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Tobacco mosaic virus (TMV)-encoded 126-kDa and 183-kDa replicases are 

multidomain and multifunctional proteins.  The helicase domain shared by both 

replicases has been shown to perform multiple tasks during the virus life cycle.  In 

vitro structural and functional analyses demonstrated that monomers and dimers of 

the TMV helicase domain were the active forms for ATP hydrolysis.  However, self-

interaction of the helicase polypeptides resulted in the formation of higher-order 

structures that likely serve as structural scaffolds for the assembly of virus replication 

complexes (VRCs).  Mutagenesis studies of the TMV helicase motifs showed that 

conserved amino acid residues played important roles in protein ATPase and/or RNA 

binding activities.  A close correlation between ATPase activity of the helicase 



  

domain and assembly of wild-type VRC-like vesicles by the 126-kDa replicase 

further suggests that ATPase activity of the TMV helicase domain may modulate 

proper VRC assembly.  

In addition to helicase self-interaction, a novel virus-host interaction involving 

ATAF2, a NAC domain transcription factor was identified.  Members within the 

NAC domain family are involved in plant developmental processes and stress/defense 

responses.  In this study, transgenic plants overexpressing ATAF2 showed a strong 

developmental phenotype.  Inoculation of TMV in these transgenic plants resulted in 

reduced virus accumulations.  Additionally, transcriptional induction of ATAF2 

occurred in response to TMV infection and salicylic acid treatment.  Combined, these 

results suggest that ATAF2 is involved in a host defense response.  One interesting 

finding was that in susceptible hosts, virus-directed induction of ATAF2 and PR1, a 

well-defined pathogenesis-related (PR) marker gene for host defense system, 

occurred only in locally-infected but not in systemically-infected tissues.  Dynamic 

changes in the expression of host defense genes suggest that viruses have evolved 

certain mechanisms to actively modulate host gene expression.  Interaction between 

the TMV helicase domain and ATAF2 may provide one way to suppress the ATAF2-

mediated host defense signaling pathway. 

Combined these studies investigated the importance of the TMV helicase domain 

in VRC formation and in manipulating the host defense system.  The results 

confirmed the functional versatility of the TMV helicase domain in establishing a 

successful virus life cycle. 
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Chapter 1: General Introduction 

1.1  Statement of Purpose 

Positive-stranded RNA viruses encompass over one-third of all virus genera 

and include numerous pathogens that cause disease in plants, animals and humans.  

Within plant systems, virus infections cause significant damage to economically 

important crops (Matthews, 1991).  Developing better strategies for controlling viral 

infection requires a better understanding of how viruses utilize host systems to 

promote their own replication cycles.  The goal of this study is to utilize Tobacco 

mosaic virus (TMV) as a model system to analyze the process of virus replication 

complex (VRC) assembly in addition to the possible ways viruses have developed to 

evade host defense system.   

Despite different genome organizations, all positive-stranded RNA viruses 

form membrane-associated VRCs in host cells and share common replication 

mechanisms.  Thus, identifying components of the TMV VRCs and their structures are 

critical to expanding our knowledge of virus replication.  The TMV replicase protein 

has been shown to be a major component in the formation of membrane-associated 

VRCs.  Additionally, the helicase domain within the replicase proteins is capable of 

self-interacting, and disruption of the interaction abolishes viral replication.  This 

suggests that helicase-helicase interaction plays an important role in directing the 

formation of the whole VRC.  In this study, structural, biochemical, and cell biology-

related approaches have been used to characterize the structure-function relationship 
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of the TMV helicase domain and the role of this domain in modulating the assembly 

of the VRCs.   

Upon virus infection, a susceptible host generally develops localized and 

systemic disease symptoms that mostly associate with alterations of host gene 

expression, disruption of plant hormone metabolism, and modifications of the host 

proteins (for review, see Culver and Padmanabhan, 2007).  The ability of a virus that 

encodes limited amount of genetic information capable of inducing extensive host 

responses shows that the virus has evolved complicated mechanisms of 

communication with its host.  Characterizing specific virus-host interactions that 

contribute to a successful viral invasion provides a better view on how viruses utilize 

and modify the cellular resources to suit their own needs and on how the host reacts to 

cope with the intrusion.  In this study, a novel stress-inducible plant transcription 

factor is identified to interact with the helicase domain of the TMV replicase proteins 

and further characterization of this interaction using genomic and cell biology-oriented 

approaches shows that this interaction plays an important regulatory role on 

suppressing host defense systems.  Insights gained from this study add to our 

knowledge of the molecular network of virus-host interactions underlying viral 

pathogenesis.  Ultimately this information will be useful in the development of new 

anti-viral therapies. 
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1.2  Literature Review 

1.2.1  Tobacco mosaic virus (TMV) 

Over a century ago, a causative agent of tobacco mosaic disease was found capable 

of passing through filters that are impermeable to bacteria.  This filterable agent 

described by M. W. Beijerinck as a contagium vivum fluidum is now well known as 

Tobacco mosaic virus (TMV) (Beijerinck, 1898).  Being the first identified virus in 

history, TMV has led pioneering research on various aspects of biology, including 

structural biology, genetics, biochemistry, cellular biology, biotechnology, 

immunology, and plant pathology. 

TMV is the type species of the genus Tobamovirus and a member of the 

alphavirus-like superfamily of positive-strand RNA viruses.  TMV infects tobacco and 

other members in the Solanaceae family.  A vector is not required for TMV to spread 

from plant to plant.  The virus is transmitted by physical contact and mechanical 

wounding of the leaves.  Disease symptoms associated with TMV infection include 

stunting, necrosis, leaf curling and a characteristic mosaic pattern of intermingled light 

and dark green patches on leaf tissue.   

TMV particles are rigid rods approximately 300 nm in length and 18 nm in 

diameter.  Each particle consists of a single-stranded viral RNA surrounded by 2130 

coat protein subunits.  The monopartite genome of TMV is approximately 6.4 kb and 

contains an mRNA-like 5'-cap structure (7-methylguanosine triphosphate, m7Gppp) 

and an aminoacylated tRNA-like 3’-terminal structure (Rietveld et al., 1984; 

Zimmern, 1975).  TMV RNA genome contains four open reading frames (ORFs) 

which encode a 126-kDa and a 183-kDa replicase protein, a 30-kDa movement protein 
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(MP) and a 17.5-kDa coat protein (CP) (Fig. 1.1) (Goelet et al., 1982).  Both the 126-

kDa and the 183-kDa protein are translated from genomic RNA with the same 5'-

proximal initiation codon and are required for efficient viral RNA replication 

(Ishikawa et al., 1986; Lewandowski and Dawson, 2000).  Both MP and CP are 

translated from subgenomic (sg) RNAs derived from the 3'-ends of the viral RNAs 

and are dispensable for viral replication.  The MP is involved in virus cell-to-cell 

movement (Deom et al., 1987; Meshi et al., 1987) and the CP is essential for assembly 

of virions which are required for systemic long-distance movement (Dawson et al., 

1988; Ding et al., 1996; Saito et al., 1990).   

 

TMV-encoded proteins  

126- and 183-kDa replicase proteins 

TMV 126- and 183-kDa replicases are multi-domain and multi-functional 

proteins.  The 183-kDa protein is produced by translational read-through of an amber 

stop codon of the 126-kDa ORF.  Both 126- and 183-kDa proteins contain an N-

terminal methyltransferase domain (MT), an intervening region (IR) and a helicase-

like domain (HEL) (Fig. 1.1).  The read-through portion of the 183-kDa protein 

contains a motif typical of RNA-dependent RNA polymerase (POL) activity (Fig. 1.1) 

(Pelham, 1978).  The MT domain of the replicase proteins possesses virus-specific 

methyltransferase and guanylyltransferase activities and is responsible for viral RNA 

capping, which protects the genomic RNAs from cellular 5’ exonucleases and is also 

involved in cap-dependent translation (Dunigan and Zaitlin, 1990).  The HEL domain 

has been shown to able to unwind double-stranded RNAs in vitro, thus playing an  



 

 5 
 

 

Fig. 1.1.  TMV genome organization and expression strategies.  Single stranded 

RNA genome of TMV with highly structured elements in the 5’ and 3’ UTRs is shown 

on top.  Two replicase proteins are produced directly from the genomic RNA.  The 

triangle indicates the position of the leaky amber stop codon at the end of the TMV 

ORF1.  MP and CP are translated from subgenomic mRNAs.  Both genomic and 

subgenomic RNAs are illustrated by gray boxes.  Green and red boxes represent TMV 

MP and CP, respectively.  Domains within the replicase proteins are shown in purple 

(MT), orange (IR), yellow (HEL), and pink (POL).  MT, methyltransferase; IR, 

intervening region; HEL, helicase; POL, polymerase; MP, movement protein; CP, coat 

protein. 
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important role in virus replication (Goregaoker and Culver, 2003).  Studies on the 

TMV HEL suggest that it plays multiple roles in mediating virus infection and host 

responses.  The structural and functional complexity of this domain and its 

involvement in the virus life cycle will be discussed in detail in the following section.  

The exact function of IR is not well characterized.  Individual amino acid substitutions 

within the IR region alter the disease symptoms displayed in systemically infected 

leaves, suggesting a role for the IR region in symptom modulation (Bao et al., 1996). 

In TMV-infected plant tissues, the 126-kDa protein is expressed ten times 

more abundantly than the 183-kDa protein (Lewandowski and Dawson, 2000; 

Watanabe et al., 1999).  The reason for the presence of excess 126-kDa proteins is not 

clear yet.  When the amber stop codon of the 126-kDa protein is altered to code for 

tyrosine, only the 183-kDa replicase protein is produced and viral replication 

efficiency is dramatically reduced ten fold, suggesting a regulatory role for the excess 

126-kDa proteins in TMV replication (Ishikawa et al., 1986; Lewandowski and 

Dawson, 2000).  Both the 126- and 183-kDa proteins can be detected from membrane-

associated complexes isolated from TMV-infected plant tissues (Watanabe et al., 

1999).  These crude membrane complexes have been shown to synthesize both TMV 

genomic and subgenomic RNAs in a template-dependent manner in vitro.  RNA 

synthesis activities are greatly inhibited by pre-incubation with antibodies against 

various portions of the 126-kDa or the POL domain of the 183-kDa proteins, 

suggesting that both replicase proteins are actively involved in virus replication 

(Osman and Buck, 1996).  Brome mosaic virus (BMV) 1a protein, which is analogous 

to the TMV 126-kDa protein, recruits viral RNA templates for replication by binding 
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to the tRNA-like structure at the 3’ terminus (Chen et al., 2001).  Similar to BMV 1a 

protein, the TMV 126-kDa protein is shown to bind to the viral RNA 3’ terminal 

region (TR) in an in vitro cross-linking study, whereas the 183-kDa fails to do so 

(Osman and Buck, 2003).  This research suggests that the 126-kDa replicase may 

function as a bridge connecting the catalytic domain (POL) of the 183-kDa protein to 

the viral RNA template.   

Besides the replication activities, the 126- and 183-kDa replicases were shown 

to be involved in the virus cell-to-cell movement (Hirashima and Watanabe, 2001; 

Hirashima and Watanabe, 2003).  This result, together with co-localization of the 126-

kDa protein and MP to the ER membrane, indicated that TMV replicases and MP are 

functionally linked.  Wu and Shaw (1997) demonstrated that the virus particles 

containing mutant viral RNAs defective in producing the 126- and 183-kDa replicases 

failed to disassemble in the 3’-to-5’ direction, suggesting the involvement of the 

replicase proteins in viral particle disassembly.  Furthermore, the 126-kDa protein of 

TMV has been shown to serve as a suppressor of the host post-transcriptional gene 

silencing (PTGS) defense system (Ding et al., 2004).   

 

TMV movement protein (MP) 

Most plant viruses encode one or more nonstructural MPs that facilitate the 

transport of progeny viral genomes through plasmodesmata (PD), intercellular 

channels consisting of extended plasma membrane and ER.  TMV MP is the most 

extensively studied protein involved in viral cell-to-cell movement.  In general, PD are 

specialized narrow channels that only allow passage of small molecules, such as 
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water, nutrients, and metabolites (Lucas and Wolf, 1993).  Virus MP, however, has the 

ability to increase the size exclusion limit (SEL) of PD (Wolf et al., 1989).  The exact 

mechanism on how MP triggers the PD channel dilation is not clear.  Evidence 

including MP localizing to PD in infected leaf tissues (Atkins et al., 1991; Ding et al., 

1992) and the greater SEL of PD measured from transgenic plants constitutively 

expressing TMV MP (Wolf et al., 1989) suggest that MP-directed modification of PD 

is involved in the intercellular trafficking of viral RNAs.  An in vitro study showed 

that TMV MP is capable of binding to single-stranded RNA to form viral RNA-

protein (vRNP) complexes (Citovsky et al., 1990; Citovsky et al., 1992).  

Visualization of these vRNP complexes with electron microscopy revealed unfolded 

and elongated tubular-like structures, which are compatible in size for the MP-

modified PD (Citovsky et al., 1992).  Other than facilitating vRNA transport 

intercellularly, TMV MP also actively recruits host components to mediate 

translocation of vRNAs intracellularly, from replication site to PD.  A double-labeling 

fluorescence microscopy study has shown that MP co-aligns with microtubules (MTs) 

and disruption of MTs affects distribution of MP in protoplasts (Heinlein et al., 1995; 

Heinlein et al., 1998).  TMV MP was also observed to bind to actin in vitro (McLean 

et al., 1995).  Association of MP with cellular MTs and microfilaments suggests the 

involvement of cytoskeleton structures in MP-mediated viral RNA transport.  A host 

cell wall protein, pectin methylesterase (PME) has also been identified to interact with 

TMV MP (Chen et al., 2000; Dorokhov et al., 1999).  Since disruption of PME-MP 

binding results in the inactivation of TMV cell-to-cell spread, this host protein may 

play an important role in directing and anchoring the vRNP to PD or it may be 
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involved in MP-dependent modification of the PD (Chen et al., 2000).  Taken 

together, MP-associated virus cell-to-cell movement through plasmodesmata is a 

highly coordinated process that requires participation of both virus and host 

components.   

During the course of infection, MP accumulates in the early stages of infection, 

whereas in late stages, the amount of MP decreases (Lehto et al., 1990a).  Addition of 

the 26S proteosome inhibitors into the TMV-infected protoplasts leads to the 

accumulation of ubiquitinylated MP (Reichel and Beachy, 2000).  The depletion of 

MP at late stages of infection may help to recycle the host membrane system, such as 

ER, and elements of cytoskeleton to promote a complete virus life cycle.  MP is also 

observed to be phosphorylated in vitro by a cell-wall protein kinase (Citovsky et al., 

1993) and in vivo by a plasmodesmal-associated protein kinase (PAPK) (Lee et al., 

2005).  The exact function of MP phosphorylation is unknown and controversial.  

Mutational analysis implies the involvement of MP phosphorylation in controlling 

protein stability (Kawakami et al., 1999).  However, other studies suggest it affecting 

the SEL of PD (Waigmann et al., 2000).  Moreover, phosphorylation of MP in vitro 

abrogates the ability of the protein to repress translation of vRNA, suggesting a 

regulatory role for MP phosphorylation in controlling viral life cycle (Karpova et al., 

1999).  

 

TMV coat protein (CP) 

TMV CP is a structural protein translated from a subgenomic mRNA.  CP 

subunits interact with each other extensively to form a cylindrical helical structure that 
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functions as a protective shell for the viral genomic RNA.  For a century, TMV CP has 

served as a model system to study macromolecular self-assembly and protein-RNA 

interactions.  Using an X-ray diffraction method the structure of TMV CP has been 

resolved at 2.9Å resolution as a four-helix bundle with two pairs of alpha-helices 

connected by a loop structure (Namba et al., 1989).  Depending on pH and ionic 

strength in solution, TMV CP aggregates into different forms, including a 4S 

trimer/pentamer/monomer mixture, a 20S bilayer disk with 17 CP molecules in each 

layer, and a virus-like helical aggregate (Durham et al., 1971; Schuster et al., 1980).  

At pH 7.0 and 20ºC, 4S and 20S proteins exist in an equilibrium mixture in solution 

and both are thought to contribute to virion assembly.  Formation of 20S aggregates is 

more important due to the requirement for disks to initiate virus assembly.  In 

addition, a recent study suggests the involvement of 20S aggregates in CP-mediated 

resistance (CP-MR) (Asurmendi et al., 2007). 

CP-MR was first described as a phenomenon that transgenic plants expressing 

self-assembling CP conferred certain levels of resistance against infection by TMV 

and other related Tobamoviruses (Abel et al., 1986).  It is observed that accumulation 

of CP but not CP non-translated mRNA confers resistance (Powell et al., 1989).  

Furthermore, CP-MR is effective against infection by TMV, but not TMV-RNA,  

indicating that presence of CP interferes with proper disassembly of challenging viral 

particles, thus inhibiting virus replication and spreading (Nelson et al., 1987; Register 

and Beachy, 1988). 

Although TMV CP does not play a role in virus cell-to-cell movement, it is 

indispensable for virus long-distance movement through phloem, the plant’s vascular 
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tissues.  Mutant viruses defective in CP assembly have no effect on TMV cell-to-cell 

spreading, but fail to move systemically indicating that proper assembly of TMV is 

required for viral RNA trafficking over long-distance (Dawson et al., 1988).  A study 

on another closely related Tobamovirus, Cucumber green mottle mosaic tobamovirus 

(CGMMV), showed that only packaged virions but not free RNAs could be detected 

in infected phloem (Simon-Buela and Garcia-Arenal, 1999).  This result confirms the 

role of CP assembly in viral long-distance movement and also suggests that no 

replication activities occur inside the phloem during the whole transport process.  

However, the exact mechanism on how CP promotes virus movement via phloem 

remains unknown.   

 

Putative 54-kDa and 4.8-kDa proteins 

 Another subgenomic RNA, termed I1 RNA, corresponding to the polymerase 

domain can be detected from TMV-infected tobacco tissues and it contains an ORF 

encoding for a putative 54-kDa protein (Fig. 1.1) (Sulzinski et al., 1985).  Despite the 

fact that the expression of this protein has never been detected in vivo, double-stranded 

RNA with a size corresponding to the duplex I1 subgenomic RNA has been observed 

(Palukaitis et al., 1983; Zelcer et al., 1981).  In addition, plants expressing the 54-kDa 

plus-sense gene, but not its antisense RNA, exhibit complete resistance to TMV 

infection, suggesting that this gene or maybe its encoded putative protein negatively 

interferes with the virus accumulation (Golemboski et al., 1990). 

 A sixth ORF encoding a 4.8kDa protein has been recently described to be 

present in the genome of TMV (Canto et al., 2004).  This small protein overlaps the C 
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terminus of the MP and the N terminus of the CP.  Elimination of ORF6 by changing 

its AUG start codon to ACG resulted in reduced virulence of the virus (Canto et al., 

2004).  In addition, in vitro expressed 4.8-kDa protein is shown to bind strongly to 

cellular translation factor eEF1A (Morozov et al., 1993).  Whether eEF1A association 

has an effect on the pathogenicity of the 4.8-kDa protein remains unknown. 

 

TMV virus life cycle 

The viral life cycle starts when the virus particle enters the host cells through 

wounds (Fig. 1.2).  Although TMV particles are highly stable in the environment, an 

efficient uncoating process takes place in the host cytoplasm, where concentrations of 

calcium ions and protons are relatively low.  Depletion of these positively charged 

ions from carboxyl-carboxylate and carboxyl-phosphate pairs between adjacent CP 

subunits and between CP and viral RNA results in electrostatic repulsive forces that 

trigger the destabilization of the virus particles.  It is noted that the interaction between 

CP subunits and genomic RNA at the 5’ end is relatively weaker due to lack of 

guanine residues in the 69-nucleotide 5’-leader sequence.  When treating TMV 

particles in a cellular-like mild alkali or detergent condition, the first 200 nucleotides 

at the 5’ end of the genome is exposed, suggesting that the TMV in vivo disassembly 

starts from the 5’ end of TMV genome (Mundry et al., 1991).  Uncoating of the 5’-

leader sequence releases the first start codon of the 126- and 183-kDa protein.  

Cellular ribosomes recognize the start codon and initiate translation of the messenger-

sense genomic RNA.  Simultaneously, ribosome binding to and scanning through the 
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Fig. 1.2.  TMV life cycle.  The first stage of the infection cycle involves viral entry 

into the plant through wounds followed by the release of plus-sense genomic RNA via 

a cotranslational disassembly mechanism (1).  Translation of the genomic RNA 

produces 126- and 183-kDa replicase proteins important for the assembly of the ER-

associated VRCs (2), where virus replication occurs (3).  Replication process involves 

the synthesis of minus-sense genomic RNA, which then serves as a template for the 

synthesis of plus-sense genomic RNA and subgenomic RNAs, specific messenger 

RNAs for translation of the viral structural proteins.  Translation of subgenomic RNAs 

produces viral MPs and CPs (4).  MPs bind to viral genomic RNA and direct the 

formed RNP to the neighboring cells via plasmodesmata (PD) (5).  CP subunits 

encapsidate the viral plus-sense genomic RNA and the new virions are released or 

transport through phloem to systemic tissues (6). 
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viral RNA dislodges more CP subunits at a 5’-to-3’ direction.  This translation-

associated disassembly process is referred as a cotranslational disassembly (Wilson, 

1984).  The TMV 5’-to-3’ disassembly stops when ribosomes reach the termination 

codons of the 126- and 183-kDa proteins.  The newly released replicases are capable 

of binding to the 3’ end tRNA-like structure (TLS) of viral RNA and initiating 

uncoating of the remaining CP subunits in a 3’-to-5’ direction (Wu and Shaw, 1996; 

Wu and Shaw, 1997).  The 3’-to-5’ disassembly is coupled with the synthesis of the 

negative-strand genomic RNA, thus the process is called coreplicational disassembly.  

