TECHNICAL RESEARCH REPORT

UM Translog: A Planning Domain for the
Development and Benchmarking of Planning

Systems

by S. Andrews, B. Kettler, K. Erol and

J. Hendler

T.R. 95-60

INSTITUTEFOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

UM Translog: A Planning Domain for the Development and
Benchmarking of Planning Systems *

Scott Andrews, Brian Kettler, Kutluhan Erol, and
James Hendler

Department of Computer Science,
Institute for Advanced Computer Studies,
and Institute for Systems Research
University of Maryland
College Park, MD 20742
E-mail: hendler@cs.umd.edu
June 1995

*This research was supported in part by grants from NSF (IRI-8907890), ONR (N00014-J-91-1451), AFOSR
(F49620-93-1-0065), the ARPA/Rome Laboratory Planning Initiative (F30602-93-C-0039) and by ARl (MDA-903-
92-R-0035), subcontract through Microelectronics and Design, Inc. Dr. Hendler is also affiliated with the Institute
for Systems Research and the Institute for Advanced Computer Studies.

Abstract

The last twenty years of Al planning research has discovered a wide variety of planning
techniques such as state-space search, hierarchical planning, case-based planning and reactive
planning. These technigues have been implemented in numerous planning systems (e.g., [12, 8,
9, 10, 11]). Initially, a number of simple toy domains have been devised to assist in the analysis
and evaluation of planning systems and techniques. The most well known examples are “Blocks
World” and “Towers of Hanoi.” As planning systems grow in sophistication and capabilities,
however, there is a clear need for planning benchmarks with matching complexity to evaluate
those new features and capabilities. UM Translog is a planning domain designed specifically for
this purpose.

UM Translog was inspired by the CMU Transport Logistics domain developed by Manuela
Veloso. UM Translog is an order of magnitude larger in size (41 actions versus 6), number
of features and types interactions. It provides a rich set of entities, attributes, actions and
conditions, which can be used to specify rather complex planning problems with a variety of
plan interactions. The detailed set of operators provides long plans (40 steps) with many possible
solutions to the same problem, and thus this domain can also be used to evaluate the solution
quality of planning systems. The UM Translog domain has been used with the UMCP, UM
Nonlin, and CaPER planning systems thus far.

Contents

1 Background and Motivation
1.1 A Guide to This Document

2 Overview

3 Entities
3.1 Location Types
3.2 Routes Types

3.3 Vehicle Types o o i e e e e e e e e
3.4 Equipment Types e e e e e e e e e e e
3.5 Package Types o v v i i i e e e e

4 Predicates

5 Actions
5.1 Administrative ACtIOns« v v v v v i e e e e e e e e e e e e e e e e e e
5.2 Actions for loading/unloading Lo oL
5.3 Transit Actions« . v v i e e e e e e e e e e e e e e e e e
6 Tasks

A UM Nonlin Domain Definition
A.1 Nonlin-specific Domain Predicates 0.
A.2 Specifying the Problem o oo
A2.1 Locations o i i e e
A2.2 Routes. o o i e e e e
A.2.3 Vehicles L e e e e e e
A2.4 Equipment e e e e e e e
A25 Packages. L e e e
A3 A Sample Problem e
A.3.1 Always Context Forms: o

A.3.4 Plan Output by Nonlin: o

B UMCP Domain Definition
B.1 Problem Specification L e

1 Background and Motivation

The last twenty years of Al planning research has discovered a wide variety of planning techniques
such as state-space search, hierarchical planning, case-based planning and reactive planning. These
techniques have been implemented in numerous planning systems (e.g., [12, 8,9, 10, 11]). Initially, a
number of simple toy domains have been devised to assist in the analysis and evaluation of planning
systems and techniques. The most well known examples are “Blocks World” and “Towers of Hanoi.”
As planning systems grow in sophistication and capabilities, however, there is a clear need for
planning benchmarks with matching complexity to evaluate those new features and capabilities.
UM Translog is a planning domain designed specifically for this purpose.

UM Translog was inspired by the CMU Transport Logistics domain developed by Manuela
Veloso[7]. UM Translog is an order of magnitude larger in size (41 actions versus 6), number of
features and types interactions. It provides a rich set of entities, attributes, actions and conditions,
which can be used to specify rather complex planning problems with a variety of plan interactions.
The detailed set of operators provides long plans (40 steps) with many possible solutions to the
same problem, and thus this domain can also be used to evaluate the solution quality of planning
systems.

UM Translog is currently being used in the evaluation of a case-based planning system, CaPER
[6, 5], and a hierarchical task network planning system, UMCP [3, 2]. It is also being used by
UM Nonlin [4], a common lisp implementation of Austin Tate’s Nonlin HTN planning system, to
generate a plan library for plan reuse by CaPER.

Due to the complexity and size of the domain, it is not easy to define UM Translog problems
manually. In order to facilitate the use of UM Translog, a system has been implemented for
generating random problems or assisting the user in defining his/her own problems. This system
can be adapted to the input format requirements of other planning systems with reasonable effort.
We hope to make the Problem Specifier/Generator code available soon.

Documentation and code related to UM Translog, UM Nonlin, UMCP and CaPER can be
accessed through Worldwide Web (WWW) at URL http://www.cs.umd.edu/projects/plus/! or by
anonymous FTP.?

Because several of these planning systems are ongoing research projects, the domain definition
may change. We are distributing this domain definition and the affiliated code for using it with
UM Nonlin and UMCP free of charge but without any implied guarantees or promises of support.

We hope that other researchers will contribute their planning domains so that a library of

benchmark planning domains can be established, similar to the benchmark library used by the
machine learning community.

1.1 A Guide to This Document

Section 2 presents briefly the our goals in defining the UM Translog domain and some of its general
features. The domain is then described in a planner-independent manner in the sections that follow.

