
ABSTRACT

Title of dissertation: RANDOMIZED SEARCH METHODS FOR
SOLVING MARKOV DECISION PROCESSES
AND GLOBAL OPTIMIZATION

Jiaqiao Hu, Doctor of Philosophy, 2006

Dissertation directed by: Professor Steven I. Marcus
Department of Electrical and Computer Engineering

Professor Michael C. Fu
Department of Decision and Information Technology

Markov decision process (MDP) models provide a unified framework for modeling

and describing sequential decision making problems that arise in engineering, economics,

and computer science. However, when the underlying problem is modeled by MDPs,

there is a typical exponential growth in the size of the resultant MDP model with the size

of the original problem, which makes practical solution of the MDP models intractable,

especially for large problems. Moreover, for complex systems, it is often the case that

some of the parameters of the MDP models cannot be obtained in a feasible way, but

only simulation samples are available. In the first part of this thesis, we develop two

sampling/simulation-based numerical algorithms to address the computational difficulties

arising from these settings. The proposed algorithms have somewhat different emphasis:

one algorithm focuses on MDPs with large state spaces but relatively small action spaces,

and emphasizes on the efficient allocation of simulation samples to find good value function

estimates, whereas the other algorithm targets problems with large action spaces but

small state spaces, and invokes a population-based approach to avoid carrying out an

optimization over the entire action space. We study the convergence properties of these

algorithms and report on computational results to illustrate their performance.

The second part of this thesis is devoted to the development of a general framework

called Model Reference Adaptive Search (MRAS) for solving global optimization problems.

The method iteratively updates a parameterized probability distribution on the solution

space, so that the sequence of candidate solutions generated from this distribution will

converge asymptotically to the global optimum. We provide a particular instantiation of

the framework and establish its convergence properties in both continuous and discrete

domains. In addition, we explore the relationship between the recently proposed Cross-

Entropy (CE) method and MRAS, and show that the model reference framework can also

be used to describe the CE method and study its properties. Finally, we formally discuss

the extension of the MRAS framework to stochastic optimization problems and carry out

numerical experiments to investigate the performance of the method.

RANDOMIZED SEARCH METHODS FOR SOLVING
MARKOV DECISION PROCESSES AND GLOBAL OPTIMIZATION

by

Jiaqiao Hu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor Steven I. Marcus, Chair/Advisor
Professor Michael C. Fu, Co-Advisor
Professor P.S. Krishnaprasad
Professor Dana S. Nau
Professor André Tits

c© Copyright by

Jiaqiao Hu

2006

ACKNOWLEDGMENTS

I would like to express my sincerest thanks to my advisors Professor Steven I. Marcus

and Professor Michael C. Fu, whose consistent guidance and encouragement have made

my five years of graduate studies an unforgettable and exciting experience. Not only have

they provided generous financial support to me, but they have also given me a valuable

opportunity to work on different interesting problems, as well as numerous suggestions

and advices in my research and vocational matters. I am also grateful to Hyeong Soo

Chang at the Sogang University, Seoul, Korea for his collaboration. Part of this research

was inspired by his insightful ideas.

I would also like to thank the other members of my dissertation committee, Professor

P. S. Krishnaprasad, Professor Dana Nau, and Professor André Tits for serving on my

thesis committee and sparing their valuable time reviewing the manuscript.

I do not have enough words to express my thanks to my parents and my wife, for

their patience and enduring support. Without them, this dissertation would not have been

possible.

This research was supported in part by the National Science Foundation under

Grants DMI-9988867 and DMI-0323220, and by the Air Force Office of Scientific Research

under Grants F496200110161 and FA95500410210.

ii

TABLE OF CONTENTS

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Markov Decision Processes . 1

1.1.1 State Space Reduction Techniques 3
1.1.2 Action Space Reduction Techniques 6

1.2 Global Optimization . 6
1.2.1 Instance-based Methods . 7
1.2.2 Model-based Methods . 8

1.3 Research Contributions . 12

2 Preliminaries 16
2.1 Markov Decision Processes . 16

2.1.1 Value Iteration . 19
2.1.2 Policy Iteration . 20

2.2 Global Optimization . 20
2.2.1 The Cross-Entropy Method . 21
2.2.2 The Estimation of Distribution Algorithms 24
2.2.3 Annealing Adaptive Search . 25

3 An Adaptive Multi-stage Sampling Algorithm for Solving Finite Horizon Markov
Decision Processes 27
3.1 Related Work . 29
3.2 Adaptive Sampling Algorithm . 30

3.2.1 Background . 30
3.2.2 Algorithm description . 34

3.3 Convergence Analysis . 37
3.4 A Numerical Example . 44

3.4.1 Two Alternative Estimators . 46
3.4.2 Numerical Results . 51

3.5 Concluding Remarks . 52

4 An Evolutionary Random Policy Search Algorithm for Solving Infinite Horizon
Markov Decision Processes with Discounted Cost 59
4.1 Related Work . 61
4.2 Problem Setting . 63
4.3 Algorithm Description . 63

4.3.1 Initialization . 63
4.3.2 Policy Improvement with Cost Swapping 65
4.3.3 Sub-MDP Generation . 69
4.3.4 Stopping Rule . 74

4.4 Convergence of ERPS . 74
4.5 Adaptive ERPS . 79
4.6 Numerical Examples . 81

iii

4.6.1 A One-Dimensional Queueing Example 82
4.6.2 A Two-Dimensional Queueing Example 91

4.7 Conclusions and Open Problems . 95

5 A Model Reference Adaptive Search Method for Global Optimization 97
5.1 Introduction and Motivation . 97
5.2 The Model Reference Adaptive Search Method 99
5.3 The MRAS0 Algorithm (Exact Version) . 100

5.3.1 Algorithm Description . 102
5.3.2 Global Convergence . 106

5.4 An Alternative View of the Cross-Entropy Method 115
5.5 The MRAS1 Algorithm (Monte Carlo Version) 121

5.5.1 Algorithm Description . 122
5.5.2 Global Convergence . 125

5.6 Numerical Examples . 138
5.6.1 Continuous Optimization . 140
5.6.2 Combinatorial Optimization . 153

5.7 Conclusions . 155

6 A Model Reference Adaptive Search Method for Stochastic Global Optimization 157
6.1 Introduction and Motivation . 157
6.2 A Brief Review of Stochastic Optimization Solution Techniques 159
6.3 The Stochastic Model Reference Adaptive Search Method 160

6.3.1 General Framework . 161
6.3.2 Algorithm Description . 162

6.4 Convergence Analysis . 167
6.5 Numerical Examples . 189

6.5.1 Continuous Optimization . 190
6.5.2 Combinatorial Optimization . 195

6.6 Conclusions . 200

7 Conclusions and Future Research 202
7.1 Future Work . 203

Bibliography 206

iv

LIST OF TABLES

3.1 Value function estimate for the inventory control example case (i) as a
function of the number of samples at each state: T = 3,M = 20, x0 =
5, Dt ∼ DU(0, 9), q = 10, h = 1. Each entry represents the mean based on
30 independent replications (standard error in parentheses). 57

3.2 Value function estimate for the inventory control example case (ii) as a
function of the number of samples at each state: T = 3,M = 20, x0 =
5, Dt ∼ DU(0, 9), h = 1. Each entry represents the mean based on 30
independent replications (standard error in parentheses). 58

4.1 Convergence results for ERPS (n = 10, r = 10). 84

4.2 Convergence results for EPI (n = 10) & ERPS (n = 10, r = 10). 87

4.3 Performance of ERPS with different exploitation probabilities. 88

4.4 Average time required to reach a precision of at least 1.0e-6. 89

4.5 Comparison of the ERPS algorithm with PI for case (i). 91

4.6 Comparison of the ERPS algorithm with PI for case (ii). 92

4.7 A two-dimensional test example. 94

4.8 Comparison of ERPS with adaptive ERPS. 95

5.1 Performance of MRAS on five test functions, based on 50 independent repli-
cation runs. The standard errors are in parentheses. 143

5.2 Performance of the standard CE method on five test functions, based on 50
independent runs. The standard errors are in parentheses. 144

5.3 Performance of CE and MRAS on test function H3, based on 50 independent
simulation runs. The standard errors are in parentheses. The optimum
H3(x∗) ≈ 0.998004. 146

5.4 Performance of different algorithms on benchmark problems H6−H11, based
on 50 independent runs. The standard errors are in parentheses. 149

5.5 Performance of MRAS on various ATSP problems based on 10 independent
replications. The standard errors are in parentheses. 155

6.1 Performance of SMRAS on two test functions, based on 50 independent
simulation runs. The standard errors are in parentheses. 192

v

6.2 The eight test cases. 194

6.3 Performance of SMRAS on eight test cases, each one based on 25 indepen-
dent simulation runs. The standard errors are in parentheses. 195

6.4 Performance of SMRAS on the buffer allocation problems case (i), based
on 16 independent simulation runs. The standard errors are in parentheses. 199

6.5 Performance of SMRAS on the buffer allocation problem case (ii), based
on 16 independent simulation runs. The standard errors are in parentheses. 200

vi

LIST OF FIGURES

1.1 Optimization via model-based methods . 9

3.1 Adaptive multi-stage sampling algorithm (AMS) description 35

3.2 The sequence of the recursive calls made in Initialization of the AMS
algorithm. Each node corresponds to a state and each arrow with noted
action signifies a sampling (and a recursive call). The bold-face number
near each arrow is the sequence number for the recursive calls made. For
simplicity, the entire Loop process is signified by one call number. 36

3.3 One-stage sampling algorithm (OSA) description 38

3.4 A sketch of the function f1(τ) = eτD and the function f2(τ) = 1 + τ(D + ε). 47

3.5 Convergence of value function estimate for the inventory control example
case (i) q=10 as a function of the number of samples at each state:
T = 3, M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 0. 53

3.6 Convergence of value function estimate for the inventory control example
case (i) q=10 as a function of the number of samples at each state:
T = 3, M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 5. 54

3.7 Convergence of value function estimate for the inventory control example
case (ii) as a function of the number of samples at each state:
T = 3, M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 0. 55

3.8 Convergence of value function estimate for the inventory control example
case (ii) as a function of the number of samples at each state:
T = 3, M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 5. 56

4.1 Evolutionary Random Policy Search . 64

4.2 Adaptive ERPS . 80

4.3 Running time required for PI & ERPS (n = 10, r = 10). 86

4.4 Four typical locally optimal solutions to the test problem. 86

4.5 A two-dimensional queueing example. 93

5.1 A description of the model-based methods 98

5.2 A schematic description of the MRAS framework 100

5.3 Shekel’s Foxholes, where −50 ≤ xi ≤ 50, i = 1, 2. 144

vii

5.4 Selected test problems in two dimensions, (a) H6: Shekel; (b) H7: Rosen-
brock; (c) H9: Trigonometric; (d) H11: Pintér. 148

5.5 Average performance (mean of 50 replications) of MRAS, CE, and SA on
selected benchmark problems. 150

6.1 Stochastic Model Reference Adaptive Search 164

6.2 Performance of SMRAS on (a) Goldstein-price function; (b) 5-D Rosen-
brock function. 192

6.3 Typical performance of SMRAS on the first four test cases (Np = 106). . . . 196

6.4 Graphical illustration of the buffer allocation problem. 196

6.5 Performance of SMRAS on the buffer allocation problem (five-server n = 10
case). 198

viii

Chapter 1

Introduction

1.1 Markov Decision Processes

Markov Decision Processes (MDPs) are widely used for modeling and describing

sequence decision making under uncertainty that arises in various areas such as manufac-

turing systems, financial engineering, artificial intelligence, and operations research. An

MDP model consists of four principal components: a state space, an action space, the ef-

fects of the actions and the immediate cost incurred by the actions. The relations among

these components are illustrated as follows.

Consider a decision maker that interacts simultaneously with his environment over a

finite or infinite time horizon divided into a sequence of stages (decision epochs). At each

stage, the decision maker observes the state of the environment, where it is assumed that

the observation is complete and perfect; based on his observation, a decision (an action)

is made to react to the environment. The decision influences (either deterministically or

stochastically) the state at the next stage, and depending on the state and the decision

made, a certain cost is incurred. The expected total costs accumulated from the current

stage to the end of the planning horizon is called a value function. The goal of the decision

maker is to find a decision rule/policy specifying the best action to take for each of the

states, so that he can act optimally with the changing environment, in the sense that the

expected total (discounted) cost over the entire planning horizon is minimized.

In finite horizon problems, the optimal decision rules (policies) generally depend on

both the stage and state; they can be computed by the classical dynamic programming

1

(DP) algorithm starting from the terminal stage. In DP, the optimal decisions are deter-

mined backwards step by step as the minimizers of a functional equation, which expresses

the value function at the present stage as the sum of the one-stage current cost and the

value function at the following stage. This way of determining the optimal policy is based

on Bellman’s principle of optimality, which says, “An optimal policy has the property that

whatever the initial state and initial decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first decision” (cf. [63]).

There are a variety of solution methods for solving infinite horizon MDPs, many

of which can be viewed as different strategies for solving Bellman’s equation. The two

most well-known approaches are value iteration (VI) and policy iteration (PI). Value

iteration is essentially the extension of the DP algorithm to the infinite horizon case; it

starts with an arbitrary (bounded) function and updates at each iteration the current

function into a new function that better approximates the optimal value function. Thus

the algorithm essentially amounts to using the solution to a finite but large horizon problem

to approximate the solution to the infinite horizon problem. As an alternative to VI, policy

iteration starts with an arbitrarily chosen stationary policy and generates a sequence of

new policies. At each iteration of PI, a policy evaluation step is carried out to compute

the value function associated with the current policy as the solution of a system of linear

equations. Once this value function is obtained, a policy improvement step is used to

generate a new policy that improves the performance (in terms of value function) of the

current one. The process is repeated until no further improvement can be achieved.

There are also various straightforward enhancements of VI and PI for solving MDPs,

including the methods that reduce the computational cost of VI and PI by directly ap-

plying the standard iterative schemes for solving systems of linear equations such as the

2

Gauss-Seidel method (cf. e.g., [13] and [63]) and the successive over relaxation (SOR)

method ([81]). Puterman and Shin [62] proposed a modified policy iteration algorithm,

which takes the basic form of PI, with the difference being that the policy evaluation step

is carried out only approximately by executing a limited number of value iteration steps.

The algorithm combines the advantages of VI and PI, and thus to some extent, alleviates

the high computational burden via directly (e.g., Gaussian elimination) solving systems

of linear equations (i.e., Bellman’s equation).

For the sake of completeness, it is worth mentioning that the linear programming

(LP) approach has also long been established as a useful method for solving infinite horizon

discounted cost MDPs (cf. [13], [63]). The basic idea of the LP approach is to formulate

the Bellman’s equation as a set of linear constraints over all state-action pairs and interpret

the optimal value function as the “largest” (in a minimization context) value function that

satisfies these constraints.

The aforementioned approaches may quickly lead to computational intractability,

since they require enumerating the entire state and action spaces, which often grow expo-

nentially fast with the parameters of the problem (i.e., the well-known “curse of dimension-

ality”). In order to address this issue, many researchers have used various approximation

schemes to reduce the size of the state/action spaces.

1.1.1 State Space Reduction Techniques

Bertsekas and Castañon [15] proposed a class of adaptive aggregation algorithms for

solving infinite horizon MDPs. The idea is to group the states of the original problem into

a smaller number of aggregate states in such a way that the resulting aggregated states

actually constitute a smaller MDP. If the size of the resultant problem is small enough,

3

then its value function can be computed exactly by directly solving the system of linear

equations. The value function is in turn used to approximate the value function of the

original problem by using some deaggregation schemes.

Unlike the state aggregation approach, some other approaches have concentrated on

approximating the value function via a suitable parameterization, in effect restricting the

search to a smaller-dimensional parameter space instead of the entire state space. The

approximation is carried out via a number of different techniques: Bellman et al. [11]

explored the use of polynomial approximations as compact representations of the value

function in order to accelerate dynamic programming. Schweitzer and Seidmann [73]

developed several techniques for approximating value functions using linear combinations

of fixed sets of basis functions. More recently, Tsitsiklis and Van Roy [83] developed

algorithms that employ the feature-based compact representations of the value function in

dynamic programming. One of their algorithms was successfully applied to play the Tetris

game. Trick and Zin [82] studied approaches based on linear programming for solving large

MDPs and considered the use of low-dimensional cubic-spline approximations to the value

function. In De Farias and Van Roy [27], the value function was approximated by a linear

combination of pre-selected basis functions. The approach was used in conjunction with

linear programming for approximately solving infinite horizon discounted cost problems.

Another class of methods explores the use of Monte Carlo integration to avoid

the high computational cost of multivariate numerical integration that appears in the

value iteration approach. The most notable work in this area is due to Rust [72], who

used a randomized version of the Bellman operator to solve a class of MDPs with finite

action spaces called the discrete decision processes (DDP). Rust showed that (under some

regularity conditions) the amount of computational time required for his algorithms to

4

solve the DDP problem increases only polynomially rather than exponentially with the

dimension of the state variables.

All the computational methods mentioned so far require an explicit, complete math-

ematical model of the system to be controlled, represented by the availability of the cost

structure and the transition probabilities. There is a class of methods, on the other hand,

does not require the explicit specification of the transition probabilities and one-stage

costs. Instead, they rely on the use of Monte Carlo simulation methods, where the under-

lying system can be simulated. In the artificial intelligence community, these approaches

are often referred to as reinforcement learning, which include the method of temporal

difference ([80]) and Q-learning ([85]), as well as certain variations and extensions of them

(cf. e.g., [13] for a review). Recently, there have been some new and exciting ideas that

combine the use of the specialized MDP techniques with the solution strategies in the area

of global optimization. In these approaches, the simulation techniques are used not only

to resolve the issue of the unavailability of the explicit parameters of MDP models, but

also to avoid searching (enumerating) the entire (large or uncountable) state or solution

space. Chang et al. [20] proposed an algorithm based on the idea of simulated annealing

([50]) for solving finite horizon MDPs. The algorithm works directly on the policy space

and iteratively updates a probability distribution over a given set of policies. They showed

that the sequence of distributions will converge to a distribution concentrated only on the

optimal policies. A similar but more general framework was also proposed in [58], where

MDPs with several reward (cost) criteria are formulated as global optimization problems

over the set of all admissible policies, and are thus solved by using the cross-entropy (CE)

method ([26], [66], [67], [68]). The efficiency of their approach is demonstrated for an

inventory control problem and a maze problem.

5

1.1.2 Action Space Reduction Techniques

In contrast to large state spaces, the issue of large action spaces has been much

less explored. It was partially addressed in early work by MacQueen [57], who used

some inequality forms of Bellman’s equation together with bounds on the optimal value

function to identify and eliminate non-optimal actions in order to reduce the size of the

action sets to be searched at each iteration of the algorithm. Since then, the procedure

has been applied to several standard methods like policy iteration (PI), value iteration

(VI) and modified policy iteration (cf. e.g., [63] for a review). In a recent paper [30], the

action elimination idea has been explored in a reinforcement learning context where the

explicit MDP model is not known. So far, all of these algorithms generally require that

the admissible set of actions at each state is finite.

1.2 Global Optimization

The goal of global optimization is to find parameter values that achieve the optimum

of an objective function. In general, due to the presence of multiple local optimal solutions,

global optimization problems are typically extremely difficult to solve exactly. This section

briefly reviews some of the standard global optimization algorithms with an emphasis

on general solution techniques that are applicable to both combinatorial and continuous

optimization problems.

Methods for global optimization can be categorized based on a number of different

criteria. For instance, they can be classified either based on the properties of problems

to be solved (combinatorial or continuous, nonlinear, linear, convex, etc.) or by the types

of guarantees that the methods provide for the final solution. The classification that best

fits our proposed research is from the algorithmic point of view, where solution algorithms

6

are categorized as being either instance-based or model-based ; cf. [91].

1.2.1 Instance-based Methods

In instance-based methods, the searches for new candidate solutions depend explic-

itly on previously generated solutions. Some well-known approaches are simulated an-

nealing (SA) ([50]), genetic algorithms (GAs) ([79]), tabu search ([35]), and the recently

proposed nested partitions (NP) method ([75], [76]).

Simulated annealing was initially introduced to solve combinatorial optimization

problems. The algorithm starts out with some initial configuration/solution, and the

neighbors (candidate solutions) of the current solution are randomly visited. The key

idea of the algorithm is that neighbors that are either better or worse than the current

solution may both be accepted with a certain probability, and the probability of accepting

worse solutions gradually decreases during the search process. Thus the technique gives a

simple local search algorithm the possibility to escape from local optimal solutions. The

algorithm was later extended to solve continuous optimization problems by Corana et al.

[24].

Genetic algorithms are inspired by natural selection and survival of the fittest in

the biological world. In GAs, a population rather than a single solution is considered.

Each iteration of the algorithm involves a “crossover” and a “mutation”, where promising

solutions are recombined with other solutions by swapping parts of a solution with another,

and are then “mutated” by making a small change to the solution. The rationale is that

recombination and mutation may give rise to new solutions that are biased towards regions

containing good solutions.

The basic idea of tabu search is to record the search process, so that a search path

7

already visited can be avoided. This insures new regions of the solution space will be

investigated with the goal of avoiding local minima and ultimately finding the desired

solution.

The nested partitions method systematically partitions the solution space into smaller

subregions, accesses the potential of each region based on random sampling, and concen-

trates the computational efforts in the most promising region. This is done repeatedly

until some of the regions are singleton sets (i.e., containing only one solution). In some

sense, this is equivalent to changing the underlying sampling distribution in that more

promising solutions will have larger chances of being selected. The algorithm is shown to

converge to a global optimal solution with probability one.

1.2.2 Model-based Methods

The model-based search methods are a class of new solution techniques and were

introduced only in recent years. In model-based algorithms, new solutions are generated

via an intermediate probabilistic model that is updated or induced from the previously

generated solutions. So there is only an implicit/indirect dependency among the solutions

generated as successive iterations of the algorithm. In general, most of the algorithms

that fall in this category share a similar framework and usually involve the following two

phases:

1. Generate candidate solutions (random samples, trajectories) according to a specified

probabilistic model (e.g., a parameterized probability distribution on the solution

space).

2. Update the probabilistic model, on the basis of the data collected in the previous

step, in order to bias the future search toward “better” solutions.

8

−6 −5 −4 −3 −2 −1 0 1 2 3
0

0.5

1

1.5

x

di
st

rib
ut

io
n

−6 −5 −4 −3 −2 −1 0 1 2 3
0

10

20

30

40

50

60

x

H
(x

)

Figure 1.1: Optimization via model-based methods

To illustrate how model-based methods work, we consider, in Figure 1.1, maximiz-

ing a one-dimensional multi-extremal function H(x), where its global optimum is achieved

at x = 0. The model-based methods approach this problem by initially casting a prob-

ability model (distribution) over the solution space (the solid curve in Figure 1.1). This

initial distribution is then used to generate candidate solutions/samples, the performance

of these samples are evaluated and are thus used to update the initial distribution to

obtain a new distribution (the dashed curve in the figure). The preceding procedure is

performed repeatedly until some stopping criteria is satisfied. The underlying idea is that

if these probabilistic models are updated in an appropriate way, then the sequence of

samples/candidate solutions generated will become more and more concentrated near the

optimum.

9

Some well established techniques that belong to the model-based methods are the

cross-entropy (CE) method ([26],[58],[65],[66],[67],[68]), a class of algorithms called the

estimation of distribution algorithms (EDAs) ([53],[59],[60]), and the so-called annealing

adaptive search (AAS) ([74],[89]). The CE method was motivated by an adaptive algo-

rithm for estimating probabilities of rare events in complex stochastic networks ([65]),

which involves variance minimization. It was soon realized ([66], [67]) that the method

can be modified to solve combinatorial and continuous optimization problems. The CE

method usually starts with a family of parameterized probability distributions on the so-

lution space and tries to find the parameter of the distribution that assigns maximum

probability to the set of optimal solutions. Implicit in CE is an optimal reference distrib-

ution concentrated only on the set of optimal solutions (i.e., zero variance). The key idea

of CE is to use an iterative scheme to successively estimate the optimal parameter that

minimizes the KL-divergence between the optimal reference distribution and the family

of parameterized distributions. The literature analyzing the convergence properties of the

CE method is relatively sparse. In the context of estimation of rare event probabilities,

Homem-de-Mello ([41]) shows the convergence of a variational version of CE to an es-

timate of the optimal (possibly local) CE parameter with probability one. Rubinstein

([66]) shows the probability one convergence of the CE method to the optimal solution for

combinatorial optimization problems.

The estimation of distribution algorithm (EDA) was first introduced in the field of

evolutionary computation in [59]. It inherits the spirit of the well-known genetic algo-

rithms (GAs), but eliminates the crossover and the mutation operators in order to avoid

the disruption of partial solutions. In EDAs, a new population of candidate solutions are

generated according to the probability distribution induced or estimated from the promis-

10

ing solutions selected from the previous generation. Unlike CE, EDA often takes into

account the interrelations between the underlying decision variables needed to represent

the individual candidate solutions. At each iteration of the algorithm, a high-dimensional

probabilistic model that better represent the interdependencies between the decision vari-

ables is induced; this step constitutes the most crucial and difficult part of the method.

We refer the reader to [53] for a review of the way in which different probabilistic models

are used as EDAs instantiations. The convergence of a class of EDAs, under the infinite

population assumption, to the global optimum can be found in [90].

In annealing adaptive search (AAS) (cf., e.g., [89]), there is a sequence of distribu-

tions called Boltzmann distributions, each is parameterized by a temperature parameter

T . One salient property of the Boltzmann distribution is that when T decreases to 0, the

sequence of Boltzmann distributions will converge to a degenerated distribution concen-

trated only on the optimum. So the idea behind AAS is that if we can repeatedly sample

from the Boltzmann distribution as the temperature parameter gradually decreases to

0, then the candidate solutions/samples generated will converge to the global optimum.

However, sampling from the Boltzmann distribution is extremely difficult if not possible,

since the distribution depends on the objective function itself. Thus in AAS, the research

and computational efforts have mostly centered around the issue of how to efficiently gen-

erate samples. Currently, one popular and successful sampling approach is via the use

of Markov Chain Monte Carlo (MCMC) [89], but the distribution of the samples gen-

erated according to MCMC can only be guaranteed to converge to the true Boltzmann

distribution in an asymptotic sense ([89]).

11

1.3 Research Contributions

The main contributions of this thesis are as follows:

• We have developed a simulation-based multistage sampling algorithm for solving

finite horizon MDPs. The algorithm is motivated by the computational challenges

arising from settings where some of the parameters of the MDP models are either

unknown or cannot be obtained in a feasible way. We have assumed that the under-

lying system can be simulated and proposed to use multi-armed bandit models as

efficient tools to capture the tradeoff between sampling a promising action repeat-

edly and exploring further other actions that might yield even greater benefit, so

that computational resources can be efficiently allocated in an adaptive manner as

the sampling process proceeds. We have studied the convergence properties (includ-

ing rate and complexity) of the algorithm and reported on computational results

to illustrate its performance. This work has been published in Operations Research

[22].

• Our second contribution complements those aforementioned state space reduction

techniques (cf. Section 1.1.1) and focuses on the issue of large action spaces. In par-

ticular, we have proposed a novel algorithm that uses evolutionary, population-based

approaches to directly searching the policy space in order to avoid carrying out an

optimization over the entire action space. We have established the convergence of

the algorithm for MDPs with finite state space but general (Borel) action spaces and

compared the performance of the algorithm with those of the existing techniques.

Preliminary empirical results on a queueing example indicated that the proposed

method may significantly reduce the computational effort of the classical PI algo-

12

rithm. A slightly different version of this work has been accepted for publication at

INFORMS Journal on Computing [45].

• We have also proposed a new general framework called Model Reference Adaptive

Search (MRAS) for solving global optimization problems, which addresses the most

common computational difficulties faced by many model-based methods. We have

provided a particular instantiation of the framework and analyzed its global conver-

gence properties. We have studied some of the important properties of the recently

proposed CE method and showed that the CE method can actually be interpreted

as an instance of the proposed framework. We have also carried out detailed nu-

merical studies to demonstrate the effectiveness of the method and compared its

performance with those of CE and SA. This work has been accepted for publication

at Operations Research [46]; a preliminary version of this work was presented at the

2005 Genetic and Evolutionary Computation Conference (GECCO) [43].

• We have extended the MRAS framework to stochastic global optimization problems,

derived a set of sufficient conditions to ensure the global convergence of the method,

and tested the approach on several benchmark problems such as (s,S) inventory

control problem and optimal buffer allocation problems in unreliable production

lines. This work has been submitted for publication [47]; a much abbreviated version

appeared in the 2005 Winter Simulation Conference proceedings [44].

The rest of this thesis is structured as follows.

Chapter 2 provides some necessary background on MDPs and global optimization.

Specifically, Chapter 2.1 gives the formal definition of the MDP model and presents the

two classical approaches, value iteration (VI) and policy iteration (PI), for solving the

13

model. Chapter 2.2 briefly describes two of the recently proposed model-based methods

for solving global optimization with an emphasis on the cross-entropy (CE) method, which

will be our starting points for deriving results of Chapter 5 and Chapter 6.

In Chapter 3, we introduce a simulation-based algorithm called Adaptive Multi-

stage Sampling (AMS) for solving finite horizon MDPs with finite state and action spaces.

The algorithmic procedure is described in Chapter 3.2. The detailed convergence analysis

is given in Chapter 3.3. In Chapter 3.4, we perform computational experiments on a

set of inventory control problems, provide two additional estimators, and discuss the

performance of different estimators.

In Chapter 4, we propose a novel algorithm for solving a class of problems where the

state space is relatively small but the action space is large or uncountable. The chapter

contains a detailed description of the proposed algorithm in Chapter 4.3, a theoretical

convergence proof of the algorithm in Chapter 4.4, and some preliminary empirical results

in Chapter 4.6. Along the discussion, an adaptive version of the proposed algorithm is

also considered and discussed in Chapter 4.5.

In Chapter 5, we propose a new model-based framework for solving global optimiza-

tion. A specific instantiation of the framework, in its deterministic version, as well as its

convergence properties, are presented and established in Chapter 5.3, whereas the corre-

sponding Monte Carlo version of the method is described and its convergence proved in

Chapter 5.5. We explore the relationship between the CE method and the proposed frame-

work in Chapter 5.4. Preliminary numerical studies are also carried out in Chapter 5.6 to

demonstrate the effectiveness of the method.

Chapter 6 summarizes our initial idea in adapting the MRAS framework to sto-

chastic domains. In particular, we provide a variational extension of the MRAS method

14

in Chapter 6.3, prove its global convergence in Chapter 6.4, and carry out numerical

experiments in Chapter 6.5 to verify the theoretical findings.

Finally, we conclude the thesis in Chapter 7 with a summary of the work done, a

discussion of the unresolved open issues, and an outline of some possible future research

topics.

15

Chapter 2

Preliminaries

2.1 Markov Decision Processes

The MDP model can be formally described by a five-tuple M = (X,A, {Pt, t =

0, 1, . . .}, {Rt, t = 0, 1, . . .}, α), where

• X is a finite set of states of the environment.

• A is a general action space.

• {Pt, t = 0, 1, . . .} is a sequence of state transition matrices, each maps a state-action

pair to a probability distribution over the state space X. At time t, the probability

of transitioning to state y ∈ X, given that we are in state x ∈ X taking action a ∈ A,

is denoted by Px,y|t(a), i.e., the (x, y)th entry of Pt.

• {Rt, t = 0, 1, . . .} is a sequence of bounded non-negative one-stage cost functions,

where at time t, Rt : X ×A → <+ ∪ {0}.

• α ∈ (0, 1] is a discount factor.

Let xt, t = 0, 1, . . ., a random variable taking its values in X, be the state of the system

at time t. A decision rule or policy is a sequence of functions π := {πt, t = 0, 1, . . .} with

each πt : X → A specifying the action πt(x) taken when in state xt = x ∈ X at time

t. Such a policy is called stationary if all its components are independent of time, i.e., it

takes the form π := {π, π, . . .}; for notational brevity, we simply denote it by π.

16

For a given horizon length T > 0, a given policy π = {πt, t = 0, 1, . . . , T − 1} and

an initial state x0, a particular system path that the decision maker follows is given by a

sequence of states and actions {x0, π0(x0), . . . , xt, πt(xt), xt+1, πt+1(xt+1), . . .}, where the

transitioning from xt to xt+1 is determined by the probability Pxt,xt+1|t(πt(xt)). Thus, the

probability of taking this particular path can be calculated as
∏T−1

t=0 Pxt,xt+1|t(πt(xt)), and

the corresponding accumulated total cost can also be expressed as
∑T−1

t=0 αtRt(xt, πt(xt)).

Thus, under the discounted cost criterion, which will be the primary focus of this research,

the expected total accumulated cost over all possible sample paths associated with π can

be expressed as

Jπ(x) = E

[
RT (xT) +

T−1∑

t=0

αtRt(xt, πt(xt))
∣∣ x0 = x

]
, x ∈ X, α ∈ (0, 1].

If the horizon length T = ∞, we assume that both the transition probability P and the

one-stage cost function R are stationary, i.e., they do not change with time t. We therefore

drop the explicit display of t in both P and R, and write the expected total discounted

cost over an infinite horizon as

Jπ(x) = E

[∞∑

t=0

αtR(xt, πt(xt))
∣∣ x0 = x

]
, x ∈ X, α ∈ (0, 1),

where note that we require α to be strictly less than 1 in this case.

In both cases, we let J∗(x) be the optimal cost function starting with an initial state

x, defined by

J∗(x) = inf
π

Jπ(x), x ∈ X. (2.1)

We also call a stationary policy π optimal if Jπ(x) = J∗(x) ∀ x ∈ X.

For finite horizon problems, i.e., T < ∞, it is well-known that the optimal cost

J∗(x) can be obtained via the following recursion (cf. e.g., [13] Vol. II).

17

Theorem 2.1.1 For every initial state x ∈ X, the optimal cost J∗(x) is equal to J0(x),

given by the last step of the following algorithm, which proceeds backward in time from

stage T − 1 to stage 0:

JT (x) = RT (x), ∀x ∈ X

Jt(x) = min
at∈A

[
Rt(x, at) + α

∑

y∈X

Px,y|t(at)Jt+1(y)
]
, ∀x ∈ X, t = 0, . . . , T − 1. (2.2)

Furthermore, if a∗t = π∗t (x) minimizes the right hand side of equation (2.2) for each x and

t, the policy π∗ = {π∗0, . . . , π∗T−1} is optimal.

For infinite horizon problems, i.e., T = ∞, the optimal cost function J∗ satisfies the

following Bellman’s optimality equation, which is essentially a stationary counterpart of

equation (2.2).

Theorem 2.1.2 Under the bounded cost assumption and α ∈ (0, 1), the optimal cost J∗

satisfies

J∗(x) = min
a∈A

[
R(x, a) + α

∑

y∈X

Px,y(a)J∗(y)
]
. (2.3)

Note that for simplicity, we have assumed in equations (2.2) and (2.3) that all actions

in A are admissible for each state in X.

The following proposition implies the existence of a stationary optimal policy when

the minimum in the right hand side of Bellman’s equation is attained for all x ∈ X.

Proposition 2.1.1 A stationary policy π is optimal if and only if π(x) attains the mini-

mum in Bellman’s equation (2.3) for all x ∈ X.

Note that when the action space A is finite, a stationary optimal policy is guaranteed

to exist. On the other hand, when A is infinite, we can also ensure the existence of such a

policy by imposing some regularity assumptions on A, P , and R such that the minimum in

18

equation (2.3) is attained. For ease of exposition, we will simply assume that a stationary

optimal policy for problem (2.1) always exists under the infinite horizon setting.

We now briefly describe the two most basic approaches for solving Bellman’s equa-

tion in an infinite horizon setting: value iteration (VI) and policy iteration (PI). Their

detailed discussions can be found in [13] and [63].

2.1.1 Value Iteration

VI is basically the dynamic programming (DP) algorithm and is a principal method

for computing the optimal value function J∗. It starts with an arbitrary bounded function

J0(x) ∀x ∈ X, and computes at each iteration k = 0, 1, . . . a new function Jk+1(x) ∀ x ∈ X

from the old function Jk(x) according to

Jk+1(x) = min
a∈A

[
R(x, a) + α

∑

y∈X

Px,y(a)Jk(y)
]
, ∀ x ∈ X. (2.4)

It is well-known that under some mild regularity assumptions, the sequence of func-

tions {Jk, k = 0, 1, . . .} generated will converge to the optimal value function, i.e.,

limk→∞ Jk(x) = J∗(x) ∀ x ∈ X (cf. e.g., [13] and [63]). VI will generally require in-

finite number of iterations to compute the optimal value function; however, in practice,

the algorithm can often be strengthened by the use of some error bounds. It can be shown

(cf. [13] and [63]) that for a predetermined tolerance ε > 0, if |Jk+1(x)−Jk(x)| < ε ∀ x ∈ X

for some k, then the value function corresponding to the greedy policy πk that attains

the minimum in the kth iteration of equation (2.4) can not be too “far away” from the

optimal value function J∗, in the sense that

max
x∈X

|Jπk
(x)− J∗(x)| < 2ε

α

1− α
.

The above error bounds often provide a useful guideline for terminating the VI algorithm.

19

2.1.2 Policy Iteration

As an alternative to VI, PI starts with an arbitrary initial stationary policy π0 and

generates, one at each iteration, a sequence of stationary policies
{
π0, π1, π2, . . .

}
. At each

iteration k = 0, 1, . . ., the following two steps are fundamental:

1. Policy evaluation step that evaluates the value function Jπk
associated with the

current (stationary) policy πk.

Jπk
(x) = R(x, πk(x)) + α

∑

y∈X

Px,y(πk(x))Jπk
(y), ∀ x ∈ X. (2.5)

2. Policy improvement step, which computes a new improved policy πk+1 as

πk+1(x) = arg min
a∈A

[
R(x, a) + α

∑

y∈X

Px,y(a)Jπk
(y)

]
, ∀ x ∈ X. (2.6)

It can be shown that the sequence of value functions has the following (monotonicity)

property Jπ0
(x) ≥ Jπ1

(x) ≥ · · · ≥ J∗(x) ∀x ∈ X. Thus the sequence of policies {πk, k =

0, 1, . . .} generated by PI is improving. Note that the total number of stationary policies is

finite whenever the action space is finite. In this particular case, we will have Jπk+1
(x) =

Jπk
(x) ∀x ∈ X for some finite k, which implies that PI obtains an optimal policy π∗ in

finite number of iterations. For relatively small problems (the size of the state space is

less than 104), policy iteration is generally regarded as the fastest method for computing

the optimal value function and the associated optimal policy, provided that the discount

factor is sufficiently large [70].

2.2 Global Optimization

We consider the following optimization problem

x∗ ∈ argmax
x∈X

H(x), x ∈ X ⊆ <n, (2.7)

20

where X is the solution space, and H(·) : X → <+ ∪ {0}. We assume that the feasible

region X is unconstrained (i.e., X = <n) or is subjected to relatively simple constraints

so that the random samplings can be done easily on it; for instance, X is a finite set of

alternatives or of the form [a1, b1]× [a2, b2]× · · · × [an, bn].

In this Chapter, we review the cross-entropy (CE) method, estimation of distribu-

tion algorithms (EDAs), and the annealing adaptive search (AAS) for solving (2.7). As

mentioned in Chapter 1.2, they all fall within the framework of model-based methods.

One of the most important features of a model-based approach is its ability to learn and

adapt during the search process. Initially, the approach starts from a global perspective,

and gathers information about the “gross behavior” of the objective function by random

sampling of the entire feasible region X . As more finer details of the cost function are

revealed, the searches (random sampling) are getting more and more concentrated on sub-

regions of X containing high quality solutions. In a nutshell, this learning process consists

of the following two steps:

1. Generating candidate solutions according to some parameterized probabilistic model.

2. Modifying the parameters of the model by using the candidate solutions in order to

bias future sampling toward high quality solutions.

Thus, two crucial ingredients for any model based approaches are: (1) A probabilistic

model that allows an efficient generation of candidate solutions; (2) An efficient rule for

updating the parameters of the model.

2.2.1 The Cross-Entropy Method

The CE method starts with a family of parameterized probability density/mass

functions {f(·; θ) : θ ∈ Θ} over X , where Θ is the parameter space. Instead of directly

21

solving (2.7), the algorithm tries to solve the following estimation problem

`(γ) = Pθ(H(X) ≥ γ) = EθI{H(X)≥γ},

where X is a random vector taking values in X with p.d.f./p.m.f. f(·; θ), γ is some

parameter, and

I{H(x)≥γ} =





1 if H(x) ≥ γ,

0 otherwise.

Let us denote the maximum of (2.7) by H∗. The goal of CE is to find an optimal parameter

θ∗ so that the p.d.f./p.m.f. f(·, θ∗) assigns maximum mass to the set of (near) optimal

solutions {x : H(x) ≥ H∗}. Once such a parameter is found, the resulting p.d.f./p.m.f.

can be used to generate good candidate solutions to the optimization problem with high

probability. However, if γ is close to H∗, then typically {H(X) ≥ γ} is a rare event, and

estimation of the probability `(γ) is a nontrivial problem. The CE method breaks down

this estimation problem into a sequence of simpler estimation problems and generates

a sequence of tuples
{
(γ̂k, θ̂k), k = 0, 1, . . .

}
, which converges (empirically) quickly to a

small neighborhood of the optimal tuple (H∗, θ∗). The main CE optimization algorithm

is summarized as follows.

Algorithm 2.2.1 (Main CE Algorithm for Optimization) Let ρ ∈ (0, 1) be the

fraction of the best samples that will be used in parameter updating, and N be the number

of samples at each iteration.

1. Choose the initial parameter θ̂0 ∈ Θ. Set the iteration counter k = 0.

2. Draw random samples X1
k , . . . , XN

k according to f(·, θ̂k). Calculate the sample (1−ρ)-

quantile by ordering H(Xi
N) i = 1, . . . , N from the smallest to largest and then setting

22

γ̂k := H(dρNe), where H(i) is the ith order statistic of the ordered sample performance

and dρNe indicates the integer part of ρN .

3. Calculate the new parameter θ̂k+1 by solving the optimization problem

θ̂k+1 := arg max
θ∈Θ

1
N

N∑

i=1

I{H(Xi
k)≥γ̂k} ln f(Xi

k, θ).

4. If for some k ≥ d, say d = 5,

γ̂k = γ̂k−1 = · · · = γ̂k−d,

then terminate; otherwise set k = k + 1 and reiterate from Step 2.

The deterministic version of Algorithm 2.2.1 is also presented below.

Algorithm 2.2.2 (Deterministic Version of the CE Method)

1. Choose the initial parameter θ0 ∈ Θ. Set k = 0.

2. Calculate the (1− ρ)-quantile γk as

γk := max {l : Pθk
(H(X) ≥ l) ≥ ρ} .

3. Compute the new parameter by solving the following problem

θk+1 := argmax
θ∈Θ

Eθk

[
I{H(X)≥γk} ln f(X, θ)

]
.

4. If for some k ≥ d, say d = 5,

γk = γk−1 = · · · = γk−d,

then terminate; otherwise set k = k + 1 and reiterate from Step 2.

23

2.2.2 The Estimation of Distribution Algorithms

The EDAs were first introduced in the field of evolutionary computation. However,

unlike evolutionary algorithms, they do not rely on the “genetic” principle anymore (e.g.,

the crossover and mutation mechanisms in classical evolutionary algorithms); instead,

in each iteration, they build an explicit probabilistic model (probability distribution) of

promising solutions in the search space. New candidate solutions are created by sampling

from this distribution. In a general level, an EDA can be concisely described as follows.

Algorithm 2.2.3 (Estimation of Distribution Algorithm) Let N be the size of the

population at each iteration.

1. Generate the initial population D0 (N candidate solutions) randomly (e.g., uni-

formly) from the solution space. Set the iteration counter k = 0.

2. Construct a set of promising solutions DS
k by selecting S ≤ N candidate solution

from Dk according to a selection scheme.

3. Estimate Pk(x) := P (x|DS
k) for all x ∈ X , i.e., the probability distribution of solution

x being among the selected solutions DS
k .

4. Construct a new population Dk+1 by sampling N candidate solutions from Pk(x).

5. If a stopping criterion is met, then terminate; otherwise set k = k + 1 and reiterate

from step 2.

The performance of a particular EDA are mainly determined by the construction

and estimation of the probabilistic model Pk(·). More accurate models ensure better

performance of the algorithm, however they are often more complicated and expensive

to build. In combinatorial domains, if the random vector X ∈ X consists of n discrete

24

variables, i.e., X = (X1, X2, . . . , Xn), and each variable Xi can take on m values, then a

complete description of the joint probability distribution of X requires mn−1 parameters,

and to estimate all these parameters is clearly impractical. In practice, in order to reduce

the number of parameters used to represent the joint distribution, simplifying assumptions

are made about the structure of the distribution. For instance, consider the case where

n = 3 and m = 3. A precise description of the joint distribution requires 26 parameters:

2 for the distribution of X3, 6 for the conditional distribution P (X2 = y|X3 = z), and

18 for P (X1 = x|X2 = y, X3 = z). If we assume that given X2, X1 is independent of

X3, then only 14 parameters are required. Finally, if all variables are assumed to be

independent, then the joint distribution of X is determined by the univariate marginal

distribution of X1, X2, and X3, which in turn requires only 6 parameters. Thus, as we can

see, there is often a tradeoff between accuracy and efficiency. When categorized by the

complexity of the underlying probabilistic models employed, there are a number of different

particular instantiations of EDAs, ranging from the simple Univariate Marginal Density

Algorithm (UMDA) [59], where all components of an individual solution are assumed to

be independent, to Bayesian Optimization Algorithm (BOA) which uses Bayesian nets as

the probabilistic model. Please refer to [53] and [60] for a review.

2.2.3 Annealing Adaptive Search

The annealing adaptive search method was originally developed to understand the

behavior of the classical simulated annealing algorithm. The method, in its idealized

form, assumes that the samples can be generated exactly from a sequence of Boltzmann

distributions (in a maximization context) given by

gTk
(x) =

eH(x)/Tk∫
X eH(x)/Tkν(dx)

,

25

where ν is the Lebesgue or discrete measure on the solution space, and Tk is the tem-

perature parameter at the kth iteration, which is usually taken to be a function (cooling

schedule) of the past sample/candidate solution visited. The idealized version of AAS,

taken from [89], is presented below.

Algorithm 2.2.4 1. Generate a solution X0 uniformly from the solution space X . Set

k = 0, Y0 = H(X0), Y∗ = Y0, X∗ = X0, and T0 = τ(X∗), where τ(·) is a positive

real-valued nondecreasing cooling schedule.

2. Generate Xk+1 from the Boltzmann distribution with temperature parameter Tk.

3. If H(Xk+1) > Yk, set Yk+1 = H(Xk+1), Y∗ = Yk+1, X∗ = Xk+1. Set Tk+1 = τ(Y∗).

Otherwise, set Yk+1 = Yk and Tk+1 = Tk.

4. Set k = k + 1 and return to Step 2 until some specified stopping rule is satisfied.

AAS has some attractive theoretical properties. For example, it is shown in [74] that

for a particular cooling schedule of the temperature parameter, the expected number of

improving samples/solutions (in terms of their performance) and the number of function

evaluations both grow only linearly with the problem dimension. However, as noted

earlier, in order to implement the method in practice, AAS needs to be used in conjunction

with various efficient sampling techniques. This is an active area that has received much

attention both in the past and present. Since the technical details is beyond the scope of

this research, we refer interested readers to the work of [74] and [89].

