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Abstract

During the past few years, several studies have been made on the performance of
real-time database systems with respect to the number of transactions that miss their
deadlines. All of these studies have used simulation models or database testheds as
their performance evaluation tools. We present, in this paper, a preliminary analytical
performance study of real-time transaction processing. Using a series of approxima-
tions, we derive simple closed-form solutions to reduced real-time database models. By
virtue of their simplicity, these solutions provide considerable insight into the ohserved
performance. Although quantitatively approximate, the solutions accurately capture
system sensitivity to workload parameters and yield performance bounds. Qur results
indicate that increased transaction slack times degrade performance under heavy loads
for the real-time database systems considered in this study. The analysis also shows
that the absolute sizes of transaction data sets, independent of their relationship to the
database size, have a significant impact on performance. Interestingly. our approxima-
tion techniques for real-time database models are applicable to classical single-server
real-time models as well. resulting in simple approximations that closely match complex
exact solutions presented in the literature.

“This research was supported in part by a Systeins Research Center Post-Doctoral Fellowship under NSF
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1 Introduction.

In recent years there has been growing interest in real-time database systems, which represent
a union between the hitherto separate areas of real-time systems and database systems. This
interest in real-time database systems stems from the increasing number of data-intensive
applications that are faced with timing requirements. These applications include aircraft
control, stock trading, network management, and factory automation [Abbo88, Stangs].

In a broad sense, a real-time database system (RTDBS) is a transaction processing system
that is designed to handle workloads where transactions have deadlines. The objeclive of
the system is to meet these deadlines, that is, to process transactions before their deadlines
expire. Therefore, in contrast to a conventional DBMS where the goal usually is to minimize
transaction response times. the emphasis here is on satisfying the timing constraints of
transactions.

Transactions may miss their deadlines in a real-time database system due to contention
for physical resources (CPUs, disks, memory) and logical resources (data). During the last
few years, several detailed studies [Abbo91. Hari91, Huan91] have evaluated the performance
of various real-time transaction resource scheduling policies with respect to the number of
missed transaction deadlines. These studies have either used simulation models [Ahbo91,
Hari91] or used database testbeds [Huan91] as their performance evaluation tools. To the best
of our knowledge, however, no analytical performance studies of real-time database systems
have been made so far. The lack of such studies may be attributed to the complexity
of real-time database systems. Accurately modeling a real-time database svstem involves
incorporating transaction time constraints, scheduling at multiple resources. concurrency
control, buffer management, etc., and this appears to be mathematicallv intractable. In
fact, the exact solutions to extremely simplified special cases are themselves complex (c.g.
[Mitr84]).

While exact solutions appear infeasible or too complex to be of utility, we show in this
paper that it is possible to derive simple approzimate solutions to reduced models of real-
time database systems. Due to their simplicity, these solutions provide considerable insight
into the observed performance. Although the solutions are quantitatively approximate, they
satisfactorily capture system sensitivity to workload parameters and vicld limits on system
performance. In essence, we are able to derive performance trends and bounds.

In this paper, we investigate the performance of real-time database systems where trans-
actions have deadlines to the start of service (i.e. laxities). Tn our reduced model (sece Figure
1.1), transactions arrive in a stream to the real-time datahase svstem, and each transaction
requests the scheduler for read (shared lock) access or write (exclusive lock) access to a
subset of objects in the database. A transaction that is granted access to its data beforc its
laxity expires, uses the data for some period of time and then exits the system. Otherwise,
the transaction is “killed”. that is, it is removed from the systemm when its laxity expires.
Our goal is to derive the steady-state fraction of input transactions that are killed (o in
Figure 1.1), as a function of the workload and system paramecters. We consider onlv data
contention in our model since it is a fundamental performance limiting factor, unlike resource
contention which can be reduced by purchasing more resources and/or {aster resonrces.

Even after making several simplifying assumptions about the transaction workload pro-
cess (Poisson arrivals, exponentially distributed laxities. etc.), deriving an exact solution for
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Figure 1.1: RTDBS Model

the above model appears difficult. However, using a series of approximations, we develop
here a simple closed-form solution that merely involves finding the roots of a cubic equa-
tion. This approximate solution accurately captures the qualitative behavior of the RI'DBS
model. Further, it also provides quantitative results that are fairly close to the exact val-
ues (as determined by simulation). Taking advantage of the simplicity of the approximate
solution, we derive interesting corollaries, some of which are unique to the database cnvi-
ronment. For example, we show that increasing the laxity of tasks, which usually results in
improved performance in classical real-time systems, may either improve or degrade RTTBS
performance depending on the system operating region.

In addition to the above RTDBS results, we show that our approximation techniques can
also be used to derive simple solutions for classical real-time models of single-server queues
with impatient customers. Complex exact expressions have been presented for these models
in the scheduling literature (e.g. [Haug80, Zhao89]). In [Haug80] the calculations involve
several numerical integrations, and in [Zhao89] they involve computing incomplete gamma
functions. Our solutions, however, only require evaluating the roots of cubic or quadratic
equations. These approximations closely match the values provided by the exact solutions.

The remainder of this paper is organized in the following fashion: In Section 2, we
formally describe our RTDBS model and the notations used in our derivations. A brief
review of related work is outlined in Section 3. The approximation process and the solution
to the RTDBS model are presented in Section 4. This is followed by the validation of the
approximate solution in Section 5. Interesting corollaries are derived from the solution in
Section 6. Then, in Section 7, the approximation techniques developed in Section - are
used to construct simple solutions for classical real-time models. Finally, in Section 8, we

summarize the main conclusions of the study and outline future vescarch avenues.



