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A tremendous amount of digital visual data is being collected every day, and we

need efficient and effective algorithms to extract useful information from that data.

Considering the complexity of visual data and the expense of human labor, we expect

algorithms to have enhanced generalization capability and depend less on domain

knowledge. While many topics in computer vision have benefited from machine

learning, some document analysis and image quality assessment problems still have

not found the best way to utilize it. In the context of document images, a compelling

need exists for reliable methods to categorize and extract key information from

captured images. In natural image content analysis, accurate quality assessment

has become a critical component for many applications. Most current approaches,

however, rely on the heuristics designed by human observations on severely limited

data. These approaches typically work only on specific types of images and are hard

to generalize on complex data from real applications.



This dissertation looks to address the challenges of processing heterogeneous

visual data by applying effective learning methods that directly model the data

with minimal preprocessing and feature engineering. We focus on three important

problems - text line detection, document image categorization, and image quality

assessment. The data we work on typically contains unconstrained layouts, styles,

or noise, which resemble the real data from applications. First, we present a graph-

based method, learning the line structure from training data for text line segmen-

tation in handwritten document images, and a general framework to detect multi-

oriented scene text lines using Higher-Order Correlation Clustering. Our method

depends less on domain knowledge and is robust to variations in fonts or languages.

Second, we introduce a general approach for document image genre classification

using Convolutional Neural Networks (CNN). The introduction of CNNs for docu-

ment image genre classification largely reduces the needs of hand-crafted features or

domain knowledge. Third, we present our CNN based methods to general-purpose

No-Reference Image Quality Assessment (NR-IQA). Our methods bridge the gap

between NR-IQA and CNN and opens the door to a broad range of deep learning

methods. With excellent local quality estimation ability, our methods demonstrate

the state of art performance on both distortion identification and quality estimation.
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Chapter 1: Introduction

Digital image content on the internet has been increasing rapidly, and we are

in need of effective methods to evaluate and understand visual data. The complex-

ity of visual data requires algorithms with enhanced learning capability and less

dependence on prior knowledge which can be difficult to obtain and is often inaccu-

rate. While many topics in computer vision have benefited from machine learning,

some document analysis and image quality assessment problems have not yet found

the best way to utilize machine learning. In the context of document images, a

compelling need exists for reliable methods to categorize and extract key informa-

tion from captured images. In natural image analysis, accurate quality assessment

has become a critical component for many applications. Most current approaches,

however, rely on the heuristics designed by human observations on severely limited

data. These approaches typically work only on specific types of images, and are

hard to generalize on complex data from real applications.

This dissertation aims to address the challenges of processing heterogeneous

visual data by applying effective learning methods that directly model the data,

with minimal preprocessing and feature engineering. We focus on open problems

including text line detection, document image categorization, and image quality as-
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sessment. The data we work on typically contains unconstrained layouts, styles,

or noise, which resemble the real data from applications. We first define the prob-

lems in various application areas, then formulate them as machine learning tasks.

We provide solutions that learn from the data with minimal hand-designed rules,

achieving state of the art performance.

1.1 Handwritten and scene text line detection

Text can provide crucial information about the image where it resides. Some-

times, we are interested only in the information carried by text that occupies the

majority of the image, such as scanned documents. In other cases, text may not

be dominant but provide context to understand the image, such as a traffic sign in

a street view image. Extracting text from images has been extensively studied by

the research community. Despite the successes obtained on well-constrained con-

ditions, such as clean machine printed documents, more problems remain to solve.

We address text line detection on unconstrained handwritten documents and natural

images as part of the MADCAT program.

Text line extraction on scanned documents presents an important step for

many document processing tasks such as word/character recognition [1], layout-

analysis [2] and skew estimation [3]. Unlike printed documents, the lines in hand-

written documents are often skewed and curved. Moreover, overlapping spatial

envelopes of text lines, touching of characters across lines, and irregularity of layout

and character shapes originated from the variability of writing styles make the prob-
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lem more challenging. Recent work has focused on addressing each of these issues

individually, but a unified framework of all the challenges associated with handwrit-

ing is still necessary. The past few years have seen tremendous growth and success

of learning based methods for object recognition and image segmentation, but ex-

isting methods for text line segmentation in handwritten documents tend to use

unsupervised approaches. Because training data is difficult to obtain, most systems

use only a small validation set for tuning parameters. Earlier methods primar-

ily targeted printed and a limited class of handwritten documents where encoding

heuristics in an unsupervised setting produced acceptable results. For unconstrained

handwritten documents, it has been difficult to encode all of the knowledge, and the

unsupervised methods have not performed satisfactoryly for many datasets. When

the images are degraded, many existing methods fail even for printed and less com-

plex handwritten documents. Although many tools for efficient groundtruthing [4]

are available and it is less expensive to obtain labels for text line data, most existing

approaches have hand-coded the knowledge obtained from inspecting the training

data.

Text in natural images carries important semantic information. Localizing

text aids scene understanding and is also relevant to a number of computer vision

applications, such as internet image indexing, mobile vision, and low vision aids [5].

Detecting text lines in natural images differs from the detection in handwritten

documents, because typically non-text content prevails in a natural image. The

major challenge is to locate text accurately from numerous distracting patterns.

Generally, text lines in natural images are curvilinear and diversified with different

3



orientations, fonts, sizes, and scripts, designed to attract attention. However, most

current methods focus on building models for a certain range of fonts and scripts,

such as detection-by-recognition approaches. The bounding boxes of the areas for

potential character regions are detected and classified, and text line structures are

enforced to link bounding boxes heuristically. These kinds of approaches may not

be easily adapted to multi-orientation cases. We hypothesize that text can be better

identified by properties of a group rather than by individual characters. Individual

image elements vary greatly and tend to cause false alarms for those methods explic-

itly using character models. A group of similar elements can provide more robust

statistics for discriminating text from noise. Therefore, it is natural to group image

elements based on pairwise and groupwise similarity, then classify them as text or

non-text regions. This can be regarded as a trade-off between top down detections

and bottom up heuristic rules.

For text line detection in unconstrained handwritten documents, we develop

a dictionary-based method that learns the similarity from training data. We use

image-patches in the training data to obtain the contextual evidence needed for

detecting text lines in a new document images. We construct a graph based on

a dictionary of context patches, then partition the graph using Normalized Cuts

guided by a novel method that predicts the number of clusters. For the text de-

tection from natural images, we propose a higher-order correlation clustering based

framework to detect multi-oriented scene text lines with less dependency on font

or language. We group similar elements first, then identify each group as text or

non-text. Both of our methods achieve state of the art performance.
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1.2 Document image categorization

Classifying and grouping large collections of document images into known cat-

egories is often a prerequisite step toward document understanding tasks, such as

text recognition, document retrieval, and information extraction [6]. These tasks

can be greatly simplified if we know a priori the genre or the layout-type of docu-

ments. Existing approaches in the literature differ mainly in their choices of local

features, global representations, and learning mechanisms [7]. Various structure or

layout-based features have been introduced [8–12] and are shown to be effective for

document image classification and retrieval. These approaches, however, are limited

to a particular class of documents, such as forms, memos, contracts, and orders. To

apply existing classification systems to other types of documents, we need to re-

consider spatial features and tune them manually. Moreover, when the content and

structure in documents are unconstrained, as in handwritten documents, pre-defined

features may not be able to capture all variations of a particular class.

A more general approach needs to be developed, which automatically learns

different abstractions of structure hierarchy and spatial relationship among doc-

ument elements. Document images usually have a hierarchical structure, such as

cells in rows and columns of tables, words in sentences, and sentences in paragraphs.

These hierarchical patterns often repeat throughout a document. These properties

imply the possibility of learning the layout as a combination of small group of middle

or lower level features.

We present a general approach for document image classification using Con-
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volutional Neural Networks (CNNs). CNN offers a kind of neural networks that

shares weights among neurons in the same layer. CNN discovers spatially local

correlation by enforcing a local connectivity pattern between neurons of adjacent

layers [13]. With multiple layers and pooling between layers, CNN automatically

learns the hierarchical layout features with tolerance to spatial translation, and by

sharing weights, it captures repeating patterns efficiently.

1.3 Image quality assessment

Visual quality is a complex and inherent characteristic of images. In principle,

it offers the measure of the distortions when compared with ideal imaging models or

perfect reference images. When reference images are available, Full Reference Image

Quality Assessment (FR-IQA) methods [14–18] can be directly applied to quantify

the differences between distorted images and their corresponding ideal versions.

State of the art FR measures, such as VIF [14] and FSIM [15], achieve a high

correlation with human perception. However, in many practical computer vision

tasks, no perfect versions exist of the distorted images, thus these tasks require

No-Reference Image Quality Assessment (NR-IQA). NR-IQA measures can directly

quantify image degradations by exploiting features that are discriminant for image

degradations.

Most successful approaches toward this challenge use the Natural Scene Statis-

tics (NSS) based features. Typically, NSS-based features characterize the distri-

butions of certain filter responses, and they are extracted in image transforma-
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tion domains, such as the wavelet transform [19] and DCT transform [20]. These

methods usually operate slowly due to the use of computationally expensive image

transformations. NSS-based methods heavily rely on domain knowledge. Different

NSS-based methods demonstrate large variations in performance given different de-

sign choices. Traditional NSS-based methods achieve much lower performance when

compared to the state of the art. Recent development in NR-IQA methods, COR-

NIA [21, 22] and BRISQUE [23], promote extracting NSS features from the image

spatial domain, which leads to a significant reduction in computational time. COR-

NIA shows that it is possible to learn discriminant image features directly from

the raw image pixels, instead of using handcrafted features. Although CORNIA

and BRISQUE have performed promisingly, a performance gap still exists between

machine and human. The state of the art methods typically focus on 5 types of

distortions on the relatively easy LIVE dataset. Many other types of distortions

still exist and need to be assessed, for example, the performance on the 17 types

of distortions on TID2008 dataset remains far from perfect. Challenges, such as

assessment of local image distortions and multi-distortions, are rarely attempted,

let alone solved. Therefore, NR-IQA still exists as an open problem.

We explore using a Convolutional Neural Network (CNN) to learn discrimi-

nant features for the NR-IQA task. In one of CNN’s advantages, it can take raw

images as input and incorporate feature learning into the training process. With a

deep structure, the CNN can effectively learn complicated mappings while requiring

minimal domain knowledge. To the best of our knowledge, CNNs have not been ap-

plied to general-purpose NR-IQA. The original CNN is not designed for capturing
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image quality features. In the object recognition domain good features generally

encode local invariant parts, however, for the NR-IQA task, good features should

be able to capture NSS-like properties. The difference between NR-IQA and object

recognition makes the application of CNN nonintuitive. In one of our contributions,

we modified the network structure so that it can learn image quality features more

effectively and estimate the image quality more accurately. We extend our CNN

to a multi-task architecture, which can simultaneously identify the distortion and

estimate the quality.

1.4 Deep learning and its applications

Recently deep learning has gained researchers’ attention with great success

on various machine learning tasks. Common public sources, such as Wikipedia,

characterize deep learning as those machine learning algorithms that use architecture

consisting of multiple non-linear transformations to model high-level abstractions in

data. Many successful deep learning methods are based on artificial neural networks

(ANNs). ANNs had been less employed compared to other shallow models, such as

support vector machines (SVM), because it is difficult find optimal solutions with

ANNs. Also, their training processes require a tremendous amount of computation.

The research community recently rediscovered the value of ANNs, and can obtain

excellent performance by applying a number of modern techniques to overcome the

traditional flaws of ANNs and achieving their potential efficacy.

Deep learning has its root in human information processing mechanisms (e.g.,
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vision and speech), which suggests the need of deep architecture for extracting

complex structure and building internal representation from input signals. Typical

deep learning systems are built with deep architectures consisting of many layers of

nonlinear processing stages, where each lower layer’s outputs are fed to its immediate

higher layer as the input. Compared to shallow architectures, deep learning methods

usually have greater modeling and representational power, which enables us to deal

with more complicated real-world applications, such as understanding unconstrained

natural images and visual scenes.

Among several streams of deep learning methods, CNNs are the most widely

used as the top performing methods for object recognition tasks. CNNs represent a

particular kind of multi-layer neural networks, being designed to exploit how objects

usually undergo shifts or translational variations in images. Feature detectors that

work well on one part of the image are likely to be succeed across the entire image.

With the guidance of this knowledge, each neuron in a convolutional layer is forced

to receive input from only a small set of neighboring neurons in the previous layer,

called the receptive field. In addition, the neurons located at different places (with

different receptive fields) are forced to have identical weights. Each convolutional

layer is typically followed by a spatial pooling operation, which enhances tolerance

to the variation of features. The output of one convolutional layer is partitioned into

small sets, and one value is sampled (mean or the max) from each set as the input

for the next layer. With local receptive fields, neurons in the first convolutional layer

extract low level visual features, such as edges, dots and corners. These subsequent

layers then combine these features to detect higher-order features.
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CNNs integrate feature learning and classification/regression model learning

into one process, and can recognize visual patterns directly from pixel images with

minimal preprocessing. With the wide application of CNNs in recent years, hand-

crafted features are losing focus in the object recognition community. Domain

knowledge from experts is becoming less important for designing visual recogni-

tion systems. CNNs have shown superior performance on many standard object

recognition benchmarks [24–26], with a large margin compared to other kinds of

methods.

We would like to address several problems in image understanding and process-

ing with the help of deep learning techniques, including document image categorization

and blind image quality assessment. In the past, all of these problems were handled

using various handcrafted features and shallow-structure learning methods. Al-

though some previous methods demonstrated reasonable performance, these prob-

lems remain mostly unsolved with room for improvement. We approach these prob-

lems from the perspective of deep learning. Instead of relying heavily on domain

knowledge or heuristics, our methods directly work on the image domain, learning

the complicated features and classifiers/regressors in one network.

In our problems, the typical structure of CNN may not be the best choice

because it is designed for object recognition. For example, blind image quality

assessment has different properties from the typical object recognition, and we need

to design a customized network structure to adapt to the problem domain for better

performance. We demonstrate through experiments that our methods achieve state-

of-the-art performance on all the problems we work on.
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1.5 Outline

In the following chapters we present the details of our methods. Chapter 2 ad-

dresses text line detection in handwritten documents and natural images. Chapter 3

describes our work on document image categorization. Chapter 4 presents solutions

to No-Reference image quality assessment problems. In Chapter 5, we summarize

our work.
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Chapter 2: Handwritten and Scene Text

Line Detection

2.1 Text line detection in handwritten documents

Text line extraction remains an important step for many document processing

tasks such as word/character recognition [1], layout-analysis [2], and skew estima-

tion [3]. Unlike printed documents, the lines in handwritten documents are often

non-uniformly skewed and curved. Moreover, overlapping spatial envelopes of text

lines, touching of characters across lines, and irregularity of layout and character

shapes from the variability of writing styles produce a more challenging problem.

Recent work has focused on addressing each of these issues individually, no one

has developed a unified framework to account for all the challenges associated with

handwriting. For example, methods based on level-sets [27] are effective but com-

putationally slow, and methods based on connected-components (CCs) are fast but

challenged by touching components and overlapping lines [28]. Similarly, projection-

based methods [29] cannot handle overlapping lines or touching, and perform poorly

when given a large variation in character or word dimensions. In [30], the authors
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report that the method, which gave almost 100 percent accuracy on ICDAR 2009

competition data set [31], performed poorly on field data of degraded handwritten

Arabic documents, and an ensemble of multiple methods was required to obtain a

reliable segmentation/recognition accuracy.

In the past few years tremendous growth and success of learning based meth-

ods for object recognition and image segmentation [32] has occurred, but existing

methods for text line segmentation still tend to use unsupervised approaches. Train-

ing data are difficult to obtain, so most systems use only a small validation set for

tuning parameters. Earlier methods were targeted primarily at printed and a lim-

ited class of handwritten documents where heuristics produced acceptable results.

