
ABSTRACT

Title of dissertation: STATIC ANALYSIS IN PRACTICE

Nathaniel Ayewah, Doctor of Philosophy, 2010

Dissertation directed by: Professor William Pugh
Department of Computer Science

Static analysis tools search software looking for defects that may cause an ap-

plication to deviate from its intended behavior. These include defects that compute

incorrect values, cause runtime exceptions or crashes, expose applications to security

vulnerabilities, or lead to performance degradation. In an ideal world, the analysis

would precisely identify all possible defects. In reality, it is not always possible to

infer the intent of a software component or code fragment, and static analysis tools

sometimes output spurious warnings or miss important bugs. As a result, tool mak-

ers and researchers focus on developing heuristics and techniques to improve speed

and accuracy. But, in practice, speed and accuracy are not sufficient to maximize

the value received by software makers using static analysis. Software engineering

teams need to make static analysis an effective part of their regular process.

In this dissertation, I examine the ways static analysis is used in practice

by commercial and open source users. I observe that effectiveness is hampered,

not only by false warnings, but also by true defects that do not affect software

behavior in practice. Indeed, mature production systems are often littered with true

defects that do not prevent them from functioning, mostly correctly. To understand

why this occurs, observe that developers inadvertently create both important and

unimportant defects when they write software, but most quality assurance activities

are directed at finding the important ones. By the time the system is mature, there

may still be a few consequential defects that can be found by static analysis, but

they are drowned out by the many true but low impact defects that were never

fixed. An exception to this rule is certain classes of subtle security, performance, or

concurrency defects that are hard to detect without static analysis.

Software teams can use static analysis to find defects very early in the process,

when they are cheapest to fix, and in so doing increase the effectiveness of later

quality assurance activities. But this effort comes with costs that must be managed

to ensure static analysis is worthwhile. The cost effectiveness of static analysis also

depends on the nature of the defect being sought, the nature of the application,

the infrastructure supporting tools, and the policies governing its use. Through

this research, I interact with real users through surveys, interviews, lab studies, and

community-wide reviews, to discover their perspectives and experiences, and to un-

derstand the costs and challenges incurred when adopting static analysis tools. I

also analyze the defects found in real systems and make observations about which

ones are fixed, why some seemingly serious defects persist, and what considerations

static analysis tools and software teams should make to increase effectiveness. Ulti-

mately, my interaction with real users confirms that static analysis is well received

and useful in practice, but the right environment is needed to maximize its return

on investment.

STATIC ANALYSIS IN PRACTICE

by

Nathaniel Ayewah

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor William Pugh, Chair/Advisor
Professor Michael Hicks
Professor Jeffrey S. Foster
Professor Adam Porter
Professor Siva Viswanathan

c© Copyright by
Nathaniel Ayewah

2010

To my parents,
Emmanuel and Grace

Ayewah

Acknowledgments

I would like to thank my advisor, Bill Pugh, for providing the impetus and

resources to conduct this difficult research. Bill was a constant source of inspiration

and insight as I searched for explanations for the phenomena we observed. I am

grateful for this experience, which has taught me to be persistent and to seek to

maximize the practical impact of my research. I have also had the support of many

faculty members at the University of Maryland, both on and off my committee.

Thanks to Mike Hicks, Jeff Foster, and the rest of PLUM (Programming Languages

at the University of Maryland) group for providing the grounding I needed in pro-

gramming languages, and constantly questioning my ideas and providing sugges-

tions.

Of course, this research would not be possible without the willingness of the

thousands of unnamed engineers who participated in some form by filling out sur-

veys, conducting reviews or participating in lab studies. I want to extend my thanks

to the professionals at various organizations who facilitated my studies or provided

other technical or material support. Special thanks goes to Jason Yang and Dave

Sielaff at Microsoft for providing mentorship and direction, and to Sunny, Mei and

the rest of the Analysis Technologies team for providing technical advice and sup-

port. I look forward to doing great work with you all in the future. I also want

to thank Dave Morgenthaler, John Penix and other researchers and engineers at

Google who have allowed me to learn from their experiences. I have also received

helpful advice and insights from Andy Chou of Coverity, Brian Chess of Fortify

Software, Gary McGraw of Cigital and Jeff Williams of Aspect Security. My thanks

to you all.

Finally, I want to thank my friends and family who have provided the spiritual

and emotional support I have needed to make it this far. Many thanks to all the

cool cats on the New Leaf band and all the other members of New Leaf Church who

have been a constant source of encouragement, not to mention free meals. A special

thanks is due to “the guys”—Jimmy, Matt, Alex, Brian, and Feno—who put up with

my really late night study habits. And, most of all, to my family, Daniel, Beryl,

Sarah, Martha, Christina (who at 2 months has only contributed occasional gleeful

moments) and my parents, Emmanuel and Grace. Thank you all for believing in

me, and filling me with faith in myself, in my community, and in the power of grace.

iii

Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Some Definitions . 6
1.2 Software Defects In Practice . 7
1.3 Static Analysis: Promise and Challenges 9

1.3.1 Sound Analysis and False Positives 11
1.3.2 Infeasible, Unlikely or Low Impact Defects 13

1.4 Thesis and Contributions . 17
1.4.1 Studying Static Analysis In Practice 19
1.4.2 Research Limitations and Challenges 21

1.5 Summary and Discussion . 23

2 Background 31
2.1 Defects found by Static Analysis . 31
2.2 Tools, Interfaces and Interaction Methods 33
2.3 Mining Software Artifacts . 36

3 User Perspectives and Experiences 38
3.1 User Survey and Interviews . 39

3.1.1 Methodology . 40
3.1.2 Survey Demographics . 42
3.1.3 Is FindBugs Useful? . 44
3.1.4 Users Lack Formal Processes 47
3.1.5 Issues Users Care About . 50
3.1.6 Summary . 51

3.2 Lab Based Controlled Studies . 52
3.2.1 Study 1: Review Times and Consistency 54

3.2.1.1 Results and Observations 57
3.2.2 Study 2: Factors Influencing Review 61

3.2.2.1 General Results . 67
3.2.2.2 Consistency of reviews 67
3.2.2.3 Factors Affecting Reviews 70
3.2.2.4 Comparison with Expert Participants 73
3.2.2.5 Qualitative Feedback from Reviewers 74
3.2.2.6 Threats to Validity 74

3.2.3 Summary . 75
3.3 FindBugs Community Reviews . 76

3.3.1 The Google FindBugs Fixit 76
3.3.2 Planning the Fixit . 79
3.3.3 General Results . 82

iv

3.3.4 Comparing Reviews with Bug Rank 84
3.3.5 Fix Rates from the Fixit . 89

3.3.5.1 Comparing Fix Rate to User Reviews 92
3.3.6 Consensus Classifications . 93
3.3.7 Review Times . 96
3.3.8 Reviews from Different User Groups 98
3.3.9 Summary of Lessons from the Fixit 98

3.4 Summary and Related Work . 100

4 Understanding Why Defects Persist 102
4.1 True But Low Impact Defects . 105

4.1.1 Deliberate Defects . 106
4.1.2 Masked Defects . 107
4.1.3 Infeasible Statement, Branch, or Situation 108
4.1.4 Code that is Already Doomed 108
4.1.5 Testing code . 111
4.1.6 Logging or other unimportant case 111
4.1.7 When should such defects be fixed? 112

4.2 Loud and Silent Warnings . 113
4.3 The Survivor Effect . 120

5 Mining Software Repositories for Defects 125
5.1 Manual Reviews of Large Software Systems 126

5.1.1 Review of Sun’s JDK 1.6.0 . 127
5.1.1.1 A Note on Warning Density 129

5.1.2 Review of Glassfish v2 . 130
5.2 Fix Rate and Code Churn . 131
5.3 Finer-Grained Snapshots . 137

5.3.1 The Marmoset Project . 138
5.3.1.1 Methodology . 139
5.3.1.2 Overview of General Trends 140
5.3.1.3 Bug Patterns with High Fix Rates 142
5.3.1.4 Manually Inspecting Defects that Persist 143
5.3.1.5 Threats to Validity 144

5.3.2 ATMetrics: Instrumenting Static Analysis on the Desktop . . 145
5.3.2.1 Key Questions . 146
5.3.2.2 Implementation and Challenges 148

5.4 Summary and Related Work . 150

6 Null Pointer Bugs in Practice 154
6.1 When is it a Defect? . 156
6.2 Mining Bug Reports for Null Pointer Exceptions 160

6.2.1 Procedure . 161
6.2.2 Classification . 162

6.2.2.1 Dereference Site Classification 162

v

6.2.2.2 Local Analysis Check 163
6.2.2.3 Corrective Action . 163
6.2.2.4 Other Classifications 164

6.2.3 Observations . 165
6.2.3.1 Handling “Unrecoverable null” issues 166
6.2.3.2 Anticipating null to resolve unrecoverable null issues 169
6.2.3.3 Anticipating null and Preventing null 170
6.2.3.4 Handling “Should check for null” issues 172
6.2.3.5 Local logic errors . 175
6.2.3.6 Finding the source of the null value 177
6.2.3.7 Other Observations 178

6.3 Null Pointer Dereferences found by Static Analysis 179
6.4 API Design and Null . 184

6.4.1 API Choices . 184
6.4.2 Case Study: Uses of Map.get() 187
6.4.3 Sometimes, an NPE is Better 191

6.5 Summary and Related Work . 193

7 Cost Effective Static Analysis 196
7.1 Cost Effective Defects . 197

7.1.1 Secure Programming with Static Analysis 198
7.1.2 Concurrency Defects . 201
7.1.3 Performance Defects . 204
7.1.4 Other Subtle Defect Classes 205

7.2 Applications and Contexts . 207
7.3 Developing Effective Infrastructure 208

7.3.1 Advanced Features . 210
7.3.2 The Challenge of Consistency 211
7.3.3 Enhancements to FindBugs 213

7.4 Best Practices and Policies for Cost Effective Static Analysis 214
7.4.1 A Focus on Security . 216
7.4.2 Best Practices Identified by Vendors 219
7.4.3 Experiences at Google . 221
7.4.4 Experiences at Microsoft . 223

7.5 Summary and Related Work . 227

8 Finding Bugs By Example 229
8.1 Mock Bug Detectors . 235

8.1.1 A Simple Example . 235
8.1.2 Benefits and Challenges . 237
8.1.3 Generalizing and Specializing 239
8.1.4 Other Considerations . 242

8.2 API-Specific Bug Patterns . 243
8.2.1 Searching for API-Specific Rules 243
8.2.2 Characterizing API-Specific Rules 245

vi

8.3 Writing a Bug Detector . 250
8.3.1 FindBugs Bug Detectors . 251
8.3.2 XPath Queries for PMD . 253
8.3.3 The Metal Language . 254
8.3.4 Comparing to Mock Bugs . 256

8.4 Summary and Related Work . 256

9 Conclusion 259

Bibliography 261

vii

List of Tables

3.1 Survey Demographic Statistics . 43
3.2 Percentage of users who Agree or Strongly Agree with statements

about FindBugs . 45
3.3 Lack of formal policies for using FindBugs 47
3.4 Handling issues designated “Not A Bug” 48
3.5 How do you or your project team decide when a warning is “Not A

Bug”? . 49
3.6 Proportion of users that review at least high priority warnings for

each category . 51
3.7 Review Times for FindBugs and Fortify SCA 58
3.8 Level of Agreement among six reviewers 58
3.9 Bug Patterns used in controlled study 63
3.10 Checklist Questions for each Issue . 64
3.11 Issue Understanding vs Bug Patterns 67
3.12 Level of Agreement for Each Issue . 69
3.13 Correlation Coefficients for Checklist Responses 70
3.14 Strongest Checklist Reviews vs Bug Pattern Groups 71
3.15 Strongest Checklist Reviews vs NP Patterns 72
3.16 Strongest Checklist Reviews vs Displayed Priority 72
3.17 User Classifications . 80
3.18 Overall summary . 83
3.19 Reviews for Two Silent and Two Loud Bug Patterns 88
3.20 Last Seen Fix Rate for Issue Subgroups 92
3.21 Grouping and Ordering User Classifications 95

5.1 Classification of Warnings Removed During JDK 1.6.0’s Development 128
5.2 Classification of Warnings Remaining in JDK 1.6.0 build 105 129
5.3 FindBugs Warning Densities in JDK 1.6.0 build 105 130
5.4 Classification of Warnings Removed During Glassfish’s Development . 131
5.5 Fix rate for bug patterns in Google code base 134
5.6 Overview of Analyzed Marmoset Data 140
5.7 Top Bug Patterns . 141
5.8 Fix Rates for Different Subgroups . 142

6.1 Corrective Action Classification . 165
6.2 Some “Unrecoverable null” issues fixed by Preventing Null, Throwing

Exception, or Refactoring . 168
6.3 Some “Unrecoverable null” issues fixed by Anticipating and Guarding

for Null . 171
6.4 Issues classified as “Should have checked for null” 174
6.5 Null dereferences reported in Ant 1.6.5 180
6.6 Review of XYLEM warnings in Ant 1.6.5 181
6.7 Invocations of Map.get . 187

viii

6.8 Idioms used to ensure key present for Map.get() call 189

7.1 Responses to survey question on use of FindBugs Filters 208

8.1 Responses to survey question on use of custom bug detectors 233

ix

List of Figures

1.1 Null-Pointer Dereference in GlassFish 2
1.2 Assertion failure in separate thread is not seen by JUnit 12
1.3 Assertion failure is seen by JUnit because it occurs in main thread . 12
1.4 A coding mistake that does not cause incorrect behavior 13
1.5 Repeated Conditional . 15
1.6 Null-Pointer Dereference . 16
1.7 An Infinite Recursive Loop . 27

2.1 Will throw a NullPointerException if argument is null 31
2.2 May throw a NullPointerException 31
2.3 Using annotations to inform a static code analyzer 34

3.1 SQL Injection Checklist . 57
3.2 Switch statement with no breaks. Some users concluded this was not

a bug while others declared this a Must Fix 59
3.3 Bogus Warning – FindBugs incorrectly asserts that the dereference

of argument in the if-statement will throw a NullPointerException . 65
3.4 Bogus Warning – FindBugs incorrectly asserts that listenAddress

is known to be non-null because it was dereferenced on line 117 . . . 66
3.5 Recommendations Grouped by Bug Rank and Category 84
3.6 Correlating Bug Ranks with Reviewer Classifications 85
3.7 Must Fix Classifications By Rank . 87
3.8 User Classifications versus Fix Rate 93
3.9 Consensus Rates for All and Scariest Issues 96

4.1 Long-Lasting Defect in Eclipse . 103
4.2 Two intentional errors . 107
4.3 Infeasible situation . 109
4.4 Doomed situations: vacuous complaint 109
4.5 Doomed situations: missing else clause 110
4.6 Doomed situations: defect in exception handling 111
4.7 Logging defect . 112
4.8 Infinite Recursive Loop in Eclipse . 114
4.9 Possible null pointer dereference in Eclipse 115
4.10 Ignored Return Value in Eclipse . 116
4.11 Comparing a StringBuffer to a String is always false 117
4.12 Redundant comparison to null where value is previously dereferenced 118
4.13 Redundant comparison to null where value guaranteed to be non-null 119
4.14 The Survivor Effect: Comparing defects that matter with defects that

do not matter . 121

5.1 Bug: Ignoring the Return Value of String.substring() 144
5.2 Bug: Unrelated Types in Generic Container 145

x

6.1 A potential null pointer dereference if dir is not a directory 157
6.2 Method in Ant that sometimes returns null 159
6.3 Snapshot of code that processes Ant arguments 176
6.4 Impossible dereferences reported by Coverity Prevent 183
6.5 “unchecked” dereferences of Map.get() 190
6.6 Mistake in Xalan DocumentCache 192

7.1 Buffer overflow vulnerability if input is arbitrarily set by user 199

8.1 Rule informally specified by comments indicates how field contents
should be cased . 230

8.2 Rule informally specified by comments indicates how the property
associated with a parameter (hdr) should be formatted 231

8.3 A mock detector to detect an unused value returned from String.trim()

. 237
8.4 A sample lattice for deciding how to generalize or specialize different

types . 240
8.5 ESAPI Rules that have value constraints 248
8.6 A Basic Bug Detector for FindBugs 252
8.7 A Metal-style rule for tracking unused values returned from String

operations . 255

xi

Chapter 1

Introduction

Why do software programmers make mistakes? Sometimes, mistakes occur

because the problem is complex and the programmer forgets important constraints

or dependencies. Sometimes mistakes occur because of a deficiency in the program-

mer’s understanding of the language. But often, mistakes are just silly errors, com-

parable to typos a writer might make when composing an essay. And while many

silly errors cause the compiler to fail, or the program to crash quickly, some errors

can escape notice for some time, while causing the program to behave incorrectly.

Consider the code fragment in Figure 1.1, which was inserted into Glassfish1

on March 2, 2010. Observe that the method does not advance past line 185 unless

the local variable firstLevelEntries is null (because of the return statement).

This means that the condition on line 187, which dereferences firstLevelEntries,

will always throw a Null-Pointer Exception (NPE) if it is executed. This cannot

be the intent of the programmer, so we can infer that this method must contain a

mistake.

This process of inferring the presence of this mistake can be done automati-

cally using several systematic analysis techniques. One approach is to scan forward

through the method, keeping track of whether a value may be null or non-null. If

a value known to be null is dereferenced, we can quickly conclude that a mistake is

1http://glassfish.dev.java.net/

1

http://glassfish.dev.java.net/

Source: GlassFish | org.glassfish.osgijavaeebase.OSGiBundleArchive� �
183 private Collection<String> getSubDiretcories(String path) {
184 final Enumeration firstLevelEntries = b.getEntryPaths(path);

185 if (firstLevelEntries != null) return Collections.EMPTY LIST;

186 Collection<String> firstLevelDirs = new ArrayList<String>();

187 while (firstLevelEntries.hasMoreElements()) {
188 String firstLevelEntry = (String) firstLevelEntries.nextElement();

189 if (firstLevelEntry.endsWith("/") firstLevelDirs.add(firstLevelEntry);

190 }
191 return firstLevelDirs;

192 }
� �
Figure 1.1: Null-Pointer Dereference in GlassFish

present.

This systematic analysis can be done by a software program, called a static

analysis tool. The word “static” refers to the fact that the tool examines programs

without executing them.

In practice, inferring the presence of a mistake is not sufficient; we need to

understand what the problem is, and decide if it matters. To do this, we need a

deeper understanding of the semantics of the program. From the method signature,

we can tell that the purpose of the method is to return a list of string paths, rep-

resenting the subdirectories of the input path2. We also observe that the program

fragment extracts an enumeration of entries from the input path and either iter-

ates through this enumeration, or returns an empty list. With this information, we

can quickly infer that the developer accidently used the wrong operator on line 185

(inequality ! = instead of equality ==); the empty list should be returned when

2despite the spelling error in the method name

2

http://bit.ly/ayewah-thesis-figsrc-1-1

firstLevelEntries is null, and the iteration should occur when it is not null, and

not vice versa.

Observe that even though the analysis flags a potential null dereference on

line 187, the real mistake is using the wrong comparison operator on line 185. It

would be more user friendly for the analysis to say, “You used the wrong operator,”

instead of leaving the user to figure this out. But this would require the analysis to

understand the purpose of this method, which is difficult to do without requiring

the user to provide lots of descriptive metadata. Indeed it is possible to construct an

identical code fragment with very different semantics. For example, it could be that

the comparison is actually correct, and the mistake is a missing assignment of a non-

null value to the target variable after the comparison but before it is dereferenced.

So in general, static analysis can scan the code looking for violated properties (in this

case, dereferencing a value on the branch in which it is null), but cannot necessarily

identify the root mistake.

Observe also that this mistake does not always result in a Null-Pointer Excep-

tion. If firstLevelEntries is not null, the program does not crash, but returns

an incorrect value. Hence it is possible for this mistake to go undetected for some

time, and even after the incorrect behavior is noticed, a debugging effort may be

needed to trace the problem to this line. In this example, the mistake was fixed

29 days later when the developer received an alert from a static analysis tool called

FindBugs [62, 64].

This example illustrates the potential of static analysis to quickly find mis-

takes. And static analysis is not just limited to occasional typos; it can also flag

3

bad practices, confusing logic, unsafe code, or programs that exhibit poor perfor-

mance properties.

This example also illustrates some of the limitations of static analysis. Static

analysis algorithms do not usually understand the intended functionality and use

cases of a program, and hence cannot necessarily determine if a mistake is important

or feasible. More generally, analyzing any software to determine all its correctness

properties is an undecidable problem. In practice, static analysis algorithms make

simplifying assumptions, and focus on classes of problems that can be detected

tractably. But even with these simplifications, many static analysis implementations

run into speed or accuracy constraints that affect their usefulness. In particular, it is

possible for an analysis to report some issues that are not actually mistakes, known

as false positives. Conversely, an analysis may miss some mistakes that are real

problems; these are called false negatives.

To deal with these challenges, some researchers and commercial vendors con-

tinue to develop increasingly sophisticated static analysis techniques that can run

faster, and be more precise. Other researchers focus on tweaking existing analysis

techniques based on problems observed in practice. Here, the goal is to minimize the

number of false positives so that users perceive each warning generated as valuable.

Despite these improvements, some users are still skeptical of the value of static

analysis and question whether it improves software quality and developer productiv-

ity in practice. Part of the problem is that other quality assurance activities—such

as unit testing and code review—can find a greater scope of problems. In addition,

using static analysis incurs some significant costs in practice. For example, when a

4

static analysis is first run on an established software project, it often finds numerous

issues in legacy code that has not been edited for a while. Users generally conclude

that these issues are unlikely to be important since that part of the software has

been functioning correctly for some time, but they need to take steps to deal with

these problems anyway, lest they drown out more important issues that result from

more recent changes. In addition, users may find that simply changing the code in

response to a static analysis warning may lead to regressions, and hence need to

spend time considering the implications of every change before making it. Apart

from these challenges, users may find that they need to spend much time engaged

in manual repetitive tasks to deal with static analysis warnings, such as recording

issues in a bug tracking system, assigning issues to the correct person, or suppressing

issues in obsolete code.

To deal with these problems, organizations need to adopt effective strategies

that enable them to address issues found by static analysis early, and to maximize

their return on investment. In this dissertation, I present some of the experiences of

real organizations, and describe insights generated from interacting with users and

studying software artifacts. For example, I describe the reasons some are slow to

adopt tools, explain why some seemingly serious defects can persist for a long time

in a codebase, and identify the contexts in which static analysis is worthwhile.

To conduct this research, I rely on surveys, interviews, lab studies, reviews of

static analysis warnings by professionals, and a number of studies which examine

software artifacts directly looking for clues. Some detailed results, datasets and

relevant code from the studies in this dissertation are archived online at:

5

http://findbugs.cs.umd.edu/inpractice/.

In the next section, I provide some basic definitions of terms I will use through-

out this dissertation. In Section 1.2, I explain why static analysis and other quality

assurance activities are necessary by considering the impacts of defects in practice.

I go on to describe some of the key promises and challenges associated with using

static analysis in Section 1.3. Finally, I present my main thesis and summarize my

findings in Sections 1.4 and 1.5 respectively.

1.1 Some Definitions

In the literature, various definitions are used to describe software defects.

Many researchers do not explicitly define defects, but imply that they lead to un-

desirable program behavior. Others use a more general definition that includes any

kind of flaw. One definition in the literature is: “A defect is any unintended char-

acteristic that impairs the utility or worth of an item, or any kind of shortcoming,

imperfection, or deficiency” [43].

In our research, we emphasize the fact that not all mistakes are equally bad,

and the context of a problem influences whether it is important or not. We use the

following definitions:

A defect is an implementation fragment or design feature that, when re-

vealed to the software team immediately after it is created, along with an

explanation of why it might be a mistake, the team would generally choose

to fix.

6

http://findbugs.cs.umd.edu/inpractice/

A bug is a defect that causes undesirable program behavior. This could

include incorrect results, degraded performance, or vulnerability to security

threats.

These definitions make the notion of a defect more subjective, but also place

the emphasis on users and their priorities. Some users (and teams) will want to

address style issues like incorrect indentation or missing comments, while others

will not consider these to be defects. Also, the emphasis on showing the problem to

the software team soon after the defective feature is created assumes that software

teams are more willing to fix problems during the early parts of the software process,

and less willing to change the code after it has been deployed.

In addition to these definitions for software problems, we also need some defi-

nitions that are specific to static analysis tools:

A warning is a message from a static analysis tool, highlighting one or more

potential defects in the software. Warnings are also sometimes called alerts.

A bug pattern is an idiom that represents a class of defects that are similar.

Bug patterns are also sometimes called rules.

1.2 Software Defects In Practice

Software defects and failures are expensive, both for users who experience

losses, and for software developers who spend resources mitigating problems. A

2002 report from NIST estimated that the annual economic cost to the US of inad-

equate software quality control ranged from $22 to $60 billion [132]. A study from

7

Carnegie Mellon University found that disclosures of security flaws hurt the stock

price of the software company involved [85]. The negative effects of defective soft-

ware are not limited to economic indicators. Increasingly software systems are used

in safety critical systems, where defects can result in injury or loss of life. A famous

example is the Therac-25 disaster, where a software error in a medical device led to

patients receiving fatal overdoses of radiation [86]. Software defects also have polit-

ical consequences. USA Today reports that a software system to manage the 2010

US Census was behind schedule and riddled with defects. As a result, the census

process needed to be modified and “risks ballooning costs, delays and inaccuracies”

[108].

Software systems are becoming more pervasive, and customers are more ex-

posed to them. Devices like automobiles and refrigerators that previously did not

contain software, now use software to monitor components and even connect to the

Internet [75]. Other devices like mobile phones have seen their software become

more complex and feature rich. If left unchecked, the problem of software defects

will only grow and impact more users.

Organizations seeking to get a handle on this problem need to have good

software development practices, effective quality assurance activities, and rigorous

testing. The 2002 NIST report mentioned earlier calls for use of software quality

metrics and testing infrastructure to identify problems early [132]. These tech-

niques are effective for ensuring an application meets its requirements, but can be

expensive to implement, and do not exhaustively exercise the program. Some safety-

critical systems, such as aircraft flight control, benefit from using formal verification

8

methods to ensure that the underlying implementation precisely matches a given

specification [105]. But this approach cannot overcome flaws in the specification,

does not scale to general large applications, and it requires more technical expertise

than average developers have.

Compared to some of the quality assurance techniques briefly discussed so

far, static analysis appears to be relatively inexpensive, easy to use, and it can

exhaustively search the code for problems. On the other hand, it is limited in the

scope of problems it can detect, and sometimes identifies defects that do not matter.

Still, static analysis may help to reduce the cost of finding software defects, and

hence have a real impact on the experiences of customers of an increasing number

of products.

1.3 Static Analysis: Promise and Challenges

The primary benefits of static analysis tools are that they find problems in

software without executing it, and they can search software exhaustively, eliminating

some classes of problems. But this exhaustiveness can also lead to some challenges.

We refer to an analysis that can identify all instances of a particular problem as a

sound analysis. The problem with sound analysis is that it often yields instances

that are not real defects, due to constraints on the precision of the analysis. I discuss

some of the challenges associated with sound analysis in Section 1.3.1. Even if the

analysis identifies a real programming mistake, its warning may not be of interest

to developers because the problem may be infeasible, unlikely, or have only minor

9

consequences. I discuss some of these scenarios in Section 1.3.2.

Other benefits of static analysis are that many tools are relatively fast, and

can build on the wisdom of experts to identify problems developers may not be

aware of. Many tools can be extended to find new classes of defects and some tools

analyze binaries, which is useful when source code is unavailable.

Despite these benefits, we have observed several challenges that arise when

users interact with tools in practice, and that limit their widespread adoption. Some

of the warnings produced by static analysis are difficult for users to understand,

especially when the variables and values involved occur in several different methods.

In addition, sometimes warnings occur in code that has not been touched for a

long time, or that is owned and maintained by someone other than the analyst.

Other times the warning may not represent a quality dimension an organization is

interested in. For example, internationalization warnings may not be relevant for

applications that only expect to run in one locale or encoding. When deploying

a static analysis tool in large projects with many developers, the analysts may be

overwhelmed by the large number of initial warnings found the first time a tool is run,

and may postpone addressing them to focus on more pressing needs. Furthermore,

large organizations often have to figure out how to integrate warnings from different

tools into one consistent interface.

10

1.3.1 Sound Analysis and False Positives

To illustrate the challenges of a sound analysis, consider the Java code fragment

in Figure 1.2 (which is based on a blog post by Mark Dixon [37]). In constructing a

test case, the developer places a JUnit assertion inside a thread. This is problematic,

because exceptions thrown in an auxiliary thread are not propagated to the main

thread. If the assertion fails, JUnit will not record the assertion error and the test

will NOT fail as it should.

Suppose I set out to write a static analysis to flag every case where an assertion

is made in a separate thread. In the example in Figure 1.2, the analysis correctly

detects an assertion made in a separate thread from the main test thread. But

consider the slightly modified example in Figure 1.3. Here, the developer constructs

a Runnable, which is usually executed in a separate tread. But in this case, the

Runnable is executed within the main thread (with the call to r.run()). Hence the

assertion failure in this example will be detected by JUnit, and the code is defect

free.

The challenge in these examples is that if I want my analysis to be sound,

then I must flag any case where a threading construct such as Thread or Runnable

is used, unless I can demonstrate that the code will be run in the main thread. In

general, this is not always practical, and my analysis may issue a false warning for

code fragments like Figure 1.3.

In practice, most modern commercial static analysis tools use various heuristics

to reduce the number of false warnings, with the consequence that some classes of

11

� �
1 public void test() {
2 Thread t = new Thread() {
3 @Override public void run() {
4 assertTrue(false);

5 }
6 };
7 t.start();

8 }
� �
Figure 1.2: Assertion failure in separate thread is not seen by JUnit� �

1 public void test() {
2 Runnable r = new Runnable() {
3 public void run() {
4 assertTrue(false);

5 }
6 };
7 r.run();

8 }
� �
Figure 1.3: Assertion failure is seen by JUnit because it occurs in main thread

defects are found using unsound analysis. For these classes, static analysis tools

focus on finding as many useful defects as possible, rather than on eliminating all

possible defects. As some researchers from Coverity3, a commercial static analysis

vendor, recently stated: “Unsoundness let us focus on handling the easiest cases

first, scaling up as it proved useful” [23]. Even though these tools cannot guarantee

the absence of most classes of problems, users still receive the benefit that all defects

matching the tool’s heuristics will be flagged immediately, no matter where they are

in the code.

3http://www.coverity.com/

12

1.3.2 Infeasible, Unlikely or Low Impact Defects

Even if a static analysis tool is able to avoid false positives, not all problems

flagged are of interest to developers. The root problem stems from a mismatch

between what static code analyzers do and what developers ultimately care about.

Static code analyzers look for silly mistakes in code, confusing code, or violations

of good practice or desired safety properties. Developers are ultimately looking for

incorrect behavior, and there are many instances where the problems identified by

static analysis do not cause incorrect behavior.

Figure 1.4 illustrates this with an example in which the programmer checks the

value in a byte array b. The programmer assumes the value checked is an unsigned

value (from 0 to 255) and wants distinct behavior for values in or out of the range

[32,128]. In fact, the values in a byte array are signed (from -128 to 127) and

hence the check b[offset] > 128 is always false and may be flagged by a static

code analyzer as a nonsensical operation. However all the values in an unsigned

byte that are greater than 128 are negative numbers in a signed byte, and these

are caught by the first check b[offset] < 32. Indeed, assuming the programmer’s

Source: Sun JDBC API | sun.jdbc.odbc.JdbcOdbcObject� �
85 if ((b[offset] < 32) || (b[offset] > 128)) {
86 asciiLine += ".";

87 }
88 else {
89 asciiLine += new String (b, offset, 1);

90 }
� �
Figure 1.4: A coding mistake that does not cause incorrect behavior

13

http://www.dei.unipd.it/ricerca/gmee/MeLa/MeLa/test/source/sun/jdbc/odbc/JdbcOdbcObject.java

goal is to separate basic printable ASCII characters from unprintable and extended

ASCII codes, this code behaves correctly.

The decision to fix problems like this depends on many factors including how

old the code is, what stage in the development process it is found, and the culture

of the organization. Many organizations want to at least review most problems,

incurring the cost of doing so rather than risk potential future high cost and embar-

rassment. Many others, in the face of time-to-market pressures, prefer to only see

problems that might lead to incorrect behavior.

Even if a defect provably causes incorrect behavior, it may be unlikely in prac-

tice. For example, in Figure 1.5, static analysis can identify the repeated conditional

test on line 165. The second comparison of offx to null is completely redundant,

and is unlikely to have been inserted intentionally. Of course, it is still up to the

human reader to decide if this aberration is associated with incorrect behavior, or

is just a silly but harmless mistake. In this case, there is a strongly correlated vari-

able offy that is used everywhere offx is used. So we might guess that the second

comparison on line 165 should be offy != null.

The impact of this defect is that if one of these variable is null, and the other

is not, the wrong branch will be taken, resulting in incorrect behavior. But if

both variables are always null, or non-null at the same time, this defect will have

no effect on the behavior of the program. Since both variables are initialized by

reading correlated attributes from an XML document (on lines 81-82), it seems very

unlikely that the negative scenario will ever arise in practice. Still, examples like this

illustrate the potential of static analysis to find obscure scenarios that are unlikely

14

Source: Open Laszlo | org.openlaszlo.compiler.ResourceCompiler� �
81 String offx = element.getAttributeValue("offsetx");

82 String offy = element.getAttributeValue("offsety");

161 ...

162 if (!sources.isEmpty()) {
163 if (tagName.equals("preloadresource")) {
164 mEnv.getResourceGenerator().importPreloadResource(sources,

name, file);

165 } else if ((offx == null) && (offx == null)) {
166 mEnv.getResourceGenerator().importResource(sources, name, file);

167 } else {
168 mEnv.getResourceGenerator().importResource(sources, name, file,

169 new Offset2D(offx, offy));

170 }
171 ...
� �

Figure 1.5: Repeated Conditional

to come up during testing.

Even when a defect is feasible and causes incorrect behavior, its consequence

may be minor in practice. For example, in Figure 1.6, static analysis can quickly

detect that listeners is dereferenced on the branch in which it is guaranteed to

be null (on line 268). As with Figure 1.1, the defect is not the dereference, but an

incorrect comparison operator on line 267.

When we find defects like this in production code, we have to ask why no one

has detected it yet. Has this problem not caused an exception, leaving a stack

trace that quickly leads to a simple fix? It is easy to be drawn to the Null-

Pointer exception that is thrown if listeners is null, but the semantics of the

class suggest that listeners is probably never null in practice. (It is initialized in

15

http://www.openlaszlo.org/svn/openlaszlo/builds/15765-openlaszlo-trunk/WEB-INF/lps/server/src/org/openlaszlo/compiler/ResourceCompiler.java

Source: Sun JDK 1.6.0, b105 | sun.awt.X11.XMSelection� �
265 public synchronized void removeSelectionListener(

266 XMSelectionListener listener) {
267 if (listeners == null) {
268 listeners.remove(listener);

269 }
270 }
� �

Figure 1.6: Null-Pointer Dereference

addSelectionListener() which is probably always called before removeSelection-

Listener().) So the real impact of this defect is that the method parameter,

listener, is never removed from the collection, and continues to receive events

from this class. While this behavior violates the requirements of the class, it does

not necessarily have bad consequences. Perhaps listener ignores the events, or its

actions in response to events are inconsequential. Perhaps this class is only used in

scenarios where listeners are added, but never removed. It is even possible that the

class is only used in scenarios where removing listeners is the wrong thing to do,

and the only reason why the program works is because of this defect!

Prudent organizations will want to find and resolve all the warnings highlighted

in the last three examples. But when there are thousands of these low impact

issues—a distinct possibility since static analysis may be used to explore every nook

and cranny of the software—organizations need to weigh the cost of addressing all

of them with the value that is gained. In general, static analysis has questionable

value if it does not present users with issues that they want to fix, even if they are

true defects. To illustrate this, consider the compiler warnings that are generated

16

http://www.java2s.com/Open-Source/Java-Document/6.0-JDK-Platform/solaris/sun/awt/X11/XMSelection.java.htm

every time a program is compiled. In many contexts, thousands of warnings are

generated, and engineers have developed the habit of completely ignoring them.

Some organizations set aside a dedicated period, usually after a major release, to go

through and clean up some of these warnings. But many times the warnings are just

ignored and taken as a fact of life. This experience suggests that if static analysis

tools do not discriminate more between defects, and exclude issues that users are

unwilling to fix, their overall value will decrease. In this dissertation, I explore this

and other observations by studying the practice of real users, and exploring the

artifacts left over from software development activities.

1.4 Thesis and Contributions

My research is built around a number of small studies which lead me to new

insights, or confirm existing ideas about the way static analysis tools are used. I

summarize some of these insights and ideas in the next two sections. My main ideas

can be summarized with the following thesis statement:

Static analysis is useful, and can find interesting software defects. But

in practice, some found defects are not important, because they do not

cause the software to misbehave. Furthermore, some classes of important

defects are regularly caught by other, more expensive quality assurance

activities before the affected code gets to production. Hence it is not suf-

ficient to simply use static analysis tools — organizations need to adopt

effective strategies to automatically identify important warnings early,

17

in order to maximize their return on investment. And static analysis

tools need to provide features to support these strategies, helping orga-

nizations create a plan, inform and educate stakeholders, and measure

progress and metrics.

I support this thesis statement by conducting studies to discover the opportu-

nities and pitfalls associated with static analysis in practice, including some of the

first studies to report on the experiences of real users of a modern static analysis

tool and compare the opinions of hundreds of professionals reviewing defects in a

commercial organization. The primary contributions of this research are as follows:

• I describe the experiences, motivations and challenges of real users seeking to

adopt static analysis, and present the results of community-wide reviews of

real defects.

• I provide insights on why seemingly serious defects may persist in a code base

for a long time without causing problems, only to be later found by static

analysis.

• I make observations about which defects are fixed in practice by projects that

use static analysis and those that do not, and tackle the question of how to

account for natural changes in the code, called code churn, that make the data

noisy.

• I review real defects and some associated bug reports, and make observations

that challenge the way static analysis tools approach the problem of flagging

18

potential null-pointer dereferences.

• I identify some best practices associated with the successful and cost-effective

adoption of static analysis.

• I propose and conduct preliminary research on a framework to make it simpler

to extend static analysis tools to find project-specific or API-specific defects,

by providing examples or mockups of the defects.

1.4.1 Studying Static Analysis In Practice

We usually evaluate static analysis tools in terms of what defects they find,

efficiency and accuracy. Tool vendors and researchers turn to benchmarks to demon-

strate that their tools meet accuracy, performance and soundness constraints [59,

91, 34]. Traditionally, these practitioners assert the effectiveness of their tools by

emphasizing the few false positives output by the tool. But, as I mentioned ear-

lier, even warnings that are true positives may not be important. Furthermore, the

designation of a warning as a false positive is often subjective.

If the ultimate goal of this endeavor is to encourage developers to adopt tools

and use them effectively, then we need to better understand how they impact users

and software processes. Controlled user studies can help us measure usability and

performance characteristics of tools, and get feedback from users about their inter-

action with tools. This feedback can lead to improvements to the tool’s interface.

For example, in one study, researchers observed that users had some difficulty un-

derstanding warnings from a static analysis tool for deadlock and race detection,

19

because the warning trace crossed numerous method boundaries [77]. They were

able to improve user outcomes by enhancing the user interface to superimpose mul-

tiple methods into a concise format, and by using checklists.

Controlled user studies are helpful for exploring the direct interaction between

users and tools, but are limited when the goal is to consider all the factors that

influence successful adoption of static analysis tools. Ultimately, to comprehend

how tools impact users and software processes, we need to understand how they are

used in practice. This is the focus of my research. As part of my research, I have

sought to understand the overall value of static analysis tools. What proportion

of analysis warnings actually signal incorrect behavior in practice and can these be

found by other quality assurance methods at comparable cost? I have also studied

the defects that occur in practice, and the choices developers make about which

ones to fix. In other words, which warnings matter? I have also investigated the

practical considerations, tradeoffs, costs and challenges that organizations deal with

when they choose to use static analysis tools. I can use this research to question

why tools are not used more often, and validate or invalidate the assumptions made

by tool vendors and other researchers. Ultimately, I wish to identify best practices

that increase successful adoption of static analysis tools.

In some ways this research is similar to efforts to improve spell checkers in word

processors or spreadsheets by studying the habits of users. Unlike spell checkers

though, static analysis tools demand more human investment and infrastructure to

identify and remediate significant warnings.

My research practice alternates between direct interactions with users which

20

yield mostly qualitative and anecdotal information, and substantial studies of code

artifacts and bug reports which yield mostly quantitative data. Analyzing large

software artifacts reveals significant trends that may generalize, but tells us little

about why these trends are observed. We fill this gap by directly interacting with

users and organizations. Conversely, lab studies and user interviews help us generate

hypotheses which we can then investigate quantitatively.

1.4.2 Research Limitations and Challenges

The primary difficulty when studying tools in practice is getting access to real

users, software, and defects. The engineers and organizations we recruit to study

have other priorities, and only limited willingness to assist us in our research. Many

commercial users were reluctant to participate, in part to protect the proprietary

nature of their code, and in part to avoid publishing information about the number

of defects they shipped in previous releases. As a result, while we had ready access to

many open source projects, we had limited access to commercial code bases, which

are needed because of their potentially different characteristics. We also had limited

access to static analysis tools other than FindBugs. Early on, many vendors were

very protective, not wanting their tool to end up in the hands of researchers who

may criticize its performance. As vendors have started appreciating the importance

of understanding the performance of tools in practice, more have become willing to

participate in open research.

Another challenge is that many trends associated with static analysis warnings

21

in code bases are noisy. Warnings come and go as the developers update the code,

and their presence or absence may not be significant. In addition some projects

may have more or less of a particular kind of warning based on the type of problem

being solved, or the habits of the developers, and this may not be correlated with

the underlying quality of the code. In general, it is hard to extract significant trends

when analyzing the history of warnings in a code base.

Some of these challenges led us to focus more on extracting anecdotal or qual-

itative insights, not just constructing scientific experiments. These insights can

inform the way we build tools, prioritize warnings, and integrate static analysis into

software processes.

Most of my studies have been conducted using FindBugs [62, 64], an open

source static analysis tool for Java from the University of Maryland, which has been

downloaded more than a million times and is used by companies such as Google,

EBay, Amazon, Sun, and Oracle. I have surveyed about a thousand FindBugs users,

visited organizations that use FindBugs, interviewed several dozen developers, and

conducted lab studies with students. I have also manually inspected hundreds of

warnings in various code bases, developed techniques to automatically mine software

repositories and bug reports, and made technical contributions to FindBugs’ anal-

ysis. Given FindBugs’ strong focus on defects associated with code quality, I have

rounded out my research by working with static analysis tools that have a stronger

focus on code security, including tools from Fortify Software [128] and Coverity [66].

22

1.5 Summary and Discussion

Through my research, I have observed that static analysis does find important

defects, and users respond positively when asked about the value of the warnings

they receive. Users indicate that static analysis finds subtle defects that are oth-

erwise hard to detect, and educates them on correct programming practices. In

reviews of warnings output by FindBugs, users recommend fixing most of the warn-

ings. At the same time, some warnings are not considered defects by users, some

defects have a low impact in practice, and many of the important defects are also

captured by good quality assurance practices. Users have also found that they need

to make a nontrivial investment in static analysis to deploy warnings to develop-

ers early without impeding their productivity, baseline or triage warnings in old

code, integrate the results of multiple tools into a common interface, and filter out

unwanted bug patterns. With these benefits and pitfalls in mind, organizations

have started experimenting with different policies and infrastructure requirements

to identify the scenarios in which static analysis is cost effective.

I present some background on static analysis tools and techniques in Chapter

2. I also provide some background on how researchers study software artifacts to

extract insights about the software development activity.

In Chapter 3, I discuss a number of studies that probe the opinions and per-

spectives of static analysis users. One of my earliest studies was a survey of FindBugs

users, followed by phone interviews with some participants. Through these stud-

ies, I observed that many users had not yet established formal processes for using

23

FindBugs. Instead, many use it in an ad hoc way, manually running the analysis

whenever they remember to do so. But in practice, users need to run static analysis

tools automatically to get the most value out of them. Some users accomplished

this by including FindBugs in a continuous build system, by displaying warnings

on a web page, by sending out nightly emails to developers with new warnings, by

displaying warnings as part of the code review system, or by displaying warnings in

the IDE. These approaches all exhibited varying levels of effectiveness. Some users

also reported integrating FindBugs into a bug tracking system to make it easier to

report warnings.

