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Abstract

The analysis of the discrete multiscale edge representation is con-
sidered. A general signal description, called an inherently bounded
Adaptive Quasi Linear Representation (AQLR), motivated by two im-
portant examples: the wavelet maxima representation and the wavelet
zero-crossings representation, is introduced. This paper addresses the
questions of uniqueness, stability, and reconstruction. It is shown,
that the dyadic wavelet maxima (zero-crossings) representation is, in
general, nonunique. Namely, for all maxima (zero-crossings) repre-
sentation based on a dyadic wavelet transform, there exists a sequence
having a nonunique representation. Nevertheless, these representations
are always stable. Using the idea of the inherently bounded AQLR two
stability results are proven. For a general perturbation, a global BIBO
stability is shown. For a special case, where perturbations are limited
to the continuous part of the representation, a Lipschitz condition is
satisfied. A reconstruction algorithm, based on the minimization of
an appropriate cost function, is proposed. The convergence of the al-
gorithm is guaranteed for all inherently bounded AQLR. In the case,
where the representation is based on a wavelet transform, this method
yields an efficient, parallel algorithm, especially promising in an analog-
hardware implementation.
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1 Introduction

An interesting and promising approach to a signal representation is to make
explicit important features in the data. The first example, taught in ele-
mentary calculus, is a ”sketch” of a function based on extrema of a signal
and possibly of its first few derivatives. The second instance, widely used
in computer vision, is an edge representation of an image. If the size of
an expected feature is apriori unknown, a need for a multiscale analysis
is apparent. Therefore, it is not surprising that multiscale sharper varia-
tion points (edges) are meaningful features for many signals, and they have
been applied, for example, in edge detection, signal compression, pattern
classification, pattern matching, and speech analysis.

1.1 A Brief Review

Traditionally, multiscale edges are determined either as extrema of
Gaussian-filtered signals [16] or as zero-crossings of signals convolved with
the Laplacian of a Gaussian (see e.g. [5] for a comprehensive review ).
S. Mallat in series of papers [12, 10, 11] introduced zero-crossings and ex-
trema of the wavelet transform as a multiscale edge representation. Two
important advantages of this method are low algorithmic complexity and
flexibility in choosing the basic filter. Moreover, [10] and [11] propose re-
construction procedures and show accurate numerical reconstruction results
from zero-crossings and maxima representations. In [11, 10], as in many
other works in this area, the basic algorithm was developed using contin-
uous variables. The continuous approach gives an excellent background to
motivate and justify the use of either local extrema or zero-crossings as
important signal features. Unfortunately, in the continuous framework, an-
alytic tools to investigate the information content of the representation are
not yet available. The knowledge about properties of the representations is
mainly based on empirical reconstruction results. From the theoretical point
of view, there are still important open problems, e.g. stability, uniqueness,
and structure of a reconstruction set (a family of signals having the same
representation).

Our objective is to analyze these theoretical questions using a model of
an actual implementation. The main assumption is that the data is discrete
and finite. The discrete multiscale maxima and zero-crossings representa-
tions are defined in a general set-up of a linear filters bank, however, the
main goal is to consider a particular case where the filters bank describes



the wavelet transform. Since reconstruction sets of both maxima and zero-
crossings representations have a similar structure, a general form called the
Adaptive Quasi Linear Representation (AQLR) is introduced. Moreover,
many generalizations of the basic maxima and zero-crossings representa-
tions fit into the framework of the AQLR. This paper uses the idea of the
AQLR to investigate rigorously three fundamental questions: uniqueness,
stability, and reconstruction.

Regarding the uniqueness question, first, conditions for uniqueness are
presented. By applying these conditions to the wavelet transform-based rep-
resentation, a conclusive result is obtained. It turns out, that neither the
wavelet maxima representations nor the wavelet zero-crossings representa-
tions are , in general, unique. The proof is based on showing a sinusoidal
sequence, whose maxima (zero-crossings) representations cannot be unique
for any dyadic wavelet transform.

The next subject is stability of the representation. This issue is of
great importance because there are many known examples of unstable zero-
crossings representations. In order to improve the stability properties, Mal-
lat has included additional sums in the standard zero-crossings representa-
tion and, together with Zhong, they have introduced the wavelet maxima
representation, as a stable alternative to the zero-crossings representation.
Indeed, very good numerical results have been reported, but stability analy-
sis has not been pursued. Using the idea of the inherently bounded AQLR,
we are able to prove stability results. For a general perturbation, a global
BIBO (bounded input, bounded output) stability is shown. For a special
case, where perturbations are limited to the continuous part of the repre-
sentation, a Lipschitz condition is satisfied.

One of the most important practical problems is a need for an effective
reconstruction scheme. Mallat and Zhong in [11] and [10] have used an
algorithm based on alternate projections. In this paper, an alternative re-
construction scheme is proposed. The procedure is valid for any inherently
bounded AQLR and it is based on an appropriate cost function, whose min-
imum is achieved at the reconstruction set. Specifically, we focus on an
algorithm which is based on the integration of the gradient of the cost func-
tion. It is shown that this algorithm approaches the reconstruction set. This
method yields efficient, parallel algorithms, promising especially in the case
of the wavelet transform. In particular, the analog-hardware implementa-
tion, which is similar to a neural network, may lead to a very efficient and
fast scheme.



1.2 Previous works

The multiscale edge representation has mainly been investigated in the zero-
crossings case. The best-known result concerning the reconstruction of a
signal from zero-crossings is the Logan Theorem [9]. This theorem basically
states that zero-crossings uniquely define the signal within the family of
band-pass signals having the property that the width of the band is smaller
than the lower frequency of the band. Proving this theorem, Logan made an
analytic extension of the signal and used standard properties of zeros of an-
alytic functions. These tools are known as unstable and Logan has noticed
that the reconstruction from zero-crossings appears to be very difficult and
impractical. Under certain restrictions on the class of signals, usually poly-
nomial data have been assumed, several additional proofs that zero-crossings
form a complete (unique) signal representation have been published. All
known proofs do not provide any stability results since they are based on
unstable characterizations of analytic functions. The reader is referred to
[5] for more details and further references.

In addition, in the case of general initial data, the restriction to polyno-
mial data or even to band-limited signals may provide a poor approximation
of the original signal. The situation is similar to the fact that a polynomial
is determined by its zeros, but any nonzero value of a continuous function
cannot be determined from zero-crossings of the function.

In spite of the last remark, there have been a number of attempts to
reconstruct signals from multiscale zero-crossings, especially in image pro-
cessing, e.g. [3, 18, 14]. They have been based on the believe that the
restriction of a given reconstruction scheme into ”"natural” image data will
be sufficiently stable and precise. Although good reconstruction results have
been shown, however, any stability results have not been proven.

R. Hummel and R. Moniot ([5]) have exhibited the stability problem by
showing two significantly different signals having almost the same multiscale
zero-crossings representations. In order to stabilize the reconstruction of a
function from its zero-crossings, the authors have included the gradient along
each zero-crossing. In fact, improved numerical results have been reported
but stability has not been analyzed. The reconstruction algorithm in [5] is
based on the solution of a Heat Equation, this approach is valid only for the
Laplacian of a Gaussian filter and it is required to record the zero-crossings
on the dense sequence of scales.