The bidirectional disassembly is beneficial to the viruses in that viral RNAs remain 

protected by CP subunits until they become involved in the replication process. 

The next stage of the life cycle is the replication of TMV viral RNAs that 

includes synthesis of minus-strand genomic-length RNA, which further acts as a 

template for producing more plus-strand genomic RNAs and subgenomic RNAs (Fig 

1.2; for review, see Buck, 1999).  Synthesis of minus-strand genomic RNA ceases a 

few hours after inoculation, whereas plus-strand synthesis continues throughout the 

entire time of virus infection (Ishikawa et al., 1991).  Similar to other positive-

stranded RNA viruses, an asymmetric production of TMV genomic RNAs is observed 

with a hundred fold excess of plus-strand over minus-strand RNAs being produced 

(Kielland-Brandt, 1974).  Two replicative structures, the replicative form (RF) and the 

replicative intermediate (RI) have been detected in TMV-infected plants (Jackson et 

al., 1971; Nilsson-Tillgren, 1970) and in an in vitro RNA synthesis reaction using 

TMV-derived RdRp complexes (Osman and Buck, 1996).  RF is a duplex genomic-

length plus- and minus-strand RNA molecule and RI is a multistranded structure 
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composed of several nascent plus-strand RNAs complementary to one single minus-

strand RNA.  The presence of both RF and RI forms of viral RNAs may suggest 

different mechanisms of synthesizing minus- and plus-strand RNAs.  For TMV, both 

the 5’- and the 3’-end untranslated regions are involved in virus replication.  The 5’ 

69-nucleotide untranslated region (UTR), defined as “Ω” sequence, has been shown to 

serve as a translational enhancer (Gallie et al., 1987).  Takamatsu et al. (1991) further 

demonstrated that a small deletion (nt 2-8) in this region was enough to abolish virus 

replication.  Precisely how this untranslated region affects virus replication remains 

unknown.  The TMV 3’ untranslated region containing a TLS and three upstream 

pseudoknot domains (UPDs) has been demonstrated to act as a cis-acting element for 

virus replication.  Deletion or disruption of one pseudoknot structure just upstream of 

the TLS completely abolished synthesis of viral genomic RNAs, suggesting an 

important regulatory role of this region in virus replication (Takamatsu et al., 1990).  

Synthesis of subgenomic RNA is initiated by replicase proteins binding to the internal 

promoters on negative-strand RNA template.  MP is expressed at the early stage of 

infection but CP is expressed late and it is believed that the internal promoters control 

the timing of protein expression.  It was shown that expression of MP under the 

control of the CP subgenomic promoter led to late expression (Lehto et al., 1990b).  

To establish a successful infection, the newly synthesized genomic RNAs need 

to be transported from the virus entry site to other parts of a host plant.  The TMV MP 

mediates virus local movement and has been identified to contain both the nucleic 

acid- and NTP-binding domains (Citovsky et al., 1990).  Li and Palukaitis (1996) 

suggested that the MP-mediated transportation of vRNP is energy-dependent requiring 
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GTP hydrolysis.  The last stage of the cycle involves the assembly of viral particles 

and the transportation of the progeny virions to uninfected systemic tissues.  

Encapsidation of the TMV viral RNA starts at a unique sequence of nucleotides (nts 

5444-5518) called origin of assembly (OA) that forms a hairpin configuration (Fig. 

1.2) (Zimmern, 1977).  Insertion of the hairpin-loop OA into the central hole of the 

initiating 20S CP disk stabilizes the nucleoprotein complex and allows the elongation 

proceed.  It is proposed that the elongation process occurs in both directions by 

sequentially adding 20S disks to the 5’ longer tail and the 4S A protein to the 3’ 

smaller tail (Lebeurier et al., 1977).  Consistent with this assumption, the elongation 

process along the shorter RNA tail has been observed to occur much slower than 

assembly of 5’longer tail.  

 

1.2.2  Virus Replication Complexes (VRCs) 

Although diverse in morphology, all known positive-strand RNA viruses of 

plants and animals form membrane-associated VRCs that play an essential role for 

viral genome replication and transcription (for reviews, see Buck, 1996; van der 

Heijden and Bol, 2002).  Formation of membrane-associated VRCs is beneficial to 

viruses in multiple ways, including increasing the available surface area for RNA 

synthesis, concentrating the viral RNAs and viral proteins by creating a membrane 

compartment, and supplying a less hostile environment for replication.  In a membrane 

floatation assay of Hepatitis C virus (HCV)-infected cell culture, RNA synthesis can 

only be detected in the membrane-bound fractions containing viral nonstructural 

proteins, but not in the soluble fractions, suggesting the membrane-bound complex is 
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an active form for enzymatic activity (El-Hage and Luo, 2003).  Depletion of 

membranes from tobacco protoplasts leads to failure of the synthesis of Tomato 

mosaic virus (ToMV) related RNAs even though the translation of the viral 130- and 

180-kDa replicase proteins is not affected (Komoda et al., 2007).  This study suggests 

that the membranes are not necessary for viral protein translation, but are required in 

initiation of ToMV RNA synthesis.   

For different viruses, distinct intracellular membranes are involved in 

assembling VRCs, such as ER membrane for TMV, BMV, and Tobacco etch virus 

(TEV) (Más and Beachy, 1999; Restrepo-Hartwig and Ahlquist, 1999; Restrepo-

Hartwig and Ahlquist, 1996; Schaad et al., 1997); mitochondrial membrane for Flock 

house virus (FHV) (Miller et al., 2001); chloroplast outer membrane for Turnip yellow 

mosaic virus (TYMV) (Prod'homme et al., 2001); vacuolar membrane for Alfalfa 

mosaic virus (AMV) (Van Der Heijden et al., 2001); and the lysosomal or endosomal 

membranes for Semliki forest virus (SFV) (Kujala et al., 2001).  For polioviruses, the 

entire secretory apparatus including ER, trans-Golgi, and lysosome is involved in 

formation of VRCs (Schlegel et al., 1996).  Although some viruses utilize the same 

host membrane system for VRC assembly, the underlying mechanisms are quite 

different.  For example, both TEV and Cowpea mosaic virus (CPMV)-induced 

membrane vesicles have proven to originate from the ER.  TEV is able to alter the 

preexisting cortical ER network for assembly of its own VRCs (Schaad et al., 1997).  

CPMV, on the other hand, requires the proliferation of the new ER membranes 

(Carette et al., 2000).  The diversity of virus-induced membrane association indicates 

that viruses have evolved specific ways to assemble VRCs in the host.  Interestingly, 
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Schwartz et al. (2002) have shown that the VRCs formed by BMV reassemble the 

replicative cores of retrovirus and dsRNA virus, suggesting that viruses from diverse 

families are possibly evolutionarily related.   

Upon infection by TMV, dramatic morphological changes of the ER 

membrane are observed in transgenic Nicotiana benthamiana plants expressing GFP 

in the ER (Reichel and Beachy, 1998).  At early stages of infection, the tubular ER 

network collapses into aggregated inclusion bodies, which convert back to tubular like 

structures at the late stage of infection (Reichel and Beachy, 1998).  It is interesting to 

note that TMV-associated morphological changes of the ER resemble the changes of 

the ER induced by TEV, suggesting that one strategy for VRC assembly can be 

applied by different virus species (Schaad et al., 1997).  TMV viral RNAs, when 

labeled with fluor-RNA probe, are observed to co-localize with an ER resident 

protein, Bip, indicating that VRCs assembled on the ER membrane serve as actual 

“viral factories” (Más and Beachy, 1999).  Detection of the RdRp activities from the 

membrane-bound TMV replicase complexes, but not the non-membrane-bound 

replicases, confirms the functional importance of cellular membranes in TMV virus 

replication (Hagiwara et al., 2003; Nishikiori et al., 2006).  In addition to the ER 

membrane, increasing evidence suggest that the cytoskeleton elements, such as 

microtubules (MTs) and microfilaments (MFs), are associated with TMV-induced 

VRCs (Heinlein et al., 1998; Liu et al., 2005; Más and Beachy, 1999).  These 

elements are postulated to facilitate the intracellular trafficking of newly synthesized 

viral RNAs (Heinlein et al., 1998; Liu et al., 2005; Más and Beachy, 1999).  Using 
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confocal laser scanning microscopy, it was observed that TMV could spread 

intracellularly and intercellularly as intact VRCs (Kawakami et al., 2004). 

 

Involvement of viral components in VRC formation 

Although little is known about the mechanisms responsible for virus-directed 

VRC assembly, virus-encoded proteins are recognized to play key roles in modulating 

VRC formation.  A subset of nonstructural viral proteins, when expressed in isolation, 

has been shown to induce membrane vesiculation similar to those formed in virus-

infected cells.  Examples include the BMV 1a protein (Schwartz et al., 2002), the TEV 

6 kDa protein (Schaad et al., 1997), and the poliovirus 2BC protein (Cho et al., 1994; 

Suhy et al., 2000).  Of these nonstructural viral proteins studied, many have been 

reported to contain hydrophobic transmembrane domains (Schaad et al., 1997; 

Schmidt-Mende et al., 2001; Towner et al., 1996).  Deletion of the hydrophobic 

domain from the TEV 6 kDa protein disrupted its membrane-binding activity and 

further affected membrane vesiculation in the host (Schaad et al., 1997).   

Association of viral proteins with cellular membranes leads to a range of 

membrane morphologies in host cells.  For instance, the poliovirus 3A protein is able 

to dramatically induce the swelling of the ER membrane (Doedens et al., 1997) and 

the expression of the BMV 1a protein alone leads to membrane invagination to form 

spherules (Schwartz et al., 2002; Schwartz et al., 2004).  It is noteworthy that although 

some viral proteins do not associate with the host membrane directly, they play a 

regulatory role in VRC formation.  Schwartz et al. (2004) showed that overexpression 
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of BMV 2apol, a 1a interacting protein, led to membrane rearrangement from vesicle 

spherules to large stacks of double-membrane layers.   

Expression of the 126-kDa replicase protein in the presence or absence of other 

viral components, has been shown to associate with the ER membrane (dos Reis 

Figueira et al., 2002) and form irregular shaped cytoplasmic bodies (Liu et al., 2005).  

Isolation of membrane-bound complexes from TMV infected tissues has been 

achieved by a sucrose density gradient centrifugation (Osman and Buck, 1996) or an 

immunoaffinity purification using antibodies against domains within the replicase 

proteins (Watanabe et al., 1999).  In both methods, 126- and 183-kDa proteins are 

present within the membrane-bound complexes yielding RdRp activity, indicating that 

both replicase proteins are major components of the VRC (Osman and Buck, 1996; 

Watanabe et al., 1999).  Although TMV MP is not essential for virus replication, co-

localization studies suggest that MP is also associated with VRCs (Heinlein et al., 

1998; Liu et al., 2005; Más and Beachy, 1999).  A recent study identified two major 

hydrophobic transmembrane domains of MP and suggested a possible role of MP in 

anchoring viral replicase proteins to the ER membrane (Fujiki et al., 2006).  The 

involvement of TMV CP in VRC formation is unknown.  Transgenic plants expressing 

a mutant CP affects the MP accumulation, which further inhibits the formation of 

VRCs (Asurmendi et al., 2004).  This result suggests that CP may play a regulatory 

role in the assembly of TMV VRCs in the host via its effect on MP expression. 
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Involvement of host proteins in VRC formation 

Although host proteins have long been recognized to perform essential 

functions in virus replication, their roles in assembly of active VRCs are poorly 

understood.  Since host membranes are required in replication of positive strand RNA 

viruses, it is reasonable to speculate that integral membrane proteins would participate 

in the formation of membrane-associated VRCs.  A SNARE-like protein, hVAP-A has 

been shown to interact with two HCV nonstructural proteins, NS5A (Tu et al., 1999) 

and NS5B (Shi et al., 2002).  The interaction between NS5A and hVAP-A is 

postulated to be involved in targeting the viral proteins to the membrane during 

assembly of replicase complexes (Tu et al., 1999).  Similarly, two host membrane 

integral proteins, TOM1 and its homolog TOM3, have been identified to be necessary 

for efficient replication of Tobamoviruses in Arabidopsis (Yamanaka et al., 2002; 

Yamanaka et al., 2000).  TOM1 interacts with the helicase domain of the TMV 

replicases in a yeast SOS recruitment system (Yamanaka et al., 2002; Yamanaka et 

al., 2000) and can be co-fractionated with the membrane-bound replicases (Hagiwara 

et al., 2003), suggesting that TOM proteins may function as tethers to recruit the TMV 

replicase proteins to specific membranes.  The assembly of poliovirus VRCs is 

mediated by the COPII proteins, which induce vesicles in uninfected cells on the ER 

for protein transport (Rust et al., 2001).  In addition, several lines of evidence suggest 

that cellular protein kinases may play a regulatory role on the formation of VRCs.  

Cucumber mosaic virus (CMV)-encoded 1a and 2a proteins interact with each other 

and disruption of the interaction by 2a phosphorylation inhibits new replication 

complex formation (Kim et al., 2002).  Overall, combined results indicate that host 
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proteins are actively involved in VRC assembly.  However, the molecular mechanism 

by which they function in VRC structural and functional activities remains for the 

most part, unknown. 

1.2.3  Helicases 

Helicases are ubiquitous proteins found in almost all living organisms, 

including eukaryotes, yeast, bacteria, and virus.  In general, they are molecular motors 

that function in unwinding double stranded nucleic acid by disrupting the hydrogen 

bonds between base pairs using the energy of NTP hydrolysis.  Helicases can be 

grouped into RNA helicase or DNA helicase based on their substrate specificity.  

DNA helicases are essential in DNA replication, recombination, transcription, and 

repairing.  RNA helicases modulate the RNA structures and are involved in all aspects 

of RNA metabolism, such as transcription (Walstrom et al., 1997), translation 

initiation (Chuang et al., 1997; Rozen et al., 1990), RNA splicing (Raghunathan and 

Guthrie, 1998; Staley and Guthrie, 1999), ribosome assembly (Nicol and Fuller-Pace, 

1995), RNA editing (Missel et al., 1997), and RNA degradation (Py et al., 1996).  

Although helicases are involved in various cellular processes and have different 

substrate specificities, there is high conservation within their sequences, suggesting 

that they are in a close evolutionary relationship.  Based on their amino acid sequence 

similarities, helicases can be classified into three distinct superfamilies (SF1, SF2, and 

SF3) (Gorbalenya et al., 1989; Gorbalenya et al., 1990).  Both superfamilies 1 and 2 

encompass a large number of helicases and each contain seven conserved motifs 

(designated I, Ia, II, III, IV, V, and VI) (Fig. 1.3).  Except for motif III and IV, other 

motifs are quite similar in sequences and arrangements suggesting that they may share 
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similar structural and functional activities.  Helicase SF2 can be further classified into 

three subfamilies based on variations in motif II (DEAD, DEAH, and DexH).  

Members within superfamily 3 (SF3) are putative helicases found in DNA and RNA 

viruses.  Only three characteristic motifs are identified in SF3 helicases (Fig. 1.3).   

Crystal structural analyses on members within SF1 (E. coli Rep and Bacillus 

stearothermophilus PcrA ) (Korolev et al., 1997; Subramanya et al., 1996) and SF2 

(HCV NS3) (Kim et al., 1998; Yao et al., 1997) reveal that helicase proteins share a 

very similar tertiary structure.  Their helicase motifs are especially arranged in a 

similar spatial pattern by clustering together at the interface between domains to form 

both the nucleotide and the nucleic acid binding pockets (for review, see Caruthers 

and McKay, 2002).  The structural conservation of the helicase motifs suggests their 

functional significance.  Motif I and II (also known as Walker A and Walker B) are 

well identified and involved in NTP binding, Mg2+ chelating, and NTP hydrolysis.  

Both motifs are found to be conserved within all three helicase superfamilies.  

Mutations in either of the motifs abolish the NTP hydrolysis activity as well as the 

helicase activity of the proteins (Gross and Shuman, 1995; Pause and Sonenberg, 

1992).  Motifs Ia and IV are the least known helicase motifs within helicase SF1 and 

SF2 and no specific function has been determined yet.  Motif III shows some level of 

divergence in its sequences between SF1 and SF2.  A mutagenesis study of PcrA 

helicase, a DNA helicase within SF1, exhibits conserved residues within motif III that 

affect both ATP hydrolysis and single-stranded DNA binding (Dillingham et al., 

1999).  This result suggests a potential role of helicase motif III in mediating the ATP- 
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Fig. 1.3.  Schematic diagrams showing conserved helicase motifs and proposed 

models for the helicase unwinding activity.  (A) The helicase SF1 and SF2 enzymes 

contain seven conserved motifs and members of the SF3 contain three motifs.  Gray 

boxes represent well conserved helicase motifs.  The motif sizes and the relative 

positions are approximate.  (B) “Active rolling” versus “inchworm” models for the 

helicase activity.  The rolling model describes that helicase subunits which are colored 

differently bind alternatively to double-stranded and single-stranded nucleic acids.  In 

the inchworm model, the monomeric enzyme contains two binding sites that 

simultaneously bind to single-stranded and double-stranded nucleic acids.  In both 

models, NTP hydrolysis is coupled to duplex destabilization and unwinding.   The step 

sizes of enzyme translocation are not shown. 
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dependent DNA-binding activity.  However, whether motif III within SF2 helicases 

plays a similar role needs to be determined.  To date, the role of motif V in nucleic 

acid unwinding is controversy.  One structural analysis shows that residues in motif V 

of Rep make direct contacts with the bound nucleic acid (Korolev et al., 1997).  

However, point mutations within motif V of the cylindrical inclusion (CI) RNA 

helicase from Plum pox potyvirus (PPV) disrupt only ATP hydrolysis, but have no 

effect on RNA binding activity (Fernández et al., 1997).  Helicase motif VI contains a 

group of basic residues, thus is predicted to be involved in nucleic acid binding.  

Mutations within this motif show reduced activity in nucleic acid binding, as well as 

defects in NTP hydrolysis.  A high-resolution structural analysis of PcrA  (Velankar et 

al., 1999) together with a mutagenesis study of eIF4A, a RNA helicase within helicase 

SF2 (Pause et al., 1993) reveal that one residue, arginine, within motif VI interacts 

with the nucleotide.  Upon binding to the nucleotide, the protein undergoes a structural 

conformational change, which is suggested to play a role in transducing the energy 

into the separation of the nucleic acid.  Overall, all the conserved helicase motifs play 

important roles in enzymatic activities.  The structural analyses further suggest that 

they most likely function in a coordinated way, rather than being seven independent 

functional domains.  

It has been reported that some helicase proteins function as monomers, and the 

others assemble into oligomers, including dimers or ring-like hexamers (for review, 

see Patel and Picha, 2000).  Some proteins may require accessory proteins for their 

helicase activity, such as helicase eIF4A needs eIF4B for stabilizing the eIF-

4A/mRNA complex (Méthot et al., 1994; Rozen et al., 1990).  Currently, two models 
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have been proposed to describe the helicase mechanism, the “inchworm” and the 

“active rolling” models (Fig. 1.3B) (for reviews, see Bird et al., 1998; Hall and 

Matson, 1999).  The active rolling model requires the protein to be at least a dimeric 

form.  Two protein subunits bind alternatively to double-stranded and single-stranded 

nucleic acids and the exchange of the substrates for each subunit relies on nucleotide 

binding and hydrolysis.  The inchworm model, however, applies to both monomeric 

and oligomeric forms of the protein.  The model works when the protein slides along 

the duplex nucleic acid by simultaneously binding to both duplex and single-stranded 

nucleic acid.  Both models support the substantial conformational changes of the 

protein in response to a cycle of NTP binding, hydrolysis, and product release and 

both rely on the NTP hydrolysis in separating the duplex nucleic acids.  More recently, 

helicases have been shown to be able to displace proteins form their bound nucleic 

acid, which certainly broaden our views in understanding the functional versatility of 

these molecular motors (Byrd and Raney, 2004; Fairman et al., 2004). 

 

Viral RNA helicases 

Virus-encoded RNA helicases have been detected in double-stranded DNA 

viruses as well as in some positive-stranded RNA viruses.  During virus infection, 

helicases play an essential role in unwinding double stranded templates or removing 

secondary structures from the RNA template.  In vitro biochemical studies show that 

there is no absolute RNA sequence requirement for viral RNA helicases, but a 3’-end 

single stranded extension is needed for initiating unwinding process.  Several well 

characterized viral helicases, including NS3 helicase of HCV (Levin and Patel, 1999), 
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and the simian virus-encoded large T antigen (Smelkova and Borowiec, 1997), have 

been shown to be active as oligomers.  The vaccinia virus NPH-II RNA helicase, on 

the other hand, functions in a monomeric form in vitro (Shuman, 1992).  Similar to 

cellular helicases, virus-encoded helicases within helicase SF2 contain seven signature 

motifs.  However, two motifs, Ia and IV are missing in members within viral RNA 

helicases SF1 (for review, see Kadaré and Haenni, 1997).  For positive stranded RNA 

viruses, helicase activity has been described from SF2 members, such as the NS3 of 

HCV (Gwack et al., 1996; Tai et al., 1996), and the CI of PPV (Fernández et al., 

1997; Laín et al., 1990).  Information on helicase activity from SF1 helicases is rather 

limited.  BMV-encoded 1a, a close homolog to TMV 126-kDa protein, contains a 

helicase domain at the C-terminal region.  Mutations within 1a helicase motifs disrupt 

virus replication (Wang et al., 2005).  It is interesting to note that, though none of the 

mutations affect 1a associating with ER membrane and recruiting 2a polymerase to the 

membrane, some mutations within motif IV or VI disrupt formation of membrane-

associated VRCs, suggesting another unidentified, yet biological significant role of 

viral helicases in the host cell (Wang et al., 2005). 

