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The strong electron interactions in transition metal oxides offer wide-ranging

phenomena of interest to condensed matter physics and potential applications in

novel electronic devices. This thesis focuses on optical studies performed on three

such systems: colossal magnetoresistant (CMR) manganites, multiferroic LuMnO3,

and dilute magnetic oxide (DMO) cobalt-doped TiO2. Optical measurements, using a

variety of techniques, of thin film and bulk samples extend over a range of frequencies

(0.002 − 5 eV) and temperatures (4 − 350 K) and determine the optical constants.

Optical properties provide important insights into the electronic structure of these

exciting systems and illustrate the value of optical measurements as a probe of novel

materials.

The pseudocubic manganites exhibit a rich phase diagram that includes, in ad-

dition to CMR, various types of magnetic, charge, and orbitally ordered phases. For

the CMR manganites, the optical spectra and oscillator strength changes compare

with models that require both double exchange and the dynamic Jahn-Teller effect



in the description of the electronic structure. In the ferromagnetic state, results on

the electronic scattering rate and mass enhancement refute the claims of an anom-

alously small Drude weight in these materials.

Smaller rare-earth ions in the manganites (e.g., Lu) result in crystallization into

a hexagonal structure and a multiferroic ground state, in which ferroelectricity and

antiferromagnetism occur simultaneously. A symmetry-allowed on-site Mn d− d opti-

cal transition blueshifts in the antiferromagnetic state resulting from Mn-Mn superex-

change. TO phonon frequencies exhibit similar temperature dependent shifts arising

from spin-phonon interactions. Further, these phonons dominantly contribute to the

known anomaly below TN of the quasi-static ε.

Cobalt-doped TiO2 has received recent attention as a new DMO displaying

room temperature ferromagnetism. Optical conductivity of low-doped samples re-

veals an absence of absorption below an onset of interband transitions at 3.6 eV and

a blue shift of the band edge with doping. The absence of below band gap absorp-

tion remains inconsistent with band calculations and suggests that strong on-site

Coulomb interactions shift the optical transitions to energies above the gap.
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Chapter 1

Introduction

1.1 Transition Metal Oxides

The discovery1 of high-temperature superconductivity in the cuprates renewed

interest in the study of transition metal oxides (TMO). This fascinating class of inor-

ganic solids exhibits a wide variety of exotic and imperfectly understood structures,

properties, and phenomena.2,3 The material properties result from strong interac-

tions and depend on external parameters such as temperature, mechanical pres-

sure, chemical composition, oxygen concentration, applied magnetic field, and ap-

plied electric field. Exploiting these properties in novel electronic devices remains an

active area of research. Given these considerations, transition metal oxides repre-

sent a veritable playground for condensed matter physicists and materials scientists.

The outer d electrons of the transition metal ions are largely responsible for

the interesting electronic and magnetic properties. Hund’s rules for the partially filled

d-levels provide for the large magnetic moments. The coupling of these moments

through both direct and indirect exchange mechanisms produce various long-range

magnetic order (depending on the sign of the exchange and the details of the cou-

pling) including ferromagnetic, antiferromagnetic, and ferrimagnetic. In addition to

magnetic ordering, TMOs exhibit various other ordering: charge, orbital, and ferro-

electric. The small electronic bandwidth W relative to the electron-electron interaction

energy U in these materials leads to strong correlation effects, which often exceed

1



the capabilities of band theory.

1.1.1 Practical applications

Transition metal oxides offer promising applications in the emerging field of

magnetoelectronics or “spintronics”, which exploits the quantum-mechanical spin of

electrons in addition to the conventional utilization of charge. Possible device ap-

plications include4 (i) spin valves, (ii) nonvolatile memory, (iii) spin-based field-effect

transistors (FET), (iv) spin-based light emitting diodes (LED), and (v) Spin resonant

tunnelling diodes (RTD). The success of these devices depends on understanding

spin interactions in solid state systems, including the role of dimensionality, defects,

and band structure.4

“Spintronic” devices offer the possibility of combining information processing

with non-volatile information storage. Typically, information processing is imple-

mented using semiconducting technology and information storage is implemented

using high-density magnetic storage. The proliferation of personal computers

(PC) stimulates advances in materials with applications to information technol-

ogy. Specifically, semiconducting chip density progresses exponentially, doubling

every approximately eighteen months according to Moore’s law.5 Such advances

in information processing capabilities drive similar developments in non-volatile

storage. Magnetic storage capacity follows a power law analogous to Moore’s law

for semiconducting chip density. Figure 1.1 shows a plot of the storage capacity

(in megabytes) of 5.25 in. hard disk drives (HDD) as a function of time over several

decades.6 An exponential fit reveals a doubling of HDD storage capacity roughly

every two years. For typical hard drive platter dimensions, the current hard drive

capacity corresponds to a storage density of approximately 40 bits/µm2 (8 bits

= 1 byte). A hypothetical limiting density of approximately 1 bit/nm2 results from

consideration of a single magnetic moment located in a unit cell. Comparing this

2



Figure 1.1: Storage capacity (megabytes) of 5.25 in. personal computer
hard drives from the 1970’s until the present. Data prior to 2000 from Ref. 7.
Straight line represents an exponential fit to the data.

limit with the presently realized storage density suggests a potential improvement

of ∼ 107. At the current rate of increase, this represents nearly a half century of

continued development.

The rapid transition from discovery to product8 of the spin-polarized transport

employed in giant magnetoresistance (GMR) materials significantly advanced mag-

netic storage capacity. GMR materials consist of alternating layers between mag-

netic and nonmagnetic thin films. An external field polarizes spins in the magnetic

layers and minimizes spin-dependent scattering. As a result, large resistive changes

occur for small changes in applied field, making GMR materials sensitive magnetic

read heads. The GMR effect, initially reported9 in 1988, first found commercial ap-

plication8 in magnetic field sensors in 1994 and in HDD read heads in 1997. The

successful application of the GMR effect fuels interest in related materials with even

larger magnetoresistance. These aptly-named “colossal magnetoresistance” (CMR)

3



materials have attracted a great deal of attention and generated a wealth of unex-

pected condensed matter phenomena. However, the CMR materials have not yet

enjoyed the applied success of their merely giant cousins.

The application of GMR materials in magnetic read heads produced immediate

benefits to information technology. A broader goal involves integration of both spin

and charge functionality not currently existing in either ferromagnets or semicon-

ductors alone.10 Such functionality includes demonstrating control of the magnetic

ordering by the application of an electric field and vice versa. Several groups have

demonstrated this extra degree of freedom in TMO systems. Ohno et al.11 have

demonstrated electric field control of ferromagnetism in (In,Mn)As heterostructures.

Cheong et al. have demonstrated12 similar effects in the multiferroic TbMn2O5.

1.1.2 Strong correlation effects on condensed matter systems

Two limiting descriptions of the outer atomic electrons in solids consist of the

localized or ligand-field, appropriate for insulators, and the delocalized band theory,

appropriate for metals. The localized description applies whenever electrons are

tightly bound to the ions and interatomic interactions are weak. This corresponds

to a small electron bandwidth W relative to the electron-electron Coulomb energy

U, i.e., W � U. On the other hand, band theory applies for appreciable overlap of

neighboring orbitals, in which case W � U. Typically, the d electrons in transition

metal oxides exhibit narrow bands overlapping with relatively broad s − p bands and

neither limit applies. In this intermediate case, W ∼ U and the behavior lies be-

tween local and band theory. Theoretical models describing this strong correlation

regime attempt to explain the interactions responsible for the tendency of electrons to

localize more than predicted from noninteracting pictures. Examples of the these in-

teractions include those between electrons (el-el), between electrons and the lattice

(el-phonon), and between spins and the lattice (spin-phonon). The strong correlation
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regime leads to both localized and itinerant electron behavior.

Localized models describe ions fixed in the crystal lattice with little overlap of

the atomic orbitals. Crystal or ligand field theory describes the perturbation of atomic

levels due to the local coordination environment of additional atoms in the lattice.

Intra-atomic exchange (Hund’s rule splitting) and electron-phonon interactions favor

localized electrons.2 At finite temperatures el-el and el-ph interactions become impor-

tant. For el-ph interactions, Frohlich’s coupling constant λ characterizes the strength

of the interaction. The self-trapping of an electron due to lattice interactions is called

a polaron. The size of λ determines the transport properties of the polaron. Weak

coupling gives rise to large polarons with itinerant transport, while strong coupling

produces small polarons that tend to localize and display activated hopping trans-

port.

Perhaps one of the best studied and simplest models including strong correla-

tion effects is that due to Hubbard.13 The Hubbard model parameterizes the Hamil-

tonian of a single orbital per site in terms of the nearest-neighbor hopping parameter

t and the on-site electron-electron interaction term U. This single band model de-

scribes the splitting of bands into upper and lower Hubbard bands. As W increases

the upper and lower bands come together and the energy gap disappears. The Hub-

bard model is given13 by

HHub = −
∑
i,δ

tδ
(
d†iαdi+δα + H.c.

)
+ U

∑
i

ni↑ ni↓ , (1.1)

where i denotes a lattice site, δ is the displacement vector between sites, α is the

spin, and ni↑ (ni↓) denotes the electron density on site i with spin up (down). For

n = 1 electron per site and finite U, the ground state is insulating, known as a Mott

insulator. With increased hole-doping, x = 1 − n, the electron-electron interaction

tendency decreases. This results in a metal-insulator transition (Mott transition) at

some critical doping concentration. For t � U, the kinetic energy K ∼ t2/U. Hence,
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an increase in hopping increases the kinetic energy. The Mott-Hubbard model is

appropriate for magnetic insulators, e.g., 3d TMOs with a small electronic bandwidth

W.2 A single band model, the Hubbard model is relevant only for t and U small

compared to the energy gap between other bands and may not apply for transitions

to other levels, for example O 2p to Mn 3d.

In addition to interacting with each other, outer electrons interact with the core

spins localized on the transition metal ions. Coupling of the itinerant carriers with

the core spins are important for magnetic TMO (e.g., the hole-doped orthorhombic

manganites). The Kondo lattice model adds a term to the Hamiltonian that includes

carrier interactions with the core spins

HHund = −JH

∑
i,a
αβ

Si · σαβ d†iαdiβ , (1.2)

where JH denotes the Hund’s coupling, S i denotes the core spin on site i, and σαβ de-

notes the carrier spin. In the limit where the coupling energy JH S c is large compared

to W, the carrier spins align with the core spins.

For the relatively narrow bands of the transition metal oxides, the tight bind-

ing model plus interactions well-describes the calculated band structure. The tight-

binding Hamiltonian has the form

H = −
∑

iδ
ab

tab
δ

(
ei e

c AAA·δd†iaαdi+δbα + H.c.
)
+ HINT , (1.3)

where i represents lattice sites, δ denotes a displacement connecting two lattice sites,

a and b represent electron orbitals on a given site, and Hint represents additional

interaction effects. Interactions may take the form of Hund’s exchange coupling, el-

el interactions, el-ph interactions, etc. Hopping matrix elements tab
δ are estimated

from fits to band structure calculations. The introduction of the Peierls phase term

ei e
c AAA·δ affords consideration of the interaction with electromagnetic radiation relevant to
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optical conductivity studies. The tight binding parameterization, valid only for nearest

neighbor hopping, facilitates calculations over the full Hamiltonian approach.

1.1.3 Specific TMO compounds

There exists a vast number of transition metal oxides to study, at least enough

to engage the condensed matter and materials science community for quite some

time. Knowing which materials to study requires experienced insight. This thesis

focuses on several such systems displaying magnetic and strong correlation effects,

including the manganites and Co-doped titanium dioxide.

Next to the high-Tc cuprates, the manganites represent possibly the next well-

known TMO system owing to the discovery of colossal magnetoresistance. Mangan-

ites RMnO3 form different crystal structures depending on the size of the rare-earth

ion R. Figure 1.2 presents Shannon ionic radii14 for the lanthanide series (circles).

The horizontal line represents the approximate boundary between orthorhombic and

Figure 1.2: Ionic radii of R3+ ions. Smaller ionic radii form a hexagonal
crystal structure.
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hexagonal crystal structures. For ionic radius larger than approximately 105 pm, the

manganites crystallize in the orthorhombic phase. For smaller radii, the hexagonal

crystal is realized. In addition to the lanthanides, yttrium and scandium also crystalize

in the hexagonal lattice. Ions near the separatrix between the two phases (e.g., Y or

Ho), may exhibit either phase depending on the growth conditions or the application

of mechanical stress.

The remainder of this chapter will be dedicated to introducing the structural,

magnetic, and electronic properties of the orthorhombic manganites, the hexagonal

manganites, and diluted magnetic semiconductors/oxides.

1.2 Ortho-manganites and Colossal Magnetoresistance

The discovery of colossal magnetoresistance (CMR) in hole-doped mangan-

ites of the form R1−xAxMnO3, where R is a rare-earth lanthanide (La, Ce, Pr, Nd, Pm,

Sm, Eu, Gd, Tb, Dy), A is an alkaline-earth (e.g., Sr or Ca) element, and x is the

hole-doping concentration, renewed interest in this complex magnetic system.15–19

Changing doping x results in a rich phase diagram characterized by the interplay of

magnetic, charge ordering, and orbital ordering tendencies. Strong electron-lattice

coupling effects lead to a variety of interesting physical phenomena.3 Figure 1.3

shows the phase diagram in temperature and doping x for the prototypical CMR

compound La1−xCaxMnO3. At low doping (x ≤ 0.2), material is insulating and para-

magnetic at high temperatures and antiferromagnetic below the Néel temperature

TN ≈ 140 K. The parent compound LaMnO3 exhibits A-type antiferromagnetic order

below TN and C-type orbital order below TOO ≈ 780 K (Ref. 21). In the CMR dop-

ing range, 0.2 ≤ x ≤ 0.5, the ground state exhibits metallic behavior commensurate

with ferromagnetism. Above the ferromagnetic transition temperature Tc the material

is paramagnetic and insulating. Charge-ordered and additional AFM states exists

above x > 0.5.
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Figure 1.3: La1−xCaxMnO3 phase diagram after Ref. 20.

1.2.1 Crystal structure

The ortho-manganites crystallize in the pseudo-cubic perovskite structure

shown schematically in Fig. 1.4 In the unit cell representation shown here, the triva-

lent rare-earth R3+ or divalent alkaline-earth A2+ occupies the body-center position

and Mn ions occupy the vertices. Corner-sharing oxygen octahedra surround the

Mn ions. The octahedral oxygen coordination introduces a crystal field splitting in

the Mn d-levels discussed below.

Structural distortions, including cation disorder and the Jahn-Teller (JT) distor-

tion, reduce the symmetry of the perovskite lattice from cubic to tetragonal. Cation

disorder results in rotations of the oxygen octahedra and subsequent buckling of the

Mn-O-Mn bonds. The resulting crystallographic space group is Pbnm. Figure 1.4(b)

schematically represents the octahedral tilts (not to scale) for Pbnm after Glazer.22
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(a) (b)

Figure 1.4: (a) Perovskite crystal structure. Mn, La, and O ions are
represented (not to scale) by red, green, and blue spheres, respectively.
(b) Schematic representation of tilting of the oxygen octahedra in the or-
thorhombic distortion.

The tolerance factor f quantifies23 the deviations from pure cubic

f =
rMn + rO√
2(rRE + rO)

, (1.4)

where the ri denote the ionic radii for Mn, O, and the average radius of the rare-earth

and alkaline-earth in the bcc twelve-fold coordinated oxygen environment. f ≈ 1 is

a cubic lattice, 0.96 < f < 1 is rhombohedral, and f < 0.96 is so-called GdFeO3-

type orthorhombic.23 For the orthorhombic case, the Mn-O-Mn bond angle varies

continuously with f . This bond-buckling plays a critical role in the hopping matrix

elements important to transport properties discussed below. Hwang et al. studied

changes in hopping as a function of R/A.

1.2.2 Magnetoresistance

In the doping region 0.2 < x < 0.5, the ground state of La0.7Ca0.3MnO3 is a ferro-

magnetic metal where dρ/dT > 0. Above Tc, the material displays an activated tem-

perature dependent resistivity. Evidently a metal-insulator transition is commensurate

with the ferromagnetic to paramagnetic transition. The resistivity in the manganites
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shows similarities with the magnetization in terms of a correlation in their temperature

dependence. The remarkable phenomenon from which the hole-doped manganites

derive their name is the observed magnetoresistance. Figure 1.5(a) shows the re-

sistivity as a function of temperature for several different externally applied magnetic

fields.20 As the applied field increases, the resistivity drops dramatically and the re-

ρ
Ω

Figure 1.5: Magnetic-field dependent resistivity in (La,Ca)MnO3 for x ≈ 0.3.
(a) Resistivity versus temperature for x = 0.25 at different applied magnetic
field after Ref. 20. (b) Magnetoresistance as function of applied magnetic
field for x = 0.33 after Ref. 18.

sistivity peak shifts to higher temperatures. Magnetoresistance is defined as

MR(H) =
ρ(H) − ρ(0)

ρ(0)
, (1.5)

where the decrease in resistivity in field [ρ(H) < ρ(0)] leads to a negative magne-

toresistance. Figure 1.5(b) shows %MR as a function of applied field. The magne-

toresistance exceeds 99 % for modest applied fields around a few Tesla. Large mag-

netoresistance effects may not be surprising.3 Obviously ferromagnetic transitions

are sensitive to the applied magnetic field. As the metal-insulator transition appears
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commensurate with the magnetic phase transition, then it also displays a sensitivity

to the applied magnetic field. Especially surprising is the localization mechanism for

T > Tc. Understanding the origin of the insulating localization in the paramagnetic

state proves to be an interesting problem.

1.2.3 Electronic structure

Mn d-electrons comprise the key players determining the electronic properties

of the manganites. The number of electrons per Mn is 4 − x. Hund’s rule coupling

implies that 3 electrons are localized on the t2g orbitals forming a core spin of S c =

3/2, while the remaining 1 − x electrons go into a band derived from the eg orbitals.

Each eg electron contributes S = 1/2. A strong Hund’s coupling constrains the spin

of an occupied eg orbital to align with the core spin, producing a total spin on a Mn3+

site of S = 2.

Qualitatively, ligand field theory provides the crystal field splitting of the Mn d-

levels resulting from consideration of the surrounding oxygen ions as point charges.

Figure 1.6(a) shows an energy diagram of crystal field splitting of the Mn d-levels. The

 (a) (b) 

x2-y2  

xy  

xz, yz 

eg 

t2g 

Mn3+ 
S=2 

cubic tetragonal 

3z2-r2  

x 

y 

z 

Mn 

O 

Figure 1.6: (a) Crystal field splitting of Mn d-levels resulting from cubic and
tetragonal crystal fields. (b) Normal mode Q3 of the Jahn-Teller distortion.
Arrows represent displacements of the O ions.
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quintuply degenerate Mn d-levels split in the cubic crystal environment into a lower

t2g triplet and an upper eg doublet. The lobes of maximal probability of the lower-

energy t2g orbitals (dxz, dyz, dxy) point away from both the apical and the equatorial

oxygen ions. For the eg orbitals (d3z2−r2 and dx2−y2), the lobes direct towards oxygens

and hence these levels reside higher in energy. Tetragonal distortions, arising from

cation disorder and the Jahn-Teller effect, introduce additional crystal field splitting of

the degenerate eg orbitals by an energy EJT and partially lift the degeneracy of the t2g

orbitals. Figure 1.6(b) shows the Q3 mode24 of the Jahn-Teller distortion in LaMnO3.

In the hole-doped system, degenerate eg levels on Mn4+ sites equally shift higher in

energy by the breathing mode distortion EB. Transitions to the unoccupied eg orbital

will be of prime importance to the observed optical spectrum presented in Chap. 3.

The double-exchange model (DE) first proposed by Zener25 explains the metal-

insulator phase transition in terms of the Mn d-electrons, namely, the strong Hund’s

coupling between the three electrons localized in the t2g orbitals and the 1 − x elec-

trons in the eg orbitals. The eg electrons hop from Mn to Mn site providing alignment

of the core spins. In this model, parallel alignment of the core spins maximizes the

hopping probability between Mn sites for the electrons residing on the eg orbitals,

producing metallic conduction for T < Tc. Thus, ferromagnetic order favors hopping

in the double-exchange picture.26 The effective hopping interaction (neglecting the

Berry phase of Anderson-Hasegawa26) is given by

ti j = t0
i j cos(θi j/2) , (1.6)

where t0
i j is the spin-independent hopping matrix element and θi j is the angle between

neighboring spins. The hopping parameter given by Eq. (1.6) qualitatively describes

the observed transport behavior. The increase of electron vacancies with hole doping

affords hopping of the eg electrons from Mn3+ to Mn4+ sites. At low temperatures,

ferromagnetic alignment of the Mn spins maximizes the kinetic energy of the carriers
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and stabilizes the ferromagnetic state.23 As temperature increases above Tc, the

spins order randomly and the effective hoping is reduced.

1.2.4 Jahn-Teller small polaron

While DE qualitatively describes the metal-insulator transition at Tc, recent ex-

perimental27–29 and theoretical30–33 work indicates the importance of coupling be-

tween charge carriers and the lattice, specifically the dynamic Jahn-Teller effect,3,31,32

in explaining the high temperature insulating phase. The splitting of the eg levels by

the JT distortion is static for 0 < x < 0.2 and dynamic for x > 0.2. Since the JT

distortion is associated with the Mn3+ ions it can localize the eg electrons in the para-

magnetic phase of the alloys leading to insulating behavior, whereas the increased eg

band width in the ferromagnetic state quenches the JT effect and produces metallic

conduction.

Localization of the eg electron on the Mn3+ ions in the paramagnetic state of the

doped manganites due to Jahn-Teller distortions is a self-trapping effect, i.e., a small

polaron.32 Accompanying a localized small polaron resulting from electron-phonon

coupling should be an optical signature associated with photo-induced hopping of

the carriers, as has been reported in systems such as TiO2.34,35 Indeed early opti-

cal studies on Nd0.7Sr0.3MnO3 report28 evidence of a small polaron signature in the

optical conductivity. Other experimental results also support the presence of strong

electron-lattice interaction effects in these materials: (i) shifts in the IR phonon fre-

quencies36 related to the Mn−O bonds in La0.7Ca0.3MnO3 near Tc, (ii) anomalies

in the local structure of the MnO6 octahedron near Tc obtained from neutron scat-

tering studies29 of La1−xCaxMnO3, (iii) magnetic-field driven structural phase trans-

formation37 in La0.83Sr0.17MnO3, and (iv) disappearance of small polaronic behavior

below the insulator-metal transition observed in thermopower measurements38 of

La0.7Ca0.3MnO3.
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Optical absorption studies39,40 of the stoichiometric parent compound LaMnO3

give evidence for static JT distortions. Analysis of the optical conductivity of LaMnO3

within the local-spin-density approximation suggests that the observed gap in the

optical conductivity of about 1.0 eV corresponds to the optical process of promoting

a hole between the JT split eg bands on the Mn3+ ions.41 Optical measurements

have also been reported for the series of compounds La1−xSrxMnO3.42–44 The results

from optical reflectivity studies of metallic samples (x > 0.2) show large transfers of

spectral weight from high frequencies to low frequencies as the samples cool from

the paramagnetic state through Tc into the ferromagnetic metallic state.42,43 These

studies conclude that a simple DE picture does not explain the observed changes

in the optical spectral weight over such a large energy scale compared to kBT for all

doping concentrations.42,43

1.3 Hexa-manganites and Multiferroic Behavior

Another class of manganite materials with a rare-earth ionic radius R3+ smaller

than the orthomanganites (R=Ho, Er, Tm, Yb, Lu, Y, Sc, and In) crystallize in the

hexagonal lattice. The hexagonal manganites generate interest as examples of mul-

tiferroic systems (or ferroelectromagnets),45 which simultaneously display both mag-

netic and ferroelectric order parameters. In the case of the LuMnO3, ferroelectricity

occurs below the critical temperature46 Tc � 900 K and strongly frustrated antifer-

romagnetic order occurs below TN ≈ 90 K. The coupling between ferroelectric and

magnetic order parameters provides the prospect of manipulating electrical proper-

ties through magnetic fields and vice versa.12,47 The capability of such manipulation

in these compounds affords potential applications in novel “spintronic” devices.4

There exists several studies on the crystallographic structure48–50 and on the

magnetic structure48,50–52 in hexa-manganites. Figure 1.7 illustrates a schematic view

of the crystallographic structure of LuMnO3.49 The high-temperature paraelectric
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Figure 1.7: Schematic view of the LuMnO3 crystallographic structure
adopted from van Aken et al. (Ref. 49). Spheres represent Lu+3 ions and trig-
onal bipyramids represent MnO5 clusters. (a) View along the basal plane.
P and L indicate the c-axis ferroelectric order parameter and the in-plane
antiferromagnetic order parameter, respectively. (b) View along the c-axis of
two layers illustrating the alternate stacking of MnO5 bipyramids.

phase in the hexagonal manganites consists of layers of corner-sharing MnO5 trian-

gular bipyramids separated by a layer of Lu-ions. The bipyramids alternate stacking

between layers, as shown in Fig. 1.7(b). In the ferroelectric phase below Tc, R-ions

alternate their c-axis coordinates, producing a net electric moment P of the unit cell,

and the MnO5 pyramids tilt away from the c-axis, as shown in Fig. 1.7(a). Bertaut

et al.48 report P ≈ 3 µC cm−2.

Below TN , the Mn spins order antiferromagnetically in the basal plane.50–52 The

in-plane antiferromagnetic order parameter given by L [Fig.1.7(a)] characterizes this

ordering. Spin frustration in the triangular planar lattice and a weak inter-plane ex-

change interaction result in a Néel temperature 6 − 10 times smaller than the Curie-

Weiss temperature θCW . Neutron powder diffraction50,51 finds the spins order in a

120◦ structure. Nonlinear optics, specifically second harmonic generation (SHG),

provides additional information regarding the sign of the inter-plane coupling and the

spin orientation angle φ. A schematic view of the magnetic structure is illustrated in
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Fig. 1.8(a). Filled and hatched circles represent the Mn spins in the z = 0 and z = c/2

z=0

z=c/2

φ y

x

z2

xy, x2-y2

xz, yz

eg

t2g

Mn3+
S=2

cubic hexagonal(a) (b)

Figure 1.8: Magnetic structure and crystal-field splitting. (a) Mn spin pro-
jections in the ab-plane. Filled (hatched) circles represent Mn ions in the
z = 0 (z = c/2) plane. The angle φ specifies spin orientations relative to
the hexagonal face normal. (b) Splitting of the Mn3+ d-levels in cubic and
hexagonal crystal-fields.

planes, respectively. The φ = 90◦ and inter-plane ferromagnetic spin configuration is

shown, consistent with SHG observations.52

The trigonal bipyramid of five O2− ions surrounding the Mn3+ produces a hexag-

onal crystal-field splitting of the quintuply-degenerate Mn d-orbitals into three groups

in order of increasing energy: dxz, yz, dxy, x2−y2 , and d3z2−r2 . Figure 1.8(b) illustrates this

crystal-field splitting from cubic to hexagonal for the trivalent Mn ion. The out-of-plane

orbitals dxy, yz directed away from the apical oxygens have the lowest energy, owing

to their small overlap with O orbitals. Next highest in energy, the in-plane dxy, x2−y2

orbitals strongly hybridize with oxygen p-orbitals. Finally, the d3z2−r2-orbital has the

highest energy resulting from the shorter Mn to apical-O bond lengths. In the ground

state of the Mn3+ ion, four electrons occupy the four lowest orbitals giving 〈L〉 = 0

and S = 2. The d3z2−r2 orbital remains empty in the ground state. Transitions to

this unoccupied orbital will be of prime importance to the observed optical spectrum

presented in Chap. 4.

Several groups report anomalous behavior in transport and magnetic suscepti-
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bility at temperatures correlated with TN . Of particular interest is the observation53–56

of a temperature anomaly of the quasi-static dielectric constant ε0 below TN . Fig-

ure 1.9 shows the quasi-static dielectric constant of Katsufuji et al.53 taken at 100 kHz.

The anomaly occurs around TN for the in-plane response only. These anomalies are

ε

ε

εε 0

Figure 1.9: Anomaly in the temperature dependence of the quasi-static
dielectric constant of hexagonal manganites LuMnO3 and YMnO3 after
Ref. 53. Anomaly appears around TN for the in-plane response only.

cited45,53,54,57 as evidence of the coupling between the ferroelectric and magnetic or-

der parameters. Theoretically, an expansion of the Landau free energy F in terms

of the FE and AFM order parameters P and l, respectively, predicts45 the anomaly.

Performing this expansion results in a generic coupling term of the form δF ∝ γ P2 l2,

where the coefficient γ depends on symmetry and the microscopic physics. From

both theoretical and applied prospectives, the manifestations of order parameter cou-

pling are of great interest. However, the appearance of the ε anomaly is a necessary

but not sufficient condition for order parameter coupling.45 The dynamical response

measured in optics offers a powerful tool to identify contributions to the static dielec-
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tric constant and to further understand the realization of order parameter coupling in

this multiferroic manganite.

1.4 Ferromagnetism in Dilute Semiconductors/Oxides

1.4.1 Dilute magnetic semiconductors

Dilute magnetic semiconductors (DMS) offer a possible system to realize con-

trol of the charge transport by using the spin degrees of freedom.4,58 The integration

of a “spintronic” material with existing semiconducting architecture opens possibilities

of linking nonvolatile magnetic storage and processing in a single device. DMS con-

sist of magnetic impurities doped in a semiconducting host (e.g., Mn-doped GaAs).

Figure 1.10 illustrates a schematic for DMS. Panel (a) shows a nonmagnetic semi-

 (a) (b) (c) 

Figure 1.10: Schematic representation of doping semiconductors with mag-
netic impurities after Ref. 58. (a) A diatomic (e.g., GaAs) semiconductor with
no magnetic impurities. (b) A magnetic semiconductor with a periodic array
of magnetic elements. (c) A diluted magnetic semiconductor doped with a
small concentration of magnetic impurities.

conducting (diatomic) host background. Traditional magnetic semiconductors (e.g.,

europium chalcogenides) consist of a regular array of magnetic ions incorporated in

the lattice represented in panel (b). On the other hand, diluted magnetic semicon-

ductors consist of only a small concentration, typically � 0.1, of magnetic impurities

doped in the semiconducting background as illustrated in panel (c). Such materials

undergo a ferromagnetic phase transition below the Curie temperature, where for
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Mn-doped GaAs Tc � 150 K.

Various theoretical models have been posited to explain the presence of mag-

netic order in these dilute systems including: (i) Ruderman-Kittel-Kasuya-Yoshida59

(RKKY), (ii) mean field theory,60 (iii) spin wave,61 (iv) double-exchange,62 and (v)

double resonance.63 A summary description of several of the models follows.

In the RKKY59 picture, itinerant carriers provide an indirect exchange mecha-

nism between localized spins on the dilute magnetic ions. The local impurities po-

larize nearby itinerant carriers. Adjacent localized impurities experience this polar-

ization and effectively align. RKKY is a second order perturbation theory applicable

only when the magnetic ions produce a small perturbations of the itinerant carrier

dynamics, i.e., a small exchange coupling relative to the carrier kinetic energy. This

condition is not satisfied in DMS.61 Moreover, RKKY neglects the dynamics of free

carriers.

The mean-field theory (MFT) considers the local moments sitting in an effective

external field generated by the mean polarization of the itinerant charge carriers. This

effective field represents an Ising limit of exchange coupling. A minimization of the

Ginzburg-Landau free energy64 determines the critical temperature. MFT finds an in-

crease of Tc with narrowing free carrier bands, increasing hole density, or moving E f

to peaks in the density of states. Dietl et al.64 predict Tc for various DMS systems us-

ing the mean-field method. MFT neglects correlations between local-moment spins

and the free carrier response and therefore cannot predict long-wavelength spin ex-

citations.

Neither RKKY nor mean-field approximation to kinetic-exchange model ade-

quately describe the ferromagnetism.61 The spin-wave model describes the elemen-

tary spin-wave excitations and accounts both for itinerant-carrier spin splitting and

dynamical correlations. Spin-splitting vanishes at the transition temperature, so both

RKKY and MFT work well at estimating Tc.
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No single theory appears capable of explaining the range of Curie temperatures

for the various carrier densities in DMS systems. At present, theoretical understand-

ing of the exact nature of ferromagnetism in DMS materials remains uncertain.

1.4.2 Co-doped TiO2

While the initial possibilities of DMS appear promising, practical applications

demand a Tc above room temperature. Therefore, the recent discovery of ferromag-

netism with Tc > 300 K in cobalt-doped TiO2 has generated considerable interest in

this system and similar dilute magnetic oxides.65 Co-doped TiO2 offers a particularly

interesting system owing to its high Curie temperature, n-type carriers (as opposed

to hole carriers in typical DMS), and large optical gap conducive for opto-electronic

devices.

High-temperature magnetization measurements using vibrating sample mag-

netometry66 find a Tc � 1180 K for x = 0.07 doped Ti1−xCoxO2−δ, nearly that of bulk

Co (Tc = 1404 K). Such a large Tc suggests that cobalt appears in clusters and that

the magnetism results from this clustering rather than a new dilute magnetic oxide.

Indeed several groups report additional evidence of cobalt clustering.66–68 A careful

doping-dependent study of films grown by pulsed laser deposition (PLD) reports66

a limited solubility of cobalt in Ti1−xCoxO2−δ above a concentration of x ∼ 0.02, with

Co clustering beginning thereafter. Post-growth annealing in an O2 environment or

high-temperature deposition increases the Co solubility66 and suggests the impor-

tance of growth conditions to clustering. Co-doped systems showing no evidence66

for clustering exhibit a Tc ≈ 700 K. The existence of such a high Tc for a dilute mag-

netic system without Co clustering remains puzzling. Thus, further measurements

to elucidate the electronic structure and resolve the nature of the magnetism are

warranted.

Shinde et al.66 report high-temperature magnetization measurements using
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vibrating sample magnetometry (VSM). Figure 1.11 shows the magnetization versus

temperature data. The as-grown x = 0.07 sample (squares in Fig. 1.11) exhibits a

Figure 1.11: Magnetization as a function of temperature obtained from vi-
brating sample magnetometry measurements for Ti1−xCoxO2−δ x = 0.01 and
0.07 as-grown and annealed.

clear transition around 1200 K, approaching the Tc of Co metal (1388 K). Such a high

Tc suggests the presence of metallic Co clusters.66 In addition to a Tc near bulk Co,

this as-grown sample exhibits a precursive dip beginning around 650 K. A subsequent

measurement of the x = 0.07 sample after the initial high-T VSM treatment (triangles)

displays a lower Tc, near the precursive onset and similar to the Tc of the low-doped

material. This behavior suggests the high-temperature measurement anneals the

sample and that this treatment may reduce Co clusters. Figure. 1.11 also shows

magnetization for a x = 0.01 sample (circles). This low-doped sample exhibits a

Tc ≈ 700 K similar to that of the precursive dip and much lower than either the x = 0.07

sample or bulk Co metal. Moreover, the Tc for low-doped samples, though well above

room-T, is much lower than Tc of bulk Co.

High-resolution transmission electron microscopy (TEM) provides direct evi-
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dence for cobalt clusters. Figure 1.12 shows a cross-sectional dark field TEM image

of Ti0.93Co0.07O2−δ after Ref. 66. Five clusters with diameters ≈ 20 − 50 nm are easily
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Figure 1.12: Ti0.93Co0.07O2−δ(a) Cross-section TEM dark field image with five
clusters identified. (b) EELS data in the corresponding numbered regions
reveals the clusters consist of cobalt.

visible in the micrograph. Electron-energy-loss spectra (EELS) of the corresponding

clustered regions confirm a large concentration of Co in these clusters,66 which is

not present in the bulk. Several of the clusters also show the presence of Ti and

O. However, Cluster #5, located near the surface, lacks the Ti or O signature, which

suggests the presence of Ti and O in the other clusters originates from proximity to

the bulk TiO2.

The experimental evidence of Co clustering in Ti1−xCoxO2−δ and the sensitiv-

ity to growth conditions raise concerns regarding the intrinsic nature of magnetism.

However, the observation66 of ferromagnetism with a high Tc in well-studied systems

showing no evidence of Co clustering offers promise for this dilute magnetic oxide.

Clearly further studies are warranted to explain the large Tc in these systems.

1.5 Outline of Forthcoming Chapters

The forthcoming chapters present the results of optical studies on the magnetic

transition metal oxides introduced above. Chapter 2 discusses experimental details
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of the optical measurements, including newly developed techniques for the extrac-

tion of optical constants from thin films and bulk samples. Chapter 3 presents optical

measurements on the orthorhombic phase manganites R1−xAxMnO3, beginning with

the lanthanum manganite parent compound (x = 0). Alloys around optimal CMR dop-

ing (x = 0.3) are studied in detail both in the spectral region of electronic transitions

and in the far-infrared region of Drude-like conduction. Changing rare-earth ion to

Lu affords investigation of manganites in the hexagonal phase. Chapter 4 presents

optical studies on the multiferroic hexa-manganite LuMnO3. These studies address

spin-phonon coupling and exchange interaction effects on the electronic properties.