26

Chapter 3

An Adaptive Multi-stage Sampling Algorithm for Solving Finite Horizon Markov

Decision Processes

In this chapter, we propose a simulation-based framework for approximately solving

general finite horizon MDPs with large state spaces. For a given MDP with horizon T ,

the method can be interpreted as an efficient search method for a decision tree with depth

T , where each node of the tree represents a state, with the root node corresponding to an

initial state, and each edge of the tree signifies a sampling of a given action. The method

employs a depth first search for generating sample paths from the initial state to the final

state (i.e., when the finite horizon T is reached) and uses backtracking to estimate the

value functions at previously visited states, where the estimated value function of a certain

node/state is taken to be the weighted average of the Q-values at the successive child

nodes/states. We show that the estimated value function at the initial state produced

by the algorithm not only converge to the true optimal value but also does so in an

“efficient” way, with the worst-case bias bounded by a quantity that converges to zero

at rate of O
(∑T−1

t=0
ln Nt
Nt

)
, where Nt is the total number of samples that are used per

state sampled in stage t. Given that the action space size is |A|, the worst-case running

time-complexity of the algorithm is O
(
(|A|maxt=1,...,T Nt)T

)
, which is independent of the

state space size but is dependent on the size of the action space due to the requirement

that each action be sampled at least once at each sampled state.

A similar sampling strategy (i.e., the recursive tree sampling structure) was previ-

ously used in [49] to create an on-line, near-optimal planning algorithm for solving large

27

MDPs. However, their approach differs from ours in the way actions are sampled. Their

method employs a straightforward nonadaptive sampling scheme, where each action is

always sampled for a prespecified fixed number of times. Obviously this scheme is gener-

ally sub-optimal, which could often lead to a waste of computational resources, especially

when the computational budget is tight. Our method, in contrast, adaptively chooses

which action to sample as the sampling process proceeds, and concentrate most of the

sampling on the action with high variability, which could yield the most computational

benefits in cases where the sampling cost is relatively expensive.

The adaptive sampling idea in our approach originates from the expected regret

analysis of the multi-armed bandit problem developed by [52]. In particular, we exploit

the recent finite-time analysis work by [8] that elaborated [1]. The objective of these

problems is to play as often as possible the machine that yields the highest (expected)

reward. The optimal strategy (policy) must balance between playing the machine that is

empirically best thus far (exploitation), i.e., the machine has the highest sample mean,

and trying to find a better machine (exploration) that actually has a higher expectation

but might have a lower sample mean thus far due to statistical variation. The expected

loss due to not always playing the true optimal machine is called regret, which quantifies

the exploration/exploitation dilemma in the search for the true (unknown in advance)

“optimal” machine. Lai and Robbins [52] showed that for an optimal strategy the regret

grows at least logarithmically in the number of machine plays, and recently Auer et al. [8]

showed that the logarithmic regret is also achievable uniformly over time with a simple and

efficient sampling algorithm for arbitrary reward distributions with bounded support. We

incorporate their results into a sampling-based process for finding an optimal action in a

state for a single stage of a finite horizon MDP by appropriately converting the definition of

28

regret into the difference between the true optimal value and the approximate value yielded

by the sampling process. We then extend the one-stage sampling process into multiple

stages in a recursive manner, leading to a multi-stage (sampling-based) approximation

algorithm for solving MDPs.

3.1 Related Work

The multi-armed bandit problems have been studied extensively for many years,

however, the literature applying the theory of the multi-armed bandit problem to de-

rive a probably convergent framework for solving general MDPs is very few. The closest

related work is probably that of Agrawal et al. [2], who considered a controlled finite-

state/action-space Markov chain problem with infinite horizon average reward criterion.

In their setting, transition probabilities and initial distribution are parameterized by an

unknown parameter θ selected from some known finite parameter, with each fixed para-

meter θ leading to an ergodic Markov chain. They assume that for each θ, there exists a

unique optimal stationary policy. They consider a finite-horizon loss function defined over

all θ’s based on the regret of [52], and regard the optimal stationary policy for the average

reward as an approximation for an optimal nonstationary policy that minimizes the loss

for the finite horizon. By then using the optimal stationary policy for the average reward

for each θ, they develop an adaptive but rather complex policy, the performance of which

is bounded in terms of the horizon size of the loss function, which vanishes as the size

increases. The adaptiveness comes from the use of the multi-armed bandit theory for the

stationary control laws. In other words, the arm corresponds to a particular stationary

law or policy, but not a particular action in the action space.

29

3.2 Adaptive Sampling Algorithm

3.2.1 Background

We consider the MDP problem M = (X, A, {Pt, t = 0, 1, . . .}, {Rt, t = 0, 1, . . .}, α)

with finite horizon length T , finite state space X, finite action space with |A| > 1, and

bounded non-negative one-stage cost function Rt. Again for simplicity (and without loss

of generality), we assume that every action is admissible in every state.

At stage t < T , for a given state x, we define the optimal discounted reward-to-go

at state x from stage t as

J∗t (x) = sup
π∈Π

E

[T−1∑

i=t

αiRi(xi, πi(xi))
∣∣∣xt = x

]
, x ∈ X, 0 < α ≤ 1, t = 0, ..., T − 1, (3.1)

with J∗T (x) = 0 for all x ∈ X, where Π is the set of all possible nonstationary Markovian

policies π = {πt|πt : X → A, t ≥ 0}, and the assumption that we have the zero ter-

minal reward function (for simplicity) can be relaxed with an arbitrary terminal reward

function. Our goal is to estimate for a given initial state x, the optimal discounted total

reward (thereby obtaining an approximate optimal policy) J∗0 (x). As mentioned earlier,

the objective of multiarmed bandit problems is to identify the machine that have the

highest reward. Therefore, for ease of exposition, it is natural for us to consider in (3.1) a

slightly different version of the MDP model introduced in Chapter 2, i.e., maximizing the

reward instead of minimizing the cost. However, we remark that all results can be easily

extended to a minimization context, we will come back to this issue later in Chapter 3.4.

By Theorem 2.1.1, the optimal reward-to-go J∗t can be obtained recursively as fol-

30

lows: for all x ∈ X and t = 0, ..., T − 1,

J∗t (x) = max
a∈A

(Q∗
t (x, a)), where we define

Q∗
t (x, a) = Rt(x, a) + α

∑

y∈X

Px,y|t(a)J∗t+1(y). (3.2)

The right hand side of (3.2) is basically the sum of one-stage cost plus the expected value

of the future optimal cost-to-go, therefore a natural way to estimate Q∗
t (x, a) is to use its

sample average approximation Q̂t(x, a) given by

Q̂t(x, a) = Rt(x, a) + α
1

Nx
a,t

∑

y∈Sx
a

Ĵ
Nt+1

t+1 (y), (3.3)

where Sx
a is the multiset (in which the same element may appear for more than once) of

independently sampled next states according to the transition probability Px,·|t(a), and

Nx
a,t := |Sx

a | ≥ 1 is the cardinality of the set Sx
a with

∑
a∈A Nx

a,t = Nt for a fixed Nt ≥ |A|

for all x ∈ X, and Ĵ
Nt+1

t+1 (y) is an estimate of the optimal cost-to-go at the sampled next

state y. Note that the number of next state samples depends on the state x, action a, and

stage t. If we further estimate the optimal value J∗t (x) by a weighted sum

ĴNt
t (x) =

∑

a∈A

Nx
a,t

Nt
Q̂t(x, a).

Then we have the following recursive relationship

ĴNt
t (x) :=

∑

a∈A

Nx
a,t

Nt

(
Rt(x, a) + α

1
Nx

a,t

∑

y∈Sx
a

Ĵ
Nt+1

t+1 (y)
)

, i = 0, ..., T − 1,

with ĴNT
T (x) = J∗T (x) = 0 for all x ∈ X.

In the above definition, the total number of sampled (next) states is O(NT) with

N = maxt=0,...,T−1 Nt, which is independent of the state space size. To carry out the above

recursion, we need to determine the value of Nx
a,t for t = 0, ..., T − 1, a ∈ A, and x ∈ X.

An obvious way is to use the straightforward non-adaptive approach, and use the same

31

fixed value of Nx
a,t for all x, a, and t. But here we consider an adaptive allocation rule

(sample scheme), in particular, we want to adaptively choose the value of Nx
a,t in such a

way that the expected difference between ĴN0
0 (x) and J∗0 (x) is bounded as a function of

Nx
a,t and Nt, t = 0, . . . , T − 1, and the bound goes to zero as Nt goes to infinity.

The main idea behind the adaptive allocation rule is based on a simple interpre-

tation of the regret analysis of the multi-armed bandit problem, where plays of the ith

machine (1 ≤ i ≤ m, m is the total number of machines) yield i.i.d. random rewards with

unknown mean µi, and the goal is to play as often as possible the machine corresponding

to the maximum mean µ∗. The rewards across different machines are also assumed to

be independently generated. Let Ci(n) be the number of times the ith machine has been

played by an algorithm during the first n plays. We define the expected regret ρ(n) of an

algorithm after n plays by

ρ(n) = µ∗n−
m∑

i=1

µiE[Ci(n)].

Lai and Robbins [52] characterized an “optimal” algorithm such that the best machine,

which is associated with µ∗, is played exponentially more often than any other machine, at

least asymptotically. That is, they showed that playing machines according to an (asymp-

totically) optimal algorithm leads to ρ(n) = Θ(lnn) as n → ∞ under mild assumptions

on the reward distributions. However, obtaining an optimal algorithm (proposed by Lai

and Robbins) is often very difficult, so Agrawal [1] derived a set of simple algorithms

that achieve the asymptotic logarithmic regret behavior, using a form of upper confidence

bounds. The use of the upper confidence bound leads us to trade-off between exploitation

and exploration, giving a criterion of which of the two between exploitation and explo-

ration to be selected. For example, let n̄ be the number of overall plays (for all machines)

so far, and let µ̂i(n̄) be the sample mean reward accumulated by playing machine i. During

32

the plays, we are tempted to take the machine with the maximum current sample mean

(exploitation). However, µ̂i(n̄) is just an estimate of the true mean, which may contain

high variability. Therefore, always playing the machine that yields the best current sample

mean is obviously non-optimal, it is also desirable to play other machines occasionally (ex-

ploration). To account for the variability in the estimation, we try to find a function σi(n̄)

such that the true mean µi falls in the confidence interval (µ̂i(n̄) − σi(n̄), µ̂i(n̄) + σi(n̄))

with high probability. Agrawal’s algorithm is to choose the machine with the highest

upper confidence bound at each play over time. For bounded rewards, [8] propose simple

upper confidence-bound based algorithms that achieve the logarithmic regret uniformly

over time, rather than only asymptotically, and our sampling algorithm primarily builds

on their results.

To see how we incorporate the confidence bound idea into an adaptive allocation

rule for finite horizon MDPs, we consider first only the one-stage problem (i.e., T = 1).

For this problem, by definition we know the value of J∗1 (x) for all x ∈ X, and our goal is to

estimate J∗0 (x). From (3.2), it is obvious we need to obtain a viable estimate for Q∗
0(x, a∗),

where a∗ ∈ arg maxa∈A(Q∗
0(x, a)). The search for a∗ corresponds to the search for the best

machine in the multi-armed bandit problem. We start by sampling each possible action

once at x, which leads to the next state according to Px,·|0(a) and reward R0(x, a). The

next action to sample is the one that achieves the maximum among the current estimates

of Q∗
0(x, a) plus its current upper confidence bound (see (3.5)), where the estimate Q̂0(x, a)

is given by the immediate reward plus the sample mean of J∗1 -values at the sampled next

states that have been sampled so far (see (3.6)). The above procedure is repeated until a

prespecified total number of sampling budget is consumed, see, in particular, the Loop

step in Figure 3.1.

33

Given the total number of samples N0 for state x at the initial stage, Nx
a,0 denotes

the number of times action a has been sampled. If the sampling is done appropriately,

we might expect that in the long run, the optimal actions will be sampled significantly

more often than other non-optimal actions, thus Nx
a,0/N0 provides a good estimate of the

likelihood whether action a is optimal in state x. As a result, in the limit as N0 → ∞,

we should have limN0→∞
∑

a∈A∗ Nx
a,0/N0 → 1, where A∗ denotes the set of all optimal

actions. For this reason, we use a weighted (by Nx
a,0/N0) sum of the currently estimated

value of Q∗
0(x, a) over A to approximate J∗0 (x) (see (3.7)). Therefore, as the weighted sum

concentrates on a∗ as the sampling proceeds, we will have the convergence of the estimate

ĴN0
0 (x) to J∗0 (x).

Remark 3.2.1 Throughout this Chapter, the notation O used in the sense that for given

two functions f and g, f(n) = O(g(n)) if limn→∞
f(n)
g(n) = c for some constant c > 0,

and the notation Θ is used in that there exist positive constants c1, c2, and n0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 ([25]). The O and Θ-notations are often called

asymptotic upper bound and asymptotically tight bound, respectively, for the asymptotic

running time of an algorithm.

3.2.2 Algorithm description

The adaptive multi-stage sampling (AMS) algorithm is essentially a recursive exten-

sion of the one-stage sampling approach describe in preceding two paragraphs. The basic

algorithmic procedure is given in Figure 3.1. The inputs to the algorithm are a state x ∈ X,

the total number of samples Nt ≥ |A| allowed at stage t, and the output of algorithm is an

estimate of the true optimal reward-to-go from state x ĴNt
t (x). The AMS algorithm itself

is recursively called to estimate J∗k (y) whenever we need to calculate the value ĴNk
k (x) for

34

Adaptive Multi-stage Sampling (AMS)

• Input: a state x ∈ X, Nt ≥ |A|, and stage t. Output: ĴNt
t (x).

• Initialization: Sample each action a ∈ A sequentially once at state x and set

Q̂t(x, a) =

8>><>>: 0 if t = T go to Exit

Rt(x, a) + αĴ
Nt+1
t+1 (y) if t 6= T,

(3.4)

where y is the sampled next state according to Px,·|t(a), set the total current number of

samples n̄ = |A|.

• Loop: Sample the action â∗ (estimate of the true a∗) that has the best upper confidence

bound

max
a∈A

Q̂t(x, a) +

s
2 ln n̄

Nx
a,t

!
, (3.5)

where Nx
a,t denotes the number of times action a has been sampled, and Q̂t is defined by

Q̂t(x, a) = Rt(x, a) + α
1

Nx
a,t

X
y∈Sx

a

Ĵ
Nt+1
t+1 (y), (3.6)

where Sx
a is the set of sampled next states so far with |Sx

a | = Nx
a,t with respect to Px,·|t(a).

– Update Nx
â∗,t ← Nx

â∗,t + 1 and Sx
â∗ ← Sx

â∗ ∪ {y′}, where y′ is the newly sampled

next state by â∗.

– Update Q̂i(x, â∗) with the Ĵ
Nt+1
t+1 (y′) value.

– n̄ ← n̄ + 1. If n̄ = Nt, then exit Loop.

• Exit: Set ĴNt
t (x) such that

ĴNt
t (x) =

8>><>>:
P

a∈A

Nx
a,t

Nt
Q̂t(x, a) if t = 0, ..., T − 1

0 if t = T.

(3.7)

and return ĴNt
t (x).

Figure 3.1: Adaptive multi-stage sampling algorithm (AMS) description

a state y ∈ X at stage k in the Initialization and Loop subroutines of the algorithm. In

particular, we need to call AMS recursively (at Equation (3.4) and (3.6)). The initial call

35

a

a

1

2

i=1

i=2

stage i=0

Loop
9

........

........

........

........

....

....

Loop

Loop

state

a

b

bb3
4 7 8

10

11

a

6

5

i=3

........

action action
b

sampled subtree
from the node x

x

Figure 3.2: The sequence of the recursive calls made in Initialization of the AMS al-

gorithm. Each node corresponds to a state and each arrow with noted action signifies a

sampling (and a recursive call). The bold-face number near each arrow is the sequence

number for the recursive calls made. For simplicity, the entire Loop process is signified

by one call number.

to AMS is done with t = 0 and the initial state x0, and every sampling is done indepen-

dently of the previously done samplings. Figure 3.2 graphically illustrates the sequence

of calls with two actions and T = 3 for the Initialization portion. We remark that this

sampling strategy, as depicted in Figure 3.2, resembles the recursive decision tree in the

same spirit as [49] use for planning algorithms, and the non-recursive simulated/sampling

trees [17] use for an American-style option pricing problem and [33] use in a more general

MDP setting. However, as mentioned before, all those works use non-adaptive sampling,

in the sense that the number of samples for each action is pre-specified.

Now let Mt be the number of recursive calls made to compute ĴNt
t in the worst case.

At stage t, AMS makes at most Mt = |A|NtMt+1 recursive calls (in Initialization and

Loop). Thus, the worst case running time complexity of AMS is M0 = O((|A|maxt Nt)T).

In contrast, backward induction has O(T |A||X|2) running time complexity (see, e.g., [16]).

36

Therefore, the main benefit of AMS is independence from the state space size, but this

comes at the expense of exponential (versus linear, for backwards induction) dependence

on both the action space and the horizon length.

3.3 Convergence Analysis

In this Chapter, we study the convergence properties of the AMS algorithm. In

particular, we show that the final estimate of the optimal value function produced by the

algorithm is asymptotically unbiased, and the worst possible bias is uniformly bounded

by a quantity that converges to zero at rate O
(∑T−1

t=0
ln Nt
Nt

)
.

We first consider a special case of the AMS algorithm, a non-recursive one-stage

sampling algorithm (OSA) results from by applying AMS to the one-stage approximation

problem described earlier in Chapter 3.2.1. The algorithm is illustrated in Figure 3.3 with

a stochastic value function U defined over X. U(x) for x ∈ X is a nonnegative bounded

random variable with unknown distribution for all x ∈ X. U(x) can be viewed as the

outcome/observation of a black box corresponding to a input x, where as before, when

x is given to the black box, we assume that the observations at different time instances

are independent of each other, and are identically distributed according to the unknown

distribution. Let

Umax = max
x,a

(
R(x, a) + α

∑

y∈X

Px,y(a)E[U(y)]
)

,

and assume for the moment that Umax ≤ 1. Note that since we are considering the one-

stage problem, we have dropped the dependencies on stage t in both R and P . However,

we should keep in mind that this setting, as well as all subsequent results, hold for every

stage t = 0, . . . , T − 1.

We now interpret the OSA in the context of a |A|-armed bandit problem, where each

37

One-stage Sampling Algorithm (OSA)

• Input: a state x ∈ X and n ≥ |A|.

• Initialization: Sample each action a ∈ A once at state x and set

Q̃(x, a) = R(x, a) + αU(y),

where y ∼ Px,·(a) is the sampled next state. Set n̄ = |A|.

• Loop: Sample an action a∗ that achieves

max
a∈A

Q̃(x, a) +

s
2 ln n̄

T x
a (n̄)

!
,

where T x
a (n̄) is the number of times action a has been sampled so far

at state x, n̄ is the overall number of samples done so far, and

Q̃(x, a) = R(x, a) + α
1

T x
a (n̄)

X
y∈Λx

a(n̄)

U(y),

where Λx
a(n̄) is the set of sampled next states so far with |Λx

a(n̄)| = T x
a (n̄).

– Update T x
a∗(n̄) ← T x

a∗(n̄) + 1 and Λx
a∗(n̄) ← Λx

a∗(n̄)∪ {y′}, where y′ is the newly

sampled next state by a∗.

– Update Q̃(x, a∗) with U(y′).

– n̄ ← n̄ + 1. If n̄ = n, then exit Loop.

• Exit: Set J̃n such that

J̃n(x) =
X
a∈A

T x
a (n)

n
Q̃(x, a). (3.8)

Figure 3.3: One-stage sampling algorithm (OSA) description

action a corresponds to a gambling machine. Successive plays of machine a yield “bandit

rewards” which are independent and identically distributed according to an unknown

distribution δa with unknown expectation

Q(x, a) = R(x, a) + α
∑

y∈X

Px,y(a)E[U(y)],

38

and are independent across machines or actions.

In OSA, T x
a (n) represents the number of times machine a has been played (or action

a has been sampled) during the n plays. Define the expected regret ρ(n) of OSA after n

plays by

ρ(n) = J(x)n−
|A|∑

a=1

Q(x, a)E[T x
a (n)], where J(x) = max

a∈A
Q(x, a).

We now state a key theorem, which will be the basis of our convergence results for

the OSA algorithm, whose proof is given in [8].

Theorem 3.3.1 For all |A| > 1, if OSA is run on |A|-machines having arbitrary bandit

reward distribution δ1, ..., δ|A| with Umax ≤ 1, then

ρ(n) ≤
∑

a:Q(x,a)<J(x)

[
8 lnn

J(x)−Q(x, a)
+ (1 +

π2

3
)(J(x)−Q(x, a))

]
,

where Q(x, a) is the expected value of bandit rewards with respect to δa.

The convergence of the OSA algorithm is summarized in the following lemma.

Lemma 3.3.1 With the stochastic value U defined earlier with Umax ≤ 1, and suppose

the total number of sample allowed by OSA is n. Then we have, for all x ∈ X,

E[J̃n(x)] → J(x) as n →∞,

where J(x) is the true optimal value function at state x for the one-stage problem, i.e.,

J(x) = max
a∈A

(
R(x, a) + α

∑

y∈X

Px,y(a)E[U(y)]
)

.

Proof: Note that maxa(J(x)−Q(x, a)) ≤ Umax. We define the set of nonoptimal actions

for x as φ(x) = {a|Q(x, a) < J(x), a ∈ A}. Define β(x) for φ(x) 6= ∅ such that

β(x) = min
a∈φ(x)

(J(x)−Q(x, a)) (3.9)

39

and note that 0 < β(x) ≤ Umax. Let

J̃(x) =
|A|∑

a=1

T x
a (n)
n

Q(x, a).

We have by Theorem 3.3.1,

0 ≤ J(x)− E[J̃(x)] =
ρ(n)
n

≤ 8(|A| − 1) lnn

nβ(x)
+ (1 +

π2

3
) · (|A| − 1)Umax

n

≤ C1 lnn

n
+

C2

n
, (3.10)

where C1 and C2 are some constants. Since X is finite, there exists a constant C > 0 such

that 0 < C ≤ minx∈X β(x) and also that ρ(n) = 0 if φ(x) = ∅. By the definition of J̃n(x),

(cf. (3.8)), it follows that

J(x)− E[J̃n(x)] = J(x)− E[J̃(x)− J̃(x) + J̃n(x)]

= J(x)− E[J̃(x)] + E

[∑

a∈A

T x
a (n)
n

(
Q(x, a)− Q̃(x, a)

)]
. (3.11)

Clearly by (3.10), the first term J(x)−E[J̃(x)] above is bounded by zero from below with

convergence rate of O(ln n
n). We now show that the last term in (3.11) is zero.

Let Yj ∼ {Px,·(a)} denote the (i.i.d.) jth next state sampled from the same starting

state x with same action a. Then, T x
a (n) for every finite n is a stopping time (cf. e.g.,

[64], p.104) for {Yj}, since T x
a (n) ≤ n < ∞ and the event {T x

a (n) = k} is independent of

{Yk+1, . . .}. It follows that

E

[∑

a∈A

T x
a (n)
n

(
Q(x, a)− Q̃(x, a)

)]

= E

[∑

a∈A

T x
a (n)
n

(
R(x, a) + αE[U(Yj)]−R(x, a)− α

1
T x

a (n)

T x
a (n)∑

j=1

U(Yj)
)]

=
α

n

(∑

a∈A

E[T x
a (n)]E[U(Yj)]−

∑

a∈A

E

[T x
a (n)∑

j=1

U(Yj)
])

= 0,

by applying Wald’s equation.

Therefore, the convergence follows directly from (3.10) and (3.11).

40

We are now ready to state the main convergence theorem for the AMS algorithm,

whose proof is based upon a straightforward inductive application of Lemma 3.3.1.

Theorem 3.3.2 Assume that the one-stage reward function is uniformly bounded by 1
T ,

i.e., Rmax = maxx,a,t Rt(x, a) ≤ 1
T . Suppose AMS is run with a given (arbitrary) initial

state x and input Nt, t = 0, ..., T − 1. Then

(1)

lim
Nt→∞, ∀ t=0,...,T

E[ĴN0
0 (x)] = J∗0 (x).

Moreover, the worst possible bias induced by the algorithm is bounded by a quantity that

converges to zero at rate O
(∑T−1

t=0
ln Nt
Nt

)
, i.e.,

(2)

J∗0 (x)−E[ĴN0
0 (x)] ≤ O

(
T−1∑

t=0

ln Nt

Nt

)
, x ∈ X,

Proof: At stage T − 1, by the definition of Ĵ
NT−1

T−1 ,

Ĵ
NT−1

T−1 (x) =
∑

a∈A

Nx
a,T−1

NT−1

(
RT−1(x, a) + α

1
Nx

a,T−1

∑

y∈Sx
a

ĴNT
T (y)

)

≤
∑

a∈A

Nx
a,T−1

NT−1

(
Rmax + α · 0

)
= Rmax, x ∈ X.

It follows that at stage T − 2

Ĵ
NT−2

T−2 (x) =
∑

a∈A

Nx
a,T−2

NT−2

(
RT−2(x, a) + α

1
Nx

a,T−2

∑

y∈Sx
a

Ĵ
NT−1

T−1 (y)
)

≤
∑

a∈A

Nx
a,T−2

NT−2

(
Rmax + αRmax

)
= Rmax(1 + α), x ∈ X.

And by induction, we have for all x ∈ X and t = 0, ..., T − 1,

ĴNt
t (x) ≤ Rmax

T−t−1∑

i=0

αi ≤ Rmax(T − t) ≤ 1,

where the last inequality follows from the assumption RmaxT ≤ 1.

41

Therefore, from Lemma 3.3.1 with Umax = Rmax(T − t) ≤ 1, we have for t =

0, ..., T − 1, and for arbitrary x ∈ X,

E[ĴNt
t (x)] Nt→∞−→ max

a∈A

(
Rt(x, a) + α

∑

y∈X

Px,y|t(a)E[ĴNt+1

t+1 (y)]
)

.

But for arbitrary x ∈ X, because ĴNT
T (x) = J∗T (x) = 0, x ∈ X,

E[ĴNT−1

T−1 (x)]
NT−1→∞−→ J∗T−1(x),

which in turn leads to E[ĴNT−2

T−2 (x)] → J∗T−2(x) as NT−2 → ∞ for arbitrary x ∈ X, and

by an inductive argument, we have that

lim
Nt→∞ ∀ t=0,...,T−1

E[ĴN0
0 (x)] = J∗0 (x) for all x ∈ X,

which completes the first part of the proof.

To show the second part, we define the space of bounded real-valued measurable

functions on X by B(X), and at stage t, we also define an operator Tt : B(X) → B(X) as

Tt(Φ)(x) = max
a∈A

{
Rt(x, a) + α

∑

y∈X

Px,y|t(a)Φ(y)
}

, Φ ∈ B(X), x ∈ X, t = 0, . . . , T − 1.

(3.12)

In the proof of Lemma 3.3.1 (see (3.11)), we showed that for t = 0, ..., T − 1,

Tt(E[ĴNt+1

t+1 (x)])− E[ĴNt
t (x)] ≤ O

(
lnNt

Nt

)
, x ∈ X.

Therefore, we have

T0(E[ĴN1
1 (x)])− E[ĴN0

0 (x)] ≤ O

(
ln N0

N0

)
, x ∈ X. (3.13)

and

E[ĴN1
1 (x)] ≥ T1(E[ĴN2

2 (x)])−O

(
ln N1

N1

)
, x ∈ X. (3.14)

42

Applying the T0-operator to both sides of (3.14) and using the monotonicity property of

Tt (see, e.g., [13]), we have

T0(E[ĴN1
1 (x)]) ≥ T0(T1(E[ĴN2

2 (x)]))−O

(
ln N1

N1

)
, x ∈ X. (3.15)

Therefore, combining (3.13) and (3.15) yields

T0(T1(E[ĴN2
2 (x)]))−E[ĴN0

0 (x)] ≤ O

(
lnN0

N0
+

lnN1

N1

)
, x ∈ X.

Repeating this argument yields

T 0 · · · (T T (E[ĴNT
T (x)])

)−E[ĴN0
0 (x)] ≤ O

(
T−1∑

t=0

ln Nt

Nt

)
, x ∈ X. (3.16)

Observe that T 0 · · · (T T (E[ĴNT
T (x)])

)
= J∗0 (x), x ∈ X. Rewriting Equation (3.16), we

finally have

0 ≤ J∗0 (x)−E[ĴN0
0 (x)] ≤ O

(
T−1∑

t=0

ln Nt

Nt

)
, x ∈ X,

where the first inequality above follows because J∗(x) is the true optimal reward-to-go.

Remark 3.3.1 Note that the assumption Rmax ≤ 1
T can be relaxed by adding a scaling

factor to the upper confidence bound in (3.5), i.e.,

max
a∈A

(
Q̂t(x, a) + RmaxT

√
2 ln n̄

Nx
a,t

)
.

It can be shown that the result in Theorem 3.3.1 (cf. [8]) now becomes

ρ(n) ≤
∑

a:Q(x,a)<J(x)

[
8R2

maxT
2 ln n

J(x)−Q(x, a)
+ (1 +

π2

3
)(J(x)−Q(x, a))

]
.

It is also easy to verify that all convergence results (including convergence rate) in this

Chapter still hold for this modification.

43

3.4 A Numerical Example

We now apply the AMS algorithm to a classical finite horizon inventory control

problem with lost sales. In these problems, the inventory level is periodically reviewed,

orders are placed and received, demand is realized, and the new inventory level for the

period is calculated, on which costs are charged. The objective is to find the (in general

non-stationary) policy to minimize expected costs, which comprise holding, order, and

penalty costs. In here, demand is assumed to be a discrete random variable.

Let Dt denote the demand in period t, xt the inventory level at the end of period t

(which is the inventory at the beginning of period t + 1), at the order amount in period t,

p the per period per unit demand lost penalty cost, h the per period per unit inventory

holding cost, K the fixed (set-up) cost per order, and L the maximum inventory level

(storage capacity), i.e., xt ∈ {0, 1, . . . , L}. Then the dynamics of the inventory level

evolves as follows:

xt+1 = (xt + at −Dt)
+ .

The objective function is the expectation of the total cost given by

T∑

t=1

[
h(xt + at −Dt)+ + p(Dt − xt − at)+ + K · I{at > 0}] ,

where x0 is the initial inventory level, T is the number of periods (time horizon), and I{·}

is the indicator function. Note that we are ignoring per-unit order costs for simplicity.

We consider two versions: (i) fixed order amount q; (ii) any (integral) order amount

(up to capacity). In both cases, if the order amount would bring the inventory level above

the inventory capacity M , then that order cannot be placed, i.e., that order amount action

is not feasible in that state. In case (i), there are just two actions (order or no order),

whereas in case (ii), the number of actions depends on the capacity limit.

44

Central to the context of the algorithm is that the underlying distribution is un-

known, and that only samples are available. Furthermore, there is no structural knowledge

on the form of the optimal policy. However, the example selected here was chosen to be

simple in order to allow for the optimal solution to be solved easily by standard techniques

once the distribution is given, so that the performance of the algorithm could be evaluated.

In actual implementation, a slight modification is required for this example, because

it is a minimization problem, whereas AMS was written for a maximization problem.

Conceptually, the most straightforward way is just to take the reward as the negative of

the cost function. Equivalently, we change (3.5) in AMS by replacing the “max” operator

with the “min” operator and the addition with subtraction, i.e.,

min
a∈A

(
Q̂t(x, a)−

√
2 ln n̄

Nx
a,t

)
.

With K = 0 (no fixed order cost), the optimal order policy is easily solvable without

dynamic programming, because the periods are decoupled, and the problem reduces to

solving a single-period inventory optimization problem. In case (i), the optimal policy

follows a threshold rule, in which an order is placed if the inventory is below a certain

level; otherwise, no order is placed. The threshold (order point) is given by

s = min
x≥0

{x : hE[(x + q −D)+] + pE[(D − q − x)+] ≥ hE[(x−D)+] + pE[(D − x)+]},

i.e., one orders in period t if xt < s (assuming that xt + q ≤ L; also, if the set is empty,

then take s = ∞, i.e., an order will always be placed). In case (ii), the problem becomes

a newsboy problem, with a base-stock (order up to) solution given by

S = F−1(p/(p + h)),

i.e., one orders (S − xt)+ for in period t (with the implicit assumption that S ≤ L).

45

For the K > 0 case (i), the optimal policy is again a threshold (order point) policy,

but the order point is nonstationary, whereas in case (ii), the optimal policy is of the (s, S)

type, again non stationary. To obtain the true solutions, standard backwards induction

was employed, using knowledge of the underlying demand distribution.

For the numerical experiments, we used the following parameter settings: horizon

T = 3; capacity L = 20; initial inventory x1 = 5; demand Dt ∼ DU(0, 9) (discrete

uniform); holding cost h = 1; penalty cost p = 1 and p = 10; fixed order cost K = 0 and

K = 5; fixed order amount for case (i): q = 10. Note that since the order quantity is

greater than the maximum demand for our values of the parameters, i.e., q > Dt always,

placing an order guarantees no lost sales.

3.4.1 Two Alternative Estimators

Preliminary experiments with the algorithm indicated relatively slow convergence,

so we decided to consider alternative estimators to improve the empirical performance.

But first, we present a theorem, which will be useful in studying these estimators.

Theorem 3.4.1 Let {Xi, i = 1, 2, . . .} be a sequence of i.i.d. random variables with

0 ≤ Xi ≤ D and E[Xi] = µ ∀ i, and let M be a bounded integer-valued random variable,

with 0 ≤ M ≤ K for some positive integer K. If the event {M = n} is independent of

{Xn+1, Xn+2, . . .}, then for any given ε > 0 and n ∈ Z+, we have

P
(∣∣ 1

M

M∑

i=1

Xi − µ
∣∣ ≥ ε,M ≥ n

) ≤ 2e−n(τε−ΛD(τ)D2) ∀ τ ∈ (0, τmax), (3.17)

where τmax satisfies τmax 6= 0 and 1 + (D + ε)τmax − eDλmax = 0 (see Figure 3.4), and

ΛD(τ) := eDλ−1−τD
D2 .

46

0 τ
max

eτD

1+τ(D+ε)

Figure 3.4: A sketch of the function f1(τ) = eτD and the function f2(τ) = 1 + τ(D + ε).

Proof: Let Yk =
∑k

i=1(Xi − µ). It is easy to see that the sequence {Yk} forms a

martingale. Therefore, for any τ > 0,

P
(1

M

M∑

i=1

Xi − µ ≥ ε,M ≥ n
)

= P (YM ≥ Mε, M ≥ n),

= P (τYM − ΛD(τ)〈Y 〉M ≥ τMε− ΛD(τ)〈Y 〉M ,M ≥ n),

where

〈Y 〉n =
n∑

j=1

E[(∆Yj)2|Fj−1], ∆Yj = Yj − Yj−1,

and Fj is the σ-field generated by {Y1, . . . , Yj}.

Now for any τ ∈ (0, τmax), and for any n1 ≥ n0, where n0, n1 ∈ Z+, and Z+ is the

set of all positive integers, we have

τ(n1 − n0)ε ≥ eDλ − 1− τD

D2
(n1 − n0)D2

≥ ΛD(τ)
[n1∑

j=1

E[(∆Yj)2|Fj−1]−
n0∑

j=1

E[(∆Yj)2|Fj−1]
]
,

which implies that

τn1ε− ΛD(τ)〈Y 〉n1 ≥ τn0ε− ΛD(τ)〈Y 〉n0 , ∀ τ ∈ (0, τmax).

47

Thus for all τ ∈ (0, τmax),

P
(1

M

M∑

i=1

Xi − µ ≥ ε,M ≥ n
)

≤ P (τYM − ΛD(τ)〈Y 〉M ≥ τnε− ΛD(τ)〈Y 〉n,M ≥ n),

≤ P (τYM − ΛD(τ)〈Y 〉M ≥ τnε− ΛD(τ)nD2, M ≥ n),

= P (eτYM−ΛD(τ)〈Y 〉M ≥ eτnε−nΛD(τ)D2
,M ≥ n). (3.18)

It can be shown that (cf. e.g., Lemma 1 in [77], pp. 505) the sequence {Zt(τ) =

eτYt−ΛD(τ)〈Y 〉t , t ≥ 1} with Z0(τ) = 1 forms a non-negative supermartingale. It follows

that

(3.18) ≤ P (eτYM−ΛD(τ)〈Y 〉M ≥ eτnε−nΛD(τ)D2
),

≤ P (sup
0≤t≤K

Zt(τ) ≥ eτnε−nΛD(τ)D2
),

≤ E[Z0(τ)]
eτnε−nΛD(τ)D2 by maximal inequality for supermartingales (cf. [77]),

= e−n(τε−ΛD(τ)D2).

By using a similar arguement, we can also show that

P
(1

M

M∑

i=1

Xi − µ ≤ −ε,M ≥ n
)
≤ e−n(τε−ΛD(τ)D2).

Now we optimize the right-hand-side of (3.17) over τ . It is easy to verify that the

optimal τ∗ is given by τ∗ = 1
D ln D+ε

D ∈ (0, τmax). It follows that

τ∗ε− ΛD(τ∗)D2 =
D + ε

D
ln

D + ε

D
− ε

D
≈ ε2

D2
, if ε << D.

Therefore, we have

P
(∣∣ 1

M

M∑

i=1

Xi − µ
∣∣ ≥ ε,M ≥ n

)
≤ 2e−n ε2

D2 , if ε << D.

48

When M is deterministic, this result is very similar to the well-known Hoeffding’s inequal-

ity [40]. Note that by (3.17), we also have

∞∑

n=0

P
(∣∣ 1

M

M∑

i=1

Xi − µ
∣∣ ≥ ε,M ≥ n

) ≤ 2e−(τε−ΛD(τ))D2

1− e−(τε−ΛD(τ))D2 < ∞ ∀ τ ∈ (0, τmax),

which in turn, by the Borel-Cantelli lemma, implies that the event
{∣∣ 1

M

∑M
i=1 Xi − µ

∣∣ ≥

ε,M ≥ n
}

will only happen finitely often w.p.1 as n → ∞. And since ε is arbitrary, we

have

1
M

M∑

i=1

Xi → µ w.p.1 as M →∞. (3.19)

Now consider an estimator that chooses the action that is sampled the most in order

to estimate the value function, i.e., for t < T ,

J̃Nt
t (x) = Q̃t(x, a∗t), where a∗t = arg max

a
{Nx

a,t}, (3.20)

Q̃t(x, a) = Rt(x, a) + α
1

Nx
a,t

∑

y∈Λx
a

J̃
Nt+1

t+1 (y).

Now we show that if the one-stage-cost function R(x, a) is deterministic, this estimator

underestimates the optimal value function w.p.1. in an asymptotic sense. At the final

stage T , we clearly have J̃NT
T (x) = J∗T (x) = 0, ∀ x. Thus, at stage t = T − 1, we have

J̃
NT−1

T−1 (x) = RT−1(x, a∗T−1) ≤ max
a

RT−1(x, a) = J∗T−1(x), ∀ x.

It follows that

J̃
NT−2

T−2 (x) = RT−2(x, a∗T−2) + α
1

Nx
a∗T−2,T−2

∑

y∈Λx
a∗

T−2

J̃
NT−1

T−1 (y)

≤ RT−2(x, a∗T−2) + α
1

Nx
a∗T−2,T−2

∑

y∈Λx
a∗

T−2

J∗T−1(y)

≤ RT−2(x, a∗T−2) + αE[J∗T−1(Y)|x, a∗T−2] + α∆∗
T−2

= J∗T−2(x) + α∆∗
T−2, ∀ x,

49

where Y is a random variable distributed according to Px,·|T−2(a∗T−2), and ∆∗
T−2 :=

maxx,a

{
1

Nx
a,T−2

∑
y∈Λx

a
J∗T−1(y)− E[J∗T−1(Y)|x, a]

}
.

Thus, by an inductive argument, it is easy to see that

J̃N0
0 (x) ≤ J∗0 (x) +

T−2∑

t=0

αt+1∆∗
t . (3.21)

Thus, by taking the limit at both sides of (3.21) and using (3.19),

lim
Nt→∞ ∀t

J̃N0
0 (x) ≤ lim

Nt→∞ ∀t

{
J∗0 (x) +

T−2∑

t=0

αt+1∆∗
t

}
= J∗0 (x) w.p.1,

since Nx
a,t →∞ as Nt →∞ ∀ a.

We combine it with the original estimator to obtain the following estimator:

J̄Nt
t (x) = max

{
Q̃t(x, a∗),

∑

a∈A

Nx
a,t

Nt
Q̃t(x, a)

}
. (3.22)

Intuitively, the reason behind combining via the max operator is that the estimator would

be choosing the best between the two possible estimators of the Q-function, so the new

estimator will at least share the same convergence rate as the original estimator.

A second alternative estimator replaces the weighted sum of the Q-value estimates

in (3.7) by the maximum of the estimates, i.e., for t < T ,

ĴNt
t (x) = max

a∈A
Q̂t(x, a). (3.23)

For the non-adaptive case, it can be shown that this estimator is also asymptotically

unbiased, has an upward finite-sample bias for maximization problems and downward

finite-sample bias for minimization problems such as the inventory control problem. Ac-

tually, it turns out that by using a similar argument as above, we can in fact establish the

probability one convergence of this estimator.

50

At the final stage t = T , ĴNT
T (x) = J∗T (x) = 0, ∀ x. Thus, when t = T − 1,

Ĵ
NT−1

T−1 (x) = maxa RT−1(x, a) = J∗T−1(x), ∀ x. When t = T − 2, we have,

Ĵ
NT−2

T−2 (x) = max
a

{
RT−2(x, a) + α

1
Nx

a,T−2

∑

y∈Λx
a

Ĵ
NT−1

T−1 (y)
}

= max
a

{
RT−2(x, a) + α

1
Nx

a,T−2

∑

y∈Λx
a

J∗T−1(y)
}

= max
a

{
RT−2(x, a) + αE

[
J∗T−1(Y)|x, a

]

+α

[
1

Nx
a,T−2

∑

y∈Λx
a

J∗T−1(y)−E
[
J∗T−1(Y)|x, a

]]}

≤ max
a

{
RT−2(x, a) + αE

[
J∗T−1(Y)|x, a

]}
+ α∆+

T−2

= J∗T−2(x) + α∆+
T−2 ∀ x,

where ∆+
T−2 := maxx,a

{
1

Nx
a,T−2

∑
y∈Λx

a
J∗T−1(y)−E

[
J∗T−1(Y)|x, a

]}
. Thus, by the monotonic-

ity of the dynamic programming algorithm, we have

ĴN0
0 (x) ≤ J∗0 (x) +

T−2∑

t=0

αt+1∆+
t .

A similar argument can also be used to show that

J∗0 (x)−
T−2∑

t=0

αt+1∆−
t ≤ ĴN0

0 (x) ≤ J∗0 (x) +
T−2∑

t=0

αt+1∆+
t , (3.24)

where ∆−
t := maxx,a

{
E

[
J∗t+1(Y)|x, a

]− 1
Nx

a,t

∑
y∈Λx

a
J∗t+1(y)

}
. Hence, since both the state

and action spaces are finite, the probability one convergence of the estimator follows by

taking limit at both sides of (3.24) and then using (3.19).

3.4.2 Numerical Results

Figures 3.5, 3.6, 3.7, and 3.8 show the convergence of the estimates as a function of

the number of samples at each stage for each of the respective cases (i) and (ii) considered.

In each figure, estimator 1 stands for the original estimator using (3.7), and estimators 2

51

and 3 refer to the estimators using J̄(x) from (3.22) and Ĵ(x) from (3.23), respectively.

Tables 3.1 and 3.2 give the performances of these estimators for each of the respective

cases (i) and (ii), including the optimal value and policy parameters. The results indicate

the convergence of all three estimators. We see that the two alternative estimators provide

superior empirical performance than the original estimator, we believe that this is because

the original estimator uses the weighted sum of the Q-function estimates, which could be

too conservative for test cases where greedy estimators may have better performances.

3.5 Concluding Remarks

The AMS algorithm targets MDPs with relatively large state spaces; however, for

problems where a relatively small set of states are likely to be revisited, it might be

advantageous to store calculated values of ĴNi
i to avoid having to possibly recompute

them, which could result in substantial savings for longer-horizon problems, since it would

also avoid the costly recursive calls. The trade off in additional required storage, possibly

unmanageable for very large state spaces, would have to be evaluated against the estimated

resultant gains in running time.

We can extend the AMS algorithm to include the case where the reward function

is random. The AMS algorithm would essentially remain identical, except that sampling

would now include both the next state and the one-stage reward. However, the convergence

proof is likely to require more technical manipulations. Furthermore, the assumption

of bounded rewards can be relaxed by using the result in [1]. Even though the AMS

algorithm will converge too in this case, unfortunately, we lose the property of the uniform

logarithmic bound so that the convergence rate is expected to be very slow.

Earlier work of [18] proposed several algorithms that achieve the regret bounds of

52

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50
p=1

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50
p=10

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

Figure 3.5: Convergence of value function estimate for the inventory control example case

(i) q=10 as a function of the number of samples at each state:

T = 3,M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 0.

the form c1 + c2 log n+ c3 log2 n, where n is the total number of plays and ci’s are positive

constants not depending on n. These algorithms might also be used to create adaptive

sampling algorithms for solving MDPs. However, those algorithms have the drawback

53

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50
p=1

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50
p=10

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

Figure 3.6: Convergence of value function estimate for the inventory control example case

(i) q=10 as a function of the number of samples at each state:

T = 3,M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 5.

that we need to know the exact value of α(x) for a given state x under the assumption

that not all of the actions are optimal, which is difficult to obtain in advance. This holds

also for other algorithms studied in [8].

54

10 15 20 25 30 35
0

20

40

60

80

100

120

140

160
p=1

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

10 15 20 25 30 35
0

20

40

60

80

100

120

140

160
p=10

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

Figure 3.7: Convergence of value function estimate for the inventory control example case

(ii) as a function of the number of samples at each state:

T = 3,M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 0.

55

10 15 20 25 30 35
0

20

40

60

80

100

120

140

160
p=1

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

10 15 20 25 30 35
0

20

40

60

80

100

120

140

160
p=10

#samples at each stage

va
lu

e
fu

nc
tio

n
es

tim
at

e

optimal
estimator 1
estimator 2
estimator 3
std err

Figure 3.8: Convergence of value function estimate for the inventory control example case

(ii) as a function of the number of samples at each state:

T = 3,M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1,K = 5.

