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This dissertation deals with the utilization of channel knowledge in improv-

ing the performance of wireless communication systems. The first part is about

energy harvesting networks. The transmission policies in energy harvesting wire-

less systems need to adapt to the harvested energy availability and the channel

characteristics. We start by considering the scheduling policy for a single energy

harvesting source node that operates over a time varying channel. The goal of the

source is to maximize the average number of successfully delivered packets per time

slot. The transmission decisions depend on the available channel information and

the length of the energy queue. Then, we investigate the case in which the source

is helped by a relay through a network-level cooperation protocol. We investigate

the case of a single relay node in which we optimize the transmission control based

on channel measurements. Then, we assess the benefits of using partial relaying.

We provide an exact characterization of the stability region of a network which

consists of a source, a relay and a destination with random data arrivals to both



the source and the relay. We derive the optimal value of the relaying parameter to

maximize the stable throughput of the source for a given data arrival rate to the

relay. Finally, we introduce the problem of general relaying cost minimization for

cooperative energy harvesting networks with multiple relays. Then, we introduce

the energy consumption as a cost criterion for the optimization problem to find an

energy-efficient partial relaying protocol.

In the second part, we investigate the techniques to optimally exploit channel

information in transmission control for interfering sources. We discuss the scheduling

problem for different levels of channel knowledge because learning instantaneous

channels states may be costly or infeasible. We consider a network that consists of

two transmitter-receiver pairs which operate over time varying channels. We derive

the optimal scheduling policies which maximize the expected weighted sum-rate of

the network per time slot. The decision depends on the information about the

channels between nodes.

In the third part, we investigate the effect of channel estimation on the perfor-

mance of a secondary network in a cognitive radio system. We focus on estimating

the sensing-channel from the primary source to the secondary source which helps

in assessing the reliability of the sensing decision. The channel is estimated op-

portunistically when the secondary source senses the primary source to be active.

We consider the performance criterion to be the energy consumed by the secondary

system constrained by a required average data transmission rate for the secondary

system and an allowable average failure probability for the primary system.
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Chapter 1: Introduction

Channel variation is a source of randomness in data transmission; therefore,

system design should exploit such randomness. The knowledge of channel state in-

formation plays a fundamental role in exploiting channel variation. This dissertation

focuses on obtaining efficient techniques for wireless communication systems which

exploit channel knowledge in various ways depending on different levels of channel

state information availability in newly emerging topics in wireless communications

and networking. These topics include energy harvesting, cooperative communication

and cognitive radio.

1.1 Utilization of Channel Information

The time varying nature of the wireless channels leads to decrease in the

reliability of transmission over these channels. The availability of instantaneous

channel state information (CSI) of links plays an important role in enhancing the

performance of wireless networks [1, 2].

There are two main challenges that face reliable wireless communications. The

first is the multipath fading in addition to the classical additive white Gaussian

noise. The other is the multi-user interference which results due to the fact that the
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wireless channel is a shared medium and hence simultaneous transmissions interfere

with each other. The knowledge of channel state information, either accurately or

partially, plays a key role in achieving reliable communication over unreliable wire-

less channels. Thus, understanding the impact of the knowledge of different levels of

channel state information becomes indispensable to the overall system design. Re-

cent research has demonstrated that deeper understanding of CSI can lead to new

views on fading channels and new communication techniques such as multi-user

diversity [3] and interference alignment [4].

In this dissertation, we discuss techniques to efficiently utilize the available

knowledge about the wireless channels of a system in enhancing some performance

measure. We consider different performance measures such as the throughput, the

stability and the consumed energy by the system. We also consider different types

of communication systems such as energy harvesting networks, cooperative commu-

nication networks and cognitive radio networks.

1.2 Energy Harvesting

Energy harvesting enables wireless nodes to be recharged by the surrounding

environment. Thus, wireless communication networks with energy harvesting ca-

pability have extended lifetime and are self-sufficient. Recent advances in energy

harvesting materials and ultra-low-power communications will soon enable the real-

ization of energy harvesting networks [5, 6]. Nodes can harvest energy from nature

through various different sources, such as solar cells, vibration absorption devices,
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water mills, thermoelectric generators and microbial fuel cells. Examples of the

techniques of energy harvesting from nature can be found in [7, 8]. The energy

harvesting nodes are used in different types of networks such as rechargeable sen-

sor networks [9], and Energy Harvesting Active Networked Tags (EnHANTs) [10].

Such networks have applications in various areas which motivates studying different

aspects related to energy harvesting networks.

In the systems where nodes harvest energy from nature, energy can be mod-

eled as an exogenous recharge process. Therefore, unlike traditional battery-powered

systems, energy is not a deterministic quantity in these systems, but is a random

process which varies stochastically in time. In our work, we deal with the harvested

energy as a stochastic process without considering the energy harvesting technique.

When dealing with nodes powered by non-rechargeable batteries, the common ob-

jectives are short term such as maximizing the lifetime of the network [11,12]. The

harvesting capability enables considering different performance measures such as the

throughput and the stability of the network [13].

There has been recent research effort on understanding data transmission in

energy harvesting networks [14]- [24]. In [14], an optimal admission control policy

is obtained for data transmission with energy harvesting sensors. In [15], energy

management policies which stabilize the data queue are proposed for single-user

communication under a linearity assumption for the power-rate relation. In [16],

the problem of throughput optimal energy allocation is studied for energy harvest-

ing systems in a time constrained slotted setting. In [17, 18], minimization of the

transmission completion time is considered in an energy harvesting single-user sys-
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tem. In [19], the problem of minimization of the transmission completion time for

energy harvesting transmitters with batteries of finite energy storage is considered.

In [20,21], optimal transmission policies are obtained for a single energy harvesting

transmitter operating over a time varying channel. In [22–24], optimal transmission

policies are developed for broadcast channel with an energy harvesting transmitter.

Channel knowledge in energy harvesting networks helps in efficiently consum-

ing the limited renewable available energy in the transmission process. Energy

harvesting nodes should forward data over wireless channels when they have good

conditions.

1.3 Cooperative Communication

Cooperative diversity enables single antenna users to benefit from the spatial

diversity by delivering data with the help of relay nodes. Numerous works have been

done to analyze cooperative diversity at the physical layer based on information

theoretic considerations [25, 26]. It has also been shown that cooperation can be

applied at the network layer. In [27], a network-level cooperation protocol has been

used to increase the stable throughput region for the uplink of a wireless network.

Also in [28], a network-level cooperation protocol has been exploited to enhance the

performance in a multicasting scenario. A network-level partial relaying protocol

has been considered before in [29] where the stability region of a system with a

source, a relay and a destination has been characterized. The nodes are non-energy

harvesting and they access the channel through a random access technique. In [29],
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the effect of relaying control on the system performance has been investigated.

Channel knowledge in cooperative networks allows smarter cooperation be-

tween nodes. Channel characteristics help in determining the suitable situations for

cooperation and channel state information availability helps in selecting the suitable

transmission decisions.

1.4 Cognitive Radio

Cognitive radio [30] is a paradigm in which unlicensed secondary users may

access licensed frequency bands in order to efficiently exploit the available radio

spectrum. A huge amount of research has been carried out in recent years on

cognitive radio techniques, since there is widespread interest in this technology.

Classical cognitive radio is based on the use of temporarily unused frequency bands,

and so its implementation requires that proper spectrum sensing procedures must

be deployed so that white spaces are detected, and, mostly important, secondary

users interrupt their communications as soon as a white space becomes no longer

white that it is again used by the primary users. It is apparent that this is a quite

difficult task, especially when it is to be implemented in a simple device with limited

hardware capabilities and computational power. An alternative approach, instead, is

based on the idea that secondary users are allowed to transmit in the same frequency

band licensed to an active primary network, but subject to the constraint that they

must not be too much disturbing for the primary users.

Channel knowledge is an essential part in the cognitive nature of the secondary
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networks. It helps in taking more reliable decisions either in the sensing process or in

the transmission process. Thus, it helps in reaching the main goals for the secondary

systems in cognitive radio networks. The goals are to opportunistically access the

unused frequency bands and not disturb the primary users.

1.5 Outline of the Dissertation

This dissertation is organized as follows. Chapter 2 introduces the problem

of scheduling of energy harvesting sources which operate over time varying wire-

less channels. Specifically, in section 2.3, we obtain the structure of the optimal

transmission policy for an energy harvesting source. In section 2.4, we obtain an

upper bound on the performance of the source node in the proposed scenario. Chap-

ter 3 is about the stability analysis of an energy harvesting source which is helped

by an energy harvesting relay while both operate over time varying wireless chan-

nels. We start by the case of perfect channel measurements. Then in section 3.4,

we consider the case of imperfect channel measurements. In section 3.5, we ob-

tain the optimal transmission strategy for the source node to maximize its stable

throughput. Chapter 4 introduces a partial relaying cooperation protocol for en-

ergy harvesting networks. We characterize the stability region of a system which

contains a source and a relay with energy harvesting capability that exploits par-

tial relaying. In section 4.6, we show the improvement in the system performance

because of using partial relaying compared to simple relaying strategies. Chapter

5 extends the analysis to the case of multiple relays. In this case, we consider a
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general cost minimization problem over the partial relaying parameters. Chapter 6

is about the problem of the scheduling of two sources over time varying channels.

Different levels of channel state information availability are considered in different

sections in the chapter. In section 6.8, we consider the case of distributed scheduling

for the two sources. Chapter 7 is about the transmission control in cognitive radio

networks with the availability of the sensing-channel information. The performance

is compared for the cases of no channel estimation, accurate channel estimation and

opportunistic channel estimation. Finally, chapter 8 summarizes the contributions

of this dissertation and points out possible future research directions.
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Chapter 2: Optimal Scheduling for Energy Harvesting Sources

2.1 Introduction

Energy harvesting is naturally a stochastic process. One important problem

is to decide whether to use the available energy for transmission or continue storing

it for future transmissions. Efficient scheduling techniques should be able to take

the full advantage of energy harvesting. There have been many previous works that

consider scheduling techniques in energy harvesting networks. In our work, we con-

sider scheduling of transmissions based on the energy queue state, energy harvesting

statistics and the channel state as we consider the case of time varying channels.

In [14, 15, 31], scheduling for source nodes with energy harvesting capability is con-

sidered under a fixed channel assumption. In [15], an energy management policy to

maintain the stability of the data queue is considered for single-user communication

under a linear approximation of the rate-power relation. In [31], power adaptation

is considered to maximize a general rate utility function for a single user where the

decision depends on the energy queue state without considering the energy arrival

process statistics. In [14], an optimal threshold on the data queue as a function of

the energy queue state is found where the source node takes the decision to transmit

data if the data queue level is above this threshold.
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On the other hand, off-line scheduling is also considered in [18], [32]. In off-line

scheduling, it is assumed that the time instants of energy arrival and data arrival

events are known prior to the scheduling. In [18], optimal power allocation for each

transmission is considered over a fixed channel where the power allocation is done

off-line. The goal is to maximize the transmitted data over a fixed period of time.

In [32], the same problem as in [18] is considered but for a time varying channel

where also the states of the channel and the time instants for the states change are

known prior to the scheduling.

Online scheduling for a source node with energy harvesting capability that

transmits over a time varying channel is considered in [33]. The scheduling is done

based on the energy queue state and the energy arrival process statistics. It was

assumed that the energy arrivals and channel state variations can happen at any time

instant and hence the change of the power used in transmission. The optimal policy

is stated as a continuous time stochastic dynamic program which requires excessive

computation. Then, suboptimal techniques are considered. Similar problem was

considered in [16] where the problem of energy allocation of a single source node

with energy harvesting capability was considered. The goal is the maximization

of the finite horizon throughput. Both off-line and online policies are discussed.

Structural results for the optimal energy allocation policy were obtained via the

use of dynamic programming and convex optimization techniques. In case of online

energy allocation, the policy calculations may be done off-line and implemented via

a lookup table. In our work, we consider a time slotted system and we prove that the

optimal online policy is a simple threshold type policy based on a Markov decision
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process model.

We consider a communication system which operates over a Gilbert-Elliot

channel. The source node has an energy harvesting capability. Also, it takes the

decision to transmit a data packet or defer the transmission for the future depending

on the channel measurements and the energy queue length. At the beginning of each

time slot, the source performs channel measurement to know whether the channel is

in the good state or not, and it checks the length of the energy queue. Depending on

this information, the source decides either to transmit a data packet over the channel

or to defer the transmission for later time slots. The objective for the source is the

maximization of the average number of packets that are received correctly by the

destination per time slot.

We formulate this problem as a Markovian Decision Problem (MDP). The ob-

jective of the problem is the maximization of the expected infinite horizon discounted

number of packets transmitted by the source node. The limit of this problem, when

the discount factor tends to be 1, is equivalent to the problem of maximization of

the expected average number of packets successfully delivered per time slot. We deal

with the discounted reward problem for mathematical convenience. We determine

the optimal policy for decision making via the use of value iteration. We derive

structural results regarding the optimal policy and show that the optimal policy is

a threshold-type policy in the energy queue length. Also, we calculate an upper

bound for the performance of the system. The case of no channel measurements

available at the source is also considered. Numerical results show the difference in

the performance between the optimal policy and simpler policies that are the greedy
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and the conservative policies. Also, we compare the optimal performance in both

cases where channel measurements are either available or not at the source node.

Thus, we can assess the impact of the time varying nature of the channel as well as

that of CSI availability. This work was presented in [21,34].

2.2 System Model and Problem Formulation

We consider a source node that has a data queue and an infinite energy queue

as shown in figure 2.1. The system is time slotted. During each time slot, the

source can transmit a single data packet. Transmitting a data packet requires using

a single energy unit from the energy queue. The energy queue length is denoted

by E. The source node can acquire, at most, a single energy unit at each time slot

with probability q. We assume that the source has a saturated data queue such that

there is always data to be sent at every time slot. The saturated data queue models

the case when the source has a large volume of data.

The channel is modeled by a two-state Markov chain (Gilbert Elliot model).

Each state corresponds to a degree of channel quality. State 1 corresponds to good

connectivity, while state 0 corresponds to poor connectivity. The success probability

of a transmitted packet, when the channel is in state i = {0, 1}, is denoted by fi.

From this definition, we find that f1 is larger than f0. Time is slotted and the

channel remains fixed within each slot and moves into another state in the next

slot following the state transition probability of the underlying Markov chain. The

transition probability from state 0 to state 1 is λ0 and the transition probability
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Figure 2.1: System Model

from state 1 to state 1 is λ1 as shown in figure 2.2. We consider the case that λ1 is

larger than λ0 which is noted as a positive memory channel as described in [35].

Figure 2.2: Gilbert-Elliot Channel Model
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At the beginning of each slot, the source node chooses between two actions:

transmit a packet or defer transmission. The action is taken based on the available

CSI and the energy queue length. We denote the channel state by C. We assume

that the source gets a feedback from the destination with the CSI at the beginning

of the time slot. Based on the CSI and the value of E, the decision of the source

node is taken. The action to transmit is denoted by T and the action to defer

transmission is denoted by D.

MDP formulation-Because of the Markovian property of the channel and the

Markovian property of the energy queue which depends on the decision chosen by

the source, the decision problem at the source node is an MDP. We define u as the

scheduling policy used by the source node and it is a mapping from the state space

to the action space. Let V u(E,C) be the expected discounted reward with initial

state X0 = (E,C), u be the policy followed, and β ∈ [0, 1) be the discount factor.

The expected discounted reward has the following expression

V u(E,C) = E
u

[ ∞∑
t=0

βtR (Xt, At) |X0 = (E,C)

]
(2.1)

R (Xt, At) =

⎧⎪⎪⎨
⎪⎪⎩

fC if At = T

0 if At = D

(2.2)

The expected reward represents the expected number of packets delivered to

the destination given that a certain action was chosen. First, if the action D is

chosen, the source does not attempt to transmit any packets. As a result, the

instantaneous expected reward has the value 0. When the action T is chosen,

the reward will be 1 if the packet is delivered correctly to the destination. The

13



probability that a packet is delivered depends on the channel state and equals fC .

The expected number of packets delivered at a time slot, when the action T is taken,

is fC .

Define now the value function V (E,C ) as

V (E,C) = max
u

V u (E,C) for all E ∈ {0, 1, 2, ......} and C ∈ {0, 1} (2.3)

From [36], there exists a stationary policy u∗such that V (E,C )= Vu∗(E,C ).

This value function satisfies Bellman’s equation, namely,

V (E,C) = max
A∈{T,D}

{VA (E,C)} (2.4)

where VA(E,C ) is the value achieved by taking the action A when the state is (E,C ).

The expression of VA(E,C ) can be written as follows:

VA (E,C) = R ((E,C) , A) + βE(a,b) [V (a, b) |X0 = (E,C) , A0 = A] (2.5)

where (a,b) is the next state when the action A is taken and the initial state is

(E,C ).

When the action T is chosen, the expected reward is fC . Also, the energy

queue will lose one energy unit. On the other hand, the energy queue can acquire a

new energy unit with probability q. When the channel is in state C at the current

time slot, the channel state at the next time slot is 1 with probability λC and 0 with

probability (1-λC). The expression for VT (E,C ) is written as follows:

VT (E,C) = fC + β [qλCV (E, 1) + q (1− λC)V (E, 0)

+ (1− q)λCV (E − 1, 1) + (1− q) (1− λC)V (E − 1, 0)] (2.6)
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When the action D is taken, the same explanation holds except that no energy

units will be consumed and there is no instantaneous expected reward. As a result,

the expression of VD(E,C ) will be given by

VD (E,C) = 0 + β [qλCV (E + 1, 1) + q (1− λC)V (E + 1, 0)

+ (1− q)λCV (E, 1) + (1− q) (1− λC)V (E, 0)] (2.7)

Finally, the Bellman’s equation for the problem is written as follows

V (E,C) = max {VT (E,C) , VD (E,C)} (2.8)

2.3 Structure of the Optimal Policy

In this section, we will prove some properties for the value function and prove

the optimality of a threshold type policy.

Lemma 2.1. V (E,1) is larger than or equal to V (E,0)

Proof. We are going to use mathematical induction in this proof. Define V (E,C,n)

as the optimal value function when the decision horizon spans n stages. The value

function recursion is written as follows:

V (E,C, n) = max {fC + β [qλCV (E, 1, n− 1) + q (1− λC)V (E, 0, n− 1)

+ (1− q)λCV (E − 1, 1, n− 1) + (1− q) (1− λC)V (E − 1, 0, n− 1)] ,

β [qλCV (E + 1, 1, n− 1) + q (1− λC)V (E + 1, 0, n− 1)

+ (1− q)λCV (E, 1, n− 1) + (1− q) (1− λC)V (E, 0, n− 1)]} (2.9)
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We start by showing that the hypothesis is true at n=1. For E≥1, V (E,1,1)=f 1

and V (E,0,1)=f 0. Also for E=0, both are equal to zero, that V (0,1,1)= V (0,0,1)=0.

Thus, the hypothesis is true for n=1 for all E. Assume that the lemma is true for

n-1, then we start by calculating

VT (E, 1, n)− VT (E, 0, n) =

f1 − f0 + β (λ1 − λ0) [q (V (E, 1, n− 1)− V (E, 0, n− 1))

+ (1− q) (V (E − 1, 1, n− 1)− V (E − 1, 0, n− 1))] (2.10)

where VT (E,C,n) is the value function when the action T is chosen, the channel at

state C and the decision horizon spans n stages. We have that f 1 is larger than f 0.

Also from the hypothesis at n-1 and λ1>λ0, the quantity in (2.10) is larger than 0.

Then, we consider the difference when the action D is chosen, that is,

VD(E, 1, n)− VD(E, 0, n) =

β [q (V (E + 1, 1, n− 1)− V (E + 1, 0, n− 1)) (λ1 − λ0)

+ (1− q) (V (E, 1, n− 1)− V (E, 0, n− 1)) (λ1 − λ0)] (2.11)

where VD(E,C,n) is the value function when the action D is chosen, the channel is

at state C and the decision horizon spans n stages. This quantity is also larger than

or equal to 0. From the definition of the value function at (2.8), we conclude that

V (E,1,n) ≥ V (E,0,n) for all n. Then, V (E,1) ≥ V (E,0) is true by considering the

limit as n goes to infinity.

Lemma 2.2. V (E,C ) is non decreasing function in E.
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Proof. We are going to use mathematical induction in the proof with similar steps

as in the proof of the previous lemma. We start by showing the validity of the

hypothesis at n=1. For E=0, we found V (0,C,1)=0. Also for E ≥ 1, we have found

V (E,C,1)=fC . Then, the hypothesis is true for n=1 as the value function at E ≥ 1

is larger than the value function at E=0.

Assume that the hypothesis is true for n-1. Then, we have the value function

expression

V (E,C, n) = max {fC + β [qλCV (E, 1, n− 1) + q (1− λC)V (E, 0, n− 1)

+ (1− q)λCV (E − 1, 1, n− 1) + (1− q) (1− λC)V (E − 1, 0, n− 1)] ,

β [qλCV (E + 1, 1, n− 1) + q (1− λC)V (E + 1, 0, n− 1)+

+ (1− q)λCV (E, 1, n− 1) + (1− q) (1− λC)V (E, 0, n− 1)]} (2.12)

Each argument in the max function is the summation of positive weighted non-

decreasing functions. Then, both arguments of the max function are non-decreasing

functions. The maximum of two non-decreasing function is also non-decreasing.

Then, we consider the limit as n goes to infinity to prove that the value function

V (E,C ) is a non-decreasing function of E for a fixed C.

Lemma 2.3. For E≥ 1, V (E+1,C )-V (E,C ) ≤ f 1

Proof. We are going to use mathematical induction in the proof. We start by the

validity of the hypothesis at n=1. We have V (E+1,C,1)-V (E,C,1)=0. Then, the

hypothesis is true for n=1. Assume that the hypothesis is true for n-1, namely that

V (E+1,C,n-1)-V (E,C,n-1) ≤ f 1. Then by using the hypothesis at C=1, we have
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the following

VT (E, 1, n)− VD (E, 1, n)

≥ f1 − β [qλCf1 + q (1− λC) f1 + (1− q)λCf1 + (1− q) (1− λC) f1]

= f1 − βf1 = f1 (1− β) > 0 (2.13)

Then, the action to be chosen is T. As a result, V (E,1,n)=VT (E,1,n). This

leads to the following difference between the value functions

V (E + 1, 1, n)− V (E, 1, n) = VT (E + 1, 1, n)− VT (E, 1, n) =

β [qλC [V (E + 1, 1, n− 1)− V (E, 1, n− 1)]

+ q (1− λC) [V (E + 1, 0, n− 1)− V (E, 0, n− 1)]

+ (1− q)λC [V (E, 1, n− 1)− V (E − 1, 1, n− 1)]

+ (1− q) (1− λC) [V (E, 0, n− 1)− V (E − 1, 0, n− 1)]] ≤ βf1 < f1 (2.14)

To explain the above result, note that the summation of the quantities qλs,

(1-q)λs, q(1-λs) and (1-q)(1-λs) equals 1. Every term in the difference at equation

(2.14) is multiplied by β and one of the quantities qλs, (1-q)λs, q(1-λs) and (1-

q)(1-λs). Also, Every one of the terms V (E+1,1,n-1)-V (E,1,n-1), V (E+1,0,n-1)-

V (E,0,n-1), V (E,1,n-1)-V (E -1,1,n-1) and V (E,1,n-1)-V (E -1,1,n-1) is less than or

equal to f 1 by assumption. Then, the summation will be less than or equal to βf 1

which is less than f 1from the definition of β.