The TMV RNA helicase belongs to helicase SF1 and contain five major 

conserved motifs (I, II, III, V, and VI).  The helicase domain shared by the 126-kDa 

and 183-kDa replicase proteins performs multiple functions within the host cell, 

therefore plays an important role in the viral life cycle.  An in vitro analysis on TMV 

helicase polypeptide has demonstrated its ATPase activity and double-stranded RNA 

unwinding activity (Goregaoker and Culver, 2003).  Yet, the importance of each 

helicase motif in protein structure formation, enzyme activity, and viral replication has 
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not been established in detail.  Interactions between TMV helicases and host proteins 

have been identified and shown to contribute to the formation of an active membrane-

associated replicase complex (Hagiwara et al., 2003) as well as implicated in a host 

disease development (Padmanabhan et al., 2005).  The TMV helicase is also able to 

trigger hypersensitive response (HR) in N gene-containing host plants (Erickson et al., 

1999).  In addition, when the helicase domain of TMV-U1 strain was replaced with 

the same domain of TMV-R strain, which has a different host range, the resulting 

chimeric virus was defective in cell-to-cell movement, suggesting that the helicase 

domain may have a yet unknown role in cell-to-cell movement (Hirashima and 

Watanabe, 2001). 

   

1.2.4  Virus-Host Interactions in Plants 

As an important group of plant pathogens, viruses have long been used to 

identify the molecular and physiological basis for a host cell reacting to pathogens.  A 

susceptible host generally develops localized and systemic disease symptoms upon 

virus infection.  By contrast, in a resistant plant, viruses induce a rapid, programmed 

cell death (PCD) at the infection site which further limits the replication and spreading 

of the viruses.  Such a localized defense response is well-known as the hypersensitive 

response (HR).  In both cases, interactions between viruses and hosts are key 

determinants for the host responses and are present throughout the whole virus life 

cycle.  Progress in the study of virus-host interactions has led to the identification of 

the transcriptional changes and proteomic modifications of host factors in infected 

tissues (Geri et al., 1999; Golem and Culver, 2003; Whitham et al., 2003).  Yet the 
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complexity of virus-host interactions has been illustrated (for reviews, see Culver and 

Padmanabhan, 2007; Nelson and Citovsky, 2005).  Active investigations of any 

specific individual virus-host interactions certainly add our knowledge in 

understanding the host response mechanisms. 

 

Virus-host interactions in host defense system 

Much is known about the plant R genes which confer the HR response to the 

virus.  R gene products (receptors) recognize the specific ligands (elicitors) derived 

from the corresponding pathogen and in turn initiate the host defense signaling 

pathway.  Originally, a gene-for-gene concept was proposed to explain R-gene 

mediated host defense.  More recently, growing evidence suggests that the HR 

response is not merely a direct interaction between receptors and elicitors.  A ‘Guard 

hypothesis’ has been proposed that implies the R protein, considered as a ‘Guard’, 

indirectly interacts with the pathogen-derived elicitors (Avr determinants) through a 

third host factor, called ‘Guardee’ (Dangl and Jones, 2001; Van der Biezen and Jones, 

1998).  Guardee proteins undergo a structural change when interacting with pathogen 

elicitors and guard proteins can perceive this change and further induce the rapid HR 

response.  Several R proteins that confer the resistance to virus infection have been 

identified.  A cellular protein Rx is capable of eliciting the HR response in the 

presence of the CP of Potato virus X (PVX) (Bendahmane et al., 1999).  Similarly, 

HRT (hypersensitive response to TCV) protein reacts to the CP of TCV (Ren et al., 

2000).  Interestingly, TCV CP also interacts with a host transcription factor, TCV-

interacting protein (TIP) and the interaction plays a role in HR response to TCV, 



 

 31 
 

suggesting TIP might serve as a guardee for the HRT-mediated host defense (Ren et 

al., 2000).  Tobacco N gene, which confers resistance to TMV infection, has been 

identified (Whitham et al., 1994).  The viral protein p50 that contains the helicase 

domain of the 126-kDa replicase is demonstrated to be an elicitor in the N-gene 

mediated HR response upon TMV infection (Abbink et al., 1998; Erickson et al., 

1999).  Recently, Ueda et al. (2006) demonstrated that a direct interaction between 

p50 and the N-factor was enough to trigger the HR in the host. 

Subsequent to localized HR response, the plant also develops an enhanced 

resistance in systemic uninfected tissues, which is referred as a systemic acquired 

resistance (SAR).  SAR is normally associated with the increased levels of salicylic 

acid (SA) and the expression of a subset of defense genes, called pathogenesis-related 

(PR) genes.  Several key signal components, such as NPR1-encoded protein, have 

been identified as involved in SAR signaling cascades against bacterial and fungal 

infections (Bowling et al., 1994; Delaney et al., 1995).  However, whether they 

participate in a similar signal transduction pathway against virus infection needs to be 

determined.   

 Recently, RNA-mediated host defense systems have gained lots of attention as 

potent virus defense mechanisms.  The most prominent is RNA silencing.  Viral 

dsRNAs formed as replication intermediates or viral-RNA secondary hairpin 

structures can be cleaved by the Dicer-like nuclease into short interfering RNAs 

(siRNAs) approximately 21-25 nucleotide (nt) in length (Hamilton and Baulcombe, 

1999).  siRNAs then direct sequence-specific RNA degradation by recruiting the 

complementary viral genomic RNAs into the RISC complex for cleavage.  It is 
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interesting to note that siRNAs can transport through phloem to systemic tissues, 

suggesting that siRNAs may serve as systemic silencing signals as well (Yoo et al., 

2004).  Plant viruses, on the other hand, have developed certain strategies to 

counteract RNA-mediated host defense, e.g. encoding a suppressors of gene silencing 

(for reviews, see Li and Ding, 2001; Vance and Vaucheret, 2001).  Numerous studies 

have shown that mutant viruses lacking functional suppressors fail to accumulate to 

high levels and induce disease symptoms (Qiu et al., 2002; Voinnet et al., 2000; 

Voinnet et al., 1999).  Clearly, viruses act as both inducers and targets in the RNA 

silencing pathway, during which extensive virus-host interactions occur in a host 

specific manner. 

 

 Virus-host interactions in disease development 

Using yeast as an alternative host, host proteins that are implicated in viral 

translation and replication have been identified (Kushner et al., 2003; Panavas et al., 

2005).  A yeast factor Lsm1, a component within the yeast RNA decapping complex, 

has been demonstrated to act as a molecular switch by recruiting viral RNAs from 

translation to replication (Noueiry et al., 2003).  YDJ1, another yeast protein related to 

Escherichia coli DnaJ chaperone, when mutated, appears to affect BMV genome 

replication by blocking the initiation of negative strand RNA synthesis (Tomita et al., 

2003).  Although the yeast system gives rise to a high-throughput result in identifying 

host factors involved in virus infection, the interactions between these host proteins 

with virus and their in vivo significance need to be further evaluated.   
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Host proteins involved in TMV virus replication have been extensively studied 

(Table 1.1).  A tobacco HSP101 homolog of heat shock proteins is found to be a TMV 

Ω sequence-binding protein and their interaction is required for translational 

enhancement of Ω-containing mRNAs (Wells et al., 1998).  Translation elongation 

factor (eEF1A) interacts with the pseudoknot structure upstream of TLS in the 3’-UTR 

of TMV RNA genome (Zeenko et al., 2002) and with 126- and 183-kDa replicase 

proteins (Yamaji et al., 2006), indicating the involvement of eEF1A in the TMV-

associated protein synthesis.  Multiple host proteins have been copurified with the 

membrane-associated complexes from TMV-infected tissues (Osman and Buck, 1997; 

Watanabe et al., 1999).  One of them has been identified as the GCD10 protein, the 

RNA-binding subunit of the host translation initiation factor eIF3 (Osman and Buck, 

1997).  A yeast two-hybrid analysis shows that GCD10 interacts with the TMV 

replicase proteins by binding to their methyltransferase domain (Taylor and Carr, 

2000).  Addition of antibody against the GCD10 protein inhibits the RdRp activity of 

membrane-associated complexes, suggesting the involvement of GCD10 in virus 

replication (Osman and Buck, 1997).   

Interactions between virus and host have been shown to play a role in disease 

development.  Bilgin et al. (2003) showed that the helicase domain of the replicase 

protein interacted with a plant P58IPK, which when silenced, makes the plants more 

susceptible to TMV infection, indicating the involvement of P58IPK in virulence.  A 

subset of Aux/IAA transcription regulators have also been shown to interact with the 

TMV replicase protein with the interactions altering the localization of the Aux/IAA



Table 1.1  An overview of interactions between TMV viral components and host-encoded proteins. 

Activity Host protein viral component Identification method Specific function References 

Host defense Tobacco N factor p50 Yeast two-hybrid Mediating HR response Ueda et al., 2006 

Tobacco HSP101  Ω sequence in the 5’-UTR Luciferase assay Translational enhancement  Wells et al., 1998 

Pseudoknot in the 3’-UTR UV cross-linking Zeenko et al., 2002 eEF1A 

Replicase Immunoprecipitation 

TMV-associated protein synthesis 

Yamaji et al., 2006 

TOM 1 & 3 Replicase Yeast two-hybrid Formation of VRCs, virus replication Yamanaka et al., 2002 

genome 

translation 

and 

replication 

GCD-10  Replicase Immunoprecipitation Initiation of RNA synthesis Osman and Buck, 1997 

PME MP Immunorecognition Viral RNA cell-to-cell movement Chen et al., 2000 

MPB2C MP Yeast SOS system Directing MP to the MT site for 

degradation 

Kragler et al., 2003 

Calreticulin MP Affinity  

chromatography 

Removing MP from the ER for 

degradation 

Chen et al., 2005 

Viral 

movement 

Tobacco PAPK MP In vitro 

phosphorylation assay 

MP phosphorylation Lee et al., 2005 

P58IPK Replicases Yeast two-hybrid, 

In vivo pull-down 

Host cell death response Bilgin et al., 2003 Disease 

symptoms 

IAA26 Replicase Yeast two-hybrid Development of disease symptoms Padmanabhan et al., 2005 
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proteins from the nucleus to the cytoplasm (Padmanabhan et al., 2005; Padmanabhan 

et al., 2006).  It is noted that virus-Aux/IAA interactions reprogram the auxin 

signaling pathway, resulting in enhanced disease symptoms in tissues that are less 

productive, suggesting a specific role of this interaction in alteration of host 

physiology (Padmanabhan et al., 2008).  Overall, given the fact that the small TMV 

genome encodes only few proteins, it is conceivable that recruitment of host proteins, 

which are present in a relatively rich pool, is an efficient strategy used for virus to 

complement its life cycle.   

 

1.2.5  NAC Domain Proteins 

In plant systems, families of transcription factors play important regulatory roles 

in plant developmental processes and stress/defense responses (for review, see Singh 

et al., 2002).  NAC (petunia NAM, and Arabidopsis ATAF1, ATAF2, and CUC2) 

domain proteins are newly identified plant specific transcription factors and members 

within this family contain a well-conserved N-terminal NAC domain and a variable 

C-terminal transcription activation region (TAR).  Sequence analysis reveals five 

subdomains (A, B, C, D, and E) within the NAC domain and a putative nuclear 

localization signal (NLS) located within subdomain C and D (Kikuchi et al., 2000; 

Ooka et al., 2003).  Despite the high divergence, the C-terminal domains of several 

NAC proteins have been reported to activate transcription in yeast (Duval et al., 

2002; Hegedus et al., 2003; Xie et al., 2000).  Stretches of serine/threonine, acdic, or 

proline/glutamine residues have been detected in the C-terminal TAR domain and are 

postulated to play a role in transcription activation (Hegedus et al., 2003).  Using the 
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conserved NAC domain as a guide, 75 and 105 NAC proteins are predicted in Orzya 

sativa (rice) and Arabidopsis thaliana, respectively (Ooka et al., 2003).  Although a 

large number of proteins comprise this family of transcription factors, only a small 

portion of the NAC proteins has been characterized to date.  The identified NAC 

proteins are shown to be involved in various aspects of plant biology (For review, see 

Olsen et al., 2005).    

Recently, the structure of the NAC domain from ANAC has been resolved by X-

ray crystallography (Ernst et al., 2004).  It is illustrated that the NAC domain consists 

of a central antiparallel β-sheet flanked with two α-helices.  Although the structure of 

NAC domain does not resemble any known DNA-binding motifs, the NAC domain 

surface contains a cluster of positive residues, suggesting a novel fold for the DNA 

binding activity (Ernst et al., 2004).  Xie et al. (2000) have shown that the NAC 

protein NAC1 is able to self-interact in yeast.  Structural analysis revealed salt 

bridges and hydrophobic interactions between NAC domains, which in accordance 

with the observed self-interacting activity of the NAC proteins, suggest that the NAC 

domain mediates protein dimerization (Ernst et al., 2004).  

 

NAC proteins in plant developmental processes 

 Twelve years ago, the first two NAC genes, NO APICAL MERISTEM (NAM) 

and CUP-SHAPED COTYLEDON (CUC2) were described by mutational approaches.  

The loss-of-function nam mutant in petunia showed strong embryonic defects in the 

development of shoot apical meristem (SAM) (Souer et al., 1996).  A similar 

phenotype was observed in Arabidopsis cuc1 and cuc2 double mutant lines, which 
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also developed fused cotyledons (Aida et al., 1997).  Both nam and cuc2 mutant 

plants display abnormal floral organs, indicating that these two genes are involved in 

both embryonic and postembryonic development.  Based on the significant amino 

acid homology of NAM and CUC2 within their N-terminal domain with Arabidopsis 

ATAF1 and ATAF2, Aide et al. (1997) defined this new protein family as the NAC 

domain family.  Since no previously known amino acid motif has been detected in 

members of this family, NAC proteins constitute a novel class of proteins in plants.  

Characterization of other NAC proteins in plant development has followed.  For 

example, Arabidopsis CUC1 has been shown to promote the SAM formation (Hibara 

et al., 2003; Takada et al., 2001); CUC3 is involved in the establishment of the 

cotyledon boundary and the shoot meristem (Vroemen et al., 2003); and NAP, which 

is expressed mainly at the base of the inflorescence meristem, is shown to be 

activated by APETAL3 and PISTILLATA, two genes essential in differentiating floral 

organs (Sablowski and Meyerowitz, 1998).  Another development-related NAC gene, 

NAC1, is induced by auxin and promotes lateral root development (Xie et al., 2000).   

 

NAC proteins in plant defense and stress responses 

 Plants have evolved an elaborate system in regulating their gene expression in 

response to the biotic and/or abiotic stresses.  In most cases, gene expression is 

governed by several large families of transcription factors, including well-

characterized ERF, bZIP, and WRKY (for review, see Singh et al., 2002).  More 

recently, the NAC domain family is emerging as a new class of transcription factors 

involving in the defense/stress responses.  Expression of Brassica napus NAC 
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(BnNAC) genes has been shown to be induced in response to mechanical wounding, 

herbivore attack, and fungal infection (Hegedus et al., 2003).  Tomoto (S. 

lycopersicum) SlNAC1 was induced upon infection by Tomato leaf curl virus (TLCV) 

(Selth et al., 2005).  Delessert et al. (2005) demonstrated that ATAF2 was rapidly 

induced at the wound site in Arabidopsis.  A similar result was seen in Potato 

(Solanum tuberosum) where StNAC, a close relative to the ATAF2 gene, was shown 

to be wound-inducible (Collinge and Boller, 2001).  These results suggest that NAC 

proteins share a common yet unidentified function that is conserved in different plant 

species in reaction to the defense/stress response.  Enhanced drought tolerance has 

been observed in transgenic Arabidopsis overexpressing NAC genes, ANAC019, 

ANAC055, or ANAC072 (Tran et al., 2004), and in transgenic rice overexpressing 

SNAC1 (STRESS-RESPONSIVE NAC 1) (Hu et al., 2006).  Overexpression of ATAF2 

in Arabidopsis, however, results in higher susceptibility to fungus Fusarium 

oxysporum (Delessert et al., 2005).  Interestingly, expression of ANAC072, also 

described as RD26 (RESPONSIVE TO DESICCATION 26) is up-regulated upon 

abscisic acid (ABA) treatment (Fujita et al., 2004).  In contrast, ATAF2 expression is 

not affected by ABA, but is induced by methyl jasmonate (MeJA) and SA (Delessert 

et al., 2005).  SA, ABA, and MeJA have been well recognized as defense signals 

involved in distinct signal transduction pathway.  Therefore, the different reactions of 

NAC genes to ABA treatment suggest that though structurally similar, NAC proteins 

have evolved into different defense pathways, which at certain level might explain the 

presence of a high abundance of different NAC genes in plant.  
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Being a class of transcription factors, the target genes of NAC proteins have 

largely remained a mystery.  A microarray analysis showed that a high proportion of 

PR genes were down-regulated or up-regulated in ATAF2 overexpression or knockout 

transgenic plants, respectively (Delessert et al., 2005).  Further studies monitoring the 

expression profile of downstream genes in response to the stress or pathogen-

inducible NAC expression will be necessary in order to better understand the NAC 

gene-induced stress and defense pathway.  

 

NAC proteins involved in virus infection 

 Several NAC proteins have been characterized on the basis of their 

interactions with virus-encoded proteins.  Wheat GRAB1 and GRAB2 (for 

Geminivirus RepA-binding) proteins interact with Wheat dwarf geminivirus (WDV) 

RepA protein (Xie et al., 1999).  Mapping of the interaction region to the N-terminal 

well-conserved NAC domain suggests that NAC proteins might play a common 

regulatory role in the virus life cycle.  Although the direct role of GRAB-RepA 

interactions on virus life cycle is unknown, over-expression of GRAB proteins was 

shown to severely impair virus replication in cultured cells (Xie et al., 1999).  

Another Geminivirus protein, replication enhancer (REn), was shown to interact with 

tomato SlNAC1 in a yeast two-hybrid system (Selth et al., 2005).  Interestingly, 

rather than inhibiting viral DNA replication, SlNAC1 over-expression enhances viral 

DNA accumulation in a transient replication assay (Selth et al., 2005).  The different 

roles of NAC proteins in geminivirus replication suggest the functional diversity of 

NAC proteins in response to the virus infection.  Different from GRABs and 
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SlNAC1, which interact with viral nonstructural proteins, NAC protein TIP (for 

TCV-interacting protein) is capable of binding to the TCV coat protein (CP) and 

disruption of this interaction correlates with the inability of the virus to induce HR in 

TCV-resistant plant, indicating that TIP is involved in a specific TCV resistance 

response pathway (Ren et al., 2000).  It is conclusive that NAC proteins actively 

participate in various aspects of the viral life cycle.  Yet the functions of NAC 

proteins in virus replication and resistance remain unclear.  Thus, additional 

identification of NAC proteins implicated in the viral life cycle will certainly help 

clarifying the functional complexities of this transcription factor family. 

 

1.3  Research Objectives 

Helicases are generally considered as molecular motors that function in 

unwinding double-stranded nucleic acids.  Despite their enzymatic activities, a 

growing body of evidence has suggested that virus-encoded helicases play multiple 

roles in completing a viral life cycle.  The primary objective in this work is to identify 

the importance of the TMV helicase domain in relation to viral replication and 

pathogenesis. 

My first objective in this dissertation was focused on elucidating the structural 

and functional relationship of the TMV helicase domain, analyzing the biochemical 

properties of individual well-conserved helicase motifs, and finally determining the 

biological significance of the helicase domain in mediating the formation of the 

membrane-bound VRCs in the host.    
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Using a yeast two-hybrid approach, an interaction between TMV helicase 

domain and a host-encoded NAC protein, ATAF2, has been identified.  Members 

within the NAC-domain family are plant-specific transcription factors that are 

involved in plant development processes and host defense/stress responses.  The 

second objective of this study was to characterize the effects of viral helicase 

interacting with ATAF2 on modification of ATAF2 expression, suppression of host 

defense systems, and accumulation of virus in susceptible hosts. 
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Chapter 2: Structural and functional characterization of the helicase 

domain within the Tobacco mosaic virus 126- and 183-kDa replicase 

proteins 

2.1  Abstract 

Tobacco mosaic virus (TMV)-encoded 126-kDa and 183-kDa replicases are 

major components in membrane-bound virus replication complexes (VRCs).  The 

helicase domain shared by the 126-kDa and 183-kDa replicases plays a key role in 

virus replication.  In this study, purified TMV helicase polypeptides formed dimers 

and higher ordered structures in vitro, suggesting a self-interaction between replicase 

proteins.  Biochemical analysis showed both monomeric and dimeric forms of the 

helicase proteins possessed ATPase activity, but not the higher ordered structures.  To 

further characterize the biochemical activities of the TMV helicase, point mutations 

were introduced into four conserved helicase motifs; I and II (NTP binding and 

hydrolysis motifs), V (RNA binding motif), and VI.  Of these motifs, only motif V 

retained ATPase activity when mutated, while mutations within motif I and V 

significantly reduced helicase RNA-binding activities.  Individually each mutation 

disrupted virus replication.  In vivo expression of the 126-kDa protein showed that 

both wild-type and motif V mutant replicases assembled into VRC-like inclusion 

bodies, while the mutants with the defective ATPase activities (motifs I, II, and VI) 

formed much larger irregular aggregates in host cells.  Taken together, these studies 

suggest that the active forms of the TMV helicase polypeptides reside predominantly 
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within monomers and dimers and that formation of wild-type VRC-like vesicles is 

correlated to the ability of the helicase domain to hydrolyze ATP. 

