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ABSTRACT

In this paper, a unified review of eight decomposition mehtods is pre-
sented. A two-level decomposition method is proposed, which is an extension
of feasible model coordination methods. The method couples the global
monotonicity analysis of the first-level subproblem(s) with an optimization
method (single-level method) of the second-level. Three classes of problems
are considered where in the first-level they have (1) one subproblem with one
local variable, (2) several subproblems with one local variable, and (3)
several subproblems with several local variables. Some test results have been
presented which shows the substantially improved performance of the proposed

approach over a single-level optimization method.



1. Introduction

Recently, optimization methods have found considerable applications to
engineering design problems (Siddall, 1982; Reklaitis et al., 1983;
Vanderplaatz, 1984). Because of their nature, these problems are in general
nonlinear and constrained, i.e. nonlinear programming (NLP) problems for-

mulated in the following form

Minimize f(x)

Subject to: (1.1)
hk(x) =0 k=1,... ,K
gj(x) £0 j= 1,... ,J

where x is an n-vector of design variables and f,hk, and gj are the scalar
objective and constraint functions. There exist now optimization algorithms
which can solve small to medium-sized problems formulated in the above form
quite efficiently (Lasdon and Waren, 1983; Crane et al., 1980). However, when
the size of the problem becomes "large", which is the case for many engi-
neering problems, then the solution process using the existing algorithms
becomes expensive, if not impossible.

What is a "large-scale" NLP problem ? It is difficult to give an exact
definition for a large-scale NLP problem. In nonlinear programming, the size
of the problem is determined by the number of variables, the number and

complexity of the constraint functions, and the complexity of the objective



function (Lasdon, 1970). 1[It is perhaps safe to say that when the number cf

variables or constraints exceeds 50, we have encountered a large-scale NLP

problem (Gabriel and Ragsdell, 1980).

There is a very large literature on the subject of large-scale
mathematical programming methods. In general, these methods may be
divided into two classes (Ladson, 1970):

{1) Direct methods which specialize an existing method to a particular class
of problems to solve them directly. Examples of the direct methods
include the Simplex method (Dantzig, 1963), more recently the Karmarker's
method (Karmaker, 1984) for linear programming, and the projected
Lagrangian method (Murtagh and Saunders, 1982) for nonlinear programming.

(2) Indirect or decomposition methods which decompose the original problem
into subproblems whose solutions in a prescribed manner will generate the
solution of the original problem. It is this class of methods which is
the subject of this paper.

The organization of the remainder of this paper is as follows. In
Section 2, we present a unified review of eight decomposition methods for
nonlinearly constrained design optimization problems. Our proposed
monotonicity-based decomposition method which is an extension of the ones
described in Section 2 together with some test results is presented in Section

3. Finally, we present in Section 4 , the concluding remarks for this study.

2. Decomposition Methods

The idea of decomposition for solving large-scale nonlinear systems



was first proposed by Kron {(1954). There, he indicated that "physical systems
with a very large number of variables (say with tens of thousands) may be
solved with available digital computers by tearing the system apart into a
large number of small subdivisions"”. However, it was the publication of

the Dantzig-Wolfe (1960) decomposition method which initiated the extensive
work on large-scale mathematical programming. Dantzig-Wolfe method was deve-
loped for the decomposition of linear programming problems whose coefficient
matrices have angular structure. In this method, the original program is
decomposed into several linear subprograms and a “"master (coordinating)
program". At each iteration, the subprograms receive a set of parameters
(simplex prices) from the master program. The subprograms then send their
current solutions to the master program which in turn obtains a new set of
prices to be sent again to the subprograms. The iterations continue until an
optimal solution is obtained.

The basic steps followed by decomposition methods for NLP problems are
very similar to the Dantzig-Wolfe method. These algorithms have a two-level
structure and break down a problem having certain structure into several
smaller subproblems. In the first level, these smaller subproblems are solved
independently. Then, in the second level, the subproblem's solutions are coor-
dinated to obtain the solution to the original problem. Decomposition methods
fit very well with mechanical design problems. For example, Figure 1 shows a
two level decomposition for a punch-press. A punch-press is a mechanical
system composed of several components including flywheel, crankshaft, con-

necting rod, etc. Using decomposition, each component is optimized at the



first level and then the components' solutions are coordinated at the second
level to obtain an optimum for the original problem; i.e., the punch-press.
Since the publication of the Dantzig-Wolfe method more than twenty five
years ago, a great number of papers and several books have been published
on the subject of decomposition. It is interesting to note that several of
the major books on the subject were published during the period of 1970 to
1973 (Mesarovic et al., 1970; Lasdon, 1970; Wismer, 1971; Himmelblau, 1973).
In the next section, we present a unified review of eight decomposition
methods which are applicable to NLP problems. These are only a few of many

important methods found in the literature.

2.1 Lagrangian Feasible Method (Wismer, 1971 and 1978)

Consider the NLP problem formulated in the following form
Minimize f(x)
Subject to: (2.1)
gi(x) £0 i=1,... ,n.

Note that the constraints have been organized into n {number of variable)
functional constraints. We assume that the objective function can be written
as the sum of single variable functions, i.e. f(x) is an additively separable

function:

n
Minimize f(x) = z fi(xi)
i=1

Subject to: (2.2)



gj(x) <0, i=1,... ,n.