56

(K, p) optimal N est. 1 (std err) est. 2 (std err) est. 3 (std err)

10.440 4 15.030 (0.292) 9.563 (0.322) 9.134 (0.207)

K = 0 s = 0 8 12.819 (0.156) 10.297 (0.096) 10.208 (0.102)

p = 1 16 11.747 (0.093) 10.376 (0.079) 10.326 (0.081)

32 11.227 (0.062) 10.485 (0.057) 10.450 (0.057)

24.745 4 30.446 (0.868) 20.481 (0.817) 19.978 (0.793)

K = 0 s = 6 8 28.843 (0.491) 23.679 (0.515) 23.091 (0.554)

p = 10 16 26.691 (0.382) 23.937 (0.450) 23.882 (0.437)

32 26.118 (0.141) 24.734 (0.184) 24.728 (0.185)

10.490 4 18.451 (0.290) 10.413 (0.223) 10.227 (0.211)

K = 5 s1 = 0 8 14.449 (0.154) 10.619 (0.097) 10.589 (0.095)

p = 1 s2 = 0 16 12.480 (0.102) 10.516 (0.096) 10.509 (0.095)

s3 = 0 32 11.473 (0.065) 10.458 (0.064) 10.458 (0.064)

31.635 4 37.523 (0.980) 26.917 (0.894) 26.418 (0.883)

K = 5 s1 = 6 8 36.172 (0.430) 30.406 (0.508) 30.132 (0.487)

p = 10 s2 = 6 16 33.812 (0.399) 30.802 (0.432) 30.763 (0.431)

s3 = 5 32 33.113 (0.159) 31.641 (0.219) 31.617 (0.219)

Table 3.1: Value function estimate for the inventory control example case (i) as a function

of the number of samples at each state: T = 3,M = 20, x0 = 5, Dt ∼ DU(0, 9), q = 10, h =

1. Each entry represents the mean based on 30 independent replications (standard error

in parentheses).

57

(K, p) optimal N est. 1 (std err) est. 2 (std err) est. 3 (std err)

7.500 21 24.057 (0.160) 9.793 (0.209) 3.123 (0.170)

K = 0 S = 4 25 22.050 (0.124) 6.281 (0.187) 5.063 (0.124)

p = 1 30 20.355 (0.114) 6.473 (0.093) 5.910 (0.089)

35 18.823 (0.111) 6.618 (0.110) 6.263 (0.097)

13.500 21 29.171 (0.210) 13.686 (0.463) 6.035 (0.301)

K = 0 S = 9 25 28.077 (0.208) 12.058 (0.293) 9.276 (0.230)

p = 10 30 27.304 (0.191) 13.277 (0.234) 11.399 (0.201)

35 26.058 (0.164) 13.072 (0.157) 12.232 (0.176)

10.490 21 33.047 (0.124) 18.624 (0.437) 8.727 (0.209)

K = 5 s1 = 0, S1 = 0 25 29.994 (0.095) 11.786 (0.158) 10.957 (0.109)

p = 1 s2 = 0, S2 = 0 30 27.448 (0.099) 11.516 (0.066) 11.219 (0.052)

s3 = 0, S3 = 0 35 25.326 (0.090) 11.117 (0.068) 10.957 (0.056)

25.785 21 39.971 (0.217) 26.760 (0.522) 17.782 (0.492)

K = 5 s1 = 6, S1 = 9 25 39.008 (0.191) 25.090 (0.334) 22.677 (0.263)

p = 10 s2 = 6, S2 = 9 30 38.029 (0.163) 25.453 (0.273) 24.345 (0.174)

s3 = 6, S3 = 9 35 36.891 (0.116) 25.514 (0.276) 24.707 (0.230)

Table 3.2: Value function estimate for the inventory control example case (ii) as a function

of the number of samples at each state: T = 3,M = 20, x0 = 5, Dt ∼ DU(0, 9), h = 1.

Each entry represents the mean based on 30 independent replications (standard error in

parentheses).

58

Chapter 4

An Evolutionary Random Policy Search Algorithm for Solving Infinite Horizon

Markov Decision Processes with Discounted Cost

As we can see from Chapter 1.1, many current solution methods for MDP problems

have concentrated on reducing the size of the state space in order to address the well-

known “curse of dimensionality”. However, these approaches generally require the ability

to enumerate the entire action space; thus they may still be practically inefficient for

problems with large action spaces. In fact, it can be seen that MDPs with large or

uncountable action spaces are subject to inherent computationally intractability (cf. e.g.,

[71]). The reason is that the general nonlinear programming problem can be viewed as

a special case of the MDP problem, thus solving general MDPs must be at least as hard

as solving the general (static) multivariate nonlinear programming problems. This has

motivated our research to investigate the use of different global optimization strategies to

improve the performance of the current MDP solution techniques.

In this chapter, we propose an algorithm called Evolutionary Random Policy Search

(ERPS) for solving infinite horizon discounted cost MDPs. The algorithm is meant to

complement those highly successful state space reduction techniques introduced in Chap-

ter 1.1. As a starting point, we will focus on MDPs where the state space is relatively

small but the action space is very large, so that enumerating the entire action space be-

comes practically inefficient. For example, consider the problem of controlling the service

rate of a single-server queue with a finite buffer size, say L, in order to minimize the

average number of jobs in queue and the service cost. The state space of this problem

59

is the possible number of jobs in the queue {0, 1, . . . , L}, so the size of the state space is

L + 1, whereas the possible actions might be all values on an given interval representing

a service rate, in which case the action space is uncountable. From a more general point

of view, if one of the aforementioned state space reduction techniques is considered (cf.

Chapter 1.1), for instance, say state aggregation, then MDPs with small state spaces and

large action spaces can also be regarded as the outcomes resulting from the aggregation

of MDPs with large state and action spaces.

Unlike the action elimination techniques ([57], [30], cf. also Chapter 1.1), ERPS

approaches the issue of large action spaces in an entirely different manner, it uses an

evolutionary, population-based approach that explicitly specifies a set of good policies,

and then iterates on this set to produce improving policies. The key idea is to avoid

enumerating the entire action space by concentrating the search on a restricted action set

at each iteration and carrying out the optimization task over the restricted set. For a given

problem, ERPS proceeds iteratively by constructing and solving a sequence of sub-MDP

problems, i.e., MDPs defined on smaller policy spaces. At each iteration of the algorithm,

the sub-MDP constructed in the previous iteration is approximately solved by using a

variant of the standard policy improvement technique, and a policy called an elite policy

is generated. A group of policies is then generated based on the elite policy by using the

“nearest neighbor” heuristic and random sampling of the entire action space, from which

a new sub-MDP is created by restricting the original MDP problem (e.g., cost structure,

transition probabilities) on the current available subsets of actions. The above steps are

performed repeatedly until a specified stopping rule is satisfied. The algorithm has the

property that an elite policy generated at a later generation is guaranteed to outperform

(in terms of value function) the elite policy at the current generation. We show that as

60

the number of iterations goes to infinity, the sequence of elite policies will converge with

probability one to an optimal policy.

Perhaps the most straightforward and the most commonly used numerical approach

in dealing with MDPs with uncountable action spaces is via the use of discretization (cf.

the discussions in [72]). In practice, this could lead to computational difficulties, either

resulting in an action space that is too large or in a solution that is not accurate enough.

In contrast, our approach works directly on the action space, requiring no explicit dis-

cretization, and the adaptive version of the algorithm we proposed improves the efficiency

of the search process and produces high quality solutions. As in standard approaches such

as PI and VI, the computational complexity of each iteration of ERPS is polynomial in

the size of the state space, but unlike these procedures, it is insensitive to the size of the

action space, making the algorithm a promising candidate for problems with relatively

small state spaces but uncountable action spaces.

4.1 Related Work

There are a few literatures applying evolutionary search methods such as genetic

algorithms (GAs) for solving MDPs. Wells et al. [86] have experimented with different GA

parameters (e.g., cross-over and mutation rates) for finding good limited finite memory

policies for partially observable MDPs, and have discussed the effects of different GA

parameters based on the empirical performance of their approach on a maze problem.

Lin et al. [55] also use a GA approach to solve finite horizon partially observable MDPs,

however in their approach, GA is used to construct approximations of the minimal set of

affine functions that describes the value function, leading to a variant of value iteration.

Barash [10] interprets the infinite horizon discounted cost MDPs as optimization problems

61

over the policy spaces and proposes a genetic search approach that directly searches the

policy space to find good stationary policies. He concludes that, by comparing with

the performance of his approach with that of the standard PI, it is unlikely that policy

search based on GAs can offer a competitive approach in cases where PI is implementable.

More recently, Chang et al. [19] propose an algorithm called evolutionary policy iteration

(EPI) to find good stationary policies for infinite horizon discounted cost MDPs with

discrete state and action spaces. Their approach combines the standard procedures of

GAs with the properties of infinite horizon MDPs, so that certain monotonicity property

is preserved among the population of policies generated at successive iterations of the

algorithm. Although their algorithm is guaranteed to converge with probability one,

no performance comparisons with existing techniques are provided, and the theoretical

convergence requires the action space to be finite.

ERPS shares some similarities with the EPI algorithm introduced in [19], where

a sequence of “elite” policies is also produced at successive iterations of the algorithm.

However, the fundamental differences are that in EPI, policies are treated as the most es-

sential elements in optimization, and each “elite” policy is directly generated from a group

of policies, whereas in our approach, policies are regarded as intermediate constructions

from which sub-MDP problems are then constructed and solved; EPI follows the general

framework of GAs, and thus operates only at the global level, which usually results in

slow convergence. In contrast, ERPS combines global search with a local enhancement

step (the “nearest neighbor” heuristic) that leads to rapid convergence once a policy is

found in a small neighborhood of an optimal policy. We argue that our approach substan-

tially improves the performance of the EPI algorithm while maintaining the computational

complexity at relatively the same level.

62

4.2 Problem Setting

We consider the infinite horizon (T = ∞) MDP problem (2.1) described in Chap-

ter 2.1 with finite state space, a general (Borel) action space, and discounted cost criterion

J∗(x) = infπ∈Π Jπ(x), and

Jπ(x) = E
[∑∞

t=0 αtR(xt, π(xt))|x0 = x
]
, x ∈ X, α ∈ (0, 1),

(4.1)

where throughout this chapter, unless otherwise specified, we denote the set of all station-

ary deterministic policies π : X → A by Π. Assume that there exists a stationary policy

π∗ ∈ Π that achieves the optimal value J∗(x) for all initial states x ∈ X, and our objective

is to find such a policy. Hereafter in this chapter, we denote the size of the state space

by |X|, and assume without lost of generality that all actions a ∈ A are admissible for all

states x ∈ X.

4.3 Algorithm Description

The basic algorithmic structure of ERPS is given in Figure 4.1, where some steps

are presented only at a conceptual level. We will provide a detailed explanation of these

steps and discuss their implementation details in the following subsections, where each

subsection corresponds to a particular step of the algorithm.

4.3.1 Initialization

The inputs to the ERPS algorithm are an action selection distribution P, an ex-

ploitation probability q0 ∈ [0, 1], a population size n > 1, and a search range ri for each

state xi ∈ X. There is a lot of flexibility in the choices of the initial population of policies,

we can even take all policies in the initial population to be exactly the same. This is

because of the randomized search technique employed in ERPS (cf. Chapter 4.3.3), which

63

Evolutionary Random Policy Search (ERPS)

• Initialization: Specify an action selection distribution P, a population size n > 1, and a

parameter q0 ∈ [0, 1]. For each state xi ∈ X, i = 1, . . . , |X|, specify a search range ri.

Select an initial population of policies Λ0 = {π0
1 , π0

2 , . . . , π0
n}. Construct an initial sub-MDP

as GΛ0 := (X, Γ0, P, R, α), where Γ0 =
S

x Λ0(x). Set π−1
∗ := π0

1 .

• Loop until the stopping rule is satisfied:

– Policy Improvement with Cost Swapping (PICS):

∗ For each πk
j ∈ Λk, compute the corresponding value function Jπk

j .

∗ Compute the elite policy

πk
∗(x) = arg min

a∈Λk(x)

(
R(x, a) + α

X
y

Px,y(a)[min
πk

j ∈Λk

Jπk
j (y)]

)
, ∀x ∈ X.

– Construct a Sub-MDP:

∗ for j = 2 to n

for i = 1 to |X|
generate a r.v. u ∼ U [0, 1],

if u ≤ q0 (exploitation)

choose an action a in the neighborhood of πk
∗(x

i) by using

the “nearest neighbor” heuristic. Set πk+1
j (xi) = a.

elseif u > q0 (exploration)

choose an action a according to P, set πk+1
j (xi) = a.

end if

end for

end for

∗ Set the next population of policies as Λk+1 =
�
πk
∗ , π

k+1
2 , . . . , πk+1

n

	
.

∗ Obtain the next sub-MDP GΛk+1 := (X, Γk+1, P, R, α), where Γk+1 =
S

x Λk+1(x).

∗ Set k ← k + 1.

Figure 4.1: Evolutionary Random Policy Search

makes the theoretical convergence results of our approach is independent of this choice.

However, to improve the performance of ERPS, we often want to maintain certain diver-

sity among the group of policies in the initial population; one simple method to achieve

such diversity is to choose each individual policy uniformly from the policy space Π (e.g.

64

according to a uniform distribution over the policy space).

The action selection distribution P is a prespecified probability distribution over the

action space, and will be used to construct sub-MDPs (cf. Chapter 4.3.3). Note that P

could be state dependent in general, i.e., we could prescribe for each state x ∈ X a different

action selection distribution according to some prior knowledge of the problem structure.

Here, for ease of exposition, we ignore its explicit dependency on state and prescribe the

same P for all x ∈ X. Again, one simple choice of P is the uniform distribution. The

exploitation probability q0 and the search range ri will be used to construct sub-MDPs;

the detailed discussion of these two parameters is deferred to Chapter 4.3.3.

4.3.2 Policy Improvement with Cost Swapping

The idea behind ERPS is to randomly split a large MDP problem into a sequence of

smaller, manageable MDPs, and to extract a possibly convergent sequence of policies via

solving these smaller problems. For a given population of policies Λ = {π1, π2, . . . , πn}, we

consider the subsets of actions given by Λ(x) := {π1(x), π2(x), . . . , πn(x)} ∀x ∈ X. We

can then define a sub-MDP problem GΛ := (X,Γ, P, R, α) by restricting the original MDP

(e.g., costs, transition probabilities) on these subsets of actions, where Γ :=
⋃

x Λ(x). Note

that for a given state x, Λ(x) is in general a multi-set, which may contain the same action

for more than once; however, we can always discard the redundant members and view Λ(x)

as the set of admissible actions at state x. For this sub-MDP GΛ, one can of course, solve

it exactly by using the PI algorithm, thus leading to a policy that improves all policies in

the current population. However, it is well-known that PI is a sequential computational

approach and will in general take more than one iteration to find such a policy. So instead

of solving GΛ exactly, here we propose an approach that solves it only approximately. The

65

approach is particularly amenable to parallel computing. It manipulates the policies in

a given population by combining the crossover idea in standard GAs with special MDP

properties, and is able to obtain an improved policy in just one iteration. The approach

consists of the following two steps and produces a policy that is superior to all of the

policies in the current population we call “elite” policy.

Step 1: Obtain the value functions Jπj , j = 1, . . . , n, by solving the equations:

Jπj (x) = R(x, πj(x)) + α
∑

y

Px,y(πj(x))Jπj (y), ∀x ∈ X. (4.2)

Step 2: Compute the elite policy π∗ by

π∗(x) = arg min
a∈Λ(x)

{
R(x, a) + α

∑
y

Px,y(a)[min
πj∈Λ

Jπj (y)]

}
, ∀x ∈ X. (4.3)

Since in (4.3), we are basically performing the policy improvement on the “swapped

cost” minπj∈Λ Jπj (x), we call this procedure “policy improvement with cost swapping”

(PICS). PICS can be thought of as a population-based variant of the standard PI, where

essentially we view each policy in a given population as a genetic material, and the way we

obtain the “swapped cost” corresponds to the gene crossover in standard GAs. Note that

the “swapped cost” minπj∈Λ Jπj (x) may not be the value function corresponding to any

policy; intuitively, it may prevent us from choosing a poor starting policy in the policy

improvement step. We now formalize this intuition in the following theorem.

Theorem 4.3.1 Given Λ = {π1, π2, . . . , πn}, let J̄(x) = minπj∈Λ Jπj (x) ∀x ∈ X, and let

µ(x) = arg min
a∈Λ(x)

{
R(x, a) + α

∑
y

Px,y(a(x))J̄(y)

}
.

Then Jµ(x) ≤ J̄(x), ∀x ∈ X. Furthermore, if µ is not optimal for GΛ, then Jµ(x) < J̄(x)

for at least one x ∈ X.

66

Proof: We define J0(x) = R(x, µ(x)) + α
∑

y Px,y(µ(x))J̄(y), and consider the sequence

{Jj(x), j = 1, 2 . . .} generated by the recursion Ji+1(x) = R(x, µ(x))+α
∑

y Px,y(µ(x))Ji(y),

∀ i = 0, 1, 2, At an arbitrary state x, by the definition of J̄(x), there exists πj such

that J̄(x) = Jπj (x). It follows that

J0(x) ≤ R(x, πj(x)) + α
∑

y Px,y(πj(x))J̄(y)

≤ R(x, πj(x)) + α
∑

y Px,y(πj(x))Jπj (y)

= Jπj (x)

= J̄(x) ,

and since x is arbitrary, we have

J1(x) = R(x, µ(x)) + α
∑

y Px,y(µ(x))J0(y)

≤ R(x, µ(x)) + α
∑

y Px,y(µ(x))J̄(y)

= J0(x) .

By induction it is easy to see that Ji+1(x) ≤ Ji(x), ∀x ∈ X and ∀ i = 0, 1, 2, On

the other hand, it is well known (cf. e.g., [13]) that the sequence J0(x), J1(x), J2(x), . . .

generated by the above recursion will converge to Jµ(x), ∀x ∈ X. Therefore we have

Jµ(x) ≤ J̄(x), ∀x. Note that if Jµ(x) = J̄(x), ∀x ∈ X, then PICS reduces to the

standard policy improvement on policy µ, and it follows that µ satisfies the Bellman’s

optimality equation and is thus optimal for GΛ. Hence we must have Jµ(x) < J̄(x) for

some x ∈ X whenever µ is not optimal.

Now at the kth iteration, given the current policy population Λk, we compute the

kth elite policy πk∗ via PICS. According to Theorem 4.3.1, the elite policy improves any

policy in Λk, and since πk∗ is directly used to generate the (k+1)th sub-MDP (cf. Figure 4.1

and Chapter 4.3.3), the following monotonicity property is immediately clear:

67

Corollary 4.3.2 For all k ≥ 0,

Jπk+1∗ (x) ≤ Jπk∗ (x), ∀x ∈ X.

Proof: Follows by induction.

The PICS is similar to the so-called “policy switching” proposed in [19], where an

“elite” policy is also obtained at each iteration of the method. However, unlike PICS,

policy switching constructs an elite policy by directly manipulating each individual policy

in the population. More specifically, for the given policy population Λ = {π1, π2, . . . , πn},

the elite policy is constructed as

π∗(x) ∈
{

argmin
πi∈Λ

(Jπi(x))(x)
}

, ∀x ∈ X, (4.4)

where the value functions Jπi , ∀πi ∈ Λ are also obtained by using the policy evaluation

step, i.e., (4.2). Chang et al. [19] have shown that the elite policy π∗ generated by (4.4)

also improves any policy in the population Λ. Note that the computational complexity of

executing (4.4) is O(n|X|), which is in general much lower than the computational cost

required by a direct optimization over the entire solution space.

In contrast to policy switching, PICS still retains an optimization mechanism (as in

PI) over the restricted subsets of actions, which may introduce additional computational

cost. However, we argue that PICS will in general substantially improve the performance

of policy switching at only an extra neglectable computational expense. To illustrate

this point, we now provide a intuitive comparison between these two approach; some

empirical evidences can also be found later in Chapter 4.6. For a given group of policies

Λ, we let Ω be the policy space induced by the sub-MDP GΛ; it is easy to see that the

size of Ω is on the order of n|X|. As we see from (4.4), policy switching only takes into

account each individual policy in Λ, while PICS tends to search the entire space Ω (by

68

carrying out an optimization over Ω), which is a much larger set than Λ. Although it

is not clear in general that the elite policy generated by PICS improves the elite policy

generated by policy switching, since the policy improvement step is quite fast (cf. e.g.,

[13]) and it focuses on the best policy updating directions, we believe this will be the case

in many situations. For example, consider the case where the population Λ contains one

particular policy, say π̄, that dominates (in terms of value functions) all other policies in

the population. It is obvious that policy switching will choose π̄ as the elite policy; thus

no further improvement can be achieved at the next iteration. In contrast, PICS considers

the sub-MDP GΛ; as long as π̄ is not optimal for GΛ (cf. Theorem 4.3.1), a strict improving

policy can always be obtained in the next iteration.

The computational complexity of each iteration of PICS is approximately the same

as that of policy switching, because step 1 of PICS, i.e., (4.2), which is also used by policy

switching, requires solution of n systems of linear equations, and the number of numerical

operations required by using a direct method (e.g., standard Gaussian Elimination) is

O(n|X|3), and this dominates the cost of step 2, which is at most O(n|X|2).

4.3.3 Sub-MDP Generation

The description of the “sub-MDP generation” step in Figure 4.1 is only at a concep-

tual level. To better explain this step, we now distinguish between two different settings.

We start by considering the case where the action space is discrete; then we extend our

discussion to the setting where the action space is continuous.

Discrete Action Spaces

By Corollary 4.3.2, the performance of the elite policy at the current iteration im-

proves the performances of the elite policies generated at previous iterations. However,

69

depending how new policies are generated and constructed at each iteration, strict im-

provement among elite policies can not always be guaranteed. Our focus now is how to

achieve consistent improvements among the elite policies found at consecutive iterations.

Of course, one possibility is to use unbiased random sampling and choose at each iteration

a sub-MDP problem by making use of the action selection distribution P. By doing so, it

is obvious that we may always obtain an improved elite policy after a sufficient number

of iterations. Such an unbiased sampling scheme is very effective in escaping local optima

and is often useful in finding a good candidate solution. However, in practice persistent

improvements will be more and more difficult to achieve as the number of iterations (sam-

pling instances) increases, since the probability of finding better elite policies typically

becomes smaller and smaller. We refer the readers to [56] for a more insightful discussion

in a global optimization context. Thus, it appears that a biased sampling scheme could

be more helpful.

The biased sampling scheme can be achieved in many different ways, one possibility

is via the use of the “nearest neighbor” heuristic, which is the focus of our approach. To

achieve a biased sampling configuration, ERPS combines exploitation (“nearest neighbor”

heuristic) with exploration (unbiased sampling). The key to balance these two types

of searches is the use of the exploitation probability q0. For a given elite policy π, we

construct a new policy, say π̂, in the next population generation as follows: At each state

x ∈ X, with probability q0, π̂(x) is selected from a small neighborhood of π(x); and with

probability 1 − q0, π̂(x) is chosen according to the action selection distribution P (i.e.,

unbiased random sampling). The preceding steps are performed repeatedly until we have

obtained n− 1 new policies, and the next population generation is simply formed by the

elite policy π and the n − 1 newly generated policies. Intuitively, the use of exploitation

70

will introduce more robustness into the algorithm and helps to locate the exact optimal

policy, while on the other hand, the exploration step will help the algorithm to escape local

optima and to find attractive policies quickly. In effect, we see that this idea is equivalent

to altering the underlying action selection distribution, in that P is artificially made more

peaked around the action π(x).

To give out a detailed implementation of the “nearest neighborhood” heuristic, we

should at least require that the action space A is a non-empty metric space with a defined

metric on it. Once a metric d(·, ·) is given, the “nearest neighbor” heuristic in Figure 4.1

could be naturally implemented as follows:

Let ri, a positive integer, be the search range for state xi, i = 1, 2, . . . , |X|. We

assume that ri < |A| for all i, where |A| is the size of the action space.

• Generate a random variable l according to the discrete uniform distribution between

1 and ri, i.e., l ∼ DU(1, ri). Choose an action πk+1
j (xi) = π(xi) ∈ A such that under

the given metric d(·, ·), π(xi) is the lth closest action to πk∗ (xi).

Remark 4.3.1 Although the above procedure is conceptually easy, sometimes it is not easy

to implement. It is often necessary to index a (possibly high-dimensional) metric space,

whose complexity will depend on the dimension of the problem and the cost in evaluating

the distance functions d(·, ·). However, we note that the action spaces of many MDP

problems in practice are subsets of <N , where a lot of efficient methods can be applied,

such as Kd-trees ([12]) and R-trees ([38]). The most favorable situation is an action

space that is “naturally ordered”, e.g., in inventory control problems where actions are the

number of items to be ordered A = {0, 1, 2, · · · }, in which case the indexing and ordering

becomes trivial.

71

In EPI, policies in a new generation are generated by the so-called “policy mutation”

procedure, which is carried out by altering a given policy in the following manner: for each

state x, the currently prescribed action is replaced probabilistically. The main reason for

mutating policies is to avoid being caught in a local maximum, making a probabilistic

convergence guarantee possible. Two types of mutations are considered: “global mutation”

and “local mutation”, which are distinguished by the degree of mutation, as indicated

by the number of states with changed actions in the mutated policy. The algorithm first

decides whether to mutate a given policy π “globally” or “locally” according to a mutation

probability Pm. Then at each state x, π(x) is mutated with probability Pg (Pl), where

Pg and Pl are the respective predefined global mutation and local mutation probabilities.

It is assumed that Pg is generally close to one and Pl close to zero, thus Pg À Pl; the

idea is that “global mutation” helps the algorithm to get out of local optima and “local

mutation” helps the algorithm to fine-tune the solution. If a mutation is to occur, the

action is changed by using the action selection probability P. As a result, we see that

each action in a new policy generated by “policy mutation” either remains unchanged or

is altered by pure random sampling; although the so-called “local mutation” is used, no

local search element is actually involved in the process. Thus, as we can see, the algorithm

only operates at the global level, which is essentially equivalent to setting the exploitation

probability q0 = 0 in our approach.

Continuous Action Spaces

We now carry the biased sampling idea one step further by considering MDPs with

continuous action spaces. We let BA be the smallest σ-algebra containing all the open

sets in A, and let the action selection distribution P be a probability measure defined on

(A,BA). Again, we assume that there is a metric d(·, ·) defined on A. Thus, a high level

72

implementation of the exploitation step in Figure 4.1 can be described as follows:

Let ri > 0 denote the search range for state xi, i = 1, 2, . . . , |X|.

• Choose an action uniformly (according to a uniform distribution) from the set of

neighbors {a : d(a, πk∗ (xi)) ≤ ri, a ∈ A}.

Note that in the two different action space settings we have discussed, i.e., discrete

case and continuous case, the search range parameter ri usually has different meanings. In

the former case, ri is a positive integer indicating the number of candidate actions that are

the closest to the current elite action πk∗ (xi), whereas in the latter case, ri is the distance

from the current elite action, which may take any positive real value.

If we further impose some additional structures on A and assume that A is a non-

empty open connected subset of <N with some metric (e.g., the infinity-norm), then a

detailed implementation of the above exploitation step is as follows.

• Generate a random vector λi = (λi
1, . . . , λ

i
N)T with each λi

h ∼ U [−1, 1] independent

for all h = 1, 2, . . . , N , and choose the action πk+1
j (xi) = πk∗ (xi) + λiri.

• If πk+1
j (xi) /∈ A, then repeat the above step.

Remark 4.3.2 We remark that in the above implementation, the same ri value is used

along all directions of the action space. However, in practice, it is often useful to gener-

alize ri to a N -dimensional vector with each component controlling the search range in a

particular direction of the action space.

Remark 4.3.3 The metric d(·, ·) used in the “nearest neighbor” heuristic implicitly im-

poses a structure on the action space. The efficiency of the algorithm, to a large extent,

depends on how the metric is actually defined. Like most of the random search meth-

ods for global optimizations, our approach is designed to explore the structure that good

73

policies tend to be clustered together. Thus, in our context, a good metric should have

a good potential in representing this structure. For example, the discrete metric (i.e.,

d(a, a) = 0 ∀ a ∈ A and d(a, b) = 1 ∀ a, b ∈ A, a 6= b) should never be a good choice, since

it does not provide us with any useful information about the action space. For a given

action space, a good metric always exists but may not be known a priori. In the special

case where the action space is a subset of <N , we take the Euclidean metric as the default

metric, this is in accord with most of the optimization techniques employed in <N .

4.3.4 Stopping Rule

There is a lot of flexibility in the choices of stopping rules. One simple choice is to

stop the algorithm when a specified maximum number of iterations is reached. We use,

in the numerical experiments in Chapter 4.6, one of the most commonly used stopping

rules in standard GAs (cf. e.g., [19], [79], [86]). We stop the algorithm whenever ∃ k >

0, such that ‖Jπk+m∗ − Jπk∗‖ = 0 ∀ m = 1, 2, . . . , K, i.e., when no further improvement in

the elite policy (in terms of value function) is obtained for K consecutive iterations.

4.4 Convergence of ERPS

In this Chapter, we study the convergence properties of ERPS, in particular, we

show that the sequence of elite policies generated by ERPS will converge asymptotically

to an optimal policy with probability one. We start by defining some necessary notations.

For a given metric d(·, ·) on the action space A, we define the distance measure

between two policies π1 and π2 as

d∞(π1, π2) := max
1≤i≤|X|

d(π1(xi), π2(xi)).

74

We can now further define the σ-neighborhood (σ > 0) of a given policy π̂ ∈ Π by

N (π̂, σ) := {π| d∞(π̂, π) ≤ σ, ∀π ∈ Π} .

For each policy π ∈ Π, we also define Pπ as the transition matrix under policy π whose

(x, y)th entry is Px,y(π(x)), and define Rπ as the one-stage cost vector whose (x)th entry

is R(x, π(x)). Throughout the analysis, we denote by ‖ · ‖∞ the infinity-norm over <|X|,

given by ‖J‖∞ := maxx∈X |J(x)|.

ERPS is randomized approach, each run of the algorithm gives a particular realiza-

tion of the sequence of elite policies (i.e., a sample path); thus the algorithm induces a

probability distribution over the set of all such sequences of elite policies. We denote the

probability measure and expectation with respect to this distribution by P̂(·) and Ê(·),

respectively.

The convergence of ERPS is stated in the next theorem.

Theorem 4.4.1 Let π∗ be an optimal policy with corresponding value function Jπ∗, and

let the sequence of elite policies generated by ERPS together with their corresponding value

functions be denoted by {πk∗ , k = 1, 2, . . .} and {Jπk∗ , k = 1, 2, . . .}, respectively. Assume

that:

1. q0 < 1.

2. For any given ` > 0, P({a| d(a, π∗(x)) ≤ `, a ∈ A}) > 0, ∀x ∈ X (recall that P(·)

is a probability measure on the action space A).

3. There exist constants σ > 0, φ > 0, L1 < ∞, and L2 < ∞, such that for all

π ∈ N (π∗, σ) we have ‖Pπ−Pπ∗‖∞ ≤ min
{
L1d∞(π, π∗), 1−α

α − φ
}

(0 < α < 1), and

‖Rπ −Rπ∗‖∞ ≤ L2d∞(π, π∗).

75

Then for any given ε > 0, there exists a random variable Mε > 0 such that P̂(Mε <

∞) = 1 and Ê(Mε) < ∞, and ‖Jπk∗ − Jπ∗‖∞ ≤ ε ∀ k ≥Mε.

Assumption 1 restricts the exploitation probability from pure local search. Assump-

tion 2 simply requires that any “ball” that contains the optimal policy will have a strictly

positive probability measure. It is trivially satisfied if the set {a|d(a, π∗(x)) ≤ `, a ∈ A}

has a positive (Borel) measure ∀ x ∈ X and the action selection distribution P has in-

finite tails (e.g., Gaussian, exponential). Assumption 3 imposes some Lipschitz type of

conditions on Pπ and Rπ; it formalizes the notion that good (near-optimal) policies are

clustered together, i.e., the optimal policy is not isolated (cf. Remark 4.3.3). The assump-

tion can be straightforwardly verified if Pπ and Rπ are explicit functions of π, which is the

case of our numerical examples in Chapter 4.6. For a given ε > 0, a policy π satisfying

‖Jπ − Jπ∗‖∞ ≤ ε is often referred to as an ε-optimal policy (cf. [13], [63]).

Remark 4.4.1 The result in Theorem 4.4.1 implies the a.s. convergence of the sequence

{Jπk∗ , k = 0, 1, . . .} to the optimal value function Jπ∗. To see this, note that Theorem 4.4.1

implies that P̂(‖Jπk∗ − Jπ∗‖∞ > ε) → 0 as k → ∞ for every given ε, which means that

the sequence converges in probability. Furthermore, since ‖Jπk∗ − Jπ∗‖∞ ≤ ε ∀ k ≥ Mε

is equivalent to supk̄≥k ‖Jπk̄∗ − Jπ∗‖∞ ≤ ε ∀ k ≥Mε, we will also have P̂(supk̄≥k ‖Jπk̄∗ −

Jπ∗‖∞ > ε) → 0 as k →∞, and the a.s. convergence thus follows.

Proof: We first try to derive an upperbound for ‖Jπ − Jπ∗‖∞ in terms of the distance

d∞(π, π∗). For policy π∗ and policy π we have:

Jπ∗ = Rπ∗ + αPπ∗J
π∗ , (4.5)

Jπ = Rπ + αPπJπ. (4.6)

Now define ∆Jπ∗ = Jπ−Jπ∗ , ∆Pπ∗ = Pπ−Pπ∗ and ∆Rπ∗ = Rπ−Rπ∗ and subtract

76

the above two equations. We have

∆Jπ∗ = [I − (I − αPπ∗)−1α∆Pπ∗]−1(I − αPπ∗)−1(α∆Pπ∗J
π∗ + ∆Rπ∗). (4.7)

Taking the infinity-norm at both sides of (4.7) and using the consistency property of the

operator norm (i.e., ‖AB‖ ≤ ‖A‖ · ‖B‖), it follows that

‖∆Jπ∗‖∞ ≤ ‖[I−(I−αPπ∗)−1α∆Pπ∗]−1‖∞‖(I−αPπ∗)−1‖∞(α‖∆Pπ∗‖∞‖Jπ∗‖∞+‖∆Rπ∗‖∞).

(4.8)

Note that assumption 3 implies ‖∆Pπ∗‖∞ < 1−α
α . Thus

‖(I − αPπ∗)−1α∆Pπ∗‖∞ ≤ ‖(I − αPπ∗)−1‖∞α‖∆Pπ∗‖∞

< ‖(I − αPπ∗)−1‖∞(1− α)

< 1.

To proceed, we now distinguish between two cases, ‖Jπ∗‖∞ = 0 and ‖Jπ∗‖∞ 6= 0.

Case 1. If Rπ∗ = 0 (i.e., R(x, π∗(x)) = 0 for all x ∈ X), then we have Jπ∗ = 0.

Thus ∆Jπ∗ = Jπ and ∆Rπ∗ = Rπ. By noting ‖Pπ‖∞ = 1, it follows from (4.6) that

‖∆Jπ∗‖∞ = ‖Jπ‖∞ ≤ 1
1− α‖Pπ‖∞ ‖Rπ‖∞ =

1
1− α

‖∆Rπ∗‖∞.

Then by assumption 3,

‖∆Jπ∗‖∞ ≤ L2

1− α
d∞(π, π∗). (4.9)

Case 2. If Rπ∗ > 0 (i.e., R(x, π∗(x)) > 0 for some x ∈ X), then from (4.5), Jπ∗ > 0.

Divide both sides of (4.8) by ‖Jπ∗‖∞, use the relation that ‖(I−B)−1‖ ≤ 1
1−‖B‖ whenever

77

‖B‖ < 1 and the consistency property; it immediately follows that

‖∆Jπ∗‖∞
‖Jπ∗‖∞ ≤ ‖(I − αPπ∗)−1‖∞

1− ‖(I − αPπ∗)−1‖∞α‖∆Pπ∗‖∞

{
α‖∆Pπ∗‖∞ +

‖∆Rπ∗‖∞
‖Jπ∗‖∞

}

=
‖(I − αPπ∗)−1‖∞‖I − αPπ∗‖∞

1− ‖(I − αPπ∗)−1‖∞α‖∆Pπ∗‖∞

{
α‖∆Pπ∗‖∞
‖I − αPπ∗‖∞ +

‖∆Rπ∗‖∞
‖I − αPπ∗‖∞‖Jπ∗‖∞

}

≤ K
1−K α‖∆Pπ∗‖∞

‖I−αPπ∗‖∞

{
α‖∆Pπ∗‖∞
‖I − αPπ∗‖∞ +

‖∆Rπ∗‖∞
‖Rπ∗‖∞

}

≤ K
1−K α‖∆Pπ∗‖∞

‖I−αPπ∗‖∞

{
αL1

‖I − αPπ∗‖∞ +
L2

‖Rπ∗‖∞

}
d∞(π, π∗), (4.10)

where K = ‖(I − αPπ∗)−1‖∞‖I − αPπ∗‖∞.

In either case (see (4.9), (4.10)), we conclude that for any given ε > 0, there exists

a θ > 0 such that for any π ∈ N (π∗, σ) where

d∞(π, π∗) := max
1≤i≤|X|

d(π(xi), π∗(xi)) ≤ θ,

we have ‖Jπ − Jπ∗‖∞ = ‖∆Jπ∗‖∞ ≤ ε. Note that max1≤i≤|X| d(π(xi), π∗(xi)) ≤ θ is

equivalent to

d(π(xi), π∗(xi)) ≤ θ, ∀ i = 1, 2, . . . , |X|. (4.11)

By assumption 2, the set of actions that satisfies (4.11) will have a strictly positive prob-

ability measure, and since q0 < 1, it follows that the probability a population generation

does not contain a policy in the neighborhood N (π∗, min {θ, σ}) of the optimal policy is

strictly less than 1. Let ψ be the probability that a randomly constructed policy is in

N (π∗, min {θ, σ}). Then by Theorem 4.3.1, at each iteration the probability that an elite

policy is obtained in N (π∗,min {θ, σ}) is at least 1− (1−ψ)n−1, where n is the population

size. Let Mε denote the number of iterations required to generate such an elite policy

for the first time. By the monotonicity of the sequence {Jπk∗ , k = 0, 1, . . .} (cf. Corol-

lary 4.3.2), it is clear that ‖Jπk∗ − Jπ∗‖∞ ≤ ε ∀ k ≥Mε. Now consider a random variable

M̄ that is geometrically distributed with a success probability of 1 − (1 − ψ)n−1. It is

78

not difficult to see that M̄ dominates Mε stochastically (i.e., M̄ ≥st Mε), and because

ψ > 0, it follows that Ê(Mε) ≤ Ê(M̄) = 1
1−(1−ψ)n−1 < ∞.

Remark 4.4.2 In the above proof, we have used the infinity-norm. Since in finite di-

mensional spaces all norms are equivalent (cf. [28]), similar results can also be easily

established by using different norms, e.g., the Euclidean-norm.

Remark 4.4.3 It should be noted that the result presented in Theorem 4.4.1 is rather

theoretical, because nothing can be said about the convergence rate of the algorithm as

well as how much improvement can be achieved at each iteration. As a consequence, the

random variable Mε could be extremely large in practice.

Note that for a finite action space, assumption 3 in Theorem 4.4.1 is automatically

satisfied, and assumption 2 also holds trivially if we take P(a) > 0 for all actions a ∈ A.

Furthermore, when the action space is finite, there always exists an ε > 0 such that

the only ε-optimal policy is the optimal policy itself. We have the following stronger

convergence result for ERPS when the action space is finite.

Corollary 4.4.2 (Finite action space) If the action space is finite, q0 < 1, and the action

selection distribution P(a) > 0 ∀ a ∈ A, then there exists a random variable M > 0 such

that P̂(M < ∞) = 1 and Ê(M) < ∞, and Jπk∗ = Jπ∗ ∀ k ≥M.

4.5 Adaptive ERPS

The search range parameter ri in ERPS is fixed throughout the algorithm. Intu-

itively, small search ranges concentrate the search in small regions around the desirable

points and are helpful in refining promising solutions, but they often lead to small im-

provements in the cost function, thus slowing down the convergence process. On the other

79

hand, large search ranges typically reduce the number of search steps needed to find a

good or near optimal solution, but can be less effective in developing finer details around

desirable points and may result in less accurate solutions. In this Chapter, we present

a modification of the ERPS method in which the value of the search range parameter

may change from one iteration to another. The idea is to adaptively shrink and expand

the search range so that we can speed up the convergence process without sacrificing the

solution quality. A detailed description of the adaptive ERPS is given in Figure 4.2, where

we only consider the continuous action space case; the discrete action space version can

be constructed similarly.

Adaptive ERPS

• Initialization: Specify an initial search range r, parameters K, 1 < K1 < K, K2 > 1, K3 > 1,

γ > 1 and a tolerance level ε > 0, where K is the stopping control parameter as in ERPS. Set

ı ← 0,  ← 0, and h ← 0.

• while (ı ≤ K & h ≤ K3)

– Execute ERPS with search range r.

– Search range update:

if 0 < ‖Jπk+1
∗ − Jπk

∗ ‖ ≤ ε, then set ı ← 0,  ←  + 1;

elseif ‖Jπk+1
∗ − Jπk

∗ ‖ = 0, then set ı ← ı + 1,  ← 0;

else set ı ← 0,  ← 0.

end if

if ı ≥ K1, then set rold ← r, r ← r · 1
γ
. end if

if  ≥ K2, then set r ← r · γ. end if

if r = rold, then set h ← h + 1; else set h ← 0. end if

end while

Figure 4.2: Adaptive ERPS

We start by running ERPS with an initially specified search range r (for simplic-

80

ity, we assume that the same search range is prescribed for all states), and monitor the

performance of the elite policy obtained at each iteration. If no improvements among the

elite policies are achieved for several, say K1, consecutive iterations, then it indicates that

the current search range may be too large, and we decrease it by a factor γ > 1. On the

other hand, if for some consecutive iterations, say K2, the improvements are non-zero but

smaller than some given tolerance ε, then it is likely that the current search range is too

small, and we increase it by γ until the improvement is greater than the specified tolerance

level. The search range is updated repeatedly until it has been alternating between two

values for K3 times. Intuitively, the adaptive ERPS ensures that each improvement in the

elite policy is (approximately) at least ε; when no further improvement is available either

by increasing or by decreasing the search range, the value function obtained will be within

distance ε of the optimal cost, i.e., the resulting elite policy is approximately ε-optimal.

Note that the validity of the ε-optimality claim relies on the assumption that if

there is an improvement of at least ε available, then the algorithm will be able to find it

via adaptive adjustment of the search range. The above approach retains the theoretical

convergence properties of the original ERPS method and can be applied, at least in prin-

ciple, to many types of action spaces as long as a metric can be specified; however, we

must again emphasis that the efficiency of the approach will depend on the structure of

the problem to be solved and how the underlying metric is actually defined.

4.6 Numerical Examples

In this Chapter, we investigate the empirical performance of ERPS by applying it to

two discrete-time controlled queueing examples and comparing its performance with those

of EPI ([19]) and standard PI. Throughout the experiment with ERPS, we use the same

81

search range parameter value for all states, denoted by a single variable r, and choose the

uniform distribution as the action selection distribution. All computational time units are

in seconds.

4.6.1 A One-Dimensional Queueing Example

The following example has previously been studied in several approximate dynamic

programming literatures (cf. e.g., [13], [27]). Consider a single-server queue with finite

capacity, where the server can serve only one customer in a period, and the service of a

customer begins/ends only at the beginning/end of any period. Assume at any period

of time, there is at most one customer arrival, and arrivals at the queue are independent

with probability p = 0.2 (i.e., no arrival with probability 0.8). The maximum queue

length is L, and an arrival that finds L customers in the queue is lost. We denote by xt

the state variable, be the number of customers in the system at the beginning of period

t. The action (control) to be chosen at each state is the service completion probability

of the server, denoted by a, which takes value in a set A. In period t, if a(xt) is chosen,

then a service is completed with probability a(xt), and a cost of R(xt, a(xt)) is incurred,

and resulting in a transition to state xt+1. The goal is to choose the optimal service

completion probability for each state such that the total infinite-horizon discounted cost

E[
∑∞

t=0 αtR(xt, a(xt))] is minimized.

For this example, we consider two different choices of one-stage cost functions: (i)

a simple function that is convex in both state and action, where the one-stage cost at any

period for being in state x and taking action a is given by

R(x, a) = x + 50a2;

82

(ii) a complex non-convex cost function

R(x, a) = x + 5
[|X|

2
sin(2πa)− x

]2

,

which induces a tradeoff in choosing between large values of a to reduce the state x and

appropriate values of a to make the squared term small. Intuitively, the MDP problem

resulting from case (i) may have some nice properties (e.g., free of multiple local optimal

solutions), so finding an optimal solution should be a relatively easy task; whereas the cost

function in case (ii) introduces some further computational difficulties (e.g., multiple local

minima), intended to more fully test the effectiveness of a global algorithm like ERPS.

For both cases, unless otherwise specified, the following parameter settings are used:

maximum queue length L = 48; state space X = {0, 1, 2, . . . , 49}; discount factor α = 0.98;

and in ERPS, population size n = 10, search range r = 10, and the standard Euclidean

distance is used to define the neighborhood. All computational results for ERPS are based

on 30 independent replications.

Discrete Action Space

We first take the action space to be A =
{
10−4k : k = 0, 1, . . . , 104

}
, a discretized

version of the continuous interval [0, 1]. For this setting, we test the convergence of ERPS

by varying the values of the exploitation probability. Table 4.1 gives the performance of

the algorithm, where we define the relative error of a value function J by

relerr :=
‖J − J∗‖∞
‖J∗‖∞ , (4.12)

and J∗ is the optimal value function, which is obtained by using the standard PI. The

computational time required for PI to find the optimal value function J∗ was 15 seconds,

and the value of ‖J∗‖∞ is approximately 2.32e+03. Test results clearly indicate superior

performances of ERPS over PI; in particular, when q0 = 0.25, 0.5, 0.75, ERPS attains the

83

optimal solution in all 30 independent trials within 2 seconds.

q0 stop rule (K) Avg. time (std err) mean relerr (std err)

2 0.84 (0.03) 7.63e-06 (8.50e-08)

4 1.41 (0.05) 2.78e-06 (3.29e-07)

0.0 8 2.67 (0.10) 7.83e-07 (1.06e-07)

16 5.12 (0.16) 1.81e-07 (1.88e-08)

32 8.91 (0.38) 6.19e-08 (1.07e-08)

2 0.94 (0.02) 3.32e-09 (1.42e-09)

4 1.08 (0.02) 9.65e-10 (2.59e-10)

0.25 8 1.24 (0.02) 3.02e-10 (9.51e-11)

16 1.52 (0.03) 4.54e-11 (3.86e-11)

32 1.85 (0.04) 0.00e-00 (0.00e-00)

2 0.92 (0.02) 2.14e-09 (1.29e-09)

0.50 4 1.00 (0.02) 2.53e-10 (1.10e-10)

8 1.11 (0.02) 7.61e-11 (5.02e-11)

16 1.27 (0.03) 0.00e-00 (0.00e-00)

2 1.14 (0.02) 4.14e-10 (2.84e-10)

0.75 4 1.19 (0.02) 2.40e-11 (1.67e-11)

8 1.27 (0.02) 1.18e-11 (1.18e-11)

16 1.44 (0.03) 0.00e-00 (0.00e-00)

2 12.14 (0.02) 1.66e-10 (5.18e-11)

1.0 4 12.19 (0.02) 4.85e-11 (3.49e-11)

8 12.28 (0.01) 0.00e-00 (0.00e-00)

Table 4.1: Convergence results for ERPS (n = 10, r = 10) based on 30 independent

replications. The standard errors are in parentheses.