During the phone interviews, many users indicated that they wanted to adopt

more formal policies and integrate static analysis tools into their software process,

but they cited several barriers preventing them from doing so. One was the large

number of initial warnings displayed the first time the tool is run on an established

code base. These need to be “baselined” so users can focus on the (relatively few)

warnings in recently written code. Another challenge was the need to integrate the

results of multiple static analysis tools into one consistent interface for consumption

by developers. Often a custom integration solution was needed for each organization.

Another challenge was to customize the tool, filtering out unwanted bug patterns,

and creating detectors for project-specific bug patterns.

The survey results also indicated that different users emphasized different cat-

egories of bug patterns. This suggests that the relevance and importance of a bug

pattern depends on the user’s context. For example, an organization running many

applications on a production server may not care too much about null-pointer excep-

24

tions, because these can simply be logged and the application restarted. A desktop

application, on the other hand, can be severely impacted by null pointer exceptions.

Users need to understand their context, and develop threat models that inform the

importance of bug patterns, especially for security warnings. Of course, despite

this dependence on the user’s context, some bug patterns, such as SQL injection

vulnerabilities, are always bad.

In addition to surveys and interviews, I have conducted some studies that

enable me to observe users evaluating warnings directly. In some small lab studies,

I made basic observations about user interaction including how long it took to

review each issue, how consistently independent reviewers evaluated the same issue,

and what factors concerning the interface may have influenced their review. In these

studies, users consistently identified certain bug patterns as severe, and others as low

impact, and were not influenced by factors such as displayed priority, presentation

order, or even the insertion of bogus warnings. These studies were a precursor to

a larger industrial-based study in which hundreds of engineers reviewed thousands

of FindBugs warnings in a commercial code base. Through this study, developers

confirmed that they preferred to fix most of the issues they reviewed, and their

perspectives matched the bug rankings in FindBugs.

These user studies are important because they enable me to interact with real

users and learn from their challenges and experiences. But user opinions are subjec-

tive, and it is necessary to also study more objective measures of the impact of static

analysis. In Chapters 4 to 6, I describe some studies that involve manual review

and automatic analysis of various artifacts of the software development process, in-

25

cluding code repositories and issue tracking databases. It is through these studies

that I observed that not all true defects are important. Some seemingly fatal defects

end up being low impact because they occur in dead code, or are masked by sur-

rounding code. I discuss some of these scenarios in more detail in Section 4.1. This

means that it is not sufficient for tools to minimize false positives. Tools find many

stupid mistakes, but not all are important problems, and users are looking for the

“intersection of stupid and important.” It is not easy for tools to determine which

warnings are important, but we can rely on some heuristics to improve outcomes.

One interesting bug pattern, illustrated in Figure 1.7, is the infinite recur-

sive loop. In this illustration, the method calls itself recursively unconditionally.

A defect like this is surely always serious because it instantly results in a Stack-

OverflowException. But whenever we find this defect in production, it is usually in

dead code. The infinite recursive loop is an example of what we call a “loud” bug

pattern. They are very obvious, clearly incorrect, and usually result in exceptions

or crashes when executed. However in practice, when found in code that has been

in production for some time, they are usually not serious. This is because, if they

were causing problems, they would probably have been noticed. By contrast, some

more “silent” bug patterns can cause subtle software misbehavior that is difficult to

debug. I discuss loud and silent defects in Section 4.2.

These two observations—low impact defects, and the distinctions between loud

and silent bug patterns—help explain why some defects can persist for a long time

without causing any noticeable problems in the software. But a more general ex-

planation comes from a phenomenon we have observed, which we call The Survivor

26

� �
private final boolean isEnabled;

public boolean isEnabled() {
return this.isEnabled();

}
� �
Figure 1.7: An Infinite Recursive Loop

Effect. When software is written, developers make many mistakes including some

that matter, and some that do not. Over time both classes of defects will be reduced

as the developers test, review, and deploy the software. But most quality assurance

activities are directed more at the defects that matter. So if static analysis is run

on deployed software, it is likely to find many of the defects that do not matter.

There may still be some important defects left that were not caught by other qual-

ity assurance activities, but these are often drowned out by the long list of defects

presented at this stage. Furthermore, it is expensive to fix defects found at this

stage. In studies of detailed snapshots of student code, described in Chapter 5, I

observe many instances of students expending time and effort to solve a problem

that is found by static analysis. They often eventually fix the problem, but not

before using up energy that would have been saved if they had the static analysis

warning. The benefit of static analysis is that it can find problems early when they

are cheap to fix. I discuss the survivor effect in more detail in Section 4.3.

In my research, I also occasionally focus on null pointer defects, because many

static analysis tools focus on catching potential null pointer dereferences. One ob-

servation derived from reviewing some of these warnings is that not every potential

null pointer dereference is a defect. There are many cases where the developer ex-

27

pects the value to always be non-null. Checking for null in all these places is too

cumbersome and makes the code hard to read. Hence if the dereferenced value

is null at runtime, this is likely because of a defect elsewhere in the code. This

observation leads to another insight: many null pointer exceptions are not due to

mishandling potentially null values, but due to separate logic errors which manifest

as null pointer exceptions. I confirmed this by reviewing several dozen bug reports

(from an open-source project) containing null pointer exceptions. This observation

explains some of the limitations for static analysis tools finding potential null pointer

dereferences.

The pervasiveness of null pointer exceptions makes some wonder if it is a

mistake to allow null values in the first place [61]. But in memory safe languages

like Java, sometimes one would prefer a null pointer exception, because it causes the

program to fail fast during development if there is a bug. I discuss this and other

considerations associated with null pointer errors in Chapter 6.

Ultimately for static analysis in practice, finding defects is not enough. Users

need a warning management infrastructure to prioritize which issues to address,

suppress unwanted issues, audit issues collaboratively with others on the team, and

analyze the history of warnings. The next generation of FindBugs includes features

to encourage collaborative auditing of warnings (using a cloud database to store

reviews). Users will also be able to hookup FindBugs to external bug tracking

systems and source browsers. FindBugs already provides features to allow users to

analyze the history of warnings, though our survey indicated that few users were even

aware of these features, and even fewer used them. I discuss the factors associated

28

with cost effective usage of static analysis in Chapter 7.

Looking forward, there are some challenges that need to be addressed to more

fully exploit the potential of static analysis. Once challenge is making tools easier

to extend, so users can quickly identify custom project-specific or API-specific bug

patterns. Currently, in order to extend tools, users need to understand the various

internal analyses, or learn a tool-specific specification language. In Chapter 8, I

explore an approach to enable users to specify new bug detectors by providing

examples (and counter-examples) of the defects they want to find. This approach

does not require the user to learn any new languages or understand the analysis

engine. The user’s specifications are in the same language, and use the same API-

calls as the rest of the program, so the user can continue to take advantage of

features of their IDE, such as refactoring. This discussion will serve as the basis for

future research.

Another challenge is the perception of static analysis by developers. Some de-

velopers retain a negative perception of static analysis, due to the tendency of early

tools to emit many spurious warnings, and despite the advances of more modern

tools that minimize false positives. With the emergence of agile programming, we

have observed that many developers are considerably more willing invest time in

writing and maintaining unit tests than they are in reviewing old static analysis

warnings. While testing can potentially find more kinds of problems than static

analysis, users need to be encouraged to spend appropriate amounts of time on

static analysis to retain its benefits.

One persistent challenge to the advancement of static analysis is the lack of

29

cooperation and openness between competing vendors. Many tool vendors do not

want others to know what defects they find, because they are concerned others will

quickly develop the technology to find the same defects. But to advance static

analysis, practitioners need to develop new technologies to find more difficult bug

patterns. Openness and cooperation will help this goal.

30

Chapter 2

Background

The goal of this chapter is to briefly introduce important terms and concepts.

This section assumes a basic understanding of common programming language id-

ioms and software development processes.

2.1 Defects found by Static Analysis

The best way to understand what static analysis tools do and why they are

limited is to jump into some examples. Here are 2 examples that illustrate why

static analysis cannot always infer the intent of the programmer:� �
if(argument != null || argument.length() != 0) {

...

}
� �
Figure 2.1: Will throw a NullPointerException if argument is null

� �
PrintWriter log = null;

if (anyLogging) log = new PrintWriter(...);

if (detailedLogging) log.println("Log started");
� �
Figure 2.2: May throw a NullPointerException

Figures 2.1 and 2.2 illustrate some scenarios where a Java NullPointerExcep-

tion may be thrown. In the if-statement, argument is only dereferenced when it

31

is null. Of course, it is possible that argument is never null and so the exception

never occurs. Still we can assume without fully understanding the semantics and

context that this code likely does not represent the programmers intent and should

be changed. In Figure 2.2 (taken from [63]) on the other hand, it is not clear if there

is a problem. A NullPointerException will be thrown if log is not initialized before

it is dereferenced, which happens if anyLogging is false and detailedLogging is

true. It may not be possible to decide if this can happen at compile time, and a

tool reporting this as defective code may be issuing a false alarm.

This leads us to an important consideration when designing or evaluating

tools – is the underlying analysis is sound or complete? A sound analysis finds

every defect in the targeted class, and sometimes (often) includes false warnings. A

complete analysis ensures every warning found is a real error (i.e., does not return

any false alarms), but it may not find every problem in the targeted class. A sound

and complete analysis cannot exist for non-trivial programs and defect classes, and

these two properties are often traded off for each other [83]. Most analyses aim to

be sound, but many modern static analysis tools are neither sound nor complete

in general. Instead they aim to find as many problems as possible, while using

heuristics to minimize the number of false warnings. One such tool is FindBugs,

which will flag Figure 2.1 but not Figure 2.2 [63].

Sometimes programmers are asked to assist tools by providing more semantic

information using annotations. In Figure 2.3(a), a C function which performs some

operations on a character buffer assumes that both the buffer and its length are

32

passed in by the programmer1. If the length is incorrectly specified, this could make

the application vulnerable to a buffer overflow attack. This serious security flaw

plagues many C and C++ applications because of functions in the standard library

that can introduce this vulnerability if used incorrectly. One solution, advanced

by Microsoft in their static analysis tool PREfast [83], is to annotate the function

with enough semantic information so a tool can check the relationship between

the parameters. Figure 2.3(b) illustrates these annotations using the Microsoft’s

Standard Annotation Language (SAL). The annotation out ecount(cchBuf) on

buf indicates that parameter cchBuf should be the length of buf. PREFast scans

the code to see if this constraint is met whenever FillString is invoked, and outputs

a warning if it is not.

2.2 Tools, Interfaces and Interaction Methods

We should point out that “static analysis” can refer to a wide range of program

analysis activities, from static type checking to bug finding to program verification

[33]. Static type checking is probably familiar to most programmers because it is

built into many languages and enforced by compilers that prevent programmers from

using typed data values in incompatible ways. In our research, we generally focus on

bug finding tools (which look for program behavior that potentially deviates from

the programmers intent) and property checking tools (which try to exhaustively

verify that a program has a desired property).

1Example from http://blogs.msdn.com/michael howard/archive/2006/05/19/602077.aspx

33

(a) function without annotation� �
void FillString(TCHAR∗ buf, size t cchBuf, char ch) {

for (size t i = 0; i < cchBuf; i++) {
buf[i] = ch;

}
}
� �

(b) annotated function� �
void FillString(out ecount(cchBuf) TCHAR∗ buf, size t cchBuf, char

ch) {
for (size t i = 0; i < cchBuf; i++) {

buf[i] = ch;

}
}
� �
Figure 2.3: Using annotations to inform a static code analyzer

We have already mentioned two bug finding tools: FindBugs [62, 64] which is

open source, and PREfast [83]. FindBugs searches for potentially erroneous Java

code idioms called bug patterns. It includes dozens of bug detectors that scan the byte

code and output warnings or alerts. Bug patterns are organized into categories and

warnings are assigned priorities (e.g., High, Normal, Low) based on the confidence

of the analysis. Other popular open source bug finding tools are PMD [4] and Jlint

[3], and some commercial tools are Grammatech CodeSonar [53], Coverity Prevent

[66], Klocwork [81], Fortify Source Code Analyzer (SCA) [128] and Ounce (now part

of IBM) [65].

Some tools like Fortify SCA and Ounce have a particular focus: finding security

problems. The output from these tools is intended to support security audits and

34

code reviews. Unlike other bug finding tools, these tools do not generally minimize

false positives because they aim to identify all vulnerabilities that may be exploitable

[33].

Static analysis tools provide a diverse array of interfaces for interaction with

users. Perhaps the most basic mode is as a command line tool that analyzes software

when manually invoked. Even more convenient is when tools provide plugins to

popular build systems like ANT or Maven so that they can be invoked as part of

the build process with minimal configuration effort. Tools invoked using one of these

modes may output results to the screen but more often save the results in some data

format (e.g., XML, HTML or plain text) so that they can be processed or viewed

by third party applications. These results may be sent automatically to developers

using email, or by posting on a website or bug database. An emerging paradigm

is to present results on a dashboard associated with a continuous integration server

such as Hudson [76] or Cruise Control [8], which developers already use to regularly

build and test the code base.

A different paradigm is to present warnings using a standalone graphical user

interface (GUI) or as part of a custom view in an integrated development environ-

ment (IDE). These modes facilitate doing advanced tasks like filtering out entire

classes of warnings corresponding to unimportant defects, or assigning issues to spe-

cific developers or to be ignored. One argument for using the IDE mode is that

warnings can be presented to the developer as soon as the problematic code is typed

by using subtle but conspicuous markers in the editing space. The counter-argument

is that this mode may affect the responsiveness of the IDE (for complicated anal-

35

yses) or irritate developers by highlighting issues prematurely (before they finish

typing all they want to express semantically).

One expectation is that the mode of interaction affects the way developers use

tools and the facilities they employ. For example, if a developer interacts through an

IDE plugin that makes it easy to filter out entire classes of warnings, that developer

may be more likely to tune the analysis tool to meet their needs than a developer

that has to manually edit XML configuration files. Similarly developers that view

warnings on a continuous integration dashboard that they check regularly may be

more likely to respond to these warnings (by fixing or suppressing) than developers

that have to remember to manually run the static analysis tool every once in a while.

2.3 Mining Software Artifacts

Modern software development processes rely on a number of tools to facilitate

collaboration between all members of a team. These tools include software reposi-

tories that maintain every version of every file created during the process, and bug

databases that store all communications associated with a defect’s remediation from

the moment the defect is reported to the moment a fix is verified. Other tools are

build servers and continuous integration dashboards for tracking the success of com-

pilation and unit testing for each snapshot of the code repository, code coverage and

other metric reporting tools, forums and wikis for discussion and documentation,

and calendars for scheduling.

Each of these tools captures a part of the story of the software development

36

effort from conception to deployment. I use the phrase “software mining” to refer

to any effort to search or examine the information captured in these tools for the

purpose of discovering trends, making prescriptions or diagnosing problems.

A concerted effort and community has formed around mining software repos-

itories in particular, because these resources often contain the most detailed, auto-

matically acquired information about the development process. Interesting trends

can be identified by visualizing the repository, cross-matching the different data

types collected (such as authors and timestamps), or comparing information in

repositories with data collected from other tools such as bug tracking databases. I

include some of these interesting trends in my discussion on mining software repos-

itories in Chapter 5.

37

Chapter 3

User Perspectives and Experiences

In casual interactions with users of FindBugs, I often receive positive feedback

about the bugs FindBugs has found, or the programming principles the user has

learned from using it. On the other hand, it is not clear that these users use

FindBugs as regularly as they write unit tests, for example. Throughout this project,

I have sought to interact more formally and directly with users to learn about

their experiences and opinions. How effectively are they using FindBugs, and what

limitations are holding them back from fully adopting it?

In this chapter, I describe three sets of studies that shed some light on user

perspectives and experiences. Early in this research project I surveyed about 1,000

FindBugs users and observed that most did not have formal processes for using static

analysis. I also interviewed over a dozen of the participants by phone and learned

about some of the challenges they had integrating FindBugs into their software

process. These studies are discussed in Section 3.1.

In some follow-up studies, described in Section 3.2, I observed students in a

controlled lab setting as they reviewed some preselected warnings from two static

analysis tools. I captured basic information about how long each review took, and

how consistently independent reviewers evaluated particular issues. These studies

were a precursor to a large study in which hundreds of engineers reviewed thousands

38

of warnings in an industrial code base. With such a large number of reviews, we

were able to quantify the opinions of the users and aggregate the results by bug

pattern, age and severity to find trends. This study is discussed in Section 3.3.

In general, these studies suggest that static analysis tools should be run auto-

matically, otherwise users are unlikely to run them regularly. Popular approaches

for doing this include integrating warnings into code reviews, continuous or nightly

builds, or the Integrated Development Environment (IDE). Each of these approaches

has its limitations. And even with infrastructure in place to automatically present

warnings to developers, organizations still have to decide how to deal with the large

number of initial warnings, how to integrate results from multiple tools into a com-

mon interface, and how to customize tools to filter out irrelevant bug patterns and

add project-specific ones.

Another lesson is that the relevance of a warning often depends on the nature

of the application. Desktop applications have different priorities from server-based

applications, for example. And entertainment applications such as video games have

different tolerances from safety critical software such as an airplane’s flight control

system. Of course, some warnings are always bad, and all warnings are cheaper to

fix when shown to the developer earlier in the development process.

3.1 User Survey and Interviews

From November 2007 to November 2009, I conducted an online survey to learn

about the experiences of FindBugs’ users, and collected 1045 responses. This was

39

a wide ranging and exploratory survey to generate feedback from users about how

and how much FindBugs was used, how it was integrated into the software devel-

opment process, which bug pattern categories were important, and which features

of FindBugs were used. I also conducted about 18 informal phone interviews with

consenting survey respondents in the US and Europe to better understand their

context and to get more detailed information about their experiences, challenges

and suggestions. Ultimately, the survey and interviews helped to provide some in-

sight on the value that static analysis tools may bring to the software development

process, and what obstacles prevent their adoption. Some results from these studies

have been reported in previously published work [13, 12].

3.1.1 Methodology

The survey was prepared and delivered using Survey Monkey, a popular web-

based provider of survey solutions used by many companies and researchers1. I

targeted FindBugs users by advertising on the FindBugs web site and through its

mailing lists.

There was no preset limit on the number of participants, nor was there a

preselected invitation list. This means I cannot measure a response rate (which

might indicate how much the survey can be generalized), and there may be some

self-selection bias [24, 120]. In other words, some users with strong opinions may

be more likely to provide feedback than other users. But the goal was to get as

many responses as possible, particularly for the qualitative questions. And since

1http://surveymonkey.com

40

there were over 1,000 responses, some of the quantitative trends observed are likely

significant. To encourage user participation, we offered prizes in the form of T-shirts

and coffee mugs from the FindBugs store to randomly selected respondents. User

responses were handled confidentially so that individual users cannot be identified

in any reports. This research involving human participants was approved by the

Institutional Review Board at the University of Maryland.

The main body of the survey includes 27 multiple choice or simple numeric

questions and 2 essay questions. This organization makes it easier to quantify and

analyze most of the responses, and reduces the burden on participants. Many of the

multiple choice questions include a choice labeled “Other (please specify)” to allow

users to provide more qualitative information. The survey begins by asking for basic

demographic information such as the level of the user’s education and experience,

the nature of the user’s code, and the type of organization the user is affiliated with.

Highlights from these questions are discussed in Section 3.1.2. The final multiple

choice question presents the users with a number of statements, and asks them to

indicate how strongly they agree or disagree with each using a Likert scale [87]. The

essay questions ask users to specify any customizations they have made to FindBugs,

and for additional feedback about what they like or dislike about FindBugs, and

how it affects their software development process.

At the end of the survey, participants indicated if they would be willing to be

contacted for further interviews. I contacted some of the consenting participants

and arranged phone interviews. Each interview lasted about 30 minutes, and was

a free-flowing conversation about how users discovered FindBugs, how their orga-

41

nization handled quality assurance, and what their priorities were. The interviews

were recorded with the permission of participants, and later partially transcribed to

preserve the main points for future review and analysis.

As part of the effort to construct the survey and prepare for the interviews,

I conducted some pilot surveys and interviews with users in the Northern Virginia

Java Users Group2 and the Fraunhofer Center at the University of Maryland3. These

pilots helped to refine some of the questions in the final survey, and indicated that

the study results would be difficult to analyze if not reduced to simpler multiple

choice questions.

The following sections highlight some of my main observations.

3.1.2 Survey Demographics

Table 3.1 shows the basic demographic statistics from the survey. The results

indicate that many participants were experienced industry professionals. Users had

an average of 10 years of professional experience working on software projects, and an

average of 3 years of experience using automatic fault detection tools like FindBugs.

The top primary roles users identified were Software Developer, Software Architect,

Project Manager and Consultant/Specialist. Many users also indicated that they

had secondary and tertiary roles as Quality Assurance/Testing and Build Engineers.

Only a handful of responses were from researchers or students. This skew towards

industry participation supports my goal of understanding how FindBugs is used by

2http://novajug.org/
3http://fc-md.umd.edu/

42

Table 3.1: Survey Demographic Statistics

Experience Organization Size

Average Professional Experience 10 years 1 to 50 employees 28%

Average Experience with Fault Detection Tools 3 years 50 to 200 employees 16%

Average Experience with FindBugs 2 years 200 to 1,000 employees 17%

Primary Role or Job Function 1,000 to 10,000 employees 20%

Software Developer 56% 10,000 or more employees 19%

Software Architect 21% Project Age

Project Manager 7% Less than 6 months 26%

Consultant/Specialist 6% 6 months to a year 22%

Affiliate Organization Sector 1-2 years 27%

Technology and Communications 49% 2-5 years 42%

Finance and Insurance 11% Over 5 years 25%

Services 9%

Education 7%

Percentages are of the respondents who answered the question.

For project age, users may select more than one option.

professionals.

It is also interesting to note the industries that participants represent. Unsur-

prisingly, most participants worked in technology and communications companies,

but there was also a strong showing from the finance sector, where critical software

flaws can lead to high profile failures or security breaches.

The responses were distributed uniformly among organizations of different

sizes, with around half of the responses from small to mid-size organizations, and

half from large organizations with more than 500 employees.

The sizes and ages of code bases subjected to static analysis varied widely.

10% of respondents reported running FindBugs on code bases larger than 1 million

lines of code and the plurality of respondents (42%) reported that their code bases

were 2 to 5 years old.

43

3.1.3 Is FindBugs Useful?

Many users expressed strong positive sentiments about FindBugs, both through

the opinion-based multiple-choice questions and the open-ended essay questions. Ta-

ble 3.2 summarizes a question in which users were asked to agree or disagree with

several statements. Most users agreed or strongly agreed that their investment in

FindBugs was worthwhile, that it had found serious problems, and that warnings

were easy to understand and fix. The statement that FindBugs has found serious

problems that users fixed is particularly interesting, because it suggests that users

perceive that they are getting real value out of it. Whether this translates into

consistent and regular usage is another matter, which I discuss in Section 3.1.4.

The results in Table 3.2 also show that only half of the users agree or strongly

agree that FindBugs was speeding up the quality assurance process, but another

30% were indifferent to this question. Static analysis may speed up the quality

assurance process by identifying problems sooner or enabling faster code reviews,

but it may also slow it down by giving developers additional work.

We also asked users if the presence of static analysis affected other parts of

their quality assurance process. Only a few users (18%) felt that project managers

rely too much on the number of bugs reported when measuring code quality, and

even fewer users (8%) said that FindBugs reduced the number of unit tests they

write. However a large number of users were indifferent on both questions (52% and

39% respectively) so these results may not be representative of survey respondents.

I also received qualitative feedback that strongly indicates that users found

44

Table 3.2: Percentage of users who Agree or Strongly Agree with statements about

FindBugs

Our investment (in time) in FindBugs has been worthwhile 90%

FindBugs has found serious problems in projects I or my team have

worked on

81%

FindBugs warnings and bug descriptions are easy to understand 75%

FindBugs warnings have generally been easy to fix 67%

FindBugs speeds up our quality assurance process 50%

Project managers rely too much on “number of bugs” reported by

tools like FindBugs when measuring code quality.

18%

FindBugs has had the (unintended) effect of reducing the number

of unit tests we write

8%

FindBugs valuable. For example, one user commented:

We have a project where FindBugs found some serious problems in highly

critical safety related software, issues that might have caused it to run less

efficiently or wrong. FindBugs saved our collective (butts). It’s as simple as

that.

One recurring theme was the educational value users said they received from

FindBugs. It taught them things about Java they did not know previously. One

manager I interviewed insisted that junior developers use FindBugs regularly, just

so they can learn good practices and understand some nuances about the language.

Not all comments were positive. Some users complained about the perfor-

mance of FindBugs in the IDE, or about how difficult it is to extend FindBugs with

new plugins.

45

During interviews, we tried to find out how users heard about FindBugs and

what motivated them to start using it. Many users heard about FindBugs through

presentations at the annual Java One conference4 or through online videos, podcasts

and articles.

The motivations for using FindBugs varied widely. Some users reported that

even brief trials running the tool taught them new things about Java and its potential

pitfalls. Some of these respondents used FindBugs to ensure compliance with coding

standards and to educate new developers. Many users highlighted the fact that

FindBugs found real correctness problems, not just style issues, as reason to choose

FindBugs over other tools like CheckStyle or JLint.

One user was an outside consultant called in at the end of each major phase to

do quality control. He ran FindBugs as a first step to look for clusters of problems

and sniff out problematic trends. He expressed an unusual concern that if develop-

ers use FindBugs regularly, they would “tune” the code base to the tool, perhaps

removing low priority warnings that could identify potentially defective modules.

On the other hand, if the problems found and fixed improve software quality, then

the organization and clients are well served.

Another user worked on an Agile software development team [60] that empha-

sized test-driven development and ran static analysis tools only at the end of each

iteration. His perspective was that static analysis was useful for finding potential

future problems that did not immediately manifest in tests. For example, Find-

Bugs flags the practice of calling a non-final method from a constructor. This is a

4http://java.sun.com/javaone/

46

Table 3.3: Lack of formal policies for using FindBugs

Our developers only occasionally run FindBugs manually 60% of users

No policy on how soon each FindBugs issue must be human reviewed 81%

Running FindBugs is NOT required by our process, or by management 76%

FindBugs warnings are NOT inserted into a separate bug tracking database 83%

No policy on how to handle warnings designated “Not A Bug” 55%

potential problem only if the class is subclassed.

Few users reported doing any initial cost-benefit analysis to measure the return

on investment in FindBugs. In some cases, adoption was pushed by one champion

who was convinced it would bring value. This champion would lead the effort

to integrate FindBugs into existing processes, or do the initial work to filter out

unwanted bug patterns. One user recently joined his company and found that a

previous effort to use FindBugs had failed as developers stopped running it daily.

So he pushed to automatically run it as part of the continuous build, taking some

of the onus off developers.

3.1.4 Users Lack Formal Processes

One of the most revealing observations from our survey was that most respon-

dents did not seem to have any formal policies for using FindBugs and other static

analysis tools (Table 3.3). Their organizations just expected developers to run tools

once in a while, and they had not really considered questions like: “who decides if

a warnings should be fixed?” or “how should we filter out false alarms?”.

Some teams did identify the need for a way to suppress warnings that are

47

Table 3.4: Handling issues designated “Not A Bug”

Filter out using FindBugs filters 25% of users

Suppress using @SuppressWarnings 17%

Close in a bug tracker or database 5%

No policy 55%

not bugs or that are low impact issues (Table 3.4). FindBugs’ filter files5 were the

most common method, followed by source level suppression using annotations (such

as @SuppressWarnings). In the interviews, one user explained that source level

suppression using annotations was attractive because the suppression information

is readily available to future code reviewers. Other users had the practice of fixing

all issues identified by FindBugs to make the issues go away. Some did this because

they did not want new issues to be drowned out, and others did this because they

felt it made the code cleaner. As one user put it: “the effort to reformulate source

code to avoid FindBugs warnings is time well spent.”

Another survey question focused on who decides that an issue should be fixed

(Table 3.5). In many cases, the person who writes the code is responsible for review-

ing the warning, deciding if it is relevant, and resolving the issue. Other approaches

include having peer reviews or team reviews. Warnings found in older code can be

hard to fix and require approval from management. One question all this raises is

whether two different individuals will interpret warnings the same way (and hence

make similar review judgments). If reviewers often reach different conclusions, then

5FindBugs’ filter files are XML files that contain references to specific bug patterns, packages,

classes, methods, or fields, which can be included or excluded from analysis results.

48

Table 3.5: How do you or your project team decide when a warning is “Not A Bug”?

The reviewer makes this decision independently 38% of users

The reviewer makes this decision for trivial cases, but

nontrivial cases go to a team or to management

17%

At least two reviewers must agree 6%

The issue must be reviewed by a team or management 5%

No policy 31%

organizations may need to be more careful about how they choose reviewers. I have

explored this question with some lab studies and a warning review (described in

Sections 3.2 and 3.3 respectively) which indicate that independent reviewers are

usually consistent with each other. This suggests organizations can save money by

not requiring multiple independent reviews for most issues.

During interviews I tried to understand why adoption of FindBugs was unsuc-

cessful in some cases. One reason given is that developers were discouraged by the

large number of warnings presented the first time the tool is run on existing code.

Developers are often resistant to changing code that has been in production for a

while and may perceive the warnings in low regard because they refer to problems

that have not manifested during execution. Organizations in this situation needed

to either filter out warnings older than a certain time period, or make a concerted

effort to remediate certain bug patterns all at once.

Another problem that sometimes came up was that users did not know how

to write custom bug detectors and found the prospect of learning to do so daunting.

Some users expressed that they did not know what problems FindBugs catches

49

(the list of bug detectors is quite long), and hence they were worried that writing

a custom detector might be reinventing the wheel. FindBugs does not generally

use sound analyses so the absence of a warning does not imply the absence of the

problem.

Finally, we interviewed at least one developer who expressed that FindBugs

was imposed on his team by management and a separate security team. This im-

position came about because an earlier developer error had caused a major security

breach in one of the organization’s web applications (the organization was a State

Department of Health). One of the responses was to make developers review all

warnings regularly and document the ones they did not fix. The security team

saw this requirement as a first layer of defense, but the developer expressed some

reservation because he felt that few of the warnings were serious bugs.

3.1.5 Issues Users Care About

FindBugs classifies warnings for each bug pattern into high, medium, or low

priority groups depending on the severity of the issue and the confidence of the

analysis. Part of the goal is to reduce the number of false positives among issues

that receive a high priority label. Our survey indicates that most users review at

least the high priority warnings in all categories (Table 3.6). This is the expected

outcome, since high priority warnings are intended to be the sorts of problems any

user would want to fix. A surprising number of users also review lower priority

warnings (though the review categories vary from user to user). This indicates

50

Table 3.6: Proportion of users that review at least high priority warnings for each

category

Bad Practice 96% of users Malicious Code Vulnerability 86%

Performance 96% Dodgy 86%

Correctness 95% Internationalization 57%

Multithreaded Correctness 93%

that while high priority warnings are relevant to most users, lower priority warnings

may or may not be relevant depending on the user’s context. One could even

imagine providing preconfigured settings for different contexts that emphasize or

deemphasize certain bug patterns based on whether the subject application is a web

application or desktop application.

During interviews some users, particularly those building web applications,

were more interested in security related issues (such as SQL injections) but at least

one user indicated that input validation was their primary defense and this made

many security warnings obsolete. FindBugs does not have many detectors dedicated

to security issues, so most users were relying on FindBugs to find issues related to

correctness such as dereferences of potentially null variables. Users also reported

looking for synchronization issues and race conditions, problems that can manifest

in multithreaded environments.

3.1.6 Summary

The survey and interviews provide the first clues that users are getting some

value out of FindBugs, including some educational value because it informs them

51

of good programming practices. But this study also indicates that some users are

struggling to integrate FindBugs into their regular software development process.

These users confirm that just using static analysis in an ad hoc way does not seem

to be sufficient because developers may forget to run it regularly, or new warnings

may be drowned out by stale issues that have not been resolved or suppressed.

These users also confirm that they are actively trying to make the initial investment

to establish infrastructure that will enable them to baseline old issues, file some

new issues automatically in their issue tracking systems, or aggregate the results of

multiple static analysis tools into one interface. The observations from this survey

inform some of the questions I ask throughout my research. I will return to some of

the responses from the survey at relevant points in future chapters.

3.2 Lab Based Controlled Studies

The surveys and interviews indicated that users perceive that FindBugs’ warn-

ings are generally valuable and worthwhile reviewing. But all warnings are not equal,

and it would be interesting to observe user perceptions of different specific warnings.

To facilitate this discovery, I conducted a number of studies that bring users into

direct interaction with FindBugs and other static analysis tools. I describe some

lab studies involving a few participants in this section, and a larger study involving

hundreds of professionals in Section 3.3.

The lab studies enabled us to observe students interacting with static analysis

tools in a controlled environment. These studies were partly done in preparation for

52

larger studies conducted with hundreds of engineers in their working environments,

and hence had numerous goals. One goal was to see how long it would take to

review each warning and decide if it is worth fixing, if it is low impact, or if it is

not a problem. This enables us to make a rough estimate of the cost of using static

analysis.

Another goal is to determine if multiple independent reviewers agree about

the significance of each warning. Sometimes when researchers and tool vendors talk

about warnings, we assume that the rightness or wrongness of the warning is clear.

But separate users may place a different value on each warning, even disagreeing

about whether the problem is plausible. Differences may also come about because

users make errors in judgement. These studies enable us to improve our intuition

about user consistency.

The process of observing users as they interact with tools may also reveal

insights about the practice and rigor of reviewers. What resources do they rely on

to understand a warning and decide if it is a problem? And what sorts of mistakes

do reviewers make in deciding that a warning is not a bug, or that it is a bug? What

if we insert a fake warning? Will users be careful enough to detect this deception?

In a similar vein, we want to investigate what biases may influence a reviewer,

including the priority label assigned by the static analysis tool, and the order in

which warnings are presented. Some users may trust that the analysis is correct,

and not feel the need to manually verify its assertions. Other users may be skeptical,

and refuse to accept that there is a bug unless they can prove it to themselves.

Of course, student reviewers in a lab do not precisely represent the decisions

53

made in the real world, where professionals worry about the cost of fixing warnings.

One way to improve this limitation is to ask reviewers to make some of the consid-

erations engineers make in practice, including whether the alleged problem is likely

to occur often or only rarely, and whether the problem is in deployed client software

(and hence a software patch will need to be released), or just in local code under

development. We attempt this in one of the lab studies by providing users with a

checklist for them to go over as they review each warning.

The first lab study focuses on capturing the review time, and consistency of

independent reviewers. This study is described in Section 3.2.1, and reported in more

detail in [13]. The second study introduces a checklist, and focuses on observing how

different factors (including order, priority, and bug pattern) correlate with reviewer

evaluations. In this study, we randomized the order and priority of the warnings,

and even inserted some fake warnings. This study is described in Section 3.2.2, and

reported in more detail in [15].

Ultimately, the goal in both these studies is to make qualitative observations

about the users’ interactions with tools.

3.2.1 Study 1: Review Times and Consistency

This study involved two static analysis tools: FindBugs and Fortify Source

Code Analyzer. Fortify SCA is a commercial static analysis tool that specializes in

finding potentially exploitable security vulnerabilities in source code. We recruited

12 students (10 graduate and 2 undergraduate) from the University of Maryland’s

54

Computer Science Department, using email, fliers and word of mouth. We did not

require our users to have any prior experience using static analysis tools, and none

of them had used the tools they were reviewing. Users had between 1 and 10 years

of programming with Java (the average was 6 years) and between 0 and 5 years

of using the Eclipse IDE (the average was 3 years). The first six users reviewed

warnings from FindBugs while the next six reviewed Fortify SCA warnings.

Both tools were run on DSpace6 (version 1.4.2), an open source web based

application for accessing and managing text, audio, video and other resources gen-

erated during research and teaching. DSpace was one of the benchmarks in the

2008 Static Analysis Tool Exposition7 organized by the National Institute of Stan-

dards and Technology (NIST). Both FindBugs and Fortify SCA participated in the

exposition.

Participants were asked to review 23 FindBugs warnings (including correct-

ness, bad practice and multi-threaded correctness warnings) or 21 Fortify SCA warn-

ings (including warnings on HTTP Response Splitting, SQL Injections and Race

conditions). Users were asked to rate warnings on a 3 level scale using labels native

to the tools. For FindBugs the levels were “Must Fix,” “Low Impact,” and “Not

a Bug.” For Fortify SCA the levels were “Exploitable,” “Suspicious,” and “Not an

Issue.”

The studies were conducted using the Eclipse IDE and corresponding plugins

for both tools. To facilitate analysis we logged some user actions (such as selecting

6http://dspace.org/
7http://samate.nist.gov/index.php/SATE

55

a view or rating a warning) using a customized version of the HackyStat8 Eclipse

plugin [74], which transparently collects data about user activities and sends it to a

central repository.

The experiment was divided into four parts: a tutorial, a practice session in

which participants reviewed four warnings, a timed main session and a background

survey. During the practice session, participants were asked to “think out loud” as

they performed the review to provide qualitative information about what decisions

they were making and why. During the main session participants reviewed the

assigned issues starting with the highest priority warnings, mimicking the way tools

usually present the warnings to users.

During the tutorial, participants viewed a web page which described the tools

with illustrations and outlined the tasks the user was expected to perform. In

particular, the tutorial showed users how to navigate through warnings, designate

a rating to each one, and add comments. The tutorial for Fortify SCA was longer

because it included more detailed information about HTTP Response Splitting,

SQL Injection and Race Conditions. These descriptions and examples were adapted

from the information provided by Fortify SCA. In addition the Fortify SCA tutorial

included a checklist of steps for users to follow. I designed the checklist based on

the documentation provided by Fortify. The checklist was intended to reduce the

complexity of some of the tasks and to ensure participants consider all relevant

factors before choosing a designation. An example of a checklist for SQL Injections

is shown in Figure 3.1. Participants were encouraged to ask any questions they had

8http://hackystat.org

56

Use the following Checklist to determine if a segment of code is an SQL injection

1. Does data enter the program from an untrusted source? If NO, then not an SQL injection

2. Is the data used to construct an SQL query? If NO, then not an SQL injection

3. Is the data validated between its entry and where the constructed SQL statement is

executed? If YES, then GOTO 3.a., otherwise GOTO 4

(a) Is the data validated using blacklisting (removing or escaping potentially mali-

cious characters)? If YES, then code is still vulnerable to SQL injection because

blacklisting is not as effective

(b) Is the data validated using white listing (only allow certain predetermined inputs)?

If YES, then not an SQL injection

4. Do you see any other security mechanism to prevent SQL injection? If YES, then use

your best judgment to determine if the security mechanism is effective

Figure 3.1: SQL Injection Checklist

to the experimenter.

3.2.1.1 Results and Observations

Table 3.7 shows the review times for FindBugs and Fortify SCA. The times for

each tool are sorted from shortest to longest. Users spent an average of 98 seconds

reviewing each FindBugs warning. This average drops to about 87 when the last

(outlier) is excluded. Users spent about 120 seconds for each Fortify SCA issue. It

was interesting to note that the review times were not very long for either tool in

this simple study, and in particular that Fortify SCA reviews were not much longer

than FindBugs despite its increased complexity.

In Table 3.8 we measure how much reviewers agree with each other in des-

ignating a warning to a level on the 3-level scale for their tool. For example, all

57

Table 3.7: Review Times for FindBugs and Fortify SCA

FindBugs Fortify SCA

73 88

76 90

90 103

97 108

98 143

151 189

Average: 98 120

Table 3.8: Level of Agreement among six reviewers

Tool Total Warnings 6 agree 5+ agree 4+ agree

FindBugs 23 7 12 21

Fortify SCA 21 3 6 11

6 reviewers made the same decision for 7 of the FindBugs warnings, but only 3 of

the Fortify SCA warnings were unanimous. The results indicate a greater level of

agreement among FindBugs users which may reflect that the warnings are simpler

to understand.

One interesting exception occurred during the practice session and is illus-

trated in Figure 3.2. Here, a switch statement is missing breaks and each case falls

through to the next one. FindBugs flags this as a bug but 4 users concluded that the

programmer intended the fall through to initialize all variables. The other 2 users

reviewed this as Must Fix, and may have not noticed the programmers possible

intent. Of course, the programmer in this example should probably insert com-

ments indicating that breaks were omitted intentionally if in fact this is the case. In

58

� �
public DCDate(String fromDC) {

...

switch (fromDC.length()) {
case 20:

// Full date and time

hours = Integer.parseInt(fromDC.substring(11, 13));

minutes = Integer.parseInt(fromDC.substring(14, 16));

seconds = Integer.parseInt(fromDC.substring(17, 19));

case 10:

// Just full date

day = Integer.parseInt(fromDC.substring(8, 10));

case 7:

// Just year and month

month = Integer.parseInt(fromDC.substring(5, 7));

case 4:

// Just the year

year = Integer.parseInt(fromDC.substring(0, 4));

}
...

}
� �
Figure 3.2: Switch statement with no breaks. Some users concluded this

was not a bug while others declared this a Must Fix

another case, FindBugs flagged a possible null pointer dereference that would only

occur if an earlier exception was thrown. The programmer provided a comment that

the exception “should never happen,” but 4 users still concluded that the warning

was a “Must Fix” while the other 2 reviewed this as Not an Issue.

With Fortify SCA warnings, we noticed that some of the disagreement may

have resulted from reviewers getting confused as they went through the trace. In

one case half the users rated a HTTP Response Splitting warning as Exploitable

while the other half rated it as Not an Issue. The comments indicate that some of

59

those who thought it was not an issue concluded that the offending variable was

sanitized using the URLEncoder.encode method, but in fact a different variable was

sanitized.

A brief survey administered after each study captured more feedback about

the user’s experience. In the survey 5 of the 6 FindBugs users indicated that they

generally understood the warnings or that they were familiar with the problems

from previous experience, while 4 of 6 users indicated that it was not difficult to

decide if a warning represented a bug. But users were split over whether it was easy

to distinguish between “Must Fix” and “Low Impact” bugs. Some of these users

complained that they were not familiar with the code and could not investigate too

deeply, so it was hard to decide the real impact of the warning.

In the Fortify SCA survey, 5 of 6 users indicated that they understood the

warnings, but most still thought it was difficult to decide if a warnings was a bug.

In addition 5 of 6 users found it hard to distinguish between “Exploitable” and

“Suspicious” issues. Some users said they were conservative, rating as Exploitable

any issue for which a reasonable chance of failure existed.

Both FindBugs and Fortify SCA provide a clickable trace for each warning that

contains links to relevant parts of the code. FindBugs trace links to affected fields

and classes and the line where the warning occurs. Fortify SCA’s traces contained

a call hierarchy tracing the cause of each issue from the source (e.g., where a taint

enters the program) to the target where the vulnerability is exposed. Fortify SCA’s

traces were much longer than those in FindBugs and users relied more on the traces

in Fortify SCA to understand the warnings. One observation is that users often

60

looked beyond the trace, referring to the type hierarchy or just doing a text search

to find out more about variables and types. Some users indicated that even after

going through the trace to confirm the warnings, they did not know whether to

trust the tools. Such users would spend some time trying to find a clue that might

suggest that the tool was wrong. One Fortify SCA user indicated that they were not

confident enough to rate any issues as Not an Issue (there was also one FindBugs

reviewer that did not rate any warnings as Not a Bug).

3.2.2 Study 2: Factors Influencing Review

This study focused on how some factors may influence a reviewer’s judgment

about the severity of a warning and the reviewer’s willingness to fix it. We looked

for correlations between these factors and reviewer responses to a checklist. Some

factors we could consider are:

• Displayed Priority: Is the reviewer more likely to take a warning more seriously

if the tool assigns a higher priority label or color to it?

• Order: Is a reviewer more skeptical about the initial warnings or the warnings

near the end of the review?

• Bug Pattern: Are certain types of warnings inherently more interesting to

reviewers?

• Context: Is the reviewer examining modules that have already been deployed

or modules that are still under development?

61

• Impact: The impact of an unfixed issue could range from warning messages

sent to a log file, to serious logical errors.

