% on day 20) in new glucose synthesis (gluconeogenesis) 

from other in ovo carbon sources (e.g. amino acids, glycerol). Even though no 

comparable estimates of gluconeogenesis during chicken embryonic development are 

available in the literature, the rates of gluconeogenesis observed in this study on day 20 

of embryonic development were similar or higher than those observed in fasting humans 

(Katz and Tayek, 1998) or rats fed a carbohydrate restricted diet (Pascual et al., 1997).  

With increasing rates of glucose entry (0.39g/d to 0.79g/d), a higher proportion of 

glucose carbon was recycled back to glucose in day 20 embryos (61%) compared to day 

12 (17%) embryos. This was evident in the higher enrichments of M+1, M+2 and M+3 

isotopomers in blood glucose on day 20 of embryonic development. The glucose carbon 

recycling rates observed in day 20 embryos were higher than those observed in adult 
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chickens (46%; Belo et al., 1976), humans after 40 hrs of fast (36%; Katz and Tayek, 

1998) and also higher than those observed in rats fed a low carbohydrate diet (50%; 

Pascual et al., 1997). Chicken embryos develop in a ‘fixed’ nutrient environment and 

thus the nutrient partitioning for gluconeogenesis and energy metabolism may be 

dependent on in ovo substrate availability (Lourens et al., 2006). Thus by maintaining a 

high rate of glucose carbon recycling, chicken embryos may be conserving glucose 

carbon and reutilizing it for essential metabolic functions (e.g. glycogen synthesis).  

Based on the results from this study, the effect of in ovo nutrient supplementation 

on glucose metabolism remains inconclusive. The only significant treatment effects 

observed relative to the C were a. lower glucose entry with AA and G+ AA in S egg 

embryos on day 12, b. higher glucose carbon recycling and gluconeogenesis with G 

treatment in S embryos on day 12. Further, gluconeogenesis in day 12 embryos after AA 

and G+AA treatments were similar to the C group despite a 2 to 3 fold increase in blood 

amino acid concentrations of gluconeogenic amino acids (alanine, aspartate, glutamate 

and glutamine) with in ovo nutrient treatments. Thus these amino acids may not be major 

gluconeogenic precursors compared to other available substrates in ovo, for example 

glycerol. However on day 20, amino acid concentrations were higher than the C group 

only for arginine and the branch chain amino acids (leucine, isoleucine and valine). 

Further, metabolism of glucose was also similar between in ovo nutrient treatments on 

day 20 of embryonic development.  

 Even though glucose metabolism did not respond to in ovo nutrients, the 

flux of glucose carbon to alanine in the blood of day 20 chicken embryos responded to in 

ovo nutrient supplementation. The enrichment of alanine isotopomers in the blood was 
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lower with both AA and G+AA supplementation compared to the C and G treatments. 

Thus, when compared to the C and G treatments, the contribution of glucose to alanine in 

blood decreased by 31% and 62% with AA and G+AA supplementations respectively. 

Regression analysis suggested an interaction between AA and G+AA treatments as a 

possible reason for the difference between AA and G+AA treatment responses. One 

possible reason for the decrease in glucose carbon flux to alanine is that the AA and 

G+AA treatments reduce catabolism of glucose carbon via the glycolytic pathway thus 

sparing the glucose carbon for other metabolic purposes. This data thus provide a 

possible mechanism by which in ovo supplementation could alter the metabolic flux 

through central pathways of metabolism thus sparing glucose carbon and in turn resulting 

in improved energy status (e.g. higher liver glycogen) of the embryo.  

The mass isotopomer distribution profile of alanine, aspartate and glutamate 

observed in the embryonic blood were different from those observed in the tissues. The 

mass isotopomer distribution profile of amino acids can be considered as the metabolic 

signature for each tissue, providing a snap shot of the metabolic activity and requirements 

of the tissue. Further more, these differences between blood and tissue profiles indicate 

that that conclusions based on blood values alone may not reflect whole body tissue 

metabolism.   

Differences in nutrient fluxes were also observed between tissues. In general the 

flux of glucose carbon to alanine was ~ 40% lower in liver compared to intestine, muscle 

and kidney. The high rates of glucose carbon flux to alanine in intestine, muscle and 

kidney may be due to higher rates of glycolysis in these tissues even though only 

pyruvate enrichments will provide a complete picture. The contribution of glucose to 
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aspartate was highest in the liver (11%) followed by kidney (7.6%), intestine (5%) and 

muscle (4%). The higher contribution of glucose to aspartate is a reflection of a higher 

[M+3] aspartate enrichment and is in accordance with the gluconeogenic roles of the liver 

and the kidney.  The higher appearance of [M+3] aspartate in these tissues could suggest 

a high activity of malate-aspartate shuttle with gluconeogenesis (Burelle et al., 2000) 

providing three carbon units for cytosolic form of phosphoenolpyruvate carboxykinase 

which is expressed in chicken embryos throughout incubation (Savon et al., 1993). 

Further, the contribution of glucose carbon to glutamate was also more than 2 fold higher 

in liver compared to other tissues. High labeling of aspartate and glutamate from glucose 

in liver is also consistent with the role of liver in Krebs cycle metabolism.    

In this study, the availability of the nutrients in ovo was altered from day 9 with 

the objective of simulating an enriched nutrient environment before the onset of active 

glucose metabolism. This approach was different from previous studies (Tako et al., 

2004; Uni etal., 2005) where nutrients were directly administered into the amniotic fluid, 

during the last 3-5 days of embryo development, after the onset of active 

gluconeogenesis, and thus stimulating active oral consumption. Further, the amount of 

carbohydrates injected in ovo was 2.5 fold higher in those studies compared to the 

amount of glucose injected in this study (100mg). Thus the metabolic and growth 

responses observed could vary with the type of nutrient injected, the amount of the 

nutrient injected, site of injection and the stage of embryo development.   

In summary, embryos from small and large eggs maintained similar rates of 

gluconeogenesis despite significant differences in embryo weights. In ovo nutrient 

supplementation had minimal effect on glucose metabolism. However, in ovo nutrients 
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altered nutrient fluxes through central metabolic pathways in embryonic blood even. 

Further, mass isotopomer analysis of amino acids in individual tissues provided a ‘snap 

shot’ of the metabolic activity of these tissues. 
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CHAPTER 4: EXPERIMENT 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE USE OF GLUTAMINE AND GLUTAMATE FOR 
GLUCONEOGENESIS AND NON-ESSENTIAL AMINO ACID 

SYNTHESIS IN LATE TERM CHICKEN EMBRYOS1, 2 

 

 

 

 

 

 

 

 

1Funded by a Maryland Agricultural Experiment Station grant to Brian J. Bequette. 
2 Presented in part at the 2nd International Symposium on Energy and Protein Metabolism 
and Nutrition: September 9–13, 2007, Vichy, France. [Sunny NE, Adamany J, Bequette 
BJ. 2007. The use of glutamine and glutamate for gluconeogenesis and non essential 
amino acid synthesis in late term chicken embryos.] 



 

 86

Abstract 

The objective of this study was to determine the contribution of glutamate (Glu) 

and glutamine (Gln) to the synthesis of glucose and proline, and to other non-essential 

amino acids (NEAA) on day 19 of embryonic development in small and large egg 

chicken embryos. Fertilized small (mean ± standard deviation, 53.1 ± 0.30g; n = 12) and 

large (69.7 ± 0.35g; n = 12) broiler eggs were incubated at 37° C and 65% relative 

humidity. Beginning on day 16 of incubation, half of the small and the large eggs were 

injected into the chorio-allantoic fluid either with [U-13C]Glu or [U-13C]Gln (3.5 mg in 

90 µL H2O) for three consecutive days prior to tissue and blood collection on day 19. 

Blood and tissues were analyzed by GC-MS for 13C-mass isotopomer distribution in 

glucose and non-essential amino acids and Krebs cycle intermediates. Low isotopomer 

enrichments in blood glucose suggested minimal contribution of Glu and Gln to 

gluconeogenesis in day 19 chicken embryos. Following [U-13C]Glu and [U-13C]Gln 

injection, Glu and Gln [M+1], [M+2] and [M+3] isotopomer enrichments were relatively 

low in blood and tissues. Further, the enrichments of these isotopomers were minimal in 

aspartate and all the Krebs cycle intermediates. However the enrichment of [M+5] Glu 

and Gln was different (P < 0.05) between tissues with the lowest enrichment and thus the 

lowest tissue uptake observed in the liver and the highest uptake in the muscle. The 

contribution of Glu and Gln to proline flux differed (P < 0.05) between liver (24%) and 

other tissues (< 10%). In summary, small and large egg embryos maintained similar rates 

of Glu and Gln metabolism with minimal tissue synthesis of these amino acids. Further 

glutamate and glutamine carbon in the liver accounts for majority in vivo proline 

synthesis by these chicken embryos.  
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Introduction 

Glutamate and Glutamine are located at a pivotal point in intermediary 

metabolism with their carbon and nitrogen contributing to a wide variety of biochemical 

pathways including gluconeogenesis, non-essential amino acid (NEAA) synthesis, Krebs 

cycle metabolism, glutathione synthesis and nucleic acid synthesis. In sheep, around 25 

% of Glu and 20 % of Gln are converted to glucose accounting for ~ 12% of total glucose 

production (Heitmann and Bergman, 1978; 1981) with even higher contributions in rats 

(Kaloyianni and Freedland, 1990). Glu and Gln are extensively oxidised by the 

splanchnic tissues (~ 80%) in piglets, mice and humans (Windemueller & Spaeth, 1980; 

Matthews et al. 1993; Reeds et al. 1996) thus redistributing their carbon through central 

metabolic pathways to metabolic intermediates. However little is known about the 

metabolic roles of these two amino acids in the developing chicken embryo. 

The average broiler egg (60 g) contains only 300 mg of available glucose, and 

thus relies on gluconeogenesis from amino acids or triglyceride-glycerol for glycogen 

synthesis and tissue metabolism. Late term embryos (day 18-20) maintain a high rate of 

glucose entry (0.8g/d; Chapters 2 and 3) and glycogen synthesis (10mg/g of liver; Uni et 

al., 2005) for hatching and energy metabolism. In ovo, Glu and Gln together comprise 

~14% of chicken egg protein (1.2 g), and their availability in the egg contents is 2-fold 

greater than that which is accumulated by the embryo on day 19 (Ohta et al., 1999). Thus 

these amino acids are good candidates to donate their carbon skeleton for glucose 

synthesis through Krebs cycle and in consequence to the synthesis of NEAA. Further, 

previous data also indicates that there is a need for proline synthesis by the late term 



 

 88

chicken embryo as the amount of proline accreted between days 14 and 19 of embryonic 

development is 85mg higher than the proline utilized form the egg during the same period 

(Ohta et al., 1999). Even though one of the enzymes, pyrroline-5-carboxylase synthase, 

required for the conversion of Glu and Gln to proline is deficient in enterocytes (Wu et 

al., 1995), and with the avian species lacking a complete urea cycle, Glu and Gln are the 

only possible substrates for proline synthesis.  

The objective of this study was to determine the contribution of Glu and Gln to 

synthesis of glucose and proline, and to other NEAA in day 19 chicken embryos. A 

further objective was to determine whether the metabolism of Glu and Gln towards these 

biochemical pathways is compromised in embryos from small, compared to large, eggs 

where in ovo nutrient availability (Lourens et al., 2006) and day 20 embryonic weights 

(31.8 vs. 36.8 g; Chapter 3) are lower. An in ovo [U-13C]Glu and [U-13C]Gln tracer 

injection approach was used to study the metabolism of these amino acids in day 19 

chicken embryos. 