Then, we consider the case when C=0. There exist four cases for the actions

to be selected when the energy queue has the lengths E and E+1. The first case is

that the action T is chosen when the energy queue length is E+1 and the action D
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is chosen when the energy queue length is E. The difference in this case is given by

VT (E + 1, 0, n)− VD (E, 0, n) =

f0 + β [qλ0V (E + 1, 1, n− 1) + q (1− λ0)V (E + 1, 0, n− 1)

+ (1− q)λ0V (E, 1, n− 1) + (1− q) (1− λ0)V (E, 0, n− 1)]

− β [qλ0V (E + 1, 1, n− 1) + q (1− λ0)V (E + 1, 0, n− 1)

+ (1− q)λ0V (E, 1, n− 1) + (1− q) (1− λ0)V (E, 0, n− 1)] = f0 (2.15)

The second case is that the action T is chosen in both cases when the energy

queue length is E+1 or E. The difference in this case is given by

VT (E + 1, 0, n)− VT (E, 0, n) =

β [qλ0V (E + 1, 1, n− 1) + q (1− λ0)V (E + 1, 0, n− 1)

+ (1− q)λ0V (E, 1, n− 1) + (1− q) (1− λ0)V (E, 0, n− 1)]

− β [qλ0V (E, 1, n− 1)+ q (1− λ0)V (E, 0, n− 1)

+ (1− q)λ0V (E − 1, 1, n− 1) + (1− q) (1− λ0)V (E − 1, 0, n− 1)] ≤ βf1 < f1

(2.16)

The third case is that the action D is chosen in both cases when the energy
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queue length is E+1 or E. The difference in this case is given by

VD (E + 1, 0, n)− VD (E, 0, n) =

β [qλ0V (E + 2, 1, n− 1) + q (1− λ0)V (E + 2, 0, n− 1)

+ (1− q)λ0V (E + 1, 1, n− 1) + (1− q) (1− λ0)V (E + 1, 0, n− 1)]

− β [qλ0V (E + 1, 1, n− 1)+ q (1− λ0)V (E + 1, 0, n− 1)

+ (1− q)λ0V (E, 1, n− 1) + (1− q) (1− λ0)V (E, 0, n− 1)] ≤ βf1 < f1 (2.17)

The fourth case, finally, is that the action D is chosen when the energy queue

length is E+1 and the action T is chosen when the energy queue length is E. The

difference in this case is given by

VD (E + 1, 0, n)− VT (E, 0, n) =

β [qλ0V (E + 2, 1, n− 1) + q (1− λ0)V (E + 2, 0, n− 1)

+ (1− q)λ0V (E + 1, 1, n− 1) + (1− q) (1− λ0)V (E + 1, 0, n− 1)]

− f0 − β [qλ0V (E, 1, n− 1)+ q (1− λ0)V (E, 0, n− 1)

+ (1− q)λ0V (E − 1, 1, n− 1) + (1− q) (1− λ0)V (E − 1, 0, n− 1)] (2.18)

As we consider the case when the optimal action to be chosen is T for energy
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queue value E and channel state 0. Then, VT (E,0,n) is larger than VD(E,0,n) and

VD (E, 0, n)− VT (E, 0, n) =

β [qλ0V (E + 1, 1, n− 1) + q (1− λ0)V (E + 1, 1, n− 1)

+ (1− q)λ0V (E, 1, n− 1) + (1− q) (1− λ0)V (E, 1, n− 1)]

− f0 − β [qλ0V (E, 1, n− 1) + q (1− λ0)V (E, 1, n− 1)

+ (1− q)λ0V (E − 1, 1, n− 1) + (1− q) (1− λ0)V (E − 1, 1, n− 1)] ≤ 0 (2.19)

Adding and subtracting VD(E,0,n) in (2.18) leads to

VD (E + 1, 0, n)− VD (E, 0, n) + VD (E, 0, n)− VT (E, 0, n) < f1 + 0 = f1 (2.20)

After considering the four cases for C=0, we found that the hypothesis is true

for C=0.

The hypothesis is true for every C and every n. By considering the limit as n

goes to infinity, we have proved the lemma.

Proposition 2.1. The optimal action for the source when the channel is

at state 1 and the length of the energy queue is larger than 0 is to transmit, i.e.

VT (E,1)≥ VD(E,1).

Proof. We start by subtracting VD(E,1) from VT (E,1) and after rearranging terms,
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we get

VT (E, 1)− VD (E, 1) =

f1 − β [qλ1 (V (E + 1, 1)− V (E, 1)) + q (1− λ1) (V (E + 1, 0)− V (E, 0))

+ (1− q)λ1 (V (E, 1)− V (E − 1, 1)) + (1− q) (1− λ1) (V (E, 0)− V (E − 1, 0))]

≥ f1 − βf1 > 0 (2.21)

The inequality is a result of applying lemma 2.2 to the terms in the equality

above.

Proposition 2.2. At C=0 and E≥1, the state action reward function VA(E,0)

is supermodular in (E,A), that is, VT (E+1,0)+VD(E,0)≥VD(E+1,0)+VT (E,0). Then

the optimal policy is a threshold-type policy in the available energy in the queue.

Consequently, there is an η such that

A∗(E, 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D if 0 ≤ E ≤ η

T if E > η

Proof. We want to prove that the difference between VT (.,0) and VD(.,0) is non-

decreasing in E, that is,

VT (E + 1, 0)− VD(E + 1, 0) ≥ VT (E, 0)− VD(E, 0) (2.22)

We start by calculating the difference between VT (E,0) and VD(E,0) . We
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have

VT (E, 0)− VD(E, 0) =

f0 − β [qλ0 (V (E + 1, 1)− V (E, 1)) + q (1− λ0) (V (E + 1, 0)− V (E, 0))

+ (1− q)λ0 (V (E, 1)− V (E − 1, 1)) + (1− q) (1− λ0) (V (E, 0)− V (E − 1, 0))]

(2.23)

Then, we subtract VD(E+1,0) from VT (E+1,0) which leads to

VT (E + 1, 0)− VD(E + 1, 0) =

f0 − β [qλ0 (V (E + 2, 1)− V (E + 1, 1)) + q (1− λ0) (V (E + 2, 0)− V (E + 1, 0))

+ (1− q)λ0 (V (E + 1, 1)− V (E, 1)) + (1− q) (1− λ0) (V (E + 1, 0)− V (E, 0))]

(2.24)

By subtracting equation (2.23) from equation (2.24) and for the difference to

be larger than or equal 0, a sufficient condition is

V (E,C)− V (E − 1, C) ≥ V (E + 1, C)− V (E,C) (2.25)

This condition is that the difference in the value function is non-increasing

function of E.

In the following part of the proof, we are going to prove that the condition

(2.25) is true. Using mathematical induction, both sides of the inequality equal 0

for n=1. Assume that the hypothesis is true for n-1, then we will now prove that

the difference in V (E,C,n) has a non-increasing difference in E that is:

V (E + 1, C, n)− V (E,C, n) ≤ V (E,C, n)− V (E − 1, C, n) (2.26)
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V (E + 1, C, n)− V (E,C, n)− (V (E,C, n)− V (E − 1, C, n)) ≤ 0 (2.27)

We assume that the actions A1, A2 and A3 from the action set are the optimal

actions to be chosen when the energy queue contains E+1, E and E -1 units of energy,

respectively. Then, we can write

V (E + 1, C, n) = VA1 (E + 1, C, n)

V (E,C, n) = VA2 (E,C, n)

V (E − 1, C, n) = VA3 (E − 1, C, n)

We substitute these values in (2.27). Hence, we have

VA1(E + 1, C, n) − VA2(E,C, n) − (VA2(E,C, n)− VA3(E − 1, C, n)) ≤ 0 (2.28)

or

VA1(E + 1, C, n)− VA1(E,C, n) + VA1(E,C, n)− VA2(E,C, n)

− VA2(E,C, n) + VA3(E,C, n)− (VA3(E,C, n)− VA3(E − 1, C, n)) ≤ 0 (2.29)

We know that VA1(E,C,n)-VA2(E,C,n)≤ 0 from the optimality of the action

A2. The value function has its maximum value for energy E when the action A2 is

taken.

Also, we know -VA2(E,C,n)+VA3(E,C,n)≤0 for the same reason, namely the

optimality of the action A2.

Then, the remaining four terms are going to be considered together. We are

going to consider the different four combinations for the actions A1 and A3. We
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want to show that the value of the quantity represented by the remaining four terms

is less than or equal 0.

For the case of A1=T and A3=D, we have

VT (E + 1, C, n)− VT (E,C, n)− (VD(E,C, n)− VD(E − 1, C, n)) =

β [qλ0 (V (E + 1, 1, n− 1)− V (E, 1, n− 1) − V (E + 1, 1, n− 1)

+V (E, 1, n− 1)) + q (1− λ0) (V (E + 1, 0, n− 1)− V (E, 0, n− 1)

−V (E + 1, 0, n− 1) + V (E, 0, n− 1)) + (1− q)λ0 (V (E, 1, n− 1)

− V (E − 1, 1, n− 1) −V (E, 1, n− 1) + V (E − 1, 1, n− 1))

+ (1− q) (1− λ0) (V (E, 0, n− 1)− V (E − 1, 0, n− 1)

− V (E, 0, n− 1) + V (E − 1, 0, n− 1))] = 0 (2.30)

Then, for the case of A1=T and A3=T, we have

VT (E + 1, C, n)− VT (E,C, n)− (VT (E,C, n)− VT (E − 1, C, n)) =

β [qλ0 (V (E + 1, 1, n− 1)− V (E, 1, n− 1) − V (E, 1, n− 1)

+V (E − 1, 1, n− 1)) + q (1− λ0) (V (E + 1, 0, n− 1)− V (E, 0, n− 1)

V (E, 0, n− 1) + V (E − 1, 0, n− 1)) + (1− q)λ0 (V (E, 1, n− 1)

−V (E − 1, 1, n− 1)− V (E − 1, 1, n− 1) + V (E − 2, 1, n− 1))+

(1− q) (1− λ0) (V (E, 0, n− 1)− V (E − 1, 0, n− 1)

−V (E − 1, 0, n− 1) + V (E − 2, 0, n− 1))] ≤ 0 (2.31)

The above is true since the differences are non-increasing at n-1 and the dif-

ferences are multiplied by non-negative terms and summed together.
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Then, using the hypothesis for A1=D and A3=T, we have

VD(E + 1, C, n)− VD(E,C, n)− (VT (E,C, n)− VT (E − 1, C, n)) =

β [qλ0 (V (E + 2, 1, n− 1)− V (E + 1, 1, n− 1) − V (E, 1, n− 1)

+V (E − 1, 1, n− 1)) + q (1− λ0) (V (E + 2, 0, n− 1)− V (E + 1, 0, n− 1)

− V (E, 0, n− 1) + V (E − 1, 0, n− 1)) + (1− q)λ0 (V (E + 1, 1, n− 1)

− V (E, 1, n− 1)− V (E − 1, 1, n− 1) + V (E − 2, 1, n− 1))

+ (1− q) (1− λ0) (V (E + 1, 0, n− 1)− V (E, 0, n− 1)

− V (E − 1, 0, n− 1) + V (E − 2, 0, n− 1))] ≤ 0 (2.32)

Finally, for the case where A1=D and A3=D, we have

VD(E + 1, C, n)− VD(E,C, n)− (VD(E,C, n)− VD(E − 1, C, n)) =

β [qλ0 (V (E + 2, 1, n− 1)− V (E + 1, 1, n− 1) − V (E + 1, 1, n− 1)

+V (E, 1, n− 1)) + q (1− λ0) (V (E + 2, 0, n− 1)− V (E + 1, 0, n− 1)

− V (E + 1, 0, n− 1) + V (E, 0, n− 1)) + (1− q)λ0 (V (E + 1, 1, n− 1)

− V (E, 1, n− 1) −V (E, 1, n− 1) + V (E − 1, 1, n− 1))

+ (1− q) (1− λ0) (V (E + 1, 0, n− 1)− V (E, 0, n− 1)

− V (E, 0, n− 1) + V (E − 1, 0, n− 1))] ≤ 0 (2.33)

Therefore, V (E,C,n) has a non-increasing difference in E for all n, which

implies that VA(E,C ) is supermodular in (E,A).

From [37], if a function F(x,y) is super-modular in (x,y), it follows that the

function y(x )=argmaxy F(x,y) is monotonically non-decreasing in the variable x.
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Thus, the action A to be chosen is monotonically non-decreasing in the energy

when the channel is at state 0. Therefore, the optimal policy is a threshold type

policy.

Note that determining the threshold value η is not simple and is not addressed

here. It could be calculated numerically by exhaustive search for the threshold that

gives the optimal throughput.

2.4 An Upper Bound on the Performance

Let γ be the average number of packets that are received successfully by the

destination per time slot. Also, let xij be the indicator of taking the decision to

transmit a packet in time slot j when the channel is in state i during this time

slot. It is obvious that x 1j+x 0j≤1. If the source decides to transmit a packet while

the channel is in state 0 or 1, then x 1j+x 0j=1. Also, if the source selects to defer

the packet transmission then, x 1j+x 0j=0. Using the values of the packet success

probabilities at different channel states, we can write the expression of γ as

γ = lim
T→∞

1

T

T∑
j=1

(f1x1j + f0x0j) (2.34)

Due to the energy harvesting process characteristics, the average number of

transmission attempts is limited. Thus, the maximum allowable transmission rate

equals the energy acquiring rate at the source node. Therefore:

lim
T→∞

1

T

T∑
j=1

(x1j + x0j) ≤ q (2.35)
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where lim
T→∞

1
T

∑T
j=1 (x1j + x0j) represents the average rate of transmissions attempted

by the source under a certain scheduling policy.

We rewrite the inequality as

lim
T→∞

1

T

T∑
j=1

x0j ≤ q − lim
T→∞

1

T

T∑
j=1

x1j (2.36)

We now calculate a bound for the average number of transmission attempts

while the channel is at state 1. First, the proportion of time where the channel is

at state 1 equals the steady state probability of the channel to be at state 1, which

is denoted by π1. The value of π1is readily calculated as

π1 =
λ0

1 + λ0 − λ1

(2.37)

Thus, the average number of the transmission attempts with the channel in

state 1 satisfies

lim
T→∞

1

T

T∑
j=1

x1j ≤ π1 (2.38)

Then from (2.35), the average number of transmission attempts from the

source with the channel in state 1 is also bounded as

lim
T→∞

1

T

T∑
j=1

x1j ≤ q (2.39)

Combining the two bounds at (2.38) and (2.39), we obtain

lim
T→∞

1

T

T∑
j=1

x1j ≤ min {q, π1} (2.40)

By the linearity of the limit and the summation in (2.34), we can rewrite

the expression of the average number of packets per time slot that are received
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successfully

γ = f1 lim
T→∞

1

T

T∑
j=1

x1j + f0 lim
T→∞

1

T

T∑
j=1

x0j (2.41)

Substituting in (2.36), we obtain

γ ≤ f0q + (f1 − f0) lim
T→∞

1

T

T∑
j=1

x1j (2.42)

The value of f 1 is larger than f 0 so that the value of the difference (f 1-f 0)

is positive. Then, replacing the average number of transmission attempts from the

source with channel in state 1 by its upper bound leads to an upper bound for γ,

namely,

γ ≤ f0q + (f1 − f0)min {q, π1} (2.43)

The value of the minimum function in the bound leads to two different values

for the bound. First, we consider the case when q is smaller than π1. In this case,

the upper bound is calculated as

γ ≤ f1q (2.44)

In this case, this upper bound could be reached if there is a policy that can force

the source to transmit when the channel in state 1 only. Also, these transmissions

are going to use all the energy acquired by the source.

On the other hand, we consider the case when π1 is smaller than q. In this

case, the upper bound is calculated as

γ ≤ f1π1 + f0 (q − π1) (2.45)

In this case, this upper bound could be reached if there is a policy that can

force the source to transmit in every time slot in which the channel is in state 1.
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The remaining energy is to be used for transmission attempts when the channel is

in state 0. This policy needs to make sure that whenever the channel is in state 1,

the source must have energy at its queue to be used for transmission. That can not

be guaranteed due to the stochastic nature of the energy harvesting process.

2.5 Optimal Policy with No CSI Feedback

Let us denote the expected discounted number of packets successfully delivered

to the destination when the source has E units of energy at its energy queue by

W (E ). The source node does not have any channel measurements. The source

knows that the channel is a Gilbert-Elliot and it knows its transition probabilities.

We define π1 and π0 as the steady state probabilities for the channel to be at state

1 and state 0. The value of π1 is given in (2.37) and the value of π0 is found to be

(1-λ1)/(1+λ0-λ1). Thus, we can write the value of W (E ) using Bellman’s equation

as

W (E) = max {WT (E) ,WD (E)} (2.46)

where WT (E ) and WD(E ) are the expected values of the discounted reward when

the energy queue of the source has E units of energy and the source chooses to take

the action T and the action D, respectively.

When the action T is chosen, the expected reward in the current time slot is

calculated as π1f 1+ π0f 0. The first term represents the probability of the channel

being at state 1 multiplied by the probability of successful delivery when the channel

is in state 1. The second term is the same but for the channel in state 0. We denote
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this instantaneous expected reward by fav. Then, we can write the expression of

WT (E ) as

WT (E) = π1f1 + π0f0 + β [qW (E) + (1− q)W (E − 1)] (2.47)

Also, we can write the expression of WD(E ) as

WD (E) = 0 + β [qW (E + 1) + (1− q)W (E)] (2.48)

Lemma 2.4. For E ≥1, W (E+1)-W (E ) ≤ fav

Proof. We are going to use mathematical induction in the proof. Define W (E,n) as

the optimal value function when the decision horizon spans n stages. Also, WA(E,n)

is the value function when the action A is chosen and the decision horizon spans

n stages where A belongs to {T,D}. We start by the validity of the hypothesis at

n=1. We have that the difference W (E+1,1)-W (E,1)=0. Then, the hypothesis is

true for n=1. The next step is to assume that the hypothesis is true for n-1, that

is, W (E+1,n-1)-W (E, n-1) ≤ fav. Then, we have

WT (E, n)−WD (E, n) ≥ fav − β [qfav+ (1− q) fav]

= fav − βfav = fav (1− β) > 0 (2.49)

Then, the action to be chosen is T. As a result, W (E,n)=WT (E,n). This leads

to have the following difference

W (E + 1, n)−W (E, n) = WT (E + 1, n)−WT (E, n)

= β [q [W (E + 1, n− 1)−W (E, n− 1)]

+ (1− q) [W (E, n− 1)−W (E − 1, n− 1)]] ≤ βfav < fav (2.50)
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By considering the limit as n goes to infinity, we complete the proof.

Proposition 2.3. The optimal action for the source when there is no CSI

feedback and the length of the energy queue is larger than 0 is to transmit. i.e.

WT (E )≥ WD(E ).

Proof. The proposition is going to be proved by directly applying the previous

lemma. We start by subtracting WD(E ) from WT (E ), that is,

WT (E)−WD (E)

= fav + β [qW (E) + (1− q)W (E − 1)]− β [qW (E + 1) + (1− q)W (E)] (2.51)

We rearrange the terms in the previous equation and obtain

WT (E)−WD (E) =

fav − β [q (W (E + 1)−W (E)) + (1− q) (W (E)−W (E − 1))] (2.52)

From the last lemma, we have

WT (E)−WD (E) ≥ fav − βfav > 0 (2.53)

Now, we calculate the expected number of packets successfully delivered to

the destination per time slot. As stated before, the average number of transmission

attempts by the source is limited by the average rate of the energy acquiring process.

In the case of no CSI feedback to the source, the source is going to transmit whenever

it has energy in its energy queue. Then, the probability of attempting transmission
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in any time slot is q. The probability of successful delivery of a transmitted packet

is π1f 1+ π0f 0. Then, the expected average number of successfully delivered packets

equals q(π1f 1+ π0f 0).

From the discussion about the optimal policy in the case of no CSI availability,

we found that the transmission policy is equivalent to the optimal policy of the case

of fixed channel with packet successful delivery probability of fav. The problem of

finding the optimal policy of the fixed channel is the same as (2.46). The only

difference is that the expected reward at the current time slot equals fav which is

the packet successful delivery probability of the channel.

Finally, note that the derived optimal policy for the case of no CSI availability

is a greedy policy that always requires the source to transmit whenever there is

energy which is available at the energy queue.

2.6 Numerical Results

In this section, we present numerical results to illustrate the previous analysis.

We focus on comparing the performance of the different transmission strategies

in terms of the throughput of the source node which is the average successfully

delivered packets per time slot when the data queue is saturated. We also show

the enhancement because of using the availability of CSI at the source node by

comparing the optimal policy performance with no CSI at the source to the optimal

policy of case at which the CSI is available at the source. Obviously, the values of

fC have a major impact on the results.
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We compare three transmission strategies which are the optimal policy, the

greedy policy and the conservative policy. The greedy policy is the policy in which

the source node transmits a packet to the destination when there is energy which

is available at the energy queue without considering the channel state. The conser-

vative policy is the policy in which the source node transmits a packet only when

there is energy which is available at the energy queue and the channel is in state 1.

We also compare the upper bound to these three strategies. The optimal

policy performance for the case of no CSI is also shown. As mentioned in section

2.5, the optimal policy in that case is the greedy policy. Thus, a single curve on

the figures is used to represent the performance of optimal policy with no CSI and

the performance of the greedy policy. This Curve is noted as “Optimal No CSI

(Greedy)”.

The parameters considered for the system are λ0=0.4, λ1=0.8, f 0=0.2, f 1=0.5

and q=0.8. In the following figures, we compare the transmission strategies per-

formance with varying the values of q and f 1. The threshold selection is done by

exhaustive search for each system parameters set. We calculate the objective func-

tion for different threshold values. Then, we select the threshold value at which the

objective function starts to decrease for the threshold values larger than this value.

In figure 2.3, we show the performance of the three compared transmission

strategies against f 1. The figure shows the enhancement in the throughput because

of using the optimal policy. Also, the greedy policy has better performance than the

conservative one for low success probability values. The bound on the performance

coincides with the performance of the optimal policy.
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Figure 2.3: Effect of f 1 on the value function
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Figure 2.4: Effect of q on the value function

In figure 2.4, the performance of the three compared transmission strategies

is shown against q. For this selection of system parameters, the performance of the

optimal policy coincides with the performance of the conservative policy for a large

range of the values of q. For small q values, the energy is scarce and the source

node tends to store the available energy units to be used when the channel has good
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connectivity. This is the reason for the optimality of the conservative policy for the

small values of q. Also in this figure, the bound on the performance coincides with

the performance of the optimal policy. Thus, the calculated bound is tight.

2.7 Discussion

In this chapter, we have studied a communication link that operates over a

Gilbert-Elliot channel. The source node has energy harvesting capability. In order

to maximize the number of successfully delivered packets per time slot, the source

decides in each time slot whether to transmit or defer the transmission. The problem

has been formulated as a Markov decision problem and we have characterized the

optimal policy. We have proved that it is a threshold-type policy, depending on

the channel state and the energy queue length. Different properties of the optimal

policy have been derived. An upper bound on the average number of packets per

time slot that are successfully received by the destination has been derived. This

bound has been shown to be tight on the performance of the optimal policy. The

optimal policy for the case of no CSI availability has also been derived. Numerical

results have been obtained to illustrate the analysis. We observe that the value of

CSI can be significant. We also see that the channel fluctuation affects performance

significantly as well.
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Chapter 3: Energy Harvesting Sources over Time Varying Channels

with Relays

3.1 Introduction

Cooperative diversity in energy harvesting networks at the physical layer has

been considered before in a number of works as in [38,39]. Also, the problem of power

optimization for energy harvesting networks with network-level cooperation has been

discussed in [40]. The authors have derived the maximum stable throughput rate

for a network consisting of a source, a relay and a destination. The relaying strategy

is Time Division Multiple Access (TDMA). In this strategy, the odd time slots are

assigned to the source transmissions and the even time slots are assigned to the

relay transmissions. This strategy has low channel utilization because of the fixed

assignment of the time slots. As a result, it has been shown in [40] that the direct

transmission has higher stable throughput than this relaying scheme for high energy

arrival rates. In our work, we propose a relaying scheme which has higher channel

utilization than the relaying scheme in [40].