If we now form the Lagrangian for this problem, we have

n n
L{x,u) = izl fi(xi) + izlu§gi(xl,... ,xn) (2.3)
or
n ¢ .
L(x,u) = i§1 {fi(xi) * g, xl,....xnj. (2.4)

We then make the Lagrangian into an additively separable function. To

do that, we define a new set of costraints:
s, = X. , i=1,... ,n (2.5)

which will be considered in the problem as (interconnection) equality

constraints; therefore, after substitution we have:

L(x,v,u,s) = Z (f.(x.) + qu.(x.-s s, s )., . + v?(x.—s.)] (2.6)
B it bt A T IR, IS (R E 1 iYhi Ti

note that vi =0, if gi(xl,....xn) is not a function of X4 for all j not

equal to i. In equation (2.6), assume that S5 is fixed to decompose that to

the following subproblems:

+ vt(x -8, ) (2.7)
ittioTi '

t
.,u.;8,) = fi(xi) + uigi(xi,sl,...,s.,....sn)

L.(x,,v
A RS A | J

j#i
now, we can solve each subproblem independently. Let's write the KKT

conditions for the subproblems



aLi/axi = afi/axi + (agi/axi) u, + Vo= 0 (2.8)
aLi/aui = gi(xl,sl, ”Sj""'sn)j#i <0 (2.9)
aLi/avj =X; -8 = 0 {(2.10)
uggi -0 (2.11)
u, 2 0 (2.12)

they can be solved for Xi’ u; . vj as functions of 5;- This was the first-
level part of optimization. The second-level part of optimization involves the
selection of optimal values for the parameter Si' Let's write the KKT con-

ditions (this time for s; as a variable):

]
o

aLi/asi (2.13)
thus

aLi/asi

i}
1 ~13

(agj/asi)tuj - v i=1,... .n (2.14)

j=1

by employing a gradient-type algorithm, we may find si to satisfy the equation

(2.14). 1If we rewrite (2.14) as:

n
dby = [ 2

(ng/asi)tuj - vi]tdsi . i=1,....n (2.15)
j=1

and choose dsi in such a way to insure dL < 0, then it is obvious that:



n
ds, = k[ ) (3g./3s.)‘u. - v.] i=1,....n (2.16)
i j=1 J 1 J 1

where k < 0. Thus the second-level algorithm is:

Nk

1

p 2
8T [.% i

t
(9g./3s.) wu, - v.]. (2.17)
J 1 J
j=1
The mathematical structure for this method is demonstrated in Figure 2. Note
that the interconnection constraints, equation (2.6), are always satisfied.
Therefore, even if the second-level optimization terminates prematurely, the

resulting point is feasible. The convergence condition for this method

requires the existence of feasible solutions for the subproblems.

2.2 Lagrangian Dual Feasible Method (Wismer 1971 and 1978)
Consider the same problem as given by equation (2.2) together with its
Lagrangian given by equation (2.3). However, this time we decompose the

Lagrangian by assuming v as the fixed parameter:

S,. = X, i,j=1,...,n i#j {(2.18)

t
then Vij(xj - Sij) = 0, which if it is substituted in equation (2.3) we have:

L(x,v,u,s) =
i

[ g B

t
vij(xj—sij)] (2.19)

i~

t
(£ (x;) + ujg (X859, .085 )iy ¥

1 j=1

now the subproblems are:



K3

10

(2.20)

Here, in the first-level the KKT conditions are used to solve for Xi'

u, sij as a function of Vij' and the second-level of optimization determines

vij‘ In this method, it can be shown that the second-level problem is in fact
the dual of the first-level problem. The mathematical structure for this
method is demonstrated in Figure 3. It should be mentioned that the con-

vergence condition for this method also requires the existence of solution to

the subproblems.

2.3 Lagrangian Dual-Feasible (Relaxation) Method (Wismer, 1978)

This is a combination of Lagrangian feasible and Lagrangian dual feasible
methods which solves for both S and v, in the second level. Consider again
the same problem given by equation (2.2) together with its Lagrangian,
equation (2.7) and the corresponding KKT conditions, equations (2.8) - (2.12).
If we solve KKT conditions for xi(v,s), and ui(v,s). Then, by the second-

level necessary conditions, we have:

S; = Xy (2.21)
2 t
vi = j%l (agj/asi) uj (2.22)

we can then solve for X, and uy using the first-level subproblems. The mathe-

matical structure of the method is shown in Figure 4.
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2.4 Feasible Method (Kirsch, 1975 and 1981)

Consider the NLP problem formulated in the following form:
Minimize f(z)

Subject to (2.23)
h{(z) = 0
g{z) €O
where z is an N-vector of design variables, and f, h, g are the objective
function and the vectors of equality and inequality constraint functions

respectively. If we set
t
z = (y,Xx) (2.24)

where y and x are the "interaction" (global) and the "noninteraction" (local)
variables respectively. Then we can convert the problem into a two-level form
where the first-level subproblems can be solved separately. To apply this

method, the optimization problem should have a special structure:
(1) The objective function should be additively separable:
N
fly,x) = ) f (y,x.) . (2.25)
n n
n=1
(2) The constraints should have the following structure:
_ t
h(y'x) - [hl(y,xl) 1. thn(yoxn) LR ,hN(Y.XN)] (2'26)

gly,x) = [gl(y.xl).--..gn(y.xn).---.gN(y.xN)]t (2.27)
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where X . hn' and g, represent variables, equality constraints, and inequality
constraints associated with the nth subproblem.