To see how the computational complexity of ERPS changes with the size of the

action space, we test ERPS on several MDPs with increasing numbers of actions; for each

84

problem, the foregoing setting is used except that the action space now takes the form

Ah =
{
hk : k = 0, 1, . . . , 1

h

}
, where h is the mesh size, selected sequentially (one for each

problem) from the set
{

1
100 , 1

250 , 1
500 , 1

1000 , 1
2500 , 1

5000 , 1
10000 , 1

25000 , 1
50000 , 1

100000 , 1
200000

}
, thus

the size of the action space |Ah| = 1
h + 1.

We plot in Figure 4.3 the running time required for PI and ERPS to find the

optimal solutions as a function of the number of actions of each MDP considered, where

the results for ERPS are the averaged time over 30 independent replications. Empirical

results indicate that the computational time for PI increases linearly in the number of

actions (due to the requirement of enumerating the action space), while the running time

required for ERPS does so in an asymptotic sense. However, ERPS significantly reduces

the computational efforts of PI by roughly a factor of 14 when the size of the action

space is large (number of actions greater than 104). We see that ERPS also delivers

very competitive performances even when the action space is small. In the experiments,

we used a search range r = 10 in ERPS, regardless of the size of the action space; we

believe the performance of the algorithm could be enhanced by using a search range that

is proportional to the size of the action space. Moreover, the computational effort of ERPS

can be reduced considerably if we are seeking solutions within some required accuracy of

the optimum rather than searching for the exact optimal solution.

For case (ii), as expected, since the sine function is not monotone, the resultant

MDP problem has a very high number of local minima; some typical locally optimal

policies are shown in Figure 4.4.

We applied both EPI and ERPS to this case, where both algorithms start with the

same initial population. The convergence of EPI and ERPS is shown in Table 4.2. The

computational time required for PI to find the optimal value function J∗ was 14 seconds,

85

10
2

10
3

10
4

10
5

0

50

100

150

200

250

300

number of actions

co
m

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

PI
ERPS q

0
=0.25

ERPS q
0
=0.50

ERPS q
0
=0.75

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

number of actions

co
m

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

PI
ERPS q

0
=0.25

ERPS q
0
=0.50

ERPS q
0
=0.75

(a) (b)

Figure 4.3: Running time required for PI & ERPS (n = 10, r = 10, based on 30 indepen-

dent replications) to find the optimal solutions to MDPs with different numbers of actions,

(a) using log-scale for horizontal axis; (b) using log-log plot.

0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

Figure 4.4: Four typical locally optimal solutions to the test problem.

86

and the magnitude of ‖J∗‖∞ is approximately 1.03e+05. For EPI, we have tested different

sets of parameters (recall from Chapter 4.3.3 that Pm is the mutation probability; and

Pg (Pl) are the predefined global (local) mutation probabilities); the results reported in

Table 4.2 are the best results obtained. Also note that because of the slow convergence of

EPI, the values for the stopping control parameter K are chosen much larger than those

for ERPS.

algorithms stop rule (K) Avg. time (std err) mean relerr (std err)

EPI 20 2.13 (0.11) 1.74e-02 (1.35e-03)

Pm = 0.1 40 3.80 (0.16) 1.12e-02 (8.81e-04)

Pg = 0.9 80 6.63 (0.34) 7.13e-03 (5.37e-04)

Pl = 0.1 160 16.30 (0.59) 3.22e-03 (2.26e-04)

2 1.03 (0.02) 9.81e-05 (5.17e-05)

ERPS 4 1.12 (0.03) 7.12e-05 (4.95e-05)

q0 = 0.5 8 1.28 (0.03) 2.37e-05 (1.64e-05)

r = 10 16 1.50 (0.03) 1.06e-09 (6.59e-10)

32 1.86 (0.04) 0.00e-00 (0.00e-00)

Table 4.2: Convergence results for EPI (n = 10) & ERPS (n = 10, r = 10) based on 30

independent replications. The standard errors are in parentheses.

To see how the exploitation probability q0 affects the performance of ERPS, a set of

experiments is also performed by fixing the stopping control parameter K = 10 and varying

q0. The numerical results are recorded in Table 4.3, where Nopt indicates the number of

times an optimal solution was found out of 30 trials. The q0 = 1.0 case corresponds to pure

local search. Obviously in this case, the algorithm gets trapped into a local minimum,

which has a mean relative error of 5.62e-3. However, note that the standard error is

zero, which means that the local minimum is estimated with very high precision. This

87

shows that the “nearest neighbor” heuristic is indeed useful in fine-tuning the solutions.

In contrast, the pure random search (q0 = 0) case is helpful in escaping from the local

minima, yielding a lower mean relative error of 2.59e-5, but it is not very good in locating

the exact optimal solutions, as none was found out of 30 trials. Roughly, increasing q0

between 0 and 0.5 leads to a more accurate estimation of the optimal solution; however,

increasing q0 on the range 0.6 to 1.0 decreases the quality of the solution, because the local

search part begins to gradually dominate, so that the algorithm is more easily trapped in

local minima. This also explains why we have larger variances when q0 = 0.6, 0.7, 0.8, 0.9

in Table 4.3. Notice that the algorithm is very slow in the pure local search case; setting

q0 < 1 speeds up the algorithm substantially.

q0 Avg. time (std err) Nopt mean relerr (std err)

0.0 3.30 (0.13) 0 2.59e-05 (6.19e-06)

0.1 1.96 (0.04) 5 4.51e-08 (8.60e-09)

0.2 1.48 (0.03) 12 1.26e-08 (3.47e-09)

0.3 1.39 (0.02) 24 2.74e-09 (2.02e-09)

0.4 1.28 (0.02) 25 2.69e-05 (1.89e-05)

0.5 1.32 (0.03) 27 8.75e-10 (6.01e-10)

0.6 1.41 (0.04) 25 6.19e-05 (3.20e-05)

0.7 1.50 (0.04) 22 1.53e-04 (6.96e-05)

0.8 1.81 (0.04) 15 3.04e-04 (7.09e-05)

0.9 2.33 (0.08) 11 7.99e-04 (1.63e-04)

1.0 7.86 (0.02) 0 5.62e-03 (0.00e-00)

Table 4.3: Performance of ERPS with different exploitation probabilities (n = 10, K =

10, r = 10) based on 30 independent replications. The standard errors are in parentheses.

To provide a numerical comparison between the “nearest neighbor” heuristic (biased

88

algorithms parameters Avg. time actual relerr (std err)

q0 = 0.0 13.31 (0.60) 7.63e-07 (3.71e-08)

q0 = 0.1 1.20 (0.03) 4.99e-07 (5.47e-08)

ERPS q0 = 0.3 0.96 (0.04) 3.26e-07 (4.83e-08)

r = 10 q0 = 0.5 0.97 (0.03) 3.84e-07 (5.08e-08)

q0 = 0.7 1.61 (0.18) 3.47e-07 (4.91e-08)

q0 = 0.9 4.03 (0.62) 2.33e-07 (4.62e-08)

Pm = 0.1, Pg = 0.9, Pl = 0.1 62.4 (3.0) 7.61e-07 (3.67e-08)

Pm = 0.3, Pg = 0.9, Pl = 0.1 33.3 (1.4) 8.42e-07 (2.76e-08)

ALG. 1 Pm = 0.5, Pg = 0.9, Pl = 0.1 26.6 (1.4) 8.35e-07 (2.93e-08)

Pm = 0.7, Pg = 0.9, Pl = 0.1 22.1 (1.2) 7.88e-07 (3.34e-08)

Pm = 0.9, Pg = 0.9, Pl = 0.1 20.2 (1.1) 8.44e-07 (2.55e-08)

Pm = 1.0, Pg = 1.0, Pl = 0.0 17.6 (0.9) 7.67e-07 (4.08e-08)

Table 4.4: Average time required to reach a precision of at least 1.0e-6 for different algo-

rithms. All results are based on 30 independent replications. The standard errors are in

parentheses.

sampling) and the policy mutation procedure (unbiased sampling), we call the algorithm

with the PICS step but policy mutation procedure as algorithm 1. In both ERPS and

algorithm 1, we fix the population size n = 10, and stop the algorithms only when a

desired accuracy is reached. In Table 4.4, we record the length of time required for

different algorithms to reach a relative error of at least 1.0e-6. Indeed, we see that ERPS

uses far less time to reach a required accuracy than algorithm 1 does.

Continuous Action Space

We test the algorithm when the action space A is continuous, where the service

completion probability can be any value between 0 and 1. Again, two cost functions are

89

considered, corresponding to cases (i) and (ii) in the discrete action space examples. In

both cases, the maximum queue length L, state space X, and the discount factor α are

all taken to be the same as before.

In the numerical experiments, we approximated the optimal costs J∗1 and J∗2 for each

of the respective cases (i) and (ii) by two value functions Ĵ∗1 and Ĵ∗2 , which were computed

by using the adaptive ERPS algorithm under the following parameter settings: population

size n = 10; stopping control parameter K = 10; exploitation probability q0 = 0.5; initial

search range r = 1
10 ; tolerance ε = 1e-12 for case (i) and ε = 1e-10 for case (ii); K1 = 5;

K2 = 5; K3 = 5; γ = 2. We performed 200 independent runs of the adaptive ERPS

algorithm for each case, and Ĵ∗1 (Ĵ∗2) was obtained as the best solution out of the 200

replications.

We set the population size n = 10, termination control parameter K = 10, and test

the ERPS algorithm by using different values of the search range r. The performance

of the algorithm is also compared with that of a deterministic policy iteration (PI) algo-

rithm, where we first uniformly discretize the action space into evenly spaced points by

using a mesh size h, and then apply the standard PI algorithm on the discretized prob-

lem. Tables 4.5 and 4.6 give the performances of both algorithms for cases (i) and (ii),

respectively. Note that the relative errors are actually computed by replacing the optimal

costs with their corresponding approximations in equation (4.12).

Test results indicate that ERPS outperforms the discretization-based PI algorithm

in both cases, not only in computational time but also in solution quality. We observe

that the computational time for PI increases by a factor of 2 for each halving of the mesh

size, while the time for ERPS increases at a much slower rate.

90

algorithms parameters Avg. time (std err) mean relerr (std err)

q0 = 0.25 2.54 (0.10) 1.92e-12 (3.64e-13)

ERPS q0 = 0.50 2.27 (0.09) 6.41e-13 (7.07e-14)

(r = 1
4000) q0 = 0.75 2.92 (0.08) 1.92e-13 (2.69e-14)

q0 = 0.25 2.61 (0.10) 4.66e-13 (6.03e-14)

ERPS q0 = 0.50 2.91 (0.10) 1.08e-13 (1.59e-14)

(r = 1
8000) q0 = 0.75 3.05 (0.11) 6.84e-14 (1.03e-14)

q0 = 0.25 2.84 (0.09) 1.33e-13 (2.35e-14)

ERPS q0 = 0.50 3.25 (0.10) 3.06e-14 (4.56e-15)

(r = 1
16000) q0 = 0.75 3.68 (0.10) 1.89e-14 (2.50e-15)

h = 1
4000 6 (N/A) 7.96e-09 (N/A)

h = 1
8000 12 (N/A) 1.72e-09 (N/A)

PI h = 1
16000 23 (N/A) 4.74e-10 (N/A)

h = 1
32000 47 (N/A) 9.52e-11 (N/A)

h = 1
128000 191 (N/A) 6.12e-12 (N/A)

h = 1
512000 781 (N/A) 3.96e-13 (N/A)

Table 4.5: Comparison of the ERPS algorithm (n = 10, K = 10) with the deterministic

PI algorithm for case (i). The results of ERPS are based on 30 independent replications.

The standard errors are in parentheses.

4.6.2 A Two-Dimensional Queueing Example

The second example, shown in Figure 4.5, is a slight modification of the first one,

with the difference being that now we have a single queue that feeds two independent

servers with different service completion probabilities a1 and a2. We consider only the

continuous action space case. The action to be chosen at each state x is (a1, a2)T , which

takes value from the set A = [0, 1]× [0, 1]. We assume that an arrival that finds the system

91

algorithms parameters Avg. time (std err) mean relerr (std err)

q0 = 0.25 2.75 (0.10) 8.49e-11 (1.50e-11)

ERPS q0 = 0.50 2.91 (0.09) 1.76e-11 (2.90e-12)

(r = 1
4000) q0 = 0.75 3.16 (0.09) 8.53e-12 (1.21e-12)

q0 = 0.25 3.09 (0.12) 1.70e-11 (2.57e-12)

ERPS q0 = 0.50 3.00 (0.12) 4.17e-12 (4.94e-13)

(r = 1
8000) q0 = 0.75 3.62 (0.08) 1.55e-12 (1.47e-13)

q0 = 0.25 3.20 (0.10) 6.08e-12 (1.17e-12)

ERPS q0 = 0.50 3.28 (0.11) 1.19e-12 (1.40e-13)

(r = 1
16000) q0 = 0.75 4.20 (0.12) 4.25e-13 (5.05e-14)

h = 1
4000 6 (N/A) 2.71e-07 (N/A)

h = 1
8000 11 (N/A) 5.66e-08 (N/A)

PI h = 1
16000 22 (N/A) 1.58e-08 (N/A)

h = 1
32000 43 (N/A) 5.21e-09 (N/A)

h = 1
128000 176 (N/A) 3.58e-10 (N/A)

h = 1
512000 727 (N/A) 1.71e-11 (N/A)

Table 4.6: Comparison of the ERPS algorithm (n = 10, K = 10) with the deterministic

PI algorithm for case (ii). The results of ERPS are based on 30 independent replications.

The standard errors are in parentheses.

empty will always be served by the server with service completion probability a1. The

state space of this problem is X = {0, 1S1 , 1S2 , 2, . . . , 48}, where we have assumed that

the maximum queue length (no including those in service) is 46, and 1S1 , 1S2 are used

to distinguish the situations whether server 1 or server 2 is busy when there is only one

customer in the system. As before, the discount factor α = 0.98.

92

The one-stage cost is taken to be

R(y, a1, a2) = y +
[|X|

2
cos(πa1)− y

]2

I{S1} +
[|X|

2
sin(πa2)− y

]2

I{S2},

where

I{Si} =





1 if server i is busy,

0 otherwise,
(i = 1, 2), and y =





1 if x ∈ {1S1 , 1S2},

x otherwise.

L
p=0.2 departure

1

2

a

a

Figure 4.5: A two-dimensional queueing example.

Again, in computing the relative error, we approximated J∗ by Ĵ∗, which was com-

puted by using the adaptive ERPS algorithm under the same settings (e.g., parameter

settings, number of replications) as in case (ii) of the discrete action space examples.

The value of ‖Ĵ∗‖∞ is approximately 1.72e+04.

The performances of the ERPS and the discretization-based PI are reported in

Table 4.7. In ERPS, both the population size n and the stopping control parameter K are

set to 10. In PI, we adopt a uniform discretization, where the same mesh size h is used in

both directions of the action space. Notice that the computational time for PI increases

by a factor of 4 for each halving of the mesh size, whereas the time required by ERPS

increases much more slowly.

In Table 4.8, we compare the performance of the adaptive ERPS algorithm and the

original ERPS algorithm in obtaining high quality solutions. In both algorithms, we choose

the population size n = 10, the stopping control parameter K = 10, and the exploitation

probability q0 = 0.5. In adaptive ERPS, the initial search range r = 0.1, γ = 2, parameters

93

algorithms parameters Avg. time (std err) mean relerr (std err)

q0 = 0.25 3.26 (0.14) 2.60e-06 (1.36e-07)

ERPS q0 = 0.50 3.20 (0.15) 1.06e-05 (9.17e-06)

(r = 1
100) q0 = 0.75 3.64 (0.14) 8.98e-05 (2.54e-05)

q0 = 0.25 3.37 (0.12) 6.67e-07 (3.59e-08)

ERPS q0 = 0.50 3.28 (0.12) 9.58e-06 (9.20e-06)

(r = 1
200) q0 = 0.75 3.89 (0.17) 9.38e-05 (2.47e-05)

q0 = 0.25 3.78 (0.11) 1.50e-07 (8.30e-09)

ERPS q0 = 0.50 3.85 (0.12) 9.30e-06 (9.21e-06)

(r = 1
400) q0 = 0.75 4.45 (0.14) 4.59e-05 (1.90e-05)

h = 1
100 15 (N/A) 1.65e-04 (N/A)

PI h = 1
200 57 (N/A) 4.30e-05 (N/A)

h = 1
400 226 (N/A) 8.87e-06 (N/A)

Table 4.7: A two-dimensional test example. The results of ERPS are based on 30 inde-

pendent replications (n = 10, K = 10).

K1, K2 and K3 are all set to 5, and the improvements in elite policies are evaluated in

the infinity-norm. We see that in order to obtain more and more accurate solutions, the

search range in ERPS has to be chosen excessively small, which causes significant increase

in computational effort. In contrast, the adaptive ERPS achieves better solutions within

less time; moreover, the algorithm provides us with a rough estimation of the solution

quality: as mentioned in Chapter 4.5, the average difference between the resultant value

function J and the optimal cost J∗ (i.e., ‖J−J∗‖∞) will be of the same order of magnitude

as ε; and the relative error can also be estimated as:

relerr =
‖J − J∗‖∞
‖J∗‖∞ ≈ ‖J − Ĵ∗‖∞

‖Ĵ∗‖∞
≈ ε

‖Ĵ∗‖∞
.

94

algorithms parameters Avg. time mean relerr (stderr) ‖J − Ĵ∗‖∞ (stderr)

r = 1
20000 16.4 (0.2) 2.25e-11 (8.88e-13) N/A (N/A)

ERPS r = 1
40000 24.8 (0.3) 5.04e-12 (1.95e-13) N/A (N/A)

r = 1
80000 39.1 (0.5) 1.02e-12 (7.18e-14) N/A (N/A)

Adaptive ε =1e-07 13.8 (0.7) 9.28e-12 (3.22e-12) 1.59e-07 (5.54e-08)

ERPS ε =1e-08 15.7 (0.8) 3.95e-13 (1.67e-13) 6.80e-09 (2.87e-09)

ε =1e-09 17.1 (0.7) 1.09e-13 (3.12e-14) 1.87e-09 (5.37e-10)

Table 4.8: Comparison of ERPS (n = 10, K = 10, q0 = 0.5) with adaptive ERPS

(n = 10, K = 10, q0 = 0.5, r = 0.1, K1 = K2 = K3 = 5, γ = 2), based on 30

independent replications.

4.7 Conclusions and Open Problems

We presented an evolutionary, population-based method called ERPS for solving in-

finite horizon discounted cost MDP problems. We showed that the algorithm converges to

an optimal policy w.p.1. We also illustrated the algorithm by applying it to two controlled

queueing examples with large or uncountable action spaces. Numerical experiments on

these small examples indicate that the ERPS algorithm is a promising approach, outper-

forming some existing methods (including the standard policy iteration algorithm).

Many challenges remain to be addressed before the algorithm can be applied to

realistic-sized problems. The motivation behind ERPS is the setting where the action space

is extremely large so that enumerating the entire action space becomes computationally

impractical; however, the approach still requires enumerating the entire state space. To

make it applicable to large state space problems, the algorithm will probably need to

be used in conjunction with some other state space reduction techniques such as state

aggregation or value function approximation. This avenue of investigation clearly merits

95

further research.

Another important issue is the dependence of ERPS on the underlying distance

metric, as determining a good metric could be challenging for those problems that do

not have a natural metric already available. One possible way to get around this is to

adaptively updating/changing the action selection distribution P at each iteration of the

algorithm based on the sampling information obtained during the previous iterations. This

actually constitutes a learning process; the hope is that more promising actions will have

larger chances of being selected so that the future search will be biased toward the region

containing high quality solutions (policies).

Another practical issue is the choice of the exploitation probability q0. As noted

earlier, the parameter q0 serves as a tradeoff between exploitation and exploration in

action selections. Preliminary experimental results indicate some robustness with respect

to the value of this parameter, in that values between 0.25 and 0.75 all seem to work well;

however, this may not hold for larger problems or other settings, so further investigation is

required. One approach is to design a similar strategy as in simulated annealing algorithms

and study the behavior of the algorithm when the value of q0 is gradually increasing from

0 to 1, which corresponds to the transitioning of the search mechanism from pure random

sampling to pure local search.

96

Chapter 5

A Model Reference Adaptive Search Method for Global Optimization

5.1 Introduction and Motivation

The focus of this chapter is on the development of a new randomized search frame-

work we call model reference adaptive search (MRAS) for solving both continuous and

combinatorial (deterministic) global optimization problems. Similar to what has been

done in the field of machine learning and the work of [91], we characterize the existing

general purpose global optimization techniques as being either instance-based or model-

based, please refer to Chapter 1.2 for a review. Over the past few decades, a significant

amount of research effort has been centered around classical instance-based methods.

Thus, the behavior of these methods is relatively well understood. However, the model-

based methods is still merely a collection of independently developed heuristic methods,

without concrete theoretical foundations. The main contribution of this research is to

provide a new unifying framework that addresses the most common computational diffi-

culties faced by many model-based methods and to propose a simple way of constructing

a class of model-based optimization algorithms with theoretical performance guarantee.

A schematic description of the model-based search method is given in Figure 5.1. In

model-based methods, there is often an intermediate probabilistic model over the solution

space, and at each iteration of these approaches new solutions are sampled/generated

from the current probabilistic model; the performance of these candidate solutions are

then evaluated and thus used to update the current model according to some pre-specified

updating mechanism.

97

Figure 5.1: A description of the model-based methods

As we can see, there are two key questions we need to address in model-based search

methods. The first question is, of course, how to update the probabilistic model. For exam-

ple, traditional estimation of distribution algorithms (EDAs) (Chapter 1.2, Chapter 2.2)

use an explicit construction procedure, and try to build an empirical distribution over the

solution space. The updating of these empirical distributions is then usually carried out

at each iteration either via measuring sample frequencies or by using the maximum like-

lihood estimation technique. However, the difficulty is that these empirical distributions

need to be tailored to specific problems. For more complex problems, it is often tempting

to use more complicated models to improve the performance of these methods, but the

model construction and updating cost could be computationally expensive. Moreover, for

the type of “black-box” problems, where nothing or little is known about the structure of

the underlying problem, how to choose the most appropriate empirical model is a difficult

issue. In contrast to the first key question, another extreme is that oftentimes one may

have a nice sequence of probabilistic models, however how to sample from these distri-

bution is a big issue. For instance, as we have discussed in Chapter 2.2, in annealing

adaptive search (AAS), the majority of the computational effort is not spent in updating

98

Boltzmann distributions, but in how to efficiently generate samples/candidate solutions

from these distributions. These fundamental issues in model-based search method are the

motivation behind the MRAS method.

5.2 The Model Reference Adaptive Search Method

The Model Reference Adaptive Search method tries to address the aforementioned

difficulties in the following way. A high-level description of the framework is shown in Fig-

ure 5.2, where we split the components of MRAS into two groups. The components in the

red dashed box in the figure address the issue of how to sample, whereas the components

in the blue box are responsible for the issue of how to update distributions. In MRAS,

instead of using arbitrary (empirical) distributions (as in EDAs), we use a family of pa-

rameterized distributions as sampling distributions to generate candidate solutions. The

hope is that this parameterized family is specified with some structure so that once the

parameter is determined, sampling from each of these distributions should be a relatively

easy task. An additional advantage by using the parameterized family is that the task of

updating (empirical) sampling distributions now simplifies to the task of updating para-

meters associated with the distribution family. At each iteration of MRAS, the parameter

is determined by minimizing certain distance between the parameterized family and an

additional sequence of distributions we call reference distributions. These reference dis-

tributions are primarily used to guide the parameter updating process and to express the

desired properties of the framework. Thus, to ensure the convergence of the framework,

we often want to construct these distributions so that they will converge to a degenerated

distribution concentrated only on the optimum. Intuitively, among the parameterized

family, the current sampling distribution can be viewed as a compact approximation of

99

Figure 5.2: A schematic description of the MRAS framework

the reference distribution (the projection of the reference distribution on the parameter-

ized family), and may hopefully retain some nice properties of these distributions. Thus,

as the sequence of reference distributions converges, the sequence of samples generated

from their compact approximations (i.e., sampling distributions) should also converge to

the optimum. Since this idea is very similar to the use of reference models in adaptive

control, we call this method model reference adaptive search.

5.3 The MRAS0 Algorithm (Exact Version)

We consider the optimization problem introduce in Chapter 2.2:

x∗ ∈ argmax
x∈X

H(x), x ∈ X ⊆ <n, (5.1)

where the solution space X is a non-empty set in <n, and H(·) : X → < is a deterministic

function that is bounded from below, i.e., ∃M > −∞ such that H(x) ≥ M ∀x ∈ X .

We will not impose any further structural (continuity, differentiability) assumptions on

H(·). Thus, in our setting, we are interested in general optimization problems with little

structure or the cases where H(·) does have some structures but these structures are not

100

known as a priori. We assume that the global optimal solution to (5.1) exists and is

unique, i.e., ∃x∗ ∈ X such that H(x) < H(x∗) ∀x 6= x∗, x ∈ X , however we note that

the problem may have many locally optimal solutions.

MRAS works with a family of parameterized distribution {f(·, θ), θ ∈ Θ}, where Θ

is the parameter space. The parameter updating in MRAS is determined by a sequence of

reference distributions {gk(·)}. In particular, at each iteration k, we look at the projection

of gk(·) on the family of distributions {f(·, θ), θ ∈ Θ} and compute the new parameter

vector θk+1 that minimizes the Kullback-Leibler (KL) divergence

D(gk, f(·, θ)) := Egk

[
ln

gk(X)
f(X, θ)

]
=

∫

X
ln

gk(x)
f(x, θ)

gk(x)ν(dx),

where ν is the Lebesgue/counting measure defined on X , X = (X1, . . . , Xn) is a random

vector taking values in X , and Egk
[·] denotes the expectation taken with respect to gk(·).

Intuitively speaking, f(·, θk+1) can be viewed as a compact representation of the reference

distribution gk(·); consequently, the feasibility and effectiveness of the algorithm will, to

some large extent, depend on the choices of the reference distributions.

As we can see from Chapter 5.2, there is a lot of flexibilities in the choices of reference

distributions. So we can construct different instantiations of the framework by selecting

different sequences of reference distributions. We now analyze a particular instantiation

of the framework we call MRAS0 by explicitly specifying a simple iterative scheme for

constructing the sequence of reference distributions.

Let g0(x) > 0 ∀x ∈ X be an initial probability density/mass function (p.d.f./p.m.f.)

on the solution space X . At each iteration k ≥ 1, we compute a new p.d.f./p.m.f. by

tilting the old p.d.f./p.m.f. gk−1(x) with the performance function H(x) (for simplicity,

101

here we assume H(x) > 0 ∀x ∈ X), i.e.,

gk(x) =
H(x)gk−1(x)∫

X H(x)gk−1(x)ν(dx)
, ∀x ∈ X . (5.2)

By doing so, we are assigning more weight to solutions that have better performance. One

direct consequence of this is that each iteration of (5.2) improves the expected performance.

To be precise,

Egk
[H(X)] =

Egk−1
[(H(X))2]

Egk−1
[H(X)]

≥ Egk−1
[H(X)].

Furthermore, it is possible to show that the sequence {gk(·), k = 0, 1, . . .} will converge

to a distribution that concentrates only on the optimal solution for arbitrary g0(·). So

we will have limk→∞Egk
[H(X)] = H(x∗). The above idea has previously been used, for

example, in EDAs with proportional selection schemes (cf. e.g., [90]), and in randomized

algorithms for solving Markov decision processes ([20]). However, in those approaches, the

construction of gk(·) in (5.2) needs to be carried out explicitly to generate new samples;

moreover, since gk(·) may not have any structure, sampling from it could be computation-

ally expensive. In MRAS, these difficulties are circumvented by projecting gk(·) on the

family of parameterized distributions {f(·, θ)}. On the one hand, f(·, θk) often has some

special structure and therefore could be much easier to handle, and on the other hand,

the sequence {f(·, θk+1), k = 0, 1, . . .} may retain some nice properties of {gk(·)} and also

converge to a degenerate distribution concentrated on the optimal solution.

5.3.1 Algorithm Description

Throughout the analysis, we use Pθk
(·) and Eθk

[·] to denote the probability and

expectation taken with respect to the p.d.f./p.m.f. f(·, θk), and I{·} to denote the indicator

102

function, i.e.,

I{A} :=





1 if event A holds,

0 otherwise.

Thus, under our notational convention,

Pθk
(H(X) ≥ γ) =

∫

X
I{H(x)≥γ}f(x, θk)ν(dx) and Eθk

[H(X)] =
∫

X
H(x)f(x, θk)ν(dx).

Algorithm MRAS0 – exact version

• Initialization: Specify ρ ∈ (0, 1], a small number ε ≥ 0, a strictly increasing function

S(·) : < → <+, and an initial p.d.f./p.m.f. f(x, θ0) > 0 ∀x ∈ X . Set the iteration counter

k = 0.

• Repeat until a specified stopping rule is satisfied:

1. Calculate the (1− ρ)-quantile

γk+1 := sup
l
{l : Pθk

(H(X) ≥ l) ≥ ρ} .

2. if k = 0, then set γ̄k+1 = γk+1.

elseif k ≥ 1

if γk+1 ≥ γ̄k + ε, then set γ̄k+1 = γk+1.

else set γ̄k+1 = γ̄k.

endif

endif

3. Compute the parameter vector θk+1 as

θk+1 := arg max
θ∈Θ

Eθk

[
[S(H(X))]k

f(X, θk)
I{H(X)≥γ̄k+1} ln f(X, θ)

]
, (5.3)

4. Set k = k + 1.

The MRAS0 algorithm requires specification of a parameter ρ, which determines

103

the approximate proportion of samples that will be used to update the probabilistic

model. At successive iterations of the algorithm, a sequence {γk, k = 1, 2, . . .}, i.e., the

(1 − ρ)-quantiles with respect to the sequence of p.d.f’s {f(·, θk)}, are calculated at step

1 of MRAS0. These quantile values are then used in step 2 to construct a sequence of

non-decreasing thresholds {γ̄k, k = 1, 2, . . .}; and only those candidate solutions that have

performances better than these thresholds will be used in parameter updating (cf. equa-

tion (5.3)). As we will see, the theoretical convergence of MRAS0 is unaffected by the value

of the parameter ρ. The purpose of ρ in our approach is to concentrate the computational

effort on the set of elite/promising samples, which is a standard technique employed in

most of the population-based approaches, like GAs and EDAs.

During the initialization step of MRAS0, a small number ε and a strictly increasing

function S(·) : < → <+ are also specified. The function S(·) is used to preserve the

correct performance order among candidate solutions and to account for the cases where

the values of H(x) are negative for some x, and the parameter ε ensures that each strict

increment in the sequence {γ̄k} is lower bounded, i.e.,

inf
γ̄k+1 6=γ̄k
k=1,2,...

(γ̄k+1 − γ̄k) ≥ ε.

We require ε to be strictly positive for continuous problems, and non-negative for discrete

problems.

In continuous domains, the division by f(x, θk) in the performance function in step

3 is well defined if f(x, θk) has infinite support (e.g. normal p.d.f.), whereas in dis-

crete/combinatorial domains, the division is still valid as long as each point x in the so-

lution space has a positive probability of being sampled. Additional regularity conditions

on f(x, θk) in Section 5.5 will ensure that step 3 of MRAS0 can be used interchangeably

104

with the following equation:

θk+1 = argmax
θ∈Θ

∫

x∈X
[S(H(x))]k I{H(x)≥γ̄k+1} ln f(x, θ)dx.

We now show that there is a sequence of reference models {gk(·), k = 1, 2, . . .} im-

plicit in MRAS0, and the parameter θk+1 computed at step 3 indeed minimizes the KL-

divergence D(gk+1, f(·, θ)).

Lemma 5.3.1 The parameter θk+1 computed at the kth iteration of the MRAS0 algorithm

minimizes the KL-divergence D (gk+1, f(·, θ)), where

gk+1(x) :=
S(H(x))I{H(x)≥γ̄k+1}gk(x)

Egk

[
S(H(X))I{H(X)≥γ̄k+1}

] ∀x ∈ X , k = 1, . . . , and g1(x) :=
I{H(x)≥γ̄1}

Eθ0

[
I{H(X)≥γ̄1}

f(X,θ0)

] .

Proof: For brevity, define Ŝk(H(x)) := [S(H(x))]k

f(x,θk) . We have

g1(x) =
I{H(x)≥γ̄1}

Eθ0

[
I{H(X)≥γ̄1}

f(X,θ0)

] =
I{H(x)≥γ̄1}

Eθ0

[
Ŝ0(H(X))I{H(X)≥γ̄1}

] .

When k ≥ 1, we have from the definition of gk(·) above,

g2(x) =
S(H(x))I{H(x)≥γ̄2}g1(x)

Eg1

[
S(H(X))I{H(X)≥γ̄2}

]

=
S(H(x))I{H(x)≥γ̄2}I{H(x)≥γ̄1}

Eθ1

[
Ŝ1(H(X))I{H(X)≥γ̄2}I{H(X)≥γ̄1}

]

=
S(H(x))I{H(x)≥γ̄2}

Eθ1

[
Ŝ1(H(X))I{H(X)≥γ̄2}

] ,

where the last equality follows from the fact that the sequence {γ̄k, k = 1, 2, . . .} is non-

decreasing. Proceeding iteratively, it is easy to see that

gk+1(x) =
[S(H(x))]kI{H(x)≥γ̄k+1}

Eθk

[
Ŝk(H(X))I{H(X)≥γ̄k+1}

] , ∀ k = 0, 1,

Thus, the KL-divergence between gk+1(·) and f(·, θ) can be written as

D (gk+1, f(·, θ)) = Egk+1
[ln gk+1(X)]−Egk+1

[ln f(X, θ)]

= Egk+1
[ln gk+1(X)]−

Eθk

[
Ŝk(H(X))I{H(X)≥γ̄k+1} ln f(X, θ)

]

Eθk

[
Ŝk(H(X))I{H(X)≥γ̄k+1}

] , ∀ k.

105

The result follows by observing that minimizing D (gk+1, f(·, θ)) with respect to θ is equiv-

alent to maximizing the quantity Eθk

[
Ŝk(H(X))I{H(X)≥γ̄k+1} ln f(X, θ)

]
.

5.3.2 Global Convergence

Obviously, the convergence of the MRAS0 algorithm cannot be guaranteed for an

arbitrary parameterized distribution family. For example, if the parameterized family is

a singleton set, (i.e., contains only one distribution), then there is in general no way to

ensure the convergence of the algorithm. Another practical concern is that for an arbitrary

parameterized family, the computation of the new parameter θk+1 in (5.3) may not even

be tractable. These suggest that we should restrict our analysis and discussions to families

of distributions that exhibit some structural properties. Now we show that for a particular

parameterized family called the natural exponential family (NEF), the global convergence

of the algorithm can be established and the new parameter θk+1 can actually be obtained

analytically. We start by stating the definition of NEF and some regularity conditions.

Definition 5.3.1 A parameterized family of p.d.f ’s/p.m.f ’s {f(·, θ), θ ∈ Θ ⊆ <m} on X

is said to belong to the natural exponential family (NEF) if there exist functions h(·) :

<n → <, Γ(·) : <n → <m, and K(·) : <m → < such that

f(x, θ) = exp
{
θT Γ(x)−K(θ)

}
h(x), ∀ θ ∈ Θ, (5.4)

where K(θ) is a normalization constant, given by K(θ) = ln
∫
x∈X exp

{
θT Γ(x)

}
h(x)ν(dx),

and the superscript “T” denotes the vector transposition. For the case where f(·, θ) is a

p.d.f., we assume that Γ(·) is a continuous mapping.

The NEF covers a broad class of distributions like Gaussian, exponential, Poisson, bino-

mial, geometric, and certain multivariate forms of them.

106

Assumptions:

A1. For any given constant ξ < H(x∗), the set {x : H(x) ≥ ξ} ∩ X has a strictly positive

Lebesgue or discrete measure.

A2. For any given constant δ > 0, supx∈Aδ
H(x) < H(x∗), where Aδ := {x : ‖x− x∗‖ ≥ δ}∩

X , and we use the convention that the supremum over the empty set to be −∞.

A3. There exists a compact set Π such that the level set {x : H(x) ≥ γ̄1} ∩X ⊆ Π, where

γ̄1 = supl{l : Pθ0(H(X) ≥ l) ≥ ρ} is defined as in the MRAS0 algorithm.

A4. The maximizer of equation (5.3) is an interior point of Θ for all k.

A5. supθ∈Θ ‖ exp{θT Γ(x)}Γ(x)h(x)‖ is integrable/summable with respect to x, where θ,

Γ(·), and h(·) are defined as in Definition 5.3.1.

Intuitively, A1 ensures that any neighborhood of the optimal solution x∗ will have

a positive probability of being sampled. For ease of exposition, A1 restricts the class

of problems under consideration to either continuous or discrete problems; however, we

remark that this work can be easily extended to problems with mixture of both continuous

and discrete variables. Since H(·) has a unique global optimizer, A2 is satisfied by many

functions encountered in practice. Note that both A1 and A2 hold trivially when X is

(discrete) finite and the counting measure is used. Assumption A3 restricts the search of

the MRAS0 algorithm to some compact set; it is satisfied if the function H(·) has compact

level sets or the solution space X is compact. In actual implementation of the algorithm,

step 3 of MRAS0 is often posed as an unconstrained optimization problem, i.e., Θ = <m,

in which case A4 is automatically satisfied. It is also easy to verify that A5 is satisfied by

most NEFs.

107

To show the convergence of MRAS0, we will need the following key observation.

Lemma 5.3.2 If assumptions A3−A5 hold, then we have

Eθk+1
[Γ(X)] = Egk+1

[Γ(X)] , ∀ k = 0, 1, . . . ,

where Eθk+1
[·] and Egk+1

[·] denote the expectations taken with respect to f(·, θk+1) and

gk+1(·), respectively.

Proof: Define Jk(θ, γ̄k+1) :=
∫
X [S(H(x))]k I{H(x)≥γ̄k+1} ln f(x, θ)ν(dx). Since f(·, θ)

belongs to the NEF, we can write

Jk(θ, γ̄k+1) =
∫

X
[S(H(x))]k I{H(x)≥γ̄k+1} lnh(x)ν(dx)

+
∫

X
[S(H(x))]k I{H(x)≥γ̄k+1}θ

T Γ(x)ν(dx)

−
∫

X
[S(H(x))]k I{H(x)≥γ̄k+1} ln

[∫

X
exp

(
θT Γ(x)

)
h(x)ν(dx)

]
ν(dx).

Thus the gradient of Jk(θ, γ̄k+1) with respect to θ can be expressed as

∇θJk(θ, γ̄k+1) =
∫

X
[S(H(x))]k I{H(x)≥γ̄k+1}Γ(x)ν(dx)

−
∫
X eθT Γ(x)Γ(x)h(x)ν(dx)∫
X eθT Γ(x)h(x)ν(dx)

∫

X
[S(H(x))]k I{H(x)≥γ̄k+1}ν(dx),

where the validity of the interchange of derivative and integral above is guaranteed by

assumptions A5 and the dominated convergence theorem; see e.g., [69] for further details.

By A3 and the non-decreasing property of the sequence {γ̄k}, it turns out that the

gradient ∇θJk(θ, γ̄k+1) is finite and thus well-defined. Moreover, since ρ > 0, the set

{x : H(x) ≥ γ̄k+1}∩X will have a strictly positive Lebesgue/counting measure. It follows

that we must have
∫
X [S(H(x))]k I{H(x)≥γ̄k+1}ν(dx) > 0.

By setting ∇θJk(θ, γ̄k+1) = 0, it immediately follows that

∫

X

[S(H(x))]kI{H(x)≥γ̄k+1}Γ(x)∫
X [S(H(x))]kI{H(x)≥γ̄k+1}ν(dx)

ν(dx) =
∫

X

eθT Γ(x)h(x)Γ(x)∫
X eθT Γ(x)h(x)ν(dx)

ν(dx),

108

and by definitions of gk+1(·) (cf. proof of Lemma 5.3.1) and f(·, θ), we have

Egk+1
[Γ(X)] = Eθ[Γ(X)]. (5.5)

By assumption A4, since θk+1 is the optimal solution of the problem

argmax
θ

Jk(θ, γ̄k+1),

it must satisfy equation (5.5). Therefore we conclude that

Egk+1
[Γ(X)] = Eθk+1

[Γ(X)], ∀ k = 0, 1,

We have the following convergence result for the MRAS0 algorithm.

Theorem 5.3.1 Let {θk, k = 1, 2, . . .} be the sequence of parameters generated by MRAS0.

If ε > 0 and assumptions A1−A5 are satisfied, then

lim
k→∞

Eθk
[Γ(X)] = Γ(x∗), (5.6)

where the limit is component-wise.

Remark 5.3.1 The convergence result in Theorem 5.3.1 is much stronger than it may

appear to be. For example, when Γ(x) is a one-to-one function (which is the case for

many NEFs used in practice), the convergence result (5.6) can be equivalently written

as Γ−1 (limk→∞Eθk
[Γ(X)]) = x∗. Also note that for some particular p.d.f.’s/p.m.f.’s, the

solution vector x itself will be a component of Γ(x) (e.g., multivariate normal distribution).

Under these circumstances, we can interpret (5.6) as limk→∞Eθk
[X] = x∗. Another

special case of particular interest is when the components of the random vector X =

(X1, . . . , Xn) are independent, i.e., each has a univariate p.d.f./p.m.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))h(xi), ϑi ∈ <, ∀ i = 1, . . . , n.

109

In this case, since the distribution of the random vector X is simply the product of the

marginal distributions, we will clearly have Γ(x) = x. Thus, (5.6) is again equivalent

to limk→∞Eθk
[X] = x∗, where θk := (ϑk

1, . . . , ϑ
k
n), and ϑk

i is the value of ϑi at the kth

iteration.

In Lemma 5.3.2, we have already established a relationship between reference models

{gk(·)} and the sequence of sampling distributions {f(·, θk)}. Therefore, proving Theo-

rem 5.3.1 amounts to showing that limk→∞Egk
[Γ(X)] = Γ(x∗).

Proof of Theorem 5.3.1: Recall from Lemma 5.3.1 that

gk+1(x) :=
S(H(x))I{H(x)≥γ̄k+1}gk(x)

Egk

[
S(H(X))I{H(X)≥γ̄k+1}

] ∀x ∈ X , k = 1, 2,

Thus

Egk+1

[
S(H(X))I{H(X)≥γ̄k+1}

]
=

Egk

[
[S(H(X))]2I{H(X)≥γ̄k+1}

]

Egk

[
S(H(X))I{H(X)≥γ̄k+1}

]

≥ Egk

[
S(H(X))I{H(X)≥γ̄k+1}

]
. (5.7)

Since γ̄k ≤ H(x∗) ∀ k, and each strict increment in the sequence {γ̄k} is lower

bounded by the quantity ε > 0, there exists a finite N such that γ̄k+1 = γ̄k, ∀ k ≥ N .

Before we proceed any further, we need to distinguish between two cases, γ̄N = H(x∗)

and γ̄N < H(x∗).

Case 1. If γ̄N = H(x∗) (note that since ρ > 0, this could only happen when the solution

space is discrete), then from the definition of gk+1(·) (see Lemma 5.3.1), we obviously have

gk+1(x) = 0, ∀x 6= x∗,

and

gk+1(x∗) =
[S(H(x∗))]kI{H(x)=H(x∗)}∫

X [S(H(x))]kI{H(x)=H(x∗)}ν(dx)
= 1 ∀ k ≥ N .

110

Hence it follows immediately that

Egk+1
[Γ(X)] = Γ(x∗) ∀ k ≥ N .

Case 2. If γ̄N < H(x∗), then from (5.7), we have

Egk+1

[
S(H(X))I{H(X)≥γ̄k+2}

] ≥ Egk

[
S(H(X))I{H(X)≥γ̄k+1}

]
, ∀ k ≥ N − 1, (5.8)

i.e., the sequence
{
Egk

[
S(H(X))I{H(X)≥γ̄k+1}

]
, k = 1, 2, . . .

}
converges.

Now we show that the limit of the above sequence is S(H(x∗)). To do so, we proceed

by contradiction and assume that

S∗ := lim
k→∞

Egk

[
S(H(X))I{H(X)≥γ̄k+1}

]
< S∗ := S(H(x∗)). (5.9)

Define the set A as

A := {x : H(x) ≥ γ̄N } ∩
{

x : S(H(x)) ≥ S∗ + S∗
2

}
∩ X .

Since S(·) is strictly increasing, its inverse S−1(·) exists. Thus A can be reformulated as

A =
{

x : H(x) ≥ max
{

γ̄N , S−1
(S∗ + S∗

2

)}}
∩ X .

And since γ̄N < H(x∗), A has a strictly positive Lebesgue/discrete measure by A1.

Notice that gk(·) can be rewritten as

gk(x) =
k−1∏

i=1

S(H(x))I{H(x)≥γ̄i+1}
Egi

[
S(H(X))I{H(X)≥γ̄i+1}

] · g1(x).

Since limk→∞
S(H(x))I{H(x)≥γ̄k+1}

Egk

h
S(H(X))I{H(X)≥γ̄k+1}

i =
S(H(x))I{H(x)≥γ̄N }

S∗ > 1, ∀x ∈ A, we conclude that

lim
k→∞

gk(x) = ∞, ∀x ∈ A.

Thus, by Fatou’s lemma, we have

1 = lim inf
k→∞

∫

X
gk(x)ν(dx) ≥ lim inf

k→∞

∫

A
gk(x)ν(dx) ≥

∫

A
lim inf
k→∞

gk(x)ν(dx) = ∞,

111

which is a contradiction. Hence, it follows that

lim
k→∞

Egk

[
S(H(X))I{H(X)≥γ̄k+1}

]
= S∗. (5.10)

In order to show that limk→∞Egk
[Γ(X)] = Γ(x∗), we now bound the difference

between Egk
[Γ(X)] and Γ(x∗). Note that ∀ k ≥ N , we have

‖Egk
[Γ(X)]− Γ(x∗)‖ ≤

∫

X
‖Γ(x)− Γ(x∗)‖gk(x)ν(dx)

=
∫

C
‖Γ(x)− Γ(x∗)‖gk(x)ν(dx), (5.11)

where C := {x : H(x) ≥ γ̄N } ∩ X is the support of gk(·), ∀ k ≥ N .

By the assumption on Γ(·) in Definition 5.3.1, for any given ζ > 0, there exists a

δ > 0 such that ‖x−x∗‖ < δ implies ‖Γ(x)−Γ(x∗)‖ < ζ. With Aδ defined from assumption

A2, we have from (5.11),

‖Egk
[Γ(X)]− Γ(x∗)‖ ≤

∫

Ac
δ∩C

‖Γ(x)− Γ(x∗)‖gk(x)ν(dx)

+
∫

Aδ∩C
‖Γ(x)− Γ(x∗)‖gk(x)ν(dx)

≤ ζ +
∫

Aδ∩C
‖Γ(x)− Γ(x∗)‖gk(x)ν(dx), ∀ k ≥ N . (5.12)

The rest of the proof amounts to showing that the second term in (5.12) is also bounded.

Clearly the term ‖Γ(x) − Γ(x∗)‖ is bounded on the set Aδ ∩ C. We only need to find a

bound for gk(x).

By A2, we have

sup
x∈Aδ∩C

H(x) ≤ sup
x∈Aδ

H(x) < H(x∗).

Define Sδ := S∗ − S(supx∈Aδ
H(x)). Since S(·) is strictly increasing, we have Sδ > 0.

