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Very soft ferromagnets are commonly amorphous so that no magnetocrys-

talline anisotropy energy density contributes to the coercivity. This thesis focuses

on a class of Fe-based alloys softer than amorphous ferromagnets but crystalline in

structure, exhibiting linear, isotropic, as well as totally hysteresis-free magnetiza-

tion. This class includes Fe-Ga, Al, Ge, Si and Pd alloys, and the majority of the

experimental studies focused on FeGa alloys with compositions between 17 and 26

at. % Ga. FeGa has seen much research since the discovery of its large satura-

tion magnetostriction, λ‖−⊥, up to 310 ppm, reported by Clark et al. in 2000 [1].

Our studies probed the magnetic, magnetostrictive, and structural characteristics

of these alloys to elucidate the origin of its anomalous magnetic and magnetoelastic

properites. The magnetostriction we observe defies classical theories established by

Joule in 1847, which pertain to only single phase, crystalline materials. Magnetic

anisotropy measurements demonstrate the FeGa alloys possess both cubic and uni-

axial symmetry, indicating the presence of more than one phase, and a measured



soft anisotropy constant of 1000 J/m3 for the cubic symmetry deviates from con-

ventional proportionality between large magnetostriction and magnetic anisotropy

in materials. Selected area and nanoelectron diffraction performed in a transmission

electron microscope confirm the multi-phase nature of the FeGa alloys’ microstruc-

ture, including disordered A2, ordered D03, and 6M D03 martensite phases. High

resolution images show the microstructure is comprised of ∼5 nm crystallites, even

for alloys manufactured to be single-crystalline. Novel in situ field measurements

were carried out in the microscope to probe the structure as a function of field, and

these results demonstrate that the volume fraction of D03 appears to vary in re-

sponse to the field. It is also shown that the magnetic and structural characteristics

of FeGa alloys change with repeated cycles of thermal and magnetic measurements.

The Fe82Ga18 alloy studied exhibited increased λ‖−⊥ from 300 to 600 ppm, increased

signal for uniaxial magnetic anisotropy, and increased D03 and 6M volume fraction.

These results have significant implications for future modelling of magnetostrictive

behavior that takes into account varying phase content of multi-phase alloys, and

the results also highlight the significance of processing and kinetics in the Fe-Ga

system.
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Chapter 1: Introduction

Actuator and sensor technologies require materials that exhibit transducive

properties with low hysteresis, or energy loss, in their actuating mechanism. Terfenol-

D, since its discovery by Clark at the Naval Ordinance Laboratory in the 1970s [3],

is the most well-established magnetoelastic transducer and has seen extensive use

in magnetic sensing applications, underwater acoustic projectors, sonar, and more

[4–6]. It exhibits gigantic strain when saturated magnetically, up to 2%, and pos-

sesses a modicum of hysteresis, but it is prohibitively costly to fabricate due to the

necessary incorporation of Tb and Dy. Its large magnetostriction is a result of careful

processing of the alloy to bring it to an equilibrium state at room temperature strad-

dling a morphotropic phase boundary between tetragonal Fe2Tb and rhombohedral

Fe2Dy. The equilibrium becomes perturbed upon application of a magnetic field,

causing extensive growth of one phase over the other, resulting in shape changes

throughout the bulk. These lower symmetry ordered crystal structures additionally

cause the material to possess significant brittleness and high anisotropy in the mag-

netostrictive behavior. This inhibits the machinability with only useful longitudinal

magnetostrictive responses.

Ferromagnetic shape memory alloys (FSMAs) have undergone intense research
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Figure 1.1: Magnetization curves for Fe-binary alloys Fe2Pd, Fe82Ga18, Fe86Al14, and
Fe90Ge10. The magnetization is linear, anhysteretic, and isotropic with respect to
crystalline direction in each case. This isotropic behavior contradicts convenviontal
behavior of soft magnetic materials.

over the past two decades as alternative candidates to Terfenol-D towards magnetoe-

lastic actuation and sensing. Heusler alloy Ni2MnGa was the first FSMA discovered

by Webster in 1984 [7], yet it took twelve years for its significant magnetostric-

tion, up to 0.2% strain, to be documented by Ullakko in 1996 [8]. Ni2MnGa has

since seen more detailed studies of its magnetoelastic properties, phase equilibria,

martensitic transformations, and microstructural development to assess its useful-

ness as a replacement for Terfenol-D as well as to develop a more fundamental

understanding of the mechanisms contributing to its large magnetostriction. Lim-

iting widespread commercialization of Ni2MnGa for actuation is also its brittleness

and lack of machinability imparted by the strict ordering of its Heusler structure,
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and the material requires high magnetic fields of 1 T to saturate. FeGa FSMAs

consisting of Ga contents between 16-25 at. % have seen the next largest initiative

in the literature towards their development as an alternative to Terfenol-D. These

alloys exhibit a much smaller saturation magnetostriction up to 400 ppm, or 0.04%

strain, but they saturate at lower fields of 0.2 T or less, possess good machinabil-

ity, extremely low hysteresis, and lower cost elements. In the interest of reducing

cost, FeAlGa and FeAl alloys have also been investigated, exhibiting nearly identical

material properties save for a lower saturation magnetostriction of 0.02% strain [9].

