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Abstract

In the search for useful strategies for movement of
robotic systems (e.g. manipulators, platforms) in con-
strained environments (e.g. in space, underwater),
there appear to be new principles emerging from a
deeper geometric understanding of optimal movements
of nonholonomically constrained systems. In our work,
we have exploited some new formulas for geometric
phase shifts to derive effective control strategies. The
theory of connections in principal bundles provides the
proper framework for questions of the type addressed
in this paper. We outline the essentials of this theory.
A related optimal control problem and its localizations
are also considered.

1 Background (Anholonomy)

This paper is a continuation of [6]. Consider a robot
(kinematic chain of n rigid bodies) floating in zero
gravity. For convenience, assume that the bodies (and
the assembly) are planar and the assembly is initially
at rest (angular momentum g = 0) as in Figure 1.
Suppose the joint angles are varied continuously and
brought back to rest in a prescribed manner. There
will be a net displacement (say of body 1) from its ab-
solute initial orientation. This phase shift is given by
an integral formula [6]
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Figure 1: Planar kinematic chain

where e = (1,1,:--,1), M is an n x (n — 1) matrix

given by
0, i=1
M;:—.{l, 1> 7

0 otherwise,

and J denotes the n x n kinetic energy quadratic form
associated to the planar n-body system. See [15] for
explicit formulas for J. In formula (1) the curve v isin
the n — 1 dimensional space of joint variables (a torus
in the case of revolute joints, ignoring angle limits). A
key observation is that the integral (1) depends on ¥
but not on how fast it is traversed. Hence we refer to
Aqy as geometric phase. For n > 2, a closed curve ¥
can be the boundary of a smooth surface in the space of
joint angles. Then, by Stokes’ theorem, the geometric
phase Agq; is given by,

samm [,

e-Je

Where I is any surface in the space of joint angles with
boundary 4T = v. What we have discussed so far is
an instance of the abstract setting consisting of:



(a). a simple mechanical system with symmetry
(Q, K, V,G) with configuration space Q, kinetic energy
quadratic form (or riemannian metric on Q) given by
K, a Lie group G acting on @ leaving invariant X and
potential energy V;

(b). a principal G-bundle (Q,Q/G, G) where the
space S = @/G is known as the shape space;

(c). controls (forces) acting on (Q, K,V,G), also
leaving invariant the conserved momentum map J* :
TQ — G~ the dual of the Lie algebra of &, associated
to the free hamiltonian system with energy K + V.

The map J* is given explicitly by the formula

JH(wg)é = (K w)(€0(2)) (3)

where € € G the Lie algebra of G, K* is the Legendre
transform and &g is the infinitesimal generator (vector
fleld on Q) associated to . Let I; denote the symmet-
ric bilinear form on G,

L(&n) = K(&q(q), nq(q))- (4)

Let IZ : G — G~ be the corresponding pairing. Then
we have a vertical-horizontal splitting, of the tangent
bundle 7Q,

TQ,

Wy

(Vert), & (Hor),
(T) " 1)e(a) + (wg — (Ty) " w)a(9))

it

where p = J¥(w,). This splitting has the equivariance
property with respect to the G-action on @ and defines
a principal connection [12]. The connection appears to
be originally due to Smale and Kummer [8].

For the planar n-body problem, Q@ =77, S = T"~!
is the joint-space, and the expression — eJdM 49 is sim-
ply the connection 1-form. The essence of the ankolon-
omy lies in the fact that the Lie bracket of two horizon-
tal vectors is not horizontal. Equivalently the curva-
ture form (integrand in (2)) is typically non-vanishing
on the shape space. This is what gives rise to the geo-
metric phase shift. - - - - -
Remark 1. Formulas (1) and (2) can be used to plan
movements in shape space with prescribed phase shifts.
A basic strategy is to use a family of standard loops
v in shape space. Regions of high curvature lead to
increased phase shifts. Figure 2 represents the curva-
ture form for a planar 3-body problem. In [5], there
is a discussion of a motion planner using look up ta-
bles, interpolation and the formula (1). For a typical
re-orientation maneuver from this planner, see Figure

3.

Figure 2: Curvature for 3-body problem

Figure 3: Reorientation through shape change



Remark 2. In [8] and [9], formulas analogous to (1)
are given for a simple rigid body in 3 dimensions with
nonzero angular momentum. For a related formula ap-
plicable to gyrostats see [1]. Analogous formulas for
coupled rigid body systems and systems with flexi-
ble attachments are known to the authors and may

be found in [16].