Thus, it follows that

S(H(x)) ≤ S∗ − Sδ, ∀x ∈ Aδ ∩ C. (5.13)

112

On the other hand, from (5.8) and (5.10), there exists N̄ ≥ N such that ∀ k ≥ N̄

Egk

[
S(H(X))I{H(X)≥γ̄k+1}

] ≥ S∗ − 1
2
Sδ. (5.14)

Observe that gk(x) can be alternatively expressed as

gk(x) =
k−1∏

i=N̄

S(H(x))I{H(x)≥γ̄i+1}
Egi

[
S(H(X))I{H(X)≥γ̄i+1}

] · gN̄ (x), ∀ k ≥ N̄ .

Thus, it follows from (5.13) and (5.14) that

gk(x) ≤
(

S∗ − Sδ

S∗ − Sδ/2

)k−N̄
· gN̄ (x), ∀x ∈ Aδ ∩ C, ∀ k ≥ N̄ .

Therefore,

‖Egk
[Γ(X)]− Γ(x∗)‖ ≤ ζ + sup

x∈Aδ∩C
‖Γ(x)− Γ(x∗)‖

∫

Aδ∩C
gk(x)ν(dx)

≤ ζ + sup
x∈Aδ∩C

‖Γ(x)− Γ(x∗)‖
(

S∗ − Sδ

S∗ − Sδ/2

)k−N̄
, ∀ k ≥ N̄

=
(
1 + sup

x∈Aδ∩C
‖Γ(x)− Γ(x∗)‖

)
ζ, ∀ k ≥ N̂ ,

where N̂ is given by N̂ := max
{N̄ ,

⌈N̄ + ln ζ/ ln
(

S∗−Sδ
S∗−Sδ/2

)⌉}
.

And since ζ is arbitrary, we have

lim
k→∞

Egk
[Γ(X)] = Γ(x∗).

The proof is completed by applying Lemma 5.3.2 to both Case 1 and Case 2.

Remark 5.3.2 Note that for problems with finite solution spaces, assumptions A1 and

A2 are automatically satisfied. Furthermore, if we take the input parameter ε = 0, then

step 2 of MRAS0 is equivalent to γ̄k+1 = max1≤i≤k+1 γi. Thus, {γ̄k} is non-decreasing

and each strict increment in the sequence is bounded from below by

min
H(x)6=H(y)

x,y∈X

|H(x)−H(y)|.

Therefore, the ε > 0 assumption in Theorem 5.3.1 can be relaxed to ε ≥ 0.

113

We now address some of the special cases discussed in Remark 5.3.1.

Corollary 5.3.2 (Multivariate Normal) For continuous optimization problems in <n,

if multivariate normal p.d.f.’s are used in MRAS0, i.e.,

f(x, θk) =
1√

(2π)n|Σk|
exp

(
−1

2
(x− µk)T Σ−1

k (x− µk)
)

, (5.15)

where θk := (µk; Σk), ε > 0, and assumptions A1−A4 are satisfied, then

lim
k→∞

µk = x∗, and lim
k→∞

Σk = 0n×n,

where 0n×n represents an n-by-n zero matrix.

Proof: By Lemma 5.3.2, it is easy to show that

µk+1 = Egk+1
(X), ∀ k = 0, 1, . . . ,

and

Σk+1 = Egk+1

[
(X − µk+1)(X − µk+1)T

]
, ∀ k = 0, 1,

The rest of the proof amounts to showing that

lim
k→∞

Egk
(X) = x∗, and lim

k→∞
Egk

[
(X − µk)(X − µk)T

]
= 0n×n,

which is the same as the proof of Theorem 5.3.1.

Remark 5.3.3 Corollary 5.3.2 shows that in the multivariate normal case, the sequence

of parameterized p.d.f.’s will converge to a degenerate p.d.f. concentrated only on the

optimal solution. In this case the parameters are updated as

µk+1 =
Eθk

[{[S(H(X))]k/f(X, θk)}I{H(X)≥γ̄k+1}X
]

Eθk

[{[S(H(X))]k/f(X, θk)}I{H(X)≥γ̄k+1}
] , (5.16)

and

Σk+1 =
Eθk

[{[S(H(X))]k/f(X, θk)}I{H(X)≥γ̄k+1}(X − µk+1)(X − µk+1)T
]

Eθk

[{[S(H(X))]k/f(X, θk)}I{H(X)≥γ̄k+1}
] , (5.17)

114

where f(x, θk) is given by (5.15). Note that when the solution space X is a (simple)

constrained region in <n, one straightforward approach is to use the acceptance-rejection

method (cf. e.g., [51]). And it is easy to verify that the parameter updating rules remain

the same.

Corollary 5.3.3 (Independent Univariate) If the components of the random vector

X = (X1, . . . , Xn) are independent, each has a univariate p.d.f./p.m.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))h(xi), ϑi ∈ <, ∀ i = 1, . . . , n,

ε > 0, and A1−A5 are satisfied, then

lim
k→∞

Eθk
[X] = x∗, where θk := (ϑk

1, . . . , ϑ
k
n).

5.4 An Alternative View of the Cross-Entropy Method

In this Chapter, we give an alternative interpretation of the CE method for optimiza-

tion and discuss its similarities and differences with the MRAS0 algorithm. Specifically, we

show that the CE method can also be viewed as a search strategy guided by a sequence

of reference models. From this particular point of view, we establish some important

properties of the CE method.

The deterministic version of the CE method for solving (5.1) can be summarized as

follows.

Algorithm CE0: Deterministic Version of the CE Method

1. Choose the initial p.d.f./p.m.f. f(·, θ0), θ0 ∈ Θ. Specify the parameter ρ ∈ (0, 1] and

a non-decreasing function ϕ(·) : < → <+ ∪ {0}. Set k = 0.

115

2. Calculate the (1− ρ)-quantile γk+1 as

γk+1 := sup {l : Pθk
(H(X) ≥ l) ≥ ρ} .

3. Compute the new parameter

θk+1 := argmax
θ∈Θ

Eθk

[
ϕ(H(X))I{H(X)≥γk+1} ln f(X, θ)

]
.

4. If a specified stopping rule is satisfied, then terminate; otherwise set k = k + 1 and

go to Step 2.

In CE0, choosing ϕ(H(x)) = 1 gives the standard CE method, whereas choosing ϕ(H(x)) =

H(x) (if H(x) ≥ 0, ∀x ∈ X) gives an extended version of the standard CE method (cf.

e.g., [26]).

One resemblance between CE and MRAS0 is the use of the parameter ρ and the

(1−ρ)-quantile in both algorithms. However, the fundamental difference is that in CE, the

problem of estimating the optimal value of the parameter is broken down into a sequence

of simple estimation problems, in which the parameter ρ assumes a crucial role. Since a

small change in the values of ρ may disturb the whole estimation process and affect the

quality of the resulting estimates, the convergence of CE cannot be always guaranteed

unless the value of ρ is chosen sufficiently small (cf. [26], [41]; also Example 5.4.1 below),

whereas the theoretical convergence of MRAS0 is unaffected by the parameter ρ.

The following lemma provides a unified view of MRAS and CE; it shows that by

appropriately defining a sequence of implicit reference models {gce
k (·) : k = 1, 2, . . .}, the

CE method can be recovered, and the parameter updating in CE is guided by this sequence

of models.

116

Lemma 5.4.1 The parameter θk+1 computed at the kth iteration of the CE0 algorithm

minimizes the KL-divergence D (
gce
k+1, f(·, θ)), where

gce
k+1(x) :=

ϕ(H(x))I{H(x)≥γk+1}f(x, θk)

Eθk

[
ϕ(H(X))I{H(X)≥γk+1}

] ∀x ∈ X , k = 0, 1, (5.18)

Proof: Similar to the proof of Lemma 5.3.1.

The key observation to note is that in contrast to MRAS0, the sequence of reference models

in CE depends explicitly on the family of parameterized p.d.f’s/p.m.f’s {f(·, θk)} used.

Since gce
k+1(·) is obtained by tilting f(·, θk) with the performance function, it improves the

expected performance in the sense that

Egce
k+1

[
ϕ(H(X))I{H(X)≥γk+1}

]
=

Eθk

[
(ϕ(H(X))I{H(X)≥γk+1})

2
]

Eθk

[
ϕ(H(X))I{H(X)≥γk+1}

]

≥ Eθk

[
ϕ(H(X))I{H(X)≥γk+1}

]
.

Thus, it is reasonable to expect that the projection of gce
k+1(·) on {f(·, θ) : θ ∈ Θ} (i.e.,

f(·, θk+1)) also improves the expected performance. This result is formalized in the fol-

lowing theorem.

Theorem 5.4.1 For the CE0 algorithm, we have

Eθk+1

[
ϕ(H(X))I{H(X)≥γk+1}

] ≥ Eθk

[
ϕ(H(X))I{H(X)≥γk+1}

]
, ∀ k = 0, 1,

Proof: Define ĝce
k+2(·) as

ĝce
k+2(x) :=

ϕ(H(x))I{H(x)≥γk+1}f(x, θk+1)

Eθk+1

[
ϕ(H(X))I{H(X)≥γk+1}

] ∀x ∈ X , k = 0, 1,

We have from the definition of gce
k+1(·),

D(gce
k+1, ĝ

ce
k+2) = Egce

k+1

[
ln

gce
k+1(X)

ĝce
k+2(X)

]

= Egce
k+1

[
ln

f(X, θk)
f(X, θk+1)

]
+ ln

Eθk+1
[ϕ(H(X))I{H(X)≥γk+1}]

Eθk
[ϕ(H(X))I{H(X)≥γk+1}]

.

117

Since θk+1 minimizes the K-L divergence D(gce
k+1, f(·, θ)) (cf. Lemma 5.4.1), it follows that

0 ≤ D(gce
k+1, f(·, θk))−D(gce

k+1, f(·, θk+1))

≤ D(gce
k+1, f(·, θk))−D(gce

k+1, f(·, θk+1)) +D(gce
k+1, ĝ

ce
k+2)

= Egce
k+1

[
ln

f(X, θk+1)
f(X, θk)

]
+ Egce

k+1

[
ln

f(X, θk)
f(X, θk+1)

]
+ ln

Eθk+1
[ϕ(H(X))I{H(X)≥γk+1}]

Eθk
[ϕ(H(X))I{H(X)≥γk+1}]

= ln
Eθk+1

[ϕ(H(X))I{H(X)≥γk+1}]
Eθk

[ϕ(H(X))I{H(X)≥γk+1}]

Therefore

Eθk+1
[ϕ(H(X))I{H(X)≥γk+1}] ≥ Eθk

[ϕ(H(X))I{H(X)≥γk+1}].

In the standard CE method, Theorem 5.4.1 implies the monotonicity of the sequence

{γk : k = 1, 2, . . .}.

Lemma 5.4.2 For the standard CE method (i.e., CE0 with ϕ(H(x)) = 1), we have

γk+2 ≥ γk+1, ∀ k = 0, 1,

Proof: By Theorem 5.4.1, we have

Eθk+1
[I{H(X)≥γk+1}] ≥ Eθk

[I{H(X)≥γk+1}],

i.e.,

Pθk+1
(H(X) ≥ γk+1) ≥ Pθk

(H(X) ≥ γk+1) ≥ ρ.

The result follows by the definition of γk+2 (See Step 2 of the CE0 algorithm).

Note that since γk ≤ H(x∗) for all k, Lemma 5.4.2 implies that the sequence {γk : k = 1, . . .}

generated by the standard CE method converges. However, depending on the p.d.f’s/p.m.f’s

118

and the parameter ρ used, the sequence {γk} may not converge to H(x∗) or even to a small

neighborhood of H(x∗) (cf. Examples 4.1 and 4.2 below).

Similar to MRAS0 (cf. Lemma 5.3.2), when f(·, θ) belongs to the natural exponential

families, the following lemma relates the sequence {f(·, θk), k = 1, 2, . . .} to the sequence

of reference models {gce
k (·) : k = 1, 2, . . .}.

Lemma 5.4.3 Assume that:

1. There exists a compact set Π̄ such that the level set {x : H(x) ≥ γk} ∩ X ⊆ Π̄ for

all k = 1, 2, . . . , where γk = supl{l : Pθk−1
(H(X) ≥ l) ≥ ρ} is defined as in the CE0

algorithm.

2. The parameter θk+1 computed at step 3 of the CE0 algorithm is an interior point of

Θ for all k.

3. Assumptions A5 is satisfied.

Then

Eθk+1
[Γ(X)] = Egce

k+1
[Γ(X)] , ∀ k = 0, 1,

The above lemma indicates that the behavior of the sequence of p.d.f’s/p.m.f’s {f(·, θk)}

is closely related to the properties of the sequence of reference models. To understand

this, consider the particular case where Γ(x) = x. If the CE method converges to

the optimal solution in the sense that limk→∞Eθk
[H(X)] = H(x∗), then we must have

limk→∞Eθk
[X] = x∗, since H(x) < H(x∗) ∀x 6= x∗. Thus, by Lemma 5.4.3, a necessary

condition for this convergence is limk→∞Egce
k

[X] = x∗. However, unlike MRAS0, where

the convergence of the sequence of reference models to an optimal degenerate distribution

is guaranteed, the convergence of the sequence {gce
k (·) : k = 1, 2, . . .} relies on the choices

119

of the families of distributions {f(·, θ)} and the values of the parameter ρ used (cf. (5.18)).

We now illustrate this issue by two simple examples.

Example 5.4.1 (The Standard CE Method) Consider maximizing the function H(x)

given by

H(x) =





0 x ∈ {(0, 1), (1, 0)} ,

1 x = (0, 0),

a x = (1, 1),

(5.19)

where a > 1, and x := (x1, x2) ∈ X := {(0, 0), (0, 1), (1, 0), (1, 1)}.

If we take 0.25 < ρ ≤ 0.5 and an initial p.m.f.

f(x, θ0) = p0
x1(1− p0)1−x1q0

x2(1− q0)1−x2 with θ0 = (p0, q0) = (0.5, 0.5),

then since Pθ0(x ∈ {(0, 0), (1, 1)}) = 0.5 ≥ ρ, we have γ1 = 1. It is also straightforward to

see that

gce
1 (x) =





0.5 x = (0, 0) or (1, 1),

0 otherwise,

and the parameter θ1 computed at step 3 (with ϕ(H(x)) = 1) of CE0 is given by θ1 =

(0.5, 0.5). Proceeding iteratively, we have γk = 1 and gce
k (x) = gce

1 (x) ∀ k = 1, 2, . . ., i.e.,

the algorithm does not converge to a degenerate distribution at the optimal solution.

On the other hand, if we choose ρ ≤ 0.25, then it turns out that γk = a and

gce
k (x) =





1 x = (1, 1),

0 otherwise.

for all k = 1, 2, . . ., which means the algorithm converges to the optimum.

Example 5.4.2 (The Extended Version of the CE Method) Consider solving prob-

lem (5.19) by CE0 with the performance function ϕ(H(x)) = H(x). We use the same

family of p.m.f’s as in Example 5.4.1 with the initial parameter θ0 = (1
1+a , 1

1+a). If the

120

values of ρ are chosen from the interval
(

1
(1+a)2

, a2+1
(1+a)2

)
, then we have θk = (1

1+a , 1
1+a),

γk = 1, and

gce
k (x) =





a
1+a x = (0, 0),

1
1+a x = (1, 1),

0 otherwise,

for all k = 1, 2,

On the other hand, if we choose ρ = 0.5 and θ0 = (0.5, 0.5), then it is easy to verify

that limk→∞ γk = a and

lim
k→∞

gce
k (x) =





1 x = (1, 1),

0 otherwise.

5.5 The MRAS1 Algorithm (Monte Carlo Version)

The MRAS0 algorithm describes the idealized situation where quantile values and

expectations can be evaluated exactly. In practice, we will usually resort to its stochastic

counterpart, where only a finite number of samples are used and expected values are

replaced with their corresponding sample averages. For example, step 3 of MRAS0 will

be replaced with

θ̃k+1 = argmax
θ∈Θ

1
N

N∑

i=1

[S(H(Xi))]k

f(Xi, θ̃k)
I{H(Xi)≥γ̄k+1} ln f(Xi, θ), (5.20)

where X1, . . . , XN are i.i.d. random samples generated from f(x, θ̃k), θ̃k is the estimated

parameter vector computed at the previous iteration, and γ̄k+1 is a threshold determined

by the sample (1− ρ)-quantile of H(X1), . . . , H(XN).

However, the theoretical convergence can no longer be guaranteed for a simple sto-

chastic counterpart of MRAS0. In particular, the set {x : H(x) ≥ γ̄k+1} involved in (5.20)

may be empty, since all the random samples generated at the current iteration may be

121

much worse than those generated at the previous iteration. Thus, we can only expect the

algorithm to converge if the expected values in the MRAS0 algorithm are closely approxi-

mated. Obviously, the quality of the approximation will depend on the number of samples

to be used in the simulation, but it is difficult to determine in advance the appropriate

number of samples. A sample size too small will cause the algorithm to fail to converge

and result in poor quality solutions, whereas a sample size too large may lead to high

computational cost.

As mentioned earlier, the parameter ρ, to some extent, will affect the performance

of the algorithm. Large values of ρ mean that almost all samples generated, regardless of

their performances, will be used to update the probabilistic model, which could slow down

the convergence process. On the other hand, since a good estimate will necessarily require

a reasonable amount of valid samples, the quantity ρN (i.e., the approximate amount of

samples that will be used in parameter updating) cannot be too small. Thus, small values

of ρ will require a large number of samples to be generated at each iteration and may

result in significant simulation efforts. For a given problem, although it is clear that we

should avoid those values of ρ that are either too close to 1 or too close to 0, to determine

a priori which ρ gives a satisfactory performance may be difficult.

In order to address the above difficulties, we adopt the same idea as in [41] and

propose a modified Monte Carlo version of MRAS0 in which the sample size N is adaptively

increasing and the parameter ρ is adaptively decreasing.

5.5.1 Algorithm Description

Roughly speaking, the MRAS1 algorithm is essentially a Monte Carlo version of

MRAS0 except that the parameter ρ and the sample size N may change from one iteration

122

Algorithm MRAS1 – Monte Carlo version

• Initialization: Specify ρ0 ∈ (0, 1], an initial sample size N0 > 1, ε ≥ 0, α > 1, a mixing

coefficient λ ∈ (0, 1], a strictly increasing function S(·) : < → <+, and an initial p.d.f.

f(x, θ0) > 0 ∀x ∈ X . Set θ̃0 ← θ0, k ← 0.

• Repeat until a specified stopping rule is satisfied:

1. Generate Nk i.i.d. samples Xk
1 , . . . , Xk

Nk
according to f̃(·, θ̃k) := (1 − λ)f(·, θ̃k) +

λf(·, θ0).

2. Compute the sample (1 − ρk)-quantile γ̃k+1(ρk, Nk) := H(d(1−ρk)Nke), where dae is

the smallest integer greater than a, and H(i) is the ith order statistic of the sequence

{
H(Xk

i), i = 1, . . . , Nk

}
.

3. If k = 0 or γ̃k+1(ρk, Nk) ≥ γ̄k + ε
2 , then

3a. Set γ̄k+1 ← γ̃k+1(ρk, Nk), ρk+1 ← ρk, Nk+1 ← Nk.

else, find the largest ρ̄ ∈ (0, ρk) such that γ̃k+1(ρ̄, Nk) ≥ γ̄k + ε
2 .

3b. If such a ρ̄ exists, then set γ̄k+1 ← γ̃k+1(ρ̄, Nk), ρk+1 ← ρ̄, Nk+1 ← Nk.

3c. else (if no such ρ̄ exists), set γ̄k+1 ← γ̄k, ρk+1 ← ρk, Nk+1 ← dαNke.

endif

4. Compute θ̃k+1 as

θ̃k+1 = arg max
θ∈Θ

1
Nk

Nk∑

i=1

[S(H(Xk
i))]k

f̃(Xk
i , θ̃k)

I{H(Xk
i)≥γ̄k+1} ln f(Xk

i , θ). (5.21)

5. Set k ← k + 1.

to another. The rate of increase in the sample size is controlled by an extra parameter

α > 1, specified during the initialization step. For example, if the initial sample size is

N0, then after k increments, the sample size will be approximately dαkN0e.

123

At each iteration k, random samples are drawn from the density/mass function

f̃(·, θ̃k), which is a mixture of the initial density/mass f(·, θ0) and the density/mass cal-

culated from the previous iteration f(·, θ̃k) (cf. e.g., [9] for a similar idea in the context

of multiarmed bandit models). We assume that f(·, θ0) satisfies the following condition:

Assumption A3′. There exists a compact set Πε such that {x : H(x) ≥ H(x∗)−ε}∩X ⊆

Πε. Moreover, the initial density/mass function f(x, θ0) is bounded away from zero on

Πε, i.e., f∗ := infx∈Πε f(x, θ0) > 0.

In practice, the initial density f(·, θ0) can be chosen according to some prior knowledge of

the problem structure; however, if nothing is known about where the good solutions are,

this density should be chosen in such a way that each region in the solution space will have

an (approximately) equal probability of being sampled. For instance, when X is finite,

one simple choice of f(·, θ0) is the uniform distribution. Intuitively, mixing in the initial

density forces the algorithm to explore the entire solution space and to maintain a global

perspective during the search process. Also note that if λ = 1, then random samples will

always be drawn from the initial density, in which case, MRAS1 becomes a pure random

sampling approach.

At step 2, the sample (1−ρk)-quantile γ̃k+1 is calculated by first ordering the sample

performances H(Xk
i), i = 1, . . . , Nk from smallest to largest, H(1) ≤ H(2) ≤ · · · ≤ H(Nk),

and then taking the d(1 − ρk)Nketh order statistic. We use the function γ̃k+1(ρk, Nk) to

emphasize the dependencies of γ̃k+1 on both ρk and Nk, so that different sample quantile

values used during one iteration can be distinguished by their arguments.

Step 3 of MRAS1 is used to extract a sequence of non-decreasing thresholds {γ̄k, k =

1, 2 . . .} from the sequence of sample quantiles {γ̃k}, and to determine the appropriate

124

values of ρk+1 and Nk+1 to be used in subsequent iterations. This step is carried out as

follows. At each iteration k, we first check whether the inequality γ̃k+1(ρk, Nk) ≥ γ̄k + ε/2

is satisfied, where γ̄k is the threshold value used in the previous iteration. If the inequality

holds, then it means that both the current ρk value and the current sample size Nk are

satisfactory; thus we proceed to step 3a and update the parameter vector θ̃k+1 in step 4

by using γ̃k+1(ρk, Nk). Otherwise, it indicates that either ρk is too large or the sample

size Nk is too small. To determine which, we fix the sample size Nk and check if there

exists a smaller ρ̄ < ρk such that the above inequality can be satisfied with the new sample

(1 − ρ̄)-quantile. If such a ρ̄ does exist, then the current sample size Nk is still deemed

acceptable, and we only need to decrease the ρk value. Accordingly, the parameter vector

is updated in step 4 by using the sample (1− ρ̄)-quantile. On the other hand, if no such ρ̄

can be found, then the parameter vector is updated by using the threshold γ̄k calculated

during the previous iteration and the sample size Nk is increased by a factor α.

We make the following assumption about the parameter vector θ̃k+1 computed at

step 4:

Assumption A4′. The parameter vector θ̃k+1 computed at step 4 of MRAS1 is an interior

point of Θ for all k.

It is important to note that the set
{
x : H(x) ≥ γ̄k+1, x ∈ {Xk

1 , . . . , Xk
Nk
}} could be empty

if step 3c is visited. If this happens, the right hand side of (5.21) will be equal to zero, so

any θ ∈ Θ is a maximizer, and we define θ̃k+1 := θ̃k in this case.

5.5.2 Global Convergence

In this Chapter, we discuss the convergence properties of the MRAS1 algorithm for

natural exponential families (NEFs). To be specific, we will explore the relations between

125

MRAS1 and MRAS0 and show that with high probability, the gaps (e.g., approximation

errors incurred by replacing expected values with sample averages) between the two al-

gorithms can be made small enough such that the convergence analysis of MRAS1 can

be ascribed to the convergence analysis of the MRAS0 algorithm; thus, our analysis relies

heavily on the results obtained in Chapter 5.3.2. Throughout this Chapter, we denote

by Peθk
(·) and Eeθk

[·] the respective probability and expectation taken with respect to the

p.d.f./p.m.f. f(·, θ̃k), and P̃eθk
(·) and Ẽeθk

[·] the respective probability and expectation

taken with respect to f̃(·, θ̃k). Note that since the sequence {θ̃k} results from random

samples generated at each iteration of MRAS1, these quantities are also random.

Let g̃k+1(·), k = 0, 1, . . . , be defined by

g̃k+1(x) :=





[[S(H(x))]k/ ef(x,eθk)]I{H(x)≥γ̄k+1}PNk
i=1[[S(H(Xk

i))]k/ ef(Xk
i ,eθk)]I{H(Xk

i
)≥γ̄k+1}

if {x : H(x) ≥ γ̄k+1, x ∈ Λk} 6= ∅,

g̃k(x) otherwise,

(5.22)

where Λk :=
{
Xk

1 , . . . , Xk
Nk

}
is the population of candidate solutions generated at iteration

k, and γ̄k+1 is given by γ̄k+1 :=





γ̃k+1(ρk, Nk) if step 3a is visited,

γ̃k+1(ρ̄, Nk) if step 3b is visited,

γ̄k if step 3c is visited.

Similar to Lemma 5.3.2, the following lemma shows the connection between f(·, θ̃k+1)

and g̃k+1(·).

Lemma 5.5.1 If assumptions A4′ and A5 hold, then the parameter θ̃k+1 computed at step

3 of MRAS1 satisfies

Eeθk+1
[Γ(X)] = Eegk+1

[Γ(X)] , ∀ k = 0, 1, . . . ,

Note that the region {x : H(x) ≥ γ̄k+1} will become smaller and smaller as γ̄k+1

126

increases. Lemma 5.5.1 shows that the sequence of sampling p.d.f’s/p.m.f’s {f(·, θ̃k+1)}

is adapted to this sequence of shrinking regions. For example, consider the case where

{x : H(x) ≥ γ̄k+1} is convex and Γ(x) = x. Since Eegk+1
[X] is the convex combination of

Xk
1 , . . . , Xk

Nk
, the lemma implies that Eeθk+1

[X] ∈ {x : H(x) ≥ γ̄k+1}. Thus, it is natural

to expect that the random samples generated at the next iteration will fall in the region

{x : H(x) ≥ γ̄k+1} with large probabilities (e.g., consider the normal p.d.f. where its mode

is equal to its mean). In contrast, if we use a fixed sampling distribution for all iterations

as in pure random sampling (i.e., the λ = 1 case), then sampling from this sequence of

shrinking regions could become a substantially difficult problem in practice.

Next, we present a useful lemma, which shows the convergence of the quantile

estimates when random samples are generated from a sequence of different distributions.

Lemma 5.5.2 For any given ρ† ∈ (0, 1), let γ†k be the set of (1 − ρ†)-quantiles of H(X)

with respect to the p.d.f./p.m.f. f̃(·, θ̃k), and let γ̃†k(ρ
†, Nk) be the corresponding sample

quantile of H(Xk
1), . . . , H(Xk

Nk
), where f̃(·, θ̃k) and Nk are defined as in MRAS1, and

Xk
1 , . . . , Xk

Nk
are i.i.d. with common density f̃(·, θ̃k). Then the distance from γ̃†k(ρ

†, Nk)

to γ†k tends to zero as k →∞ w.p.1.

Proof: Our proof is based on the proof of Lemma A1 in [69]. Notice that for given ρ†

and f̃(·, θ̃k), γ†k can be obtained as the optimal solution of the following problem (cf. [41])

min
v∈V

`k(v), (5.23)

where V = [0,H(x∗)], `k(v) := Ẽeθk
φ(H(X), v), and

φ(H(x), v) :=





(1− ρ†)(H(x)− v) if v ≤ H(x),

ρ†(v −H(x)) if v ≥ H(x).

127

Similarly, the sample quantile γ̃†k(ρ
†, Nk) can be expressed as the solution to the sample

average approximation of (5.23),

min
v∈V

¯̀
k(v), (5.24)

where ¯̀
k(v) := 1

Nk

∑Nk
j=1 φ(H(Xk

j), v) and Xk
1 , . . . , Xk

Nk
are i.i.d. with density f̃(·, θ̃k).

Since the function φ(H(x), v) is bounded and continuous on V for all x ∈ X , it is

not difficult to show that `k(v) is continuous on V (cf. [69]).

Now consider a point v ∈ V and let Bi ⊆ V be a sequence of open balls containing

v such that Bi+1 ⊆ Bi ∀ i and limL→∞ ∩L
i=1Bi = v. Define the function

bi(H(x)) := sup {|φ(H(x), u)− φ(H(x), v)| : u ∈ Bi} .

We have from the dominated convergence theorem

lim
i→∞

Ẽeθk
[bi(H(X))] = Ẽeθk

[lim
i→∞

bi(H(X))] = 0 ∀ k = 1, 2, . . . , (5.25)

where the last equality follows from the fact that φ(H(x), v) is continuous on V.

Since

|¯̀k(u)− ¯̀
k(v)| ≤ 1

Nk

Nk∑

j=1

|φ(H(Xk
j), u)− φ(H(Xk

j), v)|,

it follows that

sup
u∈Bi

|¯̀k(u)− ¯̀
k(v)| ≤ 1

Nk

Nk∑

j=1

bi(H(Xk
j)). (5.26)

We now show that 1
Nk

∑Nk
j=1 bi(H(Xk

j)) → Ẽeθk
[bi(H(X))] as k →∞ w.p.1.

Let M be an upperbound for bi(H(x)), and let Tε := d2[H(x∗)−M]
ε e, where M is a

lower bound for the function H(x), and ε is defined as in the MRAS1 algorithm. Note

that the total number of visits to step 3a and 3b of MRAS1 is bounded by Tε, thus for any

k > Tε, the total number of visits to step 3c is greater than k−Tε. Since conditional on θ̃k,

1
Nk

∑Nk
j=1 bi(H(Xk

j)) is an unbiased estimate of Ẽeθk
[bi(H(X))], by the Hoeffding inequality

128

([40]), for any ζ > 0,

P

(∣∣ 1
Nk

Nk∑

j=1

bi(H(Xk
j))− Ẽeθk

[bi(H(X))]
∣∣ > ζ

∣∣∣∣θ̃k = θ

)
≤ 2 exp

(−2Nkζ
2

M2

)
∀ k.

Therefore,

P

(∣∣ 1
Nk

Nk∑

j=1

bi(H(Xk
j))− Ẽeθk

[bi(H(X))]
∣∣ > ζ

)
≤ 2 exp

(−2Nkζ
2

M2

)
∀ k,

≤ 2 exp
(−2αk−TεN0ζ

2

M2

)
∀ k > Tε,

−→ 0 as k →∞, since α > 1.

Furthermore, it is easy to see that

∞∑

k=1

P

(∣∣ 1
Nk

Nk∑

j=1

bi(H(Xk
j))− Ẽeθk

[bi(H(X))]
∣∣ > ζ

)
≤ 2

∞∑

k=1

exp
(−2αk−TεN0ζ

2

M2

)
< ∞.

By the Borel-Cantelli lemma,

P

(∣∣ 1
Nk

Nk∑

j=1

bi(H(Xk
j))− Ẽeθk

[bi(H(X))]
∣∣ > ζ i.o.

)
= 0.

This implies that 1
Nk

∑Nk
j=1 bi(H(Xk

j)) → Ẽeθk
[bi(H(X))] as k → ∞ w.p.1. Note that by

using a similar argument as above, we can also show that ¯̀
k(v) → `k(v) w.p.1 as k →∞.

The above result together with (5.25) and (5.26) implies that for any δ > 0, there

exists a small neighborhood Bv of v such that

sup{|¯̀k(u)− ¯̀
k(v)| : u ∈ Bv} < δ w.p.1 for k sufficiently large.

Since this holds for all v ∈ V, we have V ⊆ ∪v∈VBv, and because V is compact, there

exists a finite subcover Bv1 , . . . , Bvm such that

sup{|¯̀k(u)− ¯̀
k(vj)| : u ∈ Bvj} < δ w.p.1 for k sufficiently large, and V ⊆ ∪m

j=1Bvj .

Furthermore, by the continuity of `k(v), these open balls can be chosen in such a way that

sup{|`k(u)− `k(vj)| : u ∈ Bvj} < δ ∀ j = 1, . . . , m.

129

Since ¯̀
k(vj) → `k(vj) w.p.1 as k →∞ for all j = 1, . . . , m,

|¯̀k(vj)− `k(vj)| < δ w.p.1 for k sufficiently large, ∀ j = 1, . . . , m.

For any v ∈ V, without lost of generality assume v ∈ Bvj , we have w.p.1 for k sufficiently

large

|¯̀k(v)− `k(v)| ≤ |¯̀k(v)− ¯̀
k(vj)|+ |`k(v)− `k(vj)|+ |¯̀k(vj)− `k(vj)| < 3δ,

which implies that ¯̀
k(v) → `k(v) uniformly w.p.1 on V.

The rest of the proof follows from Theorem A1 in [69] (pp. 69), which basically

states that if ¯̀
k(v) → `k(v) uniformly w.p.1, then the distance from γ̃†k(ρ

†, Nk) to γ†k tends

to zero w.p.1 as k →∞.

We are now ready to state the main theorem.

Theorem 5.5.1 Let ε > 0, and define the ε-optimal set Oε := {x : H(x) ≥ H(x∗)−ε}∩X .

If assumptions A1, A3′, A4′, and A5 are satisfied, then there exists a random variable K

such that w.p.1., K < ∞, and

1. γ̄k > H(x∗)− ε, ∀ k ≥ K

2. Eeθk+1
[Γ(X)] ∈ CONV {Γ(Oε)} , ∀ k ≥ K, where CONV {Γ(Oε)} indicates the con-

vex hull of the set Γ(Oε).

Furthermore, let β be a positive constant satisfying the condition that the set
{
x : S(H(x)) ≥

1
β

}
has a strictly positive Lebesgue/counting measure. If assumptions A1, A2, A3′, A4′,

and A5 are all satisfied and α > (βS∗)2, where S∗ := S(H(x∗)), then

3. limk→∞Eeθk
[Γ(X)] = Γ(x∗) w.p.1.

130

Remark 5.5.1 Roughly speaking, the second result can be understood as finite time ε-

optimality. To see this, consider the special case where H(x) is locally concave on the

set Oε. Let x, y ∈ Oε and η ∈ [0, 1] be arbitrary. By the definition of concavity, we will

have H(ηx + (1 − η)y) ≥ ηH(x) + (1 − η)H(y) ≥ H(x∗) − ε, which implies that the set

Oε is convex. If in addition Γ(x) is also convex and one-to-one on Oε (e.g. multivariate

normal p.d.f.), then CONV {Γ(Oε)} = Γ(Oε). Thus it follows that Γ−1(Eeθk+1
[Γ(X)]) ∈

Oε, ∀ k ≥ K w.p.1.

Proof of Theorem 5.5.1: (1) The first part of the proof is an extension of the proofs

given in [41]. First we claim that given ρk and γ̄k, if γ̄k ≤ H(x∗)− ε, then ∃ K̄ < ∞ w.p.1

and ρ̄ ∈ (0, ρk) such that γ̃k′+1(ρ̄, Nk′) ≥ γ̄k + ε
2 ∀ k′ ≥ K̄. To show this, we proceed by

contradiction.

Let ρ∗k := P̃eθk

(
H(X) ≥ γ̄k + 2ε

3

)
. If γ̄k ≤ H(x∗)− ε, then γ̄k + 2ε

3 ≤ H(x∗)− ε
3 . By

A1 and A3′, we have

ρ∗k ≥ P̃eθk

(
H(X) ≥ H(x∗)− ε

3

)
≥ λC(ε, θ0) > 0, (5.27)

where C(ε, θ0) =
∫
X I{H(x)≥H(x∗)−ε/3}f(x, θ0)ν(dx) is a constant.

Now assume that ∃ ρ ∈ (0, ρ∗k) such that γk+1(ρ, θ̃k) < γ̄k + 2ε
3 , where γk+1(ρ, θ̃k) is

the (1 − ρ)-quantile of H(X) with respect to f̃(·, θ̃k). By the definition of quantiles, we

have

P̃eθk

(
H(X) ≥ γk+1(ρ, θ̃k)

)
≥ ρ, and

P̃eθk

(
H(X) ≤ γk+1(ρ, θ̃k)

)
≥ 1− ρ > 1− ρ∗k. (5.28)

It follows that P̃eθk

(
H(X) ≤ γk+1(ρ, θ̃k)

)
≤ P̃eθk

(
H(X) < γ̄k + 2ε

3

)
= 1 − ρ∗k by the

definition of ρ∗k, which contradicts equation (5.28); thus we must have that if γ̄k ≤ H(x∗)−

131

ε, then

γk+1(ρ, θ̃k) ≥ γ̄k +
2ε

3
, ∀ ρ ∈ (0, ρ∗k).

Therefore by (5.27), ∃ ρ̄ ∈ (
0, min{ρk, λC(ε, θ0)}

) ⊆ (0, ρk) such that γk+1(ρ̄, θ̃k) ≥ γ̄k + 2ε
3

whenever γ̄k ≤ H(x∗)− ε. By Lemma 5.5.2, the distance from the sample (1− ρ̄)-quantile

γ̃k+1(ρ̄, Nk) to the set of (1 − ρ̄)-quantiles γk+1(ρ̄, θ̃k) goes to zero as k → ∞ w.p.1, thus

∃ K̄ < ∞ w.p.1 such that γ̃k′+1(ρ̄, Nk′) ≥ γ̄k + ε
2 ∀ k′ ≥ K̄.

Notice that from the MRAS1 algorithm, if neither step 3a nor 3b is visited at the

kth iteration, we will have ρk+1 = ρk and γ̄k+1 = γ̄k. Thus, whenever γ̄k ≤ H(x∗) − ε,

w.p.1 step 3a/3b will be visited after a finite number of iterations. Furthermore, since

the total number of visits to steps 3a and 3b is finite (i.e., bounded by 2[H(x∗)−M]
ε , where

recall that M is a lower bound for H(x)), we conclude that there exists K < ∞ w.p.1,

such that

γ̄k > H(x∗)− ε, ∀ k ≥ K w.p.1.

(2) From the MRAS1 algorithm, it is easy to see that γ̄k+1 ≥ γ̄k, ∀ k = 0, 1, By

part (1), we have γ̄k+1 ≥ H(x∗) − ε, ∀ k ≥ K w.p.1. Thus, by the definition of g̃k+1(x)

(cf. (5.22)), it follows immediately that if
{

x : H(x) ≥ γ̄k+1, x ∈
{

Xk
1 , . . . , Xk

Nk

}}
6= ∅,

then the support of g̃k+1(x) satisfies supp {g̃k+1} ⊆ Oε ∀ k ≥ K w.p.1; otherwise if
{

x : H(x) ≥ γ̄k+1, x ∈
{

Xk
1 , . . . , Xk

Nk

}}
= ∅, then supp {g̃k+1} = ∅. We now discuss these

two cases separately.

Case 1. If supp {g̃k+1} ⊆ Oε, then we have {Γ(supp {g̃k+1})} ⊆ {Γ(Oε)}. Since

Eegk+1
[Γ(X)] is the convex combination of Γ(Xk

1), . . . , Γ(Xk
Nk

), it follows that

Eegk+1
[Γ(X)] ∈ CONV {Γ (supp {g̃k+1})} ⊆ CONV {Γ(Oε)} .

132

Thus by A4′, A5, and Lemma 5.5.1,

Eeθk+1
[Γ(X)] ∈ CONV {Γ(Oε)} .

Case 2. If supp {g̃k+1} = ∅ (note that this could only happen if step 3c is visited), then

from the algorithm, there exists some k̂ < k + 1 such that γ̄k+1 = γ̄bk and supp
{
g̃bk} 6= ∅.

Without loss of generality, let k̂ be the largest iteration counter such that the preceding

properties hold. Since γ̄bk = γ̄k+1 > H(x∗) − ε ∀ k ≥ K w.p.1, we have supp
{
g̃bk} ⊆ Oε

w.p.1. By following the discussions in Case 1, it is clear that

Eeθbk [Γ(X)] ∈ CONV {Γ(Oε)} , w.p.1.

Furthermore, since θ̃bk = θ̃bk+1
= · · · = θ̃k+1 (see discussions in Chapter 5.5.1), we will

again have

Eeθk+1
[Γ(X)] ∈ CONV {Γ(Oε)} , ∀ k ≥ K w.p.1.

(3) Define ĝk+1(x) as

ĝk+1(x) :=
[S(H(x))]kI{H(x)≥γ̄k}∫

X [S(H(x))]kI{H(x)≥γ̄k}ν(dx)
, ∀ k = 1, 2, . . . ,

where γ̄k is defined as in MRAS1. Note that since γ̄k is a random variable, ĝk+1(x) is also

a random variable. It follows that

Ebgk+1
[Γ(X)] =

∫
X [βS(H(x))]kI{H(x)≥γ̄k}Γ(x)ν(dx)∫
X [βS(H(x))]kI{H(x)≥γ̄k}ν(dx)

.

Let ω = (X0
1 , . . . , X0

N0
, X1

1 , . . . , X1
N1

, . . .) be a particular sample path generated by

the algorithm. For each ω, the sequence {γ̄k(ω), k = 1, 2, . . .} is non-decreasing and each

strict increase is lower bounded by ε/2. Thus, ∃ Ñ (ω) > 0 such that γ̄k+1(ω) = γ̄k(ω) ∀ k ≥

Ñ (ω). Now define Ω1 := {ω : limk→∞ γ̄k(ω) = H(x∗)}. By the definition of g̃k+1(·) (cf.

(5.22)), for each ω ∈ Ω1 we clearly have limk→∞Eegk(ω) [Γ(X)] = Γ(x∗); thus, it follows

133

from Lemma 5.5.1 that limk→∞Eeθk(ω)
[Γ(X)] = Γ(x∗), ∀ω ∈ Ω1. The rest of the proof

amounts to showing that the result also holds almost surely (a.s.) on the set Ωc
1.

Since limk→∞ γ̄k(ω) = γ̄ eN (ω) < H(x∗) ∀ω ∈ Ωc
1, we have by Fatou’s lemma

lim inf
k→∞

∫

X
[βS(H(x))]kI{H(x)≥γ̄k}ν(dx) ≥

∫

X
lim inf
k→∞

[βS(H(x))]kI{H(x)≥γ̄k}ν(dx)

> 0, ∀ω ∈ Ωc
1, (5.29)

where the last inequality follows from the fact that βS(H(x)) ≥ 1 ∀x ∈ {
x : H(x) ≥

max{S−1(1
β), γ̄ eN }} and assumption A1.

Since f(x, θ0) > 0 ∀x ∈ X , we have X ⊆ supp{f̃(·, θ̃k)} ∀ k; thus

Ebgk+1
[Γ(X)] =

Ẽeθk

[
βkS̃k(H(X))I{H(X)≥γ̄k}Γ(X)

]

Ẽeθk

[
βkS̃k(H(X))I{H(X)≥γ̄k}

] , ∀ k = 1, 2, . . . ,

where S̃k(H(x)) := [S(H(x))]k/f̃(x, θ̃k). We now show that Eegk+1
[Γ(X)] → Ebgk+1

[Γ(X)]

a.s. on Ωc
1 as k →∞. Since we are only interested in the limiting behavior of Eegk+1

[Γ(X)],

it is sufficient to show that

1
Nk

∑Nk
i=1 βkS̃k(H(Xk

i))I{H(Xk
i)≥γ̄k+1}Γ(Xk

i)
1

Nk

∑Nk
i=1 βkS̃k(H(Xk

i))I{H(Xk
i)≥γ̄k+1}

−→ Ebgk+1
[Γ(X)] a.s. on Ωc

1,

where and hereafter, whenever
{
x : H(x) ≥ γ̄k+1, x ∈ {Xk

1 , . . . , Xk
Nk
}} = ∅, we define

0
0 = 0 .

For brevity, we use the following shorthand notations:

Ŷ k := Ẽeθk
[βkS̃k(H(X))I{H(X)≥γ̄k}], Ŷ k

Γ := Ẽeθk
[βkS̃k(H(X))I{H(X)≥γ̄k}Γ(X)],

Ȳ k
i := βkS̃k(H(Xk

i))I{H(Xk
i)≥γ̄k+1}, Ŷ k

i := βkS̃k(H(Xk
i))I{H(Xk

i)≥γ̄k}.

We also let Tε := d2[H(x∗)−M]
ε e. Note that the total number of visits to step 3a and 3b

of MRAS1 is bounded by Tε, thus for any k > Tε, the total number of visits to step 3c is

greater than k − Tε.

134

We have

1
Nk

∑Nk
i=1 βkS̃k(H(Xk

i))I{H(Xk
i)≥γ̄k+1}Γ(Xk

i)
1

Nk

∑Nk
i=1 βkS̃k(H(Xk

i))I{H(Xk
i)≥γ̄k+1}

− Ebgk+1
[Γ(X)] =

(1
Nk

∑Nk
i=1 Ȳ k

i Γ(Xk
i)

1
Nk

∑Nk
i=1 Ȳ k

i

−
1

Nk

∑Nk
i=1 Ŷ k

i Γ(Xk
i)

1
Nk

∑Nk
i=1 Ŷ k

i

)
+

(1
Nk

∑Nk
i=1 Ŷ k

i Γ(Xk
i)

1
Nk

∑Nk
i=1 Ŷ k

i

− Ŷ k
Γ

Ŷ k

)
.

Since for each ω ∈ Ωc
1, γ̄k+1(ω) = γ̄k(ω) ∀ k ≥ Ñ (ω), it is straightforward to see that the

first term

1
Nk

∑Nk
i=1 Ȳ k

i Γ(Xk
i)

1
Nk

∑Nk
i=1 Ȳ k

i

−
1

Nk

∑Nk
i=1 Ŷ k

i Γ(Xk
i)

1
Nk

∑Nk
i=1 Ŷ k

i

= 0, ∀ k ≥ Ñ (ω), ∀ω ∈ Ωc
1. (5.30)

To show that the second term also converges to zero, we denote by Vk the event Vk =

{γ̄k > H(x∗)−ε}. For any ζ > 0, we also let Ck be the event Ck = {∣∣ 1
Nk

∑Nk
i=1 Ŷ k

i −Ŷ k
∣∣ > ζ}.

We have

P (Ck i.o.) = P ({Ck ∩ Vk} ∪ {Ck ∩ Vc
k} i.o.)

