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The application of quantum mechanics to macroscopic motion suggests many

counterintuitive phenomena. While the quantum nature of the motion of individual

atoms and molecules has long been successfully studied, an equivalent demonstration

of the motion of a near-macroscopic structure remains a challenge in experimental

physics. A nanomechanical resonator is an excellent system for such a study. It

typically contains > 1010 atoms, and it may be modeled in terms of macroscopic

parameters such as bulk density and elasticity. Yet it behaves like a simple harmonic

oscillator, with mass low enough and resonant frequency high enough for its quantum

zero-point motion and single energy quanta to be experimentally accessible.

In pursuit of quantum phenomena in a mechanical oscillator, two important

goals are to prepare the oscillator in its quantum ground state, and to measure its

position with a precision limited by the Heisenberg uncertainty principle ∆x∆p ≥ ~
2
.

In this work we have demonstrated techniques that advance towards both of these



goals. Our system comprises a 30 micron × 170 nm, 2.2 pg, 5.57 MHz nanomechani-

cal resonator capacitively coupled to a 5 GHz superconducting microwave resonator.

The microwave resonator and nanomechanical resonator are fabricated together onto

a single silicon chip and measured in a dilution refrigerator at temperatures below

150 mK. At these temperatures the coupling of the motion to the thermal environ-

ment is very small, resulting in a very high mechanical Q, approaching ∼ 106.

By driving with a microwave pump signal, we observed sidebands generated

by the mechanical motion and used these to measure the thermal motion of the

resonator. Applying a pump tone red-detuned from the microwave resonance, we

used the microwave field to damp the mechanical resonator, extracting energy and

“cooling” the motion in a manner similar to optical cooling of trapped atoms. Start-

ing from a mode temperature of ∼150 mK, we reached ∼40 mK by this “backaction

cooling” technique, corresponding to an occupation factor only ∼ 150 times above

the ground state of motion.

We also determined the precision of our device in measurement of position.

Quantum mechanics dictates that, in a continuous position measurement, the pre-

cision may be no better than the zero-point motion of the resonator. Increasing the

coupling of the resonator to detector will eventually result in back-action driving of

the motion, adding imprecision and enforcing this limit. We demonstrated that our

system is capable of precisions approaching this limit, and identified the primary

experimental factors preventing us from reaching it: noise added to the measure-

ment by our amplifier, and excess dissipation appearing in our microwave resonator

at high pump powers.



Furthermore, by applying both red- and blue-detuned phase-coherent mi-

crowave pump signals, we demonstrated back-action evading (BAE) measurement

sensitive to only a single quadrature of the motion. By avoiding the back-action

driving in the measured quadrature, such a technique has the potential for preci-

sions surpassing the limit of the zero-point motion. With this method, we achieved

a measurement precision of ∼100 fm, or 4 times the quantum zero-point motion of

the mechanical resonator. We found that the measured quadrature is insensitive to

back-action driving by at least a factor of 82 relative to the unmeasured quadrature.

We also identified a mechanical parametric amplification effect which arises during

the BAE measurement. This effect sets limits on the BAE performance but also

mechanically preamplifies the motion, resulting in a position resolution 1.3 times

the zero-point motion.

We discuss how to overcome the experimental limits set by amplifier noise,

pump power and parametric amplification. These results serve to define the path

forward for demonstrating truly quantum-limited measurement and non-classical

states of motion in a nearly-macroscopic object.
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Chapter 1

Introduction

Quantum mechanics is a remarkably successful set of physical theories. In

principle there should be no limits on the size or scale of systems or their parameters

to which it may apply. There is no fundamental reason why the behavior of everyday

objects, for instance the motion of a baseball or the vibrations of a bridge, should not

be describable in terms of quantum mechanics. Yet until very recently, experimental

demonstration of physical systems that are described entirely in terms of quantum

mechanics was confined to the atomic scale.

The development of such systems as Bose-Einstein condensates and supercon-

ducting qubits has brought the first opportunities to truly engineer devices in which

quantum-mechanical behavior of some variable is coherent across the entirety of a

macroscopic or near-macroscopic structure. In solid-state systems, it is appealing to

move beyond electrical degrees of freedom such as voltage or charge and try to apply

quantum mechanics to the center-of-mass position of a large mechanical structure.

While the quantum nature of the motion of individual atoms and molecules has

been successfully shown over macroscopic distances, the equivalent for the motion

of an actual macroscopic structure has not. In pursuit of such a demonstration, an

excellent system to work with is a harmonic oscillator. The quantum harmonic os-

cillator is a textbook case in every introductory quantum-mechanics class, and real
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mechanical harmonic oscillators are easy to make in the laboratory at a wide range

of sizes and mass scales. The goal then is to take a real mechanical harmonic os-

cillator and make it behave quantum-mechanically. Most promising is to work with

mechanical resonators on the micron scale, which typically contain > 1010 atoms

and which are usually described entirely in terms of macroscopic parameters such

as bulk density and elasticity, but which are yet small and light enough to seem

promising for quantum-mechanical experiments.

Quantum mechanics describes a wide number of non-classical behaviors that

are inherently counterintuitive when applied to macroscopic scales. The possibilities

of manifesting these in the motion of a large structure are intriguing: for instance,

a superposition state of position states would place our mechanical oscillator simul-

taneously in two different locations. Micro- and nanomechanical resonators are the

focus of a number of proposals to create macroscopic Schrödinger’s-cat states, and

use them to perform fundamental tests of quantum mechanics and the nature of

decoherence. [1]

There is increasing interest by many researchers in demonstrating quantum-

limited measurement of mechanical motion [2]. Heisenberg’s uncertainty principle

dictates limits for the precision of measurement of mechanical motion, which have

yet to be reached. In practice, the limits on measurement are readily conceived of in

terms of noise, either noise added to the measurement or noise that drives the me-

chanical resonator. The latter is how the uncertainty principle is “enforced”: when

the measurement is made more strongly, i.e. with closer and closer precision, the

measurement will begin to perturb the motion, degrading the precision of subsequent

2



measurements. Here we come upon the concept of “measurement backaction”. In

general this term has a very broad meaning, and can refer to any kind of effect that

the measurement has on the device being measured. By making the measurement

in different ways, the backaction can be made to damp the motion or to drive it to

higher amplitudes. The most interesting and relevant type of backaction, however,

is quantum backaction, in which the shot noise of the electromagnetic field that is

used to make the measurement has the effect of perturbing the motion. It is shot

noise that ultimately enforces the uncertainty principle. Shot-noise backaction on

mechanical motion has been demonstrated in a few instances, but full exploration

of this behavior remains elusive. [3]

The experimental study of these issues is nowadays a very rapidly-expanding

field, as manifested by the rising number of publications and active research groups.

All researchers in this field share a common set of goals: to put a mechanical res-

onator into its quantum ground state, to demonstrate quantum limited position de-

tection, and to generate non-classical states of motion such as “squeezed states.” The

results presented in this dissertation represent a contribution towards these goals.

The work is as much the product of a whole research group as it is my own. Building

on earlier investigations by our group [4] [3], it represents a new type of experiment

and promising new type of measurement device - the measurement of the motion

of a nanomechanical resonator by exploiting its coupling to a superconducting mi-

crowave resonator. While I did not in this work attain any of the goals of quantum

measurement, I thoroughly investigate this device, explore a wide range measure-

ment techniques, identify the experimental challenges and present a path forward to
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reaching all of the key goals in the field. In particular, I address the prospect of using

our new type of device to perform backaction-evading and quantum-nondemolition

measurements of the motion, which in certain circumstances can surpass quantum

limits on position measurement. While all my results are in the classical realm, I will

describe them interchangeably in quantum-mechanical terms as much as possible.

I expect the work presented in this dissertation to be merely the start of a series

of experiments carried on by the members of the research group. This dissertation

was designed to serve as baseline and reference for those further investigations. The

material is presented as follows: In chapter 2 I describe a model of our device based

on simple electrical circuit theory, and derive analytical expressions for the signal

amplitude representing the motion of the nanomechanical resonator. In chapter 3 I

survey the ways in which measurement backaction can be made to perturb the mo-

tion of the mechanical resonator, and review some of the theory and experimental

work performed by others in this field. In chapter 4 I describe our measurement

apparatus and device fabrication. Chapter 5 describes the ways in which we char-

acterize our device and our apparatus to enable us to properly understand the more

critical measurements. Chapter 6 details those measurements, in which we explored

the various effects described in chapter 3. Chapter 7 offers some brief concluding

remarks.
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Chapter 2

Superconducting Microwave Resonator (SMR) Coupled to

Nanomechanical Resonator (NR)

In this chapter we intoduce the system that we will use to study mechanical

motion near the quantum limit, consisting of a superconducting microwave resonator

(SMR) coupled capacitively to a nanomechanical resonator (NR). We present a

simple lumped-element LRC circuit model for the SMR and use this to describe the

voltages, currents, power and stored energy in the SMR for a given input signal. By

modeling the NR as an additional capacitance whose value changes with position,

we derive analytical expressions for signal levels measured in this work.

2.1 Transmission line resonator

Microwave resonators made of microfabricated superconducting transmission

line have been adopted widely in recent years for sensitive detection and measure-

ment applications. [5] By exploiting their similarity in principle to optical cavities,

researchers have adapted techniques developed in atomic physics and quantum op-

tics to the study of nano-fabricated electrical devices. [6] [7]
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2.1.1 Transmission line

We base our analysis of the SMR on the well-known solutions for voltages and

currents flowing in a transmission line, often referred to as “transmission line theory”

and appearing in many textbooks [8] [9] [10]. Here we summarize the relevant points:

Consider a transmission line consisting of a centerline and ground line or

groundplane, having capacitance C ′ per unit length between centerline and ground,

and inductance L′ per unit length along the centerline. The phase velocity of waves

traveling on the transmission line is vph = 1√
L′C′

and the characteristic impedance

of the transmission line is defined as

Z ′
0 =

√
L′

C ′ (2.1)

The transmission line may also include some ohmic loss represented by a re-

sistance R′ per unit length. R′ may be thought of as a combination of a resistance

R′
series in series with the inductance and a shunt conductance G′

shunt in parallel with

the capacitance: R′ = R′
series + G′

shunt(Z
′
0)

2. Using Kirchoff’s equations, with the

impedances per unit length in the transmission line, we can solve for the voltages

and currents on the line. We find that at frequency ω, the transmission line supports

waves traveling in the +x direction (V +(x) and I+(x)) along with those traveling

in the −x direction (V −(x) and I−(x)):

V ±(x) = V ±
0 eiωt∓ix(ω/vph)∓(R′/2Z′0)x (2.2)

I±(x) = ±V ±
0

Z ′
0

eiωt∓ix(ω/vph)∓(R′/2Z′0)x (2.3)

Here we assume that the wavelength is short enough that reactive voltage
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drops dominate over ohmic ones: R′ ¿ ωZ ′
0/vph (“low loss” cable approximation).

The time-averaged power traveling down the cable may be calculated using P (x) =

Re(V (x)I∗(x)), where by convention power flowing in the + direction has positive

sign and power flowing in the − direction has negative sign.

If the transmission line is terminated with a (possibly complex) impedance ZL

connecting centerline to ground at position x = 0, this sets a boundary condition

ZL = V +(0)+V −(0)
I+(0)+I−(0)

, which we may use to solve for the amplitudes V ±
0 of the waves

propagating in each direction. For a transmission line that extends in the − direction

from x = 0, the − traveling wave V −(x) will be a partial or total reflection of

the incoming + traveling wave, V +(x): V −
0 = ΓV +

0 (where both V −
0 and V +

0 are

referenced to x = 0, the reflection point). The reflection coefficient is Γ =
ZL−Z′0
ZL+Z′0

.

The voltage and current at point x (where in this geometry x < 0) are then

V (x) = V +
0 eiωt(e−ix(ω/vph)−(R′/2Z′0)x + Γeix(ω/vph)+(R′/2Z′0)x) (2.4)

I(x) =
V +

0

Z ′
0

eiωt(e−ix(ω/vph)−(R′/2Z′0)x − Γeix(ω/vph)+(R′/2Z′0)x) (2.5)

Due to ohmic loss in the line, the forward-traveling power P+(x) diminishes

as it approaches the load, while the negative-traveling power P−(x) diminishes as

it recedes from the reflection point. These are found to be

P+(x) =
|V +

0 |2
2Z ′

0

e−(R′/2Z′0)x (2.6)

P−(x) = −|Γ|2 |V
+
0 |2

2Z ′
0

e(R′/2Z′0)x (2.7)

We can also define the input impedance Zin(x) at point x, i.e. the terminated
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length of transmission line, of length |x|, treated as a single load impedance:

Zin(x) = Z ′
0

ZL + Z ′
0 tanh

(
i ω
vph
|x|+ R′

2Z′0
|x|

)

Z ′
0 + ZL tanh

(
i ω
vph
|x|+ R′

2Z′0
|x|

) (2.8)

2.1.2 Circuit model of transmission line resonator

From equations (2.4) and (2.5) it is evident that the fields on the terminated

transmission line are a combination of traveling waves and standing waves of wave-

length λ = 2πvph/ω, and that for particular terminations (e.g. Γ = ±1) only stand-

ing waves will result. Then if terminated properly at two ends, a transmission line of

length l becomes a resonant cavity with resonant frequency defined by the boundary

conditions: A short (ZL = 0) at one end and open (ZL ∼ ∞) at the other becomes

resonant for l = λ
4

+ nλ
2
, i.e. ω =

πvph

l
(n + 1

2
), with n = 0, 1, 2, . . . (“quarter wave”

resonator and harmonics). An open termination at both ends becomes resonant for

l = nλ
2
, i.e. ω = n

πvph

l
, with n = 1, 2, . . . (“half wave” resonator and harmonics).

Of course, the open ends are not completely isolated; some energy leaks in and out,

which is how the cavity is energized and probed. Consider a resonator with open

terminations at both ends, with microwave power applied at one end. We can think

about the resonance this way: The field inside is in phase with the field entering at

the “input end”. Inside the cavity, the microwaves circulate, i.e. bounce back and

forth between the two ends, forming a standing wave. In a single round-trip, the

microwaves lose an amount of power due to ohmic losses and the power emitted at

the opposite end of the cavity. From equations (2.6) and (2.7), we can see that this

should be a fraction 1− |Γ|2e−(R′/Z′0)l of the power circulating within the cavity. In
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steady state, the power injected at the “input end” must balance the amount lost

in the round-trip.

In our experiments, we will refer to the half-wave transmission-line resonator

of length l as the “superconducting microwave resonator” (SMR). For frequencies

around a resonant frequency ωSMR = n
πvph

l
it is convenient to model the SMR as

an equivalent LRC circuit. We start by setting ZL = ∞ in equation (2.8), leaving

Zin =
Z′0

tanh(iωl/vph+R′l/2Z′0)
. We then substitute ω = ωSMR + ∆ω and perform a taylor

expansion on the denominator:

Zin =
Z ′

0

tanh(inπ + i∆ωl/vph + R′l/2Z ′
0)

(2.9)

' Z ′
0

i∆ωl/vph + R′l/2Z ′
0

(2.10)

For a parallel LRC circuit (figure 2.2 b), the total impedance Z is found from

1
Z

= 1
R

+ 1
iωL

+iωC. Considering frequencies ω = ω0+∆ω around resonant frequency

ω0 = 1√
LC

(assuming ∆ω
ω0
¿ 1 and employing Z0 =

√
L/C) we have

Z =
iRZ0(1 + ∆ω/ω0)

R + iZ0(1 + ∆ω/ω0)−R(1 + ∆ω/ω0)2

Dividing numerator and denominator by iRZ0(1+∆ω/ω0) and approximating

one term in the denominator using (1 + ∆ω/ω0)
−1 ' (1−∆ω/ω0) yields

Z =
R

1 + 2i R
Z0

∆ω
ω0

(2.11)

Comparing to equation (2.10) and setting ωSMR = ω0 we can see that the

lumped-element LRC circuit models the SMR well. For the SMR of length l,

with resistance, capacitance and inductance per unit length R′, C ′ and L′ , and
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Cκ
Cκ

NR
contact
point for
signal line

Figure 2.1: Microphotograph of 3.5mm × 10mm chip. The meandered
line is coplanar waveguide. Barely distinguishable at this resolution are
the centerline and gaps separating it from the groundplane. At the
two ends of the chip the waveguide geometry gradually changes to an
approximate microstrip ending in a bond-pad wide enough to accom-
modate wirebonds. The coupling capacitors Cκ define a length of CPW
forming a 5.00684 GHz SMR having a measured κ = 2π · 494kHz and
coupled to 5.5717 MHz nanomechanical resonator (NR). Labels indicate
positions of NR and coupling capacitors.

transmission-line characteristic impedance Z ′
0 =

√
L′/C ′, for resonance of order n

we can assign lumped-element equivalent circuit values

R =
2Z ′

0

lR′ Z
′
0 (2.12)

C =
lC ′

2
(2.13)

L =
2

(nπ)2
lL′ (2.14)

Z0 =

√
L

C
=

2

nπ
Z ′

0 (2.15)

ωSMR =n
πvph

l
=

1√
LC

(2.16)
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Z0'R' L' C'

R CL

a)

b)

l

Figure 2.2: a) Half-wave resonator: transmission line of length l, char-
acteristic impedance Z ′

0 and inductance, capacitance and resistance L′,
C ′ and R′ per unit length. b) Lumped-element model of the resonator.

2.2 Model of driven SMR

A schematic of a typical measurement circuit appears in figure 2.3 a. The

applied microwave drive signal is carried by signal lines having real characteris-

tic impedance RL, attenuated in power by an amount loss before entering the

SMR through coupling capacitor Cκ. The signal emitted by the SMR at the other

end through another coupling capacitor is amplified by an amplifier having input

impedance RL matched to the signal lines. Typically, RL = 50Ω. The amplifier has

power gain gain.

We model this in a lumped-element fashion in figure 2.3 b. The voltage V0

equals the voltage Vin applied by the microwave source, attenuated by an amount

√
loss in its travel down the input line. In the lumped-element model the voltage is
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SMR Half-wave
resonator, length l

NR (at voltage
antinode of SMR)

Amplifier (power
gain and input
impedance RL)

Source
(power Pin)

Signal line
(impedance RL,

attenuation loss)

Cκ
a)

b)

R CL

Cκ

RL

Cκ
RL

Cg

Cκ

2V0

Figure 2.3: a) Physical circuit: half-wavelength of CPW transmission-
line forming superconducting microwave resonator (SMR), driven by mi-
crowave source, and detected with microwave amplifier. The SMR is
coupled capacitively to nanomechanical resonator (NR) by capacitance
Cg. b) Lumped-element model.
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2V0 in series with a source resistance RL. In this way the load (in this case the SMR

plus input capacitance) sees a voltage matching that of a load on a transmission

line of characteristic impedance RL, i.e. Vload = V0
2ZL

ZL+RL
= V0(1 + Γ) (cf. equation

(2.4) at x = 0).

Using this model we would like to find the voltage VSMR within the SMR

and the voltage Vamp emerging from it. For the time being we neglect the NR and

the capacitance Cg coupling it to the SMR. We treat the LRC circuit and the Cκ-

and-RL network at the amplifier end as a combined load impedance, and apply a

Norton-equivalent-circuit model to it. [11] Norton’s theorem holds that if a load is

driven by a source voltage in series with a source impedance, we may replace the

source voltage and series impedance by a source current equal to the source voltage

divided by source impedance, in parallel with the same source impedance. In our

model the source voltage is 2V0, and source impedance is RL + 1
iωCκ

. Hence the

equivalent source current is I0,eq = 2V0

RL+ 1
iωCκ

. Norton’s theorem assumes that all

circuit elements are linear, which our circuit model satisfies.

The model is further clarified by replacing the impedance at each end of

the SMR by an equivalent resistance RL,eq = 1+(ωCκRL)2

RL(ωCκ)2
and capacitance Cκ,eq =

Cκ

1+(ωCκRL)2
which when combined in parallel have a total impedance equaling RL +

1
iωCκ

. The Norton equivalent circuit with this further modification appears in fig-

ure 2.4. We can make a simplifying approximation by noting that in our system,
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R CLCgI0,eq RL,eq Cκ, eq RL,eqCκ, eq

motion (x)

Figure 2.4: SMR model with Norton equivalent drive current I0,eq. The
Norton equivalent parallel impedance and the load impedance at the
amplifier end (Cκ and RL in series, see figure 2.3 b) have each been
replaced with equivalent parallel RL,eq and Cκ,eq network.

ω ' 2π · 5 GHz, RL ' 50Ω, and Cκ . 10 fF. Therefore ωCκRL . 0.1 and

I0,eq ' 2V0 · iωCκ (2.17)

RL,eq ' 1

RL(ωCκ)2
(2.18)

Cκ,eq ' Cκ (2.19)

2.2.1 Loading of resonator

These equivalent parallel impedances allow us to clarify the loading of the SMR

by the external circuitry. The total capacitance becomes Ctot = C + 2Cκ + Cg, and

the total resistance is likewise the parallel combination of R with RL,eq/2. Because

in our system, Cg ¿ Cκ ¿ C, we will neglect the shift in Z0 and ωSMR due to

Cκ, and everywhere approximate Ctot = C. For the time being we will also neglect

the behavior of the NR, and the effect of Cg on Z0 and ωSMR. However, we must

consider the effect of the loading resistance RL,eq. Here we can use the definition of

quality factor for a parallel LRC circuit, Q = R/Z0. Seeing that 1
Q

= Z0(
1
R

+ 2
RL,eq

),
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we can restate this as 1
Q

= 1
Qint

+ 1
Qext

, thereby defining

Qint =
R

Z0

(2.20)

Qext =
RL,eq

2Z0

(2.21)

We can further introduce the angular-frequency linewidth κ = ωSMR/Q.

κ = κint + κext (2.22)

κint = ωSMR
Z0

R
(2.23)

=
1

RC

κext = ωSMR
2Z0

RL,eq

= 2RL(ωCκ)
2 1

C
(2.24)

= 4RL(ωCκ)
2Z ′

0

ωSMR

nπ
(2.25)

2.2.2 Internal and output voltage of the SMR

Using the equivalent current and equivalent impedances, we can readily deter-

mine the voltage VSMR.

VSMR =I0,eq

(
iωC +

1

iωL
+

1

R
+

2

RL,eq

)−1

=I0,eq

(
i

ω

ωSMRZ0

− i
ωSMR

ωZ0

+
κint

ωSMRZ0

+
κext

ωSMRZ0

)−1

=2V0 · iωCκ · ωSMRZ0

κ + i(ω − ω2
SMR

ω
)

=2iV0

√
κext

2RLC
· 1

κ + i(ω − ωSMR)(1 + ωSMR

ω
)

If κ ¿ ωSMR and we are working with frequencies within only a few linewidths
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of ωSMR, we can further approximate ωSMR/ω ' 1. Then we have

VSMR = 2iV0

√
κext

2RLC
· 1

κ + 2i(ω − ωSMR)
(2.26)

We will see below in section 2.2.3 that this voltage is identical to the voltage

amplitude of the standing wave within the transmission line in the SMR.

The voltage Vamp at the amplifier is the SMR voltage VSMR, reduced by Cκ

and RL acting as a voltage divider:

Vamp =
RL

RL + 1/iωCκ

VSMR

=− V0
κext

1 + iωRLCκ

· 1

κ + 2i(ω − ωSMR)

'− V0
κext

κ + 2i∆ω
(2.27)

Here we define ∆ω = ω − ωSMR. In the last step above we assume that

ωCκRL ¿ 1, which is reasonable for our devices. Note that on resonance (ω =

ωSMR) we have

Vamp = −κext

κ
V0 (2.28)

Qint =
1

1− |Vamp

V0
|Q (2.29)

This is a useful expression. Since Qint is often not known a priori but Q is easy

to measure, we can determine the internal losses in the SMR if we can measure Vamp

V0
.

In practice, however, this usually means knowing loss and gain to high precision.

2.2.3 Energy, power and current in the SMR

We can calculate the energy stored in the driven SMR using the expressions for

energy in reactive components: E = 1
2
CV 2 + 1

2
LI2, where V and I are RMS time-
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averaged quantities. In our model we will treat VSMR as a voltage amplitude, for

consistency with the transmisison-line voltage amplitudes in equation (2.4). There-

fore VSMR,rms = 1√
2
VSMR. Assuming ∆ω

ωSMR
¿ 1 we can approximate ISMR = VSMR

Z0

and therefore

ESMR =
1

2
C|VSMR|2 (2.30)

Using equation (2.26) we can state

ESMR = V 2
0

κext

RL

· 1

κ2 + 4∆ω2

Using equation (2.27) we can state

ESMR =
1

RL

1

κext

|Vamp|2

The characteristic impedance of the lines leading to the SMR is RL. Then by

comparison with equation (2.6) we have Pin · loss =
V 2
0

2RL
and Pout =

V 2
amp

2RL
· gain.

Therefore

ESMR =Pin · loss · 2

κext

· κ2
ext

κ2 + 4∆ω2
(2.31)

ESMR =
2

κext

Pout

gain
(2.32)

Equation (2.32) agrees with what we expect for a Lorentzian resonance. A

resonator with (angular-frequency) linewidth κ dissipates its stored energy at a rate

proportional to the energy times κ. Equation (2.22) shows the different dissipation

rates that make up κ. The SMR emits a power
(

κext

2
· ESMR

)
out of each end, and

dissipates a power (κint · ESMR) internally.

From equations (2.31) and (2.32), we can also express the energy stored in the

SMR as an average number n̄SMR of photons of energy ~ω at the drive (i.e. pump)
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frequency ω:

n̄SMR =
1

~ω
Pin · loss · 2

κext

· κ2
ext

κ2 + 4∆ω2
(2.33)

n̄SMR =
1

~ω
2

κext

Pout

gain
(2.34)

In practice, in most measurements ω À ∆ω and so when it is convenient we

may replace ~ω with ~ωSMR in equations (2.33) and (2.34).

It is also useful to square the magnitude of both sides of equation (2.27) in

order to express the power transmitted by the SMR. Considering also loss in signal

lines and gain of amplifier we have

Pout = Pin · loss · κ2
ext

κ2 + 4∆ω2
· gain (2.35)

The standing wave within the SMR consists of a wave traveling back and forth

in phase, losing a fraction of power at each end and in the internal ohmic losses,

balanced by the microwaves admitted at the drive end. To determine this circulating

power, consider microwaves within the SMR, of power PSMR impinging on the “load

impedance” formed of Cκ and RL at the amplifier end. From equations (2.6) and

(2.7) it is clear that the power deposited into the load will be PSMR · (1−|Γ2|). This

power should be equal to the measured power Pamp = Pout/gain. For ZL = 1
iωC

+RL

and Γ =
ZL−Z′0
ZL+Z′0

we have

Γ =
1 + iωC(RL − Z ′

0)

1 + iωCκ(RL + Z ′
0)

Taking |Γ|2, Taylor-expanding the denominator, multiplying through and re-

taining the lowest order terms yields

|Γ|2 = 1− 4ω2C2
κRLZ ′

0
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Comparing to equations (2.25) and (2.20) we find

Pamp =
nπ

Qext

PSMR

Therefore the circulating power in the SMR is

PSMR =
Qext

nπ
· Pout

gain
(2.36)

=
Qext

nπ
Pin · loss · κ2

ext

κ2 + 4∆ω2
(2.37)

where n is the order of the resonance; typically we will work with the lowest-

order (half-wave) resonance, so that n = 1.

From equation (2.37) we can also determine the amplitude |V +
SMR| of the trav-

eling wave within the SMR. Using |V +
SMR| =

√
2Z ′

0PSMR and P0 = Pin · loss =
V 2
0

2RL
,

we have

|V +
SMR| =

√
Qext

nπ

Z ′
0

RL

· κext√
κ2 + 4∆ω2

· V0 (2.38)

Because Γ ' 1, at the voltage antinode at the ends of the SMR (where we place

our NR) the local voltage will be 2|V +
SMR|. This is the amplitude of the standing

wave voltage in the SMR. By using equation (2.15) to substitute for Z ′
0 and using the

definitions of Qext and Z0, we can see that 2|V +
SMR| is identical to VSMR as defined

in equation (2.26).

The current of the traveling wave in the SMR can be seen from equation (2.5)

to be

|I+
SMR| =

|V +
SMR|
Z ′

0

(2.39)

As with the standing wave voltage, the amplitude of the standing wave current

in the SMR is equal to 2|I+
SMR|.
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2.3 Design of coplanar waveguide

Coplanar waveguide (CPW) is a very convenient type of transmission line to

form the SMR because it is two-dimensional, can be microfabricated easily in a

single lithographic layer, concentrates most of the RF electric field in a very small

region between the centerline and groundplane, and isolates the RF region extremely

well via the groundplane. This isolation permits, for instance, forming tight curves

and meanders of the CPW with only minimal effect on the behavior. [12] CPW is

thus preferable in comparison to other structures such as microstrip and stripline.

CPW supports quasi-TEM electromagnetic waves. Approximate analytical

solutions for Z ′
0, C ′ and L′ in CPW may be found in books such as references [13]

and [14]. As these involve elliptical integrals their presentation here will not shed

much useful light on CPW design, and we instead offer a few rules of thumb:

A photograph of microfabricated CPW appears in figure 2.5. In designing

CPW, the critical dimensions are the width of the centerline wCPW and the gap

between centerline and groundplane dCPW . In particular the waveguide parameters

Z ′
0, C ′ and L′ scale with the ratio wCPW

wCPW +2dCPW
, so the CPW may be shrunk or

enlarged yet have the same electrical behavior. The thickness of the conductor is

typically much smaller than the other dimensions and has negligible effect. If both

wCPW and dCPW are much smaller than the substrate thickness then the latter

can be considered infinite and neglected. As a general rule of thumb for design,

decreasing wCPW

wCPW +2dCPW
lowers C ′ and increases Z ′

0. In practice Z ′
0 < 100Ω is easily

achievable but to achieve larger Z ′
0 approaching 200Ω, dCPW must be made so wide
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or wCPW so narrow that the CPW loses its favorable characteristics in comparison

to microstrip. The phase velocity is well approximated by

vph =
c√

(εr + 1)/2

where c is the speed of light and εr is the relative dielectric constant of the substrate.

In silicon εr is about 12.

As can be seen in figure 2.1, we design the chip to have at each end a bond pad

for wire-bonding the CPW to the microstrip transmission line on the sample box.

To avoid step-changes in Z ′
0 we progressively transition the geometry from CPW to

microstrip over a 1 mm distance.