2.2  Introduction 

Positive-strand RNA viruses, including those infecting plants and animals, form 

membrane-associated virus replication complexes (VRCs) within host cells (Egger et 

al., 2000; Lyle et al., 2002; Schaad et al., 1997; Schwartz et al., 2002).  These 

complexes serve as sub-modules within the host cell, supporting viral genome 

replication and translation.  Discerning the structural assembly and dynamic 

processes involved in VRC formation will improve our understanding of the viral life 

cycle.  In the past several years, numerous studies have indicated that viral protein-

protein interactions, viral-host protein interactions and the recruitment of host cellular 

membranes all play important roles in VRC assembly (for reviews, see Ahlquist et al., 

2003; Buck, 1999; Strauss and Strauss, 1994; van der Heijden and Bol, 2002).  

However, detailed information on the initiation of VRC assembly, potential 

intermediate states, and the dynamic processes that drive VRC assembly, remain for 

the most part, unknown.  

Similar to other positive-strand RNA viruses, Tobacco mosaic virus (TMV), the 

type member of the genus Tobamovirus, replicates in close association with ER-

derived host membranes (Heinlein et al., 1998; Más and Beachy, 1999).  The genome 

of TMV encodes two nonstructural 126-kDa and 183-kDa replicase proteins (Goelet 

et al., 1982).  Both 126-kDa and 183-kDa proteins possess an N-terminal 

methyltransferase (MT) domain and a helicase (HEL) domain at the C-terminus of the 

126-kDa (Fig. 2.1A).  The read-through portion of the 183kDa contains an RNA-  
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Motif Conserved motifs 

within viral helicase 
SF1* 

TMV helicase 
motifs 

aa position mutations 

I bxGxPGxGKS/Tx2b LVDGVPGCGKT
KEILS 

830-845 K839S 

II b3Deb LFIDEGL 903-909 E907A 
III b4GDx2Q AYVYGDTQQ 928-936 Q935A** 
V Tbx3QGxTbx2Vxb2 TVHEVQGETYS

DVSLV 
1038-1053 H1040A 

VI bVAuTR LVALSR 1071-1076 R1076A 
* Kadare and Haenni. 1997. J. Virol. 71:2583-2590 
** Q935A mutant forms inclusion bodies in E. coli cells and was not included in  

subsequent studies.  
 

Fig. 2.1.  Point mutagenesis within the conserved TMV helicase motifs. (A) 

Schematic representation of TMV 126-kDa & 183-kDa replicases and their shared 

helicase domain.  Numbers refer to amino acid residue positions.  Black boxes 

represent five conserved helicase motifs.  The point mutations within the helicase 

motifs were shown by arrows.  MT, methyltransferase; HEL, helicase; POL, 

polymerase.  (B) Comparison of TMV helicase motifs with other viral helicases 

within helicase superfamily-1.  The single letter b, u, x code for hydrophobic residue, 

aliphatic residue and any residue, respectively.  The underlined amino acids within 

the TMV helicase motifs represent the mutated residues in this study.   The resulting 

mutations are shown at the right. 
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dependent RNA polymerase domain (RdRp) (Fig. 2.1A).  An in vitro 

immunoprecipitation assay has shown that both 126-kDa and 183-kDa replicase 

proteins are major components of membrane-associated VRCs (Osman and Buck, 

1997).  TMV also encodes a movement protein (MP) and a capsid protein (CP) 

derived from subgenomic RNAs (Goelet et al., 1982).  Both MP and CP are not 

required for virus replication.   

The VRCs formed during TMV infection are intricate structures, containing 

viral RNAs, 126- and 183-kDa replicase proteins, viral MPs, host proteins and the 

host ER membrane system (Heinlein et al., 1998; Liu et al., 2005; Más and Beachy, 

1999).  TMV derived VRCs also associate with cellular microtubules (MTs) and 

microfilaments (MFs), potentially facilitating the intracellular trafficking of viral 

RNA (Heinlein et al., 1998; Liu et al., 2005; Más and Beachy, 1999).  Identification 

and characterization of protein-protein interactions within the VRCs is a first step to 

elucidating the contents and formation of these replication complexes.  

Immunoprecipitation experiments using antibodies against different replicase 

domains have detected a 126-/183-kDa heterodimer from crude membrane-associated 

complexes isolated from TMV-infected plant tissues (Watanabe et al., 1999).  

Interactions between viral and host proteins occur intensively during many aspects of 

the infection process (for review, see Buck, 1999).  Examples of the host proteins 

involved in TMV genome replication and VRC formation include a GCD-10 subunit 

of the host translation initiation factor eIF3, which is found associated with 

membrane-bound TMV replicase complexes capable of synthesizing both plus- and 

minus- strand viral RNAs (Osman and Buck, 1997), and two membrane integral 
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proteins, TOM1 and TOM3, which are required for efficient replication in 

Arabidopsis (Yamanaka et al., 2002; Yamanaka et al., 2000).  How all these 

components coordinate with each other and with the host membrane system to 

achieve a successful viral life cycle is still unclear.  Expression of the 126-kDa itself 

is sufficient to direct the assembly of ER-associated complexes in host cells in the 

absence of other viral components, suggesting that the 126-kDa plays a key role in 

recruiting and organizing viral and host components within the VRCs (dos Reis 

Figueira et al., 2002; Liu et al., 2005).  A study also shows that the size of the VRCs 

is modulated by the 126-kDa replicase protein (Liu et al., 2005).  Similarly, Brome 

mosaic virus (BMV) encoded 1a protein, an ortholog of the 126-kDa protein, is 

capable of recruiting viral RNA and viral protein 2a to membrane-bound replication 

complexes, suggesting a similar function for the TMV 126-kDa protein (Chen et al., 

2001; Schwartz et al., 2002; Wang et al., 2005).   

Using the yeast two-hybrid system, a self-interaction within the helicase domain 

of the TMV replicase has been identified (Goregaoker and Culver, 2003; Goregaoker 

et al., 2001).  Disruption of this interaction by mutagenesis affects virus replication in 

protoplasts (Goregaoker et al., 2001).  Helicase domains have been widely reported to 

be encoded by many RNA viruses (for review, see Kadaré and Haenni, 1997).  RNA 

virus-encoded helicases generally function in unwinding RNA duplexes formed 

during virus replication and removing secondary structures from RNA templates by 

using the energy of NTP hydrolysis.  Helicases can be classified into three distinct 

superfamilies (SF1, SF2, and SF3) defined by their amino acid sequence similarity 

(Gorbalenya et al., 1989; Gorbalenya et al., 1990).  The TMV RNA helicase belongs 
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to SF1 superfamily and contains five conserved motifs (I, II, III, V, and VI) (Fig. 

2.1A & B).  The TMV helicase polypeptide expressed in vitro forms ring-like higher 

order structures (Goregaoker and Culver, 2003).  However whether this higher-

ordered helicase-helicase interaction is functionally important in VRC formation 

remains to be addressed.  

In this study, I show that the TMV helicase domain self-interacts both in vivo 

and in vitro.  The interaction led to the protein to form a dimer and a higher ordered 

structure.  However, ATPase activity resided predominantly within the monomeric 

and dimeric forms.  To further characterize the structure-function relationship of the 

helicase domain, various point mutations within the well-conserved helicase motifs (I, 

II, V, VI) were made.  Further biochemical analysis and cellular biology approaches 

showed that mutant helicases maintained their ability to self-associate, yet disruption 

of the ATPase activity correlated to the inability of the 126-kDa protein to form wild-

type VRC-like vesicles in host cells, suggesting an essential role for the helicase 

ATPase activity in the formation of functional VRCs. 

 

2.3  Materials and Methods 

Virus 

Plasmid pTMV007 carrying the full-length cDNA of the TMV U1 strain 

under the control of T7 promoter was used in this study.   

Site-directed mutagenesis 

A PCR-based site-directed mutagenesis method was used to create point 

mutations within the TMV helicase domain (aa 814 to 1116) on vector pTMV007.   
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The final constructs were created as p007-E907A, p007-H1040A, and p007-R1076A 

with a point mutation from glutamic acid, histidine, and arginine to alanine, 

respectively.  Mutant p007-K839S was kindly supplied from Dr Dawson’s group, 

University of Florida (Lewandowski and Dawson, 2000).   Mutant p007-V1087I was 

derived from a yeast TMV pLexA-helicase construct which was produced by a 

random mutagenesis method as described previously (Goregaoker et al., 2001).  All 

constructs were sequenced to verify the mutations.  These full-length TMV wild-type 

and mutant cDNA clones were then used as parental templates to make other plasmid 

constructs. 

Plasmid construction 

For gene expression of the helicase polypeptide in a bacterial system, the C-

terminal portion of TMV 126-kDa replicase, encompassing the yeast two-hybrid 

interaction region (aa 549-1116), was amplified by PCR using primers with added 

KpnI and XhoI restriction sites.  The digested product was ligated into similarly 

digested pTrcHisA (Invitrogen, Carlsbad, Calif.) to create pTrcHis-HEL with a hexa-

histidine tag at the amino terminus.  All the mutations were similarly introduced into 

the same vector for gene expression. 

Production of the His-tagged helicase for transient expression in plant cells 

was achieved by introducing the wild-type helicase segment (aa 549 to 1116) into the 

polylinker region of a plant expression vector pBI121 (Clonetech, Palo Alto, Calif.) 

to create pBI-6xHis-HEL with a hexa-histidine tag at the amino terminus.  Production 

of the HA-tagged wild-type and mutant helicase constructs were done by cloning the 

segments of helicase polypeptides (aa 549 to 1116) into another binary vector pBin19 
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resulting pBin-HA-HEL (or mutants) with a HA-epitope at the N-terminus. Both pBI-

6xHis-HEL (wild-type) and pBIN-HA-HEL (wild-type or mutants) were transformed 

into Agrobacterium tumefaciens strain GV3101 separately using a freeze-thaw 

method (Holsters et al., 1978). 

An expression vector harboring full-length wild-type 126-kDa fused to 

enhanced green fluorescent protein (eGFP) ORF has been described previously (dos 

Reis Figueira et al., 2002).  Mutant pCMC-126-GFP carrying point mutations within 

the helicase domains were created by inserting the full-length 126-kDa ORFs from 

the respective p007 mutant clones into the NcoI and BsiWI sites of pCMC-126-GFP.   

Another expression vector, pAVA, was used to express the 126-kDa protein in 

protoplast (von Arnim et al., 1998).   pAVA-126-GFP and its mutant constructs were 

created by inserting the PCR-generated 126-kDa-eGFP fusions, which have NcoI and 

PstI sites at both ends, into the pAVA-polylinker region at the NcoI and NsiI sites. 

Expression and purification of the TMV helicase and mutant polypeptides 

To purify 6x histidine-tagged TMV helicase and mutant polypeptides, 

Escherichia coli BL21 codon (+) cells harboring pTrcHisA-HEL (or mutants) were 

grown at 37 ºC in Luria-Bertani medium in addition with 100 µg/ml of ampicillin and 

50 µg/ml of chloramphenicol until the OD600 reached 0.5.  The culture was then 

induced by the addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a final 

concentration of 1 mM followed by continuous shaking at 16 ºC overnight.  The cells 

were harvested and resuspended in lysis buffer containing 10 mM Tris, pH 8.0, 10% 

glycerol, 500 mM NaCl, and 1 mg/ml lysozyme. The cell lysate was incubated at 4 ºC 

for 1h and further disrupted by pulsed sonication (0.5s pulse followed by 0.5s pause) 
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for 3 minutes.  The resulting protein extract was centrifuged at 12,000 rpm for 20 

min, and the supernatant was applied to a 1 ml Ni-NTA affinity column (Amersham 

biosciences, Piscataway, N.J.).  The column was washed with 10 column volumes of 

lysis buffer followed by 5 column volumes of wash buffer (lysis buffer plus 20 mM 

imidazole).  The protein was eluted in elution buffer (lysis buffer plus 150 mM of 

imidazole).  The concentration of the eluted protein was determined using a standard 

Bradford assay (BioRad, Hercules, Calif.).  The purified products were flash-frozen 

in liquid nitrogen and saved at -80 ºC. 

Gel filtration chromatography 

The purified TMV helicase and mutant polypeptides (~100 µg each) were 

incubated in buffer S containing 10 mM Tris, pH 7.0, 10% glycerol, 150 mM NaCl at 

room temperature or 4°C.  Samples taken at different time points were then loaded 

onto gel filtration superdex 200 HR 10/30 columns (Amersham Biosciences, 

Piscataway, N.J.) which were pre-equilibrated with 1.5X bed volumes of buffer S.  

Columns were run at 4°C with a flow rate of 0.2 ml/min.  Fractions (250 µl each) 

were collected.  

ATPase assay 

The ATPase activity of TMV wild-type and mutant helicase polypeptides was 

examined by mixing 0.5 µCi of [γ-32P]ATP (NEN, Boston, Mass.) with purified 

proteins (20 ng or 100 ng) in a buffer containing 20 mM HEPES-KOH, pH 7.5, 5 mM 

MgCl2, 1 mM DTT, and 40 µM ATP for 30 min at 37°C.  The reaction was stopped 

by adding EDTA to a final concentration of 0.1M and 25% of the reaction mixtures 

were spotted on the polyethyleneimine-cellulose thin layer chromatography (TLC) 
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plates (Fisher, Malvern, PA). The released phosphate was separated from ATP in 

developing buffer containing 1 M formic acid and 0.5 M LiCl and further visualized 

by Phosphor Imager (Molecular Dynamics, Sunnyvale, Calif.). 

Nitrocellulose filter binding assay for RNA binding 

Purified TMV wild-type and mutant helicase polypeptides (0 µg, 10 µg, 20 

µg, 40 µg, 80 µg, and 160 µg) were immobilized on a pre-wetted nitrocellulose 

membrane using a 96-well dot-blot apparatus (Minifold I, Schleicher & Schuell).  The 

membrane was incubated with 5 nM of a 32P-end labeled 40-mer RNA (5’-

UUUGUUUGUUUGUUUGCCAUCGGGUGCCUGGCCGCAGCGG-3’) (2 × 106 

cpm) overnight in buffer RN (25 mM HEPES-KOH, pH 7.5, 1 mM EDTA, 150 mM 

NaCl, 0.1% Triton X-100, and 1X Denhardt’s solution).  After washing the 

membrane four times in buffer RN, the membrane was air dried and exposed to X-ray 

film.  The results were further analyzed using AlphaImager software (Alpha Innotech 

Corp., San Leandro, Calif.). 

Co-immunoprecipitation 

Agrobacterium cultures carrying 6xHis- and HA-tagged helicase polypeptides 

were mixed at the same OD600 value and co-infiltrated into N. benthamiana plant 

leaves.  Forty-eight hours post agro-infiltration, the infiltrated plant tissues were 

ground in liquid nitrogen and homogenized in two volumes of extraction buffer (50 

mM Tris-HCl at pH 8.0, 150 mM NaCl, 0.5% TritonX-100, 0.2% 2-mercaptoethanol, 

5% glycerol, PMSF, proteinase inhibitor cocktail).  Ground tissues were pelleted by 

centrifugation for 10 min at 15,000 rpm.  The supernatant (1 ml) was incubated with 5 

µl of anti-polyHis antibody (Sigma, St. Louis, MO) at 4°C overnight with gentle 
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shaking followed by the addition of 30 µl of protein A agarose (Invitrogen, Carlsbad, 

Calif.) for additional 3 h.  The agarose-immune complexes were then centrifuged and 

washed three times in 1 ml wash buffer (25 mM Tris-HCl at pH 7.5, 250 mM NaCl, 2 

mM EDTA, 0.05% TritonX-100, 1 mM PMSF).  After the last wash, the precipitated 

protein complexes were resuspended in 2X sample buffer and analyzed by SDS-

PAGE and western–blotting with the antibody against the HA epitope (Roche, 

Indianapolis, IN). 

Transient expression of TMV helicase domain in plant containing the N gene  

Agrobacteirum carrying pBIN-HA-HEL (wild-type or mutants), pBIN-GFP, 

or pBin was grown at 30 ºC overnight.  After centrifugation, the culture was 

resuspended in infiltration medium (10 mM MES, pH 5.7, 10mM MgCl2, 150 µM 

acetosyringone) at OD600 of 0.5.  The suspension was then infiltrated into N. tabacum 

cv. Xanthi NN leaves using a syringe.  For each construct, several square centimeters 

of leaf tissues were covered.  The hypersensitive response (HR) was observed at four 

days post-inoculation. 

Local lesion assay 

Full-length RNA transcripts of TMV wild-type and mutants were generated 

by in vitro transcription using TMV007 and 007-mutants as templates.  RNA 

transcripts of each recombinant virus were mixed with equal volumes of FES buffer 

(0.1 M Glycine, 0.06 M potassium phosphate, 1% sodium phosphate, 1% macaloid, 

1% celite, pH 8.5-9.0) and rub-inoculated on half of each N. tabacum cv. Xanthi NN 

leaf and the wild-type RNA transcript was inoculated on the other half as a control.  

Five days post-inoculation (dpi), lesions were recorded.   
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Protoplast replication assay 

Tobacco protoplasts prepared from N. tabacum cv. Xanthi suspension cells (6 

× 106 cells per rxn) were transfected with TMV wild-type or mutant RNA transcripts 

via electroporation (125 V and 300 uF).  After being cultured in AOKI growth media 

(0.5 M D-mannitol, 10 mM MES, 10 mM CaCl2·2H2O, 0.2 mM KH2PO4, 1 mM 

KNO3, 1 mM MgSO4·7H2O, 1 M KI, 0.01 M CuSO4, and 3% sucrose) for 20 h at 

room temperature, the protoplasts were harvested and total RNA was extracted 

followed by a standard northern blot assay (Sambrook et al., 1989).  32P-labelled 

probe was made by using a NcoI/KpnI digested TMV007 fragment corresponding to 

TMV nts 5460 to 6394 and a Prime-a-Gene Labeling System (Promega, Madison, 

W.I.) as described by manufacturer’s protocol.   

Transient expression of TMV 126-kDa replicase 

 A particle bombardment method was used to express TMV 126-kDa wild-type 

and mutant replicases in N. benthamiana epidermal cells.  Briefly, plasmid DNA 

(pCMC-126-GFP or 126-mutants-GFP) was coated onto tungsten particles (1.3 µM in 

diameter; Bio-Rad, Hercules, CA) in ethanol.  The DNA-coated particles then were 

dried on plastic filters and bombarded into leaf tissues using a gene gun apparatus 

(Bio-Rad, Hercules, Calif.).  After incubating the bombarded tissues for 12 to 14 h at 

room temperature, GFP fluorescence was visualized using a confocal microscope.  

Expression of TMV 126-kDa replicase in protoplasts was done by introducing 

the 126-kDa constructs (plasmid pAVA-126-GFP or pAVA-126-mutants-GFP) into 

N. tabacum cv. Xanthi suspension cells (50 µg per 6 × 106 cells) via electroporation at 
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300 V and 600 uF.  The protoplasts were then cultured in AOKI growth media for 48 

h at room temperature and GFP fluorescence was visualized via confocal microscopy. 

Confocal microscopy 

A Zeiss LSM 510 laser-scanning confocal microscope (Carl Zeiss Inc., 

Thornwood, N.Y.) was used to visualize fluorescent images.  EGFP fluorescence was 

excited by using a 488-nm argon laser beam and emission was captured at between 

500 and 560 nm.  The images were taken under a 63× 1.2-numerical-aperture water 

immersion lenses and further analyzed with Zeiss LSM Imager Examiner software, 

version 3.0, and optimized with Adobe Photoshop 6.0.  Diameters of 126-kDa 

complexes were measured.  For each wild-type and mutant 126kDa construct, 30 to 

45 complexes were measured.  

Electron microscopy 

Purified TMV helicase polypeptides were applied on carbon-coated copper 

grids and stained with 1% uranyl acetate.  The grids were then dried and visualized 

under the Zeiss EM 10CA transmission electron microscope (TEM). 

For thin-section electron microscopy, Agrobacterium-infiltrated tissue (~ 

1mm3) were fixed in 2% glutaraldehyde and followed by embedding in Spur’s resin 

as described previously (Hepler, 1980).  Thin sections (between 60-90 nm) were 

mounted on copper grids and stained with uranyl acetate and lead citrate (5 min).  The 

thin sections were then visulalized under the TEM.  
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2.4  Results 

Self-association of the TMV helicase domain results in a dimer and a higher 

ordered structure 

In a previous yeast two-hybrid assay, the TMV helicase domain within the 

126-/183-kDa replicases was shown to self-interact (Goregaoker et al., 2001).  The 

interacting region covers the C-terminus of the intervening region (IR) and the entire 

helicase domain (HEL).  To further characterize the self-interaction of the TMV 

helicase domain, the whole interacting region, spanning from amino acid 519 to 1116 

was subcloned into a bacterial expression vector, pTricHisA, to create a six-histidine 

tag at the N terminus.  The resulting construct was expressed in E. coli cells under an 

optimized induction condition at 16ºC overnight and purified by affinity 

chromatography in a high salt, high pH buffer condition (500 mM NaCl, pH 8.0).  