The two-level problem is formulated as follows:
(1) First-Level Problem - fix the interaction variable y by setting v=y, -
Then the problem can be decomposed into N independent first-level problem:
Hn(xn) = Minimize fn(yo, xn)

Subject to: n=1,...,N (2.28)
h (v,.x,) =0
<
g (v .x ) €0
{2) Second-Level Problem - find v, such that:

N
Minimize H(y ) = Y E (v.) . (2.29)
The two-level structure of the method is shown in Figure 5.

2.5 Dual Feasible Method (Kirsch, 1975 and 1981)

Consider the same problem discussed in the previous Section:

=

Minimize f(z) = fn (zn)
n=1
Subject to: (2.30)
h(z) = [h(zl),...,hn(zn),...,hN(zN)]t =0

g(z) = [£,(z,) ... 8, (5) ... gy(zy)]" €O
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Here, we decompose the problem in such a way that all links between subproblems
are cut, i.e. no longer Y, is the samc between the subproblems. We set
z = (y,x)t, where y here is the "interconnection" variable. We then define a

new objective function:

N-1o
£ (z)+ 2L v, (v, - ¥
1 n=1

L{(z,v) =
n

ne1) - (2.31)

W12

This is the original objective function with the added term, i.e. the penalty
term. Note that at the optimum the "interconnection-balance conditions”

should be satisfied, i.e.

Yo = Yo oo n=1,...,{N-1). (2.32)

The two-level formulation for the problem is:
(1) First-Level Problem - fix the value of v, then decompose the original
problem into N independent subproblems:

Subproblem 1:

t
fl(zl) + v

Minimize L 1 Yy

1

Subject to: (2.33)

1l
o

hl(zl)

1
o

gl(zl) €

Subproblem n = 2,...,(N-1):

it

. . . t t
Minimize L_ = f (z ) - (Vy_1¥n ~ VnV )
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Subject to (2.34)
hn( n) =0
<
gn(zn) £0

Subproblem N

]
la)
—

N

Minimize L
N

Subject to: (2.35)
hN(zN) =0
<
gN(zN) €0

(2) Second-Level Problem ~ choose v such that

Maximize H(v) = ) H (V) (2.386)
n=1
and
Yn 7 Yne1 (2.37)
where
Hn(v) = Min Ln(zn,v) . (2.38)

The two-level structure of this method is shown in Figure 6.

2.6 Dual Decomposition for Separable Problems (Lasdon, 1968 and 1970)

Consider a NLP problem of the following form:



Minimize f(x)
Subject to (2.39)
gi(x) <0, i=1,...,m

X €8S
where x is an n-vector and S is an arbitrary subset of E®. If we form the

Lagrangian for this problem:
L(x,u) = f(x) + ut g(x) (2.40)
and solve the following problem:
Minimize L(x,u)
Subject to: (2.41)

X€S . uzo
then, it can be shown that if x{(u) solves the above problem, then x(u) solves
the modified version of the original (primal) problem:

Minimize f(x)
Subject to: (2.42)
< :_
g;(x) < g; (x(v)) , i=1,...,m

X €8S
The formulation given by equation (2.41) is an unconstrained one (except for

x€S and u20). Therefore, if the primal problem is separable:
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x = (x, ,xp)t p < n (2.43)
p
£(x) = ) £, (x;) (2.44)
i=1
P
gi(X) = kél g5k (xk) (2.45)

then the Lagrangion is separable and can be decomposed into the following

subproblems:
n
Minimize Lk = fk (xk) + i%l U g5y (xk), k=1,...,p (2.46)
xk € Sk
If we now set:
P
h(u) = Min. ) Ly (2.47)

xeS k=1
then the function h(u) is called the dual function which is defined for the

following domain:

D={u:u2o0 , min. L(x,u) exists} . (2.48)
We can now define a primal-dual pair of problems:

Primal: Dual:

p
min. £(x) = ) f_ (x,) max h(u)
oy k Uk
s.t. s.t. (2.49)
p < D
gi(x) _k}z:lgik(xk) <0 u €



It can be shown that at least for Convex programming problems these two
problems are equivalent. The two-level structure for this method is shown in

Figure 7. Lasdon (1970) suggested the following steepest ascent algorithm:

Maximize h(u}):

ui+1 = uy + ai Si . (2.50)

where

K
ah/aukf ; if u; 20

S, . k=1, ..., m (2.51)

max {0, ah/auk b )y if uk =0
ui i

The step size a; is selected such that:

h(ui+1) > h(lli) . (2.52)

2.7 Johnson's (1984a) Two-Stage Decomposition Method

Again, consider the NLP problem formulated in the general form of
equation (2.23). Johnson's method decomposes the problem into a Modular
Component (MC) and an integrating System Component (SC). This is done by
setting z = (u, v)t, where u and v are vectors, such that the original problem
is transformed into the following form:

Minimize f(u,v)
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Subject to: (2.53)
hf(u,v) =0
h“(v) =0
g' (u,v) €0

g" (v) €0

where g', g", h', h" are vectors. The problem is then decomposed into the

following MC and SC subproblems:

MC Subproblem:

Minimize f(u,v)

