
SI R
INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by
the National Science Foundation
Engineering Research Center Program,
the University of Maryland,
Harvard University,
and Industry

TECHNICAL RESEARCH REPORT

ALADDIN: A Computational Toolkit for
Interactive Engineering Matrix and Finite
Element Analysis

by M. Austin, X. Chen, W.J. Lin

T.R. 95-74

ALADDIN : A COMPUTATIONAL

TOOLKIT FOR INTERACTIVE

ENGINEERING MATRIX AND FINITE

ELEMENT ANALYSIS

Mark Austin, Xiaoguang Chen
and Wane-Jang Lin

Institute for Systems Research
and

Department of Civil Engineering
University of Maryland
College Park, MD 20742

November 17, 1995

Abstract

This report describes Version 1.0 of ALADDIN, an interactive computational
toolkit for the matrix and �nite element analysis of engineering systems. The ALADDIN
package is designed around a language speci�cation, that includes quantities with physical
units, branching constructs, and looping constructs. The basic language functionality is
enhanced with external libraries of matrix and �nite element functions.

ALADDIN's problem solving capabilities are demonstrated via the solution to a
series of matrix and numerical analysis problems. ALADDIN is employed in the �nite
element analysis of two building structures, and two highway bridge structures.

Contents

I INTRODUCTION TO ALADDIN 4

1 Introduction to ALADDIN 5
1.1 Problem Statement : 5
1.2 ALADDIN Components : 7
1.3 Scope of this Report : 11

II MATRIX LIBRARY 12

2 Command Language for Quantity and Matrix Operations 13
2.1 How to Start (and Stop) ALADDIN : 13
2.2 Format of General Command Language : 14
2.3 Physical Quantities : 15

2.3.1 De�nition and Printing of Quantities : : : : : : : : : : : : : : : : : 15
2.3.2 Formatting of Quantity Output : 17
2.3.3 Quantity Arithmetic : 19
2.3.4 Making a Quantity Dimensionless : : : : : : : : : : : : : : : : : : : 21
2.3.5 Switching Units On and O� : 21
2.3.6 Setting Units Type to US or SI : 22

2.4 Control of Program Flow : 24
2.4.1 Logical Operations : 24
2.4.2 Conditional Branching : 25
2.4.3 Looping and Stopping Commands : : : : : : : : : : : : : : : : : : : 26

2.5 De�nition and Printing of Matrices : 29
2.5.1 De�nition of Small Matrices : 29
2.5.2 Built-in Functions for Allocation of Matrices : : : : : : : : : : : : : 30
2.5.3 De�nition of Matrices with Units : : : : : : : : : : : : : : : : : : : 32
2.5.4 Printing Matrices with Desired Units : : : : : : : : : : : : : : : : : 34

2.6 Matrix-to-Quantity Conversion : 36
2.7 Basic Matrix Operations : 36

2.7.1 Retrieving the Dimensions of a Matrix : : : : : : : : : : : : : : : : 36
2.7.2 Matrix Copy and Matrix Transpose : : : : : : : : : : : : : : : : : : 37
2.7.3 Matrix Addition, Subtraction, and Multiplication : : : : : : : : : : 37
2.7.4 Scaling a Matrix by a Quantity : 39
2.7.5 Euclidean Norm of Row/Column Vectors : : : : : : : : : : : : : : : 41

1

2.7.6 Minimum and Maximum Matrix Elements : : : : : : : : : : : : : : 42
2.7.7 Substitution/Extraction of Submatrices : : : : : : : : : : : : : : : : 43

2.8 Solution of Linear Matrix Equations : 45
2.8.1 Solving [A] fxg = fbg : 46
2.8.2 Matrix Inverse : 51

2.9 Matrix Eigenvalues and Eigenvectors : 55
2.9.1 Solving K� =M�� : 56

Numerical Example 1 : Buckling of Rod : : : : : : : : : : : : : : : 56
Numerical Example 2 : Vibration of Cantilever Beam : : : : : : : : 61

3 Construction of Numerical Algorithms 68
3.1 Introduction : 68
3.2 Roots of Nonlinear Equations : 68

3.2.1 Newton-Raphson and Secant Algorithms : : : : : : : : : : : : : : : 68
3.2.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm : : : : : : : 70

3.3 Han-Powell Algorithm for Optimization : 77
3.3.1 Quadratic Programming (QP) : 77
3.3.2 Armijo Line Search Rule : 78
3.3.3 The BFGS update and Han-Powell method : : : : : : : : : : : : : : 79

4 Computational Methods for Dynamic Analysis of Structures 88
4.1 Introduction : 88
4.2 Method of Newmark Integration : 88
4.3 Method of Modal Analysis : 98

III FINITE ELEMENT LIBRARY 108

5 Finite Element Analysis Language 109
5.1 Introduction : 109
5.2 Structure of Finite Element Input Files : 109
5.3 Problem Speci�cation Parameters : 111
5.4 Adding Nodes and Finite Elements : 111
5.5 Material and Section Properties : 113
5.6 Boundary Conditions : 116
5.7 External Nodal Loads : 117
5.8 Sti�ness, Mass and External Loading Matrices : : : : : : : : : : : : : : : : 117
5.9 Internal Loads : 118
5.10 Retrieving Information from ALADDIN : : : : : : : : : : : : : : : : : : : 119
5.11 Library of Finite Elements : 121

6 Input Files for Finite Element Analysis Problems 128
6.1 Linear Static Analyses : 128

6.1.1 Analysis of Five Story Moment Resistant Frame : : : : : : : : : : : 128
6.1.2 Working Stress Design (WSD) of Simpli�ed Bridge : : : : : : : : : 141

2

6.1.3 Three-Dimensional Analysis of Highway Bridge : : : : : : : : : : : 156
6.2 Time-History Analyses : 172

6.2.1 Modal Analysis of Five Story Steel Frame : : : : : : : : : : : : : : 172

IV ARCHITECTURE AND DESIGN 186

7 Data Types : Physical Quantity and Matrix Data Structures 187
7.1 Introduction : 187
7.2 Physical Quantities : 187

7.2.1 Relationship between Quantity and Units : : : : : : : : : : : : : : : 188
7.2.2 US and SI Units Conversion : 189

7.3 Matrices : 191
7.3.1 Skyline Matrix Storage : 193
7.3.2 Units Bu�ers for Matrix Multiplication : : : : : : : : : : : : : : : : 196
7.3.3 Units Bu�ers for Inverse Matrix : 196

8 Architecture and Design of ALADDIN 201
8.1 Introduction : 201
8.2 Program Modules and Key Data Structures : : : : : : : : : : : : : : : : : 201
8.3 Design and Implementation of Stack Machine : : : : : : : : : : : : : : : : 208

8.3.1 Example of Machine Stack Execution : : : : : : : : : : : : : : : : : 211
8.4 Language Design and Implementation : 217

V CONCLUSIONS AND FUTURE WORK 228

9 Conclusions and Future Work 229
9.1 Conclusions : 229
9.2 Future Work : 230

3

Part I

INTRODUCTION TO ALADDIN

4

Chapter 1

Introduction to ALADDIN

1.1 Problem Statement

This report describes the development and capabilities of ALADDIN (Version
1.0), an interactive computational toolkit for the matrix and �nite element analysis
of engineering systems. The current target application area for ALADDIN is design
and analysis of traditional Civil Engineering structures, such as highway bridges and
earthquake-resistant buildings. With literally hundreds of engineering analysis and opti-
mization computer programs having been written in the past 10-20 years (see references
[1, 6, 23, 24, 26, 25, 29, 30] for some examples), a reader might rightfully ask who needs
to write another engineering analysis package ?

We respond to this challenge, and motivate the short- and long-term goals of this
work by �rst noting that during the past two decades, computers have been providing
approximately 25% more power per dollar per year. Advances in computer hardware and
software have allowed for the exploration of many new ideas, and have been a key catalyst
in what has led to the maturing of computing as a discipline. In the 1970's computers
were viewed primarly as machines for research engineers and scientists { compared to to-
day's standards, computer memory was very expensive, and central processing units were
slow. Early versions of structural analysis and �nite element computer programs, such
as ABAQUS [1], ANSR [23], and FEAP [30] were written in the FORTRAN computer
language, and were developed with the goal of optimizing numerical and/or instructional
considerations alone. These programs o�ered a restricted, but well implemented, set
of numerical procedures for static structural analyses, and linear/nonlinear time-history
response calculations. And even though these early computer programs were not partic-
ularly easy to use, practising engineers gradually adopted them because they allowed for
the analysis of new structural systems in a ways that were previously intractable.

During the past twenty years, the use of computers in engineering has matured to
the point where importance is now placed on ease of use, and a wide-array of services be-
ing made available to the engineering profession as a whole. Computer programs written
for engineering computations are expected to be fast and accurate,
exible, reliable, and

5

of course, easy to use. Whereas an engineer in the 1970's might have been satis�ed by a
computer program that provided numerical solutions to a very speci�c engineering prob-
lem, the same engineer today might require the engineering analysis, plus computational
support for design code checking, optimization, interactive computer graphics, network
connectivity, and so forth. Many of the latter features are not a bottleneck for getting
the job done. Rather, features such as interactive computer graphics simply make the job
of describing a problem and interpreting results easier { the pathway from ease-of-use to
productivity gains is well de�ned. It is also well worth noting that computers once viewed
as a tool for computation alone, are now seen as an indispensable tool for computation
and communications. In fact, the merging of computation and communications is mak-
ing fundamental changes to the way an engineer conducts his/her day-to-day business
activities. Consider, for example, an engineer who has access to a high speed personal
computer with multimedia interfaces and global network connectivity, and who happens
to be part of a geographically dispersed development team. The team members can use
the Internet/E-mail for day-to-day communications, to conduct engineering analyses at
remote sites, and to share design/analysis results among the team members. Clear com-
munication of engineering information among the team members may be of paramount
importance in determining the smooth development of a project.

The di�culty in following-up on the abovementioned hardware advances with
appropriate software developments is clearly re
ected in the economic costs of project
development. In the early 1970's software consumed approximately 25% of total costs,
and hardware 75% of total costs for development of data intensive systems. Nowadays,
development and maintenance of software typically consumes more than 80% of the total
project costs. This change in economics is the combined result of falling hardware costs,
and increased software development budgets needed to implement systems that are much
more complex than they used to be. Whereas one or two programmers might have writ-
ten a complete program twenty years ago, today's problems are so complex that teams
of programmers are needed to understand a problem and �ll-in the details of required
development.

When a computer program has a poorly designed architecture, its integration
with another package can be very di�cult, with the result often falling short of users'
expectations. Let's suppose, for example, that we wanted to interface the �nite element
package FEAP [30] with the interactive optimization-based design environment called
DELIGHT [6, 24, 29]. Since FEAP was not written with interfaces to external envi-
ronments as a design criterion, a programmer(s) faced with this task would �rst need to
�gure out how FEAP and DELIGHT work (not an easy task), and then devise a map-
ping from DELIGHT's external interface routines to FEAP's subroutines. In the �rst
writer's opinion, such a mapping is likely to exist, but only after several subroutines have
been added to FEAP. The programmer(s) would need the computer skills and tenacity
to stick-with the lengthy period of code development that would ensue. And what about
the result ? In our experience [3, 4, 6], the integrated DELIGHT-FEAP tool would most
likely do a very good job of solving a narrow range of problems, and as such, have a
short life cycle. These barriers to integration are frustrating because �nite element and

6

optimization procedures are essentially specialized matrix computations { the disciplines
should �t together in almost a seamless way. In our opinion, the main barrier to software
integration is an ad-hoc approach to software tool development in the �rst place.

Rather than simply repeat the \scenario procedure" for yet another set of pack-
ages, this research project attempts to understand the structure matrix, �nite element,
and optimization packages should take so that they can be integrated in a natural way.
Project ALADDIN begins with the design and implementation of a system speci�cation
that includes:

[1] A Model : The model will include data structures for the information to be stored,
and a stack machine for the execution of the matrix and �nite element algorithms.

[2] A Language : The language will be a means for describing the matrices and �nite
element mesh { it will act as the user interface to the underlying model.

In traditional approaches to problem solving, engineers write the details of a problem
and its solution procedure on paper. They use physical units to add clarity to the
problem description, and may specify step-by-step details for a numerical solution
to the problem. We would like the ALADDIN language to be textually descriptive,
and strike a balance between simplicity and extensibility. It should use a small
number of data types and control structures, incorporate physical units, and yet, be
descriptive enough so that the pencil and paper and ALADDIN problem description
�les are almost the same.

[3] Defined Steps and Ordering of the Steps : The steps will de�ne the transfor-
mations (e.g. nearly all engineering processes will require iteration and branching)
that can be carried out on system components.

[4] Guidance for Applying the Specification : Guidance includes factors such as
descriptive problem description �les and documentation.

Our research direction is inspired in part by the systems integration methods developed
for the European ESPRIT Project [20], and by the success of C. Although the C program-
ming language has only 32 keywords, and a handful of control structures, its judicious
combination with external libraries has resulted in the language being used in a very wide
range of applications.

1.2 ALADDIN Components

Figure 1.1 is a schematic of the ALADDIN (Version 1.0) architecture, and shows
its three main parts: (1) the kernel; (2) libraries of matrix and �nite element functions,
and (3) the input �le(s).

Speci�c engineering problems are de�ned in ALADDIN problem description �les,
and solved using components of ALADDIN that are part interpreter-based, and part

7

INPUT FILE

Block of Input Statements

Block of Input Statements

Block of Input Statements

FINITE ELEMENT LIBRARY

MATRIX LIBRARY

LIBRARIES OF BUILTIN C FUNCTIONS

ALADDIN KERNEL AND INPUT FILES

ALADDIN’S KERNEL

[STACK MACHINE]

Figure 1.1: High Level Components in ALADDIN (Version 1.0)

compiled C code. It is important to keep in mind that as the speed of CPU processors
increases, the time needed to prepare a problem description increases relative to the
total time needed to work through an engineering analysis. Hence, clarity of an input
�le's contents is of paramount importance. In the design of the ALADDIN language we
attempt to achieve these goals with: (1) liberal use of comment statements (as with the
C programming language, comments are inserted between /* */), (2) consistent
use of function names and function arguments, (3) use of physical units in the problem
description, and (4) consistent use of variables, matrices, and structures to control the

ow of program logic.

ALADDIN problem descriptions and their solution algorithms are a composition
of three elements: (1) data, (2) control, and (3) functions [27]:

[1] Data : ALADDIN supports three data types, \character string" for variable names,
physical quantities, and matrices of physical quantities for engineering data. For example,
the script of code

xCoord = 2 m;

xVelociy = 2 m / sec;

de�nes two physical quantities, xCoord as 2 meters, and xVelocity as 2 meters per
second. Floating point numbers are stored with double precision accuracy, and are viewed
as physical quantities without units. There are no integer data types in ALADDIN.

[2] Control : Control is the basic mechanisms in a programming language for the spec-
i�cation of looping constructs and conditional branching.

8

ENTRY EXIT ENTRY

S2

S1

EXPR

TRUE

FALSE

TRUE

EXPRS1
EXITFALSE

BRANCHING CONSTRUCTS LOOPING CONSTRUCTS

Figure 1.2: Branching and Looping Constructs in ALADDIN

In Chapter 2 we will see that ALADDIN supports the while and for looping constructs,
and the if and if-then-else branching constructs. The data and control components
of the ALADDIN language are implemented as a �nite-state stack machine model, which
follows in the spirit of work presented by Kernighan and Pike [18]. ALADDIN's stack
machine reads blocks of command statements from either a problem description �le, or the
keyboard, and converts them into an array of machine instructions. The stack machine
then executes the statements.

[3] Functions : The functional components of ALADDIN provide hierarchy to the so-
lution of our matrix and �nite element processes, and are located in libraries of compiled
C code, as shown on the right-hand side of Figure 1.1. Version 1.0 of ALADDIN has
functional support for basic matrix operations, that includes numerical solutions to linear
equations, and the symmetric eigenvalue problem. A library of �nite element functions is
provided.

FUNCTION OutputInput

RETURN TYPE = FUNCTION NAME (Arg 1 , Arg 2 , , Arg N);

InputOutput

Figure 1.3: Schematic of Functions in ALADDIN

Figure 1.3 shows the general components of a function call, it's input argument list, and
the function return type. A key objective in the language design is to devise families of
library functions that will make ALADDIN's problem solving ability as wide as possible.

Version 1.0 of ALADDIN does not support user-de�ned functions in the input-�le

9

(or keyboard) command language.

The strategy we have followed in ALADDIN's development is to keep the number
and type of arguments employed in library function calls small. Whenever possible, the
function's return type and arguments should be of the same data type, thereby allowing
the output from one or more functions to act as the input to following function call. More
precisely, we would like to write input code that takes the form

returntype1 = Function1(); /* <= application area 1 */

returntype2 = Function2(); /* <= application area 1 */

returntype3 = Function3(returntype1, returntype2); /* <= application area 2 */

or even

returntype3 = Function3(Function1(), Function2());

If Function1() and Function2() belong to application area 1 (e.g. matrix analysis), and
Function3() belongs to application area 2 (e.g. �nite element analysis; optimization),
then this language structure allows application areas 1 and 2 to be combined in a natural
way. In Chapters 2 to 6, we will see that most of the built-in functions accept one or two
matrix arguments, and return one matrix argument. Occasionally, we will see built-in
function that have more than two function arguments, and return a quantity instead of
a matrix. Collections of quantities are returned from functions by bundling them into a
single matrix { the individual quantities are then extracted as elements of the function
return type.

Factor Interpreted Code Compiled Code

User Control High Very Low

Required User Knowledge High Medium

Speed of Execution Slow Fast

Table 1.1: Trade-O�s { Interpreted Code Versus Compiled Code

Table 1.1 contains a summary of trade-o�s between the use of interpreted code versus
compiled C code. A key advantage of interpreters is
exibility { problem parameters
and algorithms may be modi�ed during the problem solving process, and without having
to recompile source code. This feature reduces the time needed to work through an
interation of the problem solving process. The well known trade-o� is speed of execution.
Interpreted code executes much slower { approximately ten times slower { than compiled
C code. Consequently, we expect that as ALADDIN evolves, new algorithms will be
developed in tested as interpreted code, and once working, will be converted into libraries
of compiled C code having an interface that �ts-in with the remaining library functions.

10

1.3 Scope of this Report

This report is divided into four parts. In Part II we will see that the ALADDIN
language supports variable arithmetic with physical units, matrix operations with units,
and looping and branching control structures, where decisions are made with quantities
having physical units. Chapters 3 and 4 demonstrate use of the ALADDIN language via
a suite of problems { we compute the roots of nonlinear equations, demonstrate the Han-
Powell method of optimization, and solve several problems from structural engineering
and structural dynamics.

Part III of this report describes the built-in functions for the generation of �nite el-
ement meshes, external loads, and �nite element modeling assumptions. We demonstrate
these features by solving a variety two- and three-dimensional �nite element problems.

We have written Part IV for ALADDIN developers, who may need to understand
the data structures and algorithms used to read and store matrices, to create and store
�nite element meshes, and to construct the stack machine. Readers of this section are
assumed to have a good working knowledge of the C programming language.

11

Part II

MATRIX LIBRARY

12

Chapter 2

Command Language for Quantity

and Matrix Operations

The purposes of this chapter are to explain execution of the ALADDIN envi-
ronment, and details of the matrix command language within ALADDIN. For ease of
reading, and when space permits, output from ALADDIN is juxtaposed with the input
command(s).

2.1 How to Start (and Stop) ALADDIN

ALADDIN's command line arguments are setup in a very
exible way. The �rst
argument is simply ALADDIN, the name of the executable program.

Input from Keyboard

ALADDIN -[ks]

Input from a File

ALADDIN -[sf] <filename>

Command options have the following meaning:

-f Indicate input from a �le (it must be accompanied by a �lename).

-k Indicates input from the keyboard. When input is generated via the keyboard, a
input history �le will be generated and named as input�le.std. In the likely event
of mistyping or a syntax error, you can continue type in input�le.std.

-s All input will be scanned for syntax errors without actually executing the program.

13

The command ALADDIN must be accompanied by either the -f
ag, or the -k
ag. The
-s
ag is optional. Command line options can be typed in arbitrary sequences.

The command to exit from ALADDIN is

quit;

Don't forget the semicolon.

2.2 Format of General Command Language

The ALADDIN command language corresponds to individual statements, and
sequences of statements.

statement 1;

statement 2;

........

statement N;

Each statement ends with a semi-colon (;). Comment statements (as with the C pro-
gramming language, comments are enclosed between /* */), as in

/*

* ================================

* Here is a block of N statements.

* ================================

*/

statement 1; /* the first ALADDIN statement */

statement 2; /* the second ALADDIN statement */

........

statement N; /* the n^th ALADDIN statement */

Basic output of character strings and physical quantities is handled with the print com-
mand. For example,

print "Here is one line of output \n";

gives

Here is one line of output

Character strings are enclosed within quotes (i.e "....."). The escape character (nn)
forces output onto a new line.

14

2.3 Physical Quantities

While the importance of the engineering units is well known [11, 13, 17], physical
units are not a standard part of many main-stream �nite element software packages {
indeed, most engineering software packages simply hold the engineer responsible for mak-
ing sure engineering units are consistent, While this practice of implementation may be
satisfactory for computation of well established algorithms, it is almost certain to lead
to incorrect results when engineers are working on the development of new and innova-
tive computations. ALADDIN deviates from this trend by providing support for basic
arithmetic operations on quantities and matrices of physical quantities.

2.3.1 De�nition and Printing of Quantities

Let's begin with the basics. A quantity is a number with physical units. To assign
the quantity \2 m" to variable \x" just type

x = 2 m;

The semi-colon character \;" is required for every command to indicate the end of the
one statement. The following script of code demonstrates de�nition of quantities.

INPUT OUTPUT

print " LENGTH UNITS : SI SYSTEM \n"; LENGTH UNITS : SI SYSTEM

x = 1 mm; y = 1 cm; z = 1 dm;

u = 1 m; v = 1 km;

print "x = ", x, "\n"; x = 1 mm

print "y = ", y, "\n"; y = 1 cm

print "z = ", z, "\n"; z = 1 dm

print "u = ", u, "\n"; u = 1 m

print "v = ", v, "\n"; v = 1 km

print "\n VOLUME UNITS : US \n"; VOLUME UNITS : US

x = 1 gallon; y = 1 barrel;

print "x = ", x, "\n"; x = 1 gallon

print "y = ", y, "\n"; y = 1 barrel

print "\n MASS UNITS : SI SYSTEM \n"; MASS UNITS : SI SYSTEM

x = 1 g; y = 1 kg; z = 1 Mg;

print "x = ", x, "\n"; x = 1 g

print "y = ", y, "\n"; y = 1 kg

print "z = ", z, "\n"; z = 1 Mg

15

print " TIME UNITS : SI SYSTEM \n"; TIME UNITS : SI SYSTEM

x = 1 sec; y = 1 ms;

z = 1 min; u = 1 hr;

print "x = ", x, "\n"; x = 1 sec

print "y = ", y, "\n"; y = 1 ms

print "z = ", z, "\n"; z = 1 min

print "u = ", u, "\n"; u = 1 hr

print "\n TEMPERATURE UNITS : SI SYSTEM \n"; TEMPERATURE UNITS : SI SYSTEM

x = 1 deg_C;

print "x = ", x, "\n"; x = 1 deg_C

print "\n TEMPERATURE UNITS : US SYSTEM \n"; TEMPERATURE UNITS : US SYSTEM

x = 1 deg_F;

print "x = ", x, "\n"; x = 1 deg_F

print "\n UNITS OF FREQUENCY & SPEED \n"; UNITS OF FREQUENCY & SPEED

x = 1 Hz;

y = 1 rpm; /* rev. per min */

z = 1 cps; /* cycle per sec */

print "x = ", x, "\n"; x = 1 Hz

print "y = ", y, "\n"; y = 1 rpm

print "z = ", z, "\n"; z = 1 cps

print "\n FORCE UNITS : SI SYSTEM \n"; FORCE UNITS : SI SYSTEM

x = 1 N; y = 1 kN; z = 1 kgf;

print "x = ", x, "\n"; x = 1 N

print "y = ", y, "\n"; y = 1 kN

print "z = ", z, "\n"; z = 1 kgf

print "\n PRESSURE UNITS : SI SYSTEM \n"; PRESSURE UNITS : SI SYSTEM

x = 1 Pa; y = 1 kPa;

z = 1 MPa; u = 1 GPa;

print "x = ", x, "\n"; x = 1 Pa

print "y = ", y, "\n"; y = 1 kPa

print "z = ", z, "\n"; z = 1 MPa

print "u = ", u, "\n"; u = 1 GPa

print "\n ENERGY UNITS : SI SYSTEM \n"; ENERGY UNITS : SI SYSTEM

x = 1 Jou; y = 1 kJ;

print "x = ", x, "\n"; x = 1 Jou

print "y = ", y, "\n"; y = 1 kJ

16

print "\n POWER UNITS : SI \n"; POWER UNITS : SI

x = 1 Watt; y = 1 kW;

print "x = ", x, "\n"; x = 1 Watt

print "y = ", y, "\n"; y = 1 kW

print "\n UNITS OF PLANE ANGLE UNITS \n"; UNITS OF PLANE ANGLE UNITS

x = 1 deg; y = 1 rad;

print "x = ", x, "\n"; x = 1 deg

print "y = ", y, "\n"; y = 1 rad

These examples focus on the SI system of units. In the US system, units of length are
provided for micro inches (micro in), inches (in), feet (ft), yards (yard), and miles
(mile). Similarly, US units of mass are provided for pounds (lb), grains (grain), kilo
pounds (klb), and tons (ton). Units of force in the US system are pounds force (lbf)
and one thousand pounds force (kips). Corresponding units of pressure in the US system
are pounds per square inch (psi), and thousands of pounds per square inch (ksi).

Restrictions on Quantity Names : Like many other programming languages, the
ALADDIN command language has keywords and constants which are reserved for special
purposes { they cannot be used for arbitrary purposes, such as variable names. For
example, ALADDIN reserves the characters \N" and \m" for engineering units Newton
and metre. Similar restrictions apply to all units, keywords de�ning looping and control
constructs (e.g. for and while), as well as built-in function names.

A complete list of keywords and constants is given in Table 2.1. Table 2.2
contains a list of names that are reserved for mathematical functions. Reserved names
for matrix allocation functions, and functions to compute matrix operations, are given in
Tables 2.3 and 2.4, respectively. Reserved names also apply to names of functions for
solving linear equations, eigenvalues and eigenvectors, as well as �nite element analysis.
These names are listed in Tables 2.5, 2.6, 5.1, 5.2, and in the text of Chapter 5.

2.3.2 Formatting of Quantity Output

The command option "(< units >)" allows for the printing of a quantity with
a desired units. The following script of code gives some examples:

INPUT OUTPUT

print " LENGTH UNITS \n"; LENGTH UNITS

v = 1 km; w = 1 mile;

17

print "v = ", v , "\n"; v = 1 km

print "v = ", v (in) , "\n"; v = 3.937e+04 in

print "v = ", v (ft) , "\n"; v = 3281 ft

print "v = ", v (yard), "\n"; v = 1094 yard

print "v = ", v (mile), "\n"; v = 0.6214 mile

print "w = ", w , "\n"; w = 1 mile

print "w = ", w (mm) , "\n"; w = 1.609e+06 mm

print "w = ", w (cm) , "\n"; w = 1.609e+05 cm

print "w = ", w (dm) , "\n"; w = 1.609e+04 dm

print "w = ", w (m) , "\n"; w = 1609 m

print "w = ", w (km) , "\n"; w = 1.609 km

print "\n VOLUME UNITS \n"; VOLUME UNITS

x = 1 gallon;

print "x = ", x , "\n"; x = 1 gallon

print "x = ", x (m^3), "\n"; x = 0.003785 m^ 3.0

print "x = ", x (ft^3), "\n"; x = 0.1337 ft^ 3.0

print "x = ", x (cm^3), "\n"; x = 3785 cm^ 3.0

print "x = ", x (in^3), "\n"; x = 231 in^ 3.0

print "x = ", x (barrel), "\n"; x = 0.02381 barrel

print "\n TEMPERATURE UNITS \n";i TEMPERATURE UNITS

x = 1 deg_C; U = 10 mm/DEG_C;

y = 1 deg_F; V = 10 in/DEG_F;

print "x = ", x , "\n"; x = 1 deg_C

print "x = ", x (deg_F), "\n"; x = 33.8 deg_F

print "y = ", y , "\n"; y = 1 deg_F

print "y = ", y (deg_C), "\n"; y = -17.22 deg_C

print "U = ", U, "\n"; U = 10 mm/DEG_C

print "V = ", V, "\n"; V = 10 in/DEG_F

print "\n";

print "U*(1 DEG_C) = ", U*(1 DEG_C) (mm), "\n"; U*(1 DEG_C) = 10 mm

print "U*(1 DEG_F) = ", U*(1 DEG_F) (mm), "\n"; U*(1 DEG_F) = 5.556 mm

print "V*(1 DEG_C) = ", V*(1 DEG_C) (in), "\n"; V*(1 DEG_C) = 18 in

print "V*(1 DEG_F) = ", V*(1 DEG_F) (in), "\n"; V*(1 DEG_F) = 10 in

print " TIME UNITS \n"; TIME UNITS

x = 1 hr;

print "x = ", x, "\n"; x = 1 hr

print "x = ", x (min), "\n"; x = 60 min

print "x = ", x (sec), "\n"; x = 3600 sec

print "\n UNITS OF FREQUENCY & SPEED \n"; UNITS OF FREQUENCY & SPEED

y = 60 rpm; /* rev. per min */

print "y = ", y, "\n"; y = 60 rpm

18

print "y = ", y (Hz), "\n"; y = 1 Hz

print "y = ", y (cps), "\n"; y = 1 cps

print "\n PLANE ANGLE UNITS \n"; PLANE ANGLE UNITS

x = 180 deg; y = PI;

print "x = ", x, "\n"; x = 180 deg

print "x = ", x (rad), "\n"; x = 3.142 rad

print "y = ", y, "\n"; y = 3.1416e+00

print "y = ", y (deg), "\n"; y = 180 deg

Similar conversion factors exist for units of mass, force, pressure, energy and power.

2.3.3 Quantity Arithmetic

Physical units may be manipulated with basic multiply, division and power oper-
ations. The following script of code demonstrates the range of arithmetic operations that
are possible:

INPUT OUTPUT

x = 10 g; y = 1 kg; z = 1 m;

print "\nADDITION & SUBTRACTION \n"; ADDITION & SUBTRACTION

print "x + y = ", x + y, "\n"; x + y = 1.01 kg

print "x - y = ", x - y, "\n"; x - y = -0.99 kg

print "\n MULTIPLY \n"; MULTIPLY

print "x * y = ", x * y, "\n"; x * y = 10 g.kg

print "x * z = ", x * z, "\n"; x * z = 10 g.m

print "\n DIVISION \n"; DIVISION

print "x / y = ", x / y, "\n"; x / y = 1.0000e-02

print "x / z = ", x / z, "\n"; x / z = 10 g/m

print "1 / z = ", 1 / z, "\n"; 1 / z = 1 m^-1.0

print "z / 2 = ", z / 2 ,"\n"; z / 2 = 0.5 m

print "1/(x*y) = ", 1/(x*y),"\n"; 1/(x*y) = 0.1 1/(g.kg)

print "z/(x*y) = ", z/(x*y),"\n"; z/(x*y) = 0.1 m/g.kg

print "(x*y)/z = ", (x*y)/z,"\n"; (x*y)/z = 10 g.kg/m

print "\n MATH CALCULATIONS \n"; MATH CALCULATIONS

u = 30 deg;

v = -PI/2;

w = 2;

print "sin(u) = ", sin(u), "\n"; sin(u) = 5.0000e-01

print "sin(v) = ", sin(v), "\n"; sin(v) = -1.0000e+00

print "cos(u) = ", cos(u), "\n"; cos(u) = 8.6603e-01

print "cos(v) = ", cos(v), "\n"; cos(v) = 6.1230e-17

19

print "tan(PI/4) = ", tan(PI/4), "\n"; tan(PI/4) = 1.0000e+00

print "atan(1) = ", atan(1), "\n"; atan(1) = 7.8540e-01

print "abs(-3 m) = ", abs(-3 m), "\n"; abs(-3 m) = 3 m

print "abs(v) = ", abs(v), "\n"; abs(v) = 1.5708e+00

print "log(1E+5) = ", log(1E+5), "\n"; log(1E+5) = 1.1513e+01

print "log10(1E+5)= ", log10(1E+5),"\n"; log10(1E+5)= 5.0000e+00

print "exp(w) = ", exp(w), "\n"; exp(w) = 7.3891e+00

We use the print command and the character string "nn" containing the newline to
print physical quantities and statements. Characters inside the equation marks \ " are
considered statements. Arguments to mathematical functions, such as log() and exp()

take dimensionless quantities. Trigonometric functions can, however, take arguments with
the units degree and radian because the latter are non-dimensional.

Power operations on quantities do not work in quite the same way as the basic
add, subtract, multiply and divide operations on quantities. If quantity1 and quantity2

are physical quantities, then the operation

quantity1 ^ quantity2;

is de�ned for dimensionless quantity1 and quantity2, and cases where one of the two
operands, but not both operands, has units. Unlike the basic arithmetic operations,
which are evaluated left-to-right, expressions involving power operations are evaluated
from right-to-left. Here are some examples:

INPUT OUTPUT

print "\n POWER \n"; POWER

print "2^2^3 = ", 2^2^3 , "\n"; 2^2^3 = 256

print "(2 m)^2 = ", (2 m)^2 , "\n"; (2 m)^2 = 4 m^2

print "2^2 m = ", 2^2 m , "\n"; 2^2 m = 4 m

print "2^2^2 m = ", 2^2^2 m , "\n"; 2^2^2 m = 16 m

print "10^4 N/m = ", 10^4 N/m , "\n"; 10^4 N/m = 1e+04 N/m

print "10^2^2 N/m = ", 10^2^2 N/m , "\n"; 10^2^2 N/m = 1e+04 N/m

print "0.25*2^2 m = ", 0.25*2^2 m, "\n"; 0.25*2^2 m = 1 m

print "1/2*2 m = ", 1/2*2 m, "\n"; 1/2*2 m = 1 m

print "(1/2*2 m) = ", (1/2*2 m), "\n"; (1/2*2 m) = 1 m

print "(1/2^2 m) = ", (1/2^2 m), "\n"; (1/2^2 m) = 0.25 1/m

print "(1/2^2)*(1 m) = ", (1/2^2)*(1 m), "\n"; (1/2^2)*(1 m) = 0.25 m

print "1/2^2*(1 m) = ", 1/2^2 *(1 m), "\n"; 1/2^2*(1 m) = 0.25 m

x = 100 kg; z = 10 m;

print "sqrt(100 kg) = ", sqrt(x) , "\n"; sqrt(100 kg) = 10 kg^0.5

print "z^2 = ", z^2 , "\n"; z^2 = 100 m^2

print "z^-3 = ", z^-3, "\n"; z^-3 = 0.001 1/m^3

print "(x*z)^1 = ", (x*z)^1, "\n"; (x*z)^1 = 1000 m.kg

print "(x*z)^2 = ", (x*z)^2, "\n"; (x*z)^2 = 1e+06 m^2.kg^2

20

As mentioned above, power operations such as

x = (1 m)^(2 sec);

are illegal, and will cause ALADDIN to terminate its execution.

An important feature of quantity operations is the check for consistent units.
Suppose, for example, we try to add a quantity with time units to a second quantity
having units of length, ALADDIN provides an appropriate fatal error message

x = 1 in; y = 1 sec;

z = x + y;

FATAL ERROR >> In Add() : Inconsistent Dimensions.

FATAL ERROR >> Compilation Aborted.

followed by the termination of program execution.

2.3.4 Making a Quantity Dimensionless

In the development of algorithms to solve engineering problems, we will sometimes
need to strip (or remove) the units from a physical quantity, and work with the numer-
ical value alone. The built-in function QDimenLess() removes units from quantities, as
demonstrated in the following script of code:

INPUT OUTPUT

print "\n MAKE A QUANTITY DIMENSIONLESS \n"; MAKE A QUANTITY DIMENSIONLESS

x = 1 N; y = 1 cm/sec;

z = QDimenLess(x); u = QDimenLess(y);

print "x (with dimen) = ", x, "\n"; x (with dimen) = 1 N

print "y (with dimen) = ", y, "\n"; y (with dimen) = 0.01 m/sec

print "x (without dimen) = ", z, "\n"; x (without dimen) = 1.0000e+00

print "y (without dimen) = ", u, "\n"; y (without dimen) = 1.0000e-02

2.3.5 Setting Units Type to US or SI

The default units type is SI. The function SetUnitsType("string"), where
"string" equals "SI" or "US", sets the units to SI or US, respectively.

You should call SetUnitsType() before the �nite element displacements and
stresses are printed (i.e. using PrintDispl() and PrintStress()).

21

2.3.6 Switching Units On and O�

The command SetUnitsOn turns the checking of units on, and the command
SetUnitsOff turns the checking of units o�. The default units option is SetUnitsOn.

22

Category List of Reserved Names

Constants DEG = 57.29577951308, E = 2.718281828459, GAMMA
= 0.577215664901, and PI = 3.141592653589

Keywords break, else, for, if, print, quit, read, return, SetUnitsOn,
SetUnitsO�, then, while

SI Units micron, mm, cm, dm, m, km, g, kg, mg, N, kN, kgf, Pa,
kPa, MPa, GPa, deg C, DEG C, Jou, kJ, Watt, kW, Hz,
rpm, cps

US Units in, ft, yard, mile, mil, micro in, lb, klb, ton, grain, lbf,
kips, psi, ksi, deg F, DEG F, gallon, barrel, sec, ms, min,
hr, deg, rad

Table 2.1: List of ALADDIN Keywords and Constants

Name/Argument Purpose of Function

cos(x) Compute cosine of quantity x. Default units are radians

sin(x) Compute sin of quantity x. Default units are radians

tan(x) Compute tangent of quantity x. Default units are radians

abs(x) Return absolute value of quantity x.

exp(x) Compute exponential of quantity x.

integer(x) Return integer component of quantity x.

log(x) Compute natural logarithm of quantity x.

log10(x) Compute logarithm, base 10, of quantity x.

pow(x,n) Compute quantity x raised to the power n; n is a number.

sqrt(x) Compute square root of quantity x.

Table 2.2: List of Mathematical Functions

23

2.4 Control of Program Flow

In ALADDIN, control of program
ow is accomplished with logic operations on
physical quantities, constructs for conditional branching, and looping constructs.

ENTRY EXIT ENTRY

S2

S1

EXPR

TRUE

FALSE

TRUE

EXPRS1
EXITFALSE

BRANCHING CONSTRUCTS LOOPING CONSTRUCTS

Figure 2.1: Branching and Looping Constructs in ALADDIN

Figure 2.1 is a schematic of branching and looping constructs. ALADDIN supports the
while and for looping constructs, and if and if-then-else branching constructs.

2.4.1 Logical Operations

ALADDIN supports three logical operators on quantities { && means logical and;
! means logical not; and k means logical or. Operators for conditional branching include:
> means greater than; < means less than; >= means greater than or equal to; <= means
less thano or equal to; == means identically equal to. Examples of their use are dispersed
throughout the following scripts of code.

INPUT OUTPUT

X1 = 1 m; X2 = 10 m;

print "\n TEST RELATIONAL OPERATIONS \n"; TEST RELATIONAL OPERATIONS

Y1 = X1 > X2; Y2 = X1 < X2;

print" Y1 = ", Y1, " FALSE \n"; Y1 = 0.0000e+00 FALSE

print" Y2 = ", Y2, " TRUE \n"; Y2 = 1.0000e+00 TRUE

Y1 = X1 >= X2; Y2 = X1 <= X2;

print" Y1 = ", Y1, " FALSE \n"; Y1 = 0.0000e+00 FALSE

print" Y2 = ", Y2, " TRUE \n"; Y2 = 1.0000e+00 TRUE

24

Y1 = X1 == X2; Y2 = X1 != X2;

print" Y1 = ", Y1, " FALSE \n"; Y1 = 0.0000e+00 FALSE

print" Y2 = ", Y2, " TRUE \n"; Y2 = 1.0000e+00 TRUE

print "\n TEST LOGICAL AND/OR \n"; TEST LOGICAL AND/OR

Y1 = (X1 == 1 m) && (X2 != 10 m);

Y2 = (X1 != 1 m) && (X2 == 10 m);

Y3 = (X1 == 1 m) && (X2 == 10 m);

Y4 = (X1 != 1 m) && (X2 != 10 m);

print" Y1 = ", Y1, " FALSE \n"; Y1 = 0.0000e+00 FALSE

print" Y2 = ", Y2, " FALSE \n"; Y2 = 0.0000e+00 FALSE

print" Y3 = ", Y3, " TRUE \n"; Y3 = 1.0000e+00 TRUE

print" Y4 = ", Y4, " FALSE \n"; Y4 = 0.0000e+00 FALSE

Y1 = (X1 == 1 m) || (X2 != 10 m);

Y2 = (X1 != 1 m) || (X2 == 10 m);

Y3 = (X1 == 1 m) || (X2 == 10 m);

Y4 = (X1 != 1 m) || (X2 != 10 m);

print" Y1 = ", Y1, " TRUE \n"; Y1 = 1.0000e+00 TRUE

print" Y2 = ", Y2, " TRUE \n"; Y2 = 1.0000e+00 TRUE

print" Y3 = ", Y3, " TRUE \n"; Y3 = 1.0000e+00 TRUE

print" Y4 = ", Y4, " FALSE \n"; Y4 = 0.0000e+00 FALSE

2.4.2 Conditional Branching

The if and if-then-else constructs allow for conditional branching of program

ow. The command syntax is:

if(statement1) { /* If the statements1 is true, then execute statements2 */

statements2;

} /* Skip statements2 if statement1 is false */

and

if(statement1) then { /* If the statement1 is true, then execute statements2 */

statements2;

} else {

statements3; /* If the statement1 is false, then execute statements3 */

}

with the braces \f" and \g" necessary even if statements1 consists of a single statement.
Here are two examples:

INPUT OUTPUT

25

print "\n -- if condition \n"; -- if condition

x = 1 ksi; x = 1 ksi

if (x < 10 ksi) {

print " x = ", x ,"\n";

}

print "\n -- if-else condition \n"; -- if-else condition

x = 10 ksi; y = 1 MPa;

if (x < 10 ksi) then {

print " x = ", x ,"\n";

} else {

print " y = ", y ,"\n"; y = 1 MPa

}

2.4.3 Looping and Stopping Commands

ALADDIN supports two looping constructs, the while-loop and the for-loop. The
while-loop syntax is:

while (statement0) {

statments; /* If statement0 is true execute */

/* statements, else stop looping */

}

If statement0 is true (i.e evaluates to a constant larger than zero). then the body
of the while-loop (i.e statements) will be executed. Otherwise, the program will stop
looping, and continue onto the next command. As we will see in the scripts of code
below, statement0 can be a single statement condition, or multiple conditions connected
through logic operators.

The for-loop syntax is:

for (initializer; condition; increment){

statements;

}

The initializer, condition, and increment statements can be either a series of quan-
tity statements separated by comma (i.e ','), or, an empty statment. Zero or more state-
ments may be located in the for-loop body.

The command for breaking one layer of loopings is break { and it must be used
inside the looping body bounded by the symbol \f" and \g". The quit statement termi-
nates program execution; it can be used anywhere outside the loops.