The ohmic dissipation R′ of the waveguide is minimized by using a supercon-

ducting metal on a low-loss substrate. Dissipation in superconducting CPW should

be limited by dielectric losses, the fraction of normal-state conductors in the super-

conductor, and other loss mechanisms such as the motion of trapped magnetic flux

vortices. These mechanisms have been the subject of many recent studies such as

[11], [15], [12] and [16].

2.4 Nanomechanical resonator coupled to SMR

In this dissertation, we employ the SMR as a detector of mechanical motion

and explore the backaction of the measurement on the motion. We would like to

identify a measured signal that is directly related to the amplitude of the nanome-

chanical resonator’s oscillation. Here we present a classical derivation based on the

circuit model of section 2.2. Although this derivation does not explicitly incorpo-
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Figure 2.5: Microphotograph of coplanar waveguide. Centerline (width
wCPW ) and centerline-to-groundplane gap (dCPW ) are clearly distin-
guishable. Also visible is the interdigitated capacitor comprising Cκ.
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rate backaction effects, it is useful in being completely comprehensible in terms of

simple circuit theory, and it gives a precise value for measurable signal amplitude in

terms of the NR oscillation amplitude. If backaction is present, the expressions for

signal amplitude remain accurate as long as the backaction effects are independently

incorporated into the NR behavior.

We return to the derivation presented in section 2.2.2 for the voltage in the

SMR, and introduce the motion of the NR. The capacitance Cg is a function Cg(x)

of the nanoresonator position x. We take the NR to be oscillating at its resonant

frequency ωNR with an amplitude x0 that is much smaller than the gap d between

the NR and the opposing gate electrode. Thus we can approximate Cg as

Cg = Cg(0) +
∂Cg

∂x
x0 cos(ωNRt + φNR)

Given Ctot = C + 2Cκ + Cg and ωSMR = 1√
LCtot

, we can expect the resonant

frequency of the SMR to oscillate at frequency ωNR. For small x0 amplitude we can

use a Taylor-expansion to approximate the oscillating ωSMR(t). We take the partial

derivative

∂ωSMR

∂x
= −ωSMR

1

2C

∂Cg

∂x
(2.40)

where here ωSMR represents the value of the SMR frequency for x0 = 0, and

for simplicity the equilibrium value of Ctot is approximated as C. Then to first order,

the oscillating ωSMR(t) is:

ωSMR(t) = ωSMR

(
1− 1

2C

∂Cg

∂x
x0 cos(ωNRt + φNR)

)
(2.41)

This suggests one way to measure the motion of the NR, by measuring the

oscillation frequency of the SMR. If the SMR is driven on resonance, and if the
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oscillation amplitude of ωSMR(t) is ¿ κ, the instantaneous phase of the response

should follow the instantaneous value of ωSMR(t) and therefore the instantaneous

amplitude of the NR. This method was pursued by Regal et al. [17] in a system very

similar to ours and using a homodyne detection scheme. They fed the response of

their SMR+NR system into a phase-discriminating (“I-Q”) microwave mixer, with

a the pump signal used as a reference. The portion of the response that was out-of-

phase with the reference was a direct measure of the phase of the system response

and therefore of the time-varying SMR frequency. This time-varying phase output

could also be examined on a spectrum analyzer to distinguish the noise spectrum of

thermally-driven mechanical motion. These researchers reported that this detection

scheme was susceptible to material-dependent noise in the frequency of the SMR

(“phase noise”) due to small fluctuations in the dielectric constant of the substrate.

However, the ωNR ¿ κ of their device did make it particularly suited for a time-

domain measurement. For devices having ωNR À κ such as the one we have used,

the situation is somewhat different. The time constant of the SMR is 1
κ
, whereas the

NR oscillates with period 2π
ωNR

which is < 1
κ
. The microwave resonator is too “slow”

to respond instantaneously to the NR motion, and the phase of the driven SMR

response does not accurately represent the instantaneous amplitude of the NR.

2.4.1 Differential equation for sideband voltage

Instead of observing the NR motion in the time domain, we may observe it in

the frequency domain. From equation (2.41) and equation (2.27) it is evident that
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the system response oscillates at ωNR while the drive oscillates at pump frequency

ωp and thus the emitted voltage will contain terms ∼ cos(ωNRt)cos(ωpt), which

decompose into terms oscillating at ωp ± ωNR. To calculate the expected signal we

must solve for the voltage within the SMR. As discussed in section 2.2 and depicted

in figure 2.4, the microwave pump signal can be expressed as an equivalent current,

which we will take here to be oscillating at frequency ωp with amplitude I0,eq. Thus

the pump signal is I0,eq cos(ωpt). This current must equal the sum of the currents

through all of the parallel components. Thus

I0,eq cos(ωpt) =
∂

∂t
(CtotV ) +

1

Rtot

V +
1

L

∫
V dt

where 1
Rtot

= 1
R

+ 2
RL,eq

. We wish to solve for the voltage V (t) within the SMR.

Differentiating once and plugging in our expression for Cg we have the differential

equation

−I0,eqωp sin(ωpt) = V

(
1

L
− ω2

NR

∂Cg

∂x
x0 cos(ωNRt + φNR)

)

+ V̇

(
1

Rtot

− 2ωNR
∂Cg

∂x
x0 sin(ωNRt + φNR)

)

+ V̈

(
Ctot +

∂Cg

∂x
x0 cos(ωNRt + φNR)

)

Rearranging and substituting definitions of Z0, C, κ and ωSMR yields

−I0,eqZ0ωp sin(ωpt) = ωSMRV

(
1−

(
ωNR

ωSMR

)2
1

C

∂Cg

∂x
x0 cos(ωNRt + φNR)

)

+
κ

ωSMR

V̇

(
1− 2

ωNR

κ

1

C

∂Cg

∂x
x0 sin(ωNRt + φNR)

)

+
1

ωSMR

V̈

(
1 +

1

C

∂Cg

∂x
x0 cos(ωNRt + φNR)

)
(2.42)
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The second term in each parentheses is necessarily small, because Cg ¿ C

and therefore 1
C

∂Cg

∂x
x0 ¿ 1. Note that if we ignore all of these small-valued terms,

i.e. we set x0 = 0, we can substitute the definitions of I0,eq, Z0, κext, and ωSMR,

to readily find the voltage oscillating at ωp. The result is identical in magnitude

and phase to the previous solution, equation (2.26). Thus the NR motion should

make only a negligible change in the voltage amplitude at ωp, but we would like to

find the voltages oscillating at the sum frequency ωs = ωp + ωNR and the difference

frequency ωd = ωp − ωNR. We thus expect the solution to have the form

V (t) = Vpcos(ωpt + φp) + Vscos(ωst + φs) + Vdcos(ωdt + φd) (2.43)

2.4.2 Solution for sideband voltage

By solving the differential equation, we can find the amplitude and phase of

the sidebands. Conceptually we can think of the SMR-NR system as amplitude-

modulating the transmitted pump signal. The SMR resonance further affects the

amplitude of the sidebands generated this way.

We take V̇ and V̈ of trial solution (2.43) and plug into (2.42). We collect terms

and consider only the terms oscillating at ωd or ωs. Neglecting terms oscillating at
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all other frequencies and neglecting as well any terms of order
(

ωNR

ωSMR

)2

, we have

0 = ωSMR (Vs cos(ωst + φs) + Vd cos(ωdt + φd))

− κ

ωSMR

(ωsVs sin(ωst + φs) + ωdVd sin(ωdt + φd))

− 1

ωSMR

(
ω2

sVs cos(ωst + φs) + ω2
dVd cos(ωdt + φd)

)

− ωp

ωSMR

ωpVp
1

C

∂Cg

∂x
x0 cos(ωpt + φp) cos(ωmt + φm)

+ 2
ωNR

ωSMR

ωpVp
1

C

∂Cg

∂x
x0 sin(ωpt + φp) sin(ωmt + φm)

Applying the trigonometric identities cos θ1 cos θ2 = 1
2
(cos(θ1 − θ2) + cos(θ1 + θ2))

and sin θ1 sin θ2 = 1
2
(cos(θ1 − θ2)− cos(θ1 + θ2)), we find that we can further ne-

glect terms of order ωNR

ωSMR
. We approximate (ωSMR − ωs

ωSMR
ωs) as 2(ωSMR − ωs) and

(ωSMR − ωd

ωSMR
ωd) as 2(ωSMR − ωd), and separate into two equations oscillating at

ωs and ωd:

Vs

(
2(ωSMR − ωs) cos(ωst + φs)− κ

ωs

ωSMR

sin(ωst + φs)

)

=
1

2

ωp

ωSMR

ωpVp
1

C

∂Cg

∂x
x0 cos(ωst + φp + φm)

Vd

(
2(ωSMR − ωd) cos(ωdt + φd)− κ

ωd

ωSMR

sin(ωdt + φd)

)

=
1

2

ωp

ωSMR

ωpVp
1

C

∂Cg

∂x
x0 cos(ωdt + φp − φm)

To proceed, we approximate ωp

ωSMR
= 1, ωs

ωSMR
= 1 and ωd

ωSMR
= 1. We denote

∆ωd = (ωd − ωSMR), ∆ωs = (ωs − ωSMR) and ∆ωp = (ωp − ωSMR). From equation

(2.26), Vp and φp are known: Vp = I0,eqZ0ωp
1√

κ2+4∆ω2
p

and tan φp = −2∆ωp/κ. We

then have solutions for the amplitude and phase of the upper and lower sideband

voltages produced by the mechanical motion. Approximating ωp ' ωSMR and using

27



the definitions of I0,eq and Z0 we find the sideband voltages within the SMR:

Vs = − 1

C

∂Cg

∂x
x0 ·

√
κext

2RLC
· ωSMR√

κ2 + 4∆ω2
s

· 1√
κ2 + 4∆ω2

p

· Vp,0 (2.44)

φs = arctan

(
κ

2∆ωs

)
− arctan

(
2∆ωp

κ

)
+ φm (2.45)

Vd = − 1

C

∂Cg

∂x
x0 ·

√
κext

2RLC
· ωSMR√

κ2 + 4∆ω2
d

· 1√
κ2 + 4∆ω2

p

· Vp,0 (2.46)

φd = arctan

(
κ

2∆ωd

)
− arctan

(
2∆ωp

κ

)
− φm (2.47)

where Vp,0 is the pump voltage at the input of the SMR (equivalent to V0 in

figure 2.3 b and equation (2.26)). Note that the phase of mechanical motion appears

with opposite sign in the upper and lower sideband signals.

As in section 2.2.2 we can further determine the voltages of the sidebands

emitted by the SMR, and appearing at the input of the amplifier. Here we also use

(2.40) to replace 1
2C

∂Cg

∂x
with −1

ωSMR

∂ωSMR

∂x
.

Vs,amp =
−1

ωSMR

∂ωSMR

∂x
x0 · ωSMR√

κ2 + 4∆ω2
s

· κext√
κ2 + 4∆ω2

p

· Vp,0 (2.48)

Vd,amp =
−1

ωSMR

∂ωSMR

∂x
x0 · ωSMR√

κ2 + 4∆ω2
d

· κext√
κ2 + 4∆ω2

p

· Vp,0 (2.49)

The output power of each sideband can be determined as in equation 2.35.

Note that the mechanical amplitude x0 in equations (2.48) and (2.49) is the peak

amplitude of the NR oscillation. When describing power, it is more convenient to

work in terms of the RMS mechanical oscillation xRMS =
√
〈x2〉 = 1√

2
x0. In this

way the measured sideband power can be directly related to the energy k〈x2〉 in the

mechanical oscillation, where k = mNRω2
NR is the spring constant of the mechanical
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oscillator.

Ps,out = Pp,in · loss(ωp) ·
(

1

ωSMR

∂ωSMR

∂x

)2

· 2〈x2〉 · ω2
SMR

κ2 + 4∆ω2
s

· κ2
ext

κ2 + 4∆ω2
p

· gain(ωs)

(2.50)

Pd,out = Pp,in · loss(ωp) ·
(

1

ωSMR

∂ωSMR

∂x

)2

· 2〈x2〉 · ω2
SMR

κ2 + 4∆ω2
d

· κ2
ext

κ2 + 4∆ω2
p

· gain(ωd)

(2.51)

Since in general gain and loss may be frequency-dependent, we have explicitly

indicated the frequencies. This can be relevant in analyzing measured data.

2.4.3 Solutions if sideband frequency equals ωSMR

In most of the measurements in this work, we use ωp = ωSMR ± ωNR, i.e.

∆ωp = ±ωNR. This places one sideband at ωSMR and the other at ωSMR ± 2ωNR.

The sideband at ωSMR will be enhanced by the resonance of the SMR and in the

“good cavity” or “sideband resolved” limit of ωNR > κ, the other sideband will be

suppressed. The suppression of the second sideband is crucial to both backaction

cooling and backaction-evading measurement. In most cases we will be interested in

the sideband appearing at ωSMR and will neglect the suppressed sideband. As we

will see in chapter 3, the optimum frequency for backaction cooling is ∆ωp = −ωNR.

For the specific case of ∆ωp = −ωNR, then the upper (“sum”) sideband falls at

the SMR resonant frequency, i.e. ωs = ωSMR. This configuration appears in figure
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Figure 2.6: Diagram of NR, pump and sideband frequencies if ∆ωp =
−ωNR. Narrow black line is measured S21, i.e. Pp,out/Pp,in of device
depicted in figure 2.1, showing Lorentzian lineshape of SMR response as
in equation (2.35). Horizontal axis is to scale; note the break in the axis.
Vertical heights of pump and sidebands are not to scale; the size of the
suppressed sideband at ωSMR − 2ωNR is greatly exaggerated.
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2.6. We can state the sideband voltage and power in this case:

Vs,amp =
−1

κ

∂ωSMR

∂x
x0 · κext√

κ2 + 4∆ω2
p

· Vp,0 (2.52)

Ps,out = Pp,in · loss(ωp) ·
(

1

κ

∂ωSMR

∂x

)2

· 2〈x2〉 · κ2
ext

κ2 + 4∆ω2
p

· gain(ωSMR) (2.53)

If instead ∆ωp = +ωNR, then the “difference” frequency ωd equals ωSMR. The

upper sideband is suppressed, and the voltage and power in the lower sideband will

be identical to equations (2.52) and (2.53).

Equations (2.48) through (2.53) offer us a set of expressions to precisely relate

measured signal levels directly to mechanical motion of the NR. We derived these

expressions classically, so they do not include quantum effects nor do they explicitly

include the effects of measurement backaction on the mechanical motion. All of the

measurements in this work are in the classical limit, and in many of our measure-

ments, the backaction is negligible. In the case where backaction is strong, these

expressions remain valid if we incorporate the effects of backaction independently

into the values of ωNR and 〈x2〉.
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Chapter 3

Theory and Literature Review: Backaction and Related Effects

Although a classical framework serves for the majority of the analyses and

derivations in this dissertation, it is worthwhile to present the hamiltonian of our

parametrically coupled SMR-NR system: [18], [19], [20]

Ĥ = ~
(

ωSMR + gx̂− λ

2
x̂2

)(
b̂†b̂ +

1

2

)
+~ωNR

(
â†â +

1

2

)
+Ĥpump+Ĥκ+ĤΓ (3.1)

Where

g = ∂ωSMR

∂x
is the 1st-order coupling of SMR to NR.

λ = ωSMR

2C

∂2Cg

∂x2 is the 2nd-order coupling.

x̂ = ∆xZP (â† + â) is the amplitude of NR motion.

b̂ (b̂†) are the lowering (raising) operators of the SMR.

â (â†) are the lowering (raising) operators of the NR.

Ĥpump represents the microwave pump.

Ĥκ represents SMR damping.

ĤΓ represents NR damping.

The term ~gx̂ · b̂†b̂ shows the parametric coupling (also commonly described

as a “ponderomotive” or Kerr-type coupling) of the SMR frequency to the mechan-

ical motion, discussed classically in section 2.4. This interaction becomes critical to

backaction damping and cooling of the NR motion, discussed below in section 3.1.3.

The term ~λx̂2 · b̂†b̂ on the other hand results from the shifting of the NR frequency
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due to energy in the SMR. Under the right conditions, this will lead to paramet-

ric amplification of the NR, as described below in section 3.5. This behavior will

ultimately place a limitation on the potential of our system for backaction evading

measurement.

3.1 Backaction damping and cooling

Preparing a mechanical oscillator of frequency ωm in its quantum ground state

remains an experimental challenge. The average mechanical energy k〈x2〉 must be

suppressed below a single quantum ~ωm. However, one must overcome the harmonic

oscillator’s coupling to its thermal environment, or “thermal bath”, of temperature

T . As a single mode with equal-spaced energy levels, we expect the oscillator to

follow Bose-Einstein statistics, having average thermal occupation n̄th = (e~ωm/kBT−

1)−1. At temperatures T À ~ωm

kB
, we can approximate the thermal energy as k〈x2〉 =

kBT = n̄th~ωm, but to reach the regime of the ground state, the temperature must

be made < ~ωm

kB
, and this defines the experimental difficulty. For instance, for

ωm = 2π · 1MHz, this temperature is equivalent to ~ωm

kB
= 0.05 mK. The “brute

force” approach is to cool the environment itself by techniques such as dilution

refrigeration. To date the best achieved by this method was to cool a 21.8 MHz

nanomechanical resonator to ∼ 26mK, or n̄th ' 25 [3]. Alternatively, if the mode’s

mechanical quality factor is large, then its coupling to the thermal bath is weak.

The mode can then be cooled below the thermal bath temperature by bringing it

out of equilibrium with the environment. By coupling it strongly to another system
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which extracts energy from it, the average energy of the mode is suppressed while

the mechanical structure itself remains at the bath temperature.

Historically, backaction cooling of the motion of a single mechanical mode to

its ground state was first demonstrated for the motion of a single ion trapped in a

harmonic potential. [21] [22]. The harmonic motion of trapped charges in an elec-

tromagnetic trap, and the coupling of the motion to the thermal environment, was

a well-studied phenomenon [23] [24]. To reduce the energy of the ions to the ground

state, researchers led by D. Wineland adopted the doppler-cooling technique previ-

ously developed for neutral atoms [25]. In an electromagnetic trap, the harmonic

motion of the ion at frequency ωv doppler-shifts the frequencies of its atomic transi-

tions. The spectral line of an atomic transition at frequency ω0 acquires sidebands

at frequencies ω0 ± ωv, very similarly to our SMR-NR system discussed in section

2.4. By exciting the transition at ω0 − ωv with an applied laser, while permitting

the ion to emit at ω0, the ion is made to lose an energy ~ωv with each transition.

For successful cooling, it was found to be critical that the system be in the “resolved

sideband” limit, where the linewidth κ of the atomic transition is ¿ ωv. The quan-

tum number of the ion’s motion can then reach a theoretical limit n̄ ' (κ/2ωv)
2.

Using either stimulated Raman transitions or single-photon transitions, researchers

in references [21] and [22] were able to cool a ωv = 3 to 30 MHz mechanical mode to

a quantum occupation n̄ < 0.1. Such well-controlled state-preparation of trapped

ions has become instrumental in quantum measurements of trapped ions and in

designs for using trapped ions as qubits. [26]
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3.1.1 Classical analysis

Schemes for using the backaction of a radiation field to damp and cool the mo-

tion of a micromechanical or nanomechanical oscillator adapt this concept to much

larger mass and size scales. [27] Rather than an atomic transition, the resonance of

an optical or RF cavity is employed to extract energy from the mechanical motion.

The concept is seen most readily if we consider an optical cavity one end of which

is a mirror fixed to a mechanical resonator. [28] Light circulating within the cavity

exerts a “ponderomotive” force on the mirror due to radiation pressure. As each

photon of frequency ω bounces off of the mirror, its momentum changes by 2~ω/c,

and therefore for a power P circulating in the cavity, the mirror experiences a force

Frad = 2P/c. A harmonic oscillator subject to this force and to thermal forces Ftherm

has an equation of motion mẍ + mΓẋ + kx = Ftherm + Frad. If the mirror is oscil-

lating at frequency ωm, the resonant frequency of the cavity ωc oscillates along with

it. A fixed-frequency off-resonance optical drive (“pump signal”) ωpump is therefore

brought slightly closer and slightly farther away from resonance each cycle. This

means that the amount of power admitted to the cavity and therefore a portion

of Frad will oscillate at ωm. Yet the ring-up time κ of the cavity ensures that the

oscillating radiation-pressure force lags the motion slightly. If the oscillating motion

of the mirror is x = x0 cos(ωmt), then the oscillating radiation-pressure force will

have components both in-phase and out-of-phase with x. The in-phase component

will appear as an extra contribution to the restoring-force (kx) term in the equation

of motion, leading to a shift in the mechanical resonance frequency (“optical spring”
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effect). The out-of-phase component on the other hand will appear as an extra con-

tribution to the mΓẋ damping term (“optical damping” effect). The optical spring

and optical damping can be either positive or negative: for a red-detuned pump

(ωpump < ωc), the phase lag leads to total work per cycle
∮

Fraddx < 0, meaning

the radiation-pressure force does negative work on the mechanical resonator, i.e.

positive damping. For a blue-detuned pump (ωpump > ωc), the opposite is true: the

radiation-pressure force does positive work, amplifying the mechanical motion, i.e.

negative damping. (A good illustration of this may be seen in figure 1 of Ref. [29].)

The lag in the response of the force is the key to the damping effect. While in

a later discussion we describe quantum analyses ([19] [30] [31] [32]), here we summa-

rize some results of classical theory. In general any delay mechanism may produce

similar damping behavior. One demonstration of optical damping has employed

the photothermal force due to differential thermal expansion of a gold film on a

silicon micromechanical resonator. [33] The energy extraction, i.e. cooling, due to

such damping mechanisms will be limited by the power absorbed as heat into the

mechanical resonator. Only damping derived from non-dissipative interactions with

the electromagnetic field, i.e. radiation pressure or electromagnetic forces, can offer

the prospect of cooling the mechanical mode into its quantum ground state. Xue et

al. [34] have analyzed a coupled NR-SMR system nearly identical to ours. By intro-

ducing a delay 1−e−κt/2 into the electrostatic force on the NR due to the voltage on

the SMR, they find behavior identical to that of radiation pressure acting on a mov-

ing mirror in an optical cavity. Damping increases the mechanical linewidth ΓNR to

Γeff
NR, and shifts the frequency ωNR to ωeff

NR. If the un-damped mechanical resonator
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has a temperature T0, and defining the mechanical mode temperature TNR = k〈x2〉
kB

,

they find the spectral density Sx of position noise (note that we use throughout this

work a convention of single-sided spectral densities)

Sx =
4kBT

k

ω2
NRΓNR

(ω2 − (ωeff
NR)2)2 + (Γeff

NRω)2

Integrating to find 〈x2〉 =
∫∞

0
Sx

dω
2π

and therefore to find TNR, they conclude

that

TNR ' T0
ΓNR

Γeff
NR

(3.2)

In this analysis, the authors assume that ωNR ∼ κ, and in fact conclude that

the optimum cooling occurs for detuning ∆ω = ωNR/2, and ∆ω = κ/4. These

conditions hold for the so-called “bad cavity” regime, in which κ & ωm. A full

quantum analysis of this regime has also been done by Paternostro et al., for the

case of the moving mirror at one end of an optical cavity. [35] Cooling in the

“bad cavity” regime, however, will start to break down as the mechanical energy

approaches one quantum. As will be discussed below, the “resolved sideband” or

“good cavity” regime, ωNR > κ, offers the prospect of cooling the mechanical motion

well below its quantum ground state.

3.1.2 Recent work in the field

Early implementations of backaction cooling were developed more than a

decade ago to improve the sensitivity of resonant-bar gravitational-wave antennas by

suppressing their Brownian motion. Blair et al. [36] studied ∼700 kHz mechanical

modes of a 1300 kg niobium bar with a 10 GHz superconducting RF cavity attached
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to one end so that vibrations of the bar modulated the resonant frequency of the

cavity. By driving the cavity off-resonance with RF power up to -12 dBm, they were

able to suppress the mechanical amplitude from an ambient temperature of 5 K to a

mode temperature of 2 mK. They found that further cooling was limited by an un-

desired backaction driving effect due to amplitude noise in their microwave source.

(Similar effects are discussed below in section 3.3.) A more recent demonstration of

backaction cooling of a macroscopic mechanical resonator was done by Brown et al.

[37], who demonstrated RF backaction cooling in the non-sideband-resolved regime,

using a 1 mm-long mechanical resonator of frequency 7 kHz, coupled to a 100 MHz

resonant RF cavity having κ ' 2π × 430 kHz.

For micro or nanomechanical resonators, active interest in backaction cooling

began earlier this decade, and initial demonstrations used non-sideband-resolved

devices. Gigan et al. [38] [39] cooled a 280 kHz mechanical resonator from room

temperature to 8K, while Arcizet et al. [40] cooled a 814 kHz microresonator to

about 10K. A related technique was reported by Naik et al. [41] [3] who used the

backaction of shot-noise in charge motion through a superconducting single-electron

transistor to cool the 21.9 MHz fundamental mode of a nanomechanical resonator

from a starting temperature of 550 mK to a final mode temperature of 300 mK.

In more recent work, most researchers have improved their devices to operate in

the sideband-resolved regime. Gröblacher et al. have used the most “conventional”

geometry for their cooling experiments, i.e. a free-space optical cavity of linear

geometry, with a mechanically-resonant mirror at one end. With this system they

cooled the 945 kHz fundamental mechanical mode of a 100-micron-long resonator
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having a high-reflectance mirror attached to it. Starting from a cryostat temperature

of 5.3 K, they achieved a backaction-cooled mode temperature of 1.5 mK, or ∼ 32

mechanical quanta. [42]

Schliesser et al. [43] have reported optical backaction cooling on the motion of

a radial breathing mode of a silica microtoroid that also functions as a whispering-

gallery-mode optical cavity. Laser power is coupled into the optical resonator by

the evanescent mode of an optical fiber, and radiation pressure acts radially on the

structure as the light circulates. Initial measurements cooled the 58 MHz mechanical

mode from room temperature to 11 K, or ∼ 400 quanta. Later measurements

extended this system into the sideband-resolved regime, and achieve higher cooling

powers, broadening the mechanical linewidth of a 74.5 MHz mechanical mode up to

1.5 MHz. [44] This work was later improved by performing it in a 1.6 K cryostat.

This lower starting temperature enabled a 65 MHz mechanical mode to be cooled

to an occupation of ∼ 63 quanta. [45] Park and Wang [46] recently demonstrated a

similar interaction between mechanical modes and whispering-gallery optical modes

of a silica microsphere. By making the sphere slightly prolate, they were able to

excite its optical modes by evanescent coupling to a free-space laser beam. The

optical resonance of a 26.5 micron sphere had κ = 2π · 29.7 kHz and permitted

cooling of its 118.6 MHz mechanical mode by a factor of 6.6 starting from 1.4K,

achieving an occupation of ∼ 37 mechanical quanta.

Thompson et al. [47] have demonstrated yet another technique in which a

partially-reflecting membrane resonator is placed within a high-finesse optical cavity.

Radiation pressure then acts on the mechanical resonator from both sides. They
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were able to backaction-cool the 134 kHz mechanical mode to a temperature of 6.8

mK, or ∼ 1080 quanta. This technique also has the advantage that the membrane

may be positioned in the cavity standing wave so that the emitted power is directly

sensitive to the mean squared amplitude 〈x2〉 of the motion. This may ultimately

permit a “quantum non-demolition” measurement of the total energy (see sections

3.4.1 and 3.4.2).

Teufel et al. [48] [49] used a coupled SMR-NR system very similar to our own,

except that the SMR comprised a quarter-wave resonant length of CPW transmis-

sion line. This system operated in the sideband-resolved regime and used backaction

of the microwave field to damp and cool a 1.52 MHz nanomechanical resonator from

the refrigerator temperature of 50 mK to ∼ 10 mK, or an occupation of 140 quanta.

3.1.3 Summary of quantum analysis

Quantum analyses of backaction cooling of a mechanical mode coupled to

an optical cavity have been presented in references [19], [30] and [31], focusing

specifically on the sideband-resolved or “good cavity” regime ωm À κ. Another

valuable quantum analysis appears in Ref. [32], dealing with an SMR coupled to

NR motion via the current in a SQUID embedded in the SMR. Such a system obeys

the same form of hamiltonian as ours does in equation (3.1), with the g coupling

in the ~gx̂ · b̂†b̂ term deriving from the magnetic flux and current in the SQUID. It

therefore can be analyzed in a similar way to the optical systems, with the same

results regarding backaction cooling. We will describe here the general concepts of
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Figure 3.1: Schematic energy level diagram for optical backaction cooling
or heating processes. Adapted from Ref. [44].

such analyses and summarize their results.

Figure 3.1 shows a schematic energy level diagram for NR-SMR interactions.

Backaction cooling or heating of the NR may be understood in terms of the Stokes

and anti-Stokes scattering processes familiar from atomic and molecular physics.

Pumping the SMR mode with a photon of energy ~(ωSMR − ωNR) (“red detuning”,

anti-Stokes process) or energy ~(ωSMR + ωNR) (“blue detuning”, Stokes process)

excites the coupled SMR-NR system to raise the SMR occupation one quantum

while lowering (raising) the NR occupation one quantum. The excited SMR mode

then decays, with the large density of states at the SMR resonance favoring decay

by an amount ~ωSMR. The SMR returns to its initial state but the NR is left with

one less (more) quantum than before. Repetition of the anti-Stokes (Stokes) process

cools (heats) the NR. Intuitively, we expect the repetition rate, and thus the cooling

or heating rate, to scale with the number of incident scattering photons, i.e. the
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total number of photons in the cavity.

Anti-Stokes

∣∣∣nSMR, nNR

〉
−→

∣∣∣(nSMR + 1), (nNR − 1)
〉

(excitation)

∣∣∣(nSMR + 1), (nNR − 1)
〉
−→

∣∣∣nSMR, (nNR − 1)
〉

(decay)

Stokes

∣∣∣nSMR, nNR

〉
−→

∣∣∣(nSMR + 1), (nNR + 1)
〉

(excitation)

∣∣∣(nSMR + 1), (nNR + 1)
〉
−→

∣∣∣nSMR, (nNR + 1)
〉

(decay)

Figure 3.1 also illustrates the advantage of working in the sideband-resolved

regime ωNR À κ. SMR linewidth κ represents broadening of the energy levels; if

ωNR ¿ κ then the
∣∣∣(nSMR + 1), (nNR − 1)

〉
and

∣∣∣(nSMR + 1), (nNR + 1)
〉

levels

overlap; there becomes a sizable probability that an excitation to the former state

will nonetheless decay to
∣∣∣nSMR, (nNR + 1)

〉
. This also makes sense in terms of

the energy-time uncertainty relationship ∆t∆E ∼ ~, familiar from time-dependent

perturbation theory, considering the decay time of the SMR to be 1
κ
. [50] The

decay to
∣∣∣nSMR, (nNR + 1)

〉
will compete with the anti-Stokes-type cooling process

and diminish the cooling rate. The importance of suppressing this heating behavior

becomes more evident as the mechanical mode approaches its quantum ground state

nNR = 1
2
. As there is no lower energy state of the NR, the anti-Stokes process cannot

extract further energy from the NR, but the competing heating process is unchanged.