Aware of the above problems, S. Mallat [10] proposed to use the wavelet
zero-crossings representation as a complete and stable signal description. In



order to overcome the apparent instability of zero-crossings, he has included
the values of the wavelet transform integral calculated between two consec-
utive zero-crossings. Using a reconstruction algorithm based on alternate
projections, very accurate reconstruction results have been shown. In the
next work, S. Mallat together with S. Zhong [11] introduced the wavelet
maxima representation as an alternative to the wavelet zero-crossings rep-
resentation. As in the zero-crossings case, they have demonstrated very
accurate reconstruction results. But, in both papers, neither uniqueness nor
stability has been proven.

From reading the related papers, we have concluded that using a con-
tinuous variable approach, several very promising representations and re-
construction algorithms have been developed. Especially algorithms based
on the wavelets deserve particular attention, because of low complexity of
the fast wavelet transform and because of possible flexibility in choosing
the basic filter. These algorithms provide accurate numerical reconstruction
results, but their basic properties have not been analyzed yet. The reason
seems to be, that the analysis of a continuous multiscale representation is a
very difficult mathematical problem. On the other hand, even if the contin-
uous analysis is given, the conclusions about the discrete realization are not
obvious.

The work is mainly motivated as an attempt to analyze rigorously the
numerical reconstruction results from the wavelet maxima representation
and from the wavelet zero-crossings representation. This objective leads to
the discrete and finite data assumption. It turns out, that the discrete im-
plementation of a continuous framework is a delicate procedure and many
details should be worked out. Even, in the case where the discretization
of the linear transform is straightforward !, the maxima and zero-crossings
representations should be redefined and the investigated problems should be
restated. Surprisingly, in the discrete framework, uniqueness, stability, and
reconstruction questions can be answered analytically. The following sec-
tions describe the obtained results. Before getting into details, let us point
out that the analysis gives rise to generalizations of the basic wavelet max-
ima and zero-crossings representations. As long as one keeps the structure
of an inherently bounded Adaptive Quasi Linear Representation (defined in
the next section), stability and reconstruction are guaranteed.

1 An additional advantage of the wavelet transform is a very clear correspondence be-
tween the continuous and the discrete transforms.



2 The Multiscale Maxima Representation

This section describes the definitions of a discrete multiscale extrema (max-
ima) representation, an Adaptive Quasi Linear Representation (AQLR), and
an inherently bounded AQLR. The main subsequent result is to show that
the multiscale maxima representation, based on a wavelet transform, is an

inherently bounded AQLR.
Consider £, a linear space of real, finite sequences:

cE{f:f= MG fn)eR}.

Let X and Y denote operators on £ which provide the sets of local max-
ima and minima, respectively, of a sequence f € L. The formal definitions
are :

Xf=A{k: f(k+1) < f(k) and f(k=1)< f(k) k=0,1,2,...,N=1} (1)

Yf={k:f(k+1)> f(k) and f(k—1)> f(k) k=0,1,2,...,N—-1}. (2)

In this work, in order to avoid boundary problems, an N-periodic extension
of finite sequences is assumed.

Let Wy, Wy, ..., Wy, 5, belinear operators on L. The sets XW, f, YW, f
are local maxima and minima points of the sequence W; f. The values of W f
at extreme points are denoted by {ij(k)}keXWJfUYW,f- The multiscale
local extrema representation, R, f is defined as:

ot 2 {{XW LYW, 1 W3 S0 sexwpormys} | Su ) ()

Mallat and Zhong ([11]) have further modified this transformation to
include only local maxima of absolute values. They have used the term
"maxima representation” for this signal description. Following [11], R,,f,
even in the version (3), will be called the multiscale maxima representation
as well. In the particular case, when Wy, W, ..., W; 5 correspond to a
wavelet transform, R,, f will be called the wavelet maxima representation.

Generally speaking, R, is a nonlinear operator and its analysis is not
easy. Our approach is to separate linear and nonlinear components. The
determination of the extrema points sets is highly nonlinear. However, for
the given extrema sets, X W, f and YW, f, the remaining data are obtained
by a linear operation of sampling an image of a linear operator at fixed
points. This observation is the motivation to consider R,,f as consists of



two parts: the sampling information and the maxima information. The
sampling information is the sequence Sjf and the values of W, f at the
points XW; fUY W, f (j=1,2,...,J). The maxima information consists of the
sets XW; f,YW,f and the of fact that the elements of XW;f and YW, f
are local maxima and minima of W;f.

Let T, s denote the linear operator associated with the sampling infor-
mation. The following is its precise definition.

Trmys: L — L°
such that for all h € L
Tngh = {Ssh, {W1h{(k) }kexw, suywi fs - - - {Wah(E)}kexw, suyw, s} (4)

L€ is the linear space of finite, real sequences of length N€, where

J
Ne=N+Y (| XW;f | +|YW;f]).

i=1

Now, R, f is written in an alternative way as:

Rof = {{XW;f,YW, f}]_), Ty S} - (5)

This form will lead to a definition of a general family of signal descriptions
having a common structure of a reconstruction set. For a given represen-
tation Rf, a reconstruction set T'(Rf) is defined as a set of all sequences
satisfying this representation, i.e.

T(Rf)£{yeL:Ry=Rf}. (6)
At this point, the structure of the reconstruction set of the multiscale
maxima representation is considered. It is clear that in order to satisfy a
given maxima representation, a sequence h € £, in addition to obeying the
sampling information
Trmsh = Ty f, needs to meet the requirement that W;h has local extrema at
points of XW;f and YW; f. Suppose that T}, sh = T}, 5 f and for a moment
let us dwell upon the latter condition. Roughly speaking, we have to assure
that W;h is increasing after a minimum and before a maximum and it is
increasing otherwise. In order to make it rigorous we need to introduce sev-
eral definitions. For any k € XW,fUY W, f, the segment of k& with respect
to extrema of f at level j, P;"f (k) is defined as:

mfroy 2 g ,

7



such that:
r>1
k+re XW;fUYW;f
E+1,..k+r—-1€e XW,;fUYW,f
where A denotes the complement of the set A with respect to
{0,1,...,N — 1}. Remark: due to the N-periodic extension, k + 7 is de-
fined modulo N.
Forall s € XW;fUYW,f, its type t(¢) is introduced by:

(2l —1 ifkeXWfandie P (k)
1 otherwise.

This is a valid definition because it is easy to show that for a given j and
forall i € XW;fUYW,;f there exists exactly one k € XW, fUY W, f such
that i € P/ (k).

The desired monotonic property can be achieved by enforcing an appro-
priate constraint on W; f(k+1)— W; f(k) (> 0,> 0,< 0,<0). If one of the
points k + 1,k is not an extremum, the kind of the constraint is a function
of k and will be defined by the type of k, t(k). If both k and k + 1 are
extreme points, the specific constraint cannot be defined solely either by &
or by k + 1. However, in the latter case, the sampling information assures
the right relationship between W;f(k + 1) and W; f(k). Consequently, the
regular subset of XW;f U YW, f is defined by:

(XW;fUYW,f) £{ke XW;fUYW;f:k+1e€ XW;fUYW,f}. (8)
Forall k € (XW;fUYW,;f)", the type of k, t(k) is defined by:

t(k)_é{ ~1 ifke XW;f

- 1 otherwise.