1The UM Translog homepage is at URL http://www.cs.umd.edu/projects/plus/UMT/.
’Instructions for FTPing UM Translog can be obtained by anonymous FTP to ftp.cs.umd.edu (file is
/pub/nonlin/um-translog/README).

Entities and predicates are described in Sections 3 and 4, respectively. Operators are described in
Section 5 (Actions) and Section 6 (Tasks/Methods). Some planner-specific information about this
domain as defined for the UM Nonlin and UMCP systems is given in the appendices (details can
be found in the actual domain definitions available from the WWW site or via FTP).

2 Overview

In this domain, the planner is given one or more goals, where a goal is typically the delivery of a
particular package from an origin to a destination. Our goal for UM Translog domain was to create
a domain more complex than toy domains such as blocks world. To do this we modelled additional
aspects of transport logistics not in the CMU Transport Logistics domain, and which we believed
were somewhat realistic. These include the following features and restrictions:

transport is by air, rail, or road
transport is intracity or intercity

several basic methods of transport are available including local transport via road, direct
transport via a specific direct route, and “indirect” transport via a transportation hub

customer locations and transportation centers (airports and train stations) are grouped into
cities which are grouped into regions

intercity transport uses specific routes

transport via air or rail uses specific transportation centers (airports and train stations)
particular vehicles and packages have special (un)loading methods and actions

packages and vehicles have (sub)types which must be compatible

vehicles, equipment, routes, and transportation centers may be temporarily unavailable

certain cities may not allow hazardous packages to be transported through them

Our goal, however, was not to model “real” transport planning as described by a domain expert,
for example. Obviously the kind of transport logistic planning done in the “real world” by UPS, the
military, etc. is considerably more complicated, particularly as the world state is highly dynamic
and often not fully known by the planner. Some major aspects of transport logistics planning we
are not modelling in order to keep the domain “manageable” and to stay with in the capabilities
of the planning systems we are testing include:

package sizes and vehicle capacities (We assume unlimited vehicle capacity.)

numeric distances between locations®

temporal aspects including delivery deadlines, action durations (travel time, etc.), action
concurrency, etc.

?Distances are “simulated” to some extent by the grouping of locations into cities and cities into regions and the
explicit specification of intercity routes.

3 Entities

UM Translog entities include individual locations (cities, etc.) and individual objects (routes,
vehicles, equipment, and packages). Each entity is described by a constant symbol (e.g., “Truck-17,
“Package-2”) and one or more predicates that are asserted by a user (in the initial state given to
the planner) or by the effects of instantiated plan actions.* Predicates are summarized in Section
4. Fach entity has a primary type, specified by the predicate type. Primary entity types include
location types, route types, vehicle types, equipment types, and package types, described in the
following subsections.

3.1 Location Types

As shown in Figure 1, location types are region, ¢ity, and city-location. City location subtypes
are tcenter (transport center) and not-tcenter (a city location that is not a transport center).
Transport center subtypes are airport and train-station. Non-transport center subtypes are
clocation (customer location) and post-office.

location

region city-location city

/\

tcenter not-tcenter

/\ /\

airport train-station clocation post-office

Figure 1: Location Type Hierarchy

Region contain one or more cities (specified via the predicate in-region).

Cities contain one or more city locations (specified via the predicate in-city). Some cities are
compatible with hazardous packages (specified via the predicate pc-compatible, see Section 3.5).

A city location is located in a specific city (specified via the predicate in-city).

A transport center can be used for air/rail direct and indirect transport (see Section 6). Trans-
port centers can optionally be specified as transport hubs (via the hub predicate). Hub transport
centers can be used for indirect transport (see Section 6). Transport centers serve specific cities
(specified via the predicate serves). Thus air or rail travel from a specific city must use a transport
center that serves that city. Hub transport centers serve specific regions, rather than cities. Trans-

*Domain constants and predicates are shown in boldface in this document.

port centers can be available or not (specified via the subtype hub). For example, a particular
airport may be temporarily unavailable due to bad weather.

Customer locations are “generic” locations (e.g., businesses, homes, etc.) within a city that can
serve as the origin and destination of a package, as can transport centers. A customer location is
located in a specific city (specified via the predicate in-city).

A post office is similar to a customer location but can be used as the origin and destination for
packages of type mail.

3.2 Routes Types

Route types are road-route, rail-route, and air-route.

Routes connect locations. Road routes connect two cities. All locations within a city are
assumed to be connected by roads, and thus road routes are are not specified between individual
city locations. Rail and air routes connect airports and train stations, respectively. Routes have
an origin, destination, and route type (specified via the predicate connects). Note that routes
are directional: traffic flows from the origin to the destination. Routes have an availability status
(specified via the predicate available). For example, an particular road route may be temporarily
unavailable due to construction.

Routes types are compatible with particular types of vehicles (see Section 3.3) as follows:
Route Type | Vehicle Type
road-route | truck
rail-route | train
air-route airplane

Route—vehicle type compatibilities are specified to the planner via the predicate rv-compatible.

3.3 Vehicle Types

Primary vehicle types are truck, airplane, train (train engine), and traincar.
Trucks and traincars have subtypes: a single physical subtype and an optional specialty subtype.
Physical truck/traincar subtypes are:

Physical Subtype | Examples

regular tractor-trailer truck, delivery van, boxcar, etc.
flatbed flatbed truck, flatcar, etc.

tanker tanker truck, tanker car, etc.

hopper dump truck, hopper car, etc.

mail mail truck, mail car, etc.

livestock livestock truck, cattle car, etc.

auto car carrier truck/traincar

Specialty truck/traincar subtypes are:
Specialty Subtype | Framples
refrigerated refrigerated truck/traincar, etc.
armored armored truck/traincar, etc.

Specialty subtypes cannot be specified if the truck or traincar has a physical type of malil,
livestock or auto. The physical subtype of a truck, traincar, or airplane must be compatible with
the physical subtype of a package (see Section 3.5). When specified, a package specialty subtype
and truck/traincar specialty subtype, must also be compatible.