In this chapter, we investigate the impact of energy harvesting capability on

the stable throughput rate of a source node. We start by calculating the stable
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throughput of the source while transmitting to the destination directly over a time

varying channel. The channel is modeled by a two-state discrete-time process. The

packets and energy arrivals into the source are modeled by discrete-time stochastic

processes. Also, we derive the maximum stable throughput rate of a source node

which is helped by a relay node through a network-level cooperation protocol. The

relay also has energy harvesting capability. Due to the stochastic nature of the

data arrivals to the source, we propose a strategy in which the relay transmits

during the idle periods of the source to efficiently utilize the channel. The proposed

transmission strategies exploit the knowledge of the CSI of the channel between

the source and the destination. The source transmits with probability 1 when the

channel is in the good state if its energy queue is not empty, but it randomly

transmits with a certain probability if the channel is in the poor state. We calculate

the optimal value of this probability. Also, we derive the stable throughput rate

of the source when its decision depends on imperfect channel measurements. This

work was presented in [41].

The study of a simple model consisting of only a source, a relay and a desti-

nation is both instructive and necessary. It reveals insights at the conceptual level

about the effects of cooperative relaying and exploiting channel information on the

stability of energy harvesting networks. More work needs to be done to exploit the

results of this work in more realistic systems. Also, energy harvesting capability and

channel knowledge can much affect the dynamic behavior of the proposed system

but it is out of the scope of our work.
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3.2 System Model

We consider a network which consists of a source node, a relay node, and a

destination node as shown in figure 3.1. Each of the source and the relay has an

infinite data queue for storing fixed length packets. These queues are denoted by

QS and QR respectively. We assume that the source has its own traffic while the

relay does not have its own traffic and is used only for cooperation. The data arrival

to the source data queue is modeled by a Bernoulli process. Also, each of the source

and the relay has an infinite energy queue. These queues are denoted by ES and ER

respectively. The usage of infinite queues is a reasonable approximation when the

data queues are large enough compared to the packet size and the energy queues are

large enough compared to the energy unit [15]. All nodes are half-duplex and thus

they can not transmit and receive simultaneously. Time is assumed to be slotted

such that each packet transmission takes one time slot. Transmission of a data

packet from a node requires using a single unit of energy from the corresponding

energy queue. For simplicity, we assume that the energy consumption in a node

is due to transmission only and therefore the processing and reception energy are

considered to be negligible. Each of the source and the relay can acquire a single

unit of energy at each time slot with probabilities qS and qR respectively that the

energy arrival processes are modeled by Bernoulli processes.

All the channels, which are denoted by SD, SR and RD, are modeled by

independent two-state discrete-time processes. The channels are also independent

of the packet generation process and the energy harvesting at the source and the
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Figure 3.1: System Model

relay. Each channel state corresponds to a degree of channel connectivity. State

1 corresponds to good connectivity while state 0 corresponds to poor connectivity.

The quality of the channels is represented by the success probability of a packet.

The packet success probabilities are denoted by fSD,i, fSR,i and fRD,i when the cor-

responding channels are in state i = 0, 1. These success probabilities are determined

by the system physical parameters such as the transmission power, the modulation

scheme, the coding scheme and the targeted bit-error rate. We assume that each

channel remains fixed for a time slot and is able to move into another state in the

next slot. The steady state probabilities for the channels to be in state i = 0, 1 are

πSD,i, πSR,i and πRD,i respectively.

In [42], Loynes’ theorem states that if the arrival and service processes at a

queue are jointly stationary, then the queue is stable if the average arrival rate is

less than the average service rate. Throughout the chapter, we denote the average

arrival rate at the source data queue by λ. The average arrival rate to the relay
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data queue is denoted by λR. The average service rate of the source data queue in

the case of no relaying is denoted by μNR
S . The average service rate of the source

data queue in the case of cooperative relaying is denoted by μCR
S . Also, the average

service rate of the relay data queue is denoted by μR.

3.3 Network Protocols

In this section, we present two transmission protocols for delivering the packets

from the source to the destination either directly with no relaying or by allowing

the relay to help.

3.3.1 No Relaying

In this case, the system consists only of the source and the destination. The

packets can reach the destination through the channel SD. The source can transmit

only when both its energy queue and its data queue are not empty. The channel SD

state is known at the source at the time of transmission and it is throughput-optimal

for the source to transmit with probability 1 when the channel is in state 1. Thus,

the transmission strategy when the data queue is not empty is described as follows:

if the source energy queue is not empty and the channel SD is in state 1, the source is

going to transmit. Also, if the source energy queue is not empty and the channel SD

is in state 0, the source is going to transmit with some probability p0. The packet is

released from the source data queue if it is successfully received by the destination;

otherwise it remains at the source data queue for retransmission. The feedback to

41



the source is in the form of Acknowledgment or Negative-Acknowledgment. In this

mechanism, a short-length error-free packets are broadcasted by the destination over

a separate channel to inform the network users about the reception status.

The probability p0 controls the utilization of the channel when the channel

is in state 0. Increasing p0 leads to one of the following two effects. First, it may

increase the energy used when the channel is in state 0 by decreasing the energy used

when the channel is in state 1. This leads to increase of the joint probability of the

channel to be in state 1 and the source energy queue to be empty which affects the

performance negatively. Second, increasing p0 may increase the energy used when

the channel is in state 0 by exploiting unused harvested energy without affecting

the amount of energy used when the channel is in state 1. This effect improves the

system performance.

3.3.2 Cooperation with the Relay

The source transmits its traffic with the help of the relay. At a time slot,

the source is able to transmit if both its energy queue and its data queue are not

empty. It transmits with probability 1 when the channel SD is in state 1 and with

probability p0 when the channel is in state 0. If the packet is successfully received by

the destination or by the relay, it is released from the source data queue; otherwise

it is kept in the source data queue for retransmission. The retransmission scheme is

the same as mentioned in the last subsection. At the beginning of every time slot,

the relay senses the channel. We assume perfect sensing by the relay for the source
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transmissions. If the source is not transmitting, the relay uses these idle time slots

to transmit the packets in its data queue to the destination when its energy queue is

not empty. Hence, no explicit channel resources are assigned to the relay. A packet

is released from the relay data queue if it is successfully received by the destination;

otherwise it is kept for retransmission.

In this protocol, we let the source transmission decisions depend only on the

state of the channel SD that the source transmission control protocol is the same

as the protocol in the case of no relaying. That allows us to illustrate the effect of

relaying on the stability condition of the source. The proposed system can have bet-

ter performance by allowing a different transmission protocol at the source in which

the source considers both the channels SD and SR. Also, the relay can consider

the channel RD while transmitting to the destination. Including this transmission

control protocol in the analysis is straightforward but is not included for brevity.

3.4 Stable Throughput Analysis

In this section, we derive the maximum stable throughput rate of the source

for the proposed transmission protocols.

3.4.1 No Relaying

In order to calculate the maximum stable throughput rate for the source data

queue, we have to consider the maximum service rate for the source energy queue

which is the rate of which the source node attempts to transmit. Each transmission
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attempt uses a single unit energy. As a result, the energy departure process is

modeled by a Bernoulli process. Therefore, the source energy queue forms a discrete-

time M/M/1 system. The transmission attempt rate equals πSD,1 + πSD,0p0. The

arrival rate of the energy to the source is qS. If the energy arrival rate to the source

is larger than the transmission attempting rate, the number of energy units in the

energy queue approaches infinity almost surely. Therefore, the probability of the

energy queue to be empty is zero. On the other hand, if the energy arrival rate to the

source node is smaller than or equal to the transmission attempting rate, it follows

from [43] for discrete-time M/M/1 system that the probability of energy queue to

be not empty is the ratio between the energy arrival rate and the transmission

attempting rate. As a result, the probability of the energy queue to be not empty

is written as follows

Pr[ES �= 0] =
min(qS, πSD,1 + πSD,0p0)

πSD,1 + πSD,0p0
(3.1)

The probability of a packet to be delivered, given that the source is able to

transmit, is πSD,1fSD,1 + πSD,0p0fSD,0. The source data queue service rate is the

product of the success probability given that the source is able to transmit by the

probability that the energy queue is not empty. The stability condition for the

source data queue, when relaying is not used, is λ < μNR
S which can be written as

λ < Pr[ES �= 0](πSD,1fSD,1 + πSD,0p0fSD,0) (3.2)

In the case of no availability of CSI at the source, it transmits with probability

1 when the energy queue is not empty. The expression of the stability condition can
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be evaluated by setting p0 to be 1. The stability condition can be stated as follows

λ < qS(πSD,1fSD,1 + πSD,0fSD,0) (3.3)

3.4.2 Cooperation with the Relay

In this protocol, the system is stable if both the source data queue and the

relay data queue are stable. In the following subsections, we derive the stability

conditions for each queue separately.

3.4.2.1 Source Data Queue

The maximum data arrival rate which maintains the stability of the source

data queue is limited by its service rate. A packet at the source is served if it is

successfully delivered to the relay or the destination. The service rate of the source

data queue is calculated to be

μCR
S = Pr[ES �= 0][πSD,1(πSR,1[1− (1− fSD,1)(1− fSR,1)]

+ πSR,0[1− (1− fSD,1)(1− fSR,0)]) + πSD,0p0(πSR,1[1− (1− fSD,0)(1− fSR,1)]

+ πSR,0[1− (1− fSD,0)(1− fSR,0)])] (3.4)

3.4.2.2 Relay Data Queue

We start by calculating the probability that the channel is occupied by the

source transmissions and this probability is denoted by ρS. As the source data queue

forms a discrete-time M/M/1 system and assuming that the source data queue is
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stable, it follows from [43] that the probability ρS is calculated as follows

ρS =
λPr[ES �= 0]

μCR
S

(3.5)

The arrival rate for the relay data queue is the probability that a packet is

received by the relay at any given time slot. It is calculated as follows

λR = ρSPr[Packet received by relay only] (3.6)

The Pr[Packet received by relay only] is denoted by PR and its value is calcu-

lated as follows

PR = πSD,1(πSR,1fSR,1(1− fSD,1) + πSR,0fSR,0(1− fSD,1))

+ πSD,0p0(πSR,1fSR,1(1− fSD,0) + πSR,0fSR,0(1− fSD,0)) (3.7)

Also, we denote the probability that a packet is received by either the relay or

the destination by PE and we calculate its value as follows

PE = πSD,1(πSR,1[1− (1− fSD,1)(1− fSR,1)] + πSR,0[1− (1− fSD,1)(1− fSR,0)])

+ πSD,0p0(πSR,1[1− (1− fSD,0)(1− fSR,1)] + πSR,0[1− (1− fSD,0)(1− fSR,0)])

(3.8)

The expression of λR can be rewritten as follows

λR = λ
PR

PE

(3.9)

Then, the service rate of the relay data queue equals

μR = (πRD,1fRD,1 + πRD,0fRD,0)min(qR, 1− ρS) (3.10)

The complete derivation of the expression of the service rate of the relay data

queue is found in the appendix at section 3.9.
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3.4.2.3 Stability Conditions

To ensure that the system is stable, both source and relay data queues have

to be stable. As a result, both the conditions λ < μCR
S and λR < μR should be

satisfied. By substituting using equation (3.9) in the second condition, it is written

as

λ <
PE

PR

(πRD,1fRD,1 + πRD,0fRD,0)min(qR, 1− ρS) (3.11)

Note that the right hand side of the inequality is still function of λ. By

combining the conditions on λ, we get the general expression for the maximum

stable throughput as follows

λ < min

(
μCR
S ,

PE

PR

(πRD,1fRD,1 + πRD,0fRD,0)qR,
PE(πRD,1fRD,1 + πRD,0fRD,0)

PR + (πRD,1fRD,1 + πRD,0fRD,0)

)

(3.12)

In the case of no availability of CSI at the source node, the expression of the

stability condition is calculated by setting p0 to be 1.

The same analysis is still valid when the energy arrival processes and the data

arrival process are modeled by Poisson processes. In this case, the energy queues

and the source data queue form M/G/1 systems.

3.5 Imperfect Channel Measurements

In this section, we study the effect of channel uncertainty on the stable through-

put of the source for the proposed transmission strategies. The measured channel is

the channel SD. We denote the probability of measuring the channel to be in state
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1 given that the channel is in state 0 by p1|0 and the probability of measuring the

channel to be in state 0 given that the channel is in state 1 by p0|1. Also, we denote

the steady state probabilities of the channel SD to be measured in state 1 and 0 by

π̂SD,1 and π̂SD,0 respectively. The expressions of the steady state probabilities are

π̂SD,1 = πSD,1(1− p0|1) + πSD,0p1|0 (3.13)

π̂SD,0 = πSD,1p0|1 + πSD,0(1− p1|0) (3.14)

3.5.1 No Relaying

In this case, the source transmits with probability 1 when the channel is mea-

sured to be in state 1. It transmits with probability p0 when the channel is measured

to be in state 0. As a result, the source energy queue service rate is π̂SD,1+ π̂SD,0p0.

Thus, the probability of the source energy queue to be not empty is written as

follows

Pr[ES �= 0] =
min(qS, π̂SD,1 + π̂SD,0p0)

π̂SD,1 + π̂SD,0p0
(3.15)

The probability of a packet to be successfully received by the destination

given that the source is able to transmit equals (πSD,1fSD,1[(1 − p0|1) + p0p0|1] +

πSD,0fSD,0[p1|0 + (1 − p1|0)p0]). Hence, the stability condition for the source data

queue is written as follows

λ <
min(qS, π̂SD,1 + π̂SD,0p0)

π̂SD,1 + π̂SD,0p0

(
πSD,1fSD,1[(1− p0|1) + p0p0|1]

+πSD,0fSD,0[p1|0 + (1− p1|0)p0]
)

(3.16)
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3.5.2 Cooperation with the relay

In this case, the service rate of the source data queue is affected by the erro-

neous channel measurements. The service rate can be written as follows

μCR
S = Pr[ES �= 0]

[
πSD,1[(1− p0|1) + p0p0|1]

(πSR,1[1− (1− fSD,1)(1− fSR,1)] + πSR,0[1− (1− fSD,1)(1− fSR,0)])

+ πSD,0[p1|0 + (1− p1|0)p0] (πSR,1[1− (1− fSD,0)(1− fSR,1)]

+πSR,0[1− (1− fSD,0)(1− fSR,0)])] (3.17)

As a result, the probability of the channel to be occupied by the source trans-

missions is updated by using the updated values of both μCR
S and Pr[ES �= 0]. Also,

the values of PR and PE are updated because of the uncertainty of the channel

measurements. The values are calculated as follows

PE = πSD,1[(1− p0|1) + p0p0|1](πSR,1[1− (1− fSD,1)(1− fSR,1)]

+ πSR,0[1− (1− fSD,1)(1− fSR,0)])

+ πSD,0[p1|0 + (1− p1|0)p0](πSR,1[1− (1− fSD,0)(1− fSR,1)]

+ πSR,0[1− (1− fSD,0)(1− fSR,0)]) (3.18)

PR = πSD,1[(1− p0|1) + p0p0|1](πSR,1fSR,1(1− fSD,1) + πSR,0fSR,0(1− fSD,1))

+ πSD,0[p1|0 + (1− p1|0)p0](πSR,1fSR,1(1− fSD,0) + πSR,0fSR,0(1− fSD,0)) (3.19)

The expressions for λR and μR remain the same as in equations (3.9) and

(3.10) but the values of ρS, PE and PR are updated as shown above. As a result,
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the stability condition is the same as in equation (3.12) using the updated values of

the parameters.

3.6 Transmission Optimization

In this section, we evaluate the value of the parameter p0 to maximize the

maximum stable throughput rate for different protocols which is denoted by λmax.

The value of p0 belongs to [0,1].

3.6.1 No Relaying

We have derived the stability condition in this case to have the expression

in equation (3.2). We are going to consider two cases depending on the system

parameters.

3.6.1.1 πSD,1 > qS

The value of πSD,0p0 is always greater than or equal to 0. Then, we can rewrite

the expression of λmax as

λmax =
qS(πSD,1fSD,1 + πSD,0p0fSD,0)

πSD,1 + πSD,0p0
(3.20)

This value as a function of p0 is found to be a decreasing function of p0 by

calculating its first derivative. The first derivative is always negative for any value

of p0. As a result, the optimal value of p0 is 0.
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3.6.1.2 πSD,1 ≤ qS

In this case, we can rewrite the expression of λmax as follows

λmax =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
πSD,1fSD,1 + πSD,0p0fSD,0, if p0 ≤ qS−πSD,1

πSD,0

qS(πSD,1fSD,1+πSD,0p0fSD,0)

πSD,1+πSD,0p0
, if p0 >

qS−πSD,1

πSD,0

(3.21)

The first expression is an increasing function of p0. The second one is a de-

creasing function of p0. The optimal value of p0 equals (qS − πSD,1)/πSD,0.

From these results, we can write the general expression for the optimal value

of p0 as follows

p∗0 = max(0,
qS − πSD,1

πSD,0

) (3.22)

3.6.2 Transmission with Relaying

The optimal value of p0 is the solution of the problem

p∗0 = argmax
p0

(min{f1(p0), f2(p0), f3(p0)}) (3.23)

where the values of f1(p0), f2(p0) and f3(p0) are obtained from equation (3.12). It

can be shown that f2(p0) and f3(p0) are decreasing functions by calculating the first

derivative of each of the functions and showing that it is always negative. Also,

if πSD,1 > qS, we can show that f1(p0) is a decreasing function in p0. Then, the

optimal value of p0 should be 0.

On the other hand, we consider the case when πSD,1 ≤ qS in which f1(p0) is an

increasing function in p0 for p0 belongs to [0, (qS − πSD,1)/πSD,0] and a decreasing
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function in p0 for p0 belongs to [(qS − πSD,1)/πSD,0, 1]. We denote the increasing

part of f1(p0) by f11(p0) which has the same expression as PE.

We calculate the intersection points between f11(p0) and both f2(p0) and

f3(p0). We denote these points by PI12 and PI13 respectively. We calculate their

values as follows

PI12 =
(πRD,1fRD,1 + πRD,0fRD,0)qR

πSD,0(πSR,1fSR,1(1− fSD,0) + πSR,0fSR,0(1− fSD,0))

− πSD,1(πSR,1fSR,1(1− fSD,1) + πSR,0fSR,0(1− fSD,1))

πSD,0(πSR,1fSR,1(1− fSD,0) + πSR,0fSR,0(1− fSD,0))
(3.24)

PI13 =
1

H
[(πRD,1fRD,1 + πRD,0fRD,0)(1− πSD,1)

− πSD,1(πSR,1fSR,1(1− fSD,1) + πSR,0fSR,0(1− fSD,1))] (3.25)

where H = πSD,0(πRD,1fRD,1+πRD,0fRD,0)+πSD,0((πSR,1fSR,1(1−fSD,0)+πSR,0fSR,0

(1− fSD,0))). We consider three cases for the values of these intersection points:

3.6.2.1 At least one point is less than 0

In this case the function min (f1(p0), f2(p0), f3(p0)) is a decreasing function in

p0 for p0 belongs to [0,1]. As a result, the optimal value of p0 is 0.

3.6.2.2 At least one point belongs to [0, (qS − πSD,1)/πSD,0] and no

point less than 0

In this case, the function min (f1(p0), f2(p0), f3(p0)) is increasing till the first

intersection point and then it is decreasing. As a result, the optimal value of p0 is

min (PI12, P I13).
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3.6.2.3 Both points are larger than (qS − πSD,1)/πSD,0

In this case, the function min (f1(p0), f2(p0), f3(p0)) is increasing till (qS −

πSD,1)/πSD,0 and then it is decreasing. As a result, the optimal value of p0 is

(qS − πSD,1)/πSD,0.

Thus, we can generally write the optimal value of p0 as follows

p∗0 = max (0,min (PI12, P I13,
qS − πSD,1

πSD,0

)) (3.26)

3.7 Numerical Results

In this section, we present numerical results to illustrate the previous theo-

retical development. We illustrate the effects of different system parameters on the

maximum stable throughput of the proposed transmission protocols. In the follow-

ing results, we fix the channels success probabilities to be fSD,1 = 0.4, fSD,0 = 0.1,

fSR,1 = 0.8, fSR,0 = 0.2, fRD,1 = 0.8 and fRD,0 = 0.2. Also, we let the channels

distributions be identical such that πSD,1 = πSR,1 = πRD,1 = π1 and πSD,0 = πSR,0 =

πRD,0 = π0. We denote the system with no relaying capability by ”No Relaying”.

Also, we denote the system in which cooperative relaying is exploited by ”With

Relaying”.

In figure 3.2, we show the maximum stable throughput of the two proposed

network protocols against the probability of the channels to be in state 1. We fix

the system parameters qS = 0.7 and qR = 0.3. The results are for p0 with the values

0.25 and 0.75. For small values of π1, the performance of the system is better for
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Figure 3.2: Maximum stable throughput against π1

larger p0 because it is better for the source to make more transmission attempts

during the time slots in which the channel is in state 0. For large values of π1, the

performance of the system is better for smaller p0 because the source should not

waste much of its energy in transmission during the time slots in which the channel

is in state 0.

In figure 3.3, we show the maximum stable throughput of the two proposed

network protocols against the energy arrival rate to the source energy queue. We

fix the system parameters p0 = 0.5 and π1 = 0.6. The results are for qR with the

values 0.1, 0.3 and 0.5. For the case qR = 0.1, the maximum stable throughput of

the cooperative relaying protocol becomes less than the throughput of the protocol

with no relaying. That is because the channel SR has higher success probability

than the channel SD. Then, most of the source packets are forwarded to the relay.
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Figure 3.3: Maximum stable throughput against qS

Also due to the limited energy at the relay and to maintain the stability of the relay

data queue, the maximum stable throughput of the system is lowered.

In figure 3.4, we show the maximum stable throughput of the two proposed

network protocols against the probability to attempt transmission while the channel

in state 0. We fix the system parameters qS = 0.7 and qR = 0.3. The results are

for π1 with the values 0.6, 0.5 and 0.4. This figure shows the effect of exploiting

the knowledge of the CSI of the channel between the source and destination. The

performance when no CSI available is equivalent to the performance of the system

with p0 equals 1. For any value of π1, the system is able to have higher stable

throughput using the knowledge of the CSI than the system with no CSI at the

source by selecting a suitable p0.

In figure 3.5, we show the maximum stable throughput against the probability
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Figure 3.4: Maximum stable throughput against p0
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Figure 3.5: Maximum stable throughput against error probability

of error in channel measurement. We fix the system parameters qS = 0.7, qR = 0.3

and π1 = 0.6. The results are for p0 with the values 0.25, 0.5, and 0.75. The effect
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of error in channel measurement in case of transmission with relaying is less than

the effect in case of direct transmission.
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Figure 3.6: The value of p∗0 against π1

In figure 3.6, we show the optimal transmission probability with the channel

SD in state 0 against π1. We fix qR = 0.3. The results are for qS with the values

0.3 and 0.7. The figure shows that the optimal p0 takes small value when qS is low

as energy is better to be used when the channel in its good state. Also when the

probability of the channel to be in state 1 is high, the optimal value of p0 equals

0 as there will be no need to transmit while the channel is in state 0. In the case

of no relaying, p0 takes larger values than the case of cooperative relaying because

there is no benefit for leaving the channel idle while there is unused energy at the

source. In the case of cooperative relaying, keeping the channel idle allows the relay

to transmit which can be more beneficial than allowing the source to transmit with
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the channel SD in state 0.