2 Model and Notation

In our model, the database is a set O of data objects o1, . ... 0y, where N is the number of ob-
jects in the database. Each transaction T'is characterized by a 5-tuple (Ay. Ly, O7. My, Pr)
where Ar is the transaction’s arrival time; Ly is the transaction’s laxity (relative to its ar-
rival time); Op is the set of data objects o; : 7 € 1,.... N that the transaction wishes to
access; Mr is the desired access mode (Read or Write) vector for the objects in Op; and Pr
is the data processing time (if the transaction receives access to O7).

The data processing model is as follows: Each transaction upon arrival informs the system
scheduler of its data set (Or) requirements and the access mode for each of thesc objects
(Mr). If the scheduler provides the transaction access to the requested database objects
before its laxity (L) expires, the transaction processes the data for a period Py. and then
leaves the system. Otherwise, the transaction is killed when its laxity expires.

We consider a system where transaction arrivals are Poisson with rate A, transaction data
processing times are exponentially distributed with mean 1/p. and transaction laxities are
(independently) exponentially distributed with mean 1/4 (A, i,y > 0). We assume {that the
database is large, that it is accessed uniformly, and that transactions request their data sets
atomically (i.e. each transaction needs simultaneous access to all of its data objects). We
also assume that each transaction requests J data objects and thal .J is much smaller than
N, the database size (this is usually true in practice).

In our system, the scheduler processes transactions in a FCI'S manner, that is. a transac-
tion is allowed entry into the database only if it has no data conflict with currently executing
transactions and if all transactions that arrived prior to it have either been killed or been
processed or are currently being processed. Using a FCFS policy might be considered unrea-
sonable in a real-time environment. However, since our study is but the first step towards
placing the emerging field of real-time database systems on a firmer theoretical looting, we
have considered only this policy here. Further, FCEFS mayv be the only choice when the
scheduler is unaware of transaction laxities and processing times or when the scheduler is
forced, from considerations of fairness, to not provide preferential treatment. A practical
example of this situation is that of brokers submitting real-time bhuy and sell orders in a stock
exchange, wherein I'CFS processing may be used to maintain fairness among brokers. In
our future work, we plan to investigate prioritized scheduling disciplines where transactions
may be served in out-of-arrival order.

In the subsequent discussions, we use a (0 < « < 1) to denote the steady-state fraction
of input transactions that are killed. To succinctly characterize our svstem configuration,
we use A/B/m/L/S, the extended form of Kendall's notation described in [Zhao89]. (In
this notation, A describes the inter-arrival process, B the service time distribution. m the
number of servers, L the laxity distribution, and S represents the scheduling discipline.) For
the database environment described above, the number of “servers™ is not fixed, but variable
depending on N, J, and the current sequence of transaction data requests. or example,
multiple transactions may enter the database at the same time if their data requests do not
conflict with existing locks. We will therefore use the notation N, for the m descriptor,
thereby highlighting the variability in the number of servers. With this convention, our
real-time database model is represented by a M/M/N;/M/FCI'S queueing svstem, and our
goal is to characterize the a behavior of this system.



3 Related Work

Queueing systems such as M/M/1/M/FCFS and M/M/m/M/FCIEFS have been solved
exactly with respect to the o metric [Haug80, Zhao89]. In [Zhao89]. an elegant analysis
of the M/M/1/M/FCFS system was made and it was shown that the resultant solution
is considerably more complex than that of the classical (non-real-time) M/M/1/FCFS
system. In fact, the solution involves expressions that require computation of incomplete
gamma functions. A different approach to the analysis was taken in [Hang80] wherein the
final solution requires several numerical integrations. Note that we cannot use these results
for determining the performance of our queueing model since the number of servers in the
database is variable.

Database systems where queueing is not allowed were considered in [Mitr84, Lavn84]. In
these systems, a transaction that cannot receive service as soon as it arrives is imiediately
killed (equivalently, all transactions have zero laxity). The exact solution for this model was
shown to be quite complex in [Mitr84] and approximations to the solution for large databases
were presented in [Lavn84, Mitr84]. In our model, where queueing is included. the situation
becomes further complicated, especially since the number of servers is vaviable. Therefore,
deriving an exact solution appears mathematically infeasible. Morcover. even if the exact
solution could be derived, the resulting expressions would probahly be too involved to draw
useful conclusions. In our analysis, therefore, we have sacrificed quantitative accuracy to a
limited extent in order to gain computational simplicity and qualitative insights.

4 Analysis of M/M/N;/M/FCFS

In this section, we present an approximate solution to the AL/M/N;/M/FCFS queueing
system described in Section 2. Our solution is in two parts: irst, we characterize ay, the
steady-state fraction of transactions that arc killed among those transactions that success-
fully manage to reach the head of the transaction wait queue. Next, we compute ay. the
steady-state fraction of transactions that are killed before thev reach the head of the queue,
that is, while they are in the “body” of the queue. These quantities are related to the overall
a of the system by the following equation (derived by elementary flow analysis of Figure 4.1
which shows the queueing model)

l—a=(1—-a)(l—a) (1)

Therefore, if we are able to separately compute the “head-of-queue” and “bodyv-of-queue”
performance statistics, we can then easily derive the overall system performance. Our moti-
vation for taking this two-step approach is to de-couple the data conflict analysis from the
queueing analysis and thereby simplify the performance modeling.

In the following derivations, we refer to p = A/p as the system oflered load, and to
6 = p/v as the normalized mean laxity (following the terminology of [Zhao89]). Further, we
refer to £ = J/N as the database access ratio. [or ease of explanation, we initially derive
results for the case where each transaction accesses all its data objects in Write (exclusive
lock) mode. Later, in Section 4.4, these results are extended to the situation where data is
accessed in both Read and Write modes.
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Figure 4.1: Queueing Modcl

4.1 Head-Of-Queue Performance

In this section, we compute oy, (0 < ap < 1), the probability that a transaction which has
successfully managed to reach the head of the queue is killed while waiting in this position.