Vehicles of type train — train engines — unlike other types of vehicles, do not hold packages
themselves but rather have attached traincars that hold packages.

A vehicle’s primary type determines its compatibility with particular routes (see Section 3.2).
Vehicles have a location and availability (specified via the predicates at-vehicle and available,
respectively).

A vehicle may have other properties, depending on its type and subtype, as shown in the
following table:

Vehicle (Sub)type | Predicates

airplane door-open, ramp-connected

armored guard-inside, guard-outside

auto ramp-down

hopper chute-connected

livestock clean-interior, door-open, ramp-down, trough-full
regular door-open

tanker hose-connected, valve-open

hazardous decontaminated-interior, warning-signs-affixed
pkg. carrier

3.4 Equipment Types

Equipment types are plane-ramp and crane. Equipment of these types is used to load planes
and flatbed trucks/traincars, respectively.
Equipment has a location (specified via the predicate at-equipment).
The status of a plane ramp is additionally described using the predicate ramp-connected.
The status of a crane is additionally described using the predicate empty.

3.5 Package Types

Packages have type Package. Packages have subtypes: a single physical subtype and, optionally,
one or more specialty subtypes. Physical package subtypes are:

Physical Subtype | Fzamples

regular parcels, furniture, etc.

bulky steel, lumber, etc.

liquid water, petroleum, chemicals, etc.
granular sand, ore, etc.

mail letters sent through the postal service
livestock cattle, etc.

auto automobiles

Specialty package subtypes are:

Specialty Subtype | Framples

perishable produce, frozen food, etc.

hazardous petroleum, nuclear waste, etc.

valuable money, weapons, etc.

Specialty subtypes cannot be specified if the package has a physical subtype of malil, livestock,
or auto.
The following table shows some plausible combination of package subtypes for some kinds of

packages:

Kind of Package | Set of Package Subtypes

mail mail

automobiles auto

livestock livestock

parcels regular

goods regular

furniture regular

appliances regular

dry food regular

newspapers regular

steel bulky

lumber bulky

machinery bulky

aircraft bulky, valuable

nuclear weapon | bulky, valuable, hazardous

grain granular

sand granular

dirt granular

gravel granular

ore granular

coal granular

uranium ore granular, hazardous

water liquid

milk liquid, perishable

chemicals liquid, perishable, hazardous

petroleum liquid, hazardous

produce regular, perishable

nuclear waste regular, hazardous

medical waste regular, hazardous, perishable

money regular, valuable

art regular, valuable

The physical subtype of a package must be compatible with the vehicle’s primary type and any
physical subtype specified for that vehicle (see Section 3.3). The following table lists compatible
package and vehicle types (specified to the planner via the predicate pv-compatible):

Package Physical Subtype | Vehicle (Sub)type
regular regular
bulky flatbed
liquid tanker
granular hopper
perishable refrigerated
valuable armored
mail mail
livestock livestock
auto auto
regular airplane
mail airplane

Packages with specialty subtype of hazardous may be compatible with certain cities and in-
compatible with others. Hazardous packages cannot originate nor pass through cities unless that
city is compatible with hazardous packages (specified via the predicate pc-compatible).

Packages have a location and fees to be collected (specified via the predicates at-package and
fees-collected, respectively). Hazardous packages require a permit and warning signs (specified
via predicates have-permit and warning-signs-affixed predicates). Valuable packages require
insurance (specified via the predicate insured).

10

4 Predicates

This section presents a summary of domain predicates. These may vary slightly or there may be
additional predicates depending on the particular planner being used.
The following variables are used to indicate argument types in the list of predicates below:

Argument | Type of Argument Value
¢ city

€ equipment

g region

) city-location

P package

T route

t tcenter

v vehicle

The following are the domain predicates: °

*These predicates may vary slightly or there may be additional predicates depending on the particular planner
being used

11

Predicate

Description

at-equipment(e,l)
at-package(p,z)
at-vehicle(v,z)
available(x)
chute-connected(v)
clean-interior(v)
connects(r,0,d)

decontaminated-interior(v)
door-open(v)

empty(z)

fees-collected(p)
guard-inside(v)
guard-outside(v)
have-permit(p)
hose-connected(v,p)
in-city(l,c)

in-region(c,g)

insured(p)
pc-compatible(¢,hazardous)
pv-compatible(y,z)
ramp-connected(z,v)
ramp-down(v)
rv-compatible(y,z)
serves(t,z)

trough-full(v)

type(z,y)

valve-open(v)
warning-signs-affixed(p,v)

eis atl

p is at z, a location or vehicle containing package

v is at z, a location or train (if vehicle is an attached traincar)
x — a transport center, route, vehicle — is available

chute of hopper truck/traincar v connected to (un)load cargo

v has a clean interior

route r connects origin o to destination d.

o and d are cities if r is an road route;

airports if » is an air route; train stations if r is a rail route.

v has decontaminated/uncontaminated interior

door open on v, an airplane, or a regular livestock truck/traincar
crane 2 is empty

fees have been collected for package

guard is posted inside armored truck/traincar v

guard is posted outside armored truck/traincar v

permit has been obtained for hazardous package p

hose connected from tanker truck/traincar v to (un)load cargo
[is located in ¢

¢ is located in ¢

insurance has been obtained for valuable package

¢ is compatible with hazardous packages

package subtype y is compatible with vehicle (sub)type z

plane ramp z is connected to airplane v

loading ramp down on v, a livestock or auto truck/traincar
route type y is compatible with vehicle type z

t serves z, a region (iff ¢ is a hub) or a city

livestock trough full of food/water on livestock truck/traincar v
individual « has type y (a type constant)

loading valve open on tanker truck/traincar v

hazardous material warning signs have been affixed to vehicle v

12

5 Actions

This section describes the symbols that denote actions in UM Translog domain. Most symbol
names are chosen to be self explanatory. For details, see the action definitions (available from the
WWW site or via FTP) for the particular planner to be used.