3.8 Discussion

In this chapter, we have proposed and analyzed protocols for transmission

from a source that has energy harvesting capability. We have considered the case

in which a relay is used to help the source transmissions. The relay also has energy

harvesting capability. The proposed protocol allows the relay to use the idle time

slots of the source and hence avoids allocating any explicit resources to the relay.

Our analysis shows that cooperation increases the maximum stable throughput rate

in most cases except when the energy harvesting rate of the relay is small. The

proposed strategy exploits the knowledge of the CSI of the channel between the

source and the destination such that the source transmits with probability 1 if the

channel is in state 1 and transmits with a certain probability if the channel is in

state 0. The optimal probability has also been calculated. The effect of imperfect

channel measurements has been considered.

3.9 Appendix: Derivation of the Service Rate for the Relay Data

Queue for Transmission Protocol with Relaying

We are going to calculate the service rate of the relay data queue. Let pRD be

the probability that a packet received by the destination due to a relay transmission.

The packet is to be decoded successfully when the relay is able to transmit and the

channel RD is not in outage. The relay is able to transmit when the relay energy
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queue is not empty. The value of PRD is calculated as follows

PRD = Pr[ER �= 0](πRD,1fRD,1 + πRD,0fRD,0) (3.27)

The relay energy queue forms a discrete-time M/M/1 system for the same

reasoning as the source energy queue. The service rate of the relay energy queue is

the rate of attempting transmission of the relay node. The transmission attempting

rate equals (1 − ρS). The arrival rate of energy to the relay is qR. Also, if the

energy arrival rate of the relay node is larger than the transmission attempting

rate, the number of energy units in the queue approaches infinity almost surely.

Therefore, the probability of the energy queue to be empty is zero. On the other

hand, if the energy arrival rate of the relay node is smaller than or equal to the

transmission attempting rate, the probability of energy queue to be not empty is

the ratio between the energy arrival rate and the transmission attempting rate. As

a result, the probability of the energy queue to be not empty is written as follows

Pr[ER �= 0] =
min(qR, 1− ρS)

1− ρS
(3.28)

Let TR be the number of time slots needed for the relay to serve a packet in

the relay data queue assuming that the relay continuously transmits. Then, TR has

a geometric probability distribution as follows

Pr[TR = k] = PRD(1− PRD)
k−1 (3.29)

Then, the expected value of the number of time slots needed till the packet is

decoded correctly by the destination, assuming that the relay continuously trans-
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mits, is shown to be

E[TR] =
1

PRD

(3.30)

Let v1,v2,.....be a sequence of random variables. The random variable vi rep-

resents the number of successive time slots in which the source is going to be busy

before the ith relay retransmission. This sequence represents an i.i.d sequence. The

probability of the source to be busy is ρS. Then, the number of successive time

slots, in which the source is busy, follows a geometric distribution as follows

Pr[v = k] = ρkS(1− ρS) (3.31)

The expected value of the number of successive time slots, in which the source

is busy, is calculated as follows

E[v] =
ρS

(1− ρS)
(3.32)

Let T be the number of time slots needed for the relay to get served including

those in which the source will be transmitting, then we have

T = TR +

TR∑
i=1

vi (3.33)

This expression results from that the ith transmission of the TR relay trans-

missions is followed by busy period of length vi. Then, the expected value of the

number of time slots needed for the relay to get served, including those in which the

source will be transmitting, is calculated as follows

E[T ] = E[TR](1 + E[v]) =
E[TR]

(1− ρS)
(3.34)
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Thus, the service rate of the relay data queue is shown as follows

μR =
1

E[T ]
= (πRD,1fRD,1 + πRD,0fRD,0)min (qR, 1− ρS) (3.35)
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Chapter 4: Partial Relaying for Energy Harvesting Networks

4.1 Introduction

In this chapter, we characterize the stability region of a system which contains

a source, a relay and a destination. The source and the relay have energy harvesting

capability. Each of the source and the relay has stochastic data arrivals. The relay

regulates the relaying process by accepting only a proportion of the source success-

fully received packets. The relay transmits over the common medium only when

the source is idle. We start by evaluating the stability conditions for the source and

the relay data queues. Then, we combine the conditions to characterize the stabil-

ity region as a function of the relaying parameter. Then, we solve the optimization

problem of obtaining the relaying parameter which maximizes the stable throughput

rate of the source for a given relay data arrival rate while maintaining the stability

of the source and the relay data queues. Thus, we characterize the stability region

of the system over the whole range of the relaying parameter. Then, we evaluate

the stability region for simple transmission strategies such as no relaying strategy

and fixed resource allocation strategy. We consider TDMA as an example for fixed

resource allocation strategies. This work was presented in [44].
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4.2 System Model

4.2.1 Network Model

We consider a network which consists of a source node, a relay node, and

a destination node as shown in figure 4.1. Each of the source and the relay has

an infinite data queue for storing fixed length packets. These queues are denoted

by QS and QR respectively. We assume that the source generates its own traffic

while the relay both generates its own traffic and relays the source traffic. The data

arrival processes to the source and the relay data queues are modeled by Bernoulli

processes. Also, each of the source and the relay has an infinite energy queue. These

queues are denoted by ES and ER respectively. The usage of infinite queues is a

reasonable approximation when the data queues are large enough compared to the

packet size and the energy queues are large enough compared to the energy unit [15].

Each of the source and the relay can acquire a single unit of energy at each time

slot with probabilities qS and qR respectively that the energy arrival processes are

modeled by Bernoulli processes. All nodes are half-duplex and thus they can not

transmit and receive simultaneously. Time is assumed to be slotted such that each

packet transmission takes one time slot. Transmission of a data packet from a node

requires using a single unit of energy from the corresponding energy queue. For

simplicity, we assume that the energy consumption in a node is due to transmission

only and therefore the processing and the reception energies are considered to be

negligible.
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Figure 4.1: System Model

4.2.2 Channel Model

All the channels, which are denoted by SD, SR and RD, are modeled as

independent erasure channels. The channels are independent of the packet arrival

processes and the energy harvesting processes at the source and the relay. The qual-

ity of a channel is represented by the success probability of a packet. The average

packet success probabilities are denoted by fSD, fSR and fRD. These success prob-

abilities are determined by the system physical parameters such as the transmission

power, the modulation scheme, the coding scheme and the targeted bit-error rate.
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4.2.3 Transmission Strategy

At a time slot, the source is able to transmit if both its energy queue and its

data queue are not empty. If the packet is accepted by the destination or by the

relay, it is released from the source data queue; otherwise it is kept in the source

data queue for retransmission. At the beginning of every time slot, the relay senses

the channel. We assume perfect sensing by the relay for the source transmissions. If

the source is not transmitting, the relay uses this idle time slot to transmit a packet

from its data queue to the destination when its energy queue is not empty. Hence,

no explicit channel resources are assigned to the relay. A packet is released from

the relay data queue if it is successfully received by the destination; otherwise it is

kept for retransmission.

We exploit partial relaying cooperation that the relay accepts only a certain

proportion of the successfully received packets. This proportion of accepted packets

should match the ability of the relay to forward the packets. This proportion is

determined by the relaying parameter r which is the probability of accepting a

packet at the relay data queue given that this packet has been successfully received.

In [42], Loynes’ theorem states that if the arrival and service processes at a

queue are jointly stationary, then the queue is stable if the average arrival rate is

less than the average service rate. Throughout the chapter, we denote the average

arrival rate at the source data queue by λ. The average arrival rate to the relay data

queue due to the source transmissions is denoted by λSR and the average arrival rate

to the relay data queue for the packets generated by the relay is denoted by λR. The
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average service rate of the source data queue is denoted by μS. Also, the average

service rate of the relay data queue is denoted by μR.

4.3 Stability Analysis

In this section, we derive the stability region of the proposed transmission

protocol. The system is stable if both the source data queue and the relay data

queue are stable. In the following subsections, we derive the stability conditions for

each queue separately. The following two probabilities are defined to be used in the

stability analysis. First, the probability that a packet transmitted by the source is

accepted by the relay is denoted by PR and its value is calculated as follows

PR = rfSR(1− fSD) (4.1)

Also, we denote the probability that a packet transmitted by the source is accepted

by either the relay or the destination by PE and we calculate its value as follows

PE = 1− (1− fSD)(1− rfSR) (4.2)

4.3.1 Source Data Queue

In order to calculate the maximum stable throughput rate for the source data

queue, we have to start by considering the service rate for the source energy queue

which is the rate of which the source node can transmit when its data queue is

saturated [45]. Each transmission attempt uses a single energy unit. As a result, the

energy departure process is modeled by a Bernoulli process. Therefore, the source
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energy queue forms a discrete-time M/M/1 system. The energy queue service rate

equals 1. The arrival rate of energy to the source node is qS. Then, it follows

from [43] for discrete-time M/M/1 system that the probability of energy queue to

be not empty is the ratio between the energy arrival rate and the energy queue

service rate. As a result, the probability of the energy queue to be not empty is

Pr[ES �= 0] = qS (4.3)

The maximum data arrival rate which maintains the stability of the source

data queue is limited by its service rate. A packet at the source is served if it is

successfully delivered to the relay or the destination. The source data queue service

rate is the product of the success probability given that the source is able to transmit

by the probability that its energy queue is not empty. The service rate of the source

data queue is

μS = Pr[ES �= 0]PE (4.4)

The stability condition for the source data queue is λ < μS.

4.3.2 Relay Data Queue

We start by calculating the probability that the channel is occupied by the

source transmissions and this probability is denoted by ρS. As the source data queue

forms a discrete-time M/M/1 system and assuming that the source data queue is

stable, it follows from [43] that the probability ρS is calculated as follows

ρS =
λPr[ES �= 0]

μS

=
λ

PE

(4.5)
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The arrival rate for the relay data queue from the source transmissions is the

probability that a packet is accepted by the relay at any given time slot. The relay

has a successful arrival at a time slot if the source is transmitting and the channel

SR is not in outage while the channel SD is in outage. The arrival rate to the relay

λSR is calculated as follows

λSR = ρSPR = λ
PR

PE

(4.6)

Then, the service rate of the relay data queue equals

μR = fRD min(qR, 1− ρS) (4.7)

The derivation of the expression of the service rate of the relay data queue

has been done using the same way in section 3.9. For the relay data queue to be

stable, the summation of the relay own traffic arrival rate and the arrival rate of

the packets due to the source transmissions has to be less than the relay data queue

service rate. Thus, the stability condition for the relay data queue is λR+λSR < μR.

4.3.3 Stability Conditions

To ensure that the system is stable, both the source and the relay data queues

have to be stable. As a result, both the conditions λ < μS and λR + λSR < μR

should be satisfied. By substituting using equation (4.6) in the second condition, it

is written as

λ <
PE

PR

fRD min(qR, 1− ρS)− PE

PR

λR (4.8)

Note that the right hand side of the inequality is still a function of λ. By

combining the conditions and moving λ to one side of the inequality, we get the
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general expression for the maximum stable throughput of the source as follows

λ < min(qSPE,
PE

PR

(fRDqR − λR),
PE(fRD − λR)

PR + fRD

) (4.9)

The same analysis is still valid when the energy arrival processes and the data

arrival process are modeled by Poisson processes. In this case, the energy queues

and the data queues form M/G/1 systems.

4.4 Partial Relaying Optimization

In this section, we evaluate the value of the parameter r to maximize the stable

throughput of the source λ for a given value of λR. The value of the optimal r as

a function in λR is substituted in equation (4.9) to get the bound of the stability

region. The optimal value of r is the solution of the problem

r∗ = argmax
r

(min{f1(r), f2(r), f3(r)}) (4.10)

where the values of f1(r), f2(r) and f3(r) are obtained from equation (4.9) as follows

f1(r) = qS[1− (1− fSD)(1− rfSR)] (4.11)

f2(r) =
1− (1− fSD)(1− rfSR)

rfSR(1− fSD)
(fRDqR − λR) (4.12)

f3(r) =
(1− (1− fSD)(1− rfSR))(fRD − λR)

rfSR(1− fSD) + fRD

(4.13)

The function f1(r) is a linear function of r with a non-negative slope. Thus,

f1(r) is a non-decreasing function of r.

The function f2(r) is continuous over the interval ]0, 1]. We calculate the first

derivative of the function f2(r) to be

d

dr
f2(r) =

−fSDfSR(1− fSD)(fRDqR − λR)

(rfSR(1− fSD))2
(4.14)
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Thus, the first derivative is always non-positive and the function f2(r) is a non-

increasing function of r.

The function f3(r) is continuous over the interval ]0, 1]. The function f3(r) can

be either non-increasing or non-decreasing based on the system parameters. The

value of the first derivative of f3(r) is calculated as follows

d

dr
f3(r) =

(fRD − λR)P
′
R(PR + fRD − PE)

(PR + fRD)2
(4.15)

where P ′
R is the first derivative of PR with respect to r. The value of P ′

R is

P ′
R = fSR(1− fSD) (4.16)

Also, the difference between PR and PE is

PE − PR = fSD (4.17)

Thus, the sign of the term fRD − fSD determines the monotonicity of the function

f3(r). If it is non-negative, the function is non-decreasing with respect to r and if

the term (fRD − fSD) is non-positive, the function is non-increasing with respect to

r. In the following subsections, we will consider the optimal value of r in both cases.

4.4.1 fRD > fSD

We consider the case in which the channel from the relay to the destination

has better quality than the channel from the source to the destination. In this case,

the function f3(r) is a non-decreasing function of r. We calculate the intersection

points of f2(r) with each of f1(r) and f3(r). We denote these points by r12 and r23
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respectively. The value of r12 is evaluated to be

r12 =
qRfRD − λR

qSfSR(1− fSD)
(4.18)

Then, the value of the second intersection point r23 is calculated as follows

r23 =
qRfRD − λR

(1− qR)fSR(1− fSD)
(4.19)

The values of r12 and r23 are always positive when the relay data queue is stable as

the value of qRfRD − λR is positive when the queue is stable.

The optimal value of r in this case is calculated as follows

r∗(fRD>fSD) = min (1,max (r12, r23)) (4.20)

The optimal value of r is 1 if the maximum of the intersection points is larger than

1.

By substitution using the values of r12 and r23 and simplifying the resulted

equation, we get

r∗(fRD>fSD) = min

(
1,

qRfRD − λR

min (qS, 1− qR)fSR(1− fSD)

)
(4.21)

In the case when the quality of the channel RD is better than the quality of the

channel SD, it is preferred to let the relay transmit with the maximum transmission

attempt rate which is equal to qR. The numerator qRfRD − λR represents the rate

with which the relay could forward the source transmissions. It is the difference

between the relay service rate and the relay own traffic arrival rate. The denominator

is the rate of the proportion of the source data that can be relayed. The term

min (qS, 1− qR) is the rate with which the source accesses the channel and it is
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multiplied by the probability that a packet transmitted by the source is received by

the relay only.

4.4.2 fRD ≤ fSD

In this subsection, we discuss the optimal relaying parameter when the channel

from the source to the destination has better quality than the channel from the relay

to the destination. In this case, the function f3(r) is a non-increasing function of

r. We calculate the intersection points of f1(r) with each of f2(r) and f3(r). We

denote these points by r12 and r13 respectively. The value of r12 is calculated in the

previous subsection. The value of r13 is

r13 =
(1− qS)fRD − λR

qSfSR(1− fSD)
(4.22)

The optimal value of r in this case is calculated as follows

r∗(fRD≤fSD) = max (0,min (r12, r13, 1)) (4.23)

The optimal value of r is 1 when both r12 and r13 are larger than 1 . On the other

hand, the optimal value of r is 0 if r13 is non-positive considering that the value of

r12 is always non-negative when the system is stable.

By substitution using the values of r12 and r23 and simplifying the resulted

equation, we get

r∗(fRD≤fSD) = max

(
0,min (1,

min (qR, 1− qS)fRD − λR

qSfSR(1− fSD)
)

)
(4.24)

In the case when the quality of the channel SD is better than the quality

of the channel RD, it is preferred to let the source transmit with the maximum
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transmission attempt rate which is equal to qS. The denominator qSfSR(1 − fSD)

represents the rate with which the source data is relayed. The numerator is the rate

with which the relay can forward the source transmissions. The term min (qR, 1− qS)

is the rate with which the relay accesses the channel and it is multiplied by the

probability that a packet transmitted by the relay is received by the destination.

Then, the relay data arrival rate is subtracted from the previous quantity to get the

rate with which the relay can forward the source transmissions.

4.5 Special Cases

In this section, we consider the special cases when a node has a continuous

source of energy for transmission.

4.5.1 The case of (qR = 1)

This is the case in which the relay has a continuous source of energy. Thus,

the service rate of the relay is limited only by the channel occupation due to the

source transmissions. Then, the expression of the relay service rate can be rewritten

as follows

μR|qR=1 = fRD(1− ρS) (4.25)

As a result, the general expression for the maximum stable throughput of the source

is stated as follows

λ|qR=1 < min (qSPE,
PE(fRD − λR)

PR + fRD

) (4.26)

The expression of the maximum stable throughput of the source can be written
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as

λ|qR=1 < min (f1(r)|qR=1, f3(r)|qR=1) (4.27)

As a result, the optimal value of r can be obtained following the same steps of the

general case. When fRD > fSD, both f1(r)|qR=1 and f3(r)|qR=1 are non-decreasing

functions in r. Then, the optimal value of r is

r∗(fRD>fSD)|qR=1 = 1 (4.28)

On the other hand when fRD ≤ fSD, the optimal value of r is

r∗(fRD≤fSD)|qR=1 = max (0,min (r13|qR=1, 1)) (4.29)

r∗(fRD≤fSD)|qR=1 = max (0,min (1,
(1− qS)fRD − λR

qSfSR(1− fSD)
)) (4.30)

It is intuitive that when qR = 1 and fRD > fSD, the optimal value of r is 1.

In this case, the channel from the relay to the destination has better quality than

the channel from the source to the destination and there is no energy limitation at

the relay. Then, there is no reason for the relay to reject a successfully received

packet from the source. This explanation is true also when the value of qR is large

enough to forward all the successfully received packets from the source. To get the

condition on qR for the optimal r to be 1 when fRD > fSD, we get the value at

which max (r12, r23) ≥ 1. Then, the condition is

qR ≥ min

(
qSfSR(1− fSD) + λR

fRD

,
fSR(1− fSD) + λR

fRD + fSR(1− fSD)

)
(4.31)
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4.5.2 The case of (qS = 1)

This is the case in which the source has a continuous source of energy. Thus,

the service rate of the source is limited only by the channels success probabilities.

Then, the expression of the source service rate can be rewritten as follows

μS|qS=1 = PE (4.32)

As a result, the general expression for the maximum stable throughput of the source

is stated as follows

λ|qS=1 < min (PE,
PE

PR

(fRDqR − λR),
PE(fRD − λR)

PR + fRD

) (4.33)

The optimal value of r can be obtained following the same steps of the general

case. When fRD > fSD, the value of r23|qS=1 is greater than or equal to the value of

r12|qS=1 because (1− qR) ≤ 1 that is

qRfRD − λR

(1− qR)fSR(1− fSD)
≥ qRfRD − λR

fSR(1− fSD)
(4.34)

Then, the optimal r can be defined to be

r∗(fRD>fSD)|qS=1 = min (1, r23|qS=1) (4.35)

r∗(fRD>fSD)|qS=1 = min (1,
qRfRD − λR

(1− qR)fSR(1− fSD)
) (4.36)

When fRD ≤ fSD, we found that

r13|qS=1 =
−λR

fSR(1− fSD)
(4.37)

This quantity is a non-positive quantity from the definition of λR. Thus, the optimal

value of r is

r∗(fRD≤fSD)|qS=1 = 0 (4.38)
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It is intuitive that when qS = 1 and fRD ≤ fSD, the optimal value of r is

0. In this case, the channel from the source to the destination has better quality

than the channel from the relay to the destination and there is no energy limitation

at the source. Then, there is no reason for the source to be helped by the relay.

This explanation is true also when the value of qS is large enough to forward all the

packets from the source. To get the condition on qS for the optimal r to be 0 when

fRD ≤ fSD, we get the value at which min (r12, r13) ≤ 0. Then, the condition is

qS ≥ 1− λR

fRD

(4.39)

4.6 Stability Regions for Simple Strategies

4.6.1 No relaying

We consider the case in which the source and the relay do not cooperate. The

source has higher priority than the relay that the relay transmits only when the

source is idle. The results for this case are obtained by setting the parameter r to

0. The importance of this case is that it represents the case of resource allocation

with no cooperation and no interference between energy harvesting nodes.

The value of the source data queue service rate with ”No Relaying” which is

denoted by μ
(NR)
S is calculated as follows

μ
(NR)
S = qSfSD (4.40)

The value of the probability that the channel is occupied by source transmissions is
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calculated as follows

ρ
(NR)
S =

λ

fSD
(4.41)

Then, the service rate of the relay data queue equals

μ
(NR)
R = fRD min(qR, 1− ρ

(NR)
S ) (4.42)

Thus, the stability condition for the relay data queue is λR < μ
(NR)
R . To ensure

that the system is stable, both the conditions λ < μ
(NR)
S and λR < μ

(NR)
R should be

satisfied. By combining the conditions on λ, we get the general expression for the

stability region as follows

λ < fSD min(qS,
fRD − λR

fRD

), ifλR < qRfRD (4.43)

4.6.2 Fixed Resource Allocation

In this section, we evaluate the stability region in the case of TDMA scheduling

for the source and the relay. The same transmission strategy as in section 4.2 is

exploited except of the time allocation. The odd time slots are assigned for the source

and the even time slots are assigned for the relay which is the same technique used

in [40].

The value of the source data queue service rate which is denoted by μ
(TDMA)
S is

calculated using the same steps as the calculation of the relay service rate in section

3.9. The probability with which the source can access the channel is 1/2. Then, the

probability of the source energy queue to be not empty is calculated as follows

Pr[ES �= 0](TDMA) =
min (qS, 1/2)

1/2
(4.44)
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Then, we obtain the expression for the source data queue service rate as follows

μ
(TDMA)
S = min(qS,

1

2
)PE (4.45)

The value of the probability that the channel is occupied by source transmis-

sions is calculated as follows

ρ
(TDMA)
S =

λ

PE

(4.46)

The calculation of the service rate of the relay data queue follows the same

steps. Also, the probability with which the relay can access the channel is 1/2.

Then, the probability of the relay energy queue to be not empty is calculated as

follows

Pr[ER �= 0](TDMA) =
min (qR, 1/2)

1/2
(4.47)

Then, the service rate of the relay data queue equals

μ
(TDMA)
R = min(qR,

1

2
)fRD (4.48)

Thus, the stability condition for the relay data queue is λSR + λR < μ
(TDMA)
R .

To ensure that the system is stable, both the conditions λ < μ
(TDMA)
S and λSR+λR <

μ
(TDMA)
R should be satisfied. By combining the conditions on λ, we get the general

expression for the stability region as follows

λ < min(μ
(TDMA)
S ,

PE

PR

(μ
(TDMA)
R − λR)) (4.49)

The maximum source stable throughput rate is the minimum of two func-

tions. The first function is a non-decreasing function of r as shown in section IV.

The second function is a non-increasing function of r. The optimal value of r is
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the intersection point of the two functions if this intersection point is less than 1;

otherwise, the optimal value of r is 1. Thus, the expression for the optimal value of

r is written as follows

r∗(TDMA) = min(
min(qR,

1
2
)fRD − λR

fSR(1− fSD)min(qS,
1
2
)
, 1) (4.50)

4.7 Numerical Results

In this section, we present numerical results to illustrate the previous theoreti-

cal development. We illustrate the effects of system parameters on the performance

of the system and the optimal value of relaying parameter. In the following results,

we fix the channel success probabilities to be fSD = 0.25, fSR = 0.5 and fRD = 0.5.

