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Photosynthetically active radiation (PAR), is an essential component for life on

Earth and one of the essential climate variables. Due to the differences in biochem-

istry, cell structure, and photosynthetic pathways, different plant species absorb

PAR with varying efficiency and have evolved to thrive in different conditions, such

as direct, intense sunlight or indirect, diffuse light conditions. Ground-based mea-

surements allow for direct estimation of PAR; however, those are available in select

locations, e.g. through the Surface Radiation Budget (SURFRAD) Network. Re-

mote sensing-based methods, on the other hand, enable spatially explicit estimates

of PAR on a regular basis. Current methods and models for satellite-based PAR

retrievals require many ancillary atmospheric datasets as well as a large computing

infrastructure. PAR, as one of the parameters influencing plant productivity, has

not been previously used in the empirical crop yields and as such can lead to bet-

ter satellite-based yield estimates. Having the advantages of spatially explicit PAR



estimates, spatial and temporal patterns of the PAR can reveal differences in the

land uses and the level of crop productivity. Therefore, the overarching goal of my

dissertation is to advance the science of satellite-based PAR estimation and agri-

cultural applications. This is done through the use of machine-learning models to

reduce data input requirements for PAR estimation from daily Moderate Resolution

Imaging Spectroradiometer (MODIS) acquisitions and by incorporating PAR into

the empirical crop yield models over the US. In order to obtain satellite-based PAR

estimates without the need for ancillary atmospheric data, I developed an empirical

approach making use of machine learning methods as an efficient way to capture the

non-linear relationship between top of atmosphere radiance and PAR at the surface.

I found that the bootstrap aggregated decision tree (Bagged Tree), Gaussian Pro-

cess Regression (GPR), and Multilayer Perceptron (MLP) yielded the best results

with minimal input and training data requirements with an R2 of 0.77, 0.78, and

0.78 respectively, and a relative RMSE of 22-23%. While these results underper-

form compared with the look up table (LUT) approach, it does not require the same

atmospheric parameters as input, such as atmospheric water vapor, aerosol optical

depth, and others that might not be available in near real time or are only available

at coarser spatial resolution. I incorporated MODIS-based PAR estimates into em-

pirical corn and soybean yield models over the US. By explicitly adding PAR into

the crop yield models, I found a maximum R2 of 0.81 and 0.80 for corn and soybean,

respectively, whereas models that do not include PAR showed a maximum R2 of 0.60

for corn and soybean. By adding PAR directly into the empirical yield model and

demonstrating additional explained variability, I show that my model is in closer



agreement with process-based models than previous empirical models. I found that

MODIS- derived coefficient of absorption of PAR (αPAR), which corresponds to the

plant canopy chlorophyll content (CCC) and consequently productivity, corresponds

to the ground-based αPAR measurements. Specifically, I found that for the US-Ne

sites of corn and soybean fields in Eastern Nebraska R2 was 0.97 and RMSE was

1.34 (11%) when comparing MODIS-derived αPAR with the in situ measurements.

I also found that the relationships between MODIS-based αPAR and CCC for corn

and soybean corresponded to the ones obtained from in situ data. The relationships

between αPAR and CCC for corn and soybean are distinct due to the different pho-

tosynthetic pathways of corn (C4) and soybean (C3), differences in cell structure,

and chloroplast distribution between the two crops. Crop yield and productivity are

also related to CCC, meaning αPAR can be used as a crop specific indicator of yield.

Through this research, I have demonstrated the added value of incorporating PAR

directly into crop yield models, by improving crop yield estimates over empirical

models based on vegetation indices or surface reflectance alone. The research also

provides the basis for further work using crop specific measures of the absorption

of PAR into the same empirical models at large spatial scales that were previously

impractical due to the spatial discrepancies between in situ- and MODIS- derived

measurements.
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Chapter 1: Photosynthetically active radiation (PAR) and crop yield

modeling using satellite remote sensing

1.1 Motivation and Background

The United States produces over a third of the world’s corn and soybean

(Wang et al., 2020b; Bagnall et al., 2021), grown primarily in the Midwestern United

States and the Ohio River Valley. The US Department of Agriculture National

Agricultural Statistics Service (USDA NASS) (USDA NASS, 2023) provides con-

sistent and comprehensive agricultural information for all counties in the United

States going back to 1850. In addition to the semi-decadal Census of Agriculture

reports, researchers can access the annual survey data through the QuickStats tool

(https://quickstats.nass.usda.gov/). Total acres of corn (maize) planted in

the US rose from 79,551,000 in 2000 to 88,579,000 in 2022, while soybean acres

planted rose from 74,266,000 in 2000 to 87,450,000 in 2022. Harvest areas from the

most recent Census of Agriculture report are shown in Figures 1.1 and 1.2. Corn

and soybean yields over the last two decades represent an economic value of $18.6

billion for corn in 2000 to $91.7 billion in 2022 (not accounting for inflation), and

$13.1 billion in 2000 for soybeans to $61.1 billion in 2022. Overall yields increased

1
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Figure 1.1: Corn for Grain Harvested Acres from the 2017 USDA NASS Census of
Agriculture USDA NASS (2023)

by approximately 27% (8.2 t/ha to 10.4 t/ha) for corn and 30% (2.7 t/ha to 3.5

t/ha) for soybeans from 2000-2022, and are shown in Figure 1.3.

According to the US Grains Council (U.S. GRAINS COUNCIL, 2023), in 2022

the US exported 62.7 million tonnes of corn to 62 different countries and the top

three were Mexico, China, and Japan. Soybean exports amounted to 71.8 million

tonnes in 2022, according to the USDA Economic Research Service and Foreign

Agricultural Service as reported by the US Soybean Export Council statement (Kerr-

Enskat, 2022). Altogether, this means that modeling and monitoring yields for corn

and soybean in the United States are important for both US food security and the

2



Figure 1.2: Soybeans for Bean Harvested Acres from the 2017 USDA NASS Census
of Agriculture USDA NASS (2023)
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Figure 1.3: 22 year trend of annual US Corn and Soybean yield

economy and for global food markets.

There are numerous studies that model crop yields (Bolton and Friedl, 2013;

Basso et al., 2013; Sakamoto et al., 2013; Weiss et al., 2020; Nakalembe et al., 2021).

Some methods for crop modeling make use of temperature, precipitation, and certain

soil variables (Shirley et al., 2020; Mathieu and Aires, 2018; Park et al., 2005; Lobell

et al., 2006) as these physical quantities impact the rate of photosynthesis of different

plant species (Medlyn et al., 2002; Mathur et al., 2014), and describe the available

water for root systems and the necessary structure, pH, and nutrients required by

crops (Munkholm et al., 2013). Other methods use the spectral characteristics of

a canopy, e.g., surface reflectance, vegetation indices, and leaf area index (Prasad

et al., 2006; Fernandez-Ordoñez and Soria-Rúız, 2017; Johnson, 2016; Skakun et al.,

4



2021), as these quantities implicitly contain all the information about the physical

conditions of plant or canopy.

Common methods for estimating crop yield from remote sensing data can

be divided into physical based models and empirical models. Physical remote

sensing based models are developed over specific wavelength domains (e.g., opti-

cal, thermal infrared, LIDAR, microwave) and the applicable underlying theory

(Weiss et al., 2020). For instance, the Radiative Transfer Model Intercomparison

(RAMI) project (Pinty et al., 2001, 2004; Widlowski et al., 2007, 2015) which com-

pares radiative transfer canopy models designed for optical remote sensing observa-

tions, such as leaf reflectance and transmittance models (e.g., PROSPECT (Féret

et al., 2017, 2021)), plant canopy models such as Scattering by Arbitrarily Inclined

Leaves (4SAIL/4SAIL2) (Verhoef and Bach, 2007; Verhoef et al., 2007), the com-

bined PROSPECT and SAIL models, PROSAIL (Jacquemoud et al., 2009; Berger

et al., 2018), and soil radiation transfer models, e.g., SOILSPECT (Jacquemoud

et al., 1992). These physical models can calculate forward radiative transfers and

the radiative transfer inversions, but they are limited by the required input data

and perhaps computational capabilities of the user.

Some process-based models can incorporate the climate modeling techniques

to capture relationships between crop yield and climate change (Watson et al., 2015).

In particular, the Famine Early Warning System Network (FEWSNET) uses cou-

pled land-atmosphere climate models to make near- and long-term predictions of

crop conditions. One benefit of using physics, fluid-dynamics, and chemistry-based

climate models is that those models can capture temporal scales that data driven
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models cannot.

Empirical models, which are often regression models, will use the spectral

characteristics of a canopy, e.g., surface reflectance, vegetation indices, and leaf area

index (Prasad et al., 2006; Fernandez-Ordoñez and Soria-Rúız, 2017; Johnson, 2016;

Skakun et al., 2021) from remote sensing, as these quantities implicitly contain all

the information about the physical conditions of plant or canopy, and calculate

(regress) a numerical relationship between remote sensing observations and ground

measurements of yields or other biophysical variables. Regression-based methods are

data driven, and hence are always limited by the representative nature of available

observations. Furthermore, data driven methods, in particular supervised machine

learning methods, usually require large amounts of labeled data for training and val-

idation. Such data is not always available for Earth Science applications, especially

not for long time periods or with good global representation.

Since the 1970s scientists have been using multispectral satellite data to mon-

itor vegetation (Goward et al., 1985; Justice et al., 1985; Mulla, 2013). Since then

the volume of satellite observations and ground measurements has vastly increased,

sensors have been developed for rapid deployment in a variety of global locations

and applications (Nakalembe et al., 2021). Multispectral remote sensing of vege-

tation is possible because green vegetation has a very unique spectral curve. The

overall reflectance (a measure of the electromagnetic energy that a given surface re-

flects as a percentage of the amount of energy incident upon it) in the visible range

(400 - 700 nm) is quite low due to absorption of light for photosynthesis, while the

reflectance in the near infrared range (NIR, 700 - 1300 nm) is quite high, due to
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the cell structure of the vegetation. Leaf pigmentation is responsible for variations

in reflectance in the visible region, with a small peak typically in the green (500 -

565 nm) region for healthy, active vegetation, which is why most vegetation appears

green to the human eye.

Remote sensing of vegetation studies rely heavily on vegetation indices (VIs),

which are derived from the unique spectral properties of vegetation as indicators

of vegetative health, biomass, and crop yield. In my work, I aim to add PAR as

an explicit component to these types of studies. Before doing so, it is important

to understand the definitions of different VIs. The simplest VI we can use is a

simple ratio between the NIR and visible range, where the visible range is often

approximated by the reflectance in the red region (∼625 - 700 nm) for multi-spectral

remote sensing.

V I =
NIR

Red
, (1.1)

where NIR is the surface reflectance in the near infrared and Red is the surface

reflectance in the red region. Simple VI, ranges from 0 to ∞, however, it can

be deceptive when overall reflectance is very low or very high. Similarly, we can

calculate a simple difference VI (DVI) which ranges from −1 to 1.

DV I = NIR−Red (1.2)

DVI can also be deceptive when overall reflectance is very high or very low,
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therefore, we can normalize DVI as follows:

NDV I =
NIR−Red

NIR +Red
. (1.3)

The Normalized Difference Vegetation Index (NDVI) ranges from −1 to 1 and is

one of the most commonly used vegetation indices. However, when NIR is very,

very high, as can happen in dense, healthy vegetation, NDVI can saturate quickly,

thereby creating cases where it is not useful as a crop modeling indicator.

In order to account for the quick saturation of NDVI, a variety of other indices

can also be used, such as the Enhanced Vegetation Index (EVI), or the two band

version, EVI2, when only reflectance in the red and NIR regions are available.

EV I = Gf
NIR−Red

NIR + C1R− C2B + L
(1.4)

and

EV I2 = Gf
NIR−Red

NIR + C1R + L
(1.5)

respectively, where B is the surface reflectance in the blue region (∼400 - 485 nm), L

is an adjustment factor for the canopy background, C1 and C2 are aerosol resistance

coefficients, and Gf is a gain factor.

Gross primary production (GPP) is the amount of energy (expressed as biomass)

that plant matter creates in a given period. Thus GPP can be used as a proxy for

crop yield (Tucker and Sellers, 1986; Reeves et al., 2005; Yuan et al., 2016; Marshall
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et al., 2018) when yield data is not available. Before plugging GPP into my yield

models, or replacing it with a different proxy for yield, I must understand how GPP

is calculated and what exactly it represents.

There are two basic ways to model GPP, either by modeling the biochemical

processes that occur in the plant during photosynthesis or by modeling the light-use

efficiency (LUE) of an individual plant or the total canopy (Gitelson and Gamon,

2015; Monteith, 1972, 1977). Broadly, LUE is defined by “the ratio of energy output

to energy input,” (Monteith, 1977) in this case, gross primary production to solar

radiation. The original model was developed by Monteith (1972, 1977) and has since

been adapted and expanded by others (Xin et al., 2016). According to Monteith

(1972) gross primary productivity (GPP) can be expressed by a light-use efficiency

(LUE) coefficient times the amount of PAR incident on the canopy, and the fraction

of PAR that is absorbed by the canopy (fPAR, sometimes written as FAPAR or

FPAR in the literature):

GPP = LUE × PAR× fPAR. (1.6)

Most current GPP models are based on light-use-efficiency (Xin et al., 2016;

Myneni et al., 2002). With the recent production of the MODIS PAR product (Wang

et al., 2020a), PAR can be assimilated into LUE-based yield models at regional and

global scales, that previous studies (Johnson, 2016; Skakun et al., 2021), either

seasonally or on a daily scale, haven’t been able to do. With the addition of PAR

to our models, I aim to answer the question, to what degree can PAR improve
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agricultural yield models?