= P (Ck ∩ Vk i.o.), since P (Vc
k i.o.) = 0 by part (1). (5.31)

It is easy to see that conditional on θ̃k and γ̄k, Ŷ k
1 , . . . , Ŷ k

Nk
are i.i.d. and E[Ŷ k

i |θ̃k, γ̄k] =

Ŷ k ∀ i. Furthermore, by assumption A3′, conditional on the event Vk, the support [ak, bk]

of the random variable Ŷ k
i satisfies [ak, bk] ⊆

[
0, (βS∗)k

λf∗

]
. Therefore, we have from the

Hoeffding inequality ([40]),

P
(Ck |Vk, θ̃k = θ, γ̄k = γ

)
= P

(∣∣ 1
Nk

Nk∑

i=1

Ŷ k
i − Ŷ k

∣∣ > ζ
∣∣∣Vk, θ̃k = θ, γ̄k = γ

)
,

≤ 2 exp
(−2Nkζ

2

(bk − ak)2
)
,

≤ 2 exp
(−2Nkζ

2[λf∗]2

(βS∗)2k

)
∀ k = 1, 2 (5.32)

135

Since

P (Ck ∩ Vk) =
∫

θ,γ
P (Ck ∩ Vk |θ̃k = θ, γ̄k = γ)feθk,γ̄k

(dθ, dγ),

=
∫

θ,Vk

P (Ck |Vk, θ̃k = θ, γ̄k = γ)feθ,γ̄k
(dθ, dγ),

where feθk,γ̄k
(·, ·) is the joint distribution of random variables θ̃k and γ̄k, we have by (5.32),

P (Ck ∩ Vk) ≤ 2 exp
(−2Nkζ

2[λf∗]2

(βS∗)2k

)
,

≤ 2 exp
(−2(αk−TεN0)ζ2[λf∗]2

(βS∗)2k

)
∀ k ≥ Tε,

= 2 exp
(−2N0ζ

2λ2f2∗
αTε

(α

(βS∗)2
)k

)
∀ k ≥ Tε,

Since α/(βS∗)2 > 1 (by assumption), it follows that

lim
k→∞

P (Ck ∩ Vk) = 0.

Furthermore, since e−x < 1/x ∀ x > 0 we have

P (Ck ∩ Vk) <
αTε

N0ζ2λ2f2∗

((βS∗)2

α

)k
∀ k ≥ Tε,

and because (βS∗)2/α < 1, we have

∞∑

k=0

P (Ck ∩ Vk) < Tε +
αTε

N0ζ2λ2f2∗

∞∑

k=Tε

((βS∗)2

α

)k
< ∞.

Finally by the Borel-Cantelli lemma and (5.31),

P (Ck i.o) = P (Ck ∩ Vk i.o.) = 0.

Since this holds for any ζ > 0, we have 1
Nk

∑Nk
i=1 Ŷ k

i → Ŷ k w.p.1.

136

By following the same argument as before, we can also show that 1
Nk

∑Nk
i=1 Ŷ k

i Γ(Xk
i) →

Ŷ k
Γ w.p.1. And since limk→∞ Ŷ k > 0 ∀ω ∈ Ωc

1 (i.e., (5.29)), we have

1
Nk

∑Nk
i=1 Ŷ k

i Γ(Xk
i)

1
Nk

∑Nk
i=1 Ŷ k

i

→ Ŷ k
Γ

Ŷ k
as k →∞ a.s. on Ωc

1.

By the definition of g̃k+1(·), the above result together with (5.30) suggests that

Eegk
[Γ(X)] → Ebgk

[Γ(X)] as k →∞ a.s. on Ωc
1.

Thus, in conclusion, we have

Eegk
[Γ(X)] → Ebgk

[Γ(X)] as k →∞ w.p.1.

On the other hand, by A1, A2, and following the proof of Theorem 5.3.1, it is not

difficult to show that

Ebgk
[Γ(X)] → Γ(x∗) as k →∞ w.p.1.

Hence by Lemma 5.5.1, we have

lim
k→∞

Eeθk
[Γ(X)] = lim

k→∞
Eegk

[Γ(X)] = Γ(x∗) w.p.1.

The following results are now immediate.

Corollary 5.5.2 (Multivariate Normal) For continuous optimization problems in <n,

if multivariate normal p.d.f.’s are used in MRAS1, i.e.,

f(x, θ̃k) =
1√

(2π)n|Σ̃k|
exp

(
− 1

2
(x− µ̃k)T Σ̃−1

k (x− µ̃k)
)
,

ε > 0, α > (βS∗)2, and assumptions A1, A2, A3′, and A4′ are satisfied, then

lim
k→∞

µ̃k = x∗, and lim
k→∞

Σ̃k = 0n×n w.p.1.

137

Corollary 5.5.3 (Independent Univariate) If the components of the random vector

X = (X1, X2, . . . , Xn) are independent, each with a univariate p.d.f./p.m.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))h(xi), ϑi ∈ <, ∀ i = 1, . . . , n,

ε > 0, α > (βS∗)2, and assumptions A1, A2, A3′, A4′, and A5 are satisfied, then

lim
k→∞

Eeθk
[X] = x∗ w.p.1, where θ̃k := (ϑk

1, . . . , ϑ
k
n).

5.6 Numerical Examples

In this Chapter, we illustrate the performance of the MRAS method for both contin-

uous and combinatorial optimization problems. In the former case, we test the algorithm

on various functions that are well-known in global optimization and compare its perfor-

mance with that of the standard CE method. In the latter case, we apply the algorithm

to several Asymmetric Traveling Salesman Problems (ATSP), which are typical represen-

tatives of NP-hard combinatorial optimization problems.

Remark 5.6.1 It is not our primary intention here to compare our algorithm with the

CE method and EDAs. A comprehensive comparison of different methods is beyond the

scope of this research. Our main goal here is to propose a novel algorithm with provable

convergence, and show that the algorithm is promising in solving some difficult optimiza-

tion problems. The performance of the CE method on continuous functions can be found

in, e.g., [51], [66]. Its performance on various ATSP instances can be found in, e.g., [26],

[67].

We now discuss some implementation issues of the MRAS1 algorithm.

1. Since all examples considered in this Chapter are minimization problems, whereas

138

MRAS was presented in a maximization context, the following modifications are

required:

• S(·) needs to be initialized as a strictly decreasing function instead of strictly

increasing. Throughout this Chapter, we take

S(H(x)) := exp {−rH(x)} , where r is a positive constant.

• The sample (1 − ρ)-quantile γ̃k+1 will now be calculated by first ordering the

sample performances H(Xk
i), i = 1, . . . , Nk from largest to smallest, and then

taking the d(1− ρ)Nketh order statistic.

• We need to replace the “≥” operator with “≤” operator in equation (5.21).

• The inequalities at step 3 need to be replaced with

γ̃k+1(ρk, Nk) ≤ γ̄k − ε

2
, and γ̃k+1(ρ̄, Nk) ≤ γ̄k − ε

2
,

respectively.

2. Similar to CE, a smoothed parameter updating procedure (cf. e.g., [26], [66]) is used

in actual implementation, i.e., first a smoothed parameter vector θ̂k+1 is computed

at each iteration k according to

θ̂k+1 := υ θ̃k+1 + (1− υ)θ̂k, ∀ k = 0, 1, . . . , and θ̂0 := θ̃0,

where θ̃k+1 is the parameter vector computed at step 4 of MRAS1, and υ ∈ (0, 1] is

the smoothing parameter; then f(x, θ̂k+1) (instead of f(x, θ̃k+1)) is used in step 1 to

generate new samples. It is important to note that this modification will not affect

the theoretical convergence of our approach.

139

3. In practice, different stopping criteria can be used. The simplest method is to stop

the algorithm when a predefined maximum number of iterations is reached, or when

the total computational budget is exhausted. In the numerical experiments, a mixed

stopping rule is used: We stop the algorithm either when no significant improvement

in γ̄k is obtained for several consecutive iterations or when the sample size at a single

iteration exceeds some predefined threshold, i.e., as soon as either one of the following

two conditions is satisfied at iteration k:

(1) max1≤i≤d |γ̄k − γ̄k+i| ≤ τ ;

(2) Nk > Nmax;

where τ > 0 is a predefined tolerance level, d is a positive integer, and Nmax is the

maximum number of samples allowed per iteration.

4. Another practical issue is that in order to obtain a valid estimate θ̃k+1 at each it-

eration of MRAS1, we must make sure that enough samples are used in parameter

updating. This can be achieved by using an additional parameter Nmin, and per-

forming the update (5.21) only when the number of the elite samples (i.e., those

samples having performances better than the threshold γ̄k+1) is greater than Nmin.

In effect, this is equivalent to searching ρ̄ from (ρmin, ρk) instead of (0, ρk) at step 3

of MRAS1, where ρmin := Nmin/Nk → 0 as k →∞.

5.6.1 Continuous Optimization

In our preliminary experiments, we take the family of parameterized p.d.f.’s to be

multivariate normal p.d.f.’s. Initially, a mean vector µ0 and a covariance matrix Σ0 are

specified; then at each iteration k of the algorithm, new parameters µ̃k+1 and Σ̃k+1 are

140

updated according to the respective stochastic counterparts of equations (5.16) and (5.17).

By Corollary 5.5.2, the sequence of mean vectors {µ̃k} will converge to the optimal solution

x∗, and the sequence of covariance matrices {Σ̃k} to the zero matrix. Throughout this

Chapter, we will use µ̃k to represent the current best solution found at iteration k.

The following five functions {Hi, i = 1, . . . , 5} are used to test the algorithm.

(1) Quadratic function

H1(x) =
3∑

i=1

x2
i , where x = (x1, x2, x3).

The function has a unique global minimum f(0, 0, 0) = 0.

(2) Two-dimensional Rosenbrock function

H2(x) = 100(x2
1 − x2)2 + (1− x2

1), where x = (x1, x2).

The function has the reputation of being difficult to minimize and is widely used to

test the performance of different optimization algorithms. It has a global minimum

f(1, 1) = 0.

(3) Shekel’s Foxholes

H3(x) =
1

0.002 +
∑25

j=1
1

j+
P2

i=1(xi−aj,i)6

,

where aj,1 = {−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16,

0, 16, 32,−32,−16, 0, 16, 32},

aj,2 = {−32,−32,−32,−32,−32,−16,−16,−16,−16,−16, 0, 0, 0, 0, 0, 16, 16, 16, 16,

16, 32, 32, 32, 32, 32} , and x = (x1, x2). The function has 24 local minima and one

global minimum f(−32,−32) ≈ 0.998004.

141

(4) Corana’s Parabola

H4(x) =
4∑

i=1





0.15[0.05 sgn(zi)− zi]2hj if |xi − zi| < 0.05,

hix
2
i otherwise,

where

zi = 0.2
⌊xi

2

 + 0.49999
⌋

sgn(xi),

h = {1, 1000, 10, 100}, and x = (x1, x2, x3, x4). In the region −1000 < xi < 1000, i =

1, 2, 3, 4, the above function has more than 1020 local minima, which is very difficult

to minimize. It has a global minimum f(0, 0, 0, 0) = 0.

(5) Goldstein-Price function

H5(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))

(30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)),

where x = (x1, x2)T . The function has four local minima and a global minimum

f(0,−1) = 3.

For all five problems, the same set of parameters is used to test MRAS: ε = 10−5,

initial sample size N0 = 100, ρ0 = 0.2, λ = 0.02, α = 1.5, r = 0.1, the stopping control

parameters d = 5, τ = 10−5, Nmax = 50000, Nmin = 5n, and the smoothing parameter

υ = 0.5. The initial mean vector µ0 is a n-by-1 vector of all 10s, and Σ0 is a n-by-n diagonal

matrix with all diagonal elements equal to 200, where recall that n is the dimension of the

problem.

Table 5.1 shows the performance of the algorithm on the five test functions. For

each function, we performed 50 independent replication runs of the algorithm, and the

means and standard errors are reported in the table, where Ntotal is the total number of

function evaluations, ρfinal is the final value of ρ, and H̄∗
i is the averaged value of the

142

Hi Ntotal (std) ρfinal (std) H̄∗
i (std) Hi(x∗) Mε

H1 4.38e+03(6.77e+01) 0.13(6.21e-03) 9.86e-09(1.12e-09) 0 50

H2 1.21e+04(4.89e+02) 0.04(2.40e-03) 2.29e-09(3.13e-10) 0 50

H3 2.17e+04(7.16e+02) 0.02(1.11e-03) 2.40(4.15e-01) 0.998 37

H4 7.43e+03(1.61e+02) 0.14(4.19e-03) 0.00(0.00e-00) 0 50

H5 5.81e+03(1.40e+02) 0.11(5.88e-03) 3.00(5.30e-10) 3 50

Table 5.1: Performance of MRAS on five test functions, based on 50 independent replica-

tion runs. The standard errors are in parentheses.

function Hi(·) at the best solution visited by the algorithm. The optimal value Hi(x∗) is

included for reference, and Mε indicates the number of runs out of 50 trials in which an

ε-optimal solution was found. The algorithm performs quite well in most cases, except

for H3, where only 37 ε-optimal solutions were found. H3 represents a class of continuous

optimization problems that are extremely difficult to solve for most model-based sampling

approaches. A graphical representation of the function H3 is given in Figure 5.3. Notice

that the function values at the 25 “holes” (local minima) are very close to each other; thus

in order to locate the global optimal solution, the algorithm must make sure that samples

are drawn from the right “hole”, and there must be enough samples to fall in this “hole”

to guarantee that the parameter vectors are updated in the right direction.

For comparison purposes, we also applied the CE method to the above five test

functions, where we have used the multivariate normal p.d.f. with independent compo-

nents (cf. e.g., [51] for detailed algorithm description and implementation issues). We

have tested different sets of parameters (i.e., different (N ,ρ) combinations); the results

reported in Table 5.2 are based on the following “good” parameter settings: sample size

143

−50

0

50

−50

0

50
0

100

200

300

400

500

Figure 5.3: Shekel’s Foxholes, where −50 ≤ xi ≤ 50, i = 1, 2.

N = 1000 (recall that the CE method is non-adaptive, so the same number of samples

will be generated at each iteration), ρ = 0.005, smoothing parameter υ = 0.7, and the

algorithm is stopped either when there exists k > 0 such that max1≤i≤5 |γ̂k− γ̂k+i| ≤ 10−5

or when the total number of samples generated exceeds 2 × 105, where γ̂k is the sample

(1− ρ)-quantile generated at the kth iteration of CE.

Again, the mean vector µ0 is initialized as a n-by-1 vector of all 10s and the variances

are taken to be a n-by-1 vector with all elements equal to 200.

Hi Ntotal (std) H̄∗
i (std) Hi(x∗) Mε

H1 1.69e+04(1.73e+02) 4.94e-05(5.13e-06) 0 7

H2 1.72e+04(1.18e+02) 1.92e-05(2.93e-06) 0 24

H3 1.05e+04(1.08e+02) 8.83(2.54e-01) 0.998 0

H4 5.84e+04(6.06e+03) 1.35e-03(4.21e-04) 0 38

H5 1.89e+05(4.77e+03) 3.00(5.63e-05) 3 0

Table 5.2: Performance of the standard CE method on five test functions, based on 50

independent runs. The standard errors are in parentheses.

144

From Tables 5.1 and 5.2, we see that MRAS uses fewer samples than CE does,

but produces more accurate solutions. In general, the sequence {γ̂k} generated by CE

may often converge quickly to a small neighborhood of H(x∗); however, since no sample

performances are used in parameter updating, (i.e., the top ρ% samples are all considered

to be of the same importance regardless of their sample performances), the future search

will be biased toward the region that has been sampled most. In particular, for the H3

case, since the function values at different local minima are very close to each other, even

if the “hole” with the global minimum has been sampled during the search process, CE

still cannot distinguish the global minimum from the other local minima; instead CE will

easily get stuck in the “hole” that has been sampled the most. As a result, we see that

the algorithm gets trapped in local minima in all 50 trials. In contrast, the parameter

updating procedure in MRAS is weighted by the performance function so that better

samples will have more positive influence on the updating process. Consequently, the

searches in MRAS will be biased toward the region containing more promising samples.

Table 5.3 gives the performance of CE and MRAS on function H3 using different

sample sizes and ρ values (all other parameters are the same as before). Test results

indicate that increasing the samples size in CE has little effect on the quality of the

resultant solutions. We see that the algorithm consistently gets stuck in local minima in

repeated experiments. On the other hand, for MRAS with N0 = 200, ε-optimal solutions

were found in more than 90% of the total simulation runs; whereas for the N0 ≥ 500 cases,

ε-optimal solutions were found in all 50 runs.

To illustrate the performance of the algorithm on high-dimensional problems, we

also applied MRAS1 to the following benchmark problems, which have been previously

studied in e.g., [24], [61], [88], and [51]. Functions H6 is a 4-dimensional problem which has

145

method parameters Ntotal (std) H̄∗
3 (std) Mε

N=1000, ρ=0.1 1.47e+04(1.39e+02) 18.29(0.18) 0

N=1000, ρ=0.01 1.13e+04(1.08e+02) 11.90(0.27) 0

N=2000, ρ=0.1 2.91e+04(2.07e+02) 18.30(0.09) 0

N=2000, ρ=0.01 2.25e+04(1.70e+02) 12.27(0.19) 0

N=2000, ρ=0.005 2.14e+04(2.25e+02) 8.43(0.21) 0

CE N=5000, ρ=0.1 7.19e+04(3.47e+02) 18.30(8.07e-11) 0

N=5000, ρ=0.01 5.70e+04(3.78e+02) 12.52(0.14) 0

N=5000, ρ=0.001 4.87e+04(6.67e+02) 5.61(0.32) 0

N=10000, ρ=0.1 1.42e+05(6.10e+02) 18.30(4.80e-11) 0

N=10000, ρ=0.01 1.12e+05(6.19e+02) 12.67(1.96e-12) 0

N=10000, ρ=0.001 1.01e+05(1.39e+03) 4.80(0.32) 0

N0=200, ρ0=0.2 2.27e+04(6.77e+02) 1.14(0.06) 45

N0=200, ρ0=0.1 2.17e+04(7.14e+02) 1.08(0.05) 47

MRAS1 N0=500, ρ0=0.2 3.01e+04(6.67e+02) 0.998(3.41e-11) 50

N0=500, ρ0=0.1 2.76e+04(8.70e+02) 0.998(3.92e-11) 50

N0=1000, ρ0=0.2 5.62e+04(8.30e+02) 0.998(3.41e-11) 50

N0=1000, ρ0=0.1 4.31e+04(8.46e+02) 0.998(3.81e-11) 50

Table 5.3: Performance of CE and MRAS on test function H3, based on 50 indepen-

dent simulation runs. The standard errors are in parentheses. The optimum H3(x∗) ≈

0.998004.

only a few local optima; however, the minima are separated by plateaus and are relatively

far apart. Functions H7 and H8 are 20-dimensional badly-scaled problems. Functions H9

146

and H10 are highly multimodal and the number of local optima increases exponentially

with the problem dimension. Function H11 is both badly scaled and highly multimodal.

The graphical representations of some of these functions in two dimensions are plotted in

Figure 5.4.

(6) Shekel’s function

H6(x) =
5∑

i=1

(
(x− ai)T (x− ai) + ci

)−1
,

where x = (x1, x2, x3, x4)T , a1 = (4, 4, 4, 4)T , a2 = (1, 1, 1, 1)T , a3 = (8, 8, 8, 8)T ,

a4 = (6, 6, 6, 6)T , a5 = (3, 7, 3, 7)T , and c = (0.1, 0.2, 0.2, 0.4, 0.4). The global mini-

mizer x∗ ≈ (4, 4, 4, 4)T , and H6(x∗) ≈ −10.153.

(7) Rosenbrock function

H7(x) =
n−1∑

i=1

100(xi+1 − x2
i)

2 + (xi − 1)2,

where n = 20. The global minimum is x∗ = (1, . . . , 1)T , and H7(x∗) = 0.

(8) Powel singular function

H8(x) =
n−2∑

i=2

[
(xi−1 + 10xi)2 + 5(xi+1 − xi+2)2 + (xi − 2xi+1)4 + 10(xi−1 − xi+2)4

]
,

where n = 20, x∗ = (0, . . . , 0)T , and H8(x∗) = 0.

(9) Trigonometric function

H9(x) = 1 +
n∑

i=1

8 sin2
(
7(xi − 0.9)2

)
+ 6 sin2

(
14(xi − 0.9)2

)
+ (xi − 0.9)2,

where n = 20, x∗ = (0.9, . . . , 0.9)T , and H9(x∗) = 1.

(10) Griewank function

H10(x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos
(xi√

i

)
+ 1,

where n = 20, x∗ = (0, . . . , 0)T , and H10(x∗) = 0.

147

(11) Pintér’s function

H11(x) =
n∑

i=1

ix2
i +

n∑

i=1

20i sin2
(
xi−1 sinxi − xi + sin xi+1

)

+
n∑

i=1

i log10

(
1 + i(x2

i−1 − 2xi + 3xi+1 − cosxi + 1)2
)
,

where x0 = xn, xn+1 = x1, n = 20, x∗ = (0, . . . , 0)T , and H11(x∗) = 0.

−5

0

5

10

−5

0

5

10

−12

−10

−8

−6

−4

−2

0

Shekel’s function, where −5≤ x
i
 ≤ 10, i=1,2

−5

0

5 −5

0

5

0

2

4

6

8

10

x 10
4

Rosenbrock function, where −5≤ x
i
≤ 5, i=1,2

(a) H6 (b) H7

−3
−2

−1
0

1
2

3

−2

0

2

0

10

20

30

40

50

Trigonometric function, where −3≤ x
i
≤ 3, i=1,2

−5

0

5

−5

0

5
0

50

100

150

Pinter’s function, where −5≤ x
i
≤ 5, i=1,2

(c) H9 (d) H11

Figure 5.4: Selected test problems in two dimensions, (a) H6: Shekel; (b) H7: Rosenbrock;

(c) H9: Trigonometric; (d) H11: Pintér.

For all problems H6−H11, the same set of parameters is used to test MRAS1: ε =

10−5, initial sample size N0 = 1000, ρ0 = 0.1, λ = 0.01, α = 1.1, r = 10−4, smoothing

parameter υ = 0.2, and Nmin = 5n. The initial mean vector µ0 is a n-by-1 vector with

each component randomly selected from the interval [−50, 50] according to the uniform

148

Test MRAS1 CE (υ = 0.7) CE (υ = 0.2) SA

Prob. H̄∗
i (stderr) Mε H̄∗

i (stderr) Mε H̄∗
i (stderr) Mε H̄∗

i (stderr) Mε

H6 -10.15(3e-7) 50 -8.0(0.5) 34 -9.9(0.13) 0 -7.3(0.4) 2

H7 11.8(0.5) 0 27.9(3.43) 0 15.9(2e-02) 0 203.7(11.3) 0

H8 3e-10(2e-11) 50 1e+4(4e+3) 3 3e-6(2e-7) 50 65.9(3.0) 0

H9 1.6(0.13) 24 1.0(00e-00) 50 1.0(6e-12) 50 65.2(1.22) 0

H10 4e-3(7e-4) 28 2e-4(2e-4) 49 2e-12(4e-13) 50 0.15(0.04) 0

H11 3e-9(6e-10) 50 2.3(1e-3) 0 6e-4(3e-05) 0 1.7e+3(51) 0

Table 5.4: Performance of different algorithms on benchmark problems H6 −H11, based

on 50 independent runs. The standard errors are in parentheses.

distribution, and Σ0 is a n-by-n diagonal matrix with all diagonal elements equal to 500.

For comparison purposes, we also applied the CE method and the SA algorithm to

the above test functions. For CE, we have used the univariate normal p.d.f. with parameter

values suggested in [51]: sample size N = 2000, ρ = 0.01, smoothing parameter υ = 0.7.

Again, the initial mean vector µ0 is randomly selected from [−50, 50]n according to the

uniform distribution, and Σ0 is a n-by-n diagonal matrix with all elements equal to 500.

We found empirically that the above parameters work well for some functions, but in some

other cases, the variance matrices in CE may converge too quickly to the zero matrix, which

freezes the algorithm at some low quality solutions. To address this issue, for each problem,

we also tried CE with different values of the smoothing parameter. In the numerical results

reported below, we have used a smaller smoothing parameter value υ = 0.2, which gives

reasonable performance for all test cases. For SA, we have used the parameters suggested

in [24]: initial temperature T = 50000, temperature reduction factor rT = 0.85, the search

149

0 2 4 6 8 10

x 10
4

−12

−10

−8

−6

−4

−2

0
Shekel’s function

total sample size

fu
nc

tio
n

va
lu

e

MRAS
CE υ=0.7
CE υ=0.2
SA

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

10
0

10
2

10
4

10
6

10
8

10
10

total sample size

fu
nc

tio
n

va
lu

e

20−D Rosenbrock

MRAS
CE υ=0.7
CE υ=0.2
SA

(a) H6 (b) H7

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

10
−10

10
−5

10
0

10
5

10
10

total sample size

fu
nc

tio
n

va
lu

e

20−D Powel Singular

MRAS
CE υ=0.7
CE υ=0.2
SA

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

10
0

10
1

10
2

10
3

10
4

10
5

total sample size

fu
nc

tio
n

va
lu

e

20−D Trigonometric

MRAS
CE υ=0.7
CE υ=0.2
SA

(c) H8 (d) H9

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

total sample size

fu
nc

tio
n

va
lu

e

20−D Griewank

MRAS
CE υ=0.7
CE υ=0.2
SA

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

10
−10

10
−5

10
0

10
5

total sample size

fu
nc

tio
n

va
lu

e

20−D Pinter

MRAS
CE υ=0.7
CE υ=0.2
SA

(e) H10 (f) H11

Figure 5.5: Average performance (mean of 50 replications) of MRAS, CE, and SA on

selected benchmark problems.

150

neighborhood of a point x is taken to be N (x) = {y : max1≤i≤n |xi − yi| ≤ 1}, and the

initial solution is uniformly selected from [−50, 50]n.

For each problem, we performed 50 independent runs of all three algorithms, and

numerical results are reported in Table 5.4, where H̄∗
i is the averaged value of the function

Hi(·) at the best solution visited by the algorithm, with standard error in parentheses,

and Mε indicates the number of runs that an ε-optimal solution was found out of 50

trials. We also plotted in Figure 5.5 the average function values of the current best

solution given the number of samples generated for selected benchmark problems. The

performance comparison is based on the same amount of computational effort, where

for each algorithm, the total number of function evaluations (i.e., sample size) is set to

100, 000 for H6, and 400, 000 for H7 − H11. Here, we choose to use the total number of

function evaluations to estimate the computational efforts of different algorithms, because

the running time of all three algorithms is dominated by the time spent in evaluating the

objective function.

Functions H6 has only a few local minima, and since SA combines local search, it

may quickly locate one of them. However, as we can see, SA stops making improvement

during the early search phase. This is caused by the plateaus surrounding the local

minima, which makes it very difficult for SA to escape local optima. In contrast, since

both MRAS1 and CE are population-based, they show more robustness in dealing with

local optima. We see that CE (υ = 0.7) does not always converge to the global optimal

solution, but it still performs better than SA does. Note that decreasing the value of the

smoothing parameter slows down the convergence of CE. In particular, for the υ = 0.2

case, although better average function values are achieved in CE, no ε-optimal solutions

were found within the allowed simulation budget because of the slow convergence. MRAS1

151

consistently finds ε-optimal solutions in all simulation runs.

For H7, none of these three algorithms found ε-optimal solutions. However, Fig-

ure 5.5(b) indicates that both MRAS1 and CE perform better than SA when the total

sample size is large enough. CE with υ = 0.2 converges slowly, but slightly outperforms

CE (υ = 0.7) after about 170, 000 function evaluations. MRAS1 performs the best, it

has a similar convergence rate as CE (υ = 0.7) and finds better solutions than the other

algorithms do. On H8, MRAS1 is clearly superior to both CE and SA. It converges to the

global optimal solution in all 50 runs at an exponential rate. The performance of SA is

similar to the H7 case, whereas the performance of CE (υ = 0.7) is even worse than that

of SA, as we can see, the algorithm frequently gets trapped at solutions that are far from

optimal. CE with υ = 0.2 yields much better performance.

H9 and H10 are highly multimodal functions. CE (υ = 0.7) works better than both

MRAS1 and SA. It not only converges the fastest but also finds ε-optimal solutions in

almost all runs. SA finds no ε-optimal solutions in any of the runs. MRAS1 consistently

outperforms SA, and converges to the optimal solution in 50% of the total simulation runs

in both cases. Initially, MRAS1 converges very fast to good values near the optimum,

then it proceeds at a slower rate and spends most of the time in fine-tuning the solution.

The behavior of MRAS1 can be explained by looking at the parameter updating equations

(5.16) and (5.17). Since the values of H9 and H10 at local minima near the optimum are

very close to each other, the parameter updating in MRAS1 is dominated by the density

function in the denominator, especially when the iteration counter k is small.

H11 contains both a badly-scaled quadratic term and some badly-scaled noise terms.

For this function, SA does not seem to be competitive at all. Similar to the H7 and H8

cases, CE (υ = 0.7) converges the fastest, but stagnates at some non-optimal solutions in

152

all runs. Using υ = 0.2 in CE greatly improves the solution quality but slows down the

convergence speed. The initial behavior of MRAS1 is similar to the H9 and H10 cases, but

the algorithm outperforms CE (υ = 0.7) after about 170, 000 function evaluations, and

then approaches the optimum at an exponential rate.

The above comparison seems to suggest that MRAS1 is better adapted to optimiza-

tion of badly scaled multimodal problems, whereas CE works best on problems that are

well-scaled and contain a large number of local optima. Of course, a more comprehensive

numerical study needs to be carried out in order to confirm this finding.

5.6.2 Combinatorial Optimization

In this Chapter, we present the performance of MRAS on various ATSP problems.

All test cases are taken from the URL

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

For each ATSP problem with Nc cities, an Nc-by-Nc distance matrix G is given,

whose (i, j)th element Gi,j represents the distance from city i to city j. The goal is to find

the shortest path that visits all the cities and returns to the starting city. Mathematically,

the problem can be formulated as follows:

min
x∈X

H(x) := min
x∈X

{
Nc−1∑

i=1

Gxi,xi+1 + GxNc ,x1

}
, (5.33)

where x := (x1, x2, . . . , xNc , x1) is an admissible tour, and X is the set of all admissible

tours.

We use the same technique as in [67] and [26] for solving these problems, i.e., we

associate for each distance matrix G an initial state transition matrix P̃0, whose (i, j)th

element specifies the probability of transitioning from city i to city j. Thus, at each

iteration of MRAS the following two steps are fundamental:

153

• Generating random (admissible) tours according to the transition matrix and eval-

uate the performance of each sample tour.

• Updating the transition matrix based on the sample tours generated from the pre-

vious step.

The detailed discussion of how to generate admissible tours can be found in e.g., [26]. We

now briefly address the issue of how to update the transition matrix. At each iteration

k of MRAS, the p.d.f. f(·, P̃k) on X is parameterized by the transition matrix P̃k and is

given by

f(x, P̃k) =
Nc∏

l=1

Nc∑

i,j

P̃k(i, j)I{x∈Xi,j(l)},

where Xi,j(l) is the set of all tours in X such that the lth transition is from city i to

city j. It is straightforward to show that the new transition matrix P̃k+1 is updated in

equation (5.21) as

P̃k+1(i, j) =

∑Nk
l=1 S̃k(H(Xk

l))I{H(Xk
l)≤γ̄k+1}I{Xk

l ∈Xi,j}∑Nk
l=1 S̃k(H(Xk

l))I{H(Xk
l)≤γ̄k+1}

, (5.34)

where Xk
1 , . . . , Xk

Nk
are the i.i.d. sample tours generated from f̃(·, P̃k), γ̄k+1 is defined as

in equation (5.22), and Xi,j represents the set of tours in which the transition from city i

to city j is made.

The performance of the algorithm on various ATSP problems is reported in Ta-

ble 5.5. For each of the 7 instances, we performed 10 independent runs of the algorithm.

In Table 5.5, Ntotal is the total number of tours generated (mean and standard error

reported), Hbest is the length of the shortest path, H∗ and H∗ are the worst and best

solutions obtained out of 10 trials, δ∗ and δ∗ are the respective relative errors for H∗ and

H∗, and δ is the relative error (mean and standard error reported). For all cases, ε = 1,

the initial samples N0 = 1000, ρ0 = 0.1, λ = 0.02, α = 1.5, r = 0.1, the stopping control

154

parameters d = 5, τ = 0, Nmax = 10N2
c , smoothing parameter υ = 0.5, and the initial

transition matrix P̃0 is initialized as a stochastic matrix whose (i, j)th entry is proportional

to the inverse of the (i, j)th entry of G, i.e., P̃0(i, j) ∝ 1
Gi,j

and
∑

j P̃0(i, j) = 1 ∀i.

ATSP Nc Ntotal (std err) Hbest H∗ H∗ δ∗ δ∗ δ (std err)

ftv33 34 7.95e+4(3.25e+3) 1286 1364 1286 0.061 0.000 0.023(0.008)

ftv35 36 1.02e+5(3.08e+3) 1473 1500 1475 0.018 0.001 0.008(0.002)

ftv38 39 1.31e+5(4.90e+3) 1530 1563 1530 0.022 0.000 0.008(0.003)

p43 43 1.02e+5(4.67e+3) 5620 5637 5620 0.003 0.000 0.001(2.5e-4)

ry48p 48 2.62e+5(1.59e+4) 14422 14810 14446 0.027 0.002 0.012(0.003)

ft53 53 2.94e+5(1.58e+4) 6905 7236 6973 0.048 0.010 0.029(0.005)

ft70 70 4.73e+5(2.91e+4) 38673 39751 38744 0.028 0.002 0.017(0.003)

Table 5.5: Performance of MRAS on various ATSP problems based on 10 independent

replications. The standard errors are in parentheses.

5.7 Conclusions

In this Chapter, we have proposed a randomized search technique called Model

Reference Adaptive Search (MRAS) for solving general global optimization problems. The

method iteratively updates a parameterized probability distribution over the solution space

so that the sequence of candidate solutions generated from this distribution will converge

asymptotically to the global optimum. We have provided a particular instantiation of

the framework and established its global convergence properties in both continuous and

discrete (combinatorial) domains. In addition, we have explored the relationship between

the recently proposed Cross-Entropy (CE) method and MRAS, and showed that the CE

155

method can also be interpreted as an instance of the MRAS framework. Finally, we

have also carried out detailed numerical experiments to investigate the performance of the

method.

Throughout this whole chapter, most of the theoretical and empirical analysis work

has been focused on an instantiation of the framework. However, we emphasize that the

contribution of this research goes far beyond this particular instantiation in that it pro-

vides a general framework for designing and analyzing various model-based optimization

algorithms. In MRAS, the task of sampling candidate solutions and the task of updating

probabilistic models are split in a natural way, and there is considerable flexibility in the

choices of reference distributions. Thus, by carefully selecting the reference distributions,

one can construct different instantiations of the framework. Moreover, the convergence

analysis of these instantiation algorithms can simply be ascribed to the study of the prop-

erties of the reference distributions.

The MRAS1 algorithm demonstrated great promise on some preliminary examples,

but practical implementation issues remain. For example, selection of the input parameters

in our numerical experiments was based mainly on trial and error. For a given problem,

how to determine a priori the most appropriate values of these parameters is an open issue.

Designing an adaptive scheme to update these parameters during the search process may

also enhance the convergence rate of the algorithm.

A more important line of research is to extend the MRAS method to stochastic

optimization problems, where the function values can only be observed in the presence of

noise. The construction of a practically efficient generalization of MRAS with provable

convergence is addressed in Chapter 6.

156

Chapter 6

A Model Reference Adaptive Search Method for Stochastic Global Optimization

6.1 Introduction and Motivation

In Chapter 5, we have proposed a unifying framework called Model Reference Adap-

tive Search (MRAS) for solving deterministic global optimization problems. In this Chap-

ter, we discuss how to extend the framework to solving stochastic optimization problems.

Stochastic problems arise in a wide range of areas such as manufacturing, communica-

tion networks, system design, and financial engineering. In contrast to their deterministic

counterparts, such problems are typically much more difficult to solve, either because an

explicit relation between the objective function and the underlying decision variables is

unavailable or because the cost of a precise evaluation of the objective function is too

prohibitive. Oftentimes, one has to use simulation or real-time observations to evaluate

the objective function. In such situations, all the objective function evaluations will con-

tain some noise, so special techniques are generally used (as opposed to the deterministic

optimization methods) in order to filter out the noisy components.

There are two major techniques to address the function evaluation noise arising

from the stochastic setting. One simple approach is to spend a significant amount of

computational effort at each point the algorithm visits in order to obtain a precise estimate

of the objective function value, and then use deterministic optimization approach to solve

the underlying problem. In this respect, the extension of MRAS to stochastic settings

should be relatively straightforward. However, questions arise as to what really quantifies a

precise estimate, how much computational effort should be invested at each point, and how

157

the estimates of the objective function values will affect the final solutions of the algorithm.

These questions are not easy to answer; moreover, when the function evaluation cost is

expensive, to obtain a precise estimate of the objective function value is often infeasible.

To circumvent these difficulties, we resort to the alternative approach, which does not

require obtaining highly precise estimates of the objective function values each time the

algorithm visits a solution. However, we need to modify the MRAS approach intended for

deterministic problems in order to yield good performance in the presence of noise.

The method we propose in this Chapter is called stochastic model reference adaptive

search (SMRAS), which is essentially a generalization of the MRAS method for determin-

istic optimization with some appropriate modifications and extensions required for the

stochastic setting. The idea behind SMRAS, as in MRAS for deterministic optimization,

is to use a pre-specified parameterized probability distribution family to generate candi-

date solutions, and to use a sequence of convergent reference distributions to facilitate and

guide the updating of the parameters associated with the parameterized family at each

step of the iteration procedure. A major modification from the original MRAS method is

in the way the sequence of reference distributions is constructed. In MRAS, reference dis-

tributions are idealized probabilistic models constructed based on the exact performance

of the candidate solutions. In the stochastic case, however, the objective function cannot

be evaluated deterministically, so the sample average approximations of the (idealized)

reference distributions are used in SMRAS to guide the parameter updating. We show

that for a class of parameterized distributions, i.e., the so-called Natural Exponential Fam-

ily (NEF), SMRAS converges with probability one to a global optimal solution for both

stochastic continuous and discrete problems. To the best of our knowledge, SMRAS is

the first model-based search method for solving general stochastic optimization problems

158

with provable convergence.

6.2 A Brief Review of Stochastic Optimization Solution Techniques

There are some obvious distinctions between the solution techniques for stochastic

optimization when the decision variable is continuous and when it is discrete. Although

some techniques, in principle, can be applied to both types of problems, they require some

suitable modifications in order to switch from one setting to another.

A well-known class of methods for solving stochastic optimization problems with

continuous decision variables is stochastic approximation (SA). These methods mimic

the classical gradient-based search method in deterministic optimization, and rely on the

estimation of the gradient of the objective function with respect to the decision variables.

Because they are gradient-based, these methods generally find local optimal solutions. In

terms of the different gradient estimation techniques employed, the SA algorithms can

be generally divided into two categories: algorithms that are based on direct gradient

estimation techniques, the best-known of which are perturbation analysis (PA) and the

likelihood ratio/score function (LR/SF) method ([69]), and algorithms that are based on

indirect gradient estimation techniques like finite difference and its variations ([78]). A

detailed review of various gradient estimation techniques can be found in [32].

When the underlying decision variables are discrete, one popular approach is to use

random search. This has given rise to many different stochastic discrete optimization algo-

rithms, including the stochastic ruler method and its modification ([4], [87]), the random

search methods ([6], [7]), modified simulated annealing ([5]), and the nested partitions

method of [76]. The main idea throughout is to construct a Markov chain over the so-

lution space and show that the Markov chain settles down on the set of (possibly local)

159

optimal solutions.

From an algorithmic point of view (cf. Chapter 1.2), the aforementioned approaches

are instance-based techniques. There are also some independently developed model-based

methods that can also be applied to stochastic discrete optimization problems. Two most

well-established methods are the Stochastic Ant Colony Optimization (S-ACO) ([37]) and

the Cross-Entropy (CE) method (cf. e.g., [26], [65], [66], [67], [68]) The S-ACO method is

the extension of the original Ant Colony Optimization (ACO) algorithm ([29]) to stochastic

problems. The method uses Monte-Carlo sampling to estimate the objective and is shown

(under some regularity assumptions) to converge to the global optimal solution for the

stochastic combinatorial problems with probability one. The CE method was motivated

by an adaptive algorithm for estimating probabilities of rare events. It was later realized

that the method can be modified to solve deterministic optimization problems (cf. e.g.,

[66]). More recently, Rubinstein [67] shows that the method is also capable of handling the

stochastic network combinatorial optimization problems, and in that context, establishes

the probability one convergence of the algorithm.

6.3 The Stochastic Model Reference Adaptive Search Method

We consider the following optimization problem:

x∗ ∈ argmax
x∈X

Eψ[H(x, ψ)], x ∈ X ⊆ <n, (6.1)

where X is the solution space, which can be either continuous or discrete, H(·, ·) is a

deterministic, real-valued function, and ψ is a random variable (possibly depending on x)

representing the stochastic effects of the system. We let h(x) := Eψ[H(x, ψ)], and assume

that h(x) cannot be obtained easily, but the random variable H(x, ψ) can be observed, e.g.,

via simulation. We assume throughout that (6.1) has a unique global optimal solution,

160

i.e., ∃x∗ ∈ X such that h(x) < h(x∗) ∀x 6= x∗, x ∈ X . We also assume that random

samplings can be done easily on X , at least for a class of distributions of interest.

6.3.1 General Framework

Similar to MRAS, SMRAS uses a family of parameterized distributions {f(·, θ), θ ∈

Θ} as sampling distribution to generate candidate solutions, where Θ is some parameter

space. The basic algorithmic structure is very simple. At each iteration k, suppose we

have already obtained a parameter θk, then the main body of the method consists of the

following two steps:

1. Generate candidate solutions from the current sampling distribution f(·, θk).

2. Compute a new parameter vector θk+1 according to a specified parameter updating

rule by using the candidate solutions generated in the previous step in order to

concentrate the future search toward more promising regions.

The parameter updating rule in SMRAS is guided by another sequence of distri-

butions {g̃k(·)}, called the reference distribution. These reference distributions are used

to express the desired properties of the method; thus we may often want to construct

them such that they will have some nice theoretical properties (however, they could be

difficult to handle in practice). Once these reference distributions are specified, then at

each iteration k, we look at the projection of g̃k(·) on the family of distributions {f(·, θ)}

and compute the new parameter vector θk+1 that minimizes the Kullback-Leibler (KL)

distance

D(g̃k, f(·, θ)) := Eegk

[
ln

g̃k(X)
f(X, θ)

]
=

∫

X
ln

g̃k(x)
f(x, θ)

g̃k(dx),

where X = (X1, . . . , Xn) is a random vector having distribution g̃k(·) and taking values in

X , and Eegk
[·] represents the expectation taken with respect to g̃k(·). Intuitively speaking,

161

under the KL-distance measure, f(·, θk+1) can be viewed as a compact approximation of

the reference distribution and thus may share some similar properties with g̃k(·). There-

fore, to ensure the convergence of SMRAS, one basic property the sequence {g̃k(·)} should

have is convergence. There could be many different ways to construct such a convergent

sequence of distributions. When the performance measure is deterministic, we have pro-

posed in Chapter 5.2 the following simple iterative method for constructing the reference

distribution {gk(·)}. Let g0(x) > 0, ∀x ∈ X be an initial probability density/mass func-

tion (p.d.f./p.m.f.) on the solution space X . Then, at each iteration k ≥ 1, compute a

new p.d.f./p.m.f. by tilting the old p.d.f./p.m.f. gk−1(x) with the performance function

h(x) (for simplicity, here we assume that h(x) > 0, ∀x ∈ X), i.e.,

gk(x) =
h(x)gk−1(x)∫
X h(x)gk−1(dx)

, ∀x ∈ X . (6.2)

It is possible to show that the sequence of p.d.f.’s {gk(·)} constructed above will converge

to a p.d.f. that concentrates only on the set of optimal solutions, regardless of the ini-

tial g0(·) used. However, in the stochastic setting, since the performance function h(·)

cannot be evaluated exactly, the iteration procedure given by (6.2) is no longer applica-

ble. Thus, in SMRAS, one key modification from the original deterministic approach is

to use approximations {g̃k(·)} of {gk(·)} as the sequence of reference distributions, which

are constructed based on the sample average approximation of the expected performance

function h(·).

6.3.2 Algorithm Description

In SMRAS, there are two allocation rules. The first one, denoted by {Nk, k =

0, 1 . . .}, is called the sampling allocation rule, where each Nk determines the number of

candidate solutions to be generated from the current sampling distribution at the kth iter-

162

ation. The second is the observation allocation rule {Mk, k = 0, 1, . . .}, which allocates Mk

simulation observations to each of the candidate solutions generated at the kth iteration.

We require both Nk and Mk to increase as the number of iteration grows for convergence,

but other than that, there is considerable flexibility in their choices. To fix ideas, we use

a parameter α > 1, specified initially, to control the rate of increase in {Nk, k = 0, 1 . . .},

and leave the sequence {Mk, k = 0, 1, . . .} as user-specified. When Mk observations are

allocated to a solution x at iteration k, we use Hj(x) to denote the jth (independent)

random observation of H(x, ψ), and use H̄k(x) = 1
Mk

∑Mk
j=1 Hj(x) to denote the sample

average of all Mk observations made at x.

The performance of the SMRAS algorithm depends on another important sequence

of quantities {ρk, k = 0, 1 . . .}. The motivation behind the sequence is to distinguish

“good” samples from “bad” ones and to concentrate the computational effort on the set

of promising samples. The sequence {ρk} is fully adaptive and works cooperatively with

the sequence {Nk}. At successive iterations of the algorithm, a sequence of thresholds

{γ̄k, k = 1, 2, . . .} is generated according to the sequence of sample (1− ρk)-quantiles, and

only those samples that have performances better than these thresholds will be used in

parameter updating. Thus, each ρk determines the approximate proportion of Nk samples

that will be used to update the probabilistic model at iteration k.

During the initialization step of SMRAS, a small positive number ε and a continuous

and strictly increasing function S(·) : < → <+ are specified. The role of the parameter

ε, as we will see later, is to filter out the observation noise. The function S(·) is used

to account for the cases where the sample average approximations H̄k(x) are negative for

some x.

At each iteration k, random samples are drawn from the density/mass function

163

Stochastic Model Reference Adaptive Search (SMRAS)

• Initialization: Specify ρ0 ∈ (0, 1], N0 > 1, α > 1, ε > 0, an allocation rule {Mk}, a strictly

increasing S(·) : < → <+, mixing coefficients {λk, k = 0, 1, . . .} satisfying λk ≥ λk+1 and λk ∈

(0, 1) ∀ k, and an initial p.d.f. f(x, θ0) > 0 ∀x ∈ X . Set k ← 0.

• Repeat until a specified stopping rule is satisfied:

1. Generate Nk samples Xk
1 , . . . , Xk

Nk
according to ef(·, θk) := (1− λk)f(·, θk) + λkf(·, θ0).

2. Compute the sample (1 − ρk)-quantile eγk+1(ρk, Nk) := H̄k,(d(1−ρk)Nke), where dae is the

smallest integer greater than a, and H̄k,(i) is the ith order statistic of the sequence�
H̄k(Xk

i), i = 1, . . . , Nk

	
.

3. If k = 0 or eγk+1(ρk, Nk) ≥ γ̄k + ε, then do step 3a.

3a. Set γ̄k+1 ← eγk+1(ρk, Nk), ρk+1 ← ρk, Nk+1 ← Nk, X†
k+1 ← X1−ρk , where

X1−ρk+1 ∈
�
x : H̄k(x) = H̄k,(d(1−ρk+1)Nke), x ∈ {Xk

1 , . . . , Xk
Nk
}	.

else, find the largest ρ̄ ∈ (0, ρk) such that eγk+1(ρ̄, Nk) ≥ γ̄k + ε.

3b. If ρ̄ exists, then set γ̄k+1 ← eγk+1(ρ̄, Nk), ρk+1 ← ρ̄, Nk+1 ← Nk, X†
k+1 ← X1−ρ̄.