We can think of the optical-cooling of the harmonic-oscillator mode of the NR

in terms of a rate equation for energy transfer to and from the mode. A similar

analysis was presented by Naik et al. in regard to backaction cooling of a NR
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mode using the shot noise of charge moving through a single-electron transistor.

[3] The thermal environment, or thermal “bath”, at temperature T , emits energy

to the NR at rate ΓNR · kBT , where ΓNR is the natural, or thermal, linewidth

of the NR. On the other hand the NR mode having total energy ~ωNRn̄NR emits

energy to its environment at a rate equal to Γtot · ~ωNRn̄NR, where Γtot is the total

decay rate due to thermal and all other causes. If the NR mode is in equilibrium

with the thermal bath, then Γtot = ΓNR and n̄NR = n̄T
NR = kBT

~ωNR
. Now introduce

another, “optical” temperature bath kBTopt = ~ωNRn̄opt
NR and damping rate Γopt.

Thus Γtot = ΓNR + Γopt. Then in steady state the emissions to and from the NR

mode balance and we have Γtot · n̄NR = ΓNR · n̄T
NR + Γopt · n̄opt

NR, or

n̄NR =
Γoptn̄

opt
NR + ΓNRn̄T

NR

Γopt + ΓNR

(3.3)

This detailed balance equation balances the emission and absorption processes

in the NR mode. This balance is illustrated in figure 3.2. For the interaction of the

NR with the microwave mode in the SMR, we must determine n̄opt
NR and Γopt. The

NR coupled in this way to the microwave mode will then achieve a mode temperature

TNR = ~ωNR

kB
n̄NR (assuming that n̄NR >> 1 so that we may neglect Bose-Einstein

statistics for the NR mode occupation).

Marquardt et al. [19] have used a quantum noise analysis to find n̄opt
NR and

Γopt in the case of a mechanically-resonant mirror coupled to an optical cavity mode

by radiation pressure. Their results are readily generalized to the SMR-NR system.

Wilson-Rae et al. [30] and Genes et al. [31] have found similar results using a variety

of approaches.
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Figure 3.2: Conceptual illustration of cooling process, showing balance
of energy emission and absorption rates that result in NR mode tem-
perature TNR. The NR is coupled to thermal bath of average energy
kBT = ~ωNR · n̄T

NR at rate ΓNR. In addition, the mechanical mode is
coupled to “optical” bath kBTopt = ~ωNR · n̄opt

NR, at rate Γopt.

The “optical” bath Topt = ~ωNRn̄opt
NR may be thought of as an effective temper-

ature for backaction heating of the NR by the microwave energy in the SMR [19].

This quantifies the effect of the lower-probability decay processes described above

in reference to figure 3.1. n̄opt
NR is the ratio of the rate of transitions that add energy

to the NR mode, to the total optical damping rate. [29] Marquardt et al. find

n̄opt
NR = −(ωNR + ∆ω)2 + (κ/2)2

4ωNR∆ω
(3.4)

where ∆ω = ωSMR − ωpump. For the optimal heating and cooling pump fre-

quencies ωRED = ωSMR−ωNR and ωBLUE = ωSMR + ωNR, i.e. for ∆ω = ∓ωNR, the

optical damping is given by

Γopt = ±4

(
∆xZP

∂ωSMR

∂x

)2
1

κ
n̄SMR · 1

1 + (κ/4ωNR)2
(3.5)

where n̄SMR is the number of photons in the SMR due to the coherent pump

signal. This is consistent with our discussion of transition rates above, which sug-

gested that the cooling rate should scale with the total number of microwave photons
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in the cavity. In equation (3.5), blue pumping yields negative optical damping, and

red pumping yields positive damping. In the sideband resolved limit, equation (3.5)

reduces to approximately

Γopt = ±4

(
∆xZP

∂ωSMR

∂x

)2
1

κ
n̄SMR (3.6)

In this regime we can also consider n̄opt
NR. From equation 3.4 we see that for

∆ω = +ωNR we have n̄opt
NR ' −1 and for ∆ω = −ωNR we have

n̄opt
NR =

(
κ

4ωNR

)2

(3.7)

This dependence on the square of the ratio κ
ωNR

appears also in the limiting

occupation number determined for laser backaction cooling of trapped ions [25]. (In

fact, an exact calculation [29] finds this value of n̄opt
NR in equation (3.7) only for

frequency ∆ω = −ωNR

√
1 + ( κ

2ωNR
)2, but for ωNR >> κ the difference is small

enough to neglect. Also, such a small difference in pump frequency has negligible

effect on the damping rate Γopt and therefore would not be experimentally relevant

until an experiment is in a position to achieve n̄NR < 1.)

Considering the detailed balance equation, Eq. (3.3), we see that in the limit

Γopt → ∞, n̄opt
NR sets a lower limit on the temperature to which the NR mode may

be cooled. This confirms our expectation that sideband-resolved cooling enables

attainment of the lowest occupations. For blue pumping, on the other hand, n̄NR

diverges rapidly as Γopt approaches −ΓNR, and leads to self-oscillation of the NR

when Γtot = Γopt +ΓNR falls below zero. In nearly all cases experimentally, then, we

will have ΓNRn̄T
NR À Γoptn̄

opt
NR, so we may neglect the first term in the numerator of
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equation (3.3). The detailed balance equation reduces to

n̄NR =
ΓNRn̄T

NR

Γtot

(3.8)

This closely resembles the classical result, Eq. (3.2). The more exact quantum

solution, however, predicts maximum cooling for the sideband-resolved regime and

for ∆ω = −ωNR, in contrast to the classical analysis which finds maximum cooling

for κ ∼ ωNR. We do note that Eq. (3.7) predicts a minimum possible cooled n̄NR

of 1
4

even for the non-sideband-resolved condition of κ = 2ωNR. [19]

We can also gain further insights by plugging the expression for n̄SMR (Eq.

(2.33)) into Eq. (3.6):

Γopt = 4

(
∆xZP

∂ωSMR

∂x

)2
1

κ

1

~ωSMR

Pin · loss · 2

κext

· κ2
ext

κ2 + 4∆ω2
(3.9)

By equating k〈x2〉 = n̄NR~ωNR we can express

〈x2〉 = 2n̄NR(∆xZP )2 (3.10)

Comparing to Eq. (2.53) we see that

Psideb = Γoptn̄NR · ~ωSMR · κext/2

κ
· gain(ωSMR) (3.11)

This is exactly what we would expect. The power seen in the sideband equals

the rate Γopt · n̄NR at which photons are upconverted by the scattering process, times

the energy ~ωSMR per upconverted photon, times the fraction κext/2
κ

which emerges

from the SMR into the amplifier.
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3.1.4 Experimental tradeoffs

In the device used for backaction cooling in this dissertation, we had ωNR '

11κ, meaning that the theoretical lower limit to which we could cool would be

n̄NR ' 5 ·10−4. Of course we didn’t get anywhere near this due to other limitations.

In this light it’s worth examining equations (3.6) and (3.8) to see what experimental

adjustments will maximize the cooling power and minimize the NR occupation. We

can further approximate equation (3.8) in the limit Γopt À ΓNR as

n̄NR ' ΓNR

Γopt

n̄T
NR (3.12)

Plugging in the definition of ∆xZP and of ∂ωSMR

∂x
(equation (2.40)) to Eq. (3.6)

we have

Γopt =
~
2

1

mωNR

(
∂Cg

∂x

)2 (ωSMR

C

)2 1

κ
n̄SMR (3.13)

We can further plug in Eq. (2.33) for n̄SMR. Assuming ∆ω = −ωNR, and that

ωNR À κ, we have

Γopt ' ~
mωNR

(
∂Cg

∂x

)2 (ωSMR

C

)2 κext

κ
· 1

4ω2
NR

Pin · loss
~ωSMR

(3.14)

The first thing to note is that there are distinct benefits in increasing the SMR

resonance frequency ωSMR, lowering its capacitance C and diminishing its internal

losses, so that κext ' κ. In practice, lowering the SMR capacitance C can be done by

lowering the line impedance Z ′
0 of the transmission line resonator, or by switching to

a different design in which the SMR is a lumped-element oscillator whose C may be

adjusted more freely. Concerning loss, while losses in the signal lines will generally

be greater at greater frequencies, this probably won’t offset the benefit of increasing
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ωSMR. Decreasing the mass of the NR is beneficial if this can be done without

adversely affecting ∂Cg

∂x
or ωNR. Increasing ∂Cg

∂x
is a challenge in engineering the NR,

as will be seen in the discussion of fabrication, section 4.3. For our NR design, it can

be increased by reducing the gap between the NR and gate electrode across from

it, which both increases Cg and its derivative, or by lengthening the NR to increase

Cg. Lengthening the NR however decreases ωNR proportionally. It would appear

from Eq. (3.14) that reducing ωNR would be very beneficial, as long as we maintain

ωNR > κ, but this is not necessarily so. Comparing with Eq. (3.12) it is evident

that in terms of occupation number, because the thermal bath temperature rather

than n̄T
NR is fixed by the environment, one factor of ωNR will be canceled by the

factor in n̄T
NR = kBT

~ωNR
. The other two factors of ωNR appearing in Eq. (3.14) serve

only to increase n̄SMR by placing the pump frequency closer to the SMR resonance.

However, in practice, unfavorable side effects such as absorption heating of the NR

by microwaves will tend to increase with n̄SMR, so it is often wise to minimize the

n̄SMR that will give a desired level of cooling.

Here Eq. (3.13) is a better guide. Diminishing κ improves the cooling efficiency

for a given n̄SMR, but increases the pump power necessary to achieve that n̄SMR. A

very important consideration in backaction cooling is the off-resonance noise emitted

by commercial microwave sources. In contrast to lasers, microwave sources are

not quantum-limited photon sources, and exhibit a large amount of phase noise

and amplitude noise which will appear as white noise that falls off gradually at

frequencies away from the carrier. For ωpump = ωSMR − ωNR, the noise at ωpump +

ωNR will excite the SMR resonance, leading to backaction driving of the NR that
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competes with the cooling process. (See section 3.3.) The noise level emitted by

the source is lower at a larger amount ωNR away from the carrier, but it also scales

directly with pump power. Section 4.5 describes techniques we have developed to

suppress this noise, up to certain levels of pump power.

It is also important to keep in mind that the expression for the cooling rate,

Eq. (3.6), is based on an assumption of linear coupling between SMR and NR,

which becomes invalid if pump power is increased too far. For instance, attempting

to increase Γopt beyond κ has little benefit, because the system enters a nonlinear

coupling regime, which limits the cooling rate. [19] At high powers, the resulting

large shifts in SMR frequency due to SMR-NR coupling can also lead to nonlinear

effects. While the measurements described here do not enter such a regime, future

experiments probably will. It is possible to quantify these effects by finding expres-

sions for Γopt that include higher-order coupling terms. [32] These considerations

therefore emphasize the value of starting at a low thermal occupation n̄T
NR of the

resonator. Thus because many of these various parameters also present fabrication

and testing challenges (for instance, whether or not a microwave source is available

to operate at ωSMR), the correct trade-offs are not always clear when designing a

device.

3.2 Shift in NR frequency by optical spring effect

In addition to adding or subtracting damping from the NR mode, the electro-

magnetic field within the SMR also shifts the equilibrium position of the NR, and

49



shifts its resonance frequency. As described classically in section 3.1.1 for the case of

a mechanically-resonant mirror in an optical cavity, the force of the electromagnetic

radiation on the NR will oscillate with the NR motion because it is varying the

resonance frequency of the SMR. The force oscillating in phase with the NR adds

effectively to the kx term in the equation of motion of the NR; this effective change

in the spring constant k modifies the resonance frequency ωNR =
√

k
m

.

To estimate this “optical-spring” effect, Marquardt et al. use a quantum noise

analysis as for calculating the backaction cooling. [19] (Identical results have been

found elsewhere, [31]) They find a shift ∆ωNR in the NR frequency ωNR as a function

of the detuning of the pump ∆ω = ωpump − ωSMR from the cavity resonance:

∆ωNR = 8

(
∆xZP

∂ωSMR

∂x

)2

·n̄SMR·∆ω
κ2 + 4(∆ω2 − ω2

NR)

(κ2 + 4(∆ω − ωNR)2) · (κ2 + 4(∆ω + ωNR)2)

(3.15)

We note that in the special case where ∆ω = ±ωNR

√
1 + (κ/2ωNR)2, the

optical-spring frequency shift ∆ωNR will be zero. For a sideband-resolved device,

this condition occurs when ∆ω ' ±ωNR.

The optical damping of the NR Γopt may also be expressed as a function of

∆ω. Marquardt et al. [19] find

Γopt = −8

(
∆xZP

∂ωSMR

∂x

)2

· n̄SMR · 8∆ω · ωNR · κ
(κ2 + 4(∆ω − ωNR)2) · (κ2 + 4(∆ω + ωNR)2)

(3.16)

In the case ∆ω = ∓ωNR, this reduces to equation (3.5). Marquardt et al.

also express the optical damping and optical-spring frequency shift compactly in a

convenient notation based on the response function of the optical cavity.
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3.3 Backaction cooling while the SMR is thermally excited

Equation (3.3) allows us to consider two distinct cooling regimes. As described

in section 3.1.3, when we consider that the SMR is excited only by a pump tone

(and its associated shot noise), then for a sideband-resolved system n̄opt
NR ¿ 1. In

practice then we may neglect n̄opt
NR altogether.

However, if the SMR is excited by a second source of broadband classical noise

the situation is different. An SMR driven by photons of both energy ~(ωSMR−ωNR)

and ~ωSMR enables transitions that emit quanta at the difference energy, i.e. ~ωNR,

thereby adding energy to the NR mode. This backaction heating process is distinct

from the undesired transitions discussed in section 3.1.3, which set lower limits

on n̄opt
NR as indicated in Eq. (3.4). Here the rate of the heating process will be

proportional to the photon flux at ωSMR.

One process that introduces such photons is thermal excitation of the SMR

above its ground state, i.e. Johnson noise within the SMR. In practice we may

treat any process that drives the cavity with broadband noise at frequencies near

ωSMR as if the SMR were thermally excited. We let n̄T
SMR represent the average

thermal occupation of the SMR. The actual source may be Johnson noise originating

in other components of the system, or phase noise of the microwave source, or RF

noise deliberately introduced to the SMR as in the demonstration of backaction

evasion: all will excite the SMR above its ground state to a level we will denote

n̄T
SMR. Phase noise in the microwave pump source is of particular interest here.

Recent theoretical work looking at the effects of pump phase noise [51] shows that
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as long as Γopt << κ and ωNR >> κ, the effects of phase noise are indistinguishable

from amplitude noise.

We can apply equations (2.31) and (2.32) to noise power densities SN,in and

SN,out rather than single-frequency powers Pin and Pout, and consider ~ωSMR · n̄T
SMR

to be the total energy in the cavity integrated over all frequencies. Then we can

consider the thermal occupation of the SMR to be driven by a white noise (in units

of W/angular frequency)

SN,in =
1

loss
· ~ωSMRn̄T

SMR ·
κ

πκext

(3.17)

The SMR excited to n̄T
SMR will emit a noise spectrum (in units of W/angular

frequency)

SN,out = gain · ~ωSMRn̄T
SMR ·

κ

πκext

· κ2
ext

κ2 + 4∆ω2
(3.18)

The thermal occupation of the SMR may be found from the measured noise

spectral density SN,out(ωSMR) (in units of W/angular frequency) at the SMR peak

frequency:

n̄T
SMR =

1

~ωSMR

· πκ

κext

· 1

gain
SN,out(ωSMR) (3.19)

If SN,out(ωSMR) instead has units of W/Hz (which are the typical measurement

units on a spectrum analyzer) then equation (3.19) should be divided by 2π.

A. Clerk has extended the theoretical calculation of Ref [19] to include the

case where the SMR is excited to thermal occupation n̄T
SMR. [52]. He finds that

the optical damping (equation (3.6)) and the detailed balance expression (equation

(3.3)) remain valid to describe the cooling process, but that the effective backaction
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temperature is given by

n̄opt
NR =

(
κ

4ωNR

)2

+ n̄T
SMR

(
1 + 2

(
κ

4ωNR

)2
)

(3.20)

In the sideband resolved limit, we then have approximately n̄opt
NR = n̄T

SMR.

Considering this in equation (3.3) it is important to note that the NR occupation

n̄NR can never be lower than n̄T
SMR.

When n̄T
SMR > 0, the resulting backaction driving of the NR will produce a

sideband signal at ωSMR that is coherent with but 180 degrees out of phase with the

SMR noise at ωSMR. (This will be discussed further in section 3.4.) The sideband

signal due to backaction thus subtracts from the SMR noise at ωSMR while the signal

due to NR thermal noise adds to it incoherently, as illustrated in figure 3.3. This

behavior resembles the “noise squashing” that has been seen in feedback cooling of

some optomechanical systems. [53] The calculation in Ref. [52] finds the spectral

solution SN,out(δ) (in units of W/angular frequency) at measured frequencies ωSMR+

δ, where δ ¿ κ

SN,out(δ) = gain · ~ωSMR · κext

πκ

(
ΓNRΓopt

4δ2 + Γ2
tot

n̄T
NR +

(
1− Γopt(ΓNR + Γtot)

4δ2 + Γ2
tot

)
n̄T

SMR

)

(3.21)

To find the total measured sideband power, we neglect the term in equation

(3.21) equaling the background level at the SMR resonance frequency (see (3.19))

and integrate: Psideb =
∫

(SN,out(δ)− Sbgd) dδ. Comparing the result to equation

(3.11), we see that when n̄T
SMR > 0, what we actually measure is an effective me-

chanical occupation, n̄eff
NR, given by

n̄eff
NR =

ΓNR

Γopt + ΓNR

n̄T
NR −

(
1 +

ΓNR

Γopt + ΓNR

)
n̄T

SMR (3.22)

53



a)

−400 −200 0 200 400

2
4
6
8

δ / Γ
NR

2
4
6
8

N
or

m
al

iz
ed

 S
N

,o
ut 2

4
6
8

b)

−10 −5 0 5 10

2
4
6
8

δ / Γ
NR

2
4
6
8

N
or

m
al

iz
ed

 S
N

,o
ut 2

4
6
8

Figure 3.3: Noise spectrum of thermally-excited SMR and NR during
backaction cooling, calculated from Eq. (3.21). Parameters are not
experimental, only for illustration: Γopt = ΓNR, κ = 160ΓNR. Green
curve: backaction only, n̄T

SMR = 5, n̄T
NR = 0. Red curve: thermal noise

only, n̄T
SMR = 0, n̄T

NR = 20. Black curve: n̄T
SMR = 5, n̄T

NR = 20. Noise
spectrum scaled by gain · ~ωSMR · κext

πκ
. a) Wide span showing full span

of emitted SNR thermal noise. Here equation (3.18) has been combined
with (3.21) to calculate the full SMR spectrum. b) Same calculation
over a narrower span showing NR sideband only.
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Here the term ΓNR

Γopt+ΓNR
n̄T

NR represents the NR thermal noise while the term

−
(
1 + ΓNR

Γopt+ΓNR

)
n̄T

SMR represents the backaction signal subtracting coherently from

the SMR noise. Note that for n̄T
SMR = n̄T

NR · ΓNR

ΓNR+Γtot
, no sideband at all will

appear, and for n̄T
SMR > n̄T

NR · ΓNR

ΓNR+Γtot
the sideband will appear as a “dip” in the

SMR noise rather than a peak. We may use Eq. (3.22) along with equation (3.3)

with n̄opt
NR = n̄T

SMR to calculate the actual NR occupation n̄NR during the combined

backaction cooling and backaction excitation due to SMR excitation n̄T
SMR. In terms

of the measured quantities n̄eff
NR and n̄T

SMR we find

n̄NR = n̄eff
NR + 2n̄T

SMR (3.23)

3.4 Backaction-evading (BAE) single quadrature detector

In trying to measure any physical quantity with high precision, one eventu-

ally runs up against limitations imposed by quantum mechanics. Any observable

quantity, represented by a quantum mechanical operator Â, will have a conjugate

observable B̂, for which the uncertainties in the two observables 〈∆A2〉 and 〈∆B2〉

must obey the uncertainty relation [50]

〈∆A2〉〈∆B2〉 ≥ 1

4
|〈[Â, B̂]〉|2 (3.24)

In principle there is no problem in measuring A to arbitrary precision, if you

measure it only once. The complementary observable B absorbs the penalty in

imprecision. But for any practical measurement, in particular in measuring me-

chanical motion, one wants to measure some quantity of the system continuously, or

at least at regular intervals. We often think of measurements in quantum mechanics
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in terms of a process wherein you prepare an ensemble of identical systems in the

same state, and then measure each one to establish the various outcomes and their

probabilities. Here the situation is completely different, because repeated measure-

ments on a single system are not in general independent. Each measurement of A

adds uncertainty to B, and if B is coupled to A in any way then the imprecision of

B will “contaminate” that of A. This is quantum measurement backaction.

3.4.1 Quantum non-demolition (QND) measurements: formalism

We would like to measure mechanical motion in a way that is immune from

such measurement backaction. The trick, then, is to identify observables which are

decoupled from their complementary observables, and figure out how to measure

them. We want to do the measurement in such a way that one measurement does

not add to the uncertainty of later measurements; the measured value is entirely

predictable based on the result of earlier measurements. This is known as a quan-

tum non-demolition (QND) or back-action evading (BAE) measurement. A good

review of the quantum theory involved appears in the paper by Bocko and Onofrio.

[54] Braginsky and Khalili [55] provide a similar discussion, and a further analy-

sis of back-action-evading and quantum nondemolition measurements of mechanical

oscillators appears in the review by Caves et al. [56].

Here it is valuable to employ the “Heisenberg picture” of quantum analysis.

[50] As opposed to the Schrödinger picture in which the state kets evolve in time

while an operator observable Â does not, in the Heisenberg picture the operators
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evolve according to a unitary transformation Â(t) = Û †ÂÛ , where Û is the time-

evolution operator Û = e−iĤt/~ and Ĥ is the system hamiltonian. The state kets

|α〉 representing the state of the system, meanwhile, are time-independent while the

base kets |a〉 (here the eigenstates of operator Â(t)) evolve in time via the conjugate

of the time evolution operator: |a(t)〉 = Û †|a(0)〉. The time evolution of the operator

will follow the Heisenberg equation of motion

d

dt
Â(t) =

∂

∂t
Â(t) +

1

i~
[Â(t), Ĥ] (3.25)

To define the requirements for a QND measurement, consider a system de-

scribed by hamiltonian Ĥ0. To measure observable Â of this system we use a

measurement apparatus described by hamiltonian ĤM . The interaction between

the measurement apparatus and the system is defined by interaction hamiltonian

ĤI , dependent on both Â and on some observable Q̂ of the measurement appara-

tus. Our first measurement at time t0 using operator Â(t0) casts the system into

an eigenstate |a(t0)〉 of Â(t0). But because in the Heisenberg picture the state kets

do not evolve, the system remains in this same state until our next measurement

at time t1. In order for the second measurement using operator Â(t1) (or subse-

quent measurements using Â(tn)) to give predictable results, the system ought to

remain in the same state after the measurement. That means |a(t0)〉 should also be

an eigenstate of Â(t1). This is satisfied if Â(t1) is just a function of Â(t0). That

is, the different-time operators must commute. Thus for a QND observable, the

“different-time commutator” must vanish:

[Â(tm), Â(tn)] = 0 (3.26)

57



In general, Eq. (3.26) may be true only at specific discrete instances. In such

case, Â(t) is a “stroboscopic” QND observable. [54] A more rigorous condition is

to require Eq. (3.26) to be true at all times, making Â(t) a “continuous” QND

observable. If Â(t) does not change at all, i.e. if it is a constant of the motion,

d
dt

Â(t) = 0, then this condition is satisfied. To identify such an observable, we use

the Heisenberg equation of motion (Eq. (3.25)), with Ĥ0 as the hamiltonian. If Â(t)

satisfies the condition

∂

∂t
Â(t) +

1

i~
[Â(t), Ĥ0] = 0

then it is a constant of the free evolution of the system. To measure it, we must

find an interaction hamiltonian ĤI that makes d
dt

Â(t) = 0 still be true even if ĤI is

added to Ĥ0. This is satisfied if Â(t) commutes with the interaction hamiltonian:

[Â(t), ĤI ] = 0 (3.27)

A convenient form for ĤI is to be linearly dependent on both Â and on mea-

surement observable Q̂, with some coupling constant K(t): [54]

ĤI = K(t) · Â(t) · Q̂

3.4.2 Harmonic oscillator quadratures as QND observables

To apply the formalism of QND observables to the harmonic oscillator, con-

sider the hamiltonian of our SMR-NR system, Eq. (3.1). In terms of the notation

used in section 3.4.1, the ~ωSMR

(
b̂†b̂ + 1

2

)
, Ĥpump and Ĥκ terms together comprise

ĤM . The ~ωNR

(
â†â + 1

2

)
term meanwhile is Ĥ0. We will assume that we may ne-

glect the NR dissipation term ĤΓ. In terms of the QND formalism, it is legitimate
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to do so as long as the measurement noise dominates over thermal noise, i.e. if the

measurement exchanges a quantum of energy with the measured system in a time

shorter than n̄T
NRΓNR. In practice, we will see that the backaction-evading nature

of our measurement scheme is valid even if the NR is strongly driven by thermal

noise.

We can go into some further detail on the operators

H0 =
1

2m
p̂2 +

mω2
NR

2
x̂2

x̂ = ∆xZP (â† + â)

p̂ = imωNR ·∆xZP (â† − â)

â =
1

2∆xZP

(
x̂ + i

1

mωNR

p̂

)

â† =
1

2∆xZP

(
x̂− i

1

mωNR

p̂

)

The question is, what can we select as a QND observable, and what ĤI to use

to detect it? One readily appealing QND observable is the average energy in the NR,

ENR = ~ωNRn̄NR. Indeed this is the observable corresponding to the hamiltonian

Ĥ0 itself, so it is thereby a constant of the motion. However, practical measurement

of ENR is very difficult. Classically, the average mechanical energy is proportional

to the squared average position amplitude, ENR = k〈x2〉, as described in section 2.4.

However, as we will see later, the ~λx̂2
(
b̂†b̂ + 1

2

)
term in our system is too weak

for easy measurement of 〈x2〉. Other measurement schemes strongly sensitive to x̂2

have been demonstrated by e.g. Thompson et al. [47], but remain to be perfected.

We could consider position x as a QND observable. Taking the different-time
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commutator we find [54]

[x̂(tm), x̂(tn)] =
i~

mωNR

sin(ωNR(tn − tm))

Evidently, the NR position serves as a QND observable only instantaneously

at time intervals (tn−tm) = π/ωNR and integer multiples thereof. The momentum p

has similar behavior. [54] Thus the position or momentum of the NR can conceivably

be measured in a “stroboscopic” QND fashion, making very brief measurements each

half-cycle of NR motion. This is technically very challenging, and requires a very

large coupling to achieve reasonable sensitivities in this very short duty cycle of

measurement.

Instead, we can define the quadrature amplitudes X̂1 and X̂1 with explicit

time-dependence [54] [55]

(
x̂ + i

1

mωNR

p̂

)
=

(
X̂1 + iX̂2

)
e−iωNRt

Restating, we have

X̂1(t) = x̂ cos(ωNRt)− 1

mωNR

p̂ sin(ωNRt)

X̂2(t) = x̂ sin(ωNRt)− 1

mωNR

p̂ cos(ωNRt)

x̂ = X̂1 cos(ωNRt) + X̂2 sin(ωNRt) (3.28)

p̂ = mωNR

(
X̂2 cos(ωNRt)− X̂1 sin(ωNRt)

)

The raising and lowering operators may be restated in terms of X̂1 and X̂2.

â =
1

2∆xZP

(
X̂1 + iX̂2

)
e−iωNRt

â† =
1

2∆xZP

(
X̂1 − iX̂2

)
eiωNRt
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We can also find the commutator of X̂1 and X̂2.

[X̂1, X̂2] = i
~

mωNR

From the commutator, and equation (3.24), we find the uncertainty relation

of the two quadratures to be

∆X1∆X2 ≥ ~
2mωNR

(3.29)

We can restate the hamiltonian Ĥ0 in terms of X̂1 and X̂2.

Ĥ0 =
mω2

NR

2

(
X̂2

1 + X̂2
2

)

By determining the commutator of Ĥ0 with X̂1 and X̂2, and the partial time-

derivatives of X̂1 and X̂2

[Ĥ0, X̂1] = −i~ωNRX̂2

[Ĥ0, X̂2] = i~ωNRX̂1

∂

∂t
X̂1 = −ωNRX̂2

∂

∂t
X̂2 = ωNRX̂1

we see by the Heisenberg equation of motion (Eq. (3.25)) that the two quadra-

ture amplitudes are constants of the motion with respect to Ĥ0. They are thus

continuous QND observables.

d

dt
X̂1 = 0

d

dt
X̂2 = 0
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It remains for us to choose either X̂1 or X̂2 and identify an interaction hamil-

tonian ĤI that commutes with it and also represents a feasible measurement. Our

best bet is to use the ~gx̂b†b term in the hamiltonian (Eq. (3.1)), adjusting the

parameter b†b experimentally by varying the SMR pump to make the interaction

commute with X̂1. We see however that the ~λx̂2b†b term is likely to cause trouble,

because it may not commute with X̂1 even if the ~gx̂b†b term is made to do so. In

the following, we will neglect the weaker x̂2-dependent term. In practice, as we will

see in sections 3.5 and 6.5, this means a restriction on the pump strengths at which

we can work.