For unconstrained handwritten documents, it has been difficult to encode all of the

knowledge into the model, and the performance using unsupervised methods has

not been satisfactory for many data sets. When the images are degraded, many

existing methods fail even for printed and less complex handwritten documents. Al-

though many tools for efficient groundtruthing exist [4], and it is less expensive to

obtain labels for text line data, most existing approaches hand-coded the knowledge

obtained from “inspecting” the training data.

We have developed a graph-based method for text line segmentation that uses

image-patches in the training data to obtain the contextual evidence needed for

detecting text lines in a new document images. Training images are transformed into

summary maps, and patches with local groundtruth masks are randomly sampled

from the summary maps. Using k-medoids clustering, representative patches are

selected to construct a codebook. A new document image is also transformed into a
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summary map, and each non-zero bin is considered as a node in the graph. Context

patches are sampled at each node. For each context patch, the best match is found

from the codebook, and its associated groundtruth mask assists in updating the

similarities among the nodes in the patch. After constructing the similarity graph,

normalized cut [33] is employed to partition the graph. A novel Sequential Gap

Significance feature combined with a support vector machine predicts the number

of clusters. The partitioning continues recursively until no further split occurs.

Decisions on the graph are mapped back to the original image to provide the text

line segmentation. A postprocessing is employed to resolve fragmentation errors.

Our contributions includes learning a graph based similarity among large vari-

ations of text lines patterns, and solving the graph partitioning with accurate pre-

diction of the graph structure.

2.1.1 Related work

Existing methods in an unsupervised setting for text line segmentation can

be broadly categorized into three classes: top-down projection based methods [29],

bottom-up component grouping based methods [28, 34], and hybrid methods [30].

While top-down methods partition the document image recursively to obtain text

lines, bottom-up methods group small units of the document image (pixels, CCs,

characters, words) into text lines. Bottom-up grouping can be implemented through

clustering, which aggregates image components according to similarity and does not

rely on the assumption of straight lines. Kumar et al. [34] proposed a local orienta-
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tion detection based similarity for clustering primary CCs using Affinity propaga-

tion. In a post-processing step, errors in the text line are corrected iteratively using

Expectation-Maximization (EM) [28]. Their method achieves high accuracy on a set

of Arabic documents, but given the method is based on grouping CCs, it is less likely

to work on degraded document images where CCs are broken. Another method that

achieves high accuracy on many data sets is based on steerable directional filters [35].

It determines the local orientation of a text line by scanning in multiple directions

for maximum response of a convolution of the filter with the image. In the final

step, touching components are split at the contour level and the character images

are reconstructed. This method also fails to group components when the image is

degraded and spacing between character/words in text lines varies greatly.

Some recent work has incorporated supervised learning at different levels. Yin

and Liu [36] learn a distance metric for pairs of CCs using a labeled dataset. The

CCs are then grouped into a tree structure, where text lines are extracted by dy-

namically cutting the edges using a hyper-volume reduction criterion. By learning

the distance metric, this algorithm performs robustly with multi-skewed and curved

text lines. The method works only if spatial envelopes of text lines do not overlap,

which limits the application to unconstrained handwritten lines of different scripts.

Manohar et al. [30] proposed an ensemble system as a formulation of graph-clustering

problem and applied it to combine outputs of multiple text line segmentation meth-

ods. They construct a co-occurrence graph with nodes corresponding to CCs and

edges connecting pairs of CCs with an associate cost of having the pair same la-

bel (line). The edge cost is determined by the cost of a false split and merge, and
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the likelihood that a pair of CCs has the same label conditioned on the ensemble

output. These likelihoods are learned during training. Text line segmentation is

then formulated as the problem of minimum cost partitioning of the nodes in the

graph. As expected, the method performs better than individual methods but the

scaling and time performance of method is always lower-bounded by performance

of individual methods.

2.1.2 Approach

Our method learns the local spatial relationship between text lines and applies

an effective strategy to predict the graph structure for partitioning.

Visual codebooks constructed from invariant descriptors extracted from local

image patches have been widely used in texture analysis and visual recognition [37].

In [38], an effective method for image quality assessment used raw image patches

for codebook construction and achieved state-of-the-art performance. Inspired by

these methods, we use image patches to encode the local evidence of text lines.

2.1.2.1 Context patch extraction

An M × N binary document image is divided into square cells of size p × p.

A summary map of (M/p) × (N/p) bins is constructed, where each bin records

the number of foreground pixels in the corresponding cell of the document image.

Thus, the summary map resembles a downsampled version of the original image.

In the summary map, we define the context patch of a bin as an H × W region
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centered at this bin, where H and W are odd numbers so an exact geometric center

exists. In practice, each context patch is constructed as a vector by concatenating

its columns, and is normalized to unit norm. Figure 2.1(a) and (b) show part of a

document image and its summary map with a sampled context patch.

Figure 2.1: (a) Part of a sample image (b) Summary map and a context patch (in

yellow box) centered at the bin marked green. (c) Codebook consisting of context

patches and fellow masks. Fellows are marked in red.
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2.1.2.2 Codebook construction

Each training image is transformed into a summary map, and context patches

are randomly sampled at non-zero bins. The ground truth of each training image

exists at pixel level, i.e., each foreground pixel has a label indicating to which text

line it belongs. Thus we can obtain the bin level ground-truth by a majority voting

among the pixels to which a bin corresponds. We define one bin as a “fellow” of

another if the two bins have the same label, i.e. they are in the same text line. Each

context patch is accompanied by a mask of the same size, termed the fellow mask,

which records fellows of the center bin in this context patch.

Considering the storage of the codebook and the efficiency of comparison be-

tween a query patch and all codewords, it is better to use fewer patches to represent

the space of training data. We simply use k-medoids to select representative patches.

Figure 2.1(c) shows a codebook containing context patches and fellow masks.

The best matching codeword for a query patch is obtained by finding the

nearest neighbor in Euclidean space, which is equivalent to finding the maximum

inner product, given that the points sit on the unit sphere. It is also possible to

store all the sample patches and apply an efficient (approximate) nearest neighbor

search.

2.1.2.3 Computing similarities in the graph

We formalize the core step of text line segmentation as a graph partitioning

problem. Each non-zero bin corresponds to a node in the graph. The weight of an
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edge, i.e., the similarity between two nodes, indicates how likely two nodes have the

same label. Therefore, a graph that reasonably represents the structure of text lines

should have high similarity between any two nodes in the same text line and low

similarity where not.

To segment a document image, we first transform it into a summary map. For

each bin in the summary map, we extract its context patch and find the best match

in the codebook. We define a non-zero bin as a potential fellow of the center bin if its

position is marked as fellow by the codeword’s fellow mask. The similarities between

any two nodes are initialized as zero, and they are updated as follows. Assuming

the center bin of a context patch has f potential fellows, the similarity between

the center bin and each potential fellow is increased by 1/f . Using this strategy,

a bin with fewer fellows distributes stronger similarity to each fellow to maintain

their connections, while a bin densely surrounded by fellows will distribute smaller

similarity to each of its fellows. Together, they will have sufficient connections.

This similarity updating strategy achieves a balanced similarity distribution among

dense and sparse text regions, which greatly facilitates the graph partitioning stage

afterwards.

2.1.2.4 Estimating the number of clusters and graph partitioning

We employ normalized cut [33] to partition a similarity graph. Normalized cut

provides a near optimal solution for partitioning a graph where only local similarities

are obtained for data points, which complements our situation well.
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However, it is necessary to determine the number of clusters, which remains

a difficult problem. In [39], an eigengap heuristic is suggested - a relatively large

eigengap usually indicates the number of clusters if the dataset contains well pro-

nounced clusters. We tested this eigenvalue heuristic by choosing the number k, if

the kth eigengap is the largest one. This strategy did not perform satisfactorily,

with an accuracy below 20% on a semi-synthetic dataset explained in Section 4.

We observed that the real kth gap was usually significant, but often larger gaps ap-

peared at somewhere larger than the k. We conjectured that the number should be

determined by both the sequential order and the significance of the eigengaps. We

designed a feature called the Sequential Gap Significance (SGS). Assume we have

m eigenvalues λ1, λ2, · · · , λm in ascending order and their eigengaps gi computed as

follows:

gi = |λi+1 − λi|, i = 1, 2, . . . ,m− 1 (2.1)

The SGS feature is expressed as follows:

SGS(i) =


gi
T
, i = 1,

gi
maxj=1,...,i−1gj

, i = 2, . . . ,m− 1.

(2.2)

where T is a small positive offset. Essentially, SGS measures how “significant so

far” each eigengap is. Figure 2.2 compares eigenvalues, eigengaps, and SGS features

in characterizing the cluster structure. If we let k′ be the number of clusters such

that

20



k′ = arg max
i=1,...,m−1

SGS(i) (2.3)

then a reasonable estimation accuracy around 90% was obtained on the same semi-

synthetic dataset mentioned earlier. This still does not perform satisfactorily. Train-

ing data is available, so we can solve this problem in a supervised learning fashion.

We trained a multiclass SVM classifier that took the SGS features as input feature

vectors and predicted the number of clusters, and achieved about 97% accuracy.

One remaining issue with the method described above is that it can only

estimate the cluster number between 1 and m − 1. In practice, the real cluster

number k is not guaranteed to be less than m. To address this issue, we iteratively

partition the subgraphs until no further split is predicted.

2.1.2.5 Text line segmentation and postprocessing

After graph partitioning, each bin obtains a label indicating its cluster mem-

bership, and the mainframes of text lines are clear. Then each bin’s label is mapped

to the foreground pixels on the original image, and a coarse text line segmentation

is obtained.

We observed that characters touching across text lines are reasonably seg-

mented, while some non-touching strokes close to neighboring text lines were in-

correctly segmented into two or more pieces. This fragmentation is understandable

because the proposed approach is based on bins rather than connected components.

We developed a defragmentation technique to repair the errors. For each fragment
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Figure 2.2: Comparison of eigenvalues (negated and shifted, least becomes greatest),

eigengaps and SGS feature in characterizing the cluster structure.

in a connected component, we find the support text that has the same label and

resides in the neighborhood of context patch size. Robust multilinear regression [40]

is used to fit a line to the support text, treating each pixel as a point. Relative to

this line, we compute the residual of the mass center of the fragment, the average

residual of the support text and the standard deviation, denoted as Rc, Ravg and

Rstd, respectively. We define the fragment quality Q as follows:

Q =
Rc −Ravg

Rstd

(2.4)

If Q < 1, the fragment is considered a major fragment, and its label remains

unchanged. Otherwise, it is a minor fragment and ready to be merged into the closest
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major fragment, or the fragment with minimum Q if no major fragment exists in

this connected component. With this simple postprocessing, many fragmentation

errors are resolved, while most touching segmentations remain.

2.1.3 Experiments

2.1.3.1 Datasets

Two datasets were used in our experments, an Arabic field dataset and the

ICDAR2009 handwriting segmentation contest dataset [31]. The Arabic field dataset

contains 487 images with a total of 13,904 text lines. Images in this dataset present

complex layouts and different levels of noise and degradation, which are similar to

the data used in [30]. Figure 2.3 shows an example from the field dataset. The

ICDAR2009 contest dataset contains 200 images with a total of 4,034 text lines.

We randomly split this dataset into two parts, training and test, each with 100

images.

The traditional evaluation criterion was employed as in [31]. For a result region

R and a ground truth Region G, a matchscore is computed as

matchscore(R,G) =
‖R ∩G‖
‖R ∪G‖

(2.5)

where ‖ · ‖ denotes the cardinality of a set. The result region R is accepted if its

matchscore is above the threshold T .
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Figure 2.3: An example from the field dataset.

2.1.3.2 Results

Text line segmentation on the Arabic field dataset presents a highly challenging

task [30]. The whole dataset was randomly divided into three parts: 150 for training,

100 for validation and 237 for test. The codebook was constructed on the training

set, and the SVM parameters were optimized on the validation set. Due to the noisy

nature of this dataset, a loose threshold T = 0.75 was used for evaluation to allow

minor matching errors. Table 2.1 shows that the proposed approach outperformed

[28] on the test set. Figure 2.4 shows a few samples of segmentation results. We

can see the proposed approach can segment complex text lines.

On the ICDAR2009 dataset, the codebook was not directly constructed on the

training set, instead, we first created two semi-synthesized datasets S1 and S2 from

the training set. S1 and S2 are created as follows: each training image produced

five copies I1, I2, . . . , I5 and j text lines are randomly erased on Ij, j = 1, 2, . . . , 5.
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Figure 2.4: Samples of segmentation results.

Then, we obtained 500 semi-synthesized images for S1 and S2 each. The semi-

synthesized datasets provide graphs with different number of clusters for training.

If we train our model directly on the original data, connections exist between bins

of neighboring text lines, thus most images produce a single graph containing all

text lines, and training samples of small cluster number are scarce. When text lines

are randomly erased, separate graphs with different cluster numbers emerge in each

semi-synthesized image, thus obtaining balanced training samples.

The codebooks and RBF kernel SVM models under different sizes of context

patch and bins were constructed on S1. Parameters of SVM models were optimized

on S2.
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Table 2.1: F1 on the field dataset (%)

[28] proposed

56.5 64.9

We simply applied the proposed method without much post-processing and

optimization targeted at this dataset, so we have not achieved state-of-the-art ac-

curacy (99.53% reported in the contest [31]). Table 2.1 shows the performance on

test set with different acceptance threshold T . Lacking a full comparison given the

current unavailability of [28]’s performance at T = 0.75, we can see the accuracy

approaches 100% at the lower threshold. This indicates that main bodies of text

lines are correctly detected for the most part, and many errors lie in character and

stroke level segmentation. This is confirmed by careful visual examination.

Table 2.2: F1 on the ICDAR2009 contest dataset (%)

T [28] our method

0.95 97.8 98.3

0.75 – 99.4
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2.2 Scene text line detection

Text in natural scenes carries important semantic information. Localizing

text aids scene understanding, and is also relevant to a number of computer vision

applications, such as internet image indexing, mobile vision, and low vision aids.

Generally, text lines in natural images are curvilinear and diversified with differ-

ent orientations, fonts, sizes, and scripts. We hypothesize that text can be better

identified by properties of a group rather than those of individual characters (Fig-

ure 2.5). Individual image elements vary greatly and tend to cause false alarms

for those methods explicitly using character models. However, a group of similar

elements provides more robust statistics for discriminating text from noise. It is,

therefore, natural to group image elements based on pairwise and groupwise sim-

ilarity, then classify them as text or non-text regions. This can be regarded as a

trade-off between top down detections and bottom up heuristic rules.

We approach the text detection problem from an image partitioning perspec-

tive and propose a general framework to detect multi-oriented scene text lines with

less dependency on font or language. We aim to group similar elements first, then to

identify each group as text or non-text. Specifically, we use MSERs [41] as the basic

elements and partition them to segments. This results in a few important changes

in the processing flow. Instead of focusing on the strong detection and filtering ap-

proaches, we use weak hypotheses for similarity clustering, followed by region-based

filtering.

The elongated nature of text lines suggests that the long range dependencies

27



(a) (b) (c) (d) (e)

Figure 2.5: Intermediate results in our procedure. From top to bottom, MSER

extraction, local text line hypotheses (green bounding boxes), pairwise edges in

HOCC, results for HOCC, and results for texture classification (yellow bounding

boxes). Different MSERs/regions are represented by different colors.
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among multiple nodes can be exploited, so we explore the Higher-Order Correlation

Clustering (HOCC) [42]. Weak hypotheses of local text lines can be generated

based on their spatial alignment and appearance consistency with respect to their

neighbors. HOCC may reject these hypotheses depending on the objective function

of these similarities. This results in either a merge or a split of hypotheses, which

offers a pleasant property to pursue. In another appealing property, HOCC allows

for large margin training. Using structured SVM [43], the parameters of HOCC can

be learned from the training data [42], and we are spared from adopting too many

heuristics.

In HOCC, we use the regularization method [44] to solve the Semidefinite Pro-

gramming (SDP) problem [45]. The original HOCC proposed a linear programming

relaxation solution with a large number of inequality constraints. This complex

linear system can be written elegantly in the SDP framework, allowing us to solve

the system effectively with a large number of variables in a few seconds. After

clustering, we use a texton-based texture classifier to discriminate between text and

non-text areas.