5.1 Administrative Actions

Prior to carrying a package to its destination, fees should be collected, a special permit should be
obtained if the package is of type hazardous, the package should be insured if it is of type valuable,
and all these should be cancelled once the package is delivered at its destination. These activities are
denoted by the action symbols obtain-permit(?p), collect-fees(?p), collect-insurance(?p),
and deliver(?p), where ?p is a variable symbol denoting a package.

5.2 Actions for loading/unloading

There are a number of actions for loading and unloading packages from/to vehicles, depending on
the type of vehicle and package. In some cases, special equipment such as cranes need to be used
for that purpose.

Loading a regular package into a regular vehicle involves opening the door of the vehicle,
putting the package in, and then closing the door, denoted by the actions open-door(?v), load-
package(?p ?v ?I), close-door(?v). Unloading a regular package involves the same steps in
reverse order, replacing load-package with unload-package(?p ?v ?1). ?p is a variable of type
package, v? is a variable of type vehicle, and ?l is a variable of type location. 7l is used to make
sure the vehicle and the package are at the same location.

Packages of type valuable can be carried only by vehicles of type armored, and require the
additional steps of posting a guard outside while loading, and posting a guard inside while in
transportation and removing the guards afterwards are required. These are denoted by post-
guard-outside(?v), post-guard-inside(?v), and remove-guard(?v).

Packages of type hazardous can be carried only with proper warning signs on the vehicle, and the
vehicle must be decontaminated afterwards. These actions are denoted by affix-warning-signs
(?v), remove-warning-signs (?v), and decontaminate-interior(?v).

Loading/unloading a truck or traincar of type flatbed requires use of a crane denoted by ?¢ in
the actions pick-up-package-ground(?p ?c ?1), put-down-package-ground(?p ?¢ ?1), pick-
up-package-vehicle(?p ?c ?v ?1), and put-down-package-vehicle(?p 7c ?v ?I).

Loading a truck or traincar of type hopper involves the actions connect-chute(?v), fill-
hopper(?p ?v ?1), and disconnect-chute(?v). Unload is similar, simply replace empty-
hopper(?p ?v ?1) with fill-hopper(7p 7v 7I).

Loading/unloading vehicles of type tankerinvolves the actions connect-hose(?v), disconnect-
hose(?v ?p), open-valve(?v), close-valve(?v), fill-tank(?v ?p ?1), and empty-tank(?v ?p
?1) in appropriate order.

Loading packages of type livestock involves the actions lower-ramp(?v), fill-trough(?v),
load-livestock(?p ?v ?1), and raise-ramp(?v). Unloading involves the actions lower-ramp(?v),

13

unload-livestock(?p ?v ?1), raise-ramp(?v). do-clean-interior(?v), and unload-livestock(?p
v 71).

Loading/unloading packages of type carsinvolves the actions load-cars(?p ?v ?1), and unload-
cars(?p ?v ?1). As in the case of livestock, the ramp of the vehicle needs to be lowered prior to
loading/unloading, and the it should be raised immediately afterwards.

Loading/unloading vehicles of type airplane requires a conveyor ramp (denoted by ?7) to be
connected and the door of the vehicle to be open prior to the operation, and the ramp to be
disconnected and the door to be closed afterwards. These activities are denoted by the actions
attach-conveyor-ramp(?v ?r ?l), detach-conveyor-ramp(?v ?r ?1), open-door(?v),close-
door(?v), load-package(?p ?v ?1), and load-package(?p ?v ?1).

5.3 Transit Actions

A vehicle ?v can be moved from its current location ?ol to another location ?7dl if there is a route
?r of proper type between 7ol and 7dl, using the action move-vehicle(?v 7ol ?dl ?r). Vehicles
of type traincar do not move by themselves but are pulled by vehicles of type train instead. Thus
a traincar goes wherever the train it is attached to goes. The actions to attach/detach traincars to
trains are attach-train-car(?t ?c ?1), and detach-train-car(?t ?c ?1).

In addition to those actions described above, UM Translog makes use of a dummy action called
do-nothing which has no preconditions or effects.

14

6 Tasks

Tasks are the jobs to be planned for. Each task is either posed by the user to the planner as part
of a planning problem, or it is introduced by a planner as subtasks if it serves to accomplish a task
posed by the user. In this aspect tasks are similar to goals in STRIPS-style planning, only with
richer structure. Figure 2 presents the organization of tasks and their subtasks, which are discussed

below. For details, see the task/method definitions (available from the WWW site or via FTP) for
the particular planner to be used.

at-package(?p 7d)

transport(?p 70 ?d)

pickup(?p ?0) carry(?p 70 ?d) deliver(?p ?d)
carry-between- carry-direct(?p 70 ?d) carry-via-
tcenters(?p 7?0 ?7d) hub(?p ?0 ?d)
load- move- unload-
vehicle(?p ?v ?0) vehicle(?v 70 ?d) vehicle(?p ?v ?d)

pickup(?p 70)

handle-insurance(?p) handle-hazardous(?p) collect-fees(?p)

Figure 2: Top-level Task Hierarchy

AT-PACKAGE(?package ?destination) This task requires transporting the package to its des-
tination.

TRANSPORT(?package ?origin ?destination) Provided that the package is currently in the ori-
gin location, this task involves picking up the package, carrying it to its destination, and delivering
it.

PICKUP(?package) This task involves collecting fees, handling insurance and hazardous mate-
rial permits. Insurance is required only for valuable packages, and permits are required only for
hazardous packages.