Subject to: (2.54)
h' (u,v) =0

g' (u,v) €0

SC Subproblem:
Minimize f(u,v)
Subject to: (2.53)

h" (v)

it
o]

A
o

g" (v)

An "exact" solution for the MC subproblem is then sought such that:
u, = fo(v), v is fixed. (2.56)
This solution is inserted into the SC subproblem to solve for v*. Then from

u0 = fo(v), we can find u*. The two-stage structure of the method is shown

in Figure 8.
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2.8 Johnson's (1984b) Multistage Decomposition Method

This is an extension of the Johnson's two-stage deccmposition method
described in the previous section. Condiser the NLP problem of the previous
Section and decompose it into m modular components (MC) and an integrating
system component (SC). As in the two-stage method, the independent variables
are resolved into u and v components (u and v are vectors). However, the ele-
ments of u are further resolved into sets of u, (uy, is a vector) associated
with the mth MC. Again, each MC must be exactly solvable, ugy = fop(v),
furthermore MC subproblems are solved sequentially. On exit from the MC
stage, we have u as a function of v, this solution is then inserted in the SC
stage to solve for v*¥ and subsequently from the MC stages we obtain u*. The

structure of this method is shown‘in Figure 9.

2.9 Discussion on the Reviewed Methods

The decomposition methods reviewed in this section have a two-level
hierarchical structure (Mesarovic et at., 1970), except for Johnson's (1984a,
1984b) method. They have an upper unit, called the second-level which
controls or coordinates the units on the level below, called the first-level.
Although there may be various ways of transforming a given nonlinear
programming problem into a two-level form, they are all essentially com-
binations of two different approaches which are called the model coordination
method and the goal coordination method (Wismer 1971). In the model coor-
dination method, described in sections 2.1 and 2.4, the decomposition is made

possible by adding a constraint to the mathematical model of the problem in
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the form of fixing the interaction variables. For example, in section 2.1 a
new set of variables are introduced into the problem, i.e. interconnection
constraints, and they are fixed in such a way to make Lagrangian additively
separable. Also, in section 2.4, the variable y is selected as the interac-
tion variable to coordinate the activities of the subproblems. The model
coordination method is also known as the feasible method due to feasibility of
intermediate values of design variables. This method is particularly attrac-
tive from engineering design point of view, since the iteration process may be
terminated whenever it is desired, with a feasible even though nonoptimal
design. One major drawback of this method is possible lack of a feasible
solution at the first-level for a given value of the interaction variable y of
the second-level.

In the goal coordination method, described in sections 2.2, 2.5, and 2.6,
the decomposition is made possible by modification of the objective (goal) of
the subproblems while cutting the design variables links between subproblems.
The goal coordination method is also known as the dual method since the
second-level problem is the dual of the first-level subproblems. As might be
expected, this method will not work for all classes of NLP problems unless the
existence of a saddle point for the Lagrangian of the problem is guaranteed.
The saddle point exists, loosely speaking, only for convex programming
problems. However, useful results may be obtained for other classes of
problems {Lasdon, 1970; Wismer, 1971). Another shortcoming of this method is
the infeasibility of the intermediate values of design variables, thus the

iteration process must proceed until the optimum is reached.
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The two or multistage decomposition methods described in Sections 2.7 and
2.8 are applicable under the following requirements (Johnson and Benson 1984a
and 1984b):
(a) Constraint Inclusion Requirement, which requires that the solution to MC
subproblem(s) be compatible with the SC subproblem.
(b) Uniqueness Requirement, which requires uniqueness obtained from the MC

subproblem(s).

3. A Monotonicity - Based Decomposition Method (MBDM)

In this section, we present a proposed two-level decomposition method.
It is an extension of the model coordination method reviewed in Section 2.4
coupled with monotonicity analysis. In this method, the global (instead of
local) monotonicity analysis (Wilde, 1975; Papalambros and Wilde 1979 and
1980) has-been utilized in the first-level subproblem(s) to identify the
active constraints. This information is then sent to the second-level problem
which in turn finds a new point for an improved objective function. The new
point is then sent back to the first-level subproblem(s) and the iteration
process continues until an optimal solution is obtained.

In the next three sections we describe three class of problems, namely,
one subproblem with one local variable to the more general case of several
subproblems with several local variables, where we have applied the method.
In all three classes, the first-level of subproblems are solved by global
monotonicity analysis. The second-level problem may then be solved by any
conventional nonlinearly constrained optimization method (a single-level

method).
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3.1 One Subproblem with One Local Variable

We consider a problem which may be decomposed into two levels with one

subproblem which has only one local variable:

Minimize f(y;x) = f,(v) + £ (y; x)

Subject to: (3.1)
g1 (y) €0 1=1,..., L
gj (y; x) £0 j=1,...,J

where y is the interaction (global) vector of design variables, and x is the
local design variable in the subproblem. Thus, the subproblem is written in

the following form, where y is fixed:

Minimize fl(v; X)
Subject to: (3.2)
g1 (v; x) €0

go (v; x) €0
gy (y; x) €0

Based on the first rule of monotonicity, if the objective function of the

subproblem is monotonic, e.g. increasing with respect to (w.r.t.) variable x,
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then at least one of the constraints in the subproblem must be active.