We compare our method with those aiming at detecting multi-oriented and

multi-language text. On a recently published dataset, our method generates promis-

ing results compared to the state of the art methods.
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2.2.1 Related work

The text detection problem was studied extensively in recent work [46–51].

However, most current methods focus on building models for certain ranges of fonts

and scripts, such as detection-by-recognition approaches [47, 48, 51]. The bounding

boxes of the areas for potential character regions are detected and classified, and

text line structures are enforced to link bounding boxes together heuristically. These

kinds of approaches may not be easily adapted to multi-orientation cases.

Correlation clustering was originally proposed by [52] as a similarity clustering

approach, which models pairwise relationships between entities instead of the entities

themselves and does not require specifying the number of clusters. Higher-Order

Correlation Clustering (HOCC) [42] improves on the original correlation clustering

where higher-order relations can be incorporated. In HOCC, long range interactions

can be defined by less accurate measurements (i.e., weak hypotheses), because they

are regarded as soft constraints in clustering. HOCC may reject these hypotheses

depending on the objective function of these similarities, which presents a notable

differences between the higher order correlation clustering and other classical higher

order Markov Random Field (MRF).
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2.2.2 Approach

2.2.2.1 Building graphs for detection-by-clustering

In our approach, an image is represented by a graph of Maximally Stable Ex-

tremal Regions (MSERs). The detection amounts to identifying subgraphs, which

contain text lines. We adopt MSER because our approach intends to perform de-

tection for multiple languages at multiple orientations, thus we seek generic repre-

sentations of text regions. Among graph partitioning algorithms, correlation based

methods are particularly well suited to our problem. These methods rely on pair-

wise similarity, such as contrast, solidity (the ratio of contour area to its convex hull

area), area ratio, and distance in images. More interestingly, prior knowledge can be

incorporated as weak hypotheses of grouping. First, MSERs are extracted, then a

graph of MSERs is constructed for an image. Second, MSERs are coarsely grouped

by considering their consistency with neighbors, which create weak hypotheses. The

correlation based grouping is described in the next section.

2.2.2.2 Extracting MSERs and building the graph

First, we compute MSERs for an input image (first row in Figure 2.5). One can

observe that the sizes of MSERs vary, and the MSERs may correspond to character

regions or noise. We then construct the graph of MSERs locally to avoid unnecessary

edges between distant MSERs. Delaunay triangulation is employed to find pairwise

edges in the graph.
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2.2.2.3 Computing local consistency map

To construct the graph, we compute a local consistency map for each MSER. A

local consistency map is a probability map, which shows how an MSER is consistent

with its neighbors in a small patch. For each MSER, we consider a context patch,

which is an image patch centered at the MSER. The MSER is referred to as the

center MSER, and other MSERs on this patch are considered its neighbors. The

patch has a size 7 times the width and height of the center MSER. We compute the

consistency score θ between the center MSER and its neighbors as:

θ = exp(−αDco − βDsw) (2.6)

where Dco is the Euclidean distance between the colors of two MSERs, Dsw is the

normalized stroke width difference, and α and β are constant parameters. RGB

color is used and averaged across all pixels for each MSER. The stroke width of an

MSER is estimated by the largest distance from an interior point to boundary, and

it can be efficiently obtained using a Distance Transform.

Then, a local consistency map for this context patch is constructed by trans-

forming all pixels of MSERs on this patch to their consistency scores. Figure 2.6

shows two examples of context patches and local consistency maps. In Figure 2.6

(a), the center MSER is part of the cartoon cat’s face, thus a high consistency score

occurs in other parts of its face and gives high intensity in the local consistency

map. The text below the cartoon cat’s face possesses very different color and stroke

width, and shows low consistency scores. In Figure 2.6 (b), we observe high consis-
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tency scores of the characters in the text line in the middle of the patch, while the

character in the upper right corner has relatively low consistency scores due to the

font difference.

2.2.2.4 Weak hypotheses generation

We generate hypotheses based on the local consistency map. Prior knowledge

of text line includes 1) text line should be elongated, and 2) the projection profile

of a text line should have higher variance. Therefore, we project local consistency

map in different orientations from −90 to 85 degrees (with respect to the horizon),

with an interval of 5 degrees to obtain 36 projection profiles.

In practice, the projection at each orientation is performed not on the entire

local consistency map but on an oriented narrow region, whose width and length

are 3 and 7 times those the selected MSER, respectively, to include less noise in the

projection profile. The raw profile of a given orientation is computed by summing

all the intensities in the narrow region along that orientation. Then, the raw profile

is intensity-normalized by the mean of non-zero values in it, and its dimension is

normalized to a predefined length by resampling to obtain the final projection profile.

The projection profile in the maximum variance orientation is intended to cap-

ture the text line structure, which usually forms a peak. The one in the orthogonal

orientation tries to capture the regular intervals between characters, as can be ob-

served in most cases. Figure 2.6 shows examples of projection profiles. The size of

the patch is empirically determined and is not sensitive in our experiment.
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(a) non-text (b)text

Figure 2.6: Local consistency map and the projection to two orthogonal directions.

We then concatenate the projection profiles in the maximum variance orienta-

tion and its orthogonal orientation into a feature vector, and feed the feature vector

to a Random Forest classifier [53]. The training samples of projection profiles from

text and non-text patches were labeled manually. If a patch is determined as posi-

tive (contains text line structure) by the Random Forest classifier, all the MSERs on

this patch with a similarity above a threshold are considered a local line hypothesis.

Using local consistency maps and projection profiles, we capture the local

text line structure on a patch. The projections may involve multiple text lines,

because the random forest trains on various profile patterns and can handle different

situations. We stress that the classification on the projection profiles need not to

be highly accurate, i.e., false positives are expected, but the results are fine-tuned
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by the correlation clustering.

After generating hypotheses in the entire image, there may exist two typical

cases: 1) stand alone MSERs not covered by any local line hypotheses, and 2) dis-

connected subgraphs. The isolated MSERs are discarded, and disconnected graphs

are processed separately (third row in Figure 2.5).

2.2.2.5 Correlation clustering based text detection

We briefly review the correlation clustering and introduce the higher-order

clustering (HOCC). Compared to the basic correlation clustering, the key ingredi-

ent of the HOCC is the “hyperedges”, which are sets of pre-defined weak hypotheses

in a graph. We further provide the solution to the HOCC using semidefinite pro-

gramming.

2.2.2.5.1 Correlation clustering

Given an undirected graph G = (V,E), correlation clustering attempts to

assign a binary label to each edge, indicating whether the two vertices are connected

so they are in the same cluster. Practically, this binary label is relaxed and a

rounding procedure is generally required to group the nodes.

2.2.2.5.2 Pairwise correlation clustering

Correlation clustering partitions nodes into clusters based on their pairwise

similarities. Let spij ∈ {0, 1} denote the pairwise similarity between node Vi and Vj

(or on edge epij), and define xpij as
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xpij =


1, if i and j are connected

0, o.w.

(2.7)

The correlation clustering problem becomes an agreement maximization for-

mulation (Q1):


max
xp

∑
i,j

spijx
p
ij

sij = Sim(V, i, j) = 〈wp, φij(V )〉

(2.8)

where φij(V ) denotes the features that characterize the difference between vertices

i and j (Sec. 2.2.3.2), and wp is the parameter vector (to be learned from training

samples). Therefore, the correlation clustering becomes an integer programming

problem.

In the literature, two solutions are proposed to solve Eq. 2.8. Kim et al. [42]

used a number of inequalities, such as cyclic inequality constraints and odd-wheel

constraints, to create physically meaningful polyhedrons. On the other hand [45],

we can rewrite Eq. 2.8 to matrix form as follows


max
X

trace(STX)

s.t. X � 0

. (2.9)

where S(i, j) = si,j, and X(i, j) = xi,j. This SDP formulation renders the problem

elegant, but is limited by the number of variables in practice. We describe our solver

in Sec. 2.2.2.6.

36



2.2.2.5.3 Higher-order correlation clustering (HOCC)

A hyperedge can be regarded as a subset of connected edges. Each hyperedge

ehk ∈ E contains more than one pairwise edge, i.e., |ehk| ≥ 2. A hyperedge can be

activated or deactivated, denoted by xhk ∈ {0, 1}, and is associated with a group-

wise similarity shk =
〈
wh, φh(V )k

〉
, where φhk(V ) denotes the features for the kth

hyperedge (Sec. 2.2.3.2). Then, the objective function becomes (Q2):

max
xp,xh

∑
i,j

spijx
p
ij +

∑
k

shkx
h
k

= max
xp,xh

∑
i,j

〈
wp, φpi,j(V )

〉
xpi,j +

∑
k

〈
wh, φhk(V )

〉
xhk

= max
X
〈w,Φ(V,X)〉

(2.10)

where wh denotes the parameter vector for the hyperedge features, and w is con-

catenation of wp and wh. w is learned from training data. X contains both pairwise

edges and hyperedges. Φ(V,X) denotes the joint feature maps of all edges.

Binary operations are used to model the relation between higher order labels

and pairwise labels. To be specific, a number of inequalities are used as follows.

xhk ≤x
p
ij, ∀e

p
ij ⊂ ehk,

xhk ≥1−
∑

i,j|epij⊂eh
(1− xpij)

(2.11)

The first inequality above ensures that the nodes in different clusters cannot

be in the same activated hyperedge, and the second ensures that the nodes in the

same cluster cannot have a deactivated hyperedge. Refer to [42] for more details.
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2.2.2.6 Effective solution for “long-tailed” SDP

Semidefinite programming has attracted reasonable attention in recent years.

Its applications range from kernel learning to low rank approximation [54]. While a

few interior point based SDP packages are available (e.g., [55]), efficiency presents

the major drawback when SDP is employed in real applications. Contrary to inte-

rior point based methods, boundary point based approaches, such as regularization

methods, surface as alternatives. For example, the method in [44] is much easier to

implement and can be tailored easily if special structures exist in SDP.

In a number of SDP problems, a “long tailed” block diagonal structure ap-

pears, being a small number of SDP variables but a large number of slack variables.

Because the diagonal matrix is semipositive definite if and only if the values are

nonnegative, this structure can be solved efficiently. In these cases, regularization

methods become more efficient than interior point methods. This type of method

is not widely known in the computer vision community, so we briefly describe one

of these methods.

In Algorithm 1, AX = b is a linear mapping of X, representing the constraints.

In the literature, this may also be written as A(X) = b. The operation (·)+/− denotes

the projection to the positive/negative definite space. Refer to [44] for more details.

In our opinion, Algorithm 1 is an elegant solver that tackles many vision prob-

lems and has certain advantages: the implementation is straightforward (20+ lines

in MATLAB), and it is an order of magnitude more efficient than other MATLAB

SDP packages.
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Algorithm 1 Regularization SDP.
Input:

t : Real positive scalar; S, Y : Symmetric matrix.

Z : Semipositive definite matrix.

A, b : Linear mapping, AX = b.

Output:

X : SDP solution for min trace(STX)

subject to AX = b,X � 0;

Procedure:

Repeat until |Z + ATy − S| is small

Step 1: Solve y for AATy + A(Z − S) = (b− AY )/t

Step 2: Set X = t(Y/t+ ATy − S)+

Step 3: Set Z = −(Y/t+ ATy − S)−

Step 4: Set Y = X .
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To see how this formulation speeds up our problem, note that the time con-

suming step is the eigen-decomposition in the projection step in the internal problem

(Step 2). In our formulation, since X has a long tailed structure, eigendecomposi-

tion needs to be performed only on the SDP variables. As a result, this solution

performs efficiently for small problems (v300 SDP variables), but may be slow for

larger problems (e.g., more than 1,000 SDP variables).

2.2.2.7 Structural learning

Structured SVM [43] is used to learn the parameter vector w. Consistent

with previous notation, let {(Vn, Xn)} dentoe N training samples, where Vn is the

nth training graph (with features), and Xn is its ground truth labels. Then, w is

learned by:

min
w,ξ

1

2
‖w‖2 + C

N∑
n=1

ξn

s.t. ∀n,X � 0,

〈w,∆Φ(Vn, X)〉 ≥ ∆(Xn, X),

ξn ≥ 0

(2.12)

where ∆Φ(Vn, X) = Φ(Vn, Xn) − Φ(Vn, X), and C > 0 is a constant. More details

located in [42].
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2.2.2.8 Classifying text and non-text regions

After applying HOCC, we obtain a number of image regions. Each region

represents a consistent group of either text or non-text MSERs (Forth row in Figure

2.5). The matter of text/non-text will be decided on each region as a whole. We

treat this step as a texture classification problem. Liu et al. [56] provide a state of

the art approach based on random projections. In their approach, densely sampled

image patches are projected with a random matrix and mapped to a dictionary of

textons through the nearest neighbor to obtain a histogram. In our problem, we find

random projections harm the classification accuracy. The reason could be that both

text and non-text patterns have many variations, and random projections inevitably

lose some information that may distinguish these two closely entangled classes.

Coates et al. [48] describe a method to detect text in a squared sliding window.

In their method, whitened patches are encoded with an unsupervised dictionary us-

ing soft-thresholding and summed over 9 blocks to form a feature vector for this

image window. Yet in our experiments, we found the naive nearest neighbor encod-

ing outperformed soft-thresholding.

Our approach is similar in spirit as the two above. In our procedure, we sep-

arate the text and non-text patches when constructing the dictionary of textons.

Through experiments we find the explicit separation of textons results in better

classification performance compared to mixing text and non-text textons. Our pro-

cedure is as follows:

1. Pre-processing: Harvest 8×8 grayscale patches from text regions and non-text
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Figure 2.7: Samples of textons learned in the texture classification.

regions, and apply brightness and contrast normalization.

2. Constructing dictionary: Perform k-means on text patches and non-text patches,

respectively, and combine the two sets of textons to form a dictionary.

3. Computing histogram: For each patch, find the nearest neighbor in the dic-

tionary to form a histogram, and normalize the histograms to unit sum to

produce the feature representation for an image region.

4. Classifying: Use Random Forest on the unit histograms.

Figure 2.7 shows samples of our textons. The textons corresponding to text and non-

text patches share some common properties such as stroke-like patterns. However,

a difference exists between statistical properties of text and non-text patches. Text

and non-text patches may be encoded into different histograms, which enables the

classification. As no character models or other specified features are involved, this

42



method is expected to generalize on text of different languages and styles.

2.2.3 Experiments

We demonstrate the effectiveness of our approach in this section. We aim to

cluster similar text prior to any classification. Thus, it is natural for us to select the

multi-orientation multi-scripts dataset such as the MSRA-TD500, instead of other

datasets that primarily contain horizontal English text, which may be solved more

effectively by strong character models and lexicons.

First, we describe two datasets used in our experiments. Then, we show the

results of our method and compare them to the state of the art.

2.2.3.1 Datasets

We experiment on two datasets: the MSRA Text Detection Database (MSRA-

TD500) and the OSTD dataset.

MSRA-TD500 contains 500 images of indoor and outdoor scenes. This dataset

presents many challenges. First, the text is bilingual, including English, Chinese,

and a mixture of the two, and they contain wide range of fonts, sizes and styles.

Second, the text has arbitrary orientation. Third, the background is diversified and

complex. To evaluate the performance on MSRA-TD500, we follow the protocol

employed by [46]. We used 300 images for training and 200 for testing. A minimum

rectangle is fit to the detected text region, and its orientation is also estimated. A

ground truth rectangle can only be matched once, therefore many-to-one match is
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not allowed. We define the overlap ratio between a detected rectangle and a ground

truth region as the ratio of the areas of their intersection and union. The rectangle

is considered correct if the orientation difference is less than π/8 and the overlap

ratio exceeds 0.5. We note that the 0.5 overlapping criteria differs from other text

detection criteria, but is consistent with the PASCAL challenge for object detection.