• Perception (of the tool): Do reviewers assume that a tool’s analysis is correct

or do they try to verify assertions made by the tool? For example, if a tool

declares that a variable is null at a critical point in the code, do users inspect

the code to verify this or assume that the tool is correct?

If factors other than the bug pattern of an issue are influencing the reviews

of an issue, then organizations may need to consider these factors when adopting

policies to govern the use of static analysis. In this study, we considered the influence

of displayed priority, order of presentation, bug pattern and context. The only factor

we controlled directly is the bug pattern. The priority labels next to each warning,

and the order in which the warnings were presented was randomized. We focused on

FindBugs warnings associated with possible null pointer exceptions because these

tend to be unambiguous, but we were still able to consider a wide range of bug

patterns (see Table 3.9).

To review each warning, participants completed a checklist (shown in Table

3.10). The first checklist question tests the reviewer’s understanding of the FindBugs

warning. Our past research has indicated that most FindBugs warnings should be

easy to understand, but some users may feel they need more information (through

unit tests). This question also gives users the opportunity to quickly identify those

warnings they think are bogus, and hence avoid answering the other checklist ques-

tions. Users who do not understand the warning also skip the remaining checklist

62

Table 3.9: Bug Patterns used in controlled study

Bug Pattern # of Issues

NP (Always Null): A NullPointerException is always thrown

when the referenced line is executed

3 (1 Fake)

NP (Null On Some Path): There is a path through the code

that, if executed, is guaranteed to throw a NullPointerException

2 (1 Fake)

NP (Null Parameter Dereference): A method call passes

null to an unconditionally dereferenced parameter

2

NP (Unwritten Field): An uninitialized field is read 1

PZLA: Prefer to return a zero-length array instead of null 1

RCN (Redundant Check for Null): Check of a value that is

known to be non-null. May indicate a logic error.

4 (1 Fake)

questions.

The four checklist questions that follow give reviewers multiple scales for mea-

suring the severity of the warning and the level of their response. Reviewers indicate

severity in terms of how often the issue occurs and how the issue affects code behav-

ior. Reviewers indicate the level of their response by indicating whether they would

fix the bug (and in what contexts) and whether they would filter this bug pattern

out of future reviews.

The checklist responses all range from strong responses (e.g., substantial de-

viation) to weak responses (e.g., minor deviation) to negative responses (e.g., no

deviation). This design is useful when we analyze the results because it allows us to

compare the different checklist questions (by considering only strongest responses,

for example).

63

Table 3.10: Checklist Questions for each Issue

Issue Understanding: Which of the following statements best describes your understanding of

the problem?

• I have enough information to understand this problem

• I need to write a test case to better understand this issue

• I think this is a bogus issue which cannot occur and does not affect code behavior

• I do NOT understand this issue

Issue Occurrence: Under what circumstances can the behavior described by this issue occur?

• Under normal, intended use

• Only in situations that do not appear to be among intended use cases

• I do NOT think it can occur at all

Code Behavior: What is the apparent impact of the issue on the behavior of the code?

• It behaves in a way clearly at substantial odds with the intended behavior

• It does NOT behave as intended, but difference does NOT appear to be substantial

• No apparent difference in behavior

Fix Decision: What do you recommend? (Select all that apply)

• Definitely change the code to fix the problem

• Change the code only if risk of impacting deployed code is not high

• Change the documentation to make code clearer

• No changes necessary, code is OK

Filtering Decision: Would you want a static analysis tool to show you issues like this?

• Yes, definitely, even in old code

• OK, particularly in new code, or if there aren’t a lot of them

• I’d rather not bother looking at such issues

Finally we introduced some bogus warnings to see if reviewers would catch

these or trust the tool’s analysis. Figures 3.3 and 3.4 illustrate some of the bo-

gus warnings that we inserted. In Figure 3.3, FindBugs incorrectly asserts that

argument will always be null when it is dereferenced in the if-statement. But careful

64

inspection of the closed-circuit disjunction should convince the reader that argument

is dereferenced ONLY when it is NOT null. Still some reviewers may assume Find-

Bugs got its analysis correct, especially those who have reviewed a similar warning

in which the dereferenced variable was null due to programmer error.� �
637 private void handleUidl(String argument) {
638 //Return all messages unique ids

639 if(argument == null || argument.length() == 0) {
640 ...

642 }
643 }
� �
FindBugs: “Null pointer dereference of argument on line 639”

Figure 3.3: Bogus Warning – FindBugs incorrectly asserts that the deref-

erence of argument in the if-statement will throw a NullPointerException

Figure 3.4 is a more subtle and ambiguous bogus warning. FindBugs asserts

that the null-check on line 133 is redundant because listenAddress is known to be

non-null (because it was dereferenced on line 117). The FindBugs analysis misses the

assignment to listenAddress on line 132 which may return null (FindBugs does not

do interprocedural analysis so it usually cannot assert that this return value is non

null). But the FindBugs warning does not expressly state where listenAddress

is known to be non-null, so the reviewer may assume that FindBugs is doing an

interprocedural analysis to determine the nullness of the value on line 132. The

question is does the reviewer trust this interprocedural analysis (and hence remove

the redundant null-check), or does the reviewer conclude that the analysis may be

wrong. (Of course, the reviewer is free to drill down into the method call to try and

65

� �
116 InetAddress listenAddress = ...

117 if (listenAddress.isSiteLocalAddress())

118 isLocalRun = true;

119 try {

131 } catch (IOException e) {
132 listenAddress = getLocalHostAddress();

133 if(listenAddress != null) {
134 address = listenAddress.getHostAddress();

135 }
136 }
� �
FindBugs: “Redundant nullcheck of listenAddress on line 133, which is known to be

non-null”

Figure 3.4: Bogus Warning – FindBugs incorrectly asserts that

listenAddress is known to be non-null because it was dereferenced

on line 117

make this determination.)

As with the last study, we recruited 12 students (11 graduate students and

1 undergraduate), 2 of which had experience with FindBugs. All participants saw

the same warnings and other variables were randomized. The application under

review was Java Email Server9 (Version 1.6.1) a SMTP and POP3 email server. The

application was modified to insert more warnings including some fake warnings. All

the inserted code was derived from real warnings seen in other applications.

Also as in the last study, participants were given a tutorial, followed by a

practice review, an untimed main session and a brief survey.

9http://ericdaugherty.com/java/mailserver/

66

Table 3.11: Issue Understanding vs Bug Patterns

NP PZLA RCN Fake

Understand Real Bug 63 12 30 25

Understand with Test Case 4 0 2 2

Bogus Warning 5 0 3 9

Don’t Understand 0 0 1 0

NP = Potential Null Pointer Dereference

PZLA = Prefer zero-length array

RCN = Redundant Check for Null

3.2.2.1 General Results

Most of our analysis focus on the four review questions, not on the issue

understanding question. As Table 3.11 shows, most users understood most of the

issues. In the case where a user rated an issue as a bogus warning, the negative

response is automatically entered for the four review questions. One observation is

that the 3 fake warnings received a bogus warning only 9 out of 36 times. But as

our discussion in Section 3.2.2.3 will reveal, reviewers did not appear to be fooled by

the fake warnings based on their responses to the other checklist questions. The low

count on the issue understanding question likely indicates that users misunderstood

the question and assumed it only referred to how much they understood the static

analysis warning.

3.2.2.2 Consistency of reviews

There are two types of consistency we are interested in. One is the consistency

across reviewers for each checklist question; in other words, how much do reviewers

67

agree with each other when they review an issue. The second is the consistency

across checklist questions; in other words, do reviewers tend to give a strong response

on one question but a weak or negative response on another question for the same

issue.

To consider the consistency across reviewers, we count the number of times

they agree for each question and issue in Table 3.12. (For example, the table shows

that 8 reviewers agreed on the issue occurrence decision question for the first issue.)

In 30 of the 52 cases, 8 or more reviewers agreed, and all issues had at least one

question in which 8 or more reviewers agreed. But only three issues had 8 or more

agreements for all questions (issues 2, 7 and 8). This highlights the idea that the

consistency across reviewers for a particular issue depends on what question they

are trying to answer. For example, all users agree that issue 10 (a redundant check

for null) does not cause deviation from intended behavior, but are split on whether

to fix or filter this issue.

Table 3.12 also supports our investigation into the consistency across check-

list questions by shading each cell to indicate which answer reviewers are agreeing

on. The dark shade represents agreement at the strongest level, the light shade

represents agreement at the middle level, and the absence of shading represents

agreement at the weakest level. The results show agreement at the strongest level

for most questions among the real issues and agreement at the weakest level for the

fake issues (issues 2, 4 and 11, at the bottom of the table). The exception is with

the redundant check for null issues (10 - 13) where users rate the issues as normally

occurring, but give weak responses to the other questions.

68

Table 3.12: Level of Agreement for Each Issue

Issue # Occurs Behavior Fix Filter

1 8 7 8 8

3 6 9 11 10

5 8 10 8 7

6 5 7 7 8

7 8 8 8 8

8 10 12 10 11

9 10 5 7 7

10 7 12 6 6

12 5 8 6 6

13 8 7 8 6

2 10 11 10 9

4 8 8 7 4

11 6 12 7 7

Another way we measure consistency across checklist questions is to count the

number of reviews in which all four questions got exactly the same level of review.

Out of 156 reviews, 82 (or 53%) presented exactly the same level of response for all

four questions, and 123 (or 79%) had all questions at the same level or off by one.

Another measure we use is Pearson’s correlation coefficient for each pair of

questions for all reviews (see Table 3.13). To enable this, we encode the checklist

responses numerically from 3 to 1 with 3 representing strongest responses. While

this is not a perfect measure, the high positive correlations do suggest that most

reviews were consistent across questions.

69

Table 3.13: Correlation Coefficients for Checklist Responses

Occurs Behavior Fix Filter

Occurs 1 .69 .75 .75

Behavior 1 .80 .80

Fix 1 .75

Filter 1

3.2.2.3 Factors Affecting Reviews

In this section we consider how different bug patterns, displayed priorities and

presentation orders affect the reviews of issues. One way to do this is to consider

the number of strong responses for each factor level relative to the number of strong

responses across all factor levels.

Consider Table 3.14, where the columns represent different bug pattern groups

and the rows represent the number of strong responses for each checklist question.

The last column (labeled Agg) aggregates the number of strong responses across all

bug patterns for each question. For example, 83 out of 156 reviews (53%) gave strong

responses to the Issue Occurrence question. We go on to calculate the proportion of

reviews giving strong responses for each bug pattern group. For example, 44 out of

72 reviews (61%) for the NP bug pattern group gave strong responses to the Issue

Occurrence question. To test the significance of this relative to the overall strong

response rate of 53%, we do a chi test comparing the number of strong responses

(44) and remaining responses (28) to the expected value for these two quantities

(based on the overall rate). In Table 3.14, we indicate the result of the chi test with

a blue-shaded (+) or a red-shaded (-) if the ratio for the bug pattern is significantly

70

Table 3.14: Strongest Checklist Reviews vs Bug Pattern Groups

NP PZLA RCN Fake Agg

of Reviews 72 12 36 36 156

Normally Occurs 44 10 20 9 83

chi-test (p < 0.05) N (+) N (-) 53%

Substantial Deviation 53 3 9 4 69

chi-test (p < 0.05) (+) N (-) (-) 44%

Always Fix 52 3 10 5 70

chi-test (p < 0.05) (+) N (-) (-) 45%

Always Show 52 5 10 8 75

chi-test (p < 0.05) (+) N (-) (-) 48%

greater than or less than the ratio for all bug patterns respectively, or with N if

there is no significant difference. The chi test is limited because the size of some

factors is quite small, but this allows us to visualize some general trends. We are

also assuming the factor levels are independent of each other.

The results in Table 3.14 indicate an effect due to the bug pattern group:

NP issues were more likely to receive strong responses while RCN and Fake issues

were less likely to receive strong responses. We can further break down the NP bug

group into distinct bug patterns. Table 3.15 shows that the Always Null and Read

of Unwritten Field patterns had many strong responses, while the Null on Some

Path and Dereference of Null parameter had fewer strong responses. The low count

of strong responses for Fake issues indicates that users were not fooled by the fake

issues and did not assume the analysis was correct.

Table 3.16 shows another analysis, this time with the priority label displayed

next to each issue. The results indicate that while the rate of strong responses was

71

Table 3.15: Strongest Checklist Reviews vs NP Patterns

Always Null on Param Unwritten

Null Some Path Deref Field

of Reviews 24 12 24 12

Normally Occurs 13 8 13 10

chi-test (p < 0.05) N N N (+)

Subst. Deviation 16 10 15 12

chi-test (p < 0.05) (+) (+) N (+)

Always Fix 19 8 15 10

chi-test (p < 0.05) (+) N N (+)

Always Show 18 7 16 11

chi-test (p < 0.05) (+) N N (+)

Table 3.16: Strongest Checklist Reviews vs Displayed Priority

High Normal Low

of Reviews 58 46 52

Normally Occurs 28 27 28

chi-test (p < 0.05) N N N

Substantial Deviation 28 23 18

chi-test (p < 0.05) N N N

Always Fix 29 22 19

chi-test (p < 0.05) N N N

Always Show 29 24 22

chi-test (p < 0.05) N N N

72

slightly higher for issues with a high priority label, the difference does not appear

to be significant. Similarly, when we construct a table in which columns represent

all strong responses for a particular index in the presentation order, we observe no

significant difference due to ordering.

3.2.2.4 Comparison with Expert Participants

We compared the results from the student participants to results from more

experienced participants. These experienced reviewers are real FindBugs users,

recruited from a FindBugs-interest mailing list, and asked to perform the study re-

motely using a Java Web Start interface to access the warnings and submit their

reviews. In other words, the more experienced users were not in a controlled envi-

ronment, but their opinions are solicited to compare with the student users.

The Java Web Start interface had some limitations. Users could not drill down

into the source code to get more details and some users had trouble starting the

interface. This expert review served as a test drive of the automated review system

that we used in our larger study, described soon in Section 3.3.

The patterns observed among experts was generally similar to that of regular

participants. In other words, NP warnings were rated more strongly, and users were

not fooled by fake warnings. (The experts’ study did not randomize the order or

displayed priority.) Reviews were also consistent among participants.

Experts gave strong responses at a slightly lower rate than regular participants,

though this was not statistically significant except for the Issue Occurrence question.

73

On the other hand, experts selected the “Always Show” filtering decision at a slightly

higher rate, though also not statistically significant.

3.2.2.5 Qualitative Feedback from Reviewers

Most participants indicated in the post experiment survey that the warnings

were generally easy to understand and were not new to users. This is not surprising

since the warnings selected, and FindBugs warnings in general, tend to refer to

simple errors. Users were more split about whether it was easy to decide if an issue

was a bug or if it should be fixed. Half the users said it was easy to decide both of

these properties, while the rest disagreed or were indifferent. One user commented

that for some warnings (like the redundant null check warnings) it was difficult to

decide whether to fix or not, because he was concerned about possible side effects in

other parts of the code. Half the users also indicated that the displayed priority did

not influence their review, though some users complained that the color coding for

priority labels (red, orange and yellow) made it hard to distinguish between them.

3.2.2.6 Threats to Validity

Lab studies like this always have an external validity problem; it is unclear

how much the results generalize. This is particularly pronounced in studies of static

analysis warnings because, as our results indicate, the choice of bug patterns af-

fects the responses received. We also believe that in practice some of the checklist

responses would be impacted by factors not considered in this study including the

74

policies of the reviewer’s organization.

3.2.3 Summary

Users consistently identified certain bug patterns as severe, and others as low

impact. The difference of opinions between users was not great, though some users

erred in some of their reviews. So though some users may disagree about the severity

of a problem, this disagreement was not pronounced in our study. We will have an

opportunity to compare this outcome with the results of a larger study in the next

section.

Users reviewed warnings fairly quickly, which indicates that it would not be

too costly to ask engineers in a real company to review FindBugs warnings in their

own code. Indeed, engineers may review warnings faster because they are more

familiar with the code. These results may not generalize to other static analysis

tools and contexts.

Most users did not appear to make any mistakes in their understanding of

the warnings. When mistakes occurred, it may have been because the error path

went through many procedures, or the user was not rigorous enough. This problem

of rigor may not occur if the user is reviewing code they wrote, but it is certainly

possible for static analysis to mislead a third party reviewer, especially if some

unusual aspect of the code is inserted intentionally and no comment is provided.

75

3.3 FindBugs Community Reviews

Now we shift gears and try to draw significant quantitative trends from hav-

ing hundreds of reviewers evaluate thousands of warnings. Ideally, we would like to

observe users as they review warnings, and control for various factors. But to con-

duct a large review, we have to rely on professionals whose main priority is ensuring

that their code is high quality, not conducting a research study. Furthermore, many

potential users may have various confidentiality concerns. In particular, software

companies generally do not want information about their bugs being published.

Hence we have to propose activities that support the needs and goals of a large

organization, while also allowing us to extracted some (limited) information that

can inform our research.

Apart from giving us significant trends, these reviews also provide an opportu-

nity to demonstrate the value of static analysis to developers and managers. Some

professionals are skeptical about static analysis tools, and believe that most warn-

ings are not worth fixing. But this perception may not hold if they spend time

reviewing warnings in code they have written and find interesting problems.

3.3.1 The Google FindBugs Fixit

FindBugs has been used in some capacity at Google for several years. Early

incarnations of the process at Google integrated FindBugs warnings into a tool called

BugBot, along with warnings from other tools. This system would periodically

analyze the code base, and display warnings on a web interface that was available

76

to all developers. As Google sought to improve its process, the static analysis

champions adopted a service model for a brief period. During this period, warnings

were centrally triaged and important defects were forwarded to the appropriate

developers. This approach allowed the static analysis team to get a sense of which

warnings were important to developers, and to reprioritize warnings accordingly.

By the end of this process, they had created an internal ranking for warnings. But

this approach did not scale as Google’s code base grew. So it was abandoned and

an effort to push warnings into the code review process was started. We discuss

the process Google has employed in more detail when we discuss best practices in

Section 7.4.

By Fall of 2008 the full vision had not yet been realized, and had run into

some roadblocks. There were still thousands of unreviewed warnings in the code

base, and it was clear that FindBugs was receiving limited use. In addition, there

were many skeptics about the value of static analysis, and many of the warnings

were perceived to be low priority. The system fell into disuse, and the engineers

supporting the system were reassigned to other tasks.

So what was the problem with the experience up to that point? Perhaps the

warnings from FindBugs were not of high enough value or relevance to users. Or

perhaps more infrastructure support was needed to make static analysis worthwhile.

In particular, warnings needed to be more readily available to developers, so they

could review them without significant additional effort beyond their normal workflow

to run the static analysis or organize the warnings. The presence of many low

priority issues also indicates that the ranking process for warnings needed to be

77

refined. Finally, the system needed better integration with existing bug reporting

system and source code repositories, so that users could easily investigate warnings

and assign them to other developers.

Despite these disappointing outcomes, we still believed FindBugs could provide

value to the development process. We decided to coordinate with some engineers

and managers to pursue a relaunch of FindBugs, with the following goals:

• Perform a broad review of which issues Google engineers thought were worth

reviewing, and keep a persistent record of the classifications of individual is-

sues. We used the techniques implemented in FindBugs and described in [129]

to track issues across different builds of the software so that we could identify

issues that were new and track reviews of previously seen issues.

• Deploy a new infrastructure that would allow for very efficient review of issues

matching specified search criteria. Engineers could search for issues within a

particular project, issues that were introduced recently, issues that have a high

bug rank, and other reviews of a particular issue.

• Allow FindBugs to be run in continuous builds in a way that could be checked

against records of which issues were new and which had already been examined

and marked as unimportant. This would allow projects to choose to have their

continuous builds fail when a new, high priority and unreviewed FindBugs

issue was introduced into their code base.

• Integrate FindBugs with Google’s internal bug tracking and source code ver-

sion control system, so that developers could easily file bugs, see the status of

78

bugs that had already been filed against issues, and see the version history of

a file.

• Collect copious data from the use of FindBugs so that we could evaluate how

it was being used.

On May 13-14, Google held a global fixit for FindBugs. Google has a tradition

of company-wide engineering fixits [100], during which engineers focus on some

specific problem or technique for improving its systems. A fixit might focus on

improving web accessibility, on internal testing, on removing TODO’s from internal

software, etc. The primary focus of the FindBugs fixit was to have engineers use

the new infrastructure, evaluate some of the issues found, and decide which issues,

if any, needed fixing.

Most of the infrastructure developed for the Google FindBugs fixit was con-

tributed to the open source FindBugs effort. Significant parts of it are specific to

Google’s internal system (such as integration with Google’s internal bug tracking

tool), but some of these capabilities have been extended into a general framework

that can be used by other companies and by open source efforts.

3.3.2 Planning the Fixit

The Google fixit was primarily an engineering effort rather than a controlled

research study. Engineers from dozens of offices across Google contributed to this

effort. Developers were free to choose to review any of the issues, and were given no

guidance on how to classify warnings. And while the primary focus of the fixit was

79

Table 3.17: User Classifications

Must Fix Should Fix I Will Fix

Needs Study Mostly Harmless Not a Bug

Bad Analysis Obsolete code

over a two day period, a number of engineers had early access to the system, and

usage continues, at a lower rate, since the fixit. Nevertheless, this effort provided a

rich dataset of user opinions, as well as information on which issues were fixed. The

results reported in this chapter cover all the data collected through the end of June

2009.

During the fixit, users ran FindBugs from a web interface which launched a

Java Web Start instance that contained all the warnings and was connected to a

central database. Users could classify each issue using one of the classifications in

Table 3.17, and could also enter comments. Reviews were stored in the database

each time the user selected a classification. Users could also easily create an entry in

Google’s bug tracking system; many fields were populated automatically to facilitate

this task.

The FindBugs infrastructure is designed to encourage communal reviews –

each user reviewing an issue can see reviews on that issue from other users. However,

during the two day fixit, the interface was modified slightly such that a user initially

could not see any other reviews of an issue, or whether a bug report had been filed.

Once the user entered a review for a particular issue, this information was provided.

This setup was intended to ensure that reviewers were mostly acting independently

80

when classifying issues.

Engineers were not required to complete a certain number of reviews, but in-

centives, such as t-shirts for top reviewers, were provided to encourage more reviews.

Incentives were also used to encourage users to provide detailed comments exploring

the impact of the bug in practice.

Prior to analyzing the data from the fixit, we anonymized certain confidential

details, such as file names, reviewer identities, and any comments provided by en-

gineers. Anonymization was done using one-way hashing functions so that it is still

possible to group issues from the same file or package, or to identify all reviews by

the same engineer.

We also captured the change histories of the files containing warnings, and

information about which engineers owned each file. This information allows us to

compare the reviews from file owners with those from non-owners. Within Google,

any change to a source file requires a code review from someone who is an owner for

the file. In general, all developers on a project are owners for all source files that

comprise that project.

This study enabled us to compare the reviews provided by users for each issue

with the severity suggested by FindBugs. As I mentioned earlier, FindBugs assigns a

priority (high, medium, low) to each warning based on the severity of the associated

problem. The priority allows users to compare two issues of the same bug pattern,

but cannot be used to compare issues across different bug patterns. To facilitate

this latter comparison, we recently started ranking warnings on a scale from 1 to

20, where 1 is assigned to the “scariest” issues. For this study, we only consider

81

issues ranked 1 to 12, and we refer to issues ranked 1-4 as being in the Scariest

group, while issues ranked 5-8 are in the Scary group, and issues ranked 9-12 are

in the Troubling group. This bug rank is subjective and based on our experience

reviewing warnings in practice over the last few years. In addition to the severity

and impact of the issue, the bug rank factors in the likelihood that the underlying

mistake may be quickly found when the code is executed. For example, an Infinite

Recursive Loop occurs when a method unconditionally calls itself. We find that in

practice, this bug pattern is either found quickly (because the program crashes with

a meaningful stack trace), or it occurs in dead code. So we give it a reduced bug

rank.

In the end, this study produced a large dataset with many variables. Most of

our analysis focused on looking for correlations between variables, especially with

the user classification. In some cases, we can only imprecisely infer the action we

are trying to measure. For example, to determine if an issue has been fixed we can

confirm that the issue is no longer flagged by the latest FindBugs runs, or we can

search the bug tracking system for a corresponding report that is marked as fixed.

The former approach would contain false positives, while the latter would contain

false negatives.

3.3.3 General Results

The fixit brought many issues to the attention of developers and managers,

and many problems were fixed. Table 3.18 overviews some high level numbers from

82

Table 3.18: Overall summary

Issues overall 9473

Issues reviewed 3954

Total reviews 10479

Issues with exactly 1 review 1680

Median reviews per issue 2

Total reviewers 282

Bug reports filed 1746

Reviews of issues with bug reports 6050

Bug reports with FIXED status 640

this review. More than 700 engineers ran FindBugs from dozens of offices, and 282

of them reviewed almost 4,000 issues. There were over 10,000 reviews, and most

issues (58%) received more than 1 review. Engineers submitted changes that made

more than 1,000 of the issues go away. Engineers filed more than 1,700 bug reports,

and 640 of these had fixed status by the time we stopped collecting data on June

25, 2009. Many of the unfixed bug reports were never assigned to an appropriate

individual, which turned out to be a difficult challenge and a key step in getting

defect reports attended to.

The choice of which issue to review was left up to the user, so it is interesting

to see which issues they chose to review (Figure 3.5). Reviewers overwhelmingly

focused on issues in the Correctness category, with 71% of reviewed issues in this

category compared to just 17% for issues from other categories, which matches our

expectations that these are the issues most interesting to users. We identified 288

reviews in which the engineer was identified in the changelist as one of the owners of

the file containing the issue; most users were reviewing code they did not own. We

83

Figure 3.5: Recommendations Grouped by Bug Rank and Category

talk more about the differences between code reviewed by owners and non-owners

in Section 3.3.8.

Figure 3.5 also shows the percentage of reviews that received Must Fix and

Should Fix classifications. Over 77% of reviews were Must Fix and Should Fix

classifications, and 87% of reviewed issues received at least one fix recommendation.

Scarier issues were more likely to receive a Must Fix designation, while lower ranked

issues were more likely to receive a Should Fix designation. Meanwhile, Correctness

and Security issues were viewed as the most serious. We explore these trends in

more detail in the next section.

3.3.4 Comparing Reviews with Bug Rank

One of our goals is to compare the classifications users provide for an issue

with the bug rank of the issue. Are the scariest issues more likely to receive a Must

Fix classification? We approach this problem by clustering reviews into groups,

84

Figure 3.6: Correlating Bug Ranks with Reviewer Classifications

with all issues in each group having the same bug rank. We can then compute

the percentage of reviews in each group that have a particular classification, and

correlate these percentages with the bug rank of the group. We use Spearman’s

rank-order coefficient because the bug rank is an ordinal variable. This method

converts values into ranks within the variables before computing the correlation

coefficient [27].

We experimented with several approaches to grouping reviews for this com-

parison:

Group By Issue: In this clustering, we can put all reviews of a particular issue in

one group. This provides the finest level of grouping for this method, but

can be very noisy since some issues will only receive one or two reviews. We

can mitigate this a little, by only considering those issues with more than a

threshold of reviews. Grouping at this level is interesting because it separates

out each independent issue, and allows us to identify issues that buck the

expected trend.

Group By Bug Pattern: This clustering groups all reviews of the same bug pattern

and bug rank. Some bug patterns produce issues in different bug ranks, de-

85

pending on the variety and inferred severity of the issue. Again, grouping at

this level allows us to identify bug patterns that have unexpectedly strong or

weak user classifications.

Group By Bug Rank: This coarse clustering creates 12 groups, one for each bug

rank. This will give us the high level trends describing how bug rank correlates

with user classifications.

Figure 3.6 presents correlations between the bug rank and the percent of re-

views that received a particular classification when issues are grouped by bug rank,

by bug pattern and by issue. For example, we measure a strong negative correlation

(-0.93) when issues are grouped by bug rank and we compare the bug rank and the

percent of issues in each group that received a Must Fix designation. The results

show that when we cluster issues coarsely (by bug rank), we observe strong and

significant (p<0.01) correlations with different classifications. Specifically, reviews

associated with scarier issues are more likely to contain Must Fix classifications,

while review for less scary issues are more likely to contain Should Fix or Mostly

Harmless classifications.

When we group reviews by bug pattern, we observe similar correlations, but

they are very weak and not statistically significant. This indicates that there must

be some bug patterns that deviate from the expected trend. To explore this deeper,

consider the scatter diagram in Figure 3.7. In this diagram, each marker represents

a bug pattern, its position on the x-axis represents the bug rank assigned to that

bug pattern, and its position on the y-axis represents the percentage of reviews in

86

Figure 3.7: Must Fix Classifications By Rank

that bug pattern that were Must Fix. The diagram visualizes a weak negative trend,

with many deviations from the norm. Specifically there are some bug patterns that

have severe bug ranks but low Must Fix rates, and vice versa.

Looking more closely at the individual bug patterns, this trend may be par-

tially explained by a distinction between two types of bug patterns, which we call

Loud and Silent bug patterns. Loud bug patterns manifest as an exception or a pro-

gram crash, and are often easy to detect without static analysis if they are feasible.

So these defects, when found in production software, generally occur in infeasible

situations or dead code; FindBugs generally assigns a less severe bug rank to them.

Silent bug patterns include those mistakes that cause the program to subtly run

incorrectly. Many times, these subtle errors do not matter, but sometimes they do,

and we think they should be reviewed. So FindBugs often gives this patterns a

87

Table 3.19: Reviews for Two Silent and Two Loud Bug Patterns

Rank Bug Pattern % Must Fix % Should Fix

1 No relationship between generic parame-

ter and method argument

30% 48%

1 Suspicious reference comparison 15% 68%

5 Null pointer dereference 35% 33%

9 An apparent infinite recursive loop 52% 34%

severe bug rank.

In many cases in our review, engineers were more inclined to give a Must Fix

classification to loud issues than to silent issues. Consider the examples in Table

3.19; the first two bug patterns are severely ranked silent patterns, while the last two

are lower ranked loud patterns. One of the loud bug patterns is the infinite recursive

loop: a method that, when invoked, always invokes itself recursively until the stack

is exhausted. Sun’s JDK has had more than a dozen such issues over its history,

and Google’s codebase has had more than 80 of them. Obviously this bug pattern is

usually detected immediately if the method is ever called, and there are no known

instances of this defect causing problems in production; either the defect is quickly

removed or it occurs in dead code. So FindBugs assigns this bug pattern a less severe

bug rank of 9. On the flip side, a classic silent pattern occurs when the type of an

argument of a generic container’s method is unrelated to the container’s generic

parameter. For example, a program may check to see if a Collection<String>

contains a StringBuffer. Such a check will always return false, and this error usually

indicates a typo has occurred. This bug pattern has the bug rank of 1.

88

As Table 3.19 shows, 52% of reviews classified infinite recursive loops as Must

Fix, compared to 30% for the incompatible generic container argument pattern.

Similarly, a suspicious reference comparison (which uses the == operator instead of

equals()) has a low must-fix rate of 15%. But notice that both silent bug patterns

have much higher should-fix rates. This suggests that reviewers were more alarmed

by the loud warnings, giving them severe reviews, but were content to give the silent

issues less severe reviews. I talk more about the distinction between loud and silent

warnings in the next chapter, in Section 4.2, focusing on how they persist in the

code repository.

There is largely no correlation when we group by issue, which is not surprising.

Individual issues may display different characteristics from the bug pattern as a

whole.

3.3.5 Fix Rates from the Fixit

Ultimately researchers and managers at Google would like to see issues get

fixed, and understand which groups of issues are more likely to be fixed. This

information can influence how warnings are filtered or presented to developers. As

we mentioned earlier, it is difficult to get a precise count of the issues that are fixed.

We can count the issues that stop appearing in FindBugs runs, but this leads to an

overcount since some warnings will be removed by code churn. In Section 5.2, we

describe an experimental approach that uses Noise bug patterns to try to separate

significant removal rates from code churn. The noise detectors were not used during

89

the fixit, and this technique only applies to our analysis of the Google codebase.

The other approach for computing fix rate is to look for fixes in the bug

tracking system. This only applies to data from the fixit. Unfortunately, not all

issues fixed during the fixit were tracked in the bug tracking system; developers were

not required to use it, and may have quickly fixed simple issues on their own.

In addition to considering the overall fix rate, and the fix rate for individual

bug patterns, we are interested in examining different subgroups of issues that we

suspect are likely to be fixed at higher rates. Specifically, we group issues in the

following ways and consider the fix rates in each group:

By Category: Do issues in the Correctness category have a higher fix rate than other

issues?

By Bug Rank: Do the scariest issues have a higher fix rate than other issues?

By Age: Do newer issues have a higher fix rate than older issues?

The last grouping reflects the fact that older issues are more likely to be in

code that has been battle-tested. Any significant issues in this code are likely to be

removed, and the issues left should largely have little impact on program behavior.

Of course, there is no bright line separating old issues from new issues; we simply

consider any issues introduced in the six weeks before the fixit as being new.

In Table 3.20, we compute the percentage of issues that are fixed for all issues,

and for different sub-groups of issues. In this case, we regard issues that no longer

appear in the nightly FindBugs runs as being fixed (i.e., issues that were “last seen”

90

before the end of our study). As we mentioned earlier, this approach over-counts

the number of fixed issues, but since our primary goal is to compare the fix rates of

different sub groups, this over counting is not a factor.

In Table 3.20, each row represents a different subgroup, derived by grouping

issues by bug rank, by age, and/or by category. Specifically, in the category column,

we either consider only Correctness issues (C) or all categories (blank). Similarly

the rank column uses the marker “1-4” to indicate that we are only considering

the scariest issues (and blank for all bug ranks). For this analysis, we treat issues

introduced in the six weeks prior to the fixit (and any issues after the fixit) as

new issues. The choice of six weeks is arbitrary but the results still hold even if

the range is adjusted slightly. The other columns in Table 3.20 starting from the

leftmost column are the fix rate, the number of issues in the subgroup that remain

at the end of our study and the number of issues that have been removed (fixed).

The last row represents the overall fix rate.

The results show that all subgroups have fix rates higher than the overall

fix rate, though only the first four subgroups have statistically significantly higher

values at the p<0.01 level10. This indicates that Correctness issues, the scariest

issues, and/or new issues are more likely to be fixed. The older Correctness issues

do not have a much higher rate, likely because most issues were in this subgroup.

Another way to determine if an issue has been fixed is to look for fixes in the

bug tracking system. We did not observe any significant trends using this approach,

10To measure statistical significance, we used a chi-square test comparing the fix rate for each

subgroup to the overall fix rate.

91

% remain fixed rank new category

65.0 295 548 +

64.5 252 457 + C

59.8 227 338 1-4

58.5 225 317 1-4 C

57.9 90 124 1-4 +

56.7 88 115 1-4 + C

53.0 1435 1617 C

52.7 1870 2084

Table 3.20: Last Seen Fix Rate for Issue Subgroups

likely because at the end of our study, many of the issues filed had been assigned but

not yet fixed. The fix rates for each subgroup were much lower than the fix rates

in Table 3.20 (ranging from 34% to 39%), reflecting the fact that this approach

undercounts the number of fixed issues.

3.3.5.1 Comparing Fix Rate to User Reviews

We would like to check if the issues that received many Must Fix and Should

Fix classifications were more likely to be fixed. One approach is to order the classifi-

cations according to their severity and compare this to the fix rate of each classifica-

tion. There is no absolute notion of ordering the classifications, so we experimented

with several, shown in Table 3.21.

We observed strong and significant (p<0.01) correlations, shown in Figure 3.8,

between some of our orderings and the percentage of issues in each classification that

were fixed. In other words, issues with the most severe classifications were more

likely to have been fixed. In this figure, we are using both approaches described

92

Figure 3.8: User Classifications versus Fix Rate

earlier to determine which issues have been fixed.

In particular, issues that received I Will Fix classifications were quickly fixed.

Since each issue received multiple classifications, we use the classification that the

plurality of reviewers gave to each issue (called the consensus classification in Section

3.3.6). The results show that 88% of the reported issues marked I Will Fix have

been fixed. Even when we consider those issues marked I Will Fix at least once

(i.e., not necessarily the plurality of reviewers) we observe that over 70% have been

fixed.

3.3.6 Consensus Classifications

We would also like to investigate if there is consensus between independent

reviews of the same issue. Obviously the classifications made by users are subjective,

but if users tend to give similar classifications to each issue, then we have more

confidence in their decisions. In the lab studies discussed earlier, we observed that

independent reviewers generally are consistent about how they review issues. The

issue of consistency is related to the question of whether an organization should

have multiple reviewers for each issue, or just allow individuals to make decisions,

93

especially about filtering out or suppressing issues. In our earlier surveys, most

respondents have indicated that their organizations do not have requirements on

how many reviewers should look at an issue before it can be addressed (fixed or

suppressed).

Unlike some of our earlier lab studies we do not control who reviews each issue.

Some issues have only one reviewer, but one issue has 25, and users choose which

issue they want to review. Still the large number of reviews allows us to make some

general observations about how often users agree with each other.

Another confounding factor is that some of the classifications are very close

in meaning and each reviewer may use different criteria to choose between them.

For example Must Fix and Should Fix are close in meaning, and reviewers may

have different opinions about which issues are Mostly Harmless and which are Not a

Bug. Other classifications such as Obsolete code and Needs study are orthogonal to

the primary classifications and do not necessarily signal disagreement. (Fortunately

there are few of these classifications.) Our method for studying consensus accounts

for these problems by grouping the classifications in different ways, using the schemes

shown in Table 3.21. For example, in the Ord3 ordering, we group Must Fix, Should

Fix and I Will Fix classifications into one class, Mostly Harmless into another, and

Not a Bug and Bad Analysis into a third; reviews with other classifications are left

out of the analysis.

Once the reviews are grouped based on their classifications, we count the num-

ber of reviews in each group for each issue. We used two methods to aggregate these

counts and get a sense of the overall consensus. One is to count the number of re-

94

Table 3.21: Grouping and Ordering User Classifications

Classification Ord1 Ord2 Ord3 Ord4

Must Fix 1 2 1 1

Should Fix 2 3 1 2

I Will Fix 3 1 1

Needs Study 4 4

Mostly Harmless 5 5 2 3

Not a Bug 6 6 3 4

Bad Analysis 7 7 3

Obsolete code 8 8

views in the largest group for each issue (which we term the Consensus Group),

aggregate this count over all issues, and divide this final number by the total num-

ber of reviews in the analysis. We call this the Consensus Rate (or the rate at which

reviews end up in the consensus group). A second method is to compute the con-

sensus rate for each issue (i.e., reviews in largest group divided by total number of

reviews), and count the number of issues that have a consensus rate above a desired

threshold. In Figure 3.9 we show these two measures, using a threshold of 0.8 for

the second measure and using some of the classification schemes from Table 3.21.

For example, when using the Ord3 scheme described above, we observe a consensus

rate of 0.87 for all reviews, and 73% of all issues have a consensus rate greater than

0.8. The consensus rate increases significantly when we group similar classifications

as is done in Ord3 and Ord4. We use this to infer that users generally agree, but

the subjective nature of the review means they do not always give exactly the same

classification.

95

Figure 3.9: Consensus Rates for All and Scariest Issues

3.3.7 Review Times

The review time is an important measure when trying to compute the cost of

using static analysis. In previously discussed lab studies, we observed a relatively

low average review time between 1 to 2 minutes for each issue (Section 3.2.1). A

large study like this one gives us another opportunity to characterize how much time

users spend reviewing issues. Nailing down representative review times is difficult

because review times can vary widely for different issues and our users are not

starting a stopwatch immediately before each review and stopping it immediately

after.

In past studies, we have estimated review time as the time between each evalu-

ation. In this study, this is complicated by the fact that users are not in a controlled

environment and may not use the period between each evaluation exclusively for

reviewing warnings. They may engage in other work activities, take a phone call,

go out for lunch or even go home for the day returning the next day to continue

evaluating warnings. A histogram showing the frequencies of review times shows

many issues have low review times under 30 seconds, and some issues have very long

96

review times. Closer inspection indicates that some users may have reviewed several

issues together, giving their classifications all at once. In the end, we chose to filter

out review times that were longer than 1 hour. This still left us with about 92% of

the review times for analysis.

Another complication is that each time a user selects a classification in the

drop down button or enters a comment, a timestamp is sent to our server. So a user

can change their classification multiple times during one review, either because they

accidentally clicked on the wrong review, or because they genuinely changed their

mind. In the data there were 2001 classifications that were duplicates of existing

reviews (i.e., the same reviewer and the same issue) usually within a few seconds of

each other. To deal with this problem, we filter out many of the duplicate reviews

for each issue and person, keeping only the last review, and any preceding reviews

that have a different classification and occur more than 5 seconds before the review

that immediately follows.

We computed a mean review time of 117 seconds which matches our previous

observations. We also grouped the review times by classifications and observed that

the Obsolete Code classification had the lowest review time at 64 seconds. Closer

inspection confirms that some users quickly dispatched issues that occurred in files

that were obsolete. Removing these reviews from consideration does not significantly

impact the review time however.

97

3.3.8 Reviews from Different User Groups

The fixit dataset includes anonymized information about which user conducted

each review and which users are listed as owners of different files. Using this infor-

mation we can infer which users performed the most reviews (the super users) and

we can track how users reviewed issues in files that they own.

The top reviewer examined 882 issues, and 18 out of the 282 users reviewed

more than a hundred issues. We classified these users as super users and compared

the classifications they gave with those of other users. Similarly, we compared the

classifications of owners with that of non owners, focusing just on the issues that

were reviewed by at least one owner. We observed the super users were significantly

more likely to give Must Fix classifications and significantly less likely to say I Will

Fix. On the other hand owners were much more likely to say I Will Fix or Obsolete

code than non-owners, and much less likely to give Must Fix classifications. This

suggests that owners were taking responsibility for fixing serious issues in their code.

It also suggests that most super users were not owners and vice versa. Only seven

of the super users owned any of the files they reviewed.

3.3.9 Summary of Lessons from the Fixit

Overall, the fixit was declared a success, and some managers were impressed

by the high percentage of the reviews that gave a fix recommendation. Researchers

at Google have started improving the supporting infrastructure, including an effort

to integrate FindBugs warnings into the code review process, and some developers

98

already run the analysis regularly through their IDEs.

The primary goal of the review was to bring problems to the attention of

responsible parties, but we were also able to collect large amounts of data which

we investigated in this section. We observed that most reviews recommended fixing

the underlying issue. We also observed that the importance placed on warnings by

developers matched the bug ranks in FindBugs, but some bug patterns deviated from

this norm. Specifically, users tended to overvalue some bug patterns that manifest

as exceptions or program crashes (loud bug patterns), but are rarely feasible in

practice, and undervalue more subtle bug patterns (silent bug patterns) that are

often harmless, but should be reviewed because they can cause serious problems

that are hard to detect. In the end, we chose to NOT modify FindBugs’ rankings in

response to these observations. This is because FindBugs’ rankings aim to emphasize

those issues that should be reviewed first, not necessarily those issues that should

be fixed. Since we observe that many loud bug patterns are readily fixed if they

matter, we use the rankings to encourage users to review the subtle issues first.

We also observed that new, correctness and high priority issues are the ones

most likely to be fixed, matching our expectations coming into this study. Users were

also more likely to fix the issues that were classified as Must Fix, Should Fix, or I Will

Fix. Finally, our analysis indicates that there was consistency among independent

reviewers, and that most reviews were completed fairly quickly, validating our earlier

findings from lab studies.

One surprising outcome was that we did not find any problems that were

actively wreaking havoc in production systems, or the proverbial “million dollar

99

bug”. We think this has to do with the robust monitoring systems at Google, and

this seems to reinforce our belief that many critical defects are eventually found by

other quality assurance activities, though perhaps at greater expense than if static

analysis is used. I discuss this observation in more detail in the next chapter, in

Section 4.3.

3.4 Summary and Related Work

The user interactions in this chapter indicate that static analysis is well re-

ceived by many users. Users have stated that static analysis has found useful prob-

lems, and is easy to use. And when asked to review thousands of issues flagged by

FindBugs, professional engineers recommended fixing most of them. Still, it is clear

that users face challenges bringing static analysis into their day-to-day activities.

Most research on static code analyzers focuses on creating new analysis meth-

ods, or refining existing ones. As tools proliferate and mature, some researchers

are starting to turn their focus to the interaction between tools and developers or

processes. Layman et al. [84] observe developers directly as they complete program-

ming tasks and introduce faults that cause warnings from a static code analyzer.