Materials and Methods 

Egg Incubation and Experimental Protocol 

The experimental protocol was approved by the Animal Care and Use Committee 

of the University of Maryland. Fertilized, small (mean ± standard deviation, 53.1 ± 0.30g; 

n = 12) and large (69.7 ± 0.35g; n = 12) eggs were obtained from Perdue Farms, Inc., 

Salisbury, MD from a broiler flock of same age (40 wks old).  All eggs were incubated at 

a standard temperature and relative humidity of 37°C and 65% respectively. On day 9 of 

incubation all the eggs were candled for viable embryos. 
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In ovo [U-13C]Glu and [U-13C]Gln Injection 

On day 16 of incubation, half of the small and the large eggs were randomly 

assigned to an injection group of either [U-13C]Glu or [U-13C]Gln (99 atom percent 13C, 

Cambridge Isotope Laboratories, Inc., Andover, MA). These stable isotope tracers were 

injected into the chorio-allantoic fluid (3.5 mg in 90 µL H2O) from day 16 for three 

consecutive days prior to blood and tissue (liver, intestines, muscle, kidney) collection on 

day 19. Before tracer injection, the broad end of the egg was wiped sterile with 70% 

ethanol and the egg shell pierced to insert a 25 gauge needle. The stable isotope solution 

was deposited 5-6 mm beneath the egg shell. The tracer was assumed to mix uniformly 

with the fluid compartment beneath the egg shell membrane and absorbed continuously 

by the developing embryo through the extensive chorio-allantoic capillary network.  

Sample Collection and Analysis 

Following [U-13C]Glu or [U-13C]Gln injection for three days, each group of eggs 

was dissected on the forth day to collect blood and tissue samples. After removing the 

egg shell around the air shell, the egg shell membrane was carefully peeled off exposing 

the extra embryonic membranes. Whole egg contents were then carefully transferred to a 

petri-dish taking care that the vitelline vessels (artery and vein) were on the top and 

clearly visible. Embryos were bled by making a nick across the vitelline vessels and 

blood was drawn using a glass pasture pipette with a rubber stopper, transferred into a 2 

ml tube and frozen at immediately at -20ºC for later analysis. Liver, intestine, muscle and 

kidneys were harvested, rinsed with cold normal saline to wash off excess blood and 

other debris, transferred into 2 ml plastic tubes and immediately frozen at -80ºC.  
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Glucose Enrichments 

For determination of blood glucose enrichments, samples (100 µL) were acidified 

with ice-cold 15% sulpho-salicylic acid (w/v) and centrifuged for 10 min at 10,000 rpm 

to precipitate proteins and other debris. The elute containing free glucose was collected 

after passing the supernatant over 0.5g of cation exchange resin. The solution was 

concentrated by freeze drying and analysed by GC-MS for glucose enrichment after 

forming the di-O-isopropylidene acetate derivative of glucose. After separation using a 

fused silica capillary column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard) with 

helium as carrier gas, selective ion monitoring of ions with mass-to-charge (m/z) 287 – 

292 was performed with MS under electrical ionization mode (Hannestad and Lundblad, 

1997). 

Amino acid Enrichments 

For all blood and tissue samples, acidic amino acids, Glu and aspartate (Asp) 

were separated from all other AA using sequential anion and cation exchange resins (AG 

1-X8 and AG 50W-X8 resins respectively, 100-200 mesh; Bio-Rad Laboratories, 

Hercules, CA). After equilibrating the anion exchange resin (1g) with 2mL of 0.1 

moles/L hydrochloric acid, the de-proteinsed sample (pH adjusted to ~ 9.5) was poured 

onto the resin. The flow through from the anion resin, containing all amino acids except 

Glu and Asp was stored briefly. After rinsing the resin with 40-50 mL of double distilled 

water, Glu and Asp was eluted from the anion resin by a strong acid (one moles/L 

hydrochloric acid) followed by one mL of double distilled water. The fraction containing 

all the other amino acids was applied onto a cation-exchange resin and the resin rinsed 

with 2 mL of double distilled water. Amino acids were eluted with 2 volumes of 2 
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moles/L ammonium hydroxide followed by 1 volume of water. Both amino acid fractions 

were freeze dried, reconstituted in 250 µL of double distilled water, dried under N2 gas, 

and converted to heptafluoro-butyryl isobutyl amino acids (MacKenzie and Tenaschuk, 

1979ab) prior to separation by GC (Heliflex® AT™-Amino acid, 25 m × 0.53 mm × 1.20 

µm, Alltech). Selected ion monitoring was done by gas chromatography-mass 

spectrometry (GC-MS; 5973N Mass Selective Detector coupled to a 6890 Series GC 

System, Agilent, Palo Alto, CA) under methane negative chemical ionization conditions. 

The ions (mass-to-charge) monitored were Alanine 321 – 324, Aspartate 421-425, 

Glycine 307 – 309, Serine 533 – 536, Proline 347 -352, Glutamine 361 - 366, Glutamate 

435 - 440, Arginine 778 – 784. 

Enrichment of Krebs Cycle Intermediates 

After deproteinising the liver (100mg) with 1.5mL of 15% sulpho-salicylic acid 

(w/v), 5 mmol of freshly prepared hydroxylamine hydrochloride (1 mL) was added to the 

supernatant and neutralized with 2 mol/L potassium hydroxide. These samples were then 

sonicated (15 min) and allowed to react at 65º C for 1 h. The solution was then titrated to 

pH < 2 with hydrochloric acid (6 mol/L), saturated with sodium chloride and Krebs cycle 

acids extracted twice with 3 ml ethyl acetate. The organic phase was blown down under a 

stream of N2 and the tertiary butyldimethylsilyl derivative formed prior to separation on a 

fused silica capillary column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard; helium 

as carrier gas) and selective ion monitoring by MS under electrical ionization mode (Des 

Rosiers et al., 1994).  Ions with m/z monitored were: lactate 261 – 264, pyruvate 274 – 

277, succinate 289 – 293, malate 419 – 423, oxaloacetate 432 – 436 and ketoglutarate 

446 – 451. 
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Calculations 

The normalized crude ion abundances for glucose, amino acids and Krebs cycle 

intermediates were corrected for the natural abundance of stable isotopes present in the 

original molecule and that contributed by the derivative 13C using the matrix approach 

(Fernandez et al., 1996). Natural isotopomer distributions in unlabelled glucose and 

amino acids were quantified from blood samples taken from embryos that had not 

received the isotopic tracer. Corrected enrichments are reported as moles of tracer (M+n) 

per 100 moles of tracee (M+0) for the calculations. The contribution of Glu and Gln to 

glucose and non-essential AA synthesis was determined by precursor-product 

relationships. Here, the ratio of  M+n (where n is the number of carbon atoms in the 

metabolite) in the product over the precursor was used to calculate the flux to the product.  

Statistical Analysis 

After verifying for assumptions of normality and homogeneity of variance, results 

were analyzed by ANOVA using mixed procedure of SAS (version 8.0, SAS Institute, 

Inc. Cary, NC) with small and large eggs as treatment groups and blood, liver, intestine, 

muscle and kidney as blocks. Differences between [U-13C]Glu and [U-13C]Gln injected 

groups were compared using a t-test. Mean comparisons were done by Tukey-Kramer 

multiple comparison tests. Results are presented as least-squares means ± SEM and the 

differences are considered significant at P < 0.05 while P < 0.1 is considered a trend. 
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Results 

In both [U-13C]Glu and [U-13C]Gln injected groups, the embryonic weights from 

the small eggs (28.7 ± 0.41g) were lower (P < 0.05) when compared to embryos from the 

large eggs (34.7 ± 0.82g).  

 No significant enrichments (moles tracer per 100 moles tracee) could be detected 

in blood glucose isotopomers with either in ovo [U-13C]Glu or [U-13C]Gln. Thus, despite 

our expectations, there was little contribution of either Glu or Gln to blood glucose 

synthesis in the small or large day 19 embryos. 

The enrichments of Glu and Gln isotopomers (M+1, M+2, M+3 and M+5) with in 

ovo [U-13C]Glu or [U-13C]Gln is presented in Table 4.1. There were no differences in 

enrichment of either the Glu [M+5] or Gln [M+5] isotopomers within blood and any 

tissues when comparing small and large egg embryos. However, for each of these amino 

acids their isotopomer enrichments differed (P ≤ 0.05) between blood, liver, intestine, 

muscle and kidney pools. Because there were no differences between small and large egg 

embryos in their metabolism of Glu and Gln towards glucose and NEAA synthesis, all 

values are reported are means of small and large egg embryos together. Thus, with [U-

13C]Glu as tracer, tissue enrichment of Glu [M+5] was highest in the intestine (0.32) and 

lowest in the liver (0.18) and Gln [M+5] was highest in the intestine and kidney (0.35) 

and lowest in liver (0.19). Similarly with [U-13C]Gln as tracer, tissue enrichment of Glu 

[M+5] was highest in the muscle (0.72) and lowest in the liver (0.15) and Gln [M+5] was 

highest in the muscle (1.1) and lowest in liver (0.21). Blood Gln contributed to 8.5, 28.5, 

43.9 and 22.8% of intracellular Gln flux in liver, intestine, muscle and kidney 

respectively (P≤ 0.05). The corresponding contributions to the tissues from blood Glu 



 

 94

was not calculated due to the high variation in the blood enrichments of Glu after in ovo 

administration of [U-13C]Glu. 

The contribution of Glu and Gln to alanine and proline fluxes is presented in 

Table 4.2. Alanine and proline flux from Glu and proline flux from Gln were different (P 

< 0.05) between the different pools sampled. Alanine flux from Glu varied from 23.5% in 

kidney to 9.5% in the muscle. Glu (26.7%) and Gln (22.2%) both made a larger 

contribution to intracellular proline flux in the liver compared to other tissues. Neither 

Glu nor Gln contributed to the synthesis of aspartate and arginine in the blood or any of 

the tissues. 
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Table 4.1: Glutamate and Glutamine enrichments in blood and tissues of day 19 chicken 

embryos after administration of either [U-13C]Glu or [U-13C]Gln tracer in ovo. 

Sampled pool1 
Blood2 Liver Intestine Muscle Kidney

SEM P ≤ 

[U-13C]Glu tracer        
Glu [M+1] 0.497d 0.717c 0.877b 0.796bc 1.02a 0.050 < 0.001

Glu [M+2] 0.092b 0.153b 0.207b 0.134b 0.548a 0.109 0.048 

Glu [M+3] 0.171a 0.05b 0.09b 0.05b 0.08b 0.030 0.022 

Glu [M+5] 7.79a 0.175b 0.321b 0.283b 0.176b 0.773 < 0.001

[U-13C]Glu tracer        
Gln [M+1] - 0.778a 0.805a 0.697a 0.779a 0.043 NS 

Gln [M+2] - 0.153a 0.192a 0.237a 0.256a 0.043 NS 

Gln [M+3] - 0.062c 0.145ab 0.091bc 0.199a 0.027 0.004 

Gln [M+5] - 0.191b 0.345a 0.268ab 0.346a 0.047 0.071 

[U-13C]Gln tracer        

Glu [M+1] 0.647c 0.680c 0.904b 0.722c 1.05a 0.042 < 0.001

Glu [M+2] 0.104d 0.158bc 0.207a 0.153c 0.188ab 0.011 < 0.001

Glu [M+3] 0.130a 0.04c 0.120ab 0.070bc 0.09ab 0.018 0.006 

Glu [M+5] 2.60a 0.153b 0.479b 0.722b 0.333b 0.316 < 0.001

[U-13C]Gln tracer        
Gln [M+1] 0.805b 0.930ab 0.990a 0.794b 1.073a 0.051 < 0.001

Gln [M+2] 0.112c 0.115c 0.160b 0.173b 0.251a 0.014 < 0.001

Gln [M+3] 0.07b 0.205a 0.196a 0.191a 0.211a 0.015 < 0.001

Gln [M+5] 2.45a 0.209c 0.697bc 1.08b 0.558bc 0.220 < 0.001

             
1Means with different superscripts are significantly different from each other 
2Blood Gln enrichments with [U-13C]Glu tracer are not reported        
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Table 4.2: Contribution of Glutamate and Glutamine to blood and tissue alanine and 
proline fluxes in day 19 chicken embryos. 