The expression yield and the purified product was analyzed using SDS-PAGE and 

was confirmed to be at least 95% pure via gel filtration chromatography (Fig 2.2B 

and 2.2C).  Under these purification conditions, the TMV helicase domain 

accumulated to high levels as a soluble monomer (Fig 2.2C). 

The TMV 126- and 183-kDa replicase proteins have been suggested to 

interact with each other to form a heterodimer (Watanabe et al., 1999).  To test 

whether the helicase domain is involved in the replicase protein-protein interaction, 

the purified helicase polypeptide was incubated in a buffer close to the physiological 

condition (150 mM NaCl, pH 7.0). The incubated products were then tested for their 

oligomeric formation using gel filtration chromatography.  After 2 hours incubation at 

room temperature, a peak with a molecular mass equivalent to a dimeric form was  
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Fig. 2.2.  In vitro expression and purification of TMV wild-type and mutant 

helicase polypeptides.  (A) Schematic representing the construction of 6xHis-tagged 

helicase or mutant polypeptide.  The number refers to amino acid position.  (B) The 

purified products (~ 15 µg each) were resolved in a 10% SDS-PAGE gel and stained 

with Coomassie blue.  (C) Gel filtration chromatography suggests the monomeric 

formation of wild-type helicase polypeptide in buffer containing 500 mM NaCl, pH 

8.0.  Molecular weight markers, thyroglobulin (670 kDa), gamma globulin (158 kDa), 

Ovalbumin (44 kDa), and myoglobin (17 kDa) are indicated. 
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observed (Fig 2.3A).  Prolonged incubation resulted in appearance of higher 

molecular-weight aggregates (Fig 2.3A).  The presence of the TMV helicase protein 

within both the dimeric and the higher-ordered structure forms was confirmed with 

SDS-PAGE and Commassie blue staining (Fig 2.3B).  Electron microscopy studies of 

fractions from the higher molecular-weight peaks supported the presence of the 

aggregate as helical-like structures (Fig 2.4).  To identify the effect of nucleotide 

binding on protein oligomerization, AMPPNP, a nonhydrolyzable ATP analog, was 

added into the TMV helicase solution and no obvious effects were detected on 

formation of the helicase dimer and the higher-order structure (data not shown). 

 

ATPase activity of the TMV helicase domain resides predominantly within the 

monomeric and dimeric forms 

TMV helicase has been shown to possess ATPase activity and double-

stranded RNA unwinding activity (Goregaoker and Culver, 2003).  To investigate the 

active form of the TMV helicase domain, different conformations of the TMV 

helicase, including monomers, dimers and the higher order structures, were assayed 

for their ability to hydrolyze ATP.  Results demonstrated that the monomer and the 

dimer forms of TMV helicase could hydrolyze ATP efficiently, while the higher-

order aggregates showed little detectable ATPase activity (Fig. 2.3C).  Addition of 

single-stranded RNA did not enhance the ATPase activity of any of the aggregate 

states (data not shown). This finding indicates that the ATPase activity of the TMV 

helicase domain is conferred by a monomer/dimer form and suggests that these 

helicase proteins may represent the active enzymatic form for virus replication. 
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Fig. 2.3.  Active forms of TMV helicase polypeptide reside mainly within 

monomer and dimer forms.  (A) Gel filtration chromatography showing that TMV 

helicase polypeptide forms a dimer (with a molecular mass equivalent to ~126-kDa) 

in buffer containing 150 mM NaCl, pH 7.0.  Prolonged incubation resulted in 

formation of a higher ordered structure.  Black arrows point to different oligomeric 

forms of the TMV helicase polypeptide.  (B) SDS-PAGE showing the presence of the 

TMV helicase polypeptide in different structural forms.  Fractions (50 μl each) 

collected from the gel filtration chromatography were resolved on 10% SDS-PAGE.  

The gels were stained with Commassie blue.  (C) Both monomer and dimer forms of 

TMV helicase polypeptides are active in ATPase activity.  The higher ordered 

structures have little detectable ATPase activity.  Monomer, dimer or aggregate 

fractions (~ 5 ng) collected from gel filtration column were incubated with 0.5 µCi of 

[γ-32P]ATP at room temperature for 30 min.  The aliquot of reaction mixture was 

spotted onto thin-layer chromatography (TLC) plates and released Pi was visualized 

via Phosphor Imager.   
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Fig. 2.4.  An electron micrograph showing the higher-order structure formation 

of the TMV helicase polypeptides.  Black arrows point to the helical-like higher 

ordered structures form. 
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Site-directed mutagenesis of conserved residues within helicase motifs 

Based on their sequence similarities to other helicases with known functions, 

the TMV helicase domain is found to contain five conserved motifs (Fig. 2.1).  To 

investigate the effect of each conserved helicase motif on helicase activities, 

individual mutations were made in all five motifs, including K839S (motif I), E907A 

(II), Q935A (III), H1040A (V), and R1076A (VI) (Fig. 2.1A and 2.1B).  Another 

mutant with a mutation outside of helicase motifs (V1087I) was used in this study as 

a control.  The majority of mutations created in this study were selected due to their 

conservation in SF1 helicases encoded by RNA viruses (Fig. 2.1) and are suggested 

to play a structure/function role (for review, see Caruthers and McKay, 2002).  

Mutant proteins were similarly expressed in the bacterial expression system.  Except 

the mutant Q935A, which produced low solubility of the protein in E. coli cells, the 

other mutant proteins were expressed in high concentrations as a soluble form as 

shown in SDS-PAGE gel (Fig. 2.2B).   

 

Biochemical characterization of the TMV helicase mutants 

To test the effect of helicase mutations on ATPase activity, the purified wild-

type and mutant helicase polypeptides were assayed for their ability to hydrolyze 

ATP.  TMV helicase motif I and II are known to be NTP binding and hydrolysis 

motifs.  As expected, mutations within motif I (K839S) and II (E907A) impaired the 

ATPase activity of the protein (Fig 2.5A).  The motif VI mutant R1076A also 

displayed a severe defect in hydrolyzing ATP.  Of all the mutant proteins tested, only 

H1040A, a mutation in motif V, and V1087I retained ATPase activity similar to that  
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Fig. 2.5.  Biochemical activities of TMV wild-type and mutant helicase 

polypeptides.  (A) ATPase assay showing that motif V mutant, H1040A and mutant 

V1087I retained ATP hydrolysis activity.  Each reaction contains 0.5µCi of [γ-

32P]ATP and 20ng (lane 1) or 100ng (lane 2) of purified proteins.  The first lane 

contains no protein and serves as a control.  (B) RNA-binding activities of TMV 

helicase mutants.  A nitrocellulose filter binding assay was carried out by incubating 

purified wild-type and mutant helicase polypeptides (as monomers) at various 

concentrations (0, 15, 30, 60, 125, 250 µmol) with 5nM of 5’ 32P-labelled RNA 

oligonucleotide ( 2×106cpm) at room temperature overnight.  The binding activity 

with wild-type helicase polypeptide at the protein concentration of 250 μmol was 

defined as 100%.  Mutations within motif I (K839S), II (E907A), V (H1040A), and 

VI (R1076A) all affected the helicase RNA binding activity, showing only 18%, 25%, 

15%, and 50% of wt activity, respectively.   
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of wild-type helicase (Fig. 2.5A).  These data indicate that TMV helicase motif I, II, 

and VI are actively involved in ATPase activity. 

To investigate the influences of the well-conserved motifs on helicase RNA-

binding activity, a nitrocellulose filter binding assay was used.  Wild-type and mutant 

helicases at various concentrations (0, 15, 30, 60, 125, 250 μmol) were loaded onto a 

nitrocellulose filter followed by incubation with a 5nM radio-labeled 40-mer RNA 

oligonucleotide.  As shown in Fig. 2.5B, mutations within motif I (K839S), II 

(E907A), and V (H1040A) significantly reduced the helicase RNA binding activity, 

showing only 18%, 25%, and 15% of wt activity, respectively.  Motif VI (R1076A) 

mutant also showed weakened RNA binding activity (50%).  In contrast, the V1087I 

mutant control had no effect on the helicase RNA-binding activity.  These results 

suggest that TMV helicase motifs I, II, and V all contribute to specific interactions 

with oligonucleotides.   

 

Effects of point mutations within the helicase motifs on virus infectivity 

Since both ATPase and RNA binding activities are essential for helicase 

activity, all mutations tested within the well-conserved motifs are postulated to affect 

virus replication.  To confirm this, a local lesion assay was used to examine the 

infectivity and movement of recombinant virus containing each of the helicase 

mutations.  N. tabacum cv. Xanthi NN contains the N gene which confers resistance 

to TMV.  The TMV infection on this plant results in formation of lesions due to the 

cell-death at the site of the infection and the size of the lesions correlates to the 

virus’s ability to replicate and move from cell-to-cell.  In vitro-generated wild-type 
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and mutant viral RNA transcripts were rub-inoculated on plant tissues and formation 

of lesions was recorded five days post-inoculation (dpi).  As expected, lesions were 

observed from wild-type and V1087I mutant-inoculated leaves and all the mutations 

within the helicase motifs blocked the formation of local lesion, suggesting an 

essential role of these conserved motifs in completion of a viral life cycle (Fig. 2.6A).  

In addition, RNA transcripts of recombinant viruses were utilized to transfect tobacco 

protoplast to test whether the mutation specifically affects virus replication.  The 

production of progeny viral genomic RNAs was monitored by northern blot.  Similar 

to the results observed from the local lesion assay, all mutations within helicase 

motifs disrupted virus replication in the host cell (Fig 2.6B).  Wild-type like mutant 

V1087I, which was shown to possess both ATPase activity and RNA binding activity, 

retained the ability to replicate in protoplast (Fig. 2.6B).   

 

Effects of point mutations within the helicase motifs on inducing HR responses 

TMV helicase domain induces a resistant hypersensitive response (HR) in N 

gene containing tobacco plants (Erickson et al., 1999).  The HR is a host defense 

response associated with formation of necrotic lesions at the site of infection that 

further prevent the pathogen from spreading.  To test whether any mutations within 

the helicase motifs disrupt helicase-induced HR, a binary vector, pBin19, was used 

and modified to make the constructs expressing wild-type or mutant helicase 

polypeptide with a hemagglutinin (HA) tag at the N-terminus.  Agrobacterium 

tumefaciens-mediated expression of both wild-type and mutant helicases resulted in 
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Fig. 2.6.  Effects of the point mutations within the TMV helicase motifs on viral 

replication and infectivity.  (A) Formation of necrotic local lesions on N. tabacum 

cv. Xanthi NN leaves inoculated with wild-type (left half of each leaf) and mutant 

TMV transcripts (right half of each leaf).  Lesions were observed four days post 

inoculation.  (B) Northern blot analysis of total RNAs extracted from wild-type and 

mutant TMV-infected protoplasts.  Accumulation of genomic RNA was measured 

with the probe complementary to the 3' end of the TMV genomic RNA.  
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HR-like cell death as shown in Fig. 2.7.  The timing on appearance of the HR 

phenotype is comparable among all the tested constructs, suggesting none of the 

mutations affected the ability of helicase to induce resistance in plants.  In contrast, 

pBin vector only and the pBin -GFP construct failed to activate HR in plant (Fig 2.7). 

 

Effects of point mutations within the helicase motifs on helicase self-interaction 

As shown previously, the wild-type TMV helicase domain can self-associate 

and such protein-protein interactions positively correlate with viral replication activity 

in protoplasts (Goregaoker et al., 2001).  To further investigate the effects of 

mutations on helicase protein-protein interaction in vivo, an immunoprecipitation 

assay was conducted by co-expressing a 6x-His tagged wild-type helicase and a HA-

tagged wild-type or mutant helicase in the same N. benthamiana plants using an 

Agrobacterium–mediated transient expression method.  The Agro-infiltrated tissues 

were collected and precipitated using anti-polyHistidine antibody followed by 

probing with antibody against anti-HA epitope.  The data obtained from the study 

confirmed the occurrence of a helicase protein-protein interaction within the 

biological system (Fig. 2.8).  In addition, none of the mutations within the helicase 

motifs affected the helicase-helicase interaction (Fig. 2.8) 

 

The ATPase activity of the 126-/183-kDa helicase domain regulates the assembly 

of the VRCs 

In this study, I have determined the ability of each recombinant mutant virus 

to replicate in host cells (Fig. 2.6).  For positive-stranded RNA viruses, formation of  
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Fig. 2.7.  Mutations within the TMV helicase motifs have no effect on the protein 

inducing HR on N gene containing tobacco plants.  An Agrobacterium-based 

transient expression of wild-type (left and i on right) or mutant (ii to vi on right) 

helicase polypeptides all induced HR in N. tabacum cv. Xanthi NN. Vector only 

(pBin) and GFP ORF (left) were used as controls. The pictures were taken 3 days post 

infiltration. 
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Fig. 2.8.  Mutations within the TMV helicase motifs have no effect on helicase 

self-interaction.  Co-immunoprecipitation of wild-type (top panel) and mutant 

(bottom panel) helicase polypeptides.  6xHis-tagged wild-type helicase and HA-

tagged wild-type or mutant helicases were co-infiltrated into N. benthamiana leaves.  

After 48 hours, the ground tissues were immunoprecipitated with anti-polyHis 

antibody and probed with anti-HA antibody.  
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membrane associated VRCs is essential for viral replication.  In a transient expression 

system, the 126-kDa replicase protein has been shown to be able to form vesicle-like 

ER inclusions, suggesting a role of the 126-kDa replicase in inducing the formation of 

membrane-associated VRCs (dos Reis Figueira et al., 2002, Liu et al., 2005).  The 

size of the VRCs is also modulated by the 126-kDa replicase protein (Liu et al., 

2005).  To evaluate the significance of each helicase motif in forming membrane-

associated vesicle, each mutation was engineered into a full-length 126-kDa-GFP 

construct and transiently expressed in N. benthamiana leaves via agro-infiltration.  

Expression of full-length 126-kDa replicase and its mutants was confirmed by 

western blot using anti-GFP antibody (Fig. 2.9).  Confocal fluorescent analysis 

further demonstrated that vesicles formed by the constructs fell into two groups.  The 

first group contained mutants H1040A and V1087I, which formed inclusion bodies 

with their sizes similar to that of wild-type 126-kDa replicase (Fig 2.9 and Table 2.1).  

The second group included mutants K839S, E907A, and R1076A, which formed 

much larger aggregates (Fig 2.9 and Table 2.1).  Formation of distinct sizes of 

vesicles in the host was further confirmed by expressing 126-kDa wild-type or mutant 

replicase in N. benthamiana epidermal cells by particle bombardment or in tobacco 

protoplast by electroporation (Fig. 2.10).  Both methods supported the results 

obtained from agro-infiltration, suggesting a role for the helicase motifs in 

modulating the size of vesicles formed by the 126-kDa replicase.  To further examine 

the detailed structural conformation of the cytosolic vesicles induced by the 126-kDa 

protein and its mutants, thin sections prepared from N. benthamiana leaf tissues 

expressing pBin/126-GFP or pBin/126K839S-GFP constructs were analyzed by EM. 
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Diameters of VRC-like inclusion bodies (µm)* in N. benthamiana 
48 hours post agro-infiltration 

126-GFP 3.34 ± 0.37 
126K839S-GFP 10.98 ± 1.49 
126E907A-GFP 7.82 ± 0.84 
126H1040A-GFP 4.09 ± 0.72 
126R1076A-GFP 8.30 ± 2.25 
126V1087I-GFP 4.17 ± 0.68 

 

Fig. 2.9.  Expression of TMV 126-kDa and mutant replicase proteins in N. 

benthamiana leaf tissues via agro-infiltration.  (A) Western blotting confirming the 

expression of 126-kDa replicase and its mutants.  The first lane is GFP control.  (B) 

Sizes of vesicles formed by 126-kDa and mutant replicase proteins in N. benthamiana 

48 hours post agro-infiltration.  The numbers were obtained from the calculated mean 

and standard deviation of 30-50 vesicles of each replicase protein. 
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Fig. 2.10.  Transient expression of TMV 126-kDa and mutant replicase proteins 

in N. benthamiana leaf tissues (A - F) and in N. tabacum cv. Xanthi suspension cells 

(G - L). Expression plasmids were particle bombarded into N. benthamiana leaves or 

transformed into suspension cells via electrophoresis.  Confocal images were taken 14 

to 16 hours post bombardment and 48 hours post transformation, respectively.  

Vesicles are observed from wild-type 126-GFP (A and G); 126-K839S-GFP (B and 

H); 126-E907A-GFP (C and I); 126-H1040A-GFP (D and J); 126-R1076A-GFP (E 

and K); and 126-V1087I-GFP (F and L). 
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Table 2.1 Formation of VRC-like vesicles in host cells correlates to the ATPase 

activity of the TMV helicase domain.  

Diameters of VRC-like inclusion 

bodies (µm)* 

 

N. benthamiana Protoplasts 

ATPase 

activity 

RNA binding 

activity 

Group I: Wild-type like vesicles 

126-GFP 1.78 ± 0.26 1.01 ± 0.13 + +++ 

126H1040A-GFP 2.68 ± 0.25 1.12 ± 0.18 + - 

126V1087I-GFP 1.93 ± 0.48 0.98 ± 0.16 + +++ 

Group II: Larger aggregate 

126K839S-GFP 4.01 ± 1.15 2.03 ± 0.31 - - 

126E907A-GFP 4.90 ± 1.45 1.72 ± 0.21 - + 

126R1076A-GFP 5.56 ± 0.65 2.05 ± 0.35 - ++ 

 

 

 

 

 

* Forty-five to fifty vesicles of each replicase protein were measured to obtain the 
calculated mean and standard deviation.  
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Consistent with the confocal data, the vesicles formed by 126-kDa protein were small 

and less dense, while the mutant 126K839S-kDa replicase formed much larger densed 

vesicles in the cytosol (Fig. 2.11).  In contrast, similar vesicles were not detected in 

control plants expressing pBin vector only (data not shown).  Interestingly, the 

vesicles formed by both proteins were observed to contain tubular like structures, 

which were also seen in “X-bodies” of TMV-infected plants (Hills et al., 1987), 

suggesting a function of the 126-kDa replicase in promoting VRC formation. 

It is interesting to note that there is a correlation between the biochemical 

activities of the TMV helicase domain and the assembly of 126-kDa vesicles (Table 

2.1).  Proteins possessing ATPase activities produced wild-type-like vesicles (wild-

type, H1040A, and V1087I).  In contrast, members producing larger aggregates 

(K839S, E907A, and R1076A) all failed in their ability to hydrolyze ATP (Fig 2.5A, 

Table 2.1).  Such a correlation was not found on the protein’s ability to bind to RNA 

(Fig. 2.5B, Table 2.1).  The combined results suggest that ATPase activity, but not the 

RNA binding activity of the 126-kDa helicase domain may play a role in regulating 

the assembly of wild-type-like VRCs.  

 

2.5  Discussion 

Virus-encoded helicases have been demonstrated to play important roles in the 

viral life cycle (Gu et al., 2000; Ivanov et al., 2004; Wang et al., 2005).  Structural 

analysis showed that the signature motifs of the helicases are crucial for protein 

enzymatic activity and protein-protein interactions (for review, see Caruthers and 

McKay 2002).  The helicase domain within the 126- and 183-kDa replicase proteins 
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Fig. 2.11.  Electron micrographs of vesicles formed by 126-kDa and its mutant 

protein in N. benthamiana.  The thin section was stained with lead citrate and uranyl 

acetate.  The black arrows point to the 126-kDa induced small light vesicle and the 

126K839S-kDa induced large dense vesicle, respectively.  C, Chloroplast; M, 

mitochondria; N, nucleus.  
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has been identified to perform multiple functions within the host (Abbink et al., 1998; 

Hagiwara et al., 2003; Padmanabhan et al., 2005).  Yet the structure-function 

relationship of the TMV helicase domain remains at most unknown.  In this study, 

individual mutations within four helicase motifs I, II, V, and VI were tested for their 

effects on protein structural conformation, biochemical properties, and the biological 

relevance in the formation of VRCs. 

 

Biochemical activities of the TMV helicase polypeptide 

The TMV helicase domain is a member of helicase SF1.  Structural analyses 

of other helicases within helicase SF1 have shown that the active form of the enzyme 

is most likely a monomer (for review, see Singleton et al., 2007)).  Two general 

models, termed “inchworm” and “active rolling”, have been described for the 

mechanisms of helicase activities.  The “active rolling” model requires at least a 

dimeric form of the protein.  The “inchworm” model, however, can be applied to 

either monomeric or oligomeric forms of the protein.  In this study, both the 

monomers and the dimers of the TMV helicase polypeptides were shown to possess 

ATPase activity (Fig. 2.3C), which would favor the “inchworm” model.  However, 

becaue the ATPase assay was performed with a relatively low concentration of the 

protein (~ 1.5 µM), it is possible that a dimer-monomer exchange occurs and the 

active ATPase activity comes from the monomeric but not the dimeric form.  Thus, 

these findings cannot be used to identify which model, “active rolling” or 

“inchworm”, is likely to be used by the TMV helicase.  Further studies including 

crystal structure determination and a functional helicase assay on different forms of 
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the TMV helicase polypeptides will be necessary to identify the active form of the 

TMV helicase. 