A good choice of interaction hamiltonian is to modulate the coupling at fre-

quency ωNR, by modulating the electric field in the SMR. [54]

ĤI = E0 cos(ωNRt)x̂Q̂ (3.30)

where E0 is the electric field amplitude and Q̂ represents the charge on the

coupling capacitance Cg. Restating this in terms of quadrature amplitudes, we have

ĤI = E0 cos(ωNRt)x̂Q̂

= E0 cos(ωNRt)
(
X̂1 cos(ωNRt) + X̂2 sin(ωNRt)

)
Q̂

=
E0

2

(
(1 + cos(2ωNRt))X̂1 + sin(2ωNRt))X̂2

)
Q̂

If the oscillating components of this measurement are then filtered out, only

the DC portion remains:

ĤI =
E0

2
X̂1Q̂ (3.31)

This ĤI commutes with X̂1, thus enabling a continuous QND measurement of
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that quadrature of the NR oscillation. In practice, the way that we can make the

coupling have the form of equation (3.30) is to apply a pump tone at ωSMR, fully

modulated at frequency ωNR. This is equivalent to pumping simultaneously with

equal strength at two tones, ωSMR − ωNR and ωSMR + ωNR.

ĤI = E0 cos(ωSMRt) cos(ωNRt)x̂Q̂

=
E0

2
(cos((ωSMR − ωNR)t) + cos((ωSMR + ωNR)t)) x̂Q̂ (3.32)

The filtering needed to arrive at equation (3.31) will also filter out the oscil-

lations at frequency ωSMR. This pumping scheme thus offers a practical means for

QND measurement of quadrature amplitude X̂1.

The filtering is provided automatically by the SMR resonance. If our device

works in the sideband-resolved limit, κ ¿ ωNR, then the SMR decay time is much

longer than the NR oscillation period, and the signal emerging from the SMR faith-

fully represents the measurement indicated by the desired interaction hamiltonian

(Eq. (3.31)). [54]

The selection of the X1 quadrature is illustrated in figure 3.4. We can regard

this measurement scheme as acting sort of like a lock-in amplifier! Of the two

quadratures comprising the full motion x̂ (Eq. (3.28)), the measurement selects

only the one in phase with the modulation of the pump. However, there is a subtle

and important difference here from measuring x̂ and feeding the measurement into

a lock-in amp. The difference is that no information about X̂2 emerges from the

SMR, and that the filtering takes place before the amplification of the signal, which

unavoidably adds noise. [54] Thus by avoiding measurement backaction the double-
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pump measurement scheme should preserve the ability to continuously measure the

amplitude X1 with a precision beyond that which is physically possible for x.

We should keep in mind that this discussion of a QND or backaction-evading

measurement deals only with effects on the NR by the measurement interaction

itself. The backaction evasion eliminates these effects on the measured observable.

In practice, however, we expect the NR to be subject to forces arising from sources

other than the act of measurement. These will in general affect both quadratures of

the NR motion, and will be fully visible during the QND measurement. In fact, in

many proposed applications the whole point of the QND measurement is to observe

such effects - for instance, the impulse of gravitational waves on the mass of the

mechanical resonator. When we described a QND observable in section 3.4.1 as

having to be “predictable”, this is in respect only to the effects of measurement.

The point is to suppress the measurement backaction as a source of noise with

respect to more interesting signals.

3.4.3 Classical backaction evasion and limitations of real devices

If we model the backaction classically, the behavior of the double-pump QND-

type measurement is readily apparent. In section 3.3 we discussed classical backac-

tion due to noise exciting the SMR while the SMR is pumped off-resonance. Evasion

of classical noise in the SMR (due to amplifier noise, thermal excitation or noise in

the pump) is an important application of BAE techniques. The classical behavior

of backaction evasion serves as a useful analogue for the quantum regime in which
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backaction driving of the NR would arise due to microwave shot noise. A measure-

ment that demonstrates sensitivity to only a single quadrature of NR motion, and

that demonstrates insensitivity to classical noise in the SMR, can be expected to

behave as a QND measurement when the measurement enters the quantum regime,

i.e. when pump power is sufficiently high to drive the NR with microwave shot

noise.

To describe the backaction force in classical terms, we refer to the circuit model

of the coupled SMR and NR, described in section 2.4. Consider the voltage within

the SMR to consist of a pump tone at frequency ωSMR + ωNR or ωSMR − ωNR, as

well as a noise signal at frequency ω ' ωSMR:

VSMR(t) = Vp cos((ωSMR ± ωNR)t) + Vn cos(ωt + φn) (3.33)

where Vn is a noise amplitude that is random in time and corresponds to

a mean-squared average voltage noise density SV (in units of volts2 per angular

frequency) at frequencies around ωSMR, while φn is a random phase. The voltage

on the SMR falls also across Cg, generating a backaction force on the NR equal to

FBA = 1
2

∂Cg

∂x
V 2

SMR. (For simplicity we’ll denote ∂Cg

∂x
as ∂C

∂x
.) We can see that of the

various terms in V 2
SMR, only the cross-term 2Vp cos((ωSMR±ωNR)t) ·Vn cos(ωt+φn)

will apply a force at the right frequencies to drive the NR. We decompose this term

into two terms, one of which goes as cos((ωSMR±ωNR)t−ωt−φn), and discard the

other. If we denote δω = ωSMR − ω, we have, for ωpump = ωSMR ± ωNR,

FBA =
1

2

∂C

∂x
VpVn cos((ωNR ± δω)t∓ φn)

Considering only the components of noise that lead to driving at the NR
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resonance, i.e. δω ' 0, gives insight into the BAE effect. For ωpump = ωSMR±ωNR,

we then have FBA = 1
2

∂C
∂x

VpVn cos(ωNRt ∓ φn). Yet if we apply both pumps in the

BAE configuration, each of amplitude Vp, and make them phase-coherent with one

another, the force appearing at ωNR due to each pump derives from the same voltage

noise at ωSMR, making the two components of backaction force phase-coherent with

one another. The total force is then

FBA =
1

2

∂C

∂x
VpVn(cos(ωNRt− φn) + cos(ωNRt + φn))

=
∂C

∂x
VpVn cos(ωNRt) cos(φn) (3.34)

Thus in the BAE pump configuration it is evident that despite the random

phase of the noise at ωSMR, the NR is driven only at a single phase, dictated by the

phase of the pump tones. The force in Eq. (3.34) is proportional to cos(ωNRt) and

not sin(ωNRt). In this condition, the backaction drives only one quadrature of NR

motion. The driven quadrature is designated as X2.

The backaction-driving being confined to X2 is half of the story. The other half

is that the measurement measures exclusively X1. We can examine this behavior

using the classical analysis of sideband amplitudes described in section 2.4, where

the pump tone within the SMR was described as Vp cos(ωpt + φp), and φp identified

with respect to the phase of the pump signal at the input of the SMR as φp =

arctan
(
−2∆ωp

κ

)
. Here we have ωp = ωSMR ± ωNR and assume that the phase of

each input pump tone is adjusted to zero the phase of the voltage within the SMR

as in Eq. (3.33). Now we note that a harmonic oscillator driven on resonance

acquires a π
2

phase shift relative to the driving force. Thus the phase φm of the
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mechanical motion driven by the backaction force will be π
2

relative to FBA. The

solution for sidebands appearing within the pumped SMR due to mechanical motion

is given in equations (2.44) to (2.47), where (Vs, φs) are amplitude and phase of an

upper (sum) sideband and (Vd, φd) apply to a lower (difference) sideband. It can be

seen from these expressions that the phase of an upper sideband follows φm while

that of a lower sideband follows −φm. These have been termed respectively “phase

preserving” and “phase conjugating” detection of the motion. [54] [32] For two

pumps in the BAE configuration, one upper sideband will be generated by the red

pump and one lower sideband by the blue pump, overlapping at ωSMR having a

difference in phase φs − φd = 2φm. For the backaction-driven motion, the phase is

φm = π
2
, making the two sidebands cancel. Thus no backaction-driven motion will

appear as a sideband at ωSMR. The X2 quadrature of mechanical motion is invisible

to the measurement. Mechanical motion of truly random phase, such as thermal

motion, will have amplitude in both X1 and X2 quadratures, and will thus generate

a sideband.

Calculation of the backaction force (Eq. (3.34)) enables calculation of the X2

amplitude as a function of SMR noise and pump amplitudes. This has been done

classically by Bocko and Onofrio [54] [57] as well as by Clerk et al. [20] [58] using a

quantum-noise analysis. It is important to note that the backaction force described

in Eq. (3.34) is an idealized case because it considers only backaction forces arising

from the noise at ωSMR. In fact, the pump at ωSMR − ωNR will also mix with

noise at ωSMR − 2ωNR, while the pump at ωSMR + ωNR will mix with noise at

ωSMR + 2ωNR, to generate forces at ωNR. These forces are incoherent and will thus
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Figure 3.4: Schematic illustration of electric field in SMR for single-
quadrature detection, as in equation (3.32). Beating of pump field defines
quadratures X1 and X2 of mechanical motion.

excite both X1 and X2. The driving of X1 imposes a limit on the effectiveness of the

backaction evasion. However because of the Lorentzian lineshape, the voltage noise

at ωSMR±2ωNR will be much smaller, approximately a factor of κ
4ωNR

times the level

at ωSMR. Taking the X1 position noise density (the square of the amplitude, having

units of m2/Hz) due to these two forces and summing them to find the total SX1 ,

and comparing this to the X2 position noise density, yields a quantitative measure

of the BAE effectiveness. The result strongly illustrates the value of being in the

sideband-resolved regime in order to make these measurements efficiently: [57]

SX2

SX1

=
32ω2

NR

κ2
+ 3 (3.35)

Past experimental investigations of backaction-evading single quadrature de-

tection have been undertaken primarily for improvement of measurement of vibrating-
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bar gravitational-wave antennas. In these devices, backaction evasion was sought

as a means of counteracting the effects of amplifier noise on the measured device.

Noise in pump sources or thermal noise in electrically resonant transducers could

also be a concern. Two representative efforts appear in the work by Marchese et

al. [57] and by Cinquegrana et al. [59]. The former group employed a 50 kHz

resonant bridge circuit consisting of two LC oscillators sharing a common inductor

and common ground connection. A 1.87 kHz, 0.2 kg torsional mechanical oscillator

simultaneously modulated the capacitances in the two arms of the bridge, in inverse

fashion, so that ∂C
∂x

in one arm was equal and opposite to that in the other arm.

The resonant bridge was excited with coherent double pump signals and white noise,

while a separate actuator and transducer allowed the mechanical motion to be di-

rectly excited and monitored independently of the bridge. This work was able to

clearly demonstrate sensitivity to a single X1 quadrature of motion, and to demon-

strate insensitivity to the motion excited by the backaction of the white noise. A

particular feature of this work was the use of the independent transducer to observe

the backaction-driven mechanical motion in both the X1 and X2 quadratures, en-

abling measurement of the complete “noise elipse” for the backaction driving. For

their circuit having ωmech = 0.5κ, they achieved a value of
SX2

SX1
= 14 ± 4.6, close

to that predicted by equation (3.35). In the result by Cinquegrana et al., a similar

bridge circuit, incorporating a 380 g, 928 Hz mechanical resonator and 129.4 kHz

electrical resonance, was measured at a temperature 4.2 K. The researchers were

able to demonstrate that their system was sensitive to only a single quadrature of

mechanical motion, and were able to distinguish the brownian motion of the me-

69



chanical resonance superimposed on the electrical resonance noise and not obscured

by backaction-driven motion. A more recent attempt at backaction-evading mea-

surement has been made by Caniard et al. [60] using two mechanically resonant

mirrors mounted at each end of an optical cavity. Their scheme differs from the one

discussed here in exploiting a difference in the two mirrors’ resonance frequencies,

meaning that at intermediate frequencies, the phase response of the two mirrors

will be opposite. Because optical power circulating within the cavity exerts force in

opposite directions on the two mirrors, radiation-pressure noise at the intermediate

frequency will actually cause the two mirrors to move in unison, thus maintaining

the cavity length. The researchers were able to demonstrate the backaction-evading

behavior by injecting a noisy optical signal. This system, however, does not func-

tion as a single-quadrature detector of the mechanical motion, and because the BAE

does not appear at either mechanical resonance frequency, the sensitivity to external

forces is greatly reduced.

3.4.4 Quantum squeezed states of mechanical motion

Quantum squeezed states of an electromagnetic field have been extensively

studied, both at optical [61] and at microwave [62] wavelengths. In both regimes,

parametric amplification processes were used to generate fields having one quadra-

ture with variance below the vacuum fluctuation level 1
2
~ω. Optical squeezed states

have also been produced using parametric downconversion as well as four-wave mix-

ing in optical fibers and atomic vapors. [63] The electromagnetic field of a resonant
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cavity behaves as a simple harmonic oscillator and serves as a model for applying

the same concept to a mechanical system. The mechanical case has been the subject

of theoretical study for more than twenty years. [64]

Because in the ideal case the X1 quadrature is not subject to any backaction

at all, the BAE technique holds the possibility of generating a squeezed state of

mechanical motion, i.e. one in which the uncertainty in one quadrature is reduced

below the zero-point motion. [20] [54] The uncertainty relation of the two quadra-

tures given in equation (3.29) shows that at the minimum uncertainty condition, if

each quadrature has equal uncertainty, we have ∆X1 = ∆X2 = ∆xZP =
√

~
2mωNR

.

To suppress ∆X1 below ∆xZP , all that need be done is to increase the measurement

strength by increasing the pump power (as described in section 3.6) until the addi-

tive uncertainty due to amplifier noise and noise in the SMR is reduced below ∆xZP .

Because the measurement is QND, backaction will add nothing to the uncertainty

in X1.

As Clerk et al. point out however (Ref. [20]), a measurement that is truly de-

coupled from X1 is by nature unable to affect the intrinsic fluctuations in X1 arising

from its zero point and thermal motion. In averages over many measurements, these

fluctuations would appear as extra uncertainty in the measured X1 value. While the

added uncertainty due to amplifier noise would be < ∆xZP , the mechanical motion

itself would be only “conditionally” squeezed. To enforce the squeezing of the mo-

tion, the authors propose to use the precision of the X1 measurement in a feedback

scheme that would actively damp the X1 amplitude. An alternate proposal [65]

would employ parametric amplification of the NR beyond the self-oscillation limit
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for short durations, in order to squeeze one quadrature below the zero point motion.

This technique could be employed even if the average occupation of the mechani-

cal mode is initially well above n̄ = 1, but a BAE type scheme would nonetheless

be required to measure the resulting squeezed state. A number of other schemes

have been proposed for generating quantum squeezed states of mechanical motion.

[66] The demonstration of such states would be a dramatic demonstration of truly

non-classical behavior, and backaction evading single-quadrature measurement is an

important step towards this goal.

3.5 NR motion parametrically amplified in BAE pump configuration

3.5.1 Electrostatic frequency shift due to ∂2C/∂x2

Apart from the NR frequency shift imposed by optical-spring effects, we can

identify a frequency shift due to electrostatic energy in the capacitance Cg coupling

NR to SMR. [67], [68] In figure 2.4 we can see how the NR motion changes the gap

in Cg. We assume that the equilibrium position of the NR is x = 0. The total

energy stored in the capacitor is εNR = εmech + εelectrostat, or

εNR =
1

2
kx2 +

1

2
CgV

2

Expanding Cg to 2nd order in x we have

εNR =
1

2
kx2 +

1

2
V 2

(
Cg,0 +

∂Cg

∂x
x +

1

2

∂2Cg

∂x2
x2

)
(3.36)

where Cg,0,
∂Cg

∂x
and ∂2Cg

∂x2 are evaluated at x = 0. Since Ctot = C + 2Cκ + Cg

and Cg is the only varying term, and in practice C À Cκ À Cg, we can simplify the
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notation by replacing ∂Cg

∂x
with ∂C

∂x
and ∂2Cg

∂x2 with ∂2C
∂x2 . Rearranging equation (3.36)

we have

εNR =
1

2
Cg,0V

2 − δεEM +
1

2
(k + kEM)(x + δxEM)2 (3.37)

In practical application we can neglect the energy shift δεEM =
1
2(

1
2

∂C
∂x

V 2)
2

k+ 1
2

∂2C
∂x2 V 2

,

and the shift in the equilibrium mechanical position δxEM =
1
2

∂C
∂x

V 2

k+ 1
2

∂2C
∂x2 V 2

. However,

the “electrostatic spring constant” kEM becomes important experimentally

kEM =
1

2

∂2C

∂x2
V 2

The additional spring constant introduces a shift in the mechanical resonance

frequency ωNR =
√

ktot/m =
√

(k + kEM)/m. Taylor-expanding yields

ωNR = ωNR,0

(
1 +

1

2

kEM

k

)
(3.38)

Note that Cg scales roughly as 1
d
, where d is the gap between the NR and

the nearby gate electrode. Therefore, Cg ∼ 1
d+x

, meaning ∂2C
∂x2 will be negative.

Increasing voltage will tend to reduce the resonance frequency of the NR.

For V = VSMR cos(ωpumpt), and ωpump À ωNR, the electrostatic spring con-

stant will have a time-averaged value 1
2

∂2C
∂x2 · 1

2
V 2

SMR. The NR is located at a voltage

antinode within the SMR, having a standing-wave amplitude twice the wave ampli-

tude given by equation (2.38); this is the same as the lumped-element model voltage

of Eq. (2.26). We can use equation (2.30) to express kEM in terms of the magnitude

n̄SMR of pump energy within the SMR.

kEM =
1

2C

∂2C

∂x2
· n̄SMR~ωpump (3.39)
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In most practical cases in Eq. (3.39) we may approximate ωpump = ωSMR. We

can define the parameter λ

λ =
ωSMR

2C

∂2C

∂x2
(3.40)

Then the electrostatic spring constant may be expressed

kEM = λ · ~n̄SMR (3.41)

The NR frequency shift in Eq. (3.41) may be seen when a single pump tone is

applied. Another important condition is to apply two pump tones in the SMR for

backaction evasion. Then the SMR voltage is:

V =
VSMR

2
(cos((ωSMR − ωNR)t) + cos((ωSMR + ωNR)t))

= VSMR cos(ωSMRt) cos(ωNRt)

Taking V 2 and time-averaging over a microwave cycle 1
ωSMR

, we have

〈V 2〉 =
1

4
V 2

SMR(1 + cos(2ωNRt))

Considering the SMR internal energy n̄SMR~ωSMR to be the sum of the ener-

gies due to the two pump tones (and approximating ~(ωSMR − ωNR) = ~(ωSMR +

ωNR) = ~ωSMR) we have n̄SMR~ωSMR = 2 · 1
2
C

(
VSMR

2

)2
and we can express

〈V 2〉 =
1

C
n̄SMR~ωSMR(1 + cos(2ωNRt))

Then we can express kEM = 1
2

∂2C
∂x2 〈V 2〉 and extend equation (3.39) to this

double-pump case

kEM =
1

2C

∂2C

∂x2
n̄SMR~ωSMR(1 + cos(2ωNRt))

= λ · ~n̄SMR(1 + cos(2ωNRt)) (3.42)
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Note that in the limiting case ωNR = 0, i.e. if we reduce to a single pump tone,

equation (3.42) reduces to equation (3.41) (keeping in mind that n̄SMR is defined

slightly differently in equation (3.42) as the sum of two pump energies, whereas in

(3.41) a single pump tone is assumed).

3.5.2 Parametric amplification of NR motion

Oscillation of the mechanical spring constant and therefore of the mechanical

frequency is a condition for parametric amplification of the mechanical motion. As

described by Rugar [69], this amplification is phase-dependent: it amplifies one

quadrature by an amount 1

1−QNR
kEM

2k

while the other is amplified by an amount

1

1+QNR
kEM

2k

, i.e. it amplifies one quadrature and deamplifies the other. Thus we can

see from equation (3.38) that when the oscillating frequency shift
(
ωNR,0 · 1

2
kEM

k

)
is

made ≥ ΓNR, the NR will self-oscillate uncontrollably.

Parametric amplification will amplify any motion of the NR and has the dis-

tinct benefit of doing so without adding noise. It has been shown to readily amplify

the thermal motion of a mechanical resonator. [69] [70] The phase-dependent ampli-

fication means that while one quadrature’s motion is increased, the other’s is reduced

in energy, that is, cooled. Such a behavior is referred to as “thermomechanical noise

squeezing.” [69]

However, further analysis comparing equations (3.38) and (3.42) with the

single-quadrature detection described in section 3.4.3 indicates that the parametri-

cally amplified and deamplified quadratures are not the X1 and X2 defined by the
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double pump tone, but are instead defined at a phase of π
2

relative to these. This

poses a problem for backaction-evading measurement, because X1 and X2 are no

longer independent. At sufficiently high levels of parametric amplification, X1 will

reflect both quadratures of motion equally, destroying the BAE completely. When

not considering backaction, however, the parametrically-amplified quadrature will

dominate over the deamplified one in the measurement, and thus we can treat the

parametric amplification as an effective decrease
(
ωNR,0 · 1

2
kEM

k

)
in the linewidth

Γtot, and associated amplification of the motion.

3.6 Position sensitivity

The Heisenberg uncertainty principle requires that the product of the uncer-

tainties in position ∆x and momentum ∆p, be ∆x∆p ≥ ~
2
. The minimum of this

condition is satisfied when ∆x = ∆xZP =
√

~
2mωm

and ∆p = mωm∆xZP . Thus,

to reach the SQL, the total uncertainty in position must be ∆xZP . When reach-

ing this limit, we expect the components of the noise spectral density Simp
x due to

additive noise and SBA
x due to measurement backaction to be equal. For a (angular-

frequency) linewidth Γm and position noise spectral density Sx the absolute position

uncertainty due to this noise is ∆x =
√

Γm

4
Sx. (Note that we use throughout this

work a convention of single-sided spectral densities.) Thus we have, at the standard
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quantum limit

∆xZP =

√
Γm

4
Stot

x

=

√
Γm

4
(Simp

x + SBA
x )

=

√
Γm

4
· 2Simp

x

Thus at the SQL we expect

Simp
x (SQL) =

~
mωmΓm

(3.43)

From a position noise Sx we can find an energy spectral density SN = mω2
mSx

and from this the total energy in the Lorentzian line E = Γm

4
SN . Thus at the SQL

we can define an equivalent energy of the measurement imprecision

Eimp(SQL) =
1

4
~ωm

Thus at the SQL, the imprecision noise raises the level of the measured am-

plitude by an amount equivalent to 1
4

quantum of mechanical energy. Because we

expect at the SQL for the backaction noise to equal the imprecision noise, the back-

action will also add 1
4

quantum of mechanical energy. Whereas the energy associated

with imprecision noise adds only to the measured value, the backaction energy, how-

ever, is in fact added to the mechanical resonator itself: the mechanical amplitude

is increased by backaction. Stronger coupling which further diminishes Simp
x doesn’t

gain you anything, as it will only increase SBA
x . For continuous position measure-

ment, detection of this backaction represents the true signature of quantum-limited

measurement: You can’t measure the motion any more precisely, because the mo-
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tion you’re trying to measure is being perturbed by the measurement in a manner

dictated by quantum mechanics.

There are two important things to note here. First, there is in principle no

lower limit on Simp
x . While the achievement of Simp

x = Simp
x (SQL) is an important

technological challenge and was an experimental goal in the work reported in this

dissertation, it does not represent a fundamental lower limit on anything. As long

as you continue to increase the coupling between the mechanical resonator and the

detector, and don’t add any extra noise to the system, this source of uncertainty

continues to diminish. The second thing to note is that experimentally, Simp
x is

usually pretty easy to determine. It results from “additive noise”, i.e. noise which

is added to the measurement by the amplifier or other components of the system,

but which does not drive the mechanical motion. Such noise is generally frequency-

independent over a relatively broad band and can therefore be resolved accurately

by averaging over a wide spectral span. Indeed, the fundamental lower limit possible

for this additive noise is one quantum: one-half quantum of white noise at the mea-

surement frequency, contributed each by vacuum fluctuations and by the amplifier,

if the amplifier is quantum-limited. This lower limit of 1
2

quantum of additive noise

from the amplifier is derived formally by Caves [71].

The backaction noise SBA
x , on the other hand, is typically very difficult to

measure because it may be seen only in its effects on the mechanical motion. In

most practical experiments, evidence of such backaction driving will appear as a very

small change in the mechanical motion relative to the thermally-driven amplitude.

An ideal measurement would employ a mechanical resonator in its ground state,

78



but such a system remains yet out of reach. In practice in most experiments the

thermal motion is orders of magnitude greater than the expected magnitude of

quantum backaction. Moreover, in real systems the effects of thermal heating and

other classical noise sources may mask and mimic the quantum backaction, making

it even more difficult to distinguish. The magnitude of the backaction is a function of

the coupling strength of the measurement (which we vary in our system by varying

the pump power). Although in quantum mechanical terms Simp
x and SBA

x are related

by the Heisenberg uncertainty principle (see section 6.8), the classical noise added

after the measurement may raise or lower Simp
x without affecting SBA

x . Thus the

measured Simp
x may not be very useful in predicting quantum limits on SBA

x . If one

wants to use the Heisenberg relations to predict the level of SBA
x due to quantum

backaction, one must first estimate what the quantum-limited Simp
x would be.

An interesting result reporting Simp
x < Simp

x (SQL) is given by Teufel at al,

in the research group led by K. Lehnert. [72] They reported the use of a pro-

totype ultra-low-noise microwave amplifier to read out the position of a 1.04 MHz

nanomechanical resonator coupled to a 7.49 GHz SMR. The amplifier is a Josephson

parametric amplifier, which operates nonlinearly and may thus in principle surpass

some of the quantum limits on linear amplifiers. Where a quantum-limited lin-

ear amplifier would add 1
2

quantum of energy at the measurement frequency, and

an ideal nonlinear amplifier is capable of adding zero quanta, this amplifier is re-

ported to add only 1.3 quanta. Considering the unavoidable 1
2

quantum of noise

contributed by vacuum fluctuations of the microwave field, this makes their total

added noise a factor of 3.6 above the shot noise limit. The readout scheme is very
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similar to that of the Lehnert group’s earlier work (Ref. [17], discussed in section

2.4 of this dissertation), in which the SMR is driven on-resonance and its phase

tracks the motion of the NR. For this very small level of added noise, the coupling

strength that these researchers achieved between their SMR and NR was sufficient

to suppress the position uncertainty Simp
x below the level Simp

x (SQL), defined in Eq.

(3.43). By applying a microwave power of > 103 pW to their SMR, they achieved

Sx = (0.80 ± 0.03)SSQL
x . In other words, they achieved a position uncertainty due

to additive noise that equaled
√

0.8 · 1√
2
∆xZP . Furthermore, by driving with a blue-

detuned microwave pump, they suppressed the linewidth of their NR sufficiently to

achieve Sx = 0.07SSQL
x . (This latter technique is analogous to the parametric ampli-

fication effect that we employed to improve our position sensitivity, as discussed in

section 6.6, and similarly has the disadvantage of dramatically increasing the ther-

mal amplitude of the mechanical motion.) With such a low position uncertainty,

there should necessarily be quantum noise backaction driving the NR. For instance,

Naik et al. observed quantum noise backaction (reference [3]) using the shot noise

of a single-electron transistor, even though they did not achieve Sx < SSQL
x . In-

deed, for Sx = 0.8SSQL
x and a total additive noise 3.6 times the shot noise limit,

the backaction-driven position noise density should be 4.5SSQL
x , corresponding to

1.1 added quanta of mechanical energy.

However, the device used by Teufel et al. would have great difficulty distin-

guishing this amount of additional mechanical amplitude, as the mechanical mode

temperature is 130 mK, or 2600 quanta. Lehnert’s research group has also reported

elsewhere observing in similar SMR-NR devices evidence of strong classical back-
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action (most likely thermal heating) driving the NR for increasing pump powers

([17]). Here they report that the mechanical mode temperature increases with drive

power and that the linewidth also increases from its initial value of Γm = 2π ·1.7 Hz,

strongly suggestive of thermal heating. Thus it appears very challenging to use their

device to achieve true quantum-limited position measurement by detecting quantum

backaction. The recent results with this device do not include any measurements of

backaction driving the nanoresonator, or estimates of how much classical backaction

is contributed by their ultra-low-noise amplifier and how much may be obscuring

the quantum backaction. Furthermore, as their device had κ = 2π · 2.88 MHz it

operates in the bad-cavity limit and would be poorly adaptable to backaction evad-

ing measurements. (See section 3.4.3) Nonetheless, the results reported by Teufel

et al. powerfully demonstrate the advantage of low-noise amplification in seeking

quantum limited position measurement.

Calculating the position sensitivity due to additive noise is a matter of consid-

ering how the noise in the measurement mimics the way the actual motion appears

in the measurement. Indeed the actual thermal motion of a mechanical resonator or

the motion of a quantum state will after all appear in the measurement apparatus as

just another noise signal; we can call the added noise a “position noise”. In spectral

terms this means that the noise contribution is just the additive white noise within

the noise bandwith of the mechanical resonator. Alternatively it can be thought of

as the ratio of noise background level to measured peak amplitude. [73] Thus at

the standard quantum limit the position noise, averaged over one decay time of the

NR, equals the zero-point motion of the resonator. [27]
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Clearly the mechanical linewidth Γtot is critical to the measured position sen-

sitivity and for a given level of noise, a longer mechanical decay time, i.e. narrower

linewidth, allows us to more closely approach the SQL. While in many measure-

ments the linewidth is fixed, Γtot = ΓNR, in some cases it is dependent on the

pump power, which is also the parameter which is increased in order to increase the

position sensitivity. The position sensitivity of an NR measured while undergoing

backaction-cooling (section 3.1.3) is an interesting case. For motion measured using

a single red-detuned pump, the increase in optical damping with increasing pump

power leads to a rolloff and saturation in the position sensitivity. This situation

may be analyzed following conventions presented by Braginsky and others [55], and

assuming the sideband-resolved limit and that the SMR is pumped at ωSMR−ωNR.