15

TN

tcenter! -------- » tcenter2
clocationt ------ » clocation2

Figure 3: Transport Paths

CARRY(?package ?origin ?destination) This is the task of actually moving the package from
its origin to its destination. This involves choosing a suitable path (a sequence of routes from the
origin to the destination), and moving the package along that path via a series of carry-direct tasks.
The diagram in Figure 3 shows the possible paths to transport a package. The ?origin can be either
clocation (a customer location) or tcenter! (a transport center), and similarly the ?destination can
be either clocation? or tcenter?2. As seen in the diagram, a package can be carried directly if there
is a direct route available, otherwise it has to go through one or two transportation centers and
possibly a hb. Transport within a city is termed “local” transport. Transport via a direct route
(i.e., not involving a hub) is termed “direct” transport. Transport via a hub is termed “indirect”
transport.

CARRY-DIRECT(?package ?origin ?destination) This task involves picking a route connecting
the Porigin and the ?destination, and choosing a vehicle that is compatible both with the package,
and the route. Only those vehicles that are at the forigin or one step away from the ?origin can
be dispatched. The task is accomplished by moving that vehicle to the origin, loading the package
into the vehicle, moving the vehicle to the destination, and finally unloading the package.

AT-VEHICLE(?vehicle ?destination) If the vehicle is of type truck, plane, or train, it is moved
to the destination, provided there is a direct route available from the current location. The type
of the route must be suitable for the type of vehicle. If the vehicle is a train-car, a train must be
moved to the location of the train-car, the train-car must be attached to the train, the train must
be moved to the destination, and then finally, the train-car must be detached. Naturally, when a
vehicle moves, so does the packages it contains.

LOAD/UNLOAD(?package ?vehicle Tlocation)

Loading and unloading involves issuing a sequence of actions to put the package into and out
of the vehicle. The actions to be executed depends on the type of package and vehicle, and they
were described in detail in Section 5.2. In particular, valuable packages can be transported only
with armored vehicles, and they require guards posted outside while loading/unloading and guards
inside, while in transit. Similarly, vehicles carrying hazardous packages need warning signs, which

16

are removed after the package is unloaded and the vehicle is decontaminated.

17

A UM Nonlin Domain Definition

This section describes the definition of the UM Translog domain for UM Nounlin, a Common Lisp
version of Tate’s Nonlin planner. For details on how to use UM Nonlin, see the UM Nonlin user
manual [4].

Documentation and code for UM Nonlin/UM Translog are available on the WWW at URL
http://www.cs.umd.edu/plus/projects/Nonlin/ or by anonymous ftp from ftp.cs.umd.edu®

UM Translog operators for UM Nonlin are divided into 3 files that can be FTPed. In the order
they are to be loaded, they are:

Set File

Main Methods umt-main-methods-nl.lisp
Load/Unload Methods | umt-load-methods-nl.lisp
Primitive Actions umt-actions-nl.lisp

UM Nonlin has some idiosyncracies (described in its user manual) that may result in its not
producing a plan in this domain (and others) or, in some cases, its producing an incorrect plan.
This is more likely to occur when UM Nonlin is given a planning problem to solve with conjunctive
goals, i.e. multiple packages to be delivered.

A.1 Nonlin-specific Domain Predicates

Because UM Nonlin does not handle negated predicates, additional predicates have been defined to
specify (in method/action conditions and effects) the negation of other predicates. For a predicate
p and its corresponding negative predicate g, whenever p(z) is asserted for predicate p is made,
then ¢(z) should be retracted/deleted.

The additional predicates for the UM Nonlin are:

Predicate Opposite of Predicate
chute-disconnected chute-connected
dirty-interior clean-interior
contaminated-interior decontaminated-interior
door-closed door-open
hose-disconnected(v) hose-connected
ramp-disconnected(v) ramp-connected
ramp-down ramp-up
trough-empty trough-full
valve-closed valve-open
warning-signs-removed(v) | warning-signs-affixed

v is an argument of type vehicle. Except for predicates whose arguments are explicitly specified,
a predicate has the same arguments are its opposite (see Section 4).

In order to specify that an individual does not have a specific type, the following negative type
constants have been added in the UM Nonlin definition:

8For UM Translog, see /pub/nonlin/um-translog/README. For UM Nonlin, see /pub/nonlin/README.

18

Type Constant Opposite of | Assert for
not-hazardous | hazardous | package
not-valuable valuable package
not-traincar traincar vehicle
not-tcenter tcenter city-location
not-hub hub tcenter

The “Assert for” column above specifies the type of individuals for which the type constant
should be asserted for, if the opposite type does not apply. For example, the following would
be asserted in the initial state for truck-1, a particular truck: ((type truck-1 truck), (type
truck-1 not-traincar)).

In UM Nonlin, packages with multiple subtypes need to have a composite package type specified
for them, in addition to the individual types.

Package Composite Type
hazardous-t
perishable-regular
perishable-liquid

Component Subtypes
hazardous, physical subtype ¢
perishable, regular
perishable, liquid

valuable-¢

hazardous-perishable-liquid
hazardous-perishable-regular
hazardous-valuable-¢
perishable-valuable-liquid
perishable-valuable-regular
hazardous-perishable-valuable-liquid
hazardous-perishable-valuable-regular

valuable, physical subtype 7

hazardous, perishable, liquid
hazardous, perishable, regular
hazardous, valuable, physical subtype ¢
perishable, valuable, liquid

perishable, valuable, liquid

hazardous, perishable, valuable, liquid
hazardous, perishable, valuable, regular

For example, a valuable, regular package package-1 needs to have the following assertions
made in the initial state: (type package-1 regular), (type package-1 valuable), (type
package-1 valuable-regular). The following are the composite types and their component sub-
types for package.

Like packages, vehicles with multiple subtypes also need a composite vehicle type specified for
them

Vehicle Composite Type

hazardous-valuable-regular

refrigerated-regular

refrigerated-tanker

armored-regular armored regular

armored-flatbed armored flatbed
Composite package and vehicle types are used in assertions for the pv-compatible predicate
in the always/initial state (see Section A.3 for an example of this).

Component Subtypes
hazardous valuable regular
refrigerated regular
refrigerated tanker

A.2 Specifying the Problem

This section describes what needs to be initial state (context) for a UM Translog planning prob-
lem. For each individual z, various assertions need to be made depending on the (sub)types of z.