Diverging from the manganites to the diluted magnetic oxides, Chap. 5 presents the

first optical conductivity results on cobalt-doped titanium dioxide. Finally, Chapter 6

offers concluding remarks and suggests future optical studies on these strongly cor-

related transition metal oxides.
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Chapter 2

Experimental Methods

Extraction of the commonly named “optical constants” comprises the main goal

of the experimental techniques described in this chapter. For typical material sys-

tems, these quantities are not really constant, but rather exhibit dependence on fre-

quency, temperature, magnetic field, and perhaps other experimental parameters.

Hence, the term optical coefficients more appropriately describes these intrinsic ma-

terial properties. Identifying changes with various controllable experimental para-

meters provides important insight into the electronic, magnetic, and structural prop-

erties of these materials via comparison with the predictions of theoretical models,

e.g., band structure calculations. While measuring the optical constants directly often

proves difficult, they may be extracted from other measurements, e.g., transmittance

and reflectance of thick film or bulk samples. Fourier transform infrared (FTIR) spec-

troscopy offers the capability of determining the frequency response of the optical

coefficients over a wide spectral range.

The following sections introduce the basic principles of FTIR spectroscopy and

their implementation in a specific instrument design. Other experimental appara-

tus and methods required for temperature dependent optical studies are discussed.

In addition, relations between the optical coefficients and optical sum rules are ad-

dressed. Finally, this chapter presents methods for extracting the optical coefficients

from experimental measurements on specific sample configurations.
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2.1 Principles of FTIR Spectroscopy

Many different types of available spectrometers and spectroscopic techniques

exist, which provide spectral measurements over a range of frequencies covering

the infrared (IR) to ultraviolet (UV). Two of the more popular instruments are Fourier

transform infrared (FTIR) spectrometers and grating monochromators. FTIR offers

advantages in multiplexing69 and throughput,70 particularly important at long wave-

lengths. Among FTIR spectrometers, several instrument designs are available.71

This section addresses the popular Michelson72 interferometer design.

Figure 2.1 illustrates a schematic of the Twyman-Green version of the classic

Michelson interferometer. Collimated light (represented with rays) emitted from a

Fixed
Mirror 

Moving 
Mirror 

Source 

Detector 

d BMS 

ZPD 

Figure 2.1: Schematic of a Michelson interferometer.

broad-band optical source impinges upon a half-silvered beamsplitter (BMS), which

ideally transmits 50 % and reflects 50 % of the incident light intensity. The transmit-

ted and reflected beams travel to a moveable and a fixed mirror, respectively. The

moving mirror travels a distance d from zero path difference (ZPD) and the corre-

sponding optical path length is x = 2 d. These two beams then interfere upon re-

combination. The recombined beam is then focused onto the detector. The optical
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paths reflected/transmitted back to the source have been omitted from Fig. 2.1 for

simplicity. The detector signal varies as the optical path length or relative phase of

the two detector beams changes. A maximum signal results for the constructive inter-

ference at ZPD. As the moving mirror translates the relative phase of the two beams

changes and the detector records a signal that varies in time. The time-varying sig-

nal represents the Fourier transform of the original source intensity and is termed an

interferogram.

The phase difference ∆θ of the recombined beams is given by

∆θ = 2π ν x , (2.1)

where x is the optical path distance from ZPD and ν is the frequency of the source

in inverse length units or wavenumbers (8.066 cm−1 = 1 meV = 1.240 mm). The

amplitudes of the electric fields for the two different paths may be represented by

E1 and E2 e−i∆θ where the amplitude for the second beam (moving mirror) has the

additional phase factor ∆θ included. Beamsplitters consisting of a half-silvered film

on a supporting substrate require an identical substrate be placed as a compensator

(not shown in Fig. 2.1) such that both beams undergo equal paths through the BMS.

Beam one consists of a reflection r and transmission t from the BMS giving r t, while

beam two interacts with the BMS in reverse order t r. Even for an imperfect BMS,

t � r and/or finite absorption, the two recombined beams have equal amplitudes, i.e.,

E1 = E2 = r t E0, where E0 is the amplitude of the incident light. A sum of the two

separate beam amplitudes gives the total amplitude at the detector

Edet(x, ν) = E1(ν) + E2(ν) ei∆θ(x,ν) = r t E0(ν) (1 + ei 2π ν x) . (2.2)

The detectors measure the light intensity, which for a given wavelength ν is given by

I(x, ν) =
c

4π
|Edet(x, ν)|2 = 2|r t|2S (ν)[1 + cos(2π ν x)] . (2.3)
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Here S (ν) = |E0(ν)|2 represents the power spectrum or spectral density function of

the incident source. By superposition, the total signal at the detector for a broadband

source results from an integration over all frequencies

Idet(x) =
2|r t|2
ν

[∫ ∞

0
S (ν) dν +

∫ ∞

0
S (ν) cos(2π ν x) dν

]

≡ 1
2

I(0) + Iint(x) , (2.4)

where ν represents an average frequency from the integration and Iint(x) is the in-

terferogram. The total signal intensity on the detector consists of a cosine Fourier

transform of the incident light and varies with the position of the moving mirror x.

Translation of the moveable mirror transforms the frequency spectrum of the source

into a positional or temporal spectrum (t = x/v, where v is the mirror speed).

Recovering the original power spectrum requires only an inverse fourier cosine

transform of the interferogram signal. The original source power spectrum is given

by

S (ν) =
ν

π|r t|2

∫ ∞

0
Iint(x) cos(2π ν x) dx . (2.5)

Modern computers utilizing fast-fourier transform (FFT) algorithms73 calculate the

inverse transform in nearly real time.

Fourier transform spectrometers offer advantages over grating or slit spectrom-

eters in terms of multiplexing (Fellgett69 advantage) and throughput (Jacquinot70 ad-

vantage). The multiplexing advantage results from the FTIR spectrometer simulta-

neously modulating the entire spectrum. For comparison, consider a grating spec-

trometer requiring m frequency intervals to cover a spectral range with frequency

resolution ∆ν. If each frequency interval requires a time τ to measure with a speci-

fied signal-to-noise ratio (S/N), then T = m τ represents the total scan time. A FTIR

spectrometer with similar throughput produces the entire spectrum in time τ with

equal S/N. Thus, the same total time T affords m repetitions of the FTIR spectrum,

for a statistical improvement in S/N of
√

m. For ∆ν = 1 cm−1 and νmax = 10000 cm−1,
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the advantage is a factor of 100. Note the multiplex advantage exists only whenever

the noise is independent of the intensity of the source, i.e., detector limited noise.

Such conditions occur in the IR frequency range, but tend to diminish in the visible

where the photon counting noise is proportional to the square root of power.

FTIR provides an additional advantage over grating spectrometers in terms of

throughput. Étendue, E = Ω A, describes the spectrometer throughput, where Ω is

the solid angle of the light beam and A is the cross-sectional area of the collimating

optic. A finite source aperture size results in divergence of the collimated beam. The

maximum half angle α that preserves phase information between the on-axis and

edge beams is given by α2 ≈ 2∆ν/ν and the resulting solid angle Ω ≈ πα2. So

the étendue for a FTIR spectrometer is E = 2π∆ν/ν A. For a grating spectrometer,

the solid angle is given by Ωs = L w/ f 2 where L and w are the slit length and width,

respectively, and f is the focal length. The ratio of the slit width to the focal length

determines the frequency resolution, w/ f ≈ ∆ν/ν. For equal area collimating optics

and frequency resolution, the étendue ratio of the grating to FTIR spectrometer is

L/(2π f ). A typical grating spectrometer with L ≈ 0.1 cm and f ≈ 30 cm gives a

throughput advantage to the FTIR spectrometer of about 1800.

Although FTIR inteferometers offers several advantages over grating instru-

ments, spectroscopists must be careful to avoid errors associated with asymmetrical

interferograms, apodization, and aliasing. The inverse cosine transform produces the

correct power spectrum for symmetrical interferograms. For an ideal interferometer,

beamsplitters provide no dispersion and finite sampling of the interferogram exactly

includes ZPD. In practice the occurrence of both types of errors results in asymmet-

rical interferograms. Such asymmetrical interferograms require a phase correction to

yield the correct spectrum. The phase function Θ is given by

Θ(ν) = tan−1

(
Im{F (ν)}
Re{F (ν)}

)
, (2.6)
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where F (ν) is the Fourier transform of the interferogram. The acquisition of Θ allows

symmetrization of the interferogram prior to performing FFT to recover the power

spectrum.

In addition to phase errors, real spectrometers scan only over a finite distance,

truncating the acquired interferogram. Abrupt truncation in the moving mirror position

introduces spurious side lobes near sharp features. Such features may be diminished

by applying, at the expense of spectral resolution, tapering or apodizing functions.

Table 2.1 lists several of the more common apodizing functions, where x̃ = x/xmax

Name Function W/W0 h/h0

Boxcar 1 1.00 1.000
Bartlett 1-x̃ 1.47 0.217
Hamming 0.53856 + 0.46144 cos(π x̃) 1.51 0.032
Blackman-Harris 0.42323 + 0.49755 cos(π x̃) + 0.0792 cos(2 π x̃) 1.88 0.001
Weak 0.548 − 0.0833(1 − x̃2) + 0.5353(1 − x̃2)2 1.20 0.267
Medium 0.261 − 0.154838(1 − x̃2) + 0.894838(1 − x̃2)2 1.40 0.065
Strong 0.09 + 0.5875(1 − x̃2)2 + 0.3225(1 − x̃2)4 1.60 0.017

x̃ = x/xmax is the normalized optical path difference.

Table 2.1: Apodizing functions available in the Bomem DA3 PCDA software.

represents the path length difference between the two Michelson arms and xmax is the

maximum path length difference. In addition to the functional form of the apodizing

functions, Table 2.1 includes the half-width W and height of the largest secondary

(not necessarily first) maximum h normalized to the respective values W0 and h0 of

the sinc function, sinc(ν) ≡ sin(ν)/ν. For sinc, W0 corresponds to 0.3017/xmax and

h0 corresponds to 0.1284. Whenever the width of the measured spectral features

exceeds several cm−1, relevant for most of the broad band spectroscopy performed

in this work, smoothing apodization functions such as Hamming or Strong74 suite

well. For étalon experiments or resolving narrow phonon modes, no apodization

(Boxcar) or Weak74 apodizing functions are more appropriate. Figure 2.2 shows the

apodizing functions listed in Table 2.1. Panel (a) shows the functional form of the
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Figure 2.2: Apodization (a) functions and (b) resulting instrument line-
shapes.

apodization functions and panel (b) shows the resulting instrument line shapes (ILS)

for a theoretical monochromatic source. Note that boxcar apodization produces a

sinc function ILS. Other apodizing functions have reduced secondary maxima at the

expense of wider widths, as evidenced in the figure. Norton and Beer74 generated

the Weak, Medium, and Strong apodizing functions to produce the optimal h/h0 for a

given W/W0 (see Filler diagram plotted in Fig. 1 of Ref 74).

In addition to errors introduced by apodization, care must be taken to avoid

aliasing associated with a finite sampling of the interferogram. Data points in the in-

terferogram are sampled at equal intervals of phase difference ∆x up to the maximum

path difference x. The sampling theorem of Nyquist75 specifies the minimum ∆x for a

given maximum frequency in the power spectrum νmax. For a power spectrum limited

in frequency to ν ≤ νmax, the optimum sample spacing is given by ∆x = 1/(2 νmax). The

replacement of the continuous Fourier transform of Eq. (2.5) with a discrete Fourier

series results in a transformed spectrum with both mirror and translational symme-

try75 about a “folding” frequency 1/(2∆x). Thus, any real intensity in the power spec-
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trum above νmax folds back into the transformed spectrum and introduces errors in

the interferogram signal. In practice, filtering of undesired frequencies avoids these

aliasing problems. Suitable filtering techniques include numerical, electrical, or opti-

cal filtering. Numerical filtering, though easiest to employ, tends to introduce spurious

effects at the frequency cutoffs. Electrical filtering of the detector signal proves diffi-

cult due to complications designing programmable, sharp bandwidth electrical filters.

Physically truncating the spectrum with optical filters or the intrinsic frequency band-

width of the various optical elements provides the safest means to avoid aliasing

errors.

2.2 Apparatus

2.2.1 FTIR spectrometer

Several companies produce laboratory grade FTIR spectrometers based on the

Twyman-Green implementation of the Michelson inferometer, including ABB-Bomem

and Bruker Optics. ABB-Bomem (Québec, Canada) manufactures the DA3.02 FTIR

spectrometer (referred to hereafter as the DA3) utilized in the optical measurements

presented herein. The DA3 offers spectral resolution from 64 -0.04 cm−1 over a fre-

quency range from approximately 10-50000 cm−1 using a variety of sources, beam-

splitters, and detectors (described below). This spectrometer design employs a con-

tinuous scanning motor (as compared to a stepper motor) capable of mirror speeds

from 0.01-4.6 cm/s ±0.5%. Scan times for a single trace range between seconds to

minutes depending on the required frequency resolution, mirror velocity, and detector

response time. A novel dynamical alignment (described below) of the “fixed mirror”

provides accurate, ≤ 1 µradian, RMS tilt over the full scanning mirror displacement.

The DA3 spectrometer system manual76 provides additional specifications and op-

eration details. In addition to the spectrometer, a vector processor performs fast

Fourier transform (FFT) of the measured interferogram and provides an interface be-
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tween the DA3 and a controlling personal computer (pc). The pc affords instrument

control and data acquisition via the software program PCDA. Details of the software

program are provided in the PCDA users manual.77

Figure 2.3 shows a schematic of the optical beam path for the DA3 spectrom-

eter. Starting from the top of Fig. 2.3, an off-axis ellipsoidal Al mirror focuses light
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Figure 2.3: Optical beam path for the DA3 spectrometer. Figure adapted
with permission from ABB-Bomem

from one of three internal sources onto a mechanical iris of diameter adjustable from

0.5-10 mm. The aperture size determines the throughput of the spectrometer and
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the size of the source image to be focused on the sample. Below the aperture, light

passes through one of six optional optical filters. A flat mirror (manually moveable

to accommodate light from either the three internal sources or an external source)

diverts the diverging beam to an off-axis paraboloid Al mirror. The off-axis paraboloid

collimates the light for processing in the Michelson arms. This collimated light im-

pinges upon the BMS with roughly half transmitting to the dynamically aligned fixed

mirror and half reflecting to the moving (scan) mirror. Upon reflection from their

respective mirrors, the two beams recombine and proceed towards the sample se-

lection mirror. This mirror rotates to direct the output beam to one of five sample

locations. An off-axis paraboloid refocuses the collimated light onto the sample. Af-

ter either transmitting or reflecting (not shown) from the sample, another off-axis

paraboloid focuses the diverging beam onto the detector element. The entire optical

configuration shown in Fig. 2.3 may be evacuated or purged with dry nitrogen to alle-

viate water absorption lines, which are particularly strong in the far-IR to IR spectral

range.

The sample measurement geometry shown in Fig. 2.3 illustrates the transmis-

sion configuration. Often, extracting optical coefficients requires measurement of the

reflection from the sample surface. Figure 2.4 shows the rig for measuring sample

reflectance. The reflectance rig consists of two flat mirrors and two spherical mirrors.

The initial flat mirror redirects the focused sample beam to a spot at the focal length

of the first spherical mirror. This mirror refocuses the source image on the sample.

Upon reflecting from the sample, the second spherical mirror again focuses the beam

before being directed into the detector ellipsoid by the final flat mirror.

Acquiring accurate spectra with a Michelson-based FTIR spectrometer requires

precise determination of the scanning mirror location. The DA3 utilizes both a white

light source (WLS) and a helium-neon laser (HeNe) for location of the moving mirror.

The WLS and HeNe enter the DA3 from the rear of the instrument (not shown in
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Figure 2.4: Reflectance rig for Bomem DA3 FTIR spectrometer.

Fig. 2.3) and impinge upon the central portion of the Michelson optics along with

the source light. The WLS produces an interferogram peaked at ZPD. The HeNe

laser produces a sinusoidal interferogram that, although not useful for locating ZPD,

provides a very accurate determination of the change in the optical path length ∆x.

Specifically, a change from bright to dark in the HeNe interference fringe pattern

corresponds to ∆x = λHeNe/2. The repetitive nature of the HeNe interferogram allows

positioning to even greater accuracy. In addition to determining ∆x, the HeNe source

provides information crucial for dynamical alignment of the “fixed mirror”. The “fixed

mirror” or dynamic alignment mirror (Fig. 2.3) tilts slightly to account for wobble in

the moving mirror during translation. This dynamical alignment procedure maintains

coherence across the collimated beams and reduces phase errors.

Rather impressively, Bomem achieves nearly five orders of magnitude in fre-

quency range by offering a variety of optical elements for the DA3. Figure 2.5

(reprinted with permission from ABB-Bomem) plots the operational range of the
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various sources, beamsplitters, and detectors. The abscissa represents increas-

ing wavelength (µm) from UV to far-IR (left to right) on a quasi-logarithmic scale.

Frequency in cm−1 is also included for comparison. The top panel plots the relative

sensitivity (arb. units) for the various available detectors. Colored bands represent

approximate detector sensitivity requirements for different experiments. The middle

and bottom panels plot the relative throughput and intensity (arb. units) of the beam-

splitters and sources, respectively.

The DA3 offers three broadband blackbody radiation sources located internally:

mercury vapor discharge (Hg) lamp, globar, and quartz tungsten halogen (QTH).

Additionally, a deuterium lamp extends the visible into the UV range. The Hg lamp

emits best in the far-IR below approximately (200 cm−1). Additionally, the Hg exhibits

a UV spectrum rich in features owing to the atomic emission lines of Hg. The globar,

named for the red-orange glow produced, consists of a ceramic material through

which a large current passes. The globar operates best from the upper far-IR to

mid-IR spectral range (200-5000 cm−1). Above this range, the QTH lamp provides a

bright white light source covering through the visible spectral range to approximately

25000 cm−1. For measurement into the UV, the deuterium lamp extends the spectral

range to 50000 cm−1. UV emissions from either the Hg or deuterium lamp necessitate

protective eyeware for visual alignment with these sources. With the exception of the

external deuterium lamp, the ellipsoidal source mirror easily selects the sources in

situ without breaking vacuum in the DA3.

Various available beamsplitters provide coverage over the entire spectral range.

The large size of the collimated beams in the Michelson arms, necessary to maintain

phase coherence across the beam, require similarly large beamsplitters. As a result,

BMS exchange requires manual substitution and the breaking of vacuum. Most of the

beamsplitters consist of a half-silvered film on an essentially non-absorbing substrate

material with an appropriate compensator of the the same material as the substrate.
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Figure 2.5: Spectral range for the DA3 optical elements (sources, beamsplit-
ters, and detectors). Figure reprinted with permission from ABB-Bomem.

37



Frequency dependence of both the substrate material and the corresponding films

limits the operational spectral bandwidth. Care must be exercised in the handling of

beamsplitters in the spectrometer. Additionally, the potassium bromide (KBr) sub-

strate material is extremely hygroscopic, requiring storage in a low humidity dry box

to prevent water absorption and accompanying clouding. The far-IR BMS design

differs slightly from the others. These beamsplitters consist of various thicknesses

(3-100 µm) of freestanding Mylar pellicles. The different thicknesses of Mylar opti-

mize spectrometer throughput in a narrow spectral range (see Fig. 2.5) about the

interference (étalon) maxima in the Mylar pellicle. The interchangeable pellicles re-

quire careful alignment with the central island (WLS and HeNe) to maximize signal

output at the shortest operational wavelength. Substituting the multitude of Mylar

beamsplitters necessary to cover the entire far-IR proves tedious. A novel BMS de-

sign78 for the far-IR consists of substituting a thick (2 mm) silicon wafer for the Mylar

pellicles. Silicon exhibits essentially zero absorption up to 1000 cm−1 (excepting a

weak phonon feature around 600 cm−1) and nearly perfect reflection and transmis-

sion coefficients (|r|2 ≈ 0.46 and |t|2 ≈ 0.54). As a result, a single Si BMS outperforms

all of the Mylar pellicles across the entire far-IR range.

Available detectors fall into one of three categories: (i) photo-voltaic, (ii) photo-

conductive, and (iii) thermal. The first class comprises the Si, InSb, and HgCdTe

(MCT) detectors. Thermal detectors include the deuterated triglycine sulfate (DTGS)

pyroelectric detector and the resistive far-IR bolometric detectors. Several properties

characterize detectors: sensitivity, linearity, frequency response, and response time.

Ideal detectors provide high sensitivity and high linearity over the operational range.

Photometric accuracy demands linearity, but linearity may be sacrificed for sensitiv-

ity. The DTGS and Si detectors offer the highest linearity, while the MCT and InSb

provide the highest sensitivity. The DA3 detector modules consist of an ellipsoidal

focusing mirror, detector element, and electrical preamplifier. Detectors come paired
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with a preamplifier specially matched to the detector’s impedance and frequency roll-

off. Preamps increase the relatively weak detector signals to levels appropriate for

analog to digital conversion (ADC). Detector preamps offer both manual gain set-

tings, selected by dip switches, and software controlled gain in increments of 1, 4,

16, and 64. Additionally, for high resolution scans an option positional gain increases

the interferogram signal away from ZPD. Detector response time related to the 3 dB

frequency roll-off of the detector/preamplifier pair together with the maximum spec-

tral frequency to be measured determine the optimum operational scanning mirror

speed.

Figure 2.6 shows the DA3 spectrometer in conjunction with additional equip-

ment and apparatus for measuring temperature dependence. These various appara-

tus will be addressed below.

2.2.2 Optical cryostat

The Supertran-B ST-4 optical cryostat manufactured by Janis Research Com-

pany, Inc. (Wilmington, MA) affords the acquisition of temperature dependent (4.2 −

475 K) optical spectral. Figure 2.7 (top panel) shows the Janis cryostat and an ex-

ploded view of the radiation shield and cold finger. The bottom panel expands the

view of the copper sample mount or optical head. The cryostat cools the sample via

a continuous flow of liquid helium (LHe). A needle valve regulates the flow of LHe

from a dewar through a flexible transfer line to the cryostat. A combination of LHe

flow control and current control of a 25Ω bifilar-wound heater allow precise temper-

ature control of the sample. By pumping on the gas vent port, temperatures below

4.2 K may be achieved. Inside the outer vacuum jacket of the cryostat sits a radiation

“cold” shield designed to filter room temperature blackbody radiation. The transferred

liquid cools a cold finger at the end of which is attached the sample mount. Four or-

thogonal windows in the vacuum tailpiece of the cryostat provide optical access to
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Figure 2.6: Experimental apparatus, including the DA3 FTIR spectrometer,
for measuring temperature dependent optical spectra.
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the sample mount. A translation stage and a rotation stage provide linear (z-motion)

and rotational positioning, respectively, of the sample.

Several modifications to this early model cryostat significantly improved the

performance and reproducibility of measured spectra. Reproducibility of the mea-

sured sample spectra requires precise linear translation (z-motion) of the sample

rod between sample and reference positions. The original linear translation design,

which included a “thimble” type drive screw, developed unacceptable lateral leeway

and proved difficult to translate. Improving the performance involved retrofitting the

cryostat with a linear translation stage LMT-152-SP manufactured by MDC Vacuum

Products. This stage provides an 18 : 1 translation ratio (18 turns per inch of linear

travel) or 0.055 inches per revolution. A large guide pin ensures lateral stability. The

addition of both linear and angular scales allows precise sample positioning to better

than ±0.0025 inches. In addition to the retrofitting the translation stage, a redesigned

cold shield concentricity spacer improved preformance. This spacer originally con-

sisted of a triangular section of teflon. Shrinkage of the teflon spacer upon cooling

(teflon has a large thermal expansion coefficient α ≈ 10−4 K−1) resulted in decreased

lateral stability of the sample rod. A modified spacer (see bottom of radiation shield

in Fig. 2.7) consists of a six point hexagonal contact design fabricated from FR4

(α ≈ 10−5 K−1), an epoxy-bonded glass material used for printed circuit boards. The

improved spacer, with an order of magnitude smaller α and twice the number of con-

tact points, significantly increases reproducibility at lower temperatures.

Overall, the popular continuous-flow cryostat design used by Janis suffers sev-

eral inherent deficiencies that limit precise optical measurements. First, exchange

gas from the cold finger fails to effectively cool the “cold” shield below approximately

100 K. An effective radiation shield should cool to around or below liquid nitrogen

temperatures (77 K), serving both to shield the sample from blackbody radiation and

cryopump. Failing to effectively cryopump, the shield allows particulate accumulation
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on sample surfaces and results in spurious signals, particular noticeable in the visi-

ble to UV reflectance. Moreover, the long sample rod undergoes significant thermal

contraction during cooling. The large length L of the rod results in large contraction

even for modest temperature changes, ∆L = α∆T L. The appreciable ∆L necessi-

tates constant realignment and decreases experimental reproducibility. Finally, the

rather bulky LHe transfer line tends to apply force on the cold finger, which introduces

additional lateral displacement errors in the sample positioning.

2.2.3 Far-IR transmission dewar

The far-IR blackbody sources available in the DA3 (e.g., Hg and globar) exhibit

a spatially dependent intensity pattern. As a result, accurate measurement of the

far-IR transmittance requires precise positioning of the sample and reference in the

optical beam to ensure reproducible imaging of the source on the sample apertures.

Such precision exceeds the capabilities of the Janis cryostat. A transmission dewar

together with a carefully machined sample position stage match the required speci-

fications. Figure 2.8 shows the far-IR transmission dewar manufactured by Infrared

Laboratories, Inc. (IRLabs Tucson, AZ). The dewar consists of a liquid Helium (LHe)

reservoir surrounded by a radiation shield cooled by a liquid nitrogen (LN) reservoir.

Figure 2.8 indicates the fill tubes for the cryogenic reservoirs. A copper stage ther-

mally contacts to the base of the LHe reservoir. The sample mount assembly (bottom

panel of Figure 2.8) attaches to this stage. A 10 mm diameter light pipe couples light

from the DA3 spectrometer output to the transmission dewar. White polyethylene

windows at the light pipe access maintain vacuum in the dewar. Wedging the outer

vacuum windows and optional LN cold filter windows remove étalon interference.

Temperature dependence is achieved via control of a resistive heater attached to

the sample stage in combination with adjustment of the cooling power of the sample

stage via a “heat” clamp. The clamp varies the thermal contact between the LHe
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Figure 2.8: Far-infrared transmission dewar and sample mount.
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reservoir and the sample stage. Electrical feedthroughs allow for measurement and

control of temperature and additional measurements, e.g., dc resistance.

The sample selector rod translates the sample slider (left bottom panel of

Fig. 2.8) between positions. Sample sliders with both two and four positions have

been machined from copper and plated for increased thermal conduction with the

slider housing. Detents machined on the plated beryllium-copper edges of the sam-

ple slider ensure accurate and reproducible alignment of the slider mechanism to

better than 0.001 in. resolution. To achieve low temperatures, T ≈ 4 K, a thermal

strap has been hard-soldered to the slider. The edge of the slider consists of a

teflon mount to engage with the sample selector rod. The thermally insulating teflon

prevents excessive heat leak from the outside. In addition to the heater and temper-

ature sensor on the sample stage, Si diode temperature sensors have been added

to the sample sliders as indicated in Fig. 2.8. Wood’s metal, a low temperature sol-

der, provides excellent thermal contact and attaches the sensor to the slider without

damaging the diode.

2.2.4 Temperature sensing and control

A model 330 autotuning temperature controller manufactured by Lake Shore

Cryotronics, Inc. (LSCI) provides temperature sensing and control to better than

±1 K. The 330 determines temperature by measuring the change in resistance of

a silicon diode sensor. A standard 4-probe technique measures the voltage drop

across a silicon diode sensor upon applying a constant current (10 µA±0.1 %). The

diodes follow the standard LSCI curve 10, which exhibit a resistance versus temper-

ature characteristic of activated semiconducting transport. This activated responses

increases at low temperatures displaying a steep dR/dT and subsequently provide

an increase in sensitivity. For the calibrated Si diode sensor DT-470-C0, the typical

measurement resolution ranges from 1.3 mK at 4.2 K to around 20 mK at room tem-
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perature. For controlling the sample temperature, the LSCI 330 provides temperature

stability of ±2.5 mK at 4.2 K to ±25 mK at 300 K.

2.2.5 Sample mounting and preparation

The samples studied in this work range in size from � 1 × 1 mm2 (typical of

single crystals) to � 5 × 5 mm2 (typical of thin films). A range of sample apertures

is required to accommodate the various sample sizes. Apertures should be small

enough to prevent leakage of stray light from around the sample yet large enough to

alleviate alignment issues and provide the maximum throughput. Sample apertures

are machined from a 1” OD copper rod. Sets of apertures are drilled with identically

centered holes (±0.001 in.) of varying diameter. Concentrically surrounding the hole

is a conical surface designed to scatter any light impinging on the aperture area

surrounding the sample. Additionally, matte black paint has been applied to this

conical surface to further reduce scattered light.

The bottom panel of Fig. 2.7 shows top and side views of the sample apertures

mounted on the copper optical head. Kinematic positioning is achieved with sapphire

spheres and two orthogonal alignment screws. Two steel springs hold the align-

ment. In addition to providing a fixed pivot for positioning, the sapphire balls allow

thermal conduction between the cold finger on the sample rod and the sample aper-

tures. A LSCI Si diode temperature sensor mounts directly on the sample aperture

for precise measurement of sample temperature. An electrical conducting adhesive

(Eccobond solder 59C manufactured by Emerson and Cuming, Inc.) provides both

excellent thermal conduction and a relatively strain free mounting of the samples to

the apertures.

A Minimet automatic polisher manufactured by Buehler provides optically flat

sample surfaces. Together with a range of Metadi diamond pastes of 3, 1, and 1/4

µm grain size and ultrapad polishing cloths, the Minimet polishes the front surface
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of bulk samples and the back side of substrates for use in thin film measurements.

The automatic polisher affords control over the applied load and polishing time. A

steel polishing rig assures parallel surfaces and helps reduce rounding on the cor-

ners, although some rounding at the edges generally occurs. Limiting the polishing

time decreases the probability of contamination from the outside or chipping of the

sample, both of which tend to scratch the sample.
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2.3 Optical Coefficients

2.3.1 Definitions

Perhaps most well known of the optical coefficients is the index of refraction n.

The index of refraction relates the ratio of the velocity of propagation of an electro-

magnetic wave in vacuum c to the velocity in a medium v

n =
c
v
. (2.7)

Whenever the index depends on the frequency of the incident light n = n(ω), the

medium is said to be dispersive. In addition to a decrease in the propagation velocity,

light in a medium may undergo absorption. The intensity a distance x in the medium

from the boundary is given by

I(x) = I0 e−α x , (2.8)

where I0 is the incident intensity and the absorption coefficient α is the fraction of

power absorbed in the medium per unit length. The absorption coefficient is given by

α = 4π κ ν , (2.9)

where κ is the extinction coefficient.

The index of refraction n and the extinction coefficient κ represent the real and

imaginary parts, respectively, of a single complex quantity, namely the complex index

of refraction

ñ(ω) = n(ω) + i κ(ω) . (2.10)

Knowledge of ñ allows derivation of additional optical coefficients more useful in com-

paring with predictions from theoretical models, e.g., the complex dielectric constant

ε̃ or the complex optical conductivity σ̃. The complex dielectric constant obtained
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from Maxwell’s equations (see App. A) is related to ñ by

ε̃ = ε1 + i ε2 = ñ2

= (n + i κ)2 = n2 − κ2 + i 2 n κ . (2.11)

The complex optical conductivity σ̃ = σ1 + iσ2 relates to ε̃ (see App. A) giving

ε̃(ω) = ε̃b(ω) +
4π i σ̃(ω)

ω
. (2.12)

Here εb is defined by the relation of the electric displacement to the electric field,

D = εb E. Conventionally εb represents the response of bound charges,79 though

may in principle be redefined providing that Eq. (2.12) is maintained. Rearranging

Eq. (2.12) gives the real σ1 and imaginary σ2 parts of the complex optical conductivity

σ1 =
ω

4π
ε2 =

ω

4π
2 n κ (2.13)

σ2 =
ω

4π
(εb − ε1) =

ω

4π
(εb − n2 + κ2) (2.14)

Equations (2.11), (2.13), and (2.14) provide relations between the complex index

of refraction, optical conductivity and dielectric constant: σ1 ∝ ε2 (absorption) and

σ2 ∝ ε1 (screening).

2.3.2 Kramers-Kronig dispersion relations

The interaction of light with matter obeys causality, which simply states no effect

precedes its cause. Light cannot be reflected or absorbed from a medium prior to

arriving.80 A response functions F describe the response R of a medium to some

applied stimulus S . In general, for a linear response function F, R(ω) = F(ω) S (ω).

For example the electric polarization P resulting from an applied electric field E is

given by P = χ̃ E. In this example, the electric susceptibility χ̃ is the linear response

function. As long as the response function converges in the upper half of the complex
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frequency plane, the real and imaginary part are related to one another by

F1(ω) ≡ Re{F(ω)} = 1
π

� ∞

−∞

Im{F(ω′)}
ω′ − ω dω′

F2(ω) ≡ Im{F(ω)} = −1
π

� ∞

−∞

Re{F(ω′)}
ω′ − ω dω′ , (2.15)

where
�

is the Cauchy principal value integral operator. Eq. (2.15) illustrates that the

real and imaginary parts of the response functions are not independent, but rather

are intimately connected via the dispersion relations. Dispersion relations relate dis-

persive processes (e.g., the index of refraction) to absorptive processes (e.g., the

extinction coefficient) through integral formulas. This property may be exploited for

determining one of these quantities when the other is known completely. In particu-

lar, these relations will prove invaluable for determining the phase in bulk reflectance

measurements and selecting the physical roots from T and R measurements on thin

films.

Equation (2.15) may be applied to optical coefficients such as the complex

index of refraction or the complex dielectric constant. Exploiting symmetry properties

of the response functions further simplifies Eq. (2.15). Specifically, for the dielectric

constant ε̃(−ω) = ε̃∗(ω). Note that χ̃ ∝ ε̃ −1 is the actual response function. Including

the symmetry relation into Eq. (2.15) gives the dispersion relations for the complex

dielectric constant

ε1(ω) − 1 =
2
π

� ∞

0

ω′ε2(ω′)
ω′2 − ω2

dω′

ε2(ω) = −2ω
π

� ∞

0

ε1(ω′) − 1
ω′2 − ω2

dω′ . (2.16)

Eq. (2.16) is referred to as the Kramers-Kronig dispersion relation for ε̃. Similar

relations for the optical conductivity may be derived. A later section of this chapter

illustrates the application of the K-K dispersion relations to the complex reflectance

amplitude and phase.
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2.3.3 Sum Rules

The distribution of optical spectral weight provides important information re-

garding the underlying physics of an electronic medium.81 The spectral weight or

integrated conductivity will prove invaluable in this discussion. The following illus-

trates the relation of this integrated conductivity to the optical sum rules.

To arrive at a derivation of the sum rules for solids, first consider an extension

of the interaction of light with atoms to the more general case of a solid. For a solid

consisting of N noninteracting atoms per unit volume, the static dielectric constant is

written as a sum over the optical transitions

ε̃(ω) = 1 +
4πN e2

m

∑
m

fmn

ω2
mn − ω2 − i γω

, (2.17)

where ωmn and fmn represents the frequency difference and oscillator strength, re-

spectively, from the initial state n to the final state m. The oscillator strength is given

by the quantum mechanical transition probability

fmn =
2m
�2
�ω |xmn|2 , (2.18)

where xmn = 〈ψm|x|ψn〉 is the dipole matrix element of the electron between states ψm

and ψn. The Thomas-Reiche-Kuhn (TRK) sum rule82 for generalized transitions in an

atom with Z electrons80 gives ∑
m

fmn = Z . (2.19)

Interactions in solids generally modify the form of the TRK sum rule,80 ∑
m fmn =

1 − m/m∗n.