Lemma 1 The probability of a transaction at the head of the qucue being killed is approxi-
mately given by
ap = A(l — «)

—_
S
-

e

where the coefficient A = Y

Proof: Consider a transaction that reaches the head of the queue when &k database objects
are currently locked and finds that some of the data objects it requires are in this locked set
(i.e. the transaction has data conflicts). The probability that this transaction is killed while
waiting for the conflicting locks to be released is given by

J
Qplk = Z Pcon[k,i PEJJM[ (3)
=1

where Ponji,s 1s the probability that the transaction conflicts on 7 of its requested J objects,
and F,,p; is the probability that the transaction’s laxity expires before the i objects on which
it 1s conflicting are released.

We now separately consider two cases, one where £ is of the same order of magnitude as
J (i.e. k ~ J), and the other where k is much greater than J (i.e. k> .J). Intuitively, we
expect the former case to typically occur at low transaction arrival rates or when transactions
have small laxities, while the latter case may frequently occur at high arrival rates or when
transactions have large laxities.

4.1.1 Casel: k~.J

For computing F.onk; we consider all possible selections wherein ¢ of the ./ items in the
transaction’s data set are requested from the & alrcady-locked objects and the remaining

7



J — 7 items are chosen from the N — & free data objects. From simple combinatorics, it is
straightforward to obtain this probability as

()0
8

Now, since k ~ J and J < N, we have & < N. Using this [act and the approximation that

Pcon|k,i =

n " .
~ — if n > r, the above equation reduces to

r r!
7 J ~1 L J! 1
P"on i R ~ T 1 1 ars
conlk, N ( ) ' (5)
J

Note that this probability of conflicting on i objects is inverselv proportional to N'. Since N

A ¢

is large, we make the further approximation of ignoring all terms except = 1 in computing
ape- Therefore, Equation 3 is re-written as

Aplk = Pcon|k.1 PEJ'])Il (6)

Substituting : = 1 in Equation 5 gives

kJ

G = k¢ (

-1

Pcon|k.1 -

We next compute Peypjr, which is the probability that the head waiter’s remaining laxity is
less than the single conflicting transaction’s remaining processing time. Since transaction
laxities and execution times are exponentially distributed (with parameters v and g, respec-
tively), and by virtue of the memoryless property of exponential distributions, we obtain

% 5 1
Py = / e ye Tt = — = - 8
p[1 A b it I8 (3)
Substituting the above results for P,z and P.,,p in Iquation 6, we have
£
ah|k = k— (())

1446

4.1.2 Case 2: k> J

We now turn our attention to the case where & is much larger than J. In this situation,
the head waiter’s choosing of J data items can be approximately modeled as J samplings
with replacement, that is, as a sequence of Bernoulli trials [Triv82]. Since the probability of



choosing an already locked item is R the probability of exactly i conflicts is approximately

3 i [ J—i
Pronihi = ( ! ) () (1- ) (10)

given by

N N
We next compute P,,,|;, which is the probability that the head waiter’s laxity expires before
all its ¢ conflict locks are released. Due to the assumption of uniform access to the database
and since J < N, the probability of having more than one conflict with the same transaction
1s small. We therefore assume that each of the ¢ conflicts occurs with a different transac-
tion. The cumulative distribution of the maximum of ¢ identically-distributed exponential
variables with parameter y is given by

Fraw(iy(1) = (1 — ¢’

Since we are only interested in values of ¢ that are greater than the remaining laxity of the
transaction, the expression e #* tends to 0 with increasing laxity {which is when we expect
k to be much greater than J). We therefore make the approximation that

Fmal‘(l)(t) R (l - ie—uz)

and then obtain . .
20 27 v

Per i / ‘l’@“#t ~e 1 (IHI = / e 11

P o e vt 116 (11)

Substituting the above results in Equation 3 gives

I (. ko [
Q. = Z(z{)(—ﬁ)(l_ﬁ) ( )

=1

J ] ] i—1 J: S
= ) =)
N1+6 7 l A N

=1

Making the variable substitutions of ¢/ =7 —1 and J' = ./ — 1. we have

]{J J! J/ 8 i’ 2 J—=!
Q. = mlg( ; )(f) (I ——)

L (12)
1446
since the summation is identically equal to 1. Note that this final expression for ay;. is the
same as that obtained earlier for the case & ~ J (Iiquation 9). Thercfore, over the entive

§

range of k values, we have aj = k——
1 +46
We now go on to compute ay,, the unconditional probability that a head-of-quene waiter
is killed. Using Pi to denote the probability of & objects being locked. ap, can he expressed
as

k 3 .



Here, E(k) is the average number of locked objects and is casily computed using Little’s
formula [Klei75]. The rate at which transactions obtain locks is A(1 —a).J and locks are held
for a mean duration of 1/p. It therefore follows from Little's formula that

M1 —a)J

B(k) = ———— =pJ(1 —a) (14)
1

Combining Equations 13 and 14, we finally obtain

£

péd
= 5] ke
1+6"

(1—a) =175

(1 —a)

Qyp,
.

Note that in the above derivation, we made a series of approximations to finally derive a
simple expression for «y,. The expression is asymptotically exact as N — oc. However. as
we show in Section 5, these approximations work quite well even when N is not verv large.

4.2 Body-Of-Queue Performance

In this section, we compute a3, (0 < o < 1), the steadv-state probability that a transaction
in the queue is killed before reaching the head of the queue, that is. while it is in the hody
of the queue.

Lemma 2 The value of oy is a unique root of the cubic cquation
o} 4+ Bai +Cay+D =0 (15)

where the coefficients B, C, and D, are given b
s f g Y

1 1 Iy
pﬂ +1+a)( +1+o)
2 1 1 1 2

= (- —) = (1 4+ —) — 1+ -
¢ ( 1+46 p5( +]+5) pzf.]( +(3)

1
D = —

1446

Over the range of valid parametric values. the cquation has exactly one vool in [0.1] - this is
the required root.