26

While Loop with One Layer : The examples of input commands for one-layer while-
loop with di�erent conditions are given below:

INPUT OUTPUT

print "\n -- Single Condition \n"; -- Single Condition

X = 1 m; X = 1 m

while (X <= 5 m) { X = 2 m

print " X = ", X, "\n"; X = 3 m

X = X + 1 m; X = 4 m

} X = 5 m

print "\n -- Multiple Conditions \n"; -- Multiple Conditions

Y = 1 in; (X, Y) = (1 m 1 in)

X = 1 m; (X, Y) = (2 m 2 in)

while (X <= 5 m && Y <= 0.5 ft) { (X, Y) = (3 m 3 in)

print " (X, Y) = (",X,Y,")\n"; (X, Y) = (4 m 4 in)

X = X + 1 m; (X, Y) = (5 m 5 in)

Y = Y + 1 in;

}

print "\n -- Empty Condition \n"; -- Empty Condition

X = 1 m; X = 1 m

while () { X = 2 m

if(X > 5 m) { X = 3 m

break; X = 4 m

} X = 5 m

print " X = ", X, "\n";

X = X + 1 m;

}

While Loops with Multiple Layers : The examples of input commands for multi-
layers while-loop are given below:

INPUT OUTPUT

print "\n -- Multiple Layers \n"; -- Multiple Layers

X = 2 m; (X, Y) = (2 m 1 in)

while (X <= 5 m) { (X, Y) = (2 m 5 in)

Y = 1 in; (X, Y) = (2 m 9 in)

print "\n"; (X, Y) = (4 m 1 in)

while(Y <= 1 ft) { (X, Y) = (4 m 5 in)

print "(X, Y) = (",X,Y,")\n"; (X, Y) = (4 m 9 in)

Y = Y + 4 in;

}

X = X + 2 m ;

}

print "\n Break inside Multilayer While \n"; Break inside Multilayer While

X = 2 m; (X, Y) = (2 m 1 in)

while (X <= 10 m) { (X, Y) = (2 m 2 in)

27

if(X < 4m) then { (X, Y) = (2 m 3 in)

} else break; (X, Y) = (2 m 4 in)

Y = 1 in; (X, Y) = (2 m 5 in)

print "\n"; (X, Y) = (2 m 6 in)

while(Y <= 1 ft) { (X, Y) = (2 m 7 in)

if(Y > 8 in)

break;

print "(X, Y) = (",X,Y,")\n";

Y = Y + 1 in;

}

X = X + 2 m ;

}

For Loops with One Layer : The examples of input commands for one-layer for-loop
with di�erent conditions are given below:

INPUT OUTPUT

print "\n -- Empty Initializer\n"; -- Empty Initializer

x = 1m; x = 1 m

for(; x <= 5 m; x = x + 1 m) { x = 2 m

print "x = ", x, "\n"; x = 3 m

} x = 4 m

x = 5 m

print "\n -- Empty Increment \n"; -- Empty Increment

for(x = 1 m; x <= 5 m;) { x = 1 m

print "x = ", x, "\n"; x = 2 m

x = x + 1 m; x = 3 m

} x = 4 m

x = 5 m

print "\n -- Empty Condition\n"; -- Empty Condition

for(x = 1 m; ; x = x + 1 m) { x = 1 m

if(x > 5 m) { x = 2 m

break; x = 3 m

} x = 4 m

print "x = ", x, "\n"; x = 5 m

}

print "\n -- Empty Increment and Condition\n"; -- Empty Increment and Condition

x = 1m; x = 1 m

for(; ;) { x = 2 m

if(x > 5 m) { x = 3 m

break; x = 4 m

} x = 5 m

print "x = ", x, "\n";

28

x = x + 1m;

}

print "\n -- Single Condition \n"; -- Single Condition

for(x = 1 m; x <= 5 m; x = x + 1 m) { x = 1 m

print "x = ", x, "\n"; x = 2 m

} x = 3 m

x = 4 m

x = 5 m

print "\n -- Multiple Conditions \n"; -- Multiple Conditions

x = 1 m; (x,y,z) = (1 m 1 in 100 yard)

y = 1 in; (x,y,z) = (2 m 2 in 500 yard)

z = 100 yard; (x,y,z) = (3 m 3 in 900 yard)

(x,y,z) = (4 m 4 in 1300 yard)

for(x = 1 m, y = 1 in, z = 100 yard; x <= 5 m (x,y,z) = (5 m 5 in 1700 yard)

&& y < 1 ft || z < 0.5 mile; x = x + 1 m,

y = y + 1 in, z = z + 400 yard) {

print " (x,y,z) = (",x, y, z,")\n";

}

The looping constructs for and while may be nested; examples are located in Chapter
4, and in the numerical and �nite element algorithms developed for Part 2 of this report.

2.5 De�nition and Printing of Matrices

The ALADDIN command language supports interactive de�nition of matrices,
their allocation to variable names, and matrix operations. Matrix elements may be de�ned
with physical units.

There are two basic mechanisms for de�ning a matrix; (a) build the matrix directly
from an input command, and (b) make use of built-in matrix allocation functions,

2.5.1 De�nition of Small Matrices

The following input commands demonstrate the interactive de�nition and printing
of small matrices:

X = [1, 2, 3];

Y = [1; 2; 3];

Z = [1,

3;

2, 4];

29

PrintMatrix(X);

PrintMatrix(Y,Z);

X ,Y and Z are (1 � 3), (3�1) and (2 � 2) matrices, respectively. We use square brackets
(i.e. "[" and "]") to indicate the beginning and end of a matrix de�nition. Individual
elements of a matrix are separated by commas, and may be located on one or more lines
of input. The elements of a matrix are de�ned row-wise, with a semi-colon positioned
inside the brackets separating matrix rows. Each row of the matrix must have the same
number of columns.

PrintMatrix() prints the contents of a matrix to standard output (i.e. the
computer screen). With matrix X de�ned above, PrintMatrix(X); gives

MATRIX : "X"

row/col 1 2 3

units

1 1.00000e+00 2.00000e+00 3.00000e+00

Notice that a blank row and blank column are available for the printing of units { we
will describe this feature in the next subsection. PrintMatrix() accepts from one to �ve
matrix arguments. So, for example, the single command PrintMatrix(Y, Z); generates

MATRIX : "Y"

row/col 1

units

1 1.00000e+00

2 2.00000e+00

3 3.00000e+00

MATRIX : "Z"

row/col 1 2

units

1 1.00000e+00 3.00000e+00

2 2.00000e+00 4.00000e+00

The same output would be generated by the command sequence:

PrintMatrix(Y); PrintMatrix(Z);

2.5.2 Built-in Functions for Allocation of Matrices

The interactive de�nition of matrices can be a error-prone process that becomes
progressively tedious with increasing matrix size. In situations where numerical and
�nite element analysis problems generate matrices with hundreds { sometimes thousands
{ of rows and columns, the interactive de�nition of matrices is simply impractical. To

30

Matrix Purpose of Function

Matrix([s, t]) Allocate s � t matrix

PrintMatrix(A, B,..) Print matrices A, B, and so on.

ColumnUnits(A, [u]) Assign column units u to matrix A { for complete details,
see the text.

RowUnits(A, [u]) Assign row units u to matrix A { for complete details, see
the text.

Diag([s, n]) Allocate s � s diagonal matrix with n along diagonal

One([s, t]) Allocate s � t matrix full of ones

One([s]) Allocate s � s matrix full of ones

Zero([s]) Allocate s � s matrix full of zeros

Zero([s, t]) Allocate s � t matrix full of zeros

Table 2.3: Functions for De�nition and Printing of Matrices

mitigate these limitations, ALADDIN provides a family of functions to generate matrices
commonly used in numerical and �nite element analyses.

Table 2.3 contains a summary of functions and their arguments for the de�nition
of matrices (we will describe the �nite element functions in Part 2 of this report). The
following script of commented input code demonstrates and explains use of these functions.

START OF INPUT FILE

/* [a] : Allocate a 20 by 30 matrix */

W = Matrix([20, 30]);

/* [b] : Allocate a 1 by 30 matrix full of zeros */

X = Zero([1, 30]);

/* [c] : Allocate a 30 by 30 matrix full of zeros */

X = Zero([30, 30]);

Y = Zero([30]);

/* [d] : Allocate a matrix full of zeros, the size is same of [W] */

X = Zero(Dimension(W));

/* [e] : Allocate a 30 by 30 matrix full of ones */

31

Y = One([30]);

X = One([30, 30]);

/* [f] : Allocate a 30 by 30 diagonal matrix with 2 along diagonal */

/* and a 44 by 44 identity matrix */

X = Diag([30, 2]);

Y = Diag([44, 1]);

2.5.3 De�nition of Matrices with Units

Recall from Chapter 2 that matrix units are stored in row units and column
units bu�ers. The de�nition of matrices with units falls into two classes, and we will
demonstrate each by example.

Row and Column Vectors : Example commands for matrices that are either row or
column vectors are

X = [1 kN, 2 Pa, 3 m];

Y = [1 kN; 2 Pa; 3 m];

Z = [lbf*ft; m^2; psi*in^2];

where the X, Y are 1x3, 3x1 matrices. The elements of X are X[1][1] = 1.0 kN, X[1][2]
= 2.0 Pa, and X[1][3] = 3 m. The matrix Y is simply the transpose of matrix X. Matrix
Z is a 3x1 matrix that consists of units alone. It's elements are Z[1][1] = lbf.ft,
Z[1][2] = m^2 and Z[1][3] = psi.in^2 = lbf.

General Matrices : For general matrices, units are written to units bu�er with the
built-in functions ColumnUnits() and RowUnits(). ColumnUnits() writes a column
units bu�er into a matrix. RowUnits() writes a row units bu�er. ColumnUnits() and
RowUnits() both accept either two or three arguments. The �rst argument is name of
the matrix that units will be assigned to. The second argument is a (1 � n) units vector.
The third argument is a (1 � 1) matrix containing the column number (or row number)
units will be assigned to. In summary, the syntax is

W = ColumnUnits(M, [units_vector]);

W = RowUnits(M, [units_vector]);

W = ColumnUnits(M, [units_vector], [number]);

W = RowUnits(M, [units_vector], [number]);

Example of ColumnUnits() : Let X be a (4 � 4) non-dimensional matrix full of ones,
possibly generated with the command X = One([4,4]);. The command

X = ColumnUnits(X, [kN]);

32

will assign the units kN to every element of the column units bu�er in X. All of the elements
of X will now have units kN. Two alternative ways of achieving the same result are:

X = ColumnUnits(X, [kN, kN, kN, kN]);

and

X = ColumnUnits(X, [kN], [1]);

X = ColumnUnits(X, [kN], [2]);

X = ColumnUnits(X, [kN], [3]);

X = ColumnUnits(X, [kN], [4]);

where the command X = ColumnUnits(X, [kN], [1]); assigns units kN to the �rst ele-
ment of the column units bu�er in X. It is important to note our careful choice of the words
assign { when speci�c row or column numbers are omitted, units assignment takes place
in all of those rows or columns that match the units exponents. Suppose, for example,
that we generate X with the following sequence of statements:

X = One([6]);

X = ColumnUnits(X, [ton], [1]);

X = ColumnUnits(X, [mile], [3]);

X = ColumnUnits(X, [klb], [4]);

X = ColumnUnits(X, [ft], [6]);

Y = ColumnUnits(X, [in, lb]);

The command X = One([6]) generates a (6 � 6) matrix full of ones, and assigns the
result to variable X. Repeated use of ColumnUnits() assigns to columns 1, 3, 4, 6 of X,
units ton, mile, klb, and ft. Put another way, columns 1 and 4 have units of mass, and
columns 3 and 6, units of length. Columns 2 and 5 are dimensionless. The details of X
are:

MATRIX : "X"

row/col 1 2 3 4 5

units ton mile klb

1 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

2 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

3 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

4 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

5 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

6 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

row/col 6

units ft

1 1.00000e+00

2 1.00000e+00

3 1.00000e+00

4 1.00000e+00

5 1.00000e+00

6 1.00000e+00

33

In the new matrix Y, the ton and klb are replaced with unit lb, so are the corresponding
value of the elements, and miles and ft are replaced with in. The details of Y are:

MATRIX : "Y"

row/col 1 2 3 4 5

units lb in lb

1 2.00000e+06 1.00000e+00 6.33600e+04 1.00000e+03 1.00000e+00

2 2.00000e+06 1.00000e+00 6.33600e+04 1.00000e+03 1.00000e+00

3 2.00000e+06 1.00000e+00 6.33600e+04 1.00000e+03 1.00000e+00

4 2.00000e+06 1.00000e+00 6.33600e+04 1.00000e+03 1.00000e+00

5 2.00000e+06 1.00000e+00 6.33600e+04 1.00000e+03 1.00000e+00

6 2.00000e+06 1.00000e+00 6.33600e+04 1.00000e+03 1.00000e+00

row/col 6

units in

1 1.20000e+01

2 1.20000e+01

3 1.20000e+01

4 1.20000e+01

5 1.20000e+01

6 1.20000e+01

2.5.4 Printing Matrices with Desired Units

The function PrintMatrixCast() prints a single matrix, or perhaps a family of
matrices with desired units. The syntax for using PrintMatrixCast() is:

PrintMatrixCast(matrix1 , units_m);

PrintMatrixCast(matrix1 , matrix2, , units_m);

where matrix1, matrix2, and so on, are names of matrices to be printed, and units m

is a vector matrix containing the desired units. PrintMatrixCast() accepts from one to
four arguments.

Example : Suppose that matrices X and Y are generated as follows

X = One([3, 4]);

Y = [2, 3; 4, 5];

X = ColumnUnits(X, [psi], [1]);

X = ColumnUnits(X, [kN], [2]);

X = ColumnUnits(X, [km], [4]);

X = RowUnits(X, [psi, N, mm]);

Y = ColumnUnits(Y, [psi]);

Y = RowUnits(Y,[in]);

The details of matrices X and Y are:

34

MATRIX : "X"

row/col 1 2 3 4

units psi kN km

1 psi 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

2 N 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

3 mm 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

MATRIX : "Y"

row/col 1 2

units psi psi

1 in 2.00000e+00 3.00000e+00

2 in 4.00000e+00 5.00000e+00

Suppose that we now want to print X and Y, but with appropriate column units of pressure
and length rescaled to ksi and mm. The command PrintMatrixCast(X, Y, [ksi, mm]);

generates the output

MATRIX : "X"

row/col 1 2 3 4

units ksi kN mm

1 psi 1.00000e-03 1.00000e+00 1.00000e+00 1.00000e+06

2 N 1.00000e-03 1.00000e+00 1.00000e+00 1.00000e+06

3 mm 1.00000e-03 1.00000e+00 1.00000e+00 1.00000e+06

MATRIX : "Y"

row/col 1 2

units ksi ksi

1 in 2.00000e-03 3.00000e-03

2 in 4.00000e-03 5.00000e-03

Row bu�er units may also be re-scaled. For example, the command PrintMatrixCast(X,

Y, [ksi; mm]); rescales the pressure and length units in appropriate rows to ksi and
mm and generates the output:

MATRIX : "X"

row/col 1 2 3 4

units psi kN km

1 ksi 1.00000e-03 1.00000e-03 1.00000e-03 1.00000e-03

2 N 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

3 mm 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

MATRIX : "Y"

row/col 1 2

units psi psi

1 mm 5.08000e+01 7.62000e+01

2 mm 1.01600e+02 1.27000e+02

35

2.6 Matrix-to-Quantity Conversion

Let X be a matrix, and s and t be positive integers. The command Y = X[s][t]

extracts matrix element X[s][t] from X, and assigns the quantity to variable Y. An
equivalent command for (1 � 1) matrices X is Y = QuanCast(X). We demonstrate use of
QuanCast() in the following script of code:

INPUT OUTPUT

/* [a] : Define (1x1) matrix */

X = [100 kPa];

/* [b] : Print element [1][1] of X */

print "Y = ", QuanCast(X), "\n"; Y = 100 kPa

print "Y = ", X[1][1] , "\n"; Y = 100 kPa

2.7 Basic Matrix Operations

2.7.1 Retrieving the Dimensions of a Matrix

In the development of many numerical algorithms for engineering computations,
there is often a need to extract the dimensions of a particular matrix. The number of rows
and columns in a matrix may determine, for example, how many iterations of an algorithm
will be computed. In ALADDIN, the function Dimension(X) extracts the number of
rows and columns for matrix X, and returns the result in a (1 � 2) matrix. Elements
[1][1] and [1][2] of the matrix returned by Dimension() contain the number of rows
and columns in X, respectively.

INPUT OUTPUT

/* [a] : Generate 13 by 20 matrix called Z */

Z = One([13, 20]);

/* [b] : Extract and print dimensions of Z */

size = Dimension(Z);

print "\n\n";

print "Rows in [Z] = ", size[1][1] ,"\n"; Rows in [Z] = 1.3000e+01

print "Columns in [Z] = ", size[1][2] ,"\n"; Columns in [Z] = 2.0000e+01

36

2.7.2 Matrix Copy and Matrix Transpose

The functions Copy() and Transpose() compute respectively, a matrix copy, and
the matrix transpose. Both functions accept a single matrix argument. Examples of their
use are located in the next subsection.

2.7.3 Matrix Addition, Subtraction, and Multiplication

Operations for basic matrix arithmetic include assignment, addition, subtraction,
copying a matrix, and computing the matrix transpose and inverse. Here are some exam-
ples.

START OF INPUT FILE

/* [a] : define matrix A; use matrix copy and matrix transpose functions */

A = [1.0 kN, 2.0 Pa, 3 cm];

B = Copy(A);

C = Trans(A);

/* [b] : define and print matrices X and Y, with units */

X = Diag([4, 1]);

Y = One([4]);

X = ColumnUnits(X, [ksi, ft, N, m]);

Y = ColumnUnits(Y, [psi, in, kN,km]);

X = RowUnits(X, [psi, in, kN, mm]);

Y = RowUnits(Y, [ksi, ft, N, mm]);

PrintMatrix(X, Y);

/* [c] : compute matrix addition and subtraction, and print results */

Z = X + Y; U = X - Y;

PrintMatrix(Z, U);

Matrices X and Y are:

MATRIX : "X"

row/col 1 2 3 4

units ksi ft N m

1 psi 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

2 in 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00

3 kN 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00

4 mm 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00

MATRIX : "Y"

37

Name/Argument Purpose of Function

Copy(A) Make a copy of matrix A.

Dimension(A) Retrieve the size, or dimensions, of matrix A { the result
is a (1x2) matrix.

Extract(A,X,[s,t]) Extract a submatrix of size A from matrix X starting at
corner (s,t).

L2Norm(A) Compute L2 (Euclidean) norm of row or column vector
A.

Put(X,A,[s,t]) Put a p x q matrix A into matrix X, starting at corner
(s,t). The contents of matrix X bounded by the row and
column numbers (s,t) and (p+s-1,q+t-1) are replaced by
the contents of A

QuanCast(A) Cast a (1x1) matrix into a quantity.

Trans(A) Compute transpose of matrix A.

Table 2.4: Functions for Basic Matrix Operations

row/col 1 2 3 4

units psi in kN km

1 ksi 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

2 ft 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

3 N 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

4 mm 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

Results of the matrix addition and subtraction are:

MATRIX : "Z"

row/col 1 2 3 4

units ksi ft N m

1 psi 2.00000e+00 8.33333e+01 1.00000e+06 1.00000e+06

2 in 1.20000e-02 2.00000e+00 1.20000e+04 1.20000e+04

3 kN 1.00000e-06 8.33333e-05 2.00000e+00 1.00000e+00

4 mm 1.00000e-03 8.33333e-02 1.00000e+03 1.00100e+03

MATRIX : "U"

row/col 1 2 3 4

units ksi ft N m

1 psi 0.00000e+00 -8.33333e+01 -1.00000e+06 -1.00000e+06

2 in -1.20000e-02 0.00000e+00 -1.20000e+04 -1.20000e+04

3 kN -1.00000e-06 -8.33333e-05 0.00000e+00 -1.00000e+00

4 mm -1.00000e-03 -8.33333e-02 -1.00000e+03 -9.99000e+02

38

As pointed out in Chapter 2, consistent units are required for all matrix operations, in-
cluding matrix addition and subtraction, and multiplication. Sometimes a power function
can be used as a substitute to a series of matrix multiplications. Consider the following
script of code to compute a square matrix X raised to the power of 3:

X = [3, 4, 5; 1, 6, 7; 81, 71,2];

Y = X*X*X; /* triple product of matrices X */

Z = X^3; /* X raised to the power of 3 */

The results are:

MATRIX : "Y"

row/col 1 2 3

units

1 5.93800e+03 7.78100e+03 4.93300e+03

2 7.20600e+03 9.85700e+03 6.76100e+03

3 7.57060e+04 7.15820e+04 1.04360e+04

MATRIX : "Z"

row/col 1 2 3

units

1 5.93800e+03 7.78100e+03 4.93300e+03

2 7.20600e+03 9.85700e+03 6.76100e+03

3 7.57060e+04 7.15820e+04 1.04360e+04

Notice that the syntax to compute a matrix raised to a power is the same as for a quantity
raised to a power. Power operations may only be applied to certain classes of matrices:

[1] The matrix must be a square matrix { this requirement is needed because a matrix
is multiplied from both left and right.

[2] The exponent is limited to integers larger than or equal to -1. Matrix raised to an
exponent with fractional digits, such as [X]0:3, or to a less than -1 power, such as
[X]�3 are lack of well de�ned mathematical meaning.

[3] The function is only useful for non-dimensional matrices. For dimensional matrices,
two matrices can only multiply to each other when their units are consistent. And
a matrix multiply to itself will result in unconsistent units.

A matrix raised to the power of zero is taken as a non-dimensional matrix full of ones.

2.7.4 Scaling a Matrix by a Quantity

Let A be a matrix and q a physical quantity. ALADDIN's grammar supports pre-
multiplication of A by a quantity (i.e. q.A), post-multiplication of A by a quantity (i.e.

39

A.q), and division of A by a quantity (i.e. A/q). The following script of code demonstrates
use of these commands. The script contains three parts { �rst, we generate a (4 � 4)
matrix X with units. In Part 2, X is scaled by 2 in via post-multiplication, and in Part
3, the elements of X are divided by 2 in.

/* [a] : Define and print matrix [X] with units */

X = One([4]);

X = ColumnUnits(X, [ksi, lbf, ksi, ft]);

X = RowUnits(X, [psi, in, kips, lb]);

PrintMatrix(X);

/* [b] : Scale Matrix by constant factor of 2 in */

print "\n Scale Matrix by constant factor of 2 in \n";

Y = X*2 in;

PrintMatrix(Y);

/* [c] : Reduce Matrix Content by a factor of 2 in */

print "\n Reduce Matrix Content by a factor of 2 in \n";

print "X [1][4] = ", X[1][4],"\n";

Y = X/2 in;

print "Y [1][4] = ", Y[1][4],"\n";

PrintMatrix(Y);

The generated output is:

MATRIX : "X"

row/col 1 2 3 4

units ksi lbf ksi ft

1 psi 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

2 in 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

3 kips 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

4 lb 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

Scale Matrix by constant factor of 2 in

MATRIX : "Y"

row/col 1 2 3 4

units lbf/in lbf.in lbf/in in^ 2.0

1 psi 2.00000e+03 2.00000e+00 2.00000e+03 2.40000e+01

2 in 2.00000e+03 2.00000e+00 2.00000e+03 2.40000e+01

3 kips 2.00000e+03 2.00000e+00 2.00000e+03 2.40000e+01

4 lb 2.00000e+03 2.00000e+00 2.00000e+03 2.40000e+01

Reduce Matrix Content by a factor of 2 in

40

X [1][4] = 12 lbf/in

Y [1][4] = 6 psi

MATRIX : "Y"

row/col 1 2 3 4

units (ksi)/(in) lbf/in (ksi)/(in)

1 psi 5.00000e-01 5.00000e-01 5.00000e-01 6.00000e+00

2 in 5.00000e-01 5.00000e-01 5.00000e-01 6.00000e+00

3 kips 5.00000e-01 5.00000e-01 5.00000e-01 6.00000e+00

4 lb 5.00000e-01 5.00000e-01 5.00000e-01 6.00000e+00

Notice how the contents of X[1][4] and Y[1][4] have units that are the product of
entries in the row and column units vectors.

2.7.5 Euclidean Norm of Row/Column Vectors

ALADDIN provides the function L2Norm() to compute the L2 norm of either a
(1� n) row vector, or (n� 1) column vector.

kxk2 =

vuut" nX
i=1

x2i

#
(2.1)

Consider the following example:

X = [1, 2, 3, 4, 5];

U = L2Norm(X);

PrintMatrix(X);

print "Euclidean Norm of [X] = ", U, "\n";

print "Euclidean Norm of [Y] = ", V, "\n";

The generated output is:

MATRIX : "X"

row/col 1 2 3 4 5

units

1 1.00000e+00 2.00000e+00 3.00000e+00 4.00000e+00 5.00000e+00

Euclidean Norm of [X] = 7.4162e+00

ALADDIN also allows L2 norms to be computed for row and column vectors containing
consistent sets of units. For example.

41

Y = [1 m; 2 m ; 3E-3 km; 4 m; 5 m];

V = L2Norm(Y);

PrintMatrix(Y);

print "Euclidean Norm of [Y] = ", V, "\n";

sets up a 1 by 5 row vector X, and a 5 by 1 column vector Y. Again, the generated output
is:

MATRIX : "Y"

row/col 1

units

1 m 1.00000e+00

2 m 2.00000e+00

3 km 3.00000e-03

4 m 4.00000e+00

5 m 5.00000e+00

Euclidean Norm of [Y] = 7.4162e+00

Notice how the units have been stripped from the Euclidean norm.

2.7.6 Minimum and Maximum Matrix Elements

The matrix function Min() returns the minimum value of an element in a matrix,
and the matrix function Max() returns the maximum value of an element in a matrix.
Each function has one matrix argument, and returns a (1 � 1) matrix containing the
min/max value. For example, the script of input

x = [3.78, 9.7, -4.7, 10.50 ;

0.00, -5.8, 0.2, -9.34] ;

MaxValue = Max(x);

MinValue = Min(x);

PrintMatrix(x);

print "Max(x) =", MaxValue ,"\n";

print "Min(x) =", MinValue ,"\n";

generates the output:

MATRIX : "x"

row/col 1 2 3 4

units

42

1 3.78000e+00 9.70000e+00 -4.70000e+00 1.05000e+01

2 0.00000e+00 -5.80000e+00 2.00000e-01 -9.34000e+00

Max(x) = 10.5

Min(x) = -9.34

In this particular example the (1�1) matrices returned by Max() and Min() are converted
to quantities when the assignments to MaxValue and MinValue are made. In engineering
design applications, the Min() and Max() functions can simplify the writing of code where
extreme values of system responses must be identi�ed.

2.7.7 Substitution/Extraction of Submatrices

ALADDIN provides the function Extract() to extract a submatrix from a larger
matrix, and the function Put() to replace a submatrix within a larger speci�ed matrix.
Both functions require three matrix arguments { for details, see Table 2.4. Suppose, for
example, we generate matrices with the sequence of commands:

/* [a] : generate (3x4) matrix with units */

X = One([3, 4]);

X = ColumnUnits(X, [psi], [1]);

X = ColumnUnits(X, [kN], [2]);

X = ColumnUnits(X, [km], [4]);

X = RowUnits(X, [psi, N, mm]);

/* [b] : Extract() a (2x2) matrix from a (3x4) matrix starting at corner (1,1) */

A = Matrix([2,2]);

A = Extract(A,X,[1,1]);

/* [c] : Extract() the 2nd column of matrix X */

B = Matrix([3,1]);

B = Extract(B,X,[1,2]);

/* [d] : Extract() the 3rd row of matrix X */

C = Matrix([1,4]);

C = Extract(C,X,[3,1]);

/* [e] : Put() a (2x2) submatrix D into X starting at corner (1,1) */

D = [2 , 3 ; 6, 3];

Y = Put(X, D, [1,1]);

The output from this script of code, including de�ned matrices X and D, and results of
extracted matrices A,B,C and replaced matrix Y, is:

43

MATRIX : "X"

row/col 1 2 3 4

units psi kN km

1 psi 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

2 N 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

3 mm 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

MATRIX : "D"

row/col 1 2

units

1 2.00000e+00 3.00000e+00

2 6.00000e+00 3.00000e+00

MATRIX : "A"

row/col 1 2

units psi N

1 psi 1.00000e+00 1.00000e+03

2 N 1.00000e+00 1.00000e+03

MATRIX : "B"

row/col 1

units

1 psi. 1.00000e+00

2 N^ 2.0 1.00000e+03

3 N.m 1.00000e+00

MATRIX : "C"

row/col 1 2 3 4

units lbf/in N.m mm m^ 2.0

1 3.93701e-02 1.00000e+00 1.00000e+00 1.00000e+00

MATRIX : "Y"

row/col 1 2 3 4

units

1 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00

2 6.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00

3 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

44

2.8 Solution of Linear Matrix Equations

The purpose of this section is to describe the functions ALADDIN supports for
the solution of linear equations

[A] fxg = fbg (2.2)

We assume in equation (2.2) that [A] is a (n � n) square matrix, and fxg and fbg are
(n�1) column vectors. Generally speaking, the computational work required to solve one
or more families of linear equations is a�ected by: (a) the size and structure of matrix
A, (b) the computational algorithm used to compute the numerical solution, and (c) the
number of separate families of equations solutions are required.

[L] { x } = { b } { x }

{ x }[U] { x } = { b }

BACKWARD SUBSTITUTION

FORWARD SUBSTITUTION

GAUSS ELIMINATION

[A] { x } = { b } [U] { x } = { b } { x }
Row Operations Backward Substitution.

LU DECOMPOSITION

[A] { x } = { b } [A] = [L] [U]
[U } { z_1 } = { b_1 }

[L] { x_1 } = { z_1 }

[L] { x_3 } = { z_3 }

[U] { z_3 } = { b_3 }

[L] { x_2 } = { z_2 }.

[U] { z_2 } = { b_2 }

Forward Substitution followed by Backward Substitution

O (n^2)

O (n^2)

O (n^2)

O (n^2)

O (n^2)

O (n^2)O (n^3)

O (n^3)

Figure 2.2: Strategies for Solving [A] fxg = fbg

Figure 2.2 summarizes four pathways of computation for the solution of linear equations
[A] fxg = fbg. When matrix A is is either lower or upper triangular form, solutions to
[L] fxg = fbg can be computed with forward substitution, and solutions to [U] fxg = fbg
via backward substitution. Algorithms for forward/backward substitution require O(n2)
computational work. The method of Guass Elimination is perhaps the most widely known
method for solving systems of linear equations. In the �rst stage of Gauss Elimination,

45

Name/Argument Purpose of Function

Det(A) Compute determinant of matrix A { the result is a
quantity.

Decompose(A) Compute LU decomposition for square matrix A.

Inverse(A) Compute the inverse of matrix A.

Solve(A,b) Compute solution to [A]fxg = fbg.

Substitution(LU,b) Compute forward and backward substitution. LU is a
matrix containing the LU decomposition of A.

Table 2.5: Functions for Solving Linear Equations

a set of well de�ned row operations transforms [A] fxg = fbg into [U] fxg = fb�g. In
the second stage of Gauss Elimination, the solution matrix x is computed via back sub-
stitution. The �rst and second stages of Gauss Elimination require O(n3) and O(n2)
computational work, respectively.

In many numerical and �nite element computations (e.g. structural dynamics with
�nite elements), families of equations [A]fxg= fbg are solved many times with di�erent
right-hand side vectors b. For example, in Figure 2.2, fb1g, fb2g, and fb3g represent
three distinct right-hand sides to [A]fxg= fbg. The optimal solution procedure is to �rst
decompose A into a product of lower and upper triangular matrices (O(n3) computational
work), and then use forward substitution to solve [L] fzg = fbg, followed by backward
substitution for [U] fxg = fzg (O(n2) computational work). While solutions the �rst set
of equations requires O(n3) computational work, solutions to all subsequent families of
[A]fxg = fb'sg requires only O(n2) computational work.

2.8.1 Solving [A] fxg = fbg

ALADDIN provides three functions, Decompose(), Substitution(), and Solve()
for the solution of linear equations [A]fxg= fbg. A summary of ALADDIN's functions
for solving linear equations is given in Table 2.5.

Function Decompose() computes the LU decomposition of matrix A. A typical
example of its usage is:

LU = Decompose(A);

Decompose() will print an error message if matrix A is singular (i.e the determinant of A
is zero, and a unique solution to the equations does not exist). With the LU decomposi-
tion of A complete, solutions to linear equations [L][U]fxg= fbg can be computed with

46

forward and backward substitution. This two-step procedure is handled by a single call
to Substitution(). A typical example of its usage is:

x = Substitution(LU, b).

As demonstrated in Chapter 1, solutions to linear equations may also be computed with
the single command

x = Solve(A, b).

Function Solve() computes the solution to a single family of equations via the method of
LU decomposition. The numerical procedure is identical to the two-command sequence

LU = Decompose(A);

x = Substitution(LU, b).

LU decomposition can be used to solve a family of equations with di�erent right-hand
side vectors b. For example:

LU = Decompose(A);

x1 = Substitution(LU, b1). /* Solve [A].x1 = b1 */

x2 = Substitution(LU, b2). /* Solve [A].x2 = b2 */

x3 = Substitution(LU, b2). /* Solve [A].x3 = b3 */

Numerical Example : Figure 2.3 shows a schematic and simpli�ed model of an elastic
cantilever beam. External loads include an axial force, a translational force (perpendicular
to the axis of the beam), and a bending moment applied at the end point of the cantilever.

1
3

M

P_1

P_2

GEOMETRY OF BEAM WITH LOADS STRUCTURAL MODEL OF BEAM

PROPERTIES E, A, I

2
L

FULL FIXITY AT SUPPORT

Figure 2.3: Schematic and Model of Prismatic Cantilever Beam

The cantilever is modeled with full �xity at its base. It has length L = 5 meters, cross
section area A = 0:10m2, moment of inertia I = 0:10m4, and a Young's modulus of
Elasticity E = 200Pa. The cross section shape and material properties are assumed to
be constant along the length of the cantilever.

47

If deformations of the beam are small, and the material remains elastic, then the
translational displacements and rotation of the cantilever end point are given by solutions
to the equation

2
64

EA
L

0 0
0 12EI

L3

�6EI
L2

0 �6EI
L2

4EI
L

3
75 �
2
64
x
y
�

3
75 =

2
64
F1

F2

M

3
75 (2.3)

In the �rst phase of our analysis, we de�ne variables for properties of the cantilever beam,
allocate memory for the sti�ness matrix and two external load matrices, and initialize
and print the contents of these matrices. These tasks are accomplished by the script of
input �le:

START OF INPUT FILE

/* [a] : Setup section/material properties for Cantilever Beam */

E = 200 GPa;

I = 0.10 m^4;

A = 0.10 m^2;

L = 5 m;

/* [b] : Define a (3x3) test matrix for Cantilever Beam */

stiff = Matrix([3,3]);

stiff = ColumnUnits(stiff, [N/m, N/m, N]);

stiff = RowUnits(stiff, [m], [3]);

stiff[1][1] = E*A/L;

stiff[2][2] = 12*E*I/(L^3);

stiff[3][3] = 4*E*I/L;

stiff[2][3] = -6*E*I/(L^2);

stiff[3][2] = -6*E*I/(L^2);

PrintMatrix(stiff);

/* [c] : Define and print two external load matrices */

load1 = ColumnUnits(Matrix([3,1]), [N]);

load1 = RowUnits(load1, [m], [3]);

load1[1][1] = 10 kN;

load1[2][1] = 10 kN;

load1[3][1] = 00 kN*m;

load2 = ColumnUnits(Matrix([3,1]), [N]);

load2 = RowUnits(load2, [m], [3]);

load2[1][1] = 10 kN;

load2[2][1] = -10 kN;

load2[3][1] = 00 kN*m;

48

PrintMatrix(load1, load2);

The contents of matrices stiff, load1, and load2 are:

MATRIX : "stiff"

row/col 1 2 3

units N/m N/m N

1 4.00000e+09 0.00000e+00 0.00000e+00

2 0.00000e+00 1.92000e+09 -4.80000e+09

3 m 0.00000e+00 -4.80000e+09 1.60000e+10

MATRIX : "load1"

row/col 1

units

1 N 1.00000e+04

2 N 1.00000e+04

3 N.m 0.00000e+00

MATRIX : "load2"

row/col 1

units

1 N 1.00000e+04

2 N -1.00000e+04

3 N.m 0.00000e+00

Suppose that a unit displacement is applied to the ith degree of freedom in the structure,
and displacements are zero at all other degrees of freedom. By de�nition, sti�ness element
kij corresponds the force (or moment) required at degree of freedom j for equilibrium. In
our cantilever structure, for example, the third row of the sti�ness matrix corresponds to
the forces needed produced a unit end rotation without also causing lateral or translational
displacements. The required set of forces/moments are:

INPUT OUTPUT

print "stiff[3][1] = ", stiff[3][1], "\n"; stiff[3][1] = 0 N

print "stiff[3][2] = ", stiff[3][2], "\n"; stiff[3][2] = -4.8e+09 N

print "stiff[3][3] = ", stiff[3][3], "\n"; stiff[3][3] = 1.6e+10 N.m

Components stiff[3][1] to stiff[3][3] have units of force, force, and moment, re-
spectively.

The linear equations are now solved in two ways. First, we use Solve() to
compute displacements for load cases 1 and 2. Then we use Decompose() to compute

49

the LU decomposition of stiff, followed by two applications of Substitution() for
right-hand matrices 2*load1 and 2*load2.

INPUT FILE CONTINUED

/* [d] : Use "Solve()" to compute solutions to sets of equations */

displacements1 = Solve(stiff, load1);

PrintMatrix(displacements1);

displacements2 = Solve(stiff, load2);

PrintMatrix(displacements2);

/* [e] : Use "Decompose()" followed by multiple calls to "Substitution()" */

lu = Decompose(stiff);

displacements1 = Substitution(lu, 2*load1);

displacements2 = Substitution(lu, 2*load2);

PrintMatrix(displacements1);

PrintMatrix(displacements2);

For ease reading, displacements 1 and 2, and 3 and 4 are juxtaposed.

MATRIX : "displacements1" MATRIX : "displacements2"

row/col 1 row/col 1

units units

1 m 2.50000e-06 1 m 2.50000e-06

2 m 2.08333e-05 2 m -2.08333e-05

3 6.25000e-06 3 -6.25000e-06

MATRIX : "displacements3" MATRIX : "displacements4"

row/col 1 row/col 1

units units

1 m 5.00000e-06 1 m 5.00000e-06

2 m 4.16667e-05 2 m -4.16667e-05

3 1.25000e-05 3 -1.25000e-05

Before the forward and backward substitution proceeds, ALADDIN checks that the units
of LU and b are compatible, and automatically assigns units to the solution vector. For our
cantilever example, degrees of freedom one and two correspond to axial and translational
displacements of the cantilever end point. They have units of length. Degree of freedom
three is rotation of the cantilever end point { it is printed as a dimensionless quantity.

Finally, we check the accuracy of our numerical solution by computing the residual
of solutions:

50

INPUT FILE CONTINUED

/* [e] : Compute and printk residuals of solution matrices */

R1 = stiff*displacements1 - load1;

R2 = stiff*displacements2 - load2;

R3 = stiff*displacements3 - 2*load1;

R4 = stiff*displacements4 - 2*load2;

PrintMatrix(R1, R2, R3, R4);

quit;

generates the output

MATRIX : "R1" MATRIX : "R2"

row/col 1 row/col 1

units units

1 N 0.00000e+00 1 N 0.00000e+00

2 N 0.00000e+00 2 N 0.00000e+00

3 N.m 0.00000e+00 3 N.m 0.00000e+00

MATRIX : "R3" MATRIX : "R4"

row/col 1 row/col 1

units units

1 N 0.00000e+00 1 N 0.00000e+00

2 N 0.00000e+00 2 N 0.00000e+00

3 N.m 0.00000e+00 3 N.m 0.00000e+00

2.8.2 Matrix Inverse

The inverse of matrix A is denoted A�1, and for non-dimensional matrices, is
given by solutions to the matrix equations:

A � A�1 = A�1 �A = I: (2.4)

For matrices containing units, the left- and right-inverses are given by

A � A�1 =
�
A�1 �A

�T
= IL; (2.5)

and

A�1 � A =
�
A � A�1

�T
= IR: (2.6)

In Chapter 7 we will see that numerical values of matrix elements of IR and IL are
symmetric, but the left- and right- identity matrices have units that are transposed with
respect to one another. Also, when the units are removed from IR and IL, IR = IL = I.

51

An inverse to matrix A will exist if and only if A is nonsingular (i.e. the determi-
nant of A is nonzero). ALADDIN employs a two step method for computing the inverse
of a matrix:

[1] Compute the LU decomposition of A. If the product of diagonal terms in either L or
U equals zero, then A is singular, and an inverse does not exist.

[2] Let bi correspond to the ith column of I. For each bi, i = 1 to n, compute forward
and backward substitution for [L][U]fxig = fbig. Solution fxig corresponds to the
ith column of A�1.

The following script of code demonstrates two ways of computing the inverse of a matrix
X.

START OF INPUT FILE

/* [a] Define (4x4) matrix X */

X = [3, 4, 5, 7;

1, 6, 7, 9;

11, 26, 47, 9;

81, 71, 2, 2];

/* [b] Compute inverse of X in two ways */

Y = Inverse(X);

Z = X^-1;

PrintMatrix(X, Y, Z);

/* [c] Compute and print left and right identity matrices */

IL = X*Y; /* Left identity matrix */

IR = Y*X; /* Right identity matrix */

PrintMatrix(IL, IR);

Notice how the product of matrices X and Y is computed by simply typing X*Y. The
matrices X, Y, IR, and IL are

MATRIX : "X"

row/col 1 2 3 4

units

1 3.00000e+00 4.00000e+00 5.00000e+00 7.00000e+00

2 1.00000e+00 6.00000e+00 7.00000e+00 9.00000e+00

3 1.10000e+01 2.60000e+01 4.70000e+01 9.00000e+00

4 8.10000e+01 7.10000e+01 2.00000e+00 2.00000e+00

MATRIX : "Y"

52

row/col 1 2 3 4

units

1 3.50926e-01 -2.77316e-01 3.87423e-03 2.24593e-03

2 -4.07636e-01 3.19090e-01 -4.66030e-03 1.17911e-02

3 1.16086e-01 -1.15216e-01 2.63616e-02 -6.45705e-03

4 1.42476e-01 1.88097e-02 -1.78271e-02 -3.08815e-03

MATRIX : "Z"

row/col 1 2 3 4

units

1 3.50926e-01 -2.77316e-01 3.87423e-03 2.24593e-03

2 -4.07636e-01 3.19090e-01 -4.66030e-03 1.17911e-02

3 1.16086e-01 -1.15216e-01 2.63616e-02 -6.45705e-03

4 1.42476e-01 1.88097e-02 -1.78271e-02 -3.08815e-03

MATRIX : "IL"

row/col 1 2 3 4

units

1 1.00000e+00 -1.94289e-16 0.00000e+00 -3.46945e-18

2 -2.22045e-16 1.00000e+00 2.77556e-17 3.46945e-18

3 6.66134e-16 -5.27356e-16 1.00000e+00 -2.42861e-17

4 3.05311e-15 -7.45931e-15 2.77556e-17 1.00000e+00

MATRIX : "IR"

row/col 1 2 3 4

units

1 1.00000e+00 -5.82867e-16 -3.22659e-16 -6.83481e-16

2 3.33067e-16 1.00000e+00 3.29597e-16 1.07553e-16

3 1.11022e-16 -5.55112e-17 1.00000e+00 -1.04083e-16

4 -5.55112e-17 -2.77556e-17 -6.67869e-17 1.00000e+00

For non-dimensional matrices, the left and right identity products X �X�1 and X�1 �X
are identical (except for roundo� errors). Now let's look at the inverse of square matrices
having units { here is one example.

START OF INPUT FILE

/* [a] Define (4x4) matrix X */

X = [3, 4, 5;

1, 6, 7;

81, 71, 2];

X = ColumnUnits(X, [N/m, N/m, N]);

X = RowUnits(X, [m], [3]);

/* [b] Compute inverse of X in two ways */

Y = X^-1;

53

PrintMatrix(X, Y);

/* [c] Compute and print left and right identity matrices */

IL = X*Y; /* Left identity matrix */

IR = Y*X; /* Right identity matrix */

PrintMatrix(IL, IR);

The generated output is

MATRIX : "X"

row/col 1 2 3

units N/m N/m N

1 3.00000e+00 4.00000e+00 5.00000e+00

2 1.00000e+00 6.00000e+00 7.00000e+00

3 m 8.10000e+01 7.10000e+01 2.00000e+00

MATRIX : "Y"

row/col 1 2 3

units m^-1.0

1 m/N 3.81890e-01 -2.73228e-01 1.57480e-03

2 m/N -4.44882e-01 3.14173e-01 1.25984e-02

3 N^-1.0 3.26772e-01 -8.74016e-02 -1.10236e-02

MATRIX : "IL"

row/col 1 2 3

units N/m N/m Pa

1 m/N 1.00000e+00 -5.55112e-17 -6.93889e-18

2 m/N 4.44089e-16 1.00000e+00 0.00000e+00

3 Pa^-1.0 -6.66134e-16 -1.36002e-15 1.00000e+00

MATRIX : "IR"

row/col 1 2 3

units N/m N/m N

1 m/N 1.00000e+00 -1.94289e-16 -8.67362e-17

2 m/N 0.00000e+00 1.00000e+00 -2.22045e-16

3 N^-1.0 0.00000e+00 -1.11022e-16 1.00000e+00

54

2.9 Matrix Eigenvalues and Eigenvectors

LetK be a (n�n) matrix. The eigenvector ofK is de�ned as a vector, which when
premultiplied by K generates a vector proportional to the original vector. The constant
of proportionality is called the eigenvalue. In mathematical notation we write

K� = ��; (2.7)

where � is the (n� 1) eigenvector, and � the eigenvalue. We say that equation (2.7) is an
eigenvalue problem when it is solved for the �0s. And it is an eigenvector problem when
(2.7) is solved for the �0s. Equation (2.7) is an eigenproblem when it is solved for both
the �0s and �0s.

In this section we describe the two types of eigenproblems ALADDIN can solve.
The �rst, and simpler case, is the standard eigenproblem

K� = ��: (2.8)

In equation (2.8), K is a (n�n) positive de�nite symmetric sti�ness matrix, and � and �
are (n�n) matrices of eigenvalues and eigenvectors, respectively (i.e. � = [�1; �2; � � � ; �n]),
and � = diag(�1; �2; � � � ; �n). ALADDIN also supports solutions to the generalized eigen-
problem

K� =M��; (2.9)

where M is a (n � n) positive de�nite matrix, and the remaining symbols take their
aforementioned de�nition. Generalized eigenproblems play a fundamental role in the
free-vibration analysis of structural and mechanical systems, studies of instability in en-
gineering systems, and in the identi�cation of principal moments of inertia in two- and
three-dimensional solids.