 
1Glu = glutamate, Gln = glutamine, Ala = alanine, Pro = proline 
2Pro flux from Glu and Gln are not reported  
3Means with different superscripts are significantly different from each other 
4NS = non-significant 
 

 

 

 

 

 

 

 

 

 

 

Sampled pool3 

Proportion of intracellular 
flux from Glu or Gln (%)1 

Blood2 Liver Intestin Muscle Kidney SEM P ≤4 

Ala flux from Glu < 5c 12.7b 12.9b 9.5bc 23.5a 2.47 < 0.001 

Ala flux from Gln 7.6a 12.2a 10.4a 6.3a 10.2a 2.12 NS 

Pro flux from Glu - 26.7a 5.6b 6.2b 9.2b 0.29 < 0.001 

Pro flux from Gln - 22.2a 3.4b 2.0b 5.0b 0.27 < 0.001 
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Discussion 

In late term chicken embryos, over 80% of glucose entry is derived from new 

glucose synthesis as demonstrated in Chapter 3 from either in ovo amino acids or 

glycerol portion of triglycerides. The objective of this study was to determine whether 

Glu and Gln by virtue of their high concentrations in the egg contents and also their 

pivotal location in the central metabolic pathways, are major carbon skeleton donors to 

glucose synthesis, NEAA synthesis and energy metabolism.  

Isotopomer analysis of blood glucose after in ovo injection of [U-13C]Glu and [U-

13C]Gln in this study showed only minimal labelling of  glucose isotopomers. Thus, in 

this study Glu and Gln were not significant contributors to glucose synthesis in day 19 

chicken embryos. This is in spite of the fact that Glu and Gln form ~ 15% of the amino 

acid content of the egg protein and also with a 2-fold higher availability of these amino 

acids in the egg than required for net tissue growth of the embryo by day 18 (Ohta et al., 

1999). This result suggests that other substrates, especially glycerol from triglyceride 

breakdown may be the major carbon donor for gluconeogenesis. Even though various 

substrates including lactate, pyruvate, dihydroxyacetone, glycerol and amino acids can be 

potential precursors for glucose synthesis as previously demonstrated in isolated chicken 

hepatocytes (Brady et al., 1979), their relative contributions vary with the tissue of 

interest, stage of development and the localization of rate limiting enzymes (e.g. 

phosphoenol pyruvate carboxykinase).  Thus the extent of contribution of various 

substrates to gluconeogenesis during different stages of embryonic development needs 

further investigation. 
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 Another interesting observation in this study was that following in ovo 

administration of [U-13C]Glu and [U-13C]Gln, the enrichments of lower isotopomers of 

both Glu and Gln (M+1, M+2, M+3) were low in the blood. Only less than 10% of the 

tracer carbon was recycled as M+1, M+2, M+3 isotopomers in blood Glu and Gln. 

Splanchnic bed metabolism of Glu and Gln in most mammals is characterised by 

extensive oxidation of these amino acids by the intestinal mucosa with only less than half 

of glutamine and less than 20% of Glu appearing in the portal blood from the luminal 

side (Windemueller & Spaeth, 1980; Matthews et al. 1993; Reeds et al. 1996). This 

would thus result in extensive recycling of Glu and Gln carbon leading to appearance of 

lower isotopomers (M+1, M+2, M+3) in NEAA associated with Krebs cycle in blood and 

post hepatic tissues. High recycling of Glu and Gln carbon and resulting appearance of 

M+1, M+2, M+3 isotopomers would also indicate in vivo synthesis of these amino acids 

from other carbon substrates and also increased Krebs cycle activity. However in this 

study, Glu and Gln M+1, M+2, M+3 isotopomer enrichments and also the corresponding 

enrichments in alanine, aspartate and the Krebs cycle intermediates were low. This 

suggests minimal in vivo synthesis of these amino acids through the Krebs cycle. Thus 

the metabolism of Glu and Gln in developing embryos may be different from those 

animals consuming oral diets. Further as the embryo mobilizes Glu and Gln directly from 

the egg contents, and maintains high concentrations of these two amino acids in the 

blood, especially for Gln, only minimal synthesis of these amino acids may be required 

by the embryonic tissues.  Previous literature which indicated that the developing embryo 

only uses less than half of these amino acids compared to what is available in the egg 
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(Ohta et al., 1999) also supports this hypothesis and further suggests that in ovo 

availability of these amino acids may not be a limitation for growth and development. 

 The differences observed in the uptake of [M+5] Glu and Gln between tissues is 

an indication of the metabolic requirement of the tissues for these amino acids during the 

particular stage of development. [U-13C]Glu and [U-13C]Gln injections, both resulted in, 

muscle followed by intestines accumulating the highest [M+5] label which is a reflection 

of tissue uptake of Glu and Gln. Thus the uptake of Glu and Gln was highest in the 

muscle followed by intestine, kidney and liver. Further, with the exception of the liver, 

the uptake of Gln was higher in all the tissues than Glu. Even though the metabolic roles 

of these amino acids in chicken embryonic tissues needs to be further defined, the high 

tissue uptake of Gln, especially in muscle is consistent with the literature in other species 

correlating Gln uptake with high rates of protein synthesis (Wu and Thompson, 1990; 

Watford and Wu, 2005) as is the case in developing tissues. The rate of inter-conversion 

of these amino acids between each other is also high in all the tissues as indicated by the 

[M+5] Glu enrichment with [U-13C]Gln tracer and [M+5] Gln enrichment with [U-

13C]Glu tracer which in turn suggests high activities of phosphate dependent glutaminase 

and glutamine synthetase.     

Even though [M+5] Glu and Gln isotopomer enrichments were lowest in the liver, 

the contribution of Glu and Gln to proline was highest in the liver (24%). Glu and Gln 

flux to proline in all other tissues were more than 60% lower when compared to the liver. 

Previous research by Wu et al., (1995) identified the lack of pyrroline-5-carboxylase 

synthase enzyme in chicken enterocytes which is essential for the conversion of Glu and 

Gln in to proline. In fact proline flux from Glu and Gln was minimal in intestine in this 
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study. However the expression patterns and activity of pyrroline-5-carboxylase synthase 

in liver is not well defined. Further, any appearance of an [M+5] proline after 

administration of in ovo [U-13C]Glu or Gln can only occur through the conversion of Glu 

and Gln to proline thus suggesting that all the pathway enzymes necessary for this 

conversion are active in the liver.            

In summary, embryos from the small and large eggs, despite a significant 

difference in body weight on day 19 of embryonic development, maintained similar rates 

of Glu and Gln metabolism with virtually no contribution of these amino acids towards 

gluconeogenesis, and thus glycogen synthesis. The results also indicate that metabolism 

of Glu and Gln to proline probably accounts for the shortage of proline in the developing 

chick embryo (Ohta et al., 1999). 
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CHAPTER 5: EXPERIMENT 4 

 

 

 

 

 

 

 

 

CONTRIBUTION OF GLYCEROL TO GLUCOSE, GLYCOGEN 
AND NON-ESSENTIAL AMINO ACID SYNTHESIS  

IN EMBRYOS FROM SMALL AND LARGE CHICKEN EGGS 
 

 

 

 

 

 

 



 

 102

Abstract 

The objective of this study was to determine the contribution of glycerol to 

glucose and non-essential amino acid (NEAA) synthesis in 14 and 19 day old chicken 

embryos from small and large eggs. [U-13C]Glycerol (14 mg in 75 µL water) was injected 

into the chorio-allantoic fluid of small (mean ± standard deviation, 56.6 ± 0.88g; n = 7 

per age group) and large (71.7 ± 1.09g; n =7 per age group) eggs for four consecutive 

days prior to tissue and blood collection on day 14 and 19 of embryonic development. 

Blood and tissues were analyzed by GC-MS for 13C-mass isotopomer distribution in 

glycerol, glucose, glycogen and NEAA. Injection of [U-13C]glycerol (M+3) resulted in 

significant enrichments of [M+1], [M+2] and [M+3] isotopomers in blood glucose and 

liver and muscle glycogen. These enrichments were higher (P < 0.05) in small egg 

embryos on day 14 of embryonic development in both blood glucose and glycogen. All 

the blood glucose isotopomers were more highly (P < 0.05) enriched on day 19 of 

embryonic development compared to day 14. Liver and muscle glycogen isotopomer 

enrichments were lower (P < 0.05) than blood glucose enrichments on day 19 suggesting 

the role of other three carbon units (e.g. amino acids) in glycogen synthesis. Injection of 

[U-13C]glycerol (M+3) resulted in significant enrichments of [M+1], [M+2] and [M+3] 

isotopomers in alanine in all the tissues, with aspartate and glutamate isotopomers more 

highly enriched (P < 0.05) in liver than blood and other tissues. In summary glycerol is a 

major precursor for glucose synthesis in chicken embryos and the indirect pathway is 

responsible for most of the liver and muscle glycogen; a major substrate being glycerol.  

Key words: Chicken, Embryo, Glycerol, Glucose, Amino acid, Metabolism  
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Introduction 

The avian egg at incubation has < 3% available carbohydrates (Romanoff and 

Romanoff, 1967) and in consequence the developing chicken embryo has to maintain 

high rates of gluconeogenesis from early stages of incubation. In fact, plasma glucose, 

detected as early as day 4 of incubation, increases steadily from 6 – 8 mM early during 

embryonic development to 10 – 12 mM at two to three weeks post hatch (Hazelwood, 

1971) parallel to an increase in gluconeogenic enzymes (Pearce, 1971; 1977). Glycogen 

content in the liver and muscle which serves as a vital source of energy for hatching also 

starts accumulating early (day 6) during embryonic development (by the uronic acid 

pathway), peaks by day 12, declines to 50% by day 13 and further increases to over 400% 

by day 20 (Hazelwood, 1971). 

The synthesis of glucose and glycogen by the embryo is dependent on the 

substrates available in ovo with amino acids and the glycerol portion of the triglycerides 

being the major substrates. However, a wide variety of substrates including lactate, 

pyruvate, dihydroxyacetone, glyceraldehydes, amino acids and fructose have the potential 

to contribute to glucose synthesis in chicken (Langslow, 1978; Brady et al., 1979). 

Further, substrate preference can vary with availability, stage of embryonic development 

and localization of pathway enzymes (e.g. isoforms of phosphoenolpyruvate 

carboxykinase) in different tissues. Thus, while lactate may be a major contributor to 

gluconeogenesis in isolated chicken hepatocytes (Brady et al., 1979), and also during 

anaerobic respiration (Moran, 2007); amino acids and glycerol were found to be the 

major metabolic substrates in kidney for gluconeogenesis in post hatch chicks (Watford 

et al., 1981, Magnuson et al., 2003).  
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The major substrates for glucose synthesis during chicken embryonic 

development are not well defined. In a previous study from our lab (Chapter 4) 

glutamate and glutamine were found to be non-significant contributors to blood glucose 

synthesis in day 19 embryos. Further as embryos develop in a lipid rich environment, 

with extensive lipid breakdown in the yolk sac and the liver during the latter half of 

incubation for energy production (Deeming and Ferguson, 1991; Sato et al., 2006), the 

glycerol portion of triglycerides is a good and abundant three carbon source for glucose 

synthesis.  

The objective of this study was to determine the contribution of glycerol to 

gluconeogenesis, glycogen synthesis and NEAA synthesis during the latter half of 

embryonic development. We hypothesize that the contribution of glycerol to 

gluconeogenesis, glycogen synthesis and NEAA synthesis will be lower in small egg 

embryos compared to large egg embryos, due to their initial lower yolk content (Lourens 

et al., 2006). An in ovo [U-13C] glycerol stable isotope injection approach was developed 

and utilized to characterize glycerol metabolism. 