They try to determine which factors cause a programmer to interrupt their activity

to fix the fault. They conclude that users are more likely to address warnings if they

are relevant to their current primary task.

Khoo et al. [77] focus on the task of triaging warnings output by a tool to

decide which ones should be fixed. They observe that many static code analyzers

100

output lists of program statements (called paths) that may represent the flow of

data or control through program functions, or exception stack traces among other

things. These paths are often difficult to navigate and comprehend, so they provide

a code visualization that concisely displays inlined functions for each element in

the path, allowing users to expand or collapse these functions. They also observe

that inexperienced users do not always ask the right question or know what to look

for when triaging warnings. To solve this problem, Khoo et al. propose providing

checklists for each warning that direct the user to look for specific properties in code

to decide if the warning is valid. They found that the visualization and checklist

combined to make reviewers more efficient without affecting their accuracy.

Other research focuses on helping teams establish the right processes for using

static analysis [58, 81, 52, 32, 69]. I will discuss these reports in more detail in

Chapter 7.

101

Chapter 4

Understanding Why Defects Persist

The user studies described in the previous chapter enabled us to interact with

and observe users, so that we could use their experiences and sentiments to judge the

value of static analysis. But many of the outcomes of these studies are subjective,

and may not generalize to all cases. Fortunately, we do not have to rely only on this

research method. Software developers produce many artifacts as they engineer each

application, and we can use these artifacts to make inferences about the impact of

static analysis, or defects found by static analysis. The benefits of this approach

are that we can analyze large quantities of data, and we are not as reliant on the

engineers that own the code.

In the next chapter, I will describe some studies in which manual and auto-

matic methods are used to mine software artifacts for significant trends. In this

chapter, I present some anecdotal observations from manually reviewing hundreds

of warnings in several code bases.

One of the striking observations is that when we analyze production software,

we often find interesting defects that have been around for a long time. Some look

so obvious that we wonder why they have not been detected, and if they are causing

any problems. An example is the defect in Figure 4.1 which flags a comparison

operation that will always be false. The invocation simpleType.getName() returns

102

Source: Eclipse SDK 3.5 | org.eclipse.jdt...debug.eval.ast.engine.ASTInstructionCompiler� �
3831 SimpleType simpleType = (SimpleType) type;

3832 if ("java.lang.String".equals(simpleType.getName())){
3833 return Instruction.T String;

3834 }
3835 return Instruction.T Object;
� �
FindBugs: “Call to equals() comparing different types on line 3832”

Figure 4.1: Long-Lasting Defect in Eclipse

a Name object, not a string. The effect is that line 3833 is dead code, and this

method returns the type id for an object instead of a string. This defect was first

seen when analyzing version 2.0 of the Eclipse SDK, and is still around in version

3.5, 8 years later. Code coverage analysis of this code fragment indicates the all

lines except line 3833 are executed as a result of unit tests, and yet all tests pass1.

We investigate why defects persist as part of a large inquiry into whether static

analysis finds problems that matter in practice. In other words, are defects found by

static analysis valuable? It is not uncommon to encounter projects where a number

of bugs remain unresolved for some time. They are neither fixed, nor suppressed.

On the other hand, many users report that static analysis tools like FindBugs have

“saved” them from embarrassment, by finding potential problems.

In general, manual and anecdotal observation indicates that static analysis

does find consequential mistakes. However, most consequential correctness warnings

1We eventually contacted the primary developer for this code fragment, who confirmed that

this defect does not impact program behavior because problems caused by this issue are mitigated

elsewhere. Still, a fix has been identified and is planned.

103

http://bit.ly/ayewah-thesis-fig_persist_tstring

found by static analysis can and will be detected by other good quality assurance

practices such as testing and code review. This explains why warnings left in pro-

duction code often do not matter. The value of static analysis is that it can find

these bugs early in development, when they are cheapest to fix. An exception is

certain subtle defects, such as the security, concurrency, and performance defects

discussed in Chapter 7, which often escape other quality assurance methods, and

are best found using static analysis.

This observation represents a paradigm shift for some developers who wait

until the end of the development process before running static analysis, hoping to

find bugs missed by their quality assurance. Most of those bugs won’t matter, and it

is more expensive to fix bugs at this stage. Running static analysis early is the key

to finding bugs that matter, and fixing them more cheaply. Running static analysis

early may also prevent costly efforts down the road, such as lengthy debugging

sessions or sending out patches.

I start this chapter by returning to the observation that static analysis is good

at finding stupid mistakes made by developers, but not all mistakes are important.

In Section 4.1, I present some software defects that are caused by stupid mistakes,

but that have little or no impact on code behavior. The goal of users is to find the

intersection of stupid mistakes and important ones. Hence many of these true but

low impact defects will persist, even they are flagged by static analysis tools.

Another distinction useful for understanding why some defects persist, is the

distinction between “loud” warnings, and “silent” warnings, which I introduced in

Chapter 3. Loud warnings are caused by defects that result in program crashes or

104

exceptions, and are almost always detected, if they matter. Loud warnings that

persist for a long time are often in dead code. Silent warnings are associated with

defects that do not directly cause the program to crash, but may put the program

in an incorrect state, or point to suspicious or confusing code. It may be harder to

predict whether these will be low impact or important. Some silent bug patterns

are often low impact, but sometimes have a real impact on correctness. I discuss

the persistence of loud and silent warnings in Section 4.2.

I conclude the chapter in Section 4.3 by discussing “The Survivor Effect”:

the phenomenon that important defects are often found by other quality assurance

methods, leaving mostly less important ones in production code. I present some

examples of the survivor effect observed in practice, discuss some exceptions, and

argue that static analysis is best used early in the software development process.

4.1 True But Low Impact Defects

We already discussed the risk of false positives back in Section 1.3.1. Static

analysis cannot completely understand the semantics of programs, and hence may

sometimes make incorrect assumptions, leading to false warnings. Early static anal-

ysis tools used naive analysis, and were riddled with false positives, which were

disruptive to developer productivity. Modern tools use sophisticated heuristics and

more rigorous analysis to minimize the number of false warnings. One tool vendor

boasts that fewer than 15% of its warnings are false positives [66].

One problem with this focus on false positives is that it seems to imply that

105

the remaining defects are true defects that developers should fix. But when we

review warnings in practice, we are surprised to find a number of true defects that

have little or no impact on program behavior. Many of these low impact defects

are associated with some mistake or bad practice, and the case could be made that

they should be fixed. But correcting software takes up time and resources, and the

fix could have unexpected side effects that lead to more serious problems, especially

if the modified lines are quite old.

In this section, we go over the reasons why true low impact defects occur (with

examples from real software), and discuss the scenarios when these defects should

be fixed.

4.1.1 Deliberate Defects

Sometimes the defects found by static analysis were inserted intentionally by

developers. Figure 4.2 shows two examples where the developers intend to throw Run

Time Exceptions, but instead of explicitly creating and throwing the exceptions, they

insert faulty code. This seems like bad practice, especially if the default messages

generated by the system are not informative. But the program behaves exactly as

intended, and the system messages are at least sufficient to find the line with the

error, so this approach may be seen as a useful shorthand by some developers.

In some cases, a static analysis tool may want to avoid bothering developers

with warnings on intentional defects (by, for example, parsing nearby comments

and suppressing the warning if the comment is “throw error”). But in many cases,

106

Source: Sun JDK 6 | com.sun.jndi.dns.DnsName� �
345 if (n instanceof CompositeName) {
346 n = (DnsName) n; // force ClassCastException

347 }
� �
Source: Sun JDK 6 | com.sun.java.util.jar.pack.Attribute� �

1042 if (layout.charAt(i++) != ’[’)

1043 layout.charAt(−i); // throw error
� �
Figure 4.2: Two intentional errors

deliberate defects are attempts by developers to violate some rule or convention

established by the organization. If the developers feel these violations are justified,

then they should be forced to use an explicit suppression mechanism to hide warnings

(especially source level suppression), so that future developers understand why this

violation was necessary. This also enables managers and researchers to find and

investigate these violations by occasionally turning off all suppressions.

4.1.2 Masked Defects

Sometimes the code surrounding a defect prevents it from having any effect on

program behavior, effectively masking the defect. We already discussed one example

back in Section 1.3.2 (in Figure 1.4) where a developer accidentally assumes a value

is an unsigned byte value (from 0 to 255), when in fact it is a signed value (from -128

to 127). Despite this mistaken assumption, the developer’s conditional check still

accepts values in the correct range [32,128] for basic printable ASCII characters.

Developers may not feel compelled to fix masked defects, but they should still

107

http://bit.ly/ayewah-thesis-fig_truelow_intentional1
http://bit.ly/ayewah-thesis-fig_truelow_intentional2

inspect the warnings closely, because masked defects often imply a misunderstanding

of relevant invariants, and there might be other logical defects or questionable code

nearby.

4.1.3 Infeasible Statement, Branch, or Situation

Sometimes a defect occurs only in a situation that a developer believes is

infeasible, but the static analysis is unable to verify this by examining the code. In

Figure 4.3, FindBugs complains about a possible null pointer dereference on line

171, which will occur if certain checked exceptions are thrown on line 167, leaving

the variable set to null. But the developer is convinced that the exceptions will

never be thrown, and indicates so in the comments.

One way to “fix” this, or at least prevent a static analysis warning, is to insert

a failing assertion in place of the comments. This is good practice in general because

if the developer’s beliefs are incorrect, the assertions will generate an error, usually

during development time, so the problem is quickly found and fixed. But this fix

is not compelling if the code is already in production, where assertions are usually

turned off.

4.1.4 Code that is Already Doomed

Sometimes, a defect occurs in a situation where the computation is already

doomed, and the resulting runtime exception is not a significantly worse outcome

than any other behavior that might result from fixing the defect.

108

Source: Sun JDK 6 | com.sun.corba.se.impl.dynamicany.DynAnyComplexImpl� �
165 String expectedMemberName = null;

166 try {
167 expectedMemberName = expectedTypeCode.member name(i);

168 } catch (BadKind badKind) { // impossible

169 } catch (Bounds bounds) { // impossible

170 }
171 if (! (expectedMemberName.equals(memberName) ...)) {
� �
FindBugs: “Possible null pointer dereference of expectedMemberName on line 171”

Figure 4.3: Infeasible situation

Source: Sun JDK 6 | com.sun.org.apache.xml.internal.security.encryption.XMLCipher� �
2224 if (null == element) {
2225 //complain

2226 }
2227 String algorithm = element.getAttributeNS(...);
� �
FindBugs: “Possible null pointer dereference of element on line 2227”

Figure 4.4: Doomed situations: vacuous complaint

Figures 4.4 – 4.6 shows three examples of doomed situations. In Figure 4.4

the comment indicates the intention of the developer to complain about a null

parameter, but no action is taken and thus a null pointer exception will occur.

Perhaps null is never provided as an argument to this method. But even if it is, it

seems likely that the appropriate remedy for this warning would be to throw a null

pointer exception when the parameter is null. Since the existing code already gives

this behavior, changing the code is probably unwarranted (although documenting

the fact that the parameter must be non-null would be useful).

109

http://bit.ly/ayewah-thesis-fig_truelow_infeasible
http://bit.ly/ayewah-thesis-fig_truelow_doomed1

Source: XSLT2Runner (abridged) | org.apache...output.TransletOutputHandlerFactory� �
116 SerializationHandler result = null;

121 if (method == null)

123 result = new ToUnknownStream();

125 else if (method.equalsIgnoreCase("xml"))

128 result = new ToXMLStream();

131 else if (method.equalsIgnoreCase("html"))

134 result = new ToHTMLStream();

137 else if (method.equalsIgnoreCase("text"))

140 result = new ToTextStream();

149 result.setEncoding(encoding);
� �
FindBugs: “Possible null pointer dereference of result on line 149”

Figure 4.5: Doomed situations: missing else clause

Figure 4.5 shows what is effectively a switch statement, constructed using if

.. else statements. This pattern is relatively common, even to the detail of not

having an else clause for the final if statement. Thus, if the final if statement fails,

result will be null and a null pointer exception will occur. While this code is highly

questionable, the appropriate fix would likely be to throw an IllegalArgumentEx-

ception if none of the if guards match, and the impact of a null pointer exception

is unlikely to be significantly different than that of throwing an IllegalArgumentEx-

ception.

Figure 4.6 shows an example where the program has detected an erroneous

situation, and is in the process of creating an exception to throw. However, due to

a programming error, a null pointer exception will occur when node is dereferenced.

While the code is clearly mistaken, the impact of the mistake is minimal.

110

http://bit.ly/ayewah-thesis-fig_truelow_doomed2

Source: Apache Xerces (abridged) | com.sun.org.apache.xerces.internal.util� �
78 Node node = null;

79 switch(place.getNodeType()) {
80 case Node.CDATA SECTION NODE: {
81 node = ...

82 break;

83 }
84 case Node.COMMENT NODE:

85 ...

86 default: {
87 throw new IllegalArgumentException("...("

88 + node.getNodeName()+’)’);

89 }
� �
FindBugs: “Possible null pointer dereference of node”

Figure 4.6: Doomed situations: defect in exception handling

4.1.5 Testing code

In testing code, developers will often do things that seem nonsensical, such as

checking that invoking equals(null) returns false. In this case, the test is checking

that the equals method can handle a null argument. We can’t ignore nonsensical

code in testing code, since it may reflect a coding mistake that results in the test

not testing what was intended.

4.1.6 Logging or other unimportant case

We have also seen a number of cases of a bug that would only impact logging

output, or assertions. While accurate logging messages are important, bugs in log-

ging code might be deemed to be of lower importance. Figure 4.7 shows code in

111

http://bit.ly/ayewah-thesis-fig_truelow_doomed3

Source: Sun JDK 6 | com.sun.org.apache.xml.internal.resolver.Catalog� �
818 String userdir = System.getProperty("user.dir");

819 userdir.replace(’\\’, ’/’);

820 catalogManager.debug.message(1, "Malformed URL on cwd", userdir);
� �
FindBugs: “Method ignores return value of String.replace() on line 819”

Figure 4.7: Logging defect

which the call to replace is performed incorrectly. The replace method cannot

modify the String it is invoked on - Java Strings are immutable. Rather, it returns

a new String that is the result of the modification. Since the return result is ignored

here, the call to replace has no effect and the userdir may contain back slashes rather

than the intended forward slashes.

4.1.7 When should such defects be fixed?

Should a defect that doesn’t cause the program to significantly misbehave be

fixed? Defects found by static analysis early in the software development process

are cheaper to fix than those found later on. Since it may not be possible to know

their long term impact at this early stage, users should endeavor to fix all of them.

But if the software system is mature, then additional considerations come into play.

The main arguments against fixing such defects is that they require engineering

resources that could be better applied elsewhere, and that there is a chance that

the attempt to fix the defect will introduce another, more serious bug that does

significantly impact the behavior of the application. The primary argument for

fixing such defects is that it makes the code easier to understand and maintain, and

112

http://bit.ly/ayewah-thesis-fig_truelow_logging

less likely to break in the face of future modifications or uses.

When sophisticated analysis finds an interprocedural error path involving alias-

ing and multiple conditions, understanding the defect and how and where to remedy

it can take significantly more engineering time, and it can be more difficult to have

confidence that the remedy resolves the issue without introducing new problems.

Warnings from less sophisticated static analysis may be easier to understand and

fix, but care still needs to be taken to understand the context of the defect, instead

of blindly applying a fix in response to a message from the static analysis. And even

simple defects suggest holes in test coverage; additional unit tests should be created

to supplement defect fixes.

4.2 Loud and Silent Warnings

In measuring the significance of warnings found, I find it useful to make a

distinction between loud and silent warnings. Loud warnings are associated with

exceptions and program crashes, while silent warnings do not generally stop the

program, but may leave it in an incorrect state. As we discussed in the last chapter,

developers reviewing static analysis warnings are more alarmed by loud warnings,

but these warnings usually occur in dead code if they are not found immediately.

Silent warnings, on the other hand, may be connected with serious but subtle or

rare misbehavior.

A classic case of a loud warning is an infinite recursive loop, such as the

one in Figure 4.8. The method widgetDefaultSelected() unconditionally calls

113

Source: Eclipse SDK 3.5 | org.eclipse.ui.internal.dialogs.CustomizePerspectiveDialog� �
1047 bindingLink.addSelectionListener(new SelectionListener() {
1048 public void widgetDefaultSelected(SelectionEvent e) {
1049 widgetDefaultSelected(e);

1050 }
1051 public void widgetSelected(SelectionEvent e) {
1052 PreferenceDialog dialog = ...
� �
FindBugs: “There is an apparent infinite recursive loop on line 1049”

Figure 4.8: Infinite Recursive Loop in Eclipse

itself, and hence will always throw a Stack Overflow Exception if invoked. Defects

like this are usually quickly and easily found, if they matter. So when we find

them in production code, we can generally assume that this is dead code. In this

case, we observe that the developer implementing the SelectionListener interface

only really wants to implement widgetSelected(), but is required by the API to

also implement widgetDefaultSelected(). The developer does so with a naive

implementation that simply calls the other method... or at least intends to. The

methods have similar names, and the developer probably selected the wrong one

from a code assist list. Still, the defective method is not intended for use; it was

implemented primarily to satisfy the API.

Some loud warnings only manifest in scenarios that may not be feasible. De-

velopers faced with such warnings have to choose whether to apply a fix immediately,

or defer the fix until the problem manifests itself. This latter option is only available

if the application can tolerate the failure by, for example, restarting itself, or falling

back on some redundancy. In this case, the failure will usually include a stack trace

114

http://bit.ly/ayewah-thesis-fig_persist_infinite

Source: Eclipse SDK 3.5 | org.eclipse.core.runtime.Plugin� �
544 public void setDebugging(boolean value) {
545 if (bundle == null)

546 this.debug = value;

547 String key = bundle.getSymbolicName() + "/debug";

548 ...

549 }
� �
FindBugs: “Possible null pointer dereference of bundle on line 547”

Figure 4.9: Possible null pointer dereference in Eclipse

that can be used to track down the source of the problem.

One example of loud warnings that may not be feasible, are the possible null

pointer dereference warnings flagged by FindBugs, such as the one in Figure 4.9. In

this example, the variable bundle is compared to null, and then later unconditionally

dereferenced, leading to the warning. The only scenario in which an exception is

thrown is if bundle is null, and it is not clear if this is possible. In Java, null

pointer dereferences produce informative stack traces, and developers may wait to

see if they are feasible, especially if an immediate fix is unclear. In the case of Figure

4.9, it turns out that the null dereference warning is associated with an error in the

control flow logic of the method. The developers fixed the problem by adding a

return statement to the if-statement that compares bundle to null. Null pointer

dereferences are explored in more detail in Chapter 6.

A classic example of a silent defect is ignoring the return value of a string

operation, as is the case in Figure 4.10. This mistake has been in the code base

since version 1.0, and has gone unrepaired for almost nine years. This defect may

115

http://bit.ly/ayewah-thesis-fig_persist_npd1

Source: Eclipse SDK 3.5 | org.eclipse.pde.internal.core.schema.SchemaEnumeration� �
26 public void write(String indent, PrintWriter writer) {
27 String description = getDescription();

28 if (description != null)

29 description.trim();

30 if (description != null && description.length() > 0) {
31 ...

32 writer.println(indent3 + "<documentation>");

33 writer.println(indent3 + description);

34 writer.println(indent3 + "</documentation>");

35 ...
� �
FindBugs: “Method ignores return value of String.trim() on line 30”

Figure 4.10: Ignored Return Value in Eclipse

result in a slightly incorrect string, a relatively low impact problem, but without

static analysis, it would be difficult to detect.

Another silent defect occurs when a developer compares incompatible types.

In Java, the equals() method used to compare two objects receives any object

as an argument. If the two objects are of unrelated types, this comparison is not

expected to throw an exception, but rather to return false. It seems unlikely that a

developer would want to use a condition that is always false as part of any control

logic. So this must be a mistake. Sometimes this defect causes the program to

seriously misbehave, and the problem is eventually detected following a sometimes

lengthy debugging session. Other times, it leads to subtle and silent changes in

program behavior that are hard to detect. We saw one example from Eclipse at the

beginning of this chapter (in Figure 4.1) that has gone unrepaired for many years.

Another example from the Apache Lucene project is illustrated in Figure 4.11. In

116

http://bit.ly/ayewah-thesis-fig_persist_trim

Source: Apache Lucene | org.apache.lucene.demo.html.HTMLParser� �
41 StringBuffer title = new StringBuffer();

116 ...

117 void addText(String text) throws IOException {
126 ...

127 if (!titleComplete && !title.equals("")) { // finished title

128 synchronized(this) {
129 titleComplete = true; // tell waiting threads

130 notifyAll();

131 }
132 }
133 }
� �
FindBugs: “Call to equals() comparing different types on line 127”

Figure 4.11: Comparing a StringBuffer to a String is always false

this case, the developer intends to add a condition to check that the StringBuffer

title is not empty on line 127. Instead, the developer uses a faulty comparison

with a String which leads to the execution of the synchronized block on line 128,

whether the string buffer is empty or not. This code fragment occurred in some

demo code which was distributed with Lucene, and may not have been rigorously

tested. On the one hand, demo or sample code is often not as important as the

rest of the software. On the other hand, sample code like this is often copied into

many projects, and corrections do not propagate to all those projects. Indeed a

Google search indicates that this class has been copied dozens of times, and some

of those copies contain this defect, while others contain a fix that was later applied

(replacing the bad comparison with !(title.length() == 0)).

Sometimes the distinction between a loud and a silent warning is subtle, but

117

http://bit.ly/ayewah-thesis-fig_persist_stringbuffer

Source: Eclipse 3.5 | org.eclipse.team.ui.synchronize.AbstractSynchronizeParticipant� �
211 public void setInitializationData(...) {
218 ...

219 fName = config.getAttribute("name");

220 if (config == null) {
221 fName = "Unknown";

222 }
225 String strIcon = config.getAttribute("icon");

226 if (strIcon != null) {
227 fImageDescriptor = ...

228 }
229 ...
� �
FindBugs: “Nullcheck of value previously dereferenced on line 220”

Figure 4.12: Redundant comparison to null where value is previously

dereferenced

the two still exhibit different traits. Consider two variants of a Redundant Com-

parison to Null (RCN) rule in Figures 4.12 and 4.13. In the first RCN example in

Figure 4.12, the variable config is compared to null right after it is dereferenced.

This comparison is useless, or redundant, because if config is ever null, an exception

will be thrown on line 219. This loud warning is like the Possible Null Pointer Deref-

erence discussed earlier (in Figure 4.9) because it is detected quickly if config is

null in practice, or it is typically a harmless2 defensive (but useless) check if config

is never null.

In the second RCN example in Figure 4.13, the variable baseName is compared

to null on line 342, even though it is assigned a value that is guaranteed to be non-

2Actually this example may not be harmless even if config is never null. Can you spot why? I

will return to this example at the end of this section.

118

http://bit.ly/ayewah-thesis-fig_persist_rcn1

Source: fawkeZ Project (jCoderZ.org) | org.jcoderz.phoenix.cmpgen2.CmpGenerator� �
331 private void generateCmpBean (CreateTableStatement stmt) {
340 ...

341 String baseName = stmt.getBeanName() + "Entity";

342 if (baseName == null)

343 {
344 baseName = sqlNameToJavaName(stmt.getTableName());

345 }
346 ...
� �
FindBugs: “Redundant nullcheck of baseName, known to be non-null, on line 342”

Figure 4.13: Redundant comparison to null where value guaranteed to

be non-null

null on the previous line. (Even if the expression stmt.getBeanName() returns null,

its subsequent concatenation with the string constant would yield the non-null string

“nullEntity”). So the comparison on line 342 is redundant. Since baseName can

never be null, no exception is thrown, and this is a silent warning. Like other silent

warnings, this comparison could be a harmless defensive check, but it could also

contain a serious subtle error that occurs rarely and is hard to detect without static

analysis. If we look closely at this example, we observe that the developer intends to

construct a base name using either the bean name or, if that fails, the table name.

But if stmt.getBeanName() returns null, then baseName is set to “nullEntity”,

which is probably not correct. It appears that the developer really intended to

check if stmt.getBeanName() returned null before concatenating it to the string

constant. Of course, if stmt.getBeanName() is never null, then this mistake is

mostly harmless.

119

http://bit.ly/ayewah-thesis-fig_persist_rcn2

So in summary, loud warnings often manifest themselves and are detected in

practice if they are serious and feasible. The loud warnings that persist are often

in dead code, or are infeasible. Silent warnings are often low impact, but may be

associated with serious program misbehavior. If this misbehavior is rare, they can

be hard to detect using other quality assurance methods, and can wreak havoc long

after the code is written. Even if the misbehavior is not rare, silent defects can be

hard to debug. Static analysis can provide real value by finding these subtle defects,

though reviewers are often more alarmed by the loud warnings.

Of course, these observations are not hard fast rules, and there are exceptions.

Indeed, looking back to the first (loud) RCN example in Figure 4.12, we observe

that the code may have a subtle defect even if config is not null. The purpose of

the method is to set some initialization data, and on line 226, strIcon is compared

to null right after it is initialized using the getAttribute() method. Since fName

is initialized in the same way, it seems reasonable to assume that the programmer

intended to also compare it to null, but used the wrong variable on line 220. So now

we see that the real defect is that if fName is initialized to null on line 219, it is not

updated to “Unknown” on line 221 as it should be.

4.3 The Survivor Effect

We have seen that some true defects end up having a low impact in practice,

and some defects can silently lurk undetected and pose a danger to the application.

When we review production code, we often find more of the former, and less of

120

Figure 4.14: The Survivor Effect: Comparing defects that matter with
defects that do not matter

the latter. It may be that developers just produce more low impact defects than

important ones. But another reason is that the popular quality assurance methods,

such as unit testing and code review, are more geared towards finding defects that

negatively impact application behavior. Hence these important defects are more

likely to be caught before the code goes into production, leaving many of the lower

impact ones behind.

Figure 4.14 illustrates this “Survivor Effect”. The good news is that static

analysis can find both defects that matter, and defects that do not. But the number

of defects that matter drops more quickly as the development cycle progresses. So

if static analysis is used later in the software process, a greater proportion of defects

121

will seem unimportant, and the potentially important ones will be drowned out.

Furthermore, all defects are potentially more expensive to fix after the software has

been released. If static analysis is used earlier, it may not be clear which defects

are important and which ones are not. But the key point is that all the defects are

usually cheaper to remedy at this early stage. In addition, static analysis can detect

defects earlier in the process than unit testing and code review; it can detect defects

as soon as the code is written. Hence the best value for static analysis occurs when

it is used early. In addition, avoiding the scenario where developers have to wade

through many unimportant defects late in the development cycle to find the few

important ones may lead to a more positive perception of static analysis.

During the surveys and interviews described earlier, some respondents indi-

cated that they would run FindBugs only at the end of important intervals. Essen-

tially the purpose was to clean out any problems that may have been missed during

the interval. One participant responded: “We run FindBugs before each release of

a Release Candidate”. Another said his team would “Run FindBugs on a project

milestone basis”. Users with this paradigm may not be retaining the most value out

of their use of static analysis. Part of the problem is the perceived cost of weeding

through low impact warnings. Users also reported FindBugs was too slow in the

IDE, and this discouraged them from using it at this, the earliest and most valuable

time. Still, the survivor effect suggests that some of these costs are covered by the

effectiveness of static analysis at finding and resolving problems more cheaply.

One user, who relies on the Agile software development process [42], suggested

running static analysis at the end of each two week iteration. The two-week interval

122

is short enough that it is still relatively cheap to fix any problems found. The agile

process encourages test-driven development, and advocates for this note that the

tests find a greater range of problems. This user acknowledges that most problems

are found by testing, but notes that static analysis is still valuable for finding “po-

tential” problems, or defects that may crop up in the future. For example, FindBugs

flagged some cases where the user was calling a non-final method from a constructor.

This can be a problem if the class is sub-classed, and the called method is overridden

leading to potentially unexpected behavior.

Another indication of the survivor effect came during the Google FindBugs

Fixit, described in Section 3.3. Over 77% of the reviews contained a fix recommen-

dation, 87% of reviewed issues received at least one fix recommendation, and many

issues were fixed. However, none of the serious bugs appeared to be associated with

any serious incorrect behaviors in Google’s production systems. Some serious de-

fects were found in code that had not yet been pushed to production, and in code

that was not executed in production systems. The defects that were executed in

production seemed to not result in serious misbehavior, or produced only subtle

effects, such as performance degradation.

One interesting example occurred on the first day of the Fixit, when a defected

was committed into the code base, and picked up in the overnight FindBugs analysis.

That same night, the defect identified by FindBugs caused a number of internal

map reduce runs to fail and an automatic rollback of the change. Hence the defect

never made it into production. This was an example of how Google’s testing and

monitoring practices are effective at preventing misbehavior in productions systems.

123

Of course, automatic rollbacks and nightly build failures are often a more expensive

way to address problems. For one thing, the development schedule may be delayed

by nightly build failures. In this case, FindBugs could have prevented the loss of

development cycles that resulted from the overnight failure.

Figure 4.14 also illustrates that not all defects that matter are caught, so static

analysis can find important problems, even when it is used late. Indeed, some classes

of problems are best found using static analysis, and will tend to persist if static

analysis is not used. These includes problems that are not directly linked to incorrect

behavior, such as security, performance and concurrency defects. Applications that

potentially have a high exposure or sensitivity to these classes of defects will benefit

greatly from using static analysis.

In general, users need to tradeoff the cost of static analysis with the benefits of

using it, especially using it early. It is difficult to do an absolute cost-benefit analysis,

but there are scenarios where it is very likely that static analysis is cost effective.

These scenarios depend on the type of defects the application is sensitive to, and the

nature of the application. Organizations can also make static analysis cost effective

by adopting certain best practices, and building the right infrastructure to deploy

warnings to developers. I discuss cost effective static analysis in more detail in

Chapter 7.

124

Chapter 5

Mining Software Repositories for Defects

Software repositories store a wealth of history about static analysis, including

which warnings are introduced/removed and when, and which components have the

most warnings. We can access this history by analyzing older versions of the software

and comparing the warnings in each version. We have to deal with some challenges,

including keeping track of a warning from one version to another, and deciding if a

warning removal represents an attempt to fix it. Despite these challenges, mining the

software repository is attractive because it allows us to observe software development

without bothering developers.

We use manual and automatic approaches to search through this history look-

ing for general trends, or examples of interesting defects found by static analysis,

and explore why these defects persist. The data is quite noisy and these explorations

provide mostly qualitative insights. But given the amount of data involved, we can

also look for statistically significant trends.

In this chapter, I discuss some studies that look into the software repository

in an effort to validate some of the observations in the last chapter, namely the

presence of true but low impact defects (which was discussed in Section 4.1), the

distinctions between loud and silent defects (from Section 4.2), and the survivor

effect (from Section 4.3). In the first set of studies, discussed in Section 5.1, we

125

manually reviewed the warning history of several large projects. Specifically, we

examined some defects that have been fixed to evaluate how impactful they were

and how complicated the fix was. In follow up studies described in Section 5.2, we

automatically analyzed some software repository snapshots to identify the removal

rates of different classes of defects. Here we are using “defect removal” as a proxy

for “defect fix”, which is limited because not all defect removals are caused by inten-

tional fix efforts. Still, this study provides a means for reprioritizing warnings and

enables us to understand the characteristics that are associated with high removal

rates.

These two studies are limited by the fact that they only capture warnings

that are checked into the code repository. I discuss some approaches for getting

more fine-grained snapshots of the development process in Section 5.3. We used

one of these approaches to capture regular snapshots of student development at the

University of Maryland. Studying these snapshots enables us to observe the survivor

effect, among other trends.

5.1 Manual Reviews of Large Software Systems

Over the last few years, and throughout our research study, we have under-

taken several manual reviews of warnings in various projects. The manual reviews

are useful for a number of reasons beyond just providing interesting anecdotes about

the value of static analysis. The reviews enable us to characterize the severity of

warnings in different bug patterns, and explore the distinctions between different

126

classes of warnings. For example, we can compare loud and silent warnings. We

are not just reviewing defects that persist in the code base; we also consider defects

that have been fixed in earlier revisions and try to characterize them to see how

complicated the fix is.

Through these reviews, we have observed evidence that many FindBugs warn-

ings can be fixed with relatively simple fixes, but we have also observed many

instances of low impact defects for the reasons described in Section 4.1. In the next

two sections, I discuss our reviews of warnings in a code base that was not devel-

oped with FindBugs (the Java JDK) and a code base that periodically ran FindBugs

(GlassFish). In code bases that run FindBugs, we looked for evidence of fixes that

may have been induced by specific warnings.

5.1.1 Review of Sun’s JDK 1.6.0

We analyzed builds b12 through b105 of JDK 1.6.0 (89 builds) so that we

could review a subset of the warnings generated. One of the subsets we reviewed

was warnings that were removed at some point in the build history. Specifically, we

looked at each high/medium priority correctness warning that was present in one

build and not reported in the next version, but the class containing the warning was

still present. To simplify the analysis, we only examined defects from files that were

distributed with the JDK. In the end, we reviewed 53 defect removals; the results

are shown in Table 5.1. Interestingly, 37 of the fixes were small changes that seemed

to directly target the warning. We have no way of knowing how much effort went

127

Table 5.1: Classification of Warnings Removed During JDK 1.6.0’s Development

Small change that appears to target the warning 37 70%

Change that only a partial remedy to the underlying problem 5 9%

Substantial code change or refactoring that has a broad scope 11 21%

into detecting these problems with simple fixes, but it is likely that if static analysis

had been applied earlier, this effort would not have been expended. Five of the

changes had the effect of lowering the priority of the warning (according to Find-

Bugs’ heuristics) because they reduced the likelihood of the defects causing software

misbehavior, but they did not eliminate the defects. The developers responsible for

these changes might have made different choices if they were aware of the static

analysis warnings, potentially preventing additional effort down the road to fix the

root defect.

In our next study, we considered the warnings that remained in the last build,

and tried to determine how impactful they were. We reviewed 379 high/medium

priority warnings, as shown in Table 5.2. 10% of the warnings looked serious, and

it was clear that the method containing the warning would behave in a way that

was substantially at odds with its intended function. Another 46% of warnings were

associated with some deviation from intended behavior. Of course, it is possible

that many of these have no real impact in practice, because the method is never

called, or the defect is mitigated by some distant code fragment or process. And we

reviewed a sizable number of warnings (42%) that appeared likely to be true but

low impact defects.

128

Table 5.2: Classification of Warnings Remaining in JDK 1.6.0 build 105

Likely infeasible or cause little or no deviation from intended

behavior

160 42%

Likely to cause some deviation from intended behavior 176 46%

Likely to cause substantial deviation from intended behavior 38 10%

Bad analysis by FindBugs 5 1%

So these reviews indicate to us that static analysis can find significant defects

in a well-used production system, but also validate our expectations that many

defects are low impact in practice. We broke down these numbers by bug pattern

in an earlier publication [17]. It is interesting to note that some bug patterns almost

always appeared to be low impact (such as a potential null pointer dereference on an

exception path), while others almost always appeared to be serious (such as integer

shift by an amount in an illegal range). This understanding has partly informed the

way we rank warnings, and can inform the way organizations choose which warnings

to filter out.

5.1.1.1 A Note on Warning Density

We measured the warning density in each of the builds analyzed, to validate

our expectations about the typical density for a large production system. We cal-

culate density as the number of warnings per 1,000 lines non-commenting source

statements1. FindBugs’ heuristics are tuned to produce a relatively sparse density

1We can compute the number of non-commenting source statements accurately using the line

number tables associated with each method in a class file. Statements that span multiple lines

129

Table 5.3: FindBugs Warning Densities in JDK 1.6.0 build 105

Build b12 b51 b105

Warnings 370 449 407

warnings/KLocNCSS 0.46 0.45 0.42

of warnings, particularly high/medium priority correctness warnings. For example,

Table 5.3 shows some densities for early, mid-way, and late builds. This sparse den-

sity (approximately 1 warning every 2,000 lines) reflects the desire to not inundate

developers with too many warnings.

5.1.2 Review of Glassfish v2

Glassfish is an open-source, Java EE Application server, used by many en-

terprises2. Members of the Glassfish project have shown substantial interest in

FindBugs, and have been running FindBugs against their nightly builds for several

years. They have experimented with several approaches to alerting developers about

warnings, including posting warnings on a web page, emailing results to developers,

and including warnings in a continuous build.

At the time we conducted our review, Glassfish had been using FindBugs for

about a year. We analyzed Glassfish v2, builds 09-b33, and looked for warnings that

were present in one version and not reported in the next build. We restricted our

analysis to high/medium priority correctness warnings, ignored defects that disap-

count as one line. Using this measure usually results in a value that is about 25-33% of the total

number of lines in the file.
2http://glassfish.dev.java.net/

130

Table 5.4: Classification of Warnings Removed During Glassfish’s Development

Substantial code change or refactoring that has a broad scope 8 14%

Small change that appears to target the warning 50 86%

Mention FindBugs in the commit message 17 29%

peared because the file containing them was removed, and only considered files in the

Glassfish source distribution. There were a total of 58 bug defect disappearances,

as is illustrated in Table 5.4. A significant number of the fixes only required small

edits, and 17 cases included a commit message that made it clear that the fix was

in response to FindBugs. This large number of small fixes does raise the question of

whether users are doing due diligence to make sure the code is correct. It is tempt-

ing for users to simply fix the defect flagged by FindBugs, without considering its

wider implications. Still in this review, it appears most fixes were straight-forward

with few side effects.

Despite the usage of FindBugs, the defect density in Glassfish v2 was equiv-

alent to the density in JDK 1.6.0. Specifically, the defect density for high/medium

priority correctness warnings in build 33 files included in the source distribution was

still 0.44 defects / KLocNCSS (which corresponds to 334 warnings).

5.2 Fix Rate and Code Churn

In addition to user reviews from the fixit discussed in Section 3.3, we collected

and analyzed snapshots of Google’s code repository. This data allows us to com-

pare some of the trends extracted from the subjective reviews in the fixit, to more

131

objective measures of which warnings were actually removed, and which ones tend

to persist. These measures have been used as a proxy of the relative importance of

bug patterns [79, 78].

To conduct this analysis, we detected each warning in each snapshot, and

recorded its bug pattern, and the first and last snapshot in which it was observed.

As we mentioned earlier, we do not actually know why issues are no longer reported,

though we can detect the cases where an issue disappears because its containing

source file is deleted. An issue may be removed because it caused a real problem,

because someone used a static analysis tool that reported a warning, because a global

cleanup of a style violation was performed, or because a change completely unrelated

to the issue caused it to be removed or transformed so that it is no longer reported

as the same issue. For example, if a method is renamed or moved to another class,

any issues in that method will be reported as being removed, and new instances

of those issues will be reported in the newly named method. The snapshots used

in this analysis were taken between the shutdown of the BugBot project and the

FindBugs fixit. Thus, we suspect that the number of issues removed because the

warning was seen in FindBugs is small.

To provide a control for this study, we introduced new “noise bug detectors”

into FindBugs that report issues based on non-defect information such as the md5

hash of the name and signature of a method containing a method call and the name

and signature of the invoked method. There are 4 different such detectors, based

on sequences of operations, field references, method references, and dereferences of

potentially null values. These are designed to depend on roughly the same amount

132

of surrounding context as other detectors. Our hope is that the chance of a change

unrelated to a defect causing an issue to disappear will be roughly the same for

both noise detectors and more relevant bug detectors. Thus, we can evaluate a bug

pattern by comparing its fix rate to both the fix rate over all issues and the “fix”

rate for the noise bug patterns.

Table 5.5 shows the results from analyzing 118 snapshots of the Google code-

base over a 9 month period. (To protect Google’s intellectual property, we cannot

publish numbers on the size of the analyzed code base, but we can report the num-

ber of warnings found.) For each bug pattern and category, we looked at how many

issues were remove and how many persisted. This dataset was rather noisy and

contained inconsistencies, but the size of the dataset offsets some of the noise. The

snapshots were not all analyzed with the same version of FindBugs, and the code

analyzed wasn’t completely consistent. An effort was made to build and analyze the

entire Java codebase at Google each day. For various reasons, different projects and

components might get excluded from the build for a particular day. In several cases,

we made changes/improvements to FindBugs to improve the relevance/accuracy of

the warnings (e.g., recognizing that a particular kind of warning was being reported

in automatically generated code and was harmless, and changing the detection al-

gorithm to not report the warning in that case).

Before analyzing this history, we applied several steps to “clean” the data.

We didn’t consider issues that went away because the class that contained the issue

was deleted or became unavailable. Also, if more than one third of the reported

issues for a bug pattern disappeared between snapshots (and there were more than

133

Table 5.5: Fix rate for bug patterns in Google code base3

chi % const fix max kind

1887 65 1903 3659 321 Correctness

369 70 243 572 126 RCN REDUNDANT NULLCHECK WOULD HAVE BEEN A NPE

224 88 23 179 25 VA FORMAT STRING EXTRA ARGUMENTS PASSED

187 74 86 245 57 RC REF COMPARISON

128 57 338 450 106 UUF UNUSED FIELD

123 78 38 137 20 EC UNRELATED TYPES

102 93 5 72 19 BC IMPOSSIBLE CAST

102 77 34 117 16 UR UNINIT READ

102 54 365 443 48 NP NULL ON SOME PATH

100 78 30 110 41 UMAC UNCALLABLE METHOD OF ANONYMOUS CLASS

95 76 34 112 10 GC UNRELATED TYPES

87 62 123 206 22 UWF UNWRITTEN FIELD

28 41 2793 1968 485 NOISE NULL DEREFERENCE

0 37 5311 3127 293 NOISE OPERATION

0 36 17715 10225 1192 all noise warnings

0 35 5391 2905 258 NOISE METHOD CALL

0 34 4220 2225 212 NOISE FIELD REFERENCE

0 32 69162 33415 1698 all

0 28 49544 19531 1305 all non-correctness, non-noise warnings

-195 18 3493 767 87 DM NUMBER CTOR

-202 7 904 70 11 UPM UNCALLED PRIVATE METHOD

-209 13 1888 301 74 RCN REDUNDANT NULLCHECK OF NONNULL VALUE

20 such issues), we attribute their disappearance to either a change in the analysis,

or a systematic change to the code, and do not consider those issues. We also didn’t

consider issues that first appeared in the last 18 snapshots (since there wasn’t really

time to observe whether they would be removed). The time period did include the

Google fixit in May 2009.

Overall 32% of the issues considered were removed. We don’t know if this is

3Detailed descriptions of each bug pattern are available online at http://findbugs.cs.umd.

edu/inpractice/

134

http://findbugs.cs.umd.edu/inpractice/
http://findbugs.cs.umd.edu/inpractice/

the “natural” average removal rate, since it is biased by the fact that some detectors

report far more issues than other detectors. Thus, we considered any removal rates

above 37% to be higher than expected, and removal rates lower than 27% to be

lower than expected. Based on those assumptions, we use a chi-square test to

decide whether the removal rate for each bug pattern was significantly above 37%

or below 27%. We use a negative chi value for those issues with a removal rate

below 27%. In Table 5.5, we report the results which had chi value above 70 (or

below -70), all of which are significant at the p < 0.05 level, as well as the noise

bug patterns and the groups of issues by category. The other columns in order are

the percentage of issues that were removed, the number of issues that remained in

the final snapshot (const), the number of issues that appeared in some version but

not in the final snapshot (fix), the maximum number of issues that disappeared

between any two successive snapshots (max), and the name of the pattern or group

of warnings (kind).

Note that we are modeling these issues as independent variables, but often

they are not. In some cases, a particular mistake (such as left shifting an int value

by a constant amount greater than 31) will manifest itself multiple times in a class

or method, and the issues will either all be fixed together or not at all. Sometimes,

a single change to the code will resolve a number of warnings that are associated

with the changed code. Furthermore, sometimes there will be a specific effort to

resolve a particular kind of issue. There are many variations on this problem, and

we try to capture some of this by reporting the maximum number of issues that

disappeared between any two successive snapshots. When a substantial fraction of

135

the total number of issues in a bug pattern disappear like this, it is reasonable to

believe that they were removed as part of a single effort or due to a change in the

FindBugs analysis engine. As noted before, we omit any cases where more than one

third of the issues were removed between one pair of successive iterations.

Some of the removed issues (such as unused or unread fields), may reflect the

refinement of incompletely implemented classes rather than fixing of defects. A

number of the bug patterns with significant removals (impossible casts, comparison

of unrelated types) are serious coding mistakes, so it is reasonable to postulate that

they were removed because they were causing problems.