19

Listed by (sub)type below are the predicates for which assertions must be made in the initial state
(“Required”) and those for which assertions could be made (“Optional”).

All of the applicable (sub)types should be consulted to determine required/optional assertions.
For example, if truck-1 is a regular, armored truck, the required assertions for objects of type
vehicle, truck, regular truck, and for armored truck must be made in the initial state: i.e., (type
truck-1 truck), (type truck-1 not-traincar), (type truck-1 regular), (type truck-1
armored), (at-vehicle truck-1 some-location), (door-open truck-1), (guard-inside truck-1).
If truck-1 is available to be used in the initial state, an assertion should be made for the (optional)
vehicle preciate available: i.e., (available truck-1).

In the following lists of predicates, a “*” (kleene star) indicates that one or more assertions for
a predicate are possible. For example, a tcenter airport-1 may serve multiple cities: cityl, city2,
etc. Thus one would have several assertions: (serves airport-1 cityl), (serves airport-1
city2), etc..

In the following lists of predicates, a “/” (alternation) indicates that two or more alternatives,
only one of which should be chosen. For example, If route-1 is an route, one should assert: (type
route-1 y), where y is one of road-route, rail-route, or air-route.

Examples of actual problem definition can be found in section that follows.

A.2.1 Locations

region Required: (type z region).
city Required: (type z city), in-region. Optional: (pc-compatible z hazardous).
city-location Required: in-city.

tcenter Required: (type @ tcenter), (type z hub / not-hub), (type z airport / train-station),
in-city, serves®*. Optional: available.

clocation Required: (type z clocation), (type & not-tcenter).
post-office Required: (type z post-office), (type not-tcenter).

A.2.2 Routes

route Required: (type z road-route / rail-route / air-route), connects. Optional: available.

A.2.3 Vehicles

vehicle Required: at-vehicle. Optional: available.

airplane Required: (type @ airplane), (type z not-traincar), door-open / door-closed.

20

train Required: (type @ train), (type z not-traincar), door-open / door-closed.

truck Required: (type z truck), (type z not-traincar), (type z physical subtype). Optional:
(type z specialty type)*, decontaminated-interior / contaminated-interior, warning-signs-affixed /
warning-signs-removed.

traincar Required: (type z traincar), (type z physical subtype). Optional: (type z specialty
type)*, decontaminated-interior / contaminated-interior, warning-signs-affixed / warning-signs-removed.

armored truck/traincar Required: guard-inside, guard-outside.
auto truck/traincar Required: ramp-down / ramp-up.
hopper truck/traincar Required: chute-connected / chute-disconnected.

livestock truck/traincar Required: clean-interior / dirty-interior, door-open / door-closed,
ramp-down / ramp-up, trough-full / trough-empty.

regular truck/traincar Required: door-open / door-closed.

tanker truck/traincar Required: valve-open / valve-closed, hose-connected / hose-disconnected.

A.2.4 Equipment

equipment Required: at-equipment.
crane Required: empty.

plane-ramp Required: ramp-connected / ramp-disconnected.

A.2.5 Packages

package Required: (type z package), (type z physical subtype), at-package. Optional: (type z
specialty type)*, fees-collected.

non-hazardous package Required: (type z not-hazardous). Optional: have-permit, warning-
signs-affixed.

non-hazardous package Required: (type z not-valuable). Optional: insured.

21

A.3 A Sample Problem

The following illustrates the specification of an actual domain problem to UM Nonlin. The input to
UM Nonlin consists of the always context forms, initial context (state) forms, and goal forms. The
initial state is quite large due to the number of predicates that must be specificed for individual
domain objects (vehicles, locations, etc.). We plan to make available our Problem Specifier code
available that creates initial state descriptions from CLOS objects defined by the user or generated
by our random Problem Generator.

This sample problem is a simple one: a regular package (pkg-1) is delivered from a customer
location (cityl-cll) to another customer location (cityl-cl2), in the same city (cityl). The following
is the input to Nonlin:

A.3.1 Always Context Forms:

((rv-compatible air-route airplane) (rv-compatible rail-route
traincar) (rv-compatible rail-route train) (rv-compatible road-route
truck) (pv-compatible hazardous-valuable-granular armored-hopper)
(pv-compatible valuable-granular armored-hopper) (pv-compatible
hazardous-granular armored-hopper) (pv-compatible hazardous-granular
hopper) (pv-compatible hazardous-perishable-valuable-liquid
armored-refrigerated-tanker) (pv-compatible
perishable-valuable-liquid armored-refrigerated-tanker)
(pv-compatible hazardous~valuable-liquid armored-refrigerated-tanker)
(pv-compatible hazardous-valuable-liquid armored-tanker)
(pv-compatible hazardous-perishable-liquid
armored-refrigerated-tanker) (pv-compatible
hazardous-perishable-liquid refrigerated-tanker) (pv-compatible
valuable-liquid armored-refrigerated-tanker) (pv-compatible
valuable-liquid armored-tanker) (pv-compatible perishable-liquid
armored-refrigerated-tanker) (pv-compatible perishable-liquid
refrigerated-tanker) (pv-compatible hazardous-liquid
armored-refrigerated-tanker) (pv-compatible hazardous-liquid
refrigerated-tanker) (pv-compatible hazardous-liquid armored-tanker)
(pv-compatible hazardous-liquid tanker) (pv-compatible
hazardous-valuable-bulky armored-flatbed) (pv-compatible
valuable-bulky armored-flatbed) (pv-compatible hazardous-bulky
armored-flatbed) (pv-compatible hazardous-bulky flatbed)
(pv-compatible hazardous-perishable-valuable-regular
armored-refrigerated-regular) (pv-compatible
perishable-valuable-regular armored-refrigerated-regular)
(pv-compatible hazardous-valuable-regular
armored-refrigerated-regular) (pv-compatible
hazardous-valuable-regular armored-regular) (pv-compatible
hazardous-perishable-regular armored-refrigerated-regular)
(pv-compatible hazardous-perishable~regular refrigerated-regular)
(pv-compatible valuable-regular armored-refrigerated-regular)
(pv-compatible valuable-regular armored-regular) (pv-compatible
perishable-regular armored-refrigerated-regular) (pv-compatible
perishable-regular refrigerated-regular) (pv~compatible
hazardous-regular armored-refrigerated-regular) (pv-compatible