Satellite-derived PAR can be useful for modeling crop yield when added to

surface reflectance-based crop models (Xin et al., 2016). There is a potential to

use this model for near term forecasting of crop yields and to use the model at

higher spatial resolutions to improve yield modeling and forecasting for food-insecure

regions of the world. However, the differences between the spatial resolution of the

PAR product and the spatial resolutions that best support crop yield modeling has

yet to be fully determined.

Daily surface reflectance (SR), vegetation indices (VI), leaf area index (LAI),

fraction of absorbed PAR (fapar) and/or PAR itself model can be used as indicators

for yield correlations (Johnson, 2014, 2016; Gao et al., 2018; Skakun et al., 2021).

This can be especially useful in finding the day of the year that is best correlated

with crop yield. Studies such as Johnson (2016) used single indicators, such as

VI or leaf area index (LAI), here I built a similar model but include multiple input

variables, such as surface reflectance in all visible and near-infrared bands, and PAR.

The contribution of PAR to vegetation activity and yield has been well studied e.g.,

(Gitelson et al., 2015; Xin et al., 2016; Alton et al., 2007; Cheng et al., 2015), however

up until recently satellite-derived estimates of PAR were not widely available on the

global scale or with a decades long time series (Zhao et al., 2013; Wang et al., 2020a).

Vegetation activity (photosynthesis) requires sunlight, precipitation, and fa-

vorable temperatures (Nemani et al., 2003; Running et al., 2004; Milesi et al., 2005).

The more efficiently PAR is absorbed by cropped vegetation, the higher yields can

be (Gitelson et al., 2015; Yuan et al., 2016), which will become increasingly im-
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portant as the planet warms and the population rises. Wild (2012) showed that

surface shortwave radiation (SSR) trends are associated with increasing trends in

both precipitation and near-surface air temperature, while decreasing SSR trends are

associated with decreasing precipitation in the northern hemisphere. Other studies

have shown how human and natural activity have affected light conditions, partic-

ularly with respect to atmospheric aerosols (Roderick et al., 2001; Gu et al., 2003;

Rap et al., 2015, 2018), and that with those changing light conditions the amount of

carbon removed from the atmosphere during photosynthesis increased (Alton et al.,

2007; Mercado et al., 2009; Kanniah et al., 2012; Cheng et al., 2015). However, as

the planet changes due to global warming, and the potential for people to attempt

various geoengineering strategies (Irvine et al., 2016; Lockley et al., 2020; Liu et al.,

2021) to avert some of the adverse effects of climate change, it is increasingly im-

portant to be able to monitor and study our cropped vegetation explicitly including

radiation as a forcing or indicator.

Surface stations that contain instruments to measure PAR directly can be

difficult or expensive to maintain. In cropped fields instruments take up valuable

space and it is impractical to have them placed in every field. However, remotely

sensed Earth observations are available at a variety of spatial and temporal scales

with decades long time series, many with near global coverage. Some remote sensing

observations are freely available, while others come from classified or proprietary

satellites.

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a prime

instrument aboard NASA’s Terra and Aqua polar orbiting satellites. MODIS obser-
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vations are available four times daily at the global scale, with derived products that

range from 250 m to 1 km spatial resolution. The MODIS science team continually

works to keep MODIS data and products a reliable source of high quality Earth Ob-

servation data for the scientific community. The MODIS data record extends from

early 2000 to the present, and while Terra and Aqua have both lasted long past

their design lifetimes and their missions will soon be ending, scientists have been

working on data fusion with the next generation of comparable NASA observations

(Obata et al., 2016; Xiong and Butler, 2020).

MODIS has previously been used in studies for PAR retrievals (Liang et al.,

2006; Wang et al., 2020a; Van Laake and Sanchez-Azofeifa, 2004, 2005; Tang et al.,

2017), however, these retrievals have primarily been process-based, which are limited

by their parameterizations and interpolation schemes. Machine learning methods,

on the other hand, in some cases are well suited to resolving non-linearities in in-

terpolation or other limitation from parameterization schemes. Machine learning

methods calculate the statistical relationships between the input variables and the

desired outputs, or target variables, and should be tested to determine how effec-

tively they can be used for MODIS retrievals of PAR.

As sunlight travels from the top of the atmosphere to the surface, it can

be reflected, refracted, absorbed, scattered, or transmitted (Campbell and Wynne,

2011). And thus:

I = I0e
−σL, (1.7)

where I is the intensity of the beam at the surface, I0 is the unattenuated intensity of
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the beam at the top of the atmosphere, L is the path length through the atmosphere,

and σ is the extinction coefficient, which is equal to the sum of what is scattered or

absorbed by the atmosphere (Campbell and Wynne, 2011):

σ = bm + bp + bn + k, (1.8)

where bm, bp, and bn are the coefficients of Rayleigh (scattering off molecules in

the atmosphere), Mie (scattering off large particles), or wavelength independent

(non-selective) scattering, respectively, and k is the absorption coefficient.

Satellites however, measure radiance at the top of the atmosphere, which in-

cludes radiance from the surface as well as the atmosphere, therefore to obtain the

amount of radiation at the surface from satellite observations, we must calculate the

radiative transfer inversion (Chandrasekhar, 1960) from what is measured by the

satellite to what was actually present at the surface.

Incident shortwave radiation can be calculated as follows according to Liang

(2005); Liang et al. (2006):

Fλ(µ0) = Fλ,0(µ0) +
rsρ̄

1− rsρ̄
µ0E0γ(µ0), (1.9)

where F (µ0) is the total incident spectral flux, F0(µ0) is the downward flux

without any contribution from the atmosphere, rs is the surface reflectance, ρ̄ is the

spherical albedo of the atmosphere, E0 is irradiance from the sun, γ(µ0) is the total

transmittance through the atmosphere (which could further be partitioned into the
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direct and diffuse components), and µ0 is the cosine of the solar zenith angle. Note,

Fλ(µ0) and Fλ,0(µ0)) also have a spectral dependence, λ.

PAR, therefore, can be calculated by integrating all of the incident spectral

fluxes over the visible spectrum (400 - 700 nm).

PAR(µ0) =
∫ 700

400
Fλ(µ0)dλ. (1.10)

Photosynthetically active radiation (PAR) is the portion of sunlight in the

visible spectrum, from about 400 - 700 nm that is used for photosynthesis (Anderson,

1971). PAR accounts for approximately 50% of the total radiation received by the

surface (Liang et al., 2006).

The coefficient of the absorption of PAR, αPAR, is a dimensionless, semi-

analytically modeled measure based on the spectral reflectance of a particular plant

species (Gitelson et al., 2019, 2021). Essentially, is a measure of how efficiently and

effectively a plant can absorb photosynthetically active radiation for photosynthesis

and is defined as follows:

αPAR =
ρNIR

ρV IS

− 1, (1.11)

where reflectance in the visible spectrum, ρV IS, is equal to the mean of the

reflectance in the red, green, and blue bands:

ρV IS =
ρRed + ρGreen + ρBlue

3
. (1.12)
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αPAR varies among plant species due to the cell structure, photosynthetic path-

way, biochemical properties of the plant, and leaf orientation. It is closely related to

both the fraction of absorbed PAR, fPAR, and canopy chlorophyll content. αPAR

is also likely a stronger indicator of crop yield than vegetation indices for empirical

crop models, such as those in Johnson (2016) or (Skakun et al., 2021).

1.2 Dissertation research questions

In this dissertation, I aim to answer the question: To what extent can MODIS-

derived PAR be used for studying corn and soybean production in the United States?

The research question and design of the dissertation are illustrated in Figure 1.4

Figure 1.4: Visual description of the dissertation research

In order to answer the broad research question, I break the research down into

three components and ask the following three sub-questions. First, to what degree
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can an empirical model of surface radiation using limited input data be used to

obtain PAR? And how does it compare to physics-based methods? Physics-based

methods for retrieving PAR, e.g., Liang et al. (2006), require ancillary atmospheric

inputs, from remotely sensed data and reanalysis-based products, such as atmo-

spheric water vapor, aerosol optical depth, and others. These ancillary data are not

always available in near real time and they compound the uncertainty of the cal-

culated PAR. I hypothesize that machine learning methods will be able to capture

non-linear relationships between top-of-atmosphere radiance measured by satellites

and PAR at the surface.

To answer the first question, I chose a selection of machine learning meth-

ods to use in my empirical model because advances in computing power and algo-

rithms makes such methods a practical way to capture the nonlinear relationships

between TOA reflectance and surface radiation. They are compared to some ex-

isting products, including the MODIS product suite of SSR and PAR, MCD18A1

and MCD18A2. The ability to estimate surface radiation without having to rely

on all of the necessary ancillary atmospheric data required by radiative transfer

would represent a great leap forward in the ability for near real time monitoring or

incorporation of PAR into other models.

The second question is, how much yield variability can be explained by adding

PAR explicitly to empirical crop yield models of corn and soybean production in the

United States at the county scale? Here my hypothesis is that based on the Montieth

relationship (Equation 1.6) the incorporation of PAR into the empirical crop yield

model will improve crop yield estimates at the county scale in the US. To address this
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second question, I take the best available, highest spatial resolution PAR estimates

and add them to a county-level crop yield model of corn, and soybean, following the

methodology set up by Johnson and Skakun (Johnson, 2016; Skakun et al., 2021).

Currently, PAR is only implicitly included in empirical yield models, as PAR affects

the greenness of the plant canopy which is seen in the spectral reflectance used by

many empirical crop yield models.

And finally, I ask how much variation does MODIS-derived αPAR explain com-

pared to field scale measurements? My final hypothesis is that there will be spatial

and temporal variations in the αPAR coefficient due to the different crops and their

productivity. Finally addressing the third question, using MODIS surface reflectance

and in situ measurements of αPAR and plant chlorophyll content in three test fields

with known crop rotations and irrigation methods, I will determine the suitability of

using MODIS to calculate αPAR so that it may be incorporated into future empirical

crop yield models.

The dissertation is organized as follows: in Chapter 2 the results of an exper-

iment to estimate surface shortwave radiation (SSR) and photosynthetically active

radiation (PAR) from top-of-atmosphere (TOA) measurements only using machine

learning methods as an alternative to traditional radiative transfer inversion algo-

rithms are presented. Chapter 3 contains the results of a crop modeling study using

PAR, surface reflectance, and vegetation indices as indicators of yield. Chapter 4

contains the results of using MODIS-derived αPAR for studying corn and soybean

yields at the field- and aggregated field-scales. Finally, overall conclusions, lessons

learned, and a vision for future work are presented in Chapter 5.
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Chapter 2: Empirical surface radiation retrievals leveraging machine

learning methods1

2.1 Overview

Satellite-derived estimates of downward surface shortwave radiation (SSR) and

photosynthetically active radiation (PAR) are a part of the surface radiation bud-

get, an essential climate variable (ECV) required by climate and vegetation models.

Ground measurements are insufficient for generating long-term, global measure-

ments of surface radiation, primarily due to spatial limitations; however, remotely

sensed Earth observations offer freely available, multi-day, global coverage of radi-

ance that can be used to derive SSR and PAR estimates. Satellite-derived SSR and

PAR estimates are generated by computing the radiative transfer inversion of top-

of-atmosphere (TOA) measurements, and require ancillary data on the atmospheric

condition. To reduce computational costs, often the radiative transfer calculations

are done offline and large look-up tables (LUTs) are generated to derive estimates

more quickly. Recently studies have begun exploring the use of machine-learning

techniques, such as neural networks, to try to improve computational efficiency.

1This work has previously been published as Meredith GL Brown, Sergii Skakun, Tao He, and
Shunlin Liang. Intercomparison of machine-learning methods for estimating surface shortwave and
photosynthetically active radiation. Remote Sensing, 12(3):372, 2020. (Brown et al., 2020)
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Here, nine machine-learning methods were tested to model SSR and PAR using

minimal input data from the Moderate Resolution Imaging Spectrometer (MODIS)

observations at 1 km spatial resolution. The aim was to reduce the input data

requirements to create the most robust model possible. The bootstrap aggregated

decision tree (Bagged Tree), Gaussian Process Regression (GPR), and Multilayer

Perceptron Neural Network (MLP) yielded the best results with minimal training

data requirements: an R2 of 0.77, 0.78, and 0.78 respectively, a bias of 0 ± 6, 0 ± 6,

and 0 ± 5 W/m2, and an RMSE of 140 ± 7, 135 ± 8, and 138 ± 7 W/m2, re-

spectively, for all-sky condition total surface shortwave radiation and viewing angles

less than 55◦. Viewing angles above 55◦ were excluded because the residual analysis

showed exponential error growth above 55◦. A simple, robust model for estimating

SSR and PAR using machine-learning methods is useful for a variety of climate

system studies. Future studies may focus on developing high temporal resolution

direct and diffuse estimates of SSR and PAR as most current models estimate only

total SSR or PAR.