In the analysis of many engineering systems, only the �rst p (p < n) eigenpairs
are needed for analysis. The solution for p eigenpairs in the standard eigenproblem cor-
responds to

K� = ��: (2.10)

The de�nition of � is modi�ed to a (n� p) matrix containing the �rst p eigenvectors (i.e.
� = [�1; �2; � � � ; �p]), and � = diag(�1; �2; � � � ; �p) is a (p� p) diagonal matrix containing
the �rst p eigenvalues. The counterpart to equation (2.9) is

K� =M��: (2.11)

55

Name/Argument Purpose of Function

Eigen(K,M,[s]) Compute s eigenvalues and eigenvectors. Result of the
function call is assigned to eigen.

Eigenvalue(eigen) Extract eigenvalues from array eigen.

Eigenvector(eigen) Extract eigenvectors from array eigen.

Table 2.6: Eigenvalue and Eigenvector Functions

In equations (2.10) and (2.11), it is important to notice how the eigenvalues and eigen-
vectors have been carefully positioned so that both the left- and right-hand sides evaluate
to a (n� p) matrix.

ALADDIN employs a subspace iteration algorithm to solve equations (2.8) and
(2.11). A theoretical discussion of the algorithm may be found in Bathe [7]. Details of
the C code may be found in Austin and Mazzoni [5].

2.9.1 Solving K� =M��

ALADDIN provides three functions, Eigen(), Eigenvalue(), and Eigenvector(),
for the solution of the matrix eigenvalue problems { a summary of these functions and
their arguments is given in Table 2.6. Eigen() requires three matrix arguements as
input. The �rst and second arguments are the sti�ness and mass matrices, and the third
argument, a (1 � 1) matrix containing the number of eigenvalues and eigenvectors the
subspace algorithm should compute. Here is skeleton script of code for the solution of an
eigenproblem

no_eigen = 2;

eigen = Eigen(K, M, [no_eigen]);

eigenvalue = Eigenvalue(eigen);

eigenvector = Eigenvector(eigen);

If K and M are (n � n) matrices, then eigen is a ((n + 1) � n) matrix containing a
composite of eigenvalues and eigenvectors. Functions Eigenvalue() and Eigenvector()

simply extract the appropriate rows and columns from eigen { the same result could be
achieved with Extract().

We now apply these functions to two applications, elastic buckling of a pin-ended
column, and vibration analysis of a supported cantilever beam.

Numerical Example 1 : Figure 2.4 shows a pin-ended column acted on by a central axial
compressive force P. The column has length L = 5m, modulus of elasticity E = 200GPa,

56

P

P

L
 =

 5
 m

.

1 1-1 -1

GEOMETRY OF ELASTIC ROD BUCKLING MODE 2BUCKLING MODE 1

(x_i , y_i)x

y

1

2

3

4

5

P = 78.93 N. P = 314.2 N.

Figure 2.4: Elastic Buckling of Pin-Ended Column

and constant moment of inertia I = 1000mm4 along its length. The theoretical buckling
load is given by solutions to

EI �
d2x

d2y
+ P:y = 0 (2.12)

with boundary conditions y(0) = y(L) = 0. Solutions to equation (2.12) are well known,
and may be found in most undergraduate texts on structural mechanics { hence, we will
simply state the results here. The deformed column will be in static equilibrium, and
satisfy the boundary conditions, when

Pn =
n2�2EI

L2
for n = 1; 2; 3; � � � : (2.13)

The mode shape Yn(x) corresponding to critical load Pn is

Yn(x) = A:sin
�
n�x

L

�
: (2.14)

For our example column, �rst and second mode buckling loads and modal shapes are:

P1 =
�2EI

L2
= 78:957N Y1(x) = sin

�
�x

5

�
; (2.15)

and

57

P2 =
4�2EI

L2
= 315:82N Y2(x) = sin

�
2�x

5

�
: (2.16)

Numerical estimates of the column buckling loads and shapes of deformation may be
computed via a �nite di�erence approximation to equation (2.12), followed by solution
of the ensuing eigenproblem. We will illustrate the numerical method by computing
the column's lateral displacements at �ve equally spaced nodal points (x1; y1), (x2; y2),
(x3; y3), (x4; y4) and (x5; y5), as shown in the center diagram of Figure 2.4.

For step one, Ghali and Neville [14] have shown that a suitable �nite di�erence
approximation to equation (2.12) is

h
�1 2 �1

i
�

2
64 y(i�1)

yi
y(i+1)

3
75 = Pcr�

2

12EI

h
1 10 1

i
�

2
64 y(i�1)

yi
y(i+1)

3
75 (2.17)

where coordinates y(i�1), y(i), and y(i+1) are lateral displacements of the column, and � is
the x coordinate spacing between nodes (i.e. � = x(i+1) � xi = L=6). Global behavior of
the column is given by the sequential application of equation (2.17) to each of the �ve
internal nodes. The eigenproblem that results is

[A] fyg = � [B] fyg; where � =
Pcr�

2

12EI
; (2.18)

and A and B are (5 � 5) matrices, and fyg is a (5 � 1) matrix of lateral displacements
along the column. The details of A and B are as follows

A =

2
6666664

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

3
7777775

B =

2
6666664

10 1 0 0 0
1 10 1 0 0
0 1 10 1 0
0 0 1 10 1
0 0 0 1 10

3
7777775
: (2.19)

.

Details of Input File : A four-part input �le is needed for the de�nition of column ge-
ometry, material and section properties, assembly of the �nite di�erence matrices, solution
of the eigenvalue problem, and printing of the buckling loads and modal shapes.

START OF INPUT FILE

/* [a] : Define section/material properties Buckling Problem */

E = 200 GPa;

I = 1000 mm^4;

L = 5 m;

/* [b] : Define a (5x5) matrices for finite difference approximation */

58

A = [2, -1, 0, 0, 0;

-1, 2, -1, 0, 0;

0, -1, 2, -1, 0;

0, 0, -1, 2, -1;

0, 0, 0, -1, 2];

B = [10, 1, 0, 0, 0;

1, 10, 1, 0, 0;

0, 1, 10, 1, 0;

0, 0, 1, 10, 1;

0, 0, 0, 1, 10];

PrintMatrix(A,B);

/* [c] : Compute Eigenvalues and Eigenvectors */

no_eigen = 2;

eigen = Eigen(A, B, [no_eigen]);

eigenvalue = Eigenvalue(eigen);

eigenvector = Eigenvector(eigen);

/* [d] : Print Eigenvalues, Eigenvectors, and Buckling Loads */

size = Dimension(A);

for(i = 1; i <= no_eigen; i = i + 1) {

print "\n";

print "Mode", i ,"\n";

print "Eigenvalue = ", eigenvalue[i][1], "\n";

print "Buckling Load P = ", 12*E*I*eigenvalue[i][1]/(L/6)^2 ,"\n";

for(j = 1; j <= size[1][1]; j = j + 1) {

if(j == 1) then {

print "\n";

print "Mode Shape :", eigenvector[j][i], "\n";

} else {

print " ", eigenvector[j][i], "\n";

}

}

}

print "\n";

Abbreviated Output File : We have used the parameter no eigen to control the
number of eigenvalues/vectors that are computed by the subspace iteration, and printed.

START OF ABBREVIATED OUTPUT FILE

MATRIX : "A"

row/col 1 2 3 4 5

units

1 2.00000e+00 -1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

2 -1.00000e+00 2.00000e+00 -1.00000e+00 0.00000e+00 0.00000e+00

59

3 0.00000e+00 -1.00000e+00 2.00000e+00 -1.00000e+00 0.00000e+00

4 0.00000e+00 0.00000e+00 -1.00000e+00 2.00000e+00 -1.00000e+00

5 0.00000e+00 0.00000e+00 0.00000e+00 -1.00000e+00 2.00000e+00

MATRIX : "B"

row/col 1 2 3 4 5

units

1 1.00000e+01 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

2 1.00000e+00 1.00000e+01 1.00000e+00 0.00000e+00 0.00000e+00

3 0.00000e+00 1.00000e+00 1.00000e+01 1.00000e+00 0.00000e+00

4 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+01 1.00000e+00

5 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+01

*** SUBSPACE ITERATION CONVERGED IN 10 ITERATIONS

Mode 1

Eigenvalue = 0.02284

Buckling Load P = 78.93 N

Mode Shape : 0.5

0.866

1

0.866

0.5

Mode 2

Eigenvalue = 0.09091

Buckling Load P = 314.2 N

Mode Shape : 1

0.9988

-0.001186

-0.9988

-0.9976

A summary of numerical results is shown on the right-hand side of Figure 2.4. The
numerical results for both the buckling loads and modal shapes are in very good agreement
with equations (2.15) and (2.16).

60

Numerical Example 2 : The purposes of this numerical example are to demonstrate
use of:

[1] Element level sti�ness and mass matrices, as would be found in �nite element analysis.

[2] Destination arrays as a means of mapping degrees of freedom in the mass and sti�ness
�nite element matrices onto the global sti�ness matrix (and mass matrix) degrees
of freedom.

[3] The eigenvalue functions to compute the natural periods, and modal shapes of vibra-
tion.

We have deliberately selected a problem with a small number of unknowns so that step-
by-step details of items [1] and [2] may be written down, and solved using functions from
the matrix library alone.

3

4

1

2

GEOMETRY OF SUPPORTED CANTILEVER BEAM BEAM FINITE ELEMENT

L = 4 m.

1,2 3,4 5,6

FIXED SUPPORT

7,8 9

L = 20 m.

Figure 2.5: Single Span Cantilever Beam with Supported End Point

Figure 2.5 shows a uniform cantilever beam with a supported end point. The cantilever
has length 20 m, modulus of elasticity E = 200 GPa, and constant moment of inertia
I = 15:5 � 106 mm4 along its length. We will assume that the cantilever is rigid in its
axial direction (i.e. beam cross section area � 1 m2), and that all other deformations
are small. The boundary conditions are full-�xity at the base of the cantilever, and zero
translational displacement at the cantilever end.

Overall behavior of the cantilever will be modeled with �ve beam �nite elements,
and nine global degrees of freedom. They are a translation and rotation at each of the
internal nodes, and a single rotational degree of freedom at the hinged cantilever support.
Numbering for the global degrees of freedom is shown on the left-hand side of Figure 2.5.
Lateral displacements along each beam element will be expressed as the superposition of
four cubic interpolation functions, each weighted by a nodal displacement factor. The four
nodal displacements are two beam-end lateral displacements, and two beam-end rotations,
as shown on the right-hand side of Figure 2.5.

61

Element Sti�ness and Mass Matrices : It is well known that if cubic interpolation
functions are used to describe displacements along the beam element, then the beam
element sti�ness matrix will be

K =
�
2EI

L

�
�

2
6664

2 3=L 1 �3=L
3=L 6=L2 3=L �6=L2

1 3=L 2 �3=L
�3=L �6=L2 �3=L 6=L2

3
7775 ; (2.20)

where EI is the
exural rigidity of the beam element, and L its length. We say that a
mass matrix is "consistent" when the shape functions used to evaluate the mass matrix
are the same as those for the sti�ness matrix. The consistent mass matrix is

M =
�
�mL

420

�
�

2
6664

4L2 22L �3L2 13L
22L 156 �13L 54
�3L2 �13L 4L2 �22L
13L 54 �22L 156

3
7775 ; (2.21)

where �m is average mass per unit length. Notice that in the translational degrees of
freedom (i.e. columns 2 and 4 and rows 2 and 4 of M), the coe�cients 156, 54, 156, and
54 sum to 420, thereby giving a total beam mass �mL.

Assembly of Global Sti�ness and Mass Matrices : The assembly process for the
global sti�ness and global mass matrices may be written

K =
NX
i=1

Ki and M =
NX
i=1

Mi (2.22)

where Ki and Mi represent the sti�ness and mass matrices for beam element i mapped
onto the global degrees of freedom, and N is the total number of elements in the model.
A straight forward way of assembling these matrices is with the use of destination arrays.
The destination array for our cantilever problem is

LD =

2
6666664

0 0 1 2
1 2 3 4
3 4 5 6
5 6 7 8
7 8 9 0

3
7777775
: (2.23)

Element (i,j) of LD contains the global degree of freedom for degree of freedom j of
beam �nite element i. A zero entry indicates that the beam element degree of freedom
will not be mapped to the global sti�ness matrix. So, for example, degrees of freedom 1
and 2 of beam element 1 are not mapped to the global sti�ness matrix { this is because
the left-most section of the cantilever is �rmly attached to the wall. Degrees of freedom 3
and 4 of beam element 1 are mapped to degrees of freedom 1 and 2 in the global sti�ness

62

and mass matrices. Similarly, degrees of freedom 1, 2, and 3 of beam element 5 will be
mapped to global degrees of freedom 7, 8, and 9. Degree of freedom 4 of beam element 5 is
not mapped to the global sti�ness matrix because lateral displacements of the cantilever
end are prevented by the hinged support.

Details of Input File : A �nite element model for the supported cantilever is de�ned
in parts [a] to [f] of the following input �le. The eigenvalue problem is solved in part
[g].

ABBREVIATED INPUT FILE

/* [a] : Define section/material properties */

E = 200000 MPa;

I = 15.5E+6 mm^4;

L = 4 m;

mbar = 31.6 kg/m;

/* [b] : Define (4x4) stiffness matrix for beam element */

stiff = Matrix([4,4]);

stiff = ColumnUnits(stiff, [N, N/m, N, N/m]);

stiff = RowUnits(stiff, [m], [1]);

stiff = RowUnits(stiff, [m], [3]);

stiff[1][1] = 4*E*I/L;

stiff[1][2] = 6*E*I/(L^2);

stiff[1][3] = 2*E*I/L;

stiff[1][4] = -6*E*I/(L^2);

stiff[2][1] = 6*E*I/(L^2);

stiff[2][2] = 12*E*I/(L^3);

stiff[2][3] = 6*E*I/(L^2);

stiff[2][4] = -12*E*I/(L^3);

stiff[3][1] = 2*E*I/L;

stiff[3][2] = 6*E*I/(L^2);

stiff[3][3] = 4*E*I/L;

stiff[3][4] = -6*E*I/(L^2);

stiff[4][1] = -6*E*I/(L^2);

stiff[4][2] = -12*E*I/(L^3);

stiff[4][3] = -6*E*I/(L^2);

stiff[4][4] = 12*E*I/(L^3);

PrintMatrix(stiff);

/* [c] : Define (4x4) consistent mass matrix for beam element */

mass = Matrix([4,4]);

mass = ColumnUnits(mass, [kg*m, kg, kg*m, kg]);

mass = RowUnits(mass, [m], [1]);

mass = RowUnits(mass, [m], [3]);

63

mass[1][1] = (mbar*L/420)*4*L*L;

mass[2][1] = (mbar*L/420)*22*L;

mass[3][1] = (mbar*L/420)*-3*L^2;

mass[4][1] = (mbar*L/420)*13*L;

mass[1][2] = (mbar*L/420)*22*L;

mass[2][2] = (mbar*L/420)*156;

mass[3][2] = (mbar*L/420)*-13*L;

mass[4][2] = (mbar*L/420)*54;

mass[1][3] = (mbar*L/420)*-3*L^2;

mass[2][3] = (mbar*L/420)*-13*L;

mass[3][3] = (mbar*L/420)*4*L^2;

mass[4][3] = (mbar*L/420)*-22*L ;

mass[1][4] = (mbar*L/420)*13*L;

mass[2][4] = (mbar*L/420)*54;

mass[3][4] = (mbar*L/420)*-22*L;

mass[4][4] = (mbar*L/420)*156;

PrintMatrix(mass);

/* [d] : Destination Array beam element connectivity */

LD = [0, 0, 1, 2 ;

1, 2, 3, 4 ;

3, 4, 5, 6 ;

5, 6, 7, 8 ;

7, 8, 9, 0];

/* [e] : Allocate memory for global mass and stiffness matrices */

GMASS = Matrix([9,9]);

GMASS = ColumnUnits(GMASS, [kg*m, kg, kg*m, kg, kg*m, kg, kg*m, kg, kg*m]);

GMASS = RowUnits(GMASS, [m], [1]);

GMASS = RowUnits(GMASS, [m], [3]);

GMASS = RowUnits(GMASS, [m], [5]);

GMASS = RowUnits(GMASS, [m], [7]);

GMASS = RowUnits(GMASS, [m], [9]);

GSTIFF = Matrix([9,9]);

GSTIFF = ColumnUnits(GSTIFF, [N, N/m, N, N/m, N, N/m, N, N/m, N]);

GSTIFF = RowUnits(GSTIFF, [m], [1]);

GSTIFF = RowUnits(GSTIFF, [m], [3]);

GSTIFF = RowUnits(GSTIFF, [m], [5]);

GSTIFF = RowUnits(GSTIFF, [m], [7]);

GSTIFF = RowUnits(GSTIFF, [m], [9]);

/* [f] : Assemble Global Stiffness/Mass Matrices for Two Element Cantilever */

no_elements = 5;

for(i = 1; i <= no_elements; i = i + 1) {

for(j = 1; j <= 4; j = j + 1) {

64

row = LD [i][j];

if(row > 0) {

for(k = 1; k <= 4; k = k + 1) {

col = LD [i][k];

if(col > 0) {

GMASS [row][col] = GMASS [row][col] + mass[j][k];

GSTIFF[row][col] = GSTIFF[row][col] + stiff[j][k];

}

}

}

}

}

/* [g] : Compute and Print Eigenvalues and Eigenvectors */

no_eigen = 2;

eigen = Eigen(GSTIFF, GMASS, [no_eigen]);

eigenvalue = Eigenvalue(eigen);

eigenvector = Eigenvector(eigen);

for(i = 1; i <= no_eigen; i = i + 1) {

print "Mode", i ," : w^2 = ", eigenvalue[i][1];

print " : T = ", 2*PI/sqrt(eigenvalue[i][1]) ,"\n";

}

PrintMatrix(eigenvector);

Points to note are:

[1] Element level sti�ness matrices are stored in stiff. Rows 1 and 3 of stiff represent
equations of equilibrium when a moment is applied at the beam end to cause a unit
rotation, and rows 2 and 4, equations of equilibrium for unit lateral displacements
of the beam element. We distinguish these cases by applying units of m to rows 1
and 3.

[2] Element level mass matrices are stored in mass. By de�nition, terms in the mass
matrix correspond to forces, or torques, required to cause unit translational or
rotational acceleration. A unit acceleration in a translational degree of freedom will
require a force of the type force = mass � acc'n, with mass taking kilogram (kg)
units. A unit rotational acceleration will have the form torque = inertia � angular
acc'n. The units for inertia are kg m2.

[3] The (9�9) global mass and global sti�ness matrices are stored in GMASS and GSTIFF,
respectively. The statements row = LD[i][j] and col = LD[i][j] contain the
row-column mapping for the beam element degrees of freedom onto the global de-
grees of freedom.

65

Abbreviated Output File : Details of the beam element sti�ness and mass matrices,
and ensuing eigenvalues and eigenvectors are as follows:

START OF ABBREVIATED OUTPUT FILE

MATRIX : "stiff"

row/col 1 2 3 4

units N N/m N N/m

1 m 3.10000e+06 1.16250e+06 1.55000e+06 -1.16250e+06

2 1.16250e+06 5.81250e+05 1.16250e+06 -5.81250e+05

3 m 1.55000e+06 1.16250e+06 3.10000e+06 -1.16250e+06

4 -1.16250e+06 -5.81250e+05 -1.16250e+06 5.81250e+05

MATRIX : "mass"

row/col 1 2 3 4

units kg.m kg kg.m kg

1 m 1.92610e+01 2.64838e+01 -1.44457e+01 1.56495e+01

2 2.64838e+01 4.69486e+01 -1.56495e+01 1.62514e+01

3 m -1.44457e+01 -1.56495e+01 1.92610e+01 -2.64838e+01

4 1.56495e+01 1.62514e+01 -2.64838e+01 4.69486e+01

*** SUBSPACE ITERATION CONVERGED IN 7 ITERATIONS

Mode 1.0000e+00 : w^2 = 145.8 rad.sec^-2.0 : T = 0.5203 sec

Mode 2.0000e+00 : w^2 = 1539 rad.sec^-2.0 : T = 0.1602 sec

MATRIX : "eigenvector"

row/col 1 2

units

1 1.24900e-01 -2.28500e-01

2 m 3.02715e-01 -7.71256e-01

3 1.03061e-01 1.77895e-01

4 m 8.01556e-01 -9.46803e-01

5 -1.29310e-02 3.44764e-01

6 m 1.00000e+00 3.03399e-01

7 -1.37281e-01 -5.51890e-02

8 m 6.87189e-01 1.00000e+00

9 -1.89640e-01 -3.58198e-01

Points to note are:

[1] The eigenvalues of this problem correspond to the circular natural frequency squared
of the individual modes, and they take the units rad/sec/sec. The natural period
of vibration for the �rst and second modes is 0.5203 seconds, and 0.1602 seconds,
respectively.

[2] The �rst two eigenvectors are summarized in the script of abbreviated output. Per-
haps the most surprising result of this analysis is the unit on the eigenvectors { for

66

MODE 1 : PERIOD = 0.5203 SECONDS

-1

1 1

-1

MODE 2 : PERIOD = 0.1602 SECONDS

Figure 2.6: Mode Shapes and Periods of Vibration for Single Span Steel Beam

those degrees of freedom corresponding to translational displacements, the eigen-
vector is printed with units of length. The remaining degrees of freedom represent
rotations, and take the (non-dimensional) units of radians.

[3] Figure 2.6 shows the mode shapes and natural periods of vibration for the supported
cantilever beam. We have drawn the mode shapes as connected straight lines {
actually, the mode shapes will be cubic splines, as de�ned by the beam element
shape functions.

67

Chapter 3

Construction of Numerical

Algorithms

3.1 Introduction

The purpose of this chapter is to test the
exibility of ALADDIN's command
language by constructing basic numerical algorithms for computing the roots of nonlinear
equations, and the minima of multi-dimensional functions subject to linear and nonlinear
constraints. We have selected this problem domain because the numerical algorithms
may be incorporated into �nite element analyses of linear and nonlinear structures. For
details, see Chen and Austin [10].

3.2 Roots of Nonlinear Equations

Let x = (x1; x2; � � � ; xn)
T by a coordinate point in n-dimensional space, and f =

(f1; f2; � � � ; fn)
T be a n-dimensional (nonlinear) vector. The roots of nonlinear equations

f are given by solutions to

f(x) = 0: (3.1)

3.2.1 Newton-Raphson and Secant Algorithms

The methods of Newton-Raphson and Secant Approximation are among the
most popular for computing the roots of nonlinear equations. Let vector xo be an initial
guess at the solution to equation (3.1). The method of Newton-Raphson corresponds to
a sequence of �rst order Taylor series expansion about x(k), namely

f(x(k+1)) = f(x(k)) +rf(x(k)) � (x(k+1) � x(k)) � 0

68

f(x)

f(x) = 0

f
(

x_
o

)

f(x_1)

x_o x__1 x_2 x_3

f (x_2)

f (x_3)

Figure 3.1: Secant Approximation of Quasi-Newton Method

where k = 0, 1, 2, � � �, n, and (rf(x))ij = (@fi)=(@xj). In matrix form, the gradient
approximation is

rf(x) =

2
666664

@f1(x)
@x1

@f1(x)
@x2

� � � @f1(x)
@xn

@f2(x)
@x1

@f2(x)
@x2

� � � @f2(x)
@xn

� � � � � � � � � � � �
@fn(x)
@x1

@fn(x)
@x2

� � � @fn(x)
@xn

3
777775 : (3.2)

If rf(x(k)) has an inverse, then the (full) Newton-Raphson update is:

x(k+1) = x(k) �
h
f(x(k))

i�1
� rf(x(k)): (3.3)

The procedure is repeated until convergence criteria are satis�ed. While the method of
full Newton-Raphson can be e�cient in some speci�c nonlinear analyses, Bathe [7, 9]
reports that in general, full Newton-Raphson is not a competitive computational method
for computing the roots of a wide-range of nonlinear equations. A major limitation of full
Newton-Raphson is the need for updating and factorizing the coe�cient matrix -rf(x(k))
at each iteration. One strategy for avoiding these computationally expensive steps is
to replace -rf(x(k)) in equation (3.3) with -rf(x(0)), thereby eliminating the need to
recalculate and factorize -rf(x(k)) at each iteration. From a mathematical point of view,
this simpli�cation corresponds to a linearization of the gradient f(xo). For problems with
signi�cant nonlinearities { in particular when the system sti�ens during the response {
this linearization can lead to a very slow convergence in the iteration. Even worse, the
iteration may diverge.

The class of quasi-Newton methods are a second alternative to full Newton Raph-

69

son. Quasi-Newton methods update the coe�cient matrix, or it's inverse, to provide a
secant approximation to the matrix from iteration (k) to (k+1). Figure 3.1 shows, for
example, a sequence of secant approximations one might apply during the computation
of roots in a one-dimension nonlinear equation. If a displacement increment is de�ned

�(k+1) = x(k+1) � x(k) (3.4)

an increment in the residuals de�ned as

(k+1) = f(x(k))� f(x(k+1)); (3.5)

then the updated secant sti�ness matrix, K(k+1), will satisfy the quasi-Newton equation

K(k+1)�(k+1) =
(k+1)

.

3.2.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm

Among Quasi-Newton methods, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method appears to be the most e�ective. Within iteration (k+1), the BFGS method
employs the following procedure to evaluate x(k+1) and K(k+1) [9]:

Step 1 : Initialization. Provide an initial value of vector x = x0, and calculate the
corresponding Ko matrix at x = xo.

Step 2 : Evaluated the x vector increment

�x = �
h
f(x(k))

i�1
� rf(x(k)): (3.6)

This vector increment de�nes a direction for the actual increment.

Step 3 : Perform a line-search along direction �x to satisfy \equilibrium." Details of
the line-search are as follows. First, set � = 1:0 and let the x vector

x(k+1) = x(k) + ��x (3.7)

where � is a scalar multipler. The product � j �x j represents the distance between points
x(k) and x(k+1). The value of � is changed until the component of the residual in direction
�x, as de�ned by the inner product of �xTf(x(k+1)), is approximately zero. The latter
condition is satis�ed when

�xT � f(x(k+1)) � STOL ��xT � f(x(k)): (3.8)

STOL is a convergence tolerance. The distance of the line search is automatically halved
after each failure of equation (3.8) by halving �; x(i) is then recalculated with the new

70

�. If after �ve or ten line search attempts, equation (3.8) still isn't satis�ed, then the
direction given by the �x is probablely wrong. A new direction calculation is needed.
This procedure is summarized in four-substeps:

Step 3.1 : Use equation (3.6) to update x.

Step 3.2 : Begin while loop : While equation (3.8) is not satis�ed, work through
Substeps 3.3 to 3.5.

Step 3.3 : If the line search number is less than or equal to MaxLineSearchCount, then
set � = �=2:0, and use equation (3.6) to update x.

Step 3.4 : If the line search number is greater than MaxLineSearchCount, then break
the while loop. Recalculate matrix K at x = x(k+1). Go to Step 2.

Step 3.5 : End while loop : Go to Step 4 for BFGS update.

Step 4 : Use equations (3.4) and (3.5) to calculate �(k+1) and
(k+1).

Step 5 : Use the BFGS update [9] to revise the inverse of coe�cient matrix K. The
update of K is given by

K�1
(k+1) = A(k+1)

TK�1
(k)A(k+1) (3.9)

where the matrix A(k+1) is a (n� n) matrix

A(k+1) = I + v(k+1) � w(k+1)T : (3.10)

Vectors v(k+1) and w(k+1) are given by

v(k+1) = �

"
�(k+1)

T
(k+1)

�(k+1)
T�f(x(k))

#
� � � f(x(k))�
(k+1) (3.11)

and

w(k+1) =

"
�(k+1)

�(k+1)
T
(k+1)

#
: (3.12)

Step 6 : To avoid numerically dangerous updates, the conditional number

c(k+1) =

"
�(k+1)

T
(k+1)

�(k+1)
T�f(x(k))

#1=2
(3.13)

of the updating matrix A(k+1) must be compared to some predetermined tolerance. A
large condition number implies that the updated inverse matrix will be nearly singular.
Numerical updates are not performed if the condition number exceeds this tolerance { in
this project, we follow the recommendation of Bathe [9], and set the tolerance at 105.

71

Step 7 : Check convergence of force and energy equilibriums. The force convergence
criterion requires that the norm of the out-of-balance residual or force to be within a
pre-set tolerance �F of the �rst residual.

kf(x(k+1))k2 � �F � kf(x(o))k (3.14)

A force criterion is not su�cient to ensure convergence. Consider the case of function
f(x) with small or closing to zero gradients, the out-of-balance residual or force may be
very small while the variable x or displacement may be grossly in error. Therefore, the
\energy equilibrium" condition is necessary to provide the indication that both �x(k+1),
and residual are approaching zeros. It requires computation of the work done by the force
residual moving through displacement increment �x.

�x(k+1) � f(x(k)) � �E ��x(o) � f(x(0)) (3.15)

where the �E is a preset energy tolerance. In the following examples, we will use �F = 10�4

and �E = 10�5.

Numerical Example : We demonstrate use of the BFGS algorithm by solving a two-
variable family of nonlinear equations:

2x1
2 + x2 = 4

x1 + 2x2
2 = 5

(3.16)

These equations may also be written fFg � fRg = 0, where

fFg =

(
2x1

2 + x2
x1 + 2x2

2

)
fRg =

(
4
5

)
(3.17)

We use the parameter MaxLineSearchCount = 5 for the maximum number for line search
trials, and select an initial trial vector fxg = (7; 10)T .

START OF INPUT FILE

/*

* ===

* Use BFGS Algorithm to Solve Nonlinear Equations

*

* Function :

* 2x[1]^2 + x[2] = 4

* x[1] + 2x[2]^2 = 5

*

* R^t = (4, 5)

* F[1] = 2x[1]^2 + x[2]

* F[2] = x[1] + 2x[2]^2

* K[i][j] = dF[i]/dx[j] Jacobain matrix

*

* Written By : X.G. Chen June 1994

* ===

72

*/

dimen = 2;

IMAX = 20; /* Maximum number of iteration */

Ef = 1E-4;

Ee = 1.E-5;

beta = 1.0;

STOL = 0.5;

EPS = 1.E-5;

ii = 1;

MaxLineSearchCount = 5;

/* [a] : Initialize and print problem parameters and initial solution */

x = [7; 10];

R = [4; 5];

print "------initial Guess -----\n";

PrintMatrix(x);

print "\n------Given R value -----\n";

PrintMatrix(R);

Y = [2*x[1][1], 1; 1, 2*x[2][1]];

K = [4*x[1][1], 1; 1, 4*x[2][1]];

F = Y*x;

Residu0 = R-F;

Residu = R-F;

K_inver = Inverse(K);

/* [b] : Allocate working matrices */

Residu_old = Residu;

I = Diag([dimen, 1]);

delta_old = Zero([dimen, 1]);

/* [c] : Main Loop for Iteration */

Iter_no = 0;

for (ii = 1; ii <= IMAX; ii = ii + 1) {

Iter_no = Iter_no + 1;

beta = 1.0;

delta = K_inver*Residu;

/* [c.1] : Armijo Line Search */

x_temp = x + beta*delta;

temp1 = QuanCast(Trans(delta)*Residu);

Y = [2*x_temp[1][1], 1; 1, 2*x_temp[2][1]];

F = Y*x_temp;

Residu = R- F;

temp2 = QuanCast(Trans(delta)*Residu);

counter = 0;

while(temp2 > temp1*STOL + EPS) {

73

counter = counter + 1;

if(counter > MaxLineSearchCount) then {

print " \n ========== \n Too many iterations for line search \n";

break;

} else {

beta = beta/2.0;

x_temp = x + beta*delta;

Y = [2*x_temp[1][1], 1; 1, 2*x_temp[2][1]];

F = Y*x_temp;

Residu = R-F;

temp2 = QuanCast(Trans(delta)*Residu);

}

}

x = x_temp;

/* [c.2] : Restart for failed line search */

if(counter > MaxLineSearchCount) then {

ii = 1;

print " \n **** Restart at new initial Value \n";

Y = [2*x[1][1], 1; 1, 2*x[2][1]];

K = [4*x[1][1], 1; 1, 4*x[2][1]];

F = Y*x;

Residu = R-F;

K_inver = Inverse(K);

Residu_old = Residu;

delta_old = Zero([dimen, 1]);

} else {

/* [c.3] : BFGS Update (i.e counter < MaxLineSearchCount) */

gamma = Residu_old - Residu;

tem1 = QuanCast(Trans(delta)*Residu_old);

tem1 = tem1*beta*beta;

tem2 = QuanCast(Trans(delta)*gamma);

tem2 = tem2*beta;

ConditionNo = sqrt(tem2/tem1);

V = -ConditionNo*beta*Residu_old - gamma;

W = beta*delta/tem2;

A = I + V*Trans(W);

K_inver = Trans(A)*K_inver*A;

/* [c.4] : Check convergence criteria */

if (ConditionNo > 1E+5) {

print"ConditionNo = ", ConditionNo, " \n";

print"ERROR -- Condition Number Too Large \n";

break;

}

/* [c.5] : Force and energy criteria */

force_crt1 = L2Norm(Residu);

force_crt2 = L2Norm(Residu0)*Ef;

74

energy_crt1 = QuanCast(Trans(delta)*Residu_old);

energy_crt1 = abs(energy_crt1);

if (ii == 1) {

energy_crt2 = QuanCast(Trans(delta)*Residu0);

energy_crt2 = abs(energy_crt2*Ee);

}

if((force_crt1 <= force_crt2) && (energy_crt1 < energy_crt2)) {

break;

}

Residu_old = Residu;

delta_old = delta;

}

}

/* [d] : Print results and terminate program execution */

print" \n RESULTS : \n --------------\n";

print" Iteration Number =", Iter_no, "\n";

Y = [2*x[1][1], 1; 1, 2*x[2][1]];

F = Y*x;

PrintMatrix(x, F);

quit;

The program output is

------initial Guess -----

MATRIX : "x"

row/col 1

units

1 7.00000e+00

2 1.00000e+01

------Given R value -----

MATRIX : "R"

row/col 1

units

1 4.00000e+00

2 5.00000e+00

==========

Too many iterations for line search

**** Restart at new initial Value

75

RESULTS :

Iteration Number = 1.0000e+01

MATRIX : "x"

row/col 1

units

1 1.14237e+00

2 1.38883e+00

MATRIX : "F"

row/col 1

units

1 3.99883e+00

2 5.00004e+00

76

3.3 Han-Powell Algorithm for Optimization

In this section we will demonstrate how ALADDIN can be used to solve a series
of optimization problems. Before we get to the details of the input �le, we will brie
y
describe the Han-Powell algorithm for optimization.

Let x be a n-dimensional vector, f(x) a n-dimensional function, and g(x) a m-
dimensional function. The purpose of this section is to solve the mathematical problem

minimize f(x)
subject to g(x) = 0

(3.18)

by constructing a quadratic programming (QP) method, combined with an Armijo line
search procedure, and Han-Powell's method of modi�ed BFGS update (mathematical
descriptions of these algorithms can be found in Luenberger [22]).

We begin by recalling that the Lagrange �rst-order necessary conditions for this
problem amounts to solving the system of equations

rf(x) + �Trg(x) = 0
g(x) = 0

(3.19)

for x and �. In terms of Lagrange function, above equation can be written as

rl(x; �) = 0

g(x) = 0

where l(x; �) = f(x) + g(x)�, and � is the Lagrange multiplier.

3.3.1 Quadratic Programming (QP)

The quadratic programming method is based on two mathematical assumptions,
namely:

[1] Assume that the objective function f(x)may be approximated by a quadratic equation
de�ned by a second order Taylor's series expansion about xk.

[2] Assume that solutions to the constraint equation g(x) = 0 are approximately given
by a �rst order Taylors expansion about xk.

Together, these assumptions imply

f(xk+1) � f(xk) +rf(xk)
Td+

1

2
dTBkd

77

g(xk+1) � g(xk) +rg(xk)
Td

The optimization problem described by equation (3.18) can be approximated by the fol-
lowing quadratic program problem

minimize rf(xk)
Td+ 1

2
dTBkd

subject to g(xk) +rg(xk)
Td = 0

(3.20)

where d = x�xk, and Bk is the Hessian of function f(x). Langrange's necessary conditions
are

Bkd+rg(xk)�+rf(xk) = 0
g(xk) +rg(xk)

Td = 0:
(3.21)

and in this particular case, comprise an (n+m) dimensional linear system of equations. If
Bk is positive de�nite, and rg(x) has rank of m, then the matrix

"
Bk rg(xk)

rg(xk)
T 0

#

is nonsingular [22], and equations (3.21) may be solved with unique solutions

"
Bk rg(xk)

rg(xk)
T 0

"
d
�

#
=

"
�rf(xk)
�g(xk)

#
(3.22)

to d and �. The abovementioned QP solver gives the direction d for the next step. We
will use the Armijo line search rule to determine how far an algorithm should move along
this direction.

3.3.2 Armijo Line Search Rule

The essential idea is that the rule should �rst guarantee that the selected t is not
too large. Let us de�ne the function

�(t) = f(xk + t dk)

for �xed � and t = (1; �; �2; �3; � � �), a value of t is considered to be not too large if the
corresponding function value lies below the dashed line; that is, if

�(t) � �(0) + ��0(0) t (3.23)

In this example, we chose � = 0:1; � = 0:5.

78

3.3.3 The BFGS update and Han-Powell method

For the problem with equality constraints described in equation (3.19), the struc-
tured Newton method can be applied. We consider the iterative process de�ned by:

"
xk+1
�k+1

#
=

"
xk
�k

#
�

"
Bk rg(xk)

rg(xk)
T 0

#�1 "
rf(xk; �k)

T

g(xk)

#
(3.24)

Let

yk =

"
xk
�

#
Ak =

"
B rg(xk)

rg(xk)
T 0

#
Ck =

"
rf(xk; �)

T

g(xk)

#

Notation for equation (3.24) can be simpli�ed as:

yk+1 = yk � A�1
k Ck

The top part of system (3.22) can be rewritten as:

Bkd = �rf(xk)
T �rg(xk)� = �rl(xk; �) (3.25)

and equation (3.25) can be implemented as a quasi-Newton method, with updates of
matrix B

Bk+1 = Bk +
qkq

T
k

qTk pk
�
Bkpkp

T
kBk

pTkBkpk
; (3.26)

used to approximate the hessian of the lagrangian. In equation (3.26) pk = xk+1 � xk
and qk = rl(xk+1; �k+1)

T � rl(xk; �k+1)
T . The Lagrange multiplier is calculated from

solutions to (3.25). To ensure Bk remains positive de�nite, the standard BFGS update is
slightly altered.

The Han-Powell Method: The method consists of the following steps:

Step 1 : Start with an initial point x0 and an initial positive de�nite matrix bf B0 , set
k = 0.

Step 2 : Solve the quadratic program described by system (3.20). If d = 0 is a solution,
then the current point satis�es the �rst order necessary conditions for a solution to the
original problem (3.19).

Step 3 : With d found above, perform a line search in the direction d.

Step 4 : Update Bk, according to

79

Bk+1 = Bk �
Bkpkp

T
kBk

pTkBkpk
+
rkr

T
k

pTk rk
(3.27)

pk = xk+1 � xk (3.28)

qk = rl(xk+1; �k+1)�rl(xk; �k) (3.29)

rk = �kqk + (1� �k)Bkpk (3.30)

where �k+1 is the language multiplier vector of (3.20), and where

�k =

8>><
>>:

1 if pTk qk � (0:2)pTkBkpk

(0:8)pT
k
Bkpk

pT
k
Bkpk�p

T

k
qk

if pTk qk < (0:2)pTkBkpk:
(3.31)

Again, detailed discussion on this method can be found in [22]

Numerical Examples : Consider the following three problems:

Example 1 : Minimize a quadratic function with a set of linear constraints.

minimize : f(x) = (x1 � x2)
2 + (x2 + x3 � 2)2 + (x4 � 1)2 + (x5 � 1)2

subject to: g1(x) = x1 + 3x2 � 4 = 0
g2(x) = x3 + x4 � 2x5 = 0
g3(x) = x2 � x5 = 0

(3.32)

Example 2 : Minimize a nonlinear non-quadratic function with a set of linear constraints.

minimize : f(x) = (x1 � 1)2 + (x1 � x2)
2 + (x2 � x3)

4

subject to: g1(x) = x1 + x2 + 2x3 � 4 = 0
g2(x) = x1 + x3 � 2 = 0

(3.33)

Example 3 : Minimize a nonlinear non-quadratic function with nonlinear constraint.

minimize : f(x) = (x1 � 1)2 + (x1 � x2)
2 + (x2 � x3)

4

subject to: g(x) = x1(1 + x22) + x43 � 3 = 0
(3.34)

It is not di�cult to observe that the analytical solution to the above examples are x =
(1, 1, 1, 1, 1), x = (1,1,1) and x = (1, 1, 1).

Since the input commands for above examples are basically same except for the
functions, we only illustrate one command �le for example 1. But we give all the results
for example 1, 2 and 3.

START OF INPUT FILE

80

/*

* ==

* Example Problem 1:

*

* minmize f(x) = (x1 -x2)^2 + (x2+x3-2)^2 + (x4-1)^2 + (x5 -1)^2

*

* Subject to constraints:

*

* x1+3*x2 -4 = 0

* x3+x4-2*x5 = 0

* x2 -x5 = 0

*

* Notation -- f = f(x), G = g(x), Df = grad f(x), Dg = grad g(x).

*

* Written By: X.G. Chen June 1994

* ==

*/

SetUnitsOff;

/* [a] : Initialize and print variables and matrices */

Epsilon = 1E-6;

beta = 0.5;

alpha = 0.1;

IMAX = 20; /* maximum of iterations */

n = 5; /* number of variables */

M = 3; /* number of constraints */

print "\n ****** Initial Guess Value ******* \n";

x = [20; 0.1; 10; -1; -10]; /* not feasible */

PrintMatrix(x);

x_old = x;

lambda = Zero([M, 1]);

lambda_old = Zero([M, 1]);

temp1 = (x[1][1] -x[2][1])*(x[1][1] -x[2][1]);

temp2 = (x[2][1] +x[3][1] -2)*(x[2][1] +x[3][1] - 2);

temp3 = (x[4][1] -1)*(x[4][1] -1);

temp4 = (x[5][1] -1)*(x[5][1] -1);

f = temp1 + temp2 + temp3 + temp4;

A = Zero([n+M, n+M]);

C = Zero([n+M, 1]);

B = Zero([n,n]);

Df = Zero([n,1]);

DF = Zero([n,1]);

b = Zero([M,1]);

d = Zero([n,1]);

Df[1][1] = 2*(x[1][1]- x[2][1]);

Df[2][1] = -2*(x[1][1]- x[2][1]) + 2*(x[2][1]+ x[3][1] -2);

Df[3][1] = 2*(x[2][1]+ x[3][1]-2);

81

Df[4][1] = 2*(x[4][1]- 1);

Df[5][1] = 2*(x[5][1]- 1);

B = Diag([n,1]); /* initialize B as identity matrix */

b[1][1] = -4;

b[2][1] = 0;

b[3][1] = 0;

k = 1;

Trans_Dg = [1,3,0,0,0; 0,0,1,1,-2; 0, 1, 0, 0,-1];

Dg = Trans(Trans_Dg);

G = Trans_Dg*x+b;

/* [b] : Initialize matrices A and C */

for (i = 1; i <= n+M; i = i + 1) {

for(j = 1; j <= n + M; j = j + 1) {

if(i <= n) then {

C[i][1] = -Df[i][1];

if(j <= n) then {

A[i][j] = B[i][j];

} else {

k = j - n;

A[i][j] = Dg[i][k];

}

} else {

k = i - n;

C[i][1] = -G[k][1];

if(j <= n) {

A[i][j] = Trans_Dg[k][j];

}

}

}

}

q = Zero([n,1]);

/* [c] : Main Loop */

for (ii = 1; ii <= IMAX; ii = ii + 1) {

/* [c.1] : Solve QP for direction d */

y = Solve(A,C);

for (i = 1; i <= n; i = i + 1) {

d[i][1] = y[i][1];

}

for (i = n+1; i <= n+M; i = i + 1) {

j = i-n;

lambda[j][1] = y[i][1];

}

82

if(L2Norm(d) <= Epsilon) {

break;

}

/* [c.2] : Line Search with Armijo's Rule */

t = 1;

x = x_old + t*d;

temp1 = (x[1][1] -x[2][1])*(x[1][1] -x[2][1]);

temp2 = (x[2][1] +x[3][1] -2)*(x[2][1] +x[3][1] - 2);

temp3 = (x[4][1] -1)*(x[4][1] -1);

temp4 = (x[5][1] -1)*(x[5][1] -1);

f_new = temp1 + temp2 + temp3 + temp4;

temp = alpha*QuanCast(Trans(Df)*d);

counter = 0;

while (f_new > f + t*temp) { /* t is too large */

counter = counter + 1;

t = t*beta;

x = x_old + t*d;

temp1 = (x[1][1] -x[2][1])*(x[1][1] -x[2][1]);

temp2 = (x[2][1] +x[3][1] -2)*(x[2][1] +x[3][1] - 2);

temp3 = (x[4][1] -1)*(x[4][1] -1);

temp4 = (x[5][1] -1)*(x[5][1] -1);

f_new = temp1 + temp2 + temp3 + temp4;

if(counter > 5) {

print " Too much iterations for line search \n";

print " counter =", counter," \n";

break;

}

}

/* [c.3] : Modified BFGS matrix update */

DF[1][1] = 2*(x[1][1]- x[2][1]);

DF[2][1] = -2*(x[1][1]- x[2][1]) + 2*(x[2][1]+ x[3][1] -2);

DF[3][1] = 2*(x[2][1]+ x[3][1]-2);

DF[4][1] = 2*(x[4][1]- 1);

DF[5][1] = 2*(x[5][1]- 1);

q = DF + Dg*lambda - Df - Dg*lambda_old;

A1 = QuanCast(Trans(d)*B*d)*t*t;

A2 = QuanCast(Trans(d)*q)*t;

if(A2 >= (0.2*A1)) then {

theta = 1.0;

} else {

theta = 0.8*A1/(A1-A2);

}

r = theta*q + (1-theta)*t*B*d;

A3 = QuanCast(Trans(d)*r)*t;

B = B - B*d*Trans(d)*B/A1 + r*Trans(r)/A3;

83

Df = DF;

x_old = x;

lambda_old = lambda;

G = Trans_Dg*x+b;

for (i = 1; i <= n; i = i + 1) {

C[i][1] = -Df[i][1];

for(j = 1; j <= n; j = j + 1) {

A[i][j] = B[i][j];

}

}

for (i = 1; i <= M; i = i + 1) {

k = i + n;

C[k][1] = -G[i][1];

}

}

/* [d] : Print results and terminate program execution */

print" Results: \n --------------\n";

print" Iteration Number =", ii-1, "\n\n";

PrintMatrix(x);

quit;

If B is initialized with identity matrix, then the results are:

Example 1:

****** Initial guess value *******

MATRIX : "x"

row/col 1

1 2.00000e+01

2 1.00000e-01

3 1.00000e+01

4 -1.00000e+00

5 -1.00000e+01

Results:

Iteration Number = 10

MATRIX : "x"

row/col 1

1 1.00000e+00

2 1.00000e+00

3 1.00000e+00

4 1.00000e+00

5 1.00000e+00

84

Example 2:

****** Initial guess value *******

MATRIX : "x"

row/col 1

units

1 2.00000e+00

2 2.00000e+00

3 2.00000e+00

Results:

Iteration Number = 5.0000e+00

MATRIX : "x"

row/col 1

units

1 9.99891e-01

2 9.99891e-01

3 1.00011e+00

Example 3: The process will not converge after maximum number of twenty iterations.
And increase maximum number can not help the convergence.