While it may seem unsurprising that FeAl and FeGa share extremely similar

material properties, owing to the fact that Ga and Al belong to the same elemen-

tal column, there exist many other Fe-based FSMAs which all belong to the same

unique class of magnetostrictors, one characterized not only by high magnetostric-

tion but also through their magnetization behavior. Each of these alloys exhibits

isotropic, linear, anhysteretic magnetization behavior until saturation, and examples

of these curves are shown in Figure 1.1 for several different alloys: FeGa, FeAl, FePd,

and FeGe. While anhysteretic magnetization exists for a wide variety of soft mag-

netic materials, isotropy in magnetic behavior defies classical theories pertaining to

magnetism in materials. Furthermore, magnetostriction along different crystalline

directions in these materials is anisotropic, but the behavior does not adhere to

elastic laws outlined in the Joulian theory of magnetostriction.

Connecting each of these alloys is both elastic softening and reduced mag-

netic anisotropy at room temperature. FePd alloys, in particular, possess un-

usual premartensitic microstructures which form nanoscale twin modulations as an

3



adaptive mechanism induced by large strain between parent-austente transforma-

tions [10–13], and this adaptive mechanism causes anomalous ferromagnetoelastic

properties which lead to non-classical magnetic and magnetoelastic behavior. Ev-

idence for such nanoscale martensite and magnetoelastic adaptive mechanism has

been mixed in regards to FeGa, which has seen contrary evidence from other research

groups studying alloys of similar composition and make. The following section re-

ports on non-classical magnetoelastic behavior evidenced in our own measurements

on FePd and FeGa alloys as well as that evidenced historically.

For more background on the concepts discussed in this thesis, a detailed

overview of the science of martensitic transformations and shape memory alloys is

contained in Appendix A while that of classical magnetism in materials in Appendix

B.
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Chapter 2: Evidence of Non-Joulian Magnetostriction in FePd and

FeGa alloys

2.1 Tenets of Joule Magnetostriction

The vast majority of magnetic materials exhibit a spontaneous strain in the

presence of a magnetic field, which was first discovered in by Joule in 1847 on mea-

surements of pure Fe [14]. Materials typically elongate along the direction of the

applied field, and experience a contraction in the transverse directions in accordance

with Poisson’s ratio. This implies the strain is elastic by nature, and Joule developed

a phenomenological theory of magnetostriction using a magnetoelastic coupling ten-

sor Bij and elastic constants cij. For a cubic material, the strain, λ, as a function of

field is expressed in terms of direction cosines for magnetization αij and crystalline

axes βij:

λ =− B1

c11 − c12

(
α2

1β
2
1 + α2

2β
2
2 + α3

3β
3
3 −

1

3

)
− B2

c44

(
α1α2β1β2 + α2α3β2β3 + α1α3β1β3

) (2.1)
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Cubic materials have magnetostriction fully characterized by their saturation re-

sponses along [100] and [111] directions, expressed as

λ100 = −2

3

B1

c11 − c12

(2.2)

λ111 = −1

3

B2

c44

, (2.3)

which one can understand as a dilatational and shear response, respectively. The

[110] response is a linear combination of these two, given by

λ110 =
1

4
λ100 +

3

4
λ111. (2.4)

The two constants, λ100 and λ111, sufficiently characterize the magnetostric-

tive response in all possible directions for single phase cubic crystals, changing the

expression in 2.1 to

λ =− 3

2
λ100

(
α2

1β
2
1 + α2

2β
2
2 + α3

3β
3
3 −

1

3

)
− 3λ111

(
α1α2β1β2 + α2α3β2β3 + α1α3β1β3

) (2.5)

If one magnetizes a sample along its [100] direction (α1 = β1 = 1, all others 0), one

measures exactly λ100 along the parallel axis, and one would also measure λ010 =

−1
2
λ100 in the transverse direction. Magnetostriction is often reported through the

difference in strain between these two axes, such that λs = λ‖ − λ⊥ = 3
2
λ100.