2.2 Introduction

Current satellite-based estimates of surface radiation incorporate atmospheric

information in their algorithms, which can be difficult to obtain and propagate

error and uncertainty through the algorithm. A popular method for reducing the

computational demands of generating a product is to compute the radiative transfer

inversions offline and store them in a look-up table (LUT) (Liang et al., 2006; Zhang
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et al., 2018; Wang et al., 2020a). LUTs can be generated using in situ data or

simulated data, and their major advantage is the ability to do the radiative transfer

inversion calculations ahead of time to speed up data generation (Zhang et al., 2018).

The major disadvantage is that a LUT must be segmented into bins of a pre-defined

size, and then estimates are interpolated between the values in the LUT. The finer

the bin segments the larger the LUT, the longer it takes to generate the LUT, and the

more time it takes to search the LUT to generate the data of interest. Balancing

these requirements is the art of the LUT method. Other methods can also be used

to optimize or parameterize a LUT (Zhang et al., 2018), and the computational

requirements of these methods is also a limitation of the overall LUT approach.

The aim of this study is to determine if it is reasonable to develop a machine-

learning-based model for estimating SSR and PAR from TOA measurements alone.

Traditionally surface radiation estimates are generated using physical-based, radia-

tive transfer models (Van Laake and Sanchez-Azofeifa, 2004; Zhang et al., 2015).

These models typically require information about the top-of-atmosphere, the atmo-

sphere, and the surface, or they can be parameterized to reduce the ancillary data

requirements (Katkovsky et al., 2018). Acquiring this ancillary data introduces

sources of potential error, requires heavy-duty computing resources, and is still time

intensive (Zhang et al., 2018). Therefore, the goal of this study is to build an em-

pirical model that only requires TOA data as input to reduce these extra sources of

potential error, which can be trained and executed quickly and efficiently, while still

yielding comparable results to existing methods. I have chosen to test a selection of

machine-learning methods (Camps-Valls et al., 2006; Lázaro-Gredilla and Titsias,
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2011; Lázaro-Gredilla et al., 2014) in my model to explore how much of the physical

processes they can capture as well as possibly improve on computational demands

by selecting the smallest reasonable training samples.

For this study, all selected methods are tested with minimal tuning and the

best results are identified for further study and development. Here, I use only

MODIS TOA measurements and cloud condition, but the model could potentially

be adapted to use higher spatial resolution observations such as the Harmonized

Landsat Sentinel-2 data (HLS) (Claverie et al., 2018) or they could be adapted for

VIIRS (Justice et al., 2013; Skakun et al., 2018) to extend the existing MODIS data

record and incorporate further atmospheric or surface information.

2.3 Data

The data sources and years available are shown in Table 2.3. For the first

part of the study, the initial intercomparison between machine-learning methods,

the surface shortwave radiation (SSR) and photosynthetically active (PAR) models

were trained using data from 2005–2009 and independently validated against data

from 2010. In the second part of the study, the temporal stability test of the

different machine-learning methods in the models, a Leave One Year Out Cross-

Validation approach was used, described in Section 2.4.3. All ground truth data

are from the Surface Radiation Budget Network (SURFRAD) sites located in the

contiguous United States. Each year of data contains approximately 8200 combined

satellite overpasses.
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Data Years
Avail.

Spatial Res. Temporal
Res.

Citation

MOD/MYD021KM
TOA Reflectance

2002-
current

1 km at nadir instantaneous,
1–2-day revisit

(MODIS Sci-
ence Data
Support Team,
a,c)

MOD/MYD35
Cloud Mask

2002-
current

1 km at nadir instantaneous,
1–2-day revisit

(Ackerman
and Frey,
2015)

MOD/MYD03
Geolocation

2002-
current

1 km at nadir instantaneous,
1–2-day revisit

(MODIS Sci-
ence Data
Support Team,
b,d)

SURFRAD 2003-
current

10 m footprint 3-min. be-
fore 2005, 1-
min since 2005

(Augustine
et al., 2005)

Table 2.1: Data used for model training and validation.

2.3.1 Remote Sensing

The model inputs are collected from the MODIS top-of-atmosphere (TOA)

reflectance from both Terra and Aqua, MOD021KM and MYD021KM respectively,

collection 5 (C5), at 1km spatial resolution. I use the reflectance of the first seven

bands: red (620–670 nm), near Infrared (841–876 nm), blue (459–479 nm), green

(545–565 nm), and the three shortwave infrared bands 1230–1250 nm, 1628–1652 nm,

and 2105–2155 nm. Additional inputs to the SSR and PAR models are the satellite

viewing geometry: solar zenith angle, satellite view zenith, and the relative angle

between the solar and satellite azimuth (relative azimuth angle). I also use the cloud

mask (MOD35 and MYD35) as a categorical variable to obtain the cloud condition

since no other atmospheric information is explicitly contained in the models.
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2.3.2 SURFRAD

The SSR and PARmodels are trained and validated using the seven SURFRAD

sites in the contiguous United States. The Surface Radiation Budget Network

(SURFRAD) consists of seven ground sites in the United States (Augustine et al.,

2005) shown in Figure 2.1. The seven SURFRAD sites, which were all installed

by 2003, allow for continuous monitoring of direct and diffuse total radiation and

PAR at sites in different climate zones, with varying surface types and elevations.

The sites have been maintained and updated since their installation, the data is

provided in a consistent form with notifications about adjustments and errors to

users. While there are other ground sites in the US and other countries as part of

other networks, not all of them meet the same standard as the SURFRAD sites,

and many were set up as part of short term experiments, and therefore do not have

very long data records or the necessary variables available.

The SURFRAD instruments, mounted on platforms 1.5 to 2 m off the ground,

and the measurements I used for this experiment are: direct and diffuse solar radi-

ation, and PAR. The direct radiation is measured with a normal incidence pyrhe-

liometer (NIP) which is mounted on a sun tracker, while the diffuse radiation is

measured with a shaded pyranometer also attached to the sun tracker. Using the

direct and diffuse solar radiation measurements, total SSR is calculated as follows:

SSR = Rdir ∗ cosSZ +Rdif (2.1)
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Figure 2.1: Map of the seven SURFRAD sites in the conterminous United States
(CONUS).

where Rdir is the direct component of radiation, Rdif is the diffuse component,

and SZ is the solar zenith angle. The uncertainty requirements for the SURFRAD

instruments are 2–5% or 15 W/m2 whichever is larger, to meet the World Climate

Research Program specifications (WMO).

2.3.3 Training and Model Validation Data Sets

Prior to training, TOA reflectance fromMOD021KM(C5) and MYD021KM(C5)

and the overpass times are extracted for pixels containing the location of surface

sites. I take a ±15 min temporal average of the SURFRAD data for each satellite

overpass. For each site, only one pixel is selected, and no spatial averaging is done

at this time following the methods of Zhang et al. (Zhang et al., 2018) and Carter

and Liang (Carter and Liang, 2019). Over all sites and all years of data, I have a

total of 51,142 data pairs.
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2.4 Methods

In this study, four “families” of methods were tested, namely linear methods,

decision tree methods, Neural Network-based methods, and kernel-based methods.

Below is a brief overview of these types of methods.

2.4.1 Modeling SSR and PAR with Machine-Learning Methods

2.4.1.1 Linear Methods

Regularized Linear Regression (Bishop, 2006) is used as the benchmark method

here because it is the simplest, most straightforward method I can use, and one of

the most transparent as it gives the most information about the relative importance

of the input variables on the model output.

Two additional linear methods were tested, Least Absolute Shrinkage and Se-

lection Operator (LASSO) (Santosa and Symes, 1986; Tibshirani, 1996) and Elastic

Net Regularization (ELASTIC NET) (Zou and Hastie, 2005; Hastie et al., 2009).

The LASSO method is a type of feature selection and regularization method, which

in its simplest form is a type of least squares regression model. ELASTIC NET is a

method which includes both the feature selection and regularization of the LASSO

method, as well as ridge regression, both methods are supposed to improve predic-

tion accuracy, especially for ill-posed problems.
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2.4.1.2 Decision Tree Methods

Decision Trees are a type of non-parametric, supervised learning methods.

They approximate a function by incrementally creating a set of if-then-else rules

while breaking data sets into increasingly smaller subsets. A Bootstrap Aggregated

(Bagged) Decision Tree (Breiman, 1996) is a special case of the ensemble approach

applied to the basic decision tree method that can reduce variance and avoid over-

fitting. The method works by sampling the original training set for each new tree

to create an ensemble of trees from which predictions can be made.

2.4.1.3 Neural Networks

The feed-forward multi-layer perceptron (MLP) is one of the most common

neural networks. In this method, the inputs are fed through the hidden layers and

connected to the outputs through a series of weights. The outputs of each layer

are compared to the desired outputs and fed back through the network, adjusting

the weights each time, until the error function has been minimized (Bishop, 2006;

Camps-Valls et al., 2006; LeCun et al., 2015; Kussul et al., 2017).

2.4.1.4 Kernel Methods

Of the many different types of kernel methods, Gaussian Process Regression

(GPR) (Bishop, 2006; Lázaro-Gredilla and Titsias, 2011) sometimes also known

as kriging, is a type of distance weighting machine-learning algorithm that makes

use of an assumed Gaussian probability distribution to make its predictions. This
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feature of the method requires small training sample sizes lest the model become

too cumbersome.

2.4.2 Data Filtering, Parameter Tuning, and Training

My aim is to create an all-sky model, therefore I include all sky conditions

identified according to the MODIS cloud mask. The inputs to the model are solar

zenith angle (SZ), view zenith angle (VZ), relative azimuth (AZ), reflectance in the

first seven top-of-atmosphere (TOA) MODIS bands, and the coded cloud condition

described in Section 2.3.3. Training data is filtered so that the training set contains

only pixels whose cloud flag matches the expected amount of ground-measured ra-

diation are used for training; however all valid pixels are included in the model

validation data, so there may be mismatches between the satellite cloud mask and

the ground observed cloud condition.

Data viewed above 55◦ is discarded. Due to the bowtie effect, the pixel size

at such extreme viewing angles is much larger than the pixel size at and nearer to

nadir (Campagnolo and Montano, 2014). Furthermore, the additional path length

through the atmosphere at such extreme viewing angles contaminates the pixel

compared to small viewing angles. The MODIS team recommends against using

pixels at such high viewing angles due to data quality issues associated with the

extremity of the viewing angle (MODIS Science Data Support Team, a).

Each method has a different optimal training sample size, for example, a Neu-

ral Network benefits from the largest training sample available, whereas a Gaussian
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Process Regression is optimized for small training sample sizes (1000–2000 points),

therefore for each method, the model is allowed to separate its training and inter-

nal testing samples randomly, according to its optimal parameters. For this rea-

son, several tests are done leaving specific data out for independent cross-validation

and intercomparison.

Each method also has a different set of tunable parameters. The linear meth-

ods have at most one or two parameters to tune, whereas the Neural Network has

several, including number of hidden layers, number of neurons per layer, number of

epochs, and the Kernel Ridge Regression and Gaussian Process Regression have a

gamma parameter that defines the kernel. For each combination of tunable parame-

ters, tests were performed to find the final combination that yielded the best results

with the smallest computational requirements.

During parameter tuning tests, the final combination of parameters selected

had to maximize R2, while minimizing RMSE and training time. The Bagged Tree

reaches its peak performing parameters with only 200 trees in the bag, yet I tested

up to 2000 trees to see if I could get any improvement on RMSE. It is possible

that with more than 200 bags in the tree, the method overfits, other works suggest

that the number of trees in the bag should depend on the number of features in

the model (Latinne et al., 2001; Oshiro et al., 2012; Perner, 2012). In my model I

have 14 input variables, thus it should be expected that a relatively small number

of trees should be optimal.

For the final parameter selection, I used a Multi-layer Perceptron Neural Net-

work with 1 hidden layer, 14 neurons (one for each input), 100 training epochs, and is
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trained with the Levenberg-Marquardt backpropagation method. The Bagged Tree

and Boosted Tree methods use 200 trees/bag. The Kernel Ridge Regression and

Gaussian Process Regression use a radial basis (RBF) kernel. Other kernel func-

tions tested were not successful.

Figure 2.2: Relative importance of the model input variables.

The RLR method coefficients, shown in Figure 2.2, show that the MODIS red

band (620–670 nm), where the peak solar energy is measured, and green band

(545–565 nm), are the most influential input variables, and further that as re-

flectance in the blue (459–479 nm), green, and SWIR (1230–1250 nm) bands in-

creases, the estimated SSR or PAR decreases, showing that these bands are the

most sensitive to aerosols in the atmosphere that might lead to the global dimming

phenomenon (Wild, 2012).
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2.4.3 Model Cross Validation

Each machine-learning method has an optimal training sample size. Linear

regression and neural networks perform best with large training samples, whereas

Kernel Ridge Regression (KRR) and Gaussian Process Regression (GPR) are better

suited for smaller training data sets. In order to make the best use of each method

I use different training samples sizes according to the method and then use three

different methods for model validation and intercomparison.

Model Validation Method (1): Data from 2005–2009 are used for the training

set, while data from 2010 is used for independent validation and intercomparison.

Using this training and model validation method, I have 42,754 data pairs available

for training and 8388 for validation.