****** Initial guess value *******

MATRIX : "x"

row/col 1

1 2.00000e+00

2 1.40000e+00

3 1.50000e+00

Results:

Iteration Number = 2.0000e+01

MATRIX : "x"

row/col 1

1 1.00032e+00

2 1.01113e+00

3 9.94158e-01

If B is initialized with B(x0), then the results are:

Example 1:

****** Initial guess value *******

MATRIX : "x"

85

row/col 1

1 2.00000e+01

2 1.00000e-01

3 1.00000e+01

4 -1.00000e+00

5 -1.00000e+01

Results:

Iteration Number = 1.0000e+00

MATRIX : "x"

row/col 1

1 1.00000e+00

2 1.00000e+00

3 1.00000e+00

4 1.00000e+00

5 1.00000e+00

Example 2:

****** Initial guess value *******

MATRIX : "x"

row/col 1

units

1 2.00000e+00

2 2.00000e+00

3 2.00000e+00

Results:

Iteration Number = 1.0000e+00

MATRIX : "x"

row/col 1

units

1 1.00000e+00

2 1.00000e+00

3 1.00000e+00

Example 3:

****** Initial guess value *******

MATRIX : "x"

row/col 1

1 2.00000e+00

2 1.40000e+00

3 1.50000e+00

Results:

86

Iteration Number = 6.0000e+00

MATRIX : "x"

row/col 1

1 9.99850e-01

2 9.94974e-01

3 1.00240e+00

In these three examples, the hessian of f(x) is stored in matrix B. The hessian is constant.
Moreover, when the B matrix corresponds to the exact value, only one iteration of opti-
mization is required to compute an optimal solution. The initial guess point for Example
2 is a feasible point. While the points for Example 1 and 3 are not feasible points.

87

Chapter 4

Computational Methods for

Dynamic Analysis of Structures

4.1 Introduction

In this section we demonstrate how ALADDIN may be used to compute the time-
history response of a linear elastic multi-degree of freedom system de�ned by the equation
of equilibrium

M �X(t) +C _X(t) +KX(t) = P(t): (4.1)

In equation (4.1)M, C, and K are (n�n) mass, damping, and sti�ness matrices, respec-
tively. P(t), X(t), _X(t), and �X(t) are (n � 1) external load, displacement, velocity, and
acceleration vectors at time t.

Two numerical procedures are described and demonstrated in this chapter. We
begin with the method of Newmark Integration to compute the time-history response of
a four story shear structure. Then we repeat the analysis using the method of Modal
Analysis. In both cases, the shear structure is acted upon by a saw-toothed external force
applied to the roof-level degree of freedom.

4.2 Method of Newmark Integration

Newmark integration methods [8] approximate the time dependent response of
linear and nonlinear 2nd-order equations by insisting that equilibrium be satis�ed only at
a discrete number of points (or timesteps). If (t) and (t+4t) are successive timesteps in
the integration procedure, the two equations of equilibrium that must be satis�ed are

M �X(t) +C _X(t) +KX(t) = P(t); (4.2)

and

88

M �X(t+4t) +C _X(t+4t) +KX(t+4t) = P(t+4t): (4.3)

Now let's assume that solutions to equation (4.2) are known, and (4.3) needs to be solved.
At each timestep there are 3n unknowns corresponding to the displacement, velocity,
and acceleration of each component of X. Since we only have n equations, the natural
relationship existing between the acceleration and velocity,

_X(t +4t) = _X(t) +
R (t+4t)
(t)

�X(�)d�; (4.4)

and velocity and displacement

X(t +4t) = X(t) +
R (t+4t)
(t)

_X(�)d�; (4.5)

must be enforced to reduce the number of unknowns to n. �X(�) is an unknown function for
the acceleration across the timestep. The Newmark family of integration methods assume
that: (1) acceleration within the timestep behaves in a prescribed manner, and (2) the
integral of acceleration across the timestep may be expressed as a linear combination of
accelerations at the endpoints. Discrete counterparts to the continuous update in velocity
and displacement are:

_X(t+4t) = _X(t) +4t
h
(1�
) �X(t) +
 �X(t+4t)

i
(4.6)

X(t+4t) = X(t) +4t _X(t) +
4t2

2

h
(1� 2�) �X(t) + 2� �X(t+4t)

i
(4.7)

with the parameters
 and � determining the accuracy and stability of the method un-
der consideration. The equations for discrete update in velocity and displacement are
substituted into equation (4.3) and rearranged to give:

M̂ �X(t+4t) = P̂(t +4t) (4.8)

where

M̂ =M +
4tC+ �4t2K (4.9)

and

P̂(t+4t) = P(t+4t)�C _X(t)�KX(t)�4t [K] _X(t)�

4t
h
(1�
)C+ 4t

2
(1� 2�)K

i
�X(t): (4.10)

It is well known that when
 = 1=2 and � = 1=4, acceleration is constant within the
timestep t 2 [t; t+4t], and equal to the average of the endpoint accelerations. In such

89

cases, approximations to the velocity and displacement will be linear and parabolic, re-
spectively. Moreover, this discrete approximation is second order accurate and uncon-
ditionally stable. It conserves energy exactly for the free response vibration of linear
undamped SDOF systems (we will check for conservation of energy in the numerical ex-
amples that follow).

Numerical Example : The method of Newmark Integration is demonstrated by comput-
ing the time-history response of the four story building structure caused by a time-varying
external load applied to the roof level. Details of the shear building and external loading
are shown in Figures 4.1 and 4.3.

k_4 = 1600 kN/m.

k_3 = 1200 kN/m.

k_2 = 800 kN/m.

k_1 = 400 kN/m.

MASS = 1500 kg.

MASS = 3000 kg

MASS = 3000 kg

MASS = 4500 kg

k_3 = 1200 kN/m.

k_2 = 800 kN/m.

k_1 = 400 kN/m.

k_4 = 1600 kN/m.

x_1

x_2

x_3

x_4

800

-800 2400

-800

-1600

-1600

4000

-2400 5600

STIFFNESS =

MASS =

1500

3000

3000

4500

kN/m.

kg

-2400

Figure 4.1: Schematic of Shear Building for Newmark Analysis

A simpli�ed model of the building is obtained by assuming that all of the building mass
is lumped at the
oor levels, that the
oor beams are rigid, and that the columns are
axially rigid. Together these assumptions generate model that is commonly known as a
shear-type building model, where displacements at each
oor level may be described by
one degree-of-freedom alone. Only four degrees of freedom are needed to describe total
displacements of the structure.

Details of the mass and sti�ness matrices are shown on the right-hand side of Fig-
ure 4.1. From a physical point of view, element (i,j) of the sti�ness matrix corresponds
to the nodal force that must be applied to degree of freedom j in order to produce a
unit displacement at degree of freedom i, and zero displacements at all other degrees of
freedom.

90

Figure 4.2 summarizes the mode shape, circular frequencies and natural period
for each of the modes in the shear building. The shear building has a fundamental period
of 0.5789 seconds.

1 1-1 -1 -1-1 1 1

T = 0.26 SEC T = 0.19 SEC T = 0.14 SEC

MODE 4MODE 3MODE 2MODE 1

T = 0.58 SEC

Figure 4.2: Mode Shapes and Natural Periods for Shear Building

The dynamic behavior of the shear building is generated by the external force, shown in
Figure 4.3, applied to the roof-level degree of freedom.

Fo
rc

e
 (

 k
N

)
.

0.2 0.4 0.8 Time (seconds).1.00.6

10

5

-5

-10

Figure 4.3: Externally Applied Force (kN) versus Time (sec)

Notice that we have selected the time-scale of the applied force so that it has a period
close to the �rst natural period of the structure (i.e. 0.5789 seconds versus 0.6 seconds
period for the applied load).

91

Input File : A seven-part input �le is needed to de�ne the mass and sti�ness matrices,
external loading, and solution procedure via the method of Newmark Integration. The
step-by-step details of our Newmark Algorithm are:

[1] Form the sti�ness matrixK, the mass matrixM, and the damping matrixC. Compute
the e�ective mass matrix M̂.

[2] Initialize the displacement X(0) and velocity _X(0) at time 0. Backsubstitute X(0)
and _X(0) into equation (4.2), and solve for �X(0).

[3] Select an integration time step 4t, and Newmark parameters
 and �.

[4] Enter Main Loop of Newmark Integration.

[5] Compute the e�ective load vector P̂(t+4t).

[6] Solve equation (4.8) for acceleration �X(t +4t).

[7] Compute _X(t+4t) andX(t+4t) by backsubstituting �X(t +4t) into the equations
for discrete update in velocity and displacement.

[8] Go to Step [4].

Structural damping in the shear building is ignored.

Input File : The four story shear building, external loading, and newmark algorithm
are de�ned in a seven-part input �le.

START OF INPUT FILE

/* [a] : Parameters for Problem Size/Newmark Integration */

dt = 0.03 sec;

nsteps = 200;

gamma = 0.50;

beta = 0.25;

/* [b] : Form Mass, stiffness and load matrices */

mass = ColumnUnits(1500*[1, 0, 0, 0;

0, 2, 0, 0;

0, 0, 2, 0;

0, 0, 0, 3], [kg]);

stiff = ColumnUnits(800*[1, -1, 0, 0;

-1, 3, -2, 0;

0, -2, 5, -3;

0, 0, -3, 7], [kN/m]);

PrintMatrix(mass, stiff);

92

/*

* [c] : Generate and print external saw-tooth external loading matrix. First and

* second columns contain time (sec), and external force (kN), respectively.

*/

myload = ColumnUnits(Matrix([21,2]), [sec], [1]);

myload = ColumnUnits(myload, [kN], [2]);

for(i = 1; i <= 6; i = i + 1) {

myload[i][1] = (i-1)*dt;

myload[i][2] = (2*i-2)*(1 kN);

}

for(i = 7; i <= 16; i = i + 1) {

myload[i][1] = (i-1)*dt;

myload[i][2] = (22-2*i)*(1 kN);

}

for(i = 17; i <= 21; i = i + 1) {

myload[i][1] = (i-1)*dt;

myload[i][2] = (2*i-42)*(1 kN);

}

PrintMatrix(myload);

/* [d] : Initialize working displacement, velocity, and acc'n vectors */

displ = ColumnUnits(Matrix([4,1]), [m]);

vel = ColumnUnits(Matrix([4,1]), [m/sec]);

accel = ColumnUnits(Matrix([4,1]), [m/sec/sec]);

eload = ColumnUnits(Matrix([4,1]), [kN]);

/*

* [e] : Allocate Matrix to store three response parameters -- Col 1 = time (sec);

* Col 2 = roof displacement (m); Col 3 = Total energy (N.m)

*/

response = ColumnUnits(Matrix([nsteps+1,3]), [sec], [1]);

response = ColumnUnits(response, [cm], [2]);

response = ColumnUnits(response, [Jou], [3]);

/* [f] : Compute (and compute LU decomposition) effective mass */

MASS = mass + stiff*beta*dt*dt;

lu = Decompose(Copy(MASS));

for(i = 1; i <= nsteps; i = i + 1) {

/* [f.1] : Update external load */

if((i+1) <= 21) then {

eload[1][1] = myload[i+1][2];

} else {

eload[1][1] = 0.0 kN;

93

}

R = eload - stiff*(displ + vel*dt + accel*(dt*dt/2.0)*(1-2*beta));

/* [f.2] : Compute new acceleration, velocity and displacement */

accel_new = Substitution(lu,R);

vel_new = vel + dt*(accel*(1.0-gamma) + gamma*accel_new);

displ_new = displ + dt*vel + ((1 - 2*beta)*accel + 2*beta*accel_new)*dt*dt/2;

/* [f.3] : Update and print new response */

accel = accel_new;

vel = vel_new;

displ = displ_new;

/* [f.4] : Compute "kinetic + potential energy" */

e1 = Trans(vel)*mass*vel;

e2 = Trans(displ)*stiff*displ;

energy = 0.5*(e1 + e2);

/* [f.5] : Save components of time-history response */

response[i+1][1] = i*dt;

response[i+1][2] = displ[1][1];

response[i+1][3] = energy[1][1];

}

/* [g] : Print response matrix and quit */

PrintMatrix(response);

quit;

Points to note are:

[1] In Part [a] of the input �le, the variables nstep and dt are initialized for 200 timesteps
of 0.03 seconds. The Newmark parameters
 and � (i.e. input �le variables gamma
and beta) are set to 0.5 and 0.25, respectively.

[2] Details of the external load versus time are generated for 0.6 seconds, and stored in
an array "myload". Column one of "myload" contains time (seconds), and column
two, the externally applied force (kN). The contents of "myload" are then transfered
to the external load vector within the main loop of the Newmark Integration.

[3] Rather than print the results of the integration at the end of each timestep, we
allocate memory for "response", a (201� 3) matrix, and store relevant details of
the computed response at the end of each iteration of the Newmark method. The
�rst, second, and third columns of "response" contain the time (sec), displacement
of the roof (cm), and total energy of the system (Joules).

94

[4] Theoretical considerations indicate { see note above { that after the external loading
has �nished, the sum of kinetic energy plus potential energy will be constant in the
undamped shear structure. The total energy (Joules) is

Total Energy =
1

2

h
_X(t)TM _X(t) +X(t)TKX(t)

i
: (4.11)

[5] Matrix "response" is printed after the completion of the Newmark integration. This
strategy of implementation has several bene�ts. First, the response quantities are
easier to interpret if they are bundled together in one array. The second bene�t
occurs when program output is redirected to a �le. Upon completion of the analysis,
it is an easy process to edit the output �le, and feed "response" into MATLAB.
This is how we created Figures 4.4 to 4.9.

Abbreviated Output File : The output �le contains summaries of the mass and sti�-
ness matrices for the shear building, and abbreviated details of the external loading,
"myload", and the response matrix "response".

START OF ABBREVIATED OUTPUT FILE

MATRIX : "mass"

row/col 1 2 3 4

units kg kg kg kg

1 1.50000e+03 0.00000e+00 0.00000e+00 0.00000e+00

2 0.00000e+00 3.00000e+03 0.00000e+00 0.00000e+00

3 0.00000e+00 0.00000e+00 3.00000e+03 0.00000e+00

4 0.00000e+00 0.00000e+00 0.00000e+00 4.50000e+03

MATRIX : "stiff"

row/col 1 2 3 4

units N/m N/m N/m N/m

1 8.00000e+05 -8.00000e+05 0.00000e+00 0.00000e+00

2 -8.00000e+05 2.40000e+06 -1.60000e+06 0.00000e+00

3 0.00000e+00 -1.60000e+06 4.00000e+06 -2.40000e+06

4 0.00000e+00 0.00000e+00 -2.40000e+06 5.60000e+06

MATRIX : "myload"

row/col 1 2

units sec kN

1 0.00000e+00 0.00000e+00

2 3.00000e-02 2.00000e+00

3 6.00000e-02 4.00000e+00

.... details of "myload" matrix deleted

19 5.40000e-01 -4.00000e+00

20 5.70000e-01 -2.00000e+00

21 6.00000e-01 0.00000e+00

95

MATRIX : "response"

row/col 1 2 3

units sec cm Jou

1 0.00000e+00 0.00000e+00 0.00000e+00

2 3.00000e-02 2.69339e-02 2.69339e-01

3 6.00000e-02 1.51106e-01 3.99451e+00

.... details of "response" matrix deleted

199 5.94000e+00 -3.04363e+00 6.62976e+02

200 5.97000e+00 -1.71841e+00 6.62976e+02

201 6.00000e+00 -2.08155e-02 6.62976e+02

Points to note are:

[1] Figures 4.4 and 4.5 are time-history plots of the roof level displacement, and total
system energy versus time. Given that the duration of external loading is only 0.6
seconds (see Figure 4.3), and that we have deliberately ignored structural damping,
it is reassuring to see that total energy is conserved exactly beyond time = 0.6
seconds. You should also observe that the natural period of vibration in Figure
4.4 closely approximates 0.6 seconds, the lowest natural period of vibration in the
structure.

96

0 1 2 3 4 5 6
−6

−4

−2

0

2

4

6

Time (seconds)

D
is

pl
ac

m
en

t (
cm

)

Figure 4.4: Newmark Integration : Lateral Displacement of Roof (cm) versus Time (sec)

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

Time (sec)

T
ot

al
 E

ne
rg

y
(J

ou
le

s)

Figure 4.5: Newmark Integration : Total Energy (Joules) versus Time (sec)

97

4.3 Method of Modal Analysis

Let � be a (n� p) nonsingular matrix (p � n), and Y(t) be a (p� 1) matrix of
time-varying generalized displacements. The objective of the method of modal analysis
is to �nd a transformation

X(t) = �Y (t) (4.12)

that will simplify the direct integration of equations (4.1). The modal equations are
obtained by substituting equations (4.12) into (4.1), and then premultiplying (4.1) by
�T . The result is:

�TM� �Y (t) +�TC� _Y (t) +�TK�Y (t) = �TP (t): (4.13)

The notation in (4.13) may be simpli�ed by de�ning the generalized mass matrix as
M� = �TM�, the generalized damping matrix as C� = �TC�, the generalized sti�ness
matrix asK� = �TK�, and the generalized load matrix asP�(t) = �TP(t). Substituting
these de�nitions into equation (4.13) gives

M� �Y (t) +C� _Y (t) +K�Y (t) = P�(t): (4.14)

The transformation � is deemed to be e�ective if the bandwidth of matrices in (4.14)
is much smaller than in equations (4.1). From a theoretical viewpoint, there may be
many transformation matrices � which will achieve this objective { a judicious choice of
transformation matrix will work much better than many other transformation matrices,
however.

To see how the method of modal analysis works in practice, consider the free
vibration response of an undamped system

M �X(t) +KX(t) = 0; (4.15)

where M and K are (n � n) mass and sti�ness matrices. We postulate that the time-
history response of (4.15) may be approximated by a linear sum of p harmonic solutions

X(t) =
pX

i=1

�i � yi(t) =
pX

i=1

�i � Ai � sin(wit + �i) = � � Y (t); (4.16)

where yi(t) is the ith component of Y (t), and �i is the ith column of �. The amplitude
and phase angle for the ith mode are given by Ai and �i, respectively { both quantities
may be determined from the initial conditions of the motion. We solve the symmetric
eigenvalue problem

K� =M�� (4.17)

98

for � and � is a (p� p) diagonal matrix of eigenvalues

� = diag(�1; �2; � � � ; �p) = diag(w2
1; w

2
2; � � � ; w

2
p): (4.18)

It is well known that the eigenvectors of problem (4.16) will be orthogonal to both the
mass and sti�ness matrices. This means that the generalized mass and sti�ness matrices
will have zero terms except for diagonal terms. The generalized mass matrix takes the
form

M� =

2
66664
m1

� 0 : : : 0
0 m2

� : : : 0
...

...
. . .

...
0 0 : : : mp

�

3
77775 ; (4.19)

and the generalized sti�ness looks like

K� =

2
66664
w1

2m1
� 0 : : : 0
0 w2

2m2
� : : : 0

...
...

. . .
...

0 0 : : : wn
2mp

�

3
77775 : (4.20)

If the damping matrix, C, is a linear combination of the mass and sti�ness matrices, then
the generalized damping matrixC� will also be diagonal. A format that is very convenient
for computation is

C� =

2
66664
2�1w1m1

� 0 : : : 0
0 2�2w2m2

� : : : 0
...

...
. . .

...
0 0 : : : 2�nwnmp

�

3
77775 ; (4.21)

where �i is the ratio of critical damping for the ith mode of vibration.

For the undamped vibration of a linear multi-degree of freedom system, the eigen-
value/vector transformation is ideal because it reduces the bandwidth of M�, C�, and
K� to 1. In other words, the eigenvalue/vectors transform equation (4.1) from n coupled
equations into p (p � n) uncoupled single degree-of-freedom systems. The required com-
putation is simpli�ed because the total time-history response may now be evaluated in
two (relatively simple) steps:

[1] Computation of the time-history responses for each of the p single degree-of-freedom
systems, followed by

[2] Combination of the SDOF's responses into the time-history response of the complete
structure.

99

A number of computational methods are available to compute the time variation of dis-
placements in each of the single degree of freedom systems. From a theoretical viewpoint,
it can be shown that the total solution (or general solution) for a damped system is given
by

yi(t) = Bi(t) sin(widt) + Ci(t) cos(widt) (4.22)

where wid = wi

q
1� �2i is the damped circular frequency of vibration for the ith mode.

The time-variation in coe�cients Bi(t) and Ci(t) is given by

Bi(t) = e��wit

"
_y(0) + �wiy(0)

wd
+

1

m�
iwid

Z t

0
P (�)e�iwi� cos(wid�)d�

#
(4.23)

and Ci(t) = e��iwit

"
y(0)�

1

m�
iwid

Z t

0
P (�)e�iwi� sin(wid�)d�

#
: (4.24)

where yi(0) and _yi(0) are the initial displacement and velocity for the ith mode.

If the details of P (�) are simple enough, then analytic solutions to (4.22) may
be possible. For most practical problems (e.g. earthquake ground motions), however,
numerical solutions to Bi(t) and Ci(t) must be relied upon. A second approach, and the
one that will be followed here, is to use Newmark Integration to compute the displacements
for each of the individual modes.

Numerical Problem : We demonstrate the method of modal analysis by repeating the
time-history computation de�ned in the previous section. Details of the shear building
and external loading are shown in Figures 4.1 and 4.3.

Input File : The input �le for modal analysis is a little more involved than the input �le
needed for Newmark Integration. This is due in part, to need to transform the equations
of equilibrium to a simplier coordinate frame before the main loops of modal analysis
begin.

In the input �le that follows, (2 � 2) generalized mass and sti�ness matrices are
generated by �rst computing the (4 � 2) transformation matrix � corresponding to the
�rst two eigenvectors in the shear building. The elements of the generalized mass and
sti�ness matrices are zero, except for diagonal terms. In principle, each of the decoupled
equations may be solved as single degree-of-freedom systems; in practice, however, it is
computationally simplier to use the method of Newmark integration to solve both sets of
decoupled equations together.

START OF INPUT FILE

/* [a] : Parameters for Modal Analysis and embedded Newmark Integration */

no_eigen = 2;

100

dt = 0.03 sec;

nsteps = 200;

beta = 0.25;

gamma = 0.50;

/* [b] : Form Mass and stiffness matrices */

mass = ColumnUnits(1500*[1, 0, 0, 0;

0, 2, 0, 0;

0, 0, 2, 0;

0, 0, 0, 3], [kg]);

stiff = ColumnUnits(800*[1, -1, 0, 0;

-1, 3, -2, 0;

0, -2, 5, -3;

0, 0, -3, 7], [kN/m]);

PrintMatrix(mass, stiff);

/* [c] : First two eigenvalues, periods, and eigenvectors */

eigen = Eigen(stiff, mass, [no_eigen]);

eigenvalue = Eigenvalue(eigen);

eigenvector = Eigenvector(eigen);

for(i = 1; i <= no_eigen; i = i + 1) {

print "Mode", i ," : w^2 = ", eigenvalue[i][1];

print " : T = ", 2*PI/sqrt(eigenvalue[i][1]) ,"\n";

}

PrintMatrix(eigenvector);

/* [d] : Generalized mass and stiffness matrices */

EigenTrans = Trans(eigenvector);

Mstar = EigenTrans*mass*eigenvector;

Kstar = EigenTrans*stiff*eigenvector;

PrintMatrix(Mstar);

PrintMatrix(Kstar);

/*

* [e] : Generate and print external saw-tooth external loading matrix. First and

* second columns contain time (sec), and external force (kN), respectively.

*/

myload = ColumnUnits(Matrix([21,2]), [sec], [1]);

myload = ColumnUnits(myload, [kN], [2]);

for(i = 1; i <= 6; i = i + 1) {

myload[i][1] = (i-1)*dt;

myload[i][2] = (2*i-2)*(1 kN);

}

101

for(i = 7; i <= 16; i = i + 1) {

myload[i][1] = (i-1)*dt;

myload[i][2] = (22-2*i)*(1 kN);

}

for(i = 17; i <= 21; i = i + 1) {

myload[i][1] = (i-1)*dt;

myload[i][2] = (2*i-42)*(1 kN);

}

PrintMatrix(myload);

/* [f] : Initialize system displacement, velocity, and load vectors */

displ = ColumnUnits(Matrix([4,1]), [m]);

vel = ColumnUnits(Matrix([4,1]), [m/sec]);

eload = ColumnUnits(Matrix([4,1]), [kN]);

/* [g] : Initialize modal displacement, velocity, and acc'n vectors */

Mdispl = ColumnUnits(Matrix([no_eigen,1]), [m]);

Mvel = ColumnUnits(Matrix([no_eigen,1]), [m/sec]);

Maccel = ColumnUnits(Matrix([no_eigen,1]), [m/sec/sec]);

/*

* [g] : Allocate Matrix to store five response parameters --

* Col 1 = time (sec);

* Col 2 = 1st mode displacement (cm);

* Col 3 = 2nd mode displacement (cm);

* Col 4 = 1st + 2nd mode displacement (cm);

* Col 5 = Total energy (Joules)

*/

response = ColumnUnits(Matrix([nsteps+1,5]), [sec], [1]);

response = ColumnUnits(response, [cm], [2]);

response = ColumnUnits(response, [cm], [3]);

response = ColumnUnits(response, [cm], [4]);

response = ColumnUnits(response, [Jou], [5]);

/* [h] : Compute (and compute LU decomposition) effective mass */

MASS = Mstar + Kstar*beta*dt*dt;

lu = Decompose(MASS);

/* [i] : Mode-Displacement Solution for Response of Undamped MDOF System */

for(i = 1; i <= nsteps; i = i + 1) {

/* [i.1] : Update external load */

if((i+1) <= 21) then {

eload[1][1] = myload[i+1][2];

} else {

eload[1][1] = 0.0 kN;

102

}

Pstar = EigenTrans*eload;

R = Pstar - Kstar*(Mdispl + Mvel*dt + Maccel*(dt*dt/2.0)*(1-2*beta));

/* [i.2] : Compute new acceleration, velocity and displacement */

Maccel_new = Substitution(lu,R);

Mvel_new = Mvel + dt*(Maccel*(1.0-gamma) + gamma*Maccel_new);

Mdispl_new = Mdispl + dt*Mvel + ((1 - 2*beta)*Maccel + 2*beta*Maccel_new)*dt*dt/2;

/* [i.3] : Update and print new response */

Maccel = Maccel_new;

Mvel = Mvel_new;

Mdispl = Mdispl_new;

/* [i.4] : Combine Modes */

displ = eigenvector*Mdispl;

vel = eigenvector*Mvel;

/* [i.5] : Compute Total System Energy */

e1 = Trans(vel)*mass*vel;

e2 = Trans(displ)*stiff*displ;

energy = 0.5*(e1 + e2);

/* [i.6] : Save components of time-history response */

response[i+1][1] = i*dt; /* Time */

response[i+1][2] = eigenvector[1][1]*Mdispl[1][1]; /* 1st mode displacement */

response[i+1][3] = eigenvector[1][2]*Mdispl[2][1]; /* 2nd mode displacement */

response[i+1][4] = displ[1][1]; /* 1st + 2nd mode displacement */

response[i+1][5] = energy[1][1]; /* System Energy */

}

/* [j] : Print response matrix and quit */

PrintMatrix(response);

quit;

Points to note are:

[1] In Part [a] of the input �le, the variables nstep and dt are initialized for 200 timesteps
of 0.03 seconds. The Newmark parameters
 and � (i.e. input �le variables gamma
and beta) are set to 0.5 and 0.25, respectively.

[2] Overall behavior of the system is represented by (4 � 4) global mass and sti�ness
matrices. A (4 � 2) transformation matrix, �, is computed by solving equation

103

(4.17) for the �rst two eigenvectors. As a result, we expect that the generalized
mass and sti�ness will be (2� 2) diagonal matrices.

[3] The main loop of our modal analysis employs Newmark integration to compute the
time-history response for the two decoupled equations.

Abbreviated Output File : The abbreviated output �le contains only the essential
details of output generated by the modal analysis. These details include the �rst two
mode shapes of the shear building, the generalized mass and sti�ness matrices, and heavily
edited versions of matrices "myload" and "response".

START OF ABBREVIATED OUTPUT FILE

MATRIX : "mass"

.... see Newmark output for details of "mass"

MATRIX : "stiff"

.... see Newmark output for details of "stiff"

*** SUBSPACE ITERATION CONVERGED IN 11 ITERATIONS

Mode 1.0000e+00 : w^2 = 117.8 rad.sec^-2.0 : T = 0.5789 sec

Mode 2.0000e+00 : w^2 = 586.5 rad.sec^-2.0 : T = 0.2595 sec

MATRIX : "eigenvector"

row/col 1 2

units

1 1.00000e+00 1.00000e+00

2 7.79103e-01 -1.00304e-01

3 4.96553e-01 -5.39405e-01

4 2.35062e-01 -4.36791e-01

MATRIX : "Mstar"

row/col 1 2

units kg kg

1 4.30934e+03 5.68434e-14

2 1.70530e-13 3.26160e+03

MATRIX : "Kstar"

row/col 1 2

units N/m N/m

1 5.07691e+05 -1.96451e-10

2 -2.91038e-10 1.91282e+06

MATRIX : "myload"

row/col 1 2

104

units sec kN

1 0.00000e+00 0.00000e+00

2 3.00000e-02 2.00000e+00

...... details of external load removed

20 5.70000e-01 -2.00000e+00

21 6.00000e-01 0.00000e+00

MATRIX : "response"

row/col 1 2 3 4 5

units sec cm cm cm Jou

1 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

2 3.00000e-02 1.01728e-02 1.21886e-02 2.23614e-02 2.23614e-01

...... details of response matrix removed

200 5.97000e+00 -1.26509e+00 -3.65074e-01 -1.63016e+00 6.59154e+02

201 6.00000e+00 3.48910e-01 -3.36893e-01 1.20176e-02 6.59154e+02

Points to note are:

[1] Figures 4.6 and 4.7 show the time-history response for the �rst and second modes,
respectively. Notice that the amplitude of vibration for the �rst mode is an order
of magnitude larger than for the second mode. You should also observe that after
the external load �nishes at time = 0.6 seconds, the amplitude of vibration is con-
stant within each mode, with the natural periods of vibration closely matching the
eigenvalues/periods shown in Figure 4.2.

[2] The combined �rst + second modal response versus time is shown in Figure 4.8. It
time-displacement curve is virtually identical to that computed with the method of
Newmark integration.

[3] The time variation in total energy versus time is shown in Figure 4.9. One bene�t
of embedding Newmark inside the modal equations is that energy is conserved for
each if the modes. For the integration beyond time = 0.6 seconds, the total energy
is conserved at 659 Joules. This quantity compares to 662 Joules for the complete
Newmark computation.

105

0 1 2 3 4 5 6
−6

−4

−2

0

2

4

6

Time (seconds)

D
is

pl
ac

em
en

t (
 c

m
)

Figure 4.6: Modal Analysis : First Mode Displacement of Roof (cm) versus Time (sec)

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (seconds)

D
is

pl
ac

em
en

t (
 c

m
)

Figure 4.7: Modal Analysis : Second Mode Displacement of Roof (cm) versus Time (sec)

106

0 1 2 3 4 5 6
−6

−4

−2

0

2

4

6

Time (seconds)

D
is

pl
ac

em
en

t (
 c

m
)

Figure 4.8: Modal Analysis : First + Second Mode Displacement of Roof (cm) versus
Time (sec)

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

Time (seconds)

T
ot

al
 E

ne
rg

y
(

Jo
ul

es
)

Figure 4.9: Modal Analysis : Total Energy (Joules) versus Time (sec)

107

Part III

FINITE ELEMENT LIBRARY

108

Chapter 5

Finite Element Analysis Language

5.1 Introduction

In this chapter we describe ALADDIN's built-in functions for the solution of �nite
element problems. Built-in function are provided for: (a) the generation of �nite element
meshes, (b) the de�nition of external loads, (c) the speci�cation of boundary conditions,
(d) the speci�cation of section and material properties, and (e) linking �nite element
degrees of freedom.

With the �nite element mesh in place, we can then compute solutions to a partic-
ular linear/nonlinear �nite elment problem using the algorithms described in the previous
chapters. To assist the engineer with basic �nite element computations, built-in functions
are also provided for the assembly of global sti�ness matrices, global mass matrices, and
external load vectors. An engineer may query the �nite element database for informa-
tion on the �nite element mesh, section and material properties, and on the computed
displacements and stresses. Together, these facilities provide an engineer with the means
to write ALADDIN input �les that will compare the performance of a structure against
families of design rules.

5.2 Structure of Finite Element Input Files

The following diagram is a schematic of the main components in an ALADDIN
input �le suitable for the speci�cation and solution of a �nite element problem.

START OF INPUT FILE

/*

* ==

* A description of the finite element problem goes here...

* ==

*/

109

... Part [1] : Problem specification parameters.

StartMesh();

... Part [2] : Generate finite element mesh. Specify section and material

properties, external loads, and boundary conditions.

EndMesh();

... Part [3] : Describe solution procedure for finite element problem.

... Part [4] : If applicable, check performance of structure against

design rules.

... Part [5] : If applicable, generate arrays of output that are suitable

for plotting with MATLAB.

quit;

Every ALADDIN input �le should begin with a description of the �le's purpose, and who
wrote it.

The problem speci�cation parameters allow an engineer to state whether a �nite
element problem will be two- or three- dimensional, the maximum number of degree of
freedom per node, and the maximum number of nodes per element. With this information
in place, StartMesh() allocates the working memory for the �nite element data structures.

ALADDIN statements are written for the �nite element mesh generation, for the
section and material properties, the speci�cation of external loads, and for the boundary
conditions in Part [2] of the input �le. Often the overall size of a �nite element model can
be reduced by linking degrees of freedom { functions to link nodal degrees of freedom are
also speci�ed in Part [2]. Endmesh() loads the information provided in Part [2] into the
�nite element database.

Part [3] usually begins with the assembly of the global sti�ness matrix, an external
vectors, and if applicable, assembly of a global mass matrix. The algorithms presented
in the previous chapters (e.g. newmark integration; modal analysis; optimization pro-
cedures) can be inserted here to solve a speci�c linear/nonlinear static/dynamic �nite
element problem.

In Parts [4] and [5] ALADDIN statements are written for design rule checking,
and for the output of arrays that are suitable for plotting with MATLAB. ALADDIN
input �le should be terminated with the command quit.

110

5.3 Problem Speci�cation Parameters

ALADDIN's speci�cation parameters are:

� NDimension is short for \number of dimensions." For two- and three-dimensional
�nite element analyses, NDimension equals 2 and 3, respectively.

� NDofPerNode is short for Maximum number of degrees of freedom per nodal coor-
dinate. When NDimension equals 2, NDofPerNode will take the value 3. And when
NDimension equals 3, NDofPerNode will equal 6.

� MaxNodesPerElement corresponds to the maximum number of nodes per �nite ele-
ment.

� InPlaneIntegPts corresponds to the number of in-plane integration points for shell
�nite elements.

� ThicknessIntegPts number of layers of integration points through thickness direc-
tion of shell �nite elements.

These parameter settings are used in the allocation of memory for the �nite element mesh.

Short Example : In this short example, we initialize the problem speci�cation parame-
ters for a three-dimensional analysis of a structure with an eight-node shell �nite element.

ABBREVIATED INPUT FILE

/* [a] : Define Problem Specific Parameters

NDimension = 3;

NDofPerNode = 5;

MaxNodesPerElement = 8; /* etc */

5.4 Adding Nodes and Finite Elements

Two functions, AddNode() and AddElement(), are employed for the generation of
�nite element nodal coordinates, and the attachment of �nite elements to the nodes.

� AddNode(nodeno , coord vector); : Here nodeno is the node number in the
�nite element mesh. For two-dimensional �nite element problems, coord vector is
a (1 � 2) matrix containing the [x, y] nodal coordinates. When the �nite element
problem is three-dimensional, coord vector is a (1 � 3) matrix containing the [x,
y, z] nodal coordinates.

111

� AddElmt(elmtno , connect vector, "name of elmt attr"); : Here elmtno is
the element number in the �nite element mesh. connect vector is a (1 � n)
matrix containing a list of n nodes to which the �nite element will be attached.
"name of elmt attr" is the attribute name representing the �nite element's mate-
rial and section properties { for details, see Section 5.5.

Short Example : Figure 5.1 shows a two-dimensional coordinate system, and a line of
six �nite element nodes connected by 2-node beam �nite elements. The nodes are located
at y-coordinate = 1 m, and are spaced along the x-axis at 1 m centers, beginning at x =
1 m and �nishing at x = 6 m.

1 2 3 4 5

1 2 3 4 5

6

x (m)

y (m)

1

1

2 3 4 5 6

Figure 5.1: Line of Nodal Coordinates and Beam Finite Elements

ALADDIN's looping constructs are ideally suited for speci�cation of the �nite ele-
ment nodes in a compact manner, and for the attachment of the two-node �nite elements.

ABBREVIATED INPUT FILE

print "*** Generate grid of nodes for finite element model \n\n";

nodeno = 0;

x = 1 m; y = 1 m;

while(x <= 6 m) {

nodeno = nodeno + 1;

AddNode(nodeno, [x, y]);

x = x + 1 m;

}

print "*** Attach finite elements to nodes \n\n";

elmtno = 0; nodeno = 0;

while(elmtno < 5) {

elmtno = elmtno + 1; nodeno = nodeno + 1;

AddElmt(elmtno, [nodeno, nodeno + 1], "name_of_elmt_attr");

}

In the �rst half of the script, 6 nodal coordinates are added to ALADDIN's database.
Notice how, in the second block of code, we have used the notation [nodeno, nodeno +

1] to generate (1�2) matrices containing the node numbers that elmtno will be attached
to.

112

5.5 Material and Section Properties

The attributes of element, section, and material types are speci�ed with three
functions, ElementAttr(), SectionAttr() and MaterialAttr(), followed by parameters
inserted between braces f� � �g. The details of each function are:

� ElementAttr("name of element attr") f� � �g;. Here "name of elmt attr" is a
character string for the name of the element attribute used in function calls to
AddElmt(� � �). Three character string arguments should be speci�ed between the
braces.

type is a name for the �nite element type (e.g. FRAME 2D for two dimensional
frame elements). A list of �nite element types may be found in Section 5.11.

Character strings for the section and material attributes may taken from the
section �le section.h and the material �le material.h, or may be user-de�ned
with SectionAttr("...") and MaterialAttr("...").

� SectionAttr("name of section attr") f� � �g;. Here "name of section attr" is
a character string for the name of the section attribute. Table 5.1 contains a list of
section property names, their meaning, and the units associated with each property.

� MaterialAttr("name of material attr") f� � �g;. Here "name of material attr"

is a character string for the name of the material attribute. Table 5.2 contains a
list of material property names, their meaning, and the units associated with each
property.

When the number of (local) degrees of freedom in a �nite element node is fewer than the
number of (global) degrees of freedom at the node to which it is attached, a mapping
must be provided from the local to global d.o.f. The syntax for such a mapping is

map ldof [A] to gdof [B].

where [A] and [B] are (1� n) matrices. We will see, for example, that when plate �nite
elements (type = PLATE) are employed in a three-dimensional mesh, a suitable mapping
is map ldof [1,2,3] to gdof [2,4,6]. This speci�cation is provided as a fourth entry
to ElementAttr().

Short Example : The following script loads a �nite element attribute called \
oorelmts"
into ALADDIN's database. The \
oorelmts" attribute has three components { the �nite
element type is set to FRAME 2D, for two-dimensional beam column �nite elements. The
element's section and material properties are de�ned via links to the section attribute
\
oorsection," and the material attribute \
oormaterial."

ABBREVIATED INPUT FILE

113

print "*** Define element, section, and material properties \n\n";

ElementAttr("floorelmts") { type = "FRAME_2D";

section = "mysection";

material = "ELASTIC";

}

SectionAttr("floorsection") { Ixy = 1 m^4;

Iyy = 2 m^4;

Ixx = 3 m^4;

Izz = 0.66666667 m^4;

depth = 2 m;

width = 1.5 m;

}

MaterialAttr("floormaterial") { E = 1E+7 kN/m^2;

density = 0.1024E-5 kg/m^3;

poisson = 1.0/3.0;

yield = 36000 psi;

}

You should notice that the section and material properties components are supplied, as
required by the FRAME 2D element speci�cations described in Section 5.11.

Two functions, GetSection() and GetMaterial(), are provided for the retrieval of sec-
tion and material properties. GetSection([elmtno]) takes as its argument, a (1 � 1)
matrix containing the element no. It returns a 16� 1 matrix of section properties:

==

Matrix Element Quantity Description

==

[1][1] Ixx Moment of inertia about x-x axis.

[2][1] Iyy Moment of inertia about y-y axis.

[3][1] Izz Moment of inertia about z-z axis.

[4][1] Ixz Product of inertia x-z.

[5][1] Ixy Product of inertia x-y.

[6][1] Iyz Product of inertia y-z.

[7][1] weight Section weight

[8][1] bf Width of flange

[9][1] tf Thickness of flange

[10][1] depth Section depth

[11][1] area Section area

[12][1] thickness Thickness of plate

[13][1] tor_const Torsional Constant J

[14][1] rT Section radius of gyration

[15][1] width Section width

[16][1] tw Thickness of web

Similarly, GetMaterial([elmtno]) takes as its argument, a (1�1) matrix containing the
element no. It returns a 10� 1 matrix of material properties:

114

Name Description Units (M�:L�:T
)

area Area of cross section. L2

depth Depth of section. L

thickness Thickness of section. L

Ixx Moment of inertia about x-x axis. L4

Iyy Moment of inertia about y-y axis. L4

Izz Moment of inertia about z-z axis. L4

Ixy and Iyx Moment of inertia about x-y axes. L4

Ixz and Izx Moment of inertia about x-z axes. L4

Iyz and Izy Moment of inertia about y-z axes. L4

rT Radius of Gyration. L

tw Width of web. L

tf Width of
ange. L

J Torsional Constant. L4

width Width of section. L

Table 5.1: Section Properties

==

Matrix Element Quantity Description

==

[1][1] E Young's modulus

[2][1] G Shear modulus

[3][1] Fy Yield stress

[4][1] ET Tangent Young's Modulus

[5][1] nu Poission's ratio

[6][1] density Material density

[7][1] Fu Ultimate stress

[8][1] thermal[0] x-direction coeff. of thermal expansion

[9][1] thermal[1] y-direction coeff. of thermal expansion

[10][1] thermal[2] z-direction coeff. of thermal expansion

Note : An engineer should be careful to make sure that a particular material or section
property is used in a way that is consistent with the actual material/section type. For
example, GetSection() will return a thickness component for all element types, even
though the concept does not apply to two- and three-dimensional beam �nite elements.