In view of these considerations, the following theorem is easily verified.

Theorem 1 R, f is a given multiscale mazima representation. h € T(R, f)
if and only if

Tmfh = Tmff (9)
1(k) - (W;h(k + 1) — W;h(k)) > 0 (10)

The last inequality should be satisfied for 7 = 1,2,...,J and for all
ke XW;fUYW;fU(XW,;fUuYW,f).




The maxima representations can be cast into the form Rf = {V f,Tf},
where V f is a set of points and T is a linear operator which may depend on
V f. However, the key feature of the maxima representation is the fact that
the set V' f yields additional constraints in the form of linear inequalities,
which do not appear directly in Rf. Stimulated by this observation, we
define the following general family of signal representations.

Definition 1 Rf = {V f,Tf} is called an Adaptive Quasi Linear Repre-
sentation (AQLR) if there exists a linear operator A and a sequence a such
that:

zel(Rf)yeTe=Tf and Az > a. (11)

A,a may depend on V f, but they must be independent of T f.

The reasoning behind the name ”Adaptive Quasi Linear Representation”
(AQLR) is the following. This representation is adaptive since T, A, a de-
pend on the sequence f (via the set V f). It is quasi linear because it is
based on a set of linear equalities and inequalities.

Clearly, the following is true.

Proposition 1 The multiscale mazima representations is an AQLR.

The next definition is a generalization of an essential boundness property
of the wavelet maxima representation.

Definition 2 An AQLR is called inherently bounded if there exists a real
K > 0 such that
e € D(Rf) = ||z < K|Tf]].

In this work, || || denotes the Euclidean norm. The coeflicient K can depend
on the parameters of the representation e.g. N,J, Wy,...,W;, S; but it
must be independent of V f and T'f.

Proposition 2 The wavelet mazima representation is inherently bounded
AQLR.

Proof: Let h € I'(R,f). We need to find K > 0 such that
|A|| < K||Tpyfl|- First recall (or see [11]) that the discrete wavelet transform
satisfies Parseval’s equality, namely:

J
1] = 11S5hl* + > W, (12)

J=1



Therefore, it suffices to bound ||W;h||, ||Ssk|l. Ssh is included in Tpf f,
hence:

ISabll < T £1I- (13)

Consider:
| Wih(n) |< max | Wih(n) |= max | W;f(n) |< |Tmsf|l. - (14)

The middle equality holds because W;h has the same local extrema as W; f,
in particular it has the same global extrema as W, f. The right inequality is
valid since max, | W;h(n) | appears (with its original sign) as a component
of Ty, s f. Therefore we conclude

IW;h|| < VN||Tos £ (15)

Substituting (15) and (13) to (12) yields:

2/l < (N + DT £ (16)

O

Remark: The above bound is not the best possible, for example the factor
V/J can easily be removed. However, we conjecture that the best bound has
to of order v/N|| T f]I-

The next section describes a very similar treatment for the multiscale
zero-crossings representation. The main observation is that the wavelet
zero-crossings representation is an inherently bounded AQLR.

3 The Multiscale Zero-Crossings Representation

In defining the multiscale zero-crossings representation, we essentially follow
[10], but minor changes are necessary due to our basic assumption that only
a discrete signal version is available. Let Z be an operator which provide a
set of zero-crossings points of a given sequence f € L, i.e.

Zf2{k: f(k=1)- f(k) < 0}. (17)

Mallat in [10] has stabilized the zero-crossings representation by includ-
ing the values of the wavelet transform integral calculated between consecu-
tive zero-crossings points. For the purpose of the precise discrete definition
of these values, the segment of k, with respect to zero-crossings of f at level

10



J,is introduced. It is denoted by Pff(k) and defined, for all k € ZW;f, as
follows:
2oy 2
P(R)={kk+1,...,k+7} (18)

such that
r>0

k+r+1€ZW,f
k+1,k+2,...k+reZW].

The sequence of sums of h(n) between consecutive zero-crossings points of
f at level j, U;fh is given by:

UhE{ ST wih(i) . (19)
iePJf’f(k) keZW, 1

The multiscale zero-crossings representation, R, f, is defined as:

Rof 2{{2W; 1, U 1Y]o0, 801} (20)

Asin the maxima representation case, for fixed sets ZW; f, the remaining
data U;ff and Sy f are obtained by a linear operator, denoted by T;.

T.p: L — L°

such that:
Toth = {Ssh, U h, ..., U R}, (21)

L° is a linear space of finite, real sequences of length N + Zle | ZW;f | .
The zero crossings representation becomes:

R.f = {{ZW; Y1 T } - (22)

The above form is helpful in the study of the structure of the reconstruc-
tion set. Note, that in order to have h € I'(R, f), in addition to obeying

Tth = Tsz’

W;h has to satisfy sign constraints yielding zero-crossings exactly at ZW, f
points. For the purpose of stating precisely the latter constraint, the set

(ZW; f)" is defined.

(ZW3f) & (k€ 2W;f - (U £) (k) # 0} (23)

11



Observe that (ZW;f)" consists of "proper” zero-crossings points, namely
only points k for which W; f(k) # 0 are taken into account.

Theorem 2 Let R,f be a given multiscale zero-crossings representation.
h € T(R.f) if and only if

T, h = Tuf (24)
sgn (U3 1) (B)) - Wih(i) > o0. (25)

The last  inequality  should be  satisfied for j=1,2,...,J
and for all i € ZW,; f U (ZW; f)" where k satisfies i € P;f(k).

Proof: By straightforward applications of the above definitions.
O
As an immediate consequence of the theorem we are given:
Proposition 3 The multiscale zero-crossings representation is an AQLR.

The following characteristic of the zero-crossings representation requires
the perfect reconstruction property, which is one of the basic features of the
wavelet transform.

Theorem 3 The wavelet zero-crossings representation is an inherently
bounded AQLR.

Proof: Let h € T(R.f). T [ will be an abbreviated notation for Ty f. We
need to find a constant /' > 0 such that ||h]] < K||T f|].

Let j and k € ZW; f be arbitrary and fixed. It follows from the sampling
information constraint (refeq:24) that:

S Wik = Y Wify= (U7 1) (k). (26)

1P (k) 1P (k)

Since W;h has the same zero-crossings points as W, f, for all [ € szf(k) the
values of W;h(l) have the same, fixed sign. Therefore

> 1wk = | (U7 F) (k). (27)

(L
1P (k)

12



Applying
fo < Z.Z? +2-Z:L’i:vj = (Zwi)z

for nonnegative z;’s, we obtain:

> 1wk P< | (U F) )] (28)

1eP (k)

Now, using the Parseval’s equality and the definition of the Euclidian norm:

J
B2 = 1Sh)% + S |Wik||? =

i=1

N J
=Y 1S P+ Y >0 I wih() P
=1

J=1 keZW;f lEP];f(k)

2

J
YIS P+, Y |(Ujff)(k)\2:HTsz-
1

i=1 keZW,f

Thus, finally
(IRl < 1T /Y- (29)

0

Notice, that for the wavelet zero-crossings representation, K = 1, regardless
of the values of N and J.