22

hazardous-regular refrigerated-regular) (pv-compatible
hazardous-regular armored-regular) (pv-compatible hazardous-regular
regular) (pv-compatible hazardous-regular airplane) (pv-compatible
regular armored-refrigerated-regular) (pv-compatible regular
refrigerated-regular) (pv-compatible regular armored-regular)
(pv-compatible regular regular) (pv-compatible regular airplane)
(pv-compatible bulky armored-flatbed) (pv-compatible bulky flatbed)
(pv-compatible liquid armored-refrigerated-tanker) (pv-compatible
liquid refrigerated-tanker) (pv-compatible liquid armored-tanker)
(pv-compatible liquid tanker) (pv-compatible granular armored-hopper)
(pv-compatible granular hopper) (pv-compatible mail mail)
(pv-compatible mail airplane) (pv-compatible livestock livestock)
(pv-compatible auto auto))

A.3.2 Initial Context Forms:

((at-equipment ramp4 regionl-apl) (at-equipment ramp3 city2-apl)
(at-equipment ramp2 city3-apl) (at-equipment rampib cityl-ap2)
(at-equipment rampla cityl-apl) (at-package pkg-1 cityl-cll) (at-vehicle
truck-1 cityi-cl1) (available truck-1) (available road-route-i1656)
(available road-route-i1655) (available ramp4) (available ramp3) (available
ramp2) (available rampilb) (available rampla) (available rail-route-4)
(available rail-route-3) (available rail-route-2) (available rail-route-1)
(available air-route-4) (available air-route-3) (available air-route-2)
(available air-route-1) (available road-route-2) (available road-route-1)
(available regionl-ts1) (available regionl-apl) (available city3-ts1)
(available city3-apl) (available city2-ts1) (available city2-apl)
(available cityl-ap2) (available cityl-apl) (available cityi-ts2)
(available cityl-tsl) (connects road-route-il656 road-route cityl city2)
(connects road-route-i1655 road-route city2 cityl) (connects rail-route-4
rail-route city3-tsl1 regioni-ts1) (connects rail-route-4 rail-route
regioni-tsl city3-tsl) (connects rail-route-3 rail-route cityl-tsi
regionl-tsl) (connects rail-route-3 rail-route regioni-tsl cityl-tsl)
(connects rail~route-2 rail-route cityl-ts1 city2-ts1) (connects
rail-route-2 rail-route city2-tsl cityl-ts1) (comnects rail-route-1
rail-route cityil-ts1 cityi-ts2) (connects rail-route-1 rail-route cityl-ts2
cityl-ts1) (connects air-route-4 air-route cityi-apl cityl-ap2) (connects
air-route-4 air-route cityl-ap2 cityl-apl) (connects air-route-3 air-route
city3-apl regioni-apl) (connects air-route-3 air-route regioni-apl
city3-apl) (connects air-route-2 air-route cityl-apl regionl-apl) (connects
air-route-2 air-route regionl-apl cityl-apl) (connects air-route-1
air-route cityl-apl city2-apl) (connects air-route-1 air-route city2-apl
cityl-apl) (connects road-route-2 road-route city2 city3) (connects
road-route-2 road-route city3 city2) (comnects road-route-1 road-route
cityl city3) (conmects road-route-~1 road-route city3 cityl) (door-closed
truck-1) (in-city regionl-tsi city3) (in-city regionl-apl city2) (in-city
city3-tsl city3) (in~city city3-apl city3) (in-city city3-cl1l city3)
(in-city city2-ts1 city2) (in-city city2-apl city2) (in-city city2-cli
city2) (in-city cityl-ap2 cityl) (in-city cityl-apl cityl) (in-city
cityl-ts2 cityl) (in-city cityl-tsl cityl) (in-city cityl-cl2 cityl)
(in-city cityl-cl1 cityl) (in-region city3 regionl) (in-region city2
region2) (in-region cityl regionl) (pc-compatible city3 hazardous)

23

(pc-compatible city2 hazardous) (pc-compatible cityl hazardous)
(ramp-available ramp4) (ramp-available ramp3) (ramp-available ramp2)
(ramp-available rampib) (ramp-available rampla) (ramp-disconnected ramp4)
(ramp-disconnected ramp3) (ramp-disconnected ramp2) (ramp-disconnected
ranplb) (ramp-disconnected rampla) (serves regioni-tsl regionl) (serves
regionl-apl regionl) (serves city3-tsl city3) (serves city3-apl city3)
(serves city2-tsl city2) (serves city2-apl city2) (serves cityl-ap2 cityl)
(serves cityl-apl cityl) (serves cityl-ts2 cityl) (serves cityl-tsl cityl)
(type pkg-1 regular) (type pkg-1 not-valuable) (type pkg-1 not-hazardous)
(type truck-1 truck) (type truck-1 regular) (type truck-1 not-traincar)
(type ramp4 plane-ramp) (type ramp3 plane-ramp) (type ramp2 plane-ramp)
(type ramplb plane-ramp) (type rampla plane-ramp) (type regionl-tsi
train-station) (type regionl-tsl tcenter) (type regionl-tsi hub) (type
regionl-apl airport) (type regionl-apl tcenter) (type regioni-apl hub)
(type city3-tsl train-station) (type city3-tsl tcenter) (type city3-tsi
not-hub) (type city3-apl airport) (type city3-apl tcenter) (type city3-apl
not-hub) (type city3-cll clocation) (type city3-cll not-tcenter) (type
city3 city) (type city2-tsi train-station) (type city2-tsl tcenter) (type
city2-ts1 not-hub) (type city2-apl airport) (type city2-apl tcenter) (type
city2-apl not-hub) (type city2-cll clocation) (type city2-cll not-tcenter)
(type city2 city) (type cityl-ap2 airport) (type cityl-ap2 tcenter) (type
cityl-ap2 not-hub) (type cityl-apl airport) (type cityl-apl tcenter) (type
cityi-apl not-hub) (type cityl-ts2 train-station) (type cityl-ts2 tcenter)
(type cityl-ts2 not-hub) (type cityl-tsl train-station) (type cityl-tsl
tcenter) (type cityl-tsi not-hub) (type cityl-cl2 clocation) (type
cityl-cl2 not-tcenter) (type cityi-cli clocation) (type cityl-cli
not-tcenter) (type cityl city) (type region2 region) (type regioni region))