The most significant removal rate was for the bug pattern that occurs when

a value is (redundantly) compared to null even though it has already been derefer-

enced. By contrast, a similar bug pattern (comparing a value to null even though

it is known to be non-null due to a previous comparison) is the most likely to per-

sist in the code. This suggests that this second bug pattern was not causing many

problems and the redundant comparisons in this case were mostly defensive.

Interestingly, noise null dereference warnings had a removal rate that was

significantly higher than the overall removal rate. Noise null dereference warnings

are only generated in cases where the value being dereferenced is not guaranteed to

be nonnull. Perhaps there are some bugs at these dereference sites, and it may be

valuable for developers to review all recently created locations where a dereferenced

value is not guaranteed to be nonnull.

136

5.3 Finer-Grained Snapshots

The studies described so far are limited because they only capture defects that

make it into the software repository. But in practice, many defects are found and

fixed (or suppressed) before a developer checks any code into the repository, espe-

cially if the developer is alerted by static analysis tools in the IDE or build system.

We need to include these transient defects in our studies to more accurately under-

stand which bug patterns developers choose to fix, and to determine if developers

are wasting energy debugging problems that can be identified more quickly by static

analysis. Transient warnings may refer some of the more important defects that oc-

cur during development, since users often do some quality assurance activities before

committing any code into a repository, and certainly before issuing a release.

The primary challenge when capturing these transient defects is keeping the

data capture lightweight so that it does not interfere with development activities.

Some static analysis frameworks store all warnings in a central database for all

users in an organization, and hence already capture some of this information. Other

frameworks only record warnings locally, and hence need to be instrumented to save

this local information in a persistent location.

Another challenge is inferring the state of warnings. Specifically, we would

like to know when a defect gets fixed, causing the warning to disappear, or when a

warning is suppressed using source-level suppression or some other mechanism. We

may need to modify static analysis tools to get access to information about which

warnings are suppressed.

137

In this section, I describe two approaches that attempt to collect more fine-

grained snapshots of development activities, to more accurately measure the comings

and goings of static analysis warnings. In Section 5.3.1, I describe and analyze fine-

grained snapshots which have been captured from student development activities

at the University of Maryland. To capture these snapshots, a copy of the student’s

workspace was saved to a CVS repository every time the student saved a file. In

Section 5.3.2, I describe the ATMetrics system—which I worked on at Microsoft—to

instrument a heterogenous pool of static analysis tools through the IDE. ATMetrics

is going to be deployed to thousands of developers at Microsoft [18].

5.3.1 The Marmoset Project

The Marmoset project was started at the University of Maryland to enable

students to submit programming assignments to a central server and get instant feed-

back about their performance [130]. A research component of this project also cap-

tured snapshots from students learning to program in Java, persisting their source

files to a CVS repository everytime they saved a change. Students exhibit different

behaviors from professionals, but this dataset can still reveal or confirm expected

trends about how warnings are added and removed during development.

We can use this dataset to investigate which defect classes are introduced

during development, and which ones are eventually fixed. In addition some defects

may be removed quickly, while others may persist, affecting the behavior of the

program until they are fixed. In addition to quantitative trends, we can also inspect

138

the code looking for anecdotes that reveal some aspect of the user’s interaction

with defects. In particular, we may be able to identify cases where students are

“spinning their wheels” trying to make the program work, when the core defect is

something that can be identified by static analysis. If a study like this is conducted

in a commercial environment, these anecdotes could be used to estimate the cost of

NOT using static analysis, i.e., the effort wasted by developers trying to find defects

that can be detected almost instantaneously by static analysis.

5.3.1.1 Methodology

To conduct this study, we selected a few projects from two semesters, and

attempted to compile every snapshot available4. Of course, not every snapshot

compiles, because students sometimes save incomplete source files. Indeed, one of

the limitations of this approach is that we will get a different granularity of snapshots

from each student (see discussion on threats to validity in Section 5.3.1.5). We then

analyzed the compilable snapshots using FindBugs, and used FindBugs’ historical

analysis features to aggregate the results for each student, allowing us to measure

the number of compilable snapshots between when a warning is introduced and

when it is removed.

One immediate observation from our analysis is that some warnings were al-

ready present in the initial project code templates that were provided to students

at the start of each project. These mostly lower ranked warnings were duplicated

for each student, and hence accounted for about 25% of all warnings seen. We ex-

4Snapshots were available for students who formally provided consent.

139

Table 5.6: Overview of Analyzed Marmoset Data

Semester 1 Semester 2

Number of Students 118 38

Number of Projects 2 3

Number of Warnings5 3,894 2,398

Warnings Fixed 2,750 (71%) 1,759 (73%)

Correctness Warnings 832 (21%) 722 (30%)

Rank 1-4 Warnings 187 (5%) 171 (7%)

clude these warnings from our analysis, and focus on warnings introduced during

development.

5.3.1.2 Overview of General Trends

Table 5.6 presents some high level facts from this study. When we exclude

warnings present in the templates provided to students, we observed over 6,000

warnings, and about 72% of them were fixed before the students’ final submissions.

Closer inspection of the warnings reveals that some of the most common bug

patterns refer to low impact defects that are only visible because of the fine gran-

ularity of this study. Table 5.7 lists the top 10 bug patterns. Five of the top six

(marked with an asterisk) are likely to be very transient, and occur frequently only

because students often save incomplete code. For example, Dead Local Store defects

occur when a value is saved in a local variable which is never used; this occurs often

as the student is writing the method and is always eventually fixed. Unsurprisingly,

these five bug patterns have high fix rates, above 89%. Other bug patterns may

5Excludes warnings present in the first revisions

140

Table 5.7: Top Bug Patterns

Rank Bug Pattern Total Fixed

1 *DLS DEAD LOCAL STORE 1,298 1,180 (91%)

2 *URF UNREAD FIELD 985 913 (93%)

3 SBSC USE STRINGBUFFER CONCATENATION 611 90 (15%)

4 *UUF UNUSED FIELD 465 424 (91%)

5 *NP UNWRITTEN FIELD 355 317 (89%)

6 *UWF UNWRITTEN FIELD 240 235 (98%)

7 SIC INNER SHOULD BE STATIC 157 103 (66%)

8 �GC UNRELATED TYPES 157 137 (87%)

9 NP NONNULL RETURN VIOLATION 128 63 (49%)

10 OS OPEN STREAM 126 39 (31%)

12 �RV RETURN VALUE IGNORED 119 105 (88%)

16 �NP ALWAYS NULL 62 57 (92%)

have some transient instances like this, but these five bug patterns are the most

dominant, and they skew our results. Hence we exclude them from the rest of our

analysis. Doing so reduces the number of warnings to 2,949, and the number fixed

to 1,440, or 49%.

The rest of the top bug patterns exhibit two general trends. Some bug patterns

with high fix rates (marked with a �) appear to be serious defects that are fixed

often. The remaining bug patterns are low impact bug patterns that have lower fix

rates. We manually inspected some of the bug patterns in these two groups to see

if the high impact defects are being fixed because they are causing problems, and

the low impact defects are being ignored because they have no effect. We discuss

our observations in Section 5.3.1.4.

141

Table 5.8: Fix Rates for Different Subgroups

% remain fixed category rank priority

86.0 50 306 C 1-4

85.8 51 307 1-4

81.5 47 207 C 1-4 H

81.3 48 208 1-4 H

78.4 207 752 C

75.5 164 506 C H

66.0 317 615 H

48.8 1,509 1,440

5.3.1.3 Bug Patterns with High Fix Rates

Interestingly, once we exclude the highly transient defects described in the

previous section, the most severe bug patterns tended to be the ones with the highest

fix rates. Table 5.8 illustrates what happens when we group defects by bug rank, by

priority, or by category. It shows that any combination of high priority, correctness,

or Rank 1-4 (scariest) issues results in a fix rate that is statistically significantly

higher than the overall fix rate. These are the bug patterns we are most interested

in inspecting manually to see what sorts of problems they are causing for students.

This high fix rate also partly confirms the survivor effect discussed earlier in Section

4.3, i.e., that the most serious defects are generally fixed, even if the user is not

using static analysis. Of course, in some cases, it is possible that students may have

run FindBugs and fixed the defects in response to an alert. But, particularly for

the defects that persist for many snapshots, it appears that the student was often

fixing the defect as they were trying to make the program work correctly.

142

5.3.1.4 Manually Inspecting Defects that Persist

Sometimes a student would notice the problem soon after introducing it, and

fix it immediately. About 37% of resolved issues were fixed after just 1 snapshot

(28% if we exclude the highly transient bug patterns flagged in Table 5.7). Other

times, the problem would persist for several snapshots before being fixed. A manual

investigation of some of these scenarios reveals that in many cases, the student is

advancing the development of their project, oblivious to the problem because they

have not tried to run it yet. At some point, they may run local tests that fail; this

leads to a period of debugging and the student needs to make a context switch to

edit the older code.

An example of this sequence of events is shown in Figure 5.1. Here the student

ignores the return value of String.substring(). The student continues develop-

ment for about an hour, then takes a break and returns the next day without noticing

the bug. At some point, it is likely that the student ran local unit tests, and would

have noticed that two of them were failing. The process of debugging these failures

would have revealed that a critical string contained the wrong value. After iterating

through some fix attempts, the student recognizes the problem, almost 24 hours

after FindBugs could have flagged it.

The other part of the survivor effect is that defects that do not matter remain

undetected and unresolved. We observed some cases of seemingly serious defects that

remain in the last revision and do not prevent students from passing the assignment.

An example is shown in Figure 5.2. Here the student checks if a container of Edge<E>

143

August 3, 12:55pm: adds buggy code

public String getVerticesNames() {

...

+ vertices.substring(0, vertices.length()-2);

+ return vertices;

}

12:55 to 1:37 pm (42 minutes): adds code to other methods. Project is failing two local tests.

Takes a BREAK for 22 hours.

August 4, 11:59am: attempts to fix. Local tests still failing.

- vertices.substring(0, vertices.length()-2);

+ vertices.substring(0, vertices.lastIndexOf(","));

12:01pm: fixes the bug. Local tests now passing.

- vertices.substring(0, vertices.lastIndexOf(","));

+ vertices = vertices.substring(0, vertices.lastIndexOf(","));

Figure 5.1: Bug: Ignoring the Return Value of String.substring()

elements contains a Vertex<E>. This check will always return false, but it appears to

be purely defensive since the student throws a runtime exception when the condition

is true.

5.3.1.5 Threats to Validity

The analysis of student snapshots is limited by the fact that we can only ap-

proximately infer students’ activities; we do not know when they run tests or see

exceptions. In addition, the granularity of snapshots may be very different for differ-

ent students, because we can only analyze compiling snapshots, and some students

save often (including incomplete code fragments with syntax errors), while others

make substantial code changes between saves. Ultimately, the student projects pro-

144

� �
1 private LinkedList<Edge<E>> edges;

2 public int getAdjEdgeCost(Vertex<E> endVertex) {
3 if(edges.contains(endVertex)){
4 throw new IllegalArgumentException("Edge already in graph");

5 }
6 ...

7 }
� �
FindBugs: “Vertex is incompatible with expected argument type Edge on line 3”

Figure 5.2: Bug: Unrelated Types in Generic Container

vide an opportunity to illustrate the introduction and removal of warnings, which

we would be unable to do with confidential commercial data.

Another threat to internal validity is that since students are working on the

same programming assignments, they are likely to make the same kinds of mistakes.

So some warnings may occur disproportionately often. Because this threat, we do

not draw too much significance from the absolute number of defects that occur, but

instead focus whether they are resolved, and make qualitative observations about

whether they matter. Finally, some observations in this study may not generalize

because student development and debugging skills are not equivalent to professional

skills.

5.3.2 ATMetrics: Instrumenting Static Analysis on the Desktop

The Analysis Technologies team at Microsoft manages a number of static anal-

ysis tools and provides support to thousands of developers who use these tools.

ATMetrics (Analysis Technologies Metrics) was an effort to better understand how

145

developers are interacting with these tools, and learn from their experiences, with

the ultimate goals of improving the tools and associated processes, and demonstrat-

ing the value of using tools. In particular, ATMetrics focused on getting previously

unavailable information: the developer’s activities on the desktop. Microsoft de-

velopers likely fix or suppress many issues before the code is checked in because

they are alerted by the build system, and because some warnings can prevent code

integrations.

To capture this missing information, ATMetrics setup lightweight instrumenta-

tion on developer workstations to capture metrics on which warnings occur, which

ones are fixed or suppressed, and other details about user interaction with static

analysis. The primary challenges of putting together a system like this in an in-

dustrial context were correctly and robustly inferring the actions of developers with

very little overhead, and supporting many heterogeneous static analysis tools. In

addition, the IDE containing much of the instrumentation was still under develop-

ment during this effort. In this section, I present an overview of the key questions

driving the design of ATMetrics, and the implementation challenges I encountered.

I do not include any results because they are not yet available.

5.3.2.1 Key Questions

The most basic question is: which warnings occur on the desktop, which ones

are fixed and which ones are suppressed? If a warning occurs often but is generally

suppressed or ignored, then this may indicate that the associated analysis needs to

146

be tweaked or the warning deprioritized.

Another question is: how do static analysis tools impact developers? We ex-

pect developers to modify their coding styles as static analysis tools alert them of

best practices or code conventions they were previously unaware of. We can validate

this expectation if we observe that certain warnings are introduced at lower fre-

quencies as the developer becomes more experienced. Alternatively we may observe

different patterns in different teams or at different parts of the software development

cycle. All these trends can inform the policies we recommend to groups and the way

we promote tools.

One possible impact of tools on developers comes from the presence of issues in

legacy code. When a developer makes even small changes to a legacy file, they may

be confronted with many old warnings. One way to deal with this is to baseline old

warnings, i.e., to temporarily hide them from view. The rationale is that warnings

in older code are less likely to be serious since this code has undergone extensive

quality assurance testing. We expect that developers will fix more issues sooner

if they are only shown new ones. Using our instrumentation, we can compare the

fix rates of developers that hide old issues with those of developers that keep them

visible.

The ultimate goal is to understand how usage of static analysis affects the

quality of the final software product. This is in general a hard question to answer

since there are many factors that may affect component quality. Hence our goal is

simply to look for trends and correlations between static analysis usage patterns and

existing business metrics. We can use internal metrics about components such as the

147

number of reported crashes or security flaws, and compare these metrics with data

from our instrumentation including fix and suppress rates, new issue introduction

rates, and whether baselining is used or low priority issues are filtered out. We can

also compare our instrumentation data with the policies and practices we observe

in different groups.

5.3.2.2 Implementation and Challenges

The ATMetrics implementation builds upon existing platforms and processes

used in Microsoft. Specifically, the instrumentation was designed to be a lightweight

add-on to a static analysis viewer, and the custom data points are transmitted

and aggregated using Microsoft’s Software Quality Metrics (SQM) [101], a platform

for collecting remote data from thousands of volunteers, used in many Microsoft

products.

One of the primary challenges in constructing this instrumentation was infer-

ring whether issues are being fixed, suppressed or ignored. We are not parsing the

source code or even monitoring every key stroke as this would be too much over-

head. All we can see is when issues appear and disappear. Based on this, we have

to classify issues into one of the three groups: Fixed, Suppressed or Ignored.

Any issues displayed in the viewer are moved to the Ignored group. The

exception is baselined issues, which can appear in the viewer if the user changes

appropriate filters.

If an issue that was previously displayed in the viewer disappears, there are

148

several inferences that we could make. An issue could disappear because it was

fixed, because it was suppressed, because code churn put the issue out of reach of

the analysis or even because the containing source file was not analyzed. We do not

have enough information in the viewer to make all these inferences, so we need to

refer to the static analysis tools to get more information. This is another example

of information that is only available to us on the desktop.

To detect which issues have been suppressed, we query the static analysis tools

for the full list of all issues generated before suppression is applied. Any issues in

this full list that do not appear in the viewer can be inferred to be suppressed. This

strategy is limited by the fact that we have many heterogeneous tools and is not

implemented for all tools.

Any issue that does not appear in the viewer and is not suppressed is considered

fixed, unless its containing source file was excluded from the most recent analysis

run. A file could be excluded because it is not actively checked out, or because

the developer chose to build only a subset of files. If we can determine that the

containing source file was excluded, then we allow the issue to retain its existing

classification.

More details about the implementation have been included in a technical report

[18].

149

5.4 Summary and Related Work

Through my research mining code repositories, I have observed evidence that

important defects are fixed early, while those that do not matter are left behind.

This reinforces the notion that static analysis should be run early to be most useful.

And some of those defects fixed early may have been a pain to resolve. In my study

of marmoset data, I observed students expending effort to address problems that

they could have found and fixed easily using FindBugs.

To handle the noisy nature of the data in the repository, I have experimented

with using noise warnings to represent code churn. Noise warnings are designed

to depend on some aspect of the surrounding context, and their presence does not

signify a real defect. Hence their addition and removal should be unrelated to the

actual effort to fix any defects, and should track closely with the natural changes

in the code. So it is interesting to observe the classes of defects that are fixed

significantly more often than noise defects, even if the project is not using static

analysis. Equally interesting is that some defects are fixed significantly less often

than noise. In addition, some subgroups of issues (high priority, or issues in the

correctness category) are fixed significantly more often than other defects, validating

the effort in FindBugs to classify these warnings accordingly.

Some researchers have started mining software repositories to capture informa-

tion about the density of static analysis warnings, which can be used in subsequent

studies and projections. Nagappan and Ball [106] studied the pre-release defect

densities for Windows Server 2003 and found a strong correlation between the den-

150

sity of static analysis warnings in different components and the pre-release defect

density identified by testing. Buse and Weimer [30] found a correlation between the

presence of FindBugs warnings in components and a custom metric for readability.

Other researchers have focused on predicting important bug patterns based on

which warnings were fixed in the past. Ruthruff et al. [125] used logistic regression

models to predict which warnings will be fixed based on factors associated with

warnings that were fixed – factors such as the age of the source file containing the

warning, the number of warnings in this file, and the file churn. Kim and Ernst

predicted which warnings should be ranked high based on how long they remained

in the code base [78] and which warnings were fixed [79]. They did not assume

developers saw the static analysis warnings but correlated the removal of a warning

to its importance, and they increased their confidence in this removal by emphasizing

warnings removed during bug fix commits. Our studies are similar to these except

that we introduce noise detectors to help us identify what portion of the removal

rate may be due to the natural code churn of software development.

Some of these studies depend on the identification of “fix commits,” or changes

in the repository that resolve a defect. Usually fix commits are identified by high-

lighting the commit messages that link to a report in a separate bug tracking system.

These fix commits are then used to flag significant warning removals, or to track

down and study the bad changes that precipitated the need for a fix in the first

place, so called “fix-inducing” commits. But there are pitfalls to this approach for

identifying fix commits. In related earlier work, I reviewed potential fix commits

(and associated source code) from two Java projects and one Python project [14].

151

I observed that not all bug reports are associated with a defect; a sometimes sub-

stantial number are requests for enhancements or reminders of needed tasks. So

associated source code changes may not be fix commits. Even when the bug reports

are related to a defect, the associated source code changes may include other activ-

ities such as adding test cases, or refactoring code. And even when the source code

changes are fixing defects, the fix may not be located near the actual defect [14].

The question of finding fix-inducing commits has been explored and refined

by researchers focused on creating a link between the bug report database and

the code repository using commit messages [127, 138, 80, 11]. Kim et al. [80]

and Williams et al. [138] manually reviewed the source code of fix commits to

decide if they were true fixes, but did not review the bug reports to distinguish

between defects that refer to incorrect behavior and those that are enhancements.

Antoniol et al [9] distinguished between enhancements and bugs in bug reports using

automatic classification techniques which could be instructive to future research

efforts to identify bug fix commits.

Other projects have explored instrumenting software development activities,

though I am not aware of any other work that instruments static analysis tools in

a commercial environment to capture developer interactions on the desktop. One

popular framework for instrumenting software development activities is Hackystat

[73, 72], a general purpose framework that enables software projects to define, col-

lect and analyze a wide variety of metrics. The data collection system I used at

Microsoft—SQM—was designed for robust lightweight collection from millions of

customers, not just software teams. I chose to use SQM because it is supported

152

within Microsoft and widely used in many products. But I still had to make many

of the same considerations and tradeoffs Hackystat users make including assuring

data correctness, distinguishing files and projects, making the system configurable,

and scaling to potentially millions of data points.

153

Chapter 6

Null Pointer Bugs in Practice

Much of the focus of static analysis tools in Java is on detecting potential

null pointer dereferences (NPDs). Within FindBugs, significant effort has been

devoted to tweak the numerous bug detectors that are associated with null pointer

errors. And many publications from the research community focus on null pointers

[63, 107, 16, 112].

This focus is not surprising, because null pointer exceptions (NPEs) seem to

show up regularly in Java executions, and can be difficult to debug. This is in

part because many API methods (including many in the Java language) return null

to represent “no answer,” rather than throw an exception or some other action.

For example, Map.get(K key) returns null if the key is not associated with any

value, File.listFiles() returns null if the target file does not represent a readable

directory, and Queue.poll() returns null if the queue is empty. The presence of

null in languages like Java is the source of some controversy, with one observer

describing null as a billion dollar mistake [61], and others regarding null return

values as dishonest [111] or evil [7].

So static analysis tools seek to make a positive contribution by finding potential

NPDs, and throughout this thesis, I have presented numerous examples of successful

finds. But there are pitfalls in practice; enough to encourage us to investigate the

154

ways NPDs occur in real software, and the types of problems found by static analysis.

One pitfall is that in memory-safe languages like Java, potential NPDs do not

necessarily signal defective code. Sometimes potential NPDs occur only in scenarios

where expected preconditions or invariants are violated, and the only reasonable

action is to throw some kind of runtime exception. Of course, it may be more

informative in some of these cases to throw an exception that enables debuggers to

better understand the source of the problem, but always doing so would make the

source code more complicated, and hard to read and maintain. It makes sense to

throw an NPE when a null value is supplied to a parameter that is required to be

non-null. But doing so by way of an explicitly constructed exception is only slightly

more informative than doing so by dereferencing the null value.

Another pitfall is that NPEs are often the conspicuous side-effect of more

subtle logic errors. Static analysis is good at directing developers to the site of a

potential NPD, and even in some cases to the site of the source of the null value.

But this may not be sufficient aid in cases where a more inconspicuous problem is

at fault.

Finally, static analysis tools are limited in their ability to correctly infer the

nullness of values, and sometimes flag cases that are impossible. Even when the

analysis is correct, we observe some cases where the circumstances that would lead

to a null value assignment are highly unlikely in practice.

In this chapter, I explore null pointer defects in practice, highlighting some of

these pitfalls, and discussing the pros and cons of API design choices that lead to

155

the spread of NPDs1. In Section 6.1, I review reasons why a potential NPD may

not signal defective code. In Section 6.2, I describe a study in which we inspected

dozens of real NPEs reported in bug tracking systems, to understand what caused

them and how they were fixed. This study indicated that many errors were not

associated with mishandled null values, but rather were unrelated logic errors which

manifested as null pointer exceptions. In Section 6.3, I present a comparison of

different null pointer analysis tools, identifying how often they found cases that were

impossible, or implausible, and highlighting some of the challenges of the analysis.

Tools included in this review were XYLEM [107], Coverity Prevent [66], Fortify

SCA [128], Eclipse TPTP [48], and FindBugs. Finally, in Section 6.4, I discuss API

design considerations and the challenge of making static analysis effective for null

pointer defects.

6.1 When is it a Defect?

Recall that we define a defect as a problem that developers would generally

choose to fix. One would assume, then, that any feasible potential NPD must be a

defect. But in managed languages like Java, a reasonable developer may choose to

pass when faced with concern about NPDs, by assuming certain preconditions are

met.

Consider the example in Figure 6.1, which attempts to delete a directory. The

call to listFiles() on line 6 returns an array of all the files in the directory rep-

1pun intended

156

� �
1 /∗∗
2 ∗ Deletes the directory at dirName and all its files.

3 ∗ Fails if dirName has any subdirectories.

4 ∗/
5 public static void deleteDir(File dir) {
6 File[] files = dir.listFiles();

7 for (int i = 0; i < files.length; i++) {
8 files[i].delete();

9 }
10 dir.delete();

11 }
� �
Figure 6.1: A potential null pointer dereference if dir is not a directory

resented by dir. But this call can also return null, which it does if dir does not

represent a directory. The value returned is unconditionally dereferenced on line 7,

without any check to confirm that dir is a directory. Some researchers consider this

a defect [112], but FindBugs does not. This is because there may be an unstated pre-

condition to the deleteDir() method that dir should refer to a readable directory,

and if this precondition is violated, then a runtime exception should be thrown. If

this is the case, then the most significant defect is outside the deleteDir() method.

Within the deleteDir() method, the only reasonable “fix” is to throw a more infor-

mative runtime exception, such as an IllegalArgumentException, which would make

the problem slightly easier to debug.

If deleteDir() is a public utility method in a library, then throwing an NPE

because of an invalid argument is confusing and undesirable behavior. In the next

section, we document some cases where developers do resolve a potential NPD by

157

throwing a different runtime exception. If, on the other hand, deleteDir() is a

private method used only within a specific application, then developers may choose

to ensure that it is never called with an inappropriate argument, and fix any un-

expected exceptions by tracking down the fault outside the deleteDir() method.

Constructing explicit exceptions makes the code more verbose and hard to read,

and some situations call for establishing and enforcing preconditions instead.

To clarify, I am not suggesting that an analysis which flags this case as a

potential NPD is technically incorrect. Indeed, some developers may want to see

warnings that point to problems like this. But the question of whether the flagged

code should be modified is subjective, and depends in practice on the priorities

and constraints on the organization. Remember that every code change raises the

possibility of introducing a new error, and takes time away from other software

quality activities.

In fact, there is an issue with the deleteDir() method in Figure 6.1 that is

potentially more serious than the null pointer issue. The delete() method returns

false if the deletion was not successful, and the deleteDir() method ignores this

return value. As a result, the deleteDir() method might delete some but not all

files in the directory, and not provide any warning, or signal that the deletion was

incomplete.

Figure 6.2 illustrates another example. The createTask() method is used

frequently in the Apache Ant project2 to create a new instance of a specified task.

As the documentation in the figure indicates, if the task name is not recognized, then

2http://ant.apache.org/

158

http://ant.apache.org/

Source: Apache Ant | org.apache.tools.ant.Project� �
1172 /∗∗ ...

1173 ∗ @return an instance of the specified task, or <code>null</code> if

1174 ∗ the task name is not recognised. ...

1175 ∗/
1176 public Task createTask(String taskType) throws BuildException {
1177 ...

1178 }
� �
Figure 6.2: Method in Ant that sometimes returns null

a null value will be returned. If this return value is unconditionally dereferenced,

a potential NPD could occur. A number of static analysis tools issue dozens of

warnings for these potential NPDs [107] (also see Section 6.3). However, it seems

unlikely that developers will often use an unrecognized task name, since usually only

a few standard and some custom tasks are used within each project. Some standard

task definitions may be unavailable if Ant is started with a corrupt properties file,

but developers may not find this a compelling enough reason to insert explicit null

checks everywhere createTask() is called.

One common thread through these examples is that they involve standard

API calls (from Java and Ant) that sometimes return null, but usually return a

non-null value. Developers may choose to deal with these APIs by checking for null

every time they are used, or enforcing logical rules and policies to ensure they are

never used in a way that returns null. If developers choose that latter approach,

then static analysis warnings about potential NPDs involving these API calls are

not useful. However, there may be some opportunity for developers to customize

159

http://bit.ly/ayewah-thesis-fig_npe_createtask

the static analysis and use it to enforce the logical rules and policies. I talk more

about custom bug detectors in Chapter 8.

6.2 Mining Bug Reports for Null Pointer Exceptions

One way to better understand how NPEs impact code quality in practice is to

examine bug reports from real projects. We manually reviewed some bug reports and

associated source code changes from the Apache Ant project to better understand

why NPEs occur and how developers deal with them. This gives us an opportunity

to assess how much the different static analysis techniques might help with the tasks

of finding and resolving problems. This also gives us an opportunity to speculate

on the helpfulness of tools that enable developers to track down the source of the

null value. Specifically, we examine some of the bug reports highlighted in previous

research to use static analysis to assist developers debugging NPEs [126].

During the review, we observed that many problems were not due to mishan-

dling null values, but a logic error which manifests itself as an NPE. Usually the

developer has to fix this root logic error, but in some cases it was more convenient

to fix the dereference site by anticipating null and recovering.

A review like this is necessarily subjective, but we restrict ourselves to ques-

tions that can generally be answered objectively3.

3Detailed results from this review are available at http://findbugs.cs.umd.edu/inpractice/

160

http://findbugs.cs.umd.edu/inpractice/

6.2.1 Procedure

We identified candidate bug reports by searching Ant’s Bugzilla database4 for

Null Pointer Exceptions. We reviewed 50 reports including all the issues that were

unresolved (two), and six issues that are referenced in [126], with the remaining

issues selected randomly. During the review, we examined the bug report comments

and the associated source code changes looking for trends and answers to specific

questions we had.

We used a number of strategies to identify the relevant source code. Most bug

reports included a stack trace which we used to identify the source line where the

exception occurred. In addition, many source code changesets associated with bug

reports included a bug report number in the commit message, following a convention

used by the project’s developers. We were able to find most of the relevant source

changes by searching the code repository5 for this number. Where these strategies

did not work, we relied on the bug report comments to understand and find the

problem. In some cases, it was helpful to search duplicate issues for a stack trace.

In our final results, we excluded 5 cases for which we could not find enough

information to make our classifications with confidence, often because the developers

were making many refactoring and design changes not necessarily related to the

reported problem. We also excluded 4 reports that were not relevant because they

did not contain NPEs, or in one case, the NPE was in the reporter’s test case. In

the end we reviewed and classified 41 issues.

4https://issues.apache.org/bugzilla/

5http://fisheye6.atlassian.com/browse/ant

161

https://issues.apache.org/bugzilla/
http://fisheye6.atlassian.com/browse/ant

6.2.2 Classification

We looked through a number of bug reports to decide what classification

schemes might lead to the most objective results, while also providing useful in-

formation. In the end, we settled on the following primary classifications which do

not capture all the trends we observed but allow us to be fairly objective during our

review.

6.2.2.1 Dereference Site Classification

This classification helps us decide if the original developer made incorrect

assumptions at the dereference site or if their assumptions were correct. We use this

to indicate whether the problem was due to mishandling of null values at the point

where the NPE occurred or due to a logic error elsewhere.

Local logic error: The code handles a potentially null value in inconsistent ways. For

example, a variable may be unconditionally dereferenced, and then checked

for null a few lines later without writing to it in between. In this case, the

developer first assumed the value was not null, then assumed it might be null.

Should have checked for null: The code should have anticipated null and handled

it. For example, we use this designation if the unconditionally dereferenced

value was returned from a method that specifies that it can return null.

Unrecoverable null: Code correctly expects the value to be nonnull. For example,

many methods explicitly indicate in the comments that a given parameter

162

should not be null. This designation represents the scenario where a null

value reaching the dereference site probably indicates a problem somewhere

else in the code.

In each review, particularly when deciding between Should have checked for

null and Unrecoverable null, we may have to look at surrounding code for evidence

before assigning the issue to one classification or the other.

6.2.2.2 Local Analysis Check

Is it obvious from local information the circumstance under which the value is

null? Here we use two classifications:

Local check suffices: We can determine the source of the null value by just looking

at the local method, or reading the specifications of methods called in the local

method.

Nonlocal search needed: It is not obvious from the local information why the value

is null.

This classification gives us some idea of how easy it is to understand the

problem and how often an analysis technique would have to search deeply to find

the null source.

6.2.2.3 Corrective Action

What was done to resolve the problem? This classification only applies to

those issues that have been resolved and where we can identify the corrective source

163

code or changeset. Our classifications are:

Fix local logic error: Correct inconsistent handling of a value within the method

containing the dereference site

Anticipate null, recover: Introduce a guard in the local method to check for null

and handle it specially, or avoid dereferencing it.

Throw better exception: Detect the null value and throw a more appropriate excep-

tion. This can done in the local method containing the null dereference or in

a preceding method. Like the previous classification, this fix anticipates null,

but it does not recover. Rather it causes the program to fail more gracefully.

Prevent null occurrence: Change code logic so that null does not occur at the deref-

erence site. This fix can either prevent the original null assignment from

occurring or avoid calling the method containing the NPD in a way that leads

to an exception.

Extensive refactor: In some cases, developers make many changes to refactor the

code, or add or remove features as part of the fix. This could even involve

removing the method which contained the null dereference.

6.2.2.4 Other Classifications

In addition to the primary classifications mentioned above, we also made some

basic observations about each issue:

164

Local Should Check Unrecoverable

Fix Local Logic 0 0 0

Anticipate Null 0 9 8*

Throw Exception 1 3 4

Prevent Null 1 3 9*

Refactor 0 0 3

*For two reports the corrective action was to both anticipate and recover from null, and to prevent null from

happening. We split each of these cases, adding 0.5 to each row for each case.

Table 6.1: Corrective Action Classification

Dereferenced Value: From the perspective of the dereference site, the dereferenced

value can be a parameter, a field, a value returned from a method, or a local

variable

Where is the fix? The corrective action can be near the dereference site (i.e., in the

same method), near the null source, near both or near neither.

6.2.3 Observations

In Table 6.1, I cross-tabulate each Dereference Site classification with each

Corrective Action. I observe that 24 reviews received an Unrecoverable null classi-

fication (or 59% of the issues that received classifications). Only a third of these

issue were resolved by anticipating null and recovering. For many of these issues,

the appropriate solution was to change the way a value was initialized to prevent

null from occurring in the first place. Usually this involved replacing null strings

and null containers with empty strings and empty containers respectively.

By contrast, 15 reviews (37%) received a Should have checked for null classifi-

cation and 12 of these were resolved by anticipating null (3 threw a better exception,

165

while 9 anticipated null and recovered). In many cases, the developer simply forgot

to check the value returned from a Java API or other API call that is known to

return null.

In the following sections, I present some examples that illustrate these obser-

vations, and provide more observations from the review.

6.2.3.1 Handling “Unrecoverable null” issues

For most of the Unrecoverable null issues, the corrective action was to prevent

the null value from reaching the dereference site or to throw a different exception.

These represent the cases where it did not make sense to check for null at the

dereference site, and the developer had to instead dig out the root problem. Often

unrecoverable null situations occur when a developer unconditionally dereferences

a parameter expecting it to be non null. There may also be cases where a devel-

oper unconditionally dereferences the return value of a method like Map.get(key)

because the developer expects (or needs) the key to be in the map at that point in

the code.

For example, in issue 173966 the reporter observes an NPE when redirecting

inputs from a file to an Ant task. The NPE occurred when the setNewProperty()

method passes its parameters to a Java Hashtable (which does not accept null

values). Developers were not expecting null values to be passed to any of the pa-

rameters because they were reading from a stream. Developers concluded that a

BufferedReader in the input handler was reading more from the input than nec-

6Available at https://issues.apache.org/bugzilla/show_bug.cgi?id=17396.

166

https://issues.apache.org/bugzilla/show_bug.cgi?id=17396

essary and replaced it with a DataInputStream (see changeset 2741857). In this

case, simply checking for null near the dereference site would not have fixed the root

problem.

Another example is issue 5980 in which the reporter observes that the process

for executing shell commands is broken on Windows XP. After digging into the

problem, the reporter notices the following code fragment is missing a reference to

Windows XP:� �
if (osname.indexOf("nt") >= 0 || osname.indexOf("2000") >= 0) {

...

}
� �
This inadequate code fragment occurs in a number of places, and is updated

(in changeset 271003) to include a reference to XP:� �
if (osname.indexOf("nt") >= 0 || osname.indexOf("2000") >= 0 ||

osname.indexOf("xp") >= 0) {
...

}
� �
Table 6.2 provides more descriptions of the cases we observed in which an

unrecoverable null issue was resolved by preventing the null assignment. In many

cases, the solution was to change the way the value was initialized. Issue 38056 is a

good example of a null string initialization that was replaced with an empty string

initialization.

Table 6.2 also describes some of the cases where an unrecoverable null was fixed

by throwing a different exception, or refactoring the code. In all the cases where a

7Available at http://fisheye6.atlassian.com/changelog/ant/?cs=274185.

167

http://fisheye6.atlassian.com/changelog/ant/?cs=274185

Table 6.2: Some “Unrecoverable null” issues fixed by Preventing Null, Throwing

Exception, or Refactoring

Issue # Change-set Corrective Action Comments

5980 271003 prevent-null-occurrence Ant process for executing shell commands is

broken on Windows XP, because the code that

initializes the “shell launcher” fails to account

for XP.

9069 272715 prevent-null-occurrence The command line for an Execute task was ac-

cidentally left uninitialized prior to executing

the task.

9138 272826 prevent-null-occurrence The cleanup() method in AntClassLoader

sets some fields to null. Unfortunately, the

instance of AntClassLoader is reused after

cleanup() is called. Fixed by removing the null

assignments from cleanup()

17396 274185 prevent-null-occurrence A method which expects non-null parameters

is receiving null from an input stream, causing

the exception. Fixed by changing the type

of the input stream from BufferedReader to

DataInputStream.

38056 359329 prevent-null-occurrence A string parameter is allowed to be null,

though it is dereferenced later in a method

that expects it to be non-null. Fixed by re-

placing null initializations with empty string.

11833 273253 throw-better-exception NPE thrown if websphere.home property not

set. Fixed by throwing BuildException

with message instructing user to set web-

sphere.home property.

25826 275854 throw-better-exception NPE thrown if DestDir attribute not set.

Fixed by throwing BuildException with mes-

sage instructing user to set DestDir property.

2442 269834 extensive-refactor Did not anticipate that two tests could be

run concurrently. Fix makes many changes to

make code more thread safe, including elimi-

nating a field that was causing race conditions.

15994 273546 extensive-refactor A Buffered reader was returning null, which

was passed into a method that uncondition-

ally dereferenced. The fixer deleted both the

source and dereference site, opting to use a

completely different and more robust method

to fix the problem.

168

different exception is thrown, the developers recognized that the root problem was

that some external prerequisite had not been satisfied. For example, an environment

variable or property may not have been set, resulting in an unwanted null value.

Since the developer cannot advance without this prerequisite, the code is updated

to throw a more appropriate exception, with a message to users on what they need

to do to remedy the problem. The extensive refactoring cases represent situations

where the root problem is more complicated than the apparent NPE. In some sense,

the developers may be grateful for the NPEs which exposed underlying design flaws.

6.2.3.2 Anticipating null to resolve unrecoverable null issues

The number of cases where an Unrecoverable null issue was fixed by antici-

pating null was surprisingly high. This seems like a bad practice because a null

value in these cases usually indicates a problem elsewhere in the code. Upon closer

inspection, we observed that this practice was probably harmless, or the developers

accounted for the possibility of a problem elsewhere in the code.

Bug report 5637 is an interesting example of this. The reporter observed

an NPE in XMLJunitResultFormatter whenever he threw anything from a Test

Setup wrapper. The problem was in the endTest() method where a dereferenced

variable, currentTest, could be null. This surprised developers because one would

expect that currentTest would always be non null when a test ends. After some

investigation, developers determined that an exception in the Test Setup wrapper

could lead to endTest() being invoked even though startTest() had not been

169

called. Since the Test Setup wrapper is a JUnit extension and not a part of Ant,

they could not investigate or resolve the problem there. They decided to fix the

code by calling startTest() if currentTest is null (changeset 270512). This did

not solve the root problem (calling endTest() without calling startTest()) but it

appeared to be adequate, and one of the commenters added:

“I think your patch is OK, however it would be nice to add a little comment

in the code to explain why it is necessary.”

Hence the solution explains this fix, including a comment that has persisted

for eight years through the current version of ANT:� �
// Fix for bug #5637 − if a TestSetup is used and

// throws an exception during setUp then startTest

// would never have been called

if (currentTest == null) {
startTest(test);

currentTest = (Element) testElements.get(test);

}
� �
Table 6.3 lists some of the other cases we observed that were classified like

this. Many of these represent unusual corner cases, and perhaps simply anticipating

null was a convenient solution.

6.2.3.3 Anticipating null and Preventing null

As Table 6.1 indicates, there were two cases where the corrective action was to

both anticipate null, and to prevent null from happening. We interpret this as the de-

velopers programming defensively in case their efforts to prevent null from happening

170

Table 6.3: Some “Unrecoverable null” issues fixed by Anticipating and Guarding for

Null

Issue # Change-set Corrective Action Comments

5637 270512 anticipate-null-recover NPE occurs in endTest() because

the currentTest field could be

null. This unusual behavior oc-

curs if the test setup fails, and

startTest() is not called. Fixed

by calling startTest() from inside

the endTest() method.

6871 271748 anticipate-null-recover A change to a super class causes

a field that was previously as-

sumed to be non-null to be null.

Fixed by adding a guard to check

for null.

24344 275602 anticipate-null-recover Two API methods return null

when called from a forked task.

Fix by only dereferencing return

value if not null.

24440 275615 anticipate-null-recover A parameter is unexpectedly null

with certain inputs to an Ant

Task. Fixed by returning from

the method when the parameter

is null.

31840 276965 prevent-null-occurrence

anticipate-null-recover

The root problem is that a string

attribute “antlib” is never set, so

the fix is to set this attribute.

However as a defensive measure

at the dereference site, an empty

string is used if value is null.

44009 704496 prevent-null-occurrence

anticipate-null-recover

A Vector field is not initialized

by some users. Fixed by using

an empty Vector to initialize, but

also guard against null at the

dereference sites.

171

were unsuccessful. These cases are included in the descriptions in Table 6.3. One ex-

ample of this is bug report 44009 where an NPE occurred in the MimeMailer.send()

method because the headers field could be unexpectedly null. Developers expected

all users of this class to initialize the headers field but this was not happening in all

cases. They resolved this by fixing the classes that failed to initialize headers, but

then as a precaution they added a guard to the MimeMailer.send() to anticipate

null and recover.

This fix illustrates a principle which I will discuss more in Section 6.4.1: it is

usually better to use an empty container to indicate the exceptional or uninitialized

case, than to use null. In this example, headers is a Java Vector that was initialized

to null by default to indicate “no value.” The fix changes this default initialization

to an empty vector, which leads to more robust code.

6.2.3.4 Handling “Should check for null” issues

Table 6.4 describes some of the issues that were classified as Should have

checked for null. In many cases, the developer simply forgot to check the value

returned from an API call that is known to return null. Hence the solution is

usually to insert a guard and skip the offending code.

For example, issues 23320 and 26222 refer to calls to the getClassLoader()

method in the Java Class type. This method returns null for any classes loaded by

the “bootstrap class loader,” which is the loader for the initial set of classes. Usually

this set includes just core classes like String, but in various IDEs it may include

172

some Ant classes. Developers check the return value of this method in some other

places in the Ant code, but in these two cases, they neglected to do so.

In some cases, the method returning null is another Ant method which in-

dicates in its specification that it can return null. Sometimes due to inadequate

documentation, the called method does not explicitly say it can return null, but

it clearly does so in the first few lines. For example, in issue 40847, the reporter

observes an NPE at the following statement:

� �
StringTokenizer tok = new StringTokenizer(classpath.getValue()," ");
� �

The problem is that classpath.getValue() can return null; indeed its first

three lines are:

� �
if (values.size() == 0) {

return null;

}
� �
The developers fix this by adding a guard to avoid the string tokenization if

null is returned (in changeset 474481). Here part of the blame probably belongs to

the getValue() method, which does not explicitly specify that it can return null.

And it may be better for this method to return an empty string but developers

cannot change this behavior because of backwards compatibility8.

Table 6.4 also lists two interesting cases where developers choose to prevent

the null occurrence, instead of guarding for null. In issue 43292, the null value

8One interesting note is that the original reporter found this problem with Parasoft’s Jtest

BugDetective, which uses interprocedural static analysis to “explore execution paths” [54].

173

Table 6.4: Issues classified as “Should have checked for null”

Issue # Change-set Corrective Action Comments
10360 273214 anticipate-null-recover Dereferences the return value of a method that

returns null through a condition in its first 2
lines. Fixed by continuing to next loop itera-
tion when returned value is null.

14232 273483 anticipate-null-recover Method passes the value returned from Sys-
tem.getProperty() into a File object, neglect-
ing that the value returned could be null if the
property is not defined. Fixed by guarding for
null, and returning immediately.