In 1954, Néel developed a fundamental explanation for magnetostriction through

a Legendre expansion of the potential energy for atomic bonds, r, using the ex-

6



change, g(r), dipole-dipole, l(r), and quadrupolar, q(r), interaction terms as ex-

pansion coefficients [15]. Thus, different magnetization directions correspond to

different equilibrium bond positions, reflected in the elastic strain described in the

Joulian model. Having origins related to the dipole and quadrupolar potentials in

the crystal, Joule magnetostriction is strongly tied to the magnetic anisotropy of

magnetic materials as well. In cubic materials, second order anisotropy is expressed

through the magnetization directions, αi, proportional to an anisotropy constant K1

as

uA = K1(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1), (2.6)

but eq. 2.1 can also be reinterpreted to express additional anisotropy such that

uA = (K1 + ∆K)(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1), (2.7)

where ∆K is a combined expression of the magnetostriction constants [16]:

∆K =
B2

1

c11 − c12

− B2
2

2c44

(2.8)

This expression represents a powerful relationship between magnetostriction and

anisotropy. Materials with high magnetostriction tend to possess high anisotropy,

and inversely, materials with high anisotropy tend to possess high magnetostriction.

This brief overview of Joule magnetostriction is expounded upon more in Ap-

pendix B.4, but the important tenets of the theory are described to clarify what it

means for a material to not exhibit Joulian magneostriction. Joule theory applies if
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Figure 2.1: Magnetostriction data shown for single crystal Fe68.8Pd31.2 at several
different temperatures along the (a) 〈100〉 and (b) 〈110〉 crystalline directions as
a function of field. The same data is shown as a function of temperature at select
fields ` 1900 Oe, e 2500 Oe, and a 4000 Oe, along the (d) 100 and (r) 110
crystalline directions. (c) and (f) show magnetostriction measurements taken at
256K for the 〈100〉 and (b) 〈110〉 directions, respectively.The data shows λ110 ≈ λ100

for temperatures above 250 K, below which a martensitic transformation occurs
resulting in growth of of λ110 from 300 to 1100 ppm, surpassing the magnitude of
λ100 by over a factor of two.

(1) the magnetic material is crystalline and of single phase, (2) the response is elas-

tic and obeys the relationships of eqs. 2.5 and 2.4, and (3) a high magnetostriction

proportionally yields high anisotropy.

2.2 Background and Evidence of Non-Joulian Magnetostriction in

FePd

This section summarizes the major conclusions drawn from earlier work on

FePd alloys, which Appendix C contains in heavier detail.

The FePd alloys within the 30-35 % Pd composition exhibit anomalous pre-

8



martensitic behavior and softening of the shear elastic constant, c11− c12, which has

been reflected in phonon measurements showing softening in the {ξξ0} transverse

acoustic mode [17, 18]. The quench treatment bypasses phase separation into an

equilibrium two-phase mixture of α-FCC and ordered-FCC L10 and instead sta-

bilizes a martensitic transformation from α-FCC to disorder face-centered tetrag-

onal (FCT). The premartensitic behavior of these alloys manifests as nanoscopic

tetragonal distortions along 〈110〉 twinning directions in the microstructure above

the transformation temperature, forming what has been called martensitic ‘nuclei’

that grow and condense in a pseudo-second order transformation mechanism before

the material undergoes a bulk first-order transition at the transformation tempera-

ture [11, 17].

In the premartensitic state, FePd exhibits large saturation magnetostriction of

∼300 ppm. Measurements were carried out on a single crystal sample of Fe68.8Pd31.2

from a temperature of 258 K to 248 K along both the [100] and [110] direction,

results shown in Figure 2.1. This temperature range covers the behavior above

and below the transformation temperature, which was estimated to be 252 K based

on a thermal expansion measurement of the same sample. The plots of Fig. 2.1d

and 2.1e show the results plotted in Fig. 2.1a and 2.1b, respectively, at constant

field as a function of temperature to highlight abrupt changes which occur in the

magnetostriction measurements as a result of the phase transformation onset at

250 K. The individual magnetostriction curve for the [100] direction in Fig. 2.1c

shows that λ010 = −1
2
λ100, in accordance with eq. 2.5. However, the individual

curve for the [110] direction in Fig. 2.1f completely departs from the magnetoelastic

9



Figure 2.2: (a) Magnetic torque data of several field strengths taken at 293K
for single crystal Fe68.8Pd31.2, (b) change of torque amplitudes A and B fitted to
A sin 4(θ + ϕ1)+B sin 2(θ + ϕ2) for curves of (a) to separate the anisotropy behavior

of the `2-fold symmetry and e4-fold symmetry, and (c) temperature dependence
of the 2-fold symmetry with applied field of 3000 Oe. The variation of amplitude for
the 2-fold symmetry with temperature attests to the presence of a uniaxial phase in
addition to the 4-fold symmetry cubic phase.

framework of Joule. While a large λ100 may be understood as a consequence of the

elastic constant softening, λ111 would be significantly small as c44 does not soften

as heavily in the material. In Joule’s framework, this implies λ110 ≈ 1
4
λ100 from

the relation in eq. 2.4 and also that λ11̄0 ≈ 1
4
λ100, but the data clearly shows

λ110 = λ100 6= 1
4
λ100 6= λ11̄0, clearly violating the theory.