Model Validation Method (2): I use the Leave One Year Out Cross-Validation

(LOYOCV) method, a type of k-fold cross-validation, where I hold one year out

and repeat the training and cross-validation 6 times, each time using five years for

training and holding one year out for model validation. On average, there are 1217

data pairs per site per year, meaning each iteration has an average of 42,618 data

pairs available for training and 8523 for validation.

Model Validation Method (3): I use the Leave One Station Out Cross-Validation

(LOSOCV) method, a similar type of k-fold cross-validation, and train on six of the

seven SURFRAD stations and hold one out for cross-validation, iterating through

just as I did for the LOYOCV. On average, each iteration in this model validation

method has 43,836 data pairs available for training and 7306 for validation. By us-
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ing this type of cross-validation, I build an ensemble from which I can determine the

spatial and temporal stability. In order to evaluate the different machine-learning

methods and compare them to each other I calculate R2
adj, RMSE, and bias as

follows:

R2 =

∑
(Rest −Robs)

2

∑
(Robs −Robs)

2 (2.2)

R2
adj = 1− (1−R2)

n− 1

n− p− 1
(2.3)

RMSE =

√∑
(Rest −Robs)2

n
(2.4)

Bias =

∑
(Rest −Robs)

n
(2.5)

where Rest are the modeled surface radiation (either SSR or PAR), Robs are the

ground-measured radiation data, Robs is the mean of the ground-measured radiation,

n are the number of data pairs, and p is the number of input parameters.

2.5 Results

2.5.1 Model Performance

The results of the nine machine-learning methods, shown in Table 2.5.1 show

that the linear methods and a single decision tree do not simulate the ground ob-

served SSR and PAR as well as the non-linear methods. The best methods for SSR
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and PAR are the bootstrap aggregated (BAGGED TREE) decision tree (Figures

2.3 and 2.4), the multi-layer Neural Network (MLP) (Figures 2.5 and 2.6), and the

Gaussian Process Regression (GPR) methods (Figures 2.7 and 2.8). All methods

are in good agreement, but show some deviation from the 1:1 line, especially at low

values of PAR or SSR. The GPR method best corrects this effect, but the overall

spread of the modeled radiation at low values increases somewhat compared the

MLP and BAGGED TREE methods.

Method SSR
R2

adj

SSR
RMSE
(W/m2)

SSR
Bias
(W/m2)

PAR
R2

adj

PAR
RMSE
(W/m2)

PAR
Bias
(W/m2)

RLR 0.68 170 (29%) −11 0.70 69 (29%) −3
LASSO 0.68 170 (29%) 28 0.70 70 (29%) 11

ELASTIC NET 0.69 170 (29%) 29 0.70 70 (29%) 11
DECISION TREE 0.62 190 (31%) −8 0.60 82 (31%) −3
BAGGED TREE 0.77 144 (23%) −8 0.76 61 (23%) −2
BOOSTED TREE 0.73 155 (25%) −11 0.73 65 (24%) −3

MLP 0.78 138 (22%) −4 0.78 59 (22%) −1
KRR 0.75 149 (24%) −7 0.75 62 (23%) −1
GPR 0.78 140 (23%) −5 0.78 59 (22%) −2

Table 2.2: Model Validation Method 1 results for both SSR and PAR.

2.5.2 Time Series and Site Analysis

During training, two types of cross-validation were conducted to test the ro-

bustness of the methods. First, in Model Validation Method 2 of my analysis, I

test the temporal stability of the model methods. In Leave One Year Out Cross-

Validation (LOYOCV), I iteratively train the model on only five of the six years

and use the last year held out for cross-validation. In this way, I test the temporal

robustness of the model methods, the statistics are given in Tables 2.5.2 and 2.5.2,
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Figure 2.3: Model Validation Method 1 results for SSR BAGGED TREE, R2
adj =

0.77, RMSE = 144 (W/m2)(23%)

and they show that the methods are temporally stable.

For the LOYOCV, I find that for these six years of data, the model is tempo-

rally stable, and there are no outlier years. I find comparable results for the PAR

LOYOCV. Keeping in mind that since PAR is approximately half of SSR, the RMSE

and bias for the PAR are relatively the same as for SSR. Second, in Model Vali-

dation Method 3, I tested the spatial stability, using the Leave One Station Out

(LOSOCV) cross-validation approach, similar to Model Validation Method 2, I it-

eratively train on only six of the seven SURFRAD sites and use the site held out

for cross-validation. The statistics are given in Tables 2.5.2 and 2.5.2 and discussed
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Figure 2.4: Model Validation Method 1 results for PAR BAGGED TREE, R2
adj =

0.76, RMSE = 61 (W/m2) (23%)

in the following sections.
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Figure 2.5: Model Validation Method 1 results for SSR MLP, R2
adj = 0.78, RMSE

= 138 (W/m2) (22%)

For the PAR LOSOCV, the results are comparable to the SSR, as shown in

Table 2.5.2.

2.6 Discussion

The most accurate of the machine-learning methods were the bootstrap aggre-

gated decision tree, the Multi-layer Perceptron Neural Network, and the Gaussian

Process Regression. I find that regardless of the chosen method, the model is quite

stable when I performed an iterative training and cross-validation through time and

space. Among the SURFRAD sites, the Table Mountain site near Boulder, CO
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Figure 2.6: Model Validation Method 1 results for PAR MLP, R2
adj = 0.78, RMSE

= 59 (W/m2) (22%)

shows considerably different model validation statistics from the other sites that

skews the spatial cross-validation somewhat. Including more sites in the training

and/or cross-validation may resolve this issue; however ground measurements from

other networks in the United States do not have the same data quality or data

record as the SURFRAD sites that were designed for long-term radiation monitor-

ing (Augustine et al., 2005).

The optical depth of the atmosphere, whether due to clouds or aerosols, still

presents a challenge to this work. The thickness of clouds and aerosols is a major

factor in how much radiation can reach the surface (Xu et al., 2011; Lefèvre et al.,
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Figure 2.7: Model Validation Method 1 results for SSR GPR, R2
adj = 0.78, RMSE

= 140 (W/m2) (23%)

2013; Xu et al., 2016). The aim of this work was to test if standard machine-learning

methods could accurately estimate SSR and PAR without this a priori information,

and I have shown that they can within 20% error. However, while machine learning

can infer statistical relationships and make estimations based on those relationships,

the missing information from the model will likely be seen in the comparison between

these methods and other satellite estimates based on physical models.

I have reported my results as instantaneous estimates of SSR and PAR, while

many other studies report 3-hourly estimates (Zhang et al., 2014; Gui et al., 2010;

Zhang et al., 2018). Zhang et al. (Zhang et al., 2018) report RMSE of 12% for their
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Figure 2.8: Model Validation Method 1 results for PAR GPR, R2
adj = 0.78, RMSE

= 59 (W/m2) (22%)
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Method R2 std RMSE (W/m2) std
(W/m2)

Bias
(W/m2)

std
(W/m2)

RLR 0.62 0.08 183 (30%) 25 5 9
LASSO 0.65 0.07 182 (30%) 18 51 12

ELASTIC NET 0.65 0.07 182 (30%) 19 50 10
DECISION TREE 0.60 0.01 193 (32%) 4 −2 7
BAGGED TREE 0.77 0.01 140 (23%) 6 0 6
BOOSTED TREE 0.73 0.02 151 (25%) 7 1 7

MLP 0.78 0.02 136 (22%) 7 1 6
KRR 0.76 0.02 141 (23%) 7 0 5
GPR 0.78 0.02 138 (23%) 7 0 5

Table 2.3: Model Validation Method 2, Leave One Year Out Cross-Validation (LOY-
OCV) results for SSR.

Method R2 std RMSE (W/m2) std
(W/m2)

Bias
(W/m2)

std
(W/m2)

RLR 0.63 0.08 78 (30%) 10 2 4
LASSO 0.65 0.06 77 (29%) 8 22 5

ELASTIC NET 0.65 0.06 78 (29%) 8 22 5
DECISION TREE 0.61 0.01 81 (31%) 1 −1 2
BAGGED TREE 0.77 0.02 60 (23%) 2 0 2
BOOSTED TREE 0.73 0.02 64 (24%) 3 0 2

MLP 0.79 0.02 58 (22%) 3 0 2
KRR 0.77 0.02 60 (23%) 3 0 2
GPR 0.77 0.03 59 (22%) 4 -1 2

Table 2.4: Model Validation Method 2, Leave One Year Out Cross-Validation (LOY-
OCV) results for PAR.

3-hourly estimates at the SURFRAD sites, while other estimates range from 14–24%

at the same sites. The best comparison I can make is to the instantaneous SSR and

PAR estimates from the new MODIS suite of products, MCD18. Wang et al. (Wang

et al., 2020a) report RMSE between 10–18% at the different SURFRAD sites.

2.7 Conclusions

In this work I tested nine machine-learning methods to model SSR and PAR

using minimal input data from the MODIS instrument at 1 km spatial resolution in
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Method R2 std RMSE (W/m2) std
(W/m2)

Bias
(W/m2)

std
(W/m2)

RLR 0.60 0.09 182 (31%) 33 7 17
LASSO 0.63 0.07 184 (31%) 31 54 36

ELASTIC NET 0.63 0.07 183 (31%) 31 52 36
DECISION TREE 0.51 0.10 214 (36%) 27 -19 55
BAGGED TREE 0.74 0.04 149 (25%) 13 -11 42
BOOSTED TREE 0.70 0.04 155 (26%) 10 -2 24

MLP 0.76 0.04 139 (23%) 12 -8 30
KRR 0.73 0.04 146 (25%) 15 8 13
GPR 0.75 0.04 141 (24%) 15 -2 15

Table 2.5: Model Validation Method 3, Leave One Site Out Cross-Validation
(LOSOCV) results for SSR.

Method R2 std RMSE (W/m2) std
(W/m2)

Bias
(W/m2)

std
(W/m2)

RLR 0.60 0.09 78 (31%) 14 3 7
LASSO 0.63 0.07 78 (31%) 12 21 16

ELASTIC NET 0.63 0.07 78 (30%) 12 21 16
DECISION TREE 0.54 0.05 88 (34%) 7 −4 17
BAGGED TREE 0.74 0.04 64 (25%) 5 −5 18
BOOSTED TREE 0.71 0.04 67 (26%) 4 0 16

MLP 0.76 0.04 59 (23%) 5 −1 9
KRR 0.67 0.11 72 (28%) 21 −1 4
GPR 0.75 0.03 61 (24%) 5 0 9

Table 2.6: Model Validation Method 3 LOSOCV results for PAR.

order to explore the ability of machine-learning-based, empirical model to estimate

surface shortwave radiation (SSR) and photosynthetically active radiation (PAR)

using input data from minimal sources to reduce error propagation and computa-

tional time. I found that the bootstrap aggregated decision tree (Bagged Tree),

Gaussian Process Regression, and Multi-layer Perceptron Neural Network yield the

best results with minimal input and training data requirements. I report an R2 of

0.77, 0.78, and 0.78 respectively, a bias of 0 ± 6, 0 ± 6, and 0 ± 5 W/m2, and an

RMSE of 140 ± 7, 135 ± 8, and 138 ± 7 W/m2, respectively, for all-sky condition

total surface shortwave radiation and viewing angles less than 55◦.
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Future studies should focus on several areas: 1) Adding more MODIS bands

as inputs to the model. While the first 7 MODIS bands cover a large portion of

the electromagnetic spectrum, some of the other bands may be more sensitive to

aerosols in the atmosphere that would limit radiation from reaching the surface. 2)

Adding more training data to the model. My work was aimed at finding the smallest

reasonable training sample and the simplest reasonable model design, but more

training samples, may improve the model assuming the differences in measurements

and calibrations could be well handled. 3) More aggressive filtering of input and

training data. My intention was to include as much data as possible; however,

starting from an idealized clear-sky model and building a more complex model to

handle cloudy-sky cases could be one strategy to improve the model results. 4)

Developing high temporal resolution direct and diffuse estimates of SSR and PAR

as most current models estimate only total SSR or PAR.
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Chapter 3: Incorporating photosynthetically active radiation (PAR)

into crop yield models for corn and soybeans in the US

3.1 Overview

Photosynthetically active radiation (PAR), as one of the parameters influenc-

ing plant productivity, is not typically explicitly included in satellite remote-sensing

based empirical crop yield models, rather these models tend to be based on vegeta-

tion indices (VIs) and other spectral properties observed by satellites which implic-

itly include information about radiation conditions. However, since the release of

the official Moderate Resolution Imagining Spectroradiometer (MODIS) PAR prod-

uct (MCD18A2) (Wang et al., 2020a), long term, global surface radiation data are

now available for incorporation into yield models. Having the advantages of spa-

tially explicit PAR estimates, spatial and temporal patterns of the PAR can reveal

differences in the land uses and the level of crop productivity. Here I use multiple in-

dicators and their combinations, including MODIS PAR, VI, and surface reflectance

(SR) to model crop yields of corn and soybean at the county level in the US from

2001-2020. I find that the addition of PAR to empirical yield models of corn and

soybean in the US does increase the adjusted coefficient of determination (R2
adj)
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compared to models that rely on VI or SR alone. For VI only based models, I find

maximum R2
adj around 0.60 for both corn and soybean, and models that include

PAR typically improve maximum R2
adj to around 0.80 for both corn and soybean.