The OSTD dataset contains 89 images of indoor and outdoor scenes (Figure

2.10). Text in this dataset contains diverse orientations, view perspectives, fonts,

and styles. Following [46], the proposed algorithm trained on MSRA-TD500 runs

on all images of OSTD. To make a fair comparison, we employ the same protocol

as [57].

2.2.3.2 Features for clustering

The proposed method relies on the pairwise similarity and groupwise simi-

larity. This section defines our features for correlation clustering in the text line

detections. For pairwise features, we use a 18-dimensional features obtained in

pairwise comparisons:

• Stroke width difference and ratio.

• Euclidean, χ2, EMD [58], and L1 distance of the RGB values.

• Euclidean, χ2, EMD, and L1 distance of the CIELAB values.

• Euclidean, χ2, EMD, and L1 distance of the contrast vectors (CIELAB values

subtracting its immediate background).

• Solidity (shape area divided by convex hull area) difference.
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(a) (b) (c)

Figure 2.8: More results in the MSRA dataset. From top to bottom, input image,

MSER extraction, HOCC results and final detection results. Refer to Figure 2.5 for

the meaning of the colors and bounding boxes.

• Area ratio difference

• Distance between two MSERs normalized by sizes and patch orientation.
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For higher order features, we use a 12-dimensional features to describe group prop-

erties as follows:

• Variances in the RGB values.

• Variances in the CIELAB values.

• Variance in area normalized by the median.

• Variance in solidity.

• Variance in stroke width normalized by the median.

With the features defined, we can learn wp and wh for transforming the feature

maps to the similarity measurement. We used the loss function in [42], but assign

different weights due to the intrinsic properties of text images.

2.2.3.3 Results

We first present results for the MSRA-TD500 dataset (Figure 2.8). As shown

in Figures 2.5 and 2.8, our method handles challenging cases. For example, Figure

2.5 (a) has text of various fonts and mixed languages. Text in Figure 2.5 (d) is tiny

and the background (trees) renders some text difficult to detect (e.g., the road name

sign). Further, the bike pattern on the traffic sign contains a similar and consistent

stroke width as the text. Text in Figure 2.5 (e) is overly slanted. We also notice

from 2.8 (a) that some handwritten text is correctly detected, even though their

shapes and colors are less consistent compared to the printed text.

Table 2.3 shows the quantitative results. Among three methods we compared,

Yao et al [46] handles oriented text explicitly, and [50] is the baseline, where the
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stroke width transform was proposed. The proposed algorithm can detect text lines

in different fonts and orientations. In complex backgrounds like leaves, grass, and

some extremely challenging architectural patterns, we observe promising detection

results. Our method achieves a higher precision with similar recall rate, compared

to the state of the art method.

The HOCC plays an important role in this process, since it generates larger

homogeneous regions to provide robust statistics for the discrimination between

text and non-text. Avoiding local decisions is essential to the proposed approach.

Without an effective grouping process, such a simple texton-based text detection

algorithm has difficulty achieving superior performance. For example, [48] reports

less satisfying detection rates compared to other methods using highly specialized

features.

The errors mainly stem from three sources. First, some MSERs are not well

extracted due to lighting, fragmentation, and blur (Figure 2.9 (a)), in the graph

construction stage. Second, some text lines are too close and merged into one rect-

angle during clustering, due to the difficulty of resolving their local linear structures

(Figure 2.9 (b)). On the other hand, text lines are broken into multiple parts when

relatively large gaps exist between characters or words due to the elimination of

some MSERs (Figure 2.9 (c)). Third, mistakes exist in texture classification, where

artificial and plant textures may be classified as text (Figure 2.9 (d)).

We also test the proposed algorithm on the Oriented Scene Text Dataset [57].

Figure 2.10 shows some results from the OSTD dataset. We achieved the best

precision rate and F measure, and our recall is comparable to the state of the art.
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(a) (b)

(c) (d)

Figure 2.9: Error analysis. a) MSERs are not well extracted due to lighting; b)

text lines are too close and merged; c) text lines are broken into multiple parts; d)

mistakes exist in texture classification.

We observe that the text is also correctly grouped and detected, even though

the properties of these text differ greatly from the MSRA-TD500 dataset.
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Table 2.3: Performance comparison on MSRA-TD500.

Precision Recall F-measure

Our method 0.71 0.62 0.66

Yao et al. [46] 0.63 0.63 0.60

Epstein et al. [50] 0.25 0.25 0.25

Chen et al. [59] 0.05 0.05 0.05

Table 2.4: Performance comparison on OSTD.

Precision Recall F-measure

Our method 0.80 0.73 0.76

Yao et al. [46] 0.77 0.73 0.74

Yi et al. [57] 0.56 0.64 0.55

Epstein et al. [50] 0.37 0.32 0.32

Chen et al. [59] 0.07 0.06 0.06
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Figure 2.10: Examples in the OSTD dataset. Detection results are shown in yellow

bounding box that overlay the input images.
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Chapter 3: Document Image Categorization

Classifying and grouping document images into known categories is often a

prerequisite step toward document understanding tasks, such as text recognition,

document retrieval, and information extraction [6]. These tasks can be greatly

simplified if we know a priori the genre or the layout-type of documents. In the past,

document image classification and retrieval has been researched under a number of

paradigms. Two major paradigms have been extensively studied: text-content based

approaches and document structure based approaches. We focus on the second

paradigm, studying document structure based classification.

Previous approaches for document structure based classification have focused

on finding effective visual representations. Existing approaches in the literatures

mainly in their choices of local features, global representations, and learning mech-

anisms [7]. Various structure or layout-based features have been introduced [8–12]

and are shown to be effective for document image classification and retrieval. These

approaches, however, are limited to a particular class of documents such as bank

forms, memos, contracts and orders. To apply existing classification systems to
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other types of documents, we need to reconsider spatial features and tune it man-

ually. Moreover, when the content and structure in documents are unconstrained,

as in handwritten documents, pre-defined features may not be able to capture all

variations of a particular class.

A more general approach that automatically learns different abstractions of

structure hierarchy and spatial relationship among document elements is needed.

Document images usually have a hierarchical structure, such as cells in rows and

columns of tables, words in sentences, and sentences in paragraphs. These hierar-

chical patterns are often repeated in different parts of document. These properties

imply the possibility of learning the layout as a combination of small groups of

middle or lower level features.

We present a general approach for document image classification using CNNs.

CNN is a kind of neural network that shares weights among neurons in the same

layer. CNNs work well at discovering spatially local correlation by enforcing a local

connectivity pattern between neurons of adjacent layers [13]. With multiple layers

and pooling between layers, CNNs automatically learn the hierarchical layout fea-

tures with tolerance to spatial translation, and capture repeating patterns efficiently

by sharing weights.

For the task of document image classification, our CNN uses a new type of

neuron, Rectified Linear Units (RLU) [60], to speed up training. We employ dropout

[61] to prevent overfitting. Experiments on real-world unconstrained datasets show

that our approach is more effective than previous approaches.
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3.1 Related work

Byun and Lee [8] used a partial matching method in which document struc-

ture recognition and classification is applied to only part of input form images. The

application of their approach is limited to form images and does not generalize to

other types of documents. Shin and Doermann [62] defined visual similarity of lay-

out structures and applied supervised classification for each specific type. They used

image features, such as the percentage of text and non-text (graphics, images, ta-

bles, and rulings) in content regions, column structures, relative point sizes of fonts,

density of content area, and statistics of features of connected components. For

classification, they employed decision trees and self-organizing maps. Like previous

approaches, the main drawback of their method stems from the features, which were

designed for specific document classes (e.g., forms, letters, and articles). Addition-

ally, given a large number of different feature types the approach is computationally

slow for large scale document exploration.

Collins-Thompson and Nickolov [63] proposed a model for estimating the inter-

page similarity in ordered collections of document images. They used a combina-

tion of features from text and layout, document structure, and topic concepts, to

discriminate between related and unrelated pages. Text from OCR may contain

errors, especially for handwritten documents, thus their approach is limited to well-

structured printed documents. Joutel et al. [64] presented an approach for the

retrieval of handwritten historical documents at page level based on the curvelet

transform to compose a unique signature for each page. The approach is effective
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when local shapes are important for classification, but it is likely to miss any higher

level of structural saliency. In many cases, the desired similarity is embedded in

global structure and relationships among different objects in document images.

Kochi and Saitoh [65] proposed a system for identifying the type of a semi-

formatted document based on important textual elements extraction and by using

a flexible matching strategy for easy model generation. Bagdanov and Worring [9]

approached the general problem of genre classification of printed document images

using attributed relational graphs (ARGs). They used ARGs to represent the layout

structure of document instances, and first order random graphs (FORGs) to rep-

resent document genres. They reported a high-accuracy on a small dataset of 130

documents consisting of 10 genres. Reddy et al. [66] addressed the form classifica-

tion problem with a classifier based on the k-means algorithm. They used low-level

pixel density features and adaptive boosting to classify NIST tax forms. A detailed

survey on document classification based on three components, the problem state-

ment, the classifier architecture, and the performance evaluation, can be found in

Chen and Blostein [7].

Approaches based on bag-of-words (BOW) models have shown promising re-

sults on many computer vision problems, such as image classification [67], scene

understanding [68], and document image classification [69,70]. However, initial for-

mulations typically disregard the spatial relationships of different image regions,

and consider only the occurrences of visual patterns in an image. This results in a

limited descriptive capability and the performance may drop significantly in pres-

ence of noise, background clutter, variation of layout and content in images. Kumar
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et al. [10, 12] extended the spatial-pyramid features for document images by using

a novel pooling method with horizontal-vertical partitions that are adapted to the

typical layout of document images. Subsequently, methods that extend the BOW

approach to incorporate spatial relationships between image regions were proposed.

One of the early methods proposed the creation of spatial-pyramid features by parti-

tioning the image into increasingly finer grids and computing the weighted histogram

based kernel in each region [71]. Later, there has been a focus on selecting the op-

timal feature combination strategy and efficient ways to learn these local statistics,

and a number of methods have been proposed [10,12,72,73].

3.2 Approach

Figure 3.1: The architecture of the proposed CNN

We propose to use a CNN for document image classification. We look to learn

a hierarchy of feature detectors and train a nonlinear classifier to identify complex

document layouts. Given a document image, we first perform downsampling and

pixel value normalization, then feed the normalized image to the CNN to predict
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the class label.

3.2.1 Preprocessing

The resolution of document images is typically higher than 2000×2000, which

is too large to be fed to a CNN given the current availability of computing re-

sources. The large input dimension not only costs more computationally, but leads

to a greater chance of overfitting. Considering that layout, instead of the details

such as characters, determines the class of document images, we can reduce the

input dimension by discarding details of document images, as long as the structure

information is still identifiable. Specifically, document images of various sizes are

all downsampled and resized to 150× 150 with bilinear interpolation. At the reso-

lution of 150 × 150, most characters on the document images are not recognizable

but the overall layout is preserved and the locations of title, text, or table can be

determined. Humans can make the same predictions on the document types as at

original resolution if judging by layout only. Figure 3.2 shows the downsampled

document images compared to original resolution. After downsampling, the gray

scale images are divided by 255, then subtracted by 0.5, therefore normalized to the

range of [−0.5, 0.5].

3.2.2 Network Architecture

Figure 3.1 shows the architecture of our network, which can be summarized as

150× 150− 36× 36× 20− 8× 8× 50− 1000− 1000−M , where M is the number of
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(a) (b)

Figure 3.2: (a) Original image of resolution 2544 × 3256 (b) Downsampled and

resized to 150× 150. Enlarge to see the difference in details.

classes. The input is a downsampled and normalized image of size 150× 150. The

first convolutional layer consists of 20 kernels, each of size 7× 7, followed by a 4× 4

pooling that reduces the each feature map to 36×36. The second convolutional layer

contains 50 kernels each of size 5, which means each kernel is convolved with all 20

feature maps of previous layer. A 4×4 pooling comes after the second convolutional

layer to produce 50 feature maps, each of size 8× 8. Two fully connected layers of

1000 nodes each follow the convolution and pooling layers. The last layer is a logistic

regression with softmax that outputs the probability on each class, as defined in the

following equation:
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P (y = i|x,W1, ...,WM , b1, ..., bM) =
eWix+bi

M∑
j=1

eWjx+bj
(3.1)

where x is the output of the second fully connected layer, Wi and bi are the weights

and biases of ith neuron in this layer, and M is the number of classes. The class that

outputs the max probability is taken as the predicted class, which can be described

in the following equation (ŷ denotes the predicted class):

ŷ = arg max
i
P (y = i|x,W1, ...,WM , b1, ..., bM) (3.2)

Instead of traditional sigmoid or tanh neurons, we use Rectified Linear Units

(ReLUs) [60] in the convolutional and fully connected layers. Recent research [26]

has demonstrated ReLUs bring several times speedup in training compared to using

tanh units. Formally, an ReLU has an output of f(x) = max(0, x), where x denotes

the input. In experiments, we observe that ReLUs enable the training to complete

several times faster than sigmoid neurons, and it is not so sensitive to the scale of

input.

3.2.3 Training

We adopt negative log-likelihood as the loss function and perform Stochastic

Gradient Descent (SGD). Recently successful neural network methods report that

dropout [26, 61] improves learning. Dropout alleviates overfitting by introducing

random noise to training samples. During training time, the neuron outputs of
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(a) ad (b) news (c) report

Figure 3.3: Sample images from Tobacco dataset, grouped in three genres/classes

(a) ad, (b) news, and (c) report.

hidden layers are masked with probability of 0.5, and at test time their outputs are

halved. In our experiment, we also find dropout boosts the performance for a large

network. Applying dropout to all layers significantly increases the training time to

reach convergence, so we only apply dropout at the second fully connected layer,

i.e., half of the outputs of the second fully connected layer are randomly masked in

training, and in testing the weights of the logistic regression layer are divided by 2,

which is equivalent to halving the outputs of the second fully connected layer.

3.3 Experiments

We conduct experiments on two datasets to demonstrate the effectiveness of

our CNN.
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(a) Form1040-1 (b) Form4562-1 (c) Form2441

Figure 3.4: Sample images from from NIST tax-form dataset, grouped in three

classes (a) Form1040-1, (b) Form4562-1, and (c) Form2441.

3.3.1 Datasets

The following two datasets were used in our experiments.

(1) Tobacco litigation dataset [74]: we used 3,482 images categorized in 10

genres(classes): report, memo, resume, scientific, letter, news, note, ad, form, and

email. Figure 3.3 shows some samples of Tabacco dataset. From Figure 3.3 we

observe that large inner-class variation exists, especially for the class ad.

(2) NIST tax-form dataset [75]: a collection of 5,590 tax-form images from

National Institute of Standards and Technology, categorized into 20 classes, with

labels like Form1040-1, Form1040-2, Form4562-1, Form2441, and so on. Figure 3.4

shows samples of NIST tax-forms.

3.3.2 Results

We mainly compare our method to previous methods SP-RF and HVP-RF [12],

so we follow the same evaluation protocol. We apply the proposed CNN with the

same architecture to the two datasets described above.
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Figure 3.5: Genre classification results on Tabacco dataset (3482 images, 10 classes)

For 10 classes of images in the Tobacco dataset, we randomly select N(N <=

100) images per class for training and validation, among which 80% are for train-

ing and 20% for validation, and the rest images are used for test. We vary N to

determine the performance under different amount of training and validation sam-

ples. The accuracies of the proposed algorithm are obtained on 100 such random

partitions of training, validation, and test, and the median accuracy is shown in

Figure 3.5. The proposed approach achieves a median accuracy of 65.37% when 100

samples are used for training and validation. Our CNN consistently outperforms

previous top methods SP-RF and HVP-RF [12]. A class-confusion matrix on one of

the partitions is found in Table 3.1.