[74] For the ideal case of a dissipationless SMR in the ideal good-cavity limit, with

no losses between SMR and amplifier, the limiting-value of the position uncertainty

is given by

∆x =
√

n̄amp + n̄vac ·∆xZP

where n̄amp is the additive amplifier noise, expressed as a number of SMR

quanta, and n̄vac is the noise due to vacuum fluctuations. Because the lowest possible

namp equals 1
2

for a quantum-limited linear amplifier, and nvac is at least 1
2
, the

position sensitivity attained using a single red pump reaches the standard quantum

limit only in the ideal case in the limit of high pump power, i.e. strong coupling. This

conclusion accords with our other discussions of backaction cooling (section 3.1.3) in

regard to its backaction temperature proportional to n̄opt
NR. In the good-cavity limit,
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n̄opt
NR = 0. In other words, when applying a single red pump in a sideband-resolved

device, the quantum back-action corresponds to a near-zero-temperature bath and

will not drive the NR no matter how high the pump power. [73] We will demonstrate

some of this kind of behavior in section 6.2.
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Chapter 4

Fabrication, Setup and Apparatus

4.1 Fridge setup and internal wiring

In order to approach the goal of placing the mechanical resonator into its quan-

tum ground state, it is necessary to work at very low temperatures. Furthermore,

the need for a very high-Q microwave resonator requires operating well below the

superconducting transition temperature of aluminum, Tc = 1.14 K. Moreover, to

prevent the SMR from being thermally excited, we should operate at a temperature

well below the energy of one microwave quantum at 5 GHz, ~ωSMR/kB = 240 mK.

We meet all of these requirements by using an Oxford Kelvinox 400 dilution refrig-

erator, capable of a base temperature below 10 mK. The refrigerator is mounted

to an optical table supported on sand-filled concrete pillars. For operation, a coun-

terweighted helium dewar is raised from below by a winch and bolted to the table.

Low-temperature thermometry is provided by calibrated RuO resistance thermome-

ters supplied by Oxford and reliable down to 20 mK. An AVS-47B resistance bridge

and TS-530A temperature controller (Picowatt Inc) read the thermometers and pro-

vide temperature control to a heater at the mixing chamber stage.

Measurement wiring for microwave signals within the fridge employs coaxial

cables and additional inline components to meet several requirements: 1) Present a

continuous 50 ohm line impedance to the signals, attenuating the signal only where
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needed for control of thermal noise. 2) Offer minimal thermal conductance between

fridge stages so as not to add extra heat loads to the fridge. 3) Be well thermalized

to the fridge (particularly the inner conductor of the coaxial cable) so as not to heat

the sample. 4) Block or attenuate Johnson noise emitted by dissipative components

at room temperature or lower temperatures. Any lossy component or section of

cable at temperature T will radiate as blackbody radiation a white noise density

equal to kBT down the signal lines, which is liable to excite the SMR or thermally

heat it. 5) Shield against interference by signals that could drive the SMR or NR

resonances. Additional wiring for low-frequency signals must meet all these needs

except for a less strict need for impedance matching. The low frequency signals

reach the sample by coupling into the RF lines via a bias tee thermalized at the

mixing chamber stage.

Detailed solutions to these issues have been discussed elsewhere in e.g. the

Ph.D. dissertation by LaHaye [75]. In developing our experiments we went through

several iterations of fridge wiring. For instance, when initially prototyping SMRs

we added several coax lines to enable measuring multiple devices at once, but we

later removed these because they added too much heat load to the fridge. Here we

describe the wiring configuration used to perform the backaction cooling and evasion

measurements reported in chapters 5 and 6. A wiring diagram appears in fig 4.1

and an annotated photograph appears in fig 4.2. Wiring variations used in earlier

prototyping will be noted in other chapters where needed.

Within the fridge are three signal lines: a microwave drive line, a microwave

return line and a low-frequency drive line. On the drive line, microwave frequency
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Figure 4.1: Schematic of interior wiring within dilution fridge. (Diagram
prepared by T. Rocheleau.)
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Figure 4.2: Photograph of Kelvinox 400 dilution fridge with vacuum can
removed, showing internal wiring. Some components indicated in figure
4.1 are hidden in this photo.
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blackbody radiation is suppressed using cold NiCr attenuators (Midwest Microwave)

mounted at successive temperature stages, each of a magnitude to attenuate the

Johnson noise emitted from the preceding stage. Microwave signal lines between

300K and 4K are Au-plated, CuNi-inner, CuNi-outer, 50 Ω semirigid 0.085” diam-

eter coax cables (Coax Co, Ltd, Japan), which provide similar low thermal con-

ductivity but better microwave transmission as compared to stainless-steel coaxial

cable used elsewhere. [75] On the drive line at stages below 100 mK, and on the

return line between the mixing stage and 1.5 K, microwave signals are carried by

Nb-inner, Nb-outer 50 Ω semi-rigid 0.085” coax cables. On both drive and return

lines, segments of 50 Ω superconducting Al microstrip on silicon serve to thermalize

the inner conductor of the microwave lines at successive temperature stages. A de-

tailed discussion of this kind of thermalizer appears in the PhD dissertation by M.

LaHaye. [75] T. Rocheleau designed and installed the microstrip thermalizers used

here.

On the return line, measured signals are amplified by a cryogenic HEMT

amplifier (CITCRYO1-12A, S. Weinreb, Caltech). The builders of this amplifier

tested it before delivery and found a noise temperature of 3.56 ± 1 K and gain of

37 dB at 5 GHz. As discussed in section 5.4, we will use this noise temperature to

calibrate our signal lines in-situ. This amplifier is anchored to 4K and is isolated

from the sample by two cryogenic circulators (Quinstar QCY-050100CM0). Two

circulators in series were found to be necessary to prevent the 3.56 K noise radiating

from the input of the amplifier from exciting the SMR above its ground state. We

verified this in situ when the fridge was cold, by applying no pump power and
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observing the emitted spectrum in a range ωSMR ± κ. After averaging the output

signal for a duration sufficient to resolve an emitted power corresponding to less

than 1 quantum stored in the SMR, we observed no resonance, and from this we

conclude that the amplifier noise did not excite the SMR above its ground state.

Considering equations (2.35), (2.33) and (2.53), it is clear that a precise knowl-

edge of the parameters loss and gain are necessary to know the signal levels within

the SMR and to compare the results accurately to theory. While the gains and losses

in wiring external to the fridge could be readily measured, the losses internal to the

fridge are difficult to ascertain because they vary between room temperature and

low temperatures. Most significantly, the microstrip thermalizers suffer from excess

dissipation at room temperature due to free charge in the Si substrates, and are fully

functional only at temperatures below 1 K where the Al is superconducting. (Our

estimates of their behavior rely on measurements made at 4 K, where the substrate

dissipation is eliminated by freeze-out of the substrate charge.) Nonetheless, based

on measurements of the various components at room temperature and at 4 K, we

estimated loss at 5 GHz to be 48.5 dB from the top of the fridge to the sample and

gain at 5 GHz to be 51 dB from the sample to the measurement point in the control

room. The uncertainties in each of these values are at least 3 dB, which motivated

us to calibrate our signal levels in situ, based on equipartition and on the HEMT

noise temperature. (See sections 5.5 and 5.4.)

It is important that the HEMT gain (37 dB) is great enough that the noise

emitted by the HEMT (3.56 K, amplified 37 dB) will dominate the input noise of

the room temperature amplifier (Miteq AFS3-04700530-07-8P-4-GW, noise figure
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0.63 at 5 GHz, see section 4.2) even after approximately 5 dB attenuation in the

coax cable between the HEMT amp and the top of the fridge. The additional 27.7

dB gain added by the room temperature amplifier enabled our measurement to

remain limited by the HEMT amplifier noise despite further attenuation between

this amplifier and the control room. We verified this by comparing the input noise of

our spectrum analyzer to the noise from the sample; when monitoring the sample,

the observed noise floor was ∼ −142dBm/Hz while the spectrum analyzer noise

floor was ∼ −154dBm/Hz. It is also important to estimate the loss between the

sample and the HEMT amp, because this cannot be determined in situ from RF

measurement. From measurements of the microstrip thermalizers and circulators at

4 K, we estimate this loss to be 1.5 ± 1 dB.

The low-frequency signal line is intended to carry < 10 MHz signals for direct

driving of the NR. This wiring is CuNi-inner, CuNi-outer 0.012” diameter cable

(Coax Co, Ltd, Japan) and attenuates the signal by a total of about 18 dB at 5.5

MHz. At the mixing stage, a bias-tee (Anritsu K252) couples this signal into the

RF line. On this line, Cu powder filters at the 1.5 K and mixing stages suppress all

higher frequencies. Design and performance of this type of powder filter is described

in the PhD dissertation by M. LaHaye. [75]

Studies in the literature have demonstrated that SMRs will exhibit excess

internal dissipation due to magnetic flux trapped in the superconducting film. Early

measurements of our prototype SMRs exhibited excess dissipation. We surmised

that the ambient magnetic field of several gauss in the room where the fridge was

located (due to magnetic materials in the concrete pillars and supporting structure)
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may have contributed to this. To eliminate this potential problem, we installed

a Cryoperm magnetic shield can which bolted to the 50 mK stage of the fridge

in place of the radiation shield can supplied by Oxford. This shield, which has

a magnetic permeability optimized for low temperatures, enclosed all components

beneath that stage. In addition, we wrapped two sheets of 0.010” thick Mu-Metal

shielding around the fridge vacuum can. While we did not measure the resulting

field in situ (which would require a magnetometer on the sample stage that could

be read during fridge operation), we estimate based on vendor specifications that

the shield reduced the field at the sample stage to tens of milligauss.

4.2 Wiring external to fridge

In all of these experiments, great care was taken to limit spurious signals and

interference. The dilution fridge and instrumentation were installed in a shielded

room. RF signal lines into and out of the shielded room were routed through DC-

block filters. Due to limitations of cable attenuations, we operated the two Agilent

microwave sources and one SR844 lock-in inside the shielded room; all others were

placed outside. All other electronics was located in a separate control room. Pho-

tographs illustrating the inside of the shielded room and control room appear in

figure 4.3. Every microwave pump signal passed through DC-block filters before

entering the fridge. All instrumentation amplifiers within the shielded room were

powered from batteries. Circuitry for voltage regulation of the battery power sup-

plies was designed and installed by T. Rocheleau.
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While wiring within the fridge is fixed during the experiment, the wiring out-

side the fridge was reconfigured for the several different kinds of measurements.

Figures 4.4 and 4.5 illustrate the wiring configurations needed for the two primary

types of measurement described in this work. Several other variants were needed

for other measurements such as driven response of the NR. A photograph of a por-

tion of the wiring appears in figure 4.6. Further variations were also employed in

earlier prototyping of SMR-NR devices. For instance, when studying SMRs that

operated in the “bad cavity” regime ωNR . κ, we found that the SMR transmit-

ted enough of the pump signal (see e.g. equation (2.35)) to overload the low-noise

room-temperature amplifier. To prevent this, a portion of the pump power was split

from the source, phase-shifted to cancel the undesired signal and injected at the

amp input. This kind of wiring change sometimes had to be done on-the-fly during

measurements. Details of particular variants are described as necessary in other

chapters.

Referring to figures 4.4 and 4.5, the microwave sources used for pump signals

were of type Agilent E8257D, which has a maxiumum output of 25 dBm; when a

third source was needed, we used a Rohde and Schwarz SMA100A, capable of 18

dBm maximum power. For 5 to 10 MHz driving signals on the low-frequency line,

we used a Tektronix AFG3252. Lock-in amplifiers were of type Stanford SR844,

and the spectrum analyzer was an Agilent N9020A. All sources and measurement

devices were synchronized to the 10MHz signal of a SRS FS725 rubidium frequency

standard.

The power-splitters are Pasternack model PE2028; directional couplers are
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Figure 4.3: (Left) Photograph inside shielded room showing power sup-
ply rack on left and rack containing RF sources and lock-in on right.
(Right) Photograph in control room. Fridge valve panel is on left.
Spectrum analyzer is in lower middle of rack on right.
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Figure 4.4: Schematic for BAE demonstration or backaction cooling.
During cooling, either noise-injecting amplifiers were shut off, or the
entire subcircuit containing directional coupler and noise-injecting am-
plifiers was removed. Drive and return lines join to corresponding points
on fridge. (Diagram prepared by T. Rocheleau.)
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Figure 4.5: Schematic for demonstrating single-quadrature detection of
driven NR. Signal lines join to corresponding points on fridge. (Diagram
prepared by T. Rocheleau.)

Pasternack model PE-2204-10 and PE-2210-20. The room temperature low noise

amplifier is a Miteq AFS3-04700530-07-8P-4-GW. The bandpass filter is a Minicir-

cuits VBFZ-5500. The IQ mixer is a Marki Microwave IQ0307LXP; in some wiring

configurations this was replaced by a non-IQ-type mixer, Marki TL30007LA. To

inject broadband microwave noise for backaction evasion measurements (figure 4.4,

and section 6.5) we used two Quinstar OLJ-04122025-J0 amplifiers in series with a

Miteq LCA-0408. The room temperature circulator is a Ditom D3C-4080 and the

diode detector used for tracking the phase of the double microwave pump signal

in BAE measurements (section 6.5.1) was an Eclipse DT4752A3. We used SMA-

terminated MiniCircuits type CBL-6FT-SMSM+ signal cables (in various lengths

from 3 to 6 ft), which proved far superior to other types in suppressing crosstalk of
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Figure 4.6: Representative photograph of microwave components con-
nected at top of fridge. For scale, the splitter is about 1.5 in wide. (The
wiring configuration is slightly different than those shown in figures 4.4
and 4.5 and was used in measurements not discussed in this dissertation.)

signals. One practice we tried to maintain was to not disconnect and reconnect the

circuit too often, as the transmission through the connection points could change

very slightly each time. This could be a particular problem with some of the gold-

plated connectors. On repeated use the plating could flake off and become lodged

between the pin and shield of the connector, partially shorting the connector and

adding up to a dB of loss! Stainless-steel connectors proved to be more reliable in

this regard.
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4.3 Device fabrication

Our fabrication technique builds on procedures our group had developed in

past years. Devices are made on silicon-nitride (SiN)-coated silicon chips. The NR

is formed of a doubly-clamped SiN beam covered by an aluminum film; the nitride

acts as the structural element while the aluminum serves as both an electrode and

an etch mask. The mechanical structure is defined by electron-beam lithography

and freed by undercutting with a dry etch rather than a wet etch, thus avoiding

the stresses of a liquid dip on these delicate structures. The development of the

fabrication procedure is documented extensively in Ph.D. dissertations by Naik [41]

and Truitt [76].

In this recent work, we adapted the procedure to couple the NR to an alu-

minum superconducting microwave resonator rather than a single-electron transistor

as in earlier work. This made for simpler and more versatile fabrication since the

SMR can be defined entirely by photolithography. We also adapted the procedure

to use high-stress silicon nitride rather than low-stress nitride as in earlier devices,

to exploit the very low dissipations demonstrated by Verbridge et al. in high-stress

nitride resonators [77]. However, early prototype trials indicated that chips coated

with high-stress nitride exhibited unusually high dissipation at microwave frequen-

cies. The amount of dissipation exceeded by at least a factor of 100 the published

values of dissipation in nitride [11], and remains unexplained. To counter this, we

adapted the procedure to remove nearly all of the nitride from the chip except in

the NR itself. These developments required several iterations. The chip size was
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Figure 4.7: Schematic cross-section view of device fabrication.

also revised during the prototyping process, which accompanied a revision in sam-

ple box design and will be discussed below in section 4.4. I will present here the

final procedure (shown schematically in figure 4.7) that we used to form the device

employed for the measurements in chapters 5 and 6.

All fabrication was performed at the Cornell Nanoscale Fabrication facility,

except for some of the aluminum deposition, which was done in a dedicated Al

deposition chamber maintained by the Schwab group. T. Ndukum did the majority

of the device design and fabrication, and in particular all of the e-beam lithography.

1. Substrates are 100 mm dia, ultra-high resistivity Si wafers: <100> orientation,

500 micrometers thick, with resistivity > 10 kΩ·cm.

2. Low pressure chemical vapor deposition (LPCVD) of 70nm of high-stress SiN,
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which will form the structural material of the NR.

3. Using photolithography and plasma etch, place alignment markers on the wafer

to define the 3.5mm × 10mm die pattern.

4. Photolithographically define two 2 micron × 37 micron “patches” where the

nano-resonators are to be located on each chip. Photoresist covers the patches;

the rest of the wafer is exposed.

5. Strip the nitride in all exposed regions, using plasma etching (150W, 60mTorr,

50sccm CHF3/5 sccm O2) followed by a smoothing buffered oxide (BOE, 6:1)

wet etch. The latter etches the nitride at ∼5-10Å/min but does not attack

the underlying Si.

6. Photolithographically define the SMR followed by thermal evaporation depo-

sition and lift-off of 260 nm of thermally evaporated (99.999% pure) Al.

7. Define the NR on top of the SiN patches using double-layer PMMA resist,

electron beam lithography, electron-beam evaporation of 105 nm of Al and

lift-off.

8. Dice the wafer into individual chips. Chips should be diced precisely with a

narrow (< 50 micron wide) dicing blade to permit a tight fit into the sample

box, minimizing the gaps that must be bridged for RF conduction.

9. Using e-beam lithography, define an “etch window” for plasma etch to free the

NR. This window defines the length of the doubly-clamped beam.
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Figure 4.8: False-colored SEM microphotograph. NR coupled to center-
line and groundplane of coplanar waveguide in SMR.

10. Plasma etch (150W, 60mTorr, 50sccm CHF3/5 sccm O2) to vertically etch the

SiN.

11. Without removing the chip from the etch chamber, plasma etch (100W, 125mTorr,

50 sccm SF6) to isotropically remove the silicon underneath the NR

12. Oxygen plasma clean to remove residual e-beam resist.

Figure 2.1 shows a full completed chip and figure 4.8 shows a false-color angle-

view SEM image of the NR. The final NR consists of a 60 nm-thick SiN layer coated

with 105 nm of Al. The 85 micron gap between NR and gate electrode may be

more clearly seen in figure 4.9. Dimensions of the device were verified by high-

magnification SEM inspection.

To offer redundancy and the possibility of more measurements per cooldown,
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Figure 4.9: Top-view SEM microphotograph of NR and gate more clearly
showing ∼85 nm gap between them.

two nanoresonators were fabricated onto each chip, both coupled to the SMR. The

lengths of the two NRs were made different to produce different resonance frequen-

cies. In practice, on cooling down the sample, we usually found that one NR would

be more easily-measurable than the other because its coupling was better or the

other one had broken in handling, and only the intact well-coupled NR was studied.

As discussed in section 3.1.4, making the gate capacitance Cg large is critical

to high-precision detection of the motion or to backaction cooling. In practice,

this means reducing the gap d between NR and gate. The lower practical limit

on d for these devices is about 60 nm. Smaller gaps are difficult to define reliably

by our e-beam lithography and lift-off process, and even when they can be made

the NR has a tendency to snap to the gate. Shorter beams, having higher spring
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Figure 4.10: SEM microphotograph indicating joints between SMR and NR.

constant, will be less likely to snap. Another challenge concerning Cg is that the

aluminum layers forming the SMR and NR are deposited in two separate steps,

and the first aluminum surface oxidizes in air in the meantime, thus the contact

points between the two layers can be a problem, indicated in figure 4.10. The NR

aluminum is only half as thick as the SMR aluminum, but is deposited afterward,

meaning that the contact area may be limited to a narrow insulating joint where

the SMR centerline meets the gate material and another where the NR material

meets the groundplane. If these joints act as capacitors of order ∼ Cg, they would

capacitively divide the gate capacitance, thus reducing the effective coupling of

SMR to NR. The capacitance of these structures is difficult to calculate precisely,

but our evidence from RF measurements of the device behavior suggests that this

does indeed happen. (See section 6.2.) Fabrication of future devices should avoid
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Figure 4.11: SEM microphotograph showing damage to Al film.

this issue by depositing the NR material prior to the SMR material, or some other

way.

Another possible problem concerns the quality of the Al film in the SMR.

We would like the SMR to carry as high a current as possible without dissipation;

impurities in the Al could potentially reduce the superconducting critical current.

Magnetic impurities are a particular concern, which motivated us to deposit the

SMR material in a thermal evaporation chamber dedicated only to Al and having

a base pressure of ∼ 5 · 10−8 torr. However, other problems may arise in the fab-

rication. Figure 4.11 shows damage that occurred to the film probably owing to

organic contaminants left on the wafer surface before SMR Al deposition, which

later outgassed when the device was heated in the plasma etch. This device was

used for the measurements reported in this dissertation; the impact of the damage
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is not known, but it may possibly account for the poor microwave power handling

seen in this device.

We design the characteristic impedance of the CPW that forms our SMR to

be Z ′
0 = 50 ohms. Because we know the substrate dielectric constant and our

photolithography can reproduce features to better than a micron, by following the

designs described in section 2.3 we expect our device’s waveguide to closely match

this design. More difficult to design precisely are the end-coupling capacitors of

the SMR, Cκ, which are made as interdigitated capacitors shown in figure 2.5. The

capacitance may be estimated from the geometry, and governs the coupling κext of

the SMR to the input and output transmission lines as per Eq. (2.25). We would like

for κint ¿ κext, but the internal loss κint depends on dissipation in the aluminum

and the substrate (see equation (2.23)) which is not always easy to control. In

this device we designed Cκ to be 3.0 fF, which would make κext = 2π · 141kHz, or

Qext = 3.5 · 104. In section 5.4 we compare these estimates to values derived from

RF measurements of the device.

4.4 Sample boxes

Proper mounting of the sample is critical to making a precise measurement.

The sample package should transfer all the microwave input power and output sig-

nal to and from the on-chip waveguide without losses or impedance mismatches,

and without exciting microwave modes that bypass the SMR. Figures 4.12 and 4.13

show the 3.5mm × 10mm × 500 micron sample chip mounted in our sample box.
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To minimize impedance mismatches, the coplanar waveguide on the circuit board is

designed to have a .016” wide centerline, closely matching the .010” pin size of the

SMA connectors to which it is soldered. The circuit board is designed to match as

closely as possible to the thickness and dielectric constant of the silicon chip, so that

the microwaves travel as nearly as possible along an unbroken waveguide with no

step changes. The board is made of Arlon AR1000 material, designed to have low

dielectric losses at microwave frequencies, 0.015” thick, ε = 9.7, with 1/2 oz/in Cu

cladding on each side, subsequently gold-plated by the board fabrication vendor as

protection against tarnishing. The waveguide centerline also matches the centerline

of the lead-in portion of waveguide at each end of the chip. At these dimensions, the

waveguide is a hybrid between pure CPW and microstrip, and the dimensions were

calculated using “TXline” software to produce 50 ohm characteristic impedance (as-

suming the manufacturer’s values of the substrate dielectric constant). Throughout

the groundplane, 0.014” dia “via” holes, spaced 0.04” apart, short the top surface

of the circuit board to the grounded sample box. The box itself (designed by T.

Rocheleau) is made of OFHC copper, gold-plated. The chip fits snugly into a hole

in the circuit board and is held firmly against the gold-plated sample box surface

by two clips. (To remove the chip, it must be forced out from underneath by a

screw.) To ensure proper grounding of the SMR groundplane, a large number of Al

wirebonds are used to connect the Al groundplane of the chip to the groundplane

of the circuit board as well as to connect the two halves of the chip groundplane. It

is important to bond each end of the chip centerline and groundplane to the circuit

board centerline and groundplane with several short bonds, so that the microwaves
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Figure 4.12: Chip in gold-plated copper sample box. SMA coaxial con-
nector at each end is soldered to coplanar waveguide on circuit board to
transmit signals to/from the chip. Gloved fingers holding box provide
scale.

are launched properly from board to chip and vice versa.

Both box and circuit board are plated with ∼100 nm of gold as a protection

against tarnishing, to enable reliable thermal contacts and wire bonding. While

it is a standard practice to underlay gold plating with several microns of nickel

plating, in our case we omit the nickel, to avoid the presence of magnetic material

near the superconductor. Slow diffusion of the copper into the gold is expected to

gradually degrade the gold film. However, studies in the literature [78] indicate that

at room temperature a 100 nm Au layer should hold up for at least two years against

grain-boundary diffusion of Cu.

We revised the sample box design twice before arriving at a satisfactory de-
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Figure 4.13: Close-up photo of chip in sample box showing wirebonds.

Figure 4.14: Photograph comparing three sample box designs. Note
smaller chip size and “mode filling” lid in final design.
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sign. Figure 4.14 shows the three designs. The first two types permitted too much

microwave power to bypass the SMR, as shown in figure 4.15. The first type was

designed with interior dimensions as small as possible to suppress free-space mi-

crowave modes, and designed without a circuit board to avoid modes propagating

through the board. In this design the chip was wirebonded directly to the gold-

plated copper sample box and to the center pin of the SMA connector. However,

this was not successful because it was difficult to make enough bonds for a good RF

connection. The large size (5×14 mm) of the chip designed for this box may also en-

able transmission through modes in its groundplane. A second design incorporated

a circuit board which could be more readily bonded to the chip, but its groundplane

was not sufficiently well-grounded with vias and the waveguide on the board was

not well matched to the chip. The interior of this box was also large enough to

permit propagating waveguide modes as low as 8 GHz. The final design (described

earlier in this section) remedied these problems. It was also designed with a “mode

filling” lid, that presses firmly against the circuit board everywhere except very near

to the chip. The remaining open cross-section will not support propagating modes

below 30 GHz. Although placing a copper surface close to the chip surface might

potentially increase the dissipation of the SMR, our measurements did not indicate

that the lid caused any such problems.

Very good discussions of microwave sample packaging design for low-temperature

experiments may be found in the dissertations by Schuster [79] and Mazin [15].
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Figure 4.15: Results of sample box design development. Early designs
held larger-area chip. Here the SMR in the early-type box has a fun-
damental mode at ∼ 2.5 GHz, the one in the later-type box ∼ 5 GHz.
Both are prototype designs of SMR only, no NR. Devices were tested in
fridge at T < 50 mK. a) Transmission spectra through device plus signal
lines. Early design transmitted excess “bypass” power through spurious
modes of box and chip. Final design achieved > 40 dB suppression of
all modes except through SMR itself, at frequencies up to about 9 GHz.
b) Same measurement on narrower span showing clearly how microwave
bypass power obscures SMR Lorentzian resonance. Signal line loss is
appx 20 dB at 5 GHz.
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4.5 Microwave filter cavities

As described in section 3.3, thermal noise in the signal lines at frequen-

cies around ωSMR can excite the SMR resonance, thus leading to backaction driv-

ing of the NR. Our microwave sources (Agilent E8257D and Rohde and Schwarz

SMA100A) produce phase and amplitude noise totaling -145dBc/Hz at a frequency

offset ∼5.5 MHz from the carrier. In these experiments we used pump strengths

at a frequency of ωSMR − ωNR up to 14 dBm at the fridge input, meaning that

the noise power density at ωSMR will be up to ∼-131dBm/Hz. By comparison, the

Johnson noise emitted into the 50 ohm lines by dissipation at room temperature is

-174 dBm/Hz. The cold attenuators on the fridge (fig 4.1) are intended to suppress

the Johnson noise only.

To suppress the excess noise, we use TE011 cavity filters, following a design

described in Ref. [80] and Ref. [81]. Figure 4.16 shows design and photographs of

our microwave filter cavities. These were machined from OFHC copper, then heat

treated at > 400C, then electro-plated with Au (Alfa Aesar, stock number 42307).

To tune the frequency of each cavity, we insert or remove a 4mm diameter quartz

rod mounted on a threaded rod at one end of the cavity. Because the axis of the

cavity is a node of the resonance, this varies the effective dielectric constant without

appreciably affecting the quality factor or insertion loss. To increase the conductivity

of the copper and thereby improve the quality factor, we cool the cavities to 77K

by mounting in a sealed probe filled with He gas and immersed in liquid nitrogen.

At an offset of 5.57 MHz from the carrier, we obtain a filtering factor greater
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Figure 4.16: Filter cavity for suppressing phase noise. a) Design. b)
Transmission of filter cavity tuned to maximum and minimum frequen-
cies, measured at 77 K. Q ranges from 35373 to 41826. Sharp “dip”
to the right of each peak is due to fortuitous interference with adjacent
mode of cavity. c) Cavity and mounting brackets with quartz tuning
rod. d) Assembled probe ready for cooling to 77 K.
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than 50 dB. (see figure 4.16(b)), suppressing the phase noise to ∼-195 dBc/Hz. Even

when a microwave pump power of +25dBm is applied, the phase noise at the input

of the device should be far below the level of quantum vacuum fluctuations, i.e.

the noise level of one quantum in the SMR (∼ -205 dBm/Hz). On resonance, the

insertion loss of these filters was about 7 to 9 dB, thereby limiting the maximum

pump powers that could be applied to the fridge.

To test the effectiveness of the filter cavities, we applied a microwave pump

signal at several powers at frequency ωSMR−ωNR, with and without the use of filter

cavities inline with the microwave source. These measurements were made through

the SMR used for cooling and backaction evasion in the fridge. Figure 4.17 shows

a wide span plot of the measured spectrum at two pump powers, and figure 4.18

shows the noise power density at ωSMR as a function of pump power. This data

demonstrates that even at the highest pump powers used in those measurements,

when the filter cavities were employed, the phase noise of the microwave source did

not excite the SMR out of its ground state, and the measurement noise remained

dominated by amplifier noise.

Design, assembly and initial testing of the filter cavities was carried out by T.

Rocheleau and M. Savva.
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Figure 4.17: Power measured on spectrum analyzer (10 kHz bandwidth)
while applying a fixed pump tone to the device at two different powers,
with and without copper filter cavity. Pump at ωSMR − ωNR is evident
in plots. Excitation of SMR by microwave source phase noise is clearly
seen when filter is not used.

113



1E-6 1E-5

5.0x10
-18

1.0x10
-17

1.5x10
-17

2.0x10
-17

 filtered pump

 unfiltered pump

N
o
is
e
 p
o
w
e
r 
a
t 
S
M
R
 r
e
s
o
n
a
n
c
e

fr
e
q
u
e
n
c
y
, 
5
.0
0
6
8
4
 G

H
z
 (
W
/H

z
)

Pump power at 5.00126826 GHz (W)

 

Figure 4.18: Noise power density Sbgd measured at SMR resonant fre-
quency while pumping at ωSMR−ωNR. Filter cavity suppresses excitation
of SMR by source phase noise.
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Chapter 5

Measurement Methods

5.1 Characterization of SMR

To characterize the SMR, we use a network analyzer at the drive and return

lines measure to its S21 parameter, i.e. transmission spectrum. A typical measure-

ment appears in figure 5.1. We find the S21 to follow a Lorentzian form as in equation

(2.35), and fit the spectrum to find κ and ωSMR. Because of the recent experimental

interest in SMRs, there has been much study of the various dissipation mechanisms

in microfabricated superconducting waveguide at millikelvin temperatures. [82] [11]

In the SMR that we used for backaction cooling and evasion experiments, at the

power levels employed in those experiments the quality factor of was approximately

1.014× 104, corresponding to a linewidth of 494 kHz. Section 5.4 describes how we

estimate the portions attributable to internal dissipation and external loading, κint

and κext.