Materials and Methods 

Egg Incubation and Experimental Protocol 

The experimental protocol was approved by the Animal Care and Use Committee 

of the University of Maryland.  

Fertilized, small (mean ± standard deviation, 56.6 ± 0.88g; n = 14) and large (71.7 

± 1.09g; n = 14) eggs were obtained from Perdue Farms, Inc., Salisbury, MD from a 

broiler flock of the same age (40 wks old).  All eggs were incubated at a standard 

temperature and relative humidity of 37°C and 65% respectively. On day 9 of incubation 
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all eggs were candled for viable embryos. Two groups each from small and large eggs 

were incubated for collection on days 14 and 19 of incubation. 

In ovo [U-13C]Glycerol Tracer Validation 

 A pilot study was conducted to determine the time-course for enrichments of 

glucose and NEAA to reach isotopic (e.g. M+2, M+3) and isotopomer (e.g. M+2:M+3) 

steady-states following in ovo injection of [U-13C]glycerol. [U-13C]glycerol (14 mg in 75 

µL of sterile water) was injected into the chorio-allantoic fluid of 4 eggs of similar weight 

starting on day 14 of incubation. The air space end of the egg was sterilized with 70% 

ethanol before piercing the egg shell. A 25 gauge needle was used to inject the [U-

13C]glycerol solution, which was deposited 2-3 mm beneath the egg shell membrane into 

the chorio-allantoic fluid. The tracer was assumed to mix uniformly with the fluid 

compartment into which it was injected and absorbed by the developing embryo through 

the extensive chorio-allantoic capillary network. After 1, 2, 3 and 4 days of administering 

the [U-13C] glycerol, one egg was removed and sampled for blood glucose and liver 

NEAA isotopomer enrichments. 

In ovo [U-13C]Glycerol Injection 

One group each from small and large eggs was randomly selected on day 11 or 16 

for injection of [U-13C]glycerol (99 atom percent 13C, Cambridge Isotope Laboratories, 

Inc., Andover, MA). Based on the pilot study, it was determined that isotopic and 

isotopomer steady state is achieved after four consecutive days of administering [U-

13C]glycerol. Thus, in the main experiment, each egg was administered into the chorio-

allantoic fluid [U-13C]glycerol (14 mg in 75 µL of sterile water) for four consecutive days 

before sample collection on the fifth day.  
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Sample Collection and Analysis 

Following [U-13C]glycerol injection for four days, each group of eggs was 

dissected on the fifth day to collect blood and tissue samples. Thus, a group each of small 

and large eggs was dissected on days 14 and 19 of incubation. After removing the egg 

shell surrounding the air cell, the egg shell membrane was carefully peeled off to expose 

the extra embryonic membranes. Whole egg contents were then carefully transferred to a 

petri-dish taking care that the vitelline vessels (artery and vein) were on the top and 

clearly visible. Embryos were blood sampled by making a small nick on the vitelline 

vessels and blood was withdrawn into a glass pasture pipette with a rubber bulb. Blood 

was then transferred into a 2 ml tube and frozen immediately at -20ºC for later analysis. 

Liver, intestine, muscle and kidney tissues were dissected, rinsed with ice-cold normal 

saline to remove excess blood and other debris, and transferred into 2 ml plastic tubes for 

storage at -80ºC.  

Glycerol Enrichments 

Glycerol was extracted from blood (~300µL) with 1.5mL of methanol, thoroughly 

vortexed and centrifuged for 10 min at 4,000 rpm. The supernatant was transferred to a 

V-vial, and blown down completely under N2 gas. The dried sample was processed 

(Gilker et al., 1992) by adding 50µL of heptafluoro-butyryl isobutyl anhydride plus 50µL 

of ethyl acetate and heating at 70ºC for 15min. The derivative was blown down under N2 

and the sample reconstituted in ethyl acetate for gas chromatography-mass spectrometry 

(GC-MS) The sample was separated using a fused silica capillary column (HP-5; 30 m × 

0.25 mm i.d., 1µm Hewlett-Packard) with helium as carrier gas prior to GC-MS (5973N 

Mass Selective Detector coupled to a 6890 Series GC System, Agilent, Palo Alto, CA) 
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under methane negative chemical ionization conditions. The glycerol isotopomers 

monitored were ions (mass-to-charge) 680 to 683. 

Glucose and Glycogen Enrichments 

For determination of blood glucose enrichments, samples (100 µL) were acidified 

with ice-cold 15% sulpho-salicylic acid (w/v) and centrifuged for 10 min at 10,000 rpm 

to precipitate proteins and other debris. The elute containing free glucose was collected 

after passing the supernatant over 0.5g of cation exchange resin. The solution was 

concentrated by freeze drying and analysed by GC-MS for glucose enrichment after 

forming the di-O-isopropylidene acetate derivative of glucose. After separation using a 

fused silica capillary column (HP-5; 30 m × 0.25 mm i.d., 1µm Hewlett-Packard) with 

helium as carrier gas, selective ion monitoring of ions with m/z 287 – 292 was performed 

with MS under electrical ionization mode (Hannestad and Lundblad, 1997).  

For determination of glycogen enrichments, liver (100mg) or muscle (200mg) 

were homogenized in 0.5 to 1.0mL of ice-cold 30% sulpho-salicylic acid (w/v) and 

centrifuged for 10 min at 10,000 rpm to precipitate proteins and other debris. The 

glycogen pellet was extracted by adding ice cold ethanol (95%) to the supernatant (2:1) 

and centrifuging for 20 min at 13,000 rpm. The isolated glycogen pellet was washed 

twice with 0.5mL of ice cold ethanol (95%) to get rid of any residual glucose and spun 

down for 10 min at 13,000 rpm. The glycogen pellet was dried for 2 to 3 hrs at room 

temperature and free glucose liberated by incubating the pellet with 0.5mg 

amlyloglucosidase enzyme (31.2 units / mg solid; Sigma-aldrich, St. Louis, MO) in 

250µL  of 0.3M acetic acid and 2M acetate buffer (1:1; pH = 4.5)  at 55ºC for 1hr. The 
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incubation mixture was freeze dried and processed for GC-MS by forming the di-O-

isopropylidene acetate derivative as described for glucose enrichments. 

Amino acid Enrichments 

For all blood (100 µL) and tissue (50 mg) samples, NEAA were isolated by 

cation-exchange (AG 50W-X8 resin, 100-200 mesh; Bio-Rad Laboratories, Hercules, 

CA) and amino acids eluted from the resin with 2 volumes of 2 M NH4OH followed by 

one volume of water. The eluate was freeze dried, reconstituted in 250 µL of double 

distilled water, dried under a stream of N2 gas, and amino acids converted to their 

heptafluoro-butyryl isobutyl derivatives (MacKenzie and Tenaschuk, 1979ab) prior to 

separation by GC (Heliflex® AT™-Amino acid, 25 m × 0.53 mm × 1.20 µm, Alltech). 

Selected ion monitoring was done by gas chromatography-mass spectrometry (GC-MS; 

5973N Mass Selective Detector coupled to a 6890 Series GC System, Agilent, Palo Alto, 

CA) under methane negative chemical ionization conditions. The following ions of mass-

to-charge (m/z) were monitored: Alanine 321 – 324, Aspartate 421 – 425, Glycine 307 – 

309, Serine 533 – 536, Proline 347 – 352, Glutamine 361 – 366, Glutamate 435 – 440 

and Arginine 778 – 784.  

The normalized crude ion abundances for glucose and amino acids were corrected 

for the natural abundance of stable isotopes present in the original molecule and that 

contributed by the derivative 13C using the matrix approach (Fernandez et al., 1996). 

Natural isotopomer distributions in unlabelled glucose and amino acids were quantified 

from blood samples taken from embryos that had not received the isotopic tracer. 

Corrected enrichments are reported as moles of tracer (M+n) per 100 moles of tracee 

(M+0) for the calculations described below.  
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Statistical Analysis 

After verifying for assumptions of normality and homogeneity of variance, results 

were analyzed by ANOVA using the mixed procedure of SAS (version 8.0, SAS 

Institute, Inc. Cary, NC) with small and large eggs as treatment groups and days of 

incubation as blocks. Treatment means were compared by Tukey-Kramer multiple 

comparison test. Data are presented as least square means ± SEM and the differences are 

considered significant at P < 0.05 while P < 0.1 is considered a trend. 

Results 

Embryo weights 

 Embryonic weights were significantly higher (P < 0.05) for the embryos from 

large eggs on both day 14 (11.4 ± 0.53g vs. 13.3 ± 0.47g) and 19 (31.0 ± 0.58g vs. 36.7 ± 

0.34g) of incubation.  

Figure 5.1 shows the time-course of enrichments of [M+2] and [M+3] glucose 

isotopomers and the ratio of [M+2] / [M+3] in embryonic blood after 1, 2, 3 or 4 days of 

daily injection of [U-13C] glycerol into incubating eggs. By day 4, glucose isotopic and 

isotopomer steady state had been attained. Thus, in the main study, glycerol tracer was 

administered for 4 consecutive days prior to blood and tissue sampling.   

 Even though blood glycerol enrichments were measured (Table 5.1), the data was 

not used to calculate the contributions to glucose and glycogen synthesis due to the high 

variation between embryos.  
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Figure 5.1: Enrichments of M+2 and M+3 isotopomers and the ratio of M+2 / M+3 
during 4 days of [U-13C] glycerol injection for validating the tracer approach. Glucose 
isotopomers were in metabolic steady state by four days of tracer injection. 
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 Glucose and Glycogen Enrichments 

 Blood glucose and tissue glycogen enrichments are presented in Table 5.2. In ovo 

injection of [U-13C]glycerol (M+3) resulted in significant enrichments of [M+1], [M+2], 

[M+3] in blood glucose, liver glycogen and muscle glycogen. On day 14 of embryonic 

development, all the blood glucose isotopomers were higher (P < 0.05) in small egg 

embryos compared to the large egg embryos. However on day 19, the variation between 

individual embryos was greater. Thus, even though the mean blood glucose isotopomer 

enrichments were higher in small egg embryos, the enrichment differences between small 

and large egg embryos did not achieve statistical significance. Blood glucose enrichments 

on day 19 of embryonic development were higher (P < 0.05) than on day 14. 