We denote the system with optimal relaying parameter with the relay senses the

channel by ”Optimal” and the system with TDMA channel access techniques by

”TDMA”.

In figure 4.2, we show the stability regions of different relaying schemes. We

set the energy arrival rates for the source and the relay to qS = 0.6 and qR = 0.6. We

compare the optimal relaying to the cases of full relaying, no relaying and TDMA.

We show that the stability region of the optimal partial relaying contains the stability

region of other relaying schemes. For the selected parameters, it is optimal to use

full relaying for λR ≤ 0.15. When λR is larger, the relay does not have enough

energy to forward all the successfully received packets by the source. Also, it is

optimal not to relay source data when λ ≤ 0.1. In this case, the source energy is

enough to forward the source data through the channel SD and the relay uses its
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Figure 4.2: Stability Region

energy to forward its own data. On the other hand, the TDMA scheme is optimal

at one point only when λR = 0.06.
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In figure 4.3, we show the value of the optimal relaying parameter against λR,

qS and qR. The horizontal axis is λR and we show results for qS and qR with the

values of 0.1, 0.3 and 0.5. The figure shows that full relaying is optimal for a wider

range with the increase of relay energy arrival rate. Also, partial relaying is more

important for enhancing the performance with the decrease of the source energy

arrival rate. Finally, the value of the optimal relaying parameter decreases with the

increase of the data arrival rate for the relay.
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Figure 4.4: Stability Region against different values of qR

In figure 4.4, we show the stability regions of the optimal partial relaying

system for different values of qR. We set the energy arrival rate for the source to

qS = 0.6. We show the increase in the stability region with the increase of qR.

This increase is much higher for low values of qR while it has lower effect for large

values of qR. When qR is large that the network can not exploit all the harvested
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energy, the enhancement in the stability region happens only when λ is small such

that the source is not able to use all its harvested energy. The vertical lines in the

figure represent the case when r∗ = 0 such that the increase in λ does not affect the

allowable λR in the system.
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Figure 4.5: Stability Region against different values of qS

In figure 4.5, we show the stability regions of the optimal partial relaying

system for different values of qS. We set the energy arrival rate for the relay to

qR = 0.6. We show the increase in the stability region with the increase of qS. This

increase is much higher for low values of qS while it has lower effect for large values

of qS. The horizontal lines in the figure represent the case when r∗ = 1 such that

the increase in λR exploits unused harvested energy at the relay without affecting

the source performance.
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4.8 Discussion

In this chapter, we have introduced the notion of partial network-level coop-

eration for energy harvesting networks. The flow from the source through the relay

is controlled. We provide an exact characterization of the stability region for the

discussed system. We have shown that the performance of the system with optimal

partial relaying is always better than or equals the performance of simple relaying

schemes. Also, we have shown that it is optimal to use full relaying for a small data

arrival rate at the relay while it is optimal to use no relaying when the source has a

small data arrival rate.
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Chapter 5: Relaying and Stability in Energy Harvesting Networks

with Multiple Relays

5.1 Introduction

The use of multiple relays compared to a single relay leads to wider coverage

and lower transmit power [46, 47]. Selecting a subset of multiple available relays

according to a performance metric can further enhance the performance of cooper-

ative networks. Relay selection schemes can be divided into two categories: single

relay selection schemes and multiple relay selection schemes. The complexity of the

multiple relay selection schemes increases exponentially with the number of avail-

able relays [48]. Thus, in our work, we consider the case of selecting a single relay

from multiple available relays. Several relay selection schemes have been proposed

in the literature. Examples of relay selection schemes can be found in [48]- [51].

In these works, the enhancement of the performance due to selecting a single relay

from multiple available relays was shown. The main difference in our work is that

the relays are energy harvesting nodes with random energy availability.

In this chapter, we consider a simple system which consists of a source, a

destination and a number of relays. The source and the relays have energy harvesting
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capability. The nodes share the same band. The packets arrivals into the source

and the energy arrivals into the source and the relays are modeled by discrete-time

stochastic processes. We consider a two-hop network with the availability of the

line of sight between the source and the destination that each packet can reach

the destination by passing through a single relay at most. The study of a two-hop

network is both instructive and necessary. It reveals insights at the conceptual levels

about the effects of different system parameters in more practical scenarios such as

the multi-hop networks. The importance of considering this simple model is to shed

insights into the interaction between relaying, energy harvesting, and stability.

We consider a centralized transmission scheduling policy in the network. The

studied centralized policy is analytically tractable and serves as a benchmark for the

different distributed schemes that could be used. The centralized policies also can

be applied for networks with small number of nodes and within the neighbor nodes

in large networks. Due to the random nature of data arrivals, we introduce a trans-

mission strategy in which relays transmit during the idle periods of the source. The

transmission strategy allows partial relaying cooperation. The partial network-level

cooperation between the source and the relays is achieved by adding a flow controller

to each relay which controls the flow going through the relay. It controls the flow by

setting a probability to accept packets at each relay. This partial cooperation was

used before in [52] for non energy harvesting relays.

In the studied model, we investigate the problem of constrained minimization

of a linear cost objective function. Each packet has a cost associated with the path

through which the packet reaches the destination. The cost which is associated with
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a certain path is generally determined by the channels characteristics and the energy

harvesting rates at different nodes. The cost objective function may be selected to

represent a network performance measure as the delay or the consumed energy. The

minimization problem is constrained by the stability of the data queues of different

nodes.

The results of this work quantify the enhancement in the performance due to

the use of partial cooperation in the system. We compare the results when exploiting

partial relaying to the case of no relaying and the case of full relay cooperation in

which no flow control is applied at the relays.

We start the analysis by calculating the stability conditions of the data queues

of the source and the relays which represent the constraints of the relaying cost

minimization problem. Then, we get a closed-from expression for the maximum

achievable rate of the source as a function of the relaying parameters which are the

probabilities of accepting packets at the relays. Finally, we specify the cost mini-

mization problem to the case of energy consumption minimization. We optimize the

network energy consumption over the partial relaying parameters while maintaining

the stability of the source and the relays data queues. This work was presented

in [53].
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5.2 System Model and Problem Formulation

5.2.1 Network Model

We consider a network which consists of a source node, a number of relay

nodes, and a destination node as shown in figure 5.1. The number of relay nodes is

N . We refer to each node by an index that each relay takes an index i which belongs

to {1, 2, ...N} and the source takes the index 0. Each of the source and the relays

has an infinite data queue for storing fixed length packets. These queues are denoted

by Qi with i is the index of the node and belongs to {0, 1, 2....., N}. We assume

that the source has its own traffic while the relays do not have their own traffic and

are used only for cooperation with the source. The data arrival to the source data

queue is modeled by a Bernoulli process. Also, each of the source and the relays

has an infinite energy queue. These queues are denoted by Ei with i is the index of

the node and belongs to {0, 1, 2....., N}. The usage of infinite queues is a reasonable

approximation when the data queues are large enough compared to the packet size

and the energy queues are large enough compared to the energy unit [15]. All nodes

are half-duplex and thus they can not transmit and receive simultaneously. Time

is assumed to be slotted such that each packet transmission takes one time slot.

Transmission of a data packet from a node requires using a single unit of energy

from the corresponding energy queue. The source and the relays can acquire a

single unit of energy at each time slot with probabilities qi that the energy arrival

processes are modeled by Bernoulli processes. For simplicity, we assume that the
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energy consumption in a node is due to transmission only and therefore the energy

for data processing and data reception does not affect our analysis.

5.2.2 Channel Model

All the channels are modeled as independent erasure channels. The channels

are also independent of the packet generation process and the energy harvesting at

the source and the relays. The channels from node i to node j and from node i to

the destination are denoted by Cij and CiD respectively. The quality of a channel

is represented by the average success probability of a packet. The average packet

success probabilities over the channels from node i to node j and from node i to the

destination are denoted by fij and fiD respectively. These average success proba-

bilities are determined by the system physical parameters such as the transmission

power, the modulation scheme, the coding scheme and the targeted bit-error rate.

5.2.3 Transmission Strategy

The source transmits when both its data and energy queues are not empty.

The transmitted packet is released from the source data queue if it is accepted by

either the destination or any of the relay nodes; otherwise it is kept at the source

data queue for retransmission. A packet is stored at the data queue of the relay i if

the packet is accepted by the relay i and is not accepted by neither the destination

nor the relays with indices belongs to {1, 2, ...i − 1}. When the source is idle, the
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Figure 5.1: System Model

centralized controller allows the relay with the lowest index and both its energy and

data queues are not empty to transmit a packet. The packet is released from a relay

data queue when it is successfully received by the destination.

In the transmission strategy, we have considered the case in which the relays

have fixed order. When a transmitted packet by the source is not received by the

destination and is accepted by more than a single relay node, the packet is stored at

the data queue of the relay with the lowest index. As a result, giving a lower index

to a relay means that this node has a higher priority in storing received packets. A

node with high energy harvesting rate is able to make more transmission attempts

than a node with low energy harvesting rate. Also, a node with high average success

probability for its channel to the destination is able to do less number of retrans-

missions than a node with low average success probability. Thus, we suggest in our
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work an ordering criterion based on the product of the energy harvesting rate by

the success probability. The nodes are ordered such that lower index means higher

value of the product to include both the effects of the energy arrival rate and the

average channel success probability. The analysis is general for any ordering scheme.

We introduce partial relaying cooperation that each relay accepts only a certain

proportion of the successfully received packets. This proportion of accepted packets

should match the ability of the relay node to forward the packets. The proportion

which is accepted by relay i is determined by the flow control parameter ri, i =

1, 2, ....N . The parameter ri is the probability of accepting a packet at the relay i

data queue given that this packet has been successfully received. As a result, the

packet accepting probability at relay i equals rif0i. The vector that contains the

values of ri with i = 1, 2, ...N is denoted by �r.

In [42], Loynes’ theorem states that if the arrival and service processes at a

queue are jointly stationary, then the queue is stable if the average arrival rate is

less than the average service rate. Throughout the chapter, the average arrival rate

to the node i data queue is denoted by λi. Also, the average service rate of the

node i data queue is denoted by μi. The maximum achievable rate of the source

for a certain relaying vector �r is denoted by λ̂0(�r). Also, we denote the maximum

achievable rate of the source over all the values of �r by λ∗
0. Also, the proportion of

the source data packets which arrives at the destination directly is denoted by λ̃0

and it equals λ0 −
∑N

i=1 λi.
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5.2.4 Problem Formulation

The goal of the problem is minimizing the relaying cost while maintaining the

stability of the source and the relays data queues. The problem objective function

is denoted by J . The cost of a packet which is relayed by the relay i is denoted by

ci. The cost for forwarding a packet directly from the source to the destination is

denoted by c0. The cost could be selected to represent some network performance

measure such as the average consumed energy or the average delay. The objective

function is

J = c0λ̃0 +
N∑
i=1

ciλi (5.1)

The relays do not generate their own traffic. As a result, the data arrival rates

for different relays are functions in the source data arrival rate. For a certain partial

relaying parameters vector �r, the stability of all queues is achieved by constraining

the source data arrival rate to be less than the maximum achievable rate for this �r

that the problem is constrained by λ0 < λ̂0(�r). Also, the relaying parameters ri for

all i have to belong to [0, 1]. Thus, the problem can be written as follows:

min
�r

c0λ̃0 +
N∑
i=1

ciλi

subject to λ0 < λ̂0(�r)

0 ≤ ri ≤ 1, for i = 1, 2, ....N

We start investigating the problem by calculating the value of λ̂0(�r) which is
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obtained by evaluating the stability conditions of the data queues of the source and

the relays. Then, we discuss the optimization problem and specify the cost objective

function to be the network energy consumption.

5.3 Stability Analysis

The system is stable if the source data queue and the relays data queues are

stable. In the following subsections, we derive the stability conditions for all the

system data queues.

5.3.1 Source Data Queue

The service rate of the source energy queue is the rate of which the source node

attempts to transmit when its data queue is not empty. It equals the probability that

the channel is not busy by other nodes transmissions. Each transmission attempt

consumes a single energy unit. The transmission attempting rate equals 1 as the

source node has the highest priority to transmit in the network. The arrival rate

of energy to the source is q0. The energy arrival rate to the source is smaller than

or equal to the transmission attempting rate, then it follows from [43] that the

probability of the energy queue to be not empty, when the data queue is saturated,

is the ratio between the energy arrival rate and the transmission attempting rate.

As a result, the probability of the source energy queue to be not empty is calculated

as follows

Pr[E0 �= 0] = q0 (5.2)
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For more details on calculating the probability that an energy queue is not empty

in an energy harvesting source, refer to [45].

The average probability, that a transmitted packet is released from the source

data queue, is denoted by PE and calculated as follows

PE = (1− (1− f0D)
N∏
i=1

(1− rif0i)) (5.3)

The source data queue service rate is the product of the success probability

given that the source is able to transmit by the probability that the energy queue

is not empty. The value of the source data queue service rate equals

μ0 = Pr[E0 �= 0]PE (5.4)

To maintain the stability of the source data queue, the data arrival rate to

the source data queue has to be less than the source data queue service rate that is

λ0 < μ0.

5.3.2 Relays Data Queues

To investigate the stability conditions for the relays data queues, we start by

calculating the probability that the channel is occupied by the source transmissions

which is denoted by ρ0. When the source data queue is stable, the probability ρ0 is

calculated as follows

ρ0 =
λ0Pr[E0 �= 0]

μ0

= λ0
1

PE

(5.5)

It is the product of the average data rate λ0 by the expected time for a packet to

be accepted by either the destination or any of the relays which equals 1/PE.
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The data arrival rate of the relay i is the probability that a packet is accepted

by the relay at any given time slot. It is the product of the channel occupation

probability due to the source transmissions by the probability that the packet is

accepted by the relay i. Let PRi be the probability that a transmitted packet is

accepted by the relay i and is not accepted by neither the destination nor the relays

with indices belongs to {1, 2, ...i− 1}. Then, the value of λi is calculated as follows

λi = ρ0PRi = λ0
PRi

PE

, i = 1, 2, ....N (5.6)

The value of PRi is calculated as follows

PRi = rif0i(1− f0D)
i−1∏
j=1

(1− rjf0j) (5.7)

The relay i data queue service rate is derived using the same way as in section

3.9 and its value is calculated as follows

μi = fiD(1−
i−1∑
m=0

ρm)Pr[Ei �= 0], i = 1, 2, ....N (5.8)

where ρi is the probability that the channel is occupied by the transmissions of the

relay i with i belongs to {1, 2, ...N}. The probability ρi is calculated as follows

ρi =
λi

fiD
(5.9)

Also, the probabilities that the relays energy queues are not empty are calcu-

lated using similar steps of deriving equation (5.2). The transmission attempting

rate of the relay i is 1 −∑i−1
m=0 ρm which is the probability that the channel is idle

for this node to transmit. Then, the probabilities that the relays energy queues are

not empty are calculated as follows

Pr[Ei �= 0] =
min (qi, 1−

∑i−1
m=0 ρm)

1−∑i−1
m=0 ρm

, i = 1, 2, ....N (5.10)
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The stability condition for the data queue of the relay i is that λi < μi and

can be written as follows

λ0 <
PE

PRi

fiD min (qi, 1−
i−1∑
m=0

ρm), i = 1, ..N (5.11)

Note that the right hand side of the inequality is still a function in λ0 as the

probabilities ρi are functions in λ0.

In order to simplify the optimization problem, we find a closed-form expression

for the maximum achievable rate of the source. We start by calculating the variable

γi which represents the service rate of the corresponding relay when it operates alone

over the channel. The value of this service rate for the relay i is calculated as follows

γi = qifiD, i = 1, 2, ...N (5.12)

The service rate is the product of two terms. First, the probability of the

relay energy queue to be non-empty which equals qi. The second term is the aver-

age success probability of a packet transmitted from the relay to the destination.

Also in this case, the proportion of time in which the channel is occupied by the

transmissions of node i while this node operates alone over the channel is still ρi.

The stability conditions for the system are written as follows λ0 < μ0, λi < γi

and
∑N

i=0 ρi < 1. By substituting using equations (5.4), (5.6), (5.12), (5.5) and (5.9)

for μ0, λi, γi, ρ0 and ρi respectively, and by combining the stability conditions, we

get the general expression for the system stability condition that λ0 < λ̂0(�r) where

λ̂0(�r) = min

(
μ0,

PE

PR1

γ1, ....,
PE

PRi

γi, ...
PE

PRN

γN , (
1

PE

+
N∑
i=1

PRi

PEfiD
)−1

)
(5.13)
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5.3.3 Maximization of the achievable rate over all �r

In this section, we discuss the problem of finding the optimal �r to maximize

λ̂0(�r). we derive a number of properties of the solution. Some of these properties

can help in evaluating some components of the vector �r directly. In deriving these

properties, we use equation (5.13) which has been derived to simplify the expression

of the maximum achievable throughput.

Property 1: if μ0|�r=�1 < PE

PRi
γi|�r=�1 for i = 1, ....N and μ0|�r=�1 < ( 1

PE
+

∑N
i=1

PRi

PEfiD
)−1|�r=�1 then it is throughput optimal that �r = �1 where �1 is the vector of

all ones.

Proof. In this proof, we show the monotonicity of PE. Then, we use this result in

proving the property using contradiction.

We start by showing that PE is a non-decreasing function in ri for all i =

1, 2, ...N . The function PE is continuous and differentiable with respect to ri with

ri belongs to [0, 1]. The first derivative of PE is calculated as follows

dPE

dri
= f0i(1− f0D)

N∏
n=1
n �=i

(1− rnf0n) (5.14)

This value is larger than or equal to zero and as a result, the function PE is a

non-decreasing function in ri.

The property is then proved by contradiction. The maximum stable through-

put when �r = �1 is denoted by λ̂0(�1). Assume that there exists �̃r �= �1 which gives a

maximum stable throughput λ̂0(�̃r) that λ̂0(�̃r) > λ̂0(�1).

We have shown that PE is a non-decreasing function in each ri. As a re-
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sult, μ0|�r=�1 ≥ μ0|�r=�̃r. Assuming that the conditions of the property are satisfied, if

λ̂0(�̃r) > λ̂0(�1), there must be at least one of the terms ( PE

PR1
γ1, ...

PE

PRi
γi, ...

PE

PRN
γN , ( 1

PE
+

∑N
i=1

PRi

PEfiD
)−1)|�r=�1 which has a value less than μ0|�r=�1. This contradicts the hypothe-

sis that μ0|�r=�1 < PE

PRi
γi|�r=�1 for i = 1, ....N and μ0|�r=�1 < ( 1

PE
+
∑N

i=1
PRi

PEfiD
)−1|�r=�1.

Property 2: if
∑N

i=0 qi ≤ 1 then the throughput optimal �r satisfies λ̂0(�r) =

min (μ0,
PE

PR1
γ1, ....,

PE

PRi
γi, ...

PE

PRN
γN) and ri > 0 for i = 1, 2, ...N .

Proof. When the system is stable, the value of λi/μi < 1. Also, Pr[E0 �= 0] ≤ q0

and min (qi, 1−
∑i−1

m=0 ρm) ≤ qi. Then, we can show that

N∑
i=0

ρi = Pr[E0 �= 0]
λ0

μ0

+
N∑
i=1

min (qi, 1−
i−1∑
m=0

ρm)
λi

μi

≤
N∑
i=0

qi
λi

μi

≤ max
λi

μi

N∑
i=0

qi <
N∑
i=0

qi (5.15)

As a result,
∑N

i=0 ρi < 1 for all system parameters and the condition for

channel occupation is always satisfied. We can write the expression of the maximum

achievable rate as λ̂0(�r) = min (μ0,
PE

PR1
γ1, ....,

PE

PRi
γi, ...

PE

PRN
γN).

We now prove the second result that no element of the vector �r which maxi-

mizes the service rate of the source data queue can equal zero. We prove this result

by contradiction. Without loss of generality, we will prove the result for r1. we

assume that the optimal vector �̂r has the component r̂1 = 0 and the the remaining

components are denoted by r̂−1. Let the value of r̃1 = δ which is an arbitrary small

value and the remaining components of the vector �̃r are the same as r̂−1.

we show that the function PRi for i = 2, 3, ..N is a non-increasing function in

r1. We get the first derivative of the function with respect to r1. The derivative is
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calculated as follows

dPRi

dr1
= −f01(1− f0D)

i−1∏
j=2

(1− rjf0j) (5.16)

The derivative is less than or equal zero. The function is continuous and differen-

tiable over the range of r1. Then, the function is non-increasing in r1.

From the above result and knowing that PE is non-decreasing in r1. Then,

PE|r1=δ > PE|r1=0 and PRi|r1=δ < PRi|r1=0 for i = 2, 3, ...N . As a result, PE

PRi
|r1=δ >

PE

PRi
|r1=0 for i = 2, 3, ...N . Also, μ0|r1=δ > μ0|r1=0. All the terms of the maximum

achievable rate of the source data queue have increased by setting r1 = δ except

the term PE

PR1
γ1. This term equals infinity when r1 = 0 so we can select δ small

enough such that the term is not the minimum term. Then, the vector �̃r = [r̃1 r̂−1]

can give higher stable throughput rate than the vector �̂r which contradicts that �̂r is

optimal.

Property 3: if (1 +
∑N

i=1
PRiqi
γi

)|max ≤ 1
Pr[E0 �=0]

then then the throughput

optimal �r satisfies λ̂0(�r) = min (μ0,
PE

PR1
γ1, ....,

PE

PRi
γi, ...

PE

PRN
γN) and ri > 0 for i =

1, 2, ...N .

Proof. Starting by the condition (1 +
∑N

i=1
PRiqi
γi

)|max ≤ 1
Pr[E0 �=0]

, we multiply both

sides by λ0

PE
to obtain

i=N∑
i=0

ρi|max ≤ λ0

μ0

< 1 (5.17)

The last inequality is satisfied when the source data queue is stable. If the condition

is satisfied for the maximum value of
∑i=N

i=0 ρi, then it is satisfied over all value of �r.

Then, the condition of the channel occupation is always satisfied. As a result, the
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maximum stable throughput can be written as λ̂0(�r) = min (μ0,
PE

PR1
γ1, ....

PE

PRN
γN).

The remaining steps of the proof are exactly the same as the the proof of the property

2.

Property 4: If the throughput optimal vector �r contains an element which

equals 0 then the maximum stable throughput equals (1 +
∑N

i=1
PRiqi
γi

)−1 that the

channel occupation equals 1.

Proof. We are going to prove the result using contradiction. Assume that the opti-

mal vector �r contains an element r1 which equals 0 and the maximum stable through-

put does not equal (1+
∑N

i=1
PRiqi
γi

)−1. We selected r1 without loss of generality. As

a result, the maximum stable throughput equals min (μ0,
PE

PR2
γ2, ....,

PE

PRi
γi, ...

PE

PRN
γN)

as the term PE

PR1
γ1 goes to infinity. We have shown that all the terms in the max-

imum stable throughput in this case are increasing in r1. As a result, there exist

some value of r1 larger than zero that gives higher maximum stable throughput

than the one obtained. That contradicts the fact that r1 equals 0 and the vector �r

is throughput optimal.

5.4 Energy-Efficient Partial Relaying

In this section, we consider the case in which the cost is defined to be the energy

consumed in the network. Thus, we solve the energy consumption minimization

problem. We denote the average energy consumption for the network by JE. Also,

the average energy consumed by a packet delivered directly to the destination from

the source is denoted by JE0 . The average energy consumed by a packet delivered
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to the destination by the relay i is denoted by JEi
. The value of JEi

includes both

the energy consumed by the source for the packet to reach the relay and the energy

consumed by the relay for the packet to reach the destination. The total energy

consumption can be written as follows

JE = (λ0 −
N∑
i=1

λi)JE0 +
N∑
i=1

λiJEi
(5.18)

It also can be written as follows

JE = λ0JE0 +
N∑
i=1

λi(JEi
− JE0) (5.19)

The expression of JE is equivalent to the relaying cost J when ci = JEi
for

i = 0, 1, 2, ...N .