On the 20-class NIST tax-form dataset, we randomly choose one image per

class (which amounts to 20 samples in total) for training, and use the rest for

test. No validation set is used, because we simply use the parameters after 50

epochs of training. A median accuracy of of 100% is achieved through 100 partitions
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ad email form letter memo news note report resume scientific

ad 104 0 1 1 0 9 2 2 0 3

email 1 435 7 3 13 0 4 3 1 0

form 2 0 145 5 37 7 8 7 0 14

letter 0 8 6 297 43 0 1 14 0 10

memo 1 7 33 51 294 6 3 9 0 18

news 19 1 21 13 6 45 8 2 0 16

note 2 10 24 8 31 5 63 0 0 11

report 1 15 34 65 32 11 5 103 5 38

resume 0 7 24 13 12 1 1 13 13 6

scientific 0 16 36 11 52 4 6 12 1 45

Accuracy (%) 80.0 87.2 43.8 63.6 56.6 51.1 62.4 62.4 65.0 28.0

Table 3.1: Class-confusion matrix for genre classification on Tobacco dataset. These

are the results of one partition of training-validation-test, which produces an overall

accuracy of 65.35%

of training and test, which ties with [12]. Other methods such as [76] achieved

similar accuracies, but they used more training samples. We think that the proposed

method achieves such high accuracies with so few training samples because the

tax-form images in the same class show highly consistent layouts, and inter-class

similarity is relatively low.

We visualize the kernels of the first convolutional layer learned on the Tobacco

and the NIST, respectively, as shown in Figure 4.17. We do not observe obvious

patterns that resemble the local structure of document images.
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(a) (b)

Figure 3.6: Learned kernels in the first convolutional layer from (a) Tobacco dataset

(b) NIST dataset.

3.3.3 Computational Cost

We implemented the CNN using Theano [77], which enables easy deployment

on a GPU to speed up the process without much manual optimization. Our ex-

periments were performed on a PC with 2.8GHz CPU and Tesla C1060 GPU. On

average each image takes about 0.004 second processing time.
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Chapter 4: Image Quality Assessment

4.1 No-Reference Image Quality Assessment using CNN

We present a CNN that can accurately predict the quality of distorted im-

ages with respect to human perception. The work focuses on the most challeng-

ing category of objective image quality assessment (IQA) tasks: general-purpose

No-Reference IQA (NR-IQA), which evaluates the visual quality of digital images

without access to reference images and without prior knowledge of the types of

distortions present.

Visual quality is a complex yet inherent characteristic of an image. In prin-

ciple, it represents the measure of the distortion compared with an ideal imaging

model or perfect reference image. When reference images are available, Full Refer-

ence (FR) IQA methods [14–18] can be applied to quantify the differences directly

between distorted images and their corresponding ideal versions. State of the art FR

measures, such as VIF [14] and FSIM [15], achieve a high correlation with human

perception.

However, in many practical computer vision applications perfect versions of

the distorted images do not exist, thus NR-IQA is required. NR-IQA measures can
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directly quantify image degradations by exploiting features that are discriminant

for image degradations. Most successful approaches use Natural Scene Statistics

(NSS) based features. Typically, NSS based features characterize the distributions

of certain filter responses. Traditional NSS based features are extracted in image

transformation domains using, for example, the wavelet transform [19] or the DCT

transform [20]. These methods usually operate slowly due to the use of computa-

tionally expensive image transformations. Recent development in NR-IQA methods

– CORNIA [21, 22] and BRISQUE [23] promote extracting features from the spa-

tial domain, which leads to a significant reduction in computation time. CORNIA

demonstrates the possibility of learning discriminant image features directly from

the raw image pixels, instead of using handcrafted features.

Based on these observations, we explore using a Convolutional Neural Network

(CNN) to learn discriminant features for the NR-IQA task. Recently, deep neural

networks have gained researchers’ attention and achieved great success on various

computer vision tasks. Specifically, CNN has shown superior performance on many

standard object recognition benchmarks [24–26]. One of CNN’s advantages is that

it can take raw images as input and incorporate feature learning into the training

process. With a deep structure, the CNN can effectively learn complicated mappings

while requiring minimal domain knowledge.

To the best of our knowledge, CNN has not been applied to general-purpose

NR-IQA, mostly because the original CNN is not designed for capturing image

quality features. In the object recognition domain good features generally encode

local invariant parts, however, for the NR-IQA task, good features should be able
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to capture NSS properties. The difference between NR-IQA and object recognition

renders the application of CNN nonintuitive. One of our contributions is that we

modify the network structure, so it can learn image quality features more effectively

and estimate the image quality more accurately.

In another contribution, we propose a novel framework that allows learning

and prediction of image quality on local regions. Previous approaches typically

accumulate features over the entire image to obtain statistics for estimating overall

quality, and have rarely shown the ability to estimate local quality, except for a

simple example in [78]. By contrast, our method can estimate quality on small

patchs (such as 32× 32). Local quality estimation is important for image denoising

or reconstruction problems, applying enhancement only where required.

We show experimentally that the proposed method advances the state of the

art. Our CNN outperforms CORNIA and BRISQUE on the LIVE dataset, and it

achieves comparable results with state of the art FR measures such as FSIM [15]. In

addition to the superior overall performance, we also show qualitative results that

demonstrate the local quality estimation of our method.

4.1.1 Related Work

Previously, researchers have attempted to use neural networks for NR-IQA. Li

et al. [79] applied a general regression neural network that takes as input perceptual

features, including phase congruency, entropy, and the image gradients. Chetouani

et al. [80] used a neural network to combine multiple distortion-specific NR-IQA
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measures. These methods require pre-extracted handcrafted features and only use

neural networks for learning the regression function. Thus, they do not have the

advantage of learning features and regression models in a holistic way, and these

approaches are inferior to the state of the art approaches. In contrast, our method

does not require any handcrafted features and directly learns discriminant features

from normalized raw image pixels to achieve much better performance.

The use of convolutional neural networks is partly motivated by the feature

learning framework introduced in CORNIA [21, 22]. First, the CORNIA features

are learned directly from the normalized raw image patches. This implies that it

is possible to extract discriminative features from spatial domain without compli-

cated image transformations. Second, supervised CORNIA [22] employs a two-layer

structure that learns the filters and weights in the regression model simultaneously

based on an EM like approach. This structure can be viewed as an empirical imple-

mentation of a two layer neural network. However, it has not utilized the full power

of neural networks.

Our approach integrates feature learning and regression into the general CNN

framework. The advantages are two-fold. First, making the network deeper will

raise the learning capacity significantly [81]. In the following sections we will see

that with fewer filters/features than CORNIA, we achieve state of the art results.

Second, in the CNN framework, training the network as a whole using a simple

method like backpropagation enables the possibility of conveniently incorporating

recent techniques designed to improve learning, such as dropout [61] and rectified

linear unit [26]. Furthermore, after we make the bridge between NR-IQA and CNN,
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the rapid developing deep learning community will offer a significant source of novel

techniques for advancing the NR-IQA performance.

4.1.2 Approach

The proposed framework of using CNN for image quality estimation is as

follows. Given a gray scale image, we first perform a contrast normalization, then

sample non-overlapping patches from it. We use a CNN to estimate the quality

score for each patch and average the patch scores to obtain a quality estimation for

the image.

4.1.2.1 Network Architecture

The proposed network consists of five layers. Figure 4.1 shows the architecture

of our network, which is a 32×32−26×26×50−2×50−800−800−1 structure. The

input is locally normalized 32× 32 image patches. The first layer is a convolutional

layer, which filters the input with 50 kernels each of size 7×7 with a stride of 1 pixel.

The convolutional layer produces 50 feature maps each of size 26× 26, followed by

a pooling operation that reduces each feature map to one max and one min. Two

fully connected layers of 800 nodes each come after the pooling. The last layer is a

simple linear regression with a one dimensional output that gives the score.
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Figure 4.1: The architecture of our CNN

4.1.2.2 Local Normalization

Previous NR-IQA methods, such as BRISQUE and CORNIA, typically apply

a contrast normalization. In this section, we employ a simple local contrast normal-

ization method similar to [23]. Suppose the intensity value of a pixel at location

(i, j) is I(i, j), we compute its normalized value Î(i, j) as follows:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C

µ(i, j) = 1
(2P+1)(2Q+1)

p=P∑
p=−P

q=Q∑
q=−Q

I(i+ p, j + q)

σ(i, j) =

√√√√ 1
(2P+1)(2Q+1)

p=P∑
p=−P

q=Q∑
q=−Q

(
I(i+ p, j + q)− µ(i, j)

)2
(4.1)

where C is a positive constant that prevents dividing by zero. P and Q are the

normalization window sizes. In [23], it was shown that a smaller normalization

window size improves the performance. In practice we pick P = Q = 3 so the

window size is much smaller than the input image patch. Note that with this local
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normalization each pixel may have a different local mean and variance.

Local normalization is important. We observe that using larger normalization

windows leads to worse performance. Specifically, a uniform normalization, which

applies the mean and variance of the entire image patch to each pixel, will cause

about a 3% reduction in the performance.

It is worth noting that when using a CNN for object recognition, a global

contrast normalization is usually applied to the entire image. The normalization

not only alleviates the saturation problem common in early work that used sigmoid

neurons, but also makes the network robust to illumination and contrast variation.

For the NR-IQA problem, contrast normalization should be applied locally. Addi-

tionally, although luminance and contrast change can be considered distortions in

some applications, we focus mainly on distortions arising from image degradations,

such as blur, compression, and additive noise.

4.1.2.3 Pooling

In the convolution layer, the locally normalized image patches are convolved

with 50 kernels, and each kernel generates a feature map. We then apply pooling on

each feature map to reduce the filter responses to a lower dimension. Specifically,

each feature map is pooled into one max value and one min value, which is similar to

CORNIA. Let Rk
i,j denote the response at location (i, j) of the feature map obtained
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by the k-th filter, then the max and min values of uk and vk are given by

uk = max
i,j

Rk
i,j

vk = min
i,j

Rk
i,j

(4.2)

where k = 1, 2, ..., K and, K is the number of kernels. The pooling procedure

reduces each feature map to only two scalars. Therefore, each node of the next

fully connected layer takes an input of size 2×K. It is worth noting that although

max pooling already works well, introducing min pooling boosts the performance

by about 2%.

In object recognition scenario, pooling is typically performed on every 2×2 cell.

In that case, selecting a representative filter response from each small cell may keep

some location information while achieving robustness to translation. This operation

is particularly helpful for object recognition, as objects can typically be modeled as

multiple parts organized in a certain spatial order. However, for the NR-IQA task,

we observe that image distortions are often locally (if not globally) homogeneous,

i.e., the same level of distortion occurs at all the locations of a 32× 32 patch. The

lack of obvious global spatial structure in image distortions enables pooling without

retaining locations to reduce the cost of computation.

4.1.2.4 ReLU Nonlinearity

Instead of traditional sigmoid or tanh neurons, we use Rectified Linear Units

(ReLUs) [60] in the two fully connected layers. Krizhevsky et al. [26] demonstrated

that in a deep CNN ReLUs enable the network to train several times faster compared
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to using tanh units. Here we give a brief description of ReLUs. ReLUs take a simple

form of nonlinearity by applying a thresholding function to the input, in place of

the sigmoid or tanh transform. Let g, wi, and ai denote the output of the ReLU,

the weights of the ReLU and the output of the previous layer, respectively, then the

ReLU can be mathematically described as g = max(0,
∑

iwiai).

Note that ReLUs allow only nonnegative signals to pass through. Due to this

property, we do not use ReLUs but use linear neurons (identity transform) on the

convolutional and pooling layer. Min pooling typically produce negative values and

we do not want to block the information in these negative pooling outputs.

4.1.2.5 Learning

We train our network on non-overlapping 32 × 32 patches taken from large

images. For training, we assign each patch a quality score as its source image’s

ground truth score. We can do this because the training images in our experiments

have homogeneous distortions. During the test stage, we average the predicted

patch scores for each image to obtain the image level quality score. By taking small

patches as input, we have a much larger number of training samples compared to

using the whole image on a given dataset, which meets the particular needs of CNNs.

Let xn and yn denote the input patch and its ground truth score, respectively,

and f(xn;w) be the predicted score of xn with network weights w. Support Vec-

tor Regression (SVR) with ε-insensitive loss has been successfully applied to learn

the regression function for NR-IQA in previous work [22, 23]. We adopt a similar
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objective function as follows:

L =
1

N

N∑
n=1

‖f(xn;w)− yn‖l1

w′ = min
w
L

(4.3)

Note that the above loss function is equivalent to the loss function used in

ε-SVR with ε = 0. Stochastic gradient decent (SGD) and backpropagation are

used to solve this problem. A validation set is used to select parameters of the

trained model and prevent overfitting. In experiments, we perform SGD for 40

epochs in training and retain the model parameters that generate the highest Linear

Correlation Coefficient (LCC) on the validation set.

Recently successful neural network methods [26, 61] report that dropout and

momentum improve learning. We also find these two techniques boost the perfor-

mance in our experiment.

Dropout is a technique that prevents overfitting in training neural networks.

The outputs of neurons are typically set to zero with a probability of 0.5 in the

training stage, and they are divided by 2 in the test stage. By randomly masking

the neurons, dropout offers an efficient approximation of training many different

networks with shared weights. In our experiments, since applying dropout to all

layers significantly increases the time to reach convergence, we apply dropout only

at the second fully connected layer.

Updating the network weights with momentum is a widely adopted strategy.

We update the weights in the following form:
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∆wt = rt∆wt−1 − (1− rt)εt 〈OwL〉

wt = wt−1 + ∆wt

εt = ε0(d)t

rt =


t
T
re + (1− t

T
)rs, t < T

re, t > T

(4.4)

where wt is weight at epoch t, ε0 = 0.1 is learning rate, d = 0.9 is decay for

the learning rate, rs = 0.9 and re = 0.5 are starting and ending momentums,

respectively. T = 10 is a threshold to control how the momentum changes with

the number of epochs. Note that unlike [61], where momentum starts off at a value

of 0.5 and stays at 0.99, we begin with a large momentum and reduce it as the

training progresses. We found through experiments that this setting can achieve

better performance.

4.1.3 Experiments

4.1.3.1 Experimental Protocol

Datasets: We conduct experiments on the following two datasets.

(1) LIVE [82]: A total of 779 distorted images with five different distortions –

JPEG2000 compression (JP2K), JPEG compression (JPEG), white Gaussian (WN),
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Gaussian blur (BLUR), and fast fading (FF) at 7-8 degradation levels derived from

29 reference images. Differential Mean Opinion Scores (DMOS) are provided for

each image, roughly in the range [0, 100]. Higher DMOS indicates lower quality.

(2) TID2008 [83]: 1,700 distorted images with 17 different distortions derived

from 25 reference images at 4 degradation levels. In our experiments, we consider

only the four common distortions that are shared by the LIVE dataset, i.e., JP2K,

JPEG, WN, and BLUR. Each image is associated with a Mean Opinion Score (MOS)

in the range [0, 9]. Contrary to DMOS, higher MOS indicates higher quality.

Evaluation: Two measures are used to evaluate the performance of IQA algorithms:

1) Linear Correlation Coefficient (LCC) and 2) Spearman Rank Order Correlation

Coefficient (SROCC). LCC measures the linear dependence between two quantities,

and SROCC measures how well one quantity can be described as a monotonic func-

tion of another quantity. We report results obtained from 100 train-test iterations,

where, in each iteration, we randomly select 60% of reference images and their dis-

torted versions as the training set, 20% as the validation set, and the remaining 20%

as the test set.

4.1.3.2 Evaluation on LIVE

On the LIVE dataset, for distortion-specific experiment we train and test on

each of the five distortions: JP2K, JPEG, WN, BLUR, and FF. For non-distortion-

specific experiments, images of all five distortions are trained and tested together

without providing a distortion type.
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Table 4.6 shows the results of the two experiments compared with previous

state of the art NR-IQA methods, as well as FR-IQA methods. Results of the

best performing NR-IQA systems appear in bold type. The FR-IQA measures are

evaluated by using 80% of the data for fitting a non-linear logistic function, then

testing on 20% of the data. We observe from Table 4.6 that our approach works well

on each of the five distortions, especially on JPEG, JP2K, and FF. For the overall

evaluation, our CNN outperformed all previous state of the art NR-IQA methods

and approached the state of the art FR-IQA method FSIM.