Suppose that the first J' constraints (J' < J) in the subproblem have opposite
monotonicity, e.g. decreasing w.r.t. the variable x, and the rest of the
constraints, that is (J -J') constraints, have the same monotonicity w.r.t.
the variable x. Also, suppose that the subproblem can be rewritten in the

following form:

Minimize f1 (y; x)
Subject to: (3.3)

> 1
X gl(y)

X 2g'y:(vy)

1

x £g'(g + 1) (V)

x €g' y(y)

then the second-level problem can be written in the following form:

Minimize f(y;x) = f5 (v) + £y (v; x*)
Subject to: (3.4)
gp (v) €0 1=1,..., L
where
x* = max {g’J 1 € < J'},
the last equation may violate the rest of the constraints in the subproblem,
in this case, the violated constraint should be transfered from the first to

the second level problem. Note that similar argument may be made for the

case where the objective function of the subproblem is monotonic decreasing
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w.r.t. variable x.

Example 1:
This example is selected from Azarm and Papalambros (1984) where ¢ and d
are the design variables and K is the parameter:
0.86 -1.86

Minimize f(d; c) = Kgy ¢ d
Subject to: (3.5)

g1: Ky a2 ¢l «

go5: Kog ¢l «1

gg: Kg c3 d1l <1

g4: Kq Cc €1

gg: Kg d2 ¢33 + Lgd<1

g7: Kgcd + Lg ds€1

gg: c1 +Kgclalxa

gg: Kg d71 <1

g10: Kyg 4 €1

g11: K1103 d_z <1

Here, we select d as the fixed variable and ¢ as the local variable.

Thus the first-level problem is:

' 0.86 -1.86
Minimize f(c) = Ky ¢ d

Subject to: (3.6)
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g1: €2 (K] d2=g'])

g25: €2 (Kps = g€'25)

1

gg: c< (d/Kz = g'3)

gg4: c$ (1/K4 = g'y)

gg: c ( ((Lgd-1)/(Kgd2))1/3 = g'4)
g7: c¢$ (1-Lgd/(Kqd) = g'7)

gg: €2 (1 + Kg/d = g'g)

g11: c< (( d2/K;1)1/3 = g'qq)

and the second level problem is:

0.86 -1.86
Minimize f(d) = Koy c* d

Subject to: (3.7)
Kg € d € 1/Kqq
where

* = ' 1 t '
c max {g19g251 gsr gs}

Figure 10 shows the two-level structure for this example. Note that if
for a given value of d* in the first level, the rest of constraints are
violated i.e. g3, g4. €7, B11» then the violated constraints should be trans-

fered from the first to the second level problem.

3.2 Several Subproblems with One Local Variable
We consider here the problem which may be decomposed into two levels with
several subproblems, each having one local variable:
1

Minimize f(y;x) = f (y) + 2 fi (v: xj)
i=1
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Subject to: (3.8)
g1 (y) <0 1=1, ..., L
. . . £ i =
gl,J (y; Xl) <0 1 1, ..., 1
j=1, ..., J

index j corresponds to the number of constraints in subproblem i. The for-

mulation for subproblem i with X, as the only local variable is:

Minimize f; (v; Xj)
Subject to: (3.9)
gi,j (vi x4) €0 i=1, ...,

Again suppose that the objective function is monotonic, e.g. increasing,
w.r.t. variable xj. Suppose that the first J' constraints (J'< J) have oppo-
site monotonicity w.r.t. x;, e.g. decreasing, which means that based on the
first rule they are the candidate active constraints. Also suppose that the
subproblem i (1 € i € I) can be rewritten in the following form:

Minimize f; (y; Xxj)
Subject to: (3.10)

Xj 2 g'1,1 (v)

xj 2g'y,5 (y)
Xj €g'i,(J3" + 1) (¥)
i ég'i,J (v)

then the second level problem is written in the following form:
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n
Minimize f(y;x)} = fy(y) + E fi(yixi*)
i=1
Subject to: (3.11)
gy (y) <0 1 =1, ..., L

where
*
Xj = max {g'i,j 1 €3 <€ J'}
As before, those constraints, €i,j (v: xj), where j > J', which are violated
*
by the xj should be transfered from the first level subproblem(s) to the
second-level problem. Again, note that similar argument may be made for the

case where the objective function of the subproblem i is monotonic decreasing

w.r.t. variable Xj.

Example 2:

Consider the following example which has four variables and a total of
ten constraints:

Minimize f(X) = X1 + Xo + Xg + X3 Xg4 + X7 X2 + X3 X4

v Xy Xp X4 * X2 X3 X4

Subject to: (3.12}

+

g1: 8 + X1 X4 -2 xp 20

go: 12 + 4 X - x5 Xg4 20

+

g3: 12 + 3 x3 x42 _ 4 x, 20

g4: 8 + 2 X3 - Xo X4 20

o]
+

g5: X3 Xo -2 X4 20
gg: 5 + X3 - x4 20

g(6+i): Xi 20, 1 =1, 2, 3, 4
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Here we decompose the problem into two subproblems with x, and x4 as the
fixed variables for the first level, and x; and x3 as the local variables for
subproblem 1 and 2 respectively:

Subproblem 1:

Minimize f{ (X, X4; Xq) = X1 + Xp + X1 X9 + X3 Xp X4

Subject to: (3.13)
g1: 8 + X1 Xg4 -2 Xp 20
gp: 12 + 4 X1 -Xp X4 20
g3: 12 + 3 X1 X42 - 4 x5 20

g7: X1 20

Subproblem 2:

Minimize f(Xp, Xq; X3) = X3 + X3 X4 + Xp X3 X¢

Subject to: (3.14)
g4: 8 + 2 X3 - X3 X4 20
g5: 8 + X3 Xp - 2 x4 20
€g: 5 + X3 - X4 20
gg: X3 20

In subproblem 1, w.r.t. variable xy, constraints g;, g2, g3 and g7, are

the candidate active constraints. Therefore:

xy* = max { g'y,5 : J=1,2,8,7 ] (3.15)



where

! = (2 X2 —8)/ X4

q
—
-

|

1

(xp x4 - 12)/ 12

g'1.3 = (4 xg - 12)/ (3 x42)

g'1,7 =0
Similarly in subproblem 2 we have:

Xg* =max { g'2,j: ] =4,56,8}.

where
g'2,4 = (xg x4 -8)/ 2
g'2,5 = (2x4 -8)/ xp
g'2,6 = (x4 -5)
g'2,8 =0

Therefore, the second level problem is written in the following form:
Minimize f(xo, X4; X1%*, X3*) = x1* + Xp + x3*% + x3* x4 + x1*%xp

+ X1 X4 + X1% Xp Xg4 * Xp X3% X4

Subject to:
Xo 20, X4 20
where:
X1* = max { g'l'j : j =1,2,8,7 }
X3* = max { g'2,j ¢ j =4,5,6,8 } .

Figure 11, shows the two-level structure for this problem.

3.3 Several Subproblems with Several Local Variables

(3.
(3.

(3.

(3.

(3.

(3.

16)
17)

18)

19)

20)

.21)

.22)
.23)

.24)

25)

Here, we consider a problem which may be decomposed into two levels with

several subproblems, each having several local variables:
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I
Minimize f(y:;x) = f5 (y) + 2 fi(v:X;5)
i=t
Subject to: (3.26)
gi (y) <0 1 =1,..., L
gi,j (vi Xj) <0 j=1,...,3J

where i, j are the indices corresponding to the number of subproblems and
number of constraints in each subproblem respectively. X; is the vector of

local design variables in subproblem i. The formulation for subproblem i is:

Minimize f; (y; Xj)
Subject to: (3.27)

gij (v 5 Xj) <0 j=1, ..., J

Here, we assume that the number of active constraints in each subproblem, i.e.
inequalities which are satisfied in the form of equalities at the optimum, is
the same as the number of local variables in that subproblem. Again, suppose
that the monotonicity analysis is applicable to the subproblems, then follow-
ing the same procedure as before, the second level problem is written in the

following form:

Minimize f(y ; x) = f5 (y) + % fi (v ; Xi*)
i=1
Subject to: (3.28)
g1 (y) <0 1=1,..., L
where X;i* is found from the subproblem i, i =1, ..., I, as a function of the

intereaction variables y using monotonicity analysis.



Example 3:

This example is selected from the collection of Hock and Schittkowski

(1980). It has eight variables and a total of twenty two constraints:

Minimize f(x) = X1 + X2 +X3

Subject to:
g1:
go:
g3
£4:
g5
€6:

gr:

gg9,11°
£13:
£15*
€17:
£19:

£21°

We select variables X4 and

and then decompose the problem

first level:

Subproblem 1:

1 - 0.0025 (x4 + xg) 20

1 - 0.0025 (x5 + Xq - X4)
1 - 0.01 (xg - x5) 20

X1 Xg - 833.8325 x4 - 100
Xp X7 — 1250 X5 - Xp X4 +

X3 Xg - 1,250,000 - X3 X4 + 2500 x5 >0

100 < x; € 10000

1000 € x; € 10000

10 € x4 < 200
10 < x5 < 300
100 < xg € 1000
200 € x7 € 1000

300 € xg € 1000

Minimize fq(x4, X5; X1, Xg) = X3

X1 + 83333.333 20

1250 x4 >0

£8
£10,12
£14
£16
£18
£20

g22

x5 as the fixed variables in the subproblenms,

into two levels with three subproblems in the

31

(3.29)



Subject to:
g1: 1 - 0.0025 (x4 + Xg) 20
g24: X1 Xg — 833.33252 x4 - 100 x; + 83333.333
g7: 100 € xy € 10,000 gg
g17: 100 € xg <€ 1000 £18.
Subproblem 2:
Minimize f, (X4, Xg5; Xp, X7) = Xp
Subject to:
go: 1 - 0.0025 (x5 + X7 -Xg4) 20
g5: Xo X7 ~ 1250 x5 -Xp X4 + 1250 x4 20
gg: 1000 € x5 € 10000 T g10
g19: 200 € x7 € 1000 £20
Subproblem 3:
Minimize f3(x4, X5; X3, Xg) = X3
Subject to:
g3: 1 - 0.01 (xg -x5) 20
£€6: X3 Xg - 1,250,000 - x3 x5 + 2500 x5 20
€11 1000 € xg € 10000 T g12
g21: 300 < xg € 1000 t g2
The second-level problem is:
Minimize f = f; + f5 + f3
Subject to:
£13: 10 € x4 € 200 : €14
£€15: 10 £ x5 € 300 : g16.