Proof: A detailed proof of this lemma is given in Appendix .\. Here. we will sketch
the outline of the proof. The basic idea behind our solution is to treat the transaction wait
queue itself as an M/G/1 system with the head of gqueue position playing the role of the
“server”. That is, we treat the original queue as being composed of a server and a secondary
queue. As shown in Appendix A, it is possible to express the “service-time” distribution of
this system (i.e. the distribution of the time spent at the head-of queue position) with the
following equation

() = (1 = E)ug(t) + L(p+ ~)e 1 (16)

oo



where FE = pfJ(1 — a3)(1 — ) and uo(t) is the impulse (or Dirac delta) function [Klei75].

From Equation 16, we infer that a fraction (1 — ) of the input transactions have a ser-
vice time of zero while the remainder have an exponentially distributed service time with
parameter (g +7). The transactions that have a service time of zero are those that are killed
before they reach the head of the queue and those that immediately enter the database on
reaching the head of the queue. The remaining transactions either enter the database after
waiting for some time at the head of the queue or arve killed during their wait at the head of
the queue.

In [Klei75], formulas for computing the waiting time distribution of M/G/1 queues are
given in terms of the service-time distribution. Substituting the service-time distribution
from Equation 16 in these formulas, the cumulative distribution function of the waiting time
in the body of the queue works out to

Fu(t) =1 — Gebrlti=an (17)

pr6¢J
146

where G = (1—ap)(l — ).
Recall that a3 is (by definition) the fraction of transactions that are killed because their
laxity is smaller than their waiting time in the body of the queue. Thervefore,

G

= [T = Fy)) vetdl = 18
b ./0( (1) e 4 246 — G(1+ 6 (1)

After substituting for (7, the above equation expresses «v, in terms of the system input and
output parameters. Using this equation in conjunction with Fquations 1 and 2, and after
some algebraic manipulations, we finally arrive at the cubic equation described in the lemma.
The proof that this equation has only a single root in [0.1] is given in Appendix B.

|

An important point to note here is that the above derivation is approximate. This is
because the M/G/1 queueing results that were used in the derivation assume independence
between the task arrival process and the service time distribution. In our case, the head-
of-queue “service” time distribution (Equation 16) is dependent on the task arrival process
since it involves terms (e.g. p) that are a function of the arrival process. However. as we
will show in Section 5, this inaccuracy does not compromise the qualitative performance
behavior, and to a significant extent does not affect the quantitative behavior also. What
the approximation provides in return is a simple closed-form solution that merely involves
computing the roots of a cubic equation.

4.3 System Performance

In this section, we combine the results derived above for the head-of-queue and bhody-of-quene
statistics to compute o (0 < a < 1), the overall fraction of killed transactions.

9



Theorem 1 For the M/M/N;/M/FCFS system, lhe steady-state fraction of transactions
that are killed is approzimately given by
(l - ab)

1+ AL - ap) (19)

: , , L P v o ,
where ayp is obtained from Lemma 2, and A = g the cocfficient derived in Lemma 1.

Proof: Combining the flow equation (Equation 1) and Equation 2, we obtain

l—a = (I—-a)(l —ay)
l—a = (1—ap)(1—A(1l—a))
o = 1.____*(1:.92)*_
1+ A(1 —ap)
4

Note that it is possible to write a cubic equation in terms ol « itself without going through
the intermediate step of computing the roots of the cubic for a; in Equation 15. We do not
do this, however, for two reasons: IFirst, the cubic for a has more than one root in [0.1];
an additional mechanism to identify the appropriate root is therefore required. Second, the
coefficients of this cubic are cumbersome in structure.

4.4 Shared Locks

In the above derivations, it was assumed that transactions accessed all their data objects
in Write (exclusive-lock) mode. The following lemma characterizes how the o performance
would change if transactions accessed objects in both Read and Write modes.

Lemma 3 Let each transaction request a fraction « (0 < w < 1) of ils J data objects in
Write mode and the remainder in Read mode. Then, Lemmas 1 and 2 and Theorem I apply
in exactly the same form except that € is to be replaced by éw(2 —w) in all the equations.

Proof: In Section 4.1, we showed that the probability of the head waiter being killed when
k of the N items in the database are exclusively locked is given hy the equation
£ kJ 1

! ‘:k"—‘—‘“‘——>: o
ol = R = U

When shared locks are included in the modeling framework, k= &, + k.. where k, and &,
denote the number of shared locks and exclusive locks. respectively. In addition, for each

transaction, J = J; + J., where J; and .J. denote the requested number of shared locks
and exclusive locks, respectively. The .J, exclusive lock requests can conflict with any of
the k locked data objects, while the J; shared lock requests can conflict with any of the k.
exclusively-locked data objects. Therefore, by reasoning on similar lines to that of the Write-
only case, the probabﬂity of the head-waiter ])eing killed in the Read 4+ Write framework is

determined to be ]
k. koJ ‘) 1
N N " 1498

apr = (

10



After making the substitutions J. = wJ, J, = (1 —w).J, and k = wk in the above equation,
we get

E(wd) |, (k) (L=w)]), |
N N 1 +o
| 1

= kw2 —w) ——
REw(2 =) 755

apr =

which is the same as the expression for the Write-only case except that & is replaced by
fw(2 - w).

The remaining derivations follow in similar fashion.

a

When w =1 (all data items requested in Write mode), the expression éw(2 — w) reduces to
€. as should be expected. Conversely, when w = 0 (all data items requested in Read mode).
the expression éw(2 —w) reduces to 0. Substituting this value in the equations for a results
in a = 0. This is as expected since no data conflicts occur when data is accessed only in
shared mode, that is, the database behaves like an “infinite server”.