115

Name Description Units (M�:L�:T
)

E Young's modulus of elasticity M1 � L�1 � T�2

Et Tangent modulus of elasticity M1 � L�1 � T�2

poisson Poisson's ratio. M0 � L0 � T 0

density Material density. M0 � L0 � T 0

yield Yield Stress Fy. M0 � L0 � T 0

ultimate Ultimate Stress Fu. M0 � L0 � T 0

n Strain Hardening Exponent M0 � L0 � T 0

alpha Parameter for Ramberg-Osgood relationship M0 � L0 � T 0

beta Parameter for strain hardening { beta = 0 for kinematic
hardening. beta = 1 for isotropic hardening.

M0 � L0 � T 0

ialph Rotation constant { ialph = 0 implies none. ialph = 1
implies Hughes rotation constant.

M0 � L0 � T 0

pen Penalty constant. M0 � L0 � T 0

Table 5.2: Material Properties

5.6 Boundary Conditions

The boundary condition is controled through FixNode() function. For each degree
of freedom (DOF), an index (1 or 0) is used to indicate the �xed DOF or free DOF. The
syntax for FixNode() is:

� FixNode(nodeno, bc vector); Here nodeno is the node number to which the
boundary condition will be applied, bc vector = [bc1; bc2; bc3; � � �] is either a (1�3)
matrix or a (1� 6) matrix. bci = 1 or 0, i is the ith degree of freedom (dof). bci =
1, stands for constraint for that dof, while bci = 0 for no constraint for that dof.

Short Example : This script �xes the boundary conditions of a �nite element mesh at
nodes 1 through 5.

ABBREVIATED INPUT FILE

/* [a] : Apply boundary conditions */

dx = 1; dy = 1 ; dz = 1;

rx = 0; ry = 0 ; dz = 0;

116

bcond = [dx, dy, dz, rx, ry, rz];

for(iNode = 1; iNode <= 5; iNode = iNode + 1) {

FixNode (iNode , bcond);

}

We have used the variables dx, dy, and dz to represent translational displacements in
the x, y, and z directions, respectively, and the variables rx, ry, and rz for rotational
displacement about the x, y, and z axes. A zero value of the matrix element means that
the degree of freedom remain unrestrained. A non-zero value means that full-�xity applies
to the degree of freedom. Hence, nodes 1 through 5 are �xed in their translational degrees
of freedom, and pinned in the three rotational degrees of freedom.

5.7 External Nodal Loads

External nodal loads are speci�ed with the function NodeLoad(nodeno, load vector);.

� The function NodeLoad(nodeno, load vector); may be used to apply external
loads to node number nodeno. Here load vector = [Fx; Fy;Mxy] for two-dimensional
problems, and load vector = [Fx; Fy; Fz;Mxy;Myz;Mzx] for three-dimensional prob-
lems.

Short Example : The following script adds two translational forces, and one moment
to nodes 1 through 5 in a two-dimensional �nite element mesh.

ABBREVIATED INPUT FILE

FxMax = 1000.0 lbf; Fy = -1000.0 lbf; Mz = 0.0 lb*in;

for(iNode = 1; iNode <= 5; iNode = iNode + 1) {

Fx = (iNode/5)*FxMax;

NodeLoad(iNode , [Fx, Fy, Mz]);

}

External nodal loads are applied in the x-direction, beginning at 200 lbf at node 1, and
increasing linearly to 1000 lbf at node 5. A gravity load, Fy = -1000.0 lbf is applied
to each of the nodes 1 through 5.

5.8 Sti�ness, Mass and External Loading Matrices

The next step, after the details of the �nite element mesh have been fully speci�ed,
is to calculate the �nite element properties, and to assemble them into an equilibrium

117

system. For structural �nite element analyses, this step involves calculation of the sti�ness
and mass matrices, and an external load vector. Three �nite element library functions,
Stiff(), Mass(), and ExternalLoad() for these purposes:

� Mass([massflag]); where mass
ag is either [1] or [-1]. Therefore the Mass()
command can be used as mass = Mass([1]); mass = Mass([-1]); or more explicitly,
as, Lumped = [1]; mass = Mass(Lumped); Consist = [-1]; mass = Mass(Consist);

� Stiff() Sti�(); calculate the linear elastic sti�ness matrix.

� ExternalLoad() ExternalLoad(); calculate the external nodal loads.

Short Example : In the following script of code, mass is the global mass matrix, stiff
is the global sti�ness matrix, and eload is a vector of external nodal loads applied to the
�nite element global degrees of freedom.

ABBREVIATED INPUT FILE

/* [a] : Form Mass matrix, stiffness matrix, and external load vector */

mass = Mass();

stiff = Stiff();

eload = ExternalLoad();

Note : The three functions Mass(), Stiff(), and ExternalLoad() should be called only
after the function call to EndMesh() { for details on the expected input-�le layout, see
Section 5.2.

5.9 Internal Loads

In the development of many numerical/�nite element algorithms, we need to know the
distribution of externally applied nodal forces that will produce a given displacement
pattern.

� InternalLoad(displacement) : Calculate the internal nodal loads for given dis-
placement. Where displacement is a matrix vector contains nodal displacement.

� InternalLoad(displacement, IncrementalDisplacement) The two argument ver-
sion of InternalLoad() computes the internal nodal load increments for a given dis-
placement and displacement increment. Here displacement and IncrementalDisplacement
are the matrix vectors for the nodal displacement and incremental displacement.
This is function is designed for nonlinear analysis.

118

Short Example : In Part [a] of the following script we: (a) call Copy() to make a
copy of the global sti�ness matrix; (b) decompose the sti�ness matrix into a product of
upper and lower triangular matrices; (c) compute the external load vector; (d) solve the
system of equations via forward and backward substitution, and �nally, (e) setup a delta
displacement vector with the �rst entry equal to 0.0001, and all other entries equal to
zero.

ABBREVIATED INPUT FILE

/* [a] : Compute initial displacement and displacement increment */

lu = Decompose(Copy(stiff));

eload = ExternalLoad();

displ = Substitution(lu, eload0);

delta_displ = Zero([size, 1]);

delta_displ [1][1] = 0.0001;

/* [b] : Internal load for initial displacement plus displacement increment */

iload = InternalLoad(displ, delta_displ);

In the second half of this script, InternalLoad() computes the internal nodal loads for
the displacement vector displ plus delta displ.

5.10 Retrieving Information from ALADDIN

We have written two families of functions that query ALADDIN's database for
information on the �nite element mesh, and behavior of a particular �nite element model.
Together, these functions may be used for design rule checking, and for the preparation
of matrix output that is compatible with input to MATLAB graphics. The latter could
be a plot of the �nite element mesh, contours of displacements, stresses, and so forth.

The functions that will retrieve information on the �nite element mesh are:

� GetCoord([nodeno]) takes as its input a (1�1) matrix containing the node number.
For two-dimensional �nite element problems, GetCoord() returns a (1x2) matrix (
m[1][1], m[1][2]) = (x,y). A (1�3) matrix is returned for three-dimensional elements
(m[1][1], m[1][2], m[1][3]) = (x,y,z).

� GetDof([nodeno]) is short for \get degree of freedom." Get the matching global de-
grees of freedom number for a node. It returns a (1xn) matrix, n equals to the num-
ber of degrees of freedom in the node. For two-dimensional beam-column elements,
n = 3, and (m[1][1], m[1][2], m[1][3]) = (dof dx, dof dy, dof rz); FOr the three-
dimensional frame element, n = 6, and (m[1][1],m[1][2],m[1][3],m[1][4],m[1][5],m[1][6])

119

= (dof dx,dof dy,dof dz,dof rx,dof ry,dof rz). A negative number in the output ma-
trix indicates the associated degree of freedom is �xed.

� GetNode([elmtno]) retrieves a matrix (1� n) of node numbers connected to �nite
element elmtno. n equals to the number of nodes in the element. For example, n =
2 for 2D and 3D beam element, and n = 4 for the 4-node shell element. The matrix
will be in the same order as you input the nodes connection in AddElmt()

Similarly, the functions for retrieving information on the behavior of a �nite element
model are:

� GetDispl([nodeno, displ m]) is short for \get displacement," and takes as input,
a node number and the calculated displacement matrix. Get the structural nodal
displacements. It returns a (1xn) matrix, nequals to the number of degrees of
freedom in the node. For two-dimensional beam elements, n = 3, and (m[1][1],
m[1][2], m[1][3]) = (displ x,displ y,rot z). Similarly, for three-dimensional frame
elements, n = 6, and (m[1][1], m[1][2], m[1][3], m[1][4], m[1][5], m[1][6]) = (displ x,
displ y, displ z, rot x, rot y, rot z).

� GetStress([elmtno],displacement matrix) accepts as its input, ana element
number and the calculated displacement matrix. This function gets the nodal forces
for the element.

In ALADDIN Version 1.0, this function only works for 2D and 3D beam elements.
It returns a (mxn) matrix, m equals to the number of nodes in the element, n equals
to the number of degrees of freedom in a node. For example, (mxn)=(2x3) for 2D
beam element,

1 2 3

node 1 Fx1 Fy1 Mz1

node 2 Fx2 Fy2 Mz2

(mxn)=(2x6) for 2D beam element,

1 2 3 4 5 6

node 1 Fx1 Fy1 Fz1 Mx1 My1 Mz1

node 2 Fx2 Fy2 Fz2 Mx2 My2 Mz2

The order of the nodes 1,2... is de�ned in the nodes connection matrix in AddElmt().

These functions will be demonstrated in Chapter 6.

120

5.11 Library of Finite Elements

Currently, the following �nite elements are available:

PLANE STRESS/PLANE STRESS : Two dimensional 4-node plane stress/plane
strain element.

I J

KL

x

y

1

2

3

4

5

6

7

8

Figure 5.2: Schematic of Plane Stress - Plane Strain Finite Element

May be used to model linear elastic materials.

Section Properties and Material Properties : Young's modulus E; Poisson's ratio
�; Density � for dynamic analyses; Element type = PLANE STRESS (or PLANE STRAIN). No
section properties are needed.

Example :

ABBREVIATED INPUT FILE

beam_length = 8 m;

beam_width = 1 m;

beam_height = 2 m;

nodeno = 1; elmtno = 0;

while(elmtno <= 3) {

elmtno = elmtno + 1;

AddElmt(elmtno, [nodeno+3, nodeno+1, nodeno+2, nodeno+4], "name_of_elmt_attr");

nodeno = i + 2;

}

....... input statements removed

121

FRAME 2D : Two dimensional 2-node frame (or beam/column) element.

I J

x
y

1

2
3

4

5
6

Figure 5.3: Schematic of Two Dimensional Frame Element

Each node has two translational, and one rotational, degree of freedom. May be used for
modeling of linear elastic materials.

Section Properties and Material Properties : The section properties are; Moment of
inertia Izz and cross-section area { alternatively, the cross section are is computed from
the section width (or bf) times the depth. The material properties are Young's modulus
E, Poisson's ratio �, and density �. Note { the density may be omitted when a default
I-beam section is referenced from the AISC sections header �le section.h. Element type
= FRAME 2D.

Example :

ABBREVIATED INPUT FILE

end1 = 4*floorno + bayno;

end2 = end1 + 1;

AddElmt(elmtno, [end1 , end2], "mybeam");

....... input code removed

ElementAttr("floorbeam") { type = "FRAME_2D";

section = "mysection2";

material = "mymaterial";

}

SectionAttr("floorsection2") { Izz = 1600.3 in^4;

Iyy = 66.2 in^4;

depth = 21.0 in;

width = 8.25 in;

area = 21.46 in^2;

}

MaterialAttr("floormaterial") { density = 0.1024E-5 lb/in^3;

poisson = 0.25;

yield = 36.0 ksi;

E = 29000 ksi;

}

122

FRAME 3D : Three dimensional 2-node frame (or beam/column) element.

I J

x
y

1

2

3

4
5

6

z

7

8

9

10

11

12

Figure 5.4: Schematic of Two Dimensional Frame Element

Each node has three translational, and three rotational, degrees of freedom. May be used
for modeling of linear elastic materials.

Section Properties and Material Properties : The section properties include mo-
ments of inertia Izz and Iyy, and the cross-section area. The cross-section area may
also be computed from the section depth times its width (or bf). The torsional constant
and radius of gyration are de�ned by parameters J and rT, respectively. The material
properites are Young's modulus E, Poisson's ratio �, and the density �. Note { the den-
sity may be omitted when a default I-beam section is referenced from the AISC sections
header �le section.h. The element type is FRAME 3D.

Example :

ABBREVIATED INPUT FILE

elmtno = 0;

while(elmtno < 4) {

elmtno = elmtno + 1;

AddElmt(elmtno, [elmtno, elmtno + 1], "floorelmt");

}

....... code deleted

ElementAttr("floorelmt") { type = "FRAME_3D";

section = "mysection";

material = "mymaterial";

}

SectionAttr("floorsection") { Izz = 13824 in^4;

Iyy = 3456 in^4;

area = 288 in^2;

depth = 24 in;

width = 12 in;

}

MaterialAttr("floormaterial") { same as for FRAME_2D example }

123

GENERAL SHELL: Three dimensional 4 and 8-node �ve degree of freedom general
shell elements, linear/nonlinear elastic-plastic materials.

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16 17

18
19

20

x

y

z

13

I J

KL

Figure 5.5: Schematic of General Shell Element

The element formulation is described in Chen and Austin [10].

Section Properties and Material Properties : The section attribute is thickness
alone. The material properties are Young's modulus E, Poisson's ratio � and density �
(for dynamic analysis). The following parameters apply for nonlinear analysis { Yield
stress yield, stress-strain parameters n, alpha and beta, and type (Ramberg-Osgood or
Bi-Linear or ELASTIC PLASTIC material).

The material types are ELASTIC, ELASTIC PLASTIC and ELASTIC PERFECTLY PLASTIC.

The element types for the four node and eight node shell elements are SHELL 4N

and SHELL 8N.

Example :

ABBREVIATED INPUT FILE

elmtno = 1;

node_connec = [1, 2, 3, 4, 12, 13, 14, 15];

AddElmt(elmtno, node_connec, "name_of_elmt_attr");

..... input code removed

ElementAttr("name_of_elmt_attr") { type = "SHELL_8N";

section = "mysection";

material = "ELASTIC";

}

MaterialAttr("ELASTIC") { density = 1.0 lb/in^3;

poisson = 0.25;

124

yield = 36000;

E = 3E+7 psi;

}

SectionAttr("mysection") { thickness = 1 in; }

SHELL WITH DRILLING DEGREE OF FREEDOM : A four node
at shell
element with six degrees of freedom per node. It may be used for modeling of linear elastic
materials.

1

2

3

4

5

6

7
8

9

10

11

12

14
15

16

17

18

19

20

x

y

z

13

I J

KL

21

22

23

24

Figure 5.6: Schematic of Flat Shell Finite Element

The theoretical formulation of this shell �nite element, and numerical examples of its
performance may be found in the masters thesis of Lanheng Jin [15].

Section Properties and Material Properties : The section attribute is thickness
alone. The material properties are Young's modulus E, Poisson's ratio �, and Density �
(for dynamic analyses). The element has two modeling parameters ialpha and pen. The
element type is SHELL 4NQ.

Example :

ABBREVIATED INPUT FILE

AddElmt(elmtno+1, [a+1, b+1, b+2, a+2], "bridgegirder");

..... input code removed

ElementAttr("bridgegirder") { type = "SHELL_4NQ";

section = "girder_flange";

125

material = "STEEL3";

}

SectionAttr("girder_flange") { thickness = 1.100 in; }

STEEL3 is a material property prede�ned in material.h, and loaded into the ALADDIN
database during the program's startup procedure.

PLATE: Four node discrete kircho� quadrilateral (DKQ) plate element. Each node has
three degrees of freedom { two rotations, and a lateral displacement, as shown in Figure
5.7.

1

3

4

5

6

7

8
9

10

11
12

x

y

z
I J

KL

2

Figure 5.7: Schematic of Plate Finite Element

Section Properties and Material Properties : The section property is plate thickness.
The material properties include Young's modulus E, and Poisson's ratio �. The element
type is DKT PLATE.

Example :

ABBREVIATED INPUT FILE

connect = [1, 2, 3, 4];

AddElmt(elmtno, connect, "name_of_elmt_attr");

...... input statements removed

ElementAttr("name_of_elmt_attr") { type = "DKT_PLATE";

section = "mysection";

material = "ELASTIC";

map ldof [1,2,3] to gdof [2, 4, 6];

}

SectionAttr("mysection") { thickness = 2.0 in; }

126

MaterialAttr("ELASTIC") { density = 150 lb/ft^3;

poisson = 0.3;

yield = 36000;

E = 29000 psi;

Currently, this element does not have a mass matrix.

127

Chapter 6

Input Files for Finite Element

Analysis Problems

In this chapter we exercise ALADDIN's �nite element capabilities by working
through four problem in detail. The �nite element problems are:

[1] A linear static analysis of a �ve story moment resistant frame. The frame supports
gravity loads plus a moderate lateral load.

[2] A linear time-history earthquake analysis of the �ve story frame described in Item
[1]. The time-history response is generated by a 1979 El Centro ground motion.

[3] An AASHTO working stress design of a composite highway bridge girder, with rule
checking built into the input �le.

[4] A linear elastic three dimensional analysis of 2-span highway bridge. Again, the bridge
is modeled with the four node shell element. Moment envelopes are computed for a
gravity loads plus a moving truck live load.

The analyses in problems [3] and [4] include moving live loads. The application of AL-
ADDIN to the solution of nonlinear static analyses with an 8-node shell element is reported
in Chen and Austin [10].

6.1 Linear Static Analyses

6.1.1 Analysis of Five Story Moment Resistant Frame

Description of Problems : We begin with a linear static analysis of a �ve story steel
moment resistant frame. A front elevation view of the frame with dimensions and prelim-
inary section sizes is shown in Figure 6.1. We will assume that this frame is one in a row
of frames spaced at 20 ft centers, as shown in Figure 6.2.

128

10
 f

t
10

 f
t

10
 f

t
10

 f
t

10
 f

t

FLOOR 1

FLOOR 2

FLOOR 3

FLOOR 4

ROOF

BAY 1 = 20 ft. BAY 2 = 15 ft. BAY 3 = 20 ft.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22 23

24 25 26

27 28 29

30 31 32

33 34 35

Figure 6.1: Elevation View of Five Story Planar Steel Frame

20 ft 15 ft 20 ft

20
 f

t
20

 f
t

INTERNAL

FRAME

TRIBUTARY AREA

Figure 6.2: Plan View of Five Story Building

129

The frame is constructed with two steel section types, and one material type. The
columns are of type UC 12� 12, with Izz = 1541.9 in4, Iyy = 486.3 in4, and cross section
area 47.38 in2. The beams are of section type UB 21� 81=4, with Izz = 1600.3 in4, Iyy =
66.2 in4, and cross section area 21.46 in2. The beams and columns have Young's Modulus
29000 ksi, and yield stress 36.0 ksi.

The frame will be analyzed for gravity loads plus a moderate lateral earthquake
load. Wind and other loads are omitted for simplicity. The speci�ed dead load is 80

lbf=ft2, and the speci�ed live load 40 lbf=ft2 for the four
oors, and 20 lbf=ft2 for
the roof. We will assume that the tributary area for gravity loads is rectangular in shape,
with a uniform load distribution along each girder span of the frame. With the frames
spaced 20 ft apart, it follows that
oor gravity loads are 0.200 kips/in, and 0.1667

kips/in on the roof. Total gravity loads are 663800 lbf.

In this �rst release of ALADDIN, external loads may only be applied to the nodes.
Consequently, formulae for the �xed-end moments due to gravity loads must be explicitly
included in the data �le. If the loading per unit length is w, and L is the span length
of the frame bay, then the �xed end shear force is wL=2, and the �xed end moment is
wL2=12.

Moderate earthquake ground motions are modeled with a psuedo-static lateral
force equal to 10% of total gravity loads (i.e. 63800 lbf). The lateral forces are distributed
over the height of the frame as shown in Figure 6.3.

We will assume full �xity for the bases of the columns. Each node of the building
frame will be modeled with two translational and one rotational degree of freedom. Axial
forces in the beam elements are removed by lumping the horizontal degrees of freedom
at each
oor level. Together these assumptions imply 5 displacement and 4 rotational
degrees of freedom per
oor level, leading to (45� 45) global sti�ness matrix.

Input File : The �nite element model for the �ve story moment-resistant building frame,
with external loads, is de�ned and solved in the following [a] to [h] part input �le.

START OF INPUT FILE

/*

* ===

* Analysis of Five Story Steel Moment Resistant Frame

*

* Written By: Mark Austin October, 1994

* ===

*/

/* [a] : Setup problem specific parameters */

NDimension = 2;

NDofPerNode = 3;

MaxNodesPerElement = 2;

130

ROOF

FLOOR 4

FLOOR 3

FLOOR 2

FLOOR 1

8506.67 lbf

12760.00 lbf

4253.33 lbf

17013.33 lbf

21266.67 lbf

Figure 6.3: Distribution of Lateral Loads for Moderate Earthquake Ground Motions

StartMesh();

/* [b] : Generate two-dimensional grid of nodes */

node = 0;

for(y = 0 ft; y <= 50 ft; y = y + 10 ft) {

for(x = 0 ft; x <= 55 ft; x = x + 20 ft) {

/* [b.1] : adjust column spacing for central bay */

if(x == 40 ft) {

x = x - 5 ft;

}

/* [b.2] : add new node to finite element mesh */

node = node + 1;

AddNode(node, [x, y]);

}

}

/* [c] : Attach column elements to nodes */

elmtno = 0;

for (colno = 1; colno <= 4; colno = colno + 1) {

for (floorno = 1; floorno <= 5; floorno = floorno + 1) {

elmtno = elmtno + 1;

end1 = 4*(floorno - 1) + colno;

end2 = end1 + 4;

131

AddElmt(elmtno, [end1 , end2], "mycolumn");

}

}

/* [d] : Attach beam elements to nodes */

for (floorno = 1; floorno <= 5; floorno = floorno + 1) {

for (bayno = 1; bayno <= 3; bayno = bayno + 1) {

end1 = 4*floorno + bayno;

end2 = end1 + 1;

elmtno = elmtno + 1;

AddElmt(elmtno, [end1 , end2], "mybeam");

}

}

/* [e] : Define section and material properties */

ElementAttr("mycolumn") { type = "FRAME_2D";

section = "mysection1";

material = "mymaterial";

}

ElementAttr("mybeam") { type = "FRAME_2D";

section = "mysection2";

material = "mymaterial";

}

SectionAttr("mysection1") { Izz = 1541.9 in^4;

Iyy = 486.3 in^4;

depth = 12.0 in;

width = 12.0 in;

area = 47.4 in^2;

}

SectionAttr("mysection2") { Izz = 1600.3 in^4;

Iyy = 66.2 in^4;

depth = 21.0 in;

width = 8.25 in;

area = 21.46 in^2;

}

MaterialAttr("mymaterial") { density = 0.1024E-5 lb/in^3;

poisson = 0.25;

yield = 36.0 ksi;

E = 29000 ksi;

}

/* [f] : Apply full-fixity to columns at foundation level */

for(nodeno = 1; nodeno <= 4; nodeno = nodeno + 1) {

FixNode(nodeno, [1, 1, 1]);

132

}

LinkNode([5, 6, 7, 8], [1, 0, 0]);

LinkNode([9, 10, 11, 12], [1, 0, 0]);

LinkNode([13, 14, 15, 16], [1, 0, 0]);

LinkNode([17, 18, 19, 20], [1, 0, 0]);

LinkNode([21, 22, 23, 24], [1, 0, 0]);

/* [g] : Compute equivalent nodal loads for distributed "dead + live" loads plus */

/* lateral wind loads */

dead_load = 80 lbf/ft^2;

floor_live_load = 40 lbf/ft^2;

roof_live_load = 20 lbf/ft^2;

frame_spacing = 20 ft;

for (floorno = 1; floorno <= 5; floorno = floorno + 1) {

/* [g.1] : compute floor-level (and roof-level) uniform loads */

live_load = floor_live_load;

if(floorno == 5) {

live_load = roof_live_load;

}

uniform_load = (dead_load + live_load)*(frame_spacing);

for (colno = 1; colno <= 4; colno = colno + 1) {

Fx = 0.0 lbf; Fy = 0.0 lbf; Mz = 0.0 lb*in;

/* [g.2] : compute fixed end shear force for dead/live loads */

if(colno == 1 || colno == 4) {

Fy = -(uniform_load)*(20 ft)/2;

}

if(colno == 2 || colno == 3) {

Fy = -(uniform_load)*(35 ft)/2;

}

/* [g.3] : compute fixed end moments for dead/live loads */

if(colno == 1) {

Mz = -(uniform_load)*(20 ft)*(20 ft)/12;

}

if(colno == 2) {

Mz = (uniform_load)*((20 ft)^2 - (15 ft)^2)/12;

}

if(colno == 3) {

Mz = -(uniform_load)*((20 ft)^2 - (15 ft)^2)/12;

}

133

if(colno == 4) {

Mz = (uniform_load)*(20 ft)*(20 ft)/12;

}

/* [g.4] : compute horizontal force due to lateral loads */

if(colno == 1) {

Fx = 63800*(floorno/15)*(1 lbf);

}

nodeno = 4*floorno + colno;

NodeLoad(nodeno, [Fx, Fy, Mz]);

}

}

/* [h] : Compile and Print Finite Element Mesh */

EndMesh();

PrintMesh();

/* [i] : Compute "stiffness" and "external load" matrices */

eload = ExternalLoad();

stiff = Stiff();

displ = Solve(stiff, eload);

SetUnitsType("US");

PrintDispl(displ);

PrintStress(displ);

quit;

Points to note are:

[1] In part [a] we specify that this will be a two-dimensional analysis. The maximum
number of degrees of freedom per node will be three, and the maximum number
of nodes per element will be two. The parameters NDimension, NDofPerNode, and
MaxNodesPerElement are used by ALADDIN to assess memory requirements for
the problem storage and solution.

[2] We use a nested for() loop and a single if() statement to generate the planar layout
of 24 �nite element nodes. Before the boundary conditions are applied, the structure
has 72 degrees of freedom. In Section [f] we apply full-�xity to each column at the
foundation level { this reduces degrees of freedom from 72 to 60.

Abbreviated Output File : The output �le contains summaries of the mass and sti�-
ness matrices for the shear building, and abbreviated details of the external loading,
"myload", and the response matrix "response".

START OF ABBREVIATED OUTPUT FILE

134

==

Title : DESCRIPTION OF FINITE ELEMENT MESH

==

Problem_Type: Static Analysis

=======================

Profile of Problem Size

=======================

Dimension of Problem = 2

Number Nodes = 24

Degrees of Freedom per node = 3

Max No Nodes Per Element = 2

Number Elements = 35

Number Element Attributes = 2

Number Loaded Nodes = 20

Number Loaded Elements = 0

--

Node# X_coord Y_coord Tx Ty Rz

--

1 0.00000e+00 ft 0.00000E+00 ft -1 -2 -3

2 2.00000e+01 ft 0.00000E+00 ft -4 -5 -6

3 3.50000e+01 ft 0.00000E+00 ft -7 -8 -9

4 5.50000e+01 ft 0.00000E+00 ft -10 -11 -12

5 0.00000e+00 ft 1.00000E+01 ft 1 6 7

...... details of nodal coordinates and modeling dof removed

19 3.50000e+01 ft 4.00000E+01 ft 4 34 35

20 5.50000e+01 ft 4.00000E+01 ft 4 36 37

21 0.00000e+00 ft 5.00000E+01 ft 5 38 39

22 2.00000e+01 ft 5.00000E+01 ft 5 40 41

23 3.50000e+01 ft 5.00000E+01 ft 5 42 43

24 5.50000e+01 ft 5.00000E+01 ft 5 44 45

--

Element# Type node[1] node[2] Element_Attr_Name

--

1 FRAME_2D 1 5 mycolumn

2 FRAME_2D 5 9 mycolumn

3 FRAME_2D 9 13 mycolumn

4 FRAME_2D 13 17 mycolumn

...... details of element connectivity removed

33 FRAME_2D 21 22 mybeam

34 FRAME_2D 22 23 mybeam

135

35 FRAME_2D 23 24 mybeam

Element Attribute Data :

ELEMENT_ATTR No. 1 : name = "mycolumn"

: section = "mysection1"

: material = "mymaterial"

: type = FRAME_2D

: gdof [0] = 1 : gdof[1] = 2 : gdof[2] = 3

: Young's Modulus = E = 2.900e+04 ksi

: Yielding Stress = fy = 3.600e+01 ksi

: Poisson's ratio = nu = 2.500e-01

: Density = 1.024e-06 lb/in^3

: Inertia Izz = 1.542e+03 in^4

: Area = 4.740e+01 in^2

ELEMENT_ATTR No. 2 : name = "mybeam"

: section = "mysection2"

: material = "mymaterial"

: type = FRAME_2D

: gdof [0] = 1 : gdof[1] = 2 : gdof[2] = 3

: Young's Modulus = E = 2.900e+04 ksi

: Yielding Stress = fy = 3.600e+01 ksi

: Poisson's ratio = nu = 2.500e-01

: Density = 1.024e-06 lb/in^3

: Inertia Izz = 1.600e+03 in^4

: Area = 2.146e+01 in^2

EXTERNAL NODAL LOADINGS

--

Node# Fx (lbf) Fy (lbf) Mz (lbf.in)

--

5 4253.33 -24000.00 -960000.00

6 0.00 -42000.00 420000.00

7 0.00 -42000.00 -420000.00

8 0.00 -24000.00 960000.00

9 8506.67 -24000.00 -960000.00

10 0.00 -42000.00 420000.00

11 0.00 -42000.00 -420000.00

12 0.00 -24000.00 960000.00

13 12760.00 -24000.00 -960000.00

14 0.00 -42000.00 420000.00

15 0.00 -42000.00 -420000.00

16 0.00 -24000.00 960000.00

17 17013.33 -24000.00 -960000.00

18 0.00 -42000.00 420000.00

19 0.00 -42000.00 -420000.00

20 0.00 -24000.00 960000.00

21 21266.67 -20000.00 -800000.00

22 0.00 -35000.00 350000.00

23 0.00 -35000.00 -350000.00

24 0.00 -20000.00 800000.00

136

============= End of Finite Element Mesh Description ==============

--

Node Displacement

No displ-x displ-y rot-z

--

units in in rad

1 0.00000e+00 0.00000e+00 0.00000e+00

2 0.00000e+00 0.00000e+00 0.00000e+00

3 0.00000e+00 0.00000e+00 0.00000e+00

4 0.00000e+00 0.00000e+00 0.00000e+00

5 1.02973e-01 -7.40873e-03 -1.23470e-03

6 1.02973e-01 -1.64731e-02 -6.24404e-04

7 1.02973e-01 -1.90281e-02 -8.22556e-04

8 1.02973e-01 -1.27863e-02 -7.58887e-04

9 2.55749e-01 -1.34750e-02 -1.19639e-03

....... details of displacements removed

21 5.62354e-01 -2.29345e-02 -6.66741e-04

22 5.62354e-01 -4.88997e-02 -8.48912e-05

23 5.62354e-01 -5.50729e-02 -3.30685e-04

24 5.62354e-01 -3.63403e-02 6.32278e-05

MEMBER FORCES

--

Elmt No 1 :

Coords (X,Y) = (0.000 in, 60.000 in)

exx = -6.17394e-05 , curva = -0.00040508 , gamma = -3.10985e-04

Fx1 = 8.48669e+04 lbf Fy1 = 8.97143e+03 lbf Mz1 = 9.98366e+05 lbf.in

Fx2 = -8.48669e+04 lbf Fy2 = -8.97143e+03 lbf Mz2 = 7.82053e+04 lbf.in

Axial Force : x-direction = -8.48669e+04 lbf

Shear Force : y-direction = 8.97143e+03 lbf

Elmt No 6 :

Coords (X,Y) = (240.000 in, 60.000 in)

exx = -1.37276e-04 , curva = -0.00020486 , gamma = -7.05134e-04

Fx1 = 1.88700e+05 lbf Fy1 = 2.03420e+04 lbf Mz1 = 1.45319e+06 lbf.in

Fx2 = -1.88700e+05 lbf Fy2 = -2.03420e+04 lbf Mz2 = 9.87850e+05 lbf.in

Axial Force : x-direction = -1.88700e+05 lbf

Shear Force : y-direction = 2.03420e+04 lbf

Elmt No 11 :

Coords (X,Y) = (420.000 in, 60.000 in)

exx = -1.58567e-04 , curva = -0.00026987 , gamma = -5.77161e-04

Fx1 = 2.17967e+05 lbf Fy1 = 1.66502e+04 lbf Mz1 = 1.30552e+06 lbf.in

Fx2 = -2.17967e+05 lbf Fy2 = -1.66502e+04 lbf Mz2 = 6.92505e+05 lbf.in

137

Axial Force : x-direction = -2.17967e+05 lbf

Shear Force : y-direction = 1.66502e+04 lbf

Elmt No 16 :

Coords (X,Y) = (660.000 in, 60.000 in)

exx = -1.06552e-04 , curva = -0.00024898 , gamma = -6.18281e-04

Fx1 = 1.46467e+05 lbf Fy1 = 1.78364e+04 lbf Mz1 = 1.35297e+06 lbf.in

Fx2 = -1.46467e+05 lbf Fy2 = -1.78364e+04 lbf Mz2 = 7.87403e+05 lbf.in

Axial Force : x-direction = -1.46467e+05 lbf

Shear Force : y-direction = 1.78364e+04 lbf

Remark 1 : We have printed the internal element forces for the columns between the
foundation and the �rst
oor level. The accuracy of the analysis can be checked by making
sure the sum of column actions is balanced by the sum of external loads. In the horizontal
direction we have:

==

External Forces Shear Forces in Columns

==

Roof 21,266.27 lbf

Floor 4 17,013.33 lbf Element 1 8,971.43 lbf

Floor 3 12,760.00 lbf Element 6 20,342.00 lbf

Floor 2 8,506.67 lbf Element 11 16,650.20 lbf

Floor 1 4,253.33 lbf Element 16 17,836.40 lbf

==

Total 63,800.00 lbf Total 63,800.03 lbf

==

And in the vertical direction we have:

==

Gravity Loads Axial Forces in Columns

==

Roof -110,000 lbf

Floor 4 -132,000 lbf Element 1 -84,866.9 lbf

Floor 3 -132,000 lbf Element 6 -188,700.0 lbf

Floor 2 -132,000 lbf Element 11 -217,967.0 lbf

Floor 1 -132,000 lbf Element 16 -146,467.0 lbf

==

Total -638,000 lbf Total -638,000.9 lbf

==

Remark 2 : The �ve story moment resistant frame may be modeled as a shear structure
by �xing the nodal rotations and vertical displacements at
oors 1 to 5, and lumping the
horizontal displacements at each
oor level. These tasks are accomplished by modifying
Section [f] of the input �le to

138

/* [f] : Apply full-fixity to columns at foundation level */

for(nodeno = 1; nodeno <= 4; nodeno = nodeno + 1) {

FixNode(nodeno, [1, 1, 1]);

}

for(nodeno = 5; nodeno <= 24; nodeno = nodeno + 1) {

FixNode(nodeno, [0, 1, 1]);

}

LinkNode([5, 6, 7, 8], [1, 0, 0]);

LinkNode([9, 10, 11, 12], [1, 0, 0]);

LinkNode([13, 14, 15, 16], [1, 0, 0]);

LinkNode([17, 18, 19, 20], [1, 0, 0]);

LinkNode([21, 22, 23, 24], [1, 0, 0]);

Overall displacements in the frame will now be represented with �ve global degrees of
freedom. Details of the sti�ness and load vector are:

MATRIX : "eload"

row/col 1

units

1 lbf 4.25333e+03

2 lbf 8.50667e+03

3 lbf 1.27600e+04

4 lbf 1.70133e+04

5 lbf 2.12667e+04

SKYLINE MATRIX : "stiff"

row/col 1 2 3 4 5

units N/m N/m N/m N/m N/m

1 4.35045e+08 -2.17523e+08 0.00000e+00 0.00000e+00 0.00000e+00

2 -2.17523e+08 4.35045e+08 -2.17523e+08 0.00000e+00 0.00000e+00

3 0.00000e+00 -2.17523e+08 4.35045e+08 -2.17523e+08 0.00000e+00

4 0.00000e+00 0.00000e+00 -2.17523e+08 4.35045e+08 -2.17523e+08

5 0.00000e+00 0.00000e+00 0.00000e+00 -2.17523e+08 2.17523e+08

A summary of output is:

--

Node Displacement

No displ-x displ-y rot-z

--

units in in rad

1 0.00000e+00 0.00000e+00 0.00000e+00

2 0.00000e+00 0.00000e+00 0.00000e+00

3 0.00000e+00 0.00000e+00 0.00000e+00

4 0.00000e+00 0.00000e+00 0.00000e+00

5 5.13652e-02 0.00000e+00 0.00000e+00

6 5.13652e-02 0.00000e+00 0.00000e+00

139

7 5.13652e-02 0.00000e+00 0.00000e+00

8 5.13652e-02 0.00000e+00 0.00000e+00

9 9.93061e-02 0.00000e+00 0.00000e+00

10 9.93061e-02 0.00000e+00 0.00000e+00

...... details of displacements removed

21 1.88339e-01 0.00000e+00 0.00000e+00

22 1.88339e-01 0.00000e+00 0.00000e+00

23 1.88339e-01 0.00000e+00 0.00000e+00

24 1.88339e-01 0.00000e+00 0.00000e+00

MEMBER FORCES

--

Elmt No 1 :

Axial Force : x-direction = 0.00000e+00 lbf

Shear Force : y-direction = 1.59500e+04 lbf

Elmt No 6 :

Axial Force : x-direction = 0.00000e+00 lbf

Shear Force : y-direction = 1.59500e+04 lbf

Elmt No 11 :

Axial Force : x-direction = 0.00000e+00 lbf

Shear Force : y-direction = 1.59500e+04 lbf

Elmt No 16 :

Axial Force : x-direction = 0.00000e+00 lbf

Shear Force : y-direction = 1.59500e+04 lbf

Fixing nodal rotations increases the overall sti�ness of the structure { the result is lateral
displacements in the shear structure which are smaller than for the moment resistant
frame (i.e. 1.8834e-01 inches versus 5.6235e-01 inches). Again, notice that shear forces
across the base of the structure are balanced by the external loads (i.e 4 times 1.59500e+04
lbf = 6.3800e+04 lbf).

140

6.1.2 Working Stress Design (WSD) of Simpli�ed Bridge

Description of WSD Rule Checking Problem : This example illustrates the ap-
plication of ALADDIN to AASHTO Working Stress Design (WSD) code checking. We
will conduct a �nite element analysis of a one span simply supported composite bridge
with cover plate under the girders, and then apply the rule checking. The analysis will be
simpli�ed by considering only an internal girder of the bridge system { a plan and cross
sectional view of a typical bridge system is shown in Figures 6.5 and 6.5.

56.7’ c. to c. Bearing

7 @ 7.63

Figure 6.4: Plan of Highway Bridge

3.5’3.5’

7" slab

7 @ 7.63’

Extracted Internal Girder

Figure 6.5: Typical Cross Section

The bridge girders are made of rolled beam W33x130 with a 14"� 3=4" steel cover plate.
An elevation view of the bridge and the position of the steel cover plate is shown in Figure

141

6.6. The material properties are Fy = 50 ksi, and Es = 29000 ksi. The e�ective cross
sectional properties of the composite steel/concrete girder (with and without the cover
plate) are computed with n = Es=Ec = 10. The section properties are shown in Figure
6.7.

10.35’10.35’

W33x130

cover plate 14"x3/4"

Figure 6.6: Elevation of Beam

12*7" = 84"

7 in slab

Haunch depth = 1.86in
Haunch width = 19.5in

W33x130

12*7" = 84"

W33x130

cover plate 14"x3/4"

N.A.
N.A.

y1
y2

I1 = 17268.4 in I2 = 25700.1 in

y2 = 27.31 iny1 = 29.40 in

44

Figure 6.7: Section Properties (n = 10)

The bridge is subjected to dead and live external loadings. The design dead load includes
7 inches concrete slab, steel girder, and superimposed load. The design live load consists
of a 72 kips HS-20 truck, which will be modeled as a single concentrated load moving load
along the girder nodes.

Input File : The single-span bridge girder is modeled with 10 two-dimensional beam/column
�nite elements.

START OF INPUT FILE

/*

* ==

* Test input file for bridge design rule checking wsing 2D-beam

* element and static analysis

142

*

* Written by: Wane-Jang Lin June 1995

* ==

*/

print "*** DEFINE PROBLEM SPECIFIC PARAMETERS \n\n";

NDimension = 2;

NDofPerNode = 3;

MaxNodesPerElement = 2;

StartMesh();

div_no = 10;

print "*** GENERATE GRID OF NODES FOR FE MODEL \n\n";

length = 56.70 ft;

cov_dis = 10.35 ft;

dL = length/div_no;

x = 0 ft; y = 0 ft;

for(i=1; x<=length ; i=i+1) {

AddNode(i, [x, y]);

x = x+dL;

}

print "*** ATTACH ELEMENTS TO GRID OF NODES \n\n";

elmt = 1;

x = 0 ft;

for(i=1; i<=div_no ; i=i+1) then {

if(x<cov_dis || (x+dL)>(length-cov_dis)) {

AddElmt(elmt, [i, i+1], "girder1");

} else {

AddElmt(elmt, [i, i+1], "girder2");

}

elmt = elmt+1;

x = x+dL;

}

print "*** DEFINE ELEMENT, SECTION AND MATERIAL PROPERTIES \n\n";

I1 = 17268.4 in^4; y1 = 29.40 in; area1 = 38.3 in^2;

I2 = 25700.1 in^4; y2 = 27.31 in; area1 = 48.8 in^2;

ElementAttr("girder1") { type = "FRAME_2D";

section = "no_cover";

material = "STEEL3";

}

ElementAttr("girder2") { type = "FRAME_2D";

section = "cover";

material = "STEEL3";

}

143

SectionAttr("no_cover") { Izz = I1;

area = area1;

depth = 33.09 in;

width = 11.51 in;

}

SectionAttr("cover") { Izz = I2;

area = area2;

depth = 33.09 in;

width = 11.51 in;

}

/*

* ======================================

* Setup Boundary Conditions [dx, dy, rz]

* ======================================

*/

FixNode(1, [1, 1, 0]);

FixNode(div_no+1, [0, 1, 0]);

/*

* =====================================

* Compile and Print Finite Element Mesh

* =====================================

*/

EndMesh();

PrintMesh();

SetUnitsType("US");

stiff = Stiff();

lu = Decompose(stiff);

/*

* =====================================

* Add Dead Nodal Loads [Fx, Fy, Mz]

* =====================================

*/

weight = 0.199 kips/ft + 0.868 kips/ft;

load = weight*dL;

for(i=2; i<=div_no; i=i+1) {

NodeLoad(i, [0 kips, -load, 0 kips*ft]);

}

NodeLoad(1, [0 kips, -load/2, 0 kips*ft]);

NodeLoad(div_no+1, [0 kips, -load/2, 0 kips*ft]);

eload = ExternalLoad();

displ = Substitution(lu, eload);

max_displ_dead = GetDispl([div_no/2+1],displ);

max_mom_dead = GetStress([div_no/2],displ);

max_sh_dead = GetStress([1],displ);

cover_mom_dead = GetStress([2],displ);

PrintMatrix(max_displ_dead,max_mom_dead,max_sh_dead,cover_mom_dead);

144

/* Get Moment Diagram */

moment_dead = Zero([div_no+1 , 1]);

for(i=1 ; i<=div_no ; i=i+1) {

temp = GetStress([i],displ);

if(i == 1) { moment_dead[1][1] = temp[1][3]; }

moment_dead[i+1][1] = temp[2][3];

}

PrintMatrix(moment_dead);

/* Zero-out dead loadings */

for(i=2; i<=div_no; i=i+1) {

NodeLoad(i, [0 kips, load, 0 kips*ft]);

}

NodeLoad(1, [0 kips, load/2, 0 kips*ft]);

NodeLoad(div_no+1, [0 kips, load/2, 0 kips*ft]);

/*

* =====================================

* Add Live Truck Load [Fx, Fy, Mz]

* =====================================

*/

step = div_no+1;

influ_mid_mom = Zero([step , 1]);

influ_end_sh = Zero([step , 1]);

envelop_mom_live = Zero([step , 1]);

HS20 = 72 kips;

mom_elmt = div_no/2;

sh_elmt = 1;

for(i=1 ; i<=step ; i=i+1) {

NodeLoad(i, [0 kips, -HS20, 0 kips*ft]);

eload = ExternalLoad();

displ = Substitution(lu, eload);

mid_mom = GetStress([mom_elmt], displ);

end_sh = GetStress([sh_elmt], displ);

if(i == 1) then {

mom_rang = GetStress([i], displ);

} else {

mom_rang = GetStress([i-1], displ);

}

/* Get moment influence line at the middle of span */

influ_mid_mom[i][1] = mid_mom[2][3];

/* Get Shear Influence line at the end support */

influ_end_sh[i][1] = end_sh[1][2];

/* Create envelope of moment influence line at the middle of span */

145

if(i == 1) then {

envelop_mom_live[1][1] = mom_rang[1][3];

} else {

envelop_mom_live[i][1] = mom_rang[2][3];

}

if(i == mom_elmt+1) {

max_displ_live = GetDispl([mom_elmt+1],displ);

max_mom_live = GetStress([mom_elmt],displ);

}

if(i == sh_elmt) {

max_sh_live = GetStress([sh_elmt],displ);

max_sh_live[1][2] = max_sh_live[1][2] + HS20;

influ_end_sh[1][1] = HS20;

}

if(i == 3) {

cover_mom_live = GetStress([2],displ);

}

NodeLoad(i, [0 kips, HS20, 0 kips*ft]);

}

PrintMatrix(max_displ_live,max_mom_live,max_sh_live,cover_mom_live);

PrintMatrix(influ_mid_mom, influ_end_sh, envelop_mom_live);

/*

* ============================

* Results for DL + (LL+Impact)

* ============================

*/

impact = 1 + 50/(56.7+125);

print "\nimpact factor = ",impact,"\n";

max_displ = max_displ_dead + impact*max_displ_live;

max_mom = max_mom_dead + impact*max_mom_live;

max_sh = max_sh_dead + impact*max_sh_live;

cover_mom = cover_mom_dead + impact*cover_mom_live;

PrintMatrix(max_displ,max_mom,max_sh,cover_mom);

/*

* ===

* WSD Code Checking for Deflections and Stress Requirements

* ===

*/

print "\n\nSTART ASD CODE CHECKING::\n";

/* Deflection Checking */

if(-impact*max_displ_live[1][2] > (1/800)*length) then {

print "\n\tWarning: (LL+I) deflection exceeds 1/800 span\n";

} else {

146

print "\n\tOK : (LL+I) deflection less than 1/800 span\n";

}

/* Moment Stress Checking */

my_material = GetMaterial([1]);

my_section = GetSection([1]);

/* max stress without cover plate */

stress1 = cover_mom[2][3]*y1/I1;

/* max stress with cover plate (in the middle of span) */

stress2 = max_mom[2][3]*y2/I2;

if(stress1 > 0.55*my_material[3][1]) then{

print "\n\tWarning : moment stress without cover plate larger than 0.55*Fy\n";

} else {

if(stress2 > 0.55*my_material[3][1]) then{

print "\n\tWarning : moment stress with cover plate larger than 0.55*Fy\n";

} else {

print "\n\tOK : moment stress less than 0.55*Fy\n";

}

}

/* Shear Stress Checking */

shear = max_sh[1][2]/my_section[11][1];

if(shear > 0.33*my_material[3][1]) then{

print "\n\tWarning : shear stress larger than 0.33*Fy\n";

} else {

print "\n\tOK : shear stress less than 0.33*Fy\n";

}

quit;

Points to note are:

[1] In this example, we check the analysis result with AASHTO WSD speci�cation. The
impact factor for live load is based on the formula AASHTO Eq. (3-1)

I =
50

L + 125

in which
I = impact fraction (maximum 30 percent);
L = length in feet of the portion of the span;

[2] The de
ection checking is based on AASHTO Art.10.6.2, the de
ection due to service
live load plus impact shall not exceed 1=800 of the span.