Now, let us apply monotonicity rules to the subproblems:

b

0

(3.30)

(3.31)

(3.32)

(3.33)



In subproblem 1, according to the first rule of monotonicity, w.r.t.

variable x4 constaints g4 (if Xg > 100) and g7 are the candidate active

constraints
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Furthermore, based on the second rule of monotonicity, if g4 is

active, then w.r.t. variable xg constraints g; and gyg are also the candidate

active constraints. Therefore, from subproblem 1 we have:

X1
where

where

*

g£'1,1

g£'1,18

otherwise 100

<

max {g'1,4. €'1,7}

(833.3325x4 - 83333.333)/(xg -100)

100

1,4 Then:

min {g'1,1, 2'1,18 |

= 1/0.0025 - x4

= 1000

Xg* € 1000, as long as it is feasible.

Likewise in Subproblem 2:

Xz* =
where
]
£2,5
g'2,9
and If xo*% = g'

X7

max { g'2.5. g'2,9}

It

(1250 Xs ~ 1250 X4)/(X7 - Xgq)

1000

2,5 Then:

min { g'2,2. g'2,20}

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)
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where

g'z'z = 1/0.0025 + Xq4 — Xg (3.44)

g'2’20 = 1000 (3.45)
otherwise 200 € x7* < 1000, as long as it is feasible.

Finally, in Subproblem 3:

x3* = max { £'3,6. £'3,11} (3.46)
where

g'3,6 = (1,250,000 - 2,500 x5)/(xg - Xs5) (3.47)

g's 11 = 1000 (3.48)

and If xg* = g2'3,6 Then:

xg* = min { g'3,3, g'3,22} (3.49)
where

g'3,3 = 100 + x5 (3.50)

g'3, 22 = 1000 (3.51)

otherwise, xg* may be any value in the range of 300 < xg* < 1000, as long as

it is feasible. The two-level structure for this example is given in Figure 12.

3.4 Some Test Results

The methodology described in sections 3.1 - 3.3 has been combined with a
sequential quadratic programming technique of the type suggested by Powell
(1978). For each problem the first-level problem is solved by the global
monotonicity analysis and the second-level one using the VMCON (Crane et al.,
1980) program. We then selected a set of small to medium-sized problems to

evaluate the performance of VMCON with and without using the monotonicity-
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based decompositon. The results are shown in Table 1, where:

TP: Test Problem number
TP-[.1: Problem number in the reference [.], where
HS = Hock and Schittkowski (1983)
AP := Azarm and Papalambros (1984)
A := Azarm (1984)
NV: Number of the variable
NC: Number of constraints
NF/NG: Number of objective or constraint function evaluations

NDF/NDG: Number of gradient of objective or constraint functions evaluations
CPU: Central processing time in seconds
VM: VMCON program
MBD-VM: Combined Monotonicity-Based Decomposition and the VMCON program

The test results which are demonstrated in Table 1, indicates clearly the
advantage of coupling the monotonicity-based decomposition into the VMCON
program.
4. Concluding Remarks

The global monotonicity analysis has already been applied to many small
to medium-sized engineering design problems within a single-level framework
(see Papalambros and Li (1983), where further references can be found). In
this paper we have demonstrated how the global monotonicity analysis can be
applied within a two-level framework, and improve the performance of a conven-
tional (single-level) optimization algorithm. However, for large and complex

problems, the application of the global monotonicity to the subproblems may be



inhibited by the need for extensive algebraic manipulations. 1In that case, an
extension of the method presented here should be considered where in the
first-level subproblems the local (Azarm and Papalambros, 1984) rather than

the global monotonicity analysis should be used.
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TABLE 1: SOME TEST RESULTS

1 TP-[.] N | nc NF /NG NDF /NDG CPU
VM | MBD-VM VM | MBD-VM VM MB-VM
1 22-[Bs] | 2 | 2 25 16 8 15 1.56 1.43
2l 15-[As] | 2 | 3 16 5 5 2 1.48 1.45
3 17-[HS] 2 | s 34 15 11 7 2.20 1.49
4 20-[BS] | 2 | 5 58 5 19 2 2.44 1.37
5| 21-[HS] 2 | s 13 7 4 3 1.53 1.36
6 18-[HS] 2 | 6 34 27 11 13 2.30 1.56
71 19-[(8s] | 2 | 6 19 21 6 10 1.55 1.53
8 23-[HS] | 2 | 9 19 13 6 6 2.10 1.45
9 29-[BS] | 3 | 1 45 43 11 14 2.22 1.52
100 35-[BS]) | 3 | 4 29 16 7 5 2.40 1.39
11] 33-[BS] | 3 | 6 21 22 5 7 2.30 1.43
12l 30-[BS] | 3 | 7 37 10 9 3 2.25 1.44
13 31-[BS] | 3 | 7 37 28 9 9 2.26 2.13
14 36-[BS] | 3 | 7 9 7 2 2 1.51 1.45
15| 65-[BS] | 3 | 7 29 28 7 9 2.33 2.15
16 34-[HS] | 3 | 8 29 22 7 7 2.23 2.20
17 37-[BS] | 3 | 8 37 28 9 9 2.31 2.20
18 66-[BS] | 3 | 8 25 13 6 4 2.27 1.55
19 76-[HS] | 4 | 7 26 33 5 8 2.34 2.16
200 73-[BS] | 4 | 7 16 13 3 3 2.40 1.55
21| 44-[HS] | 4 |10 31 7 6 2 2.47 1.45
22 71-[HS] | 4 |10 31 25 6 6 2.14 2.10
23 106-[HS] | 8 |22 | 325 25 36 8 39.22 2.15
24{ 113-[HS] |10 | 8 | 166 323 15 46 9.14 5.28
25 2-[ap] | 2 |10 19 11 6 5 2.8 1.43
26]  —-[A] 7 | 25| 41 29 5 4 3.58 2.57