High pump powers are essential to achieving high coupling between SMR and

NR for backaction cooling and sensitive position measurement. At sufficiently high

powers, however, the current in the SMR will approach the critical current of the

material; in this regime we expect an increasing population of quasiparticles in the

superconductor to manifest as excess internal RF dissipation in the SMR. Measure-

ments of the total dissipation κ of four SMR devices having two different designs of
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Figure 5.1: Wide span transmission spectrum of the sample. When the
SMR is superconducting, the 5 GHz resonance is clearly visible, but
vanishes when the SMR is normal (1.5K).
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κext appear in figure 5.2 as a function of internal circulating power within the SMR.

Above 100 microwatts, we do see a distinct increase in internal dissipation. How-

ever, we find that in the sample we chose to use for backaction cooling and evasion

studies, the κ degrades at a power about 20 times lower. The sharp step-change

in κ at PSMR ' 5µW (equivalent to n̄SMR ' 3 · 108) was accompanied by strong

internal dissipation and thermal heating in the SMR, setting an upper bound on

the power we can employ with this sample. The poorer performance of this device

has not been adequately explained and may be related to the damage to the alu-

minum film during fabrication, as described in section 4.3. Unfortunately, the other

samples either were not fabricated with nanomechanical resonators, or the NRs had

unsatisfactory coupling or were damaged on cooldown.

Using a simple model for the superconducting critical current density, Jc =

Hc/µ0λL, where λL is the London penetration depth of ∼ 20 nm, we find for alu-

minum Jc ' 4 · 1011 A/m2, from which we find in our SMR geometry (assuming

the RF current in our SMR penetrates only to the London depth) critical current

Ic ' 100 mA. Using equation (2.39) this is equivalent to a power of ∼ 100 mW

in our 50-ohm waveguide, much higher than the onset of excess dissipation in our

devices. The higher current densities that may in practice appear at edges or defects

in the superconducting film may account for this discrepancy.

We found that the best way to measure dependence of κ on power was to add

a splitter to the input line, and apply a fixed power microwave tone off-resonance

from the SMR, while simultaneously using a network analyzer at a much weaker

power to trace out the S21 response. In this way the internal power in the SMR was
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Figure 5.2: SMR linewidth vs circulating power in SMR. Four different
devices, all measured at T < 100 mK. Measurements made by varying
power of network analyzer. Circulating power PSMR was calculated from
equation (2.37) for ∆ω = 0. Black points are device used in measure-
ments of chapter 6; red points are a different device having identical
SMR design. For these two devices, calculation of PSMR employed κext

and loss found in section 5.4. Green and blue points are another SMR
design, for which the calculation of PSMR employed values of κext esti-
mated from geometry, and estimated linelosses of the particular cables
installed for those measurements.
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maintained approximately fixed while the network analyzer swept frequencies. If we

instead used the network analyzer to apply high power, then at high pump powers

the κint dependence on PSMR meant that different frequencies sampled different κ,

distorting the lineshape. (The measurements appearing in figure 5.2 were not made

in this way, so at the highest pump powers the κ may be only approximate.)

In developing our device, we measured more than a dozen different SMRs,

varying materials and design seeking a design with low internal dissipation. One

remarkable observation we made is that SMRs fabricated on top of high-stress SiN

films on Si substrates exhibited severe excess internal dissipation, so much in fact

that no resonance could be observed. We also fabricated chips with identical waveg-

uide that had no breaks, whose transmission could be measured directly, and found

that the dissipation in the λ/2 length of CPW on the chip was∼ 1.5 dB. This behav-

ior was orders of magnitude greater than the published levels of dissipation in silicon

nitride [11], and remains unexplained. Identical designs made on silicon showed no

such dissipation. At least three SMRs were also fabricated on low-stress SiN films

on Si substrates and did not exhibit the severe dissipation. Among other factors

that we investigated were the use of high-resistivity Si substrates, the presence of

small amounts of platinum on the chips (used as lithography alignment marks in

locations far from the CPW gap), and the presence or absence of a superconducting

groundplane on the backside of the chip. None of these were found to dramatically

affect the quality factor of the SMR.

We expect internal dissipation in the SMR and variation in the SMR fre-

quency to vary with temperature due to RF dissipation and kinetic-inductance of
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Figure 5.3: (a) SMR frequency vs. temperature, with linewidth bound-
aries overlaid. (b) SMR linewidth vs. temperature. Fit line is of the
form κ = κ0 + α · e−β/T predicted by BCS.

thermally-excited quasiparticles, as predicted by BCS theory. [10] Figure 5.3 shows

temperature dependence of ωSMR and κ. The critical temperature of the Al film

was measured directly in the separate “transmission” waveguide device described

above, and found to be 1.15 K. However, as this Al film was fabricated separately

it may not accurately indicate the Tc of the Al used in the device for bacakction

cooling and measurement.

5.2 Measured and calculated NR characteristics

Fabrication of our nanomechanical beam resonator is described in section 4.3.

This resonator vibrates in tensile mode like a stretched string, with a restoring
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force contributed by the tension in the material, and a sinusoidal mode shape. The

tension is intrinsic to the nitride film due to its growth at temperatures > 800 C

and subsequent differential thermal contraction of the film and substrate, producing

tensile stress in the film. To grow our nitride, we used process conditions demon-

strated previously to produce a stress of 1200 MPa and density of 2.7 g/cc. [77] Our

earlier designs [68] employed low-stress silicon nitride which relies on a restoring

force due to the elastic modulus of the nitride. Such bending-mode resonators have

a non-sinusoidal mode shape and higher mechanical dissipation than tensile-mode

resonators. [83] The tensile mode is expected to have a frequency ωNR = 2π · n
2l

√
S
ρA

,

where n is the mode number (n = 1 for the fundamental mode), S is the tensile

stress, ρ is the density and A is the cross-sectional area of the nitride. We assume

that the aluminum on top of the beam has density 2.7 g/cc and contributes only

added mass per unit length to the beam, not to the restoring force. For l = 30µ,

beam width 170 ± 10 nm, SiN thickness 60 ± 5 nm and Al thickness 105 ± 10 nm,

we expect ωNR = 2π ·6.7 MHz. The measured value of 5.57 MHz is somewhat lower

than is likely given our uncertainties in dimensions, but may indicate a lower than

expected stress in the nitride film. It is also possible that the undercut of the beam

ends during fabrication adds slightly to the effective length, or that compressive

stress in the aluminum film partially counteracts the tensile stress in the nitride.

We tested several prototype coupled SMR-NR devices before selecting one to

make the backaction cooling and evasion measurements reported in chapter 6. It was

common to observe the NR resonating at two frequencies, typically separated by a

few tens of kHz. The measured amplitude at one frequency was smaller than at the
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other, suggesting that the two frequencies represent orthogonal vibrational modes x

and y of the doubly-clamped beam comprising the NR. Oscillation y perpendicular to

the gate would have a coefficient ∂Cg

∂y
much smaller than for the in-plane x motion. In

subsequent measurements we focused on the motion exhibiting the higher coupling,

and ignored the presumably perpendicular mode.

Figure 5.4 shows measured values of the NR linewidth and frequency as a

function of fridge temperature. The linewidth ΓNR exhibits a linear temperature

dependence which enables mechanical quality factors exceeding 106 at temperatures

below 50 mK. However, at temperatures below about 150 mK the linewidth also

appears to be perturbed by a time-varying dissipation which is also apparent in

the measurements of thermal excitation of the NR mode. (See section 5.5.) Since

these linewidths were found from Lorentzian fits of long averages of the NR response

excited by thermal noise, as described in section 5.3, it is also likely that the apparent

value is greater than the actual value of ΓNR due to drifts in the frequency over time

scales of minutes. Very small values of ΓNR at the lowest temperatures indicate weak

coupling to the thermal bath, and probably contribute to the poor thermalization

of the NR to the fridge temperature in this regime.

The oscillation of the sinusoidally-shaped deflection of the 30 micron long NR

is detected as a change of capacitance Cg defined by a fixed gate electrode covering

the middle 26 microns of that length. It is convenient to reduce this two-dimensional

oscillatory motion to an equivalent one-dimensional motion that may be described as

a simple harmonic oscillator. Details of this kind of calculation have been described

elsewhere for the case of a bending-mode resonator. [75] If the beam length is
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Figure 5.4: NR frequency and linewidth plotted against fridge temper-
ature. Three different pump configurations. Same dataset as figure 5.6.
Note that the linewidth appears linear with temperature down to ∼ 150
mK, below which is is believed to be affected by the same unexplained
force-noise bath that prevents the NR motion from thermalizing to the
fridge at these temperatures. (See section 5.5.) Considering only the dat-
apoints recorded using a single red pump tone, a linear fit of all points
above 150 mK yields a slope of 95 ± 9 Hz / K, passing through the
origin with standard error of 2 Hz. The adjusted R-squared coefficient
of this fit is 0.89.
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in dimension z and we denote the deflection in the x direction as u(z), then the

kinetic energy per unit length dz is 1
2
ρA

(
du(z)

dt

)2

dz. If u(z, t) = umax sin
(

πz
l

)
eiωNRt,

where umax is the deflection amplitude at the midpoint of the resonator, then we

may integrate from 0 to l to find that the total energy amplitude of the NR is

1
4
mtotu

2
maxω

2
NR, where mtot = ρAl. However, instead of umax we’d like to re-express

this in terms of the average amplitude 〈ug〉 over the length of the gate. This is

actually the quantity that we measure as a change in the capacitance Cg. In our

equivalent one-dimensional model we call this amplitude x0. (See e.g. equation

(2.41).) For beam length l = 30 microns, with a 26 micron gate, and mode shape

u(z) = umax sin
(

πz
l

)
, we find 〈ug〉 = 0.72 · umax. We equate the total kinetic energy

calculated above to the potential energy of our equivalent 1-dimensional device,

1
2
kx2

0, where the spring constant k = mω2
NR is defined in terms of an “effective

mass” m. Thus we have 1
2
kx2

0 = 1
2
mω2

NR〈ug〉2 equal to 1
4
mtotu

2
maxω

2
NR, from which

we find effective mass m = 0.97 ·mtot. Using our values of the NR dimensions, we

find mtot = 2.3± 0.3 pg, m = 2.2± 0.3 pg and k = 2.70± 0.37 N/m.

5.3 Sideband measurement using spectrum analyzer

To detect the motion of the mechanical resonator when pumping at ωSMR ±

ωNR, we observe the sideband falling at frequency ωSMR = 2π · 5.00684 GHz. As

found from circuit analysis (equations (2.53) and (2.52)), the sideband voltage is

proportional to mechanical amplitude x and total sideband power is proportional

to RMS mechanical amplitude 〈x2〉. To detect the motion we merely measure the
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sideband voltage or power directly at frequency ωSMR. When the motion is driven

by a force noise such as thermal noise, we observe the noise power spectrum on a

spectrum analyzer. A wiring diagram for such a measurement appears in figure 4.4.

Figure 5.5 shows a typical measured sideband when the NR is driven by thermal

noise. Using Matlab software, we fit the sideband to a Lorentzian function Sbgd +

Psideb · 4Γtot

Γ2
tot+4(ω−ωNR)2

, to determine the linewidth Γtot, background level Sbgd (in units

of W/Hz), mechanical frequency ωNR and peak area equaling Psideb (in units of W).

Sbgd is a measure of amplifier noise. In some cases it will also have a contribution

due to excitation of the SMR, which may be driven by phase noise of the microwave

source, thermal excitation of the SMR, or noise deliberately injected to study back-

action evasion.

In addition to measurements of NR motion driven by thermal noise, we can

also drive the NR directly at a single frequency with an electrostatic force through

the “low frequency signal line” installed on the fridge and coupled to the SMR drive

line via a bias tee. (See figure 4.1.) DC or low-frequency oscillating voltages on the

order of a volt applied at the top of the fridge will be attenuated in the signal line

and be capacitively divided by Cκ

C
within the SMR, but still produce voltages on

the order of a mV across Cg, enough to drive the NR at detectable levels. Sweeping

drive frequencies reveals the same Lorentzian lineshape as seen in figure 5.5. Direct

drive of the motion with a coherent signal at the resonance frequency ωNR becomes

important in our demonstration of single-quadrature detection (sections 6.5.1 and

6.5).

The NR may be driven by an electrostatic force 1
2

∂Cg

∂x
V 2 across the gate.
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Figure 5.5: Typical motional sideband observed at frequency ωSMR while
pumping at frequency ωSMR − ωNR. Fridge T = 63 mK. Lorentzian fit
to function Sbgd +Psideb · 4Γtot

Γ2
tot+4(ω−ωNR)2

yields linewidth of 10.4 ± 0.2 Hz,

Psideb = 149 ± 3 aW and Sbgd = 6.56 ± 0.01 aW/Hz. This measurement
appears as a datapoint at T = 63 mK in figure 5.6. Measurements
included in figure 5.6 resulted from Lorentzian fits with adjusted R-
squared coefficients ranging from 0.7 to 1.0. R-squared coefficient in this
fit is 0.87.
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Applying a voltage V = VDC + Vdrive cos(ωNRt) should result in a driving force

∂Cg

∂x
· VDC · Vdrive cos(ωNRt). However, we found omitting VDC we were equally suc-

cessful in driving the NR. This suggests that at low temperatures the SMR centerline

is completely electrically isolated from ground and has trapped on it enough charge

to carry a DC voltage on the order of a mV. A charge of 10−15 coulombs, or only

about 6000 electrons, on the 1 pF SMR capacitance would produce a voltage of 1

mV. Slight variations or fluctuations in this charge due to leakage currents or other

effects account for the variation in the drive amplitudes we were able to attain, and

may also contribute to the unexplained fluctuating force-noise that we observed to

drive the NR at low temperatures. (See section 5.5.)

5.4 Estimation of line loss, gain and κext

Our ability to compare measurements precisely with theory depends on how

well we know the energy ~ωSMRn̄SMR stored in the SMR at any given applied pump

power. We may determine n̄SMR from either the applied or transmitted pump powers

Pin or Pout using equations (2.33) or (2.34). Considering equations (2.35), (2.33) and

(2.53), we can see that this relies on precision of parameters loss, gain, κ and κext.

While κ is a directly measurable quantity, the others are not. In section 5.5 below we

show how we use the equipartition theorem to directly calibrate our measurement

of the mechanical mode temperature. It would be very appealing to replicate this

with the SMR in order to determine gain and κext. The thermal occupation n̄T
SMR of

the SMR should follow the fridge temperature according to Bose-Einstein statistics,
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and should emit a frequency spectrum following equation (3.18). This noise should

be detectable as a small temperature-dependent noise peak on top of the 3.56 K

amplifier noise. However, an attempt to detect this was unsuccessful because other

dissipative elements in the fridge wiring also emit Johnson noise at frequencies near

ωSMR. Noise emitted by the microstrip thermalizers or circulators between the

SMR and HEMT amplifier partially reflect from the SMR, making it difficult to

distinguish precisely the microwave noise emitted by the SMR.

To determine gain, we employ the noise emitted by our HEMT amplifier as

a calibrated signal level. The amplifier noise temperature (Tn = 3.56 ± 1 K at 5

GHz) was measured by the vendor at a temperature of 20 K on calibrated equip-

ment before delivery to us. The uncertainty of ±1 K was communicated to us by

the people who designed and built the amp, as an estimate of both systematic vari-

ations in the performance of the amplifier and their uncertainty in measuring the

device before delivery. For the gain calibration, we treat the noise temperature as a

broadband noise power density kBTn at the input of the amplifier, and neglect any

noise generated by dissipative elements between the device and amplifier, because

these are all at temperatures < 1 K. Because the HEMT amplifier noise dominates

the noise of all components beyond it in the circuit, the white noise power density

at the spectrum analyzer should simply equal kBTn · gainamp, where gainamp is the

total gain from the HEMT amp input to our spectrum analyzer. The total gain,

however, must also include the losses between the sample and amplifier, which we

estimated (see section 4.1) to be 1.5 ± 1 dB. Thus gain = gainamp − 1.5 dB. The

circuits depicted in figures 4.1 and 4.4 apply here, with microwave pumps shut off.
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We expect gain to vary with frequency due to weak resonances in the lengths of

cable separated by many joints lying between the HEMT amplifier and our measure-

ment point. We also expect slight variations in gain over time, as the temperature

of the cabling in the fridge varied and as we had to disconnect and reconnect com-

ponents in the room-temperature wiring for different measurements. We observed

both kinds of effects causing variations up to about 1 dB. In one early set of mea-

surements we recorded the noise spectral density over a range of frequencies from

ωSMR−ωNR to ωSMR +ωNR. From this data we calculated that gain(ωSMR−ωNR)

is 0.77 dB less than gain(ωSMR), and gain(ωSMR + ωNR) is 0.11 dB greater than

gain(ωSMR). To account for time-variation in gain, in each dataset we used the

Sbgd values determined from fits of the motional sideband (section 5.3) while ap-

plying low pump powers, to recalculate gain(ωSMR). From this we could estimate

gain(ωSMR±ωNR) in each dataset as needed. (A better technique might be to shut

off the microwave pump periodically during each dataset and measure the noise

levels at gain(ωSMR ± ωNR) directly.) For the datasets appearing in chapter 6, the

gain values were,

Blue pump, 142 mK (fig 6.1):

gain(ωSMR) = (1.1± 0.4) · 105, gain(ωSMR + ωNR) = (1.0± 0.4) · 105

Red pump, 142 mK (fig 6.1):

gain(ωSMR) = (8.9± 3.0) · 104, gain(ωSMR − ωNR) = (7.5± 2.5) · 104

Double pump, 142 mK (fig 6.1):

gain(ωSMR) = (9.1± 3.1) · 104, gain(ωSMR − ωNR) = (7.6± 2.6) · 104

Red pump, 17 mK (fig 6.1):
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gain(ωSMR) = (9.4± 3.2) · 104, gain(ωSMR − ωNR) = (7.9± 2.7) · 104

Red pump, 20 mK (fig 6.3):

gain(ωSMR) = (6.6± 2.2) · 104, gain(ωSMR − ωNR) = (5.6± 1.9) · 104

These values range from 48 to 50 dB, similar the estimate of 51 dB gain

found from the HEMT amplifier gain specification along with room-temperature

and 4 K measurements of various components (sections 4.1 and 4.2). Once we

know gain(ωSMR), we can find the coupling κext of the SMR to the signal lines,

exploiting our good precision ability to measure the mechanical mode temperature

based on the thermal calibration (section 5.5), as well as our ability to directly

measure the backaction damping Γopt. The mechanical sideband during backaction

cooling measurements can then act as a calibrated power source. As discussed in

section 3.1.3 in reference to equation (3.11), we expect the total rate of photons

n̄NRΓopt upconverted from the NR into the SMR, multiplied by the SMR energy

per photon, to be the power in the sideband. The total measured sideband power

should then be the portion of this that is emitted by the end-coupling of SMR and

amplified: Thus Psideb = ~ωSMRn̄NRΓopt (κext/2κ) · gain. For each set of cooling

data (section 6.2) we determine Γopt at each datapoint by a Lorentzian fit of the

thermal-noise sideband, to find Γtot = ΓNR +Γopt, then subtract the values found at

the lowest pump powers which should be equal to just ΓNR. TNR was found from

measured sideband areas scaled by the thermal calibration, and n̄NR found from

TNRkB = ~ωNRn̄NR. Values of gain are known as described above, and Psideb is

directly measured. We calculated an average value of κext for each of the single-

pump datasets appearing in chapter 6 (i.e. the ones listed above), and averaged the
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four values together to find κext/κ = 0.61± 0.24.

Using equation (2.25) we find the corresponding value of Cκ is 4.38± 0.84 fF.

This is in somewhat larger than the design value of 3.0 fF, discussed in section 4.3,

but not unreasonable given the difficulty of designing such electrical microstructures

with good precision. We may also readily calculate the internal quality factor of the

SMR (section 2.2.1) to be Qint = (2.6 ± 1.6) · 104. Clearly the quality of our SMR

is limited by large internal losses. The uncertainties in these calculated values are

traceable ultimately to the uncertainty in the HEMT amplifier noise temperature

used as a calibration for gain, as well as the ±1 dB uncertainty in the losses between

the device and the amplifier.

If we know in a given measurement both power Pin applied at the input of

the fridge and Pout transmitted, and we know both gain and κext, then we can also

calculate loss using equation (2.35). Using the 142 mK red-pump and double-pump

datasets listed above, we find an average loss(ωSMR−ωNR) = (4.3± 3.9) · 10−5 and

loss(ωSMR +ωNR) = (4.2± 3.8) · 10−5. The loss is about 44 dB, somewhat less than

the 48.5 dB estimated from room-temperature measurements of cables and other

components (section 4.1). For the blue-pump dataset at 142 mK (figure 6.1) and

for the red-pump dataset at 20 mK (figure 6.3) these values were used to calculate

n̄NR, because Pout was not recorded during those datasets.
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5.5 Thermal calibration

Equations (2.53) and (2.35) enable us to find the NR mean-squared amplitude

from either Psideb/Pout or Psideb/Pin. The values of loss, gain, κext, ∂ωSMR/∂x,

∂Cg/∂x and C are known a priori to a poor precision, but we may instead exploit

the equipartition theorem to obtain a precise calibration of the mode temperature

of the mechanical motion, TNR. This technique has been discussed extensively

elsewhere in references [75], [41], [4] and [3].

We expect TNR = ~ωNR

kB
· n̄T

NR to follow the Bose-Einstein distribution for the

average thermal occupation n̄T
NR of a single mode:

n̄T
NR = (e~ωNR/kBT − 1)−1

At temperatures T À ~ωNR

kB
, this reduces to TNR = T , so the measured NR

mean-squared amplitude should be proportional to the temperature of its thermal

environment, i.e. the fridge. Assuming a single-sided power spectral density, we

expect the power spectrum of thermal motion of the NR to be

SNR
x (ω) =

4kBTNRωNR

mQNR

1

(ω2 − ω2
NR)

2
+ (ωωNR/QNR)2

(5.1)

the integral of which gives
∫∞
0

SNR
x (ω)dω/2π = 〈x2〉 = kBTNR/k, where k

is the spring constant of the NR, found from the estimated effective mass m as

k = mω2
NR. Thus comparing equations (2.35) and (2.53) we expect

Psideb

Pout

=

[(
∂ωSMR

∂x

1

κ

)2

· 2kB

k

]
· gain(ωSMR)

gain(ωpump)
· TNR (5.2)

Psideb

Pin

=

[(
∂ωSMR

∂x

1

κ

)2

· 2kB

k
· loss(ωpump) · κ2

ext

κ2 + 4(ω − ωSMR)2
· gain(ωSMR)

]
TNR

(5.3)
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The values of Psideb are found from Lorentzian fits of the measured sideband,

as described in section 5.3. Figure 5.6 shows Psideb/Pout, plotted against fridge

temperature, using all of the pump configurations employed with the device used

in cooling and BAE measurements (except for single-pump, blue detuned.) While

backaction driving or cooling effects would make the measurements deviate from

equipartition, in these measurements backaction may be neglected because the SMR

was not excited above its ground state, and the measurements made with a single

red-detuned pump used a weak enough power so that Γopt ¿ ΓNR. At temperatures

above 250 mK, the linewidth κ of the SMR was observed to increase due to the RF

dissipation of thermally excited quasiparticles in the aluminum. The data in figure

5.6 was therefore corrected at each temperature by multiplying by
(

κ(T )
2π·494 kHz

)2

.

At temperatures above 60 mK, the response to all pump configurations closely

follows the fridge temperature and the measured power agrees closely with what

we expect from the device. In this regime a linear regression fit of all Psideb/Pout

measurements vs fridge temperature yields

Psideb/Pout = (4.20± 8.79)× 10−12 + (2.78± 0.03)× 10−9 · TNR (5.4)

From this we see that the intercept is consistent with zero, and we define the

empirical calibration factor cal(Pout) = (2.78±0.03)×10−9 kelvin−1. (A similar anal-

ysis was also done for Psideb/Pin, yielding cal(Pin) = (8.33± 0.05)× 10−12 kelvin−1.

In the fit of Psideb/Pin vs fridge temperature, due to excess scatter and variations in

line loss or gain it was necessary to set the intercept to zero.)

As can be seen from expressions (5.2) and (5.3), Psideb

Pout
is a much more reliable
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Figure 5.6: Thermal calibration data for device used in cooling and BAE
measurements. Three pump configurations. Sideband power divided by
transmitted pump power, plotted vs. fridge temperature. The linear
fit excludes measurements below 63 mK where the device appears to be
poorly thermalized. Adjusted R-squared coefficient of the fit is 0.98.
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measure of the motion of the NR than Psideb

Pin
, because gain(ωSMR)

gain(ωpump)
is unlikely to change

much over time, whereas absolute values of gain(ωSMR) and loss(ωpump) can vary

up to about a dB between datasets, as described in section 5.4.

Using equation (5.2) and the value of cal(Pout), and accounting for the differ-

ences in gain at ωpump and ωSMR (see section 5.4), we can calculate ∂ωSMR

∂x
. We find

that ∂ωSMR

∂x
= 2π × (7.5± 1.6 kHz/nm). This agrees reasonably well with what we

expect from the calculated value of effective SMR capacitance C and estimates of

∂Cg

∂x
based on the geometry of the device. Further discussion appears in section 6.2.

It is interesting to note that below 60 mK, the NR appears to decouple from

the thermal bath of the fridge temperature and be strongly coupled instead to

an unidentified dissipative bath whose properties vary on a time-scale of seconds.

The dissipation in this bath causes the NR quality factor to fluctuate from ∼ 5 ·

105 to > 106, while the force noise in this bath drives the NR mode temperature

to varying levels up to 7 times the fridge temperature. In past measurements of

nanomechanical resonators it is not unusual to see the motion decouple from the

thermal bath at the lowest fridge temperatures. [4] However, it is novel to observe

the NR actually appear to be “heated” to greater mode temperatures as the fridge

temperature drops. From the observed mode temperature of ∼50 to ∼150 mK and

linewidths of 5 to 10 Hz (figures 5.6 and 5.4 at fridge T below 60 mK) we can

estimate the NR to be driven by a white force noise at frequencies around ωNR of

3 ·10−19 to 10−18N
/√

Hz. The nature of this fluctuating force noise is unclear. The

careful filtering we employed in all of the signal lines (section 4.1) suggests that it

is not due to noise or thermal heating entering via the signal lines. As discussed
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in section 6.2, there is some evidence that microwave pump power can excite it.

This behavior presents an impediment to the goal of cooling the NR motion to its

quantum ground state, and is worth investigating further in future experiments.
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Chapter 6

Results and Discussion

6.1 Summary of device parameters

Table 6.1: Geometric parameters of device used for backaction cooling and evasion
measurements.

Fabrication geometry, verified by inspection in SEM:
wCPW 16 µm Width of Al centerline
dCPW 10 µm Gap between centerline and ground plane
tCPW 260 nm Thickness of Al film on SMR

l 30 µm length of mechanical resonator
lg 26 µm length of capacitive gate opposite NR

wNR 170 nm width of mechanical resonator
tSiN 60 nm thickness of SiN
tAl 105 nm thickness of Al film on NR
d 85 nm Distance between the NR and gate

Parameters calculated using the geometry:
m (2.2± 0.3) · 10−15 kg effective mass of NR
k 2.70 ± 0.37 N/m spring constant of NR

Z ′
0 50 Ω Characteristic impedance of CPW waveg-

uide forming SMR
∆xZP 26 fm zero-point motion of the NR

6.2 Backaction cooling

We studied backaction damping and cooling of the NR motion by applying

a microwave pump tone at ωSMR − ωNR, and varying the pump power up to the

maximum that the SMR could withstand, equivalent to about 3 · 108 pump quanta

circulating within the SMR. At each pump power, we recorded the noise spectrum of
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Figure 6.1: NR linewidth, Γtot/2π, and occupation factor, n̄NR, vs. aver-
age number of microwave photons n̄SMR circulating within the SMR. (a)
and (b) show NR behavior for a single pump tone: ωred = ωSMR − ωNR

(red and orange points) or ωblue = ωSMR + ωNR (blue points). Solid
lines show fits of the data to equations (3.3) and (3.6). Note that in
(b) a fit of the base-temperature points (orange) to equation (3.3) was
not possible due to fluctuating n̄T

NR at this temperature. (c) and (d)
show behavior for two simultaneous pump tones: The BAE condition
(purple points) ωred = ωSMR−ωNR and ωblue = ωSMR +ωNR, or the bal-
anced pump, non-BAE condition (black points) ωred = ωSMR−ωNR and
ωblue = ωSMR + ωNR + 2π · 600Hz. The latter condition balances rates of
phonon upconversion and downconversion (note that 600 Hz ¿ κ/2π),
but offers no backaction evasion because the sidebands of the two pro-
cesses do not overlap. In the BAE configuration (purple points), at high
pump power we observe narrowing of Γtot and mechanical amplification
due to the parametric amplification effect of the double pump tones hav-
ing difference frequency 2ωNR. Significant scatter in the parametrically-
amplified datapoints results from unexplained drifts of up to ∼5 Hz in
ΓNR and ωNR. Shaded region is inaccessible to BAE due to parametric
instability. Red, blue, black and purple points taken at a fridge temper-
ature of 142mK, orange points taken at a fridge temperature of ∼20mK.
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Figure 6.2: NR position noise spectra. Five representative measurements
selected from 142 mK cooling dataset (fig 6.1, red points). For increasing
pump amplitude, sideband peak exhibits broader linewidth and smaller
total area (indicating cooling) and reduced background level (indicating
improved position sensitivity, see section 6.6). Position noise calculated
from measured power spectra via Eq. (6.5). Area of each Lorentzian
equals 〈x2〉 for that measurement.
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Table 6.2: RF parameters of device used for backaction cooling and evasion mea-
surements.