The application of the dispersion relations80,83 given by Eq. (2.16) provides a

more general f -sum rule for solids than Eq. (2.17). Consider a cutoff frequency ωc,

above which no absorption occurs. For ω > ωc, ε2 = 0 and ε1(ω) = 1 − ω2
p/ω

2, the

Drude form. Substituting into Eq. (2.16) results in the general f -sum rule for solids

2
π

∫ ∞

0
ω ε2(ω) dω = ω2

p =
4πN e2

m
(2.20)
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or, using Eq. (2.12), in terms of σ1

2
π

∫ ∞

0
σ1(ω) dω =

N e2

m
. (2.21)

Here N is the total number density of electrons in the medium, ωp is the plasma

frequency, and m is the free electron mass. The f -sum rule is independent of details

in the microscopic physics.81 If information regarding the static dielectric function,

ε0 ≡ ε1(ω = 0), is required then Eq. (2.16) gives

ε0 = 1 +
2
π

∫ ∞

0

ε2(ω)
ω

dω . (2.22)

Eq. (2.22) shows that the static dielectric constant results from contributions of oscil-

lators at all frequencies.

Often information regarding the low-lying electronic states contributes impor-

tant insight towards understanding the electronic properties. The partial or restricted

spectral weight S (ω) is defined by

S (ω) =
2
π

∫ ω

0
σ1(ω′) dω′. (2.23)

In general, the restricted spectral weight given by Eq. (2.23) will depend on temper-

ature and interaction strength as well as carrier density.13 Note the difference with

the full f -sum rule in Eqs. (2.20) and (2.21), which depends solely on carrier density.

The integrated conductivity over a finite frequency range will be proportional to an

effective number of electrons per unit cell Ne f f given by

Ne f f (ω) =
Vcell m

e2
S (ω) , (2.24)

where Vcell is the unit cell volume. Carrying out the integral to ω = ∞ in Eq. (2.23),

recovers the familiar sum rule Ne f f (ω = ∞) = N Vcell where N is the total number

density of electrons (core plus valence) in the unit cell. Care must be exercised in

applying Eq. (2.24) to ensure states not under consideration are well-separated in

energy.80
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The restricted sum rule given by Eqs. (2.23) and (2.24) relate oscillator strength

to the expectation value of the hopping amplitude in the tight binding model.13 The

kinetic energy K is given by

K(ω) =
a0

e2
�

2S (ω) =
a0 �

2

e2

2
π

∫ ω

0
σ1(ω′) dω′

=
�

2

m a2
0

Ne f f (ω) = 2 Ry

(
aB

a0

)2

Ne f f (ω) , (2.25)

where a0 = V1/3
cell is the lattice constant and in the last line Ry and aB represent the

Rydberg energy and Bohr radius, respectively. The kinetic energy given by Eq. (2.25)

offers an important quantity for a comparison of the experimentally determined optical

properties with the predictions from theoretical models.

2.4 Extracting Optical Coefficients from Measurements

Several main optical processes describe the interaction of light with matter:

transmission, reflection, absorption, scattering, and luminescence. This section dis-

cusses transmission and reflection in the linear response regime and derives expres-

sion for the measured experimental quantities in terms of the optical coefficients. The

Fresnel coefficients (App. A) describe the transmission and reflection from the bound-

ary between two optical media. The results for a single boundary are extended to

include the multiple boundaries of a particular sample geometry. In each specific

sample configuration expressions for the transmittance T and reflectance R intensity

are derived, where T (R) represent the ratio of the transmitted (reflected) power to

the incident power. In the absence of lossy processes, e.g., absorption or scattering,

T + R = 1.

Figure 2.9 shows the typical sample configurations considered in this work:

bulk, slab, and film on a substrate. Bulk samples are either single crystal or poly-

crystalline samples. These samples are sufficiently thick such that the incident light

does not reach the back surface. For substrates or thin bulk samples in trans-
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Figure 2.9: Measurement configureations for (a) bulk, (b) slab, and (c) thin
film on substrate samples. Arrows indicate the propagation direction of inci-
dent (inc), reflected (ref), and transmitted (tra) light.

parency regions, light reaches the back surface and may be either transmitted or

reflected. Finally, thin films (typical thickness approximately 100 nm) are deposited

on ideally non-absorbing substrates. In this case both transmission and reflection

occurs. Knowledge of the complex index of refraction and thickness of the substrate

is also required.

2.4.1 Reflection measurements

All of the sample configurations illustrated in Fig. 2.9 experience reflection from

the front surface. Additionally, transmission occurs in the slab and thin film cases.

Several complications arise in performing reflection measurements not present in

transmission: surface quality, surface alignment, and suitable reflection reference.

Reflection measurements require surfaces producing specular rather than diffuse

reflection. The polishing procedure outlined above generally provides surfaces of

sufficient quality. Annealing after polishing is recommended to restore any damage.

In addition to surface preparation, coincident alignment of the sample and reference

is required. A HeNe laser facilitates the alignment procedure of the kinematic mounts

discussed above. Finally, aluminum mirrors provide a suitable reference material.
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Ideally a reference reflects perfectly over a wide frequency range and exhibits little

temperature dependence. A thermal vapor technique deposits Al films onto glass

slides to thicknesses of 200 nm. Figure 2.10 shows the frequency dependence of the

aluminum mirrors over the entire spectral range of the DA3. The room temperature
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Figure 2.10: Aluminum reference mirror reflectance spectra. Inset shows
temperature dependence of interband feature.

curve shown in Fig. 2.10 was produced by Manuel Quijada in an absolute reflectance

setup at NASA, Greenbelt. Despite the appearance of pinholes, the mirrors reflect

comparably to bulk Al. The inset highlights the slight temperature dependence of the

interband feature around 12500 cm−1. Temperature dependent studies were achieved

with a gold reference mirror using the DA3. Gold mirrors provide a better reflectance

reference in the IR and remains relatively flat until around 18000 cm−1.
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2.4.2 Bulk sample reflectance

The reflectance amplitude measured in bulk reflectance provides only one ex-

perimental quantity. Additional information is required to fully describe the complex

optical coefficients. A Kramers-Kronig (KK) analysis of the bulk reflectance ampli-

tude provides the reflectance phase θ. The KK analysis requires knowledge of the

bulk reflectance over an infinite spectral range 0 − ∞. Necessarily finite range mea-

surements therefore require extrapolations to low and high frequencies. At low fre-

quencies (ω < 10 cm−1), the extrapolation to zero depends on the dc conductivity

of the material. For insulators, at frequencies well below any phonons or other low-

frequency electronic transitions, the reflectance extrapolates to zero frequency as

a constant. For metallic samples, the reflectance extrapolates to zero following the

Hagen-Rubens form R(ω) = 1−ξ
√
ω, where ξ is determined by the reflectance value

at the low-frequency experimental cutoff. At high frequencies (ω > 45000 cm−1), re-

flectance extrapolations split into two regions, the interband and the free-electron.

For interband frequencies (45000 < ω < ωFE), R ∼ ω−β, where β represents the

frequency dependence of the interband spectral range and ωFE represents the fre-

quency onset of free-electron behavior. In the free-electron region, R falls off with

frequency as ω−4.

Taking these extrapolations together with the measured reflectance determines

the phase θ of the complex reflection coefficient

θ(ω) =
ω

π

∫ ∞

0

ln[R(ω′)/R(ω)]
ω2 − ω′2 dω′ . (2.26)

R(ω) and θ(ω) from Eq. (2.26) provide the frequency-dependent complex index of

refraction ñ

n =
1 − R

1 − 2
√
R cos(θ) + R

(2.27)

κ =
2
√
R sin(θ)

1 − 2
√
R cos(θ) + R

. (2.28)
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In the far-IR of insulators, where phonon absorption dominates, Kramers-

Kronig analysis again allows extraction of optical coefficients. However, additional

phonon characterization results from fitting the bulk reflectance with an appropriately

modeled dielectric constant. The bulk reflectance written in terms of ε̃ is given by

R =
∣∣∣∣∣∣1 −

√
ε̃

1 +
√
ε̃

∣∣∣∣∣∣
2

=
(n − 1)2 + κ2

(n + 1)2 + κ2
. (2.29)

All that remains is a suitable model for ε̃ in the phonon region.

The classical dielectric constant consists of a sum of Lorentz oscillators

ε̃(ω) = ε∞ +
Nosc∑
j=1

A2
j

ω2
TO, j − ω2 − i γ j ω

, (2.30)

where Nosc is the total number of phonon oscillators, ε∞ is the static dielectric constant

at frequencies much larger than the phonons, and ωTO, j, γ j, and Aj are the transverse

optical (TO) frequency, width, and spectral weight, respectively, of the jth-phonon.

This classical form for the dielectric function given by Eq. (2.30) suites crystals with

a small number of uncoupled modes.

However, for crystals having a larger number of phonons with wide reflectivity

bands, a model ε̃ parameterized by the frequencies and damping of the TO and

longitudinal optical (LO) phonon modes better fits the reflectance.84,85 In this four-

parameter semi-quantum (FPSQ) model,85 ε̃ is given by

ε̃(ω) = ε∞
Nosc∏
j=1

ω2
LO, j − ω2 − i γLO, j ω

ω2
TO, j − ω2 − i γTO, j ω

, (2.31)

where ωLO, j and γLO, j represent the frequency and the width, respectively, of the

jth longitudinal optical (LO) phonon mode. In general the LO and TO damping of

Eq. (2.31) need not be the same. However, conditions on their relative magnitudes

and ratio compared to the LO and TO frequency ratio preserve the physical meaning

of damping.85 Additionally, the Lydanne-Sachs-Teller relation may be generalized to

accommodate multiple phonons.84
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Dielectric constant values resulting from least squares fits of R given by

Eq. (2.29) agree well with results from KK analysis. The fitting procedure has

the advantages of producing the characteristic phonon parameters and providing

well-behaved functions for the dielectric constant.

2.4.3 A single layer bounded by air: Substrate

A single layer bounded by air on either sides models a bulk sample, whenever

the absorption becomes negligible enough such that the incident light experiences

the back surface. This “slab” geometry model is an appropriate description of a

substrate material or a thin bulk sample in transparency regions. In this case, the

total resultant transmission and reflection coefficients consist of a sum of the Fresnel

coefficients at both boundaries over multiple passes (see Fig. A.2 in App. A). The

resulting expressions for the transmittance Ts and reflectance Rs intensities are given

by

Ts =

∣∣∣∣∣∣ t1t2 ei φ1

1 + r1r2 ei 2φ1

∣∣∣∣∣∣
2

(2.32)

Rs =

∣∣∣∣∣∣r1 +
t1t′1r2 ei 2φ1

1 + r1r2 ei 2φ1

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ r1 + r2 ei 2φ1

1 + r1r2 ei 2φ1

∣∣∣∣∣∣
2

, (2.33)

where the Fresnel coefficients for t j ≡ t j−1, j and r j ≡ r j−1, j are given by

Eqs. (A.9) and (A.10) and the phase φ1 is given by Eq. (A.13). The right side

of Eq. (2.33) results from conservation of energy, t1t′1 + r2
1 = 1. Typical substrate

values, ds ≈ 0.05 cm and ns ≈ 2 in the IR to UV range, lead to étalon effects occurring

approximately every 5 cm−1, a frequency scale generally smaller than features of

interest. A simplified formula for T and R results from considering the average or

incoherent addition of multiple passes in the substrate. Here the multiple passes are

treated as a sum of the intensities of the Fresnel coefficients (T j = |t j|2 and R j = |r j|2)
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at the boundaries. For incoherent addition, Ts and Rs are given by

Ts =
T1T2 e−α1 d1

1 − R1R2 e−2α1 d1
(2.34)

Rs = R1 +
T1T ′1R2 e−2α1 d1

1 − R1R2 e−2α1 d1
, (2.35)

where α1 is the slab absorption coefficient given by Eq. (2.9), d1 is the slab thickness,

and T ′1 ≡ T10. Numerically inverting86 the equations for Ts and Rs of a finite thickness

slab determines ns and κs.

For non-absorbing materials (where κ ≈ 0), the slab acts as a Fabry-Pérot

resonant cavity. The resulting Ts and Rs given by Eqs. (2.32) and (2.33) will display

interference (étalon) maxima and minima in high-resolution scans. Peak fits to the

transmittance maxima (or reflectance minima) determine the index of refraction. For

a given T peak, n is given by

n =
m

2 ν d
, (2.36)

where m is the order of the peak, ν is the peak frequency, and d is the thickness of the

slab. Using étalon in determining the material index of refraction takes full advantage

of the spectral resolution of the instrument (better than 1 : 10000 in the IR). The

accuracy in determining n is limited only by the ability to accurately determine m and

the thickness, which typically is ≈ 500 ± 1 µm. Identifying the peak order becomes

difficult with increasing frequency. Thus, this method works best in the far-IR to IR

region. The index of refraction for several substrates determined in the far-IR using

Eq. 2.36 are shown in Fig. A.4 of App. B.
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2.4.4 Two layers bounded by air: film on a substrate

For a thin film on a substrate (both potentially absorbing) and bounded by air

on either side, the coherent transmission and reflection intensity are given by

T f = |t|2 =
∣∣∣∣∣∣ t1 t2 t3 ei(φ1+φ2)

1 + r1 r2 e2i φ1 + r1 r3 e2i(φ1+φ2) + r2 r3 e2i φ2

∣∣∣∣∣∣
2

(2.37)

R f =|r|2 =
∣∣∣∣∣∣ r1 + r2 e2i φ1 + r3 e2i(φ1+φ2) + r1 r2 r3 e2i φ2

1 + r1 r2 e2i φ1 + r1 r3 e2i(φ1+φ2) + r2 r3 e2i φ2

∣∣∣∣∣∣
2

. (2.38)

Although Eqs. (2.37) and (2.38) represents the complete solution for T f and R f ,

extracting ñ from these equations proves difficult. As discussed above, simplified

formula for T f and R f once again result from considering incoherent addition in the

substrate (coherent addition in the film is maintained). The resulting film on substrate

T f and R f with incoherent substrate addition are given by

T f =
T ′ T3 e−α2 d2

1 − R′′ R3 e−α2 d2
(2.39)

R f = R′ +
T ′ T ′′ e−2α2 d2

1 − R′′ R3 e−α2 d2
. (2.40)

These equations then provide for T f and R f in terms of the index n, extinction coeffi-

cient κ, thickness of the film, frequency, and substrate parameters. Moreover, these

equations may be used to produce contours of constant T and R for various values of

the complex index of the film. Figure 2.11 shows such contours for typical substrate

parameters (ns = 2, ks = 0, and ds = 0.05 cm) in the IR to visible range for a film

of thickness df = 10−5 cm. Contour plots for frequencies of 5000, 10000, 15000, and

20000 cm−1 are shown. Starting in the infrared (ν = 5000 cm−1), Fig. 2.11 illustrates

that for a given value of transmittance and reflectance, multiple pairs of n and k si-

multaneously solve Eqs. (2.39) and (2.40). As frequency increases, additional roots

appear. Determining the correct root requires appealing to the physical constraints

imposed on n and k. Specifically, the K-K relations will ensure selection of the physi-

cally relevant root. Particular care in following the correct solution must be exercised
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Figure 2.11: Transmittance (blue) and reflectance (red) contours for a film
on a non-absorbing substrate as a function of the index of refraction n and
extinction coefficient κ for a thin film on a substrate. Parameter values for the
substrate are ns = 2, ks = 0, and ds = 0.05 cm. The film thickness is 100 nm.

whenever a multiple root becomes degenerate (root crossing). In practice, this re-

quires appropriately selecting initial conditions in the least-squares fit employed to

extract n and k from Eqs. (2.39) and (2.40) Further complications arise in film trans-

parency regions, where the small value of k results in additional roots. The n values

are particularly sensitive to these roots, while k remains roughly constant. These
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complications lessen with increasing film absorption.

Numerical inversion of the T f and R f formulae for a thin film on a weakly ab-

sorbing substrate yield the optical properties of the thin films. This procedure yields

the index of refraction and extinction coefficient of the thin-film material, n and κ, re-

spectively, using ns and κs for the substrate. The results of n and κ are then used

to derive the other optical coefficients, e.g., the complex dielectric function, ε̃(ω) or

the complex optical conductivity σ̃(ω).80 This technique avoids extrapolation errors

associated with Kramers-Kronig analysis and permits reliable measurement of the

optical conductivity up to the high frequency cutoff of the spectrometer (5 eV).
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Chapter 3

Colossal Magnetoresistance in the Ortho-Manganites

3.1 Introduction

Optical studies provide great promise for understanding the underlying physi-

cal principles govern the colossal magnetoresistance (CMR) manganites. Measure-

ments of the optical conductivity afford comparison with the predictions of band the-

ory models, which describe the relevant electronic states. The double exchange

model proposed by Zener25 (and discussed in more detail in Chap. 1) provides an ex-

planation of the observed dc and ac transport properties in the doped ferromagnetic

manganites. While DE qualitatively describes the metal-insulator transition at Tc,

recent experimental27–29 and theoretical30–33 work indicates the importance of cou-

pling, specifically the dynamic Jahn-Teller (JT) effect, between charge and the lattice

in explaining the high temperature insulating phase. Optical absorption studies of

the stoichiometric parent compound LaMnO3 give evidence for static JT distortions.

Moreover, analysis of the optical conductivity of LaMnO3 within the local-spin-density

approximation suggests that the observed gap in the optical conductivity of about

1.0 eV corresponds to the optical process of promoting a hole between the JT split eg

bands on the Mn3+ ions.41

Optical measurements have also been reported for the series of compounds

(La,Sr)MnO3.42,43 The results from optical reflectivity studies of metallic samples

(x > 0.2) show large transfers of spectral weight from high frequencies to low fre-
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quencies as the samples cool from the paramagnetic state through Tc into the ferro-

magnetic metallic state.42,43 These studies conclude that a simple DE picture does

not explain the observed changes in the optical spectral weight over such a large en-

ergy scale compared to kBT for all doping concentrations.42,43 The observed spectral

weight transfers suggest the important influence of Jahn-Teller lattice distortions on

the electronic states. The localization of eg electrons on the Mn3+ ions in the para-

magnetic state of the doped manganites results in a self-trapping effect, i.e., a small

polaron.32 An optical signature associated with the photo-induced hopping of the

carriers accompanies a small polaron. In addition to the importance of coupling with

the lattice and ferromagnetic order, other types of order have been reported in the

manganites. Charge and orbital ordering have been observed at certain dopings;

suggesting the ground state of the doped manganites may result from a competition

of various types of order. The observance of anomalously small Drude weights in the

metallic manganites has been cited as evidence for the existence of charge ordering.

The remainder of this chapter presents a detailed optical study of the or-

thorhombic manganites, including the parent compound and alloys doped in the

range exhibiting CMR effects. The first section discusses the optical properties

of LaMnO3, focusing on the relevant low-lying electronic excitations. In addition,

this section presents the phonon spectra. The next section addresses changes

in the optical properties upon doping with divalent cations. This analysis includes

identifying the relevant optical transitions and spectral weights characteristic of

several alloys doped at x = 0.3. The final section addresses the observation of

anomalously small Drude weights, including the effects of charge ordering on the

mass enhancement. The low-frequency behavior of the Drude-like conduction in

the far-IR at low temperatures will be examined. An extension of the Drude model

above the far-IR includes a frequency-dependent scattering rate relevant for strong

electron-phonon interactions and necessary for restoring the observed infrared
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spectral weight.

3.2 LaMnO3

3.2.1 Parent compound of the CMR manganites

The rich phase diagram of the doped manganite La0.7Ca0.3MnO3 shown in

Fig. 1.3 motivates research interest in understanding of the stoichiometric parent

compound LaMnO3. Room temperature optical measurements39 report evidence of

static Jahn-Teller (JT) effects in LaMnO3. In the doped alloys, JT interactions are

believed to be dynamic and play a pivotal role on phase transitions, particularly the

”colossal” magnetoresistance (CMR) effect.3,30 Below the antiferromagnetic Néel

temperature, TN ≈ 140 K, Mn spins align ferromagnetically in the ab-plane and an-

tiferromagnetically along the c-axis (A-type antiferromagnetic order). In addition to

spin order, LaMnO3 displays orbital ordering. In-plane occupied Mn eg orbitals alter-

nate between d3x2−r2 and d3y2−r2 in the C-type orbital order below the orbital ordering

temperature TOO ≈ 780 K (Ref. 21).

Optical spectroscopy studies of LaMnO3 provide insight into the physics gov-

erning both the doped and undoped manganites. Jung et al.39 identify the low energy

electronic transitions in a room temperature optical conductivity study. However, no

temperature dependence was reported. Various interpretations of the assignment of

the optical transitions remain uncertain. Clearly, a more complete understanding of

the optical transitions including temperature dependence is required.

This section presents optical conductivity studies of LaMnO3, including the tem-

perature dependence of the phonon and electronic spectral regions. Kramers-Kronig

analysis provides σ̃(ω) from bulk reflectance measurements over a wide spectral

range (20 − 50, 000 cm−1) at temperatures from 300 − 10 K. In the spectral range of

electronic transitions, absorption features at approximately 2 eV and 4 eV charac-

terize the conductivity spectra. The stronger 4 eV feature is attributed to the O 2p -
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Mn 3d charge transfer transition ubiquitous in the perovskite transition metal oxides.44

Remarkably, the 2 eV feature grows in oscillator strength as temperature lowers. This

strong temperature dependence of the spectral weight agrees with models consider-

ing this feature as a Mn-Mn inter-site transition, contrary to the predictions of Allen

and Perebeinos.87 At lower frequencies, phonons dominate the optical conductivity of

this insulating material. Several phonons exhibit temperature dependent shifts of the

transverse optical frequencies that correlate with TN . These shifts provide evidence

of spin-phonon coupling.

3.2.2 Measurement details

Samples

The floating-zone technique prepares single crystals of stoichiometric LaMnO3.

Dispersive x-ray, microwave absorption, and neutron-scattering experiments charac-

terize the quality of the samples. Neutron scattering results40 show the temperature

dependence of the (003) antiferromagnetic Bragg peak intensity. Fig. 1 of Ref. 27

shows a sharp onset of scattering intensity at the antiferromagnetic Néel tempera-

ture TN = 139 K and hence confirms the A-type antiferromagnetic ordering of Mn

spins in LaMnO3.

Additional x-ray diffraction and neutron diffraction studies find the crystals to be

heavily twinned. Near-field scanning microscopy (NSOM) measurements,40 display a

variation of reflectance intensity corresponding to the anisotropic optical response of

randomly oriented twinned domains. The NSMO data indicate domains with a typical

dimension of ≈ 0.2 µm.

Optical techniques

Polishing with a 0.3 µm diamond paste prepares the optical surfaces. Take-

naka et al.88 reported large changes in reflectance for (La,Sr)MnO3 after polish-

ing. Polishing reduced the infrared reflectance and subsequently the spectral weight.
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While a post-polish annealing restored some of the damage, even annealed sam-

ples showed losses relative to cleaved samples. For the undoped parent compound,

polished surfaces exhibited little change versus cleaved surfaces.88 Therefore, pol-

ishing should not have introduced spurious reflectance effects in the LaMnO3 sample

studied here and no post-polish annealing was performed.

Fourier-transform spectroscopy provides bulk reflectance R measurements of

the LaMnO3 sample in the usual way.89 Frequency extrapolations of R spectra to 0

and ∞ necessary for Kramers-Kronig (K-K) analysis are performed as follows. Low-

frequency R extrapolates to dc as a constant, consistent with the insulating dc resis-

tivity behavior. For frequencies above the measurement range, merging R with the

room temperature data of Jung et al.39 extends the spectra to 30 eV. Beyond 30 eV,

the usual free electron behavior, R ∼ ω−4, power law serves to extrapolate the data.

As seen in the results section below, the measured R exhibits temperature depen-

dence at the upper limit (≈ 5 eV) of the measurements and hence the extrapolations

should be temperature dependent as well. In order to satisfy the reflectance sum

rule, ∫ ∞

0
ln

[
R(T1, ω)
R(T2, ω)

]
dω = 0 , (3.1)

where T1 and T2 are two different temperatures, the temperature-dependent trend

in R must be reversed at higher frequency. For the purposes of the K-K analysis,

the addition of temperature dependence in R between 5 − 10 eV ensures all tem-

peratures merge by 12 eV. Reference 40 presents further details of this temperature

dependent extrapolation technique. This extrapolation procedure satisfies the sum

rule of Eq. (3.1) with little affect on the measured spectra below ≈ 4.5 eV.

Reflectance spectra

Figure 3.1 displays the temperature dependence of the bulk reflectance over

the measured spectral range at temperatures from 10 − 300 K. The dashed black
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Figure 3.1: Temperature dependence of reflectance spectra for LaMnO3.
Inset highlights phonons in the far-infrared region.

curve represents R at T = 150 K, near the Néel temperature TN . In the visible re-

gion, R decreases with decreasing temperature. The largest reduction in R occurs

between 300 − 150 K, with saturation below T ≈ 100 K. Temperature dependence in

R above ≈ 2 eV persists to the experimental cutoff frequency (≈ 5 eV). Although the

measurement errors increase as the frequency approaches the instrumentation lim-

its, the observed temperature dependence exceeds the measurement uncertainty.

However, such temperature dependence at the cutoff complicates the K-K analysis,

as mentioned earlier.

In the far-infrared (far-IR), optically active phonons appear clearly in the re-

flectance spectra, typical for an insulator. The inset of Fig. 3.1 highlights phonons

in the spectral region below 0.125 eV. Randomly oriented twinned domains in this

sample provide an average response of the three crystallographic directions and
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preclude polarization dependent studies. As a result, the measured spectra contain

all symmetry-allowed IR phonons. The Lorentz sum model given by Eq. (2.30) fits

the reflectance spectra. The resulting fit parameters describe the phonon parame-

ters, transverse optical (TO) frequency, scattering rate, and oscillator strength. In

general, the observed phonons show a shift towards higher frequency (harden) and

narrow in width with decreasing temperature. Shifts of the TO phonon frequencies

are addressed below.

3.2.3 Results

Electronic conductivity spectra

The K-K analysis of the bulk reflectivity shown in Fig. 3.1 provides the complex

optical conductivity σ̃. Figure 3.2 displays the real part of the optical conductivity σ1

in the electronic spectral range for the measured temperatures. Two main absorp-

σ
Ω

Figure 3.2: Temperature dependence of the electronic conductivity spectra
of LaMnO3.

tion features at ≈ 2 eV and 4 − 5 eV characterize σ1. These features agree well with

earlier room temperature measurements.39,44,88 The 2 eV feature exhibits a remark-
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ably strong temperature dependence. As temperature lowers, the feature sharpens

and increases in spectral weight, while no significant shift of the peak energy occurs.

Strong temperature dependence persists to the high-frequency cutoff. However, the

dependence of the K-K analysis on the high frequency extrapolation limits accurate

determination of σ1 above ≈ 4 eV. However, the 2 eV feature remains relatively insen-

sitive to K-K extrapolations. Evidently the spectral weight increase of the 2 eV feature

below room temperature balances with a decrease of spectral weight at higher en-

ergies. More recent optical measurements on detwinned crystals90,91 confirm the

results reported here. Both FTIR spectroscopy (Ref. 90) and ellipsometry (Ref. 91)

report a decrease (increase) with increasing temperature in the 2 eV feature for the

E ‖ ab (E ‖ c) polarizations. In particular the more accurate ellipsometry data shows

a correlation of the spectral weight with TN .

Figure 3.3 shows temperature dependence of the peak position energy (circles)

and the spectral weight (squares) for LaMnO3. The peak position results from sub-

Figure 3.3: Temperature dependence of the 2 eV peak energy (circles) and
spectral weight in Ne f f (squares). Solid line guides the eye.
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tracting the higher-energy 4 eV transition and fitting the remaining conductivity fea-

ture with a Gaussian function. While similar peak energies result from Lorentzian fits,

the Gaussian fit better suites the data, suggesting this feature may represent several

optical transitions.91 As evidenced in Fig. 3.3, the peak positions shifts < 2 % over

the measured temperature range, remaining essentially constant within the measure-

ment certainty. The behavior of the peak position contrasts sharply with the spectral

weight [defined in Eq. (2.23)] of the 2 eV feature (conductivity integrated to 3 eV)

shown in Fig. 3.3. The results expressed in Fig. 3.3 are given in terms of Ne f f , the

effective number of carriers per formula unit. At room temperature, Ne f f decreases

by ≈ 36 % of the low temperature value, showing a particularly rapid decrease and

inflection point around TN .

Phonon spectra

A simple sum of Lorentz oscillators given by Eq. (2.30) for the dielectric con-

stant and Eq. (2.29) fits the far-IR reflectance spectra. The Lorentz model parame-

terizes each oscillator by the transverse optical (TO) frequency ωTO, damping γ, and

spectral weight A2
j , resulting in 3 fitting parameters per phonon. Table 3.1 lists the

phonon parameters resulting from a least-squares fit to the measured R at various

temperatures. The inset of Fig. 3.4 shows the excellent agreement between the fitted

and measured R spectra for room temperature.

The fit parameters in Table 3.1 define the complex dielectric constant ε̃. The

optical conductivity may be obtained from the dielectric constant, σ1(ω) ∝ iω ε2(ω).

Figure 3.4 shows the real part of the optical conductivity σ1 and the real part of

the dielectric constant ε1 in panels (a) and (b), respectively, in the far-IR for various

temperatures. A large number of peaks (≈ 20), corresponding to transverse optical

(TO) phonon vibrations of atoms, appear clearly in this spectral range. A comparison

of the optical constants obtained from the fit parameters to that obtained from K-K
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Temperature (K)
10 50 100 150 200 250 300

ωTO,1 117.96 117.62 117.48 116.78 116.24 115.41 114.92
γ1 3.84 3.09 3.90 3.01 3.68 5.90 6.51
A1 64.51 56.78 65.57 55.54 61.90 78.18 78.50
ωTO,2 172.88 172.84 172.71 172.25 172.38 171.38 170.71
γ2 3.08 3.02 2.99 2.94 3.49 4.51 5.30
A2 432.23 427.77 429.58 380.28 413.76 414.43 401.66
ωTO,3 184.23 183.99 183.91 185.62 182.60 182.33 181.79
γ3 4.47 4.54 4.37 10.96 5.47 6.31 7.00
A3 211.41 219.62 217.09 199.43 215.11 209.20 200.23
ωTO,4 203.39 203.49 203.28 202.23 201.24 201.15 200.25
γ4 8.97 7.30 7.47 10.39 10.18 7.92 8.00
A4 78.64 66.23 67.28 89.81 86.42 66.05 61.44
ωTO,5 249.00 248.81 248.52 248.18 247.43 246.32 244.80
γ5 6.95 8.05 9.02 7.16 6.79 8.39 7.47
A5 178.18 179.17 184.06 177.73 161.52 153.21 132.07
ωTO,6 276.93 277.06 276.55 275.49 275.08 275.16 274.38
γ6 11.08 11.21 11.64 11.22 10.98 12.46 12.81
A6 403.35 389.11 394.43 414.65 398.78 369.55 341.75
ωTO,7 289.90 289.97 289.40 288.06 287.10 286.98 286.06
γ7 6.89 7.32 7.89 9.17 10.41 11.50 12.67
A7 156.48 159.28 163.58 186.42 203.26 196.32 219.81
ωTO,8 317.78 317.95 317.23 316.09 313.01 311.58 316.09
γ8 4.64 4.34 4.53 2.89 2.47 0.00 8.46
A8 77.85 64.68 61.79 48.04 34.88 0.53 0.00
ωTO,9 335.40 336.14 335.38 334.00 333.07 332.96 332.15
γ9 13.35 14.60 14.46 14.62 13.99 14.21 15.04
A9 438.69 448.19 443.56 492.44 464.77 425.89 437.92
ωTO,10 347.99 350.14 349.11 348.00 346.22 346.91 345.46
γ10 18.34 19.04 19.32 19.09 18.92 21.07 20.76
A10 404.94 405.67 412.81 428.03 442.60 460.66 435.44
ωTO,11 366.34 367.91 367.32 366.18 364.91 365.70 365.20
γ11 22.41 19.33 21.94 20.12 22.70 21.01 23.11
A11 404.83 366.14 384.75 343.42 370.58 349.72 355.22
ωTO,12 402.12 401.87 404.34 404.33 405.14 400.61 400.58
γ12 21.52 25.42 25.67 27.17 30.32 37.65 28.68
A12 158.51 183.39 167.53 169.26 174.68 210.46 175.21
ωTO,13 431.77 432.11 432.05 431.41 430.93 430.34 428.89
γ13 12.43 12.15 12.19 12.31 12.11 12.91 13.33
A13 164.06 162.04 160.18 155.32 150.05 150.36 146.27
ωTO,14 450.40 450.59 450.68 450.50 450.28 449.93 448.49
γ14 11.24 11.26 11.10 10.77 12.48 12.72 14.78
A14 92.32 93.04 87.59 72.83 70.78 68.15 75.68
ωTO,15 480.42 481.06 480.62 480.03 479.14 479.05 478.30
γ15 18.34 17.72 18.72 19.80 21.82 23.06 23.31
A15 163.75 161.66 166.41 172.35 176.05 166.00 165.99
ωTO,16 511.00 511.38 511.33 510.99 510.39 510.12 508.43
γ16 6.58 5.95 6.75 7.95 9.95 9.79 11.59
A16 91.61 84.61 92.48 102.77 108.45 94.59 106.87
ωTO,17 565.33 566.08 564.89 562.47 562.21 562.60 559.85
γ17 15.39 13.78 15.46 18.74 18.87 20.06 23.76
A17 492.70 487.90 505.53 544.22 517.31 529.15 503.76
ωTO,18 582.61 583.92 583.43 584.34 581.76 582.66 580.44
γ18 31.78 29.82 30.99 30.05 34.00 33.88 36.02
A18 355.56 363.82 337.22 259.61 306.09 293.24 287.83
ωTO,19 646.19 647.53 648.72 649.54 650.65 650.63 649.53
γ19 38.33 36.87 36.59 34.27 33.44 38.28 39.54
A19 159.45 152.55 144.14 127.98 122.28 129.79 119.87
ε∞ 6.68 6.63 6.58 6.53 6.52 6.41 6.02

Table 3.1: Fitting parameters for LaMnO3 for various temperatures. Values
are in cm−1 except for ε∞.
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analysis reveals no essential differences between the two methods.

σ
Ω

ε

Figure 3.4: Real part of (a) the optical conductivity σ1 and (b) the dielectric
constant ε1 of LaMnO3 in the far-infrared for various temperatures. Inset
shows the 300 K data (circles) together with the Lorentzian fit (solid line).

A basic identification of the phonon modes results from considering ionic dis-

placements in the harmonic approximation, in which the modes at lowest frequency

correspond primarily to motion of the heavy La ions, while the modes at highest fre-

quency (around 600 cm−1) corresponds to motion of the light O ions. At intermediate

frequencies, modes consist primarily of Mn ion displacements, in combination with O

and La motion. More exact modal assignments can be made by analogy with those

discussed in Refs. 92, 93, and 94. In the orthorhombic phase (T < TJT ≈ 750 K),95

LaMnO3 crystallizes in the orthorhombic structure with space group Pnma(D16
2h). A

group-theoretical analysis92 for the Γ-point phonon modes finds 25 IR active modes:
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9 with B1u symmetry, 7 with B2u symmetry, and 9 with B3u symmetry. Phonon modes

with B1u, B2u, and B3u symmetry corresponding to oscillations of the dipole moment

along the z, y, and x axes respectively.93

Generally, the TO phonon frequencies ωTO shift to higher frequency and the

phonon widths sharpen with decreasing temperature. Several of the phonons re-

solve more clearly at lower temperatures, particularly for modes near 161, 184, 290,

and 650 cm−1. Raman studies report96 a similar increase in the number of phonon

modes at lower temperatures. An increase in the total number of phonon modes

at lower temperatures might suggest a lowering of the crystal symmetry, consistent

with the observation of a more cubic crystal structure in the paramagnetic state.

However, Paolone et al.93 argue that neutron diffraction experiments95 observe no

change in crystal symmetry below ≈ 750 K and hence the apparent increase in the

number of modes results simply from an increased ability to resolve the narrower

low-temperature phonons lines. Additional temperature dependence of the phonons,

specifically ωTO, is discussed in detail below.

3.2.4 Discussion

Origins and spectral weight of the 2 eV feature

Various interpretations of the origin of the 2 eV feature exist in the literature.

Allen and Perebeinos interpret87 the 2 eV feature as a phonon-assisted on-site elec-

tronic excitation between JT split Mn eg orbitals. In cubic crystals optical selection

rules forbid on-site d-d transitions. However, lattice distortions resulting from asym-

metric oxygen breathing modes in LaMnO3 provide p-orbital admixture and may allow

for on-site Mn d-d transitions in LaMnO3.87 Electronic excitations from the JT ordered

ground state self-trap by local distortions of the lattice. The predicted optical conduc-

tivity spectrum consists of a Franck-Condon series, i.e., a broad Gaussian envelope

of vibrational sidebands. The onset of absorption begins at ∆ (or EJT ) the JT splitting
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energy and peaks at 2∆. Dispersion of phonons and electron states and phonon

lifetime broadening (not included in the model) tend to smear the fine structure of the

Franck-Condon spectra, leaving only the Gaussian envelope. Regarding temperature

dependence, Allen and Perebeinos predict87 very weak temperature effects near the

peak of absorption at 2∆. Specifically their model model does not depend on mag-

netic order and predicts no special dependence of either the peak energy or spectral

weight near TN . The temperature-dependent spectral weight observed in Fig. 3.3

and reported in Ref. 91 definitively contradict the predictions of the Franck-Condon

model as put forth by Allen and Perebeinos.