4 Basic Properties of AQLR’s

After two important examples of inherently bounded AQLR’s, the wavelet
maxima representation and the wavelet zero-crossings representation, have
been described, several basic properties of AQLR’s are presented. The in-
troduced results are: uniqueness characterization, description of the recon-
struction set by its vertices, and bounds on the reconstruction set. The first
result is valid for any AQLR, while the remaining two are valid only for in-
herently bounded AQLR. They are based on convex analysis and parametric
linear programming. There are many relevant sources for the subject, we
have mostly used [15, 4]. The primary objective of this section is to estab-
lish foundations for the subsequent discussion about uniqueness, stability
and reconstruction.

13



A representation Rf = {V f,Tf} is said to be unique, if the recon-
struction set T'(Rf) consists of exactly one element. We have the following
uniqueness characterization for AQLR’s.

Lemma 1l Let Rf = {V f,Tf} be an AQLR. Then Rf is unique if and only
if the kernel of the operator T is trivial, i.e. NT = {0}.

Proof: The lemma becomes obvious by topological arguments. Never-
theless, an elementary but constructive proof will be given. Initially, let us
assume that the representation is not unique. Then there exists h # f such
that Rh = Rf. In particular, Th = T f, but then 0 # h — f € NT.

Next, consider the case where the kernel of 7', AT is not trivial. Let
h # 0 be such that Th = 0. Suppose a > 0 and consider fo, = ah + f,
with f € I'(Rf), as a candidate to belong to T'(Rf). Of course Tf, = Tf,
therefore f, € I'(Rf) if and only if Af, > a (see Definition 1). The latter
is equivalent to:

a-Ah>a— Af. (30)

Let (a — Af); be the i-th component on the vector a — Af. Observe that
(a — Af); is negative for all 3. Define:

(a—Af),- :

S (AR < o}. (31)

a . {

Qg = min

Note that ap > 0. It is easy to show that for all « such that 0 < a < ag:
Afa > @ (32)

Consequently, the representation Rf is not unique.

O

This claim has some significant consequences. Using the above lemma,
an algorithm which tests for uniqueness can be developed. One option is
to derive it from a rank test of the operator 7. Another, more ambitious,
approach is to characterize, for a particular application, all sets V f giving
rise to a unique representation. Perhaps the most important consequence of
Lemma 1 is the fact that uniqueness of the representation R f is equivalent
to uniqueness of the underlying irregular sampling T f. In other words, in
the unique case, all the information about the signal is already contained in
Tf. Additional constraints Af > a are redundant. On the other hand, from
the signal compression, understanding and interpretation point of view, it

14



seems to be desirable that a little information would be specified explicitly by
T f and as much as possible information about a signal should be described
implicitly by Af > a. Therefore, in our opinion, the most important and
interesting features of AQLR’s appear in the nonunique case.

At this point, the structure of the reconstruction set is described. Let
Rf ={Vf,Tf} be an AQLR, its reconstruction set is given as: 2

F'={¢:Ta=Tf, Az > a}. (33)
The closure of the reconstruction set, I'® is the following convex polyhedron.
I*={¢:Te=Tf, Az > a}. (34)

Since every equality of the form @; = ¢; can be replaced by two inequalities
x; > 1, —x; > —1;, without loss of generality, we can assume that

' ={z: Bz > b}

for a given p X N matrix B and a p-dimensional vector b.

For an inherently bounded AQLR’s, the associated set I'® is bounded.
Therefore as a special case of the theorem of Krein and Milman [8], the
following holds.

Theorem 4 For an inherently bounded AQLR, the closure of the recon-
struction set is the convex hull of its finitely many vertices.

In the sequel, the following property of a polyhedron vertex will be used.
Let {z : B& > b} be a polyhedron and v* its vertex. Then, there exist N

rows of B, which constitute a regular matrix [B]* such that:

vl = (187) -l (35)

where [b]° is a subvector of b corresponding to these N rows. By inserting
zero columns to the matrix ([B]i)_l, the matrix D' is obtained, such that:

vt = Db. (36)

Since the closure of the reconstruction set is the convex hull of its vertices,
the above equation can characterize the changes in the reconstruction set

2The abbreviated notation T is used instead of T'(Rf).

15



due to perturbations in either the matrix B or the vector b. Accordingly, it
will be used to prove the stability results.

The last part of this section, addresses the problem of finding bounds
for the set I'“ = {& : Ba > b}. Especially, we will focus on the bound in
which the dependency on the matrix B and on the vector b will appear in
different factors.

Consider the following characterization of a bounded polyhedron.

Theorem 5 ([15] pp 65)

The polyhedron I'® = {a : Bz > b} is bounded if and only if it contains no
halfline. If I # § the lalter statement holds if and only if the associated
homogeneous system of inequulities:

Bz >0 (37)
admits no nonzero solution.

Notice, that the homogeneous system of inequalities is b independent.
Therefore, if exists one by yielding a bounded polyhedron, then {z : Bz > b}
is bounded for all . Let us assume that the matrix B is fixed and arbitrary,
but there exists bg such that the set {z : Ba > by} is nonempty and bounded.
Then, from the second statement of the theorem, for all z # 0 there exits
at least one index ¢ such that (Bz); < 0. Let us define

I(z) £ {i: (Bz); < 0}. (38)

Observe, that the following function is well defined for all © # 0.

An(2) 2 nﬂn{(;;) 1€ I(:v)}. (39)

Next, consider I'y, the projection of I'° on the unit ball:
Ty £{Z:||Z| =1, and 3X\(Z) >0 such that A(Z)-Z eI}  (40)
Proposition 4 A, (Z) is a positive, continuous function for all 7 € Ty.

Proof: If z € I'y then MZ)(Bz); > b; (1 = 1,2,...,p). Since for i € I(Z),
(BZ); is negative, therefore, in this case, b; has to be negative and




for all ¢ € Z(Z). Thus, in particular, A,,(Z) > 0 for all € T'y. Consequently:

= max { (Ba): 1t E I(a:)} .o (41)

ﬂm(w) = b;

1
Am(2)
To proceed we need to get rid of the set Z(z) inside the above maximum.
Let us define :

Iy 2 {i:b; < 0}. (42)
Notice, that Z(Z) C 7, for all Z € I'y. Thus, §,,(Z) can be written as:
Bz); .
Bm(Z) = maz {mam{(—bz_;—)—,O} i EIb}. (43)
From the above formula, it is clear that §,,(Z) is a continuous function for
all 7 € T'y. Therefore, since 3,,(Z) > 0 for all Z € I'y,

Anl) = =

Bun(Z)
is a continuous function for all ¥ € I'y as well.

O

Because T'y is a compact set, the following maximum is well defined.
A = max{\,(F): 7 € Ty} (44)

In view of the above considerations, it is easy to show that A,, is a tight

bound on I'¢, namely:
Ve €T¢ ||z| < Am (45)

Jdz € T° such that [[z]| = A (46)

The bound A,, is clearly the best possible. However, it has two impor-
tant disadvantages. The first is the need to know I'y which, although, can
be determined independently of calculating I'°, may involve complex com-
putations. The second disadvantage is that the effects on the bound of B
and b are not separated. In what follows, a less accurate bound, but without
the above drawbacks, will be calculated. Consider:

Ap(2) = min { (];);)l i e I(.L)} <

17



Smax{|bi|:i:1,2,...,p}-min{{ :iEI(.r)}S

-1
(Bz);
11 E I(:z:)} .