Viral helicases within SF1 contain five major motifs (For review, see Kadaré 

and Haenni, 1997).  Helicase motifs I and II (also known as Walker A and B) are well 

known as NTP binding and hydrolysis motifs (Hall and Matson, 1999; Kadaré and 

Haenni, 1997).  The failure of TMV helicase motif I (K839S) and II (E907A) mutants 

to hydrolyze ATP confirmed their activities (Fig. 2.5A).  K839S mutation also 

dramatically interfered with RNA binding activity (Fig. 2.5B), indicating this residue 

may also play a role in transducing energy for RNA binding.  The residues within 

motif V of other helicases have been shown to be involved in nucleic acid binding, 

primarily through interacting with the sugar-phosphate backbone (Hall and Matson, 

1999).  The mutant created in this study, H1040A, retained ATPase activity, but 

failed in binding RNA (Fig. 2.5).  Structural tudies on helicase motif VI show that 

arginine residue contacts with the gamma pohophate of the nucleotide and functions 

in mediating the conformational change of the protein when binding to NTP (Hall and 

Matson, 1999).  Further structure-function analysis suggests that helicase motif VI is 

involved in the transition of the NTPase activity to nucleic acid binding (Hall and 

Matson, 1999).  Consistent with these results, the mutation from arginine to alanine 

(R1076A) within TMV helicase motif VI abolished the ATPase activity of the TMV 

helicase polypeptide and showed a reduced ability to bind RNA (Fig. 2.5).  

Combined, all individual mutations, when introduced into the infectious wild-type 

cDNA, disrupted the virus’s ability to replicate in the host (Fig. 2.6), indicating that 

the biochemical properties of each single motif are indispensable for virus infectivity. 



 

 81 
 

Viral protein-protein interactions in promoting VRC formation 

Formation of membrane-bound VRCs is essential for replication of positive-

strand RNA viruses.  Viral protein-protein interactions have been shown to play 

important roles in promoting VRC assembly (Kaiser et al., 2006).  BMV-encoded 1a, 

a close homologue of 126-kDa protein, interacts with itself (O'Reilly et al., 1995) and 

with 2a, a polymerase-like protein (O'Reilly et al., 1997) and the interactions are 

necessary for formation of VRCs.  Similarly, both CCMV and CMV-encoded 1a 

proteins self-interact in a yeast two-hybrid system (O'Reilly et al., 1997).  A previous 

immunoaffinity analysis demonstrated an interaction between TMV 126- and 183-

kDa replicase proteins (Watanabe et al., 1999).  The interacting region has been 

mapped to be within the helicase domain in a yeast two-hybrid system (Goregaoker et 

al., 2001).  In this study, in vitro purified TMV helicase polypeptide was able to self-

associate to form a dimer and a higher ordered structure as shown by gel filtration 

chromatography (Fig. 2.3) and electron microscopy (EM) (Fig. 2.4).  The self-

interaction of TMV helicase and its oligomerization thus may be important in forming 

an active enzyme complex by dictating intermolecular interactions between replicase 

proteins and directing the assembly of the VRC.  The observations that the TMV 126-

kDa replicase was able to form VRC-like vesicles in host cells further suggest a 

crucial role for the 126-kDa protein in assembly of membrane-associated VRCs (Fig. 

2.9, 2.10).  The protein-protein interactions within the helicase domain of the TMV 

replicases may provide a structural basis necessary for VRC formation. 

 

ATPase activity of the TMV helicase plays a role in regulating VRC formation 
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To investigate the biological significance of the TMV helicase motifs, 

individual mutations within the helicase motifs (K839S, E907A, H1040A, R1076A) 

and outside of the helicase motifs (V1087I) were tested for their effects on protein-

protein interaction and VRC formation.  The in vivo pull-down assay showed that 

none of the mutations affected the ability of the TMV helicase polypeptide to self-

associate (Fig. 2.7A).  Additionally, all the tested 126-kDa mutants were able to form 

vesicles in host (Fig. 2.9 and 2.10), suggesting that the enzymatic activity of the 

helicase signature motifs are not necessary in initiating VRC assembly.  For any wild-

type or mutant 126-kDa replicase protein tested in this study, the vesicles formed in 

protoplasts were observed to be smaller than those in N. benthamiana plants.  There 

are two possible explanations for the size difference.  First, protoplasts are derived 

from N. tabacum cv. Xanthi, a separate species from N. benthamiana, and may have 

different fundamental biochemical and biophysical properties that affect formation of 

the 126-kDa vesicles.  Second, lack of certain skeleton structure on protoplasts may 

have an effect on the assembly of higher-ordered replicase structures, resulting in 

smaller vesicles in the host cells. 

Based on sizes, the VRC-like vesicles formed by 126-kDa protein and its 

mutants can be grouped into two categories:  wild-type like vesicles and larger 

aggregates (Fig. 2.9 and 2.10).  Interestingly, the mutants that resulted in larger 

vesicles were all unable to hydrolyze ATP (Fig. 2.5 and 2.9).  In contrast, replicases 

that formed wild-type vesicles retained ATPase activity (Fig. 2.5 and 2.9), indicating 

that ATP hydrolysis may regulate proper VRC assembly.  For TMV, an appropriate 

range of VRC sizes has been shown to be prerequisite for virus replication (Liu et al., 
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2005).  In their study, 126-kDa mutants with mutations within the IR region formed 

smaller vesicles in host (Liu et al., 2005).  This result together with our data here 

suggests that different domains of the 126-kDa replicase may have distinct effects in 

VRC assembly.  A mutational analysis on the helicase motifs of BMV 1a protein also 

demonstrated that helicase mutants affect the size of VRCs (Wang et al., 2005).  

Especially a mutation within BMV helicase motif III resulted in larger VRC-like 

spherules than that of wild type (Wang et al., 2005).  In this study, other helicase 

motifs, including I, II, and VI, were shown to affect VRC formation (Fig. 2.8 and 

2.9).  One interesting mutant observed here is H1040A with a mutation within the 

helicase motif V.  Although this mutant retained ATPase activity (Fig. 2.5A) and 

formed wild-type like inclusion bodies (Fig 2.8, 2.9 and Table 2.1), the mutant 

helicase polypeptide failed to bind RNA (Fig. 2.5B) and had no replication activity in 

the corresponding mutant virus (Fig. 2.6).  This observation indicates that the 

recruitment of RNA template by the TMV helicase is not necessary for the proper 

assembly of VRCs.  However, RNA binding activity is required for synthesis of viral 

genomic RNAs. 

 

Monomer/dimer vs. higher ordered structure – why two forms? 

In TMV-infected plant cells, the 126-kDa protein is produced in a larger 

amount than the 183-kDa protein (Lewandowski and Dawson, 2000; Watanabe et al., 

1999).  Although not required for RNA synthesis, the 126-kDa protein increases the 

replication efficiency ten times more, suggesting that the excessive 126-kDa 

replicases perform other important, yet unidentified functions (Ishikawa et al., 1986; 
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Lewandowski and Dawson, 2000).  In this study, in vitro structural analysis shows 

that the TMV helicase polypeptide possesses two forms: a higher ordered structure 

and a monomer/dimer mixture.  I speculate that both forms co-exist within the TMV-

infected host cell.  The higher ordered aggregates may represent a nonenzymatic form 

of the 126-kDa protein that acts as a structural platform necessary for assembling of 

membrane-associated VRCs. The presence of such a non-active replicase complex 

might explain the necessity of excess 126-kDa proteins produced during TMV 

infection.  Furthermore, it is shown in this study that ATPase activity modulates the 

TMV replicase protein forming VRC-like vesicles.  Possibly, the ATPase activity of 

the replicase monomers/dimers plays a regulatory role in maintaining the structural 

conformation of the protein, which further prevents it from aggregation.  Other than 

viral replication activities, TMV replicase proteins have been shown to perform 

multiple functions during virus infection, such as cell-to-cell movement (Hirashima 

and Watanabe, 2001; Hirashima and Watanabe, 2003), virus disassembly (Wu and 

Shaw, 1997), induction of HR in host (Abbink et al., 2001; Erickson et al., 1999) and 

suppression of host RNA silencing (Ding et al., 2004).  Distinct forms of viral 

replicase as shown in this work might partially explain its functional complexity 

during the process of virus life cycle.  The higher ordered structures of the TMV 

replicase may be involved in constructing ER-associated VRCs and in viral 

intracellular movement.  The monomeric/dimeric forms of the protein, on the other 

hand, are active in enzymatic activities and possibly involved in suppression of RNA 

silencing.  Exactly what structural forms of the TMV replicase are involved in these 

different functions needs to be further determined.    
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Chapter 3: Interaction between the Tobacco mosaic virus replicase 

and a NAC domain transcription factor modulates virus 

accumulation 

3.1  Abstract 

 NAC-domain proteins represent a large family of transcription factors 

associated with plant developmental processes, senescence and defense.  Using a 

yeast two-hybrid system, interactions between the helicase domain of the Tobacco 

mosaic virus (TMV) replicase and an Arabidopsis NAC protein, ATAF2, and its 

tomato homologue were identified.  The interaction between ATAF2 and the TMV 

replicase was further confirmed in vivo using an immuno-pull-down assay.  Transient 

expression of ATAF2-GFP fusion in healthy plant tissues showed that the protein 

localized exclusively in the nucleus.  Upon TMV infection, however, the 

accumulation of ATAF2 in the nucleus was dramatically reduced, suggesting that 

interaction with the TMV replicase affects ATAF2 function.  To further characterize 

this interaction, transgenic Arabidopsis over-expressing ATAF2-GFP were created.  

The resulting plants developed a distinct phenotype similar to symptoms associated 

with TMV infection.  TMV infection within ATAF2 over-expressing plants resulted in 

a substantial decrease in virus accumulation when compared to wild-type non-

transformed plants.  In contrast, knock-out of ATAF2 in Arabidopsis and silencing of 

ATAF2 homologue in tomato showed no effect on virus accumulation.  These results 

suggest that ATAF2-TMV interaction has a regulatory role in virus infection.  Using 

a GUS reporter gene, the transcriptional level of ATAF2 was found to increase upon 
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TMV infection with GUS activities corresponding to virus accumulation and spread.  

However, such an induction did not occur in systemically infected tissues even 

though the virus titer was higher, indicating that expression of ATAF2 is additionally 

modulated during the TMV infection cycle.  Since ATAF2 is a stress associated host 

gene that is responsive to salicylic acid (SA), I propose that virus-directed induction 

of ATAF2 is involved in a SA-dependent host defense response and viral replicase 

protein interacting with ATAF2 suppresses this host defense resulting in virus 

accumulation. 

 

3.2  Introduction 

The consequences for virus infections vary depending on the extensive 

interactions between the virus and its host.  For a susceptible host, virus infection 

results in specific disease symptoms that are generally associated with alterations in 

the normal functions of cellular proteins.  A microarray analysis on RNA virus-

infected Arabidopsis revealed common sets of host genes being induced, of which 

10% were identified as host transcription factors (Whitham et al., 2003).  Many of 

these transcription factors have been recognized as members of important gene 

families that regulate a number of cellular processes involved in host stress/defense 

responses (for review, see Singh et al., 2002). 

A plant-specific transcription family, the NAC domain protein family, was 

identified a decade ago.  Members within this family contain a highly conserved N-

terminal NAC domain and a divergent C-terminal transcription activation region 

(TAR).  The well-conserved N-terminal domain can be divided into five subdomains 
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(A to E) (Kikuchi et al., 2000).  Subdomian D and E were shown as a DNA-binding 

domain (Duval et al., 2002).  Several lines of evidence indicate that NAC genes are 

induced by various biotic and abiotic stresses suggesting they are involved in host 

stress/defense responses (Collinge and Boller, 2001; Hegedus et al., 2003).  

Furthermore, four NAC proteins are known to interact with viral proteins and the 

interactions play important roles in virus pathogenesis.  GRAB1 and GRAB2 (for 

Geminivirus RepA binding) proteins were isolated by their interactions with a 

geminivirus RepA protein in a yeast two-hybrid system.  GRAB protein expression 

was shown to interfere with geminivirus DNA replication in cultured cells (Xie et al., 

1999).   Arabidopsis NAC protein TIP (for TCV-interacting protein) interacts with the 

Turnip crinkle virus (TCV) CP and the interaction is involved in a host resistance 

response (Ren et al., 2000).  Interaction between Tomato SlNAC1 (for S. 

lycopersicum NAC1) and the geminiviral replication accessory protein was also 

detected and found to enhance virus replication (Selth et al., 2005).  Different effects 

of NAC proteins on virus accumulation indicate the functional diversity of this 

transcription factor family. 

Tobacco mosaic virus (TMV) contains a single-stranded positive-sense RNA 

genome that encodes four proteins, two replicase proteins, a movement protein (MP), 

and a coat protein (CP).  The TMV-interacting host proteins have been extensively 

studied (For reviews, see Boevink and Oparka, 2005; van der Heijden and Bol, 2002).  

TMV replicases, specifically, interact with various host factors and these interactions 

are involved in different viral activities, including elicitation of N gene-mediated 

resistance (Abbink et al., 2001; Erickson et al., 1999), formation of virus replication 
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complexes (VRCs) (Hagiwara et al., 2003; Yamanaka et al., 2000), replication of 

viral genomic RNAs (Osman and Buck, 1997), and inhibiting host defenses (Bilgin et 

al., 2003).  A yeast two-hybrid approach using individual TMV replicase fragments 

as “bait” to screen the Arabidopsis cDNA library has revealed a group of host 

proteins that interact with the virus (unpublished data).  One interaction involving 

members of Aux/IAA proteins of auxin-mediated transcription regulators resulted in 

plant developmental disease symptoms (Padmanabhan et al., 2005).  In addition, a 

cDNA microarray analysis was performed to study the changes of host gene 

expression in response to TMV infection (Golem and Culver, 2003).  Both methods 

are useful in that they provide high-throughput results in identifying host genes and 

their gene products involved in TMV infection.  However, studying specific virus-

host interactions and specific genes that contribute to a successful viral invasion 

and/or host defense will shed light on a better understanding of the host cellular 

responses against TMV, ultimately adding our knowledge to develop anti-viral 

strategies. 

In this study, yeast two-hybrid and in vivo pull-down assays identified an 

interaction between ATAF2, a NAC domain transcription factor, and the TMV 126-

kDa replicase.  The interaction was found to affect ATAF2 accumulation in the 

nucleus.  SlNAC1, a tomato ATAF2 homologue, was also found to interact with the 

TMV helicase domain in yeast, suggesting that this TMV replicase-ATAF2 

interaction is conserved among TMV hosts.  In addition, ATAF2 over-expression 

lines showed strong developmental abnormalities and resulted in a substantial 

decrease in virus accumulation.  In response to TMV infection, expression of ATAF2 
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gene was up-regulated locally, but not systemically. Taken together, these results 

suggest that the interaction between ATAF2 and the TMV replicase plays a role in 

regulating virus infection in susceptible plants.  

 

3.3  Materials and Methods  

Plant materials and virus inoculation 

A. thaliana ecotype Shahdara and tomato (Solanum lycopersicon cv. Pilgrim) 

plants were grown as described (Padmanabhan et al. 2005).  All transgenic lines used 

in this study were derived from Arabidopsis ecotype Shahdara.  ATAF2 T-DNA 

insertion lines (Salk_015750 and Salk_136355) purchased from TAIR (The 

Arabidopsis Information Resource) are under Col-0 background. 

Leaves of four-week old Arabidopsis ecotype Shahdara were dusted with 

carborundum (Fisher Scientific Company, Pittsburgh, PA.) and inoculated with 

0.1mg/ml purified virus using a cotton swab.  After inoculation, the plants were 

maintained in a high moisture condition overnight and then transferred to the regular 

growth condition.  Controls were mock-inoculated with water.    

Yeast Two-hybrid and β-galactosidase Assay 

 The full-length ATAF2 gene was produced by RT-PCR using the total RNA 

extracts prepared from four-week-old Shahdara leaves.  The amplified fragments 

were modified to contain a 5’ BamHI and a 3’ XhoI site and cloned into the 

BamHI/XhoI sits of pGAD10, producing pGAD-ATAF2.  The bait construct was 

produced by introducing the helicase domain (aa. 814-1116) of the TMV replicase 

into the plasmid plexA-NLS to generate the plexA-HEL, which contains the in-frame 
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fusion of TMV helicase and LexA DNA binding domain.  Both pGAD10-ATAF2 and 

pLexA-HEL constructs were transformed into a yeast strain L40 using a standard 

lithium acetate transformation method.  The transformed yeast cells were then grown 

on a minimal medium lacking uracil, tryptophan, and leucine.  The resulting colonies 

were assayed quantitatively for β-galactosidase activity in the presence of o-

nitrophenyl-β-D-galactopyranoside (ONPG) as described (Goregaoker et. al., 2001). 

For tomato ATAF2 homologue, the complete SlNAC1 ORF was PCR-amplified 

to contain a 5’-BamHI site and a 3’-XhoI site.  The PCR fragment was then ligated 

into a similarly digested pACT vector to create pACT-SlNAC1.  The construct 

pACT-SlNAC1 was transformed into a yeast strain L40 containing pLexA-HEL.  The 

interaction between SlNAC1 and the TMV helicase domain was similarly examined 

using a β-galactosidase assay as described previously (Goregaoker et. al., 2001). 

ATAF2 transient expression assay 

 To obtain ATAF2-GFP fusion construct, the entire coding region of ATAF2 

was PCR amplified with a 5’ KpnI site and a 3’ BsiWI site.  The amplified fragment 

was cloned into plasmid pCMC-126-GFP (dos Reis Figueira et al., 2002) by 

replacing the 126-kDa replicase ORF with ATAF2.  The designated plasmid, pCMC-

ATAF2-GFP contains a single CaMV 35S promoter and the napaline synthase 

polyadenylation signal.  Transient expression of ATAF2-GFP in N. benthamiana 

epidermal cells was achieved using a particle bombardment method.  For each shot, 

1~2 µg of plasmid DNA was coated with 1.3 µM tungsten particles and bombarded 

into leaf tissues using the method described previously (Padmanabhan et al., 2005).  

The bombarded tissues were incubated at room temperature for 12 to 14 h and 
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visualized under a LSM510 laser scanning confocal microscope with 10X NA 0.8 dry 

and 63X NA 1.2 water-immersion lenses (Carl Zeiss Inc., Thonwood, N.Y.).  Images 

were further analyzed with Zeiss LSM Imager Examiner software, version 3.0. 

Constructs for plant transformation 

Using pCMC-ATAF2-GFP as a template, a DNA fragment corresponding to 

ATAF2-GFP was PCR amplified using primers designed to contain a 5’-KpnI site and 

a 3’-PstI site.  The amplified fragment was cloned downstream of CaMV 35S 

promoter in a standard binary transformation vector, pBI121 (Clonetech, Palo Alto, 

CA). The produced construct, designated as pBI-ATAF2-GFP, was further 

transformed into Agrobacterium tumefaciens strain GV3101 using a freeze-thaw 

method (Holsters et al., 1978).  

To make ATAF2 Promoter::GUS fusion construct, a 2-kb DNA fragment 

upstream of the ATAF2 coding region was PCR-amplified from Shahdara genomic 

DNA with a 5’ PstI site and a 3’ BamHI site.  The modified PCR fragment was 

ligated to the β-glucuronidase (GUS) coding sequence and a nopaline synthase (NOS) 

3’ ploy (A)-sequence in pBI101.1 vector (Clontech, Palo Alto, CA).  The resulting 

construct, pBI-pATAF::GUS, was similarly transformed into A. tumefaciens GV3101.  

Generation of transgenic lines 

Both ATAF2-GFP over-expression lines and PATAF2::GUS transgenic lines were 

obtained using the floral dip method described previously (Clough and Bent, 1998).  

Positive transformants were selected on solid Murashige and Skoog medium 

supplemented with 50 µg/ml kanamycin.  T1 transformants overexpressing ATAF2 
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were used for virus infection and T2 PATAF2::GUS transformants were used for GUS 

activity. 

GUS assay  

Histochemical staining for GUS activity was performed using X-Gluc (5-bromo-

4-chloro-3-indolyl p-D-glucuronide) (Gold Biotechnology, St. Louis, MO) as a 

substrate.  Plant tissues were vacuum-infiltrated in X-Gluc reaction buffer containing 

500 μl X-Gluc, 10 mM EDTA, 100 mM NaH2P04 pH 7, 5 mM Potassium 

ferricyanide, 5 mM Potassium ferrocyanide and 0.1% v/v Triton and incubated at 

37°C overnight.  After 2-3 time washes in 70% ethanol, the stained tissues were kept 

in 50% ethanol until being photographed.  

In vivo pull-down assay  

ATAF2-GFP transgenic Arabidopsis plants were inoculated with 0.1 mg/ml of 

wild-type TMV virus using a cotton swab.  Fourteen days post inoculation (dpi), 0.5 

gram of systemically infected leaf tissues were collected and homogenized in 

extraction buffer containing 50 mM Tris-HCl at pH 8.0, 150 mM NaCl, 0.5% 

TritonX-100, 0.2% 2-mercaptoethanol, 5% glycerol, PMSF, and proteinase inhibitor 

cocktail (Sigma, St. Louis, MO).  The ground tissues were pelleted by centrifugation 

for 10 min at 15,000 rpm.  The supernatant (1 ml) was incubated with 5 µl of anti-

polyGFP antibody (Sigma, St. Louis, MO) at 4°C overnight with gentle shaking 

followed by adding 30 µl of protein A agarose (Invitrogen, Carlsbad, CA) to the 

protein complex and incubating for additional 3 h. The immune complexes were then 

centrifuged and washed three times in 1 ml wash buffer (25 mM Tris-HCl at pH 7.5, 

250 mM NaCl, 2 mM EDTA, 0.05% TritonX-100, 1 mM PMSF).  After the last 
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wash, the precipitated protein complex was resuspended in 2X sample buffer and 

analyzed by SDS-PAGE and western–blotting with the polyclonal antibody raised 

against replicase proteins. 