 On day 14 of embryonic development, [M+1], [M+2] and [M+3] in muscle 

glycogen from small egg embryos tended to be higher relative to the large egg embryos 

(P < 0.1); however no differences were observed on day 19. Enrichments of these 

isotopomers in liver glycogen were similar between small and large embryos on both day 

14 and 19. Glycogen enrichments did not change from day 14 to 19 in liver. However, 

day 14 muscle glycogen enrichments of [M+1] (P = 0.11), [M+2] (P = 0.042) and [M+3] 

(P = 0.026) isotopomers were higher on day 14 of embryonic development in both small 

and large groups.
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Table 5.1: Isotopomer enrichments of blood glycerol in 14 and 19 day old chicken 
embryos injected in ovo with [U-13C]glycerol1 

 
1Enrichments expressed as moles tracer per 100 moles of tracee;  
  Values are means of 5 to 7 embryos 
2S = small, L = large 

Day of 
Incubation 

Egg 
type2 [M + 1] [M + 2] [M + 3] 

D14 S 2.7 ± 1.27 2.7 ± 1.07 264.6 ± 203.28 

D14 L 2.2 ± 0.87 2.2 ± 0.78 136.0 ± 56.56 

D19 S 2.3 ± 1.12 6.1 ± 2.11 572.7 ± 257.43 

D19 L 1.0 ± 0.37 5.9 ± 2.77 233.8 ± 131.27 
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Table 5.2: Isotopomer enrichments in blood glucose, liver glycogen and muscle glycogen in 14 and 19 day old chicken embryos 
injected in ovo with [U-13C]glycerol1 

1Enrichments expressed as moles tracer per 100 moles of tracee; 
 Values are means of 5 to 7 embryos 
2S = small, L = large

Day of 
Incubation 

Egg 
type2 M+1 M+2 M+3 M+4 M+5 M+6 

  Blood Glucose Isotopomer Enrichments 

S 3.6 ±0.43 3.7 ±0.42 2.6 ±0.32 0.13 ±0.028 0.08 ±0.018 0.12 ±0.029D14 
L 2.1 ±0.36 2.2 ±0.37 1.4 ±0.30 0.04 ±0.010 0.03 ±0.008 0.02 ±0.007
S 8.8 ±1.19 9.8 ±1.25 8.0 ±1.23 0.79 ±0.166 0.52 ±0.114 0.67 ±0.181D19 
L 5.9 ±1.90 6.1 ±2.12 4.9 ±1.89 0.45 ±0.234 0.31 ±0.158 0.44 ±0.218

  Liver Glycogen Isotopomer Enrichments 

S 2.8 ±0.63 2.6 ±0.61 1.7 ±0.41 0.15 ±0.046 0.07 ±0.019 0.27 ±0.112D14 
L 2.0 ±0.41 1.8 ±0.30 1.0 ±0.20 0.08 ±0.030 0.05 ±0.031 0.44 ±0.074
S 1.7 ±0.35 2.2 ±0.50 1.3 ±0.41 0.14 ±0.074 0.11 ±0.059 0.07 ±0.038D19 
L 1.6 ±0.33 2.0 ±0.44 1.3 ±0.40 0.08 ±0.037 0.06 ±0.031 0.03 ±0.020

  Muscle Glycogen Isotopomer Enrichments 

S 2.6 ±0.49 2.5 ±0.41 2.6 ±0.49 0.14 ±0.053 0.09 ±0.033 0.21 ±0.097D14 
L 1.3 ±0.40 1.5 ±0.28 1.3 ±0.39 0.04 ±0.011 0.02 ±0.011 0.08 ±0.036
S 1.2 ±0.23 1.6 ±0.18 1.3 ±0.15 0.09 ±0.023 0.07 ±0.022 0.25 ±0.083D19 
L 0.76 ±0.169 1.1 ±0.22 1.0 ±0.22 0.13 ±0.033 0.06 ±0.024 0.57 ±0.203
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Contribution of Glycerol to NEAA synthesis 

 The isotopomer distributions in alanine, aspartate and glutamate are presented in 

Appendix 3A, B and C respectively. 

 For all the amino acids, isotopomer enrichments were different (P < 0.05) 

between tissues and also between blood and tissues. Alanine isotopomers were generally 

higher enriched in blood and tissues of small embryos, however this was a trend (P < 0.1) 

only on day 14 of embryonic development with no differences on day 19. A similar trend 

was observed with both aspartate and glutamate isotopomers with only day 14 liver and 

muscle aspartate isotopomers achieving statistical significance (P < 0.01).   

Discussion 

 Egg yolk contains 60-70% triglycerides which are extensively oxidized during the 

latter half of embryo development, providing more than 90% of the energy requirements 

of the embryos (Sato et al., 2006). Oxidation of triglyceride will release the glycerol 3 

carbon units which can enter the glycolytic pathway at the triose phosphate level. 

Glycerol can contribute its carbon through reverse glycolysis towards the synthesis of 

glucose and also through forward glycolysis towards the synthesis of pyruvate and 

NEAA, associated with Krebs cycle activity. The objective of this study was to determine 

the contribution of glycerol to glucose and glycogen synthesis and also to NEAA 

synthesis using a [U-13C]glycerol tracer. 

 In ovo injection of glycerol (M+3) resulted in significant enrichments of [M+1], 

[M+2] and [M+3] isotopomers in blood glucose with the enrichments higher on day 19. 

In fact, the [M+3] glucose isotopomer was enriched 3-fold higher than [M+3] glucose on 

day 14. This suggests a greater contribution of glycerol carbon to glucose synthesis 
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during day 19. Glycerol concentrations on day 14 and day 18 of embryonic development 

were found to be similar in broiler and layer embryos (Sato et al., 2006). Assuming that 

the glycerol concentrations during the latter half of incubation are maintained, a probable 

reason for the dilution in glucose enrichments from glycerol tracer, observed on day 14 in 

this study may be the contribution from other unlabeled carbon sources. Gluconeogenic 

amino acids being the most probable candidates, the contribution of these amino acids to 

glucose synthesis may be significant during early stages of embryo development. There 

was a significant increase in [M+1] and [M+2] isotopomers in blood glucose from day 14 

to 19 of embryonic development suggesting high recycling of glycerol to glucose. Thus, 

with increasing rates of gluconeogenesis with embryonic development and with a fixed 

nutrient pool, the high recycling rates would aid in conserving glycerol carbon for 

glucose synthesis.    

The higher enrichments of [M+1], [M+2] and [M+3] isotopomers in blood 

glucose of small embryos could suggest a larger proportion of glycerol carbon being 

transferred to glucose in these embryos. However, this needs further validation as the 

actual proportional contribution of glycerol to glucose could not be calculated in this 

study due to high variability in blood glycerol enrichments. Further, differences in yolk 

solids have been detected between small and large eggs from the same flock (Lourens et 

al., 2006) with the small eggs having lower yolk content. Thus the higher isotopomer 

enrichments observed in blood glucose from [U-13C]glycerol may reflect the relatively 

smaller glycerol precursor pool in small egg embryos. 

The carbon precursors for glycogen synthesis during embryonic development are 

not well defined. Significant enrichments in [M+1], [M+2] and [M+3] isotopomers in 
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liver and muscle glycogen suggests that glycerol is a major precursor for glycogen 

synthesis. Glycogen synthesis can occur via direct phosphorylation of glucose and 

incorporation of glucose-6-phosphate into glycogen or indirectly through the 

incorporation of glycolytic intermediates. In humans and rats, evidence exists that only a 

small proportion of intact glucose is incorporated in to glycogen and the majority of 

glycogen synthesis occurs via the indirect pathway (Katz and McGarry, 1984; Huang and 

Veech, 1988). This certainly seems to be the case in developing chicken embryos with 

high incorporation of glycerol carbon into glycogen as reported in this study. Further, 

another study from our lab found indicated minimal synthesis of glycogen from blood 

glucose on embryonic day 15. Enrichment of isotopomers in glucose units released from 

glycogen following in ovo [U-13C]glucose tracer injection was insignificant (data not 

reported). The differences between isotopomer enrichments in blood glucose and the 

enrichments in liver and muscle glycogen following in ovo [U-13C]glycerol injection 

were higher on day 19 embryonic compared to the differences on day 14. Thus on day 19 

the contribution of unlabeled three carbon units to glycogen synthesis may be greater 

compared to initial stage of incubation. 

In ovo [U-13C]glycerol injection resulted in significant enrichment of [M+3] 

alanine which was similar between blood and the tissue samples suggesting that glycerol 

is a major source for alanine synthesis. Isotopomer enrichments of [M+1], [M+2] and 

[M+3] aspartate and glutamate were higher in liver compared to all other tissues which is 

consistent with the known function of liver as the primary organ of lipid metabolism. 

Mass isotopomer profiles in different tissues vs. blood were different and thus blood may 
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not always reflect whole body tissue metabolism and specific tissue nutrient 

requirements. 

In summary, significant enrichments of blood glucose and liver and muscle 

glycogen after administration of [U-13C]glycerol, suggest that glycerol is a major carbon 

source for glucose and glycogen synthesis in developing chicken embryos. Further, 

differences in enrichments between small and large embryos suggest that initial yolk 

content may be the limiting factor determining the partitioning of glycerol carbon for 

glucose synthesis in small vs. large embryos.  
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Summary and Conclusions 
 
 The hypothesis that small eggs perform more poorly compared to chicks from 

larger eggs because of their limited supplies of specific macronutrients during embryonic 

development was tested in this thesis. The research hypothesis was formulated with the 

objective of deciphering the regulation of metabolic pathway fluxes during chicken 

embryonic development in response to nutrient availability. Universally labeled stable 

isotopes ([U-13C]glucose, glutamate, glutamine and glycerol) were used for the 

experiments as the redistribution of their carbon skeletons through central metabolic 

pathways allowed simultaneous quantification of glucose and amino acid metabolism.  

The results form the four studies demonstrate the ability of the developing embryo 

to alter nutrient fluxes through central metabolic pathways depending on the stage of 

development and nutrient requirements of the tissues. For example, with embryonic age, 

the availability of glucose in ovo was increased by increasing gluconeogenesis. 

Glutamate and glutamine were not major precursors to glucose synthesis in day 19 

embryos. However, following [U-13C]glycerol injection significant labeling was detected 

both in blood glucose and liver and muscle glycogen. Thus, glycerol was a major carbon 

precursor for glucose and glycogen synthesis. Further, with increasing glucose 

production, glucose carbon had a greater role in embryonic non-essential amino acid 

synthesis and energy metabolism via the Krebs cycle. 

 Mass isotopomer distribution patterns in various tissues demonstrated differences 

in nutrient fluxes between tissues indicating the flexibility of these tissues in adapting 

their metabolism based on nutrient availability and tissue needs. For example, the flux of 

proline from glutamate and glutamine was 3 to 4 fold higher in liver when compared to 
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other tissues. A further example in blood demonstrated reduced glycolytic flux with in 

ovo supplementation with glucose and/or amino acids. 

 Even though the literature on macronutrient composition of the egg is extensive, 

our knowledge regarding macronutrient utilization and nutrient partitioning in developing 

chicken embryos is limited mostly to early information from indirect calorimetry and in 

vitro studies . Knowledge of nutrient use by the embryo is particularly important due to 

the metabolic transition during late term embryonic development from a lipid 

environment in ovo to exogenous carbohydrates post hatch. This period is critical in the 

development of the post hatch chick with high mortality rates and lower growth rates 

associated with inefficient metabolic transition. Thus knowledge of the nutrient fluxes 

and partitioning through central pathways will provide us a picture of specific tissue 

requirements which will in turn allow us to tailor macronutrient compositions for optimal 

growth and development of the chick.   



 
Appendix 1A 

 
Tracer: Tracee ratios of blood glucose isotopomers (M+1, 2…..) after in ovo [U-13C]glucose injection; Study 1, Chapter 21. 

 
 1Values are means ± standard error of five embryos expressed as moles tracer / 100 moles tracee 
 2S = small, L = Large 
 
 
 
 
 
 

Day of 
Incubation 

Egg 
type2 M+1 M+2 M+3 M+4 M+5 M+6 

S 1.31 ± 0.189 1.21 ± 0.154 0.38 ± 0.044 0.00 ± 0.00 0.00 ± 0.00 6.95 ± 0.739
D12 

L 1.18 ± 0.096 1.02 ± 0.104 0.38 ± 0.049 0.00 ± 0.00 0.00 ± 0.00 18.67 ± 1.535

S 2.74 ± 0.320 1.10 ± 0.201 0.28 ± 0.058 0.00 ± 0.00 0.00 ± 0.00 1.17 ± 0.165
D14 

L 2.66 ± 0.245 1.08 ± 0.100 0.30 ± 0.041 0.00 ± 0.00 0.00 ± 0.00 1.85 ± 0.237

S 2.60 ± 0.398 0.72 ± 0.119 0.17 ± 0.034 0.00 ± 0.00 0.00 ± 0.00 2.91 ± 0.417
D16 

L 1.27 ± 0.157 0.61 ± 0.133 0.16 ± 0.038 0.00 ± 0.00 0.00 ± 0.00 2.15 ± 0.361

S 3.48 ± 0.700 2.06 ± 0.704 0.51 ± 0.181 0.00 ± 0.00 0.00 ± 0.00 3.84 ± 1.957
D18 

L 3.64 ± 0.598 1.54 ± 0.301 0.37 ± 0.073 0.00 ± 0.00 0.00 ± 0.00 2.83 ± 0.829
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Appendix 1B 
 

Tracer: Tracee ratios of alanine isotopomers in blood, liver (Table 1), intestine and muscle (Table 2) after in ovo [U-13C]glucose  
injection; Study 1, Chapter 21. 