My findings indicate the value added by incorporating PAR into empirical crop yield

models, even at coarse spatial scale in a region where vegetation is not radiation

limited. They also suggest there is value for future studies in estimating surface

radiation from high spatial resolution satellite data.

3.2 Introduction

The United States produces over a third of the world’s corn and soybean (Wang

et al., 2020b; Bagnall et al., 2021), grown primarily in the Midwestern United States

and Ohio River Valley. The US Department of Agriculture National Agricultural

Statistics Service (USDA NASS) (USDA NASS, 2023) provides consistent and com-

prehensive agricultural information going back to 1850. The economic value of corn

and soybean production in the United States has grown by over $115 billion com-

bined in the last 20 years. Annually, the US exports 10-20% of its supply to dozens

of countries worldwide, making modeling and monitoring corn and soybean yield

important both domestically and internationally.

Common methods for estimating crop yield from remote sensing data can be

divided into physical based models and empirical models. Physical models are de-

veloped over specific wavelength domains (e.g., optical, thermal infrared, LIDAR,

microwave) and the applicable underlying theory (Weiss et al., 2020). For instance,
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the Radiative Transfer Model Intercomparison (RAMI) project (Pinty et al., 2001,

2004; Widlowski et al., 2007, 2015) which compares radiative transfer canopy mod-

els designed for optical remote sensing observations, such as leaf reflectance and

transmittance models (e.g., PROSPECT (Féret et al., 2017, 2021)), plant canopy

models such as Scattering by Arbitrarily Inclined Leaves (4SAIL/4SAIL2) (Verhoef

and Bach, 2007; Verhoef et al., 2007), the combined PROSPECT and SAIL models,

PROSAIL (Jacquemoud et al., 2009; Berger et al., 2018), and soil radiation transfer

models, e.g., SOILSPECT (Jacquemoud et al., 1992). These physical models can

calculate forward radiative transfers and the radiative transfer inversions, but they

are limited by the required input data and perhaps computational capabilities of

the user.

Empirical models, or regression models, will use the spectral characteristics of

a canopy, e.g., surface reflectance, vegetation indices, and leaf area index (Prasad

et al., 2006; Fernandez-Ordoñez and Soria-Rúız, 2017; Johnson, 2016; Skakun et al.,

2021) from remote sensing, as these quantities implicitly contain all the information

about the physical conditions of plant or canopy, and calculate (regress) a numerical

relationship between remote sensing observations and ground measurements of yields

or other biophysical variables. Regression-based methods are data driven, and hence

are always limited by the representative nature of available observations.

In this study, I follow the methodology of Johnson (2016), who tested multiple

remotely sensed indicators, such as VI or leaf area index (LAI) to model crop yields.

Here I built similar models but include multiple input variables, such as surface

reflectance in all visible and near-infrared bands, and PAR. The contribution of
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PAR to vegetation activity and yield has been well studied e.g., (Gitelson et al.,

2015; Xin et al., 2016; Alton et al., 2007; Cheng et al., 2015), however up until

recently satellite-derived estimates of PAR were not readily available on the global

scale or with a decades long time series (Zhao et al., 2013; Wang et al., 2020a).

3.3 Study area

For the study, I selected the four MODIS tiles (h10v04, h11v04, h10v05, and

h11v05) containing the corn and soy belt in the United States, which covers the

Midwest and Ohio River valley. My study area extends westward from the Great

Plains to the mountain west from Kansas, the Dakotas, Montana, and into Idaho and

eastern Washington, as well south and eastward to the mid-Atlantic, Southeastern,

and Gulf states.

There are 1150 counties in the study area with reported corn yields, repre-

senting over 80% of the nearly 90 million acres of planted corn in the United States.

There are 1094 counties with reported soybean yields. Corn yields are typically

highest in the central counties of the study area in Illinois, Iowa, Kansas, southern

Minnesota, and along the Mississippi River in Arkansas (Figure 3.1). Similarly, soy-

bean yields are typically highest in Illinois, Iowa, Missouri, Arkansas, and Kansas

(Figure 3.2). Annual yields for corn and soybean from 2001-2020 are shown in Fig-

ures 3.3 and 3.4. The boxplots show the median yield for each county and the 2nd

and 3rd quartiles. The whiskers are defined by 1.5 × the standard deviation and

the black dots are yields that fall outside of that range.
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Figure 3.1: Spatial distribution of average corn yield according to the USDA NASS
data for each county in t/ha from 2001-2020.

Figure 3.2: Similarly to Figure 3.1, this shows the spatial distribution of average
soybean yield for each county in t/ha over the 20 year period from the NASS data.
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Figure 3.3: Boxplots of annual corn yields during the study period (2000 – 2020).

Figure 3.4: Boxplots of annual soybean yields during the study period (2000 – 2020).
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3.4 Data

3.4.1 Reference data

The US Dept. of Agriculture (USDA) National Agricultural Statistics Service

(NASS) provides data on annual crop production (USDA NASS, 2023). For this

study I use the county-level yield data for corn and soybean in 18 states covered

by MODIS tiles h10v04, h10v05, h11v04, and h11v05 (Figures 3.1 and 3.2). The

Cropland Data Layer (CDL) (Han et al., 2012; Xian et al., 2009) is the USDA annual

crop map. From 2001-2007, the CDL is only available for a handful of states. From

2001 - 2006 the CDL is available at 30 m spatial resolution, in 2007 it is provided

at 56 m resolution, and back to 30 m in 2008. In years and counties where a

crop mask is not available from the CDL, I use the crop mask developed in David

Lobell’s research group at Stanford University (Wang et al., 2020b). There are slight

differences between these crop masks, in particular, early versions of the mask may

have anomalous classifications within clearly defined fields, due to the uncertainties

in crop classification, while later versions of the mask apply additional mode filtering

to correct for these erroneously classified pixels. However, I am aggregating the CDL

or Lobell group mask up to the size of a 500 m MODIS sinusoidal grid cell, and

these small errors do not appear at that spatial scale.
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3.4.2 Remotely sensed indicator data

For the SR and VI inputs I use the nadir bidirectional reflectance distribu-

tion function (BRDF) adjusted reflectance (NBAR) MODIS product, MCD43A4

(Wang et al., 2018; Schaaf et al., 2002). MCD43A4 is a combined Terra and Aqua,

daily, 500 m resolution, tiled MODIS product, which gives the BRDF corrected re-

flectance for each of the 7 MODIS land bands (R, NIR, B, G, and 3 SWIR bands).

It is important to use BRDF corrected reflectance because Terra and Aqua have

different overpass times, meaning that each observation will be illuminated by the

sun from different directions, which when not corrected for BRDF will result in large

discrepancies between observations.

The Normalized Difference Vegetation Index (NDVI) is one of the most com-

monly used vegetation indices. However, when reflectance in the NIR band is very

high, which is common for soybean, NDVI can saturate quickly. In order to account

for the quick saturation of NDVI, instead I use the enhanced vegetation index (EVI).

I calculated EVI from NBAR as follows:

EV I = Gf
NIR−R

NIR + C1R− C2B + L
(3.1)

Using a gain factor, Gf , of 2.5, red and blue band aerosol resistance coeffi-

cients, C1 and C2, of 6 and 7.5 respectively, and a canopy background adjustment

factor, L, of 1 according to Huete et al. (1994, 1997, 2002).

The MCD18A2 collection 6 (C6) product (Wang et al., 2020a) is a 3-hourly,
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1 km resolution, tiled MODIS product of total PAR. The product also contains

instantaneous estimates of total, direct, and diffuse PAR. The product is derived

using a look-up-table approach calculating the radiative transfer inversion offline,

and takes as its observational inputs, top-of-atmosphere radiance, viewing geome-

try, atmospheric water vapor, and aerosol optical depth. When observational data

is unavailable, the MCD18A2 product takes reanalysis and climatological data as

input. The direct and diffuse components are estimated by the empirical partition-

ing of direct and diffuse radiation due to atmospheric water vapor and aerosols. For

this work, I used an internal beta version of the official product due to delays in the

NASA data processing queue.

3.5 Methods

3.5.1 Data preparation

The CDL must be reprojected from Albers Conical Equal Area projection to

the sinusoidal MODIS grid, then aggregated from 30 m to 1 km (actually 926.625433004

m) pixels. Using the CDL reprojected and aggregated to 1 km, all pixels for the

corresponding crop type in each county were averaged to yield a single reflectance

per band and PAR value for each county. Crop maps were extracted from the re-

projected CDL at 30 m scale and aggregated up to the 1 km scale in the MODIS

projection. Pixel purity percent was calculated according to the following:

P r
C =

∑ Cr
30

T r
30

× 100, (3.2)
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where P r
C is the percent of 30 m pixels of a given crop type C in an aggregated

pixel of resolution r, and T r
30 is the total number of 30 m pixels within the aggregated

pixel. For the analysis, I used only pixels with a pixel purity of 95% or higher to

limit uncertainty due to mixed pixels. Because I used an internal beta version of

MCD18A2(C6), I have no metadata that indicates whether the values of a given pixel

are taken from observations or climatology data, so all pixels with the appropriate

pixel purity are included. This should be taken into consideration as a caveat to the

work presented.

3.5.2 Crop yield modeling

Physical based LUE models are based on a linear function relating GPP to

the amount of PAR a leaf (or scaled up to the total canopy level) absorbs, aPAR,

by a LUE coefficient:

GPP = LUE × aPAR. (3.3)

This relationship can also be expressed as the LUE coefficient times the total

PAR available, times the fraction of PAR (fPAR) absorbed by the leaf or canopy:

GPP = LUE × PAR× fPAR. (3.4)

For this work, I use VI as a proxy for fPAR, in order to make easier cross

comparisons between my findings and other studies such as Johnson (2016) and

Skakun et al. (2021). This is possible because of the correlation between fPAR and
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VI, and give the equation:

GPP = m× PAR× V I + b, (3.5)

where m is the regression slope, and is b is the intercept. In this case, m should

vary with crop type as it is essentially the LUE.

The basis for my crop yield model begins with Johnson (2016) and Skakun

et al. (2021), where yield is correlated with the VI of a crop type or multiple SR. In

order to add PAR into the model, I take two approaches. First, adding PAR as a

simple variable into the multiple linear regression of VI or SR to yield, and second,

I make use of light use efficiency (Eq. 3.5), where GPP is used as a proxy for yield.

For my yield models, I consider the multivariate regression linear regression

the different possible combinations of PAR, SR, and VI with inputs as follows:

Input features Details No. inputs
PAR + EVI accumulated daily MODIS PAR, daily EVI 2
PAR + SR MODIS PAR and daily Red, Green, Blue, NIR

BRDF corrected bands
5

PAR × EVI accumulated daily MODIS PAR, daily EVI 1
PAR only accumulated daily MODIS PAR 1
EVI only daily EVI 1
SR only daily BRDF corrected Red, Green, Blue, NIR

bands
4

Table 3.1: Input features and description for each of the yield models tested.

3.5.3 Temporal analysis

First I train an annual temporal model, where for each day of the year, I

calculate the regression between yield and my inputs shown in Table 3.1 and record
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the R2
adj. PAR is accumulated from DOY 100 in early April to DOY 225 (mid-

August) for corn and DOY 255 (mid-September) for soybeans. These dates were

chosen for the a priori knowlege of the typical peak VI for corn and soybean (around

DOY 200 and 220 respectively). I use all counties as inputs for each year and crop

type, which gives me 600-1000 training samples to use per year. In this way, I

generate an annual temporal curve that allows me to find the day of year (DOY)

most strongly correlated with yield for each year and crop type from which I then

calculate and report the mean DOY of max R2
adj.

To validate the models, I use the leave-one-out approach; that is I train the

model on 19 of the 20 years of available data, withholding a single year for validation

and iterate through all 20 years. This way I can see both the inter-annual variability

and the overall average results of the models.

3.6 Results

3.6.1 Corn

Prior to evaluating the model results, I check my a priori assumptions by

comparing the temporal correlation coefficient between county yield and daily EVI,

in accordance with Johnson (2016), and find good agreement with the literature.

The temporal correlation between EVI and county yield for corn is shown in Figure

3.5 and agrees with the findings of Johnson (2016), and gives confidence for the a

priori assumptions previously described.

The best performing models for corn yield were the PAR + VI and PAR + SR
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Figure 3.5: Correlation coefficient between EVI and county crop yield for all counties
in the study area.
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models, with an R2
adj of 0.76 and 0.81 respectively shown in Figure 3.6 and Table 3.2.

All models show the highest R2
adj at around DOY 190 in early July. The VI and SR

only models reach a maximum R2
adj of 0.65 and 0.67 respectively, which is aligned

with the findings of Johnson (2016), and the best in field results from Skakun et al.

(2021). The PAR only and PAR×VI model reach a maximum R2
adj of 0.37 and 0.41

respectively, indicating that PAR alone is not a sufficient indicator of yield.

Figure 3.6: Averaged temporal R2
adj results of the six different models.