Raman spectroscopy provides an additional experimental technique to

measure the predicted87 multiphonon behavior. Raman studies97,98 on LaMnO3

report evidence for weak multiphonons. While these results are consistent with

a phonon-assisted optical absorption process, the Raman spectra provide no

estimate of the spectral weight of the associated optical transition. Generally,

such phonon-assisted optical transitions are much weaker than symmetry-allowed

interband charge-transfer transitions expected in this class of materials.40

The failure of the Franck-Condon picture to predict the temperature depen-

dence of the 2 eV feature suggests some other physics governs the low-lying elec-

tronic states in LaMnO3. Solovyev et al.41 employ the local-density approximation

(LDA) plus electron-electron interactions (LDA+U) to determine the band structure.

The authors report a model considering localized t2g levels and itinerant eg levels

that well describes the observed physical properties. In their model, U ≈ 1.5 eV and

J ≈ 1 eV. Furthermore, in these LDA+U calculations, the minimum optical gap in

LaMnO3 results from the excitation of electrons between the JT split eg levels.41 This

theoretical treatment predicts a band structure and optical conductivity for the ground

state only.

Consideration of the temperature dependence requires including effects on the
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hopping amplitude of the charge-transfer eg-eg transition due to the spin-selection

rules. In the ground state, the A-type antiferromagnetic order consists of ferromag-

netically aligned spins in the ab plane and antiferromagnetically aligned spins along

the c axis. Each Mn has six nearest-neighbors in the pseudocubic crystal, four in

the plane and two along c. Hence the probability for transitions in the parallel spin

manifold e1
g↑-e

2
g↑ is 2/3, while antiparallel e1

g↑-e
2
g↓ is 1/3. Far, above the magnetic or-

dering temperature TN , spins align randomly in all directions. Nearest-neighbor Mn

spins are equally likely to be parallel or antiparallel and the probabilities of e1
g↑-e

2
g↑ and

e1
g↑-e

2
g↓ are both 1/2. Thus, the spectral weight of the 2 eV feature should decrease

by

∆S =
S (10 K) − S (300 K)

S (10 K)
=

2/3 − 1/2
2/3

= 25 % , (3.2)

above TN . Similarly, this simple model predicts that the higher transition (buried in

the O 2p to Mn 3d transition) should increase by 50 %. Fig. 3.3 shows the average

spectral weight decreases by approximately 36 % from low temperature to well above

TN , in qualitative agreement. Moreover, polarization dependent ellipsometry91 on a

detwinned single crystal quantitatively supports these predictions.

While the addition of spin-selection rules to the LDA+U model provides a qual-

itative explanation of the temperature dependence, a more quantitative comparison

requires a model taking into account the optical anisotropy of the eg orbitals.40 Ahn

and Millis99 offer such a realistic model. The authors considered a model Hamil-

tonian using a tight-binding parameterization of the band structure along with mean-

field treatment of Hund, electron-electron, and electron-lattice coupling.99 Predictions

from this calculation are most easily compared to the measured optical response by

consideration of the optical spectral weight, or equivalently the kinetic energy of the

2 eV feature. The kinetic energy K is given by Eq. (2.25) and the conductivity is in-

tegrated up to 3.0 eV to include the transition of interest. Table 3.2 compares the

measured K with tight-binding predictions for temperatures 300 K and 10 K.
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Kinetic Energy (eV)
T (K) Experiment Theorya

300 0.066 0.086
10 0.082 0.130b

a Theoretical predictions result from integration of re-
vised Fig. 6 in Refs. 99, 100, and 101.

b Derived for T = 0.

Table 3.2: Spectral weight, expressed in units of kinetic
energy, of the 2 eV optical transition in LaMnO3.

The parameter values used in the predictions are the following: U = 1.59 eV,

λ ≈ 1.38 eV/Å, and 2 JH S c ≈ 2.47 eV.101 Both experiment and theory show an in-

crease in K at low temperatures. In the theory, double exchange correlations be-

tween the spin-dependent hopping amplitudes drive the temperature dependence.

The temperature dependence increases with the Hund’s coupling energy JH S c and

the Coulomb energy U and decreases with increased coupling constant λ. Theoret-

ical values listed in Table 3.2 overestimate the observed kinetic energy of the 2 eV

feature. This discrepancy may arise from the strength of Coulomb interactions.99 The

finite U employed in the model calculation substantially reduces K of the 2 eV feature.

However, theoretical values in Table 3.2 still exceed the experimental observations.

In addition to the tight-binding parameterization of the band-structure, Taka-

hashi and Shiba report102 a calculation of the eg interband optical conductivity in-

cluding the on-site Coulomb interaction effects to lowest order in perturbation theory.

The calculated optical conductivity for small U/6 t0 extends to ω = 4 t0 ≈ 2.4 eV,

has a broad maximum at ω ≈ 3 t0 ≈ 2 eV, and is otherwise relatively featureless.

The experimental data reported here and in Refs. 27 and 40 are in good qualitative

and semi-quantitative agreement with the calculated conductivity, suggesting that the

Coulomb effects are small.

The tight-binding model discussed above suggests the spectral weight of the
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2 eV feature should correlate with the Mn spin order, changing abruptly at TN and

remaining constant at higher temperatures. However, the temperature dependence

seen in σ1 (Fig. 3.2) and Ne f f (Fig. 3.3) continues above TN . Note the optical tran-

sition depends on the nearest-neighbor spin-spin correlation function, which varies

smoothly with temperature, not abruptly as does the long-range order probed in mag-

netization.40 The observed changes in the optical spectral weight above TN suggests

the persistence of short-range order in LaMnO3 perhaps extending beyond 300 K.

Phonon temperature dependence

Optically active phonons dominate the far-IR conductivity spectrum. Figure 3.5

shows the temperature dependence of the frequency shifts of ωTO in panels (a)

and (b) plotted relative to the phonon frequency at low temperature, ∆ωTO(T ) ≡

ωTO(T ) − ωTO(10 K). Panel (a) highlights phonons that harden smoothly with de-

creasing temperature, exhibiting no anomalous behavior around TN . These phonons

behave similarly to those undergoing the usual thermal shifts and lifetime effects re-

sulting from lattice expansion and phonon anharmonicity observed in nonmagnetic

materials.40 However, several of the phonons do exhibit a temperature anomaly in

ωTO correlated with TN . Specifically, ωTO = 277, 290, 335, and 565 cm−1 phonons

show inflection points near TN ≈ 140 K. This observation suggests that these modes

couple strongest to the spin system. To highlight the similarity of this behavior,

scaled frequency shifts, −∆ω(T )/∆ω(300 K), are plotted in Fig. 3.5 panels (c) and

(d). Noise in ωTO frequencies of several weaker phonons precludes investigation

of an anomaly at TN and are omitted from Fig. 3.5 for clarity. Lattice dynamical

calculations92,94 identify the symmetry of the IR allowed phonon modes. However,

discrepancies in the calculated and experimentally observed phonon frequencies

complicates identification of the specific modes exhibiting the magnetic anomaly.93

In principle, polarization-dependent measurements on detwinned single crystals and
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Figure 3.5: Temperature dependent shifts of TO phonon frequencies,
∆ω(T ) ≡ ω(T ) − ω(10 K) of LaMnO3. Inset in (a) shows positive frequency
shift with increasing temperature of the 645 cm−1 phonon. Scaled frequency
shifts, −∆ω(T )/∆ω(300 K) shown in (c) and (d).

improved theoretical models would allow identification of the spin-coupled modes.

In addition to the observed hardening of the phonons with decreasing temper-

ature, the 653 cm−1 phonon shown in the inset of Fig. 3.5(a) softens with decreas-

ing temperature. Iliev et al.92 observe a similar phonon in Raman spectroscopy.

The breaking of inversion symmetry relaxes constraints on the generally mutually

exclusive Raman and IR active phonon modes and may allow both spectroscopic

techniques to observe the 645 cm−1 phonon. However, Iliev et al.92 report the weak

phonon varies among samples and thus appears to be of defect origin. Furthermore,

Smirnova94 suggests that theoretical calculations prohibit a single phonon mode of

such high frequency. The exact nature of the 645 cm−1 mode remains uncertain.
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The similarity of the frequency shift of the spin-coupled phonons and the tem-

perature dependence of the spectral weight of the 2.0 eV feature (Fig. 3.3) sug-

gests that both are related to the same, nearest-neighbor spin correlation function:

〈Si ·S j〉(T ). Phonon induced modulation of the exchange energy produced by the ion

modal displacements provides an understanding of the phonon shifts. The change in

exchange energy produces a corresponding change in the effective restoring force k

and subsequently ωTO for the phonon, ∆(ω2
TO) ∝ ∆k. Similar, stronger, spin-coupled

phonons are observed in the hexagonal manganite LuMnO3. Chapter 4 addresses

the effects of the exchange interaction and spin-phonon coupling on ωTO shifts in

more detail.

3.3 CMR Alloys: Optical Conductivity and Spectral Weight

3.3.1 Introduction

This section presents a comparison of the optical conductivity derived from

transmittance and reflectance measurements of thin films of La0.7Sr0.3MnO3,

La0.7Ca0.3MnO3, and an oxygen-annealed Nd0.7Sr0.3MnO3 as a function of tem-

perature and for photon energies up to 5 eV. The optical conductivity on these

films show large shifts in spectral weight from visible to infrared frequencies as

the temperature lowers through Tc, demonstrating large changes in electronic

properties on an energy scale several orders of magnitude larger than kBTc. In

the paramagnetic-insulating state, a broad maximum near 1 eV characterizes the

optical conductivity at low energies and is interpreted in terms of the photon induced

hopping of the Jahn-Teller small polaron. This spectral feature shifts to lower energy

and grows in optical oscillator strength as the system enters into the ferromagnetic

state, gradually transforming into a Drude-like response for T � Tc. Nevertheless,

the polaron peak persists at temperatures substantially below Tc.

At higher frequencies, the spectrum of the real part of the optical conductivity
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indicates the presence of a temperature dependent optical absorption feature cen-

tered at 3 eV and a large spectral feature at 4 eV which still has a weak temperature

dependence. The 3-eV feature appears to be more prominent in the paramagnetic

state. Additionally, the energy position of this feature suggests that it involves tran-

sitions between the Hund’s rule spin-split eg derived bands. The 4 eV feature most

likely relates to a similar feature that observed in the undoped materials where it has

been identified as a charge transfer transition between the O 2p and the Mn d derived

bands.44 Finally, this section presents an analysis of the magnitude and temperature

dependence of the optical spectral weight.

3.3.2 Experimental

Sample Characterization

Pulsed laser deposition (PLD) provides thin films of La0.7Sr0.3MnO3,

La0.7Ca0.3MnO3, and Nd0.7Sr0.3MnO3 on LaAlO3 substrates in an N2O atmosphere.103

X-ray diffraction reveals the epitaxial nature of the films and 3 MeV He+ ion Ruther-

ford backscattering channeling spectra with a minimum yield of 3.8 % indicates a high

degree of crystallinity. Resistivity and ferromagnetic resonance measurements104,105

provide additional characterization of these samples.

Figure 3.6 shows the temperature dependence of the resistivity, obtained using

standard four-probe resistance measurements, for several CMR alloys. The temper-

ature of peak resistivity, Tp, is 235 K for NSMO, 250 K for LCMO and 360 K for LSMO.

Values of Tp coincide with the Curie temperatures Tc’s in these samples, i.e., Tp ≈ Tc.

In addition to the observed progression in Tp with dopant, the residual resistivity at

low-temperature ρ0 ≡ ρ(10 K). The values for ρ0 are 350 µΩ cm for NSMO, 300 µΩ cm

for LCMO, and 10 µΩ cm for the LSMO sample. Such low values for the residual

resistivities indicate the high quality of these thin film samples. The observed low

temperature resistivities correspond to conductivities greater than the Mott minimum
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Figure 3.6: Temperature dependence of the resistivity for several hole-
doped manganite alloys. The metal to insulator transition is apparent for
the Nd0.7Sr0.3MnO3 and La0.7Ca0.3MnO3.
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conductivity, σMott = 0.656 (e2/h) n1/3 ≈ 500Ω−1 cm−1, where the carrier density n is

determined by the divalent alkaline earth substitution. Low temperature resistivities

previously reported in the literature for bulk and film samples generally correspond

to conductivities below the Mott minimum conductivity, suggesting sample inhomo-

geneity.

Optical Techniques

Transmittance and reflectance measurements were performed using a Fourier

transform spectrometer to cover the investigated regions of 5−25 meV and 0.20−5 eV.

The measured frequency ranges correspond to the LaAlO3 substrate transparency

windows. At far-infrared (far-IR) frequencies the thin-film transmittance Tthin (trans-

mission of the film/substrate TFS divided by transmission of the bare substrate TS ) is

given by

Tthin(ω) ≡ TFS

TS
=

1∣∣∣1 + Z̃(ω) σ̃(ω)
∣∣∣2 ; Z̃(ω) ≡

Z0 df

ñ(ω) + 1
, (3.3)

where Z0 = 377Ω is the impedance of free space, d f is the film thickness, σ̃(ω)

is the complex optical conductivity, and ñ(ω) is the complex index of refraction of

the substrate. The thin-film formula of Eq. (3.3) applies whenever the skin depth

δ = λ/4πκ f exceeds the film thickness δ � λ, which is well satisfied in these thin film

samples. Typical substrates (e.g., LaAlO3) exhibit negligible absorption (κ → 0) at

frequencies less than 100 cm−1. Hence the substrate index and complex impedance

Z̃ become purely real. The resulting expression for Tthin given by Eq. (3.3) simplifies

to the following

Tthin(ω) =
1

[1 + Z(ω)σ1(ω)]2 + [Z(ω)σ2(ω)]2
, (3.4)

Note that to lowest order in the conductivity, Tthin depends linearly on σ1 and quadrat-

ically on σ2. Inverting Eq. (3.4), the measured Tthin determines σ1,

σ1(ω) =
1

Z(ω)

{ √
Tthin(ω) − [Z(ω)σ2(ω)]2 − 1

}
≤ 1

Z(ω)

[ √
Tthin(ω) − 1

]
(3.5)
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The right side of Eq. (3.5) becomes an equality when σ2/σ1 << 1. In general, σ2 → 0

as ω → 0. Terahertz measurements on a La0.7Sr0.3MnO3 sample106 confirm that

σ2/σ1 << 1 is a valid approximation in the regime of interest ω < 100 cm−1.

At higher frequencies, numerical inversion of the Fresnel formulae for a thin

film on a weakly absorbing substrate yield the optical properties of the samples. Low

spectral resolution averages the interference (étalon) effects. This procedure yields

the index of refraction and extinction coefficient of the thin-film material, n f and κ f ,

respectively, using n and κ for the substrate. The results of n f and κ f are then used

to derive the other optical constants, e.g., the complex dielectric function, ε̃(ω) or

the complex optical conductivity σ̃(ω).80 This technique avoids extrapolation errors

associated with Kramers-Kronig analysis and permits reliable measurement of the

optical conductivity up to the high frequency cutoff of the spectrometer (5 eV).

Figure 3.7 shows temperature dependence of transmittance T (top panel) and

reflectance R (bottom panel) spectra for the Nd0.7Sr0.3MnO3 sample. The spectra

display several features common among the x = 0.3 doped alloys. First, both T

and R display strong temperature dependence in the infrared (ω < 1 eV) spectral

range. In this region, T decreases upon cooling below Tc while R increases. At

high frequencies (above 4 eV), strong absorption produces nearly zero T . This small

T leads to noise in the subsequently determined optical constants. Finally, several

temperature dependent features appear, particularly in T , in the near-IR to visible

spectral range.

In addition to the measured T and R shown in Fig. 3.7, the extraction of the film

optical constants requires knowledge of the substrate n and κ. In all the measured

LAO substrates, n ≈ 2.0 (independent of sample) and roughly frequency indepen-

dent in the 0.2 − 5 eV range.107 Although the values for the extinction coefficient are

small (10−3 − 10−4) in this frequency range, κ varies for different samples of LaAlO3,

especially near the cutoff frequency of 0.2 eV. The sufficiently large differences ne-
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Figure 3.7: Transmittance and reflectance spectra of Nd0.7Sr0.3MnO3 film for
various temperatures.

cessitate using the values of n and κ for the substrate specific to each film sample in

the analysis. Therefore, after measurement, films were removed from substrates and

the T and R of the bare substrates were measured. This procedure ensures usage

of the proper values of n and κ for the substrate in the final inversion of the data.

3.3.3 Results: Optical conductivity spectra

The optical conductivity in the far infrared was measured as described in

Sec. 3.3.2. Because of the narrow range of the transmission window of the LaAlO3

substrates these data provide only a low frequency data point to the broad band

conductivity spectra shown below. An interesting analysis compares the far infrared
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conductivity with the dc conductivity of identical samples. Figure 3.8 displays

the measured dc conductivity together with the derived conductivities at 20 cm−1

using Eq. (3.5). A reasonable agreement exists between the ac and dc values for

La1-xCaxMnO3
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Figure 3.8: Comparison of the temperature dependence of the dc (solid
lines) and ac (circles) conductivities at 20 cm−1 derived from Eq. (3.5). The
dc conductivity for the La0.7Sr0.3MnO3 sample (the dashed curve) has been
divided by ∼ 10 to fit the data on the same scale.

La0.7Ca0.3MnO3 and Nd0.7Sr0.3MnO3 samples. However, the La0.7Sr0.3MnO3 sample

exhibits a striking disagreement. The measured dc conductivity in this sample

exceeds by roughly 10 times the ac value obtained at 20 cm−1. Similar results for

La0.7Sr0.3MnO3 films studied earlier27 were attributed to an anisotropic conductivity

resulting from substrate induced strain. However, subsequent measurement done

in this study confirmed the spurious values occurred from errors in the dc resistivity

measurements performed by the sample grower.108 However, typical La0.7Sr0.3MnO3
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films have a resistivity of around 100 µΩ cm in better agreement with the ac values.

The results of the real part of the optical conductivity σ1(ω) for the three sam-

ples measured at different temperatures are shown in Fig. 3.9. The symbols near

zero frequency result from the far-infrared transmittance measurements described

above. The IR conductivity extrapolates reasonably to the far infrared value except

for a downturn near the low-frequency IR cutoff. This downturn becomes more no-

ticeable in the alloys with lower Tc, particularly for Nd0.7Sr0.3MnO3. While care must

be exercised extracting film optical constants near the onset of substrate absorption

(0.2 eV), Lee et al.109 report similar results for Nd0.7Sr0.3MnO3 single crystals. Near

and above Tc, a broad maximum near 1 eV dominates σ1, peaking with a value of

roughly 600 − 700Ω−1 cm−1 and only slightly higher than the Mott minimum conduc-

tivity. Moreover, the 1 eV feature evolves in temperature similarly for the different

alloys. These data indicate that this feature is universal in the hole-doped pseudocu-

bic manganites. In all the samples, the broad maximum in the conductivity spectrum

above Tc shifts lower in frequency and grows in oscillator strength as temperature

decreases through Tc. The peak structure remains identifiable well below Tc, but as

the temperature lowers further into the metallic range the low-frequency part fills in

and eventually σ1(ω) increases with decreasing frequency for T � Tc. This indicates

a Drude response and coherent conduction at low temperatures and low frequencies

in all the samples. The results for this oxygen annealed Nd0.7Sr0.3MnO3 sample differ

from results reported28 on an unannealed sample, which did not show a Drude-like

response even at the lowest temperature, although the T > Tc behavior was similar

to that observed here. The earlier sample had a lower Tc and a much higher dc resis-

tivity (σDC < σMott) than the present sample even at 10 K. Clearly, varying the oxygen

concentration produced different behaviors in the dc transport and optical properties

of Nd0.7Sr0.3MnO3.

The other major spectral feature in observed σ1 spectra is the strong peak near
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Figure 3.9: Frequency dependence of the real part of the optical conductiv-
ity, σ1, for three x = 0.3 alloys at different temperatures.
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4 eV. The noisy appearance of the conductivity data near the peak of this feature oc-

curs as a consequence of the very small transmittance (strong absorption) of the

films at the peak. A similar feature appears ubiquitously in other perovskite transition

metal oxides.44 A weak temperature dependence of the 4 eV absorption is observed

outside of the measurement uncertainty. Additionally, the absorption appears notice-

ably weaker in Nd0.7Sr0.3MnO3.

Throughout the measured spectral range, σ1 dominates T and R of the films

However, T and R remain relatively insensitive to ε1 and consequently provide less

reliable values of ε1. In particular, ε1 is prone to errors introduced by multiple roots

in the numerical inversion of T and R (discussed in Chap. 2). Careful numerical in-

version ensures the resulting ε1 satisfies the K-K relations, i.e. ε1 relates to the more

reliably determined imaginary part of ε. Figure 3.10 shows the temperature depen-

dence of ε1 spectra typical for the doped alloys. At high frequencies, ε1 exhibits little
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Figure 3.10: Real part of the dielectric constant ε1 of La0.8Ca0.2MnO3 for
various temperature dependence.

temperature or frequency dependence, remaining nearly constant and positive down
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to 1.8 eV. Below this point, ε1 displays either insulating or metallic behavior, depending

on temperature. From room temperature down to well below Tc, ε1 increases slightly

with decreasing temperature, while remaining positive (characteristic of an insulator).

For temperatures well below Tc, ε1 behaves more like a metal, becoming smaller with

decreasing frequency and eventually going negative just above 1 eV. The apparent

free-carrier response of σ1(ω) at low temperature should tend to produce a negative

ε1 at frequencies below the plasma frequency, ωp. However, the ωp is predicted110

to be much higher in frequency (≈ 3.5 eV). The observed behavior of ε1 suggests

interband transitions between the two eg bands provide additional spectral weight in

the infrared. This additional weight accounts for the relatively smaller contribution of

the coherent component of the conductivity to the total spectral weight.

3.3.4 Assignment of optical transitions

This subsection addresses in detail several of the striking features of the optical

conductivity data shown in Fig. 3.9, which consists of three main peaks at ≈ 1, 3, and

4 eV. Mn eg and O 2p levels comprise the orbitals important to the low-lying electronic

excitations. Allowed transitions involve motion of a charge either from one Mn site

to another or from an O to a Mn. Jung et al.39 argue that transitions from one eg

orbital to another on-site appear in the optical spectrum. However, these transitions

have negligible oscillator strength given that the initial and the final states have d-

symmetry with respect to the same origin. The following presents arguments that

the 1 eV feature involves eg-eg transitions within the parallel spin manifold, the 3-eV

feature results from eg-eg transitions to an antiparallel final state, and the 4-eV feature

results from the eg - O 2p charge transfer transition.

Several important energies are relevant to the lowest-lying optical transitions:

(i) breathing distortion energy EB, (ii) Jahn-Teller energy EJT , (iii) on-site coulomb en-

ergy or “Hubbard U”, (iv) Hund’s energy JH, and (v) charge transfer energy ∆. First,
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a Mn-site with no eg electrons experiences a symmetric “breathing” distortion of the

surrounding oxygens. Evidence of breathing mode distortions appears whenever an

electron hops to a Mn site with empty eg orbitals on a timescale fast compared to

phonon frequencies, as occurs in optical transitions. In this case the lattice does not

have time to relax and the final state resides higher in energy by EB. Next, the Jahn-

Teller distortion splits the eg levels by an amount EJT . A singly occupied Mn eg orbital

experiences this local even-parity lattice distortion, which breaks cubic symmetry. In

the low-temperature charge-ordered phase of La0.5Ca0.5MnO3, both breathing and

Jahn-Teller distortions occur.111 The approximately equal amplitudes of these distor-

tions suggests EB ≈ EJT . A third energy results from coulomb interactions, or the

“Hubbard U” repulsion,112 between two eg electrons on the same site. As discussed

below, available evidence suggests that the effective U describing the low-energy

(ω < 4 eV) physics of the eg band remains weak. Another important energy, the

Hund’s coupling energy JH governs the spin interaction between the Mn eg electrons

and the S = 3/2 core spin of the occupied t2g orbitals. Electrons in eg orbitals aligned

with spins antiparallel to core spins reside higher than those aligned in parallel by an

energy JH. Finally, ∆ describes the energy cost for the charge transfer from O2p to

Mn eg levels. Such charge transfer transitions occur commonly in the manganites44

and have already been seen in the parent compound in the previous section.

These characteristic energies play a crucial role in identifying the various tran-

sitions observed in the optical conductivity. Figure 3.11 shows a qualitative picture

of the O 2p and Mn eg (t2g levels are not shown) states identified by the appropriate

energy relative to the Fermi energy and the optical transitions observed in Fig. 3.9.

The two fold degeneracy of the singly occupied eg levels are assumed split by a local

Jahn-Teller distortion with the splitting given by EJT . The left-hand portion indicates

an optical transition to a Mn that initially has no eg electrons. In the case of a Mn-Mn

charge transfer at low temperature (i.e., parallel transition), the final state energy con-
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Figure 3.11: Schematic view of lowest-lying electronic transitions in
R1−xAxMnO3. Central panel shows initial states while left and right panels
show allowed optical transitions and final state energies referenced to the
Fermi energy. The shaded box represents filled O p-bands and horizontal
lines represent, in panels from left to right, Mn eg levels on Mn4+, Mn3+, and
Mn3+ sites. Curved arrows represent optical transitions corresponding to
absorption observed in σ1.

sists of the degenerate eg levels shifted by the breathing distortion energy EB. If the

core spins on the Mn4+ site align antiparallel (as they do at temperatures above Tc),

the hopping eg electron must pay an additional Hund’s energy cost JH. Additionally, if
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the transition to the unoccupied Mn originated from an O site, the final state energy

would be raised an additional amount ∆. The right-hand panel indicates an optical

transition in which charge moves from an O or Mn site to an already singly occupied

Mn site, as occur exclusively in the undoped parent compound. These transitions

to a Mn site containing an already singly occupied eg level pay an additional energy

cost U corresponding to the Coulomb interaction. Thus, the final state energy is the

sum of the Jahn-Teller splitting EJT , the eg-eg Coulomb repulsion U (and JH and ∆ if

appropriate). Figure 3.11 allows identification of the energies: EB ≈ 1 eV, EJT ≈ 1 eV,

U ≈ 1.2 eV, JH S c ≈ 3 eV, and ∆ ≈ 4 eV

The broad absorption peak centered at ≈ 1 eV appears as the most striking fea-

ture of the data in this energy range. The features occurs in the paramagnetic phase

of all samples. As T decreases below Tc, this feature loses intensity and shifts to

lower frequency, eventually evolving into the observed Drude-like conduction. The

oscillator strength, including T -dependence, of the 1-eV feature agrees with expecta-

tions for dipole allowed d-d charge transfer transitions between Mn ions on different

sites. The insulating nature of the paramagnetic phase and the peak-like shape of

the absorption suggests that it arises from the excitation of carriers out of bound

states. Disorder induced carrier localization, as suggested in Ref. 113, offers a pos-

sible explanation. However, the universal appearance of the feature in manganites

of widely varying dc conductivities42,43 weakens this argument. The characteristic

energy of the absorption feature in the paramagnetic state of the doped materials

appears qualitatively similar to that observed in insulating LaMnO3, where a ≈ 1.5 eV

gap appears in the eg manifold due to the presence of a long-range Jahn-Teller dis-

tortion. The feature observed in LaMnO3 (see Fig. 3.2 on page 69) results from the

eg-eg transition shown in the righthand panel of Fig. 3.11. The peak energy of ap-

proximately 2.2 eV corresponds to an energy EJT + U. This peak thus exceeds the

lowest electronic excitation in the doped manganites, i.e. EB ≈ 1 eV < EJT + U.
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Initial reports of the optical properties of doped manganites interpreted43 the 1-

eV feature as a “parallel” to “antiparallel” transition, implying a JH ≈ 1.5 eV. However,

as noted by Millis et al.,31 the temperature dependence of the spectral weight of the

1 eV feature is inconsistent with this interpretation. Selection rules for electric dipole

matrix elements preserve spin and hence preclude the “antiparallel” final state in the

fully polarized ferromagnetic ground state. The oscillator strength in the “antiparallel”

transition, therefore, should decrease as T lowers below Tc. However, the observed

intensity in the peak feature grows as T decreases below Tc, inconsistent with the

“antiparallel” interpretation. Thus the 1-eV feature must involve parallel spin eg-eg

transitions only. The temperature dependence of σ1(ω) near ≈ 3 eV, however, is

consistent with transitions to an eg “antiparallel” final state. Figure 3.12 shows the

difference conductivity ∆σ1(T ) ≡ σ1(T ) − σ1(10 K), which illustrates this behavior

clearly. The peak at ≈ 3 eV gradually disappears in strength as the temperature

lowers and the core spins align ferromagnetically.

In the range from 2 − 5 eV, strong absorption dominates the conductivity at

≈ 4.0 eV. A comparison with the parent compound LaMnO3 allows assignment of

the optical process involved in this transition. In LaMnO3, a similar peak in the optical

conductivity has been observed (Fig. 3.2) at this frequency and assigned to a charge-

transfer transition between the O 2p and the eg derived bands.39,44 Moreover, the

data in Fig. 3.9 show a large redistribution of spectral weight from optical transitions

occurring above 2 eV to below the 1 eV feature. The temperature dependence of

σ1(ω) extends to the upper measurement limit (5 eV). However, the T dependence of

the 4 eV feature does not account for the missing spectral weight when the sample

warms above Tc, as can be seen in Fig. 3.12. A full account of all the low-frequency

oscillator strength in the ferromagnetic state requires including contributions up to

and beyond the 5 eV limit of the present measurements.
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Figure 3.12: Difference in the optical conductivity ∆σ1 ≡ σ1(T ) − σ1(10 K)
for three x = 0.3 alloys. The ≈ 3.0 eV feature gradually disappears below Tc.
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3.3.5 Jahn-Teller small polaron

Millis et al. predicted30 doped materials in the paramagnetic phase would have

lattice distortions similar to those occurring in LaMnO3, but lacking the long range or-

der. Neutron pair-distribution-function29 and extended x-ray-absorption fine-structure

(EXAFS)114 experiments directly observed these distortions with an amplitude about

70 % of those in LaMnO3. In this picture, the 1 eV feature observed at T > Tc in

doped samples results from the excitation of a carrier out of a bound state produced

by a strong local lattice distortion. The polaron excitation hops to an adjacent Mn

site whose eg levels have been modified in energy by either the J-T distortion (singly

occupied eg) or the breathing mode distortion (empty eg). Evidently, doping reduces

the eg electron concentration to less than one per site and allows transitions such as

those shown in the left panel of Fig. 3.11. The observation of only one (broad) feature

suggests that the energy shift due to the breathing distortion, EB, is comparable to

the Jahn-Teller plus Coulomb energy EJT + U.

As the temperature decreases below Tc, the 1 eV feature grows in intensity

and broadens, and eventually evolves into the low-temperature Drude-like response.

This behavior corresponds to the collapse of the Jahn-Teller small polaron as the

system goes into the ferromagnetic state. Millis, Mueller and Shraiman30 propose an

explanation with a model that incorporates double exchange and dynamic JT effects

in the system. In this model, the dimensionless effective coupling constant λ controls

the behavior of the system. The coupling constant is defined by

λ =
EJT

t 〈cos(θi j/2)〉 , (3.6)

where t is the hopping probability, and θi j is the relative angle between neighboring

spins. The 〈cos(θi j/2)〉 factor, which goes from 1 in the ferromagnetic state (aligned

spins) to 2/3 in the paramagnetic state (randomly aligned spins), governs the tem-

perature dependence. Within the DE and JT model, a qualitative description of the
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data shown in Fig. 3.9 emerges. In the paramagnetic state, λ exceeds λc, the criti-

cal value for the formation of a small polaron. The 1 eV feature corresponds to the

photo-ionization of the small polaron at EB (see Fig. 3.11). As the temperature de-

creases, the spins align and λ < λc, leading to a collapse of the JT small polaron

and resulting in coherent conduction. The optical conductivity calculated within this

model32 shows shifts in oscillator strength and linewidth as function of λ that com-

pare well to the experimental results shown in Fig. 3.9 below 2 eV. The behavior of

the resistivity, the Curie temperature, and the optical properties of these materials in-

dicate that La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, and Nd0.7Sr0.3MnO3 have a progressively

increasing JT coupling λ. In all samples, the JT small polaron feature remains for

intermediate temperatures below Tc. Thermopower and EXAFS measurements also

suggest evidence for small polaronic behavior in La0.7Ca0.3MnO3 near Tc.38,114 The

downward shift in the polaron feature and the onset of metallic conductivity indicate

a gradual transition from a small polaron to a large polaron and a correspondingly

gradual growth of the coherent conductivity spectral weight.

3.3.6 Optical spectral weight: Comparison with theory

The spectral weight of low-lying electronic transitions affords a comparison of

experimental conductivity results to predictions of theoretical models. Consider the

spectral weight and subsequent kinetic energy given by Eq. (2.23) and Eq. (2.25),

respectively. Figure 3.13 shows K(ω) for three x = 0.3 alloys at various tempera-

tures. For the manganites the low-lying states of interest are the eg electrons. The

following analysis first determines a cutoff frequency ωc such that S (ωc) offers a good

estimate of the spectral weight in the eg-eg transitions, next presents theoretical pre-

dictions, and finally draws a comparison between experimental results and theory of

the magnitude and temperature dependence of the spectral weight.

The trend in kinetic energies shown in Fig. 3.13 agrees with the predictions of
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Figure 3.13: Integrated conductivity as a function of photon energy for vari-
ous temperatures. The results are expressed in terms of the kinetic energy
K and the carrier density per formula unit Ne f f /f.u.
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a theoretical model including DE and JT (discussed further below) where K scales

with Tc. La0.7Sr0.3MnO3 has the highest Tc and is the most metallic, consistent with

its relatively large optically determined kinetic energy, while the opposite is true for

Nd0.7Sr0.3MnO3. Consideration of spectral weight temperature dependence provides

further information on the relevant energy scales. As clearly seen in Fig. 3.13, large

changes in temperature occur in the spectral weight at frequencies extending to the

experimental limit.

A comparison of the observed oscillator strength to the band theory estimate

requires identification of the eg contribution to the absorption. As evidenced in the T =

10 K curves in Fig. 3.9, the Mn-O charge transfer transition dominates the absorption

for ω > 2.7 eV, particularly for the La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3 samples. For

all three x = 0.3 alloys, experimental estimates of the eg kinetic energy at T = 0

result from integrating the data to a cutoff frequency ωc = 2.7 eV. Figure 3.14 shows

temperature dependence of the oscillator strength Ne f f at the cutoff ωc for the three

different x = 0.3 alloys. The temperature axis has been scaled to the ferromagnetic

transition temperature Tc of each of the alloys. All three alloys exhibit a reduction

in spectral weight with temperature from a maximum in the ferromagnetic ground

state to T/Tc = 1, above which the behavior basically saturates. For comparison,

a molecular mean-field calculation of the double-exchange bandwidth γDE derived

by Kubo and Ohata115 has been included. Qualitatively, Ne f f and γDE exhibit similar

temperature dependence. However, while DE predicts γDE should fall to only 3/4 of

its original value, Ne f f for the alloys falls to nearly half of the low temperature value.

Thus, the temperature dependence of the spectral weight suggests that DE alone

does not explain the observed behavior and points to the necessity for including

additional interactions in the theoretical models.

An absence of σ(ω,T ) calculations, including both a realistic treatment of the

eg band structure and the effects of the electron-phonon interaction, focuses the the-
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oretical discussion on models approximating the band structure. A tight-binding pa-

rameterization27,32,116 of the band structure117 presents a model Hamiltonian from

which the conductivity may be calculated. The model assumes the physics of inter-

est is determined by carriers hopping between Mn eg-symmetry d-levels on the sites

of a simple cubic lattice (lattice constant a0) and interacting with each other, with

the lattice, and with Mn core spins of magnitude S c = 3/2 . The total Hamiltonian

Ĥ = Hband + HJH + Hint consists of a hopping term Hband, a Hund’s energy term HJH ,

and a term representing other interaction Hint. Writing Ĥ explicitly

Ĥ = −
∑

iδ
ab

tab
δ

[
ei e

c AAA·δd†iaαdi+δbα + H.c.
]
− JH

∑
ia
αβ

Sci · d†iaασαβ diaβ + HINT . (3.7)

Here d†iaα creates an electron with spin α in eg orbital a on site i, JH is the Hund’s cou-

pling between the itinerant electrons and the core spins, and tab
δ = tba

δ represents the

direction-dependent amplitude for an electron to hop from orbital b to orbital a on site

i+δ. In the Peierls phase approximation employed in this model,116 the vector poten-
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tial A represents the electric field and the conductivity results from a linear response

in A as usual. A hopping parameter tab
δ involving only nearest neighbor hopping and

only non-zero for one particular linear combination of orbitals fits well the calculated

bandstructure.27,117,118 Calculations119 of the hopping amplitude find t0 ≈ 0.67 eV.