We visually examine the learned convolution kernels, and find only a few

kernels present obvious structures related to the type of distortion. Figure 4.17

shows the kernels learned on JPEG and all distortions combined, respectively. We

can see that some blockiness patterns are learned from JPEG, and a few blur-like

patterns exist for kernels learned from all distortions. But generally the kernels

learned by our model do not present obvious structure compared to CORNIA [21]

or CNNs trained for object recognition, probably because our model takes input as

the locally normalized image patches, which resemble edge maps and own different

characteristics.

4.1.3.3 Effects of Parameters

Several parameters are involved in the CNN design. In this section, we examine

how these parameters affect the performance of the network on the LIVE dataset.

Number of kernels Figure 4.3 shows how the performance varies with the
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SROCC JP2K JPEG WN BLUR FF ALL

PSNR 0.870 0.885 0.942 0.763 0.874 0.866

SSIM 0.939 0.946 0.964 0.907 0.941 0.913

FSIM 0.970 0.981 0.967 0.972 0.949 0.964

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916

BLIINDS-II 0.929 0.942 0.969 0.923 0.889 0.931

BRISQUE 0.914 0.965 0.979 0.951 0.877 0.940

CORNIA 0.943 0.955 0.976 0.969 0.906 0.942

CNN 0.952 0.977 0.978 0.962 0.908 0.956

LCC JP2K JPEG WN BLUR FF ALL

PSNR 0.873 0.876 0.926 0.779 0.870 0.856

SSIM 0.921 0.955 0.982 0.893 0.939 0.906

FSIM 0.910 0.985 0.976 0.978 0.912 0.960

DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917

BLIINDS-II 0.935 0.968 0.980 0.938 0.896 0.930

BRISQUE 0.922 0.973 0.985 0.951 0.903 0.942

CORNIA 0.951 0.965 0.987 0.968 0.917 0.935

CNN 0.953 0.981 0.984 0.953 0.933 0.953

Table 4.1: SROCC and LCC on LIVE. FR-IQA methods are italicized for reference.
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(a) (b)

Figure 4.2: Learned convolution kernels on (a) JPEG and (b) ALL on LIVE dataset

number of convolution kernels. It is not surprising to find that the number of

filters significantly affects the performance. In general, the use of more kernels leads

to better performance, but insignificant performance increase is gained when the

number of kernels exceeds 40.

Figure 4.3: SROCC and LCC with respect to number of convolution kernels
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size 5×5 7×7 9×9

SROCC 0.953 0.956 0.955

LCC 0.951 0.953 0.955

Table 4.2: SROCC and LCC under different kernel sizes

Kernel size We train and test the network with different kernel sizes while

fixing the rest of structure. Table 4.2 shows how the performance changes with

the kernel size, and Figure 4.2 illustrates that all tested kernel sizes show similar

performance. The proposed network is not sensitive to kernel size.

Patch size In our experiment, the whole image score is simply the average

score of all patches sampled, so we examine how the patch sampling strategy affects

performance. This includes two aspects, patch size and number of patches per image.

If we sample non-overlapping patches, larger patch size leads to fewer patches. For

example, if we double the patch size, the number of patches per image will drops

to one fourth of the original number. To avoid this situation, we allow overlap

sampling and use a fixed sampling stride (32) for different patch sizes. Thus the

number of patches per image remains roughly the same (ignoring the border effect)

when patch size varies. Table 4.3 shows the change of performance with respect

to patch size, indicating that a larger patch results in better performance. The

performance increases slightly as the patch size increases from 8 to 48. However,

larger patches lead not only to more processing time but also reduce spatial quality

resolution. Therefore we prefer to use the smallest patch that yields the state of the

art performance.
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size 48 40 32 24 16

SROCC 0.959 0.958 0.956 0.950 0.946

LCC 0.957 0.955 0.953 0.947 0.946

Table 4.3: SROCC and LCC on different patch size

Sampling stride To observe how the number of patches affects the overall

performance, we fix the patch size and vary the stride. Changing the stride does

not change the structure of the network. For simplicity at each iteration of the 100

iteration experiment, we use the same model trained at stride 32, and test with

different stride values. Figure 4.4 shows the change of performance with respect to

the stride. A larger stride generally leads to lower performance because less image

information is used for overall estimation. However, state of the art performance is

still maintained even when the stride increases to 128, which roughly corresponds

to 1/16 of the original number of patches. This result holds consistent with the

fact that the distortions on the LIVE data are roughly homogeneous across entire

image, and it also indicates that our CNN can accurately predict quality score on

small image patches.

4.1.3.4 Cross Dataset Test

Tests on TID2008 This set of experiment is designed to test the general-

ization ability of our method. We follow the protocol of previous work [21, 23] to

investigate cross dataset performance between the two datasets by training our CNN
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Figure 4.4: SROCC and LCC with respect to the sampling stride

on LIVE and testing on TID20081. This experiments examines only the four types

of distortions that are shared by LIVE and TID2008 are examined. The DMOS

scores in LIVE range from 0 to 100, while the MOS scores in TID2008 fall in the

range 0 and 9. To make a fair comparison, we adopt the same method as [21] to

perform a nonlinear mapping on the predicted scores produced by the model trained

on LIVE. A nonlinear mapping based on a logistic function is usually applied to FR

measures for transforming the quality measure into a certain range. We randomly

divide the TID2008 into two parts of 80% and 20% for 100 times. Each time, 80%

of data is used for estimating parameters of the logistic function and 20% is used

for testing, i.e., evaluating the transformed prediction scores. Results of the cross

dataset test are shown in Table 4.4, where we observe that our CNN outperforms

1We have observed that some images in TID2008 share the same content as images in LIVE.

However, their resolutions are different.
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CORNIA BRISQUE CNN

SROCC 0.890 0.882 0.920

LCC 0.880 0.892 0.903

Table 4.4: SROCC and LCC obtained by training on LIVE and testing on TID2008

previous state of the art methods.

(a) (b) (c) (d)

Figure 4.5: Synthetic examples and local quality estimation results. The color

images contain distortions in (a) WN, (b) BLUR, (c) JPEG, and (d) JP2K. Each

color image is divided into four parts, and three of them are distorted in different

degradation level. The grayscale images show the local quality estimation results,

where brighter pixels indicate lower quality.
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4.1.3.5 Local Quality Estimation

Our CNN measures the quality on small image patches, so it can be used to

detect low/high quality local regions as well as giving a global score for the entire

image.

We select an undistorted reference image from TID 2008 (which is not included

in LIVE) and divide it into four vertical parts. We then replace the second to

the fourth parts with distorted versions at three different degradation levels. Four

synthetic images are generated in this way, one for each types of distortions including

WN, BLUR, JPEG, and JP2K. We next perform local quality estimation on these

synthetic images using our model trained on LIVE. We scan 16× 16 patches with a

stride of 8 and normalize the predicted scores into the range [0, 255] for visualization.

Figure 4.5 shows the estimated quality map on the synthetic images. We can see

that our model properly distinguishes the clean and the distorted parts of each

synthetic image.

To better examine the local quality estimation power of our model, we con-

sider several types of distortions in TID2008 that are not used in previous experi-

ments, and find three types that can only affect local regions: JPEG transmission,

JPEG2000 transmission, and blockwise distortion. From TID2008, we again choose

several images not shared by LIVE, and test on their distorted versions with the

these three distortions. Figure 4.6 shows the local quality estimation results. We

find our model locates the distorted regions with reasonable accuracy and the re-

sults generally match human judgment. Our model locates the blockwise distortion
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extremely well, although this type of distortion is not contained in the training data

from LIVE. In the images of the third row in Figure 4.6, the stripes on the window

are mistaken as a low quality region. We speculate that this occurs because the

local patterns on the stripes resemble blockiness distortion. Contextual information

may be needed to overcome such problems.

4.1.3.6 Computational Cost

Our CNN is implemented using Theano [77]. With Theano we can easily

run our algorithm on a GPU to speed up the process without much optimization.

Our experiments are performed on a PC with 1.8GHz CPU and GTX660 GPU.

We measure the processing time on images of size 512× 768 using our model of 50

kernels with 32 × 32 input size, and test the model using the part of those strides

that give the state of the art performance in the experiments on LIVE. Table 4.5

shows the average processing time per image under different strides. Note that

our implementation is not fully optimized. For example, the normalization process

for each image is performed on the CPU in about 0.017 sec, which represents a

significant portion of the total time. From Table 4.5 we can see that, with a sparser

sampling pattern (stride greater than 64), real time processing can be achieved while

maintaining state of the art performance.
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Figure 4.6: Local quality estimation results on examples of non-global distortion

from TID2008. Row 1 shows JPEG transmission errors, row 3 shows jpeg200 trans-

mission errors, and row 5 shows local blockwise distortion. Grayscale images in row

2, 4, and 6 show the local quality estimation results, where brighter pixels indicate

lower quality.
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stride 32 64 96 128

time(sec) 0.114 0.041 0.029 0.023

Table 4.5: Time cost under different strides.

4.2 Simultaneous Estimation Of Image Quality And Distortion Via

Multi-task Convolutional Neural Networks

In most standard image quality assessment datasets, distorted images are

grouped into classes according to the types of distortion, such as Gaussian noise,

blur, and compression methods, and the images in each group are degraded with dif-

ferent levels of the same distortion. While many image quality assessment methods

have been proposed, it is interesting to notice that most methods estimate quality

scores without fully utilizing the distortion type information. Some methods can

only work well given certain types of distortion, while other methods ignore distor-

tion types in training when estimating the quality for a collection of images with

different types of distortion.

Identifying the distortion type is an important task for NR-IQA. A quality

score cannot fully characterize the distortion present in an image. A much better

description will result if both the distortion type and quality score are determined.

Take Figure 4.7, for example, where the images in the same column own very similar

quality scores, but have different types of distortions (Gaussian blur and JPEG

compression, respectively).
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Gaussian blur (84.6) Gaussian blur (68.5) JPEG2000 (74.1) JPEG2000 (48.6)

JPEG (83.1) JPEG (67.8) white noise (73.5) white noise (48.1)

Figure 4.7: Images in each column have very similar image quality scores, but they

have different distortion types. Higher score denotes worse quality.

A few methods, such as [19,23], attempted a two-stage framework. They first

perform distortion identification, i.e., classify the images into one of the distortions,

then perform the distortion-specific quality estimation. However, experiments in

[23] show that such a two-stage approach does not produce results superior to the

distortion-blind approach.

This disappointing evidence may be explained in two completely different ways:

1) distortion type does not facilitate image quality assessment, or 2) distortion

identification and quality estimation are two correlated tasks. Explicitly separating

these two tasks into two stages may not be optimal to exploit the extra information
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provided by the distortion type. We argue that the latter is more likely to be the

reason.

We use a multi-task Convolutional Neural Network (CNN) to address this

problem. The two tasks, quality estimation and distortion identification, are learned

simultaneously with one CNN. For multi-task learning, the literature typically spec-

ifies a main task and several extras. In this section, however, we are optimizing

both tasks, therefore we use the term primary and secondary tasks. Since quality

estimation is more widely addressed, we treat it as the primary task and distortion

identification as the secondary task.

Neural networks can be designed conveniently for multi-task learning conve-

niently. It is natural to create a network that has shared hidden layers, and multiple

output layers for different tasks [84]. In this section, we further show that network

structures also influence the multi-task performance. For instance, we empirically

show that simply increasing the number of tasks based on the state of the art struc-

ture may not lead to optimal solutions, because the structure was tuned heavily to

one of the tasks heavily.

We propose a CNN structure that shares internal representation among the

tasks. Specifically, our CNN contains two convolutional layers with linear neurons,

one ordinary pooling and one max-min pooling, two fully connected layers equipped

with Rectified Linear Units (ReLU), and two output layers for the two tasks. Com-

pared to the architecture described in the last section, we added one more layer

of convolutional filtering and adjusted the neuron number in fully connected layers

accordingly. The proposed model has nearly 90% less parameters, yet it has strong
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representation power for both tasks and yields balanced results.

We show through experiments that the our multi-task CNN achieves the sim-

ilar or better performance on image quality estimation and distortion identification

compared to the state of the art.

4.2.1 Related work

As described in the last section, a large portion of previous research efforts on

NR-IQA focus on Natural Scene Statistics (NSS) based features, including DIIVINE

[19], BLIINDS-II [85], and BRISQUE [23]. It is worth noting that DIIVINE and

BRISQUE use a two-stage framework. They first perform distortion identification,

i.e., classify the images into one of the distortions, then they perform the distortion-

specific quality estimation. However, experiments in [23] show that such a two-stage

approach is not superior to the distortion-blind approach.

Multi-task learning using neural networks has been studied for decades. Abu-

Mostafa [86] suggested one multi-task setting called catalytic hints, where one task

is the internal features used by other tasks. Caruana [84] studied on multi-task

learning with neural networks on a number of problems. He demonstrated that

learning multiple correlated tasks at the same time may significantly improve the

performance of the main task.
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4.2.2 Approach

We believe that image quality estimation and distortion identification are two

correlated tasks. Therefore, the critical question becomes how to utilize both chan-

nels’ information in the training to improve the performance. We design a multi-task

CNN that simultaneously learns to predict quality score and identify distortion.

We first describe a naive extension of our previous CNN architecture (described

in the last section) to a multi-task CNN. Then, we discuss the issues in the network

and present our multi-task network by increasing filter layers and adjusting hidden

node numbers. While it is unlikely that all tasks can achieve the best performance

at the same time [84], we aim to generate balanced outputs that improve both tasks.

A number of methodologies can train the multi-task network. The network

can be jointly trained simultaneously using all tasks, or it can be trained iteratively.

In this section, we jointly train the network, but use different learning rates for

different tasks in their private layers. While it is unlikely that all tasks can achieve

the best performance at the same time [84], our goal is to generate balanced outputs

that improve both tasks.

4.2.2.1 Overall process

We convert the color image to grayscale, and normalize the image similar

to [23], and divide the image into patches (typical size 32×32 pixels). We then make

predictions on each patch using a multi-task CNN, and aggregate patch predictions

to obtain the result for the image. Assuming that the distortion is homogeneous
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across the entire image, the image quality score is simply the average of patches’

quality scores. The image distortion is decided by a majority voting of the patches,

i.e., the most frequently occurring distortion on patches determines the distortion

of the image.

Dividing an image into patches provides a large quantity of training samples

for the CNN. Accurate predictions on patches lead to superior performance on the

image level, especially for distortion identification, as we will demonstrate in the

experiments section.

4.2.2.2 From single to multi-task architectures

In this section, we refer to our CNN architecture in the last section as IQA-

CNN. Then, we naively extend it to IQA-CNN+, a multi-task variant by directly

adding a minor task in the output layer, as a baseline. As described previously, IQA-

CNN for quality score estimation has one convolutional layer, one pooling layer, two

fully connected layers, and one output layer. We extend this structure for the multi-

task by adding a classification layer, referring to it as IQA-CNN+. The secondary

task for distortion identification shares the same structure as the one for quality

score estimation, except that the output layer is a multi-class logistic regression.

Unfortunately such a simple extension is not ideal for the multi-task scenario.

The reason is three-fold. First, the IQA-CNN+ has a shallow convolutional struc-

ture (one layer), which makes the feature learning less efficient compared to deeper

structures, because the filters share no patterns. Second, given such a large number
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Figure 4.8: The architecture of the IQA-CNN+ as a naive multi-task extension to

IQA-CNN.

of neurons, too many parameters need to be learned in the network. The larger

model size makes it less practical, or even impossible in some applications. Third,

the arrangement of the fully connected layers may not facilitate multiple tasks when

it is specially tuned for one task.