2  Optimal Movement

In the pioneering work of Shapere and Wilczek [13]
and [14], a principal motivation was to solve (ap-
proximately) the problem of optimal shape change to
achieve a prescribed holonomy. The physical setting
was that of a planar deformable body immersed in
a fluid at very low Reynolds number. Efficient self-
propulsion was the goal. Here we consider the prob-
lem of optimal shape change with prescribed geometric
phase shift for a kinematic chain.

For an n-body chain as section 1, with revolute
joints, let ¢ = (g1, -, )7 denote the n-tuple of ab-
solute orientations. Then, with angular momentum
¢ =0, I = identity matrix,

T
ee'J .

1= (I — M.

i=(- (5)
Treating v = 9 the “shape velocity” as a control, a

problem of interest is to determine a shape change se-
quence v returning to the initial shape and giving rise
to a prescribed phase shift while minimizing the cost
functional

7= /7 16124, (6)

Montgomery refers to problems of this type as iso-
holonomy problems and obtains among other things,
the hamiltonian equations governing v [10]. Pontrya-
gin’s maximum principle leads to to the same condi-

tions,
¢ = D(g)DT(q)p
p = —5(3p" D(9)DT (2)p) (7)
v=DT(q)p
where,
eeTJ
D=(I- o Je).

In general (7) is not explicitly solable and numeri-
cal methods are needed to attack this boundary value
problem. Montgomery considers examples where ex-
plicit solutions exist.
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Figure 4: Rigid body with two point masses

3 Localization

Geometric phase shifts are a form of secular drift. They
can be therefore accumulated by repeatedly traversing
the same path 4 in shape space. In particular, small
loops v repeated many times can lead to large phase
drifts. A small loop v corresponds to a localized change
of shape. By a localization of the optimal control prob-
lem (5)-(6), we mean replacing (5) by a suitable normal
form, e.g. linearization about a reference shape.

In Brockett’s papers [2] and [3] a model problem of
the following form is considered:

minv/ol(u2 + v?)dt (8)

subject to

T=u

3? = (9)

z=zv—yu
and boundary conditions z(0) = z(1), y(0) = y(1) and
2(0) and z(1) specified. This optimal control problem
is a normal form (linear). As Brockett notes in [2] {3],
the difference z(1) — 2(0) is the area of a Lissajous fig-
ure. One might thus call this the area normal form.
The problem is explicitly solvable as shown by Brock-
ett.

Now consider the following set-up of a planar 3-
body system with a central body and two point masses
confined to move linearly along guideways as in Fig-
ure 4. If the masses are identical and the guideways
are parallel, equidistant from the center of mass of the
central body, then the localization of the corresponding
isoholonomy problem takes the form

min/l(u"’ + v?)dt (10)



subject to
I=u
= (11)
=z —yu
for given conditions z(0) = z(1), y(0) = y(1) and
z(0), 2(1) specified. We refer to (10)-(11) as an area

moment normal form. The differential equations for
geodesics are:

T-Mz+y)y=0

i+ Mz +y)E =0 (12)
P42y — )iy + Mz + 1) (2% + ¥29) = 0.

Observe that there is a first integral 2 + 2. Here ) is
a Lagrange multiplier. Letting w = z + y, it is easy to
see that, for a constant ¢,

A,
W+ Aw(c + Tz—w‘) =0 (13)

the equation for a quartic oscillator, solvable by ellip-
tic functions. It follows that the area-moment normal
form (10)-(11) is also explicitly solvable. This is also
known to Brockett and L.Dai {4]. More details on this
class of problems viewed from the context of Nilpotent
Lie groups may be found in [7].

4 Final Remarks

We have outlined the role of geometric phases and re-
lated optimal control problems in the maneuvers of
floating kinematic chains. Lack of holonomy is the key
feature.” Other aspects of nonholonomic mechanics as
it relates to motion planning have been investigated
by a number of authors including S. Sastry, Z. Li, J.
Canny, and their collaborators and by R. Brockett and
D. Montana. For a list of relevant references see the
paper of Murray and Sastry [11].

In a forthcoming paper [7] we investigate the differ-
ential geometry of localized optimal control problems
formulated in the present paper.

We would like to thank R.W. Brockett and W.

Dayawansa for many helpful discussions.
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