3c. else if no ρ̄ exists, set γ̄k+1 ← H̄k(X†
k), ρk+1 ← ρk, Nk+1 ← dαNke, X†

k+1 ← X†
k.

endif

4. Compute θk+1 as

θk+1 = argmax
θ∈Θ

1

Nk

NkX
i=1

[S(H̄k(Xk
i))]kef(Xk

i , θk)
eI[H̄k(Xk

i), γ̄k+1] ln f(Xk
i , θ), (6.3)

where eI(x, γ) :=

8>>>>>><>>>>>>:
1 if x ≥ γ,

(x− γ + ε)/ε if γ − ε < x < γ,

0 if x ≤ γ − ε.

5. Set k ← k + 1.

Figure 6.1: Stochastic Model Reference Adaptive Search

164

f̃(·, θk), which is a mixture of the initial density f(·, θ0) and the density calculated from

the previous iteration f(·, θk). The initial density f(·, θ0) can be chosen according to some

prior knowledge of the problem structure; however, if nothing is known about where the

good solutions are, this density should be chosen in such a way that each region in the

solution space will have an (approximately) equal probability of being sampled. Intuitively,

mixing in the initial density enables the algorithm to explore the entire solution space and

thus maintain a global perspective during the search process.

At step 2, the sample (1− ρk)-quantile γ̃k+1 with respect to f̃(·, θk) is calculated by

first ordering the sample performances H̄k(Xk
i), i = 1, . . . , Nk from smallest to largest,

H̄k,(1) ≤ H̄k,(2) ≤ · · · ≤ H̄k,(Nk), and then taking the d(1 − ρk)Nketh order statistic. We

use the function γ̃k+1(ρk, Nk) to emphasize the dependencies of γ̃k+1 on both ρk and Nk,

so that different sample quantile values can be distinguished by their arguments.

Step 3 of the algorithm is used to construct a sequence of thresholds {γ̄k, k = 1, 2, . . .}

from the sequence of sample quantiles {γ̃k}, and to determine the appropriate values of

the ρk+1 and Nk+1 to be used in subsequent iterations. This is carried out by checking

whether the condition γ̃k+1(ρk, Nk) ≥ γ̄k + ε is satisfied. If the inequality holds, then

both the current ρk value and the new sample size Nk are satisfactory, and γ̃k+1(ρk, Nk)

is used as the current threshold value. Otherwise, we fix the sample size Nk and try to

find a smaller ρ̄ < ρk such that the above inequality can be satisfied with the new sample

(1 − ρ̄)-quantile. If such a ρ̄ does exist, then the current sample size Nk is still deemed

acceptable, and the new threshold value is updated by the sample (1 − ρ̄)-quantile. On

the other hand, if no such ρ̄ can be found, then the sample size Nk is increased by a

factor α, and the new threshold γ̄k+1 is calculated by using an additional variable X†
k to

remember the particular sample that achieves the previous threshold value γ̄k, and then

165

simply allocating Mk observations to X†
k. It is important to note that in step 4, the set

{
x : H̄k(x) > γ̄k+1 − ε, x ∈ {Xk

1 , . . . , Xk
Nk
}} could be empty, since it could happen that

all the random samples generated at the current iteration are much worse than those

generated at the previous iteration. If this is the case, then by the definition of Ĩ(·, ·,),

the right hand side of equation (6.3) will be equal to zero, so any θ ∈ Θ is a maximizer;

we define θk+1 := θk in this case. Note that a “soft” threshold function Ĩ(·, ·), as opposed

to the indicator function, is used in parameter updating (cf. equations (6.3)). The reason

for doing so, as will be explained later, is to smooth out the noisy observations.

We now show that there is a sequence of reference models {g̃k(·)} implicit in SM-

RAS, and the parameter θk+1 computed at step 4 indeed minimizes the KL-divergence

D(g̃k+1, f(·, θ)).

Lemma 6.3.1 The parameter θk+1 computed at the kth iteration of SMRAS minimizes

the KL-divergence D (g̃k+1, f(·, θ)), where

g̃k+1(x) :=





[
[S(H̄k(x))]k/ ef(x,θk)

]eI(H̄k(x),γ̄k+1)PNk
i=1

[
[S(H̄k(Xk

i))]k/ ef(Xk
i ,θk)

]eI(H̄k(Xk
i),γ̄k+1)

if
{
x : H̄k(x) > γ̄k+1 − ε, x ∈ Λk 6= ∅},

g̃k(x) otherwise,

(6.4)

∀ k = 0, 1, . . ., where γ̄k+1 :=





γ̃k+1(ρk, Nk) if step 3a is visited,

γ̃k+1(ρ̄, Nk) if step 3b is visited,

H̄k(X†
k) if step 3c is visited,

and Λk := {Xk
1 , . . . , Xk

Nk
}.

Proof: We only need to consider the case where
{
x : H̄k(x) > γ̄k+1 − ε, x ∈ Λk

} 6= ∅,

since if this is not the case, then we can always backtrack and find a g̃k(·) with non-empty

support.

For brevity, we define S̃k(H̄k(x)) := [S(H̄k(x))]kef(x,θk)
. Note that at the kth iteration, the

166

K-L divergence between g̃k+1(·) and f(·, θ) can be written as

D (g̃k+1, f(·, θ))

= Eegk+1
[ln g̃k+1(X)]− Eegk+1

[ln f(X, θ)]

= Eegk+1
[ln g̃k+1(X)]−

1
Nk

∑Nk
i=1 S̃k(H̄k(Xk

i))Ĩ
(
H̄k(Xk

i), γ̄k+1

)
ln f(Xk

i , θ)
1

Nk

∑Nk
i=1 S̃k(H̄k(Xk

i))Ĩ
(
H̄k(Xk

i), γ̄k+1

) ,

where X is a random variable with distribution g̃k+1(·). Thus the proof is completed

by observing that minimizing D (g̃k+1, f(·, θ)) is equivalent to maximizing the quantity

1
Nk

∑Nk
i=1 S̃k(H̄k(Xk

i))Ĩ
(
H̄k(Xk

i), γ̄k+1

)
ln f(Xk

i , θ).

Remark 6.3.1 For optimization problems with finite solution spaces, it is often useful to

make efficient use of the past sampling information. This can be achieved by maintaining

a list of all sampled candidate solutions as well as the number of observations made at each

of these visited solutions, and then check if a newly generated solution is in that list. If at

the kth iteration, a new solution has already been visited and, say Ml, observations have

been allocated, then we only need to take Mk−Ml additional observations from that point.

This procedure is often effective when the solution space is relatively small. However,

when the solution space is large, the storage and checking cost could be quite expensive. In

SMRAS, we propose an alternative approach: at each iteration k of the method, instead of

remembering all past samples, we only keep track of those samples that fall in the region

{
x : H̄k(x) > γ̄k+1 − ε

}
. Thus, as the search becomes more and more concentrated on

these regions, the probability of getting repeated samples will typically increase.

6.4 Convergence Analysis

For reasons discussed in Chapter 5, we restrict our discussion to the so-called natural

exponential family (NEF) (see Definition 5.3.1), which works well in practice, and for which

167

convergence properties can be established.

We make the following assumptions about the noisy observations Hj(x) and the

observation allocation rule {Mk}.

Assumptions:

L1. For any given ε > 0, these exists a positive number n∗ such that for all n ≥ n∗,

sup
x∈X

P
(∣∣∣ 1

n

n∑

j=1

Hj(x)− h(x)
∣∣∣ ≥ ε

)
≤ φ(n, ε),

where φ(·, ·) is strictly decreasing in its first argument and non-increasing in its

second argument. Moreover, φ (n, ε) → 0 as n →∞.

L2. For any ε > 0, there exist positive numbers m∗ and n∗ such that for all m ≥ m∗ and

n ≥ n∗,

sup
x,y∈X

P
(∣∣∣ 1

m

m∑

j=1

Hj(x)− 1
n

n∑

j=1

Hj(y)− h(x) + h(y)
∣∣∣ ≥ ε

)
≤ φ (min{m,n}, ε) ,

where φ(·, ·) satisfies the conditions in L1.

L3. The observation allocation rule {Mk, k = 0, 1, . . .} satisfies Mk ≥ Mk−1 ∀ k = 1, 2, . . .,

and Mk →∞ as k →∞. Moreover, for any ε > 0, there exist δε ∈ (0, 1) and Kε > 0

such that α2kφ(Mk−1, ε) ≤ (δε)k, ∀ k ≥ Kε, where φ(·, ·) is defined as in L1.

Assumption L1 is satisfied by many random sequences, e.g., the sequence of i.i.d.

random variables with (asymptotically) uniformly bounded variance, or a class of random

variables (not necessarily i.i.d.) that satisfy the large deviations principle; please refer

to [42] for further details. Assumption L2 can be viewed as a simple extension of L1.

Most random sequences that satisfy L1 will also satisfy L2. For example, consider the

particular case where the sequence Hj(x), j = 1, 2, . . . is i.i.d. with uniformly bounded

168

variance σ2(x) and E(Hj(x)) = h(x), ∀ x ∈ X . Thus the variance of the random variable

1
m

∑m
j=1 Hj(x) − 1

n

∑n
j=1 Hj(y) is 1

mσ2(x) + 1
nσ2(y), which is also uniformly bounded on

X . By Chebyshev’s inequality, we have for any x, y ∈ X

P
(∣∣∣ 1

m

m∑

j=1

Hj(x)− 1
n

n∑

j=1

Hj(y)− h(x) + h(y)
∣∣∣ ≥ ε

)
≤ supx,y

[
1
mσ2(x) + 1

nσ2(y)
]

ε2
,

≤ supx,y

[
σ2(x) + σ2(y)

]

min{m,n}ε2
,

= φ(min{m,n}, ε).

Assumption L3 is a regularity condition imposed on the observation allocation rule. L3

is a mild condition and is very easy to verify. For instance, if φ(n, ε) takes the form

φ(n, ε) = C(ε)
n , where C(ε) is a constant depending on ε, then the condition on Mk−1

becomes Mk−1 ≥ C(ε)(α2

δε
)k ∀ k ≥ Kε. As another example, if Hj(x), j = 1, 2 . . . satisfies

the large deviations principle and φ(n, ε) = e−nC(ε), then the condition becomes Mk−1 ≥
[
ln(α2

δε
)/C(ε)

]
k, ∀ k ≥ Kε.

To establish the global convergence of SMRAS, we make the following additional

assumptions.

Assumptions:

B1. There exists a compact set Π such that for the sequence of random variables {X†
k, k =

1, 2, . . .} generated by SMRAS, ∃N < ∞ w.p.1 such that {x : h(x) ≥ h(X†
k) − ε} ∩

X ⊆ Π ∀ k ≥ N .

B2. For any constant ξ < h(x∗), the set {x : h(x) ≥ ξ}∩X has a strictly positive Lebesgue

or discrete measure.

B3. For any given constant δ > 0, supx∈Aδ
h(x) < h(x∗), where Aδ := {x : ‖x− x∗‖ > δ}∩

X , and we define the supremum over the empty set to be −∞.

169

B4. For each point z ≤ h(x∗), there exist ∆k > 0 and Lk > 0, such that |(S(z))k−(S(z̄))k|
|(S(z))k| ≤

Lk|z − z̄| for all z̄ ∈ (z −∆k, z + ∆k).

B5. The maximizer of equation (6.3) is an interior point of Θ for all k.

B6. supθ∈Θ ‖ exp
{
θT Γ(x)

}
Γ(x)`(x)‖ is integrable/summable with respect to x, where θ,

Γ(·), and `(·) are defined in Definition 5.3.1.

B7. f(x, θ0) > 0 ∀x ∈ X and f∗ := infx∈Π f(x, θ0) > 0, where Π is defined in B1.

As we will see, the sequence {X†
k} generated by SMRAS converges (cf. the proof

of Lemma 6.4.3). Thus, B1 requires that the search of SMRAS will eventually end up in

a compact set. The assumption is trivially satisfied if the solution space X is compact.

Assumption B2 ensures that the neighborhood of the optimal solution x∗ will be sampled

with a strictly positive probability. Since x∗ is the unique global optimizer of h(·), B3 is

satisfied by many functions encountered in practice. B4 can be understood as a locally

Lipschitz condition on [S(·)]k; its suitability will be discussed later. In actual implemen-

tation of the algorithm, step 4 is often posed as an unconstrained optimization problem,

i.e., Θ = <m, in which case B5 is automatically satisfied. It is also easy to verify that B6

and B7 are satisfied by most NEFs.

To show the convergence of SMRAS, we will need the following lemmas.

Lemma 6.4.1 If Assumptions L1−L3 are satisfied, then step 3a/3b of SMRAS will be

visited finitely often (f.o.) w.p.1 as k →∞.

Proof: We consider the sequence {X†
k, k = 1, 2, . . .} generated by SMRAS, and let Ak

be the event that step 3a/3b is visited at the kth iteration, Bk := {h(X†
k+1)−h(X†

k) ≤ ε
2},

170

and Λk = {Xk
1 , . . . , Xk

Nk
} be the set of candidate solutions generated at the kth iteration.

Since the event Ak implies H̄k(X
†
k+1)− H̄k−1(X

†
k) ≥ ε, we have

P (Ak ∩ Bk) ≤ P
({

H̄k(X
†
k+1)− H̄k−1(X

†
k) ≥ ε

} ∩ {
h(X†

k+1)− h(X†
k) ≤

ε

2
})

≤ P
(⋃

x∈Λk,y∈Λk−1

{{
H̄k(x)− H̄k−1(y) ≥ ε

} ∩ {
h(x)− h(y) ≤ ε

2
}})

≤
∑

x∈Λk,y∈Λk−1

P
({

H̄k(x)− H̄k−1(y) ≥ ε
} ∩ {

h(x)− h(y) ≤ ε

2
})

≤ |Λk||Λk−1| sup
x,y∈X

P
({

H̄k(x)− H̄k−1(y) ≥ ε
} ∩ {

h(x)− h(y) ≤ ε

2
})

≤ |Λk||Λk−1| sup
x,y∈X

P
(
H̄k(x)− H̄k−1(y)− h(x) + h(y) ≥ ε

2

)

≤ |Λk||Λk−1|φ
(
min

{
Mk,Mk−1

}
,
ε

2
)

by Assumption L2

≤ α2kN2
0 φ

(
Mk−1,

ε

2
)

≤ N2
0 (δε/2)

k, ∀ k ≥ Kε/2 by Assumption L3.

Therefore,
∞∑

k=1

P (Ak ∩ Bk) ≤ Kε/2 + N2
0

∞∑

k=Kε/2

(δε/2)
k ≤ ∞.

By the Borel-Cantelli lemma, we have

P (Ak ∩ Bk i.o.) = 0.

It follows that if Ak happens infinitely often, then w.p.1, Bc
k will also happen infinitely

171

often. Thus,

∞∑

k=1

[
h(X†

k+1)− h(X†
k)

]

=
∑

k: Ak occurs

[
h(X†

k+1)− h(X†
k)

]
+

∑

k: Ac
k occurs

[
h(X†

k+1)− h(X†
k)

]

=
∑

k: Ak occurs

[
h(X†

k+1)− h(X†
k)

]
since X†

k+1 = X†
k if step 3c is visited

=
∑

k: Ak∩Bk occurs

[
h(X†

k+1)− h(X†
k)

]
+

∑

k: Ak∩Bc
k occurs

[
h(X†

k+1)− h(X†
k)

]

=∞ w.p.1 since ε > 0.

However, this is a contradiction, since h(x) is bounded from above by h(x∗). Therefore,

w.p.1, Ak can only happen a finite number of times.

Remark 6.4.1 Lemma 6.4.1 implies that step 3c of SMRAS will be visited infinitely often

(i.o.) w.p.1.

Remark 6.4.2 Note that when the solution space X is finite, the set Λk will be finite for

all k. Thus, Lemma 6.4.1 may still hold if we replace Assumption L3 by some milder

conditions on Mk. One such condition is
∑∞

k=1 φ(Mk, ε) < ∞, for example, when the

sequence Hj(x), j = 1, 2 . . . satisfies the large deviations principle and φ(n, ε) takes the

form φ(n, ε) = e−nC(ε). A particular observation allocation rule that satisfies this condition

is Mk = Mk−1 + 1 ∀ k = 1, 2,

The following lemma relates the sequence of sampling distributions {f(·, θk), k =

1, 2, . . .} to the sequence of reference models {g̃k(·), k = 1, 2 . . .} (cf. (6.4)).

Lemma 6.4.2 If assumptions B5 and B6 hold, then we have

Eθk+1
[Γ(X)] = Eegk+1

[Γ(X)] , ∀ k = 0, 1, . . . ,

172

where Eθk+1
(·) and Eegk+1

(·) are the expectations taken with respect to the p.d.f./p.m.f.

f(·, θk+1) and g̃k+1(·), respectively.

Proof: For the same reason as discussed in the proof of Lemma 6.3.1, we only need to

consider the case where
{
x : H̄k(x) > γ̄k+1 − ε, x ∈ {Xk

1 , . . . , Xk
Nk
}} 6= ∅. Define

Jk(θ) =
1

Nk

Nk∑

i=1

S̃k(H̄k(Xk
i))Ĩ

(
H̄k(Xk

i), γ̄k+1

)
ln f(Xk

i , θ), where S̃k(H̄k(x)) := [S(H̄k(x))]kef(x,θk)
.

Since f(·, θ) belongs to the NEF, we can write

Jk(θ) =
1

Nk

Nk∑

i=1

S̃k(H̄k(Xk
i))Ĩ

(
H̄k(Xk

i), γ̄k+1

)
ln `(Xk

i)

+
1

Nk

Nk∑

i=1

S̃k(H̄k(Xk
i))Ĩ

(
H̄k(Xk

i), γ̄k+1

)
θT Γ(Xk

i)

− 1
Nk

Nk∑

i=1

S̃k(H̄k(Xk
i))Ĩ

(
H̄k(Xk

i), γ̄k+1

)
ln

∫

x∈X
eθT Γ(x)`(x)ν(dx).

Thus the gradient of Jk(θ) with respect to θ can be expressed as

∇θJk(θ) =
1

Nk

Nk∑

i=1

S̃k(H̄k(Xk
i))Ĩ

(
H̄k(Xk

i), γ̄k+1

)
Γ(Xk

i)

−
∫

eθT Γ(x)Γ(x)`(x)ν(dx)∫
eθT Γ(x)`(x)ν(dx)

1
Nk

Nk∑

i=1

S̃k(H̄k(Xk
i))Ĩ

(
H̄k(Xk

i), γ̄k+1

)
,

where the validity of the interchange of derivative and integral above is guaranteed by

Assumption B6 and the dominated convergence theorem. By setting ∇θJk(θ) = 0, it

follows that

1
Nk

∑Nk
i=1 S̃k(H̄k(Xk

i))Ĩ
(
H̄k(Xk

i), γ̄k+1

)
Γ(Xk

i)
1

Nk

∑Nk
i=1 S̃k(H̄k(Xk

i))Ĩ
(
H̄k(Xk

i), γ̄k+1

) =
∫

eθT Γ(x)Γ(x)`(x)ν(dx)∫
eθT Γ(x)`(x)ν(dx)

,

which implies that Eegk+1
[Γ(X)] = Eθ [Γ(X)] by the definitions of gk(·) (cf. (6.4)) and

f(·, θ).

Since θk+1 is the optimal solution of the problem

arg max
θ∈Θ

Jk(θ),

173

we conclude that Eegk+1
[Γ(X)] = Eθk+1

[Γ(X)] , ∀ k = 0, 1, . . ., by B5.

Remark 6.4.3 Intuitively, the sequence of regions {x : H̄k(x) > γ̄k+1 − ε}, k = 0, 1, 2 . . .

tends to get smaller and smaller during the search process of SMRAS. Lemma 6.4.2 shows

that the sequence of sampling p.d.f ’s f(·, θk+1) is “adapted” to this sequence of shrinking

regions. For example, consider the special case where {x : H̄k(x) > γ̄k+1 − ε} is convex

and Γ(x) = x. Since Eegk+1
[X] is a convex combination of Xk

1 , . . . , Xk
Nk

, the lemma implies

that Eθk+1
[X] ∈ {x : H̄k(x) > γ̄k+1 − ε}. Thus, it is natural to expect that the random

samples generated at the next iteration will fall in the region {x : H̄k(x) > γ̄k+1 − ε} with

large probabilities (e.g., consider the normal distribution where its mean µk+1 = Eθk+1
[X]

is equal to its mode value). In contrast, if we use a fixed sampling distribution for all

iterations (cf. e.g., [74], [89]), then sampling from this sequence of shrinking regions could

be a substantially difficult problem in practice.

We now define a sequence of (idealized) p.d.f’s {gk(·)} as

gk+1(x) =
[S(h(x)]k Ĩ(h(x), γk)∫

x∈X [S(h(x)]k Ĩ(h(x), γk)ν(dx)
∀ k = 0, 1, . . . , (6.5)

where γk := h(X†
k). Notice that since X†

k is a random variable, gk+1(x) is also random.

The outline of the convergence proof is as follows: First we establish the convergence

of the sequence of p.d.f’s {gk(·)}, then we claim that the reference p.d.f’s {g̃k(·)} are

in fact the (sample average) approximations of the sequence {gk(·)} by showing that

Eegk
[Γ(X)] → Egk

[Γ(X)] w.p.1 as k →∞. Thus, the convergence of the sequence {f(·, θk)}

follows immediately by applying Lemma 6.4.2.

The convergence of the sequence {gk(·)} is formalized in the following lemma.

Lemma 6.4.3 If Assumptions L1−L3, B1−B3 are satisfied, then

lim
k→∞

Egk
[Γ(X)] = Γ(x∗) w.p.1.

174

Proof: Our proof is an extension of the proof of Theorem 5.3.1. Let Ω1 be the set of all

sample paths such that step 3a/3b is visited finitely often, and let Ω2 be the set of sample

paths such that limk→∞{h(x) ≥ γk − ε} ⊆ Π. By Lemma 6.4.1, we have P (Ω1) = 1, and

for each ω ∈ Ω1, there exists a finite N (ω) > 0 such that

X†
k+1(ω) = X†

k(ω) ∀ k ≥ N (ω),

which implies that γk+1(ω) = γk(ω) ∀ k ≥ N (ω). Furthermore, by B1, we have P (Ω2) = 1

and {h(x) ≥ γk(ω)− ε} ⊆ Π, ∀ k ≥ N (ω) ∀ω ∈ Ω1 ∩ Ω2.

Thus, for each ω ∈ Ω1 ∩Ω2, it is not difficult to see from equation (6.5) that gk+1(·)

can be expressed recursively as

gk+1(x) =
S(h(x))gk(x)
Egk

[S(h(X))]
, ∀ k > N (ω),

where we have used gk(·) instead of gk(ω)(·) to simplify the notation. It follows that

Egk+1
[S(h(X))] =

Egk
[S2(h(X))]

Egk
[S(h(X))]

≥ Egk
[S(h(X))] , ∀ k > N (ω), (6.6)

which implies that the sequence {Egk
[h(X)], k = 1, 2, . . .} converges (note that Egk

[h(X)]

is bounded from above by h(x∗)).

Now we show that the limit of the above sequence is S(h(x∗)). To show this, we

proceed by contradiction and assume that

lim
k→∞

Egk
[S(h(X))] = S∗ < S∗ := S(h(x∗)).

Define the set C := {x : h(x) ≥ γN (ω) − ε} ∩ {x : S(h(x)) ≥ S∗+S∗
2 } ∩ X . Since S(·) is

strictly increasing, its inverse S−1(·) exists, thus C can be formulated as C =
{
x : h(x) ≥

max{γN (ω) − ε, S−1(S∗+S∗
2)}} ∩ X . By B2, C has a strictly positive Lebesgue/discrete

measure.

175

Note that gk+1(·) can be written as

gk+1(x) =
k∏

i=N (ω)+1

S(h(x))
Egi [S(h(X))]

· gN (ω)+1(x), ∀ k > N (ω).

Since limk→∞
S(h(x))

Egk
[S(h(X))] = S(h(x))

S∗ > 1, ∀ x ∈ C, we conclude that

lim inf
k→∞

gk(x) = ∞, ∀ x ∈ C.

We have, by Fatou’s lemma,

1 = lim inf
k→∞

∫

X
gk+1(x)ν(dx) ≥ lim inf

k→∞

∫

C
gk+1(x)ν(dx) ≥

∫

C
lim inf
k→∞

gk+1(x)ν(dx) = ∞,

which is a contradiction. Hence, it follows that

lim
k→∞

Egk
[S(h(X))] = S∗, ∀ ω ∈ Ω1 ∩ Ω2. (6.7)

We now bound the difference between Egk+1
[Γ(X)] and Γ(x∗). We have

‖Egk+1
[Γ(X)]− Γ(x∗)‖ ≤

∫

x∈X
‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx)

=
∫

D
‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx), (6.8)

where D :=
{
x : h(x) ≥ γN (ω) − ε

} ∩ X is the support of gk+1(x), ∀ k > N (ω).

By the assumption on Γ(·) in Definition 5.3.1, for any given ζ > 0, there exists a

δ > 0 such that ‖x − x∗‖ ≤ δ implies ‖Γ(x) − Γ(x∗)‖ ≤ ζ. Let Aδ be defined as in B3;

then we have from (6.8)

‖Egk+1
[Γ(X)]− Γ(x∗)‖

≤
∫

Ac
δ∩D

‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx) +
∫

Aδ∩D
‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx)

≤ ζ +
∫

Aδ∩D
‖Γ(x)− Γ(x∗)‖gk+1(x)ν(dx), ∀ k > N (ω). (6.9)

The rest of the proof amounts to showing that the second term in (6.9) is also bounded.

Clearly by B1, the term ‖Γ(x) − Γ(x∗)‖ is bounded on the set Aδ ∩ D. We only need to

find a bound for gk+1(x).

176

By B3, we have

sup
x∈Aδ∩D

h(x) ≤ sup
x∈Aδ

h(x) < h(x∗).

Define Sδ := S∗ − S(supx∈Aδ
h(x)). And by the monotonicity of S(·), we have Sδ > 0. It

is easy to see that

S(h(x)) ≤ S∗ − Sδ, ∀x ∈ Aδ ∩ D. (6.10)

From (6.6) and (6.7), there exists N̄ (ω) ≥ N (ω) such that for all k ≥ N̄ (ω)

Egk+1
[S(h(X))] ≥ S∗ − 1

2
Sδ. (6.11)

Observe that gk+1(x) can be rewritten as

gk+1(x) =
k∏

i=N̄

S(h(x))
Egi [S(h(X))]

· gN̄ (x), ∀ k ≥ N̄ (ω).

Thus, it follows from (6.10) and (6.11) that

gk+1(x) ≤
(S∗ − Sδ

S∗ − 1
2Sδ

)k−N̄+1
· gN̄ (x), ∀x ∈ Aδ ∩ D, ∀ k ≥ N̄ (ω).

Therefore,

‖Egk+1
[Γ(X)]− Γ(x∗)‖ ≤ ζ + sup

x∈Aδ∩D
‖Γ(x)− Γ(x∗)‖

∫

Aδ∩D
gk+1(x)ν(dx)

≤ ζ + sup
x∈Aδ∩D

‖Γ(x)− Γ(x∗)‖
(S∗ − Sδ

S∗ − 1
2Sδ

)k−N̄+1
, ∀ k ≥ N̄ (ω)

≤
(
1 + sup

x∈Aδ∩D
‖Γ(x)− Γ(x∗)‖

)
ζ, ∀ k ≥ N̂ (ω),

where N̂ (ω) is given by N̂ (ω) := max
{N̄ (ω), dN̄ (ω)− 1 + ln ζ/ ln

(
S∗−Sδ

S∗− 1
2
Sδ

)
e}.

Since ζ is arbitrary, we have

lim
k→∞

Egk
[Γ(X)] = Γ(x∗), ∀ω ∈ Ω1 ∩ Ω2.

And since P (Ω1 ∩ Ω2) = 1, the proof is thus completed.

177

As mentioned earlier, the rest of the convergence proof now amounts to showing

that Eegk
[Γ(X)] → Egk

[Γ(X)] w.p.1 as k →∞. However, there is one more complication:

Since S(·) is an increasing function and is raised to the kth power in both g̃k+1 and gk+1

(cf. (6.4), (6.5)), the associated estimation error between H̄k(x) and h(x) is exaggerated.

Thus, even though we have limk→∞ H̄k(x) = h(x) w.p.1, the quantities Sk(H̄k(x)) and

Sk(h(x)) may still differ considerably as k gets large. Therefore, the sequence {H̄k(x)}

not only has to converge to h(x), but it should also do so at a fast enough rate in order

to reduce the gap between Sk(H̄k(x)) and Sk(h(x)). This requirement is summarized in

the following assumption.

Assumption L4. For any given ζ > 0, there exist δ∗ ∈ (0, 1) and K > 0 such that the

observation allocation rule {Mk, k = 1, 2 . . .} satisfies

αkφ
(
Mk, min

{
∆k,

ζ

αk
,

ζ

αkLk

})
≤ (δ∗)k ∀ k ≥ K,

where φ(·, ·) is defined as in L1, ∆k and Lk are defined as in B4.

Let S(z) = eτz, for some positive constant τ . We have Sk(z) = eτkz and [Sk(z)]′ =

kτeτkz. It is easy to verify that |Sk(z)−Sk(z̄)|
Sk(z)

≤ kτeτk∆k |z − z̄| ∀ z̄ ∈ (z − ∆k, z + ∆k),

and B4 is satisfied for ∆k = 1/k and Lk = τeτk. Thus, the condition in L4 becomes

αkφ(Mk, ζ̄/αkk) ≤ (δ∗)k ∀ k ≥ K, where ζ̄ = ζ/τeτ . We consider the following two special

cases of L4. Let Hi(x) be i.i.d. with E(Hi(x)) = h(x) and uniformly bounded variance

supx∈X σ2(x) ≤ σ2. By Chebyshev’s inequality

P
(∣∣H̄k(x)− h(x)

∣∣ ≥ ζ̄

αkk

)
≤ σ2α2kk2

Mkζ̄2
.

Thus, it is easy to check that L4 is satisfied by Mk = (µα3)k for any constant µ > 1.

As a second example, consider the case where H1(x), . . . , HNk
(x) are i.i.d. with

178

E(Hi(x)) = h(x) and bounded support [a, b]. By the Hoeffding inequality ([40])

P
(∣∣H̄k(x)− h(x)

∣∣ ≥ ζ̄

αkk

)
≤ 2 exp

(−2Mkζ̄
2

(b− a)2α2kk2

)
.

In this case, L4 is satisfied by Mk = (µα2)k for any constant µ > 1.

Again, as discussed in Remark 6.4.2, Assumption L4 can be replaced by the weaker

condition
∞∑

k=1

φ
(
Mk, min

{
∆k,

ζ

αk
,

ζ

αkLk

})
< ∞

when the solution space X is discrete finite.

Proposition 6.4.1 If Assumptions L1−L4 are satisfied, then

lim
k→∞

αk
∣∣γ̄k+1 − γk

∣∣ = 0 w.p.1.

Proof: Again, we consider the sequence
{
X†

k

}
generated by SMRAS.

We have for any ζ > 0

P
(∣∣γ̄k+1 − γk+1

∣∣ ≥ ζ

αk

)
= P

(∣∣H̄k(X
†
k+1)− h(X†

k+1)
∣∣ ≥ ζ

αk

)

≤ P
(⋃

x∈Λk

{∣∣H̄k(x)− h(x)
∣∣ ≥ ζ

αk

})

≤
∑

x∈Λk

P
(∣∣H̄k(x)− h(x)

∣∣ ≥ ζ

αk

)

≤ ∣∣Λk

∣∣ sup
x∈X

P
(∣∣H̄k(x)− h(x)

∣∣ ≥ ζ

αk

)

≤ αkN0φ(Mk, ζ/αk) by L1

≤ N0(δ∗)k ∀ k ≥ K by L4 and the definition of φ(·, ·).

Thus
∞∑

k=1

P
(∣∣γ̄k+1 − γk+1

∣∣ ≥ ζ

αk

)
≤ K + N0

∞∑

k=K
(δ∗)k < ∞.

179

And by Borel-Cantelli lemma,

P
({∣∣γ̄k+1 − γk+1)

∣∣ ≥ ζ

αk

}
i.o.

)
= 0.

Let Ω1 be defined as before, and define Ω3 :=
{
ω : αk |γ̄k+1 − γk+1| ≥ ζ i.o.

}
. Since for

each ω ∈ Ω1, there exists a finite N (ω) > 0 such that γk+1(ω) = γk(ω) ∀ k ≥ N (ω), we

have

P
(
αk

∣∣γ̄k+1 − γk

∣∣ ≥ ζ i.o.
)

= P
(∣∣γ̄k+1 − γk

∣∣ ≥ ζ

αk
i.o. ∩ Ω1

)
+ P

(∣∣γ̄k+1 − γk

∣∣ ≥ ζ

αk
i.o. ∩ Ωc

1

)

≤ P (Ω3 ∩ Ω1) + P (Ωc
1)

= 0.

And since ζ is arbitrary, the proof is thus completed.

We are now ready to state the main theorem.

Theorem 6.4.1 Let ϕ > 0 be a positive constant satisfying the condition that the set

{
x : S(h(x)) ≥ 1

ϕ

}
has a strictly positive Lebesgue/counting measure. If assumptions

L1−L4, B1−B7 are satisfied, and there exist δ ∈ (0, 1) and Tδ < ∞ such that α ≥

[ϕS∗]2/[λ2/k
k δ] ∀ k ≥ Tδ, then

lim
k→∞

Eθk
[Γ(X)] = Γ(x∗) w.p.1, (6.12)

where the limit above is component-wise.

Remark 6.4.4 By the monotonicity of S(·) and Assumption B2, it is easy to see that such

a positive constant ϕ in Theorem 6.4.1 always exists. Moreover, for continuous problems,

ϕ can be chosen such that ϕS∗ ≈ 1; for discrete problems, if the counting measure is used,

then we can choose ϕ = 1/S∗.

180

Remark 6.4.5 Note that when Γ(x) is a one-to-one function, the above result can be

equivalently written as Γ−1 (limk→∞Eθk
[Γ(X)]) = x∗. Also note that for some particular

p.d.f.’s/p.m.f.’s, the solution vector x itself will be a component of Γ(x) (e.g., multivariate

normal p.d.f.). Under these circumstances, we can disregard the redundant components

and interpret (6.12) as limk→∞Eθk
[X] = x∗. Another special case of particular interest is

when the components of the random vector X = (X1, . . . , Xn) are independent, and each

has a univariate p.d.f./p.m.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))`(xi), ϑi ⊂ <, ∀ i = 1, . . . , n.

In this case, since the distribution of the random vector X is simply the product of the

marginal distributions, we have Γ(x) = x. Thus, equation (6.12) is again equivalent to

limk→∞Eθk
[X] = x∗, where θk := (ϑk

1, . . . , ϑ
k
n), and ϑk

i is the value of ϑi at the kth

iteration of the algorithm. The above observations indicate that the convergence result in

Theorem 6.4.1 is much stronger than it appears to be.

Proof: For brevity, we define the function

Yk(Z, γ) := S̃k(Z)Ĩ(Z, γ), where S̃k(Z) =





[S(h(x))]k/f̃(x, θk) if Z = h(x),

[S(H̄k(x))]k/f̃(x, θk) if Z = H̄k(x).

By B7, the support of f̃(·, θk) satisfies X ⊆ supp{f̃(·, θk)} ∀ k. Thus, we can write

Egk+1
[Γ(X)] =

Ẽθk
[Yk(h(X), γk)Γ(X)]

Ẽθk
[Yk(h(X), γk)]

,

where Ẽθk
(·) is the expectation taken with respect to f̃(·, θk). We now show Eegk+1

[Γ(X)] →

Egk+1
[Γ(X)] w.p.1 as k → ∞. Since we are only interested in the limiting behavior of

Eegk+1
[Γ(X)], from the definition of g̃k+1(·) (cf. (6.4)), it is sufficient to show that

∑Nk
i=1 Yk(H̄k(Xk

i), γ̄k+1)Γ(Xk
i)∑Nk

i=1 Yk(H̄k(Xk
i), γ̄k+1)

→ Egk+1
[Γ(X)] w.p.1,

181

where and hereafter, whenever Λk ∩ {x : H̄k(x) > γ̄k+1 − ε} = ∅, we define 0/0 = 0. We

have

∑Nk
i=1 Yk(H̄k(Xk

i), γ̄k+1)Γ(Xk
i)∑Nk

i=1 Yk(H̄k(Xk
i), γ̄k+1)

− Egk+1
[Γ(X)]

=
∑Nk

i=1 Yk(H̄k(Xk
i), γ̄k+1)Γ(Xk

i)∑Nk
i=1 Yk(H̄k(Xk

i), γ̄k+1)
− Ẽθk

[Yk(h(X), γk)Γ(X)]

Ẽθk
[Yk(h(X), γk)]

=

{∑Nk
i=1 Yk(H̄k(Xk

i), γ̄k+1)Γ(Xk
i)∑Nk

i=1 Yk(H̄k(Xk
i), γ̄k+1)

−
∑Nk

i=1 Yk(h(Xk
i), γk)Γ(Xk

i)∑Nk
i=1 Yk(h(Xk

i), γk)

}

+

{
1

Nk

∑Nk
i=1 Yk(h(Xk

i), γk)Γ(Xk
i)

1
Nk

∑Nk
i=1 Yk(h(Xk

i), γk)
− Ẽθk

[Yk(h(X), γk)Γ(X)]

Ẽθk
[Yk(h(X), γk)]

}

=

{∑Nk
i=1 Yk(H̄k(Xk

i), γ̄k+1)Γ(Xk
i)∑Nk

i=1 Yk(H̄k(Xk
i), γ̄k+1)

−
∑Nk

i=1 Yk(H̄k(Xk
i), γk)Γ(Xk

i)∑Nk
i=1 Yk(H̄k(Xk

i), γk)

}
[i]

+

{∑Nk
i=1 Yk(H̄k(Xk

i), γk)Γ(Xk
i)∑Nk

i=1 Yk(H̄k(Xk
i), γk)

−
∑Nk

i=1 Yk(h(Xk
i), γk)Γ(Xk

i)∑Nk
i=1 Yk(h(Xk

i), γk)

}
[ii]

+

{
1

Nk

∑Nk
i=1 Yk(h(Xk

i), γk)Γ(Xk
i)

1
Nk

∑Nk
i=1 Yk(h(Xk

i), γk)
− Ẽθk

[Yk(h(X), γk)Γ(X)]

Ẽθk
[Yk(h(X), γk)]

}
[iii].

We now analyze the terms [i]− [iii].

(1). We define Ek :=
{
x : H̄k(x) > min(γ̄k+1, γk)− ε, x ∈ Λk

}
. Note that if Ek = ∅, then

[i] = 0 by convention. When Ek 6= ∅, we let η̄k := 1/maxx∈Ek
S̃k(H̄k(x)). Thus

[i] =
∑Nk

i=1 η̄kS̃k(H̄(Xk
i))Ĩ(H̄k(Xk

i), γ̄k+1)Γ(Xk
i)∑Nk

i=1 η̄kS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γ̄k+1)
−

∑Nk
i=1 η̄kS̃k(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γk)Γ(Xk

i)∑Nk
i=1 η̄kS̃k(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γk)

.

We have

∣∣∣
Nk∑

i=1

η̄kS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γ̄k+1)−
Nk∑

i=1

η̄kS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk)
∣∣∣

≤
Nk∑

i=1

∣∣∣Ĩ(H̄k(Xk
i), γ̄k+1)− Ĩ(H̄k(Xk

i), γk)
∣∣∣ since η̄kS̃k(H̄k(x)) ≤ 1 ∀x ∈ Ek

≤ αkN0
1
ε
|γ̄k+1 − γk| by the definition of Ĩ(·, ·)

−→ 0 w.p.1 by Proposition 6.4.1.

182

Similar argument can also be used to show that w.p.1

∣∣∣
Nk∑

i=1

η̄kS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γ̄k+1)Γ(Xk
i)−

Nk∑

i=1

η̄kS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk)Γ(Xk
i)

∣∣∣ → 0.

Therefore, [i] → 0 as k →∞ w.p.1.

(2). Define Ēk := {x : h(x) > γk − ε, x ∈ Λk} ∪ {x : H̄k(x) > γk − ε, x ∈ Λk}. If Ēk = ∅,

then [ii] = 0 by convention. If Ēk 6= ∅, we let ηk := 1/maxx∈Ēk
S̃k(h(x)), thus

[ii] =
∑Nk

i=1 ηkS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk)Γ(Xk
i)∑Nk

i=1 ηkS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk)
−

∑Nk
i=1 ηkS̃k(h(Xk

i))Ĩ(h(Xk
i), γk)Γ(Xk

i)∑Nk
i=1 ηkS̃k(h(Xk

i))Ĩ(h(Xk
i), γk)

.

And it is not difficult to see that we will have either
∑Nk

i=1 ηkS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk) ≥ 1

or
∑Nk

i=1 ηkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk) ≥ 1 or both. Therefore, in order to prove that [ii] → 0

w.p.1, it is sufficient to show that w.p.1

∣∣∑Nk
i=1 ηkS̃k(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γk)−

∑Nk
i=1 ηkS̃k(h(Xk

i))Ĩ(h(Xk
i), γk)

∣∣ → 0 and

∣∣∑Nk
i=1 ηkS̃k(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γk)Γ(Xk

i)−∑Nk
i=1 ηkS̃k(h(Xk

i))Ĩ(h(Xk
i), γk)Γ(Xk

i)
∣∣ → 0.

We have

∣∣∣
Nk∑

i=1

ηkS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk)−
Nk∑

i=1

ηkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk)
∣∣∣

≤
∣∣∣

Nk∑

i=1

ηkS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk)−
Nk∑

i=1

ηkS̃k(h(Xk
i))Ĩ(H̄k(Xk

i), γk)
∣∣∣ [a]

+
∣∣∣

Nk∑

i=1

ηkS̃k(h(Xk
i))Ĩ(H̄k(Xk

i), γk)−
Nk∑

i=1

ηkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk)
∣∣∣ [b]

[a] ≤
Nk∑

i=1

∣∣S̃k(H̄k(Xk
i))− S̃k(h(Xk

i))
∣∣

S̃k(h(Xk
i))

Ĩ(H̄k(Xk
i), γk)

=
Nk∑

i=1

∣∣[S(H̄k(Xk
i))]k − [S(h(Xk

i))]k
∣∣

[S(h(Xk
i))]k

Ĩ(H̄k(Xk
i), γk). (6.13)

183

Note that

P

(
max

1≤i≤Nk

∣∣∣H̄k(Xk
i)− h(Xk

i)
∣∣∣ ≥ ∆k

)
≤ P

(⋃

x∈Λk

{ ∣∣H̄k(x)− h(x)
∣∣ ≥ ∆k

})
,

≤
∑

x∈Λk

P
(∣∣H̄k(x)− h(x)

∣∣ ≥ ∆k

)
,

≤ |Λk| sup
x∈X

P
(∣∣H̄k(x)− h(x)

∣∣ ≥ ∆k

)
,

≤ αkN0φ(Mk, ∆k) by L1,

≤ N0(δ∗)k ∀ k ≥ K by L4.

Furthermore,

∞∑

k=1

P

(
max

1≤i≤Nk

∣∣∣H̄k(Xk
i)− h(Xk

i)
∣∣∣ ≥ ∆k

)
≤ K + N0

∞∑

k=K
(δ∗)k < ∞,

which implies that P
(
max1≤i≤Nk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣ ≥ ∆k i.o.

)
= 0 by the Borel-Cantelli

lemma.

Let Ω4 := {ω : max1≤i≤Nk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣ < ∆k i.o.}. For each ω ∈ Ω4, we have

(6.13) ≤
Nk∑

i=1

Lk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣ for sufficiently large k, by B4,

≤ αkN0Lk max
1≤i≤Nk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣ for sufficiently large k.

Notice that for any given ζ > 0,

P
{

αkLk max
1≤i≤Nk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣ ≥ ζ

}
≤ P

(⋃

x∈Λk

{∣∣H̄k(x)− h(x)
∣∣ ≥ ζ

αkLk

})
.

And by using L4 and a similar argument as in the proof for Proposition 6.4.1, it is easy

to show that

αkLk max
1≤i≤Nk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣ → 0 w.p.1

Let Ω5 :=
{
ω : αkLk max1≤i≤Nk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣ → 0

}
. Since P (Ω4∩Ω5) ≥ 1−P (Ωc

4)−

P (Ωc
5) = 1, it follows that [a] → 0 as k →∞ w.p.1.

184

On the other hand,

[b] ≤
Nk∑

i=1

ηkS̃k(h(Xk
i))

∣∣∣Ĩ(H̄k(Xk
i), γk)− Ĩ(h(Xk

i), γk)
∣∣∣

≤ αkN0
1
ε

max
1≤i≤Nk

∣∣H̄k(Xk
i)− h(Xk

i)
∣∣

−→ 0 w.p.1 by a similar argument as before.

By repeating the above argument, we can also show that

∣∣∣
Nk∑

i=1

ηkS̃k(H̄k(Xk
i))Ĩ(H̄k(Xk

i), γk)Γ(Xk
i)−

Nk∑

i=1

ηkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk)Γ(Xk
i)

∣∣∣ → 0 w.p.1.

Hence, we have [ii] → 0 as k →∞ w.p.1.

(3).

[iii] =
1

Nk

∑Nk
i=1 ϕkS̃k(h(Xk

i))Ĩ(h(Xk
i), γk)Γ(Xk

i)
1

Nk

∑Nk
i=1 ϕkS̃k(h(Xk

i))Ĩ(h(Xk
i), γk)

−
Ẽθk

[
ϕkS̃k(h(X))Ĩ(h(X), γk)Γ(X)

]

Ẽθk

[
ϕkS̃k(h(X))Ĩ(h(X), γk)

] .

Since ε > 0, we have γk−ε ≤ h(x∗)−ε for all k. Thus by B2, the set {x : h(x) ≥ γk−ε}∩X

has a strictly positive Lebesgue/discrete measure for all k. It follows from Fatou’s lemma

that

lim inf
k→∞

Ẽθk

[
ϕkS̃k(h(X))Ĩ(h(X), γk)

]
≥

∫

X
lim inf
k→∞

[ϕS(h(x))]kĨ(h(x), γk)ν(dx) > 0,

where the last inequality follows from ϕS(h(x)) ≥ 1 ∀x ∈ {
x : h(x) ≥ max{S−1(1

ϕ), h(x∗)−

ε}}.

We denote by Uk the event that the total number of visits to step 3a/3b is less

than or equal to
√

k at the kth iteration of the algorithm, and by Vk the event that

{h(x) ≥ γk − ε} ⊆ Π. And for any ξ > 0, let Ck be the event

∣∣∣ 1
Nk

Nk∑

i=1

ϕkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk)− Ẽθk

[
ϕkS̃k(h(X))Ĩ(h(X), γk)

] ∣∣∣ ≥ ξ.

185

Note that we have P (Uc
k i.o.) = 0 by Lemma 6.4.1, and P (Vc

k i.o.) = 0 by B1. Therefore,

P (Ck i.o.) = P
({Ck ∩ Uk} ∪ {Ck ∩ Uc

k} i.o.
)

= P
(Ck ∩ Uk i.o.

)

= P
({Ck ∩ Uk ∩ Vk} ∪ {Ck ∩ Uk ∩ Vc

k} i.o.
)

= P
(Ck ∩ Uk ∩ Vk i.o.