Determined from direct RF measurement:
ωSMR 2π·5.00684 GHz SMR resonant frequency

κ 2π·494 kHz SMR damping rate
ωNR 2π· 5.5717 MHz NR resonant frequency (varies by ∼50 Hz

with temperature, ∼10 Hz with random
drift)

Parameters derived from RF measurement:
C 1.0 pF Effective SMR capacitance
L 1.0 nH Effective SMR inductance

Cκ 4.38 ± 0.84 fF Coupling capacitance into and out of SMR
∂C
∂x

3.0± 0.6 aF/nm Change in SMR capacitance for NR dis-
placement

∂ωSMR

∂x
2π · (7.5± 1.6)kHz

nm
Coupling constant

Cg 253 ± 54 aF Capacitance between the NR and SMR
∂2C
∂x2 0.06 F/m2 2nd derivative of capacitance with respect

to NR position

λ 2π · 0.15 kHz/nm2 Nonlinear coupling constant

the thermally-driven sideband at ωSMR representing NR motion. Each sideband was

then fit to a Lorentzian to find the NR frequency, linewidth and mode temperature,

as described in sections 5.3 and 5.5. To prevent phase noise of the microwave source

from exciting the SMR above its ground state, we used a microwave filter cavity

inline with the microwave source. These measurements were repeated at several

fridge temperatures. As shown in the thermal calibration (section 5.5) at fridge

temperatures below 100 mK the NR was coupled to an additional force-noise bath

of unknown origin that had a time-varying effective temperature greater than the

fridge temperature. Measurements taken at 142 mK showed much greater stability

and offer the clearest demonstration of backaction cooling, appearing in panels a)

and b) of figure 6.1. This dataset was also used to determine position sensitivity
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of the device, which will be discussed below in section 6.6. Figure 6.1(a) and (b)

also shows backaction cooling data taken at the fridge base temperature. Figure 6.2

shows several of the spectral measurements used to compile the data appearing in

figure 6.1(a) and (b).

To compare the results with the theory described in section 3.1.3, the NR

linewidth Γtot = ΓNR +Γopt and occupation number n̄NR are plotted in figure 6.1(a)

and (b) against the pump energy stored in the SMR, expressed as an average num-

ber of pump photons n̄SMR. For the datasets represented by red, blue, black and

purple points, n̄SMR was calculated using equation (2.34) from the pump power Pout

transmitted through the SMR, amplifiers and signal lines (along with the parame-

ters κext, loss and gain determined as described in section 5.4). For the blue points,

Pout was not recorded, so Eq. (2.33) was used to find n̄SMR from Pin.

The data in figure 6.1(a) and (b) may then be fit to the theory represented

by equations (3.6) and (3.3). The measured NR linewidth Γtot is fit to the equation

Γtot = (ΓNR + Γopt) = (ΓNR + β · n̄SMR) while the NR occupation n̄NR is fit to

n̄NR = ΓNRn̄T
NR

/
(ΓNR + β · n̄SMR) in a simultaneous least-squares fit, using free

fit parameters ΓNR, n̄T
NR and β, using “Origin” software. The fitting routine uses

a Levenberg-Marquardt algorithm. From equation (3.6) we note that parameter

β represents the coupling between SMR and NR: β = 4
κ

(
∆xZP

∂ωSMR

∂x

)2
. For the

dataset taken at 20 mK (orange points in figure 6.1), ΓNR could not be fit, so only

Γtot was fit.

Values of ΓNR and n̄T
NR are set by the environment and may vary from one

dataset to another, but the coupling should be a fixed parameter of the device.

141



Indeed, independent fits of all the datasets shown in figure 6.1 (a) and (b) as well

as the fit of Γtot measured while the SMR was excited (figure 6.3, see below) found

values of β agreeing within uncertainty. We used the average of these, β = 2π ·

(3.49 · 10−7 Hz), in figure 6.1 to produce all of the fit lines. The other fit parameters

were

Red pump, fridge T = 142 mK:

n̄T
NR = (752± 41 ), ΓNR = 2π × (19.1± 3.7 Hz)

(42 points, reduced χ2 = 7.5× 103, adjusted R2 = 0.89)

Blue pump, fridge T = 142 mK:

n̄T
NR = (777± 39 ), ΓNR = 2π × (18.5± 0.3 Hz)

(34 points, reduced χ2 = 3.5× 104, adjusted R2 = 0.96)

Red pump, fridge T = 20 mK:

ΓNR = 2π × (15.3± 1.2 Hz)

(linear fit, 17 points, adjusted R2 = 0.97)

Here the uncertainties are the standard errors of the fit values. Given that

the datasets were taken on different occasions separated by weeks, these results

represent reasonable fits of the data to equations (3.6) and (3.3) using parameters

that are well within expectation.

We can quantify the maximum achieved cooling rate of Γopt ' 2π · 100 Hz in

terms of a cooling power Q̇. As Γopt is the rate at which NR quanta are extracted

by the upconversion process, we have Q̇ = Γopt · ~ωNR = 2.3 · 10−24 W. The lowest

occupation achieved by the backaction cooling was n̄NR = 58±0.2, achieved at base

temperature. However, the fluctuating n̄T
NR at this fridge temperature made this
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result difficult to reproduce. This behavior is discussed in section 5.5 as appearing to

indicate that the NR is coupled to an additional time-varying force-noise in addition

to the thermal bath, and that at the lowest fridge temperatures the coupling ΓNR

to the thermal bath is weak enough for the additional unidentified force-noise to

dominate.

At these low fridge temperatures, another effect that may counteract the cool-

ing is thermal absorption of applied RF power by the SMR and/or the NR. Such

effects are hard to quantify, but one observation may be made by looking at the

plot of NR frequency vs fridge temperature in figure 5.4. In this data, the double

pump measurements employed a higher power than the single-pump measurements.

At temperatures above 100 mK, where the NR is well coupled to the thermal bath,

the NR frequency drops slightly with increasing pump power, as expected due to

electrostatic frequency shift (section 3.5). However, at the lowest fridge temper-

atures, the NR frequency increases with pump power, suggesting that the NR is

being thermally heated a few tens of mK by the applied RF power. There is also

some evidence that RF power excites the excess force noise, leading to a hysteresis

in the mode temperature with respect to microwave power levels. In one trial with

the fridge held at 17 mK, we observed the NR mode temperature initially to be

∼ 40 mK. After the microwave power was cycled to high levels and then reduced,

the mode temperature was > 100 mK.

At a fridge temperature of 142 mK, these poor thermalization effects and

thermal heating effects were less severe. (See also for example the discussion of excess

backaction in section 6.8.) However the higher starting temperature meant that the
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lowest occupation achieved through backaction cooling was n̄NR = 149.3±0.2. With

this behavior in mind, future experiments intending to cool the mechanical motion

to its quantum ground state should not anticipate that the mode will thermalize to

temperatures below 100 mK. Instead, other improvements are needed to the device

to enhance the cooling power. Our clearest limitation in this experiment is the

degradation in SMR dissipation for n̄SMR & 3 · 108. This is most likely due to the

critical current of the SMR being suppressed due to contamination of the aluminum

during the fabrication process. (See section 4.3.) Greater care in fabrication could

distinctly improve the power-handling of the SMR. Further improvements in the

power handling could be made by using a material such as Nb having a higher

critical current. Considering equations (3.6) and (2.40), other enhancements in

cooling power could also be made by reducing the linewidth κ of the SMR (using

smaller capacitances Cκ at the ends of the SMR), and improving the coupling ∂ωSMR

∂x
.

The latter could be readily improved by reducing the capacitance C of the SMR

by raising the characteristic impedance Z ′
0 of the waveguide. (See section 2.3.)

Improvements to the capacitance derivative ∂Cg

∂x
could be made by reducing the gap

d between NR and gate, but as this is already only 85 nm, reducing it much further

will be technologically challenging. These tradeoffs are further discussed in section

3.1.4.

From the values of the fit parameter β = 4
κ

(
∆xZP

∂ωSMR

∂x

)2
, and the estimated

values of ∆xZP and measured value of κ, we can derive values of the coupling ∂ωSMR

∂x
.

We find ∂ωSMR

∂x
= 2π × (8.0± 2.1 kHz/nm). This agrees well within uncertainty to

the value ∂ωSMR

∂x
= 2π×(7.5± 1.6 kHz/nm) derived from the temperature calibration
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(See section 5.5). We can also use these values to make an estimate of the capacitance

Cg between NR and SMR. Using a value of 7.5± 1.6 kHz/nm in the expressions in

equations (2.53), we can use equation (2.40) to find ∂Cg

∂x
= 3.0 ± 0.6 aF/nm, and

from this we use the approximation ∂Cg

∂x
' Cg

d
to estimate Cg = 253± 54 aF.

Capacitance of these complicated structures is difficult to estimate accurately

from geometry. A very crude model is to treat Cg as a parallel-plate capacitor, i.e.

Cg = ε0 · lg · tAl/d, which yields a capacitance of 280 aF. This is an underestimate,

because fringing fields contribute to the capacitance more in our device than in a

parallel-plate geometry. We can also compare to the gate capacitance seen in past

experiments. Naik (Ref. [41]) used an NR of similar geometry whose gate electrode

was a 1 micron long single-electron transistor, across a 100 nm gap. This device had

Cg = 33.6aF. Extrapolating to our much longer gate and narrower gap yields 1030

aF, which should be an overestimate because fringing fields at the ends of the gate

are less important in a longer device. Nonetheless, these estimates suggest that our

measured value of gate capacitance is about a factor of two smaller than expected.

A probable cause of this discrepancy arises in the fabrication. Since the SMR and

NR are fabricated in two separate steps, they are separated by a joint containing a

thin insulating layer of native Al oxide. (See section 4.3 for fabrication details.) If

the capacitance thereby added in series with Cg is of the same order as Cg, it would

produce the observed discrepancy. Solving this problem would distinctly improve

the coupling and the cooling power. Possible solutions might be to greatly increase

the joint area, to ion-mill before the second deposition to remove the Al oxide, or

to deposit the material for NR and SMR in the same fabrication step.
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6.3 Backaction cooling when SMR is excited by noise

In section 3.3 we discussed the behavior of backaction cooling when the SMR

is thermally excited. When n̄T
SMR > 0, the backaction will no longer appear to the

NR as a zero-temperature bath, but will drive the NR with backaction, setting a

limit on the cooling. In this case we cannot neglect the Γoptn̄
opt
NR term in the detailed

balance equation (3.3), but approximately set the thermal occupation of the SMR

n̄T
SMR equal to n̄opt

NR. The sideband due to backaction-driven motion of the NR will

add coherently with a 180 degree phase shift to the thermal noise in the SMR, so

that the measured sideband does not accurately indicate the actual NR occupation.

The proper value of n̄NR may be found from the data using equation (3.23).

We studied this behavior by omitting the filter cavity at the microwave source

during backaction cooling, thus allowing the phase noise of the microwave source to

excite the SMR. These measurements were done at fridge base temperature. Phase

noise power scales with pump power, and at the highest pump powers, the SMR

was excited up to n̄T
SMR ' 52. Several measured spectra appear in figure 6.4, and a

negative-going sideband appears at the highest pump power due to the backaction.

We determine n̄eff
NR from the sideband area by using the thermal calibration

described in section 5.5 (no differently than in the case where n̄T
SMR = 0). The

occupation n̄T
SMR may be calculated from the measured white noise spectrum at

ωSMR by first subtracting the portion attributable to amplifier noise, and scaling

the result by the system gain to find the noise spectral density Sout(ωSMR) emitted

by the SMR at resonance. We then have (modifying Eq. (3.19) to account for the
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Figure 6.3: Cooling measurement while SMR is pumped at ωSMR−ωNR

and also driven by microwave source phase noise. Fridge temperature 20
mK. (a) NR linewidth, Γtot/2π, not affected by excitation of SMR. Solid
line is a linear fit (8 points, adjusted R2 = 0.99) to Eq. (3.6), as described
in section 6.2. (b) SMR excitation expressed as an equivalent thermal
occupation number n̄T

SMR, and apparent NR occupation n̄eff
NR calculated

directly from measured sideband area using thermal calibration factor.
Correct NR occupation n̄NR is calculated from these by equation (3.23).
Note that at highest pump power n̄eff

NR is negative. See also fig 6.4.
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Figure 6.4: NR position noise spectra during backaction cooling mea-
surements while microwave source phase noise excites SMR. Selected
from dataset shown in fig 6.3. Position noise calculated from measured
power spectra via Eq. (6.5). At high pump powers, background level
rises due to excitation of SMR. (Compare to measurements at similar
pump magnitude shown in fig 6.2). At highest pump power, backaction-
driven motion of NR produces sideband that subtracts from noise level
in SMR, yielding negative peak.
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subtraction of amplifier noise)

n̄T
SMR =

1

~ωSMR

· κ

2κext

· 1

gain(ωSMR)
· (SN,out(ωSMR)− Samp) (6.1)

The fit values of linewidth Γtot and mode temperature n̄eff
NR appear in figure

6.3, along with n̄NR calculated using equation (3.23). The optical damping is not

affected by the SMR thermal occupation. The fit line in figure 6.3(a) uses the

same slope as in figure 6.1 (β = 2π · (3.49 · 10−7 Hz)) and has an intercept ΓNR =

2π · (5.4 ± 1.0)Hz, indicating the very low natural NR linewidths that are possible

at low fridge temperatures.

The excitation of the SMR places limits on the cooling of the NR motion.

The lowest occupation achieved in this dataset was n̄NR = 74 ± 39, much poorer

than trials at the same fridge temperature with phase noise suppressed. This clearly

demonstrates the utility of suppressing phase noise using the microwave filter cavi-

ties. The correction using Eq. (3.23) also imposes large uncertainties on the values

of n̄NR because of the uncertainties in n̄T
SMR traceable to the uncertainty in ampli-

fier noise temperature via the determination of system gain and κext. (See section

5.4.) While in this device the excitation of the SMR was deliberately introduced,

in other cases it could conceivably arise from thermal heating within the SMR or

other system components, making it more difficult to control.

6.4 Optical-spring frequency shift

To examine the behavior of the backaction damping and optical-spring fre-

quency shift, we applied a red-detuned pump tone at a fixed power Pin = −7.4 dBm
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into the fridge, varying the frequency ∆ω = ωpump − ωSMR from 2π · −8.19 MHz

to 2π · −3.19 MHz, i.e. from −1.47ωNR to −0.57ωNR. The NR frequency ωNR and

linewidth Γtot were then determined from Lorentzian fits of the NR thermal noise

sideband. Measurements were made at a fridge temperature of 145 mK. We were

careful to use a low enough pump power that even at the pump frequency closest

to ωSMR, the power circulating inside the SMR was low enough not to degrade κ.

We expect the behavior to be described by equations (3.16) and (3.15).

In these measurements, a filter cavity was not used to suppress phase noise

from the pump source, because re-tuning the filter for each new frequency measure-

ment would have been very tedious. In principle, it is possible for backaction driving

of the NR as described in section 3.3 to affect the measurement. While we would

not expect backaction driving to affect ωNR and Γtot, at detunings ∆ω > −ωNR and

∆ω < −ωNR, we would expect the backaction-driven NR signal to exhibit a phase

shift other than 180 degrees, which when added to the noise amplitude emitted by

the SMR would produce a distorted Lorentzian lineshape, which would be difficult

to analyze. However, in this case the pump power and resulting phase noise was low

enough that n̄NR À n̄T
SMR, so we may neglect backaction driving effects.

The resulting data appears in figure 6.5. When trying to fit the data to

equations (3.16) and (3.15), it is important to note that for a fixed applied pump

power, n̄SMR varies with ∆ω according to equation (2.33). The calculated value of

n̄SMR appears in figure 6.5(a) using parameters κext and loss determined as described

in section 5.4.

Furthermore, the measurements of ωNR will reflect not only the optical-spring
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Figure 6.5: NR frequency and linewidth vs. detuning ∆ω of pump fre-
quency from SMR frequency, at fixed pump power. (a) Calculation of
pump magnitude within SMR, n̄SMR. (b) Measured NR frequency with
fit to combined optical-spring and electrostatic frequency shifts (equa-
tions (3.15) and (3.41)). (c) Shift from ωNR, plotted alongside separate
optical-spring and electrostatic frequency shifts, calculated using fit val-
ues from (b). (d) Measured NR linewidth with fit line (equation (3.16)).
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frequency shift but also the electrostatic shift due to kEM as given by equation

(3.41). As shown in figure 6.5(b), using “Matlab” software, we fit the measured

NR frequency against the frequency shift defined by equation (3.15), plus the shift

defined by equations (3.41) and (3.38). Nonlinear least-squares fitting was performed

using a Levenberg-Marquardt algorithm, yielding an R-squared value of 0.84. The

data is plotted again in figure 6.5(c) as a shift from ωNR, together with the fits of

optical-spring and electrostatic frequency shifts shown separately. Fit parameters

and their resulting values were ωNR = 2π · (5571741.1± 0.7 Hz),
(
∆xZP

∂ωSMR

∂x

)2
=

4π2 · (0.074 ± 0.004 Hz2), and ~λ/2k = (−1.85 ± 0.20) · 10−14. From these results

we can calculate

∂ωSMR

∂x
= 2π · (10.3± 0.8 kHz/nm)

λ = 2π · (−0.151± 0.026 kHz/nm2)

∂2C

∂x2
= (−0.06± 0.01) aF/nm2

The fit of Γtot to equation (3.15) appears in figure 6.5(d). In this fit, we use

the fit value of ωNR found from the first fit. The fit parameter
(
∆xZP

∂ωSMR

∂x

)2
in

this result is 4π2 · (0.074± 0.004 Hz2), yielding ∂ωSMR

∂x
= 2π · (8.85± 0.68 kHz/nm).

The R-squared value in this fit was 0.95.

We can compare these values of ∂ωSMR

∂x
to the value 2π · (7.5 ± 1.6 kHz/nm)

found from thermal calibration (section 5.5). Considering that the data in figure

6.5 was taken over a 24 hour period in which drifts in ωNR and ΓNR may have been

several Hz, and that in calculating n̄SMR we could not account for dependence of

loss on frequency, and considering the large uncertainties in loss and κext that go
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into determining n̄SMR, these results seem to be in reasonable agreement with other

measurements for this device (section 6.2).

These results also provide insight into the parametric-amplification effect that

will arise when pumping the device simultaneously at both frequencies ∆ω = ωSMR±

ωNR for BAE measurement. Given that the natural NR linewidth is ΓNR ' 15 to 25 Hz

at a temperature of about 140 mK, we see from figure 6.5(a) and (c) that we can

readily generate electrostatic frequency shifts approaching ΓNR at reasonable pump

powers. As described in section 3.5, in the BAE pump configuration an oscillating

component of the electrostatic frequency shift will lead to amplification of the ther-

mal motion, to degradation of the backaction evasion, and ultimately to uncontrolled

self-oscillation of the NR when the frequency shift exceeds ΓNR.

6.5 Backaction-evading single quadrature detection

6.5.1 Demonstration of single quadrature detection

To demonstrate sensitivity to a single quadrature X1 of the NR motion, we

drive the SMR in the BAE configuration of equal microwave pump tones at frequen-

cies ωSMR−ωNR and ωSMR +ωNR. The quadrature X1 is defined by the phase φbeat

of the beat frequency of the RF field in the SMR, as described in sections 3.4.2 and

3.4.3,

VSMR(t) = Vp cos(ωSMRt) cos(ωNRt + φbeat)

which is the sum of the two pump tones, each of amplitude Vp

2
. The phases

of the two pumps may be known at the input of the signal lines at the top of the
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fridge; however they will acquire an unknown but fixed phase shift in the signal

lines and the coupling into the SMR. Thus the only way to identify the X1 phase

is to measure it. A circuit for this measurement was shown in figure 4.5. For this

measurement, ωNR was first determined precisely by applying pumps at ωSMR−ωNR

and ωSMR+ωNR+2π·600 Hz and recording the thermal-noise sidebands. (We needed

to do this re-measurement of ωNR before each dataset because ωNR/2π could drift

5 to 10 Hz from one day to another. The 600 Hz frequency separation enables the

two sidebands to be individually resolved, but being ¿ κ/2π still enables us to treat

the measured sideband amplitude as if it were at ωSMR.) Meanwhile, we drive the

NR with a fixed-phase RF signal at frequency ωNR as described in section 5.3. The

sideband voltage appearing at ωSMR due to this driven motion is downmixed to

ωNR and monitored on a lockin amplifier, using the same RF source as a reference.

Alternatively, the sideband power could be monitored directly on the spectrum

analyzer. The phase of the RF drive was stepped progressively to identify the phase

of maximum response, i.e. X1.

The microwave tone synthesized by the Agilent E8257D exhibited phase drifts

of up to a few tens of degrees per hour, resulting in an equivalent drift of φbeat. Since

varying the RF drive phase over 2π typically required half an hour to an hour of

stepping and signal averaging, this could be a problem. To compensate, we extract

a portion of the combined pump signal via a microwave directional coupler and

apply it to an RF diode, as shown in figure 4.5. The diode bandwidth is À ωNR

but ¿ ωSMR so that it registers the envelope of pump power oscillating at twice

the pump beat frequency. An attenuator is used to prevent the pump power from
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driving the diode nonlinear. The diode output is measured on a lock-in amplifier,

with the same RF source used to drive the NR used here as a reference, making

use of the 2f setting on the reference input of the SR844 lock-in. The measured

phase was divided by 2 and subtracted from the phase of the RF drive. While the

resulting phase value still contains an arbitrary fixed phase shift, it should negate

the effects of pump phase slippage.

Figure 6.6(a) shows the results of this measurement, clearly showing sensitivity

to a single quadrature of motion, with X1 falling at about +20 degrees. The vertical

scale is the magnitude of the sideband voltage, normalized to its maximum value.

Several repetitions were averaged to make this trace, and the error bars are the stan-

dard error of the averaged values. It is interesting to note that the measurement

does not appear to be entirely insensitive to X2 motion at about -70 degrees. Im-

balance in the two pump amplitudes within the SMR could produce such an effect,

which we tried to counteract with careful balancing as described in section 6.5.3.

Most likely the small apparent sensitivity to X2 is due to drifts of a few Hz in ωNR

during the measurement, meaning that the NR was not driven exactly on resonance,

introducing an additional time-varying phase shift in its response. Nonetheless the

results indicate that the selectivity to X1 is at least a factor of 10. Figure 6.6(b)

shows thermally-driven motion of the NR using the same pump configuration (the

RF drive is shut off to enable detecting the thermal motion), confirming that intro-

ducing two pump tones to produce the BAE pumping configuration has no effect on

the device’s ability to act as a sensitive position detector.
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Figure 6.6: BAE pump configuration. Equal pump powers at ωred =
ωSMR − ωNR and ωblue = ωSMR + ωNR. (a) Demonstration of phase-
sensitive nature of this scheme. While applying BAE pumps, NR is
driven separately with a coherent drive signal at ωNR. The phase of
this drive is varied over 2π, while the sideband amplitude at ωSMR is
monitored. The response achieves a maximum when the drive excites
the X1 quadrature of NR motion defined by the coherent pump tones,
and a minimum when X2 is excited. Response amplitude is normalized to
the X1 response. Phase offset from 0 degrees is due to fixed phase shifts
in signal lines. (b) Thermal motion of the X1 quadrature of NR mode,
measured at 142mK. Single-quadrature measurement scheme maintains
the same sensitivity to small-amplitude motion. Pump conditions are
same as in figure 6.7. Each pump power was ∼ −2 dBm at the top of
the fridge, for a total occupation of n̄SMR ' 1.2 · 107 pump photons in
the SMR.
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6.5.2 Demonstration of backaction evasion

To ensure that backaction driving of the NR is restricted to the X2 quadrature

while only the X1 quadrature is detected, it is necessary for the pump amplitudes

within the SMR at the two frequencies ωSMR − ωNR and ωSMR + ωNR to be of

equal amplitude. While we could attempt to balance the pump amplitudes using

the estimates of loss and gain at the two pump frequencies (see section 5.4), given

the uncertainties in these values we considered it more accurate to balance the

amplitudes using the sidebands themselves, which should be directly proportional to

the pump powers and should both undergo the same gain after being emitted by the

SMR. We applied pump tones at frequencies ωSMR−ωNR and ωSMR+ωNR+2π×600

Hz. At a fridge temperature of 142 mK, we adjusted the balance of powers in

increments of 0.2 dB, recording the area of the thermally-driven sidebands of the

two pumps, then taking a linear regression to determine the exact pump power

ratio that equalized the sideband areas. These measurements were made with filter

cavities inline with the microwave sources, so that the precise amplitudes of the

thermal noise sidebands would not be obscured by backaction. We repeated this

procedure at four different pump powers over a range of 10 dB, and found that

in all cases the sideband areas balanced when the transmitted pump powers had

the ratio Pout(ωSMR + ωNR) = Pout(ωSMR − ωNR) + 1.1 dB. This is in reasonable

agreement with our separate measurement of 0.88 dB as the difference in gain at

these frequencies (section 5.4).

Using this balance of applied pump powers, we measured the NR thermal noise
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over a range of pump powers. In section 5.5 we showed that the thermal calibration

factor is equally applicable to the double-pump configuration, and this was employed

to calculate the NR occupation n̄NR from Psideb/Pout,redpump, assuming that the blue

pump was balanced properly. Filter cavities were employed at each microwave source

to ensure that no source phase noise excited the SMR, so we should not expect any

backaction driving of the NR. The results are plotted in figure 6.1(c) and (d). For

the horizontal axis, the occupation of pump photons in the SMR, n̄SMR, is calculated

in the non-BAE case as the power in one pump, in the BAE case as the total power

in both pumps, since in the latter case both pumps contribute to a single measured

sideband. In contrast to single-pump measurements made at the same pump powers

(panels (a) and (b) of the same figure), no backaction damping or cooling of the NR

mode is observed. The absence of backaction damping in both cases is attributable

to the balancing of upconversion and downconversion processes described in section

3.1.3. It is notable in this data that the mode temperature of the NR is somewhat

higher than the fridge temperature, which we attribute to the unidentified excess

force noise discussed in section 5.5. At low fridge temperatures that effect can

dominate the NR amplitude but at these fridge temperatures it adds at most a few

tens of mK to the NR mode temperature. In the BAE configuration, at the highest

pump powers, n̄NR > 108, we observe linewidth narrowing and amplification of the

thermal noise by the parametric amplification effect described in section 3.5.

To demonstrate backaction evasion, we must drive the NR with backaction,

and demonstrate that it does not excite the measured X1 quadrature. The wiring

configuration used for this measurement appears in figure 4.4. The backaction is
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conveniently provided by injecting white noise into the SMR at frequencies around

ωSMR while applying pump tones in the BAE configuration after careful measure-

ment of the NR resonant frequency ωNR at the same total pump power. The white

noise is generated using a string of three noisy microwave amplifiers, producing a

measured noise power density of -96 dBm/Hz, injected into the drive line at the top

of the fridge through a 10 dB coupler. Noise of this level excites the SMR into a

thermal state with occupation factor n̄T
SMR > 104. At the measurement temperature

of 142 mK, the thermally-driven motion of the NR (n̄NR ' 600) is then much less

than backaction-driven motion. In the BAE case, thermal motion in the X2 quadra-

ture may be neglected, and in a case where backaction drives both quadratures

we may neglect the thermal motion in both quadratures. In this measurement we

used pump power weak enough that we may neglect parametric amplification. Each

pump applied ∼ −2 dBm at the top of the fridge, resulting in a total occupation of

n̄SMR ' 1.2 ·107 pump photons in the SMR. Injection of noise at the SMR frequency

mimics the action of microwave shot noise which would provide the backaction in

the quantum regime, and follows a similar procedure used by other researchers to

demonstrate BAE [57]. While injecting noise, we recorded the spectrum around

ωSMR. The result appears as the purple trace in figure 6.7. Drifts of a few Hz in

ωNR required readjustment of the blue pump frequency, limiting our averaging time.

No motional sideband is distinguishable in the noise spectrum at ωSMR. As

described in section 3.4.3 the weak noise amplitude at ωSMR ± 2ωNR can mix with

the pumps to drive the NR via backaction in both X1 and X2 quadratures. This

deviation from ideal behavior will appear as motion in the X1 quadrature and the
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ratio of the two quadrature amplitudes is given as a ratio of peak noise spectral

densities
SX2

SX1
=

32ω2
NR

κ2 + 3 (equation (3.35)). In our case we have ωNR

κ
= 11.3,

meaning we expect
SX2

SX1
= 4 · 103. Our averaging time is too short to resolve the

nonideal backaction motion or the thermal motion in the X1 quadrature. Instead,

we estimate the maximum possible sideband amplitude consistent with the random

noise observed at ωSMR. We take this to be the standard error of the measured noise

power density within the noise bandwidth ΓNR

4
of the NR. Multiplying this standard

error by the noise bandwidth ΓNR

4
yields an estimate of the minimum resolvable

sideband power in the BAE measurement, denoted as PBAE. A Lorentzian line

having this area and linewidth ΓNR is overlaid in black on figure 6.7.

To determine
SX2

SX1
we would ideally like to directly measure the backaction-

driven motion in the X2 quadrature, recording the full “noise ellipse” of backaction-

driven motion as demonstrated for instance by Marchese et al. [57]. However, the

X2 quadrature is by definition invisible to the BAE measurement. In the past,

researchers developing BAE measurements with gravitational-wave antennas were

able to add a separate transducer to their devices for independent measurement of

X2. [54] In our system, one option might be to apply a third microwave tone as a

“probe” signal whose sidebands will be sensitive to both X1 and X2 while the two

pump tones and noise injection are applied simultaneously.

Here we use a simpler technique of measuring the backaction due to a single

pump tone that excites and detects both quadratures, and using this result to calcu-

late the unseen X2 backaction in the double pump BAE case. (For this calculation

I rely on notes generously provided to my by A. Clerk. [84] [58]) After averaging
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Figure 6.7: Demonstration of backaction evasion. Red line is motional
sideband observed while pumping at ωRED = ωSMR−ωNR and injecting
noise to the SMR. Lorentzian fit (599 points, reduced χ2 = 5.6× 10−32,
adjusted R2 = 0.96, gray shaded area) yields linewidth Γtot = 2π × (29
± 0.5) Hz and PBA,red = -234 ± 3 fW. Purple line is measured BAE noise
spectrum measured while injecting same amplitude of white noise and
pumping equally at ωRED = ωSMR − ωNR and ωBLUE = ωSMR + ωNR.
Black shaded area is a Lorentzian with amplitude equal to standard error
of measured noise within span ΓNR

4
= π

2
× (24.2 ± 0.8) Hz. Area of this

region is PBAE = 2.46 fW, representing the maximum possible sideband
power consistent with the measured noise. Pump conditions are identical
to those in figure 6.6.
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the spectrum in the BAE configuration for ∼1 hour, we shut off the blue pump

and recorded the spectrum of the backaction given by a single red pump at the

same power as in the BAE case and with the same level of noise injection. The

backaction-driven single-pump spectrum appears as a red line in figure 6.7. We

fit the peak area to find sideband power PBA,red and linewidth Γtot = ΓNR + Γopt.