< 1 - min{ { = j)i

Let us define

Ao(z) 2 min{{ (1;;)1 (1€ I(.’L)} . (47)
Proposition 5 A,(2) is a positive and continuous function for all x # 0.

Proof: As a consequence of the definition of Z(z), A,(z) is positive for all
z # 0. To show continuity, let us consider:

ﬁo(z) = max{—(Bz); : 1 € I(z)}. (48)

o( Xo()
Which can also be written as:
Bo(2) = max {max {—(Bz);,0} : i =1,2,...,p}. (49)

It is apparent from (49) that G,(2) is a continuous function of z, and thus
Ao(z) is continuous as well.

]

From the latter form one can see that 8,(2) depends on B and 2 but it is
b-independent. Consider any compact set U¢ containing nonzero elements
such that I'yy C U¢ Then for all Z € T'y:

Am(Z) < [0 <
(@) < U 55 <
< b -max{ ZIL‘EUC}. 50
o max {5 (50)
For example, the unit ball U = {z : ||z|| = 1} is used as a set U®. Then,
using only the matrix I3, the coefficient Fyy is calculated as:
Bu = min {max {max{—(Bz);,0}:i=1,2,....p}:z € U}. (51)

Combining together (50), (45), (44) the following result is obtained.
ol < L vz e pe (52)
Bu

The above bound will be used to prove the convergence of the reconstruction
algorithm.
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5 The theory of nonuniqueness

The section aim is to show that, in general, the discrete dyadic wavelet
maxima (zero-crossings) representation is not unique. The results are con-
sequences of Lemma 1, which relates uniqueness of the representation to the
set N'T, the kernel of the sampling information. The main idea is to show
a sequence f such that the set N'T corresponding to the representation Rf
cannot be {0}. The precise statement of the theorem is as follows.

Theorem 6 A discrete dyadic wavelet maxima (zero-crossings) represen-
tation based on a discrele low pass filter H(w) is given. If H(w) = 0,
J >3, and N is a multiple of 27 then there exists a sequence f which has a
nonunique marima (zero-crossings) representation.

Let us point out that, although, the hypothesis of the theorem may seem
to be demanding, it is just a technical condition. Usually the number of
levels, J, satisfies J > 3. In order to benefit from the fast wavelet transform
N has to be a multiple of 27. Since H(w) is a low pass filter, it is natural to
assume that | [ (w) | reaches its minimum at x. If this minimum is nonzero,
then essentially S f contains all information about f and the maxima (zero-
crossings) information is redundant. Indeed, all filters used by Mallat, Zhong
and many others fulfill the conditions the theorem.

The most of the section describes the proof the theorem, which will be
divided to proofs of several propositions.

The construction of the counter example is based on the set B, defined
as follows:

S J-1 J1_
B={{e)2 {1251} (53)
where 5
cr(n):cos(——ggﬁ) n=0,1,...,N-1 (54)
2 o
sp(n) = sin( 7;11) n=0,1,...,N - 1. (55)

Proposition 6 The set B is included in NSy, the kernel of the operator
Sy.

Proof: This proof applies sonie specific properties of the discrete dyadic
wavelet transform. For through description see [11]. In the sequel, the same
notation as in [11] will be used, but only the aspects, necessary for the proof,
will be described.
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In the discrete dyadic wavelet transformn case, the sequence Sy f is defined
by the following recursion formula:

Sipif=S;f+h; j=01,2,...,0-1 (56)

with Sof = f. The symbol % denotes the discrete (N periodic) convolution
operator, and the sequence h; is obtained, from the given 27-periodic trans-
fer function H(w), in the way described below. Let TL]' denote the Discrete
Fourier Transform (DFT) of the sequence hj, i.e.

N-1
nk
hj (k) = Z hj(n)exp(— 27rz—j—v—) k=0,1,...,N — 1. (57)
n=0
The DFT of hg = h is obtained from the continuous function H(w) by
sampling at wy = 27r%, namely

~ k
hk)y=H(2r—) k=0,1,...,N—1.
N
Similarly Ej(k) is defined as the value of /I(2'w) at w = 27 £.
h(k) = ]I(QjQW%) k=0,1,...,N—1.

Since the periodic convolution corresponds to the multiplication of DFT’s,
the DFT of S;f can be written as:

~

Syf(ky=8;(k)f(k) k=0,1,...,N -1
where
So() = T] Fulk) (58)
=0

is the discrete transfer function of the operator Sy. At this point, let us
consider: v
7 I
m(r) = 57 T=ELE2. 42 1. (59)
Recall that N is a multiple of 27, thus m(r) is an integer. The next step is
to show that SJ(m( )) = 0. Notice that r can be written as r = 2'r; where

0<I1<J-1and ryis an odd number. See that:

2 71N

BJ—I——I =1 (ZJ I-lyp N3

) = H(wry) = 0. (60)
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Therefore, using (58), indeed we obtain:

Sy (m(r)) = 0.

(61)

The integers m(r)’s, as zeros of the transfer function 57, will be used to
define sequences belonging to the null space of S;. Let e, be the following

exponential sequence

er(n) = exp (27ri§—\7;—) n=0,1,...,N - 1.

Its Discrete Fourier Transform, €, is given by:

G(k) = Né,(k)

6T(k):{ 1 iftk=r

where

0 otherwise.

Combining  together (61) and (63), ome can conclude
SJem(,.) = 0, thus
Sjem(r) = 0.

The sequences ¢,, s, are expressed by e,,(,)’s in the subsequent way:

2Trn 1
cr(n) = cos( 27 )= 'Z'(Em(r) + em(—r))
2rrn 1

sp(n) = sin( 57 )= Z(em(r) =~ €m(=r))-
Therefore Sje, = 0 and Sys, =0 for r =1,2,...,27°1,

O

(62)

(63)

that

(64)

Notice, that s,s-1 does not appear in the set B. The reason is that
897-1 = 0 and in the next proposition the independence of the set B is

asserted.

Proposition 7 The set B is linearly independent.

Proof: It is a well known fact, which can easily be proven by showing that

the set B is orthogonal and does not contain zero.
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As an universal counter example of nonuniqueness the following sequence
is proposed.
n
f(n) = cos('27r2—J) n=0,1,...,N - 1. (65)

Observe that the same sequence is proposed for all dyadic wavelet transforms
and for both the maxima representation and the zero-crossings representa-
tion.

The representation R,,f (R.f) is unique if and only if
NTns = {0} (NT,; = {0}). Consequently, the nonuniqueness of R,,f
(Rm f) is easily deduced {rom the following proposition.

Proposition 8 The equation

Tofh =0 (T,h=0) h € span(B) (66)
has a nontrivial solution.
Proof: Consider an arbitrary h € span(B).

9J—1 2J-1_1

h = Z a;c; + Z aks; (67)
=1 =1

The dimension of span(B) is 27 — 1. The idea is to show that the set of
equations Ty, sh = 0 (1, sh = 0) yields less than 27 —1 independent equations
with unknowns ({«;}, {al}). Recall that:

Tmgh = {Sqh, {Wih(E) }rexw, fuyw, £y s {Wah(k)}kexw, fuyw, £} -

and
Typh = {Sih, U h, ... U7 h}.