From the above results, we observe that the performance ol an M/M/N,;/M/FCEFS
real-time database system is determined by p.é,£,w and J. This is in contrast to classical
M/M/1/M/FCFS systems where the system performance is dependent only on p and 8
[Zhao89].

5 Validation of Analysis

In this section, we compare the performance of the approximate analysis with respect to the
exact solution, as determined by simulation'. The simulator was built using the Modula-
2-based DeNet simulation language [Livn88]. In Figures 5.1 through 5.4. we plot «a, the
fraction of killed transactions. as a function of p. the system load, for different combinations
of 6 (the normalized mean laxity) and £ (the databasc access ratio). The transaction size, J,
is set to 10 in these experiments, and all data objects are requested in Write (exclusive lock)
mode. Four different values of £, which span the range [rom a large-sized database to an
extremely small database were considered. The chosen ¢ values were 0.0001, 0.001. 0.01 and
0.1, which correspond to database sizes of 100000, 10000, 1000. and 100 respectively. Note
that while we assumed that ¢ < 1 in our analysis, we also evaluated the performance for
larger values of ¢ since we were interested in observing at. what stage the analysis broke down
when the assumptions were not satisfied. In our experiments, a wide range of transaction
loading levels were considered such that the resultant kill {fraction varied from 0 to close to
1. A long-term operating region where the kill [raction is large is obviously unrealistic for a
viable RTDBS. However, exercising the system to high kill levels provides information about
the system response to brief periods of stress loading.

'All o simulation results in this paper show mean values that have relative hall-widths about the mean
of less than 5% at the 95% confidence level, with each experiment having heen run until at least 50000
transactions were processed by the system.



For each of the ¢ settings, we evaluated the o performance for three values of &, the
normalized laxity. The selected § values were 0.1, 1.0 and 10.0, thus covering a spectrum of
transaction slack times (6 = 0.1 corresponds to transaction laxities being small compared to
processing times, 6 = 1.0 makes the laxities comparable to processing times, and & = 10.0
results in laxities that are much greater than processing times.)

In Figure 5.1, which captures the large database situation, we observe that under light
loads, the analytical solution (solid lines) provides an excellent approximation to the exact
solution (broken lines) for all the laxities. At heavier loads, the quantitative matching
deteriorates to some extent (for the large laxity case). but the qualitative agreement is
maintained throughout the entire loading range. This experiment confirms that. for large
databases, the simple cubic approximation is a good estimator of system performance.

The above experiment is repeated for progressively decreasing database sizes in Figures
5.2 through 5.4. From these figures, it is clear that the approximations provide reasonably
accurate performance predictions until £ goes above 0.01. Further. even when € is as large
as 0.1 (Figure 5.4), the qualitative agreement hetween the analysis and the exact solution
remains very close. Therefore, although our analytical solution is heavilv based on the
assumption that the database is large, it captures svstem performance trends for smaller-
sized databases as well.

6 Observations

In this section, we derive interesting corollaries from the analytical solutions for o that were
constructed in Section 4.

6.1 Extreme Laxity Cases

We consider two extreme cases here, one where the laxity tends to 0. and the other where the
laxity tends to oo, keeping the other workload and system parameters fixed. When laxity
tends to 0, transaction wait queues do not form and a; - 0. Substituting § = 0 and «; = 0
in Equation 19 gives
1
L+ ptJ

Conversely, when laxity tends to oo, it is clear from Equation 2 that a;, — 0. Substituting

(20)

a':ahzl

6 — oo in the equation for a; (Equation 15) and simplifving., we obtain

1 ,
1= —— ifp>1//E]

o= qp = . PV ES (21)

otherwise

This equation shows that when transactions are willing to wait almost indefinitely to obtain
service, they do not get killed unless the system offered load is greater than 1//¢.J. From
Equation 14, this critical system load corresponds to the average number of locked objects in
the database being VN (this expression holds when all locks are exclusive: the corresponding

expression for the shared lock framework is
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6.2 Performance Crossover

A particularly interesting feature of Figures 5.1 and 5.2 is that the large laxity (6 = 10.0)
performance is worse than the small laxity (6 = 0.1) performance over virtually the entire
loading range. Further, in Figure 5.3 (it happens in Figures 5.1 and 5.2 also but is not
clear due to the scale of the graph) a performance crossover (at p = 1.0) is clearly observed
between the large laxity and the small laxity performances. This means that under light
loads, large laxity results in improved performance, whereas under heavy loads, it is the
other way around. Therefore, there is a critical loading point after which increased laxity
can degrade performance. This is counter-intuitive since the expectation is that an increase
in laxity should result in better performance, as observed in the corresponding classical
real-time systems [Zhao89]. The reason for the difference in the database context is that
transactions do not ask for generic servers, but for servers with “identity” (i.e. for specific
data objects). As a result, transactions get queued up behind transactions that develop
data conflicts and increased laxities result in longer queues and more conflicts. Under heavy
loads, the queues become long enough that more and more transactions are killed while
waiting in the queue although they have been provided with greater laxity. In short, the
increased willingness to wait on the part of individual transactions is more than outweighed
by the increased system queueing times that result from this willingness to wait. Therefore,
increased laxity worsens performance under heavy loads for the class ol rcal-time database
systems considered in this study.