Further details relating to this theoretical model are presented elsewhere.27,32,116

The kinetic energy will then be given by the expectation value of the hopping

term in Ĥ,

K =
1

6 Nsites

∑
iδ
ab

tab
δ 〈d

†
iaα di+δbα + H.c.〉 . (3.8)

In general, the expectation value given in Eq. (3.8) and the spectral weight of other

transitions may depend on temperature and interaction strength. Interestingly, the

data in Fig. 3.12 suggest that transitions in addition to the eg−O 2p are primarily

responsible for restoring the optical spectral weight. The non-interacting (Hint=0)

kinetic energy K0 may be evaluated at T = 0. For doping concentration x = 0.3

(n = 0.7), K0 is given by

K0 = 0.46 t0 ≈ 0.306 eV. (3.9)

K0 results from finding an extrema of the kinetic energy assuming HINT = 0 and a fully

polarized ferromagnetic state for the Mn core spins. Spin disorder or HINT = 0 will

tend to reduce this value. Thus, K0 represents an upper bound to the optical spectral

weight of the model specified by Eq. (3.7), especially applicable to the eg bands

with negligible interaction effects. However, the sensitivity of the hopping amplitude

to buckling of the Mn-O-Mn bond requires some caution in comparing t0 obtained by

fitting band calculations from ideal materials to various doped alloys that have slightly

different unit-cell sizes and crystal structure.

Including temperature dependence in the model conductivity requires consid-

eration of the Hund’s coupling energy and the possibility of antiparallel transitions.

In the JH → ∞ limit the antiparallel transitions may be neglected. From Fig. 3.12,
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JH S c ≈ 3 eV giving JH ≈ 2 eV. While not infinite, in practice JHS c provides sufficient

energy splitting to separately resolve the parallel and antiparallel absorptions. As T

increases from 0, the spectral weight in the parallel spin transitions decreases both

because the total kinetic energy decreases and because a portion of the remaining

spectral weight transfers to the antiparallel transitions. For finite JH and a more real-

istic band structure, statements can be made about the changes in spectral weights

from T = 0 to T > Tc, where the core spins are expected to be completely uncor-

related from site to site. Calculations using the noninteracting model, Eq. (3.7) with

HINT = 0, show that for well-separated spin bands as the temperature is raised from

T = 0 to T > Tc, the JH = ∞ limit provides with good accuracy the change in spectral

weight in the parallel spin transitions.27 Furthermore, at T > Tc the ratio of antipar-

allel to parallel spectral weights Kanti/Kpar ≈ 2 t0/1.4 JH S c ≈ 1/3 (using t0 = 0.67 eV

and JH S c ≈ 3 eV). These conclusions, which have been verified in the noninteracting

limit, should apply also to interacting models.27

A quantitative comparison of the expectations for the kinetic energy from the

tight-binding model with that obtained from the measured conductivity requires iden-

tification of the various spectral weights. At low temperature, the total contributions

of the eg electrons already have been identified as originating from the conductiv-

ity at energies below 2.7 eV. In addition, separating the contributions resulting from

parallel and antiparallel transitions involves examining the temperature dependent

spectral weight. Figure 3.15 presents a schematic representation of the relevant ki-

netic energies. Shaded areas represent the integrated conductivity contributing to

Ktot, Kpar, and Kanti, respectively. Ktot and Kpar are proportional to the integrated σ1

from 0 − 2.7 eV at temperature T = 10 K and T = Tc, respectively. The kinetic energy

of the antiparallel transitions compares the change in oscillator strength of the 3 eV

feature between T = 0 and T > Tc. Kanti is proportional to the integrated difference

conductivity ∆σ1(Tc) from 2.2 − 4 eV.
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Figure 3.15: Shaded areas represent the integrated conductivity contribut-
ing to the kinetic energies Ktot, Kpar, and Kanti in the top, middle, and bottom
panels, respectively. La0.7Ca0.3MnO3 data shown.

Table 3.3 presents the measured values and predictions from the tight-binding

model. Ktot estimated from band theory exceeds all of the observed values, espe-

cially for (La,Ca) and (Nd,Sr). In addition to the kinetic energies, the ratios of the

parallel to antiparallel kinetic energies Kanti/Kpar and difference in kinetic energy be-

tween T = 0 and Tc, ∆K ≡ Ktot(T = 0) − Kpar(T > Tc) = 1/4Ktot(T = 0), are pre-

sented. Kanti/Kpar ≈ 1/3 and ∆K/Ktot ≈ 1/2, in good agreement with theory. Further,

the observed magnitude of ∆K validates the procedure determining Ktot. Different

estimates of K(T = 0) would lead to different estimates of ∆K/Ktot, in disagreement

with theory.
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(La,Sr)MnO3 (La,Ca)MnO3 (Nd,Sr)MnO3 Theory
Ktot 260 220 200 306
Kanti 34 31 30
Kpar 125 100 100
Kanti/Kpar 0.27 0.31 0.30 1/3
∆K/Ktot 0.52 0.55 0.50 1/2
∆γDE(T )/γDE(0) 1/4

Table 3.3: Comparison of observed versus theoretical model predictions of
kinetic energies (meV units) and kinetic energy ratios (dimensionless) for
three x = 0.3 alloys.

In double-exchange only models such as Eq. (3.7) with HINT = 0, the oscil-

lator strength decreases by 1/4 from low temperature to Tc. Models involving both

double-exchange and electron-phonon coupling can produce a larger ∆K because of

a feedback effect: decreasing Kpar by increasing spin disorder increases the effective

electron-phonon coupling, which decreases Kpar still further. Millis et al.32 distinguish

between weak, intermediate, and strong electron-phonon couplings, with the inter-

mediate coupling regime argued most relevant to CMR. In this regime, the phonon

renormalization of the kinetic energy, which is small at low T where the behavior is

metallic, increases at high T where the interactions localize the electrons. Including

both DE and the JT interaction effects leads to a reduction in Kpar giving ∆K/K ≈ 1
2 .

Next, consider the antiparallel absorption. Table 3.3 lists Kanti and Kanti/Kpar. This

gives ratios of the antiparallel to the parallel spin absorptions of approximately 1/3,

in reasonable accord with the theoretical estimates. Moreover, the analysis suggests

that at low T renormalizations of the kinetic energy resulting from electron-electron

and electron-phonon interactions are not large. In view of the uncertainties involved,

data and band theory correspond reasonably well.
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3.4 Drude Weight

3.4.1 Purported anomalously small Drude weights

The previous section identified the low-lying electronic transitions and their rel-

evant spectral weights and noted the transfer of spectral weight to a coherent re-

sponse at temperatures below Tc. This section will focus on the properties of the

low-frequency Drude-like conductivity at low temperatures. Below Tc, itinerant con-

duction resulting from ferromagnetic ordering increases the width of the eg band and

suppresses the JT effect. Evidence for charge and orbital ordering at different doping

concentrations in the phase diagram (Fig. 1.3 on page 9) suggests the ground state

may be the result of competition between interactions with the lattice and different

types of ordering: ferromagnetic, charge, and orbital. At present, the exact nature of

the low-temperature state is not fully understood.

Optical conductivity studies27,28,42,43,109,120 have shown a shift in spectral weight

from the visible to the infrared as the temperature is lowered below Tc. In the ferro-

magnetic state, the low-frequency optical spectrum is characterized by Drude-like

conduction. Several groups have reported an anomalously small Drude weight in

both La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3.42,43,120 Figure 3.16 shows low temperature

(La,Sr)MnO3 data for bulk (x = 0.175 single crystal) from Ref. 42 and for a thin film

(x = 0.3) presented here. The bulk samples exhibit a large loss of spectral weight

in the infrared, particularly the far-IR, relative to thin film samples. Note this discrep-

ancy does not result from the differences in doping between the two samples shown

in Fig. 3.16. A doping dependent study on bulk (La,Sr)MnO3 reports43 similar be-

havior for x = 0.3 bulk samples. Interpreting the small Drude weight in terms of an

enhanced optical mass, the effective mass values reported on bulk samples exceed

results from specific heat measurements.121,122 Small apparent Drude weight may

also be understood in terms of charge ordering. A charge density wave opens a par-
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tial gap in the density of states at the Fermi level N(E f ). Interpreting this reduction

in N(E f ) as a mass enhancement results in an optical mass increase, but a specific

heat mass decrease. However, various groups88,123 have cast doubts on these small

Drude weights.
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Figure 3.16: Comparison of low temperature optical conductivity from bulk
single crystal (x = 0.175 from Ref. 42) versus thin film (x = 0.3) for
(La,Sr)MnO3.

The remainder of this section concentrates on the low-frequency optical con-

ductivity, scattering rate, and mass enhancement of thin-film hole-doped manganites

at temperatures below Tc. At these temperatures, the low-frequency conductivity ex-

hibits a Drude-like behavior. The scattering rate and optical mass are obtained by

fitting the far-infrared transmission data to a Drude model. Values for the plasma

frequency disagree with the purportedly anomalously small Drude weights on bulk

samples. The optical mass exceeds the specific heat mass, a result consistent with

the presence of charge ordering in these optimally doped materials. Additionally, the
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infrared spectral weight is compared to band-structure calculations.

3.4.2 Far-IR transmittance measurements

Thin films of La0.7Ca0.3MnO3, La0.7Sr0.3MnO3, Nd0.7Sr0.3MnO3, and La0.8Ca0.2MnO3

are grown on LaAlO3 (LAO) substrates using pulsed laser deposition. The films

(except La0.7Sr0.3MnO3) were subsequently annealed in an O2 environment.124,125

Low residual resistivity ρ(4 K), and high resistivity peak temperature Tp indicate the

excellent quality of the films.

Alloy Doping, x Tp (K) ρ(4 K) (µΩ cm)
(La,Sr)MnO3 0.3 350 15

(La,Ca)MnO3 0.3 275 124
0.2 256 178

(Nd,Sr)MnO3 0.3 210 367

Table 3.4: Residual resistivity ρ(4 K) and resistivity peak temperature Tp.

Transmittance T (ω) and reflectance R(ω) measurements of near normal inci-

dence light were performed using a Fourier-transform spectrometer.27 Temperature-

dependent spectra from 10 − 150 K (T < Tc) are obtained. Two frequency ranges

receive focus: the far-infrared (far-IR) 2.5 − 15 meV and the mid-infrared (mid-IR)

0.2 − 1.2 eV. The spectral gap between 15 and 200 meV results from the opacity of

LAO in this spectral range. Determination of the film conductivity in both frequency

ranges requires knowledge of the index of refraction n and extinction coefficient κ of

the substrate, which is measured separately.

In the far-IR, the thin-film transmittance (transmission of the film/substrate di-

vided by transmission of the bare substrate) is given by Eq. (3.4). Given the metal-

lic low-frequency behavior of the conductivity below Tc observed in these materi-
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als,27,109,120 a simple Drude model fits the measured T with conductivity given by

σ̃(ω) =
1

4π

ω∗ 2
p

γ∗ − iω
, (3.10)

where γ∗ is the effective scattering rate and ω∗p is the effective plasma frequency or

spectral weight of the Drude conductivity.

Figure 3.17 shows transmittance curves in the far-IR (solid black lines) and fits

to a Drude model (dashed blue lines) for several temperatures. The low-frequency

T
ra

ns
m

itt
an

ce

0.02

0.04

0.06

0.08

0.2

0.1

Photon Energy (meV)

0.0 2.5 5.0 7.5 10.0 12.5

La0.7Ca0.3MnO3

10 K

70 K

100 K

130 K

Photon Frequency (cm-1)

0 20 40 60 80 100 120

T
ra

ns
m

itt
an

ce

0.02

0.04

0.06

0.08
0.1

La0.7Sr0.3MnO3

10 K

80 K

100 K

120 K

Figure 3.17: Transmittance of La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3 as a func-
tion of photon energy for several temperatures. Solid lines are data, dashed
lines are fits to a simple Drude model, and dotted lines are Drude fits in the
limit,γ∗ → ∞.

T increases with temperature corresponding to a decrease in the conductivity. At
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higher temperatures, T deviates less from the limiting value (dotted red lines) where

γ∗ → ∞. In the infinite scattering-rate limit, σ(ω) → σ0 and therefore the frequency

dependence of the limiting case results from n(ω) of the LAO substrate. The slight

upturn of the data relative to the fit curves (dashed lines) above 100 cm−1 appears

independent of temperature. Note the uncertainty in T increases as the frequency

nears the substrate cutoff around 120 cm−1. Transmittance curves for La0.8Ca0.2MnO3

and Nd0.7Sr0.3MnO3 (not shown) exhibit similar frequency dependence. However,

even at lowest temperatures the data fail to deviate appreciably from the γ∗ → ∞

limit to allow extraction of the Drude parameters. Nevertheless, the data allows upper

limits to be placed on the mass enhancement (discussed below) for La0.8Ca0.2MnO3

and Nd0.7Sr0.3MnO3.

Fitting the measured T in Fig. 3.17 with Eq. (3.10) determines the temperature

dependence of the resulting γ∗ and ω∗p. Figure 3.18 shows the temperature depen-

dence of the resulting fitting parameters. Solid lines represent a T 2 temperature

dependent fit to the scattering rate,

γ∗(T ) = γ∗0 + (kBT )2/W , (3.11)

where the fitting parameters are the defect scattering rate at zero temperature γ0 and

the characteristic energy for inelastic scattering W, and kB is Boltzmann’s constant.

W values for La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3 are listed in Table 3.5 on page 112.

As temperature increases, T approaches the limiting value and the uncertainty

in determining both γ∗ and ω∗p increases. Error bars in Fig. 3.18 for γ∗ in (a) and ω∗p

in (b) quantize this increase in uncertainty. At the highest temperatures (140 K and

150 K for La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3, respectively), γ∗ falls below the T 2 fit.

Currently, the cause of this decrease in the scattering rate and whether it persists

above 150 K remains uncertain. While γ∗ exhibits a strong temperature dependence,
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Figure 3.18: Temperature dependence of the (a) scattering rate γ∗, (b)
plasma frequency ω∗p, (c) resistivity ρ, and (d) mass enhancement m∗/mB

obtained from fitting the far-IR transmittance using a Drude conductivity. T 2

fit to γ∗ shown in (a) as a solid line. The dc resistivity in (c) is plotted (lines)
for comparison (note for La0.7Sr0.3MnO3 dc resistivity is multiplied by a factor
of 9). Error bars are shown explicitly in (a), (b), and (d) and are nominally
the size of the solid circles in (c).
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ω∗p exhibits relatively weak temperature dependence.

Recent THz measurement126 on thin films observed a similar T 2 dependence

of γ∗, although with a higher residual scattering rate due to poorer crystal quality.

However, the THz films show a measurable decrease of ωp with temperature not

observed in the present study. Moreover, the T 2 dependence of γ∗ and relative T -

independence of m∗/mB differs with results reported on a La0.7Ca0.3MnO3 polycrys-

talline sample.120 The discrepancy with these bulk samples likely results from the

effects of surface damage introduced during the polishing. Several groups88,109,123

have since discussed the importance of polishing and surface scattering effects in

measuring bulk reflectivity for polycrystalline and single-crystal samples. They found

the optical properties of these materials depend sensitively on surface preparation.

Specifically, polishing produced a decrease in mid-IR reflectivity and the apparent

spectral weight. Cleaving or annealing the polished surfaces removes these effects,

bringing the results on bulk samples in reasonable agreement with thin films.

The fit parameters γ∗ and ω∗p determine the zero-frequency resistivity

ρ =
4π γ∗

ω∗ 2
p

=
4π γ
ω2

p

. (3.12)

Figure 3.18(c) shows the temperature dependence of ρ. Plotting both the far-IR

values (solid circles) derived from Eq. (3.12) and the dc values (lines) from standard

four-probe resistance measurements affords comparison of the two results. Far-IR

and dc values agree reasonably well in La0.7Ca0.3MnO3, however, the dc value for

La0.7Sr0.3MnO3 has been scaled by a factor of 9, owing to similar problems with the

dc measurement discussed in the previous section. Uncertainty in the far-IR ρ (error

bars are nominally the size of the points) results from uncertainty in the film thickness

and detector noise.
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3.4.3 Mass enhancement

The optical mass enhancement is defined by

m∗/mB ≡ (ωB
p/ω

∗
p)2 = 1 + λ , (3.13)

where λ is the mass enhancement factor and the plasma frequencies, ωB
p and ω∗p,

are obtained from band structure calculations and far-IR measurements, respectively.

Pickett and Singh110 predict ωB
p = 3.1 eV for La0.7Ca0.3MnO3. A tight binding parame-

terization of the band structure with hopping parameter t0 = 0.67 eV gives similar

results.116 Taking ωB
p = 3.1 eV, mass enhancement as a function of temperature is

found to be approximately 8 for both materials. Table 3.5 compares low-temperature

results for the alloys and Fig. 3.18(d) shows the temperature dependence. Optical

m∗/mB

Alloy Doping, x Opticsa Specific Heatb W (meV)
(La,Sr)MnO3 0.3 7.9 ± 0.6 2.10 ± 0.06 3.3

(La,Ca)MnO3 0.3 7.4 ± 0.4 2.84 ± 0.04 3.0
0.2 � 13 3.88 ± 0.06

(Nd,Sr)MnO3 0.3 � 13 15c

a T = 10 K
b Ref. 121
c Ref. 127

Table 3.5: Mass enhancements from optics and specific heat and charac-
teristic scattering-rate energies.

masses for La0.8Ca0.2MnO3 and Nd0.7Sr0.3MnO3 represent upper bounds owing to the

large residual scattering rate as mentioned above.

The T 2 temperature dependence of the scattering suggests that γ∗ and hence

m∗ (see below) may also be frequency dependent. The analysis presented above

assumes a frequency-independent γ∗ and ω∗p. Consideration of a frequency depen-

dent γ∗ necessitates modification of the Drude theory in order to obtain an optical
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conductivity that is a proper response function satisfying Kramers-Kronig relations.

Specifically, a frequency dependent scattering rate must include a real and imagi-

nary part, γ̃(ω) = γ1(ω) + i γ2(ω), where γ2(ω) = −ωλ(ω). This leads to the extended

Drude model128

σ̃(ω) =
1

4π

ω2
p

γ1(ω) − iω[1 + λ(ω)]
=

1
4π

ω∗p(ω)2

γ∗(ω) − iω
(3.14)

with a renormalized scattering rate, γ∗(ω) = γ1(ω)/[1 + λ(ω)], and a renormal-

ized plasma frequency, ω∗p(ω) = ωp/
√

1 + λ(ω). Thus, the frequency-dependent

scattering gives rise to a concomitant frequency-dependent mass enhancement,

m∗/mB(ω) = 1 + λ(ω).

Obtaining m∗/mB(ω) for these transmission measurements requires an as-

sumed form (given the lack of a direct measurement) for the frequency dependence

of γ. The squared power law temperature dependence of γ∗ implies a similar ω2

dependence at low-frequency.129 This gives the full temperature and frequency

dependent scattering rate, γ∗(ω,T ) ∝ ω2 + (p πT )2. Gurzhi calculated p = 2

for electron-electron scattering,130 while for heavy fermion systems, experimental

data129 is consistent with p ≤ 1. Sulewski et al. proposed a simple phenomenological

model,

γ̃(ω) = γ0 +
λ0 ωs ω

(ω + iω0)
, (3.15)

which satisfies the ω2 behavior at low frequencies and saturates at the characteristic

frequency ωs. Using W from the T 2 fits to γ∗ (see Fig. 3.18) and a value for p, ωs

may be determined from Eq. (3.15). For p = 1, frequency dependent scattering

results in less than a 15% effect on the mass enhancement and ωs � 15 meV, the

high-frequency cutoff of the far-IR measurements. Thus, in the far-IR, the frequency

dependence of γ∗ and m∗/mB is not significant.

A comparison of the mass enhancement obtained from optical measurements

reported here with those obtained from specific heat measurements proves interest-
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ing. The low-temperature (3 < T < 8 K) specific heat is given by

CH = γel T + δT 3/2 + βT 3 , (3.16)

where the three terms arise from charge carriers, magnons, and phonons, respec-

tively.122 The coefficient of the linear (electronic) term is γel = π2 k2
B N(E f )/3 ∝ m∗.

For La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3, γel is 4.5± 0.1 and 3.4± 0.15 mJ/mole K2, re-

spectively. Relating the experimental γel to band theory predictions gives the specific

heat mass enhancement,

m∗/mB ≡ γel/γ
B
el = 1 + λ , (3.17)

analogous to the optical enhancement in Eq. (3.13). Band structure calculations by

Pickett and Singh110 predict N(E f ) = 0.47 states/eV for the majority spin band, giving

γB
el = 1.1 mJ/mole K2. Table 3.5 shows mass enhancements calculated using this

γB
el. Including the N(E f ) for the minority spin bands (smaller than the majority by

approximately a factor of 2) increases γB
el and (ωB

p)2. This tends to reduce the specific

heat mass enhancement while increasing the optical mass enhancement. However,

cation disorder tends to localize minority carriers.110 Hence, the minority spin bands

are not included.

A comparison of m∗/mB from optics (T = 10 K) and specific heat as shown

in Table 3.5 indicates the optical mass exceeds the specific heat mass by a fac-

tor of 2 − 3. This observation contrasts with the earlier results of other groups on

La0.7Ca0.3MnO3
120 and La0.7Sr0.3MnO3

42,43 bulk samples where much larger optical

masses are reported. Thus, the larger optical mass enhancement observed in Ta-

ble 3.5 suggests that charge ordering correlations may be present in the ground state

of the CMR manganite alloys around x = 0.3 doping.

The small value of W in Table 3.5, W � E f ≈ 1 eV, indicates strong inelastic

scattering. For electron-electron scattering, W is typically on the order of E f . This is
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consistent with the relatively large mass enhancement in these materials in compar-

ison with conventional metals. The value of the characteristic frequency ω0 reason-

ably agrees with the expectations of electron-phonon interactions where typically ω0

would be somewhat larger than the average phonon frequency of the system. Expla-

nations for the temperature dependence of the scattering rate include magnons115,131

and phonons.132 However, the exact origin of the T 2 scattering remains unclear.

3.4.4 Mid-IR conductivity

In the mid-IR, numerical inversion of the Fresnel T and R formulae for a film on

an absorbing substrate86 determine optical constants, such as σ̃(ω) or the dielectric

constant ε̃(ω), without the need for Kramers-Kronig analysis.80 Figure 3.19 shows

the real part of the optical conductivity σ1 and the real part of the dielectric constant

ε1 (inset) in the mid-IR for La0.7Ca0.3MnO3. The observed negative ε1 is characteristic
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Figure 3.19: Frequency dependence of the real part of the optical conduc-
tivity σ1(ω) for La0.7Ca0.3MnO3. Simple and extended Drude conductivity are
shown as a dotted and dashed line, respectively. The inset shows the real
part of the dielectric constant ε1(ω).

of a metal. For T < 150 K, σ1 exhibits negligible temperature dependence and conse-

115



quently Fig. 3.19 shows only the T = 10 K data (solid line). In this spectral range, σ1

increases at low frequency and eventually must extrapolate to the far-IR value (solid

circle). For comparison, the Drude conductivity resulting from the fit parameters, γ∗

and ω∗p is shown as a dotted line. The extrapolated conductivity associated with the

Drude model falls well short of the observed mid-IR value.

While the mass enhancement analysis does not support an anomalously small

Drude weight, a comparison of the observed far-IR Drude weight with the total spec-

tral weight predicted from band structure calculations proves interesting. The kinetic

energy K given in Eq. (2.25) on page 53 serves well for this comparison. If ω is

chosen to include all the optical transitions within the eg bands, K represents the

kinetic energy of the Mn eg electrons. As discussed previously,27 the eg contribu-

tion to the conductivity in these materials occurs in the frequency range 0 − 2.7 eV.

To estimate K, the measured far-IR and mid-IR conductivity for the La0.7Ca0.3MnO3

sample shown in Fig. 3.19, combined with the sample discussed in the previous sec-

tion in the range from 1−2.7 eV, provides σ1 over the required spectral range.133 The

observed K for La0.7Ca0.3MnO3 is 280 meV, which agrees reasonably well with the

tight-binding prediction shown in Eq. (3.9). Considering only the contribution from

the Drude conductivity, Eq. (2.25) gives KDrude = a0/(4πe2)ω∗ 2
p . Thus, KDrude from

the far-IR is 28 meV, smaller than the band structure value of 207 meV by the mass

enhancement factor 1 + λ.

What is the source of the remaining spectral weight in the infrared? The earlier

consideration of a frequency dependent scattering resulting from electron-electron

interactions found little effect on the conductivity in the far-IR region. While these

effects increase with frequency, el-el scattering cannot account for all of the missing

spectral weight. Other mechanisms, e.g. electron-phonon or electron-magnon cou-

pling, may be responsible for the additional absorption. In particular, the dynamic

JT effect plays a critical role in determining the IR conductivity and coupling with the
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lattice has proven to be important in these systems.

Incorporation of electron-phonon coupling effects in the low frequency conduc-

tivity requires a scattering rate with contributions from both impurities and phonon

scattering. A straightforward model consists of the Holstein134 electron-phonon (el-

ph) interaction. Figure 3.20(a) illustrates the model schematically. An incident photon
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Figure 3.20: Holstein model of electron-phonon interaction. (a) Scatter-
ing of incident photon with wavevector k and energy �ω by a phonon with
wavevector q and energy �ω0. (b) Single particle scattering rate Γ and elec-
tron phonon coupling strength λ versus incident photon energy in units of
the characteristic phonon frequency, ω0.

of wavevector k and energy �ω scatters off a phonon of wavevector q and phonon

energy �ω0. The electron final state is given by wavevector k′ and energy �(ω − ω0).

For simplicity, the model assumes an Einstein phonon density of states, i.e., a single

phonon characteristic frequency ω0. In this one phonon model, the single particle

self energy Σ̃(ω) consists34 of a real part Σ1 (proportional to the mass enhancement)

and an imaginary part Σ2 (proportional to the scattering rate) given by

Σ1(ω) =
1
2
ω0 λ0 ln

∣∣∣∣∣ω0 − ω
ω0 + ω

∣∣∣∣∣
Σ2(ω) =

1
2
Γimp +

π

2
×


0 , ω < ω0

ω0 λ0 , ω ≥ ω0

(3.18)

Figure 3.20(b) shows the single particle scattering rate Γ = 2Σ2 and mass enhance-

ment, 1 + λ = 1 − Σ1/ω, as a function of frequency normalized to the characteristic
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phonon frequency ω0. The optical conductivity is written in terms of the single par-

ticle self energies as a sum over the allowable transitions. Using the self-energy of

Eq. (3.18), the optical conductivity is then given by101

σ̃(ω) =
A
ω

∫ 0

−ω
dω′

1
2Σ2(ω′) − i[ω − Σ1(ω + ω′) + Σ1(ω′)]

, (3.19)

where A ∝ (ωB
p)2 is the spectral weight of the infrared conductivity. This single-particle

free-electron-like model neglects vertex corrections. Figure 3.19 shows the predicted

σ1 and ε1 (dashed curves) from Eq. 3.19 using parameter values: ω0 = 300 cm−1,

λ0 = 4, and ωB
p = 3.1 eV. Note that m∗/mB(0) = 1 + λ0 = 5, smaller than the value

obtained in the far-IR but still larger than the specific heat mass (see Table 3.5).

Having determined the model conductivity, the average scattering rate and

mass enhancement may be extracted using the extended Drude form of the con-

ductivity [see Eq. (3.14)].

Γ(ω) =
(ωB

p)2

4π
σ1(ω)

σ1(ω)2 + σ2(ω)2

m∗/mB (ω) = 1 + λ(ω)

=
(ωB

p)2

4π
σ2(ω)/ω

σ1(ω)2 + σ2(ω)2
, (3.20)

where the plasma frequency is taken to be the band value, ωp ≈ 3.1 eV. Fig-

ure 3.21 shows the frequency-dependent scattering rate and mass enhancement for

La0.7Ca0.3MnO3 obtained using Eq. (3.20) with the data (points) and model (lines).

Reasonable agreement between theory and model, particularly for frequencies

below 0.5 eV. Above 0.5 eV the scattering rate begins to deviate from this simple

picture. This may suggest the onset of interband transitions.

By definition, including frequency-dependent scattering in the extended Drude

model to recover the intraband spectral weight leads to the result shown as a dashed

line in Fig. 3.19. However, the Drude conductivity alone, even including the effects

of inelastic scattering, does not account for all of the mid-IR σ1, particularly above
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Figure 3.21: Frequency-dependent scattering rate Γ and mass enhance-
ment 1+λ from model conductivity predictions (solid curves) compared with
mid-IR data (points). Model parameter values are ω0 = 300 cm−1, λ0 = 4,
and ωp = ω

B
p = 3.1 eV. La0.7Ca0.3MnO3 data at 10 K shown.

1 eV. The remaining spectral weight most likely originates from interband transitions

occurring between the two Mn eg bands. The total infrared conductivity then repre-

sents the sum of a Drude term from coherent carriers, an electron phonon term from

inelastic scattering, and a term from interband transitions, σ = σDrude + σel-ph + σIB.

3.5 Conclusions

Temperature dependent optical conductivity studies of LaMnO3, the parent

compound of the colossal magnetoresistance manganites, reveal interesting prop-

erties in the electronic and phonon spectral regions. The temperature dependence

of the spectral weight of the optical transition at 2 eV correlates with TN . The

double-exchange picture, counting nearest-neighbor spin alignment, provides a

semi-quantitative description of the observed temperature-dependent changes in

oscillator strength. These observations contradict the predictions of Allen and

Perebeinos, which explain this optical transition as arising from on-site transitions of
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a self-trapped exciton. On the contrary, the present optical studies suggest charge-

transfer hopping between nearest-neighbor Mn ions dominates the spectral weight

of the 2 eV feature. In the far-IR spectral range, several of the symmetry-allowed

phonons exhibit TO phonon shifts that correlate with the antiferromagnetic ordering.

Having identified the relevant optical transitions in the parent compound, opti-

cal studies of the changes with doping provide insight into the nature of the CMR

effect. In particular, Section 3.3 presented the optical conductivity and spectral

weight of several x = 0.3 hole-doped manganites Nd0.7Sr0.3MnO3, La0.7Ca0.3MnO3,

and La0.7Sr0.3MnO3, including the identification of the physical origin of the various

features in the absorption spectrum and determination of their variation with temper-

ature and alloy material. A broad maximum near 1 eV characterizes the low-energy

optical conductivity in the paramagnetic-insulating state of these materials. This fea-

ture shifts to lower energy and grows in optical oscillator strength as the temperature

lowers into the ferromagnetic state. It persists well below Tc and transforms even-

tually into a Drude-like response. This optical behavior and the activated transport

in the paramagnetic state of these materials are consistent with a Jahn-Teller small

polaron.

A comparison of the spectral weight with predictions from a tight-binding pa-

rameterization of the band structure including both DE and JT effects provides im-

portant insight into the physics governing these materials. Specifically, the eg elec-

tron kinetic energy is largest and the effective electron-phonon interaction weakest

in La0.7Sr0.3MnO3, while the kinetic energy is smallest and the electron-phonon in-

teraction strongest in Nd0.7Sr0.3MnO3, with La0.7Ca0.3MnO3 being intermediate. This

kinetic energy roughly scales with Tc in these materials in qualitative agreement with

theory. In all compounds at lowest temperature the eg kinetic energy approximately

equals the band theory value. As temperature increases to above Tc, the change

in eg kinetic energy between lowest temperature and Tc exceeds the expectations of
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models involving only double exchange. However, the optical spectra and oscillator

strength changes compare well with models that include both double exchange and

the dynamic Jahn-Teller effect in the description of the electronic structure, suggest-

ing the importance of electron-phonon coupling.

In the far-IR at low-temperatures a Drude analysis of the measured optical

properties determines γ∗ and ω∗p as a function of temperature. ω∗p exhibits little tem-

perature dependence while γ∗ shows a strong T 2 temperature dependence. The

value of ω∗p in thin film samples suggest the anomalously small Drude weight re-

ported for bulk samples arises from spurious surface preparation effects. The optical

mass enhancement exceeds the mass enhancement found from specific heat, indi-

cating that charge ordering correlations may be present in the ferromagnetic ground

state of the CMR manganites. At frequencies above the far-IR, frequency-dependent

scattering due to the strong electron-phonon coupling observed in this system serves

to account for a majority of the IR spectral weight. A comparison of the Drude weight

with the measured total spectral weight finds that the infrared conductivity is consis-

tent with conventional contributions from coherent Drude carriers, inelastic electron-

phonon scattering processes, and interband transitions.
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Chapter 4

Hexa-Manganite LuMnO3

The colossal magnetoresistance compounds, discussed in the previous chap-

ter, attracted a great deal of attention owing to their interesting physical properties

and potential applications. Another series of RMnO3 manganites (R=Ho, Er, Tm, Yb,

Lu, Y, Sc, and In) have a smaller rare-earth ionic radius R3+ and crystallize in the

hexagonal lattice. Several groups report52,135–139 various aspects of the electromag-

netic response in hexa-manganites. However, none of these earlier reports present a

detailed study of the optical spectra of quality single-crystal samples as a function of

temperature. This chapter presents a systematic study of the linear optical response

of single crystals of LuMnO3, which elucidates the origin of the ε0 anomalies and the

effects of the Mn-Mn exchange energy on the electrodynamics of this system. The

following sections show that the exchange interaction manifests itself in an antiferro-

magnetic resonance, spin-phonon coupling, and the temperature dependence of a

1.7 eV on-site Mn d-d optical transition. The results provide a comprehensive view

of the magnetic and electronic structure of this interesting ferroelectric and strongly

frustrated antiferromagnetic material.

4.1 Experiment

4.1.1 Sample preparation

Single crystals of LuMnO3 were grown using the travelling floating zone method

and characterized by magnetization, resistivity, and x-ray powder diffraction.140 The

122



lattice constants as well as the observed macroscopic properties agree well with

measurements reported in the literature.50,53 In general, hexagonal manganites

displays insulating behavior in transport. The resistivity of LuMnO3 increases with

decreasing temperature, characteristic of an insulator. Additionally, there exists an

anisotropy53 between the in-plane ρab and out-of-plane ρc resistivities, ρc � 10 ρab.

In order to study the inherent optical anisotropy of the hexagonal crystal struc-

ture, samples with surfaces perpendicular (001) and parallel (110) to the c-axis were

prepared. The 001 samples cleave as thin platelets. Polishing with 0.3 µm diamond

paste provides flat surfaces. After polishing, samples are annealed.140 The 001 sam-

ple studied in this work is 5 × 1.5 mm2 × 25 µm thick. Such a thin sample affords

transmission measurements in regions lacking strong absorption. The 110 sample

studied is much thicker, having dimensions 2 × 4 × 1.5 mm3.

4.1.2 Extracting optical constants

Temperature dependent (4 − 300 K) transmittance T and reflectance R in a

frequency range from 1.2 meV to 5.6 eV (10 − 45000 cm−1) are obtained using FTIR

spectroscopic techniques detailed in Chap. 2. Isolating the incident polarization of

the electric field E relative to the crystallographic c-axis for the 110-oriented requires

several different linear polarizers to operate over the entire spectral range. In the

visible range, dichroic sheets polarize the incident light. In the far-IR, a combination

of wire grids on Mylar and KRS-5 substrates polarize the incident beam. For the 001-

oriented sample, the near-normal incident electric field lies in the plane (i.e., E ⊥ c)

without requiring additional polarizers. In the remainder of the chapter wherever

specific mention of the sample crystallographic orientation is absent, E ⊥ c refers

to the in-plane response of the 001-oriented sample and E ‖ c refers to the E ‖ c

response of the 110-oriented sample.

Employing a variety of measurement techniques affords extraction of the op-

123



tical constants, e.g., the dielectric constant ε̃ or optical conductivity σ̃. For regions

where the transmittance tends to zero, Kramers-Kronig (KK) analysis of the mea-

sured bulk reflectance together with low and high frequency extrapolations provides

the reflectance phase θ. At low frequency (ω < 10 cm−1), the reflectance extrapolates

to zero as a constant, consistent with the insulating nature of the dc-resistivity. As

described in Chap 2, the interband frequency dependence β and the onset frequency

of free electron behavior ωFE characterize the high-frequency extrapolations. For the

E ⊥ c sample, β ≈ 0.75 and ωFE ≈ 3 × 106 cm−1 best match the optical constants in

the near-infrared (near-IR) region determined using other methods described below.