147

[3] The allowable stress is 0:55� Fy for tension and compression member, 0:33� Fy for
shear in web.

Abbreviated Output File : The opening sections of the following output �le contain
details of the 11 node, 10 element mesh. The left-hand side of the girder is modeled as a
pin �xed against translation. The right-hand side of the girder is supported on a roller.

The latter components of the output �le contain summaries of the shear and
moment envelopes, together with maximum values of response quantities.

START OF ABBREVIATED OUTPUT FILE

===

Title : DESCRIPTION OF FINITE ELEMENT MESH

===

Problem_Type: Static Analysis

=======================

Profile of Problem Size

=======================

Dimension of Problem = 2

Number Nodes = 11

Degrees of Freedom per node = 3

Max No Nodes Per Element = 2

Number Elements = 10

Number Element Attributes = 2

Number Loaded Nodes = 0

Number Loaded Elements = 0

--

Node# X_coord Y_coord Tx Ty Rz

--

1 0.0000e+00 ft 0.0000e+00 ft -1 -2 1

2 5.6700e+00 ft 0.0000e+00 ft 2 3 4

3 1.1340e+01 ft 0.0000e+00 ft 5 6 7

4 1.7010e+01 ft 0.0000e+00 ft 8 9 10

5 2.2680e+01 ft 0.0000e+00 ft 11 12 13

6 2.8350e+01 ft 0.0000e+00 ft 14 15 16

7 3.4020e+01 ft 0.0000e+00 ft 17 18 19

8 3.9690e+01 ft 0.0000e+00 ft 20 21 22

9 4.5360e+01 ft 0.0000e+00 ft 23 24 25

10 5.1030e+01 ft 0.0000e+00 ft 26 27 28

11 5.6700e+01 ft 0.0000e+00 ft 29 -3 30

148

--

Element# Type node[1] node[2] Element_Attr_Name

--

1 FRAME_2D 1 2 girder1

2 FRAME_2D 2 3 girder1

3 FRAME_2D 3 4 girder2

4 FRAME_2D 4 5 girder2

5 FRAME_2D 5 6 girder2

6 FRAME_2D 6 7 girder2

7 FRAME_2D 7 8 girder2

8 FRAME_2D 8 9 girder2

9 FRAME_2D 9 10 girder1

10 FRAME_2D 10 11 girder1

Element Attribute Data :

ELEMENT_ATTR No. 1 : name = "girder1"

: section = "no_cover"

: material = "steel"

: type = FRAME_2D

: gdof [0] = 1 : gdof[1] = 2 : gdof[2] = 3

: Young's Modulus = E = 2.900e+04 ksi

: Yielding Stress = fy = 5.000e+01 ksi

: Poisson's ratio = nu = 3.000e-01

: Density = 0.000e+00 (null)

: Inertia Izz = 1.727e+04 in^4

: Area = 3.809e+02 in^2

ELEMENT_ATTR No. 2 : name = "girder2"

: section = "cover"

: material = "steel"

: type = FRAME_2D

: gdof [0] = 1 : gdof[1] = 2 : gdof[2] = 3

: Young's Modulus = E = 2.900e+04 ksi

: Yielding Stress = fy = 5.000e+01 ksi

: Poisson's ratio = nu = 3.000e-01

: Density = 0.000e+00 (null)

: Inertia Izz = 2.570e+04 in^4

: Area = 3.809e+02 in^2

============= End of Finite Element Mesh Description ==============

MATRIX : "max_displ_dead"

row/col 1 2 3

units in in rad

1 0.00000e+00 -3.44203e-01 5.69206e-18

149

MATRIX : "max_mom_dead"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 3.02494e+03 -4.93961e+06

2 0.00000e+00 -3.02494e+03 5.14543e+06

MATRIX : "max_sh_dead"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 2.72245e+04 -8.24290e-09

2 0.00000e+00 -2.72245e+04 1.85236e+06

MATRIX : "cover_mom_dead"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 2.11746e+04 -1.85236e+06

2 0.00000e+00 -2.11746e+04 3.29308e+06

MATRIX : "moment_dead"

row/col 1

units

1 lbf.in -8.24290e-09

2 lbf.in 1.85236e+06

3 lbf.in 3.29308e+06

4 lbf.in 4.32216e+06

5 lbf.in 4.93961e+06

6 lbf.in 5.14543e+06

7 lbf.in 4.93961e+06

8 lbf.in 4.32216e+06

9 lbf.in 3.29308e+06

10 lbf.in 1.85236e+06

11 lbf.in 8.24290e-09

MATRIX : "max_displ_live"

row/col 1 2 3

units in in rad

1 0.00000e+00 -6.53755e-01 1.06252e-17

MATRIX : "max_mom_live"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 3.60000e+04 -9.79776e+06

2 0.00000e+00 -3.60000e+04 1.22472e+07

MATRIX : "max_sh_live"

row/col 1 2 3

units lbf lbf lbf.in

150

1 -0.00000e+00 7.20000e+04 0.00000e+00

2 0.00000e+00 -0.00000e+00 0.00000e+00

MATRIX : "cover_mom_live"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 5.76000e+04 -3.91910e+06

2 0.00000e+00 -5.76000e+04 7.83821e+06

MATRIX : "influ_mid_mom"

row/col 1

units

1 lbf.in 0.00000e+00

2 lbf.in 2.44944e+06

3 lbf.in 4.89888e+06

4 lbf.in 7.34832e+06

5 lbf.in 9.79776e+06

6 lbf.in 1.22472e+07

7 lbf.in 9.79776e+06

8 lbf.in 7.34832e+06

9 lbf.in 4.89888e+06

10 lbf.in 2.44944e+06

11 lbf.in 0.00000e+00

MATRIX : "influ_end_sh"

row/col 1

units

1 lbf 7.20000e+04

2 lbf 6.48000e+04

3 lbf 5.76000e+04

4 lbf 5.04000e+04

5 lbf 4.32000e+04

6 lbf 3.60000e+04

7 lbf 2.88000e+04

8 lbf 2.16000e+04

9 lbf 1.44000e+04

10 lbf 7.20000e+03

11 lbf 0.00000e+00

MATRIX : "envelop_mom_live"

row/col 1

units

1 lbf.in 0.00000e+00

2 lbf.in 4.40899e+06

3 lbf.in 7.83821e+06

4 lbf.in 1.02876e+07

5 lbf.in 1.17573e+07

6 lbf.in 1.22472e+07

7 lbf.in 1.17573e+07

8 lbf.in 1.02876e+07

151

9 lbf.in 7.83821e+06

10 lbf.in 4.40899e+06

11 lbf.in 0.00000e+00

impact factor = 1.275

MATRIX : "max_displ"

row/col 1 2 3

units in in rad

1 0.00000e+00 -1.17786e+00 1.92411e-17

MATRIX : "max_mom"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 4.89314e+04 -1.74335e+07

2 0.00000e+00 -4.89314e+04 2.07628e+07

MATRIX : "max_sh"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 1.19037e+05 -8.24290e-09

2 0.00000e+00 -2.72245e+04 1.85236e+06

MATRIX : "cover_mom"

row/col 1 2 3

units lbf lbf lbf.in

1 -0.00000e+00 9.46249e+04 -6.84991e+06

2 0.00000e+00 -9.46249e+04 1.32882e+07

START ASD CODE CHECKING::

OK : (LL+I) deflection less than 1/800 span

OK : moment stress less than 0.55*Fy

OK : shear stress less than 0.33*Fy

A summary of the bridge response is contained in Figures 6.8 to 6.10. The following
points are noted:

[1] Since this is a simple-supported bridge, the maximum displacement and maximum
bending moment will occur at the middle of the span. The maximum shear force
will occur at the end support.

[2] The �nal results of moment, shear and displacement are calculated according to
AASHTO ASD request: Total = DL + impact * LL.

152

[3] The stress due to bending is given by:

Moment stress =
M � y

I
: (6.1)

Because there are two di�erent section properties, we have to calculate not only the
maximum moment stress in the middle of the span (stress2), but also the moment
stress of where the section changed (stress1).

Shear stress =
V

tw � d
: (6.2)

We assume that the shear force is carried by the girder web alone, and therefore,
we only check for maximum shear at the end support.

[4] The in
uence line for the bending moment at the middle of the span { details are
shown in Figure: 6.9 { is obtained by iteratively positioning one truck load at a �nite
element node, then solving for the reaction forces. A similar procedure is employed
to compute the in
uence line of shear force at the end support { see Figure 6.10.

[5] Figure 6.8) shows the distribution of bending moments due to truck loadings (we
note in passing that the bending momend diagram corresponds to an envelope of
the moment in
uence lines of the truck load).

[6] The follow array elements are used in the generation of program output:

max_displ[1][2] = the maximum displacement of the beam.

max_mom[2][3] = the maximum moment.

max_sh[1][2] = the maximum shear force.

cover_mom[2][3] = the moment at where the bridge section changed.

153

Moment for Dead Load
Moment Envelope of Truck Load

0 10 20 30 40 50
0

2

4

6

8

10

12
x 10

6

Bridge Span (ft)

M
om

en
t (

lb
f*

in
)

Figure 6.8: Moment Diagram of Dead Load and Truck Load

154

0 10 20 30 40 50
0

2

4

6

8

10

12
x 10

6

Truck Location (ft)

M
om

en
t (

lb
f*

in
)

Figure 6.9: In
uence Line of Moment at Mid-Span

0 10 20 30 40 50
0

1

2

3

4

5

6

7

x 10
4

Truck Location (ft)

F
or

ce
 (

lb
f)

Figure 6.10: In
uence Line of Shear at End Support

155

6.1.3 Three-Dimensional Analysis of Highway Bridge

Description of Bridge Problem : In this section we will conduct a two-part analysis
of a three-dimensional two-span highway bridge structure.

FRAMING PLAN

FRONT ELEVATION

100 ft. 100 ft.

4’
 2

"
4’

 2
"

16
’

 8
"

100 ft. 100 ft.

Figure 6.11: Highway Bridge : Plan and Front Elevation of Two-Span Continuous High-
way Bridge

W36x170 W36x170

7" CONCRETE SLAB

4’ 2" 4’ 2"8’ 4"

CROSS SECTION OF HIGHWAY BRIDGE

Figure 6.12: Highway Bridge : Cross Section of Two-Span Continuous Highway Bridge

A plan and front elevation view of the highway bridge is shown in Figure 6.11. The bridge

156

16
’

 8
"

10 @ 10 ft = 100 ft. 10 @ 10 ft = 100 ft.

Node 13 Node 203

Node 19 Node 209 Node 399

Node 393

Figure 6.13: Highway Bridge : Plan of Finite Element Mesh for Two-Span Continuous
Highway Bridge

4’ 2"8’ 4"4’ 2"

12.03" 12.03"

2’ 1" 2’ 1" 2’ 1" 2’ 1" 2’ 1" 2’ 1" 2’ 1" 2’ 1"

x

y
1 2 3

5 10 11 12

13 14 15 16 17 18987 19

4 6

Figure 6.14: Highway Bridge : Cross Section of Finite Element Mesh for Two-Span
Continuous Highway Bridge

has two spans, each 100 ft long. The width of the bridge is 16 ft - 8 inches. A cross section
view of the bridge is shown in Figure 6.12.

The bridge is constructed from one steel and one concrete material type. The
structural steel has Fy = 50 ksi, Poisson's ratio v = 0.3, and E = 29,000 ksi. For the
concrete slab, f 0c = 4000 psi, Poisson's ratio v = 0.3, Ec = 3625 ksi, and unit weight =
150 pcf. The W36x170 steel section has the following properties; W36x170 : d = 36.17
in, bf = 12.03 in, tf = 1.1 in, tw = 0.68 in, and weight = 170 lbf/ft. The concrete slab
has thickness 7 in.

The highway bridge will be analyzed for two loading conditions. First, we compute
the de
ections of the bridge due to gravity loads alone. The concrete slab weighs 150pcf �
7in = 87:5lbf=ft2. The girder weight is 170lbf=ft. In part two of the bridge analysis, a
1000 kip concentrated live load moves along one of the outer bridge girders. We compute
and plot the in
uence line for the moving load.

The boundary conditions for the left-hand sidee of the bridge are a hinged support.

157

The right-hand side of the bridge is supported on a roller. The �nite element model has
399 nodes and 440 shell elements. After the boundary conditions are applied, the model
has 2374 d.o.f. The bridge is subject to a 1000 kip concentrated moving live load.

Input File : The following input �le de�nes the bridge geometry, boundary conditions,
�nite element, section and material types, and the external loads due to the dead weight
of the bridge.

START OF INPUT FILE

/*

* ===

* Analysis of Two Span Continuous Composite Beam (100-100ft) assuming

* neutral axis of concrete deck coincide with top girder flange

*

* Written By: Wane-Jang Lin December, 1994

* ===

*/

/* [a] : Setup problem specific parameters */

print "*** DEFINE PROBLEM SPECIFIC PARAMETERS \n\n";

NDimension = 3;

NDofPerNode = 6;

MaxNodesPerElement = 4;

StartMesh();

print "*** GENERATE GRID OF NODES FOR FE MODEL \n\n";

girder = 2;

span = 100 ft;

spacing = 8 ft + 4 in;

slab = 7 in;

height = 36.17 in - 1.1 in;

flange = 12.03 in;

div_L = 10;

div_S = 4;

delta_L = span/div_L;

delta_S = spacing/div_S;

delta_f = flange/2;

delta_h = height/2;

section_no = 2*div_L + 1;

nodes_per_girder = 6;

nodes_per_section = nodes_per_girder*girder + (2*div_S+1) - girder;

node = 0;

x = 0 in;

for(i=1 ; i<=section_no ; i=i+1) {

x = delta_L*(i-1);

158

for(j=1 ; j<=girder ; j=j+1) {

y = -spacing/2 + spacing*(j-1);

AddNode(node+1, [x, (y-delta_f), delta_h]);

AddNode(node+2, [x, y , delta_h]);

AddNode(node+3, [x, (y+delta_f), delta_h]);

AddNode(node+4, [x, (y-delta_f), -delta_h]);

AddNode(node+5, [x, y , -delta_h]);

AddNode(node+6, [x, (y+delta_f), -delta_h]);

node = node + nodes_per_girder;

}

yy = spacing/2;

for(j=1 ; j<=(2*div_S+1) ; j=j+1) {

y = -spacing + delta_S*(j-1);

if((y!=yy) && (y!=-yy)) {

node = node + 1;

AddNode(node, [x, y, delta_h]);

}

}

}

print "*** ATTACH ELEMENTS TO GRID OF NODES \n\n";

elmtno = 0;

a = 0;

b = 0 + nodes_per_section;

for(i=1 ; i<section_no ; i=i+1) {

for(j=1 ; j<=girder ; j=j+1) {

AddElmt(elmtno+1, [a+1, b+1, b+2, a+2],"girder_flange_attr");

AddElmt(elmtno+2, [a+2, b+2, b+3, a+3],"girder_flange_attr");

AddElmt(elmtno+3, [a+2, b+2, b+5, a+5],"girder_web_attr");

AddElmt(elmtno+4, [a+4, b+4, b+5, a+5],"girder_flange_attr");

AddElmt(elmtno+5, [a+5, b+5, b+6, a+6],"girder_flange_attr");

elmtno = elmtno + nodes_per_girder - 1;

a = a + nodes_per_girder;

b = b + nodes_per_girder;

}

a = a + 1;

b = b + 1;

for(j=1 ; j<=girder ; j=j+1) {

AddElmt(elmtno+1, [a, b, b+1, a+1], "deck_attr");

c = b - (girder+1-j)*nodes_per_girder - 3*(j-1);

d = a - (girder+1-j)*nodes_per_girder - 3*(j-1);

AddElmt(elmtno+2, [a+1, b+1, c, d], "deck_attr");

a = d;

b = c;

AddElmt(elmtno+3, [a, b, b+1, a+1], "deck_attr");

AddElmt(elmtno+4, [a+1, b+1, b+2, a+2], "deck_attr");

a = a + 2;

b = b + 2;

c = c + (girder+1-j)*nodes_per_girder + (3*j-2) + 1;

d = d + (girder+1-j)*nodes_per_girder + (3*j-2) + 1;

AddElmt(elmtno+5, [a, b, c, d], "deck_attr");

159

AddElmt(elmtno+6, [d, c, c+1, d+1], "deck_attr");

elmtno = elmtno + 6;

a = d + 1;

b = c + 1;

}

}

print "*** DEFINE ELEMENT, SECTION AND MATERIAL PROPERTIES \n\n";

ElementAttr("girder_flange_attr") { type = "SHELL_4NQ";

section = "girder_flange";

material = "STEEL3";

}

ElementAttr("girder_web_attr") { type = "SHELL_4NQ";

section = "girder_web";

material = "STEEL3";

}

ElementAttr("deck_attr") { type = "SHELL_4NQ";

section = "deck";

material = "concrete";

}

SectionAttr("girder_flange") { thickness = 1.100 in; }

SectionAttr("girder_web") { thickness = 0.680 in; }

SectionAttr("deck") { thickness = 7 in; }

MaterialAttr("concrete") { poisson = 0.3;

yield = 0.85*(4000 psi);

E = (29000 ksi)/8;

}

print "*** SET UP BOUNDARY CONDITIONS \n\n";

bc_hs = [1, 1, 1, 1, 0, 0]; /* hinged support */

bc_rs = [0, 1, 1, 1, 0, 0]; /* roller support */

for(i=1 ; i<=girder ; i=i+1) {

node = nodes_per_girder*(i-1) + 5;

FixNode(node, bc_hs);

node = node + div_L*nodes_per_section;

FixNode(node, bc_rs);

node = node + div_L*nodes_per_section;

FixNode(node, bc_rs);

}

/* [b] : Apply Point Nodal Loads */

print "*** SET UP LOADS \n\n";

slab_load = (150 lbf/ft^3)*slab;

girder_weight = 170 lbf/ft;

Fx = 0 lbf; Fy = 0 lbf;

160

Mx = 0 lbf*in; My = 0 lbf*in; Mz = 0 lbf*in;

/* [b.1] : load for corner nodes of deck */

Fz = -slab_load*delta_L/2*delta_S/2;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = nodes_per_girder*girder + 1;

NodeLoad(node, nodal_load);

node = node + nodes_per_section*(section_no-1);

NodeLoad(node, nodal_load);

node = node + 2*div_S - girder;

NodeLoad(node, nodal_load);

node = node - nodes_per_section*(section_no-1);

NodeLoad(node, nodal_load);

/* [b.2] load for edge nodes along x-direction */

Fz = -slab_load*delta_L*delta_S/2;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = nodes_per_section + nodes_per_girder*girder + 1;

for(i=2 ; i<section_no ; i=i+1) {

NodeLoad(node, nodal_load);

NodeLoad((node+2*div_S-girder), nodal_load);

node = node + nodes_per_section;

}

/* [b.3] load for edge nodes along y-direction */

/* node 16 */

Fz = -slab_load*delta_L/2*delta_S;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = nodes_per_girder*girder + div_S;

NodeLoad(node, nodal_load);

node = node + nodes_per_section*(section_no-1);

NodeLoad(node, nodal_load);

/* node 14, 15, 17, 18 */

Fz = -slab_load*delta_L/2*(delta_S-delta_f/2);

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = nodes_per_girder*girder + 1;

for(i=1 ; i<=2 ; i=i+1) {

NodeLoad(node+1, nodal_load);

NodeLoad(node+2, nodal_load);

NodeLoad(node+4, nodal_load);

NodeLoad(node+5, nodal_load);

node = node + nodes_per_section*(section_no-1);

}

/* node 1, 3, 7, 9 */

Fz = -slab_load*delta_L/2*delta_S/2;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = 0;

for(i=1 ; i<=2 ; i=i+1) {

NodeLoad(node+1, nodal_load);

161

NodeLoad(node+3, nodal_load);

NodeLoad(node+7, nodal_load);

NodeLoad(node+9, nodal_load);

node = node + nodes_per_section*(section_no-1);

}

/* node 2, 8 */

Fz = -slab_load*delta_L/2*delta_f;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = 0;

for(i=1 ; i<=2 ; i=i+1) {

NodeLoad(node+2, nodal_load);

NodeLoad(node+8, nodal_load);

node = node + nodes_per_section*(section_no-1);

}

/* [b.4] load for middle nodes */

/* node 35... */

Fz = -slab_load*delta_L*delta_S;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = nodes_per_girder*girder + div_S;

for(i=2 ; i<section_no ; i=i+1) {

node = node + nodes_per_section;

NodeLoad(node, nodal_load);

}

/* node 33, 34, 36, 37... */

Fz = -slab_load*delta_L*(delta_S-delta_f/2);

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = nodes_per_girder*girder + 1;

for(i=2 ; i<section_no ; i=i+1) {

node = node + nodes_per_section;

NodeLoad(node+1, nodal_load);

NodeLoad(node+2, nodal_load);

NodeLoad(node+4, nodal_load);

NodeLoad(node+5, nodal_load);

}

/* node 20, 22, 26, 28... */

Fz = -slab_load*delta_L*delta_S/2;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = 0;

for(i=2 ; i<section_no ; i=i+1) {

node = node + nodes_per_section;

NodeLoad(node+1, nodal_load);

NodeLoad(node+3, nodal_load);

NodeLoad(node+7, nodal_load);

NodeLoad(node+9, nodal_load);

}

/* node 21, 27... */

Fz = -slab_load*delta_L*delta_f;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

162

node = 0;

for(i=2 ; i<section_no ; i=i+1) {

node = node + nodes_per_section;

NodeLoad(node+2, nodal_load);

NodeLoad(node+8, nodal_load);

}

/* [b.5] load for girder weight */

/* end node 2, 8 */

Fz = -girder_weight*delta_L/2;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = 0;

for(i=1 ; i<=2 ; i=i+1) {

NodeLoad(node+2, nodal_load);

NodeLoad(node+8, nodal_load);

node = node + nodes_per_section*(section_no-1);

}

/* middle node 21, 27... */

Fz = -girder_weight*delta_L;

nodal_load = [Fx, Fy, Fz, Mx, My, Mz];

node = 0;

for(i=2 ; i<section_no ; i=i+1) {

node = node + nodes_per_section;

NodeLoad(node+2, nodal_load);

NodeLoad(node+8, nodal_load);

}

/* [c] : Compile and Print Finite Element Mesh */

EndMesh();

PrintMesh();

/* [d] : Compute Stiffness Matrix and External Load Vector */

print "\n";

print "*** COMPUTE AND PRINT STIFFNESS AND EXTERNAL LOAD MATRICES \n\n";

SetUnitsType("US");

eload = ExternalLoad();

stiff = Stiff();

/* [e] : Compute and print static displacements */

print "\n*** STATIC ANALYSIS PROBLEM \n\n";

displ = Solve(stiff, eload);

PrintDispl(displ);

PrintStress(displ);

quit;

163

Abbreviated Output File : Several thousand lines of output are generated by AL-
ADDIN and the abovementioned input �le de�ned. Hence, we present an abbreviated
summary of the output together with contour and three-dimensional views of the bridge
deck de
ections.

START OF ABBREVIATED OUTPUT FILE

===

Title : DESCRIPTION OF FINITE ELEMENT MESH

===

Problem_Type: Static Analysis

=======================

Profile of Problem Size

=======================

Dimension of Problem = 3

Number Nodes = 399

Degrees of Freedom per node = 6

Max No Nodes Per Element = 4

Number Elements = 440

Number Element Attributes = 3

Number Loaded Nodes = 315

Number Loaded Elements = 0

Node# X_coord Y_coord Z_coord Dx Dy Dz Rx Ry Rz

1 0.000e+00 ft -4.667e+00 ft 1.753e+01 in 1 2 3 4 5 6

2 0.000e+00 ft -4.166e+00 ft 1.753e+01 in 7 8 9 10 11 12

3 0.000e+00 ft -3.665e+00 ft 1.753e+01 in 13 14 15 16 17 18

4 0.000e+00 ft -4.667e+00 ft -1.753e+01 in 19 20 21 22 23 24

....... details of nodal coordinates deleted

398 2.000e+02 ft 6.250e+00 ft 1.753e+01 in 2363 2364 2365 2366 2367 2368

399 2.000e+02 ft 8.333e+00 ft 1.753e+01 in 2369 2370 2371 2372 2373 2374

--

Element# Type node[1] node[2] node[3] node[4] Element_Attr_Name

--

1 SHELL_4NQ 1 20 21 2 girder_flange_attr

2 SHELL_4NQ 2 21 22 3 girder_flange_attr

3 SHELL_4NQ 2 21 24 5 girder_web_attr

4 SHELL_4NQ 4 23 24 5 girder_flange_attr

164

....... details of shell finite elements removed

437 SHELL_4NQ 368 387 388 369 deck_attr

438 SHELL_4NQ 369 388 389 370 deck_attr

439 SHELL_4NQ 370 389 398 379 deck_attr

440 SHELL_4NQ 379 398 399 380 deck_attr

Element Attribute Data :

ELEMENT_ATTR No. 1 : name = "girder_flange_attr"

: section = "girder_flange"

: material = "STEEL3"

: type = SHELL_4NQ

: dof-mapping : gdof[0] = 1 : gdof[1] = 2 : gdof[2] = 3

gdof[3] = 4 : gdof[4] = 5 : gdof[5] = 6

: Young's Modulus = E = 2.900e+04 ksi

: Yielding Stress = fy = 5.000e+01 ksi

: Poisson's ratio = nu = 3.000e-01

: Density = 0.000e+00 (null)

: Inertia Izz = 0.000e+00 (null)

: Area = 0.000e+00 (null)

ELEMENT_ATTR No. 2 : name = "girder_web_attr"

: section = "girder_flange"

: material = "STEEL3"

: type = SHELL_4NQ

: dof-mapping : gdof[0] = 1 : gdof[1] = 2 : gdof[2] = 3

gdof[3] = 4 : gdof[4] = 5 : gdof[5] = 6

: Young's Modulus = E = 2.900e+04 ksi

: Yielding Stress = fy = 5.000e+01 ksi

: Poisson's ratio = nu = 3.000e-01

: Density = 0.000e+00 (null)

: Inertia Izz = 0.000e+00 (null)

: Area = 0.000e+00 (null)

ELEMENT_ATTR No. 3 : name = "deck_attr"

: section = "deck"

: material = "concrete"

: type = SHELL_4NQ

: dof-mapping : gdof[0] = 1 : gdof[1] = 2 : gdof[2] = 3

gdof[3] = 4 : gdof[4] = 5 : gdof[5] = 6

: Young's Modulus = E = 3.625e+03 ksi

: Yielding Stress = fy = 3.400e+03 psi

: Poisson's ratio = nu = 3.000e-01

: Density = 0.000e+00 (null)

: Inertia Izz = 0.000e+00 (null)

: Area = 0.000e+00 (null)

EXTERNAL NODAL LOADINGS

165

Node# Fx (lbf) Fy (lbf) Fz (lbf) Mx (lbf.in) My (lbf.in) Mz (lbf.in)

13 0.000 0.000 -455.729 0.000 0.000 0.000

393 0.000 0.000 -455.729 0.000 0.000 0.000

399 0.000 0.000 -455.729 0.000 0.000 0.000

19 0.000 0.000 -455.729 0.000 0.000 0.000

32 0.000 0.000 -911.458 0.000 0.000 0.000

38 0.000 0.000 -911.458 0.000 0.000 0.000

..... details of nodal loads removed

344 0.000 0.000 -1700.000 0.000 0.000 0.000

350 0.000 0.000 -1700.000 0.000 0.000 0.000

363 0.000 0.000 -1700.000 0.000 0.000 0.000

369 0.000 0.000 -1700.000 0.000 0.000 0.000

============= End of Finite Element Mesh Description ==============

*** COMPUTE AND PRINT STIFFNESS AND EXTERNAL LOAD MATRICES

*** STATIC ANALYSIS PROBLEM

--

Node Displacement

No displ-x displ-y displ-z rot-x

--

units in in in rad

1 1.33978e-01 -1.89314e-05 -1.80219e-03 2.02410e-04

2 1.34131e-01 -2.29040e-05 -7.12851e-04 1.58344e-04

3 1.34036e-01 -2.64397e-05 1.11846e-04 1.17222e-04

4 4.80519e-04 7.93065e-05 -3.01849e-06 7.53268e-07

5 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

13 1.32863e-01 -3.34551e-05 -1.44068e-02 3.23153e-04

....... details of nodal displacements removed

395 7.72668e-02 -5.87620e-05 1.43256e-03 3.45080e-05

396 7.74839e-02 -9.59758e-13 1.76084e-03 5.23559e-16

397 7.72668e-02 5.87620e-05 1.43256e-03 -3.45080e-05

398 7.74887e-02 -1.71932e-05 -6.61126e-03 -2.90572e-04

399 7.79492e-02 3.34551e-05 -1.44068e-02 -3.23153e-04

Figures 6.15 and 6.16 are contour and three-dimensional views of the bridge deck de-

ections, respectively. (the vertical axis of the de
ection of Figure 6.16 has the units of
inches). The bridge de
ections are due to dead loads alone, and since the bridge geome-
try and section properties are symmetric, we expect that the de
ections will also exhibit
symmetry. They do.

166

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

18

20

Figure 6.15: Highway Bridge : Contour Plot of Bridge Deck De
ections

0
2

4
6

8
10

0

5

10

15

20

25
−1.5

−1

−0.5

0

0.5

Bridge Deck Displacements

Figure 6.16: Three-Dimensional Mesh of Bridge Deck De
ections

167

Moving Point Load Input File : In Part 2 of our analysis, the latter sections of the
input �le are extended so that response evelopes are computed for a point load moving
along the bridge.

FRAMING PLAN

FRONT ELEVATION

100 ft. 100 ft.

4’
 2

"
4’

 2
"

16
’

 8
"

LOAD DIRECTION

10 LOAD INCREMENTS @ 10 FT 10 LOAD INCREMENTS @ 10 FT

LOAD DIRECTION

Figure 6.17: Plan and Front Elevation of Two-Span Continuous Highway Bridge with
Moving Live Load

Figure 6.17 shows plan and elevation views of the bridge and moving point load. A
cross sectional view of the bridge and the moving point load is shown in Figure 6.18.
Abbreviated details of the input �le are as follows:

START OF INPUT FILE

/*

* ===

* Analysis of Two Span Continuous Composite Beam (100-100ft), analysis

* assuming neutral axis of concrete deck coincide with top girder flange

* Moving load along one girder

*

* Written By: Wane-Jang Lin December, 1994

* ===

*/

/* [a] : Setup problem specific parameters */

168

W36x170 W36x170

4’ 2" 4’ 2"8’ 4"

1000 KIPS [MOVING LOAD]

CROSS SECTION OF HIGHWAY BRIDGE WITH MOVING LIVE LOAD

Figure 6.18: Cross Section of Two-Span Continuous Highway Bridge with Moving Live
Load

NDimension = 3;

NDofPerNode = 6;

MaxNodesPerElement = 4;

StartMesh();

print "*** GENERATE GRID OF NODES FOR FE MODEL \n\n";

..... details are the same as in static analysis datafile

print "*** ATTACH ELEMENTS TO GRID OF NODES \n\n";

..... details are the same as in static analysis datafile

print "*** DEFINE ELEMENT, SECTION AND MATERIAL PROPERTIES \n\n";

..... details are the same as in static analysis datafile

print "*** SET UP BOUNDARY CONDITIONS \n\n";

..... details are the same as in static analysis datafile

/* [b] : Compile and Print Finite Element Mesh */

EndMesh();

PrintMesh();

/* [c] : Compute Stiffness Matrix */

SetUnitsType("US");

stiff = Stiff();

/* [d] : Compute Influence Lines for Moving Live Loads */

print "\n*** STATIC ANALYSIS PROBLEM \n\n";

Fx = 0 lbf; Fy = 0 lbf; Fz = -1000.0 kips;

169

Mx = 0 lbf*in; My = 0 lbf*in; Mz = 0 lbf*in;

nodeno1 = 97;

nodeno2 = 103;

step = div_L*2+1;

print "node no 1 =",nodeno1,"\n";

print "node no 2 =",nodeno2,"\n";

print "Fz =",Fz,"\n";

print "step =",step,"\n";

influ_line1 = Zero([step , 1]); /* array for influence line 1 */

influ_line2 = Zero([step , 1]); /* array for influence line 2 */

load_node = 2;

lu = Decompose (stiff);

for(i=1 ; i<=step ; i=i+1) {

NodeLoad(load_node, [Fx,Fy,Fz,Mx,My,Mz]);

eload = ExternalLoad();

displ = LUDecomposition(stiff, eload);

node_displ_1 = GetDispl([nodeno1], displ);

node_displ_2 = GetDispl([nodeno2], displ);

influ_line1[i][1] = node_displ_1[1][3];

influ_line2[i][1] = node_displ_2[1][3];

NodeLoad(load_node, [-Fx,-Fy,-Fz,-Mx,-My,-Mz]);

load_node = load_node + nodes_per_section;

}

PrintMatrix(influ_line1);

PrintMatrix(influ_line2);

quit;

Figure 6.19 shows the in
uence line of vertical displacement in the middle of one span
(i.e. at node no 97) for the �rst girder subjected to 1000 kips moving live load. Similarly,
Figure 6.20 shows the in
uence line of displacement in the middle of one span (i.e. node
no 2 = 103) due to the 1000 kips moving live load.

The moving load analysis is one situation where a family of linear equations is
solved with multiple right-hand sides. With this in mind, notice how we have called
the function Decompose() once to decompose stiff into a product of upper and lower
triangular matrices, and then called LUDecomposition() to compute the forward and
backward substitution for each analysis. This strategy of equation solving reduces the
overall solution time by approximately 70%.

170

0 20 40 60 80 100 120 140 160 180 200
−30

−25

−20

−15

−10

−5

0

5

10

First girder coordinate (ft)

V
er

tic
al

 d
ef

le
ct

io
n

(in
)

Figure 6.19: In
uence line of displacement in the middle of one span for the �rst girder
subjected to 1000 kips moving live load

0 20 40 60 80 100 120 140 160 180 200
−12

−10

−8

−6

−4

−2

0

2

4

6

Middle girder coordinate (ft)

V
er

tic
al

 d
ef

le
ct

io
n

(in
)

Figure 6.20: In
uence line of displacement in the middle of one span for the second girder

171

6.2 Time-History Analyses

6.2.1 Modal Analysis of Five Story Steel Frame

Description of Problems : In this section we compute the linear time-history response
of the steel frame structure described in Section 6.1.1. to dead and live gravity loads, plus
a 1979 El Centro Earthquake ground motion scaled to moderate intensity.

50

ft

55 ft

4

5

3

2

1

Full Fixity

FLOOR 1

FLOOR 2

FLOOR 3

FLOOR 4

ROOF

ELEVATION VIEW OF STEEL FRAME SIMPLIFIED MODEL

Xg (t)Xg (t)

Figure 6.21: Elevation View and Simpli�ed Model of Moment Resistant Frame subject to
Scaled 1979 El Centro Earthquake

The left-hand side of Figure 6.21 is a simpli�ed elevation view of the frame also shown in
Figure 6.1. Unlike the analysis conducted in Section 6.1.1., we will assume that all nodal
rotations and vertical de
ections of the frame are fully restrained, and that the horizontal
de
ections across each
oor may be lumped into a single degree of freedom. Together these
assumptions imply that each
oor will move as a rigid body in the horizontal direction,
and that the global frame behavior may be described with only �ve degrees of freedom.
The right-hand side of Figure 6.21 shows the simpli�ed model that will be used in the
earthquake time-history analysis { the shaded �lled boxes represent the lumped masses
at each
oor level, and the global degrees of freedom begin at the �rst
oor level and
increase to the roof.

Figure 6.22 shows details of a 10 segment accelerograph extracted from the 1979 El
Centro Earthquake ground motion. The peak ground acceleration is 86.63 cm/sec/sec.
The ground motion will be scaled so that the peak ground acceleration is 0.15 g.

Input File : The following input �le is based on the input �le presented in Section 6.1.1,

172

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (seconds)

G
ro

un
d

A
cc

el
er

at
io

n
(m

/s
ec

/s
ec

)

Figure 6.22: Ground Acceleration for 1979 El Centro Earthquake

with appropriate extensions for the earthquake analysis, and generation of time-history
response quantities for post-analysis plotting.

START OF INPUT FILE

/*

* ==

* Modal Analysis of Five Story Steel Moment Frame subject to

* El Centro ground motion.

*

* Written By: Mark Austin July, 1995

* ==

*/

/* [a] : Setup problem specific parameters */

NDimension = 2;

NDofPerNode = 3;

MaxNodesPerElement = 2;

StartMesh();

/* [b] : Generate two-dimensional grid of nodes */

..... same as for five story building

/* [c] : Attach column elements to nodes */

173

..... same as for five story building

/* [d] : Attach beam elements to nodes */

..... same as for five story building

/* [e] : Define section and material properties */

ElementAttr("mrf_element") { type = "FRAME_2D";

section = "mrfsection";

material = "mrfmaterial";

}

SectionAttr("mrfsection") { Izz = 1541.9 in^4;

Iyy = 486.3 in^4;

depth = 12.0 in;

width = 12.0 in;

area = 47.4 in^2;

}

MaterialAttr("mrfmaterial") { density = 7850 kg/m^3;

poisson = 0.27;

yield = 275000 MPa;

E = 200000 MPa;

}

/* [f] : Apply full-fixity to columns at foundation level */

for(nodeno = 1; nodeno <= 4; nodeno = nodeno + 1) {

FixNode(nodeno, [1, 1, 1]);

}

for(nodeno = 5; nodeno <= 24; nodeno = nodeno + 1) {

FixNode(nodeno, [0, 1, 1]);

}

LinkNode([5, 6, 7, 8], [1, 0, 0]);

LinkNode([9, 10, 11, 12], [1, 0, 0]);

LinkNode([13, 14, 15, 16], [1, 0, 0]);

LinkNode([17, 18, 19, 20], [1, 0, 0]);

LinkNode([21, 22, 23, 24], [1, 0, 0]);

/* [g] : Compile and Print Finite Element Mesh */

EndMesh();

PrintMesh();

/* [h] : Compute "stiffness" matrix; manually assemble "mass" matrices */

stiff = Stiff();

PrintMatrix(stiff);

mass = Zero([5,5]);

174

mass = ColumnUnits (mass , [N/m]);

mass = RowUnits (mass , [sec^2]);

/* [i] : Manually assemble "mass" matrix : assume (dead + live) loads */

dead_load = 80 lbf/ft^2;

floor_live_load = 40 lbf/ft^2;

roof_live_load = 20 lbf/ft^2;

frame_spacing = 20 ft;

floor_length = 55 ft;

tributary_area = frame_spacing * floor_length;

for(i = 1; i <= 5; i = i + 1) {

if(i <= 4) then {

floor_load = tributary_area * (dead_load + floor_live_load);

} else {

floor_load = tributary_area * (dead_load + roof_live_load);

}

mass [i][i] = mass[i][i] + floor_load / (32.2 ft/sec^2);

}

PrintMatrix(mass);

/* [j] : Compute and print eigenvalues and eigenvectors */

no_eigen = 2;

eigen = Eigen(stiff, mass, [no_eigen]);

eigenvalue = Eigenvalue(eigen);

eigenvector = Eigenvector(eigen);

for(i = 1; i <= no_eigen; i = i + 1) {

print "Mode", i ," : w^2 = ", eigenvalue[i][1];

print " : T = ", 2*PI/sqrt(eigenvalue[i][1]) ,"\n";

}

PrintMatrix(eigenvector);

/* [k] : Generalized mass and stiffness matrices */

EigenTrans = Trans(eigenvector);

Mstar = EigenTrans*mass*eigenvector;

Kstar = EigenTrans*stiff*eigenvector;

PrintMatrix(Mstar);

PrintMatrix(Kstar);

/* [m] : Setup Rayleigh Damping for Frame Structure */

rdamping = 0.05;

W1 = sqrt (eigenvalue[1][1]);

W2 = sqrt (eigenvalue[2][1]);

A0 = 2*rdamping*W1*W2/(W1 + W2);

175

A1 = 2*rdamping/(W1 + W2);

print "A0 = ", A0, " A1 = ", A1, "\n";

Cstar = A0*Mstar + A1*Kstar;

PrintMatrix(Cstar);

/* [n] : Define earthquake loadings... */

Elcentro = ColumnUnits([

14.56; 13.77; 6.13; 3.73; 1.32; -6.81; -16.22; -22.41;

...... details of earthquake removed

-10.05; -12.35; -15.72; 0.00], [cm/sec/sec]);

ground_motion_scale_factor = 0.15*981.0/86.63;

PrintMatrix(Elcentro);

/* [o] : Initialize system displacement, velocity, and load vectors */

displ = ColumnUnits(Matrix([5,1]), [m]);

vel = ColumnUnits(Matrix([5,1]), [m/sec]);

eload = ColumnUnits(Matrix([5,1]), [kN]);

r = One([5,1]);

/* [p] : Initialize modal displacement, velocity, and acc'n vectors */

Mdispl = ColumnUnits(Matrix([no_eigen,1]), [m]);

Mvel = ColumnUnits(Matrix([no_eigen,1]), [m/sec]);

Maccel = ColumnUnits(Matrix([no_eigen,1]), [m/sec/sec]);

/*

* [q] : Allocate Matrix to store five response parameters --

* Col 1 = time (sec);

* Col 2 = 1st mode displacement (cm);

* Col 3 = 2nd mode displacement (cm);

* Col 4 = 1st + 2nd mode displacement (cm);

* Col 5 = Total energy (Joules)

*/

dt = 0.02 sec;

nsteps = 600;

beta = 0.25;

gamma = 0.5;

response = ColumnUnits(Matrix([nsteps+1,5]), [sec], [1]);

response = ColumnUnits(response, [cm], [2]);

response = ColumnUnits(response, [cm], [3]);

response = ColumnUnits(response, [cm], [4]);

response = ColumnUnits(response, [Jou], [5]);

/* [r] : Compute (and compute LU decomposition) effective mass */

176

MASS = Mstar + rdamping*dt*Cstar + Kstar*beta*dt*dt;

lu = Decompose(Copy(MASS));

/* [s] : Mode-Displacement Solution for Response of Undamped MDOF System */

MassTemp = -mass*r;

for(i = 1; i <= nsteps; i = i + 1) {

print "*** Start Step ",i,"\n";

if(i == 2) {

SetUnitsOff;

}

/* [s.1] : Update external load */

if(i <= 500) then {

eload = MassTemp*Elcentro[i][1]*ground_motion_scale_factor;

} else {

eload = MassTemp*(0)*ground_motion_scale_factor;

}

Pstar = EigenTrans*eload;

R = Pstar - Kstar*(Mdispl + Mvel*dt + Maccel*(dt*dt/2.0)*(1-2*beta)) -

Cstar*(Mvel + Maccel*dt*(1-gamma));

/* [s.2] : Compute new acceleration, velocity and displacement */

Maccel_new = Substitution(lu,R);

Mvel_new = Mvel + dt*(Maccel*(1.0-gamma) + gamma*Maccel_new);

Mdispl_new = Mdispl + dt*Mvel + ((1 - 2*beta)*Maccel +

2*beta*Maccel_new)*dt*dt/2;

/* [s.3] : Update and print new response */

Maccel = Maccel_new;

Mvel = Mvel_new;

Mdispl = Mdispl_new;

/* [s.4] : Combine Modes */

displ = eigenvector*Mdispl;

vel = eigenvector*Mvel;

/* [s.5] : Compute Total System Energy */

a1 = Trans(vel);

a2 = Trans(displ);

e1 = a1*mass*vel;

e2 = a2*stiff*displ;

energy = 0.5*(e1 + e2);

/* [s.6] : Save components of time-history response */

177

response[i+1][1] = i*dt; /* Time */

response[i+1][2] = eigenvector[1][1]*Mdispl[1][1]; /* 1st mode displacement */

response[i+1][3] = eigenvector[1][2]*Mdispl[2][1]; /* 2nd mode displacement */

response[i+1][4] = displ[1][1]; /* 1st + 2nd mode displacement */

response[i+1][5] = energy[1][1]; /* System Energy */

}

/* [t] : Print response matrix and quit */

SetUnitsOn;

PrintMatrix(response);

quit;

Points to note are:

[1] Notice that we have used the �nite element routines to compute the sti�ness matrix,
but have manually assembled the mass matrix. It is assumed that when the earth-
quake occurs, the frame loads will equal the dead loading plus the full live loading.
The tributary area equals the frame spacing (20 ft) times the frame width (55 ft).