23320 275280 anticipate-null-recover SplashTask.class.getClassLoader() returned
null when called from JBuilder9, and was un-
conditionally dereferenced. Fixed by guarding
for null, and using alternative method to get
class resources.

26222 275899 anticipate-null-recover Locator.class.getClassLoader() returned null
when called from Eclipse, and was uncondi-
tionally dereferenced. Fixed by guarding for
null, and using alternative method to get class
resources.

34878 278239 anticipate-null-recover Dereferences the return value of a method that
indicates that it returns null in its specifica-
tion. Fixed by adding null-check to a subse-
quent guard.

40847 474481 anticipate-null-recover Dereferences the return value of a method
that returns null for certain inputs. Fixed by
adding null-check to a surrounding guard.

38622 377166 throw-better-exception Dereferences the return value of
Project.getReference(), which indicates
in its specification that it can return null.
Fixed by throwing a BuildException to inform
user to call another method first.

42179 531575 throw-better-exception Either a file or dir attribute are required for
a fileset, but if both are missing, then File-
Set.getDir() returns null. Fixed by throwing
BuildException informing user that file or dir
attribute needs to be set.

43292 572302 prevent-null-occurrence The return value from the API method FileU-
tils.readFully() is dereferenced even though it
can be null. Problem Fixed by changing the
API method so that it returns an empty string
instead.

43659 572363 prevent-null-occurrence The fix to Issue 43292 is problematic due to
backwards compatibility. Developers revert
this fix, and choose instead to introduce an-
other API method, FileUtils.safeReadFully()
to replace the old method in the future.

174

originates in an API method, FileUtils.readFully(), which is known to return

null, and other calls to it check for null. Initially, the developer chooses to fix the

API method, so that it returns an empty string instead of null. The developer

comments:

“I would rather change FileUtils.readFully() rather that have all the clients

do the null check stepdance... I fixed FileUtils.readFully to do the right

thing.”

Later, while addressing issue 43659, the developer has a change of heart, citing

backwards compatibility concerns, and chooses instead to introduce an alternative

API method, FileUtils.safeReadFully(). This new method simply wraps around

the old one, and returns an empty string instead of null.

6.2.3.5 Local logic errors

There were only two cases classified as a local logic error. This may explain

why an intraprocedural analysis tool like FindBugs (i.e., one that does not track

values across procedure boundaries) finds so few warnings. This may also be a

product of the survivor effect, which I described earlier in Section 4.3, and which

suggests that many of these local errors will be weeded out by the quality assurance

process before the code is released. Static analysis would be more valuable during

development, where it can find and fix such issues more quickly and cheaply.

In one issue (bug report 3394), an NPE is thrown in a “Depend” task if a cache

is not specified. Careful inspection of the method reveals that when the cache field

175

� �
String value = null;

int posEq = name.indexOf("=");

if (posEq > 0) {
value = name.substring(posEq + 1); ...

} else if (i < args.length − 1) {
value = args[++i];

}
� �
Figure 6.3: Snapshot of code that processes Ant arguments

is null, the dereferenced local variable is never initialized.

The other issue was more subtle, but still within the scope of a static analysis.

In issue 22065, the reporter observes that an NPE is thrown if the user specifies the

command line argument “-Debug” instead of “-debug”. The problem is that while

“-debug” is a recognized argument, “-Debug” is treated as a “-D” property with

name “ebug” and no value. A snapshot of the code that processes the value is in

Figure 6.3.

The if-statement accounts for the possibility that there might be an “=”

between a name and a value, but not for the possibility that there is no value!

When value is dereferenced later on, a static analysis can determine that there is

a path in which a null value is guaranteed to be dereferenced. Of course, since the

“-Debug” argument is incorrect anyway, the fix was to throw a more descriptive

BuildException when no value is specified. This issue was detected by FindBugs.

176

6.2.3.6 Finding the source of the null value

Static analysis algorithms can potentially assist users debugging null pointer

exceptions by identifying the source of the null value that was later dereferenced

citesinha-issta-2009. However, it is not clear how useful this assistance is because

in many cases, the source of the null value is easy to find, or the NPE is the result

of an unrelated logic error, and knowing the source of the null value is not helpful.

In this review, only 2 of the Should have checked for null issues and 5 of the

Unrecoverable null issues had fixes near the source of the null value. Unrecoverable

null issues tended to have fixes at locations unrelated to both the null source and

dereference, so information on the source of the null value may not be as helpful.

Should have checked for null issues tended to have fixes near the dereference site,

so just having a stack trace might be sufficient, though developers might need to

search around to determine if, for example, there are other places where they should

be checking for this null value.

Sinha et al [126] identify 6 Ant issues for which their analysis is able to find

a definite or possible source for the null value. In our review of those 6 issues, we

found one issue (bug 34878) for which identifying the source of the null value was

difficult. The attribute value for a DOM element was null, and tracing back where

the attribute was defined to have a null value was tricky. Since it doesn’t really

make sense for DOM element attribute values to be null, it might have been better

to catch the problem at the point where the attribute was set to have a null value.

In the other 5 cases, the null value was returned from a method that returned

177

null under some circumstance. In 3 of the 5, the null was dereferenced in the same

method that invoked the null returning method, and in 2 of the 5 methods, the

null value was passed as a parameter that should never be null, and subsequently

dereferenced. In the 5 different cases, there were varying degrees of clarity as to why

the methods returned null. Three of the methods were well documented and clearly

explained the circumstances under which they return null. One (bug report 34878)

had minimal Javadoc that mentioned that the method could return null but didn’t

explain the circumstances under which null was returned. The other (bug 34878)

didn’t explain the null return in the method documentation, but the method was

very short, and the circumstances under which it returned null were obvious from

examining the code.

6.2.3.7 Other Observations

For our Local Analysis Check question we observed that 30 of the 41 issues

(73%) required a nonlocal search to identify the source of the null value. All the

Unrecoverable null issues required a nonlocal search, while all the Local logic errors

only required a local search. A local search suffices for 9 of the 15 Should have

checked for null issues. These results suggests that many of the reviewed issues

might have been hard to resolve with just a stack trace. On the other hand, most

bug reports contained much additional information about the context in which the

problem occurred and this simplifies the task of resolving them.

In both Local logic errors, the dereferenced value was a local variable. In most

178

Should have checked for null issues, the dereferenced value was returned from a

method, while the most popular type of dereferenced value for Unrecoverable null

issues was a parameter, followed by a field.

We also observed that many Unrecoverable null issues had fixes that were

neither near the dereference of the null value nor its source, while many Should have

checked for null issues had fixes near the dereference site.

6.3 Null Pointer Dereferences found by Static Analysis

We reviewed potential NPD warnings from several static analysis tools which

were used to analyze Ant 1.6.5. During each review, we decided if the issue was

impossible, or implausible. Warnings were classified as impossible if surrounding

code logic made it impossible for the highlighted value to be null as reported by the

tool. Warnings were classified as implausible if a NPD could theoretically occur, but

it seemed unlikely that a null value would be generated in practice. These included

several instances where the return value of createTask() was unconditionally deref-

erenced, as discussed earlier (Section 6.1, Figure 6.2). All other issues were classified

as plausible. Of course, some of this review is subjective, and classifying an issue as

plausible does not mean that it is — it just means we were unable to determine if

the null value was unlikely.

The tools included in this study were Coverity Prevent 4.5.0 [66], Eclipse

TPTP 3.5.0 [48], FindBugs 1.3.8, Fortify 360 SCA 2.1.0 [128] and XYLEM (Novem-

ber, 2009) [107]. For consistency, we only report issues where a value thought to

179

Table 6.5: Null dereferences reported in Ant 1.6.5

Tool Total Plausible Implausible Impossible

Coverity 46 17 15 14

Eclipse 31 11 1 20

FindBugs 11 11 0 0

Fortify 44 14 1 29

XYLEM 57 35 15 7

be null is later dereferenced. Some tools also report other kinds of null pointer is-

sues, such as redundantly comparing a value to null after it has been dereferenced.

Fortify SCA reports the combined results of FindBugs and its own analysis engine.

On the recommendation of Andy Chou of Coverity, we enabled an undocumented

and unsupported effects analysis feature in Coverity Prevent. Without this feature,

significantly more results, all impossible, were reported for Coverity Prevent.

FindBugs relies on an intra-procedural analysis and simple heuristics to find

potential NPDs [63]. In particular, FindBugs seeks to minimize false positives,

and chooses to turn the dial towards reporting warnings for which there is some

confidence, over reporting all possible issues. Other static analysis tools adopt

different philosophies and use more sophisticated analysis, including some inter -

procedural analysis. So it is interesting to compare the outcomes of FindBugs with

other tools.

Table 6.5 shows the results of this study. FindBugs reports the fewest warn-

ings of all the tools, but all of them were classified as plausible. XYLEM uses

a sophisticated interprocedural analysis and reports the most warnings, including

twice as many plausible warnings as any other tool. But it and the other tools

180

Table 6.6: Review of XYLEM warnings in Ant 1.6.5

review why

15 plausible clear coding mistakes

7 plausible plausible error condition not handled

13 plausible seems plausible, but not clear what situation

would cause it to arise

15 implausible calls to Project.createTask() with well known

String constant

4 impossible coupled variables

1 impossible call context guarantees nonnull return value

2 impossible value previously dereferenced and thus can’t be

null

reported a significant number of warnings that seemed implausible, or impossible.

None of the plausible issues in Table 6.5 are known to have caused any field failures.

(One reported by XYLEM in Ant 1.5.0 is known to have caused a field failure: Bug

10360).

Table 6.6 breaks down the reviews of XYLEM warnings in more detail, includ-

ing reasons why warnings were classified as they were. All the implausible warnings

were calls to createTask() with a well known string constant, making it unlikely

that a null value would be returned if the properties file is not corrupted. Again,

some developers see these are potential defects, and choose to modify the code to

include checks. But Ant developers seem to have made the choice to enforce the

precondition that createTask() only be called with valid parameters. One heuris-

tic used by some static analysis tools is to consider how often the return value is

unconditionally dereferenced, and how often it is compared to null. This heuristic

181

https://issues.apache.org/bugzilla/show_bug.cgi?id=10360
https://issues.apache.org/bugzilla/show_bug.cgi?id=10360

coupled with statistical analysis could inform the static analysis tool of the intent

of developers.

Many of the issues classified as impossible involved Java API methods that

sometimes return null, but that we could show did not return null because of the

surrounding program logic. Figure 6.4 presents some examples from warnings re-

ported by Coverity Prevent. The first two examples illustrate scenarios where

the calling context guarantees the flagged value will not be null. In part (a),

getParentFile() returns null if the File does not contain any instances of the

File.separator character, but the line above it guarantees that it does. In part

(b), zf.getInputStream(ze) can return null if there is no matching entry in the

ZipFile. This value is then passed into extractFile(), which unconditionally

dereferences it. But since the ZipEntry (assigned on line 120) is an element of the

same ZipFile, we are guaranteed a non-null input stream.

The next two examples illustrate coupled variables, which make a NPD im-

possible. In part (c), we are guaranteed that loader.getResource() returns a non-

null value on line 729, because an earlier call to loader.getResourceAsStream()

on line 726 returned a non-null value. Similarly, in part (d), we are guaranteed that

getParentFile() returns a non-null value on line 382, because an earlier call to

getParent() on line 381 returned a non-null value. Static analysis can be more

effective if it understands these couplings, but this property is not always obvious

for methods that are not part of large standard APIs.

182

(a) Warning that getParentFile() might return null (JonasDeploymentTool.java)� �
587 File f = new File(outputdir + File.separator + key);

588 f.getParentFile().mkdirs();
� �
(b) Warning that zf.getInputStream(ze) might return null (Expand.java)� �
117 zf = new ZipFile(srcF, encoding);

118 Enumeration e = zf.getEntries();

119 while (e.hasMoreElements()) {
120 ZipEntry ze = (ZipEntry) e.nextElement();

121 extractFile(..., zf.getInputStream(ze), ...);

122 }
� �
(c) Warning that loader.getResource() might return null (XMLCatalog.java)� �
726 InputStream is = loader.getResourceAsStream(location);

727 if (is != null) {
728 source = new InputSource(is);

729 URL entryURL = loader.getResource(location);

730 String sysid = entryURL.toExternalForm();

731 ...
� �
(d) Warning that getParentFile() might return null (JJTree.java)� �
381 while (root.getParent() != null) {
382 root = root.getParentFile();

383 }
384 ...

337 if ((root.length() > 1) ...
� �
Figure 6.4: Impossible dereferences reported by Coverity Prevent

183

http://bit.ly/ayewah-thesis-fig_npe_cover1
http://bit.ly/ayewah-thesis-fig_npe_cover2
http://bit.ly/ayewah-thesis-fig_npe_cover3
http://bit.ly/ayewah-thesis-fig_npe_cover4

6.4 API Design and Null

6.4.1 API Choices

Many API designers run into the challenge of trying to decide what value to

return from an API method when no appropriate response is available. Designers

would ideally like to return a special value that can be handled naturally, but often

have to resort to returning null, or throwing an exception, and both of these options

have serious drawbacks. Part of the problem is that in many languages, return

values can only have one type; so, for example, if the return type is an integer, one

cannot return a string with the value “No Answer Available.”

Sometimes, a designer can choose to explicitly limit the range of allowed return

values (e.g., all positive numbers), so that a value outside this range can be used to

signal an exceptional case (e.g., returning -1). But this strategy does not work if the

range of allowed return values includes all values in the domain of the return type.

A special case of this strategy—one that API designers often forget—is when the

return type is a string, an array or collection. In some languages, like Java, designers

have the choice of returning an empty string, array or collection, to indicate that no

answer is available. The advantage of this approach (over returning null or throwing

an exception) is that most callers do not have to do any special handling or checks;

their code can ignore the problem of exceptional cases altogether. For example,

if the API method returns an array of integers, and the caller wants to compute

their sum, then the caller can simply write a loop that iterates over all values in

the array. In the exceptional case, the array length is zero, and the loop is never

184

executed. Of course, sometimes the empty string, array or collection is one of the

possible non-exceptional return values, and API designers need some other solution

to indicate “no answer” or other exceptional cases.

We have already discussed some of the tradeoffs between throwing an exception

and returning null. Choosing to return null often makes the calling code simpler,

especially when the caller is confident the exceptional case will never happen. For

example, Map.get(K key) returns null if the key is not associated with any value.

Often Map.get(K key) is called in contexts where the developer knows the key is in

the map—the developer may verify the key’s presence using Map.containsKey(),

or may be iterating through the map’s keys when get() is called. If developers in

this situation had to handle an exception, it would require additional boilerplate

code, and make the resulting software harder to read. In Section 6.4.2, we do a

more detailed case study of the uses of Map.get() and conclude that the decision

to return null, rather than throw an exception, is a wise one.

On the other hand, sometimes null is an unexceptional return value, and the

designer needs to find another solution to indicate that no answer is available. For

example, in the case of Map.get(K key), a null return value could mean that the

key is not in the map, or it could mean that the key is mapped to null. So, a null

return value is not sufficient to indicate the exceptional case; developers need to use

Map.containsKey().

Other API methods throw exceptions, instead of returning null, to indicate

the no-answer case. Exceptions allow the designer to differentiate between multiple

no-answer cases, and provide information to the caller that makes the program easier

185

to debug. In particular, null return values can be stored (unchecked) into a field or

database, only to be discovered unexpectedly at some later point, when it is much

harder to understand the source of the error. By contrast, every exception includes

a stack trace that enables the debugger to find the source of the error, and the name

and message associated with the exception provides more context.

The downside of exceptions is that developers need to add verbose boilerplate

code to handle special cases, and this can make the software hard to read and main-

tain. Designers can avoid requiring boilerplate code by using runtime exceptions9,

but this can lead to unexpected program crashes if the caller forgets to handle the

exceptional case. This is comparable to the scenario where the caller fails to check

a null return value before dereferencing it.

In summary, API designers should seek to use a special return value (such as an

empty string or array) to indicate the no-answer case, wherever possible. Where this

is not possible, designers may need to make tradeoff decisions between null return

values and thrown exceptions. One useful rule to help with this decision is provided

by Effective Java: “a well-designed API must not force its clients to use exceptions

for ordinary control flow” [25, Item 57]. Furthermore, when an API method is used

frequently, in situations where the caller does not expect an exceptional value, then

requiring the caller to always handle the exceptional case would annoy them. On

the other hand, if the designer wishes to differentiate between multiple exceptional

9Runtime exceptions are automatically propagated up the stack, and do not need to be handled

in anyway by the caller. Other exceptions (called checked exceptions) must be handled by using a

try-catch block, or explicitly passing the exception up the stack.

186

Table 6.7: Invocations of Map.get

Software invocations null checked unconditional dereferences

JDK 1.7.0 2516 1040 325

JBoss 5.1.0 3095 1680 105

Glassfish v3 1225 1672 90

cases, so that callers can handle each appropriately, then thrown exceptions are

usually the best approach.

Another option available to API designers is to couple the API method with

a guarding method, as is done with Map.get() and Map.containsKey(). This

way, developers can avoid calling the API method in the exceptional case. Another

benefit of this approach is that static analysis tools can be extended enforce the

rule that the API method must be guarded by the partner method, as described in

Chapter 8. But this approach makes the API method call non-atomic, and is more

expensive since it requires two calls.

6.4.2 Case Study: Uses of Map.get()

We reflect further on the design choices made in Map.get() by considering

the ways it is used in practice. Map.get() is an example of a frequently used API

method that is often invoked in situations where the caller does not expect a null

return value. Thus, it seems reasonable to study how the many invocations of

Map.get() handle the possibility of a null return value.

Specifically, we would like to evaluate the quality of the results of a static

analysis tool that generates a warning every time a Map.get() return value is un-

187

conditionally dereferenced. In reviewing these warnings, we are sometimes able to

decide if the program logic surrounding the dereference makes a NPD impossible.

We also discover heuristics that can make such a static analysis tool more effective.

Ultimately, we conclude that the API design choice of using null to indicate an

exceptional case seems wise, and a static analysis tool that flags potential NPDs

associated with Map.get() may be undesirable.

We used FindBugs to examine the invocations of Map.get() in several software

projects, and counted the number of times its return value is compared to null, or

unconditionally dereferenced. Our results, reported in Table 6.7, suggest that about

half of invocations are null checked, and about 8% are unconditionally dereferenced.

We manually reviewed the 325 places in the JDK where the return value of

Map.get() was unconditionally dereferenced. We observed three common idioms in

the surrounding program logic that guaranteed the presence of the key in the map:

• The code contained a loop over the keys in the map, and for each key was

calling Map.get.

• The code contained an earlier call to Map.containsKey

• The code contained an earlier call to Map.get with the same key.

Of course, the presence of the key does not guarantee that the value will be

non-null—the key could be mapped to null. But the unconditional dereference does

seem to imply that the developer expects the value to be non-null, and is only

concerned about guarding against the no-answer case. In addition, these idioms are

useless if another thread might remove keys from the map.

188

Table 6.8: Idioms used to ensure key present for Map.get() call

Surrounding Program Logic Idiom Count

Iterating through KeySet 91

Guarded by call to containsKey() 55

Previous check of Map.get() != null with the same key 46

No obvious common idiom; NPD might be feasible 133

Table 6.8 presents the number of instances classified into each idiom. A static

analysis tool could be enhanced to recognize these idioms to reduce false positives.

But over a third of the cases reviewed contained no obvious idiom, and many of

these could be false positives since they have been in the code for a long time. And

there are many other methods like Map.get() which have common cases in which

the return value is never null. (Some cases were presented in Section 6.3 and Figure

6.4.) Constructing static analysis for all these idioms, with few false positives, may

not be feasible.

Even though flagging unconditional dereferences of Map.get()’s return value

will yield many false positives, it is worth noting that many of these unconditional

dereferences were associated with questionable or inefficient code. For example,

Figure 6.5 part (a) contains three calls to Map.get() and one to Map.containsKey()

(and two of the calls are in a loop). The developer unconditionally dereferences the

calls to Map.get(), and is confident that the key is in the map because they are

all guarded by the call to Map.containsKey() on line 295. But this arrangement is

inefficient, and could be improved by making one call to Map.get() and comparing

its return value to null, as is done in part (b).

189

Source: Sun JDK 5 | com.sun.codemodel.internal.JFormatter

(a) Inefficient repeated calls to Map.get()� �
295 if(collectedReferences.containsKey(id)) {
296 if(!collectedReferences.get(id).getClasses().isEmpty()) {
297 for(JClass type : collectedReferences.get(id).getClasses()) {
298 if (type.outer()!=null) {
299 collectedReferences.get(id).setId(false);

300 return this;

301 }
302 }
303 }
304 collectedReferences.get(id).setId(true);

305 }
� �
(b) Single call to Map.get()� �

ReferenceList refs = collectedReferences.get(id);

if (refs != null) {
for(JClass type : refs.getClasses())

if (type.outer() != null) {
refs.setId(false);

return this;

}
refs.setId(true);

}
� �
Figure 6.5: “unchecked” dereferences of Map.get()

190

http://bit.ly/ayewah-thesis-fig_npe_JFormatter

6.4.3 Sometimes, an NPE is Better

Finally, despite all this focus on preventing NPEs, we should note that some-

times, a developer would wish to have a NPE if the alternative is a subtle but

cataclysmic defect. In particular, many times a potential NPD is associated with

a subtle defect which manifests if the NPD does not occur. Even though NPEs

are annoying, they do alert developers of a problem and provide a stacktrace for

debugging. By contrast, subtle defects may silently lead to undesirable behavior,

such as memory leaks or performance degradation, that is hard to debug.

Consider the following code fragment:� �
if (out == null) out.close();
� �

If out is null, a NPE will be thrown. However, the real worry is what happens

when out is non-null; no exception will be logged or reported and the resource will

not be closed, potentially leading to a variety of serious problems. Variations on

this mistake have shown up in a number of software projects, including in Ant 1.6.5

(MAudit.java, line 303).

Another example is shown in Figure 6.6. FindBugs complains about the call

to insertDocument() on line 249 because its second argument is not allowed to be

null (i.e., it is unconditionally dereferenced), but doc is guaranteed to be non-null

in the branch that calls this method.

A more sophisticated static analyzer might detect that at the one place where

replaceDocument() is called, the second argument is always non-null, and thus

the potential NPD is infeasible. However this observation reveals a potentially

191

Source: Sun JDK 5 | ...apache.xalan....xsltc.dom.DocumentCache� �
246 private synchronized void replaceDocument(String uri, CachedDocument

doc) {
247 CachedDocument old = (CachedDocument) references.get(uri);

248 if (doc == null)

249 insertDocument(uri, doc);

250 else

251 references.put(uri, doc);

252 }
� �
FindBugs: “Method call passes null for non-null parameter on line 249”

Figure 6.6: Mistake in Xalan DocumentCache

more serious problem: if doc is never null, then insertDocument() is never called.

Instead every execution of this method will accesses the _references map directly

on line 251. This is significant because insertDocument() contains logic to cap the

size of _references, and hence the current implementation could cause it to grow

without bound. It turns out that the mistake is that the developer used the wrong

variable in the comparison on line 248; it should have been: if (old == null).

So it is useful for static analysis to raise a potential NPD in cases like this

where some other subtle bug may lurk. Fortunately in this case, it turns out that

the variable old is also likely never null because the singular caller of this method

ensures that _references already contains an entry for uri. So the fact that the

developer is null-testing the wrong value will have no impact.

Some of these observations, and others we have made in this chapter, seem

to fly in the face of recent calls for a move towards “failure-oblivious computing”

[124], which seeks to ensure programs never fail. But in fact, one does not need

192

http://bit.ly/ayewah-thesis-fig_npe_wishNPE

to prevent exceptions to make a program robust. Exceptions can be caught and

logged, allowing the program to continue. Or redundancy can be built into the

system, so that failing programs are quickly restarted. This is particularly relevant

for server-based applications.

6.5 Summary and Related Work

Through these reviews of potential NPD defects in practice, I have observed

that static analysis without careful heuristics may flag many potential NPDs that

developers do not want to fix. Often these potential NPDs involve standard API

calls that sometimes return null, but usually return a non-null value. If developers

choose to enforce logical rules and policies to ensure these API methods are never

used in a way that returns null, then there are pitfalls for a static analysis that tries

to flag potential NPDs. FindBugs aims to reduce false alarms, and does not flag

many of the potential NPDs discussed in this chapter, but some other commercial

vendors currently adopt a more aggressive approach. Ultimately, control should be

passed to the user to match the aggressiveness of the analysis with the needs of their

application.

Meanwhile, API designers can help the cause by making informed decisions

about how to specify exceptional return values. Using checked exceptions elimi-

nates most of the concern surrounding potential NPDs, but makes the calling code

more verbose, difficult to maintain, and frustrating to write. API designers should

endeavor to use empty strings, arrays and containers where possible, or provide

193

coupling methods which can be used to guard the null-returning API methods.

Through this research, I have also made some qualitative observations about

the occurrence of NPEs in practice. NPEs are often manifestations of separate

problems and logic errors. It may be that a property has not be set, or a component

is incorrectly initialized, or a prerequisite has not been met. And receiving an NPE

soon may be preferable to having the incorrect values stored in data structures,

only to cause errors further down the pipeline. During my review of NPEs in Ant,

I observed that in many cases, the preferred solution was to prevent the null value

from reaching the dereference site (by correcting initialization code, for example),

but sometimes developers chose to anticipate null values and insert guards to address

them.

An open question is whether errors involving NPEs are easy to diagnose and

resolve. Many of the cases I reviewed were relatively straight forward, and often the

original bug report contained enough contextual information to identify the cause

of the problem. In addition, many of the errors followed common patterns such as

forgetting to initialize a property, or dereferencing the value returned from an API

call that is known to return null. But at the same time, many bugs involved multiple

methods, and users may still sometimes benefit from having tools that enable them

to track null values to their source.

Several researchers have described analysis techniques for detecting potential

NPDs [64, 63, 107, 71, 136], and many commercial analysis tools provide some detec-

tors for this purpose, including the tools evaluated earlier in Section 6.3. A number

of researchers have explored techniques to assist developers debugging NPEs. Sinha

194

et al. combine information from the stack-trace with a static backward data-flow

analysis to find the null value assignment [126]. Bond et al. use a dynamic approach

to keep track of null values, so that if they are dereferenced, the runtime system can

provide information to help developers pinpoint the source of null [26].

Other researchers, focused on creating reliable systems, have explored tech-

niques for preventing NPEs altogether. Dobolyi and Weimer present a system that

transforms Java code at compile time by inserting null checks and error-handling

code around all potential null dereference sites [38]. They rely on various policies

to decide what object to insert in place of null, and allow the program to continue

running with limited overhead.

195

Chapter 7

Cost Effective Static Analysis

So far we have seen that static analysis can find important defects, and users

have provided positive feedback about the value of the warnings they receive. At

the same time, some warnings are not considered defects by users, some defects have

a low impact in practice, and many of the important defects are also captured by

good quality assurance practices. Users appreciate static analysis for its educational

value, and for finding subtle defects that are otherwise hard to detect. But users

have also found that they need to make a nontrivial investment in static analysis to

deploy warnings to developers early without impeding their productivity, baseline

or triage warnings in old code, integrate the results of multiple tools into a common

interface, and filter out unwanted bug patterns. With these benefits and pitfalls in

mind, organizations ultimately need to know if using static analysis is cost effective.

It is difficult to measure in absolute terms the cost benefit of static analysis,

because many factors affect its utility and the way it is used. I have found it more

helpful to ask: “When is static analysis cost effective?” This question directs orga-

nizations to deploy static analysis into the scenarios and contexts where it is most

cost effective first, before expanding usage into other scenarios. For example, some

types of defects—including certain security, concurrency and performance defects—

are cost effective to find using static analysis, because they are difficult to detect

196

using other methods. In addition, some applications are much more sensitive to

defects than others. For example, a defect in a flight control system on an airplane

is far more likely to have calamitous consequences than a defect in a productivity

support tool for programmers. Cost effectiveness is also influenced by the infras-

tructure used to deploy static analysis within an organization, and the practices and

policies governing developer activities.

In this chapter, I discuss in more detail how these four factors—the defect’s

type, the defect’s context, the static analysis infrastructure, and best practices—are

related to cost effectiveness.

7.1 Cost Effective Defects

Some subtle defects are best found using static analysis, because they are

hard to detect using other methods. These include certain security, concurrency

and performance bug patterns. Organizations should evaluate the exposure of their

applications to these classes of defects when deciding if static analysis is worthwhile.

For example, if the application is web-based and accessible to the general public,

then it is usually cost effective to review security-related warnings. If the applica-

tion is running in an embedded environment or is sensitive to timing issues, then

performance-related warnings should be reviewed. Similarly, applications running

in distributed environments can suffer from pernicious concurrency bugs that occur

rarely or are hard to replicate in test environments, and would benefit from having

tools point out some of these problems.

197

These classes of defects may not exhibit the survivor effect we discussed in

Section 4.3. In other words, both defects that matter and those that do not may

end up in production code, and persist for a long time, because they are missed by

other quality assurance methods. The defects may even be causing serious problems

in production, and the software team may not be aware of this, or may not be able

to debug the problem.

Static analysis is not a panacea for these classes of defects, and much research

needs to be done to improve the state of the art for all of them. But organizations

who are exposed to any of these classes of defects are usually grateful to have any

kind of assistance minimizing their number.

7.1.1 Secure Programming with Static Analysis1

Security vulnerabilities include coding mistakes that enable a malicious user to

use an application in ways not intended by its developers. Security defects are only a

problem if an attacker finds them and exploits them for gain. Hence, a security bug

can persist for years without problems, only to be later exploited, with devastating

consequences. This is why security defects do not generally exhibit the survivor

effect we discussed earlier—any defect flagged by a static analysis tool, including

those in old production code, could potentially be very serious.

One of the reasons why security defects are hard to find is that the popular

methods for quality assurance—code review, and especially software testing—focus

on making sure an application has all required functionality. But security defects

1Title taken from book by Chess and West [33]

198

� �
1 void badfunc(char∗ input) {
2 char buffer[1024];

3 strcpy(buffer, input);

4 ...

5 }
� �
Figure 7.1: Buffer overflow vulnerability if input is arbitrarily set by user

are not always violations of the requirements, but are sometimes unintended “func-

tionality.” As one technology executive puts it: “Reliable software does what it is

supposed to do. Secure software does what it is supposed to do, and nothing else”

[33]. Static analysis is a valuable aid because it can search for code patterns that

are known to be associated with this unintended functionality.

The classic example of a security defect is the buffer overflow vulnerability,

illustrated in Figure 7.1. Well informed programmers know that strcpy is consid-

ered unsafe; this example contains a buffer overflow vulnerability if the value being

copied (input) can be set by an attacker to any arbitrary value. In this case, since

buffer is defined on the stack, an attacker could provide a string that overwrites

the contents of the stack, including the return address of the calling function. This

means that after the function completes, program control will return to whatever

address the attacker wishes (e.g., an address inside buffer) and start executing the

exploit. Buffer overflow exploits are also possible if buffer is allocated on the heap.

Static analysis can detect defects like the one in Figure 7.1, and others that

result from using “untrusted” input in unsafe ways. Even in memory safe languages

like Java, incorrect handling of input vectors provided by a malicious user can lead

to security exploits, including SQL injections, and cross-site scripting among other

199

problems. For example, SQL injection vulnerabilities occur when untrusted input

is used (without validation) to construct SQL commands, enabling an attacker to

execute commands on the database, and possibly gain access to unauthorized data.

Cross-site scripting (XSS) vulnerabilities occur when untrusted data is displayed on

a webpage, again without proper validation, enabling an attacker to send compro-

mising scripts to other users.

All these vulnerabilities give malicious users the power to harm an organiza-

tion in various ways, both loud and subtle. An attacker might find a vulnerability

using brute force methods to throw all kinds of inputs at a system to see what hap-

pens. An organization might use the same techniques—called penetration testing—

to proactively find these vulnerabilities before the attacker does. But the odds are

stacked against the organizations because, whereas an attacker need only find one

vulnerability to get to work, organizations need to find all of them. Static analysis

is appealing because it is exhaustive. In our interviews, one security consultant

informed us that his team does not mind weeding through false positives output by

a static analysis tool, because some may be associated with potentially exploitable

defects.

Securing software is one of the major factors driving the adoption of static

analysis tools. Recall the anecdote from Chapter 3 about the user in our inter-

views who admitted that a past security attack had led his organization—a state

department of health—to turn to static analysis. Specifically, static analysis was

made mandatory by an external security team as a first layer of defense, causing

some frustration among developers, who felt forced to address minor issues to sat-

200

isfy upper management. Still, the developers found static analysis to be a useful

enhancement to their code reviews.

Security concerns have gained prominence over the last decade as more appli-

cations are exposed to the network, and many developers are still not educated about

writing secure code. As Paul Kurtz, a security expert, said in a recent interview,

“The talent coming out of schools right now doesn’t have the security knowledge

it needs,” [141]. Organizations trying to get a handle on the problem are adopt-

ing new security processes and frameworks like the Building Security In Maturity

Model (BSIMM) [97, 99], Software Security Assurance (SSA) from Fortify Software

[44], the Security Development Lifecycle (SDL) from Microsoft [104], and others

(discussed in more detail in Section 7.4). Tool vendors are trying to take advantage

of this opportunity to automate some of these processes [141]. Static analysis is a

big part of this automation, because it helps to educate developers, making them

aware of code patterns and practices that are likely to be insecure, so that they can

improve their practices, and avoid problems in the future.

7.1.2 Concurrency Defects

Like security defects, concurrency defects can be hard to detect using test-

ing, because the underlying problems often occur only rarely. Researchers have

developed a variety of tools and strategies to support testing concurrency. Sev-

eral frameworks enable users to run large tests thousands of times in an attempt

to nondeterministically generate as many interleavings of threads as possible, and

201

hopefully find any rare interleavings that are defective [6, 39]. Other frameworks

enable users to exercise specific interleavings, but use timers to coordinate between

the threads, which introduces an unnecessary timing dependency [90, 89, 137, 57].

In an earlier work, I developed MultithreadedTC, a Java framework which

enables users to construct deterministic and repeatable unit tests for small concur-

rent abstractions [119]. This framework uses a clock to coordinate the activities of

multiple threads, even in the presence of blocking and timing issues. The clock ad-

vances to the next “tick” when all threads are blocked, and test designers can delay

operations within a thread until the clock has reached a desired tick. A framework

like this is helpful for ensuring that a concurrent abstraction meets its requirements,

but does not generally find rare defects that result from unlikely interleavings.

Concurrency bugs are also difficult for static analysis, because some defects

result from the unusual and unlikely interplay between different parts of the code,

running in different threads and processes. But active research is advancing the state

of the art, and producing new static analysis that can detect potential deadlocks [5]

and data races [116], mismatched API calls (e.g., lock without unlock), and bad uses

of concurrency APIs. And static analysis can search the code exhaustively, finding

problems that would be otherwise hard to find.

Static analysis may be especially good at catching bad practices that are likely

to affect multi-threaded correctness. FindBugs provides bug detectors to find incor-

rect or dubious uses of thread-related calls like Thread.start(), Thread.sleep(),

and the synchronize keyword. It also flags some instances where static fields are

used in ways that are not thread-safe, or when API types that are unsafe for multi-

202

threaded use (like Calendar or DateFormat) are used in multi-threaded situations.

The new Java concurrency library (java.util.concurrent) introduced in

Java 5 is supposed to encourage users to relegate many concurrency management

tasks to standard constructs and utilities, and focus on the business logic [55].

But one side-effect is that many users mix up the new APIs with the existing

Java constructs, in ways that can be incorrect. For example, we have observed

users calling the wait() monitor on a java.util.concurrent.locks.Condition

object, instead of using one of the await() methods defined by the Condition

interface. Some users have also attempted to synchronize on instances of classes in

the java.util.concurrent package, like ConcurrentHashMap. These classes use

a different (and incompatible) concurrency control mechanism from other classes,

and should not be used with the synchronize keyword. FindBugs can detect these

infractions.

Also like security warnings, concurrency warnings can be very educational,

teaching users the correct way to use API constructs. One interesting defect that

results from misunderstanding an API (or neglecting to follow it) is ignoring the re-

turn value of the putIfAbsent() method in a ConcurrentHashMap. putIfAbsent()

is designed to ensure only one value is associated with a key. So if the key is already

in the map, then the value passed to putIfAbsent() may not match the value in

the map. If the user continues to use the value passed into the map thinking the

put operation was successful, then they might be using the incorrect value. Issues

like this may be widely misunderstood within an organization, and static analysis

can help standardize the practices of different development teams.

203

7.1.3 Performance Defects

Some performance defects are the side effect of confusing control logic, and

as such are difficult to detect through testing or static analysis. Static analysis

can helpfully flag confusing or dubious code, which often has little or no impact

on program correctness, but may be associated with a performance defect, however

minor.

Static analysis can also inform developers of inefficient APIs, the careless use

of language features, and inefficient memory use. For example, FindBugs can de-

tect when an Integer object is created using its constructor (new Integer(int))

instead of the more efficient static factory method (Integer.valueOf(int)) which

enables caching. FindBugs can also detect when a Java primitive is boxed into its

corresponding object, only to be immediately unboxed back to a primitive—this can

occur when developers do not understand where boxing and unboxing is occurring.

FindBugs can also highlight obscure language features that lead the unsus-

pecting developer to write inefficient code. For example, a developer may initialize

a static final field with a huge String constant, not realizing that this field will be

inlined (copied into the classfile) for any class that references it. Or the developer

may use java.net.URL instances in a HashMap or some other collection, not realizing

that URL.equals() and URL.hashCode() are blocking operations, and can be very

inefficient because they connect to the internet to perform domain name resolution.

If performance is an important constraint for the application, then static anal-

ysis is a cost effective way to find these problems, because many warnings can be

204

reviewed and fixed quickly. In many cases, the static analysis may suggest an alter-

native API that provides identical behavior but increased efficiency. In fact, some

situations may call for using static analysis to automatically fix the code, when it

can be proven that the modifications do not change the correctness properties of

the program. Many automatic performance optimizations have already been built

into compilers. Some static analysis tools support automatic fixes [113], and many

IDEs use lightweight static analysis to provide automatic fixes at the user’s direction

[2, 70, 109].

As we have seen, many performance defects are associated with recognizable

code patterns that are known to be inefficient, and there are likely to be many pat-

terns that are project-specific or API-specific, and hence not encoded into standard

static analysis tools. Organizations have an opportunity to increase the value they

get from static analysis by extending tools with custom bug detectors to find these

inefficient patterns (more discussion on this in Chapter 8).

7.1.4 Other Subtle Defect Classes

There are other defect classes—including some bad practice and correctness

bug patterns—that affect program behavior, but in subtle ways, and hence may not

be detected without static analysis. For example, FindBugs detects instances where

users repeatedly create new Random objects, using them only once each time. This

can lead to low quality random numbers. FindBugs also detects various instances

where users compare unrelated types, or query a generic container with an argument

205

whose type does not match the generic parameter. These checks always return false,

allowing the program to continue, but potentially with subtle bugs. Incorrect results

may be buried in tables and databases, and escape detection without static analysis.

Another interesting class of problems is internationalization defects, which oc-

cur when software does locale dependent operations (like string transformations)

without taking into consideration the locale of the user. These defects only affect

those applications that expect to run in multiple locales and process international

characters. Static analysis is particularly effective at tracking down international-

ization defects, and some tools, such as Globalyzer [67], are focused on just this

problem.

Other low priority defects—including violations of naming conventions, con-

fusing method names, incorrect capitalization, etc.—are easy to detect with static

analysis. Organizations which place a high value on long-term software maintain-

ability should use static analysis to enforce coding standards like these across the

organization, and enhance the value of code reviews.

In summary, organizations need to know which types of defects they care

about. Some of these defects are best found with static analysis—in some cases,

it does not make sense to expend resources to find them any other way. For these

defects, it is generally cost effective to use static analysis, though other factors like

process and infrastructure (discussed in later sections) can make static analysis even

more effective.

206

7.2 Applications and Contexts

In addition to the type of defect, the nature of the application can also affect

the cost effectiveness of reviewing defects. Some applications are mission or safety

critical, and very sensitive to any kind of defect. These include airplane control

systems, certain medical devices, software on the space shuttle, and so on. Other

applications handle sensitive information that needs to be kept private, or support

critical infrastructure that needs to be robust against failures. These include the

NASDAQ stock exchange, software controllers for the power grid and railway sys-

tems, and various government and bank databases. The above applications rely

on a variety of substantial, redundant and expensive quality assurance activities

including rigorous testing, redundant code reviews, detailed annotations, formal

specifications and formal verification. Static analysis can be used to eliminate de-

fects as early as possible, thereby reducing the amount of work needed later on by

the more expensive quality assurance activities.

On the other extreme, some applications are insensitive to all but a few correct-

ness defects. These include prototypes that are only intended as a proof of concept,

or quick scripts written to perform tasks on the local machine. In these applications,

any correctness defects that matter are usually noticed quickly, because the devel-

oper is also the user. Of course, short scripts written quickly often grow over time,

and become maintenance nightmares. Hence these developers would be well-served

by lightweight static analysis tools that do not interfere with their need for speed,

especially tools that integrate seamlessly into their workspace or IDE. Some static

207

Table 7.1: Responses to survey question on use of FindBugs Filters

Use FindBugs Filters 337 32%

Use another process to filter warnings 37 4%

No filtering 458 44%

No response, or other 213 20%

analysis tools have been developed for Python [88], Perl [133], and Ruby [50, 51].

Of course, as we discussed in the previous section, there is often a strong link

between the nature of the application, and the type of defects that matter, or do

not matter. Static analysis tool builders need to be more aware of this, and provide

preset configurations (or a setup wizard) that are based on the application context.

Otherwise users have to take the time to filter out bug patterns one at a time. Our

experience with FindBugs, as indicated by the survey results in Table 7.1, is that

most users do not do any filtering, but run the tool as is out of the box.

Finally, in addition to the standard bug patterns, there are project-specific,

or library-specific, or API-specific bug patterns that are only relevant to a small

set of applications. Organizations can make static analysis more cost effective by

extending tools to find these bug patterns, but they are unlikely to do so unless it

is easy to extend tools, as we will see in Chapter 8.

7.3 Developing Effective Infrastructure

Many static analysis tools are initially built with a strong focus on the analysis

engine, and little focus on the user interface. Tool creators push to find more warn-

208

ings, reduce false positives, and improve performance. The user interface is a simple

GUI, or a simple plugin for an IDE, or a batch process invoked from the command

line, or a web application that allows users to upload files for analysis. But if tool

creators want to maximize the return on investment for users, they must provide

features that allow tools to fit seamlessly into software development processes, and

enable users to easily review warnings and act on them. In addition, many users

and organizations find that they have to setup some custom infrastructure to sup-

port the nuances of their particular process, or integrate the warnings from multiple

tools into a consistent interface. To bring this about, organizations may need to

have a static analysis champion who is enthusiastic about the tools and promotes

their consistent usage.

One of the key challenges is enabling users to run tools automatically. As we

observed during our surveys, many users who do not run tools automatically, do not

use them regularly or consistently. We have observed many different approaches to

this problem, including running the analysis as part of continuous or nightly builds,

running the analysis before code check-in or branch merges, or running the analysis

in the background of a build and displaying alerts in an IDE or through popup

notifications.

Other features enable developers to interact with and manage warnings. When

static analysis tools are first run on old code, they often produce thousands of warn-

ings, far more than developers care to handle. Left unchecked, these old warnings

can actually drown out newer more relevant warnings. Developers need facilities to

establish a baseline, so that old warnings are hidden, and only warnings that occur

209

after the baseline are visible. Beyond this, developers also need facilities to review

or comment on warnings, suppress specific warnings, and to filter out entire classes

of warnings that are not considered relevant. Relatedly, tools need to be able to

keep track of warnings as the software changes from version to version. This is a non

trivial task as the line numbers, and other contextual information can change over

time, and a tool needs to remember if a warning has been suppressed or commented

on. I will return to the broader challenge of consistency in a moment, in Section

7.3.2.

7.3.1 Advanced Features

Beyond the important features that enable automation and warning manage-

ment, advanced users also seek to support collaboration between multiple develop-

ers, integrate static analysis with other software management tools, and study the

historical trends associated with warnings in each project.

Collaborative features are useful when multiple users are responsible for each

warning. One user could provide a review indicating that an issue should be fixed,

but action on the issue needs to be taken by another user. Collaborative features

enable multiple users to share reviews, or filter warnings that have not been reviewed

by anyone, and ensure that when one user suppresses a warning, this information is

passed on to everyone.