6.3 Crossover Point

In this subsection, we compute the crossover loading point bevond which the o performance
with 6 — oo becomes worse than that with 6 = 0. Equating the results obtained for é = 0
and ¢ — oo in Equations 20 and 21 gives
! 1 1 1
(¥ ol e

which, after solving for p, leads to

1 :
if VEJ <1

Perossover = \/f](l — 5/) (22)
~x otherwise
Substituting this value of p back in the a equations, we obtain the a at the crossover point

to be _
Qerossover = { \/é—]‘ ! \/U =1 (23)

1.0  otherwise

From this expression for acrossover, 1t 18 clear that with decreasing & (the database access
ratio), the crossover occurs at lower and lower values of a. For example, with ¢ = 0.001
and J = 10, the acrossover evaluates to 0.1. This means that from the system perspective.
for loading levels that result in a kill fraction greater than 0.1. a workload of transactions
that are willing to wait almost indefinitely is more difficult to handle than a workload of
transactions that find only immediate service acceptable.
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6.4 Performance Bounds

By evaluating the partial derivative of a w.r.t. § in Equation 19, the following corollary is
obtained:

Corollary 1: The a performance under light loads (p — 0) is « decreasing function of 6.
Conversely, under heavy loads, (p — 00), the o performance is an increasing function of 6.
Proof: The proof is provided in Appendix (.

N

From this corollary, we infer that § — oc provides the lower bound on a under light loads,
and the upper bound on « under heavy loads. Conversely, &6 = 0 provides the upper bound
on « under light loads, and the lower bound on a under heavy loads. Therefore, Fiquations 20
and 21 provide the numerical bounds on the « performance in the light-load and heavy-load
regions, respectively.

The fact that 6 = 0 provides the best performance under heavy loads suggests a scheduling
policy where under such loads, the scheduler turns away transactions at arrival if they cannot
be provided immediate service (even though the transactions might be willing to wait!).

We denote the loading level at which the « curve for a transaction workload with an
arbitrary ¢ intersects the a curve corresponding to ¢ = 0 by perossover(0). Note that this
crossover point can be apriori computed for any § by using the equations of Section 4. From
the graphical results shown in Figures 5.1 through 5.4 and other evalnations made by us, it
appears that the following statement about the a performance hehavior may hold:

Conjecture: For p < perossover (0), the o performance cannot be nuproved by
decreasing 6. However, for p > porossover (6), the lowest a is obtained with ¢ = 0.

In order to prove the above statement, it is sufficient to show that a is a concave function of
6 for all values of p. Theoretically, it should be possible to establish this from Equation 19
by demonstrating that the second derivative of o with respect to 6 is negative. Unfortu-
nately, the expressions for the second derivative are extremely cumbersome and we therefore
currently do not have a proof of this statement.

If the above conjecture is true, it is straightforward to infer that p.,ossoue,(6) i an increas-
ing function of 6. Then, the following stronger statement about the o performance bounds
1s valid:

FFor p < perossover (00), the best o performance is obtained with & — oo, whereas
for p > perossover (00). the lowest a is obtained with & = 0.

Note that this means that 6 = 0 and 6 — oo provide the lower bounds on a over the entire
loading range, and not just for the asymptotes of p — 0 and p — oc (Corollary 1).

6.5 Optimal Scheduling Policy ?

Consider the situation where the scheduler is expected to follow a strict FCI'S policy with
respect to processing transactions but is permitted to kill transactions before their laxity
expires. In this situation, 1t is simple to see that the following scheduling policy, which we
call R-FCFS (regulated FCFS), is optimal with respect to minimizing a if the conjecture
discussed in the previous subsection is true:
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R-FCFS: For p < perossover(6), follow normal FCFS scheduling. For p >
Perossover (0), follow a policy wherein transactions are killed if they cannot be
serviced immediately (i.e. treat all transactions as having zero laxity).

6.6 Effect of Transaction Size

We show in Figures 6.1 and 6.2 the effect of varying the transaction size while keeping the
database access ratio fixed (i.e., the database size is scaled in proportion to the transaction
size). For this experiment, we set £ = 0.001 and graph « as a function of p for different valnes
of J, the transaction size. In Figure 6.1, ¢ is set to 1.0 and in Figure 6.2, ¢ is set to 10.0. It
is clear from these figures that the absolute value of the transaction size plays a significant
role in determining system performance. This is in contrast to the classical A{/A/1 and
M/MJ1/M|FCFS systems where performance is determined solely by normalized quantities

[Zhao89].

7 M/M/1/M/FCFS System

In this section, we examine how our approximate solutions, which were derived in the context
of a database system, fare in the conventional real-tiine domain. As mentioned earlier in
Section 3, exact analytical solutions exist for M/M/1/M/FCI"S models [Haug80., Zhaos9].
The M/M/1/M]/FCFS queuing system can be easily mapped to onr database model by
setting J = N =1 (i.e. every transaction requests the single object that is i the database).
In Figure 7.1, the results obtained by setting ¢ =1 and J = 1 in Equation 19 are compared
with the exact solution [Zhao89]. We see in this figure that the approximation is extremely
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good through the entire loading range for all the laxities.

A point to note here is that the only source of approximation in the above model is in
computing oy since the expression for ay, (Equation 15) is exact when J = N = 1. Therefore,
what we have shown is that treating an M/AM/1/M/FCFS svstem as equivalent to an
M/G/1 queueing system feeding a server results in a simple closed-form cubic approximation
that closely matches the exact solution.

For the above model, we obtain peossorer = oo from Equation 22. which means that
there is no performance crossover, in contrast to that seen in the database context. This
agrees with the result in [Zhao89] where it was shown that ¢ — ~c always provides the best
performance.

7.1 Quadratic Approximation

For the M/M/1/M/FCFS system. approximations thal arc even simpler than the
cubic approximation described above can be derived. Here, instead ol trealing the
M/M/1/M]FCFS system as an M/G/1 system feeding a server, we consider the entire
system to be an M/G/1 system. Then, using the approximation technique outlined in
Section 4.2, an expression for a can be obtained with the only difference being that the
derivations are modified to reflect the presence of a real server, rather than a pseudo-server.
Following this approach, we obtain the following quadratic approximation:

Theorem 2 For the M/M/1/M/FCFS system, the steady-stulc [raction of killed transac-

tions s approximately given by a unique rool of the cquation

o’ +Sa+T=0 (24)
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1. 1 1
where S=(14+~)145) =2 and T = —+ .
P 6 6

Ouver the range of valid parametric values. the equation has cxactly onc rool in [0.1] ~ this is
the required root.