In the mid-infrared (mid-IR) transparency widow, numerically inverting the Fres-

nel coefficients (see Chap. 2 and Appendix A) for T and R of a finite thickness slab

determines n and κ. These curves may be patched together to obtain the predicted

bulk reflectance shown as the dashed curve in Fig. 4.1. Well inside the transparency

window (where κ ≈ 0), the thin platelet sample acts a Fabry-Pérot resonant cavity.

The resulting T and R will display interference (étalon) maxima and minima. Peak fits

to the transmittance maxima determine the index of refraction n given by Eq. (2.36)

on page 59. Accurate identification of n requires precise knowledge of the peak num-

ber m. This becomes more difficult as frequency increases. Thus, the low end of the

IR transparency window more accurately determines the index of refraction.

4.1.3 E ⊥ c measured spectra

Reflectance

The room-temperature reflectance spectrum for the E ⊥ c orientation on the

thin platelet sample is shown in Fig. 4.1 (solid curve). Electronic transitions dominate

the optical spectrum of E ⊥ c LuMnO3 in the visible to ultraviolet (UV) frequency

range (ω � 1 eV). Two main features emerge from the reflectance spectrum: (i) a

narrow feature centered around 1.7 eV and (ii) a broad feature at higher frequencies
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Figure 4.1: Frequency dependence of the room-temperature reflectance
of LuMnO3 in the E ⊥ c polarization. Measured spectrum (solid curve) and
bulk reflectance spectrum (dashed curve) predicted from n and κ determined
independently (see text). Inset highlights phonons in the far-infrared spec-
trum.

≈ 5 eV. Reflectance spectra in the range 10 − 300 K (not shown) reveal a strong tem-

perature dependence of the 1.7 eV feature while the 5 eV feature remains relatively

unchanged.

Below the electronic transitions in the infrared spectral range (1000 −

10000 cm−1), the sample transmittance becomes nonzero. As a result, étalon

interference effects appear below ≈ 1 eV. In this region, the measured R (solid

red curve in Fig. 4.1) no longer represents the bulk reflectance of a semi-infinite

sample (dashed blue curve). As described above, inversion of both T and R

spectra determine the optical constants and hence predict the bulk reflectance using

Eq. (2.29). The inset of Fig. 4.2 shows the predicted bulk reflectance obtained using
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this method. The predicted bulk R values merge well with the measured R spectra

for frequencies where T → 0.

In the 250 − 700 cm−1 frequency range, several phonons appear clearly in the

reflectance. The inset of Fig. 4.1 shows the room temperature spectrum in this far-

IR region. The R spectra are well-described by Eq. (2.29) with ε̃(ω) given by the

product form in Eq. (2.31). The relatively strong, wide-band phonons in the E ⊥ c

polarization require the product form rather than the simpler sum of Lorentzians given

by Eq. (2.30). The peak frequencies of these phonons exhibit strong temperature

dependence (not shown), which will be discussed below. Outside the phonon range

ω � 200 cm−1 and ω � 650 cm−1 (not shown) the sample again becomes transparent,

demonstrating étalon interference peaks.

Transmittance in the mid-IR

Figure 4.2 shows transmittance in the mid to near-IR region. The transmittance

drops precipitously at the onset of electronic transitions (≈ 1.1 eV). A temperature

independent absorption onset ≈ 1.2 eV likely represents the tail of the 5 eV feature

observed in reflectance. Above this onset, additional absorption due to the 1.7 eV

feature displays strong temperature dependence. The inset of Fig. 4.2 highlights this

feature.

Weak étalon peaks, appearing below ≈ 1 eV in Fig. 4.2, strengthen at lower IR

frequencies. Figure 4.3 shows these transmission peaks from 1000 − 3000 cm−1 at

room temperature. Thickness variations and a lack of perfectly parallel edges of the

platelet sample result in the beat pattern superimposed on the étalon interference

peaks. Nevertheless, a number of well-defined T peaks exist in this spectral range.

Fitting the peaks and using Eq. (2.36) accurately determines the index n. Having n

affords determination of the real part of the dielectric constant, ε1 = n2 + κ2 ≈ n2 for

κ ≈ 0 in this weakly absorbing spectral range. In the far-IR, ε1 changes drastically
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Figure 4.2: Near-infrared to visible transmittance (E ⊥ c) of LuMnO3 at
various temperatures. Inset shows the measured reflectance spectra for
10, 90, and 295 K shown together with bulk reflectance (all temperatures)
predicted from n and κ determined independently (see text).

throughout the observed phonon resonances. However at frequencies well above the

phonons, the dielectric constant saturates to a relatively constant value, ε∞ ≡ ε1(∼

2700 cm−1), before the onset of interband transitions. The inset of Fig. 4.3 shows

the temperature dependence of ε∞. A clear anomaly in ε∞ appears at TN and will be

addressed further in Sec. 4.3.

Transmittance in the far-IR

At frequencies below the phonons (� 200 cm−1), another transparency window

opens and T again becomes nonzero. Several étalon peaks in the far-IR T are

visible. Figure 4.4 shows the first-order (m = 1) peak. As discussed above, the peak
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Figure 4.3: Infrared transmittance spectrum (solid curve) in E ⊥ c orienta-
tion of LuMnO3 at room temperature exhibiting étalon peaks and resulting ε1

(circles). Inset shows temperature dependence of ε∞ ≡ ε1(≈ 2700 cm−1).

location determines n using Eq. (2.36). The quasi-static dielectric constant ε0 is then

given by the value of ε at the first order peak, ε0 ≡ ε1(≈ 52 cm−1). The inset of Fig. 4.4

shows the temperature dependence of ε0 determined in this way. Similar to ε∞, the

quasi-static ε0 exhibits strong temperature dependence with an anomaly at TN .

In addition to the étalon peaks, a weak and narrow absorption appears around

50 cm−1 at low temperatures (T < TN) as shown in Fig. 4.4. This feature shifts to lower

frequencies and broadens as T increases, effectively disappearing around T ≈ 60 K.

4.1.4 E ‖ c measured spectra

Reflectance in the near-IR to visible

Single crystals in the 110-orientation afford study of the anisotropy between

in-plane and out-of-plane optical response by using polarizations E ⊥ c and E ‖ c,
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Figure 4.4: First-order étalon peak in the far-infrared transmittance spectra
(E ⊥ c) of LuMnO3 for several temperatures. A small absorption feature
appears (≈ 50 cm−1) for temperatures less than TN . Inset shows temperature
dependence of ε0 ≡ ε1(≈ 52 cm−1).

respectively. Figure 4.5 shows the near-IR to visible R spectra for both 110 and

001-oriented crystals at room temperature and for various polarizations. Note that

the 001 sample displays no in-plane anisotropy and hence no additional in-plane

polarization is shown. On the 110-oriented crystal with E ⊥ c polarized light (dashed

curve), the 1.7 feature appears similar, although reduced in intensity, to that observed

in the 001-oriented sample (dotted curve). Incident light polarized in E ‖ c (solid

curve) displays no signature of the 1.7 eV feature. Evidently, this feature exhibits an

anisotropy relative to the polarization of the incident electric field, vanishing in the

E ‖ c polarization.

Above the 1.7 eV feature, the optical anisotropy in R diminishes. Additionally,
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Figure 4.5: Room temperature reflectance spectra of 110-oriented LuMnO3

in two polarization states: E ‖ c (solid curve) and E ⊥ c (dashed curve).
001-oriented sample with E in-plane shown for comparison (dotted curve).

the overall R signal falls off with increasing frequency as a result of poor surface

quality. Diffusive scattering of incident light from surface imperfections increases

with frequency, hence reducing specular reflection. Extracting the optical constants

in such samples requires accounting for scattering losses. The standard correction

technique141 involves measuring the sample reflectance, overcoating with a reflective

metal (e.g., Au or Al), and remeasuring R on the overcoated sample. For LuMnO3 in

the near-IR to visible spectrum, the anisotropy of the 1.7 eV feature appears evident

in the raw R spectrum without requiring additional overcoating and analysis. At longer

wavelengths (e.g., the far-IR), scattering losses resulting from surface imperfections

vanish.
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Reflectance in the far-IR

Figure 4.6 shows the measured reflectance for room temperature data (points)

in the E ‖ c polarization. The phonon spectra display a clear anisotropy between the

Figure 4.6: Far-infrared reflectance (E ‖ c) at room temperature for LuMnO3.
Measured data (points) compared to a fit using the Lorentz oscillator sum
model (line).

in-plane (E ⊥ c) versus out-of-plane (E ‖ c) orientations. In the E ⊥ c polarization,

the reflectance spectra of the 110 sample (not shown) agree with the results on the

001 sample shown in the inset to Fig. 4.1. For the much thicker 110-oriented crystal,

étalon effects appear well below the phonon region. Several phonons are easily

visible, including a weak phonon around 125 cm−1. The R data are fit using the sum

of Lorentzians model for ε̃(ω) given by Eq. (2.30). The model fit (solid curve) well

describes the data. The resulting fitting parameters and dielectric constant, including

their temperature dependence, will be discussed below.
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4.2 Results

4.2.1 Electronic spectra

In the frequency range of electronic transitions, extraction of optical constants is

possible only for the 001 sample (E ⊥ c) with higher surface quality. Figure 4.7 shows

the real part of the optical conductivity σ1(ω) for LuMnO3 at 10 and 300 K calculated

using Kramers-Kronig relations from the reflectance spectra. The lowest electronic

Figure 4.7: Electronic conductivity spectra of LuMnO3 at 300 K (dashed line)
and 10 K (solid line). Inset highlights the temperature dependence of the
1.7 eV feature.

excitation centered at ≈ 1.7 eV depends strongly on temperature, as highlighted in

the inset of Fig. 4.7. This feature displays a strong anisotropy, disappearing in the

E ‖ c orientation. Yi et al.138 report a similar feature in hexa-YMnO3 for room tem-

perature measurements, which is absent or very weak in ortho-YMnO3. The 1.7 eV

transition sits near the foot of a larger spectral feature centered around 5 eV. A sim-
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ilar transition is also observed in the ortho-manganites.27,40 The weak, but sharp,

absorption onset begins around 1.1 eV and exhibits little temperature dependence,

as seen in the infrared T spectra shown in Fig. 4.2. The spectral weight of the 5 eV

peak remains independent of temperature to within the measurement accuracy. Just

above the 1.7 eV peak sits a small shoulder around 2-2.5 eV. This shoulder may rep-

resent an additional weak transition. Around 4 eV, σ1 becomes particular noisy, which

is not observed in the room temperature measurement performed without windows.

This spurious feature results from the CaFl vacuum windows used in the cryostat.

Figure 4.8: Temperature dependence of the 1.7 eV peak energy (circles)
and spectral weight (squares).

Fitting the 1.7 eV transition with a Lorentzian affords tracking the temperature

dependence of the peak energy. The resonance energy decreases monotonically

with temperature, having an inflection point at TN ≈ 90 K as seen in Fig. 4.8 (circles).

The peak shifts by 0.15 eV (� 10 % change) over the measured temperature range

0 − 300 K with 0.05 eV of the shift occurring below the antiferromagnetic ordering
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temperature TN .

The temperature dependence of the spectral intensity, or integrated conductiv-

ity, provides additional information regarding the nature of 1.7 eV feature. The spec-

tral weight S of this transition is defined by the restricted sum-rule [see Eq. (2.23)]

S =
2
π

∫ 2.5 eV

1.25 eV
σ1(ω) dω , (4.1)

where the limits (1.25-2.5 eV) include the appropriate spectral range. A small contri-

bution from the tail of the higher energy transition little affects the temperature depen-

dence of S and consequently has not been subtracted from the integral. The squares

in Fig. 4.8 represent the spectral weight as defined by Eq. (4.1). While the peak en-

ergy shifts strongly with temperature and correlates with TN , the integrated spectral

intensity of this excitation remains constant to within the experimental accuracy of

3 %.

4.2.2 Phonon spectra

Equation (2.29) and an appropriate model for the dielectric constant fit the far-

IR reflectance spectra. The resulting ε̃ agrees well with that obtained from Kramers-

Kronig analysis. In the E ⊥ c orientation, sufficiently wide phonon bands necessitate

the FPSQ model of Eq. (2.31). The FPSQ model ε parameterizes each oscillator

by the frequency and damping of the phonon LO and TO modes, resulting in four

parameters per phonon. Given the 6 oscillators observed in the R spectrum, the

fit involves 24 phonon parameters in addition to the background dielectric at high

frequency ε∞. For the thin platelet sample measured in this polarization, étalon peaks

in the IR transmittance accurately determine ε∞ (see Fig. 4.3) and these ε∞ values

are used in Eq. (2.31). Table 4.1 lists the parameters obtained from a least-squares

fitting of the measured E ⊥ c R spectra at various temperatures. The inset of Fig. 4.1

shows the excellent agreement between the fitted and measured spectra for room

temperature.
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Temperature (K)
10 50 70 80 90 100 125 150 200 250 300

ωTO,1 273.37 272.22 271.25 270.71 270.33 269.62 269.13 268.24 267.74 266.00 266.16
γTO,1 11.72 9.75 8.34 8.44 9.62 10.96 9.20 6.33 6.43 8.48 13.02
ωLO,1 283.27 283.16 283.08 283.13 282.89 282.77 282.47 282.21 281.69 281.02 280.76
γLO,1 1.84 1.93 1.96 2.14 2.15 2.29 2.28 2.76 3.59 4.09 4.60
ωTO,2 305.16 304.03 303.35 303.15 302.17 301.54 300.64 299.98 299.10 297.37 297.01
γTO,2 17.67 13.67 10.16 9.85 10.84 11.19 9.18 6.00 6.02 7.34 10.60
ωLO,2 347.99 347.89 347.66 347.73 347.39 347.01 346.51 346.45 345.89 345.67 345.57
γLO,2 5.69 6.03 6.55 7.10 6.96 7.04 8.08 9.48 11.99 13.84 16.68
ωTO,3 369.00 368.88 368.80 368.50 368.45 368.44 367.91 368.00 367.69 367.48 367.43
γTO,3 7.50 7.00 6.50 6.12 6.20 7.55 7.68 5.30 5.34 6.89 7.71
ωLO,3 564.65 565.42 566.24 566.17 566.45 566.28 566.28 565.81 564.78 564.16 563.95
γLO,3 14.00 14.10 14.10 14.20 14.23 14.37 15.71 16.15 18.41 21.01 25.76
ωTO,4 415.38 415.31 414.82 415.00 415.14 415.03 414.68 413.30 411.87 412.00 412.41
γTO,4 2.92 3.47 4.43 3.90 3.65 4.30 4.02 5.90 7.06 7.30 7.60
ωLO,4 413.40 413.31 412.87 412.99 413.16 412.90 412.96 411.52 410.46 410.50 410.73
γLO,4 2.42 2.87 3.03 2.91 3.06 3.53 3.61 3.94 4.74 5.60 6.50
ωTO,5 428.48 428.31 428.17 428.33 427.78 427.74 427.67 427.32 426.98 426.00 425.36
γTO,5 4.49 4.35 3.74 3.85 4.38 3.92 4.06 4.22 5.29 6.00 7.31
ωLO,5 424.81 424.81 425.09 424.99 424.43 424.54 424.42 424.50 424.31 423.00 422.48
γLO,5 4.65 4.66 4.32 4.67 4.74 4.59 5.68 5.98 8.47 9.30 10.16
ωTO,6 602.15 601.57 600.76 601.35 600.89 600.84 600.34 599.84 599.58 599.26 598.85
γTO,6 2.00 2.25 2.50 2.50 2.57 2.69 4.10 5.45 6.89 7.10 7.94
ωLO,6 610.14 610.46 609.84 610.30 609.89 609.96 609.42 609.25 608.49 607.94 607.40
γLO,6 8.00 9.00 11.09 10.00 11.52 12.30 8.27 7.61 6.73 7.88 9.79

Table 4.1: Fitting parameters for the E ⊥ c reflectance of LuMnO3 for various
temperatures. Values are in cm−1.

Phonons in the E ‖ c orientation differ from those in E ⊥ c. Being more isolated

(narrower band), the simple sum of Lorentz oscillators given by Eq. (2.30) fits well the

out-of-plane R spectra. The classical Lorentz model parameterizes each oscillator

by the TO frequency, damping, and spectral weight, resulting in three parameters per

phonon. Table 4.2 lists the phonon parameters resulting from of a least-squares fit

to the measured E ‖ c reflectance at various temperatures. The fitted reflectance

spectra agree well with measurements as illustrated in Fig. 4.5 for room temperature.

The thicker 110-crystal precludes determining ε∞ from étalon in T and hence least-

squares fits include ε∞ as a free parameter. ε∞ obtained in this manner, however,

lacks the accuracy of that obtained from étalon analysis.

The fit parameters in Tables 4.1 and 4.2 define the complex dielectric constant

ε̃ for the E ⊥ c and E ‖ c orientations, respectively. The optical conductivity may

be obtained using Eqs. 2.13 and 2.14 and the dielectric constant from fitting R. The

frequency dependence of σ1 and ε1 at 10 and 300 K is shown in Fig. 4.9. Panels (a)
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Temperature (K)
10 50 65 80 90 100 125 150 200 250 300

ωTO,1 124.36 124.15 124.11 123.92 123.74 123.73 123.27 122.82 121.73 120.37 118.65
γ1 3.27 3.24 3.02 3.27 3.06 2.94 3.01 3.50 3.72 3.91 4.55
A1 27.63 26.99 25.20 27.27 27.17 25.93 28.22 31.13 37.77 44.01 59.99
ωTO,2 229.33 229.23 228.12 228.60 228.38 228.80 228.29 227.60 226.41 225.13 223.08
γ2 4.95 4.55 5.33 5.45 5.35 5.77 6.83 6.24 8.54 11.69 14.92
A2 407.70 409.81 415.90 412.30 412.08 413.61 413.97 421.13 423.27 429.32 430.10
ωTO,3 266.80 267.17 267.06 267.14 267.15 267.04 266.86 266.37 265.52 264.77 263.41
γ3 5.22 5.04 4.60 5.13 4.88 5.44 5.54 6.53 7.76 9.71 10.44
A3 131.78 129.83 121.78 123.90 122.10 123.85 120.57 120.16 120.88 114.14 105.54
ωTO,4 303.72 303.48 303.47 303.31 303.10 302.89 302.59 301.97 301.09 299.65 298.27
γ4 6.25 5.90 6.50 6.42 6.48 6.39 7.00 7.23 8.44 11.36 12.06
A4 174.01 178.15 175.53 174.99 176.24 176.26 175.24 179.02 176.68 185.81 180.69
ωTO,5 478.50 479.06 477.83 478.92 478.84 478.25 478.39 478.19 477.83 476.93 476.48
γ5 10.04 9.64 10.32 10.75 10.46 10.38 11.25 10.88 13.77 15.66 17.59
A5 868.80 877.45 865.33 872.39 867.96 878.14 881.81 885.06 877.56 875.17 855.54
ωTO,6 571.21 570.85 571.41 570.98 571.18 571.11 570.58 570.55 569.82 568.88 567.82
γ6 28.12 26.46 28.66 27.66 28.02 25.43 24.47 24.04 26.30 28.16 30.95
A6 742.60 749.23 740.90 751.60 754.09 753.72 757.93 762.01 767.48 759.45 756.94
ε∞ 4.95 5.04 4.92 5.00 4.97 5.02 5.04 5.08 5.08 5.04 4.92

Table 4.2: Fitting parameters for the E ‖ c reflectance of LuMnO3 for various
temperatures. Values are in cm−1 except for ε∞.

Figure 4.9: Real part of the optical conductivity σ1 and dielectric constant ε1

of LuMnO3 in the phonon spectral range for 10 K (solid) and 300 K (dashed).
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and (b) present σ1 and ε1, respectively, for E ⊥ c and panels (c) and (d) present σ1

and ε1, respectively, for E ‖ c. In E ⊥ c, several phonons exhibit large shifts with

temperature. Detailed temperature-dependent shifts of ωTO will be presented and

discussed in Sec. 4.3.

A basic identification of phonon modes results from considering ionic displace-

ments in the harmonic approximation. The resonant frequency is inversely propor-

tional to the square root of the ionic mass, ωTO,i ∝ 1/
√

Mi. Thus, the mode at lowest

frequency corresponds primarily to motion of the heavy Lu ions, while the mode at

highest frequency corresponds to motion of the light O ions. A weak Lu phonon at

≈ 125 cm−1 appears in the E ‖ c conductivity in Fig. 4.9 (right panels). O modes ap-

pear around 600 cm−1 in both crystal orientations, though the in-plane mode is much

weaker. At intermediate frequencies, modes consist primarily of Mn ion displace-

ments, in combination with O and Lu motion. More exact modal assignments can

be made by analogy with those in YMnO3.137 In the ferroelectric phase (T < Tc),

LuMnO3 crystallizes in the hexagonal structure with space group P63cm. A group-

theoretical analysis for the Γ-point phonon modes of space group P63cm finds 23

IR active modes: 9 with A1 symmetry and 14 with E1 symmetry.137 Modes with A1

symmetry consist primarily of ionic motion out-of-plane, while those with E1 symme-

try consist primarily of in-plane displacements. However, coupling of modes allows

some mixing. The optical measurements presented herein display 6 in-plane (E ⊥ c)

phonon modes and 6 out-of-plane (E ‖ c) modes.

4.2.3 Antiferromagnetic resonance

For the weak feature in the far-IR T around 50 cm−1, several observations sug-

gest this to be a magneto-dipole transition. First, Penney et al.136 purported a sim-

ilar feature in YMnO3 at ≈ 43 cm−1 to be an antiferromagnetic resonance (AFMR),

though no data was presented. In addition, the feature has the symmetry expected
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for magnon excitations in the plane,142 present for polarizations where B ⊥ c, but ab-

sent for B ‖ c. Inelastic neutron scattering143 observes a magnon peak in YMnO3 at

5.3 meV (≈ 43 cm−1), which supports the assignment of this transition as an AFMR.

Figure 4.10 shows the temperature dependence of this feature in the measured T

spectra (symbols). The background étalon peak has been divided out for clarity.

Figure 4.10: Antiferromagnetic resonance in the far-infrared transmission
(E ⊥ c) of LuMnO3. Background étalon have been divided out. Inset shows
temperature dependence of the antiferromagnetic resonance frequency (cir-
cles) along with magnetic moment data (squares) taken from Ref. 50 for
comparison.

In general, magneto-dipole transitions will be weaker than electro-dipole transi-

tions. The relative sizes of the transitions may be estimated by considering the tran-

sition rate from initial state i to final state f given by Wi→ f = 2π/� |M|2 δ(E f −Ei−�ω),

where M represents the appropriate matrix element between the two states. The

electric dipole matrix element, with selection rules that the initial and final angular

momentum state differ by 1 (i.e., l f = li ± 1), is given by ME = 〈ψl|p · E|ψl±1〉 =
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e E〈ψl|r|ψl±1〉 ∼ e E aB , where aB = �
2/(m e2) is the Bohr radius. For the magnetic

dipole transition, the matrix element MB for the incident EM wave to flip a spin will be

given by MB = 〈↑ |m ·B| ↓〉 ∼ µB B , where µB = e �/(2 m c) is the Bohr magneton. The

ratio of the transition rates is then given by

WB

WE
=
|MB|2
|ME |2

=
µ2

B B2

e2 a2
B E2

=
1
4
α2 ≈ 3 × 10−5 , (4.2)

where α = e2/(�2c2) is the fine structure constant. Thus one expects magneto-dipole

transitions to be much weaker than electro-dipole transitions. However, occasions

arise where the ratio may approach unity: (i) the oscillator strength of the electro-

dipole transitions is small (e.g., weak phonon mode) or (ii) if the magneto-dipole

transition is enhanced (e.g., large spin S or g-factor). It is possible, in principle,

to distinguish the nature of a weak optical absorption feature as either electro- or

magneto-dipole in origin from the response of the bulk reflectance.144 In order to dis-

tinguish the two transitions from the measured R spectra, ε∞ must differ appreciably

from µ∞.

Given the evidence suggesting the 50 cm−1 feature derives from a magneto-

dipole transition, the feature is modeled analogously to the phonon transitions in

ε̃ with a Lorentz oscillator model [Eq. (2.30)]. Here the AFMR consists of single

resonance in the complex magnetic permeability µ̃ given by,

µ̃ = µ∞ +
A2

ω2
0 − ω2 − i γω

, (4.3)

where µ∞ is the background permeability above any magnon excitations. Performing

a least squares fit of the temperature-dependent T feature results in the parameter

values listed in Table 4.3. Note the µ∞ values were taken to be unity a priori to the

least squares fit. Results of the fit using the parameter values listed in Table 4.3 are

shown as solid lines in Fig. 4.10. With increasing temperature, the AFMR energy de-

creases and the feature broadens, eventually disappearing ≈ 70 K (< TN). The inset
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Temperature (K)
10 20 30 40 50 60

ω0 50.0 49.9 49.55 48.55 46.9 45.0
γ 0.8 0.8 0.85 1.5 1.5 3.7
A 2.0 2.0 1.9 2 1.8 2.1

Table 4.3: Fitting parameters for the antiferromagnetic resonance of
LuMnO3 for various temperatures. Values are in cm−1.

of Fig. 4.10 compares the temperature dependent AFMR energy with the magnetic

moment M reported by Katsufuji et al. in Ref. 50. The solid line corresponds to a fit

of the magnetic moment, M = A(1 − T/TN)β, where the critical exponent β ≈ 0.22.

4.3 Discussion

4.3.1 Electronic transitions

The two main features of the electronic conductivity spectrum are understood

as: (1) a broad band of charge transfer transitions from the hybridized oxygen p-

levels to the Mn d3z2−r2 levels centered at ≈ 5 eV and (2) an on-site Mn d-d transition

centered at ≈ 1.7 eV. The fact that this feature appears in YMnO3 in the hexagonal

phase but not the orthorhombic phase remains consistent with selection rules for the

on-site Mn d-d transitions in hexagonal and cubic (or pseudo-cubic) symmetry. The

relative temperature insensitivity of the spectral weight of this feature rules out its

interpretation as a charge transfer transition. Contrast this with the ≈ 2.1 eV Mn-Mn

intersite transition observed in LaMnO3, where the oscillator strength exhibits strong

temperature dependence correlated with TN . In this case, the spin dependence of

the charge transfer matrix elements leads to a strong temperature dependence of

the spectral weight, which is not observed in the hexagonal system.

Ligand-field theory101 predicts the energies and spectral intensities of electronic

transitions in the MnO5 complex. The electronic states are taken to be the man-

ganese d-orbitals coupled to the oxygen pσ orbitals. Setting the dx2−y2, xy orbital pair
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as the energy zero, ligand-field theory predicts the O p-orbital energy ∆ = −3 eV and

the d3z2−r2 orbital crystal field energy ∆CF = 0.7 eV. For the symmetric (paraelectric)

structure, the hybridization is t1 = t2 = 1.9 eV for apical and t3 = t4 = 1.7 eV for in-

plane oxygens. The symmetry-allowed optical transitions for the E ⊥ c polarization

of light are: d′
x2−y2, xy

→ d′
3z2−r2 at 1.6 eV and the two in-plane bonding O p→Mn d′

3z2−r2

at 6.3 eV, where primes denote the corresponding d-states hybridized with the oxy-

gen orbitals. The calculated spectral weights of both transitions agree in their ratio,

but underestimate measurements by a factor of four. This discrepancy may be at-

tributed to the neglect of the Mn p-orbitals and s-orbitals, which also couple to the O

p-states in the hexagonal symmetry. In the case of E ‖ c polarization of incident light,

the optical matrix elements for the d′
x2−y2, xy

→ d′
3z2−r2 transitions vanish, as observed

experimentally.

The temperature dependence of the 1.7 eV peak energy shown in Fig. 4.8

raises an interesting question as to the origin of such a large shift (≈ 0.15 eV). The

anomaly at TN indicates that at least part of the shift associates with the magnetic

phase transition. The magnetic part of the shift may be attributed to the effects of

the exchange interactions between the Mn ions. Figure 4.11 illustrates the localized

Mn 3d levels and the filled O 2p bands (shaded) for temperatures below (left panel)

and above (right panel) TN . Curved arrows indicate the symmetry-allowed on-site

Mn d-d optical transitions from the occupied d′
x2−y2, xy

levels to the unoccupied d′
3z2−r2

levels. Shifts of the Mn d-levels due to superexchange between Mn neighbors result

from a lowering of the d′
x2−y2, xy

levels in the antiferromagnetic state by the exchange

energy Eex. The relatively isolated d′
3z2−r2 orbital remains essentially unaffected by

the magnetic ordering. The observed shift in the resonance energy between 4 K and

TN (≈ 0.05 eV) likely underestimates the exchange energy due partly to short-range

antiferromagnetic correlations in this frustrated magnetic system, which are expected

and observed to persist to higher temperatures.53,143
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Figure 4.11: Schematic view of the lowest-lying electronic transitions in
LuMnO3.

In addition to exchange effects, thermal expansion and magnetostriction may

contribute to a spectral shift. Considering first thermal expansion above TN , the ob-

served shift exceeds values typically observed in interband features in solids where

changes in the transition energy scale directly with changes in the lattice constant,145

δE/E = α δa/a and α ∼ 1. In LuMnO3, the strong overlap of the the hybridized or-

bitals suggests that δt/t ∼ δa/a. Given that ligand field theory predicts changes in

the transition energies on the order of changes in the hybridization, δ∆CF/∆CF ∼ δt/t,

changes in the transition energy due to thermal expansion effects should be on the

order of the changes in the lattice constant, δ∆CF/∆CF ∼ δa/a. From x-ray diffraction

measurements50 above room temperature, extrapolated changes from 300 K to TN in

the in-plane lattice parameter a are small, δa/a ≈ 0.3 % and changes in the out-of-
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plane parameter c are smaller still by a factor of 10. The absence of a shift in the 5 eV

feature also precludes such a large thermal shift in the 1.7 eV feature since both fea-

tures share the same d′
3z2−r2 final state. Furthermore, the extremely weak decrease

in the oscillator strength of the 1.7 eV feature argues against a strong thermal ex-

pansion effect since this optical transition, allowed only due to the hybridization with

the O p-states, depends more sensitively on thermal changes in the lattice constant

than does the peak energy. However, the experiment presently cannot separate ex-

change effects from thermal expansion effects on the optical transition energy. For

temperatures below the magnetic ordering, magnetostriction also changes the lattice

constant and may produce level shifts. However, Muñoz et al.51 report the changes

in the lattice constant for YMnO3 from 0 to TN are smaller by about a factor of 10

than the effects due to thermal expansion.50 Thus magnetostriction effects are not

responsible for the additional shift of the peak energy below TN .

Measuring shifts of the 1.7 eV optical transition provides an estimate of the

exchange interaction in LuMnO3. In addition to optics, inelastic neutron scattering

and magnetic susceptibility also offer estimates for the exchange energy of the Mn

spins. Inelastic neutron-scattering measurements reported by Sato et al.143 find

an in-plane antiferromagnetic coupling J ≈ −3.4 meV, resulting in an estimate of

the exchange energy Eex ≈ 120 meV. Magnetic susceptibility measurements deter-

mine the Curie-Weiss temperature in the susceptibility. From molecular field theory,

kB θCW = z JNN S (S + 1)/3, where z = 6 is the number of Mn nearest neighbors, JNN

is the nearest neighbor antiferromagnetic coupling, and S is the spin. The exchange

energy for the manganese ion is then given by Eex ≈ 3 kB θCW. In the literature, θCW

data for LuMnO3 range between −519 K (Ref. 55) and −887 K (Ref. 53). Taking these

values for θCW gives a range for the exchange energy, 140 � Eex � 240 meV, which is

somewhat larger than that estimated from the optical shifts (Eex � 50 meV). As noted

earlier, this estimate ignored the additional shifts expected above TN due to frustra-
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tion effects. Moreover, these two estimations represent different manifestations of

the exchange interaction. Exchange estimated from θCW represents the ground state

exchange energy between the Mn moments, while the optical shift represents the

change in exchange energy of the Mn ion between the ground and excited state of

the Mn3+ ion. Thus, the exchange estimates agree satisfactorily, supporting the as-

signment of the temperature shift of the 1.7 eV peak to the difference in exchange

interaction between the ground and excited optical states of a given Mn ion.

4.3.2 Spin-phonon coupling

Optically active phonons dominate the far-IR conductivity spectrum. The fre-

quencies of the TO phonons ωTO in the E ⊥ c orientation exhibit a temperature

anomaly around TN similar to the 1.7 eV optical transition. Figure 4.12 shows the

temperature dependence of the frequency shifts for E ⊥ c and E ‖ c in panels

(a) and (b), respectively. Shifts are plotted relative to the phonon frequency at low

temperature, ∆ωTO(T ) ≡ ωTO(T ) − ωTO(10 K). The two lowest frequency vibrational

modes (ωTO ≈ 270, 305 cm−1) in the E ⊥ c polarization display the strongest absolute

frequency shifts (∆ωTO), relative frequency shifts (∆ωTO/ωTO), and inflection points at

TN . This observation suggests that these modes couple strongest to the spin sys-

tem. Additionally, scaled frequency shifts, −∆ω(T )/∆ω(300) K, in Fig. 4.12(c) show

that other E ⊥ c phonons display similar behavior. Noise in ωTO frequencies of the

weak phonons at ωTO ≈ 416, 429 cm−1 in E ⊥ c precludes observation of the anom-

aly at TN . In the E ‖ c polarization, measurements of the phonon spectrum on the

110-sample exhibit no anomaly at TN . There exists a clear anisotropy between the

in-plane and out-of-plane phonon behavior, which correlates with the in-plane spin

ordering. The similarity of the frequency shift of the spin-coupled phonons and the

temperature dependence of the 1.7 eV feature suggests that both are related to the

same, nearest-neighbor spin correlation function 〈Si · S j〉(T ).
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Figure 4.12: Temperature-dependent shifts of the TO phonon frequencies,
∆ω(T ) ≡ ω(T )−ω(10 K) for (a) E ⊥ c and (b) E ‖ c. Scaled frequency shifts,
−∆ω(T )/∆ω(300 K) for (c) E ⊥ c and (d) E ‖ c.

Phonon induced modulation of the exchange energy produced by the ion modal

displacements provides an understanding of the phonon shifts. The change in ex-

change energy produces a corresponding change in the effective restoring force k for

the phonon. This change in k results in a ωTO shift given by ∆(ω2
TO) = ∆k/µ, where

∆k(T ) ∝ 〈Si ·S j〉(T ) is the exchange energy contribution to the force constant and µ is

the reduced mass of the phonon mode. Superexchange between nearest neighbor

Mn ions separated by O dominates the exchange energy. However, the complexity

of the hybridized Mn d-states allows both ferromagnetic and antiferromagnetic con-

tributions that differ for in-plane and out-of-plane neighbors.
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4.3.3 Dielectric constant anomaly

Several authors54,56 consider the observed anomaly in the temperature depen-

dence of the static in-plane dielectric constant below the Néel temperature as evi-

dence of a manifestation of coupling between magnetic and ferroelectric order para-

meters in ferroelectromagnets. As provided by the optical sum rule for the dielectric

constant in Eq. (2.22), all of the oscillators present in the optical response of the sys-

tem determine ε0 ≡ ε1(ω = 0). Unlike quasi-static measurements, the present optical

studies afford identification of an individual oscillator’s contribution to the quasi-static

dielectric constant of LuMnO3. Three groups of oscillators participate: ferroelectric

domains, phonons, and electronic transitions. The antiferromagnetic resonance con-

tributes a minimal correction to ε0.146 Contributions from ferroelectric domains fall off

with frequency, becoming negligible at the megahertz frequencies of the quasi-static

electrical measurements54 and decrease further at far-IR frequencies. Figure 4.13

shows the temperature dependence of the real part of the dielectric constant of

LuMnO3. The top curve in panel (a) reproduces the quasi-static in-plane data of

Katsufuji et al.53 taken at 100 kHz. The bottom plot (circles) in panel (a) results from

the measured frequency shift of the first étalon maximum in the transmittance spec-

trum (Fig. 4.4) centered at 53 cm−1 (≈ 6.6 meV). At this low frequency, all IR active

phonons and all electronic transitions provide input to ε1. Panel (b) shows ε1 obtained

from the interference fringes in the mid-IR transparency region (Fig. 4.3) midway be-

tween the phonon and electronic absorption bands at 2700 cm−1 (≈ 0.335 eV). Elec-

tronic transitions determine the value of ε1 at this frequency, ε∞ ≡ ε(0.335) eV. Finally,

panel (c) shows an estimation of the input to the dielectric constant from the 1.7 eV

electronic peak using a restricted sum-rule for ε0

∆ε1 =
2
π

∫ 2.5 eV

1 eV

ε2(ω)
ω

dω . (4.4)
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Figure 4.13: Temperature dependence of the dielectric constant ε1 of
LuMnO3. Top (a) and middle (b) panels represent ε1 measured from the
étalon interference effect in the far-IR and mid-IR, respectively. Panel (c)
shows the contribution of the 1.7 eV peak to ε1 determined from the opti-
cal sum rule. The lines guide the eye. 100 kHz data from Katsufuji et al.
(Ref. 53)

As evident from ε1 plots in Fig. 4.13, phonon hardening produces practically all of the

∆ε below TN . Comparing panels (a) and (b), only ≈ 5% of this change comes from

the shift of the 1.7 eV electronic peak. Furthermore, panels (b) and (c) in Fig. 4.13

show that the temperature dependence of ε∞ results, almost entirely, from the 1.7 eV

feature, i.e., higher energy electronic transitions remain relatively insensitive to mag-

netic ordering and provide only a temperature independent background to ε1.