The peak area is shaded in gray in the figure. A separate measurement using the

double-pump non-BAE configuration permits us to measure the natural linewidth

ΓNR under identical conditions.

The expected noise spectra in the single-pump case with backaction-driven

motion was discussed in section 3.3. Because the SMR “thermal” occupation n̄T
SMR

in this case is driven to such high levels by the injected noise, we may ignore the

mechanical thermal-noise term proportional to n̄T
NR in equation (3.21), leaving an

expression that should correspond to the red curve in figure 6.7.

SN,out(δ) = gain · ~ωSMR · κext

πκ

(
1− Γopt(ΓNR + Γtot)

4δ2 + Γ2
tot

)
n̄T

SMR

Integrating to find the apparent occupation due to backaction-driven motion

in the single-pump case, corresponding to PBA,red:

n̄eff,BA
NR = −

(
1 +

ΓNR

Γopt + ΓNR

)
n̄T

SMR (6.2)

From this expression and the measured value of PBA,red, we would like to esti-

mate the unseen backaction-driven occupation in the X2 quadrature in the double-

pump BAE case, n̄BA. Then this may be compared to the occupation of the X1

quadrature, n̄X1 , as determined from the measured value PBAE. A calculation of
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n̄BA has been done in reference [20], assuming that n̄T
SMR = 0, i.e. that the exci-

tation of the SMR is limited to vacuum noise equaling 1
2

microwave quantum. For

large n̄T
SMR, that solution for n̄BA may be adapted by multiplying it by 2n̄T

SMR.

[58] Taking into account that the power in the BAE case is double that in the

single-pump case, n̄BA may then be expressed in terms of the single-pump result

n̄eff,BA
NR (equation (6.2)). The ratio

SX2

SX1
should equal n̄BA

n̄X1
. Expressing in terms of

the measured sideband powers we have [58] [84]

SX2

SX1

= 8
Γopt

ΓNR

Γtot

Γtot + ΓNR

|PBA,red|
PBAE

(6.3)

For measured values PBA,red = −234 fW, PBAE = 2.46 fW, ΓNR = 2π× 24 Hz

and Γtot = 2π × 29 Hz , equation (6.3) yields
SX2

SX1
= 82. This represents a lower

bound on the effectiveness of our backaction evading measurement, limited by aver-

aging duration. The result compares favorably to other published demonstrations of

backaction-evading single quadrature detection, such as in Ref. [57], which achieved

SX2

SX1
= 26. Further limitations on our BAE scheme due to the accompanying para-

metric amplification effect are discused in section 6.5.3.

6.5.3 Backaction evasion degraded by parametric amplification

In the BAE demonstration in section 6.5.3, the total pump power corresponded

to n̄SMR ' 1.2 · 107, which we can see from figure 6.5(a) and (c) should lead to an

oscillating NR frequency shift of only ≤ 2 Hz. The resulting level of parametric

amplification should degrade the BAE only slightly. To quantify the degradation

in
SX2

SX1
to be expected from a given level of parametric amplification, I rely on

163



calculations helpfully provided by A. Clerk. [58] For an electrostatic frequency shift

δωNR = 1
2

kEM

k
· ωNR oscillating at frequency 2ωNR, he finds that

SX2

SX1
is limited to

SX2

SX1

=
1− (δωNR/ΓNR)2

(δωNR/ΓNR)2

For the data in figure 6.7, given the measured ΓNR = 2π ·24.2 Hz and assuming

δωNR = 2π ·2 Hz we find
SX2

SX1
limited by parametric amplification to a factor of 145.

This contrasts with the discussion in section in section 3.4.3 of limits to BAE due to

mixing of noise from frequencies ωSMR±2ωNR, which identified a limit
SX2

SX1
= 4 ·103

for our device. This indicates that over nearly the whole regime of pump powers

used in our measurements, our BAE efficiency is limited by parametric amplification

rather than the more widely understood limits on BAE. This is likely to be the case

for any attempt at BAE measurements using coupled SMR-NR devices. Nonetheless,

in the measurement shown in section this limit still exceeded our ability to resolve

SX2

SX1
.

It is worth noting that when we applied higher pump powers where the para-

metric amplification should significantly degrade the BAE, and injected noise at

ωSMR, the resulting sideband spectrum appeared distinctly non-Lorentzian. Instead

of a “dip” as in the red trace in figure 6.7, it appeared to be a “dip” for one portion

of the linewidth, and a “peak” for another portion. From this I can surmise that

the mixing of the backaction-driven X1 and X2 by parametric amplification results

in a varying phase shift relative to the noise injected at ωSMR. When we shifted

the pump powers apart slightly in frequency, so that we pumped with microwave

tones at ωSMR − ωNR and ωSMR + ωNR + δ, where δ was of the order of ΓNR, this
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slight detuning appeared to suppress the effect of the parametric amplification on

the BAE, recovering more of a flat noise spectrum. The exact behavior in these

conditions merits further study.

6.6 Position sensitivity

Following the discussion in section 3.6 and conventions presented elsewhere

[55], we would like to calculate the measured position uncertainty and compare

it to quantum limits. For a measurement of thermal motion of the mechanical

resonator, we expect the measured spectral density of motion to be a sum Stot
x (ω) =

Simp
x + SBA

x + Stherm
x (ω). The first term reflects measurement uncertainty added by

amplifier noise and vacuum fluctuations in the SMR. In our experiments the noise

contributed by the HEMT amplifier dominates by about a factor of 30 over the the

vacuum, or shot-noise, contribution. The second term reflects quantum backaction

driving of the NR. As discussed in section 3.6, for shot-noise limited detection, at

the standard quantum limit (SQL) the quantum backaction will contribute a mere

1
4

quantum of mechanical energy to the NR motion. However, as we will show

below, our position uncertainty never surpasses about 4 times ∆xZP (neglecting the

parametrically-amplified measurements in which the thermal noise is also amplified).

Thus our coupling is barely adequate to reach the SQL even if our detection were

shot-noise limited. On the other hand, in all of our measurements, thermal noise

drives our NR to n̄NR > 100. Thus we will ignore the SBA
x . We also assume

that no other backaction force drives the NR. In these measurements we ensured
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that the SMR was not excited above its ground state, so there is no backaction

driving as described in sections 3.3 and 6.3. Here we also neglect other effects of the

measurement on the NR amplitude, such as thermal heating. Although we saw some

evidence of pump-power-dependent thermal heating at the fridge base temperature

(see figure 5.4 and discussions in section 6.2), at 142 mK we see no such effects,

as discussed in section 6.8. In any case themal heating would appear merely as an

increase in Stherm
x (ω). Thus in calculating the measurement uncertainty we assume

that within the regime in which we are operating, the additive contribution of the

amplifier noise tells the whole story.

The total measured noise spectral density at frequencies near the SMR reso-

nance should be the sum of two contributions corresponding respectively to Stherm
x (ω)

and Simp
x : the noise due to the mechanical sideband, Ssideb(ω), and a fixed-amplitude,

frequency-independent background noise due to the amplifier, Sbgd.

S(ω) = Ssideb(ω) + Sbgd (6.4)

The thermal calibrations and expressions for Psideb, equations (2.53) and (5.4),

allow us to readily calculate the position noise spectral density (in units of m2/Hz)

of the measured NR amplitude [4]. We use the constant cal(Pout) determined from

our thermal calibration data (see section 5.5) to relate mechanical amplitude to

the measured power spectrum at frequencies near ωNR, divided by the transmitted

pump power Pout. (Note that we use throughout this work a convention of single-

sided spectral densities.) To find the thermal excitation of the NR in terms of a
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noise spectral density we take

Stherm
x (ω) = (kB/k) (Ssideb(ω)/Pout) /cal(Pout) (6.5)

The additive amplifier noise Sbgd contributes an uncertainty Simp
x to our mea-

surement of the NR position Sx. Expressed as a position noise spectral density (in

units of m2/Hz):

Simp
x = (kB/k) (Sbgd/Pout) /cal(Pout) (6.6)

In figure 6.2, I show Sx(ω) = Simp
x + Stherm

x (ω) found from measured sideband

values Sbgd +Ssideb(ω). Figure 6.4 shows the case where excitation of the SMR n̄T
SMR

contributes additionally to Sbgd and therefor to Simp
x , demonstrating how excitation

of the SMR not only causes the measurement to drive the NR with backaction but

also degrades the position sensitivity.

From Simp
x , we can calculate the position uncertainty ∆x in our measurement

of the motion. This method is similar to the methods described in past work [75] and

is equivalent to comparing additive noise with the mechanical response amplitude.

[73] For a NR having linewidth Γtot/2π, this is given by the total position noise

attributable to Simp
x within the effective noise bandwidth of the NR:

∆x =

√
Simp

x · Γtot

4
(6.7)

Measured values of ∆x calculated in this way from Sbgd appear for all pump

configurations in figure 6.8. (The dataset is the same as the one appearing in

figure 6.1.) The values of ∆x are expressed in real units as well as in multiples

of the zero point motion ∆xZP . From equation (6.6) we expect the precision to
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Figure 6.8: Measured position uncertainty ∆x vs. SMR occupation.
Same dataset as used in Fig. 6.1. Red-detuned pumping (red points)
ωred = ωSMR−ωNR. Blue-detuned pumping (blue points) ωblue = ωSMR+
ωNR. BAE pump condition (purple points) ωred = ωSMR − ωNR and
ωblue = ωSMR +ωNR. Balanced pump, non-BAE condition (black points)
ωred = ωSMR−ωNR and ωblue = ωSMR+ωNR+2π ·600Hz. The horizontal
red line shows the limiting sensitivity for a single pump tone. The slanted
black dotted line shows the expected sensitivity proportional to 1√

n̄SMR
if

linewidth Γtot is insensitive to pump power and equal to only the natural
linewidth ΓNR of the nanoresonator. Shaded region is inaccessible to
BAE due to parametric instability.
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improve inversely with pump power, i.e. inversely with the coupling of NR to the

readout. Thus we expect ∆x to scale inversely with the square root of pump power.

At low pump powers, this behavior is followed by the measurements in all pump

configurations. Yet from equation (6.7) we see that the contribution of additive

noise to our position sensitivity is critically dependent on the NR linewidth Γtot.

We find that at high pump powers the narrow linewidths possible in the high-stress

SiN nanoresonator enable ∆x to approach ∆xZP .

The four pump configurations therefore present four distinct behaviors of po-

sition sensitivity as power is increased, because of the effects on linewidth demon-

strated in figure 6.1. The double-pump, non-BAE configuration is the most straight-

forward. Because the pumps are balanced, there is no backaction damping, thus the

natural linewidth of the NR is maintained independent of pump power, Γtot = ΓNR,

yet the measurement is sensitive to both quadratures of mechanical motion. In

this regard it is similar to the technique of detecting motion by pumping at ωSMR,

employed by other researchers. [17] [72] [45] The best sensitivity achieved in this

measurement is roughly 5 · ∆xZP , or ∼ 7 times the SQL level, at a cavity pump

occupation of 8 · 107. We would expect that if the product cal(Pout) · Pout could be

raised a factor of 50, the measurement imprecision due to additive noise would reach

the SQL. Given that the additive noise of our amplifier is about 30 times above shot

noise, for such a measurement we would expect shot-noise backaction to add on the

order of 10 mechanical quanta to the NR motion.

In comparison, the BAE pump configuration similarly preserves Γtot = ΓNR,

but this measurement, as described in sections 3.4 and 6.5, will introduce backaction
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only to quadrature X2 while measuring only X1. Thus the uncertainty is really an

uncertainty in only the measured quadrature, ∆X1. The best sensitivity achieved

with backaction-evading measurement is seen in figure 6.8 to be roughly 4 · ∆xZP

at n̄SMR = 108. At higher pump powers, where the sensitivity of the double-

pump, non-BAE measurement would degrade due to shot-noise backaction, the BAE

measurement should ideally exhibit no such limits on its sensitivity. This level of

∆X1 = 4 · ∆xZP is as far as I’m aware the best sensitivity achieved to date in a

BAE measurement. Other published results report uncertainties that are orders

of magnitude greater. [54] It is also very interesting to note that this uncertainty

derives entirely from the noise added by the amplifier, with a noise temperature

of TN = 3.56 K, or 14.8 quanta at the measurement frequency of ωSMR = 2π ·

5.00684 GHz. If the amplifier noise were eliminated, we must consider only the 1
2

quantum, i.e. 1
2
~ωSMR = 1

2
kB ·240 mK, of noise contributed by vacuum fluctuations

of the microwave field. This would reduce ∆X1 a factor of 5.4, leading to ∆X1 below

∆xZP . This demonstrates that our coupling and measurement strength in the BAE

configuration is capable of generating a conditionally squeezed state, as discussed in

sections 3.4.2 and 3.4.4. To my knowledge this is the first time such a measurement

has been shown.

In the BAE configuration at slightly higher pump powers, however, the para-

metric amplification effect described in section 3.5 becomes significant. This has

both benefits and drawbacks. Because the parametric amplification favors a phase

π
4

away from X1 and X2, it will effectively combine the two quadratures, destroy-

ing the BAE effect. However, the mechanical preamplification adds no noise to
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the measurement, and also dramatically narrows the NR linewidth, making our

measurement less sensitive to the additive amplifier noise. Because small fluctu-

ations in ωNR cause large variations in the parametric amplification, and a slight

increase in the parametric amplification could cause the NR to self-oscillate, this

effect was challenging to control. However, linewidths below 3 Hz were readily

achievable and as low as 2.1 Hz were possible. In a measurement at SMR occupation

n̄SMR = 1.1 · 108, we found Γtot/2π = 2.1 Hz, reaching our lowest value of position

uncertainty ∆x = 1.3 ·∆xZP . The parametrically-amplified thermal noise spectrum

appears in figure 6.9, along with a Lorentzian fit having linewidth Γtot/2π = 2.1 Hz.

It is important to note that, even though the parametric amplification narrows the

linewidth, reducing the effect of Simp
x , it also amplifies the thermal motion by the

same amount. Thus even though it helps approach the SQL, it makes it more dif-

ficult to observe shot-noise backaction. The parametric amplification thus does not

improve our ability to achieve true quantum-limited measurement. This technique

could, however, be very useful in detecting the thermal noise or the response to

small forces in circumstances where the additive noise dominated the measurement.

The blue pump measurements appearing in figure 6.8 exhibit a similar behavior

to the parametric amplification effect, narrowing the linewidth while amplifying the

thermal noise. In this case however, the NR motion is driven to self-oscillating levels

at pump powers too low to reliably achieve ∆x as close to ∆xZP . The red pump

configuration presents another interesting case. This type of measurement has been

commonly used in prototype gravitational-wave antennas. [57] [54] The limiting

case for a single-pump measurement is discussed in section 3.6 as reaching ∆xZP
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Figure 6.9: Highest-achieved mechanically-preamplified thermal noise
of NR. Double-pump configuration, pumps at ωSMR +/- ωNR. Fridge
temperature 142 mK, mechanically-amplified mode temperature 2.26 K,
linewidth 2.1 Hz. (Here pump frequency is subtracted from horizontal
axis so that the response is centered around fNR). The measurement
in this figure also appears in fig 6.1 (c) as the point with lowest Γtot, in
fig 6.1 (d) as the point with largest n̄NR, and in fig 6.8 as the point of
lowest ∆x.
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only in the limit of infinitely strong coupling. It is instructive to calculate how

close we expect the measurement to reach and compare it to the measured limits

appearing in figure 6.8. Combining equations 6.6 and 6.7, and using the definition

∆xZP =
√

~
2mωNR

=
√
~ωNR

2k
, we have

(
∆x

∆xZP

)2

=
kB

~ωNR

· Sbgd

Pout · cal(Pout)
· Γtot

2

As discussed in section 5.4, Sbgd equals kBTn · gainamp, where gainamp is the

total gain from the HEMT amp input to our spectrum analyzer, as opposed to the

total gain which also includes the losses between the sample and amplifier. We

can also incorporate the definition from equations (5.2) and (5.4) of cal(Pout) =

(
∂ωSMR

∂x
1
κ

)2 · 2kB

k
· gain(ωSMR)

gain(ωpump)
, to find

(
∆x

∆xZP

)2

=
k · kBTn

~ωNR

· gainamp(ωSMR)

gain(ωSMR)
· gain(ωpump)

Pout

·
(

∂ωSMR

∂x

1

κ

)−2

· Γtot

4

We can reduce this further by expressing the amplifier noise in terms of Tn =

n̄amp · ~ωSMR

kB
, and by using equation (2.34) to substitute for gain(ωpump)

Pout
:

(
∆x

∆xZP

)2

=
n̄amp

(∆xZP )2
· gainamp(ωSMR)

gain(ωSMR)
· κ

κext

·
(

∂ωSMR

∂x

)−2

· κ

n̄SMR

· Γtot

4
(6.8)

In the limiting case of high pump powers, Γopt À ΓNR, thus we may take

Γtot = Γopt. Using expression (3.6) we have the limiting value

(
∆x

∆xZP

)2

= n̄amp · gainamp(ωSMR)

gain(ωSMR)
· κ

κext

(6.9)

Note that the limiting precision is explicitly dependent on the losses between

the sample and amplifier, but for the ideal case of zero losses and a quantum-limited

amplifier n̄amp = 1
2
, this expression reduces to the theoretical expression discussed
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in section 3.6. For our HEMT amplifier having Tn = 3.56 ± 1 K at 5 GHz, we

have n̄amp = 14.8 ± 4.2. The loss between sample and amplifier is also estimated

(see section 4.1) to be gainamp(ωSMR)

gain(ωSMR)
= 1.5± 1 dB. From these values, and our best

estimates of κext, and expression (6.9) we find a limiting value of ∆x
∆xZP

= 5.8± 1.5.

For comparison, we take the red-pump data in figure 6.8 and fit it to 1 over the

pump power plus a constant:
(

∆x
∆xZP

)2

= A
n̄SMR

+ B. We find an excellent fit to

this expression, with the fit parameter B = 44.4 ± 2.5 yielding a limiting value of

∆x
∆xZP

=
√

B = 6.7 ± 0.2. This value is shown in figure 6.8 as a horizontal red

line. The theoretical and fit values are thus in good agreement within uncertainty.

Or to look at it another way, equating expression (6.9) to the fit value of B yields

n̄amp = 19.3± 8.4, or Tn = 4.6± 2.0 K.

6.7 Force sensitivity

We can also determine the force sensitivity of the device, as described in refer-

ence [85], which reports the best published sensitivity of Fmin = 0.8 aN/
√

Hz, with

a closely matching sensitivity also reported in Ref. [3]. For a resonator of mechani-

cal linewidth Γtot, the force sensitivity Fmin represents the driving force that would

produce an RMS mechanical amplitude equal to the apparent measured amplitude

of the NR due to both additive noise and thermally-driven motion of the NR. Or in

other words, what level of force driving the NR would produce a signal-to-noise ra-

tio of one with respect to measurement noise and thermal noise? The measurement

bandwidth is taken to be the noise bandwidth ΓNR

4
of the NR. Fmin is thus given (in
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Figure 6.10: Force sensitivity vs. pump power, at fridge temperature of
142 mK. Same dataset as in figures 6.1 and 6.8.

units of N/
√

Hz) by

Fmin =
k

ωNR

√
Γtot ·

(
Simp

x Γtot +
4kBTNR

k

)
(6.10)

It is evident from expression (6.10) that if 4kBTNR

k
À Simp

x Γtot then the thermal

noise dominates, and the additive noise may be neglected. It is also evident that

in this limit such processes as either positive or negative optical damping, or para-

metric amplification have negligible effect on the detectable force, because in the

limiting cases of these processes TNR scales inversely with Γtot. Figure 6.10 shows

the force sensitivity Fmin calculated for measurements at a temperature of 142 mK

for all pump configurations. At high pump powers, we have sufficient sensitivity

that in equation (6.10) the thermal noise of the NR dominates over Simp
x . At this
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Figure 6.11: Force sensitivity vs. fridge temperature. Same dataset as
thermal calibration (figure 5.6).

temperature we reliably achieve a force sensitivity of 1.7 · 10−18N
/√

Hz. Figure

6.11 shows force sensitivity vs fridge temperature, calculated using equation (6.10)

from the same dataset used in our thermal calibration (figure 5.6). At the lowest

temperature at which the sample thermalized to the fridge (63 mK), we reliably

achieved sensitivity of 8 · 10−19N
/√

Hz at high pump powers.

At our lowest fridge temperature of ∼17mK, we occasionally observed a NR

mode temperature of 46mK and linewidth of 8 Hz, yielding a force sensitivity of

6 · 10−19N
/√

Hz. Each of our measurements of TNR is made simultaneously with

a measurement of Γtot by measuring and fitting the thermal noise of the NR, which

may tend to overestimate Γtot because of drifts in the NR frequency during the
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averaging. Another way to consider it is to measure Γtot separately using a more

rapid measurement under the same conditions. This was the technique used by

Mamin et al. [85]. We have made separate measurements of Γtot using a time-domain

ring-down technique, and found Γtot = 2π×1.9 Hz at 50 mK and Γtot = 2π×3.2 Hz

at 75 mK. Taking TNR = 60 mK and Γtot = 2π×3 Hz and assuming sufficient pump

power to overcome Simp
x we find Fmin = 0.4 aN/

√
Hz, an improvement on the best

published results.

6.8 Approach to quantum limits on Sx · SF

The Heisenberg uncertainty principle ∆x∆p ≥ ~
2

may be applied to the act of

position measurement as ∆xmeas∆pperturb ≥ ~
2
, where ∆xmeas is the uncertainty in

the measurement and ∆pperturb is the change in the momentum due to measurement

backaction. [55] This relation in turn may be re-expressed as a limit on the product

of the measurement precision Sx, and the resulting back-action force noise SF . For

single-sided noise spectral densities, the limit is SxSF ≥ ~2 [55]. At sufficiently high

coupling strengths of the measuring system to the measured mechanical motion, the

shot noise of the microwave pump field will generate the back-action force noise SF to

enforce this limit. In our system, the coupling is most easily increased by increasing

the pump power. The measurement imprecision decreases with increasing pump

power as shown in equation (6.6). In our system, in the range of accessible pump

powers, we expect the shot-noise SF to drive the NR only very weakly, only to

amplitudes barely approaching one quantum of NR energy. In practice, however,
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classical effects may produce force noise stronger than the shot-noise SF . Any

such effects that also increase with increasing pump power will mimic and obscure

the quantum back-action. In our measurements we avoid one important effect by

making sure that the SMR is not excited above its ground state n̄T
SMR = 0; thus

the classical backaction noise driving (described in sections 3.3 and 3.4.3) may be

neglected. However, other classical effects such as thermal heating of the NR can

also drive the NR to increasing amplitudes as pump power is increased. We treat

this “classical backaction” as adding to the backaction force noise SF , and want to

set limits on the magnitude of this force. We may then estimate how closely such

classical backaction would permit us to observe quantum-mechanical contributions

to SF .

To distinguish the classical contribution to SF , we look for evidence of a white

force noise which drives the mechanics to a mode temperature TNR(BA) additional

to the average thermal bath temperature. To be a signature of backaction, TNR(BA)

should also increase with increasing pump power. As a force F at the resonant

frequency will drive a mechanical resonator to an amplitude FQ/k, a force noise SF

drives a resonator of linewidth Γ to mean-squared motion 〈x2〉 = SF ·
(

Q
k

)2 · Γ
4
, and

therefore we express

TNR = TNR(therm) + TNR(BA)

= TNR(therm) +
SF (Ppump)

4mkBΓNR

(6.11)

where SF has units of N2/Hz. Note that if we express TNR(BA) = ~ωNR · n̄BA

and use equation (3.10) to express Sx in terms of an effective imprecision occupation
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Figure 6.12: Position noise due to additive amplifier noise, and mode
temperature, plotted against pump power, when pumping with two tones
at ωSMR − ωNR and ωSMR + ωNR + 2π × 600Hz. Data in lower panel
also appears as black points in figure 6.1 (d). Red line is a linear fit
to NR mode T as a function of pump power, consistent with no excess
backaction in the measurement.
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Sx = 4
ΓNR

· 2n̄imp(∆xZP )2, we have SxSF = 16~2 · n̄imp · n̄BA, thus by the uncertainty

relation we must have
√

n̄imp · n̄BA ≥ 1
4
. The increase in mode temperature in

equation (6.11) is most easily distinguished when TNR is otherwise expected to be

independent of pump power. Naik et al. [3] identified TNR(BA) and therefore SF for

a superconducting SET coupled to a NR, by reducing TNR(therm) to negligible levels

by lowering their fridge temperature. Regal et al. [17] did something similar with

a coupled SMR-NR system, pumping their SMR on-resonance to avoid backaction

damping effects while operating at the lowest fridge temperature and examining

the dependence of their NR mode temperature on microwave pump power. Here we

wish to avoid the behavior at our lowest fridge temperatures in which an unidentified

non-thermal force-noise drives the NR to amplitudes far in excess of thermal noise

(section 5.5). Instead we use Eq. (6.11) to estimate SF as a function of pump power

based on measurements at 142 mK.

To avoid any backaction cooling or parametric amplification effects, we apply

equal microwave pumps at ωSMR − ωNR and ωSMR + ωNR + 2π × 600Hz. This data

is included in figure 6.1 (d) and also appears in figure 6.12, with a linear regression

fit line attempting to determine a trend in the mode temperature as a function

of pump power. The fit yields intercept 187 ± 12 mK, slope 40.4 ± 58.7 mK per

normalized power of 1, with adjusted R2 = −0.02. Thus at the highest pump

power in this dataset, the fit finds TNR(BA) = 14± 21mK. The large uncertainty in

the fit means that the data is consistent with no backaction driving of the NR at

all. Nonetheless, we can employ the fit value to conservatively estimate an upper

bound on classical backaction contributions to SF . From TNR(BA) = 14mK we find
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SF = 5.3 × 10−37N2/Hz. At the same pump power, the additive amplifier noise

yields position uncertainty Sx = Simp
x = 6.7 × 10−28m2/Hz. From this we find

√
SxSF = 9.2 ·10−33J · s, or ∼ 90~. This represents an upper bound on our approach

to the quantum limit SxSF ≥ ~2. This calculation of SxSF pertains only to this

particular pump configuration, i.e. when the SMR is driven with both red and blue

microwave pumps so as to balance up- and down-conversion but without BAE.

However, this estimate of the classical contribution to SF should be relevant

to any pump configuration, because it is presumed to result from thermal heating

or other parasitic processes that depend directly on pump power. Further evidence

for this conclusion is seen in the backaction cooling data (red and blue points in

figure 6.1 (a) and (b)) which fits well to the theory based on optical damping and

detailed balance equation (equations (3.3) and (3.6)). Excess thermal heating of the

NR would likely cause the fit of n̄NR to deviate from theory.
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Chapter 7

Conclusions

The work presented in this dissertation represents a first demonstration in our

research group of high-precision position measurement and backaction cooling in

a coupled SMR-NR system. The close agreement of the backaction cooling with

theory (figure 6.1 (a) and (b)) shows that the system is well understood. More-

over, we have for the first time demonstrated backaction-evading single-quadrature

detection in a nanomechanical system. With this technique we demonstrated po-

sition uncertainty only 4 times above the zero-point motion of the NR. Because

this uncertainty is contributed largely by the additive noise of our amplifier, our

device actually achieved coupling strengths that could permit the generation of a

conditionally squeezed state. Ultimately our ability to achieve lower position un-

certainties in continuous position measurement, and our ability to perform better

backaction cooling, is limited by the poor power-handling ability of the SMR sample

that we used (figure 5.2). This problem is readily amenable to engineering solutions

involving improved device fabrication. Our ability to achieve better position sensi-

tivity in the BAE measurement is limited by the parametric amplification behavior

arising in this configuration. This limitation has not previously been explored in

the experimental literature.

Since the measurements in this dissertation were completed, the research group
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has advanced rapidly to even more exciting results. Building on the techniques

proven in the work presented here, we made four major improvements to the device:

1) fabrication of the SMR from Nb rather than Al, for improved power handling,

2) preventing the capacitive-division between gate and SMR (section 4.3 and figure

4.10), for improved coupling, 3) raising the SMR frequency to 7.5 GHz, and 4)

increasing the impedance Z ′
0 of the CPW forming the SMR, in order to reduce its

capacitance, for improved coupling (equation (2.40)).

The results were just as we expected, achieving a dramatically improved cou-

pling of ∂ωSMR

∂x
= 2π · 84 kHz / nm, and backaction cooling to n̄NR < 4 [86]. Our

understanding of backaction-driving of the NR during red pump measurements, de-

scribed in this dissertation (sections 3.3 and 6.3), was essential to the later work

because the later device exhibited excitation of the SMR during the cooling mea-

surements. Work is ongoing to improve the devices yet further. With modest

improvements in coupling and the elimination of the unwanted excitation of the

SMR, it appears that cooling to the ground state, demonstrating additive noise

uncertainties below the SQL, single-quadrature backaction-evading measurements

with uncertainty below zero-point motion, and generation of squeezed states, are all

within reach.

I should also mention here a related project that I participated in actively

for several years, but which is not discussed in this dissertation. The group led by

Markus Asplemeyer at the Institute for Quantum Optics and Quantum Information

in Vienna, Austria, has been studying backaction cooling and related phenomena

in micromechanical resonators coupled to optical cavities - the identical concept to
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the system appearing in this dissertation, but in a different regime, with different

techniques [38] [87] [42]. The optical system offers advantages and disadvantages

over a microwave system. Lasers and photodiodes have far lower noise than sources

and amplifiers in the microwave regime. The optical cavity is not susceptible to

thermal occupation as the SMR is, but it is a free space cavity many thousands

of wavelengths long, which requires complicated alignment and locking techniques.

Although the optical system allows easy prototyping at room temperature, these

experiments are just beginning to be done at low temperatures and not yet at

millikelvin temperatures. I assisted with design and fabrication of the first and

second generations of device used in these measurements. The challenge was to make

> 1 MHz mechanical resonators having both high Q and high optical reflectivity.

This work recently succeeded in using radiation-pressure optical damping to cool

the motion of a 100µm × 50µm × 1µm, 945 kHz mechanical resonator to a factor

of 32 above the quantum ground state, to date the best published result of such a

technique [42]. In terms of the possibilities for demonstrating quantum behavior,

this optical system is as promising as the microwave and nanomechanics system,

and I am pleased to have contributed to its development.
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