Proof: The proof is provided in Appendices D and E.

O

In Figure 7.2, the performance of this quadratic approximmation is evaluated. We observe
in this figure that this approximation, while not as good as the cubic approximation, also
provides a reasonably good estimate of the exact solution, especially under light loads.

8 Conclusions

In this paper, we have attempted a preliminary analytical study on the performance of real-
time database systems with respect to the number of missed transaction deadlines. To the
best of our knowledge, these are the first results in this area. Our goal was to provide insight
into RTDBS behavioral characteristics, rather than to quantify actual system performance.
To this end, we modeled the real-time database as an an A /M /N, /M/FCFEFS queueing
system and developed an approximate closed-form solution for computing the fraction of
killed transactions in this system. The solution is based on decoupling the queueing analysis
from the database conflict analysis and then treating the transaction wait quene itself as
an M/G/1 system. The solution only requires finding the roots of a cubic equation, unlike
typical Markovian models where the computational complexity is often a function of the
parameter values. Due to its simplicity, the approximate solution provided us with insight
into the sensitivity of system performance to workload parameters and also yielded limits
on performance.

Our study showed that, for medium and large-sized databases. the approximate analysis
provides extremely good qualitative agreement with the corresponding simulation-derived
exact results. In addition, the quantitative results are also fairly accurate, especially under
light loads. For small-sized databases, the qualitative matching was retained although there
was considerable deterioration in quantitative accuracy nnder heavy loads.

Our experiments highlighted several features that are unique to the real-time database
context. The results showed that the absolute value of transaction size, independent of
its relation to database size, plays a significant role in determining system performance.
Therefore, we recommend that designers of real-time database applications should try to
minimize the size of their transactions. Our results also showed that unlike classical real-
time systems, where increased task laxity usually results in improved performance. increased
transaction laxity worsens performance under heavy loads in the class of RI'DBSs considered
in our study. We provided a quantitative characterization of the loading level bevond which
increased laxity results in degraded performance. We also showed that laxity tending to
infinity provides the best performance under light loads, while laxity tending to zero is the
best under heavy loads. For RTDBSs operating in the heavy load region, we recommend
a scheduling policy wherein transactions are summarily rejected if they cannot be served
immediately on arrival. Finally, we showed that our approximate cubic solution. in addition

18



to satisfactorily modeling an RTDBS, also provides a close estimate of the performance of the
classical M/M/1/M/FCFS real-time system. For this system. we derived an even simpler
quadratic approximation that provides reasonably accurate estimates, especially under low
loads. Our approximation techniques may be of interest to designers of communication
networks, who frequently use similar real-time models for estimating packet dropping and
call blocking probabilities.

In our study, we made several assumptions for modeling convenience: First, we assumed
that the transaction scheduler uses a FCEFS policy. Second, we assumed that transaction
laxities and processing times are exponentially distributed. Finally, we assumed that trans-
action deadlines were to the start of service. We are currently working ou extending the
results presented here to prioritized scheduling disciplines and deterministic distributions of
laxities and processing times. Developing approximation models for the case where deadlines
are to the end of service and service pre-emptions (“restarts™ in database terminology) are
permitted appears to be a challenging research problem.

Recently, there has been work done on estimating the performance of complex queueing
systems by using asymptotic results for light and heavy loads [Varm90]. In this method, the
performance at any load is computed by suitably interpolating the light and heavy traffic
results. It is possible that these performance estimation methods can he used to further
improve the quantitative accuracy of our approximate solutions and we plan to investigate
this issue in our future research.
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Appendix

A Proof of Lemma 2

We present here the detailed proof for Lemma 2. The first step is to compute fj,(#), the
service time distribution of transactions at the head-of-queue server. Both transactions that
are killed before they reach the head of the queue and transactions that immediately enter the
database on reaching the head of the queue have an effective service time of zero. Denoting
the service time random variable by a,, we have

£u(0) = Plan = 0) = (ap+ (1 — ) # (1 — Pro)) un(t) (25)

where P, is the probability that a transaction at the head of the queuc has to wait due to
data conflict and ug(t) is the impulse function. A quick way to compute P, is to realize
that it is equivalent to the head-of-queue kill {raction in a svstem where tasks have zero
laxity. Therefore, using the result in Ilquation 2, we have

Peon = Qpls=0 = ﬂé.«](l — Ll’)
Substituting this expression for P.,, in Equation 25, we obtain

f(0) = (ap+ (L —ap)* (L= Fo.))ualt)
= (1 —p&J(1 —ap)(l = a)) ugl?)
= (L= E)uoll) (26)

where £ = ptJ(1 — ay)(1 — @) .

The transactions that do not fall into the above categorics either gain entry into the
database before their laxity expires or are killed while positioned at the head of the qucue.
The service time distribution for a transaction with remaining laxity [ is given by

L
~3

N ,uf”“‘t 0<t<l 27
fh|l = { e H uplt — 1) t>1 1)

where the first equation corresponds to the case where the transaction’s data conflict disap-
pears before its laxity expires. and the second equation corresponds to the case where the
transaction is killed.