From Proposition 6 we sce that Syh = 0 for all ({a;}, {a}). Let j be fixed.
Consider the equations:

Wih(ky=0 ke XW,;fUYW,f (68)

or
UZh(k)=0 ke ZW,f. (69)

Recognize that f is a 2/-periodic sinusoid, therefore W;fis a 27 periodic
sinusoid as well. Morcover W;c;, W;s; are 27 periodic too. Therefore solving
the equation (68), it suffices to consider

ked{0,1,....27 —1}(J(XW;f UYW,[).
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But W; f has only two local extreme points in a 27 period, consequently (68)
contains only two different equations with unknowns ({&;}, {a;})! Similarly
for zero-crossings, (69) has only two different equations. There are J levels
(j = 1,2,...,J) so the set of equations Trmh = 0 (T.sh = 0) consists, at
most, of 2J independent equations, but

2/ —1>2J VJ>3. (70)

Accordingly, the equation (66) has a nontrivial solution and the representa-
tion is not unique.

]

Some remarks neced to be made at this point. From the proof, it turns
out, that it is relatively casy to produce more examples of nonunique dyadic
wavelet maxima (zcro-crossings) representations using 2P-periodic signals,
where p is an integer. Tor example, consider J = 5 and let f be a
25_-periodic signal. Then W;f (j = 1,2,...,5) are 2%-periodic as well. In
this case, if 2/ — 1 = 31 is greater than the total number of local extrema
(zero-crossings) of W, f,Waf,...,Wsf per one 27 period, then the repre-
sentation is not unique. In other words, if W, f’s have, in the mean, less
than % = 6.2 local extrema (zero-crossings) in one period, than R, f (R, f)
cannot be unique.

Hummel with Moniot [5], Mallat [10], and Mallat with Zhong [11] have
reported that high {requency errors may occur in the discrete maxima (zero-
crossings) representation. Ior these 27_periodic signals, components of the
reconstruction error can appear as 2P-periodic signals for p = 1,2,...,J.
Most of them cannot be related as high frequency errors. For more details
and for the specific example, the reader is referred to [1, 2].

From our simulations and from Mallat’s results it turns out that for
the vast majority of signals, the representation is unique. We even conjec-
ture that the wavelet maxima (zero-crossings) representation is unique for
a generic family of signals, but we are not able to prove it.

6 Stability
Addressing the stability issue, the standard approach is to introduce the

notion of perturbations: of the representation and of the reconstruction set.
In addition, measures for a distance between distinct representations and for
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a distance between different reconstruction sets should be defined. In gen-
eral, it is not an easy task. Remember that V f,T f may have different sizes
for different representations. Fortunately, for inherently bounded represen-
tations, the following characterization of BIBO (bounded input, bounded
output) stability is easily verified.

Proposition 9 Let Rf; = {Vfi,T;fi} ¢ = 1,2 be inherently bounded
AQLR’s. Then for all K1 > 0 there exists Ko such that:

IT:fill < K1 (i=1,2) = |21 — 22| £ Ko Vz; € T(Rf;)

Proof: This claim is an immediate consequence of the definition of an
inherently bounded AQLR.

2; € F(sz) = Hl,“ <K - “TleH < K-K;

e = 2el) < [faall + flafl < 2K - K
)

The above result is strong in the sense that it is valid regardless of the
sets V f1,V fo. Tt is weak in view of the fact that the bound on ||zy — 22|
is achieved by the bounds on absolute values of 27, 25. In this case, a small
perturbation in the representation does not necessary yield a small bound
of ”:L’l — &9
structure of the perturbation is assumed, but a bound, proportional to the

|. The next result is complimentary in the sense that a certain

size of the perturbation, is given.

In many applications, the reasons for perturbations in a representation
are arithmetic or quantization errors in a reconstruction algorithm. This
kind of perturbations may change the continuous values of T f but it pre-
serves the discrete values of V f. Therefore the perturbed representation,
(Rf)p, can be written as:

(Rf)p ={VL,Tf+ AT} (71)

Let I', be the corresponding reconstruction set. In general, the distance
between two reconstruction sets, I' and I'p, is defined by:

d(r,r,) 2 sup{/ly = 7ll : v € L,yp € T}
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Observe, that for inherently bounded AQLR’s, d(I',T,) is always finite. The
measure of the perturbation in the reconstruction set is the difference be-
tween d(I',T',) and the size of I' which is defined as follows:

s(T') £ d(T', T) = sup{||y1 — 7ol : 71,72 € T'}. (72)

s(T') and d(I',T',) describe the largest possible Euclidian norm of a recon-
struction error, from the original representation and from a perturbed one,
respectively.

One remark is in order. In general, for an arbitrary A(Tf), the as-
sociated reconstruction set may be empty and then d(I',T'),) would not be
defined. In the sequel, it is assumed that this problem is treated by a recon-
struction algorithm and hence A(T' f) yields a nonempty I',. In this case,
the following Lipschitz condition is satisfied.

Theorem 7 For all inherently bounded AQLR, there exists K > (0 such
that:
d(T,Tp) < K- [AT A + s(T). (73)

Proof: Let I and T be the closures of the sets T' and T, respectively.
Since |lv — 9|| is a continuous function on I'* X I';, which is a compact set,
then there exist v € I' and v € T'; such that:

lo = 8]) = d(1°,T<) = d(T', T,). (74)

Moreover, v and @ have to be vertices of I'“ and I';. Indeed, if, for example,
v is not a vertex, then there exists € > 0 such that v + ¢(v - 2) € I'’, and:

lo4+e(v—0)—3|]|=(14+¢€)-||lv—2|>]|v- 72| (75)

It contradicts the fact that [[v — || = d(I'°, T%).
Let A(Tf) be fixed and arbitrary, such that I, is nonempty. We define

(RN EVATI+N-ATS} 0<A<L (76)

with the underlying reconstruction set denoted by F;}. From the definition
of an Adaptive Quasi Lincar Representation (AQLR):

WA . -
Iy={e:Te =Tf+A-A(Tf) and Az > a}. (77)
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The above formula yields the following observation: if zg € T = Fg and
¢y € Tp =T, then

ot A (zm—zo) €l 0<ALL , (78)

Therefore F;\ is nonempty for 0 < A <1 and d(T, I’;‘) is well defined.
Next, notice that the closure of I“Z’} is given by:

(FQ)C ={z:Te=Tf+X-A(Tf) Az >a} = {z: Bz > b+ AAb}. (79)

where B is a p x N matrix and b, Ab are p-dimensional vectors. Since every
equality of Te = T'f + A - A(T'f) appears in two rows in Bz > b+ AAb:

[Ab] = 2| AT ) (80)
We know that
d(T, 1) = |t = 2} (81)
where v* is a vertex of ' and 7" is a vertex of (FT’})C. Using (36) we can
write:

v} = Db and %" = D'(b+ AAb). (82)

Both matrices D and D! arc obtained from an inverse of a regular submatrix
of B. Note that ||[Db — D(b + AAb)|| is a continuous function of A for any
two matrices D, D. Therefore, if

[0* = 5| < [[vo — | (83)

A

p>c, respectively, which are different

for all pairs v,, 9, of vertices of I'¢, <I‘

from v*, %%, then therc exists a segment [A;, A\;y1] such that:
d(T,T3) = ||D'b — Di(b+ AAB)|| YA € [Ai, Aiga]. (84)