For the best performing model, PAR + SR, I show the scatter plot of estimated

yield compared to observed yield in t/ha in Figure 3.7. The model underestimates

yield and has a root mean square error (RMSE) of 6%. The majority of the obser-

vations are around 10-11 t/ha, while the model estimates yield at 8-9 t/ha. I also

show the trend in R2 over time in Figure 3.8. There is a slight decreasing trend

in R2 over time that coincides with the increasing trends in crop yield (Figure 1.3.
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Figure 3.7: Modeled vs observed county yields for the PAR + SR model for corn.
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Year PAR + EVI PAR + SR PAR × EVI PAR only EVI only SR only
2001 0.80 0.87 0.46 0.32 0.75 0.85
2002 0.73 0.75 0.41 0.31 0.64 0.72
2003 0.85 0.89 0.45 0.45 0.73 0.73
2004 0.84 0.88 0.41 0.40 0.71 0.73
2005 0.83 0.89 0.47 0.38 0.74 0.75
2006 0.79 0.87 0.34 0.41 0.64 0.66
2007 0.83 0.87 0.47 0.37 0.72 0.73
2008 0.77 0.82 0.35 0.39 0.63 0.66
2009 0.68 0.76 0.31 0.34 0.56 0.64
2010 0.79 0.85 0.52 0.36 0.69 0.62
2011 0.73 0.76 0.43 0.34 0.61 0.60
2012 0.79 0.80 0.40 0.40 0.59 0.65
2013 0.84 0.87 0.44 0.41 0.73 0.64
2014 0.61 0.65 0.31 0.30 0.52 0.63
2015 0.70 0.77 0.41 0.32 0.63 0.63
2016 0.72 0.77 0.47 0.31 0.56 0.66
2017 0.75 0.82 0.34 0.45 0.69 0.64
2018 0.73 0.76 0.47 0.40 0.61 0.62
2019 0.74 0.75 0.35 0.38 0.59 0.60
2020 0.68 0.76 0.31 0.41 0.73 0.65
Avg 0.76 0.81 0.41 0.37 0.65 0.67
Std 0.06 0.06 0.06 0.05 0.07 0.06

Table 3.2: Validation R2
adj of corn models for each year, by input features, with

average and standard deviation reported in bold.

Field studies, such as Skakun et al. (2021) show a similar result, that is when yields

are highest, R2 tend to be lower, this is due to the limitation of spectral remote

sensing to detect all influences on crop yield.
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Year PAR + EVI PAR + SR PAR × EVI PAR only EVI only SR only
2001 189 189 196 191 195 194
2002 176 174 183 184 178 174
2003 195 192 203 194 200 195
2004 193 190 206 196 198 192
2005 178 174 186 174 183 175
2006 183 177 195 178 197 177
2007 173 172 171 170 178 172
2008 194 190 211 197 202 206
2009 190 192 205 197 197 192
2010 202 195 201 209 203 203
2011 191 191 206 209 186 187
2012 179 175 192 185 193 181
2013 178 174 186 182 185 175
2014 183 185 183 188 182 184
2015 170 187 185 184 185 173
2016 190 205 195 190 194 195
2017 197 193 187 197 197 195
2018 201 199 205 195 205 205
2019 205 200 199 202 190 206
2020 199 203 203 203 205 205
Avg 188 188 195 191 193 189

Table 3.3: DOY of maximum corn R2
adj for each year as well as the 20 year average.

3.6.2 Soybeans

Again, prior to evaluating model performance, I check my a priori assumptions

for soybean by comparing the temporal correlation coefficient between EVI and yield

for soybeans in my study area and find agreement with Johnson (2016), shown in

Figure 3.9.
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Figure 3.8: Trend in R2 for corn over time. As yield increases, R2 decreases slightly
and this coincides with increased trends in crop yield.

Figure 3.9: Temporal correlation coefficient between EVI and soybean yield for all
counties in the study area.
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The model results for soybean are shown in Figure 3.10 and Tables 3.4 and

3.5. The best performing models were PAR + VI and PAR + SR, with an R2
adj of

0.78 and 0.80 respectively. The VI and SR only models give a maximum R2
adj of

0.59 and 0.57 respectively, again in line with Johnson (2016).

Figure 3.10: Averaged temporal validation results for the six soy models.

Figure 3.11 shows the scatter plot of estimated yield to observed yield for

the best performing model, PAR + SR. Again, the model underestimates yield and

similarly has an RMSE of 9%, however, for soybean the underestimation of yield is

much smaller than for corn. The majority of the observations and modeled soybean

yields are between 2 and 3 t/ha. Again, I show the trend in R2 over time in Figure

3.12, and again I see a slight decrease in R2 that coincides with the increases in

soybean yield seen in Figure 1.3.
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Year PAR + EVI PAR + SR PAR × EVI PAR only EVI only SR only
2001 0.68 0.81 0.80 0.44 0.67 0.67
2002 0.94 0.96 0.77 0.40 0.66 0.70
2003 0.85 0.85 0.55 0.44 0.52 0.50
2004 0.96 0.97 0.69 0.47 0.59 0.57
2005 0.92 0.92 0.89 0.40 0.76 0.70
2006 0.81 0.84 0.61 0.38 0.53 0.52
2007 0.77 0.78 0.65 0.42 0.66 0.65
2008 0.77 0.85 0.69 0.46 0.56 0.55
2009 0.67 0.68 0.50 0.46 0.50 0.48
2010 0.65 0.79 0.56 0.45 0.55 0.55
2011 0.74 0.75 0.61 0.42 0.62 0.59
2012 0.88 0.90 0.70 0.41 0.70 0.63
2013 0.77 0.77 0.60 0.40 0.62 0.60
2014 0.64 0.65 0.51 0.42 0.52 0.50
2015 0.69 0.70 0.56 0.44 0.54 0.55
2016 0.72 0.73 0.57 0.46 0.57 0.53
2017 0.69 0.70 0.50 0.44 0.50 0.48
2018 0.75 0.77 0.54 0.43 0.55 0.51
2019 0.86 0.88 0.61 0.39 0.57 0.60
2020 0.75 0.76 0.55 0.42 0.54 0.52
Avg 0.78 0.80 0.62 0.43 0.59 0.57
Std 0.10 0.09 0.11 0.03 0.07 0.07

Table 3.4: Validation results for the soy models for each year and the 20-year average
and standard deviation, by input features.
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Year PAR + EVI PAR + SR PAR × EVI PAR only EVI only SR only
2001 221 217 221 210 222 218
2002 224 222 226 219 217 222
2003 200 225 195 200 196 199
2004 219 220 204 226 205 220
2005 211 217 211 219 215 218
2006 225 227 211 217 217 218
2007 219 219 209 217 221 219
2008 215 211 207 209 213 212
2009 225 227 192 204 215 225
2010 214 195 214 194 217 218
2011 210 200 204 200 209 202
2012 200 215 215 200 216 219
2013 214 212 216 219 217 212
2014 220 223 217 220 220 223
2015 211 217 211 219 215 218
2016 216 223 210 203 213 223
2017 215 215 217 207 215 212
2018 230 232 219 220 229 233
2019 215 211 223 219 225 218
2020 215 226 217 213 210 215
Avg 216 218 212 212 215 217

Table 3.5: DOY of maximum soy validation R2
adj for each year and the 20-year

average.
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Figure 3.11: Modeled vs observed county yields for the PAR + SR model for soy-
bean.

3.7 Discussion and Conclusions

In this chapter, I incorporated PAR as an explicit indicator into empirical crop

yield models of corn and soy at the county level in the United States from 2001-

2020. My empirical models are based on those described in Johnson (2016) and

Skakun et al. (2021), which make use of vegetation indices and surface reflectance

as indicators. While the spectral response of vegetation implicitly includes the

information about PAR that the canopy is receiving, explicitly adding it to the
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Figure 3.12: Trend in R2 for soybean over time. As yield increases, R2 decreases
slightly, coinciding with increases in soybean yield.

model increases the yield variance explained by the model by up to 20%, and shows

earlier indication of crop yield compared to single indicator models.

One limitation to this study is the strict dates between which PAR is accu-

mulating. Future efforts should be more sensitive to the real-time planting and

emergence of crops, however for this study such detailed data for all pixels in the

study area was not available. As yield for both corn and soy increase, the variability

that is explained in these models decreases slightly, suggesting that the increases in

yield are not to do with changes in PAR, which agrees with studies such as Wild

et al. (2013) that show how solar radiation over the US has not been trending since

the 1970s and 1980s due to the Clean Air Act.

Prior to the MODIS PAR product, MCD18A2Wang et al. (2020a), global, tiled
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or gridded, PAR retreivals were not as widely accessible for addition into empirical

crop yield models, like those I presented here. Other existing products, such as

CERES or GLASS, were available at coarser spatial resolutions that would not

have been suitable for yield modeling, even when aggregated to the county scale.

The results of my county-level yield modeling align with field-level studies such as

(Johnson, 2016) and (Franch et al., 2019). Specifically, for both corn and soybean,

the VI-only model shows a maximum R2
adj of around 0.60, which corresponds very

well to (Johnson, 2016)’s findings, and my results explicitly including PAR show

maximum R2
adj of 0.81 and 0.80 for corn and soybean respectively. These results

complement the seminal research on VI-modeling of vegetation.

I have shown that the addition of PAR to the model improves on a SR or VI

based models, even at MODIS scale and in the United States where radiation is not

the limiting factor for vegetation growth (Milesi et al., 2005). Given this modest

improvement, in the United States, where agricultural systems are highly managed

and radiation is not the limiting factor, I assert that my findings indicate that the

addition of PAR to empirical yield models in regions in the world where vegetation is

radiation limited may add significant information. However, a limiting factor to that

work is the spatial scale of PAR data. I suggest that the radiation community may

be able to add significant value to the crop yield modeling community by calculating

or super resolving surface radiation to finer spatial resolution satellite data such as

from Harmonized Landsat-Sentinel, Planet, RapidEye, or WorldView. Additionally,

I consider this work to be an indirect assessment of the MODIS PAR (MCD18A2)

product, since it added value to these crop yield models. I find that the MCD18A2
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product is very useful for yield modeling studies, however, it should be noted that

without an indication of which pixels have climatological data as input, there is a

level of uncertainty which cannot be accounted for.

Future work should be directed at the field scale, and eventually the sub-field

scale as that level is often of greater interest to farmers and government entities

responsible for overseeing and managing agricultural polices and practices. This

will require either super resolving the MODIS product (MCD18A2) down to a finer

spatial resolution, or generating satellite derived estimates of PAR from higher res-

olution satellites. A variety of different methods are available for both options,

however each will require additional validation before they can be incorporated into

empirical crop yield models.
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Chapter 4: Using the absorption coefficient of PAR to capture crop

type and irrigation method for large fields

4.1 Overview

Due to the differences in biochemistry, cell structure, and photosynthetic path-

ways, different plant species absorb photosythetically active radiation (PAR) with

varying efficiency and have evolved to thrive in different conditions, such as direct,

intense sunlight or indirect, diffuse light conditions. In-field measured yield, canopy

chlorophyll content (CCC), and the coefficient of absorption of PAR, (αPAR), show

strong, species specific relationships. In this work, I determine to what extent

MODIS-derived (αPAR) is suitable for capturing the same relationships. I found

that MODIS-derived αPAR corresponds to the plant CCC in the same manner as

ground-based αPAR measurements. Specifically, I found that for three experimental

fields of corn and soybean fields in Eastern Nebraska R2 was 0.97 and RMSE was

1.34 (11%) when comparing MODIS-derived αPAR with the in situ measurements.

I also found that the relationships between MODIS-based αPAR and CCC for corn

and soybean corresponded to the ones obtained from in situ data. The relationships

between αPAR and CCC for corn and soybean are distinct due to the different photo-
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synthetic pathways of corn and soybean, differences in cell structure, and chloroplast

distribution between the two crops. Crop yield and productivity are also related to

CCC, meaning MODIS αPAR can be used as a crop specific indicator of yield at

large scale.

4.2 Introduction

Vegetation activity (photosynthesis) requires sunlight, precipitation, and fa-

vorable temperatures (Nemani et al., 2003; Running et al., 2004; Milesi et al., 2005).

The more efficiently sunlight is absorbed by cropped vegetation, the higher yields

can be (Gitelson et al., 2015; Yuan et al., 2016). Canopy chlorophyll content (CCC)

accounts for 90% of the variation in crop yield (Gitelson et al., 2014; Peng et al.,

2017). In general, crops with higher chlorophyll content tend to have higher yields,

as they are able to photosynthesize more efficiently to produce more biomass.

A plant’s structural, chemical, and biophysical characteristics will impact how

efficiently it can convert carbon from the atmosphere to energy for the plant during

photosynthesis. Corn (maize) uses the C4 photosynthetic pathway, while soybean

uses the C3 pathway (Boyer, 1970). In the C4 pathway, carbon dioxide (CO2) is

transformed into a four-carbon compound (vs the three-carbon compound used by

the C3 pathway), which is then transported to bundle sheath cells (which C3 plants

do not have) where it releases the CO2 used to produce the sugars the plant needs.

The C4 pathway is an evolution of the C3 pathway that reduces photorespiration

and enhances the efficiency of photosynthesis, allowing C4 plants to survive under
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hotter and drier conditions compared to C3 plants (Ehleringer and Cerling, 2002).