Organizations may prefer to build on existing software management tools such

as issues tracking systems and source repositories to enable collaboration. Since or-

210

ganizations use a wide variety of software management tools, and often customize

them for internal use, this integration may need to be developed internally intro-

ducing a high initial cost. But once seamless integration between the static analysis

interface and these tools is established, users can benefit from static analysis with

limited additional cost to use it.

Once organizations have used a tool for a while, it is important to go back and

analyze the history of their usage to determine which bug patterns are consistently

fixed, and which ones are consistently suppressed. Organizations can use this infor-

mation to reprioritize defect classes, or modify their filters. Historical data can be

captured by analyzing every release or revision of a project, as we do in Chapter

5. Organizations may perform even more fine-grained analysis by instrumenting the

developer’s desktop to capture information about fixes and suppressions that never

make it into a persistent repository. This enables organizations to make inferences

about developer habits and determine, for example, if developers are learning new

coding best practices from static analysis [18].

7.3.2 The Challenge of Consistency

One challenge for static analysis tools is producing consistent results, meaning

that unless there is a good reason for the results to change, the same issues should

be reported from run to run, and there should be a clear correspondence between

individual issues reported in different runs. A number of factors conspire to make

consistency difficult:

211

• As the context surrounding the warning changes, it is challenging to maintain

consistency across different versions of the software artifact.

• As the analysis engine is tweaked and improved, static analysis needs to main-

tain consistency across different versions of the tool.

• Some static analysis tools perform effort-limited analysis to improve perfor-

mance. This means that each bug detector does not necessarily search exhaus-

tively. Instead they only search inter-procedural paths up to a certain depth,

or until a timer expires. This makes it challenging to maintain consistency

across different runs of the tool on the same version of the artifact and an-

alyzer. For example, trivial changes in memory layout or timing can change

the order in which hash table entries are enumerated, causing inconsistency in

what the analysis does.

Since many organizations choose to baseline (or hide) older issues, it is impor-

tant for tools to clearly identify new issues. Inconsistency could cause some older

issues to be marked as new issues. Furthermore, when a user suppresses an issue

using any method other than source level suppression, it is important that the anal-

ysis does not change the way it identifies warnings. Otherwise previously suppressed

issues may resurface and have to be redundantly addressed in the future. Similarly,

when users review issues communally, and provide comments, the analysis needs

to consistently keep track of the link between this information and the warning,

otherwise reviews are lost.

212

A number of static analysis tools including FindBugs, Fortify SCA, and Cover-

ity Prevent maintain consistency by use variants of a method that computes a hash

value for each warning. The hash value depends on some of the context surrounding

the warning, but is intended to be invariant and robust to some changes, like line

numbers [129].

7.3.3 Enhancements to FindBugs

Early versions of FindBugs supported a command-line mode, and a stand-

alone GUI. Over time, plugins have been built to integrate FindBugs into various

IDEs, into continuous build servers, and into the Maven and Ant build processes.

These enhancements enable users to run FindBugs automatically. FindBugs also has

features to enable users to keep track of warnings from version to version of their

software, to filter out unwanted bug patterns, and to suppress individual warnings.

It supports source level suppression (using annotations), and also provides a filter

file format that can be used to suppress individual warnings or groups of warnings.

Advanced users are able to extend FindBugs with new bug detectors, and to

do a historical analysis of the fix and suppress trends in their projects. New bug

detectors are written using pure Java extensions of the appropriate classes, and ex-

tenders have access to many facts from the FindBugs analysis, including information

about the type hierarchy, the types of values (from the dataflow analysis), and the

sequence of statements (from the control flow analysis). We discuss the process of

extending FindBugs in more detail in Section 8.3.1.

213

To perform a historical analysis, FindBugs provides some batch scripts that

operate on its XML database format, and compute information about how many

warnings are added or removed after each analysis, which additions/removals are

caused by a change to a source file, and which ones are caused by the creation/dele-

tion of files, and how many warnings are active in the latest version. Users can also

compute code churn information (similar to that in Figure 5.5), breaking down the

fixes for each bug pattern, and comparing this to the overall fix rate.

Additional enhancements have been made to FindBugs, motivated by results

from our research, and particularly by the engineering fixits described in Section

3.3. The key enhancement is the introduction of a cloud infrastructure to enable

FindBugs to store warnings in a remote database, not just in a local XML database.

This enables multiple reviewers to collaboratively access the same warnings, and

share reviews. We have also tweaked the way FindBugs ranks warnings, to reflect

the fact that many loud warnings are not that important in practice, and subtle

warnings may be more pertinent to reviewers (see Section 4.2). The new FindBugs

GUI also provides facilities to connect users to various issue tracking systems, so

that warnings can be filed as bug reports and assigned to appropriate individuals

to be fixed.

7.4 Best Practices and Policies for Cost Effective Static Analysis

The practices and policies organizations put in place when they adopt static

analysis affect the return on investment they get from the tools, and whether they

214

will stick with the tools in the long term. In our surveys (in Chapter 3), we observed

that many FindBugs users had not yet implemented formal processes for using static

analysis. So understanding what practices work, and how they help, is an important

need.

Many of the infrastructure features discussed in the previous section naturally

facilitate good practices, even without any specific policies. For example, facilities

that run tools automatically and regularly alert developers increase the chance that

important issues will be noticed and addressed. In addition, features that enable

developers to consistently track warnings and to suppress or baseline some warnings

ensure that old warnings do not drown out more pertinent recent (and cheap to

fix) warnings. But even with these facilities, effective practices and policies are still

needed. For one thing, developers may not feel any external pressure to deal with

static analysis warnings, the way they feel when a customer reports a problem [58].

In addition, the absence of clear policies can lead to inefficiencies, such as having

multiple developers redundantly review a warning, or failing to bring warnings to

the attention of the right person.

There is no one-size-fits-all solution for all organizations, but rather teams

employ different policies depending, in part, on some of the context discussed earlier,

in Section 7.2. Some teams adopt a zero-tolerance approach that seeks to eliminate

all warnings, or blocks code check-in if there are unresolved problems. Others feel

this is too heavy-handed, especially if the focus is on getting new features to market

in time, and instead focus on controlling defect density. Whatever the context, the

consensus is that having well thought out policies is better than an ad hoc approach.

215

In addition, with all the additional pressures on developers to meet deadlines, or

to utilize other quality assurance activities, static analysis can easily be left by the

wayside. Hence, it is helpful to have a champion, who encourages tool usage and

highlights the successes and return on investment from using static analysis.

In this section, I discuss various best practices currently promoted in the re-

search community, and review the experiences of a number of organizations that

have integrated static analysis in various ways, sometimes through trial and error.

7.4.1 A Focus on Security

Much of the research and thinking on practices and policies for using static

analysis have come from sources that were focused on security. A number of organi-

zations have made security-focused modifications to general software development

processes (including the Waterfall model and Agile development), and most of these

modified processes include a significant role for static analysis. These security-

focused models include Microsoft’s Security Development Lifecycle (SDL) [104],

OWASP’s Comprehensive Lightweight Application Security Process (CLASP) [110],

Gary McGraw’s Touchpoints [98], Fortify’s Software Security Assurance (SSA) [44],

and the Building Security In Maturity Model (BSIMM) [99, 97] created by a group

of experts.

Microsoft’s SDL includes requirements about how input/output data should

be handled, how memory should be managed and other constraints. Within some

of these requirements, SDL requires that static analysis be used to detect some of

216

the vulnerabilities, including cross-site scripting (XSS), memory overflows, banned

APIs and other problems [29]. Specifically, SDL recommends several tools produced

by Microsoft, including PREfast [83] (also known as the /analyze option in Vi-

sual Studio) and the Code Analysis Tool for .NET (CAT.NET) [92] to detect XSS

vulnerabilities in managed code projects.

CLASP is a more lightweight process than SDL, with fewer requirements.

It identifies some best practices, including the recommendation that teams should

“Integrate security analysis into (the) source management process” [117]. CLASP

recommends using both static and dynamic analysis to conduct this security analy-

sis, and advocates doing the static analysis automatically by integrating it into the

check-in or build processes. In addition, CLASP calls for “using efficient but less

accurate technology to avoid most problems early, and deeper analysis on occasional

builds to identify more complex problems” [117].

Similarly the other processes cited above all have some role for static analysis.

They recognize that it should be used early, and acknowledge that users will have

some challenges integrating static analysis into their software development life cycle

(SDLC), especially if it is not run automatically.

One helpful resource for developers is a detailed checklist of possible security

vulnerabilities, which helps them know what to look for. A report from IBM includes

such a detailed checklist, which includes vulnerabilities associated with security-

related functions, incorrect input/output validation and encoding, improper error

handling or logging, insecure components and coding errors [22]. Static analysis can

find many of the problems in such checklists and, in the process, educate developers

217

about what they look like.

Once concern is how to transition from a process that does not currently focus

on security to one that does. A report from Ounce Labs (now IBM) identifies

ways to phase in security slowly, and avoid sudden disruptive changes [52]. The

report recommends that teams gradually add security to the SDLC by focusing

on key projects, identifying a champion, developing coding standards, continuously

informing all key stakeholders of progress made, and developing indicative metrics.

Another perspective on successful adoption, this time from authors affiliated with

Fortify Software, has similar recommendations: start small, address the most severe

issues first, appoint a champion, develop metrics and standards/guidelines [32].

The models and processes discussed so far have a horizontal focus, and can be

applied to software development in any industry. But some vertical industries also

have security standards that motivate the use of static analysis. One key indus-

try is the Payment Cards Industry (PCI), which has a Security Standards Council

that issues security requirements and standards for handling private data of pay-

ment cards, such as credit and debit cards [115]. The Privacy Rights Clearinghouse

reports that over 356 million data records have been exposed as a result of secu-

rity breaches [118], and application security has been identified as one of the key

culprits. Ounce Labs has produced a report detailing how software teams can use

static analysis to meet PCI compliance requirements [82]. One of the requirements

under vulnerability management is to “develop and maintain secure systems and

applications.” Specifically, applications should be reviewed for common vulnerabil-

ities. Ounce Labs recommends that to support compliance, a static analysis should

218

look for coding errors as well as design flaws. Coding vulnerabilities include buffer

overflows, race conditions, poor input validation, and other common defect classes.

Design flaws include poor access control, weak cryptography, and incorrect error

handling and logging. The report concludes that static analysis is the “foundation

of a range of potential options available to organizations to monitor the security and

compliance state of their applications”, and emphasizes that static analysis can find

problems earlier than other options, when they are cheapest to fix [82].

7.4.2 Best Practices Identified by Vendors

A number of popular tool vendors have put out white papers that identify best

practices, culled from their experiences helping users adopt static analysis [58, 81].

Many of these recommendations focus on integrating security into the SDLC [52, 32],

and these were discussed in the previous section. Most of these papers also highlight

infrastructure features of their respective tools that simplify the management of the

recommended practices and processes. Many of these vendors have a “professional

services” group which consists of engineers and consultants who help customers

maximize the return on their investment. Specifically, these consultants visit with

customers, assist with installation and integration, educate developers, and even

build custom features to support specialized customer needs.

Coverity promotes its static analysis offering—Coverity Prevent—as a resource

for objectively evaluating code, and encourages its customers to create a “Defect

Resolution Process” to inspect, prioritize and resolve both old and new warnings

219

[58]. While the specific implementation of this process is different for each user, there

are five general steps required for each implementation. Not surprisingly, Coverity

prevent has features to facilitate all the steps below:

1. Determine Goals and Metrics: Teams should identify goals for static anal-

ysis that are measurable and that align with their broader software develop-

ment goals. This is where the context of the application, discussed earlier, is

relevant. Goals can range from resolving all warnings, to establishing thresh-

olds for warnings density (i.e., number of warnings per line), total unresolved

warnings, or total uninspected warnings.

2. Develop a Project Plan: Based on the goals identified, and on the fact

that each of Coverity’s warnings take an average of 5 minutes to review and

an average of 30 minutes to repair, teams should create a project plan that

sets aside some time per week for each developer to address legacy issues, as

well as new issues.

3. Assign Ownership: Establish a (preferably automatic) process for assigning

ownership of each potential defect. For example, ownership may be based

on the component in which the warning is found, or the last person to edit

the line of code containing the defect. In some cases, automatically assigned

ownership will need to be adjusted to a more appropriate owner. Ownership

helps create accountability, and teams should measure progress in terms of the

number of defects resolved so far.

220

4. Notify Owners: Owners should be notified (via email) daily for new issues,

with regular monthly reminders for outstanding issues.

5. Integrate with SDLC: Teams should integrate their issue tracking systems

with static analysis, so that ownership, notification and other parts of the

process can be handled in a way that is familiar to all team members.

Another report, this time from Klocwork, focuses on making static analysis

part of an effective peer code review strategy [81]. Klocwork Insight aims to en-

able collaboration with an interface that supports asynchronous reviews, highlights

changes in the code, and displays static analysis results. In the ideal case, static

analysis warnings are reviewed and fixed by the original developer, before any peer

code review is conducted. But in practice, some issues may be unclear to the de-

veloper, or may have unforeseen effects on another developer’s code. In these cases,

Klocwork’s tight integration of static analysis in the peer review process ensures

these issues can still be handled seamlessly [81].

7.4.3 Experiences at Google

I have already discussed some of Google’s experiences using FindBugs to an-

alyze its Java code base (in Section 3.3.1). Early experiences with FindBugs were

mixed. Even though the analysis was run automatically, and warnings were dis-

played on an internal web interface, the tool received limited actual usage from

engineers. Part of the problem was that the analysis and presentation of warnings

was outside the normal workflow of developers, and users were not under any pres-

221

sure to review the warnings. Another limitation was that the system did not capture

information about warnings that were fixed, or otherwise removed. Developers were

turned off by stale warnings, and questioned the value of the analysis.

The static analysis champions within Google decided to adopt a “service

model” through which warnings were centrally reviewed and significant defects were

filed in Google’s regular bug tracking system. The team reviewed thousands of

warnings and filed over 1000 bug reports in a six month period. This effort also en-

abled them to reprioritize warnings based on the feedback received from developers.

They established an internal ranking for bug patterns based on the fix rates and

false positive rates they observed.

The service model approach was successful, but did not scale as the size of

Google’s Java codebase grew. In addition, there was still some skepticism about the

overall value of FindBugs. To address these concerns, we organized an engineering

fixit, discussed earlier in Section 3.3, in which hundreds of engineers spent 1 or 2 days

reviewing thousands of warnings and providing feedback. Over 77% of the reviews

contained a fix recommendation, and the feedback was very positive. However, we

observed through this process that many defects were mitigated in some way by

Google’s redundant systems and monitoring practices, or were found in code that

had not yet been pushed into production. This reinforced the idea that we need

to push FindBugs warnings as early as possible for them to be valuable. While

some developers run FindBugs as a plugin in their IDEs, the ultimate goal is to

automatically run static analysis in the background and integrate warnings into

Google’s internal code review system [12]. This approach will allow developers to

222

discuss warnings, and provide some accountability about fixing them.

These experiences have indicated that one of the challenges for static analysis

is demonstrating to developers that it is valuable for them to review warnings which,

while definitely mistakes, may not cause software misbehavior.

7.4.4 Experiences at Microsoft

A number of reports have discussed some of the experiences at Microsoft de-

ciding how to integrate static analysis over the last decade [83, 18]. I have also had

the opportunity to interview a number of senior engineers and previously reported

on their experiences and perspectives [18].

Over the last decade, Microsoft has conducted several research projects, which

have produced a wide variety of experimental static analysis tools, each with a

different focus. In recent years, the focus has shifted to pushing these tools into the

regular software development process of the largest product groups at Microsoft,

involving thousands of developers working on tens of millions of lines of code against

strict deadlines.

Some of the tools are inter-procedural and rely on heavyweight global static

analysis, and hence are too time consuming to be used by every developer. These

tools, including PREfix [31] and Global Esp [35], are run periodically centrally, and

the defects identified are filed automatically into the defect database of the product.

On the other hand, intra-procedural tools, such as PREfast [83] based plugins,

are lightweight and more suitable to be run on the developer’s desktop while the

223

code is being constructed. A wide range of PREfast plugins have been developed

for tackling critical problem areas such as security, concurrency, performance, inter-

nationalization issues, and device driver issues. These tools typically analyze one

function at a time based on function contracts and field invariants specified using

Microsoft’s source-code annotation language (SAL) [103].

Many of these lightweight tools are enabled by default on the desktop machines

of every programmer in the organization, using the Microsoft Auto Code Review

(OACR) build infrastructure [102]. OACR integrates static tools into a common

and automated build environment which runs the checkers in the background. De-

velopers are notified with a pop up message about the warnings. Warnings are

grouped into warning numbers and warning numbers are classified with severity

levels. When developers review the warnings, they have the opportunity to fix the

code or suppress the warnings.

Another level of quality control is through the “quality gates” that are applied

when moving code from one branch to a higher branch (called reverse integration).

A class of critical checks form the “minimum bar”. Reverse integration is prohibited

until all warnings from the minimum bar are fixed. This mechanism ensures that

the most serious issues can be caught and fixed early in the development process.

For big legacy code bases, adding a new check to the minimum bar may introduce

a large number of warnings triggered by pre-existing bugs. When this occurs, a

baselining mechanism is used to “mask” these warnings in order to avoid a sudden

disruption to the development schedule. Typically these pre-existing bugs are fixed

during a concerted cleanup effort at the early stage of a product cycle.

224

The process in place at Microsoft ensures that serious defects are brought to

the attention of developers as soon as possible, and provides some accountability

by adding messages to the nightly build, or preventing reverse integration. But the

tools used also require developers to extensively annotate their code, a task requiring

non trivial effort. I interviewed six senior developers who each have several years

of experience using Microsoft’s tools, to discover some of the history and challenges

associated with using tools and annotations, and to learn their perspectives on static

analysis.

All the interviewees felt that using static analysis was worthwhile, though most

emphasized the relative importance of code review and testing, recognizing that each

quality assurance activity can find different kinds of problems. Users appreciated

the exhaustiveness of static analysis, and even reported changing their programming

styles to avoid static analysis warnings, leading to more maintainable code. Even

with these sentiments, one user still expressed the importance of reducing the “noise”

or false positives in tools, saying that tools with less noise are taken more seriously.

Most interviewees reported that they usually resolved all the high priority

issues (called errors), and one user working with a security team aimed to fix all

potential defects, including low priority warnings. When working on new code, users

usually fixed issues just before checking code into the source repository. But many

users also worked on code owned by someone else; in this case, they would wait for

issues to be flagged by the overnight build and focus on those issues, to minimize

changes to someone else’s code.

Some users pointed out that close to milestones, the emphasis is usually on

225

minimizing code changes, so only the most serious issues are fixed. Alternatively,

during development cycles dedicated to cleaning up code (often after a major re-

lease), teams usually devote resources to wade through lower priority issues and

warnings flagged in legacy code.

Obviously the type of warnings that interest users depend on the nature of the

code they work on. Many interviewees worked with unmanaged C and C++ code

that often included large legacy components. Hence they were most interested in

problems related to potential buffer overflows. They also reported that many of the

warnings pointed to missing annotations and unused variables.

Users perceived that most issues were worth fixing, though they mentioned

that sometimes it was necessary to suppress issues or rewrite the code to make the

warnings go away. One user mentioned that this would often happen when code con-

ventions in legacy code did not match the expectations of the tools, and refactoring

would be burdensome and potentially error prone. For example, different legacy

components may have different conventions for dealing with error states including

returning status codes or throwing exceptions.

In general, care was needed to effectively use tools on legacy code. One user

reported that anytime a legacy routine was touched, the developer was expected to

clean up any old warnings that may be present. But in general, users preferred to ad-

dress issues in legacy code as part of a dedicated cleanup cycle. Some users credited

an “auto-fix” feature in some tools (used to automatically correct some problems)

as one property that made the cleanup process feasible. One user cautioned that

assigning the task of cleaning up issues in legacy code to junior developers or con-

226

tractors can sometimes lead to regressions because they are not as familiar with the

code. Outside the cleanup cycle, any new legacy issues (i.e., issues found by new

or modified static analysis techniques) need to be added to a baseline so developers

can focus on problems in new code.

7.5 Summary and Related Work

In this chapter, I have discussed the experiences, and subsequent recommen-

dations, of some organizations and experts who have wrestled with the challenge of

using static analysis cost effectively. The specific implementation of best practices

varies for each user, depending on the type of defects they care about and the nature

of their application. Some security-focused users review all the low impact issues,

and prefer to receive as many false positives as possible so they can look for possible

vulnerabilities in surrounding code. Some applications are sensitive to any kind of

defect, while others are more sensitive to specific subclasses of subtle defects that

are hard to detect without static analysis.

Sometimes organizations cannot always reach the ideals recommended in this

chapter. For example, one would like to limit costs by having the responsible owner

review a defect as early as possible. But sometimes it is not possible to determine

who should have this role, or the problem may be too complex for one person

to handle alone. Organizations should not allow challenges like this to deter their

adoption of static analysis, or cause their processes to devolve into ad hoc use. Clear

policies can help prevent inefficiencies, and provide accountability for developers who

227

do not otherwise feel any external pressure to deal with static analysis warnings.

Other researchers have described their efforts to integrate static analysis into

commercial processes, and the feedback they received from developers. Researchers

at eBay experimented with enforcement-based customization policies, through which

bug patterns are filtered and reprioritized, and developers are required to fix all

resulting high priority warnings [69].

Practitioners from Coverity review defects with customers to encourage them

to see the benefits of using static analysis [23]. They observed one interesting out-

come from their reviews: sometimes reviewers misunderstand a bug and mislabel it

as a false positive, despite the best attempts of Coverity’s team to convince them

otherwise. This has led them to turn off some detectors that are easily misunder-

stood, so that developers do not develop a negative impression of the tool.

228

Chapter 8

Finding Bugs By Example

Static analysis can be seen as a sophisticated search for code fragments that

are thought to be defective. This search is guided by patterns of code components

that are deemed to be defective by experts. Many patterns are general, and can

occur in any program written in a particular language, or even in programs in

multiple languages. But some bug patterns are limited to only a few projects,

driven by the idiosyncrasies of the projects, or the software libraries and APIs that

are used. These bug patterns are not likely to be included in off-the-shelf static

analysis tools, because they do not apply widely. If project teams do not extend

tools to include these patterns, then they are only detecting a proportion of bugs

that can be detected, and are not retaining the full value of static analysis.

Indeed, some of the value of static analysis is tied to the ability of developers

to notice their mistakes, that may be repeated by others within a particular project,

and formally capture the offensive code pattern. Otherwise, the effort and frustra-

tion that went into debugging the problem may be experienced by others on the

team. However, whenever I ask developers if they can think of potential bug pat-

terns, they often cannot. Part of the problem may be that respondents are looking

for bug patterns that will apply widely, rather than issues that are only applicable

to the four or five developers they work with. Indeed, if the effort to construct a

229

Source: Gallery (SourceForge.net) |HTTPClient.AuthorizationInfo

(a) fields with different casing requirements� �
110 /∗∗ the host (lowercase) ∗/
111 private String host;

115 ...

116 /∗∗ the scheme. (e.g. ”Basic”)

117 ∗ Note: don’t lowercase because some buggy servers use a case−sensitive

118 ∗ match ∗/
119 private String scheme;
� �
(b) constructor that follows casing scheme� �
193 public AuthorizationInfo(String host, int port, String scheme,

194 String realm, String cookie)

195 {
196 this.scheme = scheme.trim();

197 this.host = host.trim().toLowerCase();

203 ...

204 }
� �
Figure 8.1: Rule informally specified by comments indicates how field

contents should be cased

bug detector is too difficult, then it does not make sense to invest in creating one,

if it is only likely to be used once or twice. It may be better to send out an email to

local team, leave a comment in a conspicuous part of the code, or look out for the

problem during a code review.

Figure 8.1 illustrates this with some code fragments from the open source

Gallery project on SourceForge.net1. Here the developer uses comments to indicate

that the scheme field should not be lowercased, because this could lead to buggy

behavior (a). Sure enough, every place fields are initialized, the lowercase method is

1http://sourceforge.net/projects/gallery/

230

http://bit.ly/ayewah-thesis-fig_example_lowercase
http://sourceforge.net/projects/gallery/

applied to the field host but not the field scheme (b). However, if a new developer

joins the team and attempts to update this class, he or she may not notice the

comments, and may break the rules. A simple bug detector could be used to flag

any inappropriate assignment of a lowercased string to scheme, but only if the effort

to write such a detector can be justified. In this case, since both fields are private,

and are likely only set from constructors, it appears unlikely that a problem could

(a) note on line 388 indicates formatting constraints� �
382 /∗∗
383 ∗ retrieves the field for a given header. The value is parsed as a

384 ∗ date; if this fails it is parsed as a long representing the number

385 ∗ of seconds since 12:00 AM, Jan 1st, 1970. If this also fails an

386 ∗ IllegalArgumentException is thrown.

387 ∗
388 ∗ <P>Note: When sending dates use Util.httpDate().

394 ...

395 ∗/
396 public Date getHeaderAsDate(String hdr)

397 throws IOException, IllegalArgumentException

398 {
399 String raw date = getHeader(hdr);

400 if (raw date == null) return null;

422 ...

423 }
� �
(b) example of rule application: Util.httpDate() is used whenever a date field is set� �
627 public void setIfModifiedSince(long time)

628 {
629 super.setIfModifiedSince(time);

630 setRequestProperty("If-Modified-Since", Util.httpDate(new Date(time)));

631 }
� �
Figure 8.2: Rule informally specified by comments indicates how the

property associated with a parameter (hdr) should be formatted

231

arise in the future.

Another example from the same project is shown in Figure 8.2. In this case,

the developer’s comment is part of the documentation for a public API method,

and it indicates that certain strings representing dates should be formatted using

Util.httpDate() (a). In an interesting twist, the date strings we are referring to

here are actually values associated with a key in a separate property map. This

means that callers have to remember to apply this rule when adding values to the

property map (b), not when calling this method. It would be easy for a new developer

to break this rule, especially if they only update the property map, and never call

this method, and hence never see this comment. Still, the cost effectiveness of a

bug detector to flag potential violations depends on how difficult it is to write the

detector, and how often a violation could occur.

So, in summary, organizations are not likely to extend tools to find local

problems unless it is simple to do. Indeed in my survey, most users report that

they have not extended FindBugs with new bug detectors, as shown in Table 8.1.

When asked to comment on their thoughts on custom bug detectors, users indicate

that the current process is too complicated. One user writes:

“It’s a killer to write custom detectors—no good documentation is available.

Especially not when you come from .NET”

Another user, commenting on whether he has written any custom detectors

writes:

“Not yet, but I’m going to. When/if I find the time.”

232

Table 8.1: Responses to survey question on use of custom bug detectors

Custom bug detectors, released to the public 31 3%

Custom bug detectors, NOT released to the public 39 4%

Custom bug detectors from a third party vendor 13 1%

No custom bug detectors 641 61%

Do not know how to make bug detectors 308 29%

Other, or no response 236 23%
*Respondents can select more than one response

So are existing techniques for extending static analysis easy to use? My review

of some of the available methods suggests that they all impose a non-trivial technical

burden on users. In particular, they usually require users to learn a new specification

language and/or understand the mechanics of the analysis engine, such as control

and data flow facts.

To simplify the process of writing a bug detector, let’s consider what the

developer knows. The developer is familiar with what the bad code fragment looks

like. “I’ll know it when I see it” could well be the user’s refrain. The developer

is also familiar with the programming language and the project as a whole. So

perhaps we can take advantage of this knowledge, and enable developers to specify

bug patterns without needing to know much else.

In this chapter, I explore an approach to specify new bug detectors by providing

examples of the bug. I will call these examples “Mock Bugs.” Using these mock

bugs, an automatic process can then try to infer what the bug detector should

look like. The mock bugs should be written in the target language, and the user

should not need to learn many conventions or annotations. In addition, the mock

233

bugs should compile, and may use relevant project or API features. One advantage

of these features is that the project team can apply existing software engineering

techniques and infrastructure to develop and maintain mock bugs. For example,

they can be developed in the IDE without needing special plugins, and refactoring

techniques that update the API will also affect the bug detector. However, mock

bugs are not intended to be executed.

One useful metaphor is that these bug detectors are like unit tests, except

instead of executing them repeatedly, an inference engine pulls them in, and creates

a bug detector that is then run on the entire code base, raising alerts when problems

are found.

Through this research, I have observed that a user will usually have to provide

multiple examples, as well as some counter-examples to reduce false positives and

false negatives. All this is highly dependent on the decisions made by the automatic

inference engine. One possible feature to enhance the user experience, is to make the

development of mock bugs interactive. As the developer produces more examples

and counter-examples, the inference engine presents the user with a snapshot of the

kinds of problems found by the generated bug detector, so the user can identify

potential false positives or false negatives and can add more examples accordingly.

Another consideration is how custom bug detectors should be deployed. Since

the bug patterns have a narrow focus – within a single team, for example – the

resulting bug detectors may not be appropriate for all projects in an organization,

and need to be deployed only for local use. Furthermore, as these bug detectors

evolve, different teams may place different requirements on them, and they need to

234

diverge to serve the various needs.

We discuss these and other considerations in this chapter. The discussion in

this chapter will be highly conceptual, and should form the basis for future research.

The ideas discussed have not been implemented yet. I start by investigating project-

specific and API-specific bug patterns in the wild. These patterns are culled from

bug repositories, and best practices surrounding specific APIs, and are discussed in

Section 8.2. In Section 8.3, I go over some of the existing methods for writing a bug

detector, and compare them with a specification that uses mock bugs. I also discuss

related work in Section 8.4. But first, I go into more details about how a user may

iteratively use examples to instruct a static analysis tool to find a custom bug.

8.1 Mock Bug Detectors

8.1.1 A Simple Example

Imagine a scenario where a Java developer forgets to assign the return value

of the string trim() operation back to itself. Since Java strings are immutable,

the operation does not modify the string, and is effectively useless. Let’s say our

developer notices the mistake, and now wants to write a mock bug detector to flag

other instances of this mistake. What is the simplest code fragment the developer

could write as an example of the bug? Perhaps the following:

� �
void bug(String any) {

any.trim();

}
� �
235

Here we are using the convention that a method prefixed by the name “bug”

contains a mock bug (we can call this a Mock Method), and its String parameter

can refer to any string, not just a string that was passed in as a parameter.

There are several ways an inference engine could interpret this mock bug de-

tector. It could create a detector that flags any call to the trim() method, or it

might notice that the return value in this case is not used and hence only flag in-

vocations in which the return value is ignored. Let’s assume the inference engine

chooses the former interpretation; this means that even cases where the return value

is correctly assigned back to the string would be flagged as a defect. Our developer

will need to provide more examples to refine the mock bug detector. Here’s the

simplest example to exclude this false positive:� �
void notBug(String any) {

any = any.trim();

}
� �
Here we have introduced another convention: a method prefixed by the name

“notBug” contains a counter-example, that should not be flagged as a bug.

In response to this counter example, the inference engine should refine its

output bug detector to flag any call to trim(), except those that assign the return

value back to the string variable. But this refinement may not be sufficient, because

the bug detector would still incorrectly flag cases where the returned value is assigned

to another string. What we really want to say is that if the return value is used in

any way, then this is not a bug. Let’s try introducing a new convention that if a

value is returned from the mock method, then it is assumed to be used. So we can

236

� �
@MockDetector

class UNUSED TRIM DETECTOR {
void bug(String any) {

any.trim();

}
void notBug(String any) {

return any.trim();

}
}
� �

Figure 8.3: A mock detector to detect an unused value returned from

String.trim()

provide another counter example:

� �
void notBug2(String any) {

return any.trim();

}
� �
So now, the inference engine flags any call to trim(), except when the return

value is used in any way. This second counter-example, makes the first counter-

example redundant. The two mock methods are sufficient for us to specify our

mock bug detector, which we do in Figure 8.3.

8.1.2 Benefits and Challenges

This example highlights some of the benefits and challenges of using this ap-

proach. One benefit is that the mock detectors are basically examples and counter-

examples of the rule, and hence are simple to write. They are also pure compilable

Java, and hence can be written in any IDE, deployed in jar files, and refactored

237

with the rest of the program. However they are never executed; the inference engine

reads the examples and constructs the real bug detectors.

One limitation is that some conventions are needed to make the mock meth-

ods more expressive, and hence minimize the number of examples that need to be

provided. As we design this approach, we have to keep in mind the tradeoff between

the number of conventions the user needs to learn, and the expressiveness of each

mock method. This tradeoff is heavily influenced by the choices the inference engine

makes. There is always more than one way to interpret an example, and sometimes

there is no obvious choice. More research in the form of experiments and user studies

is needed to decide which choices are best.

Another challenge is that the developer should not have to understand the

choices the inference engine will make. Instead, the developer should be able to rely

on an iterative workflow in which they provide the simplest example or counter-

example, run the detector to identify false positives, and false negatives, and then

provide more examples. This actually mirrors the way experts write bug detectors.

They often run the detectors against real code bases or sample test cases2 to ensure

that there are not too many false positives or negatives.

Note that we can provide a convenient interface to show the developer all

the warnings found, so she can identify any false positives, but we have no way of

showing the developer a list of false negatives. She has to figure this out on her own

by checking to see if the source she was targeting is included in the list of defects

2A convenient repository of test cases for static analysis tools has been compiled by NIST’s

SAMATE Reference Dataset (SRD) project, and is online at http://samate.nist.gov/SRD/

238

found. We can aid this effort by keeping track of warnings that disappear as the

mock detector is refined; some of these may be false negatives.

Simplifying this interactive user workflow is critical to ensuring that users

are willing to use this approach for writing custom bug detectors. Much of our

research so far has focused on writing dozens of examples for various bug patterns

to determine if this workflow is reasonable.

8.1.3 Generalizing and Specializing

Going back to our working example in Figure 8.3, one limitation is that right

now the mock detector is limited to only the trim() operation on a string. But

really, we want a rule that applies to any method that returns a modified version of

the string. We have several choices here:

1. We could require the user to explicitly create examples for all the methods

affected. This would probably put too much burden on the user.

2. We could introduce a new convention that would correspond to any method.

The obvious choice — any.anyMethod() — does not work in a pure Java

solution because the String class does not have such a method. An alternative

is use an annotation, such as: anyMethod(any).

3. We could task the inference engine with figuring out when the developer is

using additional examples to generalize or specialize. For example, if the user

provides two examples, one for trim() and one for substring(), the inference

engine could conclude that this bug pattern must apply to any operation on a

239

Figure 8.4: A sample lattice for deciding how to generalize or specialize
different types

string that returns a value. If the user then provides a counter-example that

violates this rule, the inference engine could revert to assuming the rule only

applies to the specified methods.

The third option is very attractive, but making it effective would require careful

construction of an internal lattice which the inference engine could use to decide how

to generalize or specialize. Let’s crystallize this with another example rule: “do not

call the hashCode() method on a Java array”. In Java, the hashCode() method

on an array ignores the length and content of the array when computing a hash

value. The recommended approach to construct a hash value for an array a, is to

call java.util.Arrays.hashCode(a). Our developer may start building a mock

detector by writing the following:

� �
void bug(int [] any) {

any.hashCode();

}
� �
240

This will flag any invocation of hashCode() on an int array. But this produces

many false negatives, since we want this rule to apply to other kinds of arrays. Let’s

say our developer adds another mock method, this time using a long array:

� �
void bug(long [] any) {

any.hashCode();

}
� �
We can generalize these two examples in several ways. One is to conclude that

this rule applies to any array. Another is to decide that an int[] and a long[]

generalize to any primitive-typed array, including boolean[] and double[]. Yet

another way is to generalize an int[] and a long[] as an integral -typed array,

thereby excluding floating point numbers. These decisions would be driven by a

lattice, like the one in Figure 8.4. If we use this model, then our developer would

need to add one more example to generalize the rule to any array:

� �
void bug(Object [] any) {

any.hashCode();

}
� �
Of course, for this bug pattern, it may make more sense to apply another con-

vention: that a generic type parameter refers to any type. Then we can parameterize

our mock detector class with a generic type, T, and write just one mock method:

� �
void bug(T [] any) {

any.hashCode();

}
� �

241

Used appropriately, this paradigm of generalizing and specializing the inference

may be a powerful way to make mock bugs expressive without needing too many

conventions. In my early designs for mock bugs, I found myself constantly adding

new conventions until mock bug detectors were beginning to resemble an entirely

new specification language. Handing more responsibility over to the inference engine

enabled me to focus on writing simple examples for many bug patterns, though it

may limit the scope of problems that can be detected using mock bug detectors.

8.1.4 Other Considerations

We need to make some additional considerations to make this approach useful.

One is that a good bug detector should include a descriptive message about what

the problem is and how it might be fixed. We would have to supply our developer

with some convention for providing this message. Another consideration is that

since the final bug detector depends on the choices made by the inference engine,

we are limited in the ways we can update the engine. We would not want the bug

detector to change unexpectedly, long after the developer has written the mock bug

detector. Such a change could introduce new false positives or new false negatives.

One way to deal with this is to use versioning, so that each mock bug detector is

tied to a particular version of the inference engine.

Finally, despite our best efforts to make this as expressive and general as

possible, we recognize that some complicated bug patterns can only be written by

experts who understand the underlying analysis and/or use a custom specification

242

language. In the next section, we explore the kind of custom bug patterns that

occur in projects, and that can be targeted by this approach. It turns out many of

them are quite simple, and an example-based approach with few conventions might

provide the right balance of expressiveness and simplicity.

8.2 API-Specific Bug Patterns

8.2.1 Searching for API-Specific Rules

Before establishing a framework for mock bug detectors, we need to charac-

terize API-specific bug patterns. Regular bug detectors can be quite complicated,

requiring the analysis to keep track of facts across procedure boundaries. By con-

trast, the API-specific rules we are targeting are quite simple, and consist of various

constraints on how a developer should use an API. The scope of complexity of

these bug patterns should drive our design choices, including how many and what

conventions are included in the framework.

To help us characterize API-specific bug patterns, we chose to search for real

examples in the wild. We searched a variety of resources to find examples, including

existing API-specific rules in various static analysis tools, coding standards estab-

lished by industry organizations, API documentation, and open source code.

Existing API-specific rules in static analysis tools usually target popular and

widely used libraries such as the Java APIs (including J2EE and Java Beans), JUnit

[1], Ant [45], Apache Commons [46], and popular logging APIs [47]. We are not

necessarily expecting that mock bug detectors will be used to target these libraries,

243

since they are widely used and hence are already supported by many static analysis

tools. However, we expect that the properties and considerations which pertain to

the rules made for these libraries, will also apply to other more obscure APIs. In

addition to the rules built into the static analysis tools, we also searched for third-

party bug detectors which are often API-specific. In particular, many third-party

bug detectors for FindBugs are collected in an open source project called fb-contrib

[28].

Another source of custom bug patterns is coding standards from industry

organizations like Open Web Application Security Project (OWASP)3, MITRE4, and

the U.S. National Institute of Standards and Technology (NIST)5. These institutions

provide best practices, anti-patterns, and reference datasets that focus on security

defects.

OWASP develops and maintains the Enterprise Security API (ESAPI), an

open source, multi-language, web application security framework that provides a

standard set of APIs for developers to use for authentication, session management,

access control, input validation and other security-related features. ESAPI comes

with detailed secure coding guidelines that include a list of banned Java API meth-

ods, and rules about how URLs should be handled, and how data should be pro-

tected.

MITRE maintains a detailed dictionary of anti-patterns known as the Common

Weakness Enumeration (CWE) [93, 94, 95]. The CWE is a numbered, hierarchical

3http://www.owasp.org
4http://www.mitre.org/
5http://www.nist.gov

244

index of software flaws that can lead to security vulnerabilities, and it includes some

API-specific flaws included a category of weaknesses called “API Abuse” (CWE-

227). Many of these weaknesses can be targeted by mock detectors.

NIST sponsors a project (with the U.S. Department of Homeland Security)

called Software Assurance Metrics And Tool Evaluation (SAMATE)6. Among other

activities, this project has produced the SAMATE Reference Dataset (SRD), which

is a repository of “test cases” that contain security flaws. The test cases are culled

from production code, student code, and synthetic examples. Many of the examples

were contributed by commercial static analysis vendors, and they cover a wide range

of languages and security flaws.

Another approach for finding API-specific bug patterns is to search API doc-

umentation and source code for keywords that may indicate an informally specified

rule. Keywords include “required”, “must”, “follow”, “buggy” etc. The examples

presented earlier in this chapter in Figures 8.1 and 8.2 were found by using Google

Code Search7 with some of these keywords.

8.2.2 Characterizing API-Specific Rules

After reviewing dozens of candidates for API-specific rules, we sought to con-

struct a classification that can be helpful when making design decisions for the mock

framework. We found it instructive to characterize each rule based on the constraints

it places on what the developer can code. Using this paradigm, we identified five

6http://samate.nist.gov/
7http://www.google.com/codesearch

245

popular constraints—occurrence constraints, ordering constraints, type constraints,

value constraints, and usage constraints—that apply to many rules. Often a rule

may be composed of more than one of these constraints. Additional, less frequently

used constraints include naming constraints and cardinality constraints.

Occurrence constraints basically state that in a specified context, a given pat-

tern must occur, or is prohibited. Given the metaphor of mock bugs, a user can

specify the must-occur constraint by writing a bug-method that does not contain the

desired pattern in the appropriate context, and writing a notBug-method that does

contain it. The opposite arrangement would be used for the prohibited constraint.

An example of this constraint was the earlier example of rules to prohibit calling

hashCode() on an array, discussed in Section 8.1.3. Another example is rules that

require overriding methods to call the corresponding super class method.

A more complicated example is found in the documentation of the saveState()

method for the StateHolder interface in the JavaServer Faces Specification8:

If the class that implements this interface has references to instances that

implement StateHolder (such as a UIComponent with event handlers, val-

idators, etc.) this method must call the saveState(...) method on all

those instances as well. This method must not save the state of children

and facets. That is done via the StateManager.

This specification requires that implementing methods must call the corre-

sponding saveState() methods on any other state holders referenced by the class,

8http://java.sun.com/javaee/javaserverfaces/

246

except those designated as children or facets. Already with this example, we notice

that a mock method will not be enough for the user to fully specify the context.

Users will need several mock classes—they could be anonymous implementations

of the StateHolder interface—to provide examples of saveState() methods that

follow or violate the specification, so that the inference engine can construct an

appropriate bug detector. We also notice that it is important for users to use the

same context for each example, only changing the lines that relate to the pattern or

anti-pattern. The inference engine can then focus on the differences when deciding

where to raise alerts.

Many examples of the occurrence constraint are simple API bans. For example,

some Java projects ban calls to System.out.println(), and the OWASP ESAPI

project has a list of Java API methods that should never be used, but should be

replaced with methods in its API [49]. Given the prevalence of this rule template, it

may be beneficial to provide a shorthand or convention for specifying banned APIs.

Ordering constraints state the relationship between two or more patterns.

This could include simple sequencing relationships (pattern-A must follow/precede

pattern-B), or more complicated domination relationships (e.g., pattern-B must be

guarded by pattern-A).

Type constraints place some requirement or restriction on the types used in a

specified context. An example is the rule that loggers should be created with a type

parameter that is restricted to the class that they belong to. Another example is

rules that require a group of classes to implement the Serializable interface.

Value constraints place some requirement or restriction on the range or nature

247

(a) Rule: No hard-coded passwords� �
1 void bug() {
2 ESAPI.authenticator.createUser(username, "password", "password");

3 }
4 void notBug(String password) {
5 ESAPI.authenticator.createUser(username, password, password);

6 }
� �
(b) Rule: logHTTPRequest() should ignore any parameters named “password”� �

1 void bug(Request any, Logger anyLogger) {
2 ESAPI.httpUtilities().logHTTPRequest(any, anyLogger, null);

3 }
4 void notBug(Request any, Logger anyLogger) {
5 String[] ignore = { "password" }
6 ESAPI.httpUtilities().logHTTPRequest(any, anyLogger, Arrays.asList(ignore));

7 }
� �
Figure 8.5: ESAPI Rules that have value constraints

of a value. This include rules requiring numeric values to be within a specified range,

or string values to match a specified regular expression. Philosophically, one would

expect such rules to be enforced by the application, but in some specialized or legacy

cases, it may be reasonable to use a mock bug detector. Figure 8.5 illustrates some

examples from OWASP’s ESAPI. The first rule specifies that the createUser()

method should never be called with a string literal. The second rule specifies that the

logHTTPRequest() should always be called with a filter to exclude the “password”

field. This second example suggests the need for parameterized mock bug detectors,

so that other users could use this rule even if their password field has a different

name, by just providing the name of the password field.