The absence of a magnetic anomaly in phonons with the E ‖ c polarization

(Fig. 4.12) agrees with the observed anisotropy in the static dielectric constant53 and

ωTO phonon shifts. Toward developing an understanding of this anisotropy of the

spin-lattice coupling, note that important distinctions in the exchange modulation ex-
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ist between the E ‖ c and E ⊥ c polarizations. In the case of E ‖ c polarization,

in-plane Mn and O ions displace transversely relative to their bond. Furthermore,

bond stretching occurs only with the apical oxygen, primarily affecting the empty Mn

d3z2−r2 orbital. Contrast this with E ⊥ c, where the incident electric field induces

both transverse and bond stretching Mn-O displacements, which involve occupied

in-plane orbitals. This observation suggests that the in-plane bond stretching dis-

placements dominate the spin-phonon interaction effects.

4.3.4 Order parameter coupling

More generally the question of a coupling between the FE P and AFM l order

parameters of this material remains interesting. Within the Landau theory of phase

transitions, there are symmetry allowed terms in the free energy describing the cou-

pling between the magnetic and ferroelectric order.45 The experimental data on the

quasi-static dielectric constant implies that this term is of the form δF ≈ l2P2(E2
x+E2

y ).

Zhong and Jiang report57 polarization induced by magnetic coupling provides for the

electric susceptibility anomaly. Coupling of the form g u2
k Si ·S j, or for the susceptibility

χ = χ0(1 − α 〈Si · S j〉), results from a model that includes a soft-mode theory for FE

and a mean-field approximation for AFM.

Not all authors agree that a dielectric anomaly implies coupling of the order

parameters. Tomuta et al.55 argue against direct coupling, but rather attribute the ε

anomaly to small changes in the ferroelectric domain wall mobility. Indeed, Smolen-

skii and Chupis45 cite the ε0 anomaly as a necessary but not sufficient condition for

order parameter coupling. Materials with magnetic but no FE ordering exhibit anom-

alies in the TO phonon frequencies and quasi-static dielectric constant similar to

those observed for the hexamanganites. The antiferromagnetic CuO displays anom-

alies in TO phonon frequencies147 and in the dielectric constant148 associated with

the magnetic ordering temperature. In the pseudo-cubic manganites, shifts in the O-
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phonon modes observed in far-IR spectra (see Fig. 3.5) and in Raman spectra149 of

LaMnO3 correlate with TN . Additionally, the doped manganite La0.7Ca0.3MnO3 shows

TO phonon shifts at the ferromagnetic ordering temperature.36 In these other mag-

netically ordered systems, anomalies inωTO and ε0 attributed to spin-phonon coupling

exist in the absence of a ferroelectric order parameter.

Nonlinear optics has provided the strongest evidence in support of the cou-

pling of the order parameters P and l. Fiebig et al.150 observe coupled ferroelectric

and AFM domains in second harmonic generation (SHG). Symmetry properties allow

separate identification of the two order parameters: P obeys time-reversal symme-

try and l does not.150 In nonlinear optics, the SHG source term S(2ω) couples to

the incident electric field E(ω) in the following way, S(2ω) = ε0[χ̂(0) + χ̂(P) + χ̂(l) +

χ̂(P l) E(ω)E(ω)]. The SHG spectra in Ref. 150 manifest the first examples of a

nonlinear optical process coupling simultaneously to an electric and magnetic order

parameter, i.e., observation of a susceptibility term dependent on coupling χ̂(P l).

Moreover, the coupling of order parameters leads to the formation of AFM domains,

which are dominated by the product P l rather than by l alone.

Establishing the coupling of order parameters and relating it to the microscopic

physics remains a key issue in the study of this class of materials. The present exper-

iments confirm an anomaly in the static dielectric constant below the TN . Measure-

ments of the dynamical ε find that phonon contributions prevail. Thus, spin-phonon

coupling dominates the ε anomaly. Uncertainties persist in the current understanding

of the relation between the ε anomaly and order parameter coupling.

4.3.5 Electron phonon coupling

The strong spin-phonon coupling observed in LuMnO3 naturally motivates con-

sideration of other forms of coupling. In particular, electron phonon coupling may

allow for the observation of Franck-Condon spectra, where small molecules have ex-
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cited electronic states leading to multiphonon sidebands in the electronic spectra.87

In order to observe these effects, the occupied ground state wavefunction must have

a different coordinate space minimum than the optically excited state. Then optical

absorption occurs before the lattice can react (i.e., vertical transition in the coordi-

nation configuration picture).82 The excited state relaxes to the coordinate minimum

through phonon emission before eventually reemitting at a lower frequency. Multi-

phonon processes produce observable signatures in Raman and photoluminescence

spectroscopies.

Raman spectroscopy provides an experimental technique to measure the pre-

dicted87 multiphonon behavior. In cubic crystals (e.g., the pseudo-cubic mangan-

ite LaMnO3), optical selection rules forbid on-site d-d transitions. However, lattice

distortions resulting from asymmetric oxygen breathing modes in LaMnO3 provide

orbital admixture and allow for on-site d-d transitions in this system.87 Raman stud-

ies97,98 on LaMnO3 report evidence for weak multiphonons. In the hexa-manganites,

the symmetry allowed on-site Mn d-d transition in LuMnO3 appears a natural can-

didate to observe similar Franck-Condon physics. Nevertheless, preliminary Raman

measurements151 find no evidence for multiphonon sidebands in hexagonal YMnO3.

Higher order Raman phonons do not correspond to first-order phonon harmonics.

Furthermore, the ratio of the intensities of second order to first order phonons de-

pends strongly on temperature, in contradiction to Franck-Condon model predictions

and the behavior of the pseudo-cubic manganites.98

In addition to Raman spectroscopy, the Frank-Condon model predicts effects

on the photoluminescence (PL) and photoluminescence excitation (PLE) spectra.87

Despite these predictions, PL measurements151,152 on hexagonal YMnO3 find no evi-

dence of multiphonon emission sidebands, even at low temperatures. Preliminary PL

and PLE measurements do observe a Stokes-shifted emission peak lower in energy

and with a frequency dependence similar to the excitation spectrum.151 However, the

150



emitted intensity is many orders of magnitude lower than expected for on-site lumi-

nescence.142 The observed PL spectra likely correspond to emission of a delocalized

exciton trapped in potential well (e.g., an impurity).

Raman and PL results on LuMnO3 and YMnO3 suggest the Franck-Condon

picture may not be applicable to hexa-manganites. Rather one should consider the

electronic excitations in a delocalized exciton band picture. Furthermore, electron

phonon coupling remains weak in this system. These findings contrast the observa-

tions in the pseudo-cubic manganites.

4.4 Conclusions

In conclusion, this chapter presents optical evidence of a strong coupling of

the antiferromagnetism in LuMnO3 to a sharp low energy interband transition and

to the infrared phonon spectrum. Optical measurements from 1.2 meV to 5.6 eV

(10 − 45000 cm−1) at temperatures 4 − 300 K reveal a symmetry-allowed on-site Mn

d-d transition near 1.7 eV. The optical feature blueshifts (≈ 0.1 eV) with the antiferro-

magnetic ordering, which is due to the effects of superexchange interaction on the

on-site Mn d-d transition. Similar anomalies in the temperature dependence of the

TO phonon frequencies are attributed to the effects of spin-phonon coupling. Fur-

thermore, these phonon contributions overwhelmingly dominate the known anomaly

in temperature dependence of the quasi-static dielectric constant ε0 below the Néel

temperature (TN ≈ 90 K).
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Chapter 5

Co-Doped Titanium Dioxide:

A Diluted Ferromagnetic Oxide

This chapter addresses clustering and the optical properties of well-

characterized thin films of anatase Ti1−xCoxO2−δ. Section 5.1 examines the

implications of cobalt clustering on the optical properties. Given the evidence66

supporting limited Co solubility, Sec. 5.2 presents measurements on low-doped

samples with x ≤ 0.02. For low Co concentrations, these as-grown films exhibit no

signs of clustering. Section 5.3 presents the optical absorption of low-doped films.

Interband absorption above the band gap at 3.6 eV dominates the optical spectra.

The observed band gap blue shifts with Co doping and no magnetic impurity states

appear in the gap. Finally, Sec. 5.4 discusses the implications of these results

related to band structure calculations and compares the measured band edge shift

to other optical studies.

5.1 Optical Response of Cobalt Clusters

The experimental evidence supporting Co clustering in these films naturally

raises the question of how this clustering might be observed in the optical data. Ef-

fective medium theory (EMT) models the optical response of inhomogeneous me-

dia.153–157 Simple Maxwell Garnett theory (MGT)153,154,158 treats spherical inclusions

in a dielectric host background to determine an effective dielectric constant, ε given

152



by

ε = ε(I) (ε
(II) + 2ε(I)) + 2 f (ε(II) − ε(I))

(ε(II) + 2ε(I)) − f (ε(II) − ε(I))
, (5.1)

where f is the volume fraction of inclusions in a host medium, ε (II) is the dielectric

constant of the inclusions, and ε (I) is the dielectric constant of the host. In the Co-

doped TiO2 system, ε(II) and ε(I) represents the dielectric constant of Co metal and

TiO2, respectively. The effective ε predicted by MGT does not depend on the radius

of the inclusions a, provided that a is large enough to include several unit cells and

a � δ, where δ is the penetration depth of the incident light in the metallic inclusion.

For Co in the near-IR to visible (1-4 eV) range, δ ≈ 20 nm.

A comparison of the predictions of MGT to the measured σ1 for x = 0.07 re-

quires values for the parameters in Eq. (5.1). Values for ε (II) are taken from the

literature159,160 and values of ε(I) are taken from measurements of the undoped TiO2

films. For x = 0.07 (i.e., assuming all of the doped cobalt forms clusters) the resulting

volume fraction is given by

f = x
ΩCo

ΩTiO2

= 0.07
1.1 × 10−23

3.4 × 10−23
= 0.023 , (5.2)

where Ω is the volume per formula unit (cm3/f.u.). Figure 5.1 shows the predicted σ1

(solid curve) using Eqs. (5.1) and (5.2) with f = 0.023. MGT predicts enhanced ab-

sorption below the band edge of TiO2, but shows no significant frequency shift of the

edge. Contrary to the prediction, the measured conductivity (dashed curve Fig. 5.1)

exhibits a noticeable shift of the band edge, but no such enhanced absorption. To

consider the possibility of filamentary Co (as proposed in a theoretical paper by Yang

et al.161), the MGT model is extended to consider the clustered Co as ellipsoids of

revolution.155 As the aspect ratio of the ellipsoids increases, the optical conductivity

below the energy gap spreads to lower frequencies. Even with an aspect ratio of

100 : 1, there exists no appreciable reduction of σ1 in the visible frequency range nor

shift of the band edge. Thus, EMT fails to capture the optical behavior of the Co-
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Figure 5.1: Frequency dependent σ1 from Maxwell Garnett effective
medium theory (solid curve) and data (dashed curve) for Ti0.93Co0.07O2.

clustered films, indicative of the cluster size exceeding the penetration depth, a ≥ δ,

as observed in TEM.

For larger Co clusters, a ≥ δ, losses due to the skin effect become important

and the cluster separation increases. In this case, Mie’s treatment162 of light incident

on a sphere represents a more appropriate model than the effective dielectric from

MGT.156 A conducting sphere causes both scattering and absorption processes. The

total or extinction cross section of light incident on the sphere σext then represents

a sum of the scattering σsc and absorption σab cross sections, σext = σsc + σabs.

Mie theory provides expressions for these various cross sections,156,162,163 which are
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given by

σsc

πa2
=

2
q2

∞∑
l=1

(2l + 1)(|αl|2 + |βl|2) (5.3)

σabs

πa2
=

2
q2

∞∑
l=1

(2l + 1)
(
1/2 − |αl − 1/2|2 − |βl − 1/2|2

)
(5.4)

σext

πa2
=

2
q2

∞∑
l=1

(2l + 1)Re {αl + βl} , (5.5)

where q = 2π/λ(I) a = 2π
√
ε(I)ν a and αl and βl are the complex partial-wave coeffi-

cients. Boundary value conditions at the surface of the sphere give αl and βl in terms

of the Ricatti-Bessel functions (ψl and ζl) and their derivatives,

αl =
n̂ψ′l(q)ψl(n̂ q) − ψl(q)ψ′l(n̂ q)

n̂ ζ′l (q)ψl(n̂ q) − ζl(q)ψ′l(n̂ q)

βl =
n̂ψl(q)ψ′l(n̂ q) − ψ′l(q)ψl(n̂ q)

n̂ ζl(q)ψ′l(n̂ q) − ζ′l (q)ψl(n̂ q)
, (5.6)

where ψl(x) =
√
πx/2 Jl+1/2(x), ζl(x) =

√
πx/2 H(1)

l+1/2(x), and n̂ =
√
ε(II)/
√
ε(I) is the ratio

of complex indexes of refraction. Limiting forms for the scattering cross section given

in Eq. (5.3) are readily attainable83,156,163 and intermediate values may be determined

using numerical methods, e.g. MathematicaTM. In the long wavelength limit q � 1,

σsc reduces to the Raleigh scattering result σsc ∝ q4. For short wavelengths q � 1,

Eq. (5.3) reduces to the classical short-wave result σsc = 2π a2.

The intermediate wavelength limit q ≈ 1 best represents the visible frequency

region (below the band gap) of Co-doped TiO2. Fig. 5.2 shows the frequency depen-

dence of σext given by Eq. (5.5). Values for the extinction cross section are normal-

ized to πa2 for a Co sphere in TiO2 with constant index, n(I) =
√
ε(I) = 2. Curves for

several cluster sizes corresponding to the range observed in TEM, 10 ≤ a ≤ 25 nm,

are shown. As the cluster size increase the onset of the cross section moves to lower

frequencies. At high frequencies (short wavelengths), σsc ∼ 2πa2 and σabs ∼ 0, giving

σext ∼ σsc ∼ 2πa2. For the region below the band gap of TiO2 (ν < 3 × 104 cm−1),

any nonzero σext represents a decrease in intensity of the incident light beam. The
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Figure 5.2: Normalized extinction cross section from Mie theory for TiO2

host with Co spheres of radii: a = 10, 15, 20, and 25 nm. Inset shows the
normalized extinction cross section averaged from 0-3 × 104 cm−1 as a func-
tion of cluster size (solid line guides the eye).

average total cross section 〈σext〉 proves useful to estimate the affect of scattering

and absorption of Co spheres in the mid gap region. The inset of Fig. 5.2 shows

normalized values of 〈σext〉 as a function of a. For 10 ≤ a ≤ 25 nm, the average

extinction cross section grows linearly with the cluster size 〈σext〉/πa2 = µ a, where

the slope µ ≈ 0.067 nm−1.

While rigorously solved for a single sphere, Mie theory must be extended to

include the multiple scatters (and absorbers) appropriate to the Co clustered TiO2

systems. The total absorption cross sections for multiple spheres involves a sum of

the individual σabs given by Eq. (5.4). However, scattering from a number of small

particles involves, in general, the coherent addition of scattering cross sections. The
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resulting total σsc has a term proportional to the phase difference between scatterers

ei q·(ri−r j), where q is the vectorial change in the incident and scattering wave vector

and ri and r j are the position vectors from the i-th and j-th scatterer, respectively.

In the case of randomly distributed scattering centers, appropriate to clustered Co-

doped TiO2, the phase factors for i � j contribute negligibly to the sum.83 Thus,

an incoherent addition of scattering centers better suites the present system. For

incoherent addition, the total cross section due to all clusters is a simple sum

σtotal =
∑

i

σi = NA σi , (5.7)

where NA is the total number of inclusions in an incident beam of light with area A

and σi is the average extinction cross section of a single inclusion. As discussed

above, 〈σi〉 ≈ µ a πa2 in the interband region. The number of clusters in a given area

A depends on the cluster density, NA = η t A, where η is the cluster number density

and t is the film thickness.

The Co doping concentration x and the relative number densities of Co metal

and TiO2 provide an estimate the cluster density η. The number of Co atoms in a

given cluster Ncl is given by Ncl = η
(II) 4

3 πa3. The cluster density is then the density of

Co in TiO2 due to doping divided by Ncl

η =
ηx

Ncl
=

x
4
3 πa3

η(I)

η(II)
, (5.8)

where η(I) = 2.91×1022 cm−3 and η(II) = 9.1×1022 cm−3 represent the number densities

of Ti in TiO2 and Co in bulk metallic Co, respectively. The average separation r

between Co clusters (solving 4
3 πr3 η = 1) is

r =

 1
4
3 π η

1/3

= a

(
1
x
η(II)

η(I)

)1/3

. (5.9)

For clusters with a = 20 nm and x = 0.07 doping, Eq. (5.8) and Eq. (5.9) give η ≈

6.7 × 1014 cm−3 and r ≈ 70 nm, respectively. Comparing with TEM measurements,
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the micrograph in Fig. 1.12(a) represents a nearly 2D slice of thickness t ≈ 10 nm,

less than a typical cluster radius. From the micrograph, η2D ≈ 1.8 × 109 cm−2. The

resulting cluster density is then η2D/t ≈ 1.8 × 1015 cm−3, higher than the estimation

from Eq. (5.8) by a factor of two. However, uncertainties in t and the small number of

clusters in the micrograph lead to uncertainties in the number density of Co clusters

estimated from TEM.

The cluster density calculated from Eq. (5.8) allows estimation of the total ex-

tinction cross section together with Eq. (5.7). The ratio of the total extinction cross

section to the area of the incident light beam is then

σtotal

A
=

NA × σi

A
=
η t A × µ a πa2

A
=

3
4
η(I)

η(II)
x µ t . (5.10)

This ratio represents the relative observable optical signal, i.e., the ratio of the total

scattered and absorbed light to the incident light. For x = 0.07, 10 ≤ a ≤ 25 nm, and

t = 80 nm, Eq. (5.10) estimates σtotal/A ≈ 0.09. A relative loss of signal due to scat-

tering and absorption of this magnitude should be observable in optical transmittance

T and reflectance R. Yet no such loss appears in the resulting optical conductivity for

the x = 0.07 film shown in Fig. 5.1. Indeed the optical absorptance,A = 1− (T +R),

remains zero in the mid gap region to within the experimental accuracy. T and R are

measured to within ±1% and ±2%, respectively, and the corresponding uncertainty

in absorptance is ∆A ≈ 2.2%.

In light of the experimental evidence for scattering from TEM and the predic-

tions of optical behavior from Mie theory, the absence of a measurable effect on the

mid gap optical spectrum remains puzzling. Two possible scenarios may explain the

optical data: (i) the amount of Co that clusters is less than the total Co-doping and/or

(ii) the cluster sizes are larger than expected from TEM. Both scenarios imply the

micrograph in Fig. 1.12(a) does not accurately represent clustering in the films. For

the first scenario, not all of the doped cobalt x goes into metallic Co clusters. In
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order for the predicted extinction cross section from Eq. (5.10) to be reduced inside

the measured optical absorption sensitivity (∆A ≈ 0.022), only approximately 1/4 x

of the doped Co would form clusters. Indeed, approximately x = 0.02 of the Co is

soluble in the TiO2 lattice.66 Additionally, the Co clusters may not consist entirely of

bulk Co metal. Cobalt on the outer surface of the clusters likely forms a Co-oxide

layer surrounding the spheres of bulk Co. In the second scenario, the average clus-

ter radius must be larger than observed in Fig. 1.12(a) by roughly a factor of two. If

30 ≤ a ≤ 60, the slope of the normalized 〈σext〉 decreases to µ ≈ 0.014. Substituting

into Eq. (5.10) gives σtotal � 0.02, an effect not observable with the present optical

measurement certainty. Thus, scenario (ii) offers a plausible explanation consistent

with the reported behavior of Co clusters66 and the optical data showing no evidence

of scattering or absorbtion by these clusters.

High-T magnetization and TEM experiments have provided direct evidence of

Co clustering in the x = 0.07 samples. The large Tc reported from VSM likely results

from bulk Co in these clusters. Optical measurements find no clustering evidence as

predicted by either effective medium theory or Mie theory. In Mie theory, the reduced

cross section suggests either a lower concentration of Co in clusters than expected

from the doping level or an average cluster radius larger than that observed in the

TEM micrograph. For low-doped samples, x ≤ 0.02, the clustering story appears

different. In these low-doped systems, Tc lies much lower than bulk Co and TEM

exhibits no clustering. Given the limited Co solubility in the TiO2 matrix for concentra-

tions x > 0.02 and the reported sensitivity of Ti1−xCoxO2−δ films to sample preparation

(O2-annealing66 and growth temperature) the remaining sections of this chapter focus

on low-doped samples.
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5.2 Experiment

5.2.1 Sample characterization

Thin film samples of Ti1−xCoxO2−δ with x = 0, 0.01, and 0.02 were grown

on SrLaGaO4 (SLGO) substrates using pulsed laser deposition (PLD). Addition-

ally, a pure TiO2 film was grown on LaAlO3 (LAO) for comparison. Films were

deposited with an oxygen partial pressure of 10−5 Torr (corresponding to δ � 1).

Rutherford backscattering measurements (RBS) determined the film thicknesses

to be 1470, 1350, 1400, and 1580 Å (to better than 5 %) for the x = 0, 0.01, 0.02

on SLGO, and x = 0 on LAO, respectively. 4-probe dc resistance measurements

exhibit insulating behavior with room temperature resistivity ρ295K � 0.1Ω cm. X-ray

diffraction (XRD) measurements66 of both pure and doped TiO2 films show peaks

corresponding to those observed in bulk anatase TiO2. Figure 5.3a illustrates the

narrow XRD peaks (inset highlights anatase 004 peak) for doped Ti1−xCoxO2−δ

indicative of high-quality films. Values of the in-plane and out-of-plane (d004) lattice

constants obtained from XRD are discussed later in the chapter. No direct evidence
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Figure 5.3: Ti0.99Co0.01O2−δ films. (a) XRD rocking curves. Inset highlights
the Anatase 004 peak. (b) TEM showing an absence of Co clusters.

of Co clustering is observed in these low-doped (x ≤ 0.02) films as confirmed by the
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TEM micrograph shown in Fig. 5.3b.

Films produced using PLD typically display rough surface topology. A high-

energy laser ablates a target pellet of the material to be deposited. The laser pulse

removes large chunks of material from the target and deposits those boulders on the

substrate material. Often this process results in a rough film surface.

Atomic Force Microscopy (AFM) characterizes the film surface roughness. Re-

sults of an AFM surface scan of a 10 × 10 µm area of a x = 0.02 film studied herein

are shown in Fig. 5.4. While most of the surface remains flat to within ±20 nm, sev-

eral large boulders of material are easily seen. These boulders persist in films of all

doping concentrations, but are not observed on the bare substrates. The line scan

in Fig. 5.4 shows a typical height profile of the boulders, which extends to greater

than 100 nm above the average film surface. Despite the large height of the boulders

relative to the film thickness, the area of these regions remains small (less than a

few percent). Therefore, the resulting thickness variations only minimally affect the

optical properties.

5.2.2 Transmission and reflection measurements

Room temperature transmission T (ω) and reflection R(ω) measurements of

near-normal incidence light at frequencies from 0.25 to 5 eV are performed using a

FTIR spectrometer27,164 described in detail in Chap. 2. Figure 5.5 shows the room-

temperature T and R spectra for doping x = 0, 0.01, and 0.02. Several features

characterize the spectra. First, below ≈ 3 eV, T and R sum to unity, indicative of neg-

ligible absorption or scattering. In this region, T and R exhibit oscillations resulting

from interference (étalon) in the thin films. The period of this étalon (∆ν) together

with the index of refraction n gives the film thickness using Eq. (2.36) on page 59.

Film thicknesses determined from étalon agree with RBS measurements. Above

the transparency window, T drops precipitously and the étalon behavior disappears,
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Figure 5.4: AFM film surface scan of Ti0.98Co0.02O2−δ. Scan area is 10 ×
10 µm and height contours are in nm. Several boulders of deposited material
are visible. A line scan (y = 1.56 µm) illustrates the height of the boulders.

characteristic of the onset of absorption. Finally, this absorption onset shifts to higher

frequencies with x, as seen in T .

As described in Chap. 2, numerical inversion of the Fresnel formulas86 for T

and R obtains directly the complex index of refraction. In the transparency window

(below 3 eV), the small value of κ complicates the numerical inversion procedure.

As a result, multiple roots arise in the solutions of T and R (see Fig. 2.11). The
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Figure 5.5: Transmittance and reflectance spectra of Ti1−xCoxO2−δ films at
room temperature for Co concentrations x = 0, 0.01, and 0.02.

n values are particularly sensitive to these roots, while κ remains roughly constant.

These complications vanish above the absorption onset. Having determined ñ(ω),

additional optical constants may be derived, e.g., the optical absorption α(ω) or the

complex optical conductivity σ̃(ω). The following section discusses the resulting op-

tical constants.

5.3 Results

5.3.1 Absorption coefficient

Historically, the spectral dependence of the band edge is characterized using

the absorption coefficient α given by Eq. (2.9). At photon energies above the band

gap Eg, α ∝ (�ω − Eg)1/2 for a direct gap while α ∝ (�ω − Eg)2 for an indirect gap.165

Band structure calculations166 predict a direct gap at energies just lower than the on-
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set of indirect transitions in TiO2. In a detailed study of the absorption edge of single

crystal anatase TiO2, Tang et al.167 report a band edge extrapolated from an Ur-

bach tail behavior with Eg = 3.420 eV and tentatively assign the transition to a direct

gap. Consistent with the behavior of a direct gap, Fig. 5.6 plots α2 versus frequency.

Extrapolations to zero absorption of the linear fits above the band edge onset give

δ

α

Figure 5.6: Frequency dependence of the square of the absorption coef-
ficient α at room temperature for Co concentrations x = 0, 0.01, and 0.02.
Straight lines represent linear fits. An undoped TiO2 sample grown on a
LaAlO3 substrate is shown for comparison.

the direct band gap energy Eg. Pure TiO2 exhibits Eg = 3.6 eV. With increased Co

concentration x, the band edge shifts to higher frequencies, showing a maximum

shift of 100 meV for x = 0.02. Apart from a band edge tail, there appears no evidence

for strong absorption at frequencies below the gap. Additionally, direct band gap en-

ergies are compared to results of α fits appropriate to an indirect gap (
√
α) and for an

Urbach tail167 (semilog α). Figure 5.7 shows
√
α versus frequency and correspond-
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ing linear fits. While the absolute position of Eg depends on the assumed frequency

dependence of α, the observed blue shift of Eg with Co doping remains quantitatively

unaffected. While the exact nature of the gap (direct or indirect) remains uncertain,

that the edge shifts does not. In a related work on Co-doped rutile TiO2, Park et al.68

Figure 5.7: Frequency dependence of the square root of the absorption
coefficient α at room temperature for Co concentrations x = 0, 0.01, and
0.02. Straight lines represent linear fits.

find no appreciable band edge shift with Co doping up to x = 0.12. However, the

maximum blue shift of 100 meV observed in the present study falls within the error

bars reported on the rutile phase, so the two results may be consistent.

5.3.2 Optical conductivity

While α well characterizes the band edge onset, the optical conductivity better

suites to compare experimental results to the predictions of band theory. In particular,

the real part of the optical conductivity is given by σ1(ω) ∝ 2 n kω, where n and
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k are the real and imaginary part of the complex index of refraction, respectively,

and ω is the frequency. Figure 5.8 shows the frequency dependence of σ1 at room

temperature for several Co concentrations. Throughout the mid-infrared (mid-IR) to

Figure 5.8: Frequency dependence of the real part of the optical conductiv-
ity σ1 at room temperature for Co concentrations x = 0, 0.01, and 0.02. Inset
expands the region just below the band edge. Band theory calculations from
Yang et al.161 are shown for x = 0 and x = 0.125.

visible frequency range (0.25 to 3 eV), σ1 remains essentially zero, consistent with

the negligible dc conductivity (σdc � 0.1Ω−1 cm−1). At frequencies larger than 3 eV,

σ1 increases rapidly, corresponding to the increase in absorption as seen in Fig. 5.6.

The expanded view in the inset of Fig 5.8 further elucidates the minimal mid gap

conductivity. Although no strong conductivity in the spectral range 1 ≤ �ω ≤ 3 eV

is observed, σ1 increases slightly near the edge, albeit non-monotonically, with the

addition of Co. Such an increase may result from the Co levels in the gap or disorder

effects on the Urbach tail167 of the fundamental absorption edge.
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5.4 Discussion

5.4.1 Photoluminescence data

An interesting results arises from the comparison of the optical conductivity

and band edge shifts with photoluminescence (PL) spectra. PL studies168–170 find a

broad peak centered around 2.3 eV for anatase TiO2. The peak in the PL spectrum is

Stokes shifted 1.3 eV lower than the onset of interband transitions in the optical con-

ductivity and the peak in the PL excitation spectrum. Tang et al.170 assign the Stokes

shift to a self-trapped exciton (STE) where the exciton loses energy nonradiatively to

the lattice. In this interpretation, the peak in the PL spectrum resulting from the STE

should follow the shifts in the band edge. Indeed, the PL peak blue shifts with Co

doping.168 Doping dependent shifts in the band edge and the PL peak are plotted

together in Fig. 5.9 for comparison. Both the direct band gap energy and the PL peak

increase monotonically with doping for x ≤ 0.02, while the PL peak saturates above

x = 0.02. The saturation of the shift at higher doping concentrations is consistent

with the limited solubility of Co in TiO2 as reported earlier.66

5.4.2 Pressure-dependent optical studies

A pressure-dependent optical study171 of single crystal anatase TiO2 reports

similar shifts of the band edge with Co as observed here. Sekiya et al.171 observe

a blue shift of the band edge upon the application of hydrostatic pressure. For an

applied pressure of 3.9 GPa, the edge shifts to higher energy by ≈ 50 meV. The

change in the TiO2 lattice resulting from the hydrostatic pressure is estimated by

introducing the bulk modulus B = −V∆P/∆V, where V is the volume, ∆V is the

change in volume, and P is the applied pressure. Taking B = 180 GPa for anatase

TiO2 from Ref. 172, the applied hydrostatic pressure of 3.9 GPa introduces a volume

decrease of ≈ 2%.
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δ

Figure 5.9: Shifts with cobalt doping of the direct band edge (circles with a
dashed line as a guide for the eye) and photoluminescence peak from Guha
et al.168 (triangles). For comparison the out of plane lattice constant66 d004

for films grown on LaAlO3 is plotted on a separate y-axis (squares).

5.4.3 Substrate strain

The blue shift of the band edge with increasing pressure or equivalently de-

creasing lattice size suggests consideration of lattice strain induced by the substrate

or the addition of cobalt. First regarding the substrate, the thin films studied suffer

strain due to lattice mismatch with the substrates. For epitaxial films, the initial lay-

ers grow coherently with the substrate. Defects gradually relax the induced strain,

allowing the films to grow more like bulk. Values of the in-plane lattice constant a

for bulk TiO2, LAO, and SLGO are listed in Table 5.1. Both LAO and SLGO sub-

strates have a larger in-plane lattice parameter than bulk TiO2, introducing a tensile

strain in the films of approximately 0.12% and 1.5%, respectively. The tensile stress

tends to expand the TiO2 lattice in the plane. For materials with a typical Poisson
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ratio, an in-plane expansion results in a reduction of the out-of-plane lattice constant,

d004. Indeed XRD measurements of the TiO2 films reveal such a decrease of d004, as

shown in Table 5.1. The film on SLGO, with the larger in-plane tensile strain, exhibits

a (Å) d004 (Å)
TiO2 Bulk1 3.7851 2.3780
LaAlO3 substrate 3.79
SrLaGaO4 substrate 3.84
TiO2 film on LaAlO3 2.376 2

TiO2 film on SrLaGaO4 2.367 2

1 Ref. 172.
2 X-ray diffraction measurement.

Table 5.1: TiO2 and substrate in-plane (a) and out-of-plane (d004) lattice
parameters.

a larger reduction in d004 relative to bulk TiO2 (0.45%) compared with the film on LAO

(0.08%). To explore the effects of lattice strain on the band edge, the absorption of a

TiO2 film grown on LAO is shown in Fig. 5.6. The band edge of the film on LAO with

the smaller in-plane lattice is blue shifted (� 100 meV) relative to the TiO2 film grown

on SLGO, consistent with the blue shift resulting from the application of hydrostatic

pressure discussed above.

5.4.4 Lattice expansion with doping

Examining the change in size of the lattice with doping addresses the effect

of cobalt substitution on the shift of the band edge. Cobalt appears in the doped

TiO2 system in the 2+ formal oxidation state as determined from x-ray absorption

spectroscopy.67 The atomic radii of Co2+ and Ti4+ are 0.82 Å and 0.69 Å, respec-

tively.173 Substitution of the larger Co2+ for Ti4+ should expand the lattice. XRD

measurements66 of films grown on LAO (plotted in Fig. 5.9) show d004 increases with

x, saturating at about x = 0.02. The increase of d004 supports the prediction of an

increase in the size of the lattice with Co doping. For the films grown on SLGO, d004

remains relatively constant with Co, d004 = 2.3674± 0.0002 Å. An increasing (films on
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LAO) or relatively constant (films on SLGO) lattice size with x should result in either

a red shift or no shift of the band edge. Therefore, the observed blue shift with Co

doping cannot be ascribed simply to a change of the lattice size.

5.4.5 Band structure and electronic transitions

A comparison of the measured conductivity to theoretical predictions of the

electronic structure of both pure and Co-doped TiO2 provides insight towards under-

standing the observed blue shift of the band edge. Band structure calculations68,174

indicate the valence band derives primarily from oxygen p-levels, the conduction

band derives from the Ti d-levels, and that the crystal-field split Co d-levels fall within

the energy gap.68,175 These mid gap states would lead to below band gap optical

absorption in a non-interacting electron picture of optical transitions. Using a first-

principles density-functional approach, Yang et al.161 investigates nonuniform distri-

bution of Co. The resulting σ1 for x = 0.125 and pure TiO2 are shown in the inset of

Fig. 5.8 for comparison.

The predicted increase in conductivity below the band gap results from tran-

sitions to cobalt levels. The effective Co number density Ne f f may be estimated

using the partial optical sum rule given by Eq. (2.24), where Ne f f in general will be

somewhat less than the cobalt number density N. The cobalt number density N as

a function of x is given by N = f x/V, where f = 4 is the number of Ti per unit

cell and V = 136.85 Å3 is the unit cell volume. Estimating Ne f f from the predicted

conductivity using Eq. (2.24) and comparing to N, approximately 0.75 of the total Co

spectral weight appears in the predicted mid gap absorption feature. To estimate the

Co spectral weight from the experimental data, the difference in σ1 due to doping is

taken to be a constant ≈ 10Ω−1 cm−1 (corresponding to the measurement error) over

the frequency range from 1 to 3 eV. Substituting into Eq. (2.24) provides an experi-

mental upper bound of Ne f f ≈ 1020 cm−3. Comparing this to the number density N
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results in an upper bound on the observed density of Co, which is roughly 0.15 times

the expected total. The absence of below gap optical excitations in the measured

conductivity may be understood either as evidence that the band calculations fail to

capture the electronic structure of this material under the assumed charge state of

the cobalt or that the on-site Coulomb energy U for adding another electron to the

Co ion is large. In the second scenario the experiment implies U � 3 eV.

Taken together, the absence of spectral weight associated with cobalt levels in

the gap and the blue shift of the band edge suggest possible strong interaction effects

on the optical transitions involving the Co ion. First, interpretations that consider the

alloy within a rigid band picture are rejected. In this case a shift in the band edge re-

sults from uniform shifts of the conduction band due to the average Ti/Co potentials.