The coefficient of the absorption of PAR, αPAR, a measure of how efficiently

and effectively a plant can absorb photosynthetically active radiation for photosyn-

thesis, is a semi-analytically defined unitless quantity that is related to biophysi-

cal quantities such as the fraction of absorbed PAR, FAPAR and canopy chloro-

phyll content. αPAR is sensitive to plant biochemistry, structural properties, and

photosynthetic pathway (Gitelson et al., 2019, 2021), and shows a stronger linear

correlation to crop yield than vegetation indices (VIs), such as the normalized dif-

ference vegetation index (NDVI), or those that can better account for saturation

due to dense, healthy vegetation, e.g., the enhanced vegetation index (EVI), or the

wide dynamic range vegetation index (WDRVI) (Gitelson, 2004). NDVI, EVI, and

WDRVI are defined as follows:

NDV I =
NIR−Red

NIR +Red
, (4.1)

where NIR is the reflectance in the near infrared (841–876 nm) and Red is the

reflectance in the red region (620–670 nm).

EV I = Gf
NIR−Red

NIR + C1R− C2B + L
, (4.2)

where B is the surface reflectance in the blue region (∼400 - 485 nm), L is an

adjustment factor for the canopy background, C1 and C2 are aerosol resistance

coefficients, and Gf is a gain factor specific to the sensor.
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WDRV I =
a NIR−Red

a NIR +Red
, (4.3)

where the weight, a, can vary from 0.1 - 0.2 to account for high values of NIR

reflectance in dense healthy vegetation, such as cultivated crops.

Surface radiation trends are associated with trends in both precipitation and

near-surface air temperature (Wild, 2012), which impacts plant growth and crop

yields. Studies have shown how human and natural activity have affected light

conditions, particularly with respect to atmospheric aerosols (Roderick et al., 2001;

Gu et al., 2003; Rap et al., 2015, 2018), and that with those changing light conditions

the amount of carbon removed from the atmosphere during photosynthesis increased

(Alton et al., 2007; Mercado et al., 2009; Kanniah et al., 2012; Cheng et al., 2015). As

the planet changes due to global warming, and the various geoengineering strategies

(Irvine et al., 2016; Lockley et al., 2020; Liu et al., 2021) designed to avert some

of the adverse effects of climate change, it is increasingly important to be able to

monitor and study our cropped vegetation explicitly including radiation as a forcing

or indicator.

In this chapter, I assess the correspondence between MODIS-derived αPAR and

field measured αPAR at three experimental sites in Eastern Nebraska. I also use the

phenology of MODIS-derived αPAR to map corn and soybean at two neighboring,

non-irrigated cropped sites and compare my classifications with the Cropland Data

Layer (CDL) (Han et al., 2012; Xian et al., 2009). Finally, I compare the magnitudes

of αPAR to average precipitation in the region and find correspondence between
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above average rainfall and large values of αPAR.

4.3 Study Area

For this study, I have selected three experimental research sites belonging to

the University of Nebraska Agricultural Research and Development Center, which

have been part of ongoing studies on crop and management studies since 2001

(Suyker, 2022). The sites are located in Saunders County, Nebraska, near the city

of Mead, NE. Additionally, I have selected two neighboring cropped 500 m MODIS

sinusoidal grid cells, also in Saunders County to examine the 20 year time series of

αPAR. A map of the sites from the University of Nebraska Agricultural Research

and Development Center is shown in Figure 4.1.

Site 1 is irrigated with a center pivot system and is always planted with maize

(corn). Site 2 is also on a center-pivot irrigation system, but it is planted on a

maize-soybean rotation. Site 3 is a rainfed site, and it follows the same maize-

soybean rotation as Site 2. Figure 4.2 shows the 2008 Cropland Data Layer (CDL)

crop mask reprojected and aggregated to the 500 m MODIS grid (following the

methods described in Chapter 3 Section 3.5.1) with the grid cells representing the

experimental sites marked with red dots, and the cropped grid cells for the time

series analysis marked with black dots.
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Figure 4.1: Location of the three field sites near Mead, Nebraska. Figure is from
the University of Nebraska Carbon Sequestration Program (http://csp.unl.edu/
public/sites.htm)
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Figure 4.2: Location of the three experimental sites with the grid cell designated
for analysis in red. Grid cells designated with a black marker are used for further
temporal analysis of αPAR.

4.4 Data

4.4.1 Ground measurements

The experimental research sites contain eddy covariance flux towers which

measure CO2, water, and energy fluxes from the canopy, as well as two hyperspec-

tral radiometers mounted above the canopy and a set of upwelling and downwelling

broadband sensors are mounted centrally on the same sensor platform. These in-

struments are used along with destructive sampling techniques to obtain data on

biomass, canopy chlorophyll measurements, spectral measures of the canopy, in-

cluding leaf area index (LAI), enhanced vegetation index (EVI), and the absorption

coefficient of PAR (αPAR). Additionally, each field has a record of crop type, irriga-
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Field Crop Irrigation Years
1 Corn (Maize) Irrigated 2005
2 Corn (Maize) Irrigated 2003, 2005
2 Soybean Irrigated 2002, 2004
3 Corn (Maize) Rainfed 2003, 2005
3 Soybean Rainfed 2002, 2004

Table 4.1: Crop rotation for the three sites in Nebraska from 2002-2005. Field
locations are shown in Fig. 4.1

tion, and other management information. These data are available from 2002-2005,

and the crop rotation of the three sites is shown in Table 4.1. Additionally, yield

data for these three fields is available for the years 2002-2003.

4.4.2 Remote sensing data

The Moderate Resolution Imaging Spectroradiometer (MODIS) gridded sur-

face reflectance product (MOD09A1 C6 from Terra observations), is available at

500 m in the Red (620–670 nm), NIR (841–876 nm), Blue (459–479 nm), and Green

(545–565 nm) spectral bands. Vermote et al. (2009); Bréon and Vermote (2012)

developed an alternative bi-directional reflectance distribution (BRDF) correction

method to the MCD43 product (Schaaf et al., 2002). Each of these sites (shown in

Fig. 4.1) contains the majority of at least one 500 m MODIS grid cell, therefore I

selected the Vermote et al. (2009) method BRDF corrected surface reflectance from

2002 to 2005 to calculate the coefficient of the absorption of PAR, αPAR, as defined

by Gitelson et al. (2021) in Eq. 4.4 to compare to the ground measurements. The

cropped grid cells indicated by black dots in Figure 4.2 were selected using the CDL

(Han et al., 2012; Xian et al., 2009) reprojected to the MODIS grid and aggregated

to 500 m (following the method described in Chapter 3 Section 3.5.1).
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4.5 Methods

The coefficient of absorption of PAR, αPAR, is derived from plant reflectance

spectra and is defined according to Gitelson et al. (2019) as follows:

αPAR =
ρNIR

ρV IS

− 1 (4.4)

where reflectance in the visible spectrum, ρV IS, is equal to the mean of the

reflectance in the red, green, and blue bands:

ρV IS =
ρRed + ρGreen + ρBlue

3
(4.5)

Using BRDF corrected MODIS surface reflectance in the visible and NIR bands

at the 500 m MODIS sinusoidal grid scale (actually 463.312716502 m), I calculated

αPAR for the MODIS observation containing the majority of each experimental field

site. Then I calculated the linear regression between field-measured and MODIS-

derived αPAR, recording the R2 and RMSE for each of the three experimental sites.

R2 =

∑
(αMOD

PAR − αfld
PAR)

2

∑
(αfld

PAR − αfld
PAR)

2 (4.6)

RMSE =

√∑
(αMOD

PAR − αfld
PAR)

2

n
(4.7)

where αMOD
PAR is the MODIS-derived αPAR, α

fld
PAR is the field-measured αPAR,

and n is the number of observations.
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I also calculate the linear regression between field measured αPAR and plant

chlorophyll content, recording the regression slope for each crop type, and compared

it to the linear regression between MODIS-derived αPAR and plant chlorophyll con-

tent for the different crops in each field. In order to verify that αPAR shows a distinct

phenology for each crop type, I plotted αPAR for each DOY for each field over the

3 years of available field data.

Finally, I calculated αPAR for the entire MODIS tile (h10v04) containing the

study area, selected two cropped grid cells from Saunders County, Nebraska and

plotted the time series of αPAR from 2000-2022 for both grid cells in order to identify

the crop type and irrigation or other management information. I selected the two

grid cells based on their grid cell purity, calculated using the reprojected CDL at 30

m scale aggregated up to 500 m in the MODIS projection. grid cell purity percent

was calculated as follows:

P 500
C =

∑ C500
30

T 500
30

× 100 (4.8)

where P 500
C is the percent of 30 m pixels of a given crop type C in an aggregated

grid cell of resolution 500 m and T 500
30 is the total number of 30 m pixels within the

aggregated grid cell. For this analysis, as before, I used only grid cells with a pixel

purity of 95% or higher due to the uncertainty related to mixed pixels.
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4.6 Results

4.6.1 Site Analysis

MODIS-derived αPAR closely matches the field measured αPAR, with an R2 of

0.97 and an RMSE of 1.34 (11%), shown in Figure 4.3, indicating the suitability of

using MODIS-derived αPAR for crop yield studies of large fields or large aggregated

cropped areas. The relationship between field measured αPAR and plant chlorophyll

content (Figure 4.4) shows two distinct relationships, one for each crop type. The

regression coefficient between field measured αPAR and plant chlorophyll for corn is

6.3, while for soybean it is 9.7. This demonstrates the differences in photosynthetic

efficiency between corn and soybean. Using the MODIS-derived αPAR (Fig. 4.5). I

find the same relationship, and similar regression coefficients (6.2 for corn, and 9.7

for soybean), these relationships are shown in Table 4.2.

Maize (corn) Soybean
R2 Slope R2 Slope

Field measured 0.93 6.3 0.92 9.7
MODIS-derived 0.89 6.2 0.92 9.7

Table 4.2: Relationship between αPAR and canopy chlorophyll content by crop type

Taking the maximum αPAR and the maximum plant chlorophyll content for

each site and year and comparing it to the yield values (shown in Table 4.3) shows

that irrigated sites have higher yields and αPAR values than rainfed sites. Similarly

to the yields in Chapter 3, corn yields are higher than soybean yields.
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Figure 4.3: Relationship between field measured αPAR and αPAR derived from
MODIS 500m BRDF corrected surface reflectance.

Yield (t/ha) Max αPAR Max plant chlor. (g/m2)
Irrigated corn 14 23.04 3.61
Rainfed corn 7.72 17.94 2.45
Irrigated soybean 3.99 23.84 2.30
Rainfed soybean 3.32 15.27 1.80

Table 4.3: Relationships between crop type and irrigation method, maximum αPAR,
maximum chlorophyll content, and yield.
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Figure 4.4: Relationship between field measured αPAR and plant chlorophyll (g/m2).
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Figure 4.5: Relationship between MODIS-derived αPAR and plant chlorophyll cat-
egorized by crop type and irrigation condition.
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4.6.2 Crop type and condition analysis

Figure 4.6 shows the seasonal curve of MODIS-derived αPAR for all data for

all fields from 2002-2005. As expected, peak αPAR occurs between DOY 190 and

205 for corn, with irrigated fields having higher αPAR than rainfed fields, and peak

αPAR occurs between DOY 220 and 240 for soybean, again with irrigated fields

having higher values than rainfed fields. Figure 4.7 shows the MODIS-derived αPAR

over eastern Nebraska for DOY 201 in 2003 (20 July 2003), which is near when we

would see peak αPAR in all three fields as shown in Figure 4.6. High values of αPAR

are shown in green, while low values of αPAR are shown in purple. The high values

of αPAR align with the locations of corn and soybean fields in the region, while the

low values align with non-cropped areas.

Figure 4.8 shows the time series of two cropped grid cells in Saunders County,

Nebraska, marked by the black dots in Figure 4.2. Both grid cells, located at

41◦11′23.4414′′ N, 96◦29′35.358′′ Wand 41◦9′52.0842′′ N, 96◦24′22.035′′ W, are cropped

on a corn-soybean rotation. Table 4.4 shows the DOY of maximum αPAR and the

corresponding crop mask label. Selecting DOY 215 ± 3 (beginning of August) as

the threshhold between corn and soybean classification, the first location shows 81%

accuracy with the CDL. For the second location, the same threshhold gives only 64%

accuracy with the CDL.

As in the experimental sites, the magnitude of αPAR is indistinguishable be-

tween corn and soybean, however the timing of the peak can distinguish between

the two crops. The magnitude of αPAR gives more information about the irriga-
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Figure 4.6: Seasonal signal of MODIS-derived αPAR for corn and soybean at the
three sites in Nebraska for the years 2002-2005, smoothed for display purposes.

tion and management conditions. Based on the size and shape of the fields that

each grid cell belongs to, I infer that both grid cells belong to rainfed fields, and

therefore the spikes in αPAR are due to excessive rain or drought, extreme temper-

atures, and/or other management practices. According to precipitation data from

the National Oceanic and Atmospheric Administration National Centers for Envi-

ronmental Information (NOAA NCEI), shown in Figure 4.9, peaks in αPAR in 2010,

and from 2014 to 2019 may correspond to above average precipitation, however

spikes in other years do not correspond to the average observed precipitation over

east central Nebraska.
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Figure 4.7: MODIS αPAR calculated for DOY 201 (July 20th) in 2003 over eastern
Nebraska where the majority of corn and soybean fields are. The location of the 3
sites is marked by the red box.