4.2.2.3 IQA-CNN++: a compact multi-task network

In the multi-task setting, we aim to estimate the quality and identify the dis-

tortion in one network. Therefore, the network needs to learn features shared by

both tasks, and the importance of the two tasks need to be balanced. We also prefer

a compact model that is significantly smaller in size but has a comparable perfor-

mance. As a result, we propose the following two modifications: 1) increasing the

number of convolutional layers while reducing the receptive field of the filters, and

2) modifying the fully connected layers to have a “fan-out” shape with significantly

fewer neurons. We refer to our new model as IQA-CNN++.
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The structure of IQA-CNN++ is shown in Figure 4.9. Our new architecture

contains two convolutional layers, each with a pooling, followed by two fully con-

nected layers and one output layer. The first convolutional layer contains 8 kernels

each of size 3× 3, followed by a 2× 2 pooling. The second convolutional layer con-

tains 32 kernels, each of size 3× 3× 8. The 32 feature maps obtained by the second

convolutional layer are pooled to 32 max and 32 min values, i.e., each feature map

is pooled to one max and one min value, which form 64 inputs for the next layer.

Again, no nonlinear neurons are used in the convolutional layers. There are 128 and

512 Rectified Linear Units (ReLUs) in the two fully connected layers, respectively.

Both the linear regression layer and logistic regression layer exist in the last part

of the multi-task network, and they both take as inputs the second fully connected

layer’s outputs, i.e., the two tasks share all internal structures.

Through some simple computation we determine that IQA-CNN (and IQA-

CNN+) has approximately 7.2× 105 learnable parameters (weights of neurons). By

comparison our IQA-CNN++ consists of roughly 7.7 × 104 learnable parameters,

which reduces the model size by 90%. Despite a significant reduction in size, the

IQA-CNN++ still shows excellent performance as shown in later experiments.

4.2.2.4 Multi-task CNN learning

In the single-task learning, the training stage is simple. We define a loss

function for the task and use the Stochastic Gradient Descent (SGD) and back-

propagation to minimize the loss, as well as updating the network parameters.
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Figure 4.9: The architecture of the IQA-CNN++ for simultaneously image quality

estimation and distortion identification.

In the multi-task setting, training is similar. Define quality score estimation

as task 1, and let xn and yn denote the input patch and its ground truth score,

respectively, and let f(xn;W ) be the predicted score of xn with network weights W .

The loss L1 is measured using the l1 norm of the prediction error. The optimization

objective for task 1 is defined as follows:

min
W

L1 = min
W

1

N

N∑
n=1

‖f(xn;W )− yn‖1 (4.5)

where N is the total number of patches.

Define distortion identification as task 2, where the negative log-likelihood is

used as the loss. Let zn denote the ground truth of distortion type for patch xn,

and g(xn, zn;W ) denote the negative log likelihood of xn. Let L2 denote the loss

and the optimization objective for task 2 can expressed as :

min
W

L2 = min
W

1

N

N∑
n=1

g(xn, zn;W ) (4.6)

In the multi-task learning, the loss function can be formulated as a weighted
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sum of each task’s loss. Suppose there are M tasks. Let αi and Li denote the

weight and loss for task i, respectively. L is the overall loss, then the multi-task

optimization objective is formulated as:

min
W

L = min
W

1

N

N∑
n=1

(α1 ‖f(xn;W )− yn‖1 + α2g(xn, zn;W )) (4.7)

If αm = 0, the learning is identical to task m. We employ SGD and backprop to

approximately minimize the loss, so in practice the network parameters are updated

using the weighted sum of the gradients from all tasks. Let wi denote the ith network

parameter, Di
m be the gradient for wi from task m, and p be the learning rate. The

following updating rule applies for each iteration:

wi ← wi − p
2∑

m=1

αmD
i
m (4.8)

We choose αm according to two criteria: first, they should to be large enough

to update each individual task effectively; second, not too large to collectively pro-

duce enormous updating on the network weights. In practice, since we are mainly

interested in task 1, we first pick the best α1, then pick the largest α2 that can work

with α1.

Similar to the training of our previous model, we apply dropout only at the

second fully connected layer. Half of the inputs of the second fully connected layer

are randomly masked in training, and in testing their weights are divided by 2. We

also use momentum for robust training.
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4.2.3 Experiments

We present experiments on three standard datasets and measure the perfor-

mance in using the standard metric. Particularly, we compare the multi-task CNNs

against other models and our previous method. Cross dataset experiments are also

conducted to demonstrate the generalization power of the proposed approach.

4.2.3.1 Experimental Protocol

Datasets: Our experiments employ the following three datasets.

(1) LIVE [82]: A total of 779 distorted images with five different distortions

– JPEG2000 compression (JPEG2K), JPEG compression (JPEG), white Gaussian

(WN), Gaussian blur (BLUR), and fast fading (FF) at 7-8 degradation levels derived

from 29 reference images. Differential Mean Opinion Score (DMOS) is provided for

each image, roughly in the range [0, 100]. Higher DMOS indicates lower quality.

(2) TID2008 [83]: 1,700 distorted images with 17 different distortions derived

from 25 reference images at 4 degradation levels. Each image is associated with a

Mean Opinion Score (MOS) in the range [0, 9]. Contrary to DMOS, higher MOS

indicates higher quality. In our experiments, we use the first 13 distortions including:

additive Gaussian noise (WN), additive noise in color components (WNC), spatially

correlated noise (SCN), masked noise (MN), high frequency noise (HFN), impulse

noise (IN), quantization noise (QN), Gaussian blur (BLUR), image denoising (IDN),

JPEG compression (JPEG), JPEG2000 compression (JPEG2K), JPEG transmission

errors (JPEGTE), JPEG2000 transmission errors (JP2KTE).
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(a) (b)

(c) (d)

Figure 4.10: Sample images from the LIVE dataset: (a) clean reference image, (b)

white Gaussian noise, (c) Gaussian blur, and (d) jpeg compression.
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(a) (b)

(c) (d)

Figure 4.11: Sample images from the TID2008 dataset: (a) clean reference image,

(b) impulse noise, (c) jpeg transmission noise, and (d) jpeg2000 transmission noise.
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(3) CSIQ [87]: 30 original images distorted using six different types of dis-

tortions at four to five levels each, resulting in a total of 866 distorted images.

DMOS is provided for each distorted image. The six distortions are JPEG compres-

sion (JPEG), JPEG-2000 compression (JP2K), global contrast decrements (CON-

TRAST), additive pink Gaussian noise (FNOISE), additive white Gaussian noise

(WN), and Gaussian blur (BLUR). We also use only four distortions that appear in

LIVE dataset, i.e., JPEG2K, JPEG, WN, and BLUR.

Evaluation: We use these two measures to evaluate the performance of the qual-

ity estimation: 1) Linear Correlation Coefficient (LCC), which measures the linear

dependence between two quantities, and 2) Spearman Rank Order Correlation Co-

efficient (SROCC), which measures how well one quantity can be described as a

monotonic function of another quantity. For the distortion identification task, we

simply compute the classification accuracy. We report results obtained from 100

train-test trials, where in each trial we randomly select 60% of reference images

and their distorted versions as the training set, 20% as the validation set, and the

remaining 20% as the test set.

4.2.3.2 Evaluation on LIVE

On the LIVE dataset, we train and test on all five distortions together. We

compare our multi-task CNNs with previous methods on both quality estimation

and distortion identification tasks. Then, we discuss the difference between our

multi-task CNNs. Figure 4.10 shows a few samples from the LIVE dataset, and we
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can see the distortions are distributed homogeneously.

4.2.3.2.1 Multi-task CNNs vs previous models

Multi-task CNNs utilize both DMOS and distortion types for training and

accomplish the two tasks simultaneously, as described in the above section. As a

comparison, all previous methods use DMOS as ground truth for quality estimation

training, and use distortion types independently for distortion identification only if

needed.

In Table 4.6, we compare the performance of multi-task CNNs with previous

methods, including DIIVINE, BLIINDS-II, BRISQUE, CORNIA, and IQA-CNN.

Note that BLIINDS-II and BRISQUE reported the classification accuracy of dis-

tortion types, but CORNIA’s classification result was not directly available. Thus

we used CORNIA’s implementation and obtained the classification accuracy. Per-

formance of full reference methods appear in Table 4.6 for reference. The top three

results are highlighted in red, blue, and green, respectively.

Quality score estimation: Table 4.6 shows that in the quality estimation

task multi-task CNNs (IQA-CNN+ and IQA-CNN++) outperformed the non-CNN

based methods. Both multi-task CNNs achieved similar performance compared to

IQA-CNN.

Distortion identification: For the distortion identification task, both multi-task

CNNs achieved much higher accuracy. Compared with the state of the art, the

gains are approximately 5% and 8%, respectively. IQA-CNN++ achieves the best

performance (0.951) among all competitors.
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LCC SROCC Class. Acc.

PSNR 0.856 0.866 -

SSIM 0.906 0.913 -

FSIM 0.960 0.964 -

DIIVINE 0.917 0.916 -

BLIINDS-II 0.930 0.931 0.838

BRISQUE 0.942 0.940 0.886

CORNIA 0.935 0.942 0.875

IQA-CNN 0.953 0.956 -

IQA-CNN+ 0.953 0.953 0.921

IQA-CNN++ 0.950 0.950 0.951

Table 4.6: Performance of quality estimation and distortion identification on LIVE.

Full-Reference methods are italicized. The top three results are highlighted in red,

blue, and green, respectively.
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The appealing performance of the multi-task CNNs in distortion identifica-

tion partly stems from the voting of patches. On the patch level, we observe a

classification accuracy around 0.88, therefore the correct prediction is highly likely

to collect the most votes and appear as the final prediction on image level. From

this aspect we can see that being able to predict on small image patches with a

reasonable accuracy contributes greatly to the superior performance on distortion

identification.

4.2.3.2.2 Comparisons on different multi-task CNNs

Comparing two multi-task CNNs, the IQA-CNN++ performs notably well in

distortion identification, with a 3% gain over IQA-CNN+, while the two mthods

show similar performance in quality estimation. To further analyze the influence

of the network architecture, we compute the confusion matrices for both CNNs in

Figure 4.12. For IQA-CNN+, one type (JPEG2K) performs relatively poorly. In

comparison, IQA-CNN++ performs well on all distortions without failing on any

particular one.

4.2.3.3 Evaluation on TID2008

On the TID2008 dataset, we train and test on 13 distortions together, similar

to the experiments on LIVE described above. In Table 4.7 we compare the perfor-

mance of IQA-CNN+, IQA-CNN++, and other methods with available results.

From Table 4.7 we observe that both IQA-CNN+ and IQA-CNN++ outper-

form the previous methods by a large margin. For the quality estimation task,
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(a) IQA-CNN+ (b) IQA-CNN++

Figure 4.12: Confusion matrices on LIVE dataset.

IQA-CNN++ achieves an LCC and SROCC of 0.880 and 0.870, showing advantage

over the IQA-CNN+ as well as other methods. On the distortion identification side,

IQA-CNN++ achieves the highest accuracy of 0.929 while other methods are below

0.9.

Some of the 13 distortions in this experiment are not homogeneous on the

entire image, e.g., impulse noise (IN), JPEG transmission errors (JPEGTE), and

JPEG2000 transmission errors (JP2KTE) occur either very sparsely or concentrate

on a small fraction of the image, as shown in Figure 4.11. IQA-CNN++ han-

dles these issues well. From the confusion matrix (Figure 4.13b), notice that IQA-

CNN++ achieves a recall higher than 0.9 on almost every distortion (except WN

and WNC), which leads to an overall better performance. Both IQA-CNN+ and

IQA-CNN++ become confused on WN and WNC, but which is understandable be-

cause we work on grayscale images where WNC is almost indistinguishable from
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LCC SROCC Class. Acc.

PSNR 0.652 0.669 -

SSIM 0.857 0.878 -

FSIM 0.913 0.926 -

CORNIA 0.837 0.813 0.862

IQA-CNN 0.873 0.862

IQA-CNN+ 0.870 0.861 0.889

IQA-CNN++ 0.880 0.870 0.929

Table 4.7: Performance of quality estimation (measured in LCC and SROCC) and

distortion identification (measured in classification accuracy) on 13 distortions of

TID2008. Full-Reference methods are italicized. Red and blue denote the top two

results, respectively
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(a) IQA-CNN+

(b) IQA-CNN++

Figure 4.13: Confusion matrices on the 13 distortions of TID2008.
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WN.

Training on these locally distorted images can prove difficult, because two

images of different degradation levels or distortion type may produce the same clean

patches with different quality scores and distortion types, which makes the training

data noisy. Despite this issue, the proposed methods performs well. This fact

demonstrates that the proposed approaches have a strong learning ability that is

robust to noise in samples.

4.2.3.4 Cross Dataset Test

To observe how well our methods generalize, we conduct cross dataset tests.

Training and validation are performed on LIVE, then the obtained model is tested on

TID2008 and CSIQ without adapting any parameters. Both the quality estimation

and the distortion identification tasks are tested. The three datasets cover different

types of distortions so we use only the four distortions common to all the three

datasets, JPEG2K, JPEG, WN, and BLUR.

Since the model trained on LIVE produces a quality score in the same range as

DMOS, which is different from MOS in TID2008, we follow the tradition as in [21] to

apply a nonlinear mapping on the predicted quality scores on TID2008. No mapping

is applied for CSIQ because it also uses DMOS as the ground truth quality measure.

Tables 4.8 and 4.9 show the results of the cross dataset tests on TID2008 and CSIQ,

respectively. For image quality estimation task, the IQA-CNN++ trained on LIVE

achieves an LCC/SORCC of 0.895/0.906 on TID2008 and 0.928/0.936 on CSIQ,
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LCC SROCC Class. Acc.

PSNR 0.776 0.901 -

SSIM 0.817 0.903 -

FSIM 0.952 0.954 -

CORNIA 0.890 0.880 0.920

IQA-CNN 0.903 0.920 -

IQA-CNN+ 0.893 0.912 0.890

IQA-CNN++ 0.895 0.906 0.933

Table 4.8: Performance of quality estimation (measured in LCC and SROCC) and

distortion identification (measured in classification accuracy) on four common dis-

tortions of TID2008, using models trained on LIVE. Full-Reference methods are

italicized. The top three results are highlighted by red, blue, and green, respec-

tively.

outperforming other methods. IQA-CNN++ also shows the best best performance

on the distortion identification task for both datasets.

4.2.3.5 Discussion

The experiments show that the proposed multi-task CNNs generally achieve

the state of the art performance on both image quality estimation and distortion

identification. For the task of image distortion identification, the IQA-CNN++

consistently outperforms others on all three datasets, with comparable performances

in the quality estimation. This demonstrates that the proposed multi-task learning
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LCC SROCC Class. Acc.

FSIM 0.961 0.962 -

CORNIA 0.914 0.899 0.768

IQA-CNN 0.913 0.923 -

IQA-CNN+ 0.910 0.918 0.730

IQA-CNN++ 0.928 0.936 0.783

Table 4.9: Performance of quality estimation (measured in LCC and SROCC) and

distortion identification (measured in classification accuracy) on four common distor-

tions of CSIQ, using models trained on LIVE. Full-Reference methods are italicized.

The top three results are highlighted in red, blue, and green, respectively.

framework has excellent and balanced performance, which makes it more suitable

as an overall solution.

4.2.3.6 Computational Cost

Convolutional networks typically require a large amount of computational re-

sources. The implementation of the proposed multi-task CNN is based on Theano

[77] which enables the computation to be deployed easily on GPU. We measured

the processing time on images of size 512 × 768. On a PC with 2.8GHz CPU and

Tesla C1060 GPU, IQA-CNN+ and IQA-CNN++ take 0.017 and 0.013 seconds,

respectively, on average to process an image.
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4.3 Document Image Quality Assessment

Document quality has a direct impact on the optical character recognition

(OCR) performance. Thus, it is desirable to estimate document quality before

applying OCR, and Document image quality assessment (DIQA) has attracted at-

tention from OCR research community. In this section, we assume the quality of

a degraded document image is directly correlated with the performance of OCR

software it uses. A document quality prediction system can be used in many prac-

tical applications [88]. For example, it can filter highly degraded document image

for which the OCR system cannot handle, or it can be used to select high quality

document frames in a video capture system [89]. When applying a document en-

hancement method, we may be able to avoid further degradation under the guidance

of a quality measure.