To calculate the values of the average consumed energy per packet and know-

ing that each packet transmission attempt consumes a single unit of energy, we

calculate the average number of time slots needed for a packet to be received by the

destination. We start by calculating the value of JE0 .

The probability PE is the probability of a packet to be received by any of the

relays or the destination at any time slot when the source transmits. The number

of the time slots till the reception of a packet has a geometric distribution with

probability PE. Thus, the expected number of the time slots needed for a packet

to reach the destination or any of the relays equals 1/PE. Then, the value of JE0 is

calculated as follows

JE0 =
1

PE

(5.20)
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On the other hand, the expected number of the time slots for a packet to reach

the destination through the relay i is the sum of the expected number of the time

slots for the packet to reach the relay i from the source and the expected number

of the time slots to reach the destination from the relay i. Thus, it is calculated as

follows

JEi
=

1

PE

+
1

fiD
(5.21)

Then, the problem is written as follows

min
�r

λ0
1

PE

+
N∑
i=1

λi
1

fiD

subject to λ0 < λ̂0(�r)

0 ≤ ri ≤ 1, for i = 1, 2, ....N

Then by substituting using the optimal relaying parameters r∗i , the optimal energy

consumption is

J∗
E = λ0

1

(1− (1− f0D)
∏N

i=1 (1− r∗i f0i))
·

(1 +
N∑
i=1

r∗i f0i(1− f0D)
∏i−1

j=1 (1− r∗jf0j)

fiD
) (5.22)

5.5 Numerical Results

In this section, we show numerical results to illustrate the theoretical develop-

ment shown in the previous discussion. We illustrate the effects of different system

parameters on the maximum stable throughput of the source and the minimum en-

ergy consumed in the network. In the following results, we fix the following system

101



parameters except otherwise mentioned: f0i = 0.3, fiD = 0.3, f0D = 0.2 and qi = 0.2

for i = 1, 2, ..N .
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Figure 5.2: Maximum stable throughput against q0 with different number of relays

In figure 5.2, we show the maximum achievable throughput against the energy

harvesting rate at the source with different number of relay nodes. The figure shows

the enhancement in the performance due to the use of cooperation in the network

using optimal partial relaying. The improvement because of adding a single relay to

the network is higher for lower number of relays. The throughput values are constant

for large values of q0 because of the fixed values of qi that the relays can not accept

more packets while the system remains stable. Hence, there is no enhancement in

the performance with the increase of q0.

In figure 5.3, we show the maximum achievable throughput against the number

of relays with different values of energy harvesting rates at the relays. We set

q0 = 0.1. The figure shows the enhancement in the performance due to the use of
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Figure 5.3: Maximum stable throughput against the number of relays with different

values of qi, i = 1, 2, ...N

cooperation in the network using optimal partial relaying. The slope of the curve

with qi = 0.1 is higher that the enhancement of the throughput is higher when using

relays with higher energy harvesting rates.

In figure 5.4, we show the minimum consumed energy in the network against

the average data arrival rate at the source with different number of relays. We set

q0 = 0.3. The curve for N = 0 is not complete as the system is not stable for

λ0 ≥ 0.06. The figure shows the enhancement in the performance due to the use of

cooperation in the network using optimal partial relaying. The enhancement due to

the increase of a single relay is larger when the number of relays is small than the

case of large number of relays.

In figure 5.5, we show the maximum stable throughput against q0 with different
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Figure 5.4: Minimum energy consumption against the source data arrival rate with

different number of relays
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Figure 5.5: Maximum stable throughput against q0 with partial relaying effect

techniques of relaying. We set N = 2, f0D = 0.2, f1D = 0.3, f2D = 0.2, f01 = 0.2 and

f02 = 0.3. The figure shows the enhancement of the performance because of using the
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optimal partial relaying in the network. At low values of q0, it is throughput optimal

to use full relaying for this parameters setting. This is true because the source at

this case prefers to be helped by the relays as much as possible due to the limited

availability of energy. Also at high values of q0, the maximum achievable rate for the

case of no relaying becomes higher than the maximum achievable rate for the case

of full relaying. The case of full relaying is limited by the average harvesting rate for

the source and the relays that increasing q0 only can not enhance the performance

over a certain limit while for the case of no relaying, the performance is enhanced

directly by increasing the energy harvesting rate at the source.
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Figure 5.6: Minimum energy consumption against the source data arrival rate

In figure 5.6, we show the minimum consumed energy against the average data

arrival rate at the source with different relaying techniques. In this figure, we use

the same system parameters as in figure 5.5.

105



5.6 Discussion

In this chapter, we have investigated the problem of transmission control in a

network with multiple energy harvesting relays. We have exploited partial relaying

cooperation in the proposed network. We have derived the stability conditions for

the source and the relays data queues. Our analysis shows that cooperation increases

the maximum achievable rate of the source. We have discussed the problem of

maximizing the achievable rate at the source data queue over the relaying parameters

vector. Also, we have discussed the problem of relaying cost minimization. The

problem is constrained by the stability of the system data queues. We have given

an example for the cost to be the average energy consumed in the network. We have

shown that partial relaying cooperation has equal or better performance than full

relay cooperation.

106



Chapter 6: Transmission Scheduling of Two Sources over Time Vary-

ing Channels

6.1 Introduction

The problem of scheduling the transmissions over wireless channels that can

cause interference to each other has been considered in a number of works as in [54]-

[58]. In our work, we consider the effect of different levels of channel knowledge on

the scheduling of source nodes transmissions.

The problem of transmission scheduling without perfect channel measurements

was considered before in a number of works as in [59]- [62]. This problem is crucial

because channel estimation usually uses a non-trivial amount of network resources

that could otherwise be used for data transmission. In [59], the problem of oppor-

tunistic multiuser scheduling was considered in a downlink communication scenario.

The scheduler estimates the channels by exploiting the memory of the channels by

using the acknowledgment history of the network. In [60], the authors discussed

a similar model to [59]. They obtained an inner and an outer bounds for the ca-

pacity region. In [61], a wireless downlink communication system was considered

with limited sensing rate that the channels states can not be sensed every time slot.
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The authors studied the trade-off between the throughput and the sensing rate in

asymptotic sense. In [62], a downlink system was considered with the scheduler

exploits the information about the channels from the acknowledgment history and

the lengths of the queues corresponding to the destinations.

In this work, we show the optimal scheduling policies for the following cases: 1)

Perfect channel measurements for all the channels; 2) Delayed channel information

that is obtained from previous transmissions; 3) Infrequent channel measurements;

4) No channel measurements but only using the knowledge of steady state probabil-

ities of the channels states; 5) Erroneous channel measurements with memory ; and

6) Distributed decisions where each source takes its decision depending on its knowl-

edge about the channels . We consider the weighted sum-rate of the network as our

performance criterion. Hence, we maximize the total amount of data transferred in

the system with choosing a level of service for each user. A similar objective was

considered before in several papers as in [63].

The belief vector is the vector of the probabilities of the channels being in

certain states. When the channels are not measured perfectly, the belief vector is

used by the scheduler to choose the optimal action with respect to the objective

function. The belief vector value can be updated every time slot using both the

channel characteristics and the new information obtained about the channels.

In the case of delayed channel information, the scheduler knows the states

of the channels which have been used in previous transmissions. In this case, the

information about the channels is the probabilities of the channels being in a cer-

tain state and thus the exact states of the channels are not known. Hence, we
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formulate the problem of finding the optimal policy as a POMDP [64] which is a

controlling framework under which we deal with partially observable and stochastic

environments. The optimal policy can be obtained using the value function iter-

ations method which is computationally intensive even in a small problem with a

small number of states and actions [65]. As a result, a suboptimal solution based

on linear programming is studied. Authors of [66] describe linear programming ap-

proaches that can handle finite and infinite horizon problems for finite-state Markov

decision problems. Also in [67], a grid based technique is introduced to approxi-

mate a POMDP to a finite-state Markovian decision problem. We can apply linear

programming to the generated finite-state Markovian decision problem. We use the

techniques in [66], [67] to find an approximate solution to the formulated POMDP.

In the case of infrequent channel measurements, the channels states are to be

known at the scheduler periodically every fixed time interval. This technique could

be used when the knowledge of all the system channels at all the users introduces a

significant overhead. The effect of infrequent channel measurements was considered

before in a number of works as [63], [68], [69] for different scenarios than the one

considered in our work. In this work, we compare two decision making schemes when

the channels are infrequently measured. First, we consider the case of infrequent

decision making in which the action is taken directly after measuring the channels

and this action remains fixed for the whole measurement interval. Also, we consider

the case in which the belief of the channels is updated at each time slot during the

measurement interval. Using the updated belief values, the action is taken every

time slot.
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In the case of imperfect channel knowledge, all the channels are measured with

a certain error probability. The scheduler uses the erroneous channel measurements

to update the belief vector about the channels. Thus, the belief vector takes into

consideration all the history of the erroneous measurements. We derive the be-

lief update function to update the value of the belief vector based on the current

measurements.

In the case of distributed scheduling, each source takes its own decision de-

pending on its own information about the channels. Distributed scheduling based on

channel measurements was studied before in a number of works as in [70]- [72], [58].

In [70], a rate selection protocol is introduced in which the channel between the

source and the destination is measured at the start of each transmission slot. Based

on the measurements, a modulation technique is selected for transmission. In [71],

a channel-aware transmission control protocol for a memoryless channel case is pro-

posed such that random access probabilities vary based on the channels measure-

ments. In [72], an opportunistic rate selection protocol is proposed in which the

high quality channels are exploited via transmission of multiple back-to-back pack-

ets. In [58], the authors investigated channel-aware distributed scheduling, aiming

to maximize the overall network throughput for a random access based ad hoc net-

work under the physical interference model. In our work, each source exploits the

information about both its direct channel to the corresponding destination and the

interference channel to the other user’s destination. The problem of finding the op-

timal transmission probabilities using the measured channels states, is formulated

as a quadratic program [73]. The main advantage of formulating the problem as
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a quadratic program is the availability of computationally efficient algorithms for

solving quadratic optimization problems [74].

The study of a simple model consisting of only two sources and two destinations

is both instructive and necessary. It reveals insights at the conceptual level about

exploiting channel characteristics on the performance of interfering sources. More

work needs to be done to exploit the results of this work in more realistic systems.

This work was presented in [75,76].

6.2 System Model and Problem Formulation

We consider two transmit-receive pairs as shown in figure 6.1. We assume

that time is slotted. During each time slot, each source can transmit a single data

packet. We assume that each source has a saturated data queue such that there is

always data to be transmitted at every time slot.

The channels are modeled by independent identically distributed two-state

Markov chains (Gilbert Elliot model). State 1 corresponds to good connectiv-

ity, while state 0 corresponds to poor connectivity. The channel state between

the source n and the destination m is denoted by cnm. We denote the quadruple

(c11, c12, c22, c21) by C. The transitions between states occur at the edges of the time

slots. The transition probability from state 0 to state 1 is λ0 and the transition

probability from state 1 to state 1 is λ1. Also, let πcnm
nm denotes the steady state

probability of the channel to be in state cnm.

In the case of centralized scheduling and at the beginning of each time slot,
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Figure 6.1: System Model

an action is chosen which is either the source 1 transmits a packet, the source 2

transmits a packet, or both sources transmit simultaneously. The action is chosen

based on the channel state information (CSI). The action to let a single source n

transmit is denoted by Sn and the action to let both sources transmit simultaneously

is denoted by B.

The information about the channels is represented by the belief vector P which

contains the quadruple (p11, p12, p22, p21). The element pnm is the probability that

the channel between the source n and the destination m is in state 1.

In the case of distributed scheduling and at the beginning of each time slot,

each user selects either to transmit or not based on its own measurements. Each
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source estimates the channels over which this source transmits. In our work for

the case of distributed scheduling, we consider only the case of perfect channel

measurements.

If a single source n transmits and the channel cnn is in state i, the probability

that a packet is successfully decoded by the corresponding destination is denoted

by f
(i)
n|n. Also, if both sources transmit simultaneously and the channels cnn and

cmn (m �= n) are in states i and j respectively, the probability that a packet is

successfully decoded by the destination n is denoted by f
(i,j)
n|1,2.

In the case of centralized scheduling, the policy u is the mapping from the

belief vector P to an action A as follows

u : P → A ∈ {S1, S2, B} (6.1)

The objective is finding the optimal probabilities pPA of taking an action A

while the belief vector is P to maximize the average weighted number of successful

packets per time slot. Let V u(P ) be the expected average reward with initial belief

P0 = P and u be the policy followed. The expected average reward has the following

expression

V u(P ) = E
u

[
lim
T→∞

1

T

T∑
t=0

R(Pt, At)|P0 = P

]
(6.2)

where t is the time-slot index, At is the action taken at time t and Pt is the belief

vector at time t. The term R(Pt, At) denotes the expected reward when the belief

is Pt and the action is At. At any time slot, the selected action is the one which

maximizes this objective function with current belief equals P and the expectation

over the policy is over all the following actions including the current action. The
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instantaneous expected reward is calculated as follows

R(Pt, At) = w1R1(Pt, At) + w2R2(Pt, At) (6.3)

where

R1(P,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p11f
(1)
1|1 + (1− p11)f

(0)
1|1 ifA = S1

0 ifA = S2

p11p21f
(1,1)
1|1,2 + p11(1− p21)f

(1,0)
1|1,2

+(1− p11)p21f
(0,1)
1|1,2 + (1− p11)(1− p21)f

(0,0)
1|1,2 ifA = B

R2(P,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ifA = S1

p22f
(1)
2|2 + (1− p22)f

(0)
2|2 ifA = S2

p22p12f
(1,1)
2|1,2 + p22(1− p12)f

(1,0)
2|1,2

+(1− p22)p12f
(0,1)
2|1,2 + (1− p22)(1− p12)f

(0,0)
2|1,2 ifA = B

Then, the optimal objective function V (P ) is

V (P ) = max
u

V u(P )forP ∈ [0, 1]4 (6.4)

In the case of distributed scheduling, the objective is finding the optimal prob-

abilities for each source to transmit based on its own channel measurements. The

same objective function as the centralized case is considered.

6.3 Full Channel Knowledge

In this section, we consider the case in which all the channels are perfectly

measured at each time slot. Then, the belief vector coincides with the true channel
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state vector. The belief vector in this case is P = C = (c11, c12, c22, c21). The

expected reward under a policy u can be calculated as follows

V u(P ) = E
u

[
lim
T→∞

1

T

T∑
i=0

R(Pt, At)|P0 = P

]

=
∑
C

∑
A

lim
T→∞

1

T

T∑
t=0

R(C,A)I{Pt = C,At = A}

=
∑
C

∑
A

R(C,A)Pr{Pt = C,At = A} =
∑
C

πC
∑
A

R(C,A)pCA (6.5)

In these calculations, we use the independence between decisions in different

slots. The outer summation is calculated over all the combinations the channels

states vectors and the inner summation is calculated over all allowed actions. Also,

πC is the steady state probability of the channels states vector to be C. By the

independence amongst the channels, we have

πC = πc11
11 π

c12
12 π

c22
22 π

c21
21 (6.6)

By substituting equations (6.3) and (6.6) into equation (6.5),

V u(P ) =
∑
C

πc11
11 π

c12
12 π

c22
22 π

c21
21

∑
A

pCA(w1R1(C,A) + w2R2(C,A)) (6.7)

Each term in the outer summation is positive. Hence, to get the optimal values

of pCA, we need to maximize each term in the outer summation which is corresponding

to a certain system state.

Let us define JC(A) to be the expected weighted reward when the system is in

a certain state C and the action A is chosen i.e. it equals w1R1(C,A)+w2R2(C,A).

Then, we can write the objective function as follows

V u(P ) =
∑
C

πc11
11 π

c12
12 π

c22
22 π

c21
21 (p

C
S1
JC(S1) + pCS2

JC(S2) + pCBJ
C(B)) (6.8)
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where JC(S1) = w1q
(c11)
1|1 , JC(S2) = w2q

(c22)
2|2 and JC(B) = w1q

(c11,c21)
1|1,2 + w2q

(c22,c12)
2|1,2 .

Then, to maximize the term (pCS1
JC(S1) + pCS2

JC(S2) + pCBJ
C(B)), we assign to the

action with the highest reward a probability which equals 1. As a result, the optimal

action is

A∗(C) = argmax
A∈{S1,S2,B}

(JC(A)) (6.9)

6.4 Delayed Channel Knowledge

In this section, we consider the case in which partial information about the

channels is available. The available information is the states of the channels which

have been used in the previous transmissions. This case represents the situation

in which the channels are estimated by the destinations and then fedback to the

scheduler to be used in the following transmissions. This problem can be formu-

lated as an infinite horizon average reward POMDP. We need to define the following

components: 1) the states; 2) the observation; 3) the actions; 4) the transition prob-

abilities; 5) the instantaneous rewards; and 6) the observation function indicating

the relation between the actions and the states with the corresponding observation.

Now, we start to define each component with respect to our problem:

1. The state space is the set that contains all the combinations of the channels

states. Each state is represented by a channel vector C that is (c11, c12, c22, c21).

2. The observation is the feedback from the destinations about the channels that

are used in the previous time slot. The channels which are not used in the

previous time slot are not observed.
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3. The actions are the same actions defined in section 6.2 which are S1, S2 and

B.

4. The transition probability between two state vectors C(1) and C(2) is the prod-

uct of the probabilities Pr[c
(2)
ij |c(1)ij ] for all i and j ∈ {1, 2}.

5. The expected rewards are the weighted sum of the probabilities of successfully

decoding packets by both destinations. The expression for the expected reward

as a function of the belief vector P is found in equation (6.3).

6. The observation function is the updating function of the belief vector. The

belief vector elements pnm(k) at time slot k are calculated as follows

p11(k + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c11(k)λ1 + (1− c11(k))λ0 ifA(k) = S1orB

p11(k)λ1 + (1− p11(k))λ0 ifA(k) = S2

(6.10)

p12(k + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c12(k)λ1 + (1− c12(k))λ0 ifA(k) = S1orB

p12(k)λ1 + (1− p12(k))λ0 ifA(k) = S2

(6.11)

p22(k + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p22(k)λ1 + (1− p22(k))λ0 ifA(k) = S1

c22(k)λ1 + (1− c22(k))λ0 ifA(k) = S2orB

(6.12)

p21(k + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p21(k)λ1 + (1− p21(k))λ0 ifA(k) = S1

c21(k)λ1 + (1− c21(k))λ0 ifA(k) = S2orB

(6.13)

In [77], the author shows that there exists a stationary policy which is opti-

mal for solving POMDP with the average reward criterion under two conditions: 1)
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the immediate rewards R(P,A) are non-negative; and 2) The corresponding Markov

chain is irreducible and ergodic. From the definition of our problem, both conditions

are satisfied. As a result, the optimal probabilities pPA are functions in the belief vec-

tor only and not in time. The problem can be solved using value function iterations

but this technique is computationally intensive. The problem is then approximated

by discretizing the belief vector components.

In order to approximate the problem of getting the optimal action with delayed

channel information, each component of vector P is discretized to have one value

from (N + 1) values. Each element of P takes a value between λ0 and λ1. Each of

the discretized belief values for the channel from the source n to the destination m

takes one of the following values

dnm = λ0 + (λ1 − λ0)(k/N), k = 0, 1, 2, ....N (6.14)

Using the discrete states, the problem is a Markov decision problem. The

transition probability for each channel from a state with the index k to a state

with the index l by choosing the action A is denoted as pnm(l|k;A) where k, l ∈

{0, 1, 2, ....N}. This probability has the following expression

pnm(l|k;A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ0 + (λ1 − λ0)
k
N

if l = N,A = SnorB

1− λ0 − (λ1 − λ0)
k
N

if l = 0, A = SnorB

1 if l = ||kλ1 + (N − k)λ0||, A = S3−n

0 otherwise

(6.15)

The function || • || represents rounding to the nearest integer for the argument

of the function. The state space of the discretized problem is denoted by Z. Any
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state D which belongs to Z is (dD11, d
D
12, d

D
22, d

D
21). The transition probability from

the state D to the state F by choosing the action A is denoted as pDF (A). Also,

the probability pDF (A) equals the product of pnm(l|k;A) for all n,m where k is

the discrete index corresponding to dDnm and l is corresponding to dFnm. Using the

linear programming approach as in [66], we can write the linear program to find the

optimal policy as follows

max
xDA

∑
D∈Z

∑
A∈{S1,S2,B}

R(D,A)xDA

subject to ∑
A∈{S1,S2,B}

xFA −
∑
D∈Z

∑
A∈{S1,S2,B}

pDF (A)xDA = 0, F ∈ Z

∑
D∈Z

∑
A∈{S1,S2,B}

xDA = 1

xDA ≤ 0, D ∈ Z,A ∈ {S1, S2, B}

Let us denote the optimal values of xDA by x∗
DA. It was shown in [66] that

the problem has a randomized decision rule, therefore the optimal probability for a

certain action A is

pDA =
x∗
DA∑

A∈{S1,S2,B} x
∗
DA

, D ∈ Z (6.16)

The optimal probabilities resulting from this linear programming approach

are evaluated based on channel characteristics before the sources start transmitting.

Then, these probabilities are used simply in the transmission process.
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6.5 No Channel Knowledge

In this section, we consider the case in which there are no channel measure-

ments. Then, the belief vector is fixed and equals the steady state probabilities of the

channels to be in state 1. The belief vector in this case is P = Π = (π1
11, π

1
12, π

1
22, π

1
21).

The expected reward under a policy u can be calculated as follows

V u(P ) =
∑
A

R(Π, A)pΠA (6.17)

By substituting equation (6.3) into equation (6.17),

V u(P ) =
∑
A

pΠA(w1R1(Π, A) + w2R2(Π, A)) (6.18)

Let us define JΠ(A) to be the expected weighted reward at the belief Π given

that the action A is chosen i.e. it equals w1R1(Π, A) + w2R2(Π, A). Then, we can

write the objective function as follows

V u(P ) = pΠS1
JΠ(S1) + pΠS2

JΠ(S2) + pΠBJ
Π(B) (6.19)

where

JΠ(S1) = w1(π
1
11f

(1)
1|1 + (1− π1

11)f
(0)
1|1 )

JΠ(S2) = w2(π
1
22f

(1)
2|2 + (1− π1

22)f
(0)
2|2 )

JΠ(B) = w1(π
1
11π

1
21f

(1,1)
1|1,2+π1

11(1−π1
21)f

(1,0)
1|1,2+(1−π1

11)π
1
21f

(0,1)
1|1,2+(1−π1

11)(1−π1
21)f

(0,0)
1|1,2 )

+w2(π
1
22π

1
12f

(1,1)
2|1,2 + π1

22(1− π1
12)f

(1,0)
2|1,2 + (1− π1

22)π
1
12f

(0,1)
2|1,2 + (1− π1

22)(1− π1
12)f

(0,0)
2|1,2 )

Then, to maximize the objective function, we assign to the action with the

highest reward a probability which equals 1. As a result, the optimal policy can be
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written as follows

A∗ = argmax
A∈{S1,S2,B}

(JΠ(A)) (6.20)

From previous analysis, when there are no channel measurements at any time

slot, it is optimal to maximize the steady state expected reward of the system.

6.6 Infrequent Channel Knowledge

In this section, we consider the case in which the channels are measured every τ

time slots where τ ≥ 1. If the channels are measured every time slot, the existence

of multiple channels may introduce significant overhead. To minimize the effect

of this overhead, infrequent channel measurements technique is exploited. Two

schemes are introduced which are: 1) action is selected every τ slots, and 2) action

is selected every single slot depending on the characteristics of the channels and the

belief values of the channels which are updated based on the measured values of the

channels.