Furthermore, there exists another pair of vertices, with associated matrices
D1 and D* 1, such that:

d (0,13) = | D' = D'(b+ \:Ab)|| = || D776 — D7 (b + \Ab)|.  (85)

Next observe that since the number of regular submatrices of B is finite,
the number of possible pairs D, D is finite as well. Consider

[|[Db — D(b + AAD)|| and ||Db — Dy(b + AAb)|| as two functions of A. As
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square roots of quadratic {orms, these expressions may coincide or be equal
for at most two values of A. Therefore all possible pairs of these functions
intersect at finitely many points. Consequently, there exist I points:

0= X< AM...<Ap1=1 (86)

and L pairs of matrices (D?, D') i = 0,1,..., L — 1 such that Db is a vertex
of I'® and Di(b + AAb) is a vertex of (I‘;) for all A € [A;, A\iy1]. Moreover

d(T,T)) = || Db — D'(b+ AAb)|| YA € [Ai, Xiga]- (87)

d(T,1)) = |D' - Di(b+ XAb)]| = [|D'"'o = D' (b+ NAb)||.  (88)

Proposition 10
i—1
d (T} <d(T,T0) + 3 (Akyr — i) - | D* A0 (89)
k=0

Proof: By induction on i. Let ¢ = 1,

d(T, T3 = || DY — DY (b+ M\ AD)|| =

215
=|D% — DO(b + M\ Ab)|| =
=||D°% — Db+ D% — D°(b + A\ Ab)|| <
< ||D°% — D|| + || D% — D°(b + A\ Ab)|| =
= d(T,T) + A - || DAb]].
Since Ag = 0, the above is exactly the claim for ¢ = 1. By induction, let

us assume that the proposition holds for ¢ — 1. Consider:

AT, T3 = ||Dt — Db+ MAD)|| =

* i p
= | DY — DTN (b4 X1 ALY + Db+ Mim1 AD) — DTN 4+ MAD)|| <
<D= DI+ M AW+ | DTN+ Mim1 AD) — Db 4 M Ab)|| =
= d(T, Ty =) + (A = A | DAY <

(using the induction assumption)

-2
S AT D)+ Y (Negs = M) DFAD]| + (i = Nica)|| DAY =
k=0 )
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i—1
= d(T,T)+ >_ (kg1 — Ae)|| DFAY.
k=0
This concludes the proof of the proposition.

O

Using the proposition we deduce that the distance between I' and T,

satisfies:
L—1

d(T,Ty) < d(T,T)+ Y (Aes1 — M)l D*Ab]. (90)
k=0

Let || D*|| be the induced matrix norm of D*. Then
ID*AB|| < || D'l - [|Ab]). (91)

Since the number of possible matrix D* is finite, there exists Kp > 0 such
that: .
D'l < Kp (92)

for all valid D'. Combining together (92),(91), (90) we show that
d(I',T'p) < d(T',T) + Kp||Ab||. (93)
By taking K = 2K p and using (80), the desired relation is obtained:
(I,T,) < d(T,T) + K - [ AT (94)

O

Observe that the above result is global in the sense that as long as A(T f)
gives rise to a nonempty reconstruction set, the theorem holds regardless of
the size of A(T'f).

One can ask whether the shown kind of stability is indeed the property
that has been desired to achieve. The answer has several different aspects
and let us dwell a while upon this subject. First consider the following cita-
tion from Hummel and Moniot [5] 7 stability of the representation concerns
continuity of the inverse map ”. Theorem 7 is exactly of this type. Another
citation, from [10] is as follows: ” a representation is said to be unstable if
a small perturbation of the representation may correspond to an arbitrary
large perturbation of the original function.” This definition refers to BIBO
stability, which was given by Proposition 9. In view of these considerations,
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stability, as presented in this work, is indeed a necessary property of mul-
tiscale edge representation. But it does not mean that inherently bounded
AQLR will always provide accurate reconstruction results. Somehow, per-
haps because of partial uniqueness results obtained by unstable tools, poor
reconstruction results are often regarded as evidences of instability. For
instance, such was the case in the example given in [5], mentioned ear-
lier. A careful discrete analysis may point out different possible reasons for
inadequate reconstruction results, e.g. nonuniqueness of the discrete rep-
resentation, instability or high sensitivity of the reconstruction algorithm.
Therefore, stability should not be viewed as a sufficient condition of a sig-
nal description, and every practical signal representation has to be tested
quantitatively with respect to the size and the structure of reconstruction
sets and with respect to sensitivity of the reconstruction algorithm.

7 A Reconstruction Scheme

In a nonunique case, there are several ways to define a reconstruction al-
gorithm. One can require to find all elements from the reconstruction set,
sometimes it is desired to determine a smallest element satisfying a given
representation. In this work, the reconstruction is defined as a procedure
to find any element 2 belonging to the closure of the reconstruction set, I'°.
As mentioned earlier, we propose a reconstruction algorithm based on an
appropriate potential function v(a). This function should satisfy:

v(z)=0 Vazel° (95)

v(z) >0 Ve eTe. (96)

where I'¢ denotes the complement of I'¢ in £. Furthermore, it will be shown
that the proposed v(z) does not have any local extremum outside I'¢, i.e.

[Vo(z)]| >0 VzeTl. (97)

Vu(z) denotes the gradient of v(z) with respect to z, namely it is a column
vector of derivatives of v with respect to components of . With such a
potential function, the reconstruction is achieved by any minimization al-
gorithm operating on v(z). We will focus on the reconstruction algorithm
based on the differential equation:

&(t) = =V (v (2(1))) (98)
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whose analog hardware implementation give rise to a very fast algorithm.

In this section, a general inherently bounded Adaptive Quasi Linear Rep-
resentation (AQLR) is considered. As mentioned in Section 4, the closure
of the reconstruction set, I'°, can be written as:

I[“={z: Bz >b} (99)

for a given p X N matrix B and a p-dimensional vector b. The function v(z)
is derived from this representation in the subsequent way.

p

v(z) £ Y f(Bx - b); (100)

i=1

where (Bz — b); denotes the i-th component of the vector Bz — b. The
function f(-) is defined by:

,
f(»f)é{’E I

0 otherwise

Using the above definitions, it is easy to verify that indeed (95) and (96)
hold.

Observe that f(§) is continuously differentiable. Therefore v(z) is con-
tinuous and continuous differentiable. The gradient of v(z) is given by:

Vo(z) = 2B'Z(Bz — b)
where Z is a p X p diagonal matrix satisfying:

Z(i’i):{ L if (Bz =) <0

0 otherwise

Naturally, B’ denotes the transpose of the matrix B.
The following theorem states that v(z) does not have local extrema out-
side the set I'°.

Theorem 8 Let I' be nonempty. Then Vv(z) = 0 if and only if x € T°.