We present a CNN based method for DIQA, which provides a more unified

and principled method for feature learning and regression. Taking the advantage

of the homogeneous nature of typical distortions, we divide document images into

patches to increase the number of training samples significantly. This allows our

method to work for large images. An efficient patch selection process is employed

and only informative patches are input to the CNN. Our method demonstrates state

of the art performance on two document quality datasets.
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4.3.1 Related Work

Early work on DIQA focused on deriving solutions for specific types of docu-

ment degradations and relied on hand-crafted features. In [90–92], several quality

factors for typewritten document images are proposed including: Font Size (FS),

Small Speckle Factor (SSF), Stroke Thickness Factor (STF), White Speckle Factor

(WSF) and Broken Character Factor (BCF). These metrics were computed empir-

ically based on connected-components and were chosen because they may have a

high correlation with the OCR error rate. They have been used to predict OCR

accuracy and to choose the best restoration method for preprocessing. However,

these metrics cannot be directly applied to general document distortions for the fol-

lowing reasons: 1) the computation of these metrics depends on font size. Thus they

are effective only under the assumption that the sizes of individual characters are

similar. However, a complex document image may contain characters of different

font or stroke sizes, and some scripts such as Arabic typically show varying stroke

sizes. 2) The touching of handwritten characters could relate to the writing style of

writer and not related directly to quality.

Recently, Kumar et al. [93] proposed a sharpness measure for camera-captured

document images, which is specifically designed to measure the blur distortion and

may only be applied to camera-captured document images. The first general-purpose

method seen in the literature is the feature learning method introduced by Ye et al.

[94], which is an extension of the CORNIA system [21]. This method is based on an

unsupervised feature learning that can automatically learn discriminant features for
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(a) (b) (c) (d)

Figure 4.14: (a) A document image of size 1860 × 3264, (b) local normalization

result (intensity rescaled for better visualization), (c) binary map obtained from the

original image using Otsu’s method, and (d) mask of non-constant 48× 48 patches

(white).

different types of document degradations. Unfortunately, this is a rather empirical

feature learning solution.

4.3.2 Approach

We introduce the overall process of estimating document image quality. We

preprocess a grayscale document image with local normalization, crop the image into

patches, use the CNN to estimate quality scores for selected patches, and average

the scores to obtain a score for the image. We aim to predict quality scores that

correlate with OCR accuracies as much as possible.
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4.3.2.1 Preprocessing

Preprocessing is typically required for general image quality assessment to be

robust to intensity and contrast change. As in [23], we perform a local normalization

over the entire image. Each pixel is subtracted by the mean and divided by standard

deviation of the pixels in a surrounding window. Figure4.14(a) and (b) show a

document image and its local normalization result.

4.3.2.2 Patch sifting

We perform Otsu’s binarization [95] on the raw image and obtain a binary

map corresponding to foreground and background. We crop patches from the pre-

processed (i.e., locally normalized) images and check their corresponding patches

on the binary map. If the patch on the binary map is constant, i.e., all ones or all

zeros, then the patch is discarded. The patch size is chosen to be larger than the

typical stroke width, meaning text patches are preserved. Most patches discarded

in this manner are background patches or non-text foreground patches. Figure 4.14

(c) shows the result of Otsu’s binarization, and Figure 4.14 (d) shows the locations

of patches selected after sifting.

Given that we predict quality with respect to OCR performance, we would

like to focus on the patches that contain characters. In our document dataset, most

image content is either text or background, thus we need to discard the background

patches and use the rest for quality estimation.
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Figure 4.15: The architecture of the proposed CNN.

4.3.2.3 Network Architecture

Once the patches are obtained, we feed them into a network. Figure 4.15 shows

the architecture of the proposed network. The network contains two convolution and

pooling layers, two fully connected layers, and one output layer. The input is sifted

patches of 48 × 48. The first convolution layer contains 40 kernels, each of 5 × 5,

followed by a 4× 4 max pooling, then the second convolution layer with 80 kernels

each of 5× 5. Following the second convolution layer is a special max-min pooling

that we will explain later. Each of the two fully connected layers contains 1024

nodes. The last layer is a linear regression that outputs the quality score.

We use Rectified Linear Units (ReLUs) [60] as the neurons in the two fully

connected layers. Formally ReLUs can be expressed as f(x) = max(0, x), where x

denotes the input. ReLUs allow positive signals to pass and suppress the negative

signals. Compared to traditional sigmoid or tanh neurons, ReLUs are robust to

input range and leads to faster training as demonstrated in [26]. Note that no

nonlinear transform is applied in convolution or pooling layers, or equivalently, a
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linear neuron (f(x) = x) is applied, because in experiments we did not observe any

benefit from using ReLUs in the convolution layers.

As previously mentioned, a special max-min pooling after the second convolu-

tion layer is used. Specifically, each feature map obtained by the second convolution

layer is pooled into one max value and one min value. Suppose there are 80 kernels

in the second convolution layer, after max-min pooling we obtain 80 max values and

80 min values for a total of 160 outputs. The max-min pooling discards the location

information of features, but the filter responses characterized by maxs and mins are

sufficient to capture the quality’s statistics.

4.3.2.4 Learning Procedure

By cropping images into patches we have plenty of training samples. Most

importantly the training patches are all labeled, and we can use the labels of patches

the same as the ground truth OCR scores of their original images.

During training, for each patch we try to train the network to predict a score

close to the ground truth. The error between the last layer’s output (predicted

score) and the patch’s ground truth is measured by the l1 norm. We use Stochastic

Gradient Decent (SGD) and backpropagation to solve the minimization and update

the parameters. Training is performed on minibatches of samples for a given number

of epochs, and we select the model parameters that achieve the best performance

on the validation set.
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4.3.3 Experiments

4.3.4 Dataset and protocol

Datasets: We conduct experiments on the following two datasets.

(1) Sharpness-OCR-Correlation (SOC) dataset [96]: a total of 175 color images

with resolution 1840×3264. These images are captures of 25 documents using a cell

phone camera. Each document contains machine printed English, and 6-8 photos,

with varying focal lengths, were taken to generate different levels of blur. Figure

4.14(a) shows a sample image of this dataset. A commercial OCR software (ABBYY

Fine Reader) was performed on each of the 175 images, and the OCR results were

evaluated by the ISRI-OCR evaluation tool [97] to obtain OCR accuracies in the

range [0, 1]. The OCR accuracy is the ground truth for each image in our quality

assessment task.

(2) Newspaper dataset [94]: a total of 521 grayscale images with various resolu-

tion. These images represent a subset of a historical collection and contain machine

printed English and Greek. Each image in this dataset is a text region instead of an

entire page. The OCR accuracies were obtained for each image using ABBYY Fine

Reader and ISRI-OCR in the same way as the SOC dataset. On this dataset, the

OCR performance is mainly affected by broken strokes. Figure 4.16 shows sample

images from this dataset.

Evaluation protocol: Following the tradition in natural image quality assessment,

we compute the correlation between the predicted quality scores and ground truth
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(a)

(b)

(c)

Figure 4.16: Sample images from the Newspaper dataset
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BRISQUE-L [23] CORNIA [21] CORNIA-SF [22] CNN

LCC 0.904 0.937 0.927 0.950

SROCC 0.836 0.862 0.854 0.898

Table 4.10: Median LCC and SROCC over 100 random sampling experiments on

SOC dataset

OCR accuracies. Specifically, we use the Linear Correlation Coefficient (LCC) and

the Spearman Rank Order Correlation Coefficient (SROCC) to evaluate the per-

formance of the proposed algorithm and compare it to previous methods. LCC

is a measure of the degree of linear relationship between two variables. SROCC

measures how well the relationship between two variables can be described using a

monotonic function.

In our experiments, we randomly sample 60% of the data as the training set,

20% as the validation set, and leave the remaining 20% as a test set. This random

split of the dataset is reasonable for the Newspaper dataset, but not on the SOC

dataset. The images of the SOC dataset are organized in groups, in which each

group contains only images taken from the same document. Thus, the random split

is conducted at the group level. For both datasets, this random split of data is

repeated 100 times, each time the LCC and the SROCC are computed, and we

report the median LCC and SROCC.
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(a) (b)

Figure 4.17: Learned convolution kernels on (a) SOC dataset, and (b) Newspaper

dataset

4.3.5 Evaluation

Evaluation on SOC: On the SOC dataset, the image resolution is high, so we

use a relatively large patch size of 48. With this patch size we obtain roughly

9 × 104 training patches, 3 × 104 validation patches, and 3 × 104 test patches. We

show the experimental results and compare with previous approaches in Table 4.10.

The proposed method achieved a higher LCC and SROCC than other competing

methods.

We visualize the learned filters in the first convolution layers, in Figure 4.17(a).

The learned filters do not show patterns immediately intuitive to human. Some

patterns tend to change intensity gradually along a direction that may correspond

to blurred character boundary, while most patterns seem to be of irregular structure.

We believe this happens because that the filters are learned from locally normalized

images instead of the original images.

Evaluation on Newspaper: The image size varies greatly in the Newspaper

dataset. Images can be as small as 569 × 38, and the characters in the images
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BRISQUE-L CORNIA CORNIA-SF CNN

LCC 0.722 0.751 0.735 0.731

SROCC 0.709 0.725 0.708 0.726

Table 4.11: Median LCC and SROCC over 100 random sampling experiments on

Newspaper dataset

appears smaller than those in SOC. Thus, a smaller patch size of 32 is used for

this dataset. Approximately 6× 104 patches exist for training, and 2× 104 each for

validation and test. Table 4.11 shows the experimental results on the Newspaper

dataset. Our method achieved similar performance compared to the state of the

art. All competing methods show a decrease of performance on this dataset. The

major noise present in the Newspaper dataset arises from eroded/broken strokes,

which are likely part of the document instead of being introduced by the imaging

process. This inherent distortion mainly contains the semantics, thus it may not

be measured well by those methods that typically focus on statistics of low level

features.

We also visualize the first convolution layer filters learned on the Newspaper

dataset in Figure 4.17(b). It is difficult to see obvious structures from the learned

filters.
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Chapter 5: Summary of Contributions

We have addressed three problems: text line detection, document image categorization,

and No-Reference image quality assessment.

5.1 Handwritten and Scene Text Line Detection

In Chapter 2 we addressed the problem of text line detection in handwritten

documents and natural images. Our contributions include:

1. The development of a graph-based method for text line segmentation which

uses image-patches in the training data to obtain the contextual evidence

needed for detecting text lines in a new document images.

2. A novel Sequential Gap Significance feature combined with a support vector

machine to make accurate predictions of the number of clusters in Normalized

Cuts.

3. A general framework to detect multi-oriented scene text lines with less depen-

dency on font or language. Instead of focusing on the strong detection and

filtering approaches, this new framework explores the Higher-Order Correla-

tion Clustering to exploit elongated nature of text lines and to consider long
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range dependencies.

4. Texton-based method for classification of candidate text lines on the region

level, which provides stable statistics and achieves state of the art performance

in comparison with competing methods that aim at detecting multi-oriented

and multi-language text.

5.2 Document Image Categorization

In Chapter 3 we addressed the problem of document image categorization.

Our contributions include:

1. A general approach for document image genre classification using CNNs. The

introduction of CNNs for document image genre classification largely reduces

the needs of hand-crafted features or domain knowledge. The hierarchical

nature of document images make CNNs an excellent solution for their classi-

fication.

2. The demonstration of our CNN’s state of the art performance on standard

benchmarks. With very little feature engineering and limited training data,

our method outperform the previous best method by a large margin.

5.3 No-Reference Image Quality Assessment

In Chapter 4 we addressed the problem of NR-IQA. Our contributions include:

1. A CNN based approach to general-purpose NR-IQA. CNN has not previously
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been applied to general-purpose NR-IQA, because the original CNN is not de-

signed to capture image quality features. The difference between NR-IQA and

object recognition makes the application of CNN nonintuitive. Our method

bridges the gap between NR-IQA and CNN, and it opens the door to a broad

range of deep learning methods.

2. Demonstration of local image quality estimation ability. Previous approaches

typically accumulate features over the entire image to obtain statistics for

estimating overall quality, and have rarely shown the ability to estimate local

quality. Our method can estimate quality on small patchs, which is important

for many image enhancement applications such as denoising or reconstruction.

3. Simultaneous distortion identification and quality estimation. We developed

a multi-task CNN that accurately identifies distortion and estimates quality

on small image patches. Our multi-task CNN achieves a complete solution for

NR-IQA problems and outperforms previous methods by a large margin on

distortion identification.

4. State of the art performance on natural images and document images. Our

CNN based approaches obtain high correlations with human opinions on nat-

ural image benchmarks (LIVE, TID2008, and CSIQ), and with OCR accuracy

on the document image benchmarks (SOC and Newspaper).
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Mathieu, and Yann LeCun. Learning convolutional feature hierachies for visual
recognition. In Advances in Neural Information Processing Systems (NIPS),
2010.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems (NIPS), 2012.

[27] Yi Li, Yefeng Zheng, D. Doermann, S. Jaeger, and Yi Li. Script-independent
text line segmentation in freestyle handwritten documents. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 30(8):1313 –1329, Aug. 2008.

[28] J. Kumar, Le Kang, D. Doermann, and W. Abd-Almageed. Segmentation
of handwritten textlines in presence of touching components. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages
109 –113, Sept. 2011.

[29] U. Pal and S. Datta. Segmentation of bangla unconstrained handwritten text.
In Document Analysis and Recognition, 2003. Proceedings. Seventh Interna-
tional Conference on, pages 1128 – 1132, Aug. 2003.

[30] V. Manohar, S.N. Vitaladevuni, Huaigu Cao, R. Prasad, and P. Natarajan.
Graph clustering-based ensemble method for handwritten text line segmen-
tation. In Document Analysis and Recognition (ICDAR), 2011 International
Conference on, pages 574 –578, Sept. 2011.

[31] B. Gatos, N. Stamatopoulos, and G. Louloudis. Icdar 2009 handwriting seg-
mentation contest. In Document Analysis and Recognition, 2009. ICDAR ’09.
10th International Conference on, pages 1393 –1397, July 2009.

[32] N. Sebe, I. Cohen, A. Garg, and T Huang. Machine Learning in Computer
Vision. Springer, 2005.

[33] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22(8):888–905, August 2000.

127



[34] Jayant Kumar, Wael Abd-Almageed, Le Kang, and David Doermann. Hand-
written arabic text line segmentation using affinity propagation. In Proceedings
of the 9th IAPR International Workshop on Document Analysis Systems, DAS
’10, pages 135–142, New York, NY, USA, 2010. ACM.

[35] Zhixin Shi, S. Setlur, and V. Govindaraju. A steerable directional local profile
technique for extraction of handwritten arabic text lines. In Document Analysis
and Recognition, 2009. ICDAR ’09. 10th International Conference on, pages
176 –180, July 2009.

[36] Fei Yin and Cheng-Lin Liu. Handwritten chinese text line segmentation by
clustering with distance metric learning. Pattern Recognition, 42(12):3146 –
3157, 2009. ¡ce:title¿New Frontiers in Handwriting Recognition¡/ce:title¿.

[37] F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on,
volume 1, pages 604 – 610, Oct. 2005.

[38] Peng Ye, Jayant Kumar, Le Kang, and David Doermann. Unsupervised feature
learning framework for no-reference image quality assessment. In Computer
Vision and Pattern Recognition, 2012. CVPR 2012. IEEE Conference on, page
to appear, June 2012.

[39] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, Dec. 2007.

[40] William Dumouchel and Fanny O’Brien. Computing and graphics in statistics.
chapter Integrating a robust option into a multiple regression computing envi-
ronment, pages 41–48. Springer-Verlag New York, Inc., New York, NY, USA,
1991.

[41] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-
baseline stereo from maximally stable extremal regions. Image and vision com-
puting, 22(10):761–767, 2004.

[42] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang D. D. Yoo.
Higher-order correlation clustering for image segmentation. In NIPS. 2011.

[43] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, and Y. Singer. Large
margin methods for structured and interdependent output variables. Journal
of Machine Learning Research, 6(9), 2005.
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