Let the time slots be grouped into intervals of length τ . Thus the (k + 1)th

interval consists of slots kτ, ..(k + 1)τ − 1. Although the channels conditions may

change every time slot, the channels are measured only at the beginning of each

interval. Thus, the interval τ represents the duration between successive measuring

instances of the channels. Each channel is modeled by a two-state Markov chain

that has a transition matrix, Λ, and the transition matrix is written as follows

Λ =

⎡
⎢⎢⎣1− λ0 λ0

1− λ1 λ1

⎤
⎥⎥⎦ (6.21)
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The eigenvalues of the transition matrix are 1 and λ1 − λ0. The n-step tran-

sition matrix is calculated as follows

Λ(n) =
1

1 + λ0 − λ1

(Λ− (λ1 − λ0)I − (λ1 − λ0)
n(Λ− I)) (6.22)

where I is the 2x2 identity matrix. Substituting by the value of the matrix Λ, we

calculate the values of the elements of the matrix Λ(n) which represent the n-step

transition probabilities as follows

Λ(n) =
1

1 + λ0 − λ1

⎡
⎢⎢⎣ 1− λ1 + λ0(λ1 − λ0)

n λ0(1− (λ1 − λ0)
n)

(1− λ1)(1− (λ1 − λ0)
n) λ0 + (1− λ1)(λ1 − λ0)

n

⎤
⎥⎥⎦ (6.23)

We denote the transition probability of a channel from state 0 to state 1 in n

steps by λ
(n)
0 and the transition probability of a channel from state 1 to state 1 in n

steps by λ
(n)
1 .

6.6.1 Action is selected every τ slots

In this scheduling scheme, the channels are measured at the beginning of each

measurement interval. An action which belongs to the set {S1, S2, B} is selected at

the beginning of the interval and continues for the whole interval. The decision for

each interval depends only on the measurements at the beginning of this interval.

Thus, the action which is selected for each interval is independent of time and hence

the policy is stationary.

The belief vector at the time slot kτ + n is calculated using the measured

channels states at the time slot kτ and the n-step transition probabilities where
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k = 0, 1, 2, ... and n = 0, 1, ...τ − 1. The belief vector is calculated as follows

P (kτ + n) = (λ
(n)
c11(kτ)

, λ
(n)
c12(kτ)

, λ
(n)
c22(kτ)

, λ
(n)
c21(kτ)

) (6.24)

The expected reward under a policy u can be calculated as follows

V u(P ) = E
u[ lim

T→∞
1

T

T∑
t=0

R(Pt, At)|P0 = P ]

= E
u[ lim

K→∞
1

Kτ

K∑
k=0

τ−1∑
n=0

R(Pkτ+n, Akτ+n)|P0 = P ] (6.25)

V u(P ) = E
A[

τ−1∑
n=0

R(Pn, A)] + E
u[ lim

K→∞
1

Kτ

K∑
k=1

τ−1∑
n=0

R(Pkτ+n, Akτ+n)|P0 = P ] (6.26)

All the actions and the beliefs at the following intervals are independent from

the action A at the current time slot. Then, the maximization of the objective

function is equivalent to the maximization of EA[
∑τ−1

n=0 R(Pt, A)]. In this policy, the

action is fixed in each interval of length τ . Also, the average reward of an interval

of length τ is denoted by Rτ (C,A). It is calculated as follows

Rτ (C(kτ), A) =
1

τ

τ−1∑
n=0

(w1R1(P (kτ + n), A) + w2R2(P (kτ + n), A)) (6.27)

Let pCA,τ is the probability of taking the action A for an interval at which the

channels states vector has the value C at the beginning of the interval. Hence, to

get the optimal values of pCA,τ , we need to maximize

E
A[

τ−1∑
n=0

R(Pn, A)] = pCS1,τ
Rτ (C, S1) + pCS2,τ

Rτ (C, S2) + pCB,τRτ (C,B) (6.28)

Then, we assign to the action with the highest reward a probability which

equals 1. As a result, the optimal action for an interval of length τ is

A∗
τ (C) = argmax

A∈{S1,S2,B}
(Rτ (C,A)) (6.29)
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6.6.2 Action is selected every time slot

In this scheduling scheme, the channels are measured at the beginning of each

interval. Then, an action belonging to the set {S1, S2, B} is selected at every time

slot depending on the updated belief values. The belief updating process at each

time slot may lead to different optimal actions at different time slots within the

same measurement interval. Thus, the optimal value of the objective function in

this case is always larger than or equal to the value of the objective function in the

case of fixed action in the whole measurement interval.

The selected action is the action that maximizes the expected instantaneous

reward for the system as a function of the belief vector. The belief values are updated

as shown in equation (6.24). The optimal action, in the time slot at which the belief

vector is P , is obtained as follows

A∗(P ) = argmax
A∈{S1,S2,B}

(JP (A)) (6.30)

where

JP (S1) = w1(p11f
(1)
1|1 + (1− p11)f

(0)
1|1 )

JP (S2) = w2(p22f
(1)
2|2 + (1− p22)f

(0)
2|2 )

JP (B) = w1(p11p21f
(1,1)
1|1,2 + p11(1− p21)f

(1,0)
1|1,2

+ (1− p11)p21f
(0,1)
1|1,2 + (1− p11)(1− p21)f

(0,0)
1|1,2 ) + w2(p22p12f

(1,1)
2|1,2 + p22(1− p12)f

(1,0)
2|1,2

+ (1− p22)p12f
(0,1)
2|1,2 + (1− p22)(1− p12)f

(0,0)
2|1,2 )
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6.7 Erroneous Channel Knowledge

In this section, we consider the case in which all the channels are measured

at each time slot and the measurements of the channels are imperfect. The action

is selected based on the whole history of the previous measurements. We use the

previous erroneous channel measurements in forming the belief vector. This vector

contains the probabilities of channels to be in state 1. The current measurements

are then used to update the belief values. Let us denote the probability of error in

measuring the channel between the source n and the destination m by p
(ε)
nm and the

measured state of the channel by ĉnm. The quadruple of all the measured channels

states is denoted by Ĉ.

6.7.1 The Belief Vector

In this subsection, we derive the update equation of the belief vector compo-

nents. We start by using basic probability formulas that set the relation between the

belief vector value at a certain time slot with its value at the previous one. Then, we

show that the pair of the true state of each channel and the measured state of the

same channel follows a Markov chain. The transition probabilities of the Markov

chain of the channels are used in the update equation of the belief vector.

The belief vector elements are the probabilities of the channels being in state 1

given that the measured channel state is ĉnm and the probability of the channel being

in state 1 in the previous time slot is known which is denoted by Pr[c
(−1)
nm = 1|ĉ(−1)

nm , H]

where H is the history of all previous measurements. The belief is the probability

125



Pr[cnm = 1|ĉnm, ĉ(−1)
nm , H] and it is calculated using bayes’ rule as follows

Pr[cnm = 1|ĉnm, ĉ(−1)
nm , H] =

Pr[cnm = 1, ĉnm|ĉ(−1)
nm , H]

Pr[ĉnm|ĉ(−1)
nm , H]

(6.31)

The numerator of the equation can be calculated as follows

Pr[cnm = 1, ĉnm|ĉ(−1)
nm , H] =

Pr[c(−1)
nm = 1|ĉ(−1)

nm , H]Pr[cnm = 1, ĉnm|c(−1)
nm = 1, ĉ(−1)

nm , H]

+ (1− Pr[c(−1)
nm = 1|ĉ(−1)

nm , H])Pr[cnm = 1, ĉnm|c(−1)
nm = 0, ĉ(−1)

nm , H] (6.32)

where Pr[c
(−1)
nm = 1|ĉ(−1)

nm , H] is the previous belief value which is to be updated.

On the other hand, we get the value of the denominator of equation (6.31) as

follows

Pr[ĉnm|ĉ(−1)
nm , H] = Pr[c(−1)

nm = 1|ĉ(−1)
nm , H]Pr[ĉnm|c(−1)

nm = 1, ĉ(−1)
nm , H]

+ (1− Pr[c(−1)
nm = 1|ĉ(−1)

nm , H])Pr[ĉnm|c(−1)
nm = 0, ĉ(−1)

nm , H] (6.33)

To calculate the value of Pr[ĉnm|c(−1)
nm , ĉ

(−1)
nm , H] for both the cases when c

(−1)
nm =

0, 1, we use the following formula

Pr[ĉnm|c(−1)
nm , ĉ(−1)

nm , H] =

Pr[ĉnm, cnm = 1|c(−1)
nm , ĉ(−1)

nm , H] + Pr[ĉnm, cnm = 0|c(−1)
nm , ĉ(−1)

nm , H] (6.34)

To calculate Pr[ĉnm, cnm|c(−1)
nm , ĉ

(−1)
nm , H] in both equations (6.32), (6.34), we

show that the pair (cnm, ĉnm) follows a first order Markov chain. The probability of

the current state given all the previous states is calculated as follows

Pr[cnm, ĉnm|c(−1)
nm , ĉ(−1)

nm , c(−2)
nm , ĉ(−2)

nm , ...] = Pr[cnm, ĉnm|c(−1)
nm ]

= Pr[ĉnm|cnm, c(−1)
nm ]Pr[cnm|c(−1)

nm ] (6.35)
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where c
(−2)
nm , ĉ

(−2)
nm are the channel state and the measured channel state at two time

slots before the current time slot. The first equality comes from the fact that the

channels are first order Markov chains and the error in measurement depends only on

the current channel state. Also, Pr[cnm, ĉnm|c(−1)
nm ] in the first equality is equivalent

to Pr[cnm, ĉnm|c(−1)
nm , ĉ

(−1)
nm ] that we prove that the pair (cnm, ĉnm) follows a Markov

chain. The transition probabilities of the chain are shown in figure 6.2.

Figure 6.2: The Markov Chain

Then, the belief vector in this case is P = P̂ = (p̂11, p̂12, p̂22, p̂21). The updating

function of the belief vector with the belief vector elements pnm(k) at time slot k is

p̂nm(k + 1) =
N(p̂nm(k))

D(p̂nm(k))
(6.36)
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where

N(p̂nm(k)) = p̂nm(k)Pr[cnm = 1, ĉnm|c(−1)
nm = 1, ĉ(−1)

nm ]

+ (1− p̂nm(k))Pr[cnm = 1, ĉnm|c(−1)
nm = 0, ĉ(−1)

nm ] (6.37)

D(p̂nm(k)) = p̂nm(k)(Pr[cnm = 1, ĉnm|c(−1)
nm = 1, ĉ(−1)

nm ]

+ Pr[cnm = 0, ĉnm|c(−1)
nm = 1, ĉ(−1)

nm ]) + (1− p̂nm(k))(Pr[cnm = 1, ĉnm|c(−1)
nm = 0, ĉ(−1)

nm ]

+ Pr[cnm = 0, ĉnm|c(−1)
nm = 0, ĉ(−1)

nm ]) (6.38)

6.7.2 The Problem Formulation

The actions in different time slots are independent. Thus, the maximization

of the objective function is equivalent to the maximization of EA[R(P̂ , A)].

Let us define J P̂ (A) to be the expected weighted reward when the belief is P̂

given the action A is chosen i.e. it equals w1R1(P̂ , A) + w2R2(P̂ , A). Then, we can

write

E
A[R(P̂ , A)] = pP̂S1

J P̂ (S1) + pP̂S2
J P̂ (S2) + pP̂BJ

P̂ (B) (6.39)

where

J P̂ (S1) = w1(p̂
1
11f

(1)
1|1 + (1− p̂111)f

(0)
1|1 )

J P̂ (S2) = w2(p̂
1
22f

(1)
2|2 + (1− p̂122)f

(0)
2|2 )

J P̂ (B) = w1(p̂
1
11p̂

1
21f

(1,1)
1|1,2 + p̂111(1− p̂121)f

(1,0)
1|1,2

+ (1− p̂111)p̂
1
21f

(0,1)
1|1,2 + (1− p̂111)(1− p̂121)f

(0,0)
1|1,2 ) + w2(p̂

1
22p̂

1
12f

(1,1)
2|1,2 + p̂122(1− p̂112)f

(1,0)
2|1,2

+ (1− p̂122)p̂
1
12f

(0,1)
2|1,2 + (1− p̂122)(1− p̂112)f

(0,0)
2|1,2 )
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Then, to maximize each term in the summation, we maximize the following

term (pP̂S1
J P̂ (S1) + pP̂S2

J P̂ (S2) + pP̂BJ
P̂ (B)) by giving to the action with the highest

reward a probability which equals 1. As a result, the optimal policy can be written

as follows

A∗(P̂ ) = argmax
A∈{S1,S2,B}

(J P̂ (A)) (6.40)

6.8 Distributed Scheduling

In this section, we consider the case of distributed scheduling in which each

source takes its own decision. Each source takes its decision based on its observa-

tions about the channels over which this source transmits. This case represents the

scenario where there is no information passing between the sources. Information

passing can be exploited to enhance the system performance but the complexity

increases with the increase of the number of sources in the network.

At the beginning of each time slot, each source chooses either to transmit or

not based on the available CSI. Each source has the knowledge of the exact states

of the channels over which it can transmit. The source i transmits with probability

m
(i)
cii,cij , i, j = 1, 2 and i �= j depending on the measurements of the channels cii and

cij.

The expected average reward under a policy u can be written as follows

V u(P ) =
∑
C

πC [m(1)
c11,c12

(1−m(2)
c22,c21

)R(C, S1)+

(1−m(1)
c11,c12

)m(2)
c22,c21

R(C, S2) +m(1)
c11,c12

m(2)
c22,c21

R(C,B)] (6.41)
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We denote the vector of the transmission probabilities by M and it is defined

as follows

M =

[
m

(1)
00 m

(1)
01 m

(1)
10 m

(1)
11 m

(2)
00 m

(2)
01 m

(2)
10 m

(2)
11

]T
(6.42)

where (.)T denotes the transpose of the vector.

We can write the expected average reward in the matrix form as follows

V u(P ) = MTGM +DTM (6.43)

where the matrix G and the vector D are to be defined. For simplicity of terms, we

define

H(C) = πC(R(C,B)−R(C, S1)−R(C, S2)) (6.44)

The matrix G is defined as follows

G =

⎡
⎢⎢⎣ 04 G1

GT
1 04

⎤
⎥⎥⎦ (6.45)

where 04 is the 4x4 matrix of zeros and G1 is a 4x4 matrix defined as follows

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(0, 0, 0, 0) H(0, 0, 0, 1) H(0, 0, 1, 0) H(0, 0, 1, 1)

H(0, 1, 0, 0) H(0, 1, 0, 1) H(0, 1, 1, 0) H(0, 1, 1, 1)

H(1, 0, 0, 0) H(1, 0, 0, 1) H(1, 0, 1, 0) H(1, 0, 1, 1)

H(1, 1, 0, 0) H(1, 1, 0, 1) H(1, 1, 1, 0) H(1, 1, 1, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.46)
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Also, the vector D is defined as follows

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
c22,c21

πc22
22 π

c21
21 R((0, 0, c22, c21), S1)

∑
c22,c21

πc22
22 π

c21
21 R((0, 1, c22, c21), S1)

∑
c22,c21

πc22
22 π

c21
21 R((1, 0, c22, c21), S1)

∑
c22,c21

πc22
22 π

c21
21 R((1, 1, c22, c21), S1)

∑
c11,c12

πc11
11 π

c12
12 R((c11, c12, 0, 0), S2)

∑
c11,c12

πc11
11 π

c12
12 R((c11, c12, 0, 1), S2)

∑
c11,c12

πc11
11 π

c12
12 R((c11, c12, 1, 0), S2)

∑
c11,c12

πc11
11 π

c12
12 R((c11, c12, 1, 1), S2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.47)

To calculate the optimal values of transmission probabilities, we solve the

following quadratic programming problem

max
M

MTGM +DTM

s.t. 0 ≤ Mij ≤ 1, 1 ≤ i, j ≤ 8 (6.48)

6.9 Numerical Results

In this section, we present some numerical examples to illustrate the previous

development. We focus on comparing the performance of the different schedul-

ing strategies in terms of the weighted sum rate of the two sources per time slot.

We compare the optimal policy in which the channel measurements are perfectly

available, the optimal policy using partial channels information, the optimal policy

when there are no channel measurements, the optimal policy with erroneous channel

measurements, the optimal policy with infrequent measurements and decisions, the
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optimal policy with infrequent measurements only but the decisions are taken every

time slot and the optimal policy in distributed manner. We denote these policies

by ”Full CSI”, ”Partial CSI”, ”No CSI”, ”Erroneous CSI”, ”Infrequent Decision”,

”Infrequent Measurement” and ”Distributed” repectively.

We set the system parameters as follows: λ0 = 0.4, λ1 = 0.7, f
(1)
n|n = 0.4,

f
(0)
n|n = 0.25, f

(1,0)
n|1,2 = 0.35, f

(1,1)
n|1,2 = 0.2, f

(0,1)
n|1,2 = 0.1, f

(0,0)
n|1,2 = 0.2 with (n = 1, 2),

w1 = w2 = 0.5 and p
(ε)
11 = p

(ε)
12 = p

(ε)
21 = p

(ε)
22 = p(ε) = 0.1. Then, we start to change

these system parameters to study their effects on the system performance. All the

figures show the enhancement in the throughput because of exploiting different levels

of CSI knowledge in the scheduling process.

In figure 6.3, the performance is shown against the channel transition proba-

bility λ1. Measuring all system channels, even with small errors in measurement,

leads to higher throughput than the case of no CSI available at the scheduler. Also,

in case of partial CSI, the enhancement due to partial channel knowledge is larger

as λ1 becomes larger. That is because the channel correlation becomes larger which

leads to that the channel measurements are more effective in the channel prediction

and the control strategy.

In figure 6.4, the performance against the change in the weighting factors is

shown. The x-axis represents w1 and we set w2 = 1 − w1. For very small values

of w1, the optimal action for all the scheduling policies is S2 in all time slots so all

policies have the same throughput. Then for larger values of w1, the enhancement

in performance due to the CSI knowledge is shown.

In figure 6.5, we show the system performance against the change in the error
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Figure 6.3: Throughput against λ1
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Figure 6.4: Throughput against w1

probability of the channel measurements. It shows that measuring the channels with

errors can have better performance than not measuring the channels for a certain

133



range of error probability. In this system setting, as the probability of error is less

than 0.3, it is better to measure the channel than to use the steady state probabilities

of the channels.
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Figure 6.5: Throughput against p(ε)

In figure 6.6, the performance against the measurement interval τ is shown.

The performance for the case of making decision every time slot is better than the

case of infrequent decision. The difference between the two cases becomes larger

with the increase of τ .

In figure 6.7, we mainly illustrate the performance of the distributed scheduling

against the centralized scheduling with full CSI and with no CSI. The amount of

channel information in the distributed scheduling case is less than the amount of

information in the centralized scheduling case with full CSI that the performance of

the distributed case is worse than the performance of the centralized case with full

134



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.208

0.21

0.212

0.214

0.216

0.218

0.22

0.222

Measurement Interval

A
ve

ra
ge

 R
ew

ar
d

No CSI
Full CSI
Infrequent Decision
Infrequent Measurement 
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CSI.
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6.10 Discussion

In this chapter, we have derived the optimal scheduling policies for a com-

munication system that contains two transmitter-receiver pairs which operate over

Gilbert-Elliot channels. We have considered exploiting CSI of the system channels

in the scheduling policies. Due to the difficulty of the analysis of the problem, we

traced the solutions in the case of two pairs only. In the case of full channel knowl-

edge, we have shown that it is optimal to maximize the instantaneous expected

reward of the system. Then, the problem of delayed channel information has been

formulated as a Partially Observable Markovian Decision Problem for which we

have found an approximate solution using linear programming. Also, for the case in

which no channel measurements are available, it is optimal to select a fixed action

that maximizes the steady state expected reward of the system. Then, we calcu-

lated the system expected reward as a function of the error probability when the

channel measurements are inaccurate. In this case, it is also optimal to maximize

the instantaneous expected reward of the system. In the case of infrequent chan-

nel measurements, we have shown the effects of changing the measurement interval

length on the performance and we have shown that taking a decision every time slot

can lead to better performance than taking a decision every measurement interval.

We have also considered the scheduling in a distributed manner. We have formu-

lated this scheduling problem as a quadratic program. We compared the throughput

performance for all these cases and assessed the value of different levels of channel

state information knowledge.
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Chapter 7: Transmission Control in Cognitive Radio Networks

7.1 Introduction

Rapidly rising energy costs have led to an emerging trend of addressing energy

efficiency aspect of wireless communication technologies [78]. In a typical wireless

cellular network, the radio access part accounts for most of the total energy con-

sumption [79]. Therefore, increasing the energy efficiency of radio networks is very

important to meet the challenges raised by the high demands of traffic and energy

consumption. As a result, energy efficient communications have recently attracted

more research effort [80]. Reducing energy consumption is very important in order

to reduce the impact from wireless networks on the environment. It is also important

because mobile terminals have batteries with limited energy supply.

Cognitive radio technology can play an important role in improving energy ef-

ficiency in wireless networks [81]. The cognitive abilities have a wide range of prop-

erties, including spectrum sensing [82], spectrum sharing [83] and adaptive trans-

mission [84], which are beneficial to improve the trade-off among energy efficiency,

spectrum efficiency, bandwidth, and deployment efficiency in wireless networks [79].

Also, some works have been done to consider energy efficiency in cognitive radio

networks. In [85], the authors have studied the hierarchy in energy games for cog-
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nitive radio networks. Authors of [86] have studied the distributed power control

game to maximize the transmission energy-efficiency for secondary users in cognitive

radio networks. Energy-efficient power control and receiver design in cognitive radio

networks have been studied in [87].

In this work, we consider a system which contains one primary and one sec-

ondary source-destination communications pairs. The secondary source senses the

primary activity with certain missed detection and false alarm probabilities and it

has also knowledge about the steady state probability of the channel being busy by

the primary source transmissions. The secondary source estimates the channel from

the primary source to have knowledge about the reliability of the sensing decision.

The channel is estimated opportunistically when the channel is sensed to be busy.

The enhancement in the performance due to the channel knowledge is studied. We

consider the consumed energy by the secondary system as the performance criterion

and the system is constrained by the a maximum allowable probability of failure for

the primary system and a minimum required average throughput for the secondary

system. We compare the performance of the system with opportunistic channel

estimation to the benchmarks of the system with no channel estimation and with

accurate channel estimation at every time slot.
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7.2 System Model and Problem Formulation

7.2.1 System Model

We consider a simple cognitive radio network with a single primary source-

destination pair and a single secondary source-destination pair as shown in figure

7.1. We assume that time is slotted. During each time slot, each source can transmit

a single data packet. We assume that the steady state probability of the channel to

be busy by the primary source transmissions is denoted by πv.

Primary Source 

Secondary Source 

Primary Destination 

Secondary Destination 

Sensing 
Channel 

Direct Channel   
Interference Channel  

Figure 7.1: System Model

The sensing-channel is modeled by a two-state Markov chain, ”Gilbert-Elliot”

Model. The state of the channel is denoted by C and it belongs to {0, 1}. The

transition probability from state 1 to state 1 is denoted by λ1 and the transition

probability from state 0 to state 1 is denoted by λ0. The probability of missed

detection when the channel state is C is denoted by pm(C). The probability of false

alarm when the channel state is C is denoted by pf (C). The steady state probability
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of the channel to be in state 1 is denoted by πC . The belief about the channel state

is denoted by p and it defined to be the probability that the channel is in state 1.