Isolation of ATAF2 homologue in Tomato  

The tomato ATAF2 homologue was identified using a BLAST search 

program within the TIGR Tomato Gene Index database 

(http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/Blast/index.cgi).  The closest match to 

the ATAF2 query sequence revealed a tomato cDNA clone (TC171280), namely 

SlNAC1.   The largest ORF within SlNAC1 sequence was further amplified by RT-

PCR using tomato cDNA mixture and cloned into the TA-cloning site of the PCRII 

vector (Invitrogen, Carlsbad, CA).   The resulting TA-SlNAC1 clone was sequenced 

for confirmation.  

Construction of gene silencing vector and VIGS  

The Tobacco rattle virus (TRV)-based VIGS vectors pTRV1 and pTRV2 

were kindly provided by Dr. Dinesh-Kumar’s lab at Yale University, New Haven, 

CT.   Two SlNAC1 cDNA fragments, corresponding to nucleotides 1-304 and 597-

906, were separately amplified by PCR with primers containing BamHI/XhoI, and 

BamHI/SalI restriction sites, respectively.  The PCR products were then cloned into 

pTRV2 vector digested with BamHI and XhoI to create pTRV2-SlNAC1-N and p 

pTRV2-SlNAC1-C.  Both constructs were separately introduced into A. tumefaciens 

GV3101 using a standard transformation method (Holsters et al., 1978).  

Agrobacterium containing a pTRV2-PDS construct was obtained from Dr. Dinesh-

Kumar.    
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Agrobacteria containing pTRV1 and pTRV2 or its derivatives were 

coinfiltrated into cotyledons and lower leaves of 3-week-old tomato plants using a 

1ml needleless syringe.  For the VIGS assay, Agrobacteria transformed with pTRV 

vector only and pTRV-PDS, which contains a fragment of the gene encoding 

phytoene desaturase were used as a negative control and a positive control, 

respectively.   

Analysis of TMV virus accumulation  

TMV-infected tissues were collected and homogenized in ESB buffer.  5 µg of 

total proteins, determined with the Bradford assay (BioRad, Hercules, Calif.) was 

fractionated in a 12% SDS-PAGE and transferred to a nitrocellulose membrane.  The 

blot was probed with a polyclonal rabbit antiserum raised against TMV CP followed 

by an alkaline phosphatase-conjugated secondary anti-rabbit immunoglobulin G 

(Sigma, St. Louis, MO).  The detection was achieved using NBT (nitro BT; Fisher 

Scientific) and BCIP (5-bromo-4-chloro-3-indolyl phosphate; Fisher Scientific) as 

substrates.  The CP levels on the blot were further quantified using AlphaImage 

software (Alpha Innotech Corp., San Leandro, Calif.).   

Semi-quantitative RT-PCR 

Semi-quantitative RT-PCR was performed as described previously (Liu et al., 

2002).  Briefly, Total RNA from Arabidopsis and tomato was extracted using the 

RNeasy RNA extraction kit (Qiagen, Valencia, CA).  1 µg of total RNA was reverse 

transcribed using a SuperScript first-strand synthesis system (Invitrogen, Carlsbad, 

CA) and the resulting cDNA was further used as a template for PCR reaction.  During 

the successive PCR cycles (27, 30, 33, and 36), five-microliter aliquots were collected 
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and further separated on an agarose gel.  The elongation factor (eEF1A) served as an 

internal control for RNA quantity in RT-PCR. 

 

3.4  Results 

Interactions between the TMV replicase and NAC proteins within ATAF2 

subfamily 

A yeast two-hybrid screen has previously been performed by a senior graduate 

student Sameer Goregaoker to identify the host proteins interacting with the TMV 

replicase protein.  The helicase domain of the TMV replicase was fused to the LexA 

DNA-binding domain to serve as “bait” and the whole A. thaliana cDNA library was 

screened.  One positive transformant that showed high ß-galactosidase reporter 

activity in yeast was found to contain a single open reading frame encoding a plant 

transcription factor, ATAF2 (Fig 3.1A).  The plasmid was recovered and 

retransformed into yeast along with the TMV helicase bait construct and the 

interaction was further confirmed.  

ATAF2 belongs to the NAC domain protein family.  Members within this family

 participate in diverse plant biological roles, including development, senescence, and 

viral pathogenesis.  The ATAF2 gene encodes a 283-amino-acid protein with a 

calculated molecular mass of 32 kDa.  To further determine whether ATAF2 

interacting with the TMV replicase in plant cells, an immuno-pull down assay was 

employed using transgenic plants overexpressing ATAF2-GFP.  The TMV infected 

tissues were immuno-precipitated with anti-GFP antibody and the pull-down complex 

was examined by western blot using antibody against the TMV replicase protein.
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Fig. 3.1.  Arabidopsis ATAF2 and its tomato homologue, SlNAC1, interact with 

the TMV replicase.  (A). ß-Gal assay showing the interactions between the helicase 

domain of the TMV replicase and NAC domain proteins from both Arabidopsis and 

tomato in yeast.  Both ATAF2 and SlNAC1 were expressed as a fusion with the 

GAL4 activation domain and the helicase domain was fused to the DNA binding 

domain of the LexA.  Three independent transformants were analyzed for β-

galactosidase activity produced by activation of the lacZ reporter by protein/protein 

interactions.  The empty LexA vector and the LexA containing ETR1 opening reading 

frame were used as negative controls.  (B) Co-immunoprecipitation assay confirming 

the interaction between ATAF2-GFP and the 126-kDa replicase.  ATAF2-GFP 

transgenic plants were infected with the wild-type virus.  The infected tissues were 

precipitated with anti-GFP antibody and probed with anti-replicase antibody.   
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The result confirmed the interaction between ATAF2 and the TMV replicase in vivo 

(Fig 3.1B). 

Based on amino acid sequences, NAC proteins can be classified into several 

subfamilies (Ooka et al., 2003) and members within ATAF2 subfamily can be found 

in various plant species (Appendix A.1) (Selth et al., 2005).  To find out whether this 

ATAF2-TMV infection is also conserved in plant system, a Tomato Gene Index 

database was blast searched against ATAF2 amino acid sequence.  It revealed that the 

closest ATAF2 relative in tomato is gene SlNAC1, which encodes a 301-amino-acid 

protein.  The conserved NAC domains between ATAF2 and SlNAC1 showed 85% 

identity and 92% similarity (Appendix A.2).  Tomato SlNAC1 ORF was similarly 

introduced into the yeast two-hybrid system and the interaction between SlNAC1 and 

the TMV helicase domain was also detected (Fig. 3.1A).   

 

ATAF2 accumulation is disrupted upon TMV infection 

 Like other members within the NAC domain family, ATAF2 was found to 

contain a nuclear localization signal (NLS) (PRDRKYP) in the subdomain C by using 

a PSORT II program (http://bioweb.pasteur.fr/seqanal/interfaces/psort2.html).  To 

further investigate whether ATAF2 expression and nuclear localization is affected by 

TMV infection, a construct containing an ATAF2-GFP fusion under the control of the 

CaMV 35S promoter was produced and transiently expressed in either mock- or 

TMV-infected tissues.  As expected, ATAF2 localized exclusively in the nucleus in 

mock-inoculated tissues (Fig. 3.2A).  In TMV-infected tissues, however, the 

accumulation of ATAF2 was dramatically reduced to an undetectable level (Fig. 3.2).     



 

 99 
 

 A 

 
 
 
 
 
 
 

 

 

 

 

 B 

 

 

 

 

 

 

Fig. 3.2.  Transient expression of ATAF2-GFP in N. benthamiana epidermal 

cells.  TMV infection affects the accumulation of ATAF2-GFP as shown by 

fluorescent images (A) and by numbers of cells expressing detectable fluorescent 

signals (B).  Expression plasmids containing either ATAF2-GFP or GFP were particle 

bombarded into N. benthamiana leaves.  Fluorescent images were taken 14 to 16 

hours post bombardment.  Cell numbers were averaged from 10 independent 

bombardment experiments.   
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In contrast, no obvious changes were observed for the expression of GFP in either 

mock- or TMV-infected tissues (Fig 3.2).  This result suggests that the interaction 

between ATAF2 and the TMV replicase alters the ATAF2 localization and 

accumulation in the host.  Whether expression of ATAF2 is inhibited or ATAF2 is 

directed by the viral protein for degradation is not known.  

 

ATAF2 induces a developmental phenotype in transgenic Arabidopsis 

To characterize the function of ATAF2 in Arabidopsis, the full-length ATAF2 

ORF with a GFP fusion was cloned into an Agrobacterium binary vector under the 

control of the CaMV 35S promoter.  The construct was further introduced into 

Arabidopsis ecotype Shahdara.  Transgenic lines overexpressing ATAF2-GFP 

showed a developmental phenotype that included stunting of the plants, lack of apical 

dominance, curled or cup-shaped leaves, poorly developed inflorescence, and small 

siliques (Fig. 3.3).  All successful transgenic lines were confirmed by PCR and 

western-blot analyses (Fig. 3.3B).   

 

ATAF2 over-expression inhibits virus accumulation 

 To determine the effect of ATAF2 protein in relation to virus infection, 

accumulation of TMV coat protein (CP) in three independent ATAF2-GFP transgenic 

lines was analyzed.  In this study, The F1 progeny of ATAF2 transgenic lines were 

used.  The same amount of purified TMV virions was rub-inoculated onto either 

ATAF2-GFP transgenic or wild-type non-transformed plants.  At various time points 

(2, 4, and 6 dpi), the inoculated tissues were collected and proteins were extracted for 
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Fig. 3.3.  Over-expression of ATAF2-GFP in Arabidopsis.  (A). Successful 

transgenic lines were confirmed by PCR analysis using ATAF2 specific primers and 

Western blot using anti-GFP antibody.  ATAF2 genomic DNA in wild-type 

Arabidopsis plants contains two introns (nucleotide 279-367 and 649-739).  

Amplification of the entire exon and intron region from wild-type Arabidopsis 

resulted in a longer PCR product than that from ATAF2 overexpression lines.   (B) 

ATAF2-GFP transgenic lines showed strong developmental phenotype.  Photos were 

taken when the plants were 6 week old.  Observed phenotype includes severely 

stunted plants lacking shoot apical dominance; curled or cup-shaped leaves; and 

poorly developed inflorescence leading to small siliques.   
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analysis by SDS-PAGE and Western-blot.  Accumulation of CP in transgenic lines 

was greatly reduced when compared to wild-type control plants (Fig. 3.4).  Especially 

at 6 dpi, virus accumulation in ATAF2-GFP transgenic lines was found to be one-

sixth that in wild-type non-transformed plants (Fig. 3.4).  The reduced accumulation 

of virus in ATAF2 over-expression plants suggest that ATAF2 plays a role in host 

defense to virus infection. 

 

ATAF2 knockouts have no effects on virus accumulation 

Next, the effects of ATAF2 knockouts on TMV CP accumulation were 

assessed.  Two ATAF2 T-DNA insertion knockout lines, Salk_015750 with an intron 

insertion and Salk_136355 with an exon insertion, were obtained from TAIR.  Both 

knockout lines were confirmed by RT-PCR and both exhibited no obvious 

developmental phenotype distinct from that of wild-type plants (Fig. 3.5).  In 

addition, there was no significant difference in TMV accumulation between ATAF2 

knockout lines and wild-type plants (Fig. 3.5).  

More recently, VIGS (for virus-induced gene silencing) has proven to be an 

efficient way to shut down host gene expression.  Double-stranded RNA molecules 

formed during virus replication trigger a host silencing response through a homology-

dependent RNA degradation mechanism.  Therefore, host gene fragments, when 

introduced into the viral genome, will direct the host defense system to degrade the 

corresponding endogenous host mRNA, resulting in a down-regulation of host gene 

expression.  Liu et al. (2002) have efficiently utilized a TRV- based VIGS system to  
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Fig. 3.4.  Over-expression of ATAF2 inhibits TMV accumulation.  TMV 

accumulation in ATAF2-GFP transgenic and wild-type non-transformed plants is 

determined by measuring the TMV CP content in the inoculated tissues at 2, 4, and 6 

days post-inoculation (dpi).  Bars represent the levels of coat protein (CP) 

accumulated in inoculated tissues as determined by Western immunoblot.  The 

measurement of CP levels were performed using three independent ATAF2 over-

expression lines.  The test was repeated twice. 

 

 



 

 105 
 

Fig. 3.5.  ATAF2 knockouts have no effect on virus accumulation.  (A) Two 

independent ATAF2 T-DNA knockout lines (Salk_015750 and Salk_136355 ) 

obtained from TAIR show no obvious phenotype in comparison to wild-type plants.  

Photo was taken when the plants were 6 week old.  (B) Both knockout lines are 

confirmed by RT-PCR amplifying the full-length ATAF2 gene.  (C) Comparison of 

virus accumulation in two ATAF2 knockout lines and in wild-type plants.  TMV 

accumulation in ATAF2-knockout and wild-type plants is determined by measuring 

the TMV CP content in the inoculated tissues at 2, 4, and 6 days post-inoculation 

(dpi).  The same amount of total proteins (5 µg) collected from the infected tissues 

were fractionated in a 12% SDS-PAGE followed by a western blot analysis using 

antibody against TMV CP.  No difference of CP levels is detected between wild-type 

and ATAF2 T-DNA knock-out lines.   
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shut down the host gene expression in tomato.  Using a similar loss-of-function 

approach, DNA fragments from tomato SlNAC1 gene were introduced into TRV2 

VIGS vector.  All NAC proteins contain a highly conserved N- terminal NAC domain 

and a variable C-terminal TAR region.  VIGS targeting at the conserved N-terminal 

domain of SlNAC1 presumably disrupts accumulation of similar NAC genes in 

tomato.  In contrast, introduction of the C-terminal region to the VIGS system will 

only down-regulate the specific SlNAC1 gene itself.  The effectiveness of VIGS was 

analyzed by a semi-quantitative RT-PCR as shown in Fig. 3.6B.  The results showed 

that silencing SlNAC1 only did not affect plant growth in comparison to the control 

plants possibly due to the redundancy of NAC genes in plants (Fig. 3.6A).  However, 

targeting at the conserved NAC domain for gene degradation led to a strong 

developmental phenotype (Fig. 3.6A).  This result onfirmed the involvement of NAC 

proteins in plant developmental process.  The SlNAC1 silenced plants were inoculated 

with TMV virions.  Interestingly, although silencing NAC genes resulted in a strong 

developmental phenotype in tomato, there was no obvious difference in virus 

accumulation between SlNAC1-silenced and control plants (Fig. 3.6C). 

 

ATAF2 is induced in response to TMV infection 

In order to determine the expression of ATAF2 in response to virus infection, 

the promoter region of ATAF2 (2000 bp) was fused to the GUS reporter gene and the 

construct was further transferred to Shahdara using an Agrobacterium-mediated 

transformation.  After kanamycin selection, T2 generation from three transgenic lines 

was examined for GUS activity.  ATAF2 promoter activity was detectable in   
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Fig. 3.6.  Silencing of SlNAC1 in tomato has no effect on TMV accumulation.  (A) 

SlNAC1-silenced plants targeting at the N-terminal conserved NAC domain 

(TRV2/SlNAC-N) showed strong developmental defects.  VIGS targeting at the 

SlNAC1 specific TAR region (TRV2/SlNAC-C) showed no phenotype.  Silencing 

phytoene desaturase (PDS) gene led to a characteristic photobleaching phenotype on 

tomato leaves indicative the effectiveness of VIGS system.  (B) RT-PCR analysis of 

S.lycopersicon cv. Pilgrim SlNAC1-silenced and TRV2 control plants.  LeATAF2 is 

another member of NAC gene family in tomato. The 300-bp of specific C-terminal 

TAR regions from both SlNAC1 and leATAF were RT-PCR amplified to analyze the 

efficacy of VIGS.  Down-regulation of both SlNAC1 and leATAF2 was observed in 

SlNAC1-silenced plants targeting at the conserved NAC domain.  VIGS targeting at 

the SlNAC1 specific TAR region resulted in down-regulation of SlNAC1 gene only.  

Tomato eEF1A was used as an internal control.  (C) Both SlNAC1–silenced plants 

and TRV2 control plants were rub-inoculated with TMV and infected tissues were 

collected at three time points (2 dpi, 4 dpi, and 6 dpi).  The same amount of total 

proteins (5 µg) extracted from infected tissues was fractionated in a 12% SDS-PAGE 

followed by a western blot analysis using antibody against TMV CP.  No significant 

difference in virus accumulation was observed in both SlNAC1-silenced plants in 

compared to control plants. 
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seedlings, young plants, leaves, root vascular cylinder, and floral organs (Fig 3.7).  

No activity was observed in root tips (Fig 3.7). 

 To test ATAF2 expression in response to virus infection, four-week-old 

transgenic plants were inoculated with purified virions, and the ATAF2 expression 

was carefully monitored at different time points.  Induction of GUS activity was 

observed in TMV-inoculated tissues (Fig. 3.8) and activation of GUS activity was 

very similar to the patterns of virus accumulation and spreading determined by tissue 

print immunoblot using antiserum against TMV CP (Fig. 3.8).  However, mock-

inoculated tissues which were similarly dusted with carborundum did not show 

increased GUS activity (Fig. 3.8), suggesting that expression of ATAF2 in inoculated 

tissues was specifically induced by the virus.  

In a susceptible host, TMV can spread through vascular tissues to 

uninoculated tissues.  The ability of the virus to move systemically determines the 

viral pathogenicity.  In this study, we also examined the ATAF2 promoter activity in 

systemically infected tissues.  Although the virus accumulated in systemic tissues at a 

level comparable to that in the inoculated tissues, the increased activity of ATAF2 

promoter was not observed (Fig. 3.8B).  The induction of ATAF2 in TMV-inoculated 

tissues, but not in systemic-infected tissues was further confirmed by semi-

quantitative RT-PCR (Fig. 3.9).  These results suggest that ATAF2 expression is 

modulated by TMV at the different stages of virus life cycle. 
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Fig. 3.7.  Histochemical analysis of GUS activity in transgenic Arabidopsis 

expressing pATAF2::GUS fusion constructs. Shown are ATAF2 promoter activity 

in cotyledons (A and B), root and Hypocotyl/root junction (C), root central cylinder 

(D), 2-week-old young plant (E), leaf and hydathodes (F), sepals (G), filaments and 

pollen grain (H), and silique (I).  GUS activity is not detected in root tips (D), and 

petals (G and H) and less in root epidermal cells.  Bars in (A, B, C, E, G, H, and I) = 

0.5 mm, (D) = 0.2 mm, (F) = 5mm. 
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Fig. 3.8.  ATAF2 is induced in locally inoculated, but not in systemically infected 

tissues.  (A) Induction pattern of ATAF2 expression in TMV-inoculated tissues is 

similar to the pattern of virus accumulation and spreading.  Mock- or TMV-

inoculated tissues collected at different time points (2, 3, 4, 5, and 6 dpi) were 

analyzed on their GUS activity and TMV accumulation.  After histochemical staining 

for GUS activity, individual leaf was analyzed for its CP content by Western 

immunoblot.  To monitor the pattern of TMV accumulation and spreading, a tissue 

print immunoblot method was employed.  (B) Induction of GUS activity was not 

observed in systemically infected tissues.  The systemic tissues were analyzed at 14 

days post inoculation.  
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Fig. 3.9.  A correlation between ATAF2 and PR1 expression in inoculated and 

systemic-infected tissues.  (A) Comparison of ATAF2 and PR1 transcriptional levels 

in 6 dpi inoculated tissues and systemic tissues using a semi-quantitative RT-PCR.  1 

µg of total RNA was employed for RT-PCR and total of 36 PCR cycles were used.  

eEF1A was used as an internal control.  (B) Western blot to confirm the TMV 

accumulation within 6-dpi inoculated and systemic tissues. 
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Altered expression level of ATAF2 correlates to expression of PR1, a host defense 

gene  

 NAC domain proteins have been shown to be involved in host defense system 

(Collinge and Boller, 2001; Hegedus et al., 2003).  A microarray analysis 

demonstrated that ATAF2 over-expression repressed PR gene expression (Delessert et 

al., 2005).  Expression of PR genes is tightly correlated with the host defense 

responses, including the immediate hypersensitive response (HR) and the systemic 

acquired resistance (SAR).  To investigate whether PR gene expression is related to 

altered ATAF2 expression during TMV infection, an RT-PCR approach was 

performed to compare both ATAF2 and PR1 gene levels in TMV locally and 

systemically infected tissues.  The data collected here showed that although viruses  

accumulated more in systemic tissues, the transcription levels of both ATAF2 and 

PR1 are higher in inoculated tissues (6 dpi) (Fig 3.9).  Since PR1 is one of the key 

players in host defense system, the correlation of ATAF2 to PR1 expression suggests 

that ATAF2 is also involved in host defense responses.  In addition, ATAF2 was 

observed to be induced by salicylic acid (SA) treatment (Fig. 3.10), further 

implicating involvement of ATAF in host defense responses. 