Proof: If 2 € TI° then clearly Vo(z) = 0. Let us assume
Vou(z) = 2B'Z(Bz — b) = 0. Since 2 € I'° if and only if Z(Bz — b) = 0, we
need to show that Z(Bz — b) = 0. Consider the following decomposition of
Zb:

Zb = ZBy + b, (101)
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such that b, LR(ZB), namely b.ZBz = 0 Vz, or equivalently:
(Z2B)b, = 0. (102)
Substituting this decomposition into the hypothesis yields:
0 =2B'Z(Bz — b) = 2B'(ZBz — ZBy — b,) = 2B'(ZBx — Z By).
Using Z = Z'Z we see that
2ZBY(4B) - y) =0
which implies
(z—v)(2BY(ZB)(z — y) = [|ZB(z — y)|| = 0.

Therefore
ZBx = ZBy. (103)

Consequently, in this case:
Z(Bx —b)=ZBx — ZBy — b, = —b,. (104)

Hence, it suffices to prove that b, = 0. This will be based on the following
statement of the Iarkas theorem of the alternative ([13],p 472-474).

Theorem 9 Fzacily one of the two alternatives holds:
1. dz s.t. ZBx > 7Zb.
2. 3b, such that (ZB)'b, =0 b, >0 (Zb)'b, > 0.

We are already given (ZB)'b, = 0. Observe that from the definition of
Z, ZBzx — Zb < 0, therefore b, > 0. At this point, assume by contradiction
that ||b,|| > 0. Consider

(Zb)'b, = (ZBy + b,)'b, = ||b,]|% > 0.

Therefore the second alternative holds. For the first alternative take any z €
I'. Then Bax > b, and for any matrix Z with nonnegative entries: ZBax >
Zb. Hence the first alternative holds as well. This is the contradiction we
were after, and eventually we have b, = 0.
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In view of these considerations, a reconstruction scheme can be imple-
mented as:
argmin {v(z):z € L}. (105)

The minimization is significantly facilitated by the property that local ex-
trema of v(z) appear only in I'°. We are going to focus on the algorithm
based on the differential equation (98). The desired property is that for all
z(0), z(t) will approach the set I'“ as ¢ — oc. In other words, z(t) should
approximate an element from I'® for ¢ large enough. The convergence result
is based on La Salle’s Theorem.

Theorem 10 (La Salle )

Let Q be a compact set with the property that every solution of #(t) = f(z)
which starts in Q remains for all future time in Q. Letv : Q@ — R be a
continuously differentiable function such that 9(z) < 0 in Q. Let E be the
set of all points in Q where ¥(2z) = 0. Let M be the largest invariant set in
E. Then every solution starting in  approaches M ast — oo.

Invariant set, M is deflined by:
x(0)e M = 2(t)e M Vt > 0.

The proof can be found, for example, in [7]. At this point we are able to
prove the following convergence result.

Theorem 11 Let I'® be the closure of the reconstruction set for of the in-
herently bounded AQLR. Then for all x(0), the solution of

#(1) =~V (0 (2(2)). (106)
will approach ' ast — oo.
Proof: Let 2(0) be arbitrary and fixed. Define:
Q= {a: () < o(2(0))}. (107)

Since v(z) = ~||V(v(2))[|? £ 0, every solution of (106) which starts in
remains there. I'“ C Q because for all z € I'* v(z) = 0. As a consequence
of Theorem 8 IV = I'°. But I'° is an invariant set, therefore M = I'°. By
showing that € is compact we will get the desired convergence result. § is
closed because v(z) is continuous. Boundness of §) is based on the fact that
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the representation is inherently bounded. Let z € Q be arbitrary. Define
the vector b, by:

by, & { (Be)i i (Bo) <,
v b; otherwise.

Proposition 11 The norm of b, is bounded in the following way
[16211* < N0l + v(2). (108)
Proof: Tor any vector y we define:

[P

{i:(Bx)i>b, }
[P D
{i:(Bz);<b, }
Note that ||y||s, ||y||ns are norms of appropriate projections of y. Therefore,
we can write:
162]1* = oo I3 + [12]12, =
= [1bell2 + 1oz = 0+ b]J2, <
< MBS + l1ba = BlI7, + 11012,
Using v(z) = ||b, — b2, and ||b,]|? = ||b]|%, the claim of the proposition is

shown.
O

To conclude the proof of boundness of £ observe that
Bx > b,.
Using the result (52) we sce see that:
2]l < Kbz (109)

From the definition of Q and from the proposition it can be shown that for
all z € Q

2]l < Ky /116l* + v(2(0)) (110)
namely, {) is bounded and the proof is completed.

O

The idea to minimize a cost function in order to reconstruct a signal from the
multiscale edge representation has appeared in many works, e.g. [5, 18, 14].
The comparison reveals the following advantages of the proposed algorithm.
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e This algorithm is based on continuously differentiable cost function.

It does not apply approximations.

It is adapted for both unique and nonunique cases.
o Its validity and convergence are guaranteed

Although this algorithm has been developed independently, it is straight-
forward, therefore, it is possible that it has appeared elsewhere in the lit-
erature. The authors would be grateful to obtain any information about
applying this kind of algorithms.

8 Conclusions

Perhaps the most important outcome of this work is to show feasibility and
capability of discrete analysis. In general, the discrete approach described
here may be applied for a variety of representations and reconstruction algo-
rithms, providing new insights into their properties. We believe that, even
for complex algorithms, testing for uniqueness and computing a precise re-
construction set, even for a few examples, is worth the effort.

As mentioned earlier, many important and interesting features of the
multiscale edge representation appear in the nonunique case. However, the
most of theoretical works has been developed in the framework of unique
representations. In our opinion,the need to develop more analytical tools
and applications for nonunique representations is apparent.

In addition, from the theoretical point of view, there are still many
interesting open questions concerning the discrete analysis of the multiscale
edge representation. Consider the following, partial list of problems desiring
further research.

e What is the family of signal for which the wavelet maxima (zero-
crossings) representation is unique ?

¢ What kind of information should be added to the dyadic wavelet max-
ima (zero-crossings) representation in order to assure general unique-
;2
ness ?

e Is multiscale zero-crossings points 3 representation indeed unstable ?

3without any additional information
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e If it is, what is the minimal additional information which
stabilizes it ?

As a first step in the undergoing research, this work dealt only with one
dimensional signals. The reason is twofold: firstly, we thought that in the
simpler case the basic properties would be better recognizable, secondly, the
one dimensional multiscale edge representation has its own variety of appli-
cations. One of the most promising application areas is speech analysis, for
example, pitch detection [6] or modeling signal transformations in auditory
nervous system [17]. On the other hand, up to this point, the vast major-
ity of multiscale edge representations has been implemented in computer
vision. Therefore, it is advisable to extend these results for two dimensional
signals. Surprisingly, there is an essential difference between maxima and
zero-crossings representations. Two dimensional multiscale zero-crossings
representation can easily be cast into the structure of inherently bounded
AQLR, thus the related results are valid in this case. However, a two di-
mensional maxima representation appears to have a different structure. In
order to proceed with a similar analysis one has to choose between:

o to extend the framework of the AQLR

e to change the definition of the two dimensional maxima representation
to match the structure of the AQLR.

We are in the process of deciding which choice is more suitable for analysis
and applications.

Summarizing, the described results about uniqueness and stability are new
theoretical results. In our opinion, the most significant contribution of this
work is to create a framework to define, analyze, and reconstruct a wide
family of representations. Important examples are generalizations of a ba-
sic maxima representation obtained by using only a subset of local extreme
points. Their properties are the subject of the undergoing research.
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