All channels are assumed to be independent erasure channels. Also, each

of the primary and the secondary destinations can decode the transmitted packet

from the corresponding source when both sources transmit with some probability.

The success probability of a transmitted packet from the secondary source when

the secondary source transmits alone is denoted by fS|S and when both sources

transmit is denoted by fS|P,S. The success probability of a transmitted packet from

the primary source when the primary source transmits alone is denoted by fP |P and

when both sources transmit is denoted by fP |P,S.

The secondary source senses the primary activity every time slot. The state

of the sensed primary activity is denoted by v̂ and it belongs to {0, 1}. If the

sensing result is that the channel is busy, the channel from the primary source to

the secondary source is estimated. We assume that the channel state C is estimated

accurately if the primary activity is correctly sensed. Otherwise; it is estimated

accurately with probability 1/2. If the sensing result is that the primary source is

idle, the channel state is not estimated. At every time slot, the secondary source

transmits with a probability which depends on the sensing decision and the belief

about the channel. This probability is denoted by ρ(v̂, p).

We compare the results to the cases of no channel estimation. In this case, the

average probability of missed detection is denoted by pm and the average probability

of false alarm is denoted by pf . Also, we compare to the case of estimating the

channel accurately at every time slot.
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7.2.2 Problem Formulation

The goal of the problem is to design an energy efficient transmission strategy

by selecting the transmission probabilities ρ(v̂, p) to minimize the average energy

consumed subject an allowable failure probability for the primary system and a re-

quired average success rate for the secondary system. The average energy consumed

by the secondary system is calculated as follows

E =

∫ 1

0

1∑
v̂=0

f(v̂, p)ρ(v̂, p)dp (7.1)

where f(v̂, p) is the joint probability distribution of v̂ and p.

The average probability of failure for the primary system is calculated as

Q =

∫ 1

0

1∑
v̂=0

f(v̂, p)Pr(v|v̂)(ρ(v̂, p)(1− fP |P,S) + (1− ρ(v̂, p))(1− fP |P ))dp (7.2)

where Pr(v|v̂) is the conditional probability that the source is transmitting given

that its activity was sensed to be at state v̂.

The average probability of success for the secondary system is calculated as

R =

∫ 1

0

1∑
v̂=0

f(v̂, p)ρ(v̂, p)(Pr(v|v̂)fS|P,S + (1− Pr(v|v̂))fS|S)dp (7.3)

Thus, the problem is formulated as follows

min
ρ(v̂,p)

E

s.t. R ≥ λ

Q ≤ δ

0 ≤ ρ(v̂, p) ≤ 1, ∀p, v̂
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where λ is the required average success rate for the secondary system and δ is the

allowable average failure probability for the primary system.

7.3 No Channel Estimation

In this case, the channel from the primary source to the secondary source is not

estimated at all. The belief about the channel is fixed and equal to πC . Then, the

problem is simplified such that the transmission probabilities are ρ(NC)(v̂) which

depends only on the sensing output. The average energy consumed can be then

written as follows

E = πv[(1− pm)ρ
(NC)(1) + pmρ

(NC)(0)]+

(1− πv)[pfρ
(NC)(1) + (1− pf )ρ

(NC)(0)] (7.4)

The average probability of failure for the primary system can be rewritten as

follows

Q = πv(1− pm)[ρ
(NC)(1)(1− fP |P,S) + (1− ρ(NC)(1))(1− fP |P )]+

πvpm[ρ
(NC)(0)(1− fP |P,S) + (1− ρ(NC)(0))(1− fP |P )] (7.5)

The average probability of success for the secondary system can be rewritten

as follows

R = πv[(1− pm)ρ
(NC)(1) + pmρ

(NC)(0)]fS|P,S+

(1− πv)[pfρ
(NC)(1) + (1− pf )ρ

(NC)(0)]fS|S (7.6)

We start by discussing the feasibility conditions of the problem. The problem

is feasible when there exist transmission probabilities for which the average success
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probability of the secondary system is achieved with the failure probability of the

primary system is less than or equal to the maximum allowable failure probability.

In order to get the maximum allowable data arrival rate for the feasibility of the

problem, we solve the following problem

max
ρ(NC)(1),ρ(NC)(0)

R

s.t. Q ≤ δ

0 ≤ ρ(NC)(1), ρ(NC)(0) ≤ 1

This problem is a linear knapsack problem for the two variables. The op-

timal probabilities for this problem are denoted by ρ̂(NC)(1) and ρ̂(NC)(0). These

probabilities are calculated as follows based on the following conditions [88].

If pm + pf ≥ 1, then

ρ̂(NC)(1) = min

(
1,

δ − πv(1− pm)(1− fP |P )
πv(1− pm)(fP |P − fP |P,S)

)

ρ̂(NC)(0) = min

(
1,max

(
0,

δ − πv((1− pm)(1− fP |P,S) + pm(1− fP |P ))
πvpm(fP |P − fP |P,S)

))

If pm + pf ≤ 1, then

ρ̂(NC)(0) = min

(
1,

δ − πvpm(1− fP |P )
πvpm(fP |P − fP |P,S)

)

ρ̂(NC)(1) = min

(
1,max

(
0,

δ − πv(pm(1− fP |P,S) + (1− pm)(1− fP |P ))
πv(1− pm)(fP |P − fP |P,S)

))

In both cases, the maximum achievable average success probability for the

secondary system is calculated as follows

R̂ = πv[(1− pm)ρ̂
(NC)(1)fS|P,S + pmρ̂

(NC)(0)fS|P,S]+

(1− πv)[pf ρ̂
(NC)(1)fS|S + (1− pf )ρ̂

(NC)(0)fS|S] (7.7)
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From the previous result, if λ > R̂, then the problem is not feasible and has

no solution. On the other hand if λ ≤ R̂, there exist a solution for the energy

minimization problem.

Then, we start discussing the problem of finding the optimal transmission

probabilities to minimize the average energy which is consumed by the secondary

system. We start by setting two assumptions under which we will be able to find a

closed-form solution for the problem.

Assumption 7.1: pm ≤ 1
2
and πv(1− 2pm) ≥ (1− πv)(1− 2pf ).

Assumption 7.2: pm ≥ 1
2
and πv(1− 2pm) ≤ (1− πv)(1− 2pf ).

proposition 7.1: If either assumption 7.1 or assumption 7.2 is satisfied, then

the energy minimization problem can be written as follows

min
ρ(NC)(1),ρ(NC)(0)

E

s.t. R ≥ λ

0 ≤ ρ(NC)(1), ρ(NC)(0) ≤ 1

Thus, this is also a linear knapsack minimization problem that can be solved as

follows: If pm + pf ≥ 1, then

ρ∗(NC)(1) = min

(
1,

λ

πv(1− pm)fS|P,S + (1− πv)pffS|S

)

ρ∗(NC)(0) = min

(
1,max

(
0,

λ− (πv(1− pm)fS|P,S + (1− πv)pffS|S)
πvpmfS|P,S + (1− πv)(1− pf )fS|S

))

If pm + pf ≤ 1, then

ρ∗(NC)(0) = min

(
1,

λ

πvpmfS|P,S + (1− πv)(1− pf )fS|S

)

144



ρ∗(NC)(1) = min

(
1,max

(
0,

λ− (πvpmfS|P,S + (1− πv)(1− pf )fS|S)
πv(1− pm)fS|P,S + (1− πv)pffS|S

))

In both cases, the optimal consumed energy for the secondary system is cal-

culated as follows

E
∗
= πv[(1− pm)ρ

∗(NC)(1) + pmρ
∗(NC)(0)]+

(1− πv)[pfρ
∗(NC)(1) + (1− pf )ρ

∗(NC)(0)] (7.8)

On the other hand, when neither of the assumptions is satisfied, the problem

is a simple linear program with two unknowns that can be solved by any one of a

variety of algorithms for linear programming.

7.4 Accurate Channel Estimation

In this section, we consider the case in which the channel from the primary

source to the secondary source is accurately estimated at every time slot. In this

case, the belief of the channel equals the channel state that p = C and it takes only

two values of 0 and 1. Then , the problem is simplified such that the transmission

probabilities are ρ(AC)(v̂, C) which depend on the sensing output and the exact

channel state. The average consumed energy can be rewritten as follows

E = πvπC [(1− pm(1))ρ
(AC)(1, 1) + pm(1)ρ

(AC)(0, 1)]+

πv(1− πC)[(1− pm(0))ρ
(AC)(1, 0) + pm(0)ρ

(AC)(0, 0)]+

(1− πv)πC [pf (1)ρ
(AC)(1, 1) + (1− pf (1))ρ

(AC)(0, 1)]+

(1− πv)(1− πC)[pf (0)ρ
(AC)(1, 0) + (1− pf (0))ρ

(AC)(0, 0)] (7.9)
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The average probability of failure for the primary system can be written as

follows

Q = πv − πvπC(1− pm(1))[ρ
(AC)(1, 1)fP |P,S + (1− ρ(AC)(1, 1))fP |P ]

− πvπCpm(1)[ρ
(AC)(0, 1)fP |P,S + (1− ρ(AC)(0, 1))fP |P ]

− πv(1− πC)(1− pm(0))[ρ
(AC)(1, 0)fP |P,S + (1− ρ(AC)(1, 0))fP |P ]

− πv(1− πC)pm(0)[ρ
(AC)(0, 0)fP |P,S + (1− ρ(AC)(0, 0))fP |P ] (7.10)

The average probability of success for the secondary system can be written as

follows

R = πvπC [(1− pm(1))ρ
(AC)(1, 1) + pm(1)ρ

(AC)(0, 1)]fS|P,S+

πv(1− πC)[(1− pm(0))ρ
(AC)(1, 0) + pm(0)ρ

(AC)(0, 0)]fS|P,S+

(1− πv)πC [(1− pf (1))ρ
(AC)(0, 1) + pf (1)ρ

(AC)(1, 1)]fS|S+

(1− πv)(1− πC)[(1− pf (0))ρ
(AC)(0, 0) + pf (0)ρ

(AC)(1, 0)]fS|S (7.11)

The problem is a simple linear program with four unknowns that can be solved

by any of linear programming solving algorithms.

7.5 Opportunistic Channel Estimation

In this section, we consider the case in which the channel is estimated when

the channel is sensed to be busy by the primary transmissions. The estimated

channel state when the channel is sensed to be busy is denoted by Ĉ. To obtain

the expressions of different system quantities, we need to obtain the probability
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distribution of p. It is difficult to obtain this expression. Thus, we formulate the

system evolution as a Markov chain. The state of the Markov chain is denoted by S

and represented by the pair (Ĉ, n) where Ĉ is the last estimated value of the channel

and n is the number of the time slots since the channel has been estimated.

We start by calculating the transition probabilities of the chain. The proba-

bility Pr(Ĉ, n|Ĉ, n − 1) is the probability that the sensing result is negative while

the last measured channel was Ĉ. It is calculated as follows

Pr(Ĉ, n|Ĉ, n− 1) = Pr(v̂ = 0|Ĉ, n− 1) =

πv[p
(n)

Ĉ
pm(1) + (1− p

(n)

Ĉ
)pm(0)] + (1− πv)[p

(n)

Ĉ
(1− pf (1)) + (1− p

(n)

Ĉ
)(1− pf (0))]

(7.12)

where p
(n)

Ĉ
is the belief about the channel when the last estimated channel is Ĉ and

the channel has been estimated from n time slots.

The probability Pr(1, 0|Ĉ, n − 1) is the probability that the sensing result is

positive and the estimated channel is 1. It is calculated as follows

Pr(1, 0|Ĉ, n− 1) = Pr(v̂ = 1, Ĉ = 1|Ĉ, n− 1) =

πvp
(n)

Ĉ
(1− pm(1)) +

1

2
(1− πv)[p

(n)

Ĉ
pf (1) + (1− p

(n)

Ĉ
)pf (0)] (7.13)

Similarly, the probability for the channel state to be measured 0 is calculated

as follows

Pr(0, 0|Ĉ, n− 1) = Pr(v̂ = 1, Ĉ = 0|Ĉ, n− 1) =

πv(1− p
(n)

Ĉ
)(1− pm(0)) +

1

2
(1− πv)[p

(n)

Ĉ
pf (1) + (1− p

(n)

Ĉ
)pf (0)] (7.14)
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The probability p
(n)

Ĉ
is the n step transition probability from the measured channel

state being Ĉ to the channel state being 1.

Then, we calculate the steady state probabilities of all the states. We denote

the steady state probability of the state S = (Ĉ, n) by πS which equals πĈ,n. We

write the balance equations of the Markov chain as follows

π0,0(Pr(1, 0|0, 0) + Pr(0, 1|0, 0)) =
∞∑
i=1

π0,i +
∞∑
i=0

π1,i

π1,0(Pr(0, 0|1, 0) + Pr(1, 1|1, 0)) =
∞∑
i=1

π1,i +
∞∑
i=0

π0,i

π0,n(Pr(0, n+ 1|0, n) + Pr(0, 0|0, n) + Pr(1, 0|0, n)) = π0,n−1Pr(0, n|0, n+ 1)

π1,n(Pr(1, n+ 1|1, n) + Pr(0, 0|1, n) + Pr(1, 0|1, n)) = π1,n−1Pr(0, n|1, n+ 1)

Note that in the last two equations, both the terms Pr(0, n+1|0, n)+Pr(0, 0|0, n)+

Pr(1, 0|0, n) and Pr(1, n+ 1|1, n) + Pr(0, 0|1, n) + Pr(1, 0|1, n) equal 1. Then, the

equations can be rewritten as follows

π0,n = π0,n−1Pr(0, n|0, n+ 1)

π1,n = π1,n−1Pr(0, n|1, n+ 1)

The general relations of the steady state probabilities are

π0,n =
n∏

i=1

Pr(0, i|0, i− 1)π0,0

π1,n =
n∏

i=1

Pr(1, i|1, i− 1)π1,0

We denote the term
∏n

i=1 Pr(0, i|0, i− 1) by An with A0 defined to be 1 and the

term
∏n

i=1 Pr(1, i|1, i− 1) by Bn with B0 defined to be 1. Then by solving the first
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two equations after substituting using the last two, we get

π1,0 =
Pr(1, 0|0, 0) + Pr(0, 1|0, 0)−∑∞

i=1 AiPr(0, 0|0, i)∑∞
i=0 BiPr(0, 0|0, i) π0,0 (7.15)

we denote the constant
Pr(1,0|0,0)+Pr(0,1|0,0)−∑∞

i=1 AiPr(0,0|0,i)
∑∞

i=0 BiPr(0,0|0,i) by K. Then, the value of

π0,0 is obtained to be

π0,0 =
1∑∞

i=0 Ai +K
∑∞

i=0 Bi

(7.16)

Using the Markov chain states, we write the expressions of the system quan-

tities as functions in the obtained steady state probabilities.

E =
∑
S

πSρ(S) (7.17)

R =
∑
S

πSρ(S)(Pr(B|S)fS|P,S + (1− Pr(B|S))fS|S) (7.18)

Q =
∑
S

πSPr(B|S)(ρ(S)(1− fP |P,S) + (1− ρ(S))(1− fP |P )) (7.19)

where B is the event that the channel is busy by the primary source transmissions.

The probability Pr(B|S) remains to be calculated and it is the probability that

the primary source is transmitting given a certain measured state. Using basic

probability Bayes’ rule, we can calculate this probability as follows

Pr(B|S) = Pr(S|B)πv

πS

(7.20)

Thus, we calculate the probability Pr(S|B) for all the states of the Markov chain

as follows

Pr(0, 0|B) =
∑
S

πS

(
p
(n)

Ĉ
(1− λ1)(1− pm(0)) + (1− p

(n)

Ĉ
)(1− λ0)(1− pm(0))

)

Pr(1, 0|B) =
∑
S

πS(1− pm(1))(p
(n)

Ĉ
λ1 + (1− p

(n)

Ĉ
)λ0)
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Pr(Ĉ, n|B) = πĈ,n−1

[
pm(1)(p

(n−1)

Ĉ
λ1 + (1− p

(n−1)

Ĉ
)λ0)+

pm(0)(p
(n−1)

Ĉ
(1− λ1) + (1− p

(n−1)

Ĉ
)(1− λ0))

]

The optimization problem is an infinite linear program that could be solved

using shadow simplex method in [89] or it can be approximated using the truncation

method in [90].

7.6 Numerical Results

In this section, we present some numerical examples to illustrate the previous

analysis. We focus on comparing the performance of the different channel estimation

strategies in terms of the constrained average consumed energy by the secondary

system and the maximum reachable throughput at the secondary system. We choose

the following system parameters values: πv = 0.4, λ1 = 0.6, λ0 = 0.3, pm(0) = 0.4,

pm(1) = 0.2, pf (0) = 0.2, pf (1) = 0.1, δ = 0.05, λ = 0.05, fP |P,S = 0.1, fP |P = 0.5,

fS|P,S = 0.1 and fS|S = 0.5 . Then, we vary these system parameters to study their

effects on the system performance. All the figures show the enhancement in the

throughput as a result of different levels of CSI knowledge.

In figure 7.2, we show the average throughput of the secondary source con-

strained by the allowable primary probability of failure against the steady state

probability of the channel to be busy by the primary transmissions.

In figure 7.3, we show the average constrained energy consumed by the sec-

ondary source against the steady state probability of the channel to be busy by the

primary transmissions. When the primary system is more active, the enhancement
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Figure 7.2: Maximum achievable throughput against πv

due to the channel knowledge increases. That is because the importance of the

reliability of the sensing decision is higher when πv increases.
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Figure 7.3: Optimal average energy against πv

In figure 7.4, we show the average constrained throughput of the secondary
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source against the maximum allowable probability of failure for the primary system.
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Figure 7.4: Maximum achievable throughput against δ

Finally in figure 7.5, we show the average constrained energy consumed by the

secondary source against λ1. When the channel correlation increases, the enhance-

ment due to the channel knowledge also increases.

7.7 Discussion

In this chapter, we investigated the effect of estimating the sensing-channel by

the secondary source in a cognitive radio system. We have shown that obtaining

the optimal transmission probabilities can be done through linear programming in

the cases of no channel estimation and accurate channel estimation. In the case

of opportunistic channel estimation, the system is modeled by a Markov chain and

then the problem of finding the optimal transmission probabilities is formulated as

an infinite linear program. We quantify the enhancement in the performance and
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Figure 7.5: Optimal average energy against λ1

show that the enhancement due to channel knowledge increases when the primary

activity increases.
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Chapter 8: Conclusion

8.1 Summary of Contributions

We have studied in chapter 2 a communication link that operates over a

Gilbert-Elliot channel. The source node has energy harvesting capability. In order

to maximize the number of successfully delivered packets per time slot, the source

decides in each time slot whether to transmit or defer the transmission. The prob-

lem has been formulated as a Markov decision problem and we have characterized

the optimal policy. We have proved that it is a threshold-type policy, depending on

the channel state and the energy queue length. Different properties of the optimal

policy have been derived. An upper bound on the average number of packets per

time slot that are successfully received by the destination has been derived. This

bound has been shown to be tight on the performance of the optimal policy. The

optimal policy for the case of no CSI availability has also been derived. Numerical

results have been obtained to illustrate the analysis. We observe that the value of

CSI can be significant. We also see that the channel fluctuations affect performance

significantly as well.

In chapter 3, we have proposed and analyzed protocols for transmission from

a source that has energy harvesting capability. We have considered the case in
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which a relay is used to help the source transmissions. The relay also has energy

harvesting capability. The proposed protocol allows the relay to use the idle time

slots of the source and hence avoids allocating any explicit resources to the relay.

Our analysis shows that cooperation increases the maximum stable throughput rate

in most cases except when the energy harvesting rate of the relay is small. The

proposed strategy exploits the knowledge of the CSI of the channel between the

source and the destination such that the source transmits with probability 1 if the

channel is in state 1 and transmits with a certain probability if the channel is in

state 0. The optimal probability has also been calculated. The effect of imperfect

channel measurements has been considered.

In chapter 4, we have introduced the notion of partial network-level cooper-

ation for energy harvesting networks. The flow from the source through the relay

is controlled. We provide an exact characterization of the stability region for the

discussed system. We have shown that the performance of the system with optimal

partial relaying is always better than or equals the performance of simple relaying

schemes. Also, we have shown that it is optimal to use full relaying for a small data

arrival rate at the relay while it is optimal to use no relaying when the source has a

small data arrival rate.

In chapter 5, we have investigated the problem of transmission control in a

network with multiple energy harvesting relays. We have exploited partial relaying

cooperation in the proposed network. We have derived the stability conditions for

the source and the relays data queues. Our analysis shows that cooperation increases

the maximum achievable rate of the source. We have discussed the problem of
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maximizing the achievable rate at the source data queue over the relaying parameters

vector. Also, we have discussed the problem of relaying cost minimization. The

problem is constrained by the stability of the system data queues. We have given an

example for the cost to be the average consumed energy in the network. We have

shown that optimal partial relaying cooperation has equal or better performance

than full relay cooperation.

In chapter 6, we have derived the optimal scheduling policies for a communica-

tion system that contains two transmitter-receiver pairs which operate over Gilbert-

Elliot channels. We have considered exploiting CSI of the system channels in the

scheduling policies. Due to the difficulty of the analysis of the problem, we traced

the solutions in the case of two pairs only. In the case of full channel knowledge,

we have shown that it is optimal to maximize the instantaneous expected reward of

the system. Then, the problem of delayed channel information has been formulated

as a Partially Observable Markovian Decision Problem for which we have found an

approximate solution using linear programming. Also, for the case in which no chan-

nel measurements are available, it is optimal to select a fixed action that maximizes

the steady state expected reward of the system. Then, we calculated the system

expected reward as a function of the error probability when the channel measure-

ments are inaccurate. In this case, it is also optimal to maximize the instantaneous

expected reward of the system. In the case of infrequent channel measurements, we

have shown the effects of changing the measurement interval length on the perfor-

mance and we have shown that taking a decision every time slot can lead to better

performance than taking a decision every measurement interval. We have also con-
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sidered the scheduling in a distributed manner. We have formulated this scheduling

problem as a quadratic program. We compared the throughput performance for all

these cases and assessed the value of different levels of channel state information

knowledge.

In chapter 7, we investigated the effect of estimating the sensing-channel by

the secondary source in a cognitive radio system. We have shown that obtaining

the optimal transmission probabilities can be done through linear programming in

the cases of no channel estimation and accurate channel estimation. In the case

of opportunistic channel estimation, the system is modeled by a Markov chain and

then the problem of finding the optimal transmission probabilities is formulated as an

infinite linear program. Then, we quantify the enhancement in the performance and

show that the enhancement due to channel knowledge increases when the primary

activity increases.

8.2 Future Directions

The solid theoretical analysis in this dissertation provides useful insights for

better understanding of the communication architecture in wireless networks and

its ultimate performance limits. There remains a number of questions for future

investigation.

A fundamental issue that naturally arises is the need for a distributed cooper-

ative communication protocol. The proposed cooperation strategy for the multiple

access system with multiple relays, implicitly assumes that there exists a centralized
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controller which activates at most one relay in a time slot, such that all other users

can overhear the transmission and possibly relay the received packet. However, such

centralized controller may not exist, or too costly to implement in a real wireless

network. Further, the strategy requires all the users that capture the transmission

to send back acknowledgements, upon which the best of them can be selected as

the relay. This can result in the feedback implosion problem. Thus, a distributed

cooperation policy with feedback suppression mechanism will be of both theoretical

and practical interest. The performance in our centralized policy can serve as an

upper bound to evaluate the effectiveness of the distributed policy.

Also, the issue of rate and power control in energy harvesting networks needs

to be investigated for improving the performance. Transmission control allows the

nodes to decide whether to transmit or not while rate and power control gives more

degrees of freedom for the transmission action. Thus, the nodes are allowed to select

more tailored transmission parameters for the network conditions.
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