Table 1 
Blood   Liver   Day of 

incubation 
Egg 
type2 M+1 M+2 M+3 M+1 M+2 M+3 

S 0.46 ± 0.052 0.21 ± 0.043 0.39 ± 0.039 0.65 ± 0.099 0.33 ± 0.067 0.17 ± 0.033 D12 
L 0.64 ± 0.062 0.33 ± 0.046 0.78 ± 0.316 0.68 ± 0.047 0.42 ± 0.059 0.24 ± 0.062 
S 0.78 ± 0.050 0.24 ± 0.059 0.41 ± 0.047 0.99 ± 0.094 0.42 ± 0.086 0.19 ± 0.041 D14 
L 0.85 ± 0.101 0.23 ± 0.034 0.43 ± 0.043 1.07 ± 0.107 0.44 ± 0.033 0.20 ± 0.028 
S 0.65 ± 0.060 0.08 ± 0.022 0.24 ± 0.051 0.63 ± 0.030 0.19 ± 0.025 0.10 ± 0.008 D16 
L 0.40 ± 0.081 0.10 ± 0.037 0.16 ± 0.036 0.48 ± 0.089 0.24 ± 0.073 0.13 ± 0.013 
S 1.18 ± 0.334 0.62 ± 0.200 1.17 ± 0.479 1.32 ± 0.321 0.71 ± 0.150 0.39 ± 0.081 D18 
L 0.67 ± 0.102 0.26 ± 0.066 0.53 ± 0.097 0.70 ± 0.059 0.28 ± 0.042 0.20 ± 0.035 

 
Table 2 

Intestine  Muscle   Day of 
incubation  

Egg 
type2 M+1 M+2 M+3 M+1 M+2 M+3 

S 0.54 ± 0.104 0.37 ± 0.063 0.51 ± 0.061 0.52 ± 0.085 0.33 ± 0.058 0.39 ± 0.088 D12 
L 0.50 ± 0.036 0.30 ± 0.036 0.50 ± 0.114 0.58 ± 0.052 0.38 ± 0.024 0.53 ± 0.124 
S 0.86 ± 0.129 0.37 ± 0.081 0.30 ± 0.044 0.85 ± 0.096 0.35 ± 0.070 0.37 ± 0.082 D14 
L 0.89 ± 0.115 0.38 ± 0.049 0.42 ± 0.126 0.89 ± 0.064 0.38 ± 0.034 0.38 ± 0.049 
S 0.64 ± 0.080 0.26 ± 0.060 0.20 ± 0.089 0.65 ± 0.041 0.19 ± 0.016 0.17 ± 0.022 D16 
L 0.38 ± 0.070 0.26 ± 0.059 0.21 ± 0.049 0.44 ± 0.058 0.24 ± 0.061 0.19 ± 0.046 
S 1.15 ± 0.191 0.57 ± 0.092 0.50 ± 0.092 1.35 ± 0.162 0.85 ± 0.093 0.65 ± 0.104 D18 
L 0.66 ± 0.094 0.32 ± 0.058 0.25 ± 0.035 0.75 ± 0.108 0.40 ± 0.054 0.31 ± 0.034 

1Values are means ± standard error of five embryos expressed as moles tracer / 100 moles tracee 

2 S = small, L = Large 
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Appendix 1C 
 

Tracer: Tracee ratios of aspartate isotopomers in blood, liver (Table 1), intestine and muscle (Table 2) after in ovo [U-13C]glucose  
injection; Study 1, Chapter 21. 

Table 1 
Blood  Liver  Day of 

incubation 
Egg 
type2 M+1 M+2 M+3 M+1 M+2 M+3 

S 0.59 ± 0.121 . . 0.02 ± 0.001 0.77 ± 0.157 0.33 ± 0.064 0.15 ± 0.026 D12 
L 0.93 ± 0.152 . . 0.02 ± 0.035 0.90 ± 0.241 0.38 ± 0.127 0.16 ± 0.189 
S 1.21 ± 0.076 0.11 ± 0.036 0.03 ± 0.006 1.53 ± 0.129 0.40 ± 0.110 0.18 ± 0.040 D14 
L 1.32 ± 0.054 0.09 ± 0.029 0.04 ± 0.021 1.53 ± 0.211 0.45 ± 0.052 0.23 ± 0.030 
S 0.75 ± 0.062 0.22 ± 0.039 0.09 ± 0.024 1.01 ± 0.040 0.22 ± 0.035 0.09 ± 0.013 D16 
L 0.58 ± 0.059 0.04 ± 0.014 0.02 ± 0.003 1.41 ± 0.237 0.68 ± 0.194 - - 
S 0.54 ± 0.135 0.33 ± 0.091 0.15 ± 0.064 2.08 ± 0.444 0.88 ± 0.180 0.24 ± 0.051 D18 
L 0.47 ± 0.070 0.33 ± 0.107 0.13 ± 0.052 1.19 ± 0.134 0.37 ± 0.071 0.11 ± 0.017 

 
Table 2 

Intestine  Muscle  Day of 
incubation 

Egg 
type2 M+1 M+2 M+3 M+1 M+2 M+3 

S 0.69 ± 0.071 0.17 ± 0.025 0.03 ± 0.004 0.80 ± 0.068 0.24 ± 0.023 0.01 ± 0.003 D12 
L 0.83 ± 0.167 0.22 ± 0.079 0.03 ± 0.030 0.83 ± 0.131 0.44 ± 0.055 0.10 ± 0.036 
S 1.40 ± 0.274 0.48 ± 0.154 0.11 ± 0.065 1.00 ± 0.059 0.40 ± 0.057 0.16 ± 0.078 D14 
L 1.09 ± 0.079 0.40 ± 0.083 0.07 ± 0.032 0.98 ± 0.074 0.35 ± 0.039 0.11 ± 0.050 
S 1.22 ± 0.096 0.38 ± 0.087 0.09 ± 0.046 0.89 ± 0.064 0.32 ± 0.043 0.04 ± 0.022 D16 
L 0.74 ± 0.083 0.28 ± 0.046 0.09 ± 0.027 0.66 ± 0.030 0.32 ± 0.042 0.07 ± 0.028 
S 1.51 ± 0.203 0.44 ± 0.063 0.10 ± 0.010 1.48 ± 0.202 0.51 ± 0.071 0.07 ± 0.008 D18 
L 1.11 ± 0.126 0.39 ± 0.077 0.10 ± 0.025 1.09 ± 0.112 0.56 ± 0.046 0.12 ± 0.027 

1Values are means ± standard error of five embryos expressed as moles tracer / 100 moles tracee 

2 S = small, L = Large 
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Appendix 1D 
 

Tracer: Tracee ratios of glutamate isotopomers in blood, liver (Table 1), intestine and muscle (Table 2) after in ovo [U-
13C]glucose  injection; Study 1, Chapter 21. 

Table 1 
Blood  Liver  Day of 

incubation 
Egg 
type2 M+1 M+2 M+3 M+1 M+2 M+3 

S 0.46 ± 0.085 0.22 ± 0.036 0.04 ± 0.004 0.87 ± 0.072 0.41 ± 0.065 0.16 ± 0.012 D12 
L 0.60 ± 0.066 0.25 ± 0.040 0.06 ± 0.009 0.96 ± 0.047 0.47 ± 0.037 0.18 ± 0.019 
S 1.70 ± 0.304 1.04 ± 0.327 0.10 ± 0.029 1.51 ± 0.090 0.78 ± 0.110 0.16 ± 0.024 D14 
L 1.82 ± 0.304 1.00 ± 0.312 0.10 ± 0.027 1.60 ± 0.192 0.84 ± 0.117 0.16 ± 0.017 
S 2.25 ± 0.418 2.21 ± 0.532 0.22 ± 0.054 1.47 ± 0.071 0.78 ± 0.029 0.1 ± 0.028 D16 
L 0.94 ± 0.182 0.45 ± 0.177 0.04 ± 0.008 1.21 ± 0.146 0.65 ± 0.108 0.26 ± 0.116 
S 3.69 ± 0.995 3.55 ± 1.414 0.36 ± 0.180 2.18 ± 0.339 1.66 ± 0.337 0.20 ± 0.037 D18 
L 3.33 ± 0.535 3.35 ± 0.874 0.41 ± 0.139 1.56 ± 0.127 1.01 ± 0.097 0.18 ± 0.028 

 
Table 2 

Intestine  Muscle  Day of 
incubation 

Egg 
type2 

M+1 M+2 M+3 M+1 M+2 M+3 
S 0.82 ± 0.061 0.29 ± 0.043 0.07 ± 0.007 1.07 ± 0.089 0.30 ± 0.039 0.05 ± 0.008 D12 
L 0.95 ± 0.055 0.35 ± 0.025 0.09 ± 0.012 1.09 ± 0.065 0.39 ± 0.026 0.05 ± 0.003 
S 1.58 ± 0.158 0.76 ± 0.220 0.06 ± 0.023 1.29 ± 0.056 0.46 ± 0.051 0.05 ± 0.013 D14 
L 1.26 ± 0.155 0.48 ± 0.097 0.09 ± 0.016 1.33 ± 0.092 0.45 ± 0.065 0.04 ± 0.004 
S 1.28 ± 0.055 0.67 ± 0.072 0.16 ± 0.005 1.28 ± 0.059 0.51 ± 0.048 0.04 ± 0.004 D16 
L 0.80 ± 0.058 0.27 ± 0.038 0.10 ± 0.014 0.88 ± 0.037 0.25 ± 0.020 0.02 ± 0.003 
S 1.73 ± 0.260 0.97 ± 0.191 0.17 ± 0.018 1.88 ± 0.266 1.03 ± 0.219 0.15 ± 0.019 D18 
L 1.38 ± 0.153 0.71 ± 0.124 0.13 ± 0.010 1.39 ± 0.264 0.74 ± 0.194 0.13 ± 0.018 

1Values are means ± standard error of five embryos expressed as moles tracer / 100 moles tracee 

2 S = small, L = Large 
 



Appendix 1E 
 

Tracer: Tracee ratios of Krebs cycle intermediates isotopomers in liver after in ovo [U-
13C]glucose  injection; Study 1, Chapter 21. 