A.3.3 Goal Forms:

((at-package pkg-1 cityl-cl2))

A.3.4 Plan Output by Nonlin:

((:ND11120 :PRIMITIVE (DO-NOTHING))

:ND11114 :PRIMITIVE (DO-NOTHING))

:ND11110 :PRIMITIVE (P-COLLECT-FEES PKG-1))

:ND11436 :PRIMITIVE (P-OPEN-DOOR TRUCK-1))

:ND11442 :PRIMITIVE (P-LOAD-PACKAGE PKG-1 TRUCK-1))

:ND11444 :PRIMITIVE (P-CLOSE-DOOR TRUCK-1))

:ND11448 :PRIMITIVE (P-MOVE-VEHICLE TRUCK-1 CITY1-CL1 CITY1-CL2
LOCAL-ROAD-ROUTE))

:ND11450 :PRIMITIVE (P-OPEN-DOOR TRUCK-1))

:ND11456 :PRIMITIVE (P-UNLOAD-PACKAGE PKG-1 TRUCK-1))

:ND11458 :PRIMITIVE (P-CLOSE-DOOR TRUCK-1))

:ND11108 :PRIMITIVE (P-DELIVER PKG-1)))

NN AN AN AN A

24

B UMCP Domain Definition

This section describes the definition of the UM Translog domain for UMCP, a hierarchical task
network planner. For details on how to use UMCP, see the UMCP user manual [1].

Documentation and code for UMCP /UM Translog are available on the
WWW at URL http://www.cs.umd.edu/plus/projects/UMCP/.

Note that neither UMCP, nor the UM Translog domain specification for UMCP have been fully
tested at the time of this technical report. All those documents are being made available free of
charge with no implied gquarantees or promises of support.

UMCP supports negation, thus UMCP domain specification does not contain the additional
negatory predicates Nonlin needs. Furthermore, UMCP also supports disjunction, hence in several
places multiple Nonlin opschemas are encoded as a single UMCP method.

B.1 Problem Specification

The problem specification for the initial state is the same as in Nonlin, except for small variations
in the syntax.

The problems UMCP solves are represented as task networks, rather than conjunctive goals as
in Nonlin. Task networks have a richer structure compared to conjunctive goals, because they allow
conditions on how and when each task must be performed. Here is an example task network:

[(stepl AT-PACKAGE(reviewb ComputingReviews))

(step2 AT-PACKAGE(paper2 AlJ-editor))

(step3 AT-PACKAGE(robot5 IJCAI-95-conference-site))

(step4 AT-PACKAGE(robot5 UM-CS-Dept))

(ord step2 step3)A(ord step3 stepd)

A (between AT-PACKAGE(robot5 IJCAI-95-conference-site) step3 step4)]

This task network specifies four tasks: A review to be sent to Computing Reviews, a paper to be
submitted to an AlJ editor, a robot to be sent to IJCAI conference site and back. It also specifies
the conditions that the paper must be submitted before shipping the robot to the conference site,
and that the robot must remain at the conference site until it is shipped back.

The UMCP algorithm is provably sound and correct, and its implementation should correctly
handle all of the interactions in multi package problems for which UM Nonlin fails.

25

References

(1]

K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto. UMCP User Manual. Technical report, Institute for Advanced
Computer Studies, University of Maryland, 1995.

K. Erol. HTN Planning: Formalization, Analysis, and Implementation. PhD thesis, 1995.
K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto. A critical look at critics in htn planning. In IJCAI-95, 1995.

Subrata Ghosh, James Hendler, Subbarao Kambhampati, and Brian Kettler. UM Nonlin — A Common Lisp
Implementation of Nonlin: User Manual. University of Maryland at College Park, Department of Computer
Science, 1.2.2 edition, February 1992.

Brian P. Kettler. Case-based Planning with a Massively Parallel Memory. Doctoral dissertation, University of
Maryland at College Park, Dept. of Computer Science, 1995. In preparation.

Brian P. Kettler, James A. Hendler, William A. Andersen, and Matthew P. Evett. Massively parallel support for
case-based planning. IEEE Expert, pages 8-14, February 1994.

Manuela M. Veloso. Learning By Analogical Reasoning in General Problem Solving. PhD thesis, Carnegie Mellon
University, School of Computer Science, 1992.

D. McAllester, and D. Rosenblitt. Systematic nonlinear planning. In Proc. AAAI-91, 1991.

J. Penberthy, and D. S. Weld. UCPOP: A Sound, Complete, Partial Order Planner for ADL Proceedings of the
Third International Conference on Knowledge Representation and Reasoning, October 1992

[10] Austin Tate. Generating Project Networks In Proc. IJCAI-77, 1977. pp. 888-893.

[11] David Wilkins Practical Planning: Extending the classical Al planning paradigm, Morgan-Kaufmann, CA. 1988,

[12] R. E. Fikes, and N. J. Nilsson. STRIPS: a new approach to the application of theorem proving to problem

solving. Artificial Intelligence, 2(3/4):189-208, 1971.

26