These examples also further illustrate how the behavior of the mock bug detec-

248

tor will depend on the decisions of the inference engine. If we design the inference

algorithm to interpret literal strings as “any literal string”, then rule (b) would

need to be extended with additional examples to clarify that we only mean the lit-

eral string “password”. Alternatively, if we design the inference algorithm to only

match the value of the literal string specified, then rule (a) would need to be ex-

tended to clarify that we mean any literal string. These choices in our design of the

inference engine should be driven by empirical and user studies.

Usage constraints indicate if, and how a value is used. The String.trim()

examples presented earlier in this chapter (in Figure 8.3) are an example of usage

constraints. As we saw in those examples, there are many ways a value might be

used, and often the usage constraint is that it be used in any way. Hence it seems

reasonable to introduce some convention for any usage. Earlier we used a return-

value convention, but this would not be sufficient if the usage constraints are to

apply to multiple values. Other options include returning a collection of values that

are used, or annotating the values.

Naming constraints simply limit the names that can be given to classes, meth-

ods, or variables, usually to match some preferred style. Cardinality constraints are

needed for a few rules that limit the number of occurrences of certain instances or

types. For example, PMD9 has a rule that each class should only define one logger.

Finally, looking through the constraints we have identified, it seems clear that

mock bugs are not the most effective way to express some of them. For example, the

9PMD is a popular static analysis tool for Java that has many lightweight rules, and is online

at http://pmd.sourceforge.net/

249

banned APIs mentioned in the discussion of occurrence constraints would probably

be best supported by an XML or form-based interface, through which a user can

simple enter the fully qualified names of all banned methods. Naming constraints

could be specified using annotations with regular expressions, or using XPath-like

queries to target a group of classes, as is done in PMD (see discussion in Section

8.3.2). But despite the convenience of some of these approaches, mock bugs ap-

pear to be the right combination of simplicity and generality for a wide range of

defects. In the next section, we compare mock bugs with other existing approaches

for specifying custom bug detectors.

8.3 Writing a Bug Detector

Existing approaches for writing bug detectors generally aim to give users al-

most as much power as the experts that implement the core bug detectors. In fact,

most static analysis tools feature core rules that are written using the same spec-

ification framework that users can use to write additional rules. This paradigm is

handy for expert users who specialize in extending tools, but does not appeal to

our target audience: regular developers writing simple rules. In particular, this

paradigm requires the user to understand the underlying analysis and/or learn a

new specification language. In this section, we discuss a representative set of sam-

ple rules from various tools. This is by no means an exhaustive list of all tools, but

aims to cover the range of styles available.

250

8.3.1 FindBugs Bug Detectors

FindBugs bug detectors are implemented in Java using the visitor pattern

[41] to walk through a bytecode classfile looking for matching patterns. A user can

provide custom bug detectors by constructing a class that implements the Detector

interface and adding the resulting jar file to a plugin directory. The user will also

need to provide some XML configuration files so that FindBugs can find the new

detector.

Figure 8.6 illustrates the basic scaffolding code needed by a simple FindBugs

bug detector. Each detector is initialized using a BugReporter (line 3) which is

later used to generate warnings (line 10). Users override the visitClassContext()

method to search for the desired pattern. From this context, users can examine the

classfile’s metadata for its methods, fields and other characteristics, or access the

dataflow analysis, or traverse the abstract syntax tree to get to deeper contexts.

Since many detectors have similar setups, FindBugs provides a wide variety of base

classes that can help simplify the user’s task.

This plugin infrastructure has some advantages. Since the plugins are written

in Java, users do not need to learn a new language, and many developers are familiar

with the visitor pattern that serves as the basic metaphor for writing a plugin. In

addition, the user has all the power that the experts have, since all bug detectors

are written this way10.

However this plugin infrastructure is difficult for casual users to learn. For

10Of course, some bug detectors inspire the experts to modify the internals of FindBugs, and

custom detector developers may not be at liberty to make such modifications.

251

� �
1 public class BasicDetector implements Detector {
2 BugReporter bugReporter;

3 public BasicDetector(BugReporter bugReporter) {
4 this.bugReporter = bugReporter;

5 }
6 /∗∗ Visit the ClassContext for a class which should be analyzed. ∗/
7 @Override public void visitClassContext(ClassContext classContext) {
8 // use ’classContext’ to access metadata and search for patterns

9 // if a match is found ...

10 bugReporter.reportBug(

11 new BugInstance("BUG_NAME", Priorities.HIGH PRIORITY)

12 .addClass(classContext.getJavaClass())

13 .addString("<additional info>")

14);

15 }
16 /∗∗ Invoked after all classes have been visited. Used by any detectors which

17 ∗ accumulate information over all visited classes to generate results. ∗/
18 @Override public void report() { }
19 }
� �

Figure 8.6: A Basic Bug Detector for FindBugs

one thing, users are searching for patterns in the byte code, not in source code.

Hence users may need to inspect the byte code to know what the reference pattern

they are searching for actually looks like. In addition, users need to understand

any analysis facts they intend to use, and provide lots of scaffolding code, some of

which is shown in Figure 8.6. Indeed, FindBugs detectors can become quite verbose.

Finally, users have to manually configure the detector, editing XML files to provide

a name, description, and other metadata about the detector.

252

8.3.2 XPath Queries for PMD

Like FindBugs, PMD also allows users to write new rules using Java code and

the visitor pattern to navigate over the abstract syntax tree (AST) representation

of a source file. But PMD targets many rules that are simple enough to be specified

by searching for the relevant node in the AST, and performing some simple checks.

This is particularly true of rules that enforce a coding style, or naming convention.

For example, one rule is that the package name should not contain uppercase letters.

A Java implementation of this rule would simply walk down the AST until a package

declaration is found, and generate a warning if it does not use the correct casing.

Since the AST is a structured document, an analogy can be made with searching an

XML document to find key nodes or attributes. XPath is a powerful language for

searching XML documents [68], and it makes sense to try and apply it to the rules

in PMD.

PMD allows rule writers to treat the AST as an XML document, and search

for nodes using XPath. For example, the package-name casing rule above could be

specified using the following XPath query:� �
//PackageDeclaration/Name[lower−case(@Image)!=@Image]
� �

The only nodes which match this query are package declarations where the

name has some uppercase letters. With this rule, such nodes will be flagged and

a warning will be generated. The clear advantage of this approach is that it can

be very concise for simple rules. However, XPath queries can get very complex for

more difficult rules, making them hard to understand or maintain. In addition, rule

253

writers need to understand the AST structure, including metadata such as node and

attribute names. The AST structure is not obvious from looking at the source code,

because the parser may insert many redundant nodes. Recognizing this difficulty,

the PMD team has provided a Rule Designer which enables rule writers to visualize

the AST, and experiment with different XPath queries.

8.3.3 The Metal Language

Metal is a high-level, state-machine language used to write compiler extensions

that can be used to check software for rule violations [40, 19]. It is a predecessor

to Coverity Extend, Coverity’s software development kit for writing custom bug

detectors. It allows rule writers to combine patterns written in an extended version

of the target language, with a state-machine whose transitions can be used to specify

whether a rule is matched or not.

Figure 8.7 illustrates a state-machine (taken from [19]) that checks to see if

the return value from a string method is used. In this case, the target language

is Java and the pattern language is an extension of Java. The rule specified is

that, since Java strings are immutable, it does not make sense to ignore the re-

turn value of a string operation. The example starts by declaring and initializ-

ing some meta-variables on lines 2-4: str will represent the return value and is

used in multiple states; tracking is a hash map used to temporarily store values

that have been returned, but not yet used. The state-machine contains two states

defined on lines 5 and 10. Starting from the start state, whenever the pattern

254

� �
1 sm stringchecker {
2 state decl { java.lang.String } str;

3 { public HashMap tracking = new HashMap(); }
4 init { tracking = new HashMap(); }
5 start:

6 { str = java.lang.String.anymethod(...) }
7 ==> str.tracked, {
8 tracking.put(str.getDefinition(), ...);

9 };
10 str.tracked:

11 { str } ==> { // matches any use

12 tracking.remove(str.getDefinition());

13 };
14 final { bugs.addAll(tracking.values()); }
15 }
� �

Figure 8.7: A Metal-style rule for tracking unused values returned from

String operations

java.lang.String.anymethod(...) is matched, the state-machine updates the

tracking hash map, and transitions to the next state str.tracked (lines 6-8). In

this state, any usage of the return value will result in the meta-information being

removed from the tracking hash map (lines 11-12). As a final action, any values

left in the tracking hash map are flagged as bugs on line 14, because they are never

used.

The Metal approach is very elegant and powerful, and many core rule checkers

have been written, primarily for C and C++. But this approach requires rule

writers to learn two specifications: the state-machine syntax and semantics, and the

pattern-matching language which is an extension of the target language.

255

8.3.4 Comparing to Mock Bugs

The frameworks presented in this section have many strengths and weaknesses,

and generally have to tradeoff between power and ease of use. Mock bugs aim to

emphasize ease of use, but may also be quite powerful because they rely on the rule

writer being able to express the rule using a few examples. In addition, mock bugs

aim to enable users to write rules without having to learn a custom specification

language or understand the underlying analysis.

8.4 Summary and Related Work

A framework for specifying static analysis rules by providing examples and

counter-examples may encourage more organizations and users to write more project-

specific rules and increase the value they get out of static analysis. In this discussion

of such a conceptual framework, my main design goals have been simplicity and

ease of use, with few requirements on the rule writer to learn a new language, or

understand the internals of the analysis engine. But there are limitations because

examples may not capture all the intent a rule writer wants to express, or because

some rules may require too many examples to be sufficiently unambiguous. Still,

the examples I have explored indicate that this approach has some promise.

It remains to be seen whether mock bugs will be both convenient enough, and

powerful enough to be useful. Practical implementations and subsequent user studies

are needed to indicate if this paradigm puts too much burden on users to provide

many examples, or if the lack of conventions makes this approach too constraining

256

for the rules users want to specify.

There is actually some earlier work on using code patterns, or “examples”

to search for corresponding code patterns. Paul and Prakash [114] introduce a

pattern description language for searching for code patterns, but use additional

syntax to extend the target language to make their search more expressive. Their

target audience is software maintainers who need to find code fragments that exhibit

certain properties. Devanbu later comments on this work by pointing out that

this kind of search can be performed by traversing abstract syntax trees (ASTs)

[36], as is done by many modern static analysis tools. Indeed, traversing the AST

may be the preferred mode for general search tasks, but for our goal of matching

simple defective fragments, code patterns are more effective. The pattern description

language presented by Paul and Prakash was later extended by Matsumura et al.

to search for “bug code patterns” [96]. They provide new syntax for specifying the

absence of a statement, and other constructs that enable them to search for implicit

code rules, which I call project-specific rules.

A number of researchers have focused on the problem of finding and flagging

project-specific rules [131, 139, 140, 135, 134]. Spinellis and Louridas provide a

method for augmenting APIs so that static analysis can later verify that invocations

of the API methods use them correctly [131]. They wrote some augmentations for

some Java API classes, extended FindBugs to understand their augmentations, and

searched large code bases finding hundreds of potential defects. Other researchers

have attempted to automatically discover custom bug patterns in various projects by

mining the history in their source repositories. Williams and Hollingsworth search

257

for specific patterns of function invocations, such as “called after” or “conditionally

called after”, to come up with system-specific rules that can then be used to search

for defects [139, 140]. Thummalapenta and Xie use data mining techniques such

as association rules to find exception handling rules [135] and rules that involve

alternative patterns (that may be substituted for each other in practice) [134].

Finally, there are numerous specialized languages for specifying bug patterns

from research community [121], as well as from commercial enterprizes like Coverity

[40, 56, 142, 10], Microsoft [21, 83, 20, 31], and IBM [123, 122].

258

Chapter 9

Conclusion

Through this research, using numerous studies, I have explored the nuances

of static analysis in practice. On the one hand, static analysis is clearly useful for

finding defects early, and vital for subtle subclasses of defects that are otherwise hard

to detect. In addition, users laud its educational value, and its ability to exhaustively

reach into the dark corners of the code and shed light on rare bugs. On the other

hand, static analysis carries some costs that need to be understood and managed.

Spurious warnings and low impact defects may eventually lead many to abandon

tool adoption, unless users create effective strategies to run tools automatically, alert

the right people early, deal with issues in legacy code, and other challenges.

Researchers and tool vendors should continue to focus on finding more bugs,

more accurately, more quickly. But it is also clear from my research that other

equally important factors determine whether static analysis tools are used success-

fully, and these factors can be understood by studying the practice of real users

dealing with real defects. This kind of research exposes the varying expectations

and contexts of different users. For example, some users want tools to output many

warnings, including false positives, so they can investigate the surrounding code for

security vulnerabilities, while many other users decline to fix true defects that do not

impact software behavior in practice. This research also enables vendors to factor

259

in the practices of users when making tweaks to their heuristics, such as deciding

how loud and silent warnings should be ranked, and whether a potential null-pointer

dereference is a defect.

Our motivation to conduct this research comes from wondering why static

analysis is not used more. If it can find serious defects, surely everyone will want

to adopt it. Part of the limitation may be that many do not realize the benefits

of static analysis. But a big part is the perception that the effort users spend on

static analysis does not payoff. These users judge warnings in isolation, and often

do not run the analysis until the code is moderately mature. These users need to

understand that the value comes from running it early, and utilizing infrastructure

that makes it easy to use.

In summary, static analysis is well received by the users we studied, and many

have begun taking steps to introduce infrastructure and practices that will maximize

their return on investment. Many tools have also started adding features to enable

software teams to integrate static analysis with existing issue tracking databases

and code repositories, and to collaboratively resolve issues. As tools continue to

develop, they will become better at figuring out when a defect really matters, and

alerting developers using convenient modes. Feature rich tools will make it easier

for organizations to introduce static analysis into their process, integrate them with

existing software tools and other static analysis tools, and extend them with project-

specific analysis.

260

Bibliography

[1] Junit testing framework. http://www.junit.org, 2007.

[2] Eclipse. http://eclipse.org/, 2009.

[3] Jlint. http://jlint.sourceforge.net/, 2010.

[4] PMD. http://pmd.sourceforge.net/, 2010.

[5] R. Agarwal, L. Wang, and S. Stoller. Detecting potential deadlocks with static
analysis and run-time monitoring. Hardware and Software, Verification and
Testing, pages 191–207, 2006.

[6] Matt Albrecht. Using Multi-Threaded Tests.
http://groboutils.sourceforge.net/testing-junit/using mtt.html, Septem-
ber 2004.

[7] Marty Alchin. Returning none is evil. http://martyalchin.com/2007/nov/
20/returning-none-is-evil/, November 2007.

[8] Alden Almagro, Paul Julius, and Jeffrey Fredrick. CruiseControl.
http://cruisecontrol.sourceforge.net/, 2010.

[9] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and
Yann-Gaël Guéhéneuc. Is it a bug or an enhancement?: a text-based ap-
proach to classify change requests. In CASCON ’08: Proceedings of the 2008
conference of the center for advanced studies on collaborative research, pages
304–318, New York, NY, USA, 2008. ACM.

[10] Ken Ashcraft and Dawson Engler. Using programmer-written compiler ex-
tensions to catch security holes. In SP ’02: Proceedings of the 2002 IEEE
Symposium on Security and Privacy, page 143, Washington, DC, USA, 2002.
IEEE Computer Society.

[11] Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. Learning from
bug-introducing changes to prevent fault prone code. In IWPSE ’07: Ninth
international workshop on Principles of software evolution, pages 19–26, New
York, NY, USA, 2007. ACM.

[12] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. Using static analysis to find bugs. IEEE Softw., 25(5):22–29,
2008.

[13] Nathaniel Ayewah and William Pugh. A report on a survey and study of
static analysis users. In DEFECTS ’08: Proceedings of the 2008 workshop
on Defects in large software systems, pages 1–5, New York, NY, USA, 2008.
ACM.

261

http://martyalchin.com/2007/nov/20/returning-none-is-evil/
http://martyalchin.com/2007/nov/20/returning-none-is-evil/

[14] Nathaniel Ayewah and William Pugh. Learning from defect removals. In MSR
’09: Proceedings of the 2009 6th IEEE International Working Conference on
Mining Software Repositories, pages 179–182, Washington, DC, USA, 2009.
IEEE Computer Society.

[15] Nathaniel Ayewah and William Pugh. Using checklists to review static analysis
warnings. In DEFECTS ’09: Proceedings of the 2nd International Workshop
on Defects in Large Software Systems, pages 11–15, New York, NY, USA,
2009. ACM.

[16] Nathaniel Ayewah and William Pugh. Null dereference analysis in practice. In
PASTE ’10: Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, New York, USA, 2010.
ACM.

[17] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and
YuQian Zhou. Evaluating static analysis defect warnings on production soft-
ware. In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering, pages 1–8, New
York, USA, 2007. ACM.

[18] Nathaniel Ayewah, Yue Yang, and David Sielaff. Instrumenting Static Anal-
ysis Tools on the Desktop. Technical Report MSR-TR-2010-17, Microsoft
Research, February 2010.

[19] Godmar Back and Dawson Engler. Mj - a system for constructing bug-finding
analyses for java, 2004. Available online (10 pages) http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.5.8707.

[20] Thomas Ball and Sriram K. Rajamani. The slam project: debugging sys-
tem software via static analysis. In POPL ’02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 1–3, New York, NY, USA, 2002. ACM.

[21] Thomas Ball and Sriram K. Rajamani. Slic: A specification language for inter-
face checking (of c). Technical Report MSR-TR-2001-21, Microsoft Research,
January 2002.

[22] Ryan Berg. The Path to a Secure Application. Technical Report
RAW14198-USEN-01, IBM Software, December 2009. Available on-
line (16 pages) http://www.ouncelabs.com/resources/112-the_path_to_

a_secure_application.

[23] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few
billion lines of code later: using static analysis to find bugs in the real world.
Commun. ACM, 53(2):66–75, 2010.

262

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.8707
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.8707
http://www.ouncelabs.com/resources/112-the_path_to_a_secure_application
http://www.ouncelabs.com/resources/112-the_path_to_a_secure_application

[24] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul
Premraj, and Thomas Zimmermann. What makes a good bug report? In
SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages 308–318, New York,
NY, USA, 2008. ACM.

[25] Joshua Bloch. Effective Java. Addison Wesley, 2 edition, 2008.

[26] Michael D. Bond, Nicholas Nethercote, Stephen W. Kent, Samuel Z. Guyer,
and Kathryn S. McKinley. Tracking bad apples: reporting the origin of null
and undefined value errors. SIGPLAN Not., 42(10):405–422, 2007.

[27] Sarah Boslaugh and Dr. Paul A. Watters. Statistics in a nutshell. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2008.

[28] Dave Brosius. fb-contrib: A findbugs auxiliary detector plugin. http://

fb-contrib.sourceforge.net, September 2005.

[29] Bryan Sullivan and Michael Howard. The Microsoft SDL and the
CWE/SANS Top 25. http://blogs.msdn.com/b/sdl/archive/2009/01/

27/sdl-and-the-cwe-sans-top-25.aspx, January 2009.

[30] Raymond P.L. Buse and Westley R. Weimer. A metric for software readability.
In ISSTA ’08: Proceedings of the 2008 international symposium on Software
testing and analysis, pages 121–130, New York, NY, USA, 2008. ACM.

[31] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Softw. Pract. Exper., 30(7):775–802,
2000.

[32] Pravir Chandra, Brian Chess, and John Steven. Putting the tools to work:
How to succeed with source code analysis. IEEE Security and Privacy,
4(3):80–83, 2006.

[33] Brian Chess and Jacob West. Secure Programming with Static Analysis.
Addison-Wesley Professional, 1 pap/cdr edition, July 2007.

[34] Cristina Cifuentes, Christian Hoermann, Nathan Keynes, Lian Li, Simon
Long, Erica Mealy, Michael Mounteney, and Bernhard Scholz. Begbunch:
benchmarking for c bug detection tools. In DEFECTS ’09: Proceedings of
the 2nd International Workshop on Defects in Large Software Systems, pages
16–20, New York, NY, USA, 2009. ACM.

[35] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: path-sensitive program ver-
ification in polynomial time. In PLDI ’02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation, pages
57–68, New York, NY, USA, 2002. ACM.

263

http://fb-contrib.sourceforge.net
http://fb-contrib.sourceforge.net
http://blogs.msdn.com/b/sdl/archive/2009/01/27/sdl-and-the-cwe-sans-top-25.aspx
http://blogs.msdn.com/b/sdl/archive/2009/01/27/sdl-and-the-cwe-sans-top-25.aspx

[36] Prem Devanbu. On ’a framework for source code search using program pat-
terns’. IEEE Trans. Softw. Eng., 21(12):1009–1010, 1995.

[37] Mark Dixon. Static analysis: false positives and false negatives. http://www.
enerjy.com/blog/?p=144, November 2007.

[38] Kinga Dobolyi and Westley Weimer. Changing java’s semantics for handling
null pointer exceptions. In ISSRE ’08: Proceedings of the 2008 19th Interna-
tional Symposium on Software Reliability Engineering, pages 47–56, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[39] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Multi-
threaded java program test generation. IBM Systems Journal, 41(1):111–125,
2002.

[40] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking sys-
tem rules using system-specific, programmer-written compiler extensions. In
OSDI’00: Proceedings of the 4th conference on Symposium on Operating Sys-
tem Design & Implementation, pages 1–1, Berkeley, CA, USA, 2000. USENIX
Association.

[41] Erich Gamma (et al.). Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1994.

[42] Kent Beck et al. Manifesto for Agile Software Development.
http://www.agilemanifesto.org/, 2001.

[43] William A. Florac. Software Quality Measurement: A Framework for Count-
ing Problems and Defects. Technical Report CMU/SEI-92-TR-22, Carnegie
Mellon University, September 1992.

[44] Fortify Software. Introducing Software Security Assurance. http://www.

fortify.com/company-partners/ssa.jsp, 2010.

[45] Apache Software Foundation. Apache Ant. http://ant.apache.org/, 2010.

[46] Apache Software Foundation. Apache Commons.
http://commons.apache.org/, 2010.

[47] Apache Software Foundation. Apache log4j. http://logging.apache.org/log4j/,
2010.

[48] Eclipse Foundation. Eclipse Test and Performance Tools Platform Project.
http://www.eclipse.org/tptp/, 2010.

[49] OWASP Foundation. ESAPI Secure Coding Guideline. http://www.owasp.

org/index.php/ESAPI_Secure_Coding_Guideline, 2010.

[50] Michael Furr. Diamondback Ruby. http://www.cs.umd.edu/projects/PL/druby/,
2010.

264

http://www.enerjy.com/blog/?p=144
http://www.enerjy.com/blog/?p=144
http://www.fortify.com/company-partners/ssa.jsp
http://www.fortify.com/company-partners/ssa.jsp
http://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline
http://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline

[51] Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-guided
static typing for dynamic scripting languages. In OOPSLA ’09: Proceeding of
the 24th ACM SIGPLAN conference on Object oriented programming systems
languages and applications, pages 283–300, New York, NY, USA, 2009. ACM.

[52] Anthony Gerkis and Jack Danahy. Software Security Governance in the De-
velopment Lifecycle. Technical Report Doc.20071001-1.0, Ounce Labs, 2007.

[53] GrammaTech. CodeSonar. http://www.grammatech.com/products/codesonar,
2010.

[54] Rick Grehan. Jtest treks to code-testing supremacy. JavaWorld, October
2006.

[55] JSR 166 Expert Group. JSR 166: Concurrency Utilities.
http://jcp.org/en/jsr/detail?id=166, September 2004.

[56] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and
language for building system-specific, static analyses. In PLDI ’02: Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 69–82, New York, NY, USA, 2002. ACM.

[57] Per Brinch Hansen. Reproducible testing of monitor. Softw., Pract. Exper.,
8(6):721–729, 1978.

[58] Matthew Hayward. Effective Management of Static Analysis Vul-
nerabilities and Defects. White paper, Coverity, 2010. Avail-
able online (20 pages) http://www.coverity.com/library/pdf/

Coverity-Effective-Management-of-Static-Analysis-Defects.pdf.

[59] Sarah Heckman and Laurie Williams. On establishing a benchmark for evalu-
ating static analysis alert prioritization and classification techniques. In ESEM
’08: Proceedings of the Second ACM-IEEE international symposium on Em-
pirical software engineering and measurement, pages 41–50, New York, NY,
USA, 2008. ACM.

[60] J. Highsmith and A. Cockburn. Agile software development: the business of
innovation. Computer, 34(9):120–127, 2001.

[61] Tony Hoare. Null references: The billion dollar mistake. http:

//qconlondon.com/london-2009/presentation/Null+References:

+The+Billion+Dollar+Mistake, March 2009.

[62] David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 132–136, New York,
NY, USA, 2004. ACM.

265

http://www.coverity.com/library/pdf/Coverity-Effective-Management-of-Static-Analysis-Defects.pdf
http://www.coverity.com/library/pdf/Coverity-Effective-Management-of-Static-Analysis-Defects.pdf
http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake
http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake
http://qconlondon.com/london-2009/presentation/Null+References:+The+Billion+Dollar+Mistake

[63] David Hovemeyer and William Pugh. Finding more null pointer bugs, but not
too many. In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 9–14,
New York, NY, USA, 2007. ACM.

[64] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning
a static analysis to find null pointer bugs. In PASTE ’05: The 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 13–19, New York, NY, USA, 2005. ACM Press.

[65] IBM. Ounce. http://www.ouncelabs.com/, 2010.

[66] Coverity Inc. Coverity Prevent. White paper, Coverity, 2008. Avail-
able online (4 pages) http://www.coverity.com/library/pdf/coverity_

prevent.pdf.

[67] Lingoport Inc. Globalyzer Software. http://lingoport.com/globalyzer, 2010.

[68] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath/, November 1999.

[69] Ciera Jaspan, I-Chin Chen, and Anoop Sharma. Understanding the value of
program analysis tools. In Companion to the 22nd ACM SIGPLAN conference
on Object oriented programming systems and applications companion, pages
963–970, Montreal, Quebec, Canada, 2007. ACM.

[70] JetBrains. IntelliJ IDEA. http://www.jetbrains.com/idea/, 2010.

[71] Xiaoping Jia, Sushant Sawant, Jiangyu Zhou, and Sotiris Skevoulis. Applying
static analysis for detecting null pointers in java programs. Technical report,
DePaul University, 1999.

[72] Philip M. Johnson. Requirement and design trade-offs in hackystat: An in-
process software engineering measurement and analysis system. In ESEM
’07 Proceedings, pages 81–90, Washington, DC, USA, 2007. IEEE Computer
Society.

[73] Philip M. Johnson, Hongbing Kou, Michael Paulding, Qin Zhang, Aaron Ka-
gawa, and Takuya Yamashita. Improving software development management
through software project telemetry. IEEE Softw., 22(4):76–85, 2005.

[74] P.M. Johnson, Hongbing Kou, J. Agustin, C. Chan, C. Moore, J. Miglani,
Shenyan Zhen, and W.E.J. Doane. Beyond the personal software process:
Metrics collection and analysis for the differently disciplined. In Software
Engineering, 2003. Proceedings. 25th International Conference on, pages 641–
646, 2003.

[75] Leander Kahney. Your car: The next net appliance. http://www.wired.com/
science/discoveries/news/2001/03/42104, March 2001.

266

http://www.coverity.com/library/pdf/coverity_prevent.pdf
http://www.coverity.com/library/pdf/coverity_prevent.pdf
http://www.w3.org/TR/xpath/
http://www.wired.com/science/discoveries/news/2001/03/42104
http://www.wired.com/science/discoveries/news/2001/03/42104

[76] Kohsuke Kawaguchi. Hudson: Extensible continuous integration server.
http://hudson-ci.org/, 2010.

[77] Yit Phang Khoo, Jeffrey S. Foster, Michael Hicks, and Vibha Sazawal. Path
projection for user-centered static analysis tools. In PASTE ’08: Proceedings of
the 8th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 57–63, New York, NY, USA, 2008. ACM.

[78] Sunghun Kim and Michael D. Ernst. Prioritizing warning categories by ana-
lyzing software history. In MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, page 27, Washington, DC, USA,
2007. IEEE Computer Society.

[79] Sunghun Kim and Michael D. Ernst. Which warnings should i fix first? In
ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 45–54, New York, NY, USA, 2007.
ACM.

[80] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead.
Automatic identification of bug-introducing changes. In ASE ’06: Proceedings
of the 21st IEEE/ACM International Conference on Automated Software En-
gineering, pages 81–90, Washington, DC, USA, 2006. IEEE Computer Society.

[81] Klocwork. Modernizing the Peer Code Review Process. White paper,
2010. Available online (7 pages) http://www.klocwork.com/resources/

white-paper/code-review.

[82] Ounce Labs. Meeting the PCI Application Security Requirements. White
paper, 2010. Available online (10 pages) http://www.ouncelabs.com/

writable//resources/file/pci_appsecurity_compliance.pdf.

[83] J.R. Larus, T. Ball, Manuvir Das, R. DeLine, M. Fahndrich, J. Pincus, S.K.
Rajamani, and R. Venkatapathy. Righting software. Software, IEEE, 21(3):92–
100, May-June 2004.

[84] Lucas Layman, Laurie Williams, and Robert St. Amant. Toward reducing
fault fix time: Understanding developer behavior for the design of automated
fault detection tools. In Empirical Software Engineering and Measurement,
2007. ESEM 2007. First International Symposium on, pages 176–185, 2007.

[85] Robert Lemos. Study: Flaw disclosure hurts software maker’s stock. Securi-
tyFocus, June 2005. Available online (1 page) http://www.securityfocus.

com/news/11197.

[86] Nancy G. Leveson and Clark Savage Turner. Investigation of the therac-25
accidents. IEEE Computer, 26(7):18–41, 1993.

267

http://www.klocwork.com/resources/white-paper/code-review
http://www.klocwork.com/resources/white-paper/code-review
http://www.ouncelabs.com/writable//resources/file/pci_appsecurity_compliance.pdf
http://www.ouncelabs.com/writable//resources/file/pci_appsecurity_compliance.pdf
http://www.securityfocus.com/news/11197
http://www.securityfocus.com/news/11197

[87] R. Likert. A technique for the measurement of attitudes. Archives of Psychol-
ogy, 22(140):1–55, 1932.

[88] Logilab.org. Pylint. http://www.logilab.org/857, 2010.

[89] Brad Long. Testing Concurrent Java Components. PhD thesis, The University
of Queensland, July 2005.

[90] Brad Long, Dan Hoffman, and Paul Strooper. Tool support for testing con-
current java components. IEEE Transactions on Software Engineering, 29(6),
2003.

[91] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou.
Bugbench: Benchmarks for evaluating bug detection tools. In In Workshop
on the Evaluation of Software Defect Detection Tools, 2005.

[92] Mark Curphey. Anti-XSS 3.0 Beta and CAT.NET Community Technology
Preview now Live! http://blogs.msdn.com/b/cisg/archive/2008/12/15/

anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.

aspx, December 2008.

[93] R.A. Martin, S.M. Christey, and J. Jarzombek. The case for common flaw
enumeration. In NIST Workshop on Software Security Assurance Tools, Tech-
niques, and Metrics. SAMATE, NIST, 2005.

[94] Robert A. Martin and Sean Barnum. Common Weakness Enumeration (CWE)
Status Update. Ada Lett., XXVIII(1):88–91, 2008.

[95] Robert A. Martin and Sean Barnum. Creating the secure software testing
target list. In CSIIRW ’08: Proceedings of the 4th annual workshop on Cyber
security and information intelligence research, pages 1–2, New York, NY, USA,
2008. ACM.

[96] Tomoko Matsumura, Akito Monden, and Ken-ichi Matsumoto. A method for
detecting faulty code violating implicit coding rules. In IWPSE ’02: Proceed-
ings of the International Workshop on Principles of Software Evolution, pages
15–21, New York, NY, USA, 2002. ACM.

[97] Brian Chess Gary McGraw and Sammy Migues. The Building Security In
Maturity Model. http://bsimm2.com/, 2010.

[98] Gary McGraw. Software security: building security in. Addison-Wesley, Febru-
ary 2006.

[99] Gary McGraw, Brian Chess, Sammy Migues, and Elizabeth Nichols. Software
[in]security: Bsimm2. informIT, May 2010. Available online (1 page) http:

//www.informit.com/articles/article.aspx?p=1592389.

268

http://blogs.msdn.com/b/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.aspx
http://blogs.msdn.com/b/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.aspx
http://blogs.msdn.com/b/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-technology-preview-now-live.aspx
http://bsimm2.com/
http://www.informit.com/articles/article.aspx?p=1592389
http://www.informit.com/articles/article.aspx?p=1592389

[100] Bharat Mediratta and Julie Bick. The google way: Give engineers room. The
New York Times, Oct 2007.

[101] Microsoft. Software Quality Metrics, July 2005.
http://www.microsoft.com/windowsvista/privacy/ pri-
vacy b1.mspx#EAFAC.

[102] Microsoft. Microsoft Auto Code Review (OACR). MSDN Library, October
2009. http://msdn.microsoft.com/en-us/library/dd445214.aspx.

[103] Microsoft. SAL Annotations. MSDN Library, July 2009.
http://msdn.microsoft.com/en-us/library/ms235402.aspx.

[104] Microsoft Corp. Microsoft Security Development Lifecycle. http://www.

microsoft.com/security/sdl/, 2010.

[105] L. E. Moser and P. M. Melliar-Smith. Formal verification of safety-critical
systems. Softw. Pract. Exper., 20(9):799–811, 1990.

[106] Nachiappan Nagappan and Thomas Ball. Static analysis tools as early in-
dicators of pre-release defect density. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 580–586, New York,
NY, USA, 2005. ACM.

[107] Mangala Gowri Nanda and Saurabh Sinha. Accurate interprocedural null-
dereference analysis for Java. In ICSE ’09: Proceedings of the 2009 IEEE 31st
International Conference on Software Engineering, pages 133–143, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

[108] Haya El Nasser and Paul Overberg. Census software plagued
by defects. http://www.usatoday.com/news/nation/census/

2010-02-17-Census-software_N.htm, March 2010.

[109] NetBeans. NetBeans Jackpot. http://wiki.netbeans.org/Jackpot, 2010.

[110] OWASP. Comprehensive, Lightweight Application Security Process v1.2. The
Open Web Application Security Project, 2007. http://www.owasp.org.

[111] Andy Palmer. Returning null considered dishonest. http://andyp-tw.

blogspot.com/2008/08/returning-null-considered-dishonest.html,
August 2008.

[112] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins, and
Michael D. Ernst. Practical pluggable types for Java. In ISSTA ’08: Proceed-
ings of the 2008 international symposium on Software testing and analysis,
pages 201–212, New York, NY, USA, 2008. ACM.

[113] Parasoft. Jtest Static Analysis. http://www.parasoft.com/jtest, 2010.

269

http://www.microsoft.com/security/sdl/
http://www.microsoft.com/security/sdl/
http://www.usatoday.com/news/nation/census/2010-02-17-Census-software_N.htm
http://www.usatoday.com/news/nation/census/2010-02-17-Census-software_N.htm
http://andyp-tw.blogspot.com/2008/08/returning-null-considered-dishonest.html
http://andyp-tw.blogspot.com/2008/08/returning-null-considered-dishonest.html

[114] S. Paul and A. Prakash. A framework for source code search using program
patterns. IEEE Trans. Softw. Eng., 20(6):463–475, 1994.

[115] PCI. PCI Security Standards Council. https://www.

pcisecuritystandards.org/, 2010.

[116] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Context-sensitive
correlation analysis for detecting races. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI), June 2006.

[117] Pravir Chandra. CLASP Best Practice. http://www.owasp.org/index.php/
Category:CLASP_Best_Practice, June 2006.

[118] Privacy Rights Clearinghouse. Chronology of Data Breaches. http://www.

privacyrights.org/ar/ChronDataBreaches.htm, June 2010.

[119] William Pugh and Nathaniel Ayewah. Unit testing concurrent software. In
ASE ’07: Proceedings of the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, pages 513–516, New York, NY, USA,
2007. ACM.

[120] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John. Conduct-
ing on-line surveys in software engineering. In ISESE ’03: Proceedings of the
2003 International Symposium on Empirical Software Engineering, page 80,
Washington, DC, USA, 2003. IEEE Computer Society.

[121] Daniel J. Quinlan, Richard W. Vuduc, and Ghassan Misherghi. Techniques
for specifying bug patterns. In PADTAD ’07: Proceedings of the 2007 ACM
workshop on Parallel and distributed systems: testing and debugging, pages
27–35, New York, NY, USA, 2007. ACM.

[122] G. Ramalingam, Alex Warshavsky, John Field, Deepak Goyal, and Mooly
Sagiv. Deriving specialized program analyses for certifying component-client
conformance. SIGPLAN Not., 37(5):83–94, 2002.

[123] Ganesan Ramalingam, Alex Warshavsky, John H. Field, and Mooly Sagiv. De-
riving specialized heap analyses for verifying component-client conformance.
Technical Report RC22145 (W0108-015), IBM Research, August 2001.

[124] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu,
and William S. Beebee, Jr. Enhancing server availability and security through
failure-oblivious computing. In OSDI’04: Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation, pages 21–21,
Berkeley, CA, USA, 2004. USENIX Association.

[125] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum,
and Gregg Rothermel. Predicting accurate and actionable static analysis warn-
ings: an experimental approach. In ICSE ’08: Proceedings of the 30th inter-

270

https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
http://www.owasp.org/index.php/Category:CLASP_Best_Practice
http://www.owasp.org/index.php/Category:CLASP_Best_Practice
http://www.privacyrights.org/ar/ChronDataBreaches.htm
http://www.privacyrights.org/ar/ChronDataBreaches.htm

national conference on Software engineering, pages 341–350, New York, NY,
USA, 2008. ACM.

[126] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim, and
Mary Jean Harrold. Fault localization and repair for Java runtime excep-
tions. In ISSTA ’09: Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 153–164, New York, NY, USA, 2009.
ACM.

[127] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes
induce fixes? In MSR ’05: Proceedings of the 2005 international workshop on
Mining software repositories, pages 1–5, New York, NY, USA, 2005. ACM.

[128] Fortify Software. Fortify SCA. http://www.fortify.com/, 2010.

[129] Jaime Spacco, David Hovemeyer, and William Pugh. Tracking defect warnings
across versions. In MSR ’06: Proceedings of the 2006 international workshop
on Mining software repositories, pages 133–136, New York, NY, USA, 2006.
ACM Press.

[130] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K.
Hollingsworth, and Nelson Padua-Perez. Experiences with marmoset: design-
ing and using an advanced submission and testing system for programming
courses. In ITICSE ’06: Proceedings of the 11th annual SIGCSE conference on
Innovation and technology in computer science education, pages 13–17, New
York, NY, USA, 2006. ACM.

[131] Diomidis Spinellis and Panagiotis Louridas. A framework for the static veri-
fication of API calls. Journal of Systems and Software, 80(7):1156–1168, July
2007.

[132] Gregory Tassey. The economic impacts of inadequate infrastructure
for software testing. http://www.nist.gov/director/planning/upload/

report02-3.pdf, May 2002.

[133] Jeffrey Thalhammer. Perl::Critic. http://www.perlcritic.org/, 2010.

[134] Suresh Thummalapenta and Tao Xie. Alattin: Mining alternative patterns
for detecting neglected conditions. In ASE ’09: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering,
pages 283–294, Washington, DC, USA, 2009. IEEE Computer Society.

[135] Suresh Thummalapenta and Tao Xie. Mining exception-handling rules as
sequence association rules. In ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering, pages 496–506, Washington, DC, USA,
2009. IEEE Computer Society.

271

http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf

[136] Aaron Tomb, Guillaume Brat, and Willem Visser. Variably interprocedural
program analysis for runtime error detection. In ISSTA ’07: Proceedings of the
2007 international symposium on Software testing and analysis, pages 97–107,
New York, NY, USA, 2007. ACM.

[137] Luke Wildman, Brad Long, and Paul A. Strooper. Testing java interrupts and
timed waits. In APSEC, pages 438–447, 2004.

[138] Chadd Williams and Jaime Spacco. Szz revisited: verifying when changes
induce fixes. In DEFECTS ’08: Proceedings of the 2008 workshop on Defects
in large software systems, pages 32–36, New York, NY, USA, 2008. ACM.

[139] Chadd C. Williams and Jeffrey K. Hollingsworth. Automatic mining of source
code repositories to improve bug finding techniques. IEEE Trans. Softw. Eng.,
31(6):466–480, 2005.

[140] Chadd C. Williams and Jeffrey K. Hollingsworth. Recovering system specific
rules from software repositories. In MSR ’05: Proceedings of the 2005 inter-
national workshop on Mining software repositories, pages 1–5, New York, NY,
USA, 2005. ACM.

[141] Tim Wilson. Why Can’t Johnny Develop Secure Software? DarkReading.com
Security, June 2010.

[142] Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson Engler. Meca: an ex-
tensible, expressive system and language for statically checking security prop-
erties. In CCS ’03: Proceedings of the 10th ACM conference on Computer and
communications security, pages 321–334, New York, NY, USA, 2003. ACM.

272

	List of Tables
	List of Figures
	Introduction
	Some Definitions
	Software Defects In Practice
	Static Analysis: Promise and Challenges
	Sound Analysis and False Positives
	Infeasible, Unlikely or Low Impact Defects

	Thesis and Contributions
	Studying Static Analysis In Practice
	Research Limitations and Challenges

	Summary and Discussion

	Background
	Defects found by Static Analysis
	Tools, Interfaces and Interaction Methods
	Mining Software Artifacts

	User Perspectives and Experiences
	User Survey and Interviews
	Methodology
	Survey Demographics
	Is FindBugs Useful?
	Users Lack Formal Processes
	Issues Users Care About
	Summary

	Lab Based Controlled Studies
	Study 1: Review Times and Consistency
	Study 2: Factors Influencing Review
	Summary

	FindBugs Community Reviews
	The Google FindBugs Fixit
	Planning the Fixit
	General Results
	Comparing Reviews with Bug Rank
	Fix Rates from the Fixit
	Consensus Classifications
	Review Times
	Reviews from Different User Groups
	Summary of Lessons from the Fixit

	Summary and Related Work

	Understanding Why Defects Persist
	True But Low Impact Defects
	Deliberate Defects
	Masked Defects
	Infeasible Statement, Branch, or Situation
	Code that is Already Doomed
	Testing code
	Logging or other unimportant case
	When should such defects be fixed?

	Loud and Silent Warnings
	The Survivor Effect

	Mining Software Repositories for Defects
	Manual Reviews of Large Software Systems
	Review of Sun's JDK 1.6.0
	Review of Glassfish v2

	Fix Rate and Code Churn
	Finer-Grained Snapshots
	The Marmoset Project
	ATMetrics: Instrumenting Static Analysis on the Desktop

	Summary and Related Work

	Null Pointer Bugs in Practice
	When is it a Defect?
	Mining Bug Reports for Null Pointer Exceptions
	Procedure
	Classification
	Observations

	Null Pointer Dereferences found by Static Analysis
	API Design and Null
	API Choices
	Case Study: Uses of Map.get()
	Sometimes, an NPE is Better

	Summary and Related Work

	Cost Effective Static Analysis
	Cost Effective Defects
	Secure Programming with Static Analysis
	Concurrency Defects
	Performance Defects
	Other Subtle Defect Classes

	Applications and Contexts
	Developing Effective Infrastructure
	Advanced Features
	The Challenge of Consistency
	Enhancements to FindBugs

	Best Practices and Policies for Cost Effective Static Analysis
	A Focus on Security
	Best Practices Identified by Vendors
	Experiences at Google
	Experiences at Microsoft

	Summary and Related Work

	Finding Bugs By Example
	Mock Bug Detectors
	A Simple Example
	Benefits and Challenges
	Generalizing and Specializing
	Other Considerations

	API-Specific Bug Patterns
	Searching for API-Specific Rules
	Characterizing API-Specific Rules

	Writing a Bug Detector
	FindBugs Bug Detectors
	XPath Queries for PMD
	The Metal Language
	Comparing to Mock Bugs

	Summary and Related Work

	Conclusion
	Bibliography