 
(moles tracer / 100 moles tracee) 

 
Day of 

incubation 
Egg 
type2 M+1 M+2 M+3 

S 1.15 ± 0.045 0.46 ± 0.062 0.11 ± 0.011 D 16 L 0.74 ± 0.061 0.41 ± 0.069 0.10 ± 0.019 
S 2.69 ± 0.537 1.45 ± 0.314 0.30 ± 0.072 Lactate 

D 18 L 1.73 ± 0.302 0.79 ± 0.232 0.10 ± 0.021 
S 0.82 ± 0.046 0.24 ± 0.022 0.10 ± 0.012 D 16 L 0.34 ± 0.099 0.28 ± 0.077 0.13 ± 0.017 
S 2.21 ± 0.416 1.15 ± 0.238 0.31 ± 0.057 Pyruvate 

D 18 L 1.31 ± 0.224 0.51 ± 0.128 0.13 ± 0.019 
S 0.71 ± 0.095 0.49 ± 0.019 0.04 ± 0.008 D 16 L 0.48 ± 0.065 0.43 ± 0.042 0.04 ± 0.010 
S 2.18 ± 0.479 1.20 ± 0.219 0.16 ± 0.038 Succinate 

D 18 L 1.39 ± 0.202 0.61 ± 0.096 0.08 ± 0.009 
S 1.60 ± 0.145 0.53 ± 0.056 0.08 ± 0.004 D 16 L 1.15 ± 0.082 0.50 ± 0.096 0.08 ± 0.018 

 S* 2.37 ± 0.534 1.14 ± 0.296 0.07 ± 0.045 Malate 
D 18  L* 1.88 ± 0.046 0.56 ± 0.044 0.06 ± 0.014 

S 2.38 ± 0.114 0.64 ± 0.040 0.06 ± 0.035 D 16 L 2.24 ± 0.111 0.60 ± 0.085 0.09 ± 0.016 
S . . . . . . Oxaloacetate 

D 18 L . . . . . . 
S 1.18 ± 0.069 0.87 ± 0.052 0.05 ± 0.011 D 16 L 0.39 ± 0.081 0.50 ± 0.049 0.13 ± 0.042 

 S* 2.15 ± 0.521 1.13 ± 0.356 0.12 ± 0.072 α-Ketoglutarate 
D 18 L 1.61 ± 0.198 1.08 ± 0.161 0.07 ± 0.047 

1Values are means ± standard error of five embryos  
*Values are means ± standard error of three embryos 
2S = small, L = Large 
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Appendix 2A 
 

Tracer: Tracee ratios of blood glucose isotopomers (M+1, 2…..) in day 12 chicken embryos 
after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 

 
1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, l = Large. 
 
 
 
 
 

Nutrient 
Treatments2 

Egg 
Type3 M+1 M+2 M+3 M+4 M+5 M+6 

S 0.70 ±0.341 0.78 ±0.243 0.28 ±0.073 0.00 ±0.00 0.30 ±0.081 4.67 ±1.271 
C 

L 0.97 ±0.259 0.98 ±0.267 0.34 ±0.083 0.00 ±0.00 0.27 ±0.059 4.22 ±0.984 

S 1.47 ±0.214 1.51 ±0.174 0.51 ±0.055 0.00 ±0.00 0.28 ±0.024 4.43 ±0.448 
G 

L 0.73 ±0.276 0.99 ±0.254 0.35 ±0.087 0.00 ±0.00 0.19 ±0.042 2.92 ±0.682 

S 3.05 ±0.319 2.77 ±0.206 0.97 ±0.079 0.00 ±0.00 1.23 ±0.265 18.21 ±3.969 
AA 

L 2.78 ±0.372 2.60 ±0.397 0.90 ±0.138 0.00 ±0.00 0.45 ±0.113 6.45 ±1.590 

S 1.80 ±0.270 1.60 ±0.260 0.52 ±0.089 0.00 ±0.00 0.51 ±0.069 7.90 ±1.130 
G+AA 

L 1.19 ±0.135 1.09 ±0.074 0.37 ±0.028 0.00 ±0.00 0.40 ±0.124 6.02 ±1.894 
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Appendix 2B 
 

Tracer: Tracee ratios of blood glucose isotopomers (M+1, 2…..) in day 20 chicken embryos 
after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 

 
1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, L = large. 
 
 
 
 
 

Nutrient 
Treatments2 

Egg 
Type3 M+1 M+2 M+3 M+4 M+5 M+6 

S 6.35 ±2.109 6.32 ±2.544 1.85 ±0.964 0.34 ±0.241 0.40 ±0.195 4.11 ±1.832 
C 

L 7.43 ±0.978 6.36 ±0.721 1.56 ±0.187 0.20 ±0.047 0.19 ±0.021 1.90 ±0.217 

S 6.87 ±1.047 6.51 ±1.250 1.90 ±0.457 0.28 ±0.085 0.33 ±0.091 3.51 ±0.954 
G 

L 9.20 ±0.650 8.59 ±0.716 2.59 ±0.313 0.39 ±0.054 0.38 ±0.090 3.56 ±0.926 

S 8.10 ±1.899 7.14 ±1.890 2.04 ±0.691 0.32 ±0.155 0.31 ±0.108 2.91 ±0.818 
AA 

L 6.35 ±0.815 6.19 ±0.886 1.69 ±0.325 0.22 ±0.062 0.23 ±0.047 2.24 ±0.443 

S 7.37 ±1.070 6.55 ±0.808 1.74 ±0.297 0.25 ±0.056 0.31 ±0.059 3.46 ±0.688 
G+AA 

L 6.58 ±0.531 6.30 ±0.612 1.77 ±0.199 0.21 ±0.038 0.33 ±0.044 3.63 ±0.509 
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Appendix 2C 

 
Tracer: Tracee ratios of blood alanine isotopomers (M+1, 2 and 3) in day 20 chicken embryos 

after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 
 

Nutrient 
Treatments2 

Egg 
Type3 [M + 1] [M + 2] [M + 3] 

S 1.57 ±0.454 1.76 ±0.460 1.36 ±0.513 
C 

L 1.92 ±0.182 1.61 ±0.149 1.18 ±0.143 

S 1.78 ±0.234 1.59 ±0.260 1.58 ±0.379 
G 

L 2.12 ±0.211 2.39 ±0.618 1.67 ±0.247 

S 1.55 ±0.468 1.32 ±0.358 1.05 ±0.356 
AA 

L 0.94 ±0.139 0.86 ±0.105 0.73 ±0.093 

S 0.90 ±0.070 0.84 ±0.070 0.70 ±0.075 
G+AA 

L 0.56 ±0.057 0.63 ±0.064 0.58 ±0.076 

 
1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, L = large. 
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Appendix 2C contd 
Tracer: Tracee ratios of alanine isotopomers (M+1, 2 and 3) in liver, intestine (Table 1), muscle and kidney (Table 2) of day 20 

chicken embryos after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 
 

Table 1 
Nutrient 

Treatments2 
Egg 

Type3 Liver Intestine 

  [M + 1] [M + 2] [M + 3] [M + 1] [M + 2] [M + 3] 
S 0.64 ±0.052 0.72 ±0.057 0.50 ±0.064 0.99 ±0.088 1.00 ±0.081 1.06 ±0.154C L 0.75 ±0.125 0.79 ±0.102 0.47 ±0.030 0.93 ±0.117 0.91 ±0.087 0.93 ±0.080
S 0.74 ±0.064 0.78 ±0.046 0.51 ±0.029 1.03 ±0.086 1.05 ±0.073 1.15 ±0.130G L 0.60 ±0.092 0.69 ±0.063 0.42 ±0.044 1.05 ±0.065 1.05 ±0.054 1.33 ±0.141
S 0.86 ±0.089 0.87 ±0.080 0.65 ±0.043 1.14 ±0.137 1.17 ±0.108 1.18 ±0.162AA L 0.80 ±0.060 0.84 ±0.058 0.62 ±0.050 0.93 ±0.074 1.01 ±0.072 0.96 ±0.083
S 0.84 ±0.059 0.84 ±0.048 0.64 ±0.033 1.05 ±0.039 1.06 ±0.038 1.19 ±0.066G+AA L 0.94 ±0.042 0.93 ±0.033 0.60 ±0.029 0.91 ±0.046 0.98 ±0.033 1.03 ±0.029

 
Table 2 

Nutrient 
Treatments2 

Egg 
Type3 Muscle Kidney 

  [M + 1] [M + 2] [M + 3] [M + 1] [M + 2] [M + 3] 
S 1.40 ±0.050 1.35 ±0.091 1.29 ±0.165 1.09 ±0.061 1.11 ±0.078 0.83 ±0.063C L 1.30 ±0.096 1.22 ±0.095 1.10 ±0.086 1.27 ±0.201 1.02 ±0.122 0.70 ±0.069
S 1.31 ±0.058 1.29 ±0.049 1.38 ±0.072 2.08 ±0.215 1.71 ±0.216 2.14 ±0.495G L 1.37 ±0.141 1.30 ±0.092 1.25 ±0.081 2.02 ±0.179 1.67 ±0.205 2.16 ±0.563
S 1.30 ±0.048 1.35 ±0.069 1.18 ±0.098 1.62 ±0.226 1.41 ±0.178 1.35 ±0.171AA L 1.08 ±0.078 1.22 ±0.070 1.00 ±0.084 1.69 ±0.182 1.42 ±0.138 1.23 ±0.132
S 1.17 ±0.048 1.29 ±0.048 1.42 ±0.115 1.30 ±0.137 1.31 ±0.083 1.18 ±0.137G+AA L 1.10 ±0.076 1.20 ±0.075 1.16 ±0.094 1.25 ±0.092 1.25 ±0.081 1.12 ±0.081

1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, L = large. 
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Appendix 2D 
 

Tracer: Tracee ratios of blood aspartate isotopomers (M+1, 2 and 3) in day 20 chicken embryos 
after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 

 
Nutrient 

Treatments2 
Egg 

Type3 [M + 1] [M + 2] [M + 3] 

S 1.88 ±0.310 0.08 ±0.052 0.06 ±0.018 
C 

L 3.23 ±0.512 0.19 ±0.083 0.05 ±0.033 

S 1.87 ±0.318 0.22 ±0.080 0.20 ±0.179 
G 

L 0.91 ±0.058 0.35 ±0.064 0.10 ±0.019 

S 3.37 ±0.636 0.30 ±0.078 0.06 ±0.027 
AA 

L 1.06 ±0.166 0.17 ±0.034 0.03 ±0.013 

S 2.05 ±0.380 0.25 ±0.030 0.06 ±0.029 
G+AA 

L 1.73 ±0.128 0.24 ±0.027 0.05 ±0.011 

 
1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, L = large. 
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Appendix 2D contd 
Tracer: Tracee ratios of aspartate isotopomers (M+1, 2 and 3) in liver, intestine (Table 1), muscle and kidney (Table 2) of day 20 

chicken embryos after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 
 

Table 1 
Nutrient 

Treatments2 
Egg 

Type3 Liver Intestine 

  [M + 1] [M + 2] [M + 3] [M + 1] [M + 2] [M + 3] 
S 1.92 ±0.096 1.03 ±0.083 0.28 ±0.036 0.94 ±0.053 0.43 ±0.036 0.13 ±0.012C L 2.32 ±0.246 1.14 ±0.115 0.25 ±0.016 0.91 ±0.052 0.37 ±0.021 0.12 ±0.005
S 2.08 ±0.153 1.13 ±0.078 0.31 ±0.017 1.10 ±0.059 0.48 ±0.045 0.15 ±0.017G L 2.00 ±0.147 1.05 ±0.078 0.31 ±0.024 1.09 ±0.046 0.60 ±0.036 0.17 ±0.014
S 1.01 ±0.023 0.84 ±0.072 0.38 ±0.075 0.78 ±0.058 0.72 ±0.066 0.09 ±0.027AA L 1.47 ±0.101 1.07 ±0.063 0.35 ±0.027 0.71 ±0.034 0.67 ±0.165 0.14 ±0.021
S 1.10 ±0.058 1.03 ±0.054 0.49 ±0.112 0.86 ±0.068 0.73 ±0.136 0.41 ±0.097G+AA L 1.86 ±0.114 1.33 ±0.064 0.44 ±0.038 0.77 ±0.052 1.18 ±0.193 0.21 ±0.038

 
Table 2 

Nutrient 
Treatments2 

Egg 
Type3 Muscle Kidney 

  [M + 1] [M + 2] [M + 3] [M + 1] [M + 2] [M + 3] 
S 1.21 ±0.130 0.45 ±0.074 0.10 ±0.012 0.80 ±0.134 0.25 ±0.096 0.19 ±0.073C L 1.28 ±0.082 0.50 ±0.037 0.13 ±0.030 0.81 ±0.172 0.70 ±0.089 0.27 ±0.054
S 1.16 ±0.067 0.43 ±0.022 0.09 ±0.009 1.16 ±0.074 0.41 ±0.036 0.32 ±0.051G L 1.54 ±0.066 0.54 ±0.047 0.08 ±0.002 1.32 ±0.128 0.48 ±0.087 0.26 ±0.070
S 1.22 ±0.058 0.63 ±0.074 0.10 ±0.016 2.72 ±0.188 0.76 ±0.045 0.29 ±0.019AA L 1.01 ±0.071 0.54 ±0.049 0.13 ±0.018 2.56 ±0.239 0.73 ±0.062 0.23 ±0.031
S 1.18 ±0.031 0.50 ±0.064 0.13 ±0.016 1.60 ±0.212 0.99 ±0.306 0.12 ±0.047G+AA L 1.12 ±0.040 0.62 ±0.029 0.15 ±0.009 0.88 ±0.087 0.80 ±0.173 0.12 ±0.043