Figure 4.8: Time series of two neighboring cropped MODIS grid cells in Saunders,
County, Nebraska, marked in black dots on Figure 4.2.
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41◦11′23′′ N, 96◦29′35′′ W 41◦9′52′′ N, 96◦24′22′′ W
Year Max αPAR Crop est. CDL Max αPAR Crop est. CDL
2000 209 corn corn 201 corn corn
2001 193 corn corn 217 unknown soybean
2002 233 soybean soybean 225 soybean soybean
2003 201 corn corn 209 corn corn
2004 241 soybean soybean 193 corn corn
2005 185 corn corn 217 unknown soybean
2006 217 unknown soybean 209 corn corn
2007 201 corn corn 225 soybean soybean
2008 217 unknown corn 225 soybean soybean
2009 177 corn corn 209 corn corn
2010 225 soybean soybean 193 corn corn
2011 217 unknown soybean 217 unknown soybean
2012 225 soybean soybean 193 corn corn
2013 225 soybean soybean 217 unknown corn
2014 241 soybean soybean 233 soybean soybean
2015 225 soybean soybean 217 unknown soybean
2016 217 unknown soybean 217 unknown soybean
2017 225 soybean soybean 209 corn corn
2018 209 corn corn 177 corn corn
2019 225 soybean soybean 217 unknown soybean
2020 233 soybean soybean 201 corn corn
2021 201 corn corn 209 corn corn
2022 201 corn corn 217 unknown soybean

Table 4.4: Crop type identification according to phenology of αPAR compared to
the CDL. The threshold I chose according to the results from the experimental sites
is DOY 215 ± 3, and therefore DOY 217 is always classified as unknown. Using
BRDF from combined Terra and Aqua might improve my classification.
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Figure 4.9: NOAA National Centers for Environmental Information (NCEI) precip-
itation time series from 2000 to 2022 (NCEI, 2023)

4.7 Discussion

MODIS-retrieved αPAR has good correspondence to ground measured αPAR

(R2 = 0.97, RMSE = 11%), indicating that for large cropped fields and regions where

the spatial resolution of the sensor is not the most limiting factor, MODIS αPAR

can be used in the same way that MODIS surface reflectance and vegetation indices

are used for studying large cropped areas (Bolton and Friedl, 2013; Sakamoto et al.,

2013; Kouadio et al., 2014). This is especially exciting because αPAR has a stronger

linear, and importantly crop specific, relationship to plant or canopy chlorophyll

content (coefficients 6.2 and 9.7 for corn and soybean respectively), than surface

reflectance or VIs alone do. It also indicates that combined MODIS-VIIRS (Visible

Infrared Imaging Radiometer Suite) products (Xiong and Butler, 2020) will continue

to provide value for large scale crop yield modeling studies given that Terra exited

its orbital track in early 2023 and Aqua will soon follow.

85



The difference in magnitude of αPAR between corn and soybean is negligible

under comparable irrigation conditions according to the three experimental sites.

However, the phenology of αPAR can be used to identify corn or soybean according

to the DOY of peak αPAR in the exact same way as a vegetation index (e.g., NDVI)

would be used (Xian et al., 2009; Wang et al., 2020b). Once the crop type has been

identified according to its phenology, irrigation or soil moisture conditions can be

inferred from the relative magnitudes of the signal over time.

Given the size and shape of the two cropped grid cells, I infer that they are

both rainfed rather than irrigated, therefore for this analysis, I used average, regional

precipitation as irrigation condition information. My findings indicate that the two

sites are not in perfect correspondence with average regional rainfall, thus I suggest

that comparing against soil moisture explicitly, or minimally temperature and more

precise precipitation data would likely better explain the differences observed in the

22-year time series of αPAR at the two cropped locations near the experimental sites.

4.8 Conclusions

Through this work, I have shown that MODIS is able to capture the same

relationship between αPAR and Plant Chlorophyll as the field measured αPAR, for

different crop types and irrigation management. MODIS-derived αPAR has an R2

of 0.97 compared to field measured αPAR. I have also shown that MODIS αPAR can

be used to identify corn and soybean type based on the phenology of the two crops

between 64% and 81% accuracy, and that the magnitude of αPAR can be used to
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infer changes in irrigation type, annual rainfall, extreme temperatures, or changes

in management practice. However, attributing the specific causes requires more

comprehensive validation information.

The implications of being able to use MODIS-derived αPAR in place of field

measurements for fields of this size and larger, are that αPAR can be used along with

PAR in the empirical crop models I developed in Chapter 3 rather than a vegetation

index to estimate yields at the county scale. This is particularly because αPAR has

a crop specific linear relationship with plant chlorophyll content, which also has a

linear relationship with crop yield (Wood et al., 1993).
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Chapter 5: Conclusions

In the following sections I will discuss how my research addressed the disser-

tation research questions I asked in Chapter 1, the significance of my findings, and

the new questions that have arisen from this work. I will also discuss some of the

broader issues that we researchers should consider for the future of our work and

how it can best serve human interests.

5.1 Summary of findings and significance

5.1.1 Chapter 2: Limitations and best uses of machine learning al-

gorithms in empirical models

The machine learning based empirical model performs well compared to the

physically-based LUT approach of the MODIS PAR product, especially consider-

ing that my machine learning based models do not include ancillary atmospheric

information, whereas the LUT approach does explicitly include variables such as

water vapor, and aerosol optical depth Wang et al. (2020a). Additionally, all of my

machine learning-based models were run on a desktop computer, rather than in a

high performance computing (HPC) environment. The focus of my experiments was
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to see how well surface retrievals could be accomplished using an empirical model

with top of atmosphere (TOA) only inputs, but future work comparing the com-

putational performance of the entire workflow of each of these methods would lend

valuable insight into the true portability of my methods.

For future development, the most practical model to use is the Bagged Tree

model. The Bagged Tree model is quick to train depending on the number of trees in

the bag, it has minimal hyperparameters to tune. Furthermore, of the nine models,

the Bagged Tree best models the multi-modality of the ground data. The MLP

and GPR capture the multi-modality, but they show higher relative errors at the

lower PAR and SSR values compared to the Bagged Tree. However, more complex

models, such as convolutional neural networks, deep learning networks, mixture

density networks, and others are constantly being improved upon (Yuan et al.,

2020). Some are being made more transparent, while others have been optimized to

reduce the computational power required (Al-Jarrah et al., 2015). Although some

of the methods are better suited for classification, pattern or object recognition

than regression (Bishop, 2006), it would still be prudent to experiment with these

methods in the future, as they are held in high regard for their potential solving our

most challenging problems. Care must be taken, however, to be sure to understand

the limitations of these methods when interpreting their results. It may be tempting

to over train and over tune a model to get ”good” results, but we researchers must

always be able to explain the physical mechanisms that are being modeled with

these statistical methods. It is important to avoid reporting spurious results and

perpetuating the idea that machine learning is a ”magic bullet” when it comes to
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the complex problems of the Earth Science.

5.1.2 Chapter 3: Benefits and caveats of explicitly adding PAR to

empirical yield models

By adding PAR explicitly into an empirical crop yield model, R2
adj increases

from approximately 0.60 to between 0.81 and 0.80 for corn and soy, respectively.

The results of county-level yield modeling align with field-level studies (Johnson,

2016; Franch et al., 2019; Skakun et al., 2021). Specifically, for both corn and soy,

the VI-only model shows a maximum R2
adj of around 0.60, which corresponds very

well to (Johnson, 2016)’s findings of the correlation of VI to yield, even at the coarse

MODIS scale.

The addition of PAR to the model improves on a SR or VI based models,

even at MODIS scale and in the United States where radiation is not the limiting

factor for vegetation growth (Nemani et al., 2003; Milesi et al., 2005; Running et al.,

2004). Given this improvement, in the United States, where agricultural systems

are highly managed and radiation is not the limiting factor, my findings indicate

that the addition of PAR to empirical yield models in regions in the world where

vegetation is radiation limited may add significant information. However, a limiting

factor to that work is the spatial scale of PAR data. The current MODIS product

(MCD18A2) is limited to 1 km spatial resolution due to the ancillary atmospheric

and reanalysis input data that the algorithm requires.

Future work should make use of finer spatial resolution satellite systems so
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that it can be directed at the field scale, and eventually the sub-field scale. These

levels are often of greater interested to farmers and the government entities re-

sponsible for overseeing and managing agricultural polices and practices. This will

require either using limited finer resolution observations to resolve the MODIS prod-

uct (MCD18A2) down to a finer spatial resolution, or generating satellite derived

estimates of PAR from finer resolution satellite observations. A variety of differ-

ent methods are available for both options, however each will require additional

validation before they can be incorporated into empirical crop models.

Additionally, as in Chapter 2, more sophisticated machine learning algorithms

could be used in place of linear regression. This may provide better resolution of

non-linearities in the relationships between indicators and crop yield, particularly

for crop types that are less well modeled using linear regression. However, machine

learning algorithms require large amounts of labeled training data which is not often

available, especially over long time periods and at enough spatially distinct locations.

5.1.3 Chapter 4: Potential and caveats for large scale crop model-

ing using coarse scale satellite-derived absorption coefficient of

PAR

MODIS-derived αPAR matches field measured αPAR extremely well for these

three large fields from Chapter 4, with an R2 of 0.97. MODIS-derived αPAR also

shows the same crop specific relationships with canopy chlorophyll content (regres-

sion coefficient of 6.2 and 9.7 for corn and soybean respectively). The phenology of
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αPAR is also a good indicator of crop type, with an accuracy between 64% and 81%

for two randomly selected locations. Finally, αPAR can be used to infer changes in

crop conditions, including irrigation type, average rainfall, excessive temperatures,

or other management practices. This finding is important for future work incor-

porating αPAR into empirical crop yield models, such as those I used in Chapter

3, and analyzing any long term global trends in the absorption of PAR by differ-

ent crop species. It also sets the precedent for the use of combined MODIS-VIIRS

data moving forward as the MODIS sensors aboard Terra and Aqua will soon be

impractical to continue using.

Further work should take a two-pronged approach. 1) Determine the degree

to which Harmonized Landsat Sentinel (HLS) αPAR matches in field measurements

for further work with smaller fields and to distinguish between the management

practices in neighboring fields. 2) Expand the work to learn the crop specific rela-

tionships between αPAR and canopy chlorophyll content for other major crops that

make up the global food supply, and determine the most appropriate data to use

to capture information about soil moisture, soil nutrients, and other major manage-

ment practices used for cultivated crops in order to improve yield estimates.

5.2 Looking toward the future

5.2.1 Implications for data and research autonomy

One opportunistic, yet important, aspect of this research is that none of it

required high performance computing (HPC) systems or graphical processing units
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(GPUs). All of the modeling and analysis was done on a desktop or laptop com-

puter with a standard central processing unit (CPU). This means that all of this

research could be recreated by researchers outside of large, well-funded universities

and national laboratories. Researchers anywhere in the world, with their own re-

gional specific expertise could use these methods for their own work. I tested all of

these methods using MODIS data due to its widespread availability and the scien-

tific quality of the data, but it is not an inherent requirement that MODIS data be

used. And in fact, since MODIS is at the end of its lifetime, recreating this research

with other available satellite observations and ground data from other parts of the

world is an important next step.

Additionally, the empirical crop models I used in Chapter 3 and the crop

specific relationships between αPAR and canopy chlorophyll content from Chapter

4, could be tuned/explored for other crops, including wheat, rice, sorghum, millet,

and others that represent significant portions of the global food supply. The models

from Chapter 3 can be used for year to year comparisons and trend analysis, or for

near real time (NRT) monitoring, which, if implemented by regional stakeholders

and the science teams that inform policy makers, could be used in conjunction with

other early warning and monitoring efforts to help state and local governments deal

with potential food shortages or surpluses.
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5.2.2 Crop modeling with PAR at very high resolutions

With the rise in commercially available Very High Resolution (VHR) satel-

lites, hopefully scientists and the private sector can join together in making these

data available for scientific use, as well as the private sector opening themselves up

for creating and supporting instruments that can meet the scientific standards of

instruments like MODIS, VIIRS, Landsat, and Sentinel.

If higher resolution PAR products were available, in PAR limited regions, in

regions which enact clean air policies/measures, or in response to human efforts to

combat climate change through geoengineering Lockley et al. (2020), the impact of

global dimming and brightening Wild et al. (2013), and subsequently changes in

PAR, on crop yields could be better studied and monitored.

5.2.3 Climate change impacts on food security

This work was all based in the United States because of the richness of available

data. However, there are many regions of the world, such as Northern Africa and the

Middle East, sub Sahelian West Africa, and East Africa (Nakalembe; Kerner et al.,

2020; Nakalembe et al., 2019), where organizations such as NASA Harvest and the

Famine Early Warning System Network (FEWSNET) have explicit interest in order

to support their missions around global food security. Obtaining data over these

regions presents an inconsequential challenge (due to cloud cover, historic exclusion

from the data record, etc.), but with the expansion of commercial satellite data

and cooperative agreements between companies and academia or the U.S. federal
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government, these may be used more widely for the benefit of society.

Even for the United States and other data rich regions that export major

commodities globally, organizations with national security interests are also users

and stakeholders in this work. Especially as climate change continues to impact

global temperatures and rainfall (Tirado et al., 2010; Barnett, 2011; Misra, 2014),

and as countries begin implementing geoengineering strategies to mitigate the effects

of climate change (Liu et al., 2021; Lockley et al., 2020), the consequences, intended

and otherwise, of such efforts must be studied.
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