)
. (6.14)

From B7, it is easy to see that conditional on the event Vk, the support [ak, bk] of the

random variable ϕkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk) satisfies [ak, bk] ⊆
[
0, (ϕS∗)k

λkf∗

]
. Moreover, condi-

tional on θk and γk, Xk
1 , . . . , Xk

Nk
are i.i.d. random variables with common density f̃(·, θk),

we have by the Hoeffding inequality,

P
(Ck

∣∣Vk, θk = θ, γk = γ
) ≤ 2 exp

(−2Nkξ
2

(bk − ak)2
)

≤ 2 exp
(−2Nkξ

2λ2
kf

2∗
(ϕS∗)2k

)
∀ k = 1, 2,

Thus,

P (Ck ∩ Vk) =
∫

θ,γ
P

(Ck ∩ Vk

∣∣θk = θ, γk = γ
)
fθk,γk

(dθ, dγ)

=
∫

θ,Vk

P
(Ck

∣∣Vk, θk = θ, γk = γ
)
fθk,γk

(dθ, dγ)

≤ 2 exp
(−2Nkξ

2λ2
kf

2∗
(ϕS∗)2k

)
,

where fθk,γk
(·, ·) is the joint distribution of random variables θk and γk. It follows that

P (Ck ∩ Uk ∩ Vk) ≤ P
(Ck ∩ Vk

∣∣Uk

)

≤ 2 exp
(−2αk−

√
kN0ξ

2λ2
kf

2∗
(ϕS∗)2k

)

≤ 2 exp
(−2N0ξ

2f2∗
α
√

k

(αλ
2/k
k

(ϕS∗)2
)k)

,

where the second inequality above follows from the fact that conditional on Uk, the total

number of visits to step 3c is greater than k −
√

k.

186

Moreover, since e−x < 1/x ∀ x > 0, we have

P (Ck ∩ Uk ∩ Vk) <
α
√

k

N0ξ2f2∗

((ϕS∗)2

αλ
2/k
k

)k
=

1
N0ξ2f2∗

(α
√

k/k(ϕS∗)2

αλ
2/k
k

)k
.

By assumption, we have (ϕS∗)2

αλ
2/k
k

≤ δ < 1 for all k ≥ Tδ. Thus, there exist δ < δ̃ < 1 and

Teδ > 0 such that α
√

k/k (ϕS∗)2

αλ
2/k
k

≤ δ̃ ∀ k ≥ Teδ. Therefore,

∞∑

k=1

P (Ck ∩ Uk ∩ Vk) < Teδ +
1

N0ξ2f2∗

∞∑

k=Teδ
δ̃k < ∞.

Thus, we have by the Borel-Cantelli lemma

P (Ck ∩ Uk ∩ Vk i.o.) = 0,

which implies that P (Ck i.o.) = 0 by (6.14). And since ξ > 0 is arbitrary, we have

∣∣∣ 1
Nk

Nk∑

i=1

ϕkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk)−Ẽθk

[
ϕkS̃k(h(X))Ĩ(h(X), γk)

] ∣∣∣ → 0 w.p.1. as k →∞.

The same argument can also be used to show that

∣∣∣ 1
Nk

Nk∑

i=1

ϕkS̃k(h(Xk
i))Ĩ(h(Xk

i), γk)Γ(Xk
i)−Ẽθk

[
ϕkS̃k(h(X))Ĩ(h(X), γk)Γ(X)

]∣∣∣ → 0 w.p.1.

And because lim infk→∞ Ẽθk

[
ϕkS̃k(h(X))Ĩ(h(X), γk)

]
> 0, we have [iii] → 0 w.p.1 as

k →∞.

Hence the proof is completed by applying Lemma 6.4.2 and 6.4.3.

We now address some of the special cases discussed in Remark 6.4.5; the proofs are

straightforward and hence omitted.

Corollary 6.4.2 (Multivariate Normal) For continuous optimization problems in <n,

if multivariate normal p.d.f.’s are used in SMRAS, i.e.,

f(x, θk) =
1√

(2π)n|Σk|
exp

(
− 1

2
(x− µk)T Σ−1

k (x− µk)
)
,

187

where θk := (µk; Σk), assumptions L1−L4, B1−B5 are satisfied, and there exist δ ∈ (0, 1)

and Tδ < ∞ such that α ≥ [ϕS∗]2/[λ2/k
k δ] ∀ k ≥ Tδ, then

lim
k→∞

µk = x∗, and lim
k→∞

Σk = 0n×n w.p.1,

where 0n×n represents an n-by-n zero matrix.

Corollary 6.4.3 (Independent Univariate) If the components of the random vector

X = (X1, . . . , Xn) are independent, each has a univariate p.d.f./p.m.f. of the form

f(xi, ϑi) = exp(xiϑi −K(ϑi))`(xi), ϑi ⊂ <, ∀ i = 1, . . . , n,

assumptions L1 − L4, B1 − B7 are satisfied, and there exist δ ∈ (0, 1) and Tδ < ∞ such

that α ≥ [ϕS∗]2/[λ2/k
k δ] ∀ k ≥ Tδ, then

lim
k→∞

Eθk
[X] = x∗ w.p.1, where θk := (ϑk

1, . . . , ϑ
k
n).

Remark 6.4.6 (Stopping Rule): We now return to the issue of designing a valid stop-

ping rule for SMRAS. In practice, this can be achieved in many different ways. The

simplest method is to stop the algorithm when the total computational budget is exhausted

or when the prescribed maximum number of iterations is reached. Since Proposition 6.4.1

indicates that the sequence {γ̄k, k = 0, 1, . . .} generated by SMRAS converges, an alterna-

tive stopping criteria could be based on identifying whether the sequence has settled down

to its limit value. To do so, we consider the moving average process {Υ(l)
k } defined as

follows

Υ(l)
k :=

1
l

k∑

i=k−l+1

γ̄i, ∀ k ≥ l − 1,

where l ≥ 1 is a predefined constant. It is easy to see that an unbiased estimator of the

sample variance of Υ(l)
k is

ṽar(Υ(l)
k) :=

∑k
i=k−l+1[γ̄i −Υ(l)

k]2

l(l − 1)
,

188

which approaches zero as the sequence {γ̄k} approaches its limit. Thus, a reasonable

approach in practice is to stop the algorithm when the value of ṽar(Υ(l)
k) falls below some

pre-specified tolerance level, i.e., ∃ k > 0 such that ṽar(Υ(l)
k) ≤ τ , where τ > 0 is the

tolerance level.

6.5 Numerical Examples

In this Chapter, we test the performance of SMRAS on both continuous and combi-

natorial stochastic optimization problems. In the former case, we first illustrate the global

convergence of SMRAS by testing the algorithm on two multi-extremal functions; then we

apply the algorithm to an inventory control problem. In the latter case, we consider the

problem of optimizing the buffer allocations in a tandem queue with unreliable servers,

which has been previously studied in e.g., [3], [84].

We now discuss some implementation issues of SMRAS.

1. Since SMRAS was presented in a maximization context, the following slight mod-

ifications are required before it can be applied to minimization problems: (i) S(·)

needs to be initialized as a strictly decreasing function instead of strictly increas-

ing. Throughout this Chapter, we take S(z) := βz for maximization problems and

S(z) := β−z for minimization problems, where β > 1 is some predefined constant.

(ii) The sample (1 − ρk)-quantile γ̃k+1 will now be calculated by first ordering the

sample performances H̄k(Xk
i), i = 1, . . . , Nk from largest to smallest, and then tak-

ing the d(1 − ρk)Nketh order statistic. (iii) The threshold function should now be

modified as

Ĩ(x, γ) :=





0 if x ≥ γ + ε,

(γ + ε− x)/ε if γ < x < γ + ε,

1 if x ≤ γ.

189

(iv) The inequalities at the beginning of steps 3 and 3b need to be replaced with

γ̃k+1(ρk, Nk) ≤ γ̄k − ε and γ̃k+1(ρ̄, Nk) ≤ γ̄k − ε, respectively.

2. Similar to Chapter 5, a smoothed parameter updating procedure (cf. e.g., [26],

[66]) is also used in actual implementation of the algorithm, i.e., first a smoothed

parameter vector θ̂k+1 is computed at each iteration k according to

θ̂k+1 := υ θk+1 + (1− υ)θ̂k, ∀ k = 0, 1, . . . , and θ̂0 := θ0,

where θk+1 is the parameter vector derived at step 3 of SMRAS, and υ ∈ (0, 1] is

the smoothing parameter, then f(x, θ̂k+1) (instead of f(x, θk+1)) is used in step 1 to

generate new samples.

6.5.1 Continuous Optimization

For continuous problems, we use multivariate normal p.d.f’s as the parameterized

probabilistic model. Initially, a mean vector µ0 and a covariance matrix Σ0 are specified;

then at each iteration of the algorithm, it is easy to see that the new parameters µk+1 and

Σk+1 are updated according to the following recursive formula:

µk+1 =
1

Nk

∑Nk
i=1 S̃(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γ̄k+1)Xk

i

1
Nk

∑Nk
i=1 S̃(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γ̄k+1)

,

and

Σk+1 =
1

Nk

∑Nk
i=1 S̃(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γ̄k+1)(Xk

i − µk+1)(Xk
i − µk+1)T

1
Nk

∑Nk
i=1 S̃(H̄k(Xk

i))Ĩ(H̄k(Xk
i), γ̄k+1)

.

By Corollary 6.4.2, the sequence of mean vectors {µk} will converge to the optimal solu-

tion x∗ and the sequence of covariance matrices {Σk} to the zero matrix. In subsequent

numerical experiments, µk+1 will be used to represent the best sample solution found at

iteration k.

190

• Global Convergence

To demonstrate the global convergence of the proposed method, we consider the

following two muti-extremal test functions

(1) Goldstein-Price function with additive noise

H1(x, ψ) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))

(30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)) + ψ,

where x = (x1, x2)T , and ψ is normally distributed with mean 0 and variance 100.

The function h1(x) = Eψ[H1(x, ψ)] has four local minima and a global minimum

h1(0,−1) = 3.

(2) A 5-dimensional Rosenbrock function with additive noise

H2(x, ψ) =
4∑

i=1

100(xi+1 − x2
i)

2 + (xi − 1)2 + 1 + ψ,

where x = (x1, . . . , x5)T , and ψ is normally distributed with mean 0 and variance

100. Its deterministic counterpart h2(x) = Eψ[H2(x, ψ)] has the reputation of being

difficult to minimize and is widely used to test the performance of different global

optimization algorithms. The function has a global minimum h2(1, 1, 1, 1, 1) = 1.

For both problems, the same set of parameters are used to test SMRAS: β = 1.02, ε = 0.1,

mixing coefficient λk = 1√
k+1

∀ k, initial sample size N0 = 100, ρ0 = 0.9, α = 1.03, and

the observation allocation rule is Mk = 1.1k, the stopping control parameters τ = 0.005

and l = 10, the smoothing parameter υ = 0.2, the initial mean vector µ0 is taken to be a

n-by-1 vector of all 10’s and Σ0 is initialized as a n-by-n diagonal matrix with all diagonal

elements equal to 100.

For each function, we performed 50 independent simulation runs of SMRAS. The

averaged performance of the algorithm is shown in Table 6.1, where Navg is the average

191

total number of function evaluations needed to satisfy the stopping criteria, H∗ and H∗

are the worst and best function values obtained in 50 trials, and H̄ is the averaged function

values over the 50 replications. In Figure 6.2, we also plotted the average function values

of the current best sample solutions for (a) function H1 after 45 iteration of SMRAS, (b)

function H2 after 100 iterations of SMRAS.

Hi Navg(std err) H∗ H∗ H̄(std err)

H1 5.40e+04(3.88e+02) 3.05 3.00 3.01(1.64e-3)

H2 1.00e+07(4.92e+05) 1.31 1.02 1.09(9.10e-3)

Table 6.1: Performance of SMRAS on two test functions, based on 50 independent simu-

lation runs. The standard errors are in parentheses.

0 1 2 3 4 5 6 7 8

x 10
4

10
0

10
2

10
4

10
6

10
8

10
10

10
12

total sample size

E
ψ
[H

1(x
,ψ

)]

0 2 4 6 8 10 12 14 16

x 10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
ψ
[H

2(x
,ψ

)]

total sample size

(a) (b)

Figure 6.2: Performance of SMRAS on (a) Goldstein-price function; (b) 5-D Rosenbrock

function.

• An Inventory Control Example

To further illustrate the algorithm, we consider an (s, S) inventory control problem

with i.i.d. exponentially distributed continuous demands, zero order lead times, full back-

192

logging of orders, and linear ordering, holding and shortage costs. The inventory level is

periodically reviewed, and an order is placed when the inventory position (on hand plus

that on order) falls below the level s, and the amount of the order is the difference between

S and the current inventory position. Formally, we let Dt denote the demand in period

t, Xt the inventory position in period t, p the per period per unit demand lost penalty

cost, h the per period per unit inventory holding cost, c the per unit ordering cost, and K

the set-up cost per order. The inventory position {Xt} evolves according to the following

dynamics

Xt+1 =





S −Dt+1 Xt < s,

Xt −Dt+1 Xt ≥ s.

The goal is to choose the thresholds s and S such that the long-run average cost per period

is minimized, i.e.,

(s∗, S∗) = argminJ(s, S) := arg min lim
t→∞Jt(s, S),

where Jt(s, S) := 1
t

∑t
i=1

[
I{Xi < s}(K + c(S −Xi)) + hX+

i + pX−
i

]
, I {·} is the indica-

tor function, x+ = max(0, x), and x− = max(0,−x). Note that the above objective cost

function is convex; however, we will not exploit this property in our method. The pri-

mary reason we choose this problem as our test example is because its analytical optimal

solution can be easily calculated (cf. e.g., [48]).

The following eight test cases, taken from [31], are used to test the performance of

SMRAS. The cost coefficients and the optimal solutions are given in Table 6.2, each with

c = h = 1 and exponentially distributed demands with mean E[D].

In our simulation experiments, the initial mean vector is taken to be (2000, 4000)T

for all eight cases, and the covariance matrices are initialized as diagonal matrices with

all diagonal elements equal to 105 for cases 1 − 4 and 106 for cases 5 − 8. The other

193

Case E[D] p K J∗ s∗ S∗

1 200 10 100 740.9 341 541

2 200 10 10000 2200.0 0 2000

3 200 100 100 1184.4 784 984

4 200 100 10000 2643.4 443 2443

5 5000 10 100 17078 11078 12078

6 5000 10 10000 21496 6496 16496

7 5000 100 100 28164 22164 23164

8 5000 100 10000 32583 17582 27582

Table 6.2: The eight test cases.

parameters are: β = 1.05, ε = 0.1, λk = 1√
k+1

∀ k, N0 = 100, ρ0 = 0.95, α = 1.05,

Mk = 1.2k, smoothing parameter υ = 0.3. The average cost per period is estimated by

averaging the accumulated cost over 50 periods after a warm-up length of 50 periods.

Figure 6.3 shows the typical performance of SMRAS for the first four test cases when

the total number of simulation periods is set to 106. The locations of the optimal solutions

are marked by F. We see that the algorithm converges rapidly to the neighborhood of

the optimal solution in the first few iterations and then spends most of the computational

effort in that small region. Numerical results for all eight test cases are given in Table 6.3.

In the table, Np indicates the total number of periods (including the warm-up periods)

simulated, and the entries represent the averaged function values J of the final sample

solutions obtained for different choices of Np, each one based on 25 independent simulation

replications.

194

Case Np = 105 Np = 106 Np = 5× 106 Np = 107 J∗

1 1169.7(43.5) 742.6(0.32) 741.6(0.14) 741.2(0.06) 740.9

2 2371.6(37.8) 2223.9(3.57) 2202.0(0.20) 2200.8(0.17) 2200.0

3 1413.1(28.0) 1213.8(5.90) 1188.8(0.78) 1185.8(0.28) 1184.4

4 2709.0(13.4) 2667.2(4.89) 2647.2(0.61) 2645.0(0.42) 2643.4

5 18694.6(195.5) 17390.4(48.5) 17245.5(32.81) 17119.3(9.25) 17078

6 24001.7(340.8) 21808.5(53.6) 21780.0(34.00) 21520.9(5.80) 21496

7 32909.1(579.5) 28778.5(82.2) 28598.8(50.25) 28290.1(33.45) 28164

8 36520.0(538.0) 32881.7(216.9) 32860.2(52.56) 32682.8(36.68) 32583

Table 6.3: Performance of SMRAS on eight test cases, each one based on 25 independent

simulation runs. The standard errors are in parentheses.

6.5.2 Combinatorial Optimization

To illustrate the performance of SMRAS on discrete stochastic optimization prob-

lems, we consider the buffer allocation problem in a service facility with unreliable servers.

The system consists of m servers in series, which are separated by m− 1 buffer locations.

Each job enters the system from the first server, goes through all intermediate servers

and buffer locations in a sequential order, and finally exits from the last server. The

service times at each server are independent exponentially distributed with service rate

µi, i = 1, . . . , m. The servers are assumed to be unreliable, and are subject to random

failures. When a server fails, it has to be repaired. The time to failure and the time for re-

pair are both i.i.d. exponentially distributed with respective rates fi and ri, i = 1, . . . , m.

A server is blocked when the buffer associated with the server coming next to it is full and

is starved when no jobs are offered to it. Thus, the status of a server (busy/broken) will

195

0 500 1000 1500 2000
0

1000

2000

3000

4000

S

case 1

s

0 500 1000 1500 2000
0

1000

2000

3000

4000

s

S

case 3

0 500 1000 1500 2000
2000

2500

3000

3500

4000

s

S

case 4

0 500 1000 1500 2000
1500

2000

2500

3000

3500

4000

s

S

case 2

Figure 6.3: Typical performance of SMRAS on the first four test cases (Np = 106).

affect the status of all other servers in the system. Figure 6.4 shows the four-server case,

where server S2 fails, which causes server S1 to become blocked and server S3 to become

starved. We assume that the failure rate of each server remains the same, regardless of

its current status. Given n limited buffer spaces, our goal is to find an optimal way of

allocating these n spaces to the m− 1 buffer locations such that the throughput (average

production rate) is maximized.

Figure 6.4: Graphical illustration of the buffer allocation problem.

196

When applying SMRAS, we have used the same technique as in [3] to generate

admissible buffer allocations; the basic idea is to choose the probabilistic model as an

(n + 1)-by-(m − 1) matrix P , whose (i, j)th entry specifies the probability of allocating

i − 1 buffer spaces to the jth buffer location. Please refer to their paper for a detailed

discussion. Once the admissible allocations are generated, it is straightforward to see that

the entries of the matrix P are updated at the kth iteration as

P k+1
i,j =

∑Nk
l=1 S̃k(H̄k(Xk

l))Ĩ(H̄k(Xk
l), γ̄k+1)I{Xk

l,i = j}
∑Nk

l=1 S̃k(H̄k(Xk
l))Ĩ(H̄k(Xk

l), γ̄k+1)
,

where Xk
l , l = 1, . . . , Nk are the Nk admissible buffer allocations generated, H̄k(Xk

l) is the

average throughput obtained via simulation when the allocation Xk
l is used, and Xk

l,i = j

indicates the event that j buffer spaces are allocated to the ith buffer location (i.e., the

ith element of the vector Xk
l is equal to j).

For the numerical experiments, we consider two cases: (i) m = 3, n = 1, . . . , 10,

µ1 = 1, µ2 = 1.2 µ3 = 1.4, failure rates fi = 0.05 and repair rates ri = 0.5 for all i = 1, 2, 3;

(ii) m = 5, n = 1, . . . , 10, µ1 = 1, µ2 = 1.1, µ3 = 1.2, µ4 = 1.3, µ5 = 1.5, fi = 0.05 and

ri = 0.5 for all i = 1, . . . , 5.

Apart from their combinatorial nature, an additional difficulty in solving these prob-

lems is that different buffer allocation schemes (samples) have similar performances. Thus,

when only noisy observations are available, it could be very difficult to discern the best

allocation from a set of candidate allocation schemes. Because of this, in SMRAS we

choose the performance function S(·) as an exponential function with a relatively larger

base β = 10. The other parameters are as follows: ε = 0.001, λk = 0.01 ∀ k, initial sample

size N0 = 10 for case (i) and N0 = 20 for case (ii), ρ = 0.9, α = 1.2, observation allocation

rule Mk = (1.5)k, the stopping control parameters τ = 1e− 4 and l = 5, smoothing para-

meter υ = 0.7, and the initial P 0 is taken to be a uniform matrix with each column sum

197

equal to one, i.e., P 0
i,j = 1

n+1 ∀ i, j. We start all simulation replications with the system

empty. The steady-state throughputs are simulated after 100 warm-up events, and then

averaged over the subsequent 900 events. Note that we have employed the sample reuse

procedure (cf. Remark 6.3.1) in actual implementation of the algorithm.

Figure 6.5: Performance of SMRAS on the buffer allocation problem (five-server n = 10

case).

Tables 6.4 and 6.5 give the performances of SMRAS for each of the respective

cases (i) and (ii). In each table, Navg is the averaged number of simulations over 16

independent trials, Alloc is the best allocation scheme and NA∗ is the number of times

the best allocation found out of 16 runs, T̄ is the averaged throughput value calculated

by the algorithm, and T ∗ represents the exact optimal solution (cf. [84]). We see that

in both cases, SMRAS produces very accurate solutions while using only a small number

of observations. To illustrate how SMRAS performs on this problem, we consider the

five-server n = 10 case, where the total number of admissible allocation rules is 286. For

the 286 solutions, we rank them from the worst to the best in terms of their performance

198

n Navg(std err) Alloc (NA∗) T̄ (std err) T ∗

1 33.1(0.49) [1,0] (16) 0.634(4.06e-4) 0.634

2 46.8(3.15) [1,1] (16) 0.674(6.35e-4) 0.674

3 43.9(1.51) [2,1] (16) 0.711(6.11e-4) 0.711

4 49.8(3.45) [3,1] (14) 0.735(6.47e-4) 0.736

5 50.4(3.68) [3,2] (13) 0.758(1.06e-3) 0.759

6 64.0(6.29) [4,2] (12) 0.776(1.39e-3) 0.778

7 59.1(4.27) [5,2] (14) 0.792(1.04e-3) 0.792

8 63.9(4.79) [5,3] (10) 0.805(1.20e-3) 0.806

9 60.6(3.46) [6,3] (10) 0.817(6.53e-4) 0.818

10 63.7(5.69) [7,3] (12) 0.826(9.88e-4) 0.827

Table 6.4: Performance of SMRAS on the buffer allocation problems case (i), based on 16

independent simulation runs. The standard errors are in parentheses.

and then equally partition these solutions into ten groups. For example, in Figure 6.5,

the interval [0, 1] represents the entire solution space, the interval [0, 0.1] represents the

worst 10% solutions, and [0.9, 1] represents the top 10% best solutions. For SMRAS, the

averaged total number of solutions visited is 102. Figure 6.5 shows that among the total

102 visits, the number of times each part of the solution space has been visited, where the

red dashed line represents the 95% confidence interval. Obviously, we see that the best

top 10% solutions have been visited significantly more often than solutions in other parts

of the solution space. Also note that during the search of the algorithm, some solutions

may be visited for a multiple number of times, the actually distinct number of solutions

visited is only 47, only a small fraction of the solution space.

199

n Navg(std err) Alloc (NA∗) T̄ (std err) T ∗

1 1.02e+2(7.49) [0,1,0,0] (16) 0.523(6.79e-4) 0.521

2 1.29e+2(14.8) [1,1,0,0] (16) 0.555(3.86e-4) 0.551

3 1.75e+2(15.7) [1,1,1,0] (16) 0.587(4.57e-4) 0.582

4 2.51e+2(25.9) [1,2,1,0] (11) 0.606(1.20e-3) 0.603

5 3.37e+2(42.0) [2,2,1,0] (10) 0.626(6.57e-4) 0.621

6 4.69e+2(55.2) [2,2,1,1] (8) 0.644(1.10e-3) 0.642

7 4.56e+2(58.2) [2,2,2,1] (7) 0.659(1.10e-3) 0.659

8 4.45e+2(54.9) [3,2,2,1] (7) 0.674(1.10e-3) 0.674

9 5.91e+2(56.1) [3,3,2,1] (6) 0.689(1.39e-3) 0.689

10 5.29e+2(54.0) [3,3,3,1] (8) 0.701(1.10e-3) 0.701

Table 6.5: Performance of SMRAS on the buffer allocation problem case (ii), based on 16

independent simulation runs. The standard errors are in parentheses.

6.6 Conclusions

We have proposed a new randomized search method, called Stochastic Model Ref-

erence Adaptive Search (SMRAS), for solving both continuous and discrete stochastic

global optimization problems. The method is shown to converge asymptotically to the

optimal solution with probability one. The algorithm is general, requires only a few mild

regularity conditions on the underlying problem; and thus can be applied to a wide range

of problems with little modification. More importantly, we believe that the idea behind

SMRAS offers a general framework for stochastic global optimization, based on which one

can possibly design and implement other efficient algorithms.

There are several input parameters in SMRAS. In our preliminary numerical exper-

200

iments, the choices of these parameters are based on trial and error. For a given problem,

how to determine a priori the most appropriate values of these parameters is an open issue.

One research topic is to study the effects of these parameters on the performance of the

method, and possibly design an adaptive scheme to choose these parameters adaptively

during the search process.

Our current numerical study with the algorithm shows that the objective function

need not be evaluated very accurately during the initial search phase. Instead, it is suf-

ficient to provide the algorithm with a rough idea where the good solutions are located.

This has motivated our research to use observation allocation rules with adaptive increas-

ing rates during different search phases. For instance, during the initial search phase, we

could increase Mk at a linear rate or even keep it at a constant value; and exponential

rates will only be used during the later search phase when more accurate estimates of the

objective function values are required.

Some other research topics that would further enhance of the performance of SM-

RAS include incorporating local search techniques in the algorithm and implementing a

paralleled version of the method.

201

Chapter 7

Conclusions and Future Research

This dissertation consists of two main parts. The first part focuses on the develop-

ment of new computational methodologies for solving Markov Decision Processes, where

we have proposed two algorithms. The first algorithm is motivated by the computational

challenges arising from settings where some of the parameters of the MDP models are

either unknown or cannot be obtained in a feasible way. In particular, we have assumed

that the underlying system can be simulated, and proposed to use multi-armed bandit

models as efficient tools to adaptively allocate simulation samples to find good policies

and/or value function estimates. We have shown the asymptotic unbiasedness of our ap-

proach, developed a convergence rate result, and studied its computational complexity.

The second algorithm complements current existing state space reduction techniques, and

addresses the solution of MDPs with large or uncountable action spaces. We have used

an evolutionary population-based approach, which combines the specialized MDP solution

techniques with ideas from evolutionary algorithms for optimization, to avoid carrying out

an optimization over the entire action space. The convergence of the resultant algorithm

is proved, and computational complexity is discussed. We have also compared the perfor-

mance of our algorithm with those of other solution methods, including the classical policy

iteration method and a recently proposed algorithm called evolutionary policy iteration.

Numerical results demonstrate great promise of the proposed algorithm.

In the second part of this thesis, we have proposed a new randomized search

(simulation-based) framework for solving general global optimization problems with little

202

structure. The framework successfully addresses two of the most commonly encountered

difficulties for many model-based search techniques, i.e., the problem of how to generate

random samples and the problem of how to efficiently update probabilistic models. We

argue that our framework can be easily used to construct a class of randomized global

optimization algorithms with theoretical performance guarantee. Moreover, within this

framework, the convergence analysis and practical performance of different algorithm in-

stantiations will depend heavily on a sequence of independently constructed models called

reference models. Thus, when constructing different instantiations, we can concentrate

our effort on the design of these reference models. We have provided a particular in-

stantiation of the framework, analyzed its convergence properties, and carried out detail

numerical experiments to compare its performance with those of some other well-known

methods like the Cross-Entropy method and simulated annealing. Both theoretical and

empirical results demonstrate great potential of the proposed approach. In the final part

of this thesis, we have rigorously discussed how to extend this framework to stochastic

global optimization problems. Again, our discussion has been mostly centered around a

particular algorithm instantiation, but we note that our work can be easily carried over

to other various instantiations.

7.1 Future Work

This research has initiated some new and promising ideas in the field of decision

making under uncertainty. However, there are still many refinements that can be explored.

Some possible future research topics are outlined as follows.

In Chapter 3, we have proposed to use the multi-armed bandit model of [8] to

adaptively choose which action to sample at each decision epoch, so that the resulting

203

algorithm achieves logarithmic regret uniformly over time. However, this particular sam-

pling strategy only gives us the asymptotic unbiasedness of the algorithm, a much weaker

result than (almost sure) convergence. In this respect, it could be more useful to view

the adaptive multi-stage sampling method as a simulation-based framework for solving

finite-horizon MDPs, and look for different bandit models or even other different sampling

techniques, so that it is possible for us to show stronger (almost sure) convergence of the

resultant algorithms. Along this line, one possibility is to use the model reference adaptive

search (MRAS) proposed in Chapter 5 as a potential sampling technique, and combine it

with the AMS framework to yield yet another adaptive sampling algorithm. An additional

advantage of using MRAS is that the finite-action-space assumption in the original AMS

algorithm can be relaxed; the action space can be infinite or even uncountable.

When constructing sub-MDPs in ERPS, the action selection distribution P is cur-

rently held fixed throughout the entire search process. As discussed in Chapter 4.7, one

possible and important line of research is to update the underlying action selection distri-

bution based on the past sampling information so that more promising actions will have

larger probabilities of being sampled in the future. Again, we believe that MRAS could

be served as a promising candidate for updating these distributions. Thus, by combining

MRAS with the so-called PICS step, it is possible to construct a new algorithm with

balanced explorative and exploitative search that could be even more efficient in practice.

Moreover, as mentioned in Chapter 4.7, there is no need to carry out an explicit local

search at each iteration of the algorithm, since the sequence of action selection distri-

butions will be getting more and more concentrated on regions containing high quality

solutions (actions).

Regarding MRAS, we believe that there are several interesting future research di-

204

rections. The most obvious one is perhaps to explore its potential applications in solving

MDPs. This can be done either directly in the sense of [58], [68], where MDPs are inter-

preted as optimization problems over the policy spaces, or indirectly along the lines we

just discussed in the previous two paragraphs. Another important direction is to study

the convergence rate and the computational complexity of MRAS, perhaps for a class of

problems (e.g., Lipschitz continuous, convex problems) of interest. The work of [74] and

[89] in annealing adaptive search (AAS) (which involves the use of Boltzmann distribu-

tions) sheds some light in this area. Thus, one possibility, in particular, is to investigate

the use of the Boltzmann distributions as the reference distributions in MRAS, and see if

some nice properties (including convergence, rate, and complexity in the context of AAS)

of the Boltzmann distributions are preserved by the method. From a more general point

of view, we can always construct reference models that exploit the structures of the under-

lying problems, and thus design algorithms tailored to particular applications. The third

direction is to develop new convergent algorithm instantiations, but with only fixed (sam-

ple) population size, perhaps via the use of past sampling information. This is especially

attractive in the context of stochastic optimization where the simulation/observation cost

is expensive, since the current version of MRAS requires the population size to increase

in order to guarantee theoretical convergence.

205

BIBLIOGRAPHY

[1] Agrawal, R., “Sample mean based index policies with O(log n) regret for the multi-

armed bandit problem,” Advances in Applied Probability, 27, 1054–1078 (1995).

[2] Agrawal, R., Teneketzis, D., and Anantharam, V., “Asymptotically efficient adap-

tive allocation schemes for controlled Markov chains: finite parameter space,” IEEE

Trans. on Automatic Control, 34, 1249–1259 (1989).

[3] Allon, G., Kroese, D. P., Raviv, T., and Rubinstein, R. Y., “Application of the cross-

entropy method to the buffer alloation problem in a simulation-based environment,”

Annals of Operations Research, 134, 137–151 (2005).

[4] Alrefaei, M. H., and Andradóttir, S., “A modification of the stochastic ruler method

for discrete stochastic optimization,” European Journal of Operational Research, 133,

160–182 (1995).

[5] Alrefaei, M. H., and Andradóttir, S., “A simulated annealing algorithm with constant

temperature for discrete stochastic optimization,” Management Science, 45, 748–764

(1999).

[6] Andradóttir, S., “A method for discrete stochastic optimization,” Management Sci-

ence, 41, 1946–1961 (1996).

[7] Andradóttir, S., “A global search method for discrete stochastic optimization,” SIAM

Journal on Optimization, 6, 513–530 (1996).

[8] Auer, P., Cesa-Bianchi, N., and Fisher, P., “Finite-time analysis of the multiarmed

bandit problem,” Machine Learning, 47, 235–256 (2002).

206

[9] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E., “The nonstochastic

multiarmed bandit problem,” SIAM J. Comput. 32, 48-77 (2002).

[10] Barash, D., “A genetic search in policy space for solving Markov decision processes,”

AAAI Spring Symposium on Search Techniques for Problem Solving under Uncer-

tainty and Incomplete Information, Stanford University (1999).

[11] Bellman, R., Kalaba, R, and Kotkin, B., “Polynomial approximation – a new com-

putational technique in dynamic programming: allocation processes,” Mathematics

of Computation, 17, 82 (1963).

[12] Bentley, J., “Multidimensional binary search trees in database applications,” IEEE

Trans. on Software Engineering, 5, 333–340 (1979).

[13] Bertsekas, D. P. Dynamic Programming and Optimal Control Volumes 1 and 2,

Athena Scientific, Belmont, MA, 1995.

[14] Bertsekas, D. P. “Differential training of rollout policies,” Proc. 35th Allerton Confer-

ence on Communication, Control, and Computing, Allerton Park, IL, 913-922 (1997).

[15] Bertsekas, D. P. and Castañon, D. A., “Adaptive aggregation methods for infinite

horizon dynamic programming,” IEEE Trans. on Automatic Control, 34, 589–598

(1989).

[16] Blondel, V. D., and Tsitsiklis, J., “A survey of computational complexity results in

systems and control,” Automatica, 36, 1249–1274 (2000).

[17] Broadie, M., and Glasserman, P., “Pricing American-Style securities using simula-

tion,” Journal of Economic Dynamics and Control, 21, 1323–1352 (1997).

207

[18] Cesa-Bianchi, N., and Fisher, P., “Finite-time regret bounds for the multiarmed

bandit problem,” Proc. 15th Int. Conf. on Machine Learning, Morgan Kaufmann

Publishers, San Francisco, CA 101-108 1998.

[19] Chang, H. S., Lee, H. G., Fu, M. C., and Marcus, S. I., “Evolutionary policy iteration

for solving Markov decision processes,” IEEE Trans. on Automatic Control, to appear

(2006).

[20] Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I., “An asymptotically effi-

cient simulation-based algorithm for finite horizon stochastic dynamic programming,”

IEEE Trans. on Automatic Control, accepted, (2006).

[21] Chang, H. S., Givan, R. L., and Chong, E. K. P., “Parallel Rollout for Online Solution

of Partially observable Markov decision processes,” Discrete Event Dynamic Systems:

Theory and Application, 14(3), 309-341 (2004).

[22] Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I., “An adaptive sampling algorithm

for solving Markov decision processes.” Operations Research, 51(1), 126–139, (2005).

[23] Chavez, E., and Navarro, G., “An effective clustering algorithm to index high di-

mensional metric spaces,” Seventh International Symposium on String Processing

Information Retrieval (SPIRE’00), A Corù‘na, Spain, pp. 75 (2000).

[24] Corana, A., Marchesi M., Martini, C., and Ridella, S., “Minimizing multimodal

functions of continuous variables with the “Simulated Annealing” algorithm,” ACM

Trans. on Mathematical Software, 13(3) 262–280 (1987).

[25] Cormen, T. H., Leiserson, C. E., and Rivest, R. L., Introduction to Algorithms MIT

Press, Cambridge, MA 1990.

208

[26] De Boer, P. T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y., “A tutorial on the

cross-entropy method,” Annals of Operation Research, 134, 19-67 (2005).

[27] de Farias, D. P. and Van Roy, B., “The linear programming approach to approximate

dynamic programming,” Operations Research, 51(6) 850–865 (2003).

[28] Demmel, J. W., Applied Numerical Linear Algebra, Soc. for Indust. and Appl. Math.,

Philadelphia, PA, 1997.

[29] Dorigo, M., and Gambardella, L. M., “Ant colony system: a cooperative learning

approach to the traveling salesman problem,” IEEE Trans. on Evolutionary Compu-

tation, 1, 53–66 (1997).

[30] Even-Dar, E., Mannor, S. and Mansour, Y., “Action elimination and stopping con-

ditions for reinforcement learning,” International Conference on Machine Learning,

pages 162–169 (2003).

[31] Fu, M. C., and Healy, K. J., “Techniques for simulation optimization: an experimental

study on an (s, S) inventory system,” IIE Transactions, 29, 191–199, (1997).

[32] Fu, M. C., Gradient Estimation, Chapter 19 in Handbooks in Operations Research

and Management Science: Simulation, S.G. Henderson and B.L. Nelson, eds., Else-

vier, 2006.

[33] Fu, M. C. and Jin, X., “Convergence of sample path optimal policies for stochastic

dynamic programming,” Technical Research Report, Institute for Systems Research,

University of Maryland, TR2005-84 (2005).

209

[34] Glasserman, P., “Performance continuity and differentiability in Monte Carlo opti-

mization,” Proceedings of the 1988 Winter Simulation Conference, M. Abrams, P.

Haigh, and J. Comfort (eds.) (1988).

[35] Glover, F., “Tabu search: a tutorial,” Interfaces, 20, 74–94, (1990).

[36] Graves, T.L., and Lai, T. L., “Asymptotically efficient adaptive choice of control laws

in controlled Markov chains,” SIAM J. Control Optimization, 35, 715–743 (1997).

[37] Gutjahr, W. J. “A converging ACO algorithm for stochastic combinatorial optimiza-

tion,” Proc. SAGA 2003 Stochastic Algorithms: Foundations and Applications, Hat-

field (UK), A. Albrecht, K. Steinhoefl, eds., Springer LNCS 2827 10-25 (2003).

[38] Guttman, A., “R-trees: a dynamic index structure for spatial searching,” In Proc.

ACM SIGMOD’84, 47–57 (1984).

[39] Hernández-Lerma, O., and Lasserre, J. B., “Error bounds for rolling horizon policies

in discrete-time Markov control processes,” IEEE Trans. on Automatic Control, 35,

1118–1124 (1990).

[40] Hoeffding, W., “Probability inequalities for sums of bounded random variables,” Jour-

nal of the American Statistical Association, 58, 13–30 (1963).

[41] Homem-de-Mello, T., “A study on the cross-entropy method for rare

event probability estimation,” Technical Report 04-002, Department of Indus-

trial Engineering and Management Sciences, Northwestern University (2004).

http://users.iems.northwestern.edu/ tito/pubs/rarevents submitted.pdf

[42] Hong, L. J., and Nelson, B. L., “Discrete optimization via simulation using COM-

PASS,” Operations Research, forthcoming (2006).

210

[43] Hu, J., Fu, M. C., and Marcus, S. I., “Model reference adaptive search: a new ap-

proach to global optimization,” late-breaking paper, Genetic and Evolutionary Com-

putation Conference (GECCO), Washington D. C. (2005).

[44] Hu, J., Fu, M. C., and Marcus, S. I., “Simulation optimization using model reference

adaptive search,” Proceedings of the 2005 Winter Simulation Conference, 811–818

(2005).

[45] Hu, J., Fu, M. C., Ramezani, V., and Marcus, S. I., “An evolutionary random pol-

icy search algorithm for solving Markov decision processes,” INFORMS Journal on

Computing, forthcoming (2006).

[46] Hu, J., Fu, M. C., and Marcus, S. I., “A model reference adaptive search method for

global optimization,” Operations Research, forthcoming (2006).

[47] Hu, J., Fu, M. C., and Marucs, S. I., “A model reference adaptive search method for

stochastic global optimization,” submitted for publication (2006).

[48] Karlin, S., Steady State Solutions, Studies in the Mathematical Theory of Inventory

and Production. Arrow, K. J., Karlin, S., and Scarf H. (eds.), Stanford University

Press (1958).

[49] Kearns, M., Mansour, Y., and Ng, A. Y., “A sparse sampling algorithm for near-

optimal planning in large Markov decision processes,” Machine Learning, 49, 193–208

(2001).

[50] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by simulated an-

nealing,” Science, 220, 671-680 (1983).

211

[51] Kroese, D. P., Rubinstein, R. Y., and Porotsky, S., “The cross-entropy method for

continuous multi-extremal optimization,” Operations Research, Under review (2005).

[52] Lai, T., and Robbins, H., “Asymptotically efficient adaptive allocation rules,” Ad-

vances in Applied Mathematics, 6, 4–22 (1985).

[53] Larrañaga, P., Etxeberria, R., Lozano, J. A., Sierra, B., Iñza, I., and Peña, J. M.,

“A review of the cooperation between evolutionary computation and probabilistic

graphical models,” Proceedings of the Second Symposium on Artificial Intelligence.

Adaptive Systems. CIMAF 99. Special Session on Distributions and Evolutionary

Computation, 314–324 (1999).

[54] Law, A. M., and Kelton, W.D., Simulation Modeling and Analysis 3rd ed. McGraw-

Hill, New York, 2002.

[55] Lin, A. Z. -Z., Bean, J., and White, C. III, “A hybrid genetic/optimization algorithm

for finite horizon partially observed Markov decision processes,” Technical Report

98-25, Department of Industrial and Operations Engineering, University of Michigan,

Ann Arbor (1998).

[56] Lourenco, H. R., Martin, O. C., and Stützle, T., Iterated local search, Handbook on

MetaHeuristics. Ed. Glover, F., and Kochenberger, G. 321–353, Kluwer Academic

Publishers, Norwell, MA, 2002.

[57] MacQueen, J., “A modified dynamic programming method for Markovian decision

problems,” J. Math. Anal. Appl., 14 38–43 (1966).

[58] Mannor, S., Rubinstein, R., and Gat, Y., “The cross-entropy method for fast policy

search,” International Conference on Machine Learning, 512–519 (2003).

212

[59] Mühlenbein, H., and Paaß, G., “From recombination of genes to the estimation of

distributions: I. binary parameters,” In Hans-Michael Voigt, Werner Ebeling, Ingo

Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature

- PPSN IV, 178–187, Berlin, Springer Verlag, (1996).

[60] Pelikan, M., Goldberg, D. E., and Lobo, F. G., “A survey of optimization by building

and using probabilistic models,” Urbana, IL: University of Illinois Genetic Algorithms

Laboratory (IlliGAL report No. 99018) (1999).

[61] Pintér, J. D., Global Optimization in Action, Kluwer Academic Publisher, The

Netherlands, 1996.

[62] Puterman, M. L. and Shin, M. C., “Modified policy iteration algorithms for dis-

counted Markov decision processes,” Management Science, 24, 1127–1137 (1978).

[63] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming, Wiley & Sons, New York 1994.

[64] Ross, S., Stochastic Process 2nd ed. John Wiley & Sons, 1995.

[65] Rubinstein, R. Y., “Optimization of computer simulation models with rare events,”

European Journal of Operations Research, 99, 89–112 (1997).

[66] Rubinstein, R. Y., “The cross-entropy method for combinatorial and continuous op-

timization,” Methodology and Computing in Applied Probability, 2, 127–190 (1999).

[67] Rubinstein, R. Y., “Combinatorial optimization, ants and rare events,” In S. Uryasev

and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and Applications,

304–358 Kluwer (2001).

213

[68] Rubinstein, R. Y., and Kroese, D. P., The Cross-Entropy Method: A Unified Ap-

proach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learn-

ing, Springer, New York 2004.

[69] Rubinstein, R. Y., and Shapiro, A., Discrete Event Systems: Sensitivity Analysis and

Stochastic Optimization by the Score Function Method, John Wiley & Sons 1993.

[70] Rust, J., “Structural estimation of Markov decision processes,” Engle, R. and Mc-

Fadden, D. (eds.) Handbook of Econometrics, North Holland: Amsterdam (1994).

[71] Rust, J., “Numerical dynamic programming in economics,” chapter 14 in Amman,

H., Kendrick, D. and Rust J. (eds.) Handbook of Computational Economics, Elsevier,

North Holland (1996).

[72] Rust, J., “Using randomization to break the curse of Dimensionality,” Econometrica,

65(3) 487–516 (1997).

[73] Schweitzer, P. J., and Seidman, A., “Generalized polynomial approximations in

Markovian decision problems,” J. Math. Anal. and Appl. 110, 568–582 (1985).

[74] Shen Y., Annealing Adaptive Search with Hit-and-Run Sampling Methods for Global

Optimization, Ph.D. Thesis, Department of Industrial Engineering, University of

Washington, Seattle 2005.

[75] Shi, L., and Ólafsson, S., “Nested partitions method for global optimization,” Oper-

ations Research, 48, 390–407, (2000).

[76] Shi, L., and Ólafsson, S., “Nested partitions method for stochastic optimization,”

Methodology and Computing in Applied Probability, 2, 271–291 (2000).

[77] Shiryaev, A. N., Probability, Second Edition, Springer-Verlag, New York, 1995.

214

[78] Spall, J. C., “Multivariate stochastic approximation using a simultaneous perturba-

tion gradient approximation,” IEEE Transactions on Automatic Control, 37 332–341

(1992).

[79] Srinivas, M., and Patnaik, L. M., “Genetic algorithms: a survey,” IEEE Comput.,

27(6) 17–26 (1994).

[80] Sutton, R. S., “Learning to predict by the method of temporal differences,” Machine

Learning, 3, 9–44 (1988).

[81] Thomas, L. C., Hartley, R., and Lavercombe, A. C., “Computational comparison

of value iteration algorithms for discounted Markov decision processes,” Operations

Research Letters, 2 72–76 (1983).

[82] Trick, M. and Zin, S., “Spline approximations to value functions: a linear program-

ming approach,” Macroeconomic Dynam., 1 255-277 (1997).

[83] Tsitsiklis, J. N. and Van Roy, B., “Feature-based methods for large-scale dynamic

programming,” Machine Learning, 22 59–94 (1996).

[84] Vouros, G. A., and Papadopoulos, H. T., “Buffer allocation in unreliable production

lines using a knowledge based system,” Computer & Operations Research, 25, 1055–

1067 (1998).

[85] Watkins, C. J. C. H., “Learning from delayed rewards,” PhD thesis, University of

Cambridge (1983).

[86] Wells, C., Lusena, C., and Goldsmith, J., “Genetic algorithms for approximating

solutions to POMDPs,” Department of Computer Science Technical Report TR-290-

99, University of Kentucky (1999). http://cs.engr.uky.edu/ goldsmit/papers/gen.ps

215

[87] Yan, D., and Mukai, H., “Stochastic discrete optimization,” SIAM Journal on Control

and Optimization, 30, 594–612 (1992).

[88] Yao, X., and Liu, Y., “Fast evolutionary programming,” Proceedings of the 5th Annual

Conference on Evolutionary Programming, 451–460, MIT Press (2000).

[89] Zabinsky, Z. B., Stochastic Adaptive Search for Global Optimization, Kluwer Acad-

emic Publisher, Norwell, MA 2003.

[90] Zhang, Q., and Mühlenbein, H., “On the convergence of a class of estimation of dis-

tribution algorithm,” IEEE Trans. on Evolutionary Computation, 8, 127–136 (2004).

[91] Zlochin, M., Birattari, M., Meuleau, N., and Dorigo, M., “Model-based search for

combinatorial optimization: a critical survey,” Annals of Operations Research, 131,

373–395 (2004).

216