[2] The global mass and sti�ness matrices are (5�5) matrices. The time-history analysis
is simpli�ed by computing the Newmark integration on the �rst and second modes
of the frame alone. The generalized mass and sti�ness matrices are as described in
Section 4.3.

[3] The damping matrix is taken as a linear combination of the generalized mass and
sti�ness matrices, namely:

C� = ao �M
� + a1 �K

�: (6.3)

Let wm and �m be the circular natural frequency and ratio of critical damping in
the mode m, and wn and �n be the circular natural frequency and ratio of critical
damping in the mode n. It can be shown that the coe�cients a1 and a2 are given
by:

"
a1
a2

#
=

2 � wm � wn

w2
n � w2

m

�

"
wn �wm

�1=wn 1=wm

#
�

"
�m
�n

#
(6.4)

For this analysis we will letm = 1 and n = 2, and assume that the critical ratio of
damping is the same in both modes. The input �le variable rdamping represents the
ratio of critical damping in the �rst and second modes. Analyses will be conducted
for rdamping = 0.0, and rdamping = 0.05.

[4] The time-history analysis is based on the Newmark equations given in Section 4.2,
and the modal analysis equations speci�ed in Section 4.3. At each step the analysis
we compute solutions to the equation of equilibrium

178

�TM� �Y (t) +�TC� _Y (t) +�TK�Y (t) = �TP (t) = ��TMr �Xg(t): (6.5)

Here �, M, C, and K are as previously de�ned. r is a (5 � 1) that describes the
movement in each of the frame degrees of freedom due to a unit ground displacement
{ in this case, r = (5� 1) vector of ones. �Xg(t) is the ground acceleration at time t.

[5] The response is computed for 600 steps of time-step 0.02 seconds (i.e. 12 seconds).
The �rst loop of analysis is conducted with the units checking turned on { thereafter,
the units are switched o�. Constant acceleration across each time-step is achieved
by setting the Newmark parameters � = 0:25 and
 = 0:5 { see Section 4.2 for a
detailed discussion on the Newmark method.

[6] At the end of each time-step we compute the sum of kinetic plus potential energy for
the frame's �rst two modes. Theoretical considerations indicate that when � = 0:25
and
 = 0:5, the total energy of the undamped system will be conserved after the
earthquake motion has stopped (i.e. the last 2 seconds of the computed response).

[7] We have allocated a 600 by 5 response matrix to stored selected components of the
time-history response. See the input �le for a description of the contents in each
column.

Abbreviated Output File : The following output �le is a summary of the output
generated for the simulation case rdamping = 0.0.

START OF ABBREVIATED OUTPUT FILE

==

Title : DESCRIPTION OF FINITE ELEMENT MESH

==

=======================

Profile of Problem Size

=======================

Dimension of Problem = 2

Number Nodes = 24

Degrees of Freedom per node = 3

Max No Nodes Per Element = 2

Number Elements = 35

Number Element Attributes = 1

Number Loaded Nodes = 0

Number Loaded Elements = 0

--

Node# X_coord Y_coord Tx Ty Rz

--

179

1 0.0000e+00 ft 0.0000e+00 ft -1 -2 -3

2 2.0000e+01 ft 0.0000e+00 ft -4 -5 -6

3 3.5000e+01 ft 0.0000e+00 ft -7 -8 -9

4 5.5000e+01 ft 0.0000e+00 ft -10 -11 -12

..... details of nodal coordinates removed

24 5.5000e+01 ft 5.0000e+01 ft 5 -51 -52

--

Element# Type node[1] node[2] Element_Attr_Name

--

1 FRAME_2D 1 5 mrf_element

2 FRAME_2D 5 9 mrf_element

..... details of frame elements removed

34 FRAME_2D 22 23 mrf_element

35 FRAME_2D 23 24 mrf_element

Element Attribute Data :

ELEMENT_ATTR No. 1 : name = "mrf_element"

: section = "mrfsection"

: material = "mrfmaterial"

: type = FRAME_2D

: gdof [0] = 1 : gdof[1] = 2 : gdof[2] = 3

: Young's Modulus = E = 2.000e+05 MPa

: Yielding Stress = fy = 2.750e+05 MPa

: Poisson's ratio = nu = 2.700e-01

: Density = 7.850e+03 kg/m^3

: Inertia Izz = 1.542e+03 in^4

: Area = 4.740e+01 in^2

============= End of Finite Element Mesh Description ==============

SKYLINE MATRIX : "stiff"

row/col 1 2 3 4 5

units N/m N/m N/m N/m N/m

1 4.35158e+08 -2.17579e+08 0.00000e+00 0.00000e+00 0.00000e+00

2 -2.17579e+08 4.35158e+08 -2.17579e+08 0.00000e+00 0.00000e+00

3 0.00000e+00 -2.17579e+08 4.35158e+08 -2.17579e+08 0.00000e+00

4 0.00000e+00 0.00000e+00 -2.17579e+08 4.35158e+08 -2.17579e+08

5 0.00000e+00 0.00000e+00 0.00000e+00 -2.17579e+08 2.17579e+08

MATRIX : "mass"

row/col 1 2 3 4 5

units N/m N/m N/m N/m N/m

180

1 sec^2 5.98259e+04 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

2 sec^2 0.00000e+00 5.98259e+04 0.00000e+00 0.00000e+00 0.00000e+00

3 sec^2 0.00000e+00 0.00000e+00 5.98259e+04 0.00000e+00 0.00000e+00

4 sec^2 0.00000e+00 0.00000e+00 0.00000e+00 5.98259e+04 0.00000e+00

5 sec^2 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.98550e+04

*** SUBSPACE ITERATION CONVERGED IN 9 ITERATIONS

Mode 1 : w^2 = 313 1/sec^2 : T = 0.3551 sec

Mode 2 : w^2 = 2648 1/sec^2 : T = 0.1221 sec

MATRIX : "eigenvector"

row/col 1 2

units

1 2.91629e-01 7.87127e-01

2 5.58155e-01 1.00000e+00

3 7.76637e-01 4.84597e-01

4 9.28270e-01 -3.82551e-01

5 1.00000e+00 -9.70739e-01

MATRIX : "Mstar"

row/col 1 2

units N/m N/m

1 sec^2 1.61217e+05 7.27596e-12

2 sec^2 7.27596e-12 1.66677e+05

MATRIX : "Kstar"

row/col 1 2

units N/m N/m

1 5.04687e+07 2.04891e-08

2 0.00000e+00 4.41345e+08

A0 = 0 1/sec A1 = 0 sec

MATRIX : "Cstar"

row/col 1 2

units kg/sec^3 kg/sec^3

1 sec^2 0.00000e+00 0.00000e+00

2 sec^2 0.00000e+00 0.00000e+00

MATRIX : "response"

row/col 1 2 3 4 5

units sec cm cm cm Jou

1 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

2 2.00000e-02 -5.17642e-04 -3.51330e-04 -8.68972e-04 2.82918e-01

...... details of response matrix removed : for details, see the figures.

600 1.19800e+01 -4.21771e-02 -2.57188e-02 -6.78958e-02 3.88629e+02

601 1.20000e+01 -7.47478e-02 -1.97584e-02 -9.45062e-02 3.88629e+02

181

Matrices Mstar and Kstar in the program output correspond to the generalized mass
and sti�ness matrices, respectively. We expect that the computed eigenvectors will be
orthogonal with respect to the mass and sti�ness matrices, and hence, the generalized
mass and sti�ness matrices will be (nearly) diagonal { we see that in practice, some
round-o� errors occur.

The �rst and second modes of vibration have natural periods 0.3551 sec and
0.1221 sec, respectively. When the frame is undamped, coe�cients ao and a1 evaluate to
zero, as expected.

Figures 6.23 to 6.26 summarize the time-history response of the undamped mo-
ment resistant frame. Figure 6.23 is the time history response for mode 1, Figure 6.24 the
time history response for mode 2, and Figure 6.25 the time history response for modes 1
and 2 combined. Figure 6.26 plots the kinetic plus potential energy of the frame { you
should notice that once the ground motion has ceased (at t = 10 seconds), the Newmark
method conserves energy.

Figures 6.27 and 6.27 plot the total time-history response and energy when the
frame has 5% damping. After the ground motion has ceased, the roof displacement
decreases steadily to zero. You can easily observe that between t = 10 seconds and t = 12
seconds, the roof oscillates through approximately 5.5 cycles. This implies an approximate
natural frequency of 2=5:5 � 0:36 seconds.

182

0 2 4 6 8 10 12
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (seconds)

D
is

pl
ac

em
en

t (
cm

)

Figure 6.23: Modal Analysis : First Mode Displacement of Roof (cm) versus Time (sec)

0 2 4 6 8 10 12
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time (seconds)

D
is

pl
ac

em
en

t (
cm

)

Figure 6.24: Modal Analysis : Second Mode Displacement of Roof (cm) versus Time (sec)

183

0 2 4 6 8 10 12
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

D
is

pl
ac

em
en

t (
cm

)

Figure 6.25: Modal Analysis : First + Second Mode Displacement of Roof (cm) versus
Time (sec)

0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (seconds)

T
ot

al
 E

ne
rg

y
(J

ou
le

s)

Figure 6.26: Modal Analysis : Total Energy (Joules) versus Time (sec)

184

0 2 4 6 8 10 12
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (seconds)

D
is

pl
ac

em
en

t (
cm

)

Figure 6.27: Modal Analysis at 5% damping : First + Second Mode Displacement of Roof
(cm) versus Time (sec)

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time (seconds)

T
ot

al
 E

ne
rg

y
(J

ou
le

s)

Figure 6.28: Modal Analysis at 5% damping : Total Energy (Joules) versus Time (sec)

185

Part IV

ARCHITECTURE AND DESIGN

186

Chapter 7

Data Types : Physical Quantity and

Matrix Data Structures

7.1 Introduction

Basic engineering quantities such as, length, mass, and force, are de�ned by a
numerical value (number itself) plus physical units. The importance of the engineering
units is well known. Unfortunately, physical units are not a standard part of main-stream
�nite element software packages { indeed, most engineering software packages simply
assume that engineering units will be consistent, and leave the details of checking to
engineer (in the writers' experience, it is not uncommon for engineers to overlook this
detail). While this practice of implementation may be satisfactory for computation of
well established algorithms, it is almost certain to lead to incorrect results when engineers
are working on the development of new and innovative computations.

ALADDIN deviates from this trend by supporting the basic data type physical
quantity, as well as matrices of physical quantities. Engineers may de�ne units as part
of the problem description, and manipulate these quantities via standard arithmetic and
matrix operations. Any set of valid engineering units can be used. For example, mm, cm,
m, km, and in, are all valid units of length. In this chapter, we discuss the data structures
used to implement physical quantities, and matrices of physical quantities. Special storage
techniques for large symmetric matrices are also mentioned.

7.2 Physical Quantities

Any physical unit can be decomposed into basic units. The four basic units needed
for engineering analysis are: length unit L; mass unit M; time unit t; and temperature
unit T . Any engineering unit can be obtained with the following combinations:

unit = kL�M�t
T �:

187

where �; �;
; � are exponents, and k is the scale factor. For units of length and mass,
[�; �;
; �] = [1; 0; 0; 0] and [�; �;
; �] = [0; 1; 0; 0], respectively. Non-dimensional quan-
tities (i.e. numbers, degrees, and radians) are given by the family of zero exponents
[�; �;
; �] = [0; 0; 0; 0]. With this basic units in place, we can de�ne the units data struc-
ture as:

#define SI 100

#define US 200

#define SI_US 300

typedef struct dimensional_exponents {

char *units_name; /* units name */

double scale_factor; /* scale/conversion factor */

double length_expnt; /* exponent for length */

double mass_expnt; /* exponent for mass */

double time_expnt; /* exponent for time */

double temp_expnt; /* exponent for temperature */

int units_type; /* US or SI units */

} DIMENSIONS;

The character string stores the unit name, and scale factor, the scale factor with respect
to a basic unit. For example, in US units the basic unit of length is inch. It follows that
12 will be the scale factor for one foot. The units type
ag allows for the representation of
various systems of units (e.g. SI, US, and combined SI US). SI US units are those shared
by both US and SI systems { the two most important examples being time and non-
dimensional units. We use variables of data type double to represent exponents, thereby
avoiding mathematical di�culties in manipulation of quantities. For example, if x = y0:5,
the unit exponents of x, [�x; �x;
x; �x] = 0:5� [�y; �y;
y; �y]. If the units exponents were
de�ned as integers, then x would be incorrectly truncated to [�x; �x;
x; �x] = [0; 0; 0; 0].
With the units data structure in place, the quantity data structure is simply de�ned as

typedef struct engineering_quantity {

double value;

DIMENSIONS *dimen;

} QUANTITY;

Notice that physical units alone are the special case of a quantity with numerical value
1.0.

7.2.1 Relationship between Quantity and Units

In engineering applications, there is no need to distinguish between di�erent sys-
tems of units during calculation. The main use of units is for clari�cation of problem
input and problem output. ALADDIN stores a physical quantity as an unscaled value
with respect to a set of reference units, and by default, all quantities are stored internally
in the SI units system. In the SI system, the reference set of units are meter \m" for
length, kilogram \kg" for mass, second \sec" for time and \deg C" for temperature.

188

Suppose, for example, that we de�ne the quantity, x = 1 km (one kilometer).
Because 1 km = 1000 m, x will be saved internally as value = 1000, In the data structure
DIMENSIONS, units name will point to the character string \km". The scale factor for
\km" with respect to reference unit \m" is 1000. Now lets see what happens when we
print x. Because the output value = value/scale factor = 1. \print x" will still give \1
km".

7.2.2 US and SI Units Conversion

Scale factors are needed to convert units in US to SI, and vice versa. All quantities
in US units must be converted into SI before they can be used in calculations. Fortunately,
for most sets of units, only a single scale factor is needed to convert a quantity from US
into SI and vice versa (e.g. 1 in = 24.5 mm = 25.4E-3 m).

The important exception is temperature units. Conversion of temperature units is
complicated by the nonlinear relationship between systems { that is xoF 6= x�1oF , since
xoF = (5=9)(x� 32)� 1oC. In other words, the value and unit of a temperature quantity
can not be treated separately. We have to know the value of temperature before we can
convert it's units from one to another unit system. ALADDIN handles this problem by
�rst installing the \deg F" (unit for oF) with scale factor = 1 into symbol table. When
the value (a number) and the unit are combined into a quantity we convert the deg F into
deg C. When a temperature quantity is printed out, we need to convert it's units to the
prefered units. A related complication is units for temperature increment. One degree of
temperature increase is di�erent from one degree temperature. To see how this problem
arises, let y = 1oF . If y is a one degree temperature increase, then y = (�+1)oF ��oF =
5=9oC, where � is value of previous temperature. If, on the other hand, y is at one degree
Fahrenheit temperature, then y = (5=9)(1� 32)oC = �17:22oC. Similar di�culties crop
up in the computation of temperature gradient { 10mm=oF can only be considered as
a 10 mm extension for one Fahrenheit degree temperature increase, which is 18mm=oC.
This cannot be considered as (10mm)=(1oF), which is (�0:5806mm)=(1oC) (divisions of
this kind in real engineering computations are meaningless). To avoid these confusions, a
new set of units are chosen for temperature increments, they are "DEG F and DEG C"
to distinguish from \deg F and deg C". The conversion between DEG F and DEG C is
DEG F = 5/9 DEG C. And for simplicity, we will ignore the case of (10mm)=(1oF).

Library Functions for Internal Operations on Units : ALADDIN also provides
functions for internal operations on units { example functions include copying units,
obtaining default units, checking consistency of units, simplifying the units name after
various operations, calculating the length of units name, and printing of units. For a
summary of functions, see Table 7.1. Note : Some mathematical functions such as
log(x), ln(x) or exp(x), cannot have units in their argument lists. Other mathematical
functions, such as sine and cosine, can only have degree or radian in their arguments.

189

Functions for Units Operations

Function Purpose of Function

SameUnits() Check if two units are of same type

UnitsMult() Multiply two units

UnitsDiv() Divide two units

UnitsCopy() Make a copy of a unit

UnitsPower() compute a unit raised to a power

UnitsNegate() Negate a unit d = 1/d

UnitsPrint() Print name, scalefactor, type and exponents of a unit

ZeroUnits() Initialize a unit

DefaultUnits() Determine pointer on symbol table for a given unit name

UnitsSimplify() Simplify unit name string with simple character string

RadUnitsSimplify() Convert a nondimensional unit into a radian unit

UnitsLength() Measure the total length of several units names

ConvertTempUnits() Convert temperature units between SI and US systems

UnitsConvert() Convert units between US and SI systems { except for
temperature units

Table 7.1: Functions for Units Operations

190

7.3 Matrices

ALADDIN's matrix module has following features:

[1] It supports wide range of matrix operations, data types (integer, double and complex),
and storage methods. In this section, only the double and indirect storage methods
are discussed. The skyline matrix for large degree of freedom will be discussed in
next section.

[2] It allows users to dynamic allocate and deallocate the memory of matrix.

[3] It provides the units for each element of the matrix.

Our strategy of development is to devise a software framework that will allow any com-
bination of data type and storages scheme to be implemented.

BODY OF MATRIX

Matrix Name

Union containing int,

double, COMPLEX.

Matrix Parameters.

MATRIX *spM

R
ow

 u
ni

ts
 b

uf
fe

r

Column units buffer

Figure 7.1: Layout of Memory in Matrix Data Structure

Figure 7.1 shows a high-level layout of memory for the matrix data structure. Details of
the matrix data structure are as follows:

/* Data Structures for Matrices of Engineering Quantities */

typedef struct {

double dReal, dImaginary;

} COMPLEX;

typedef enum {

191

INTEGER_ARRAY = 1,

DOUBLE_ARRAY = 2,

COMPLEX_ARRAY = 3

} DATA_TYPE;

typedef enum {

SEQUENTIAL = 1,

INDIRECT = 2,

SKYLINE = 3,

SPARSE = 4

} INTERNAL_REP;

typedef struct MATRIX {

char *cpMatrixName; /* *name */

int iNoRows; /* no_rows */

int iNoColumns; /* no_columns */

DIMENSIONS *spRowUnits; /* *row_units_buf */

DIMENSIONS *spColUnits; /* *col_units_buf */

INTERNAL_REP eRep; /* storage type */

DATA_TYPE eType; /* data type */

union {

int **iaa;

double **daa;

COMPLEX **caa;

} uMatrix;

} MATRIX;

Memory is provided for a character string to the matrix name, two integers for the number
of matrix rows and columns, two one-dimensional arrays of data type DIMENSIONS, and
integer
ags for the basic data type and storage scheme for matrix elements. The union
uMatrix contains pointers to matrix bodies of integers, doubles and COMPLEX elements.
For the purpose of this study, however, we will implement and describe algorithms for
data type double plus units alone (i.e. DATA TYPE equals DOUBLE ARRAY).

10 5 12

5 5 7

12 7 13

Column Units BufferPa.m

A

Pa.m

m

Row Units Buffer

Pa.m2

Figure 7.2: Matrix with Units Bu�ers

The units for elements in a matrix are stored in two one-dimensional arrays of data
type DIMENSIONS. One array stores column units, and the second array row units. The
units for matrix element at row i and column j is simply the product of the ith element

192

of the row units bu�er and the jth element of column units bu�er. Figure 7.2 shows,
for example, a 3x3 sti�ness matrix. Elements A[1][1] = 10 pa.m = 10 N/m; A[2][3] = 7
pa:m2 = 7 N, and A[3][3] = 13 pa:m2 �m = 13 N.m. This strategy for storing units not
only requires much less memory than complete element-by-element storage of units, but it
re
ects the reality that most engineering matrices are in fact, convenient representations
of equations of motion and equlibrium. The units of individual terms in these equations
must be consistent.

...............

double **daa daa[0]

daa[1]

daa[2]

daa[3]

daa[4]

daa[0][0] daa[0][1] daa[0][2]

daa[1][0] daa[1][1] daa[1][2]

daa[2][2]daa[2][0] daa[2][1]

daa[3][0] daa[3][2]daa[3][1]

daa[4][0] daa[4][1] daa[4][2]

Figure 7.3: Matrix body for Indirect Storage Pattern

Matrices generated through the command language and �le input are stored with
an INDIRECT storage pattern. Details of the latter storage pattern are shown in Figure 7.3.

7.3.1 Skyline Matrix Storage

The method of skyline storage is suitable for large symmetric matrices, which
are sparsely populated by non-zero elements along (or close to) the matrix diagonal.
ALADDIN uses skyline storage for matrices generated during �nite element analysis. To
illustrate the general idea of skyline storage, consider symmetric matrix A given by

A =

2
666666664

10 4 0 0 3 0
4 45 0 1 0 0
0 0 3 0 0 0
0 1 0 1 6 3
3 0 0 6 4 34
0 0 0 3 34 20

3
777777775

We �rst note that indirect storage of A would require a (6� 1) array of pointers, plus six
one-dimensional arrays, each containing 6 elements of data type double. On an engineering

193

1

10

2

45

4

1

3

4

9

5

4

6

3

3

20

34

30

1

0

1

0

Array of Pointers

1 2 3 4 5 6

Column Hights

Column Number

Diagonal Elements

double **daa

Figure 7.4: Method of Skyline Storage for Symmetric Matrix

workstation where pointers are 4 bytes, 312 bytes are needed for the matrix body. The
method of skyline storage reduces memory requirements by taking advantage of matrix
symmetries, and storing in each column, only those matrix elements from the matrix
diagonal to the uppermost non-zero element. The \distance" between the diagonal and
the last non-zero element is called the \column height." Figure 7.4 shows the layout of
memory for skyline storage of matrix A. In each column, memory is allocated for the
memory for the size of \column height" plus one, with the height stored in the �rst
element of the corresponding array. The second component of the column array stores
the matrix diagonal, and the last element, the upper-most non-zero element in the array.
The column height is needed for computation of matrix operations { for example, matrix
element (iRowNo, iColumnNo) is accessed and printed with the formula

ik = MIN(iRowNo, iColumnNo);

im = MAX(iRowNo, iColumnNo);

if((im-ik+1) <= spA->uMatrix.daa[im-1][0])

printf(" %12.5e ", spA->uMatrix.daa[im-1][im-ik+1]);

else

printf(" %12.5e ", 0.0);

Here MIN() and MAX() are macros that return the minimum and maximum of two input
arguments, respectively.

Functions in Matrix Library : Table 7.2 contains a summary of matrix functions
provided by ALADDIN. During matrix operations, consistency of units is checked, as is
compatibility of matrix dimensions. Readers should notice the subtle di�erence between
function pairs MatrixAdd() and MatrixAddReplace(), MatrixSub() and MatrixSubRe-
place(), and MatrixMult() and MatrixMultReplace(). In the functions MatrixInverseIt-
eration() and MatrixHouseHolder(), matrices A and B must be symmetric.

194

Matrix Function and Purpose

Function Purpose of Function

MatrixAlloc() Allocate memory for matrix

MatrixFree() Free memory for matrix

MatrixPrint() Print content of matrix

MatrixCopy() Make a copy of matrix

MatrixTranspose() Compute transpose of matrix

MatrixAdd() Compute sum of two matrices [C] = [A] + [B]

MatrixSub() Compute di�erence of two matrices [C] = [A]� [B]

MatrixMult() Compute product of matrices

MatrixNegate() Negate matrix [B] = -[A]

MatrixAddReplace() Replacement sum of two matrices [A] = [A] + [B]

MatrixSubReplace() Replacement di�erence of two matrices [A] = [A]� [B]

MatrixMultReplace() Replacement product of two matrices [A] = [A]:[B]

MatrixNegateReplace() Negate matrix replacement [A] = -[A]

MatrixSubstitute() Substitute small matrix into larger matrix

MatrixExtract() Extract small matrix from larger matrix

MatrixSolve() Solve linear equations [A]fxg = fbg

MatrixInverse() Compute matrix inverse [A]�1

MatrixInverseIteration() Use inverse iteration to solve symmetric eigenvalue
problem [A]fxg = �[B]fxg for lowest eigenvalue and
eigenvector

MatrixHouseHolder() Use Householder transformation and QL Algorithm to
solve [A]fxg = �fxg

Table 7.2: Selected Matrix Operations

195

7.3.2 Units Bu�ers for Matrix Multiplication

The handling of units in multiplication of two dimensional matrices needs special
attention. Let A be a (p�q) matrix with row units bu�er [a1; a2; � � � ; ap] and column units
bu�er[b1; b2; � � � ; br]. And let B be a (q � r) matrix with row units bu�er [c1; c2; � � � ; cq]
and a column units bu�er [d1; d2; � � � ; dq]. The units for elements (A)ik and (B)kj are ai�bk
and ck � dj, respectively. Moreover, let C be the product of A and B. From basic linear
algebra we know that (C)ij = Aik �Bkj, with summation implied on indice k. The units
accompanying (C)ij are aibk � ckdj for k = 1, 2, ..., q. Due to the consistency condition,
all of the terms in

Pq
k=1Aik �Bkj must have same units. Put another way, the exponents

of units must satisfy the product constraint aib1c1dj = aib2c2dj = � � � = aibqcqdj. The
units for Cij are aib1c1dj.

units

c1
c2

ck

cq

d1 d2 dj dr

kjB

units b1 b2

a1

a2

ai

bk

ap

A

bq

* C

units d1b1 d2b1 drb1

a1c1

aic1

apc1

a2c1

C

djb1

ik

ij

 A

BA

B

Figure 7.5: Units Bu�er Multiplication of Two Matrices

The units bu�ers for matrix C are written as a row units bu�er [a1c1; a2c1; � � � ; apc1], and a
column bu�er is [d1b1; d2b1; � � � ; drb1]. This arrangement of units exponents is graphically
displayed in Figure 7.5. It is important to notice that although the units for C matrix
are unique, the solution for the units bu�ers is not unique.

7.3.3 Units Bu�ers for Inverse Matrix

The units bu�ers for an inverse matrix may be obtained as the special case of
above results. Again let A be the square matrix of interest, with number of rows and
columns equal (i.e. p = q). Let matrix B be the inverse matrix of matrix A. From the
previous section we know that the units for element Cij are aibkckdj, and because B is the
inverse of matrix A, the diagonal elements of the matrix C must be dimensionless (i.e.

196

aibkckdi = 1 for k = 1; 2 � � �p and i = 1; 2 � � �p). However, because contents of the units
bu�ers need not be unique, and

ckdi =
1

aibk

we can arbitrarily select ck and dj with the following set as the units bu�ers:

ck =
1

bk

for k = 1; 2; � � �p, and di = 1=ai for i = 1; 2; � � �p. The reader should notice that in this
arrangement of units exponents, the row units bu�er of inverse matrix of A is the inverse
of A's column units bu�er, and the column bu�er of inverse matrix of A is the inverse if
A's row units bu�er.

Let [M] be a (n� n) square matrix, [M]�1 it's inverse. In expanded matrix form
(i.e. including units bu�ers), [M] and [M]�1 can be written:

[M] =

2
6666664

units b1 b2 � � � bn
a1 M11 M12 � � � M1n

a2 M21 M22 � � � M2n

� � � � � � � � � � � � � � �
an M31 M32 � � � Mnn

3
7777775

[M]�1 =

2
6666664

units a1
�1 a2

�1 � � � an
�1

b1
�1 M�

11 M�

12 � � � M�

1n

b2
�1 M�

21 M�

22 � � � M�

2n

� � � � � � � � � � � � � � �
bn

�1 M�

31 M�

32 � � � M�

nn

3
7777775

The corresponding [IR] and [IL] are :

[IR] = [M] � [M]�1 =

2
6666664

units b1:a1
�1 b1:a2

�1 � � � b1:an
�1

a1:b1
�1 1 0 � � � 0

a2:b1
�1 0 0 � � � 0
� � � � � � � � � � � � � � �

an:b1
�1 0 0 � � � 1

3
7777775

=

2
6666664

units a1
�1 a2

�1 � � � an
�1

a1 1 0 � � � 0
a2 0 0 � � � 0
� � � � � � � � � � � � � � �
an 0 0 � � � 1

3
7777775

197

[IL] = [M]�1 � [M] =

2
6666664

units a1 a2 � � � an
a1

�1 1 0 � � � 0
a2

�1 0 0 � � � 0
� � � � � � � � � � � � � � �

an
�1 0 0 � � � 1

3
7777775

We observe that the units of [IL] and [IR] depend only on the row units bu�er of the
matrix [M].

Example from Structural Engineering : In undergraduate structural analysis classes
we learn that an external force vector ffg can be written as the product of a sti�ness matrix
K and displacement vector d.

[K]fdg = ffg

Suppose that we are working in a three dimensional coordinate space (x,y,z). Without
a loss of generality in discussion, we can limit the total number of degrees of freedom
to three; two translations u and v in directions x and y, respectively, and a rotational
degree of freedom � about the z axis, The translational forces and moment in vector ffg
are f1; f2, and M . In expanded form the abovementioned equation is:

2
64
k11 k12 k13
k21 k22 k23
k31 k32 k33

3
75 �

8><
>:

u
v
�

9>=
>; =

8><
>:

f1
f2
M

9>=
>;

Because u and v are translational displacements, they will have length units, \m" or
\in." External forces f1 and f2 will have units newton \N," or pound force \lbf". For
the underlying equations of equilibrium to be consistent, units for k11; k12; k21 and k22
must be \N/m" or \lbf/in." And because � has non-dimensional radian units, k13 and
k23 have units \N" or \lbf." The third equation represents rotational equilibrium, with
its right-hand side having units of moment (i.e \N.m" or \lbf.in"). The units for k31 and
k32 are \N" or \lbf," and units for k33, \N.m" or \lbf.in." For SI units we write:

[K] =

2
6664
units N=m N=m N

k11 k12 k13
k21 k22 k23

m k31 k32 k33

3
7775

and for US units:

[K] =

2
6664
units lbf=in lbf=in lbf

k11 k12 k13
k21 k22 k23

in k31 k32 k33

3
7775 :

198

The equations of equilibrium and units bu�ers for the corresponding compliance matrix
are: 2

64 c11 c12 c13
c21 c22 c23
c31 c32 c33

3
75 �

8><
>:

f1
f2
M

9>=
>; =

8><
>:

u
v
�

9>=
>;

For SI units,

[C] =

2
6664
units 1=m
m=N c11 c12 c13
m=N c21 c22 c23
1=N c31 c32 c33

3
7775

A similar matrix C can be written for US units. We observe that the units bu�ers for the
compliance matrix, which is the inverse of the sti�ness matrix, follows the general rule
stated at the conclusion of the previous section.

Now let's look at the numerical details and units of the matrix product [K]� [C]
{ for notational convenience, we will call the identity product [IR]. The elements �rst and
second rows of [IR] have units of [1, 1, 1/m], and the third row of [IR], units [m,m,1].
In expanded matrix form, we have:

[IR] = [K]� [C] =

2
6664
units 1=m

1 0 0
0 1 0

m 0 0 1

3
7775

Similarly we have

[IL] = [C]� [K] =

2
6664
units m

1 0 0
0 1 0

1=m 0 0 1

3
7775

Three points are noted about this result. Matrices [IL] and [IR] are not equal as most
engineers might expect { instead, [IL] is the transpose of [IR]. Second, [IL] and [IR] are
not symmetric with respect to the units or units bu�ers. Finally, these \identity" matrices
are not dimensionless. Even though the values of o�-diagonal elements are all zero, some
of them have non-dimensional units.

Some readers may feel uncomfortable knowing that so-called \indentity" matrices
are not dimensionless, and may wonder how could that be. Actually, when you look
carefully into the equations, the results are not surprising. For example, let's take the
�rst column of compliance matrix [C] and label it fC1g = [c11; c21; c31]

T . When [K] fC1g

199

is compared to [K] fdg, one quickly realizes that [c11; c21; c31] takes the place of [u, v, �]
(here c11; c21 are the displacement per unit force, and c31 is the rotation per unit moment).
Given that the units for ffg are [force; force;moment]T , then units for the �rst column of
matrix [IR] will be [force/force, force/force, moment/force] (or [1, 1, m]). Similar results
may be derived for the remaining columns of C, and in fact, may be generalized.

200

Chapter 8

Architecture and Design of

ALADDIN

8.1 Introduction

A key design objective for ALADDIN is the development of a program structure
that is very modular. We have captured this principle by designing the program archi-
tecture, and supporting software modules, around the compiler construction tool called
YACC (an acronym for Yet Another Compiler Compiler) [16]. YACC takes the language
description and automatically generates C code for a parser that will match streams of
input against the rules of the language. A key advantage in using YACC is that it pro-
vided us with the freedom to experiment with the language design/semantics, and to add
and delete new features. Experience in other domains (i.e. computer science) indicates
such strategies result in modular software that is extensible, and easier to maintain.

8.2 Program Modules and Key Data Structures

Figure 8.1 shows the interfaces and relationships among the seven modules in
ALADDIN. They are (a) Main Module, (b) Pre-Processor Module, (c) Central Control
Module, (d) Finite Element Base Module, (e) Element Library Module, (f) Matrix Mod-
ule, and (g) an Engineering Units Module. A detailed summary is as follows:

Main Module : The main module acts as the entry point for program execution. It
loads information speci�ced in ALADDIN's header �les into the symbol table, directs the
source of expected input (i.e. keyboard or �les), and details of command options, decides
whether or not to check the input syntax errors with/without execution of commands.
The main module calls the pre-processor module, and executes the program.

Preprocessor Module : ALADDIN's preprocessor module parses input streams from
either the keyboard of �le, and prepares an array of machine instructions that will be
executed by ALADDIN's stack machine. The stack machine is part of the program control

201

Input

MAIN
read & scan input, run

Initialization Environment
Matrix Module

math operations

equation solver

matrix print et al.
eigenvalue solver

Central Control Module
Push and Pop stack

Execute stack instruction

Call other modules
Output

Working Array

FEA Output

Element Library Module

FINITE ELEMENT MODULE

FEA Base Module

Memory allocation for FE data

Mesh generation

structure

Setup FEA matrices
Setup material properties

Miscellaneous

Units Module

ULTILITIES

units operations

dynamic memory
allocation

error handling

Parser

Pre-Processor Language

Lexical analyser

YACC grammar

Build execution instruction stack

Figure 8.1: Architecture of Program

module.

Program Control Module : The central control module is composed of a stack machine,
and is the heart of ALADDIN. The design and implementation details for the stack
machine will be described in the next section of this report.

Finite Element Base Module : The �nite element base module contains ALADDIN's
framework for �nite element analysis. This module has code to generate nodes and ele-
ments in �nite element meshes, a problem descriptor for boundary and initial conditions,
material and sections properties, and facilities to setup external loads. It contains func-
tions to allocate and compute �nite element mass, sti�ness, and external load matrices.

The heart of the �nite element base structure is the data structure frame. It has
been designed to read, store and update information in �nite element analysis. \frame"
comprises of a set of control parameters and pointers to node, element, material and load,
which include the basic input formation.

typedef struct frame {

char *name; /* Title */

int no_nodes; /* no of nodes */

int no_rigid; /* no of rigid body elements */

int no_elements; /* no of flexible elements */

int no_element_attr; /* no of element attributes */

int no_node_loads; /* no of nodal loads */

int no_element_loads; /* no of element loads */

int no_dimen; /* no of dimension */

202

int no_dof; /* no of dof per node--in global */

int no_nodes_per_elmt; /* max no of nodes per element */

NODE *node; /* array of nodes */

RIGID *rigid; /* rigid body information */

ELEMENT *element; /* array of elements */

ELEMENT_ATTR *eattr; /* array of element attributes */

NODE_LOADS *nforces; /* array of nodal forces */

ELEMENT_LOADS *eforces; /* array of element forces */

LOAD_TYPE *load_type; /* test for dynamic/static problems */

LOAD_HISTORY *load_hist; /* load_history structure for dynamic analysis */

LOAD_STEP *load_step; /* load_step structure for nonlinear analysis */

TIME *time; /* time data structure for dynamic analysis */

MATRIX *eigenvalue; /* Eigenvalue vector */

} EFRAME;

The control parameters de�ne the problem size and the extend of allocation. These are
global parameters and keeps constant throughout the analysis. The node data structure,
NODE, contains the information about the nodes coordinates, boundary constraint infor-
mation of that node, the initial displacement and velocity of the nodes. And the element
data structure, ELEMENT, contains the information of its connection to the nodes in
the element, the relation between the global and local degree of freedoms, material and
geometry of the element et al. They are given as:

typedef struct node {

QUANTITY *coord; /* Coordinates of node */

int *bound_id; /* Boundary Constraint ID */

int rb_num; /* component of rigid body number */

QUANTITY *disp;

QUANTITY *velocity;

MATRIX *TrT;

} NODE;

typedef struct element_state {

int state; /* state = 1 elastic-plastic deformation */

/* state = 0 elastic deformation */

} ELEMENT_STATE;

typedef struct element_response {

MATRIX *Forces;

MATRIX *stress;

MATRIX *displ;

MATRIX *velocity;

MATRIX *strain_pl;

double *effect_pl_strain;

QUANTITY min_moment;

QUANTITY max_moment, Mzc;

QUANTITY min_shear, max_shear;

} RESPONSE;

typedef struct element {

char *elmt_attr_name; /* Elmt_Attr name */

int *node_connect; /* List of Nodal Connectivities */

203

int elmt_attr_no; /* Elmt Attribute No (stored in frame) */

int *d_array; /* Destination array storage */

RESPONSE *rp; /* Response Pointer */

ELEMENT_STATE *esp; /* Deformation State of the Element */

MATER_LOAD_CURVE *LC_ptr; /* properties for describe yield */

/* surface and stress-strain curve */

} ELEMENT;

The element attribute information is included in the ELEMENT ATTR data structure.

typedef struct elmt_attr {

char *name;

char *elmt_type;

char *material;

char *section;

int *map_ldof_to_gdof;

QUANTITY *work_material; /* Working Array for Material Properties */

QUANTITY *work_section; /* Working Array for Section Properties */

} ELEMENT_ATTR;

There are two working arrays in the element attribute data structure. One for the material
properties and the other for the section property. For given element no, the material and
section properties can be found directly from these working array instead of looking into
the hashing table.

Finite Element Library Module : The �nite element library module is a collection of
�nite felement functions. Like FEAP, ALADDIN allows engineers to add new �nite ele-
ments to the programwithout having to interact other parts of the program. At the time of
writing (December 1994), the library contains two- and three- dimensional beam/column
elements, a plane stress/strain element, and two four node shell elements. Each element
has code to compute sti�ness and mass matrices, plus for a given displacement vector, a
vector of internal forces acting on the nodal degrees of freedom.

Matrix Module : The matrix module contains functions to allocate and deallocate
memory for matrices, to compute basic operations of matrices, to compute solutions to
families of linear equations, and to solve the symmetric eigenvalue problem.

Units Module : The units module provides the units operations of engineering quantities
and matrices for both US and SI systems of units. Operations for units conversion are
provided, as are facilities to turn units operations on/o�. The following data structure
stores details of the units name, conversion factor, length, mass, and time exponents:

static struct {

char *name; /* units name */

double conversion; /* scale factor */

int length_expnt;

int mass_expnt;

int time_expnt;

int temp_expnt;

204

int units_type;

} eng_units[] = {

"micron", 1E-6, 1, 0, 0, 0, SI, /* Units of Length */

"mm", 0.0010, 1, 0, 0, 0, SI,

"cm", 0.0100, 1, 0, 0, 0, SI,

"dm", 0.1000, 1, 0, 0, 0, SI,

"m", 1, 1, 0, 0, 0, SI,

"km", 1000, 1, 0, 0, 0, SI,

"g", 0.0010, 0, 1, 0, 0, SI, /* Units of Mass */

"kg", 1, 0, 1, 0, 0, SI,

"Mg", 1E+6, 0, 1, 0, 0, SI,

"sec", 1, 0, 0, 1, 0, SI_US, /* Units of Time */

"min", 60, 0, 0, 1, 0, SI_US,

"hr", 3600, 0, 0, 1, 0, SI_US,

"deg_C", 1, 0, 0, 0, 1, SI, /* Temperature */

"N", 1, 1, 1, -2, 0, SI, /* Units of Force */

"kN", 1000, 1, 1, -2, 0, SI,

"kgf", 9.807, 1, 1, -2, 0, SI,

"Pa", 1, -1, 1, -2, 0, SI, /* Units of Pressure */

"kPa", 1000, -1, 1, -2, 0, SI,

"MPa", 1E+6, -1, 1, -2, 0, SI,

"GPa", 1E+9, -1, 1, -2, 0, SI,

"Jou", 1, 2, 1, -2, 0, SI, /* Energy Units */

"kJ", 1E+3, 2, 1, -2, 0, SI,

"Watt", 1, 2, 1, -3, 0, SI, /* Power Units */

"kW", 1000, 2, 1, -3, 0, SI,

}

In the SI units system, for example, we employ the character "N" to represent one Newton
force, and the character "m" to represent one meter length. Both units have a scale factor
equal to one { it follows that the reference unit for moment would be "N*m", with a
scale factor also equal to 1.0.

Initialization Module : ALADDIN employs a linked list symbol table data structure
with operations for loading, storing, and retrieving information during a matrix/�nite
element analysis. Items in the symbol table are required to have unique names. The
heart of the symbol table is de�ned by the data structure:

/* Data Structure for Node in Symbol Table */

typedef struct Symbtab_element {

char *cpSymName;

short type;

union {

double value; /* Store a number */

char *str; /* String */

int (*defn)(); /* Function, Procedure */

void (*voidptr)(); /* Built-in Math/FE Functions */

double (*doubleptr)(); /* Built-in Math/FE Functions */

MATRIX *(*matrixptr)(); /* Built-in Matrix Functions */

QUANTITY *(*quantityptr)(); /* Built-in Quantity Functions */

ARRAY *(*elmt_ptr)(); /* Elmt Library ptr to func */

205

QUANTITY *q; /* Engineering Quantity */

MATRIX *m; /* Matrix */

DIMENSIONS *dimen; /* Basic Dimension */

ELEMENT_ATTR *eap; /* Element Attribute ptr */

SECTION_ATTR *sap; /* Section Attribute ptr */

MATERIAL_ATTR *map; /* Materials Attribute ptr */

} u;

struct Symbtab_element *next;

} SYMBOL;

Here, MATRIX, QUANTITY and DIMENSIONS are the data structures for matrix, quantity
and units, de�ned in Chapter 2. The names ARRAY, ELEMENT ATTR, SECTION ATTR and
MATERIAL ATTR are pointers to the element, section and material attributes in �nite ele-
ment analysis.

The initialization environment loads keywords, constants, �nite element analysis
information (e.g. material and section properties), and built-in functions needed for the
command language into ALADDIN's symbol table. We use the returned data type, and
details of the argument list (i.e. number and types of data), to organize built-in functions
into six groups. They are:

[1] Functions requiring one matrix argument, and returning a quantity. Two examples
are L2Norm() and QuanCast().

[2] Functions requiring no argument, and return a matrix. Two examples from the �nite
element section are Stiff() and Mass().

[3] Functions requiring one matrix argument, and returning a matrix. Two examples are
Copy() and Trans().

[4] Functions requiring two matrix arguments, and returning a matrix. One example is
Solve(,).

[5] Functions that accept a variable number of matrix arguments, and return a matrix.

[6] Special functions for the generation of �nite element meshes.

The following script of code shows how functions with one matrix argument are de�ned
in a data structure called builtin1 matrix[], and subsequently installed in ALADDIN's
symbol table by the function Init Problem().