1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, L = large. 
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Appendix 2E 
 

Tracer: Tracee ratios of blood glutamate isotopomers (M+1, 2 and 3) in day 20 chicken embryos 
after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 

 
Nutrient 

Treatments2 
Egg 

Type3 [M + 1] [M + 2] [M + 3] 

S 1.78 ±0.290 1.14 ±0.256 0.10 ±0.048 
C 

L 2.50 ±0.413 1.86 ±0.492 0.13 ±0.062 

S 1.85 ±0.211 1.23 ±0.259 0.21 ±0.057 
G 

L 2.88 ±0.321 2.51 ±0.347 0.22 ±0.059 

S 1.92 ±0.296 1.33 ±0.381 0.18 ±0.049 
AA 

L 1.56 ±0.143 0.79 ±0.089 0.14 ±0.010 

S 1.93 ±0.076 1.11 ±0.076 0.09 ±0.026 
G+AA 

L 1.71 ±0.131 1.04 ±0.073 0.07 ±0.026 

 
1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, L = large. 
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Appendix 2E contd 
Tracer: Tracee ratios of glutamate isotopomers (M+1, 2 and 3) in liver, intestine (Table 1), muscle and kidney (Table 2) of day 20 

chicken embryos after in ovo [U-13C]glucose injection; Study 2, Chapter 31. 
 

Table 1 
Nutrient 

Treatments2 
Egg 

Type3 Liver Intestine 

  [M + 1] [M + 2] [M + 3] [M + 1] [M + 2] [M + 3] 
S 1.28 ±0.034 1.32 ±0.108 0.42 ±0.167 1.47 ±0.102 0.80 ±0.101 0.10 ±0.007C L 1.58 ±0.123 1.50 ±0.114 0.26 ±0.069 1.34 ±0.093 0.78 ±0.069 0.09 ±0.009
S 1.80 ±0.074 1.56 ±0.077 1.02 ±0.125 1.65 ±0.082 0.89 ±0.074 0.11 ±0.009G L 1.49 ±0.104 1.40 ±0.128 0.79 ±0.087 1.68 ±0.139 1.10 ±0.080 0.14 ±0.007
S 2.00 ±0.139 1.65 ±0.166 0.44 ±0.118 1.61 ±0.161 1.00 ±0.161 0.10 ±0.022AA L 1.87 ±0.086 1.47 ±0.094 0.13 ±0.053 1.19 ±0.093 0.77 ±0.046 0.10 ±0.012
S 2.04 ±0.079 1.62 ±0.062 0.24 ±0.045 1.61 ±0.115 0.99 ±0.116 0.09 ±0.019G+AA L 1.80 ±0.042 1.48 ±0.070 0.18 ±0.012 1.44 ±0.060 0.76 ±0.036 0.08 ±0.006

 
Table 2 

Nutrient 
Treatments2 

Egg 
Type3 Muscle Kidney 

  [M + 1] [M + 2] [M + 3] [M + 1] [M + 2] [M + 3] 
S 1.79 ±0.239 1.18 ±0.236 0.14 ±0.033 1.19 ±0.257 0.81 ±0.166 0.17 ±0.043C L 2.03 ±0.171 1.44 ±0.147 0.16 ±0.014 1.20 ±0.036 1.20 ±0.094 0.14 ±0.039
S 1.74 ±0.074 1.07 ±0.100 0.13 ±0.016 1.79 ±0.097 1.08 ±0.108 0.13 ±0.015G L 2.23 ±0.150 1.67 ±0.108 0.17 ±0.011 2.07 ±0.103 1.41 ±0.110 0.13 ±0.030
S 2.11 ±0.267 1.42 ±0.225 0.17 ±0.033 1.53 ±0.080 0.88 ±0.151 0.09 ±0.030AA L 1.79 ±0.098 0.98 ±0.074 0.13 ±0.010 1.60 ±0.125 0.87 ±0.111 0.09 ±0.021
S 2.08 ±0.134 1.22 ±0.119 0.16 ±0.017 0.77 ±0.111 0.71 ±0.116 0.12 ±0.065G+AA L 1.81 ±0.082 1.03 ±0.060 0.14 ±0.010 0.66 ±0.088 0.70 ±0.097 0.02 ±0.022

1Values are means ± standard error of five to nine embryos expressed as moles of tracer per 100 moles of tracee. 
2C = control, G = glucose, AA = amino acids, G+AA = glucose plus amino acids. 

 3S = small, L = large.
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Appendix 3A 
 

Tracer: Tracee ratios of alanine isotopomers (M+1, 2 & 3) in blood and tissues of 14 and 
19 day old chicken embryos after in ovo [U-13C]glycerol injection; Study 4, Chapter 51. 

 
Day of 

Incubation 
Egg 

Type2 [M + 1] [M + 2] [M + 3] 

  Blood 
S 0.64 ±0.127 0.73 ±0.104 1.16 ±0.136 D14 
L 0.31 ±0.101 0.46 ±0.099 0.80 ±0.157 
S 1.03 ±0.129 1.16 ±0.134 1.24 ±0.120 D19 
L 0.68 ±0.306 0.79 ±0.298 0.91 ±0.294 

  Liver 
S 1.37 ±0.222 1.31 ±0.157 0.97 ±0.106 D14 
L 0.66 ±0.136 0.75 ±0.108 0.62 ±0.119 
S 1.53 ±0.266 1.57 ±0.242 1.02 ±0.168 D19 
L 0.97 ±0.333 1.04 ±0.287 0.55 ±0.135 

  Intestine 
S 0.89 ±0.178 0.86 ±0.128 1.53 ±0.302 D14 
L 0.35 ±0.111 0.45 ±0.083 0.81 ±0.134 
S 1.20 ±0.179 1.18 ±0.190 2.35 ±0.472 D19 
L 0.66 ±0.174 0.77 ±0.185 1.62 ±0.460 

  Muscle 
S 0.80 ±0.138 0.84 ±0.116 1.14 ±0.145 D14 
L 0.44 ±0.099 0.49 ±0.090 0.77 ±0.144 
S 1.40 ±0.177 1.44 ±0.185 1.34 ±0.173 D19 
L 0.92 ±0.193 0.91 ±0.192 0.91 ±0.214 

  Kidney 
S 1.42 ±0.213 1.16 ±0.138 1.50 ±0.147 D14 
L 0.76 ±0.183 0.73 ±0.135 0.93 ±0.189 
S 1.80 ±0.220 1.63 ±0.196 1.93 ±0.172 D19 
L 1.30 ±0.388 1.17 ±0.336 1.27 ±0.367 

 
1Values are means ± standard error of 6 to 7 embryos expressed as moles of tracer per 
100 moles of tracee. 

 2S = small, L = Large. 
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Appendix 3B 
 

Tracer: Tracee ratios of aspartate isotopomers (M+1, 2 & 3) in blood and tissues of 14 and 
19 day old chicken embryos after in ovo [U-13C]glycerol injection; Study 4, Chapter 51. 

 
Day of 

Incubation 
Egg 

Type2 [M + 1] [M + 2] [M + 3] 

  Blood 
S 0.50 ±0.067 0.21 ±0.034 0.06 ±0.018 D14 
L 0.34 ±0.046 0.15 ±0.035 0.05 ±0.013 
S 0.48 ±0.066 0.41 ±0.072 0.07 ±0.017 D19 
L 0.40 ±0.097 0.19 ±0.050 0.06 ±0.013 

  Liver 
S 2.43 ±0.291 1.56 ±0.180 0.26 ±0.033 D14 
L 1.47 ±0.226 0.93 ±0.148 0.15 ±0.024 
S 5.23 ±0.723 3.16 ±0.454 0.46 ±0.079 D19 
L 3.30 ±0.933 1.90 ±0.563 0.36 ±0.127 

  Intestine 
S 0.91 ±0.107 0.37 ±0.037 0.09 ±0.024 D14 
L 0.54 ±0.087 0.19 ±0.037 0.07 ±0.011 
S 1.57 ±0.205 0.63 ±0.088 0.35 ±0.066 D19 
L 1.05 ±0.214 0.51 ±0.112 0.26 ±0.051 

  Muscle 
S 1.01 ±0.109 0.36 ±0.039 0.08 ±0.008 D14 
L 0.70 ±0.089 0.24 ±0.037 0.05 ±0.008 
S 1.76 ±0.251 0.52 ±0.044 0.06 ±0.007 D19 
L 1.10 ±0.277 0.41 ±0.097 0.04 ±0.012 

  Kidney 
S 0.98 ±0.079 0.41 ±0.043 0.09 ±0.019 D14 
L 0.76 ±0.117 0.29 ±0.033 0.08 ±0.015 
S 1.76 ±0.188 0.62 ±0.078 0.17 ±0.022 D19 
L 1.23 ±0.281 0.47 ±0.109 0.13 ±0.040 

 
1Values are means ± standard error of 6 to 7 embryos expressed as moles of tracer per 
100 moles of tracee. 

 2S = small, L = Large. 
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Appendix 3C 
 

Tracer: Tracee ratios of glutamate isotopomers (M+1, 2 & 3) in blood and tissues of 14 and 
19 day old chicken embryos after in ovo [U-13C]glycerol injection; Study 4, Chapter 51. 

 
Day of 

Incubation 
Egg 

Type2 [M + 1] [M + 2] [M + 3] 

  Blood 
S 0.81 ±0.077 0.58 ±0.061 0.09 ±0.010 D14 
L 0.61 ±0.069 0.43 ±0.075 0.07 ±0.015 
S 1.48 ±0.202 1.10 ±0.171 0.12 ±0.023 D19 
L 1.13 ±0.286 0.82 ±0.269 0.10 ±0.035 

  Liver 
S 1.54 ±0.173 1.49 ±0.184 0.19 ±0.029 D14 
L 1.05 ±0.124 0.94 ±0.173 0.13 ±0.026 
S 3.03 ±0.427 3.24 ±0.469 0.34 ±0.063 D19 
L 1.86 ±0.412 1.90 ±0.544 0.25 ±0.088 

  Intestine 
S 0.91 ±0.054 0.53 ±0.081 0.07 ±0.007 D14 
L 0.68 ±0.076 0.32 ±0.051 0.05 ±0.010 
S 1.54 ±0.189 1.04 ±0.145 0.18 ±0.027 D19 
L 1.34 ±0.319 0.91 ±0.257 0.18 ±0.063 

  Muscle 
S 1.04 ±0.121 0.57 ±0.060 0.08 ±0.012 D14 
L 0.88 ±0.082 0.37 ±0.061 0.06 ±0.012 
S 1.90 ±0.222 1.22 ±0.172 0.10 ±0.024 D19 
L 1.46 ±0.335 0.97 ±0.306 0.09 ±0.042 

  Kidney 
S 1.09 ±0.130 0.67 ±0.078 0.09 ±0.012 D14 
L 0.74 ±0.102 0.49 ±0.078 0.06 ±0.017 
S 1.88 ±0.207 1.22 ±0.144 0.12 ±0.017 D19 
L 1.48 ±0.374 0.99 ±0.284 0.10 ±0.042 

 
1Values are means ± standard error of 6 to 7 embryos expressed as moles of tracer per 
100 moles of tracee. 

 2S = small, L = Large. 
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