Therefore, the unconditional pdf of the service time distribution when the service time is
greater than 0 is

@ >0) = / ’(/,l(f‘_‘tf + e Hugt = 1)y re™ 0 dl
Jt

( + ) e bt (28)

Combining the expressions in Equations 26 and 28, the complete service time pdf is given
by
Sult) = (1 = Eyuo(t) + E(p +)e” vt
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Denoting the Laplace transform of the service time pdf by H™(s). we have

Es
H*(s)=1- T (29)
S+

Then, using the well-known M/G/1 results [Klei75], we compute the Laplace transtorm of
the waiting time distribution to be

5(1 - Ph>

W) = T )

(30)

where py, 1s the “utilization” of the head-of-queue server.
After substituting for H*(s) in the above equation and then taking the inverse transform,
we get

w(t) = (1= pr)uo(t) + (1 = pp)ABe™ =N (31)

Consequently, the CDF of the waiting time is given by

Fu(t) = /Ot w(t) dt

= L=p)( 4 - (32)
, B
The p; parameter is easily computed as
d I
L:A_’L:/\ "“‘—“]‘]* S :/\
== A B = A

Substituting this value of p;, in Equation 32 and simplifying, we have

Fy(t) =1 — Ge~ = (33)

where G = ] (1—=a)(l=a).

Recall that «y is the probability of a transaction being killed due to its laxity being smaller
than its wait time in the body of the queue. Therefore,

ap = / (1 = Fo(t)) e dt
0

After substituting for F,(#) from Equation 33 and evaluating the integral. the above expres-
sion reduces to

G
- . 34
R STy ()
Substituting for G in this equation, and then solving for a;. we have
ai + Pay+1 =10 (35)

SV
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1
+ ) .
146  p20&J(1 — «)
From the flow equation (Equation 1) and from Equation 2, we can express a in terms of ay
as

where P =2 — (24 6)(

l—a = (I —ap)(l=ay)
l—a = (I—a))(1 —=A(l —a))
(] - ab)

_ m (36)

a = 1

Substituting this expression for o in Equation 35 and making algebraic manipulations, we
finally obtain
oy + Bai + Cay+ D =0

where B, C, and D are the coefficients given in Equation 15.
This 1s a cubic equation in a; and in Appendix B it is shown that this equation has exactly
one root in the range [0, 1].

B Single Root Proof for Equation 15

Here we prove that Equation 15 has exactly one root in [0,1] over the range of valid parametric

|
values. Let f(cy) denote the LHS of Equation 15. At a, = 0, the value of f(ay) is T

which is strictly positive. At o = 1. the value of f(ay) is :—(_](l + 3) which is strictly
p“k.

negative. Therefore, Equation 15 has either one or all three roots hetween 0 and I.
We now prove that at least one of the roots of the cubic equation must be negative. From
elementary algebraic theory, we know that the product of the roots of the equation is equal

.

to =D = 118 This expression is strictly negative. which means that either one or all

three roots are negative.
Reconciling the above statements, it is straightforward to determine that Iiquation 15
has a root that is less than 0, a root that is between 0 and 1. and a root that is greater than

1.

0
C Proof of Corollary 1
The partial derivative of o w.r.t 6 in Equation 19 is given by
da, JA 2
9o ot ol =)

a6 (14 A(1 = a))’
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p&J

Since A = ——, we have
1+6 ) ,
9A péJ
96 (1+8)
which tends to 0 as p — 0.
By evaluating the partial derivative of a; w.r.t. é from Equation 15 and substituting p — 0.
we obtain
Oab 2
= —OQp) 7
dé "5(2 4 0)
Finally, the quantity (1 + A(1 — a))” tends to 1 as p — 0.
After substituting these results in the RHS of Equation 37, it is straightforward to infer

that as p — 0, — is negative, which implies that o is a decreasing function of 6.

A derivation on similar lines shows that « is an increasing function of o for p — oo.

D Proof of Theorem 2

We present here the detailed proof for Theorem 2. The first step is to compute f,((), the
service time distribution of transactions at the server. Transactions that are killed belore
they reach the server have an effective service time of zero, while the remaining transactions
have an exponentially distributed service time with parameter . Denoting the service time
random variable by xp, the service time pdf is given by

fh(t) = (1 — E)'U'O(f«) o ,UC‘AM

where £ = (1 — o) .
Denoting the Laplace transform of the service time pdf by H*(s). we have

(38)

Then, using the well-known M/G/1 results [Klei75]. we compnte the Laplace transform of
the waiting time distribution to be

V¥ (s) =
W) =

(39)

where p; is the utilization of the server.
After substituting for H*(s) in the above equation and then taking the inverse transform,
we get

w(t) = (1 — pylug(t) + (1 — p)ALe AP (-10)

Consequently, the CDF of the waiting time is given by

¢
Pot) = /Ow(mdt

1

| — AV 11
. /\E( ¢ ) (HD)

= (1 - /)b)(l +
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Using Little’s formula, the p, parameter is easily compnted as

AT — «)
1

Ps =

Substituting this value of p; in Equation 41 and simplifying, we have
Fu(t) =1— Geri=or (42)

where G = p(1 — ) .
Since « is the probability of a transaction being killed due to its laxity being smaller than
its wait time in the queue,

0

After substituting for F,(¢) from Equation 42 and evaluating the integral. the above expres-

sion reduces to ‘o
T

" ive-Ge

Substituting for G in this equation. and then solving for a. we have

o (43)
al+ Sa+1T =0

where S5 and T are the coefficients given in Iiquation 24.
This is a quadratic equation in a and in Appendix E it is shown that this equation has
exactly one root in the range [0, 1].

E Single Root Proof for Equation 24

Here we prove that Equation 24 has exactly one root in [0.1] over the range of valid parametric
N
values. Let f(a) denote the LHS of Equation 24. At o = 0. the valuc ol f{a) 13 — which is
. : T L B e
strictly negative. At o = 1, the value of f(«)is —=(1+ g) which is strictly positive. Theretore,

Equation 15 has exactly one root between 0 and 1.
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