Since the atomic potentials for Co are larger that those of Ti, the Ti/Co band would

be lower than the pure Ti bands in TiO2 resulting in a red shift of the band edge, con-

trary to observation. Indeed the rigid band approach more appropriately describes

delocalized states. For the transition metal ions in Ti1−xCoxO2−δ, a localized picture

is more appropriate. Therefore, the following discussion considers the processes

operating on the optical transitions involving the Co levels within a localized picture.

Figure 5.10 shows a schematic view of the band structure.

In pure TiO2, the band edge Eg consists of the energy difference between the

filled O p-levels (shaded) and the empty Ti d-levels with Eg ≈ 3.6 eV (as discussed

above). With the addition of cobalt, charge transfer transitions from the O p-levels to

the empty localized Co2+ d-levels become possible. Allowed transitions from occu-

pied Co levels to the Ti levels should be weaker since they involve a virtual transition

through the O p-levels. The energy E1 of the oxygen to cobalt transition is the sum

of the charge transfer energy ∆Co plus the on-site Coulomb energy U; E1 = ∆Co +U.

The observed absence of below band gap absorption indicates that E1 is greater

than the band gap in the alloy E′g. This is reasonable since the U is estimated to be
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Figure 5.10: Schematic energy level diagram of Ti1−xCoxO2−δ.

≈ 3 eV and the empty Co levels are ≈ 2 eV above the oxygen band.68

Considering now the observed band edge shift, ∆Eg = ξ x, where ξ = 5 eV. If

the O and Ti band edges are not affected by the substitution of Co, this shift would

be understood in terms of the reduction of the interband oscillator strength upon Ti

dilution by Co and the extra absorption at E1. However, this scenario leads not to

a shift in the band edge but essentially to a change in the slope of α2, contrary to

observation. Therefore the O and Ti bands must separate upon Co substitution. The

large rate of separation (ξ = 5 eV) implies strong level repulsion that might occur

for interstitial incorporation of the Co. This large band edge shift is especially inter-

esting because it implies strong interactions which are also required to provide the

large exchange interaction and associated high ferromagnetic Tc observed in this

material.175

5.5 Conclusions

Summarizing, Chap. 5 presents optical measurements in the spectral range

0.2 ≤ �ω < 5 eV on anatase Ti1−xCoxO2−δ films. As-grown films doped at concentra-
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tions x > 0.02 exhibit a limited Co solubility, as clearly demonstrated in TEM. How-

ever, optical measurements in the mid gap region find no evidence for absorption or

scattering processes as predicted from either Maxwell-Garnet or Mie scattering theo-

ries. This suggests the TEM micrograph in Fig. 1.12 is not representative of clustering

in these systems. Possible explanations include less metallic Co in the clusters or

the average cluster size exceeds that shown in the micrograph. In low-doped films

(0 ≤ x ≤ 0.02) exhibiting no clustering, optical measurements have revealed a shift

of the band edge with Co doping and an absence of mid gap absorption. For well

oxygenated films (δ � 1) the optical conductivity is characterized by an absence of

optical absorption below an onset of interband transitions at 3.6 eV and a blue shift

of the optical band edge with increasing Co concentration.

Current theoretical models predict mid gap magnetic impurity bands. Thus, the

absence of below band gap absorption implies strong Coulomb interaction effects on

the optical processes involving the Co ions. Furthermore, the origin of the observed

blue shift remains puzzling. Changes in the lattice size with Co substitution sug-

gest an additional mechanism must produce the observed shift. Identification of the

mechanism responsible for modifying the band structure may provide insight towards

understanding the unusually high Tc in Co-doped TiO2.
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Chapter 6

Conclusions

Strongly interacting electron systems offer wide-ranging phenomena of interest

to condensed matter physics and potential applications in novel electronic devices.

Magnetic transition metal oxides (TMO) represent archetypical strongly correlated

systems. The optical studies presented in the preceding chapters focus on three

such magnetic TMOs: the orthorhombic manganites including the parent compound

LaMnO3 and the hole-doped colossal magnetoresistant alloys, the multiferroic hexag-

onal manganite LuMnO3, and the diluted magnetic oxide (DMO) Co-doped TiO2.

The experimental efforts concentrated on understanding the underlying physics of

these systems through their response to light under varying experimental parame-

ters, namely frequency, temperature, and electric field polarization.

6.1 Experimental Techniques

The measurements discussed herein employed a variety of spectroscopic

methods to determine most accurately the optical properties of the investigated

materials. Specifically, the measurements entailed extensive experience with FTIR

spectroscopy and knowledge of the optical properties of elements utilized for

beamsplitters, windows, polarizers, and filters from the far infrared to ultraviolet

spectral range. Thin film samples required development and characterization of

a technique to extract the optical constants by measuring both transmission and

reflection and inverting the Fresnel coefficients.
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Thin film samples offer several advantages over bulk samples. First, the nu-

merical inversion technique extracts the complex optical conductivity at measured

frequencies without the need for extrapolations required by the standard Kramers-

Kronig (K-K) method. Furthermore, typical dimensions for films grown by pulsed

laser deposition (5 × 5 mm2) exceed that of single crystal bulk samples. Large sam-

ples increase the signal to noise ratio, which is especially important in the far-infrared

spectral range. In addition to a large surface area, films offer an optically flat surface

area without requiring polishing.

While the thin film inversion process avoids extrapolation errors, determining

the physically relevant roots from multiple solutions often proves difficult in practice.

In contrast, K-K of bulk samples readily produces values for the optical constants.

Furthermore, extracting optical constants from films requires both transmittance and

reflectance measurements plus knowledge of the substrate optical constants, as op-

posed to only one quantity (reflectance) required for bulk samples. Finally, substrates

opacity in the phonon frequency region limits the useful spectral range.

6.2 Orthorhombic Manganites

The hole-doped pseudocubic manganites, R1−xAxMnO3, exhibit a rich phase di-

agram that includes, in addition to colossal magnetoresistance (CMR), various types

of magnetic, charge, and orbitally ordered phases. Temperature dependent optical

conductivity studies of the parent compound LaMnO3 reveal interesting properties

in the electronic and phonon spectral regions. The strong correlation of the 2 eV-

feature spectral weight with TN agrees with models considering this transition as a

Mn-Mn inter-site charge-transfer transition, in contradiction with models considering

the transition as on-site. In the far-infrared, several of the infrared active phonons

exhibit temperature shifts of the transverse optical phonon frequencies that correlate

with the antiferromagnetic ordering below TN .
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For the CMR manganites (0.2 ≤ x ≤ 0.4), a broad maximum near 1 eV charac-

terizes the infrared optical conductivity in the paramagnetic-insulating state of these

materials. The transition red shifts and grows in optical oscillator strength as the tem-

perature lowers into the ferromagnetic state, eventually transforming into a Drude-like

response. This optical behavior is consistent with a crossover from activated small

polaron transport in the paramagnetic state to itinerant conduction of a large po-

laron in the ferromagnetic ground state. The observed optical spectra and oscillator

strength changes compare well with models that include both double exchange and

the dynamic Jahn-Teller effect in the description of the electronic structure.

A Drude-model analysis of far-infrared transmission finds a T 2 temperature de-

pendence of the scattering rate and an optical mass enhancement that exceeds spe-

cific heat results. The enhanced optical mass may result from charge ordering cor-

relations. The presence of charge density waves at low temperatures suggests the

competition of various types of ordering in the ferromagnetic metallic ground state. At

higher energies, frequency-dependent scattering due to the strong electron-phonon

coupling accounts for a majority of the IR spectral weight.

6.3 Hexagonal Manganites

Manganites with a small rare-earth ionic radius (e.g., Lu) result in a hexagonal

crystal structure and a multiferroic ground state in which ferroelectricity and antifer-

romagnetism occur simultaneously. The results reported here offer the first thorough

optical study of LuMnO3. The optical conductivity of this hexagonal manganite ex-

hibits an on-site Mn d-d transition near 1.7 eV allowed by the low crystalline symme-

try. The transition peak energy blueshifts (≈ 0.1 eV) in the antiferromagnetic state

displaying an inflection point at TN . In the far infrared, transverse optical phonon fre-

quencies exhibit a similar temperature dependent anomaly arising from spin-phonon

interaction effects. Further, these phonons overwhelmingly contribute to the known
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temperature dependent anomaly below TN of the quasi-static dielectric constant. The

similarity of the frequency shift of the spin-coupled phonons and the temperature de-

pendence of the 1.7 eV feature suggests that both are related to the same, nearest-

neighbor spin correlation function.

Hexa-manganites exhibit similarities in the electronic spectrum with the or-

thorhombic manganites. Optical conductivity of both crystal structures reveals an

O 2p to Mn 3d charge transfer transition above ≈ 4 eV. Additionally, a lower-lying

Mn-Mn transition occurs in both manganite classes. However, the temperature de-

pendence and underlying mechanism of the observed transitions differ. In LuMnO3

the peak energy shifts with temperature while the spectral weight remains relatively

constant, exactly the opposite occurs in LaMnO3. Thus, while both low-lying elec-

tronic transitions are Mn-Mn, the transition is a symmetry allowed on-site in LuMnO3

and a inter-site in LaMnO3.

The optical properties of LuMnO3 reported here contribute significantly to un-

derstanding the nature of coupling between magnetic and ferroelectric ordering in

multiferroic materials. Moreover, the results demonstrate that optical spectroscopy

provides a powerful tool in the study of exchange interaction effects in the strongly

frustrated magnetic system of the hexagonal manganites.

6.4 Co-Doped Titanium Dioxide

Cobalt-doped titanium dioxide offers a promising new dilute magnetic system.

The results presented here represent the first optical conductivity studies on thin films

of anatase-phase Ti1−xCoxO2−δ. Optical measurements on higher doped samples

(x > 0.02) with known cobalt solubility problems find no evidence for absorption or

scattering processes in the mid gap region as predicted from either Maxwell-Garnet

or Mie scattering theories. The discrepancy suggests either a lower concentration of

metallic Co in clusters or a larger average cluster size than determined by TEM. The
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optical conductivity on low-doped (x ≤ 0.02) films reveals an absence of absorption

below an onset of interband transitions at 3.6 eV and a blue shift of the band edge

with increasing Co concentration. These observations remain inconsistent with the-

oretical models, which contain mid gap magnetic impurity bands, and suggest that

strong on-site Coulomb interactions shift the O-band to Co-level optical transitions to

energies above the gap. The large observed shift in the band edge with doping may

provide insight towards understanding the unusually high Tc in these diluted magnetic

oxide systems.

6.5 Future Work

The optical studies summarized above have provided insight into the physical

mechanisms governing several strongly correlated TMO systems. However, funda-

mental questions still remain and further studies are required.

At low frequencies the near unity reflection of materials with metallic-like con-

ductivity complicates accurate extraction of the optical constants. A novel technique

to extract the conductivity of thin films in the far infrared by measuring the ampli-

tude and phase of reflection and analyzing the frequency shift of the substrate étalon

has been developed. Appendix B presents a description of the experimental method

and preliminary results on metal films. The technique proves especially powerful

for extracting the imaginary part of the conductivity, which appears squared in the

reflectance and tends to zero with decreasing frequency.

The history of clustering in diluted magnetic semiconductors/oxides necessi-

tates a technique for characterizing the intrinsic nature of the ferromagnetism. A re-

cent study reports176 observation of an anomalous Hall effect signals present in clus-

tered rutile phase Ti1−xCoxO2−δ. Hence, other experimental methods such as electric

field modulation of magnetism or magnetic circular dichroism (MCD) offer promise

for ruling out clustering. An extension of the present optical studies on DMOs in-

178



volves developing magnetic circular dichroism (MCD) measurement capabilities. The

project consists of the design, construction, and application of a broadband (1-5 eV)

optical system to measure MCD in these materials. Sensitive heterodyne detec-

tion utilizing a photo-elastic polarization modulator and lock-in amplifiers measures

the complex Faraday angle. A compact electromagnet produces moderate mag-

netic fields (� 1 T) and an optical cryostat allows for temperature dependent mea-

surements (4-425 K). The system affords field-dependent transmission and reflection

measurements in both the Faraday and Voigt geometries. In addition to characteriz-

ing the intrinsic nature of the ferromagnetism, MCD measurements provide informa-

tion regarding the band structure and electronic states important to understanding

magnetic ordering in these novel systems.
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Appendix A

Applications of Maxwell’s Equations to Boundaries

A.1 Maxwell’s Equations

A brief review of electrodynamics facilitates the derivation of Fresnel’s coeffi-

cients at dielectric boundaries. Maxwell’s equations of electrodynamics provide the

necessary laws governing the interaction of light with matter. For linear isotropic

media, the macroscopic Maxwell’s equations (in cgs units) are given by

∇ · D = 4π ρext

∇ · B = 0

∇ × E = − 1
c
∂
∂t B

∇ × H = 1
c
∂
∂t D + 4π

c J


, (A.1)

where E and H are the electric and magnetic fields, ρext denotes the free charge

density, and J represents the current density. For isotropic media in the linear ap-

proximation, the electric displacement D and magnetic induction B are given in terms

of E and H by

D = ε E

B = µH

 , (A.2)

where ε is the dielectric constant and µ is the magnetic permeability. Additionally,

for conducting media Ohm’s law relates the current density J to the electric field E

through the conductivity σ,

J = σ E . (A.3)
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The solution to Eq. (A.1) for source-free media (i.e., ρext = 0 and J = 0) is a

propagating electromagnetic plane wave with spatial and time dependence given by

E(r, t) = E0 ei(k·r−ωt) (A.4)

H(r, t) =

√
ε̃

µ̃
k̂ × E(r, t) ≡ 1

Z̃
k̂ × E(r, t) , (A.5)

where Z̃ =
√

µ

ε
represents the complex impedance. For free space, Z = 4π/c in cgs

units and Z = 377Ω in MKS units. The interaction of propagating electromagnetic

waves with boundaries between optical medium will be of prime importance in the

remainder of this appendix.

A.2 Fresnel Coefficients

Consider first the case of a single boundary between optical media designated

by 0 and 1. Figure A.1 shows a schematic representation of an electromagnetic

wave incident from the left on the boundary between media with indices of refraction

n0 and n1. For n0 � n1, the incident wave will experience both reflection and trans-

mission from the interface. Solving for the relative magnitude of the transmission and

reflection requires boundary conditions.

At the boundary, Maxwell’s equations, Eq. (A.1), provides continuity of the nor-

mal D and B and the tangential E and H fields. Writing these conditions out explicitly

for the boundary between media 0 and 1 gives

n̂ · (D1 − D0) = 4πσ

n̂ · (B1 − B0) = 0

n̂× (E1 − E0) = 0

n̂× (H1 − H0) = 4π
c K


, (A.6)

where n̂ represents the unit normal vector at the boundary and σ and K represents

a surface charge density and a surface current density, respectively. In the case of
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Figure A.1: Electromagnetic wave incident on a dielectric boundary be-
tween media with indices n0 and n1. Note here n0 > n1 so the reflected
wave experiences no π phase shift of the electric field.

normally incident light with no surface charges or currents, consideration of only the

tangential components results in the following simplified boundary conditions

Ei + Er = Et (A.7)

Hi − Hr = Ht →
1

Z̃0
(Ei − Er) =

1

Z̃1
Et , (A.8)

where the right side of Eq. (A.8) utilizes the complex impedance Z̃.

Solving Eqs. (A.7) and (A.8) gives the Fresnel coefficients for the transmission

t01 and reflection r01 of normally incident light on a plane boundary between two semi-

infinite media with complex indexes of refraction ñ0 and ñ1. Here t01 (r01) represent

the amplitude ratio of the transmitted (reflected) to the incident electric field. The

Fresnel coefficients are given by

t01 =
Et

Ei
=

2Z̃0

Z̃0 + Z̃1
→ 2ñ0

ñ0 + ñ1
(A.9)

r01 =
Er

Ei
=

Z̃1 − Z̃0

Z̃0 + Z̃1
→ ñ0 − ñ1

ñ0 + ñ1
, (A.10)
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where the subscripts 01 indicate light incident from medium 0 onto medium 1. Note

that the equations are not mirror symmetric, ri j = −r j1 and ti j = ni/nj t ji. The right-

hand sides of Eqs. (A.9) and (A.10) represent the result for µ = 1. This condition

is satisfied for most materials at frequencies from the far-infrared and above. This

condition may be violated in the vicinity of weak magneto-dipole transitions (see anti-

ferromagnetic resonance in Chap. 4).

The Fresnel coefficients represent the amplitude ratios of the transmitted and

reflected E-fields to the incident E-field. Optical detectors typically measure intensity

rather than amplitude. In this case, the transmittance T and reflectance R represent

the ratio of the transmitted and reflected intensities to the incident intensity. The

transmittance T and reflectance R are given by

T01=
n1

n0

∣∣∣∣∣Et

Ei

∣∣∣∣∣2 =n1

n0
|t01|2 =

n1

n0

4(n2
0 + κ

2
0)

(n0 + n1)2 + (κ0 + κ1)2
(A.11)

R01=

∣∣∣∣∣Er

Ei

∣∣∣∣∣2 = |r01|2 =
(n0 − n1)2 + (κ0 − κ1)2

(n0 + n1)2 + (κ0 + κ1)2
. (A.12)

Note the extra ratio of indexes in the formula for T necessary for energy conservation.

The Poynting vector S gives the power in a given medium, S = c/(4π) E × H =

c/(4π) n |E|2 k̂, and hence the additional factor of n.

A.3 Bounded Dielectric Slab

A Fabry-Pérot cavity consists of a slab of material of finite thickness d1 with par-

allel edges and index of refraction ñ1 bounded by two semi-infinite medium of indexes

ñ0 and ñ2 respectively. In general, an incident electromagnetic wave will experience

multiple reflections from the boundaries. Figure A.2 represents schematically the

multiple passes in a slab with limited absorption. For each pass through the medium,

the beam acquires a phase φ1 given by

φ1 = 2π ñ1 ν d1 , (A.13)
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Figure A.2: Schematic view of Fabry-Perot resonant cavity illustrating the
first few terms in the infinite series of multiple passes.

where ν = 1/λ is the frequency of the light in wavenumbers. The real part of φ1

represents oscillations of the E-field while the imaginary part represents attenuation.

Adding the multiple passes in the cavity results in an infinite series of terms,

which for the transmission amplitude is given by

t = t01t12ei φ1 + t01t12r12r10e3i φ1 + t01t12r
2
12r

2
10e5i φ1 + · · ·

= t01t12ei φ1(1 + r12r10e2i φ1 + r2
12r

2
10e4i φ1 + · · · )

=
t01t12ei φ1

1 − r12r10e2i φ1
(A.14)

and for the reflection amplitude is given by

r = r01 + t01t10r12e2i φ1 + t01t10r
2
12r10e4i φ1 + t01t10r

3
12r

2
10e6i φ1 + · · ·

= r01 + t01t10r12e2i φ1(1 + r12r10e2i φ1 + r2
12r

2
10e4i φ1 + · · · )

= r01 +
t01t10r12e2i φ1

1 − r12r10e2i φ1
=

r01 + r12e2i φ1

1 − r12r10e2i φ1
. (A.15)

The last line in Eq. (A.15) results from the conservation of energy, t01t10 + r2
01 = 1.

Intensities result from the amplitudes as before [see Eq. (A.11)], giving T = n2/n0 |t|2

and R = |r|2.

In the typical case where the medium represents a slab of material (e.g., a

substrate for thin film growth), air comprises the surrounding media and thus ñ0 =
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ñ2 = nair ≈ 1 and r12 = r10 = −r01. In general, Im{ñ} � 0 and attenuation occurs in the

slab. In this case, the Fresnel coefficients are complex r10 ≡ r10 e−i θ1 . The absorption

coefficient α describes the attenuation per unit length and is given by Eq. (2.9). The

resulting intensities from Eqs. (A.14) and (A.15) give for the transmittance

T =
∣∣∣∣∣∣ t01t12 ei φ1

1 − r2
10 e2i φ1

∣∣∣∣∣∣
2

=
T01T12e−α1d1

1 − 2R10 cos
[
2(φ1 + θ1)

]
e−α1d1 + R2

10e−2α1d1
(A.16)

and for the reflectance

R =
∣∣∣∣∣∣r01 +

t01t10r12 ei 2φ1

1 − r2
10 e2i φ1

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
r01

(
1 − ei 2φ1

)
1 − r2

10 ei 2φ1

∣∣∣∣∣∣∣∣
2

=
R01

[
1 − 2 cos(2φ1) e−α1d1 + e−2α1d1

]
1 − 2R10 cos

[
2(φ1 + θ1)

]
e−α1d1 + R2

10e−2α1d1
. (A.17)

These values represent the intensity for the coherent addition of the multiple reflec-

tions illustrated in Fig. A.2. Note that the denominators of both T and R have an

oscillatory term in frequency given by the phase. Peaks in the transmission occur

whenever the phase φ is an integer multiple of π. The index at the m-th peak is given

by

nm =
m

2 νm d
, (A.18)

where d is the slab thickness and νm is the frequency in cm−1 of the m-th peak. Of

course to obtain n from this method requires knowledge of the order m of the phase.

In principle when the étalon is measured in the far-IR sufficiently near 0 cm−1, m may

be determined by extrapolating the data to zero frequency.

This technique is particularly well-suited for determining the index of refraction

of materials to be used as substrates in thin film growth. Fitting the resulting transmis-

sion spectrum with a series of Lorentzians obtains the peak frequencies. Figure A.3

shows results for SrLaGaO4. Transmittance data at room temperature is shown as

circles and the series of Lorentzians are shown as the solid lines.
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Figure A.3: Transmission étalon peaks of LSGO fit to Lorentzians.

Using the method described above together with Eq. (A.18), the far-IR indexes

for several substrate materials are plotted in Fig. A.4. Data are for room temperature

with the exception of LaAlO3 which displays temperatures 294 K and 100 K.

A.4 Coherent vs. Incoherent Addition

For optical measurements of thin films on relatively transparent substrates, the

étalon behavior of the Fabry-Pérot cavity formed by the substrate is of little interest.

Rearranging Eq. (A.18) gives the frequency difference between peaks. For typical

substrates, d ≈ 0.05 cm and n ≈ 2 in the infrared to visible frequency range. The

corresponding frequency difference between étalon peaks is approximately 5 cm−1.

The optical properties studied herein concern features broader than 5 cm−1 (with the

exception of narrow phonon lines in the far-IR). Thus the substrate étalon behavior

may be averaged.

Experimentally, restricting the scanning mirror travel in the FTIR spectrometer
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Figure A.4: Index of refraction for several common substrate materials ob-
tained from étalon transmission peaks in the far-infrared.

to a distance L < 0.1 cm limits the resolution to 1/(2L) > 5 cm−1 and effectively

averages the substrate étalon. Extracting the film and substrate optical constants

from this physically averaged spectrum requires a model that effectively averages

the substrate étalon. In principle, a simple average of the T or R response over the

frequency range ∆ν should suffice. However, inversion of the T and R equations to

obtain the optical coefficients already presents computational challenges.

A simpler model considers the incoherent addition of the multiple reflections in

the slab, dropping the real part of the phase φ. Here the multiple passes are treated

as a sum of the intensities of the Fresnel coefficients (Ti j = |ti j|2 and Ri j = |ri j|2) at
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the boundaries. For incoherent addition, T and R are given by

T = T01T12 e−α1 d1

1 − R2
01 e−2α1 d1

(A.19)

R = R01 +
T01T10R12 e−2α1 d1

1 − R2
01 e−2α1 d1

, (A.20)

where the bounding media 0 and 2 are taken to be the same such that R01 = R10 =

R12.

Questions regarding the rigorous nature of this simplified model naturally arise.

In the limit of zero absorption and for a dispersionless index (κ = 0 and n � n(ν)),

the incoherent addition exactly represents an average over the étalon. For example,

consider average transmittance over one étalon period (from m-th to m + 1-th peak

given by
1
π

∫ (m+1)π

mπ

T01T12

1 − 2R01 cos(2φ) + R2
01

dφ =
T01T12

1 − R2
01

. (A.21)

Comparing with Eq. (A.19) for zero absorption (i.e., α1 = 0), the incoherent addition

exactly equals the average T over one étalon peak. When the restricted behavior of

n is lifted, the incoherent addition no longer remains rigorously exact. However, the

incoherent addition performs remarkable well in practice for finite absorption and dis-

persive n, provided neither has strong frequency dependence over an etalon spacing.

A.5 Thin Film on a Substrate

As a final boundary configuration, consider the case of a thin film on a substrate

where both are potentially absorbing. Define the media numbering 0-3 from left to

right as follows: the bounding media are 0 and 3, the film is 1, and the substrate is 2.

The coherent transmittance and reflectance (intensities) are given by

T = |t|2 =
∣∣∣∣∣∣ t01 t12 t23 ei(φ1+φ2)

1 + r01 r12 e2i φ1 + r01 r23 e2i(φ1+φ2) + r12 r23 e2i φ2

∣∣∣∣∣∣
2

R =|r|2 =
∣∣∣∣∣∣ r01 + r12 e2i φ1 + r23 e2i(φ1+φ2) + r01 r12 r23 e2i φ2

1 + r01 r12 e2i φ1 + r01 r23 e2i(φ1+φ2) + r12 r23 e2i φ2

∣∣∣∣∣∣
2

(A.22)
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where the fresnel coefficients for t j−1 j and r j−1 j are given by Eqs. (A.9) and (A.10)

and the phases φ j are given by Eq. (A.13). Equation (A.22) results from considera-

tion of multiple passes in both the film and the substrate by splitting the system into

two successive stages.86,177 First consider multiple passes in just the film to obtain

Fresnel coefficients for the front surface of the substrate. Alternatively, these may

be derived from the multi-layer treatment or by accounting for the complete multiple

passes at once.

As for the case of the bounded slab, a simplified formula for T and R results

for the film on substrate by considering incoherent addition in the substrate. Here

the multiple passes are treated as a sum of the intensities of the Fresnel coefficients

(T j = |t j|2 and R j = |r j|2) at the boundaries. The resulting film on substrate T and R

considering incoherent substrate addition are

T =
T ′ T23 e−α2 d2

1 − R′′ R23 e−α2 d2

R = R′ + T ′ T ′′ e−2α2 d2

1 − R′′ R23 e−α2 d2
(A.23)

where the primed and double primed T and R result from separate consideration of

the coherent addition in the film,

T ′ = |t′|2 =
∣∣∣∣∣∣ t01 t12 ei φ1

1 + r01 r12 e2i φ1

∣∣∣∣∣∣
2

T ′′ = |t′′|2 =
∣∣∣∣∣∣ (n2/n0) t01 t12 ei φ1

1 + r01 r12 e2i φ1

∣∣∣∣∣∣
2

R′ = |r′|2 =
∣∣∣∣∣∣−(r01 + r12 e2i φ1)

1 + r01 r12 e2i φ1

∣∣∣∣∣∣
2

R′′ =|r′′|2 =
∣∣∣∣∣∣−(r12 + r01 e2i φ1)

1 + r01 r12 e2i φ1

∣∣∣∣∣∣
2

. (A.24)

Note that the film coefficients depend on the traversal direction across the boundary,

hence the primed and double-primed coefficients.

Extending this model to multilayer composite samples (beyond the film on sub-

strate) becomes increasingly difficult. In this case the multilayer approach using prop-
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agation matrices is more appropriate. Schmadel178 and Jenkins179 provide additional

details regarding this technique.
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Appendix B

Étalon Peak Shifts

For metallic films, the real part of the optical conductivity σ1 dominates the

low-frequency conductivity, while σ2/σ1 → 0 with decreasing frequency. Moreover,

both T and R depend linearly on σ1 but quadratically on σ2. The thin film transmit-

tance formula, Eq. (3.4), illustrates this clearly. Thus, determining the imaginary part

of the optical conductivity σ2 in the far-infrared requires a sensitive measurement

technique. The remainder of this appendix presents a novel technique to accurately

determine σ2 of thin films by measuring the phase shifts of the substrate étalon in-

duced by the films.

B.1 Substrate Thickness Changes

To qualify the experimental technique and establish the sensitivity, first consider

the shift of étalon peaks of a substrate upon changing the thickness. Shifts of the

étalon peaks with frequency determine the change in thickness. Let d′ represent the

new thickness, d′ = d + ∆d. If the substrate material has been removed (e.g., by

polishing) then ∆d < 0. From Eq. (A.18) the new frequency of the m-th peak ν′m is

given by

ν′m = ν + ∆νm =
m

2 n′m(d + ∆d)
≈ m

2 n d

(
1 − ∆d

d

)
= νm

(
1 − ∆d

d

)
, (B.1)

where ∆d/d � 1 satisfies the approximation. In this case the relative shift of the

peaks will be equal to negative the relative change in the thickness

∆ν

ν
= −∆d

d
. (B.2)
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Figure B.1 shows peak shifts versus frequency for two different silicon substrates

with differing ∆d. The inset shows the raw transmittance data for the Si substrates

Figure B.1: Étalon peak shifts as a function of frequency for polished Si
substrates with different polishing configurations: (a) 3 µm diamond paste
for 60 minutes. (b) 1 µm for 10 minutes. Insets show transmittance data of
polished (solid line) and unpolished (dashed line) substrates over a limited
frequency window.

before (dashed curve) and after (solid curve) polishing. A Buehler Minimet auto-

matic polisher (described in detail in Chap. 2) reduced the substrate thickness using

constant applied pressure with (a) 3 µm diamond paste for 60 minutes and (b) 1 µm

diamond paste for 10 minutes. The peak shifts exhibit linear dependence with fre-

quency in accord with Eq. (B.2). Linear fits together with a knowledge of the original

substrate thickness d ≈ 500 µm provide an accurate determination of the change

in thickness ∆d from polishing. The absolute experimental accuracy is better than

0.05 cm−1 throughout the measurement range. This corresponds to a maximum sen-

sitivity of roughly 1 : 104.
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B.2 Thin Film on Transparent Substrate

Next, consider a very thin conducting film on a non-absorbing substrate. In

the far-infrared where the film thickness t is much less than the skin-depth, t �

δ = λ/(4π k), the film may be represented as an infinitely thin conducting sheet.

The usual boundary conditions, Eq. (A.6), at the n0-film and film-n1 interfaces give

continuity in the tangential E-field and the jump in the tangential H-field due to the

sheet conductance. These two boundary conditions result in two equations relating

the incident, transmitted, and reflected electric fields

Ei + Er = Et (B.3)

n0 Ei − n0 Er = (n1 + ỹ) Et , (B.4)

where ỹ = Z0 σ̃ t. Solving these equations gives the Fresnel coefficients for transmis-

sion and reflection amplitude ratios

t =
Et

Ei
=

2n0

n0 + n1 + ỹ
(B.5)

r=
Er

Ei
=

n0 − n1 − ỹ
n0 + n1 + ỹ

. (B.6)

Notice that for n0 > n1, there exists the possibility of zero reflection from the interface

if ỹ = n0 − n1. The film then serves as an anti-reflection (AR) coating. AR coatings

are particular useful for removing often undesirable étalon in optical elements. In this

case, the coating should be deposited such that R� = Z0/(n0 − n1), where R� is the

sheet resistance of the film.

For a thin film on a substrate bounded by air, n0 = n2 = 1 and n1 = ns. The ratio

of the transmitted and reflected to incident intensity, denoted by T and R, respec-

tively, are then

T = n1

n0

∣∣∣∣∣ 2 n0

n0 + n1 + ỹ

∣∣∣∣∣2 = 4 n1 n0

(n0 + n1 + Z0 σ1 t)2 + (Z0 σ2 t)2
(B.7)

R =
∣∣∣∣∣n0 − n1 − ỹ
n0 + n1 + ỹ

∣∣∣∣∣2 = (n0 − n1 − Z0 σ1 t)2 + (Z0 σ2 t)2

(n0 + n1 + Z0 σ1 t)2 + (Z0 σ2 t)2
. (B.8)
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For non-absorbing substrates of finite thickness, the incident light will reach the back

surface. Here an expression for the ratio of the film-substrate configuration to the bare

substrate may be obtained. The resulting thin-film transmittance of the film/substrate

combination is given by Eq. (3.4).

The thin-film transmittance formula ignores étalon effects in the substrate. For

the absorbing film, the coefficient for reflection from the substrate-film surface r10

becomes complex and is now given by Eq. (B.6), r10 = r. Rewriting the complex

substrate-film reflection coefficient

r̃10 = ρ e2 i θ , (B.9)

where 2 θ denotes the phase, makes obvious the additional phase factor contribut-

ing in the denominator of T in Eq. (B.7). This phase factor will be given by 2 θ =

tan−1 (Im{r̃10}/Re{r̃10}).

For metallic, or semi-metallic, films in the far-infrared, ỹ = Z0 σ̃ t � n − 1.

Rewriting Eq. (B.6) and expanding in the small parameter (n/ỹ) gives

r =
−1 − (1 − n)

ỹ

1 +
n + 1

ỹ

≈ −
(
1 +

1 − n
ỹ

) (
1 − n + 1

ỹ

)
= −

1 − 2n
ỹ
+ O

(
n
ỹ

)2
≈ −e−2 n/ỹ = e−2 nRe{1/ỹ} ei(π − 2 nIm{1/ỹ}) (B.10)

The additional phase factor θ resulting from the very thin film is proportional to the

Im{1/σ}. Specifically,

2 θ = π − 2 n
Z0 t
Im{1/σ̃} . (B.11)

The Drude conductivity model well-describes the far-IR conductivity of metals,

σ̃Drude =
N e2/m∗

γ∗ − iω
=

1
4 π

ω∗ 2
p

γ∗ − iω
(B.12)
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where N is the number density of electrons, m∗ is the effective mass, e is the elec-

tronic charge, γ∗ is the effective scattering rate, and ω∗ 2
p is the effective plasma fre-

quency.

Taking the imaginary part of the inverse Drude conductivity in Eq. (B.12) gives

Im{1/σDrude} = −
m∗

N e2
ω. (B.13)

Hence the additional phase factor θ is directly proportional to the effective mass m∗.

Both the additional phase θ resulting from the metal film and the regular étalon phase

φ of the substrate are directly proportional to frequency. Therefore θ manifests itself

as a shift of the étalon peak position that increases with frequency.

B.3 Antimony Film on Silicon

Evaluating the technique requires an appropriate sample material. The semi-

metal antimony serves as good test case having a conductivity similar to metallic

transition metal oxides, e.g., the hole-doped pseudocubic manganites. The DA3

spectrometer (described in detail in Chap. 2) measures high-resolution (≈ 0.1 cm−1)

reflectance of the substrate-film relative to an aluminum mirror. Figure B.2 shows

the raw reflectance of the antimony film (red circles) on the backside of a silicon

substrate. The reflectance of the bare silicon substrate is shown (blue circles) for

comparison. Note that the valleys in reflectance show the sharpest finesse. The

curves shown in Fig. B.2 represent signal averaging of several hours. Transmission of

the film/substrate combination exhibits similar étalon shifts. However, the decreased

signal in transmission mode, owing to the large σ1 of the film, greatly reduces the

signal to noise ratio. The antimony film shown here was deposited using thermal

vapor deposition to a thickness t ≈ 644 Å and with a sheet resistance R� ≈ 12Ω.

Shifts of the étalon arising from the imaginary part of the film conductivity in

addition to the π phase shift are determined by fitting the reflectance valleys with

inverted Lorentzians. The constant π-phase shift [see Eq. (B.11)] of the metallic
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Figure B.2: Raw reflectance of antimony film on silicon. Reflectance of bare
silicon substrate shown for comparison.

film is effectively subtracted out by averaging adjacent valleys in the bare substrate

traces. Figure B.3 shows the additional shift of the reflectance minima of the Sb

film relative to the silicon substrate. Circles represent the shift at a given valley in

the reflectance spectrum. The solid line represents a linear fit assuming the Drude

conductivity of Eq. (B.12). The slope of the linear curve provides an estimate for

the free carrier plasma frequency ω∗p or mass enhancement m∗ given by Eq. (B.13).

From the linear least-squares fit, ω∗p = 1.791 eV. This result is slightly higher than that

estimated from Drude fits to the low-resolution thin-film transmittance.

The Fermi surface of semi-metallic antimony appears complicated. Both the

valence and conduction bands cross the Fermi surface, which consists of both elec-

tron and hole like pockets. Moreover, these pockets display a strong anisotropy.

Nevertheless, band structure calculations180 for the carrier density agree well with
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Figure B.3: Shifts of the reflectance minima for Sb film.

reported181 experimental values. Liu and Allen calculate180 N ≈ 5×1020 cm−3 for both

electrons and holes. Taking this value together with ω∗p obtained from the étalon peak

shifts provides an average mass enhancement relative to the free electron mass of

m∗/me ≈ 0.043, smaller than values from cyclotron resonance182 by approximately a

factor of two. The exact nature of this discrepancy remains unknown at present.
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value µ = 1 (cgs units). Thus, including the antiferromagnetic resonance offers
only a small correction to ε0.
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