/* [a] : Data structure for built-in functions */

static struct {

char *name;

MATRIX *(*func)();

} builtin1_matrix[] = {

"Copy", MatrixCopy,

"Trans", MatrixTranspose,

206

};

/* [b] : Init_Problem() : Load builtin functions into Symbol Table */

Init_Problem()

{

int i;

SYMBOL_PTR spA;

/* [a] : Load builtin functions into symbol table */

for (i = 0; i < (sizeof(builtin1_matrix)/sizeof(builtin1_matrix[0])); i++) {

spA = build_table(builtin1_matrix[i].name, BLTIN1_MATRIX, 0.0);

spA->u.matrixptr = builtin1_matrix[i].func;

}

}

Here we use the C function build table() to install the function names into the symbol
table. Pointers to the base address of the function are assigned with the statement
spA->u.matrixptr = builtin1 matrix[i].func.

Material and Section Property Data Structures : Material and section properties
are stored in the material and section attribute data structures: MATERIAL ATTR,
SECTION ATTR. They are given as:

typedef struct materials {

char *name; /* Material name */

QUANTITY E; /* Young's modulus */

QUANTITY G; /* Shear modulus */

QUANTITY fy; /* Yield stress */

QUANTITY fu; /* Ultimate stress */

QUANTITY ET; /* Tangent Young's Modulus */

double nu; /* Poission's ratio */

QUANTITY density;

QUANTITY *alpha_thermal; /* thermal expansion coefficient */

MATER_LOAD_CURVE *LC_ptr; /* parameters for describing yield */

/* surface and stress strain curve */

} MATERIAL_ATTR;

typedef struct section_attr {

char *section_name;

int section_type;

QUANTITY Ixx, Iyy, Izz;

QUANTITY Ixz, Ixy, Iyz;

QUANTITY weight; /* Section weight */

QUANTITY bf; /* Width of flange */

QUANTITY tf; /* thickness of flange */

QUANTITY depth; /* Section depth */

QUANTITY area;

QUANTITY plate_thickness;

QUANTITY tor_const; /* Torsional Constant J */

QUANTITY x_coord, y_coord, z_coord /* centroid coord */

207

QUANTITY rT; /* Section Radius of gyration*/

QUANTITY width; /* Section width */

QUANTITY tw; /* Thickness of web */

} SECTION_ATTR;

In many of above data structures, MATER LOAD CURVE data structure is used to
describe the stress-strain curve of the material for each element.

typedef struct mater_load_curve {

char *name; /* load curve type */

double *R; /* radius of yield surface */

double **back_stress; /* back stress vector */

double *H; /* tangent of stress-plastic strain curve*/

double alpha; /* parameter for Ramberg-Osgood relation */

double n; /* strain hardening exponent */

double beta; /* parameter for strain hardening */

/* beta = 0 kinematic hardening */

/* beta = 1 isotropic hardening */

} MATER_LOAD_CURVE;

Many material properties, such as R, the radius of yield surface in �-plane and H, the
tangent of stress-plastic strain curve, are point dependent. Therefore, arrays are used to
identify the corresponding properties for every integration points. The character string
name identi�es the type of the stress-strain curve. Two stress strain curves are currently
available. They are Ramberg-Osgood stress strain curve, and the Bi-Linear stress strain
curve.

Working Array : The P ARRAY data structure transfers information between �nite el-
ement base module and element library module. This information is used to compute
element level mass and sti�ness matrices, and internal force vectors, for both linar and
nonlinear problems.

8.3 Design and Implementation of Stack Machine

ALADDIN employs a �nite-state stack machine model, which follows in the spirit
of work presented by Kernighan and Pike [18]. Stack machines are suitable for modeling
systems that have a �nite number of internal con�gurations or states, and whose behavior
evolves as a linear sequence of discrete points in time. ALADDIN's stack machine reads
blocks of command statements from either a problem description �le, or the keyboard,
converts them into stack machine instructions, and �nally, executes the statements.

ALADDIN employs three connected data structures { an array of machine in-
structions, a program stack, and a symbol table { plus carefully designed algorithms and
software to handle the processing of input statements, and blocks of input statements. To-
gether these data structures and algorithms form the heart of ALADDIN's stack machine.
The stack machine processes blocks of input statements in two steps:

208

pc stackp
data strcture
quantity

built in functions data strcture
matrix

.....
........

Inst 1

Inst 2

Inst 3

Inst 4

Data 1

Data 2

Data 3

Data 4

Stack

ptr to funcs

double

char string

section ptr

material ptr

elmt_attr ptr

Symbol 4 Symbol 5 Symbol 6

Array of Machine Instructions

ptr to funcs

double

char string

section ptr

Symbol 3

material ptr

elmt_attr ptr

Symbol 1 Symbol 2Symbol Table

Figure 8.2: Data Structures in ALADDIN's Stack Machine

[1] Parse the input statement (or block of statements), and construct an array of machine
instructions. Groups of machine instructions are composed of calls to functions, plus
instructions to push and pop data and operands to/from the program stack.

[2] Step through the array of machine instructions, and execute the functions pointed to
by the machine instructions.

Figure 8.2 is a simpli�ed schematic of the stack machines participating data structures,
and their connectivity.

Array of Machine Instructions : The array of machine instructions and program
stack are declared with the following C statements:

/* Define array of machine instructions */

typedef int (*Inst)();

#define STOP (Inst) 0;

209

#define NPROG 5000;

Inst prog [NPROG];

Inst *progp;

Inst *pc;

/* Define data structure for program stack */

typedef union Datum {

QUANTITY *q;

MATRIX *m;

SYMBOL *sym;

} DATUM;

#define NSTACK 500;

static DATUM stack [NSTACK];

The C statement Inst prog [5000] allocates memory for the array of machine in-
structions. Each element of prog is a pointer of type int. Variables *progp and *pc are
pointers of type Inst, which will be used to track elements in the array of instructions.

The data structure DATUM is a union of pointers to quantity, matrix and symbol
table items. Each element of the program stack is either a pointer to a quantity, a pointer
to a matrix, or a pointer to a symbol table entry. The C statement static DATUM [500

] allocates a block of memory for the program stack containing 500 elements of structure
DATUM.

The C function Code() plays a central role in the assembly of machine instructions.
For example, the function call Code(Push); will add to the machine array, an element
containing a pointer to function Push(), and then increments the program pointer progp.

/*

* ===

* The function code() builds up the machine stack prog, adding data

* types Inst to it. The arguments to code() are pointers

* to the functions defined later on in code.c, and pointers to

* data types SYMBOL, which have been coerced by the use of the

* cast Inst.

* ===

*/

Inst *Code(Inst f)

{

Inst *oprogp = progp;

if(progp >= &prog[NPROG])

ExecutionError("ERROR >> program too big", (char *) 0);

*progp++ = f;

return oprogp;

}

210

/*

* ===

* Push DATUM d onto the stack, and increment stackp to next element.

* ===

*/

Push(DATUM d)

{

if(stackp >= &stack[NSTACK])

ExecutionError("ERROR >> stack overflow", (char *) 0);

stackp++ = d; / *stackp=d; stackp++; */

}

In functions Code() and Push(), ExecutionError() is a function that reports run-time
execution errors in the interpretation of input commands (e.g over
ows of the program
stack). Function Code() has a single argument; the function call Code (Push); will, for
example, add to the machine array, an instruction to call function Push().

Execution of Program Stack : An execution pointer marches along the machine array
and implements the instruction set assembled during step [1] of the input process. The
machine instructions will push and pop items to/from the program stack, and call external
C functions as directed by the arguments to Code(...).

Execute(p)

Inst *p;

{

for (pc = p; *pc = STOP;) {

pc = pc + 1;

if(Check_Break() != 0) break;

(*(*(pc-1)))();

}

}

The code generated during parsing has been carefully arranged so that a STOP com-
mand terminates each sequence of instructions that should be handled by a single call to
Execute().

8.3.1 Example of Machine Stack Execution

We now demonstrate use of the stack machine by working step-by-step through
the details of processing the assignment x = 2 in;. We assume that Step [1] of the input
process is complete, with the array of machine instructions taking the values shown on
the left-hand side of Figure 8.3. During Step [1] of the input process, the YACC parser {
details to be described in the next section { recognizes that x is a variable with data type
VAR, and 2 in as a quantity with number 2 and a units dimension in. The grammatical
rule for assignment (i.e. "=") has right associativity. Hence, when the machine is executed,

211

..............

Symbol 2

name:

u.value: 2

u.q->dimen

type:NUMBER

Symbol 1

..............

units_name:

scale_factor: 1.0

units_type : SI_US

..............

u.q->dimen

u.value:

type: VAR

name: x

Symbol 9

Symbol 3

..............

units_name: in

units_type : US

scale_factor: 1.0

Symbol 6

value

dimen

quantity

..............

units_name: in

units_type : US

scale_factor: 1.0

units_name: in

scale_factor: 1.0

units_type : SI_US

..............

d1

d2

d3

..............

(Inst)

(Inst) Push_constant

(Inst)

(Inst) Dimension_Eval

(Inst) Push_Variable

(Inst) STOP

(Inst) Pop

(Inst)

(Inst) Push_Dimension

Symbol 7 Symbol 8
sym 9

sym 4
Symbol 5

..............

u.q->dimen

u.value:
type:

name:

Symbol 4

sym 2

Machine Array
Stack

SymbolTable

Figure 8.3: Schematic of Machine and Stack for x = 2 in

2 in will be pushed onto the stack �rst, and in two steps; �rst the unit in is pushed, and
then the number 2.

Detailed snapshots of the program operation for Step [2] of the processing are
located at the end of this subsection. The step-by-step procedure for execution of the
stack machine is:

[1] Push symbol table pointer onto stack for the variable in.

[2] Push a constant 2 onto the stack.

[3] Pop both 2 and in o� the stack, and combine them into a single quantity 2 in. The
quantity is pushed back onto the stack.

[4] Push onto the stack, the symbol table pointer to variable x.

[5] Pop x and 2 in from the stack. Assign 2 in to x and push x back onto the stack.

[6] Data x is popped and cleared from the stack.

Figures 8.4 to 8.9 show the relevant details of the machine array, symbol table, and
program stack for Steps [1] to [6], respectively. In each of these �gures, pc is a program
counter that points to elements in the array of machine instructions { the elements of the

212

machine array are pointers to C functions. The dashed and solid arrows represent the two
stages of the pc positions. As detailed in the C function Execute(), and shown in Figure
8.4, program counter pc initially points to (Inst) Push Dimension. The position of pc
is represented by the (dotted) left-to-right arrow in Figure 8.4. Notice, however, that pc
is incremented to the (solid) arrow position (i.e pc = pc+1) before Push Dimension() is
called. Now (pc-1) points at (Inst) Push Dimension. The details of Push Dimension()

are as follows:

/*

* ===

* Push_Dimension() : push dimensioned quantity onto stack

* ===

*/

void Push_Dimension()

{

DATUM d;

int length;

d.q = (QUANTITY *) MyCalloc(1,sizeof(QUANTITY));

d.q->dimen = NULL;

d.q->value = ((SYMBOL *) *pc)->u.q->value;

pc = pc + 1;

Push(d);

}

The machine instruction at the new value of pc points to a quantity stored in the symbol
table. Push Dimension() allocates memory of a new quantity (given by d.q), and copies
to it, the contents of the symbol table entry. The result is pushed onto the program stack.

After unit in and number 2 are both pushed onto stack (i.e. d1 and d2 on the
stack shown in Figure 8.3), function Dimension Eval() pops d1 and d2 from the stack,
assigns the units in to number 2, and produces the quantity 2 in back onto the stack.

Next, the symbol table pointer for variable x is pushed onto the stack by C function
Push Variable(). Details of this step are shown in Figure 8.7.

The C function Assign Quantity() assigns the quantity 2 in to variable x, and
pushes the new x onto stack. Details of this step are shown in Figure 8.8. The second-
to-last machine instruction pops the last item from the stack, as shown in Figure 8.9.
Finally, (Inst) STOP, halts the looping mechanism in C function Execute().

213

quantity
value
dimen

units_name: in
units_type : US
scale_factor: 1.0

..............

(Inst) Push_constant
(Inst)
(Inst) Dimension_Eval

(Inst) Push_Variable

(Inst) Push_Dimension

(Inst) STOP

(Inst) Pop

(Inst)
(Inst) Assign_Quantity

(Inst)

Machine Array

Stack

d1

pc = pc+1
pc -1 Push_Dimension(): Push "in" onto stack

name:
type:

..............
u.q->dimen

u.value:

Symbol 1

units_name: in
units_type : US
scale_factor: 1.0

..............

Figure 8.4: Step 1 { Push Unit onto Stack

(Inst) Push_constant

(Inst) Dimension_Eval

(Inst) Push_Variable

(Inst)

(Inst) Push_Dimension

(Inst)

Stack

(Inst) STOP

(Inst) Pop

(Inst) Assign_Quantity

d1
d2

(Inst)

Machine Array

pc = pc+1

pc -1

quantity
value

dimen
units_name: in

units_type : US

scale_factor: 1.0
..............

name:

..............
u.q->dimen

Symbol 2

type: NUMBER
u.value: 2

..............

units_name:

units_type : SI_US
scale_factor: 1.0

Push_Constant(): Push constant " 2" onto stack

Figure 8.5: Step 2 { Push Number onto Stack

214

Dimension_Eval(): Pop out d2 and d1 from stack
combine "2" and "in" into one quantity, d, and
Push d back to stack

Stack

d1

d2

Pop d2, Pop d1, Push d

Stack

d

units_name: in

units_type : US

scale_factor: 1.0
..............

(Inst) Push_constant

(Inst) Dimension_Eval

(Inst) Push_Variable

(Inst)

(Inst) Push_Dimension

(Inst)

(Inst)

(Inst) STOP

(Inst) Pop

(Inst) Assign_Quantity

Machine Array

pc = pc + 1
pc -1

quantity

value: 2

dimen

Figure 8.6: Step 3 { Combine Number and Unit into Quantity

scale_factor: 1.0
..............

units_name:
units_type : SI_US..............

u.q->dimen

Symbol 3
name: x
type: VAR
u.value:

(Inst) Push_Dimension

Stack
units_name: in
units_type : US
scale_factor: 1.0

..............

d
d3

quantity

dimen

value: 2

Push_Variable(): Push symbole table pointer

(Inst) Pop

(Inst) STOP

(Inst) Assign_Quantity

(Inst)

(Inst) Push_Variable

(Inst) Dimension_Eval

(Inst)

(Inst) Push_constant

(Inst)

onto stack for the variable "x"

Machine Array

pc = pc+1
pc -1

Figure 8.7: Step 4 { Push Variable onto Stack

215

..............

Symbol 3

name: x
type: QUANTITY

u.value: 2

u.q->dimen

units_name: in

units_type : US

scale_factor: 1.0
..............

Stack

d4

(Inst) Push_constant

(Inst)

(Inst) Dimension_Eval

(Inst) Push_Variable

(Inst) Push_Dimension

(Inst)

(Inst) STOP

(Inst) Pop

(Inst)

(Inst) Assign_Quantity

Stack

d3
d

Assign_Quantity (): Pop out d3 and d from stack,
assign " 2in" in d, to "x" in d3, store new data
in d4 and push d4 back to stack

Pop d3, Pop d and Push d4

Machine Array

pc = pc+1
pc-1

Figure 8.8: Step 5 { Assign Quantity to Variable

Stack Stack

d4

Pop d4

(Inst) Push_constant

(Inst)

(Inst) Dimension_Eval

(Inst) Push_Variable

(Inst) Push_Dimension

(Inst)

(Inst) STOP

(Inst) Pop

(Inst)

(Inst) Assign_Quantity

Machine Array

pc = pc+1 Pop (): Pop out . Clear top data from stack

pc-1

Figure 8.9: Step 6 { Clear Top Data from Stack

216

8.4 Language Design and Implementation

We have used the UNIX tool YACC (an acronym for Yet Another Compiler
Compiler [16]) to de�ne a language for the de�nition and solution of matrix and �nite
element problems. For gentle introductions to YACC, see Chapter 8 of Kernighan and
Pike [18], and the O'Reilly text by Levine et al. [21]. For a theoretical discussion on LR
parsers, see Aho et al. [2].

In ALADDIN, the details of the YACC grammar and associated C code are located
in a �le called grammar.y, which is partitioned into four parts:

%{

Part 1 : Optional C statement, declaration;

%}

Part 2 : YACC declarations, lexical tokens, grammar variable, precedence

and associativity information

%%

Part 3 : Grammar rules and semantic actions

%%

Part 4 : Lexical analysis with a C function called yylex().

YACC takes the speci�cations in Parts 1 to 3, and generates a C code function called
yyparse() for: (a) the matching of tokens and their types against the grammatical rules
of the language, and (b) the handling of semantic actions.

Part 4 : In Part 4 of the YACC speci�cation, we write a C function called yylex() to
scan streams of input characters, and identify token names and their types. The names
and types of tokens are passed onto yyparse() for the matching against grammatical
rules. Here is an abbreviated version of yylex():

yylex()

{

double value;

int finished;

/* [a] : Eat blank space, tab, and newline input. Read comment statements */

while((c = fgetc(fin)) == ' ' || c == '\t' || c == '\n' || c == '/') {

if(c == '\n')

lineno++;

if(fin == stdin && finp != stdin) {

if(c == '\n') {

printf("ALADDIN :");

fflush(stdout);

}

fputc(c, finp);

}

217

if(c == '/') {

if(follow('*', TRUE, FALSE) == TRUE) {

c = fgetc(fin);

finished = FALSE;

while(finished == FALSE) {

c = fgetc(fin);

if(c == '\n')

lineno++;

if(c == EOF)

FatalError("ERROR >> ... file ended with unbalanced comment !!\n",

(char *)NULL);

if((c == '*') && (follow('/', TRUE, FALSE) == TRUE)) {

finished = TRUE;

}

}

} else {

return c;

}

}

}

/* [b] : return end-of-file */

if(c == EOF) {

return END_OF_FILE;

}

/* [c] : read and store floating-point numbers */

if (c == '.' || isdigit(c)) {

ungetc(c, fin);

fscanf(fin, "%lf", &value);

if(fin == stdin && finp != stdin) fprintf(finp, "%lf", value);

yylval.sym = build_table("", NUMBER, value);

return NUMBER;

}

/* [d] : read and store variable */

if (isalpha(c) || c == '_') {

SYMBOL *s;

char sbuf[100], *p = sbuf;

do {

if(p >= sbuf + sizeof(sbuf) - 1) {

p = '\0';

ExecutionError("ERROR >> name too long");

}

*p++ = c;

218

} while (((c = fgetc(fin)) != EOF) && (isalnum(c) || (c == '_')));

ungetc(c, fin);

*p = '\0';

if(fin == stdin && finp != stdin) fprintf(finp, "%s", sbuf);

if ((s = lookup(sbuf)) == 0) {

s = build_table(sbuf, VAR, 0.0);

}

yylval.sym = s;

switch((int) s->type) {

case UNDEF: case VAR: case QUAN:

return VAR;

default:

return (s->type);

}

}

/* [e] : Get Quoted String */

if (c == '"') {

char sbuf[100], *p;

if(fin == stdin && finp != stdin) fputc(c, finp);

for(p = sbuf; (c = fgetc(fin)) != '"'; p++) {

if(c == '\n' || c == EOF)

ExecutionError("ERROR >> missing quote");

if(p >= sbuf + sizeof(sbuf) - 1) {

p = '\0';

ExecutionError("ERROR >> string name too long");

}

if((fin == stdin && finp != stdin))

fputc(c, finp);

*p = backslash(c);

}

*p = 0;

yylval.sym = (SYMBOL *) SaveString(sbuf);

if(fin == stdin && finp != stdin)

fputc(c, finp);

return STRING;

}

if(fin == stdin && finp != stdin) {

fputc(c, finp);

}

switch(c) {

case '>':

219

return follow('=', GE, GT);

case '<':

return follow('=', LE, LT);

case '=':

return follow('=', EQ, '=');

case '!':

return follow('=', NE, NOT);

case '|':

return follow('|', OR, '|');

case '&':

return follow('&', AND, '&');

default:

return c;

}

}

Here we emphasize only the main components of yylex(). yylex() scans streams of input
and automatically removes black spaces, tabs, and all input between comment statements.
Numbers must begin with either a digit of a decimal point { they are temporarily stored
in ALADDIN's symbol table. Character strings are enclosed within quotes (i.e "....").
Variables and built-in function names are alphanumeric strings that must begin with
a character { the details of keywords in ALADDIN's programming language are stored
in the symbol table. Finally, yylex() identi�es token types for two-character sequences
used in relational and logical operators. The interested reader should consult the program
source code for details on functions backslash(), follow(), warning(), and so on. Now
let's look at the details for our stack machine:

Part 1 : We use the macro declarations

%{

...

#define Code2(c1,c2) Code(c1); Code(c2)

#define Code3(c1,c2,c3) Code(c1); Code(c2); Code(c3)

...

%}

as short form for calls to function Code().

Part 2 : The YACC declarations begins with character %.

%union {

SYMBOL_PTR sym;

Inst *inst;

int narg;

}

%token <sym> NUMBER

%token <sym> VAR

%type <inst> quantity

%type <inst> dimensions

%left '+' '-' /* left associative, same precedence */

%left '*' '/' /* left associative, higher precedence */

%right '^' /* right associative, higher precedence */

220

The union declares that YACC stack may holds three di�erent types of elements; a pointer
to an item in the symbol table, a machine instruction pointer, and an integer narg to
represent the number of arguments in a function. The token declaration with arguements
< sym > says that NUMBER and VAR will be input tokens accessed by dereferencing a
symbol table pointer. In ALADDIN, NUMBER and VAR are integers generated by YACC to
represent value of type double and character strings, respectively. The type declaration
speci�es that quantity and dimensions will be machine instructions.

The left and right keywords specify left and right associativity of operators,
respectively. In YACC, the precedence of operators is de�ned by order of appearance,
with tokens in the same declaration having equal precedence. Tokens appearing at the
end of the declaration list have higher precedence than those at the beginning. Therefore,
the operators + and - are left associative, and in the same precedence level. The multiply
and divide operators have equal precedence, and are left associative. They have higher
precedence than the add and subtract operators. The power \̂" operator has the highest
precedence level, and is right associative.

Part 3 : Grammatical Rules : ALADDIN has more than 100 grammatical rules.
Rather than attempt to explain all of them here, we will concentrate only on those rules
needed to match simple assignment statements, to identify matrices, and last, generate a
for-looping construct. We begin with the collection of rules needed to recognize "2", "2
in", "(2 in)" and "2 in + 3 in".

%%

quantity: NUMBER { $$ = Code2(Push_Dimensionless, (Inst) $1); /* rule 1 */

Code2(Push_Constant, (Inst)$1);

Code(Dimension_Eval); }

;

%%

Number 2 is a digit. It is assigned type NUMBER in yylex(). A stream of input that
consists of a number alone is matched by rule 1 of the grammar. A number without units
is considered to be a quantity (i.e see left-hand side of rule 1). The name $$ refers to
value of the symbol to the left of the colon { in this case quantity. The semantic actions
for rule 1 are a series of machine instructions, via calls to Code(), to push a dimensionless
quantity onto the program stack, push a constant onto the program stack, and �nally,
evaluate the result.

We now introduce rules of the grammar designed to parse units expressions of the
form in2, in � in, lb � in, in=sec2, and so on. The grammatical rules are:

dimensions: DIMENSION { $$ = Code(Push_Dimension); /* rule 2 */

Code((Inst)$1); }

| '(' dimensions ')' { $$ = $2; } /* rule 3 */

| dimensions '*' dimensions { Code(Dimension_Mult); } /* rule 4 */

221

| dimensions '/' dimensions { Code(Dimension_Div); } /* rule 5 */

| dimensions '^' quantity { $$ = $1; /* rule 6 */

Code(Dimension_Power); }

;

YACC uses the vertical bar symbol \j" to separate individual rules in a group { the symbol
should be interpreted as meaning or. Semantic actions are included inside the f g). The
input streams 2 in and (2 in) are considered are of type quantity,

quantity: NUMBER dimensions { Code2(Push_Constant, (Inst)$1);

Code(Dimension_Eval); $$ = $2;} /* rule 7 */

| '(' quantity ')' { $$ = $2; } /* rule 8 */

;

and are matched by rules 7 and 8. More precisely, (2 in) is �rst matched by rule 8, and
then by rule 7. The units are speci�ed by type dimension.

With the rules for recognizing a quantity in place, it is relatively straight forward
to de�ne grammatical rules for arithmetic operations on quantities. In the input command
2 in + 3 in, the quantities 2 in and 3 in are �rst recognized by rule 7, and the addition
of quantities by the rule 9.

%%

quantity: quantity '+' quantity { Code(Quantity_Add); } /* rule 9 */

%%

The C code located in function Quantity Add() takes care of the appropriate stack oper-
ations. Similar rules are written for subtraction of two quantities (rule 10), multiplication
of two quantities (rule 11), and division of quantities (rule 12). A quantity raised to the
power of another quantity is considered to be a quantity (rule 13).

%%

quantity : quantity '-' quantity { Code(Quantity_Sub); } /* rule 10 */

| quantity '*' quantity { Code(Quantity_Mul); } /* rule 11 */

| quantity '/' quantity { Code(Quantity_Div); } /* rule 12 */

| quantity '^' quantity { Code(Quantity_Power);} /* rule 13 */

;

%%

Again, Quantity Sub(), Quantity Mul() and so on, are C functions for arithmetic of
quantities with appropriate pushing and popping of data items to/from ALADDIN's
program stack. Input commands, such as x = 3 in and y = 2 in + x involve the as-
signment of a quantity to a variable. Both cases can be represented the rule:

%%

quantity : VAR '=' quantity { Code2(Push_Variable, (Inst)$1); /* rule 14 */

Code(Assign_Quantity); $$ = $3; }

;

%%

222

Using the rules stated above, 3 in is recognized as a quantity, and x is a variable type.
The complete input x = 3 in is matched by rule 14. Moreover, because YACC rules are
recursively de�ned, 2 in + x is matched by rule 9. Parser trees for the statements x =

3 in followed by y = 2 in + x are shown in Figure 8.10.

Quantity

VAR Quantity

Quantity

Quantity

Quantity Quantity

VAR

NUMBER

NUMBER Dimension

Dimension

x 3 in

y = 2 in + x

=

Figure 8.10: Parser Trees for x = 3 in and y = 2 in + x

Matrix Generation : As pointed out in the previous chapters, two mechanisms exist for
the generation of matrices; de�nition of matrices from input, and generation of matrices
via built-in matrix functions. We will begin with the latter (e.g. as in A = Zero([2,3]);).

%token <sym> MATX

%%

matrix : MATX {$$ = Code(Push_Matrix); /* M_rule 1 */

Code((Inst)$1);

Code(Matrix_Eval);

%%

YACC uses the variable type MATX to represent variables of type matrix. The seman-
tic action that follows identi�cation of a matrix has two key parts { the C function
Push Matrix() pushes a pointer to the symbol table entry containing the matrix onto
the program stack. Matrix Eval() pops the matrix pointer from the stack, allocates
memory for a new matrix, and copies the contents of the symbol table matrix to the new
matrix. Finally, a pointer to the new matrix is pushed onto the stack.

223

The second approach is to generate matrices directly from keyboard/�le input.
Matrices generated directly from input are de�ned as series of quantities inside []. Con-
sider, for example, the 2x2 matrix:

"
2 3
3 5

#

which may also be represented as [2 , 3 ; 3, 5]. A matrix row is simply a list of quantities
separated by commas. Individual matrix rows are separated by semicolons. The YACC
grammar for identifying matrices is:

%type <narg> matrix_seq

%type <narg> quantity_row

%%

matrix : '[' matrix_seq ']' {$$ = Code(Push_Variable);

Code((Inst)$2);

Code(Matrix_Build);} /* M_rule 2 */

;

matrix_seq: quantity_row { Code(Push_Variable);

Code((Inst)$1);

$$ = 1; } /* M_rule 3 */

| matrix_seq ';' quantity_row { Code2(Push_Variable);

Code((Inst)$3);

$$ = $1 + 1;} /* M_rule 4 */

;

where type speci�es that matrix seq and quantity row are of type < narg>. matrix seq

records number of rows and the number is pushed onto stack { this is done by M rule 3

and M rule 4. As soon as row of quantities is identi�ed, matrix seq is initialized with
number = 1 (M rule 2). Then, matrix seq is increased by 1 for each semicolon \;" that
is parsed, with the sum being accumulated recursively via M rule 4. Within each row,
columns separated by commas (",") are quantities.

quantity_row: { $$ = 0; }

| quantity { $$ = 1; } /* QR_rule 1 */

| quantity_row ',' quantity { $$ = $1 + 1;} /* QR_rule 2 */

;

Similarly, the number of columns in a matrix is recorded by quantity row.

Matrix Operations : The grammatical rules for matrix operations are similar to those
of engineering quantities.

| matrix '*' matrix {Code(Bltin_Matrix_Mult);} /* M_rule 5 */

| matrix '+' matrix {Code(Bltin_Matrix_Add);} /* M_rule 6 */

| matrix '-' matrix {Code(Bltin_Matrix_Sub);} /* M_rule 7 */

| '(' matrix ')' {$$ = $2;} /* M_rule 8 */

| quantity '*' matrix {Code(Bltin_Quan_Matrix_Mult);

224

$$ = $3;} /* M_rule 9 */

| matrix '*' quantity {Code(Bltin_Matrix_Quan_Mult);} /* M_rule 10 */

| matrix '/' quantity {Code(Bltin_Matrix_Quan_Div);} /* M_rule 11 */

;

These rules generate an array of machine instructions for matrix addition, subtraction
and multiplication (i.e. M rule 5, M rule 6 and M rule 7). They allow for the parsing
of a matrix inside parentheses (M rule 8), the multiplication of a quantity times a matrix
(M rule 9), a matrix times a quantity (M rule 10), and a matrix divided by a quantity
(M rule 11).

For Looping Construct : The development of a YACC grammar and supporting C
code for looping and branching constructs is the most complicated part of ALADDIN's
programming language. A description of the while-looping construct may be found in
Chapter 8 of Kernighan and Pike [18]. The purpose of this subsection is to explain our
implementation of the for-looping construct. The family of grammatical rules:

stmt: for '(' exprlist ';' cond ';' exprlist ')' stmt end { /* F_rule 0 */

($1)[1] = (Inst) $3; /* initiation F_rule 1 */

($1)[2] = (Inst) $5; /* condition F_rule 2 */

($1)[3] = (Inst) $9; /* body of loop F_rule 3 */

($1)[4] = (Inst) $7; /* increments F_rule 4 */

($1)[5] = (Inst) $10; /* end, if cond fails F_rule 5 */

}

;

for: FOR { $$ = Code3(For_Code, STOP, STOP); Code2(STOP, STOP); Code(STOP);}

;

exprlist: listlist { Code(STOP); $$ = $1; }

;

listlist : { $$ = progp; } /* L_rule 1 */

| quantity /* L_rule 2 */

| listlist ',' quantity /* L_rule 3 */

;

cond: quantity { Code(STOP); $$ = $1; }

;

assumes that memory in the array of machine instructions will take a form as shown in
Figure 8.11. A for-loop is simply a statement (stmt). The initiation and incremental
steps of the for-loop are expressed as exprlists, which are themselves subdivided into
listlist. A listlist could be a space (nothing) (L rule 1), an engineering quantity
(L rule 2), or a series of quantities separated with \," (L rule 3). The body of a for-loop
is also a statement(stmt) { this rule allows for the nesting of for-loop constructs. The
condition part of the for loop is an engineering quantity.

After the token FOR has been recognized, �ve spaces in the array of machine
instructions are reserved for the storage of pointers to the initiation code (F rule 1), the

225

(Inst) For_Code

..............

..............

(Inst) STOP

..............

(Inst) STOP

..............

..............

(Inst) STOP

stmt

listlist

cond

listlist
initialization

condition

increment

body of for-loop

end, if condition fails
(Inst) STOP

next stmt

Machine Stack

Figure 8.11: Machine Stack for For-Loop Construct

condition (F rule 2), the incremental steps (F rule 3), the body of the for-loop (F rule

4) and the STOP instruction (F rule 5). The two character sequence refers $n refers
to the value of a type stacked n spaces beyond the current namelist production. In this
particular case, $1 is the location in the machine of the token identi�ed by F rule 0. The
initiation, condition, body, increments, and end components of the for loop are access by
machine array elements ($1)[1] to ($1)[5], respectively. For the sake of completeness,
we now include the C code for For Code().

For_Code()

{

DATUM d;

Inst *savepc = pc;

Execute(*((Inst **) savepc)) ; /* initiation */

Execute(*((Inst **) (savepc+1))) ; /* cond */

d = Pop();

while(d.q->value) {

if(Check_Break()) break;

Execute(*((Inst **)(savepc+2))); /* body of loop */

Execute(*((Inst **)(savepc+3))); /* increments */

if(returning || Check_Break()) break;

Execute(*((Inst **) (savepc+1))) ; /* cond */

if(CheckUnits()== ON) {

226

free((char *)d.q->dimen->units_name);

free((char *)d.q->dimen);

free((char *)d.q);

}

d = Pop();

}

if(!returning)

pc = *((Inst **)(savepc + 4)); /* next statement */

After_Break();

}

Notice how the layout of memory in Figure 8.11 has been carefully combined with function
calls to Execute().

227

Part V

CONCLUSIONS AND FUTURE

WORK

228

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In the general area of computational technology for engineering, the 1990's are
shaping up to be the decade of global networking and multimedia. These advances will
allow for the prototyping of interactive computing environments tailored to the life cycle
development of complex engineering systems. For these environments to be commercially
successful, they will need to support development of engineering systems from multiple
viewpoints, and at multiple levels of abstraction. Engineers should be provided with
the tools to integrate once disparate disparate disciplines. While the merging of matrix
computations with �nite elements, optimization, and graphics is already evident, many
other possibilities exist. For instance, now that many companies are engaging in business
practices that are geographically dispersed, engineers will soon expect connectivity to
a wide range of information services { electronic contract negotations, management of
project requirements, design rule checking over the Internet, and availability of materials
and construction services are likely candidates. The participating computer programs
and networking infrastructure will need to be fast and accurate,
exible, reliable, and of
course, easy to use [12, 28].

Our long-term goal for ALADDIN is to provide engineers with such a computa-
tional problem-solving environment. Version 1.0 of ALADDIN is simply a �rst step in
this direction, and is much less ambitious. The emphasis in development has so far been
on the basic system speci�cation, and its application to matrix and �nite element prob-
lems. We have tried to determine what data types, control structures, and functions will
allow engineers to solve a wide variety of problems, without the language becoming too
large and complicated, and without extensibility of the system being compromised. Our
strategy for achieving the latter objective is described in Chapter 1. The test applications
have been taken from traditional Civil Engineering, and have focussed on the design and
analysis of highway bridges and earthquake-resistant buildings.

ALADDIN (Version 1.0) is approximately 36,000 lines of C, and getting the pro-
gram to this point has taken approximately three years of part-time work. We have

229

written nearly all of the source code from scratch { along the way, a new data structure
for the matrices with units was designed and software implemented. Many of the matrix
algorithms that ALADDIN uses are documented in the forthcoming text of Austin and
Mazzoni [5]. The language design must be followed by entensive testing of the software
with matrix and �nite element test problems that are complicated enough to push the
limits of the software (Note : In our experience, many coding errors will not show up in
trivial engineering applications).

As the work on ALADDIN progressed, we occasionally identi�ed small extensions
to the language that would allow ALADDIN to attack a new problem area. When the
language for ALADDIN was �rst designed we did not have design rule checking in mind,
for example. Yet once the basic matrix and function language speci�cation was in place,
and the �nite element analyses worked, only a couple of extra functions were needed for
the implementation of basic design rule checking.

Together these observations lead us to believe that our goal of keeping the AL-
ADDIN language small and extensible has been achieved. This work lays the foundation
for many avenues of future work.

9.2 Future Work

Figure 9.1 is a schematic of the current components of work, plus modules of work
that are needed for the next extension of ALADDIN. The future work should focus on:

[1] Nonlinear Algorithms : The scope of applications in this report has been restricted
to time-dependent analysis of linear structural systems. Future work should extend
this work to the time-history analysis of systems having material and geometric
nonlinearities. A �rst step in this direction is reported in Chen and Austin [10].

[2] User-defined Functions : Version 1.0 of ALADDIN does not permit the use of
user-de�ned functions and procedures in the input �le. When we �rst began working
on ALADDIN, our feeling was that the input �le language should be relatively simple
{ otherwise, why not simply code the whole problem in C ? An easy way of controling
language complexity is to disallow user-de�ned functions in the input �le, and this
is what we have done for ALADDIN Version 1.0. Now that the matrix and �nite
element libraries are working, this early decision needs to be revised. We would like
to combine the �nite element analysis with discrete simulated annealing optimization
algorithms, along the lines proposed by Kirkpatrick [19]. The latter could be
succinctly implemented if user-de�ned functions were available. The current version
of ALADDIN assumes that all user-de�ned variables are global. When user-de�ned
functions are added to ALADDIN, notions of scope should also be added to variables
(this could be implemented via an array of Symbol Tables).

[3] Graphical Library : An obvious limitation of ALADDIN (Version 1.0) is that it
lacks a graphical user interface. Providing a suitable interface is easier said than

230

FINITE ELEMENT LIBRARY

MATRIX LIBRARY

OPTIMIZATION LIBRARY

FUTURE WORKSCOPE OF THIS REPORT

ALADDIN’S KERNEL AND INPUT FILES

INPUT FILE

Block of input statements....

Block of input statements....

Block of input statements....

Block of input statements....

GRAPHICS LIBRARY

[STACK MACHINE]

ALADDIN’S KERNEL.

LIBRARIES OF BUILT-IN C FUNCTIONS

Figure 9.1: Future Development for ALADDIN

done. If ALADDIN simply preported to conduct �nite element analysis, then it
would be a relatively easy process to code-up an interactive pre- and post-�nite
element processor in X windows (or a suitable PC graphics package).

The problem with this approach is that it only serves one half of ALADDIN's capa-
bilities { in addition to graphically describing the �nite element mesh and modeling
assumptions, a graphical interface should also provide a graphical counterpart to
the solution algorithm speci�cations (e.g. Newmark Integration). We will explore
the use of visual programming languages to see if they are suitable for this purpose.

[4] Optimization Library : We would like to extend the language speci�cation so that
engineers can describe design objectives, design constraints, and design parameters,
for general engineering optimization problems in a compact manner. The issue of
\compactness" is particularly relevant for optimization problems that involve �nite
element analysis because they often contain hundreds, and sometimes thousands, of
constraints.

231

Further work is needed to determine how groups of similar constraints can be bun-
dled into groups, and how ALADDIN's control structures can be exploited to write
down these constraints in a compact manner. Once the issue of constraints is sorted
out, the pathway for describing the design parameters and objectives should (hope-
fully) become clearer.

[5] Test Problem Suite : New suites of test problem �les will be needed as the details
of items [2] and [4] are �lled in (please let us know if you �nd an error in one of the
test �les!).

Version 1.0 of ALADDIN is basic in the sense that many features found in commer-
cial �nite element codes have yet to be implemented in ALADDIN. For example, the
current version of ALADDIN only supports external loads applied at the nodes. In
the near future we will add element level loads so that uniform loads can be applied
to two-dimensional problems, and pressure loads can be applied to the surface of
shell �nite elements in three-dimensional problems.

[6] WWW Home Page : We are currently developing a World Wide Web (WWW) Home
Page for ALADDIN. The ALADDIN home page will provide basic information on
ALADDIN, sample matrix and �nite element test problems, ALADDIN source code,
and copies of this report. Our near-term plans are to experiment with the dynamic
documents capabilities of WWW, and create home pages where WWW visitors can
interact with an ALADDIN script running at the University of Maryland.

Work items [1] to [5] are tightly coupled. Understanding their interaction is an active
area of research.

Acknowledgements

This work has been supported in part by NSF Grant ECD-8803012, by NSF grants
to the Institute for Systems Research at the University of Maryland, and by a series of
fellowship grants to Wane-Jang Lin from the Federal Highway Administration.

The early stages of this project would not have been possible without valuable
discussions with Dr. Bunu Alibe and Bert Davy, faculty members in the Department of
Civil Engineering at Morgan State University.

232

Bibliography

[1] ABAQUS. Example Problems Manual, version 5.2. Hibbitt, Karlsson & Sorensen,
Inc., Hibbitt, Karlsson & Sorensen, Inc., 1080 Main Str., Pawtuchet, RI 02860, 1992.

[2] Aho A. V., Sethi R., Ullman J. D. Compilers : Principles, Techniques and Tools.
Addison Wesley, 1985.

[3] Austin M. A., Pister K. S., Mahin S. A. A Methodology for the Probabilistic
Limit States Design of Earthquake Resistant Structures. Journal of the Structural
Division, ASCE, 113(8):1642{1659, August 1987.

[4] Austin M. A., Pister K. S., Mahin S. A. Probabilistic Limit States Design of Moment
Resistant Frames Under Seismic Loading. Journal of the Structural Division, ASCE,
113(8):1660{1677, August 1987.

[5] Austin M.A., Mazzoni D. C Programming for Engineers. John-Wiley and Sons.
(Scheduled for publication in 1996).

[6] Balling R. J., Pister K. S., Polak E. DELIGHT.STRUCT: A Computer-Aided
Design Environment for Structural Engineering. Computer Methods in Applied Me-
chanics and Engineering, pages 237{251, January 1983.

[7] Bathe K. J. Numerical Methods in Finite Element Analysis. Prentice-Hall, Engle-
wood Cli�s, N.J., 1976.

[8] Bathe K. J. Finite Element Procedures in Engineering Analysis. Prentice-Hall,
Englewood Cli�s, N.J., 1982.

[9] Bathe K. J., Cimento, A. P. Some Practical Procedures for the Solution of Nonlinear
Finite Element Equations. Computer Methods in Applied Mechanics and Engineering,
22:59{85, 1980.

[10] Chen X.G., Austin M.A. Development of a Shell Finite Element for Project AL-
ADDIN. Technical report, University of Maryland, College Park, MD. 20742, 1995.

[11] Cmelik R.F., Gehani N.H. Dimensional Analysis with C++. IEEE Software, pages
21{26, May 1988.

[12] Gallopoulos E., Houstis E. Computer as a Thinker/Doer : Problem-Solving Envi-
roments for Computational Science. IEEE Computational Science and Engineering,
1(2):11{23, 1994.

233

[13] Gehani N.H. Databases and Units of Measure. IEEE Transactions on Software
Engineering, 8(6):605{611, November 1982.

[14] Ghali A., Neville A.M. Structural Analysis : A Uni�ed and Matrix Approach.
Chapman and Hall, 2nd Edition edition, 1979.

[15] Jin Lanheng. Analysis and Evaluation of a Shell Finite Element with Drilling Degree
of Freedom. Technical report, University of Maryland, College Park, Maryland 20742,
1994.

[16] Johnson S. C. YACC - Yet another Compiler Compiler. Technical report, AT&T
Bell Laboratories, Murray Hill, New Jersey, 1975.

[17] Karr M., Loveman D. B. Incorporating Units into Programming Languages. Com-
munications of the ACM, 21(5):385{391, May 1978.

[18] Kernighan B. W., Pike R. The UNIX Programming Environment. Prentice-Hall
Software Series, 1983.

[19] Kirkpatrick S., Gelatt C.D., Vecchi M.P,. Optimization by Simulated Annealing.
Science, 220(4598):671{680, May 1983.

[20] Kronlof K. Method Integration : Concepts and Case Studies. John-Wiley and Sons,
1993.

[21] Levine J.R., Mason T., Brown D. Lex and Yacc. O'Reilly and Associates, Inc,
1992.

[22] Luenberger David G. Linear and Nonlinear Programming. Addison-Wesley Publish-
ing Company, 1984.

[23] Mondkar D. P., Powell G. H. ANSR - 1 General Purpose program for Analysis of
Nonlinear Structural Response. Report No. EERC 75-37, Earthquake Engineering
Research Center, December 1975.

[24] Nye W. T., Riley D. C., Sangiovanni-Vincentelli A. L., Tits A. L. DE-
LIGHT.SPICE: An Optimization-Based System for the Design of Integrated Circuits.
IEEE Trans. CAD Integrated Circuits and Systems, CAD-7, pages 501{520, 1987.

[25] Nye W. T., Tits A. L. An Application-Oriented, Optimization-Based Methodology
for Interactive Design of Engineering Systems. International Journal of Control,
43(6):1693{1721, 1986.

[26] Nye W., Tits A. L. DELIGHT FOR BEGINNERS. Memorandum No. UCB/ERL
M82/55, Department of Electrical Engineering, July 1982.

[27] Salter K.G. A Methodology for Decomposing System Requirements into Data Pro-
cessing Requirements. Proc. 2nd Int. Conf. on Software Engineering, 1976.

234

[28] Tesler L.G. Networked Computing in the 1990's. Scienti�c American, 265(3):86{93,
September 1991.

[29] Wu T.L. DELIGHT.MIMO : An Interactive System for Optimization-Based Multi-
variable Control System Design. Memorandum No. UCB/ERL M86/90, Department
of Electrical Engineering, December 1986.

[30] Zienkiewitz O.C., Taylor R.L. The Finite Element Method. McGraw-Hill, Inc, 1989.
For details on FEAP, see Chapter 15.

235