 

3.5  Discussion 

All plant viruses contain a small genome when compared to their host.  Thus 

developing various strategies, including maximum use of host cellular machinery 

and active suppression of host defense systems, are necessary for viruses to achieve 

a successful infection.  Virus-host interactions have been recognized to play  
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Fig. 3.10.  Salicylic acid induces ATAF2 expression.  4-week-old ATAF2 

protmoter::GUS transgenic plants were watered with either 1mM SA or water.  GUS 

activity was monitored three days post SA treatment.  
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important roles in virus pathogenesis.  The TMV 126-kDa replicase protein is 

required for virus replication and is involved in several protein-protein interactions.  

In this study, novel interactions between the TMV replicase protein and NAC proteins 

of host transcription factor are characterized.  The possible involvement of NAC 

proteins in host defense signaling pathway is also proposed. 

 

Roles of ATAF2 in plant development and defense responses 

Being one of the earliest discovered members within the NAC domain family, 

ATAF2 was originally identified by its ability to alleviate the repressed activity of the 

CaMV 35S promoter in yeast (Xie et al., 1999, cited as personal communication).  

Overexpression of ATAF2 driven by the CaMV 35S promoter in Arabidopsis ecotype 

Shahdara gave rise to strong developmental phenotype that included stunting of the 

plants, curled and cup-shaped leaves, and underdeveloped floral organs (Fig. 3.3).  

Similar phenotypes were observed when introducing six different Brassica napus 

bnNAC genes into A. thaliana (Hegedus et al., 2003).  Interestingly, ATAF2 

overexpression in Arabidopsis ecotype Ler resulted in a distinct phenotype with the 

plant showing increased leave size and biomass (Delessert et al., 2005).  Different 

effects of NAC proteins on plant developmental processes suggest that although they 

share a conserved N-terminal domain, members within this transcription family 

function in different ways.  Consistent with a previous study, two ATAF2 T-DNA 

homozygous knockout lines (Salk_136355 and Salk_015750) showed wild-type like 

phenotype (Fig. 3.5A) (Delessert et al., 2005).  Since 105 members of NAC genes 

have been detected in Arabidopsis genome (Ooka et al., 2003), it is most likely that 
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lack of apparent phenotypes in ATAF2 knock-out plants is due to redundancy of NAC 

gene family.  A similar result was observed in tomato that when SlNAC1 gene itself 

was targeted for degradation, plants showed wild-type like phenotype (Fig. 3.6).  

However, down-regulation of all genes that share the conserved NAC domain 

resulted in developmental defects (Fig. 3.6).  

Previous studies have demonstrated interactions between NAC proteins and viral 

proteins from Wheat dwarf virus (WDV) (Xie et al., 1999), Tomato leaf curl virus 

(TLCV) (Selth et al., 2005), and TCV (Ren et al., 2000).  In this study, a NAC 

protein ATAF2 was identified to interact with the TMV replicase protein (Fig. 3.1).  

Over-expression of ATAF2 resulted in reduced virus accumulation, suggesting a role 

of ATAF2 in basal resistance to TMV infection.  Interestingly, a previous study 

showed that overexpression of ATAF2 led to increased susceptibility to the Fusarium 

oxysporum fungal infection (Delesser et al., 2005).  Fungal infection is generally 

associated with toxin secretion and plant cell death for the purpose of nutrient uptake.  

In contrast to that, being an obligate parasite, a viruse requires a living host for 

completing its replication cycles.  Therefore, different pathogens including viruses 

and fungi trigger distinct host defense responses.  Combined findings suggest that 

ATAF2 may act as a key regulator that differentially modulates host physiology and 

defense responses against viral and fungal infections.   As a transcriptional factor, it is 

possible that ATAF2 modulates different sets of downstream genes that result in 

different host physiological conditions that are conducive for fungi but unfavorable 

for viruses.  When dealing with the same pathogen, NAC proteins may also act in a 

different way.  Geminivirus replication has been shown to be enhanced by expression 
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of tomato SlNAC1 (Selth et al., 2005), but inhibited by GRAB proteins (Xie et al., 

1999).  Taken together, different roles for NAC proteins in pathogen infection suggest 

a functional diversity for these transcription regulators.   

 

TMV-modulated ATAF2 expression in susceptible plants 

A previous study has shown that ATAF2 is rapidly induced by stress, including 

wounding and P. syringae infection (Delesser et al., 2005).  In this study, TMV 

inoculation resulted in a rapid induction of GUS activity in transgenic plants 

expressing ATAF2 promoter::GUS fusion (Fig. 3.7).  Such an activation of ATAF2 

promoter activity was not observed in mock-inoculated tissues, suggesting the 

ATAF2 induction is very specific for TMV.  Interestingly, induction of ATAF2 was 

observed to be restricted to locally inoculated tissues even though the virus 

accumulates to greater levels in systemic-infected tissues.  This result indicates that 

expression of ATAF2 was modulated during the course of virus infection.  The NAC 

domain proteins have been shown to play a role in basal resistance to biotic stress 

(Collinge and Boller, 2001; Hegedus et al., 2003).  Results in this study suggest that 

in a susceptible plant, basal resistance of NAC proteins can be modulated by TMV.  

A previous microarray analysis has linked ATAF2 over-expression to the 

repression of pathogenesis-related PR genes in Arabidopsis ecotype Ler (Delessert et 

al., 2005).  PR genes are recognized to be involved in the host defense system that are 

generally associated with the localized hypersensitive response (HR) and the 

development of systemic acquired resistance (SAR).  Salicylic acid (SA) has long 

been recognized as a critical signal molecule that mediates the activation of defense-
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related genes in both local and systemic resistance responses.  SA treatment has been 

shown to inhibit TMV replication in tobacco mesophyll protoplasts and whole plants 

(Murphy and Carr, 2002).  In this study, expression of ATAF2 was observed to be 

induced upon SA treatment (Fig. 3.10), implicating an involvement of ATAF2 in the 

SA signaling pathway.  In addition, induction of ATAF2 locally but not systemically 

correlated to the expression of PR1 gene (Fig. 3.9).  Combined results suggest that 

TMV-directed ATAF2 expression is involved in the host defense pathway in a SA-

dependent manner.   

 

A model for the function of ATAF2-TMV replicase interaction in virus infection 

The battle between virus and its host involves extensive interactions and 

alterations of host gene expression.  The observations that ATAF2 can be induced by 

abiotic and biotic stresses indicate that expression of ATAF2 is a general 

stress/defense response in plant.  In this study, the interaction between the viral 

replicase protein and ATAF2 is shown to play a role in suppressing basal defenses in 

a susceptible host.  In the proposed model (Fig. 3.11), TMV infection rapidly induces 

ATAF2 expression at the initial infection site.  Being a transcription regulator, early 

induction of ATAF2 initiates a series of transcription events that results in the 

activation of a defined set of defense-related genes, such as PR1.  Accumulation of 

ATAF2 and other defense molecules further confers host basal resistance to viral 

infection.  For a susceptible host, the suppression of host basal defenses is a key step 

for viral pathogenesis.  I propose that the interaction between viral replicase proteins 

and ATAF2 disrupts the ATAF2 function, resulting in the down-regulation of 
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ATAF2-mediated signaling transduction pathway.  In TMV-infected plant tissues, 

126-kDa replicase accumulates ten times more than the183-kDa replicase 

(Lewandowski and Dawson, 2000).  The finding that TMV replicase interacts with 

ATAF2 as well as with other host proteins might explain the function of excess 126-

kDa replicase in modulating host defense systems or other aspects of the viral life 

cycle.  Consequently, expression of host defense-related genes is altered and the virus 

is able to establish a systemic infection.  
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Fig. 3.11.  A model illustrating the ATAF2-mediated signaling transduction 

pathway.  In TMV-inoculated tissues, initial infection rapidly induces ATAF2 

expression which further activates a series of host defense genes, including PR genes.  

Both ATAF2 and PR proteins confer basal resistance to virus infection.  In systemic-

infected tissues, however, interaction between the replicase proteins and ATAF2 

disrupts the ATAF2-mediated signaling pathway, resulting in the down-regulation of 

host defense genes and the subsequent development of disease symptoms. 
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Chapter 4: Conclusions and Perspectives 

For the past century, plant virologists have made considerable progress in 

understanding the fundamentals of viral activities, such as viral genetics, replication, 

movement, and pathogenesis.  However, due to the multi-functional nature of viral 

proteins and the complexicity of virus-host interactions, it is still not clear how 

viruses direct the assembly of their replication complexes and what mechanisms 

viruses have evolved to evade host defense systems.  Similar to many other closely 

related members within the alphavirus-like superfamily, TMV encodes two 

multidomain replicases each containing a helicase domain.  RNA viruses-encoded 

helicases have been considered important in viral replication because of their NTPase 

and RNA unwinding activities.  However, a growing body of evidence suggests that 

virus-encoded helicases are involved in viral activities other than replication during 

the viral life cycle.  In this study, I have successfully expanded the available 

knowledge on the biological significance of the TMV helicase domain in promoting a 

successful viral replication cycle.  The interaction that I have examined between the 

TMV helicase domain and ATAF2, a host transcription factor, further illuminated the 

complex interactions between the virus and its host. 

The goal of my first project was directed at identifying TMV helicase domain 

intermolecular protein-proteins interactions, defining biochemical properties of the 

conserved helicase motifs, and analyzing the biological relevance of the helicase 

motifs in forming replication complexes.  Virus-encoded helicases have been shown 

to be actively involved in viral protein-protein interactions.  The helicase domains 

within BMV-encoded 1a and AMV-encoded P1 interact with their respective RdRp 
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2a and P2 and these interactions are required for virus replication (Kao and Ahlquist, 

1992; Van Der Heijden et al., 2001).  Despite extensive studies on virus protein-

protein interactions, there is still limited information about the higher-order structures 

formed by replicase interactions.  My data indicates a self-interaction of the TMV 

helicase domain as observed both in vivo and in vitro.  The helicase-helicase 

interaction is postulated to serve as a structural platform for assembling virus 

replication complexes (VRCs).  Positive stranded RNA viruses generally assemble 

their VRCs on the host membrane.  Poliovirus viral protein 2c, a membrane-

associated protein with RNA-dependent ATPase activity, is capable of inducing host 

membrane vesiculation when expressed by itself (Aldabe and Carrasco, 1995).  

Similarly, the expression of BMV 1a, a helicase domain containing viral protein, 

leads to the formation of membrane-bound spherules (Schwartz et al., 2002).  Both 

membrane-associated structures are considered sites for virus replication, suggesting 

that viral proteins play an important role in directing the formation of VRCs in host 

cells.  However, the underlying mechanism as to how viral proteins regulate the VRC 

assembly has not been fully characterized.  The correlation between the ATPase 

activity of the TMV helicase domain and formation of active VRC-like vesicles 

indicates that the helicase domain is a key player in regulating VRC formation.  This 

is the first time that the ATPase activity of a viral helicase is shown to have a 

regulatory role during VRC assembly.  This research therefore not only broadens our 

views of the functional activities of the TMV helicase domain, but also suggests a 

possible mechanism for the assembly of VRCs of other related viruses. 
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Further studies for this project should be directed toward obtaining an in-depth 

understanding of the intermediate states of VRCs.  To do so, resolving the three 

dimensional structure of the helicase polypeptides, a key organizer for TMV VRC 

assembly would be critical.  Detailed structural conformation information on the 

TMV helicase polypeptide would provide insight into how the helicase polypeptides 

inter-connect to form higher-order structures.  By comparing the detailed structural 

conformations of wild-type and mutant helicase polypeptides, the important residues 

related to their biochemical activities can be assessed.  Furthermore, a mutational 

analysis of the TMV helicase domain should be conducted based on the structural 

model.  Combined, such information would provide a more complete understanding 

of the structural and functional relationship of this important protein in virus 

replication.  The tools and methods I have developed in this study, such as protein 

expression and purification, will serve as key factors in this effort.  

To establish a successful infection, not only is it necessary for viruses to 

assemble virus replication factories in the host cell, but viruses must also develop 

strategies to evade host defense systems.  It has been recognized that plants utilize 

multiple signaling pathways to control defense responses.  Several families of 

transcription factors, including bZIP, WRKY, and ERF have been reported to be 

associated with host basal defenses (for review, see Singh et al., 2002).  For example, 

a WRKY-type transcription factor was shown to be induced by TMV infection in 

resistant tobacco plants (Yoda et al., 2002).  A NAC domain family of transcription 

factors was identified only a decade ago and our knowledge of this gene family on 

host defenses has only just begun.  In this dissertation, a NAC protein, ATAF2, was 
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identified as a possible regulator of host defenses.  Expression of ATAF2 is observed 

to be rapidly induced in response to TMV infection.  It remains unknown how the 

ATAF2 gene expression is triggered.  Signaling molecules, such as SA, ethylene, and 

jasmonic acid, have been widely recognized as important messagers in activating host 

defense genes (Reymond and Farmer, 1998).  The observation that ATAF2 

expression is induced upon SA treatment suggests that ATAF2 may be involved in 

the SA-mediated host defense pathway.   

Representatives of bZIP and WRKY transcription families have been shown to 

bind to cis-acting elements of defense-related genes and to regulate their expression 

(Eulgem et al., 1999; Jakoby et al., 2002).  Examples of these cis-acting elements 

include G, C, W, and as-1 boxes.  Similar to other transcription factor families, DNA-

binding motifs are detected within the well-conserved NAC domain, suggesting that 

NAC proteins may bind to a similar set of DNA elements (Duval et al., 2002).  Xie et 

al. (2000) showed that NAC1 bound to a region of the CaMV 35S promoter 

containing the as-1 activation element.  Several BnNAC proteins were further 

characterized and shown to trans-activate a minimal CaMV 35S promoter containing 

the as-1 element (Hegedus et al., 2003).  Although there is no direct evidence 

showing that the activation of defense-related genes is regulated by the ATAF2 

transcription factor, a correlation between ATAF2 and PR1 expression in locally and 

systemically infected tissues suggests that both genes are transcriptionally connected.  

Consistent with this hypothesis, PR1 genes from both Arabidopsis and tobacco have 

been found to contain an as-1 related element in their promoter region (Lebel et al., 

1998; Strompen et al., 1998).  In addition, phosphorylation and protein modification 
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have been shown to play a role in activating latent transcription factors required for 

defense gene activation.  WRKY transcription factors act downstream of the 

SIPK/WIPK (MAP kinases) cascade when the cascade is activated by various stresses 

including wounding and pathogen infection (Kim and Zhang, 2004).  Detection of an 

area rich in serine/threonine residues within the ATAF2 C-terminal TAR region 

implies that the phosphorylation of ATAF2 may represent an alternative method to 

induce downstream defense response genes (Hegedus et al., 2003).  Altogether, it is 

postulated that ATAF2 possesses a regulatory role that functions in activating host 

defense responses against viral infection.   

In addition to identifying sequence elements of target genes, a large-scale 

transcriptome analysis has related the expression of host defense genes to ATAF2 

(Delessert et al., 2005).  In contrast to my observation, they show that PR1 was 

repressed in ATAF2 over-expressed plants.  Considering different Arabidopsis host 

systems used in these two studies (Ler in their study and Shahdara in this work), it is 

possible that ATAF2 functions differentially in activating or repressing defense-

related genes in different host systems.  Furthermore, ATAF2 overexpression inhibits 

TMV infection in the Arabidopsis ecotype Shahdara.  Overexpression of ATAF2 in 

Arabidopsis Ler, however, conferred a higher susceptibility to the soil-borne fungal 

pathogen Fusarium oxysporum (Delessert et al., 2005).  Again, opposite responses to 

pathogen invasions suggest that ATAF2-mediated basal host defenses likely include 

multiple signals and functions that ultimately regulate the defense responses. 

The interaction between the NAC protein and the TMV replicase represents an 

important finding.  Previous studies have shown several members of the NAC protein 
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family are involved in the host defense systems against viral infection.  For example, 

GRAB1 and GRAB2 were identified to interact with Wheat dwarf geminivirus 

(WDV) RepA protein and their overexpression inhibited viral replication in cell 

culture (Xie et al., 1999).  Interaction between the NAC protein TIP and the coat 

protein of TCV was shown to be involved in the induction of the hypersensitive 

response, suggesting that TIP plays a role in the host defense response pathway (Ren 

et al., 2000).  The ability of the TMV helicase domain to interact with both 

Arabidopsis ATAF2 and its tomato homologue, SlNAC1, indicates that this specific 

virus-host interaction is conserved in plants.  Interactions between viral proteins and 

NAC domain proteins suggest a major role of NAC domain proteins in viral 

pathogenesis.   

In a susceptible host, the molecular events that follow virus systemic movement 

are not yet understood.  In my model, ATAF2 is an important component in 

regulating the transcription of host defense genes in systemic tissues.  Despite high 

accumulation of virus in systemically infected tissues, expression of ATAF2 and PR1 

was observed to reduce to a level similar to that in uninfected cells.  This result 

indicates that during the course of viral infection, viruses are capable of modulating 

the expression of host defense genes, even though it remains unclear what signal 

triggers the transcriptional reprogramming of host defense genes in systemically 

responding tissues.  A number of WRKY genes has been shown to contain cis-acting 

elements in their promoter region, suggesting a self-regulation of WRKY genes in 

host defense systems (Dong et al., 2003; Eulgem et al., 1999).  It is possible that 

ATAF2 expression undergoes a similar self-regulation pathway.  I suspect that 
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interacting with the TMV replicase disrupts the nuclear localization and function of 

ATAF2, affecting its feedback mechanism on transcriptional regulation.  Depletion of 

ATAF2 further results in downregulation of downstream defense-related genes.  

Alternatively, miRNA-mediated gene expression may be involved in ATAF2 

expression in systemic tissues.  A bioinformatic analysis has predicted that most of 

the miRNA targets are transcription factors (Rhoades et al., 2002).  Expression of 

NAC genes, including NAC1, CUC1 and CUC2, has been shown to be post-

transciptionally regulated by miRNAs (Laufs et al., 2004; Mallory et al., 2004).   

Thus miRNA-directed degradation of ATAF2 possibly plays a role in controlling 

expression of host defense genes in systemic tissues.  However, whether this 

hypothesis is true needs to be evaluated.  

Much of our knowledge about host defenses counts on the resistance (R) gene-

mediated hypersensitive response (HR), which is often associated with the induction 

of a set of pathogenesis-related (PR) genes.  However, the expression of host defense-

related genes, including PR genes, in a virus susceptible host suggests that both 

compatible and incompatible virus-host interactions share a common defense 

signaling pathway.   A transcriptome analysis has revealed that there exist extensive 

overlaps on host gene expression in both systemic acquired resistance (SAR) and the 

plant basal defense (Maleck et al., 2000).  Similarly, a set of genes is found to 

respond to biotic and abiotic stress in a similar manner (Narusaka et al., 2004).  

Overall, it is likely that some signaling pathways are common in different plant 

defense systems, thus identifying specific ATAF2-mediated signaling pathways may 

provide important insight into understanding the general mechanisms of plant defense 
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responses.  Furthermore, a growing body of evidence suggests that there is an overlap 

between the gene expression triggered by pathogen inoculation and other 

physiological processes, such as senescence (Quirino et al., 1999).  NAC proteins 

have been shown to be involved in plant developmental processes (Aida et al., 1997; 

Hegudus et al., Souer et al., 1996).  Overexpression of ATAF2 resulted in a strong 

developmental phenotype similar to the symptoms caused by TMV infection.  These 

results suggest that there might also be overlaps between the development-associated 

signaling network and that activated by pathogen infection.   

Due to the high genetic redundancy for transcription factors, ATAF2 knockout 

lines were not informative in revealing ATAF2 functional activities.  More recently, 

two studies have successfully utilized a repression domain of the EAR (ERF-

associated amphiphilic repression) motif to suppress the expression of specific NAC 

genes in the presence of other redundant transcription factors (Fujita et al., 2004; 

Hiratsu et al., 2003).  This technique, known as CRES-T (Chimeric Repressor 

Silencing Technology), makes a translational fusion of a target gene with an EAR 

repressor motif, SRDX, with the fusion proteins actively suppressing the function of 

the target gene.  Using this approach, Arabidopsis transgenic lines overproducing an 

ATAF2-SRDX fusion protein can be constructed.  The resulting transgenic plants 

should silence a suite of downstream target genes, thus representing repression lines 

for ATAF2.  I would expect that in contrast to ATAF2 overexpression lines, ATAF2 

repression lines would show enhanced susceptibility to TMV infection.  Furthermore, 

within ATAF2 repressed plants, changes in the PR gene expression upon TMV 
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infection can be monitored.  Combined these studies should allow us to have an 

improved understanding of ATAF2 function in regulating the host defense response.   

In conclusion, studies presented in this dissertation provided new insight into 

the functional activities of virus-encoded helicases.  The molecular characterization of 

the TMV helicase domain indicated that it is involved in VRC assembly and is 

essential for virus replication.  Furthermore, the TMV helicase acts as a virulence 

determinant through interaction with specific NAC domain family members.  The 

knowledge obtained from these studies would help us to develop efficient antiviral 

strategies by targeting at the viral helicase domain and ultimately to achieve our final 

goal at controlling viral infection. 
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Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1.  A phylogenetic tree showing the relationship between ATAF2 and 

other NAC domain proteins.  Both ATAF2 and SlNAC1 belong to ATAF2 

subfamily.  Alignment of NAC domain protein sequence was conducted using the 

ClustalW2 program.  The phylogenetic tree was drawn using a GeneBee program at 

http://www.genebee.msu.ru/services/phtree_reduced.html. 
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Appendix 2.  Sequence alignments of Arabdopsis ATAF2 and tomato SlNAC1 

and LeATAF2.  Black areas represent identical residues.  Gray areas represent 

similar residues. 
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