optimization of

Punch-Press

|

Y

optimization
of
flywheel

optimization
of
crankshaft

optimization
of
connecting
rod

FIGURE 1 TWO-LEVEL OPTIMIZATION OF A PUNCH-PRESS

second-level

first-level



calculate S; (k < 0)

p+l1 p n t
$§§ =8 +k [jzl(agj/asi) uj -vil

v1*(81) vi*(5;i) vn*(Sp)
S1 up*(sy) -..S4 u;*(Sj) ...Sp uy*(Sp)

x1*(81) Xj*(83) xp*(Sp)
subproblem Ly | ... | subproblem Lj | ... | subproblem Ly

FIGURE 2 TWO-LEVEL STRUCTURE OF THE LAGRANGIAN FEASIBLE METHOD



calculate Vij (k>0)

p+l p
Vij = Vij *+ k(XJ‘ - Sij)
A
E 3 .. * *
Vi1 Si1(vi1) i#j $ij(vij) $in(vin)
x1* Vij xj*(Vij) ... Vip Xn*(vin)
4
subproblem L4 e subproblem Lj e subproblem Lp

FIGURE 3 TWO-LEVEL STRUCTURE OF THE LAGRANGIAN DUAL FEASIBLE METHOD



e t
vj =.Z (agj/asi) uj

j=1
v1 up(vy.S1) vy ui(vi.S;)
54 x3(vy,S1) ...Sj xj(vi,Si)
Y

subproblem Ly

subproblem Lj

up(vp,Sp)

xn(Vn,Sn)

subproblem Lj

FIGURE 4 TWO-LEVEL STRUCTURE OF THE RELAXATION METHOD
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Hl = Min f1
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g1 £0
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Find y,
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Vo Xn

Hy = Min £,
s.t.
h, =0
gn €0

Yo

Vo

XN
Hy = Min fN
s.t.
hy =0
gy €0

FIGURE 5 TWO-LEVEL STRUCTURE OF THE FEASIBLE METHOD




Find v such that
N
Max Z Hp
n=1
and
¥n = ¥n+1
|
V1 21 . .Vn_1 zn vn
Vn Vn+1
Y Y
Hy = Min L4 Hp, = Min Ly Hp4qp = Min Hy = MinLy
s.t. vi Vn | s-t. Yn Yn+1 | Ln+1 Yn+1 VYN
hy =0 . h, =0 s.t. s.t.
g1 €0 gnp €0 hp+1=0 hy=0

FIGURE 6 TWO-LEVEL STRUCTURE OF THE DUAL-FEASIBLE METHOD



uy

Min Ll
Xy € 84

Find u such that

)
Max (Min ) L)

Uk Xk

Min Lk
Xk € Sk

Min Lp
Xp € Sp

FIGURE 7 TWO-LEVEL STRUCTURE OF THE DUAL METHOD




Decompose the Original NLP

to MC and SC Stages

MC Stage: ue = fo (v) SC Stage:
find an exact solve SC for
solution for u v¥
in MC
u, = £, (v) -

V*

FIGURE 8 TWO-STAGE STRUCTURE OF THE JOHNSON'S METHOD



Decompose the Original NLP Problem

to MC and SC Stages

MC, stage:

Ugy = fo1 (V)

Ugy = fo1(V)

>

#

MCp stage:

Uop = fom (V)

SC stage:

solve for v¥*

FIGURE 9 MULTISTAGE STRUCTURE OF JOHNSON'S METHOD




Minimize f(d;c¥*)

kg €£d < 1/k10

'y

c*(d) = max { g'1. €'25, £'6. £'s }

FIGURE 10 TWO-LEVEL STRUCTURE OF EXAMPLE 1



Minimize f(xp, X4: X1¥%, x3%)
s.t.

(x2,X4) 20

Xp X4 x*q Xp X4 x¥3

X1* = max { g'l,j : J=1,2,3,7 } X3* = max { g'z'j : j=4,5,6,8 }

FIGURE 11 TWO-LEVEL STRUCTURE FOR EXAMPLE 2



X5 X4 x1* xg*

Minimize f(x4,X5:;x1%, X2%*, x3*,

xg*, x7%, Xg*)

.t.

10 x4 € 200

10 €x5 € 300

A

X5 X4 x2* xq*

Y

X5 X4

X3* Xs*

x1* = max {g'1 4, €'7,17},

also, either
x¢* = min {g'y,1. £'1,18}

or

100 € xg* € 1000

x* ~max { g'2,5, €'2,9 |,
also, either
x7* = min { g'2,2, £'2,20 }

or

200 € xq* €. 1000

xg* = max { g'3,6.2'3,11}.
also, either
xg* = min { g'3 3, €'3,22 }

or

300 € xg* € 1000

FIGURE 12 TWO-LEVEL STRUCTURE OF EXAMPLE 3