Furthermore, one would expect FePd to exhibit significantly high anisotropy

because of the large magnetostriction, but magnetic torque measurements carried

out on the Fe68.8Pd31.2 sample, shown in Figure 2.2, show that it possesses remark-

ably low anisotropy at saturation, ∼425 J/m3. The magnitude of this is lower than

the anisotropy of some metglasses, which are amorphous magnetic materials de-

signed to have low anisotropy by virtue of their lack of crystallinity. The anisotropy

response also changes significantly as the material magnetizes, possessing only a

2-fold symmetry at low fields followed by the evolution of a 4-fold symmetry closer

to saturation. Fig. 2.2b shows the amplitude of these two phase components as a

10



Figure 2.3: Taken from Clark et al. [19],values of 3/2λ100 reported as a function of
composition for single crystal alloys in the Fe-Ga binary system either quenched or
slow-cooled (10 K/min) following homogenization at 1273 K between 72 and 168h
.Two maxima of the striction occur at 18 and 27 at. % Ga for quenched alloys,
matching closely to the boundary of a two-phase equilbirium of disordered BCC
α+ordered FCC L12 region, seen in the phase diagram (b), taken from Rahman et
al. [2].

function of field, and this implies that two phases exist and contribute to the over-

all magnetic behavior. Fig. 2.2c documents the amplitude of the 2-fold symmetry

as a function of temperature, showing drastic changes towards the transformation

temperature of 252 K, which tells us the 2-fold symmetry cannot be accounted for

by shape anisotropy of the sample alone.

2.3 Background and Evidence of Non-Joulian Magnetostriction in

FeGa

The FeGa alloys within the 15-30 % Ga composition have attracted exten-

sive study for their large magnetostriction, possessing two maxima in the saturation

value at 18 and 27 at %, as documented by Clark et al. [19], shown in Figure 2.3.

These maxima correspond closely to the boundary of a two-phase disordered-BCC

11



Figure 2.4: Magnetostriction data shown for single crystal Fe83Ga17 at room tem-
peratures along the (a) 〈100〉 and (b) 〈110〉 crystalline directions. The data shows
a λ110 ≈ 1

31
λ100 6= 1

4
λ100, as expected with the classical Joulian framework of mag-

netostriction.

A+ordered-FCC L12 two-phase region, seen in Fig.2.3b. However, most highly mag-

netostrictive FeGa alloys are fabricated as follows: (1) single crystals grown through

the Bridgmann method; (2) homogenization between 1123-1273 K for durations be-

tween 72 and 168 h; and (3) either ice-quenching or slow-cooling the sample 10/K

per minute to room temperature [19–27]. These alloys tend to exhibit disorderded-

BCC A2 or D03 crystal phases [2, 19–25, 28], with limited evolution of equilbirum

ordered-HCP D019 or ordered-FCC crystal phases, which tend to manifest for slower

cooling rates of 2 K/min [29]. The origin for these maxima in magnetostriction

remains debated in literature, with one school of thought attributing the large mag-

netostriction to elastic consequences from the variation in elastic shear constant

c′ = 1
2
(c11 − c12) [19, 21, 22, 25], and another attributing the large magnetostriction

to severe elastic softening and martensitic behavior [20, 24, 28]. Discpreancies for

values of shear constants, magnetoelastic constants, saturation magnetostrictions

λ100 and λ111, magnetizations, and anisotropy constants vary for alloys of the same
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composition throughout reports in the literature and represent the core of this de-

bate.

For instance, He et al. reported this year magnetistrction constants different

single crystal alloys of 17 % Ga [25]. Their crystals were first grown as single

crystal, annealed at 1273 K for 10 h, and, of those, furnace cooled, ice-quenched

after second 1033 K anneal for 30 min, or slow-cooled 10 K/min to 473 K. Their

constants definitely fall within the Joulian model. However, our own measurements

conducted on the [100] and [110] axes of an Fe83Ga17 single crystal homogenized at

1273 K for 2 h followed by a 10 K/min slow-cool to room temperature, shown in

Figure 2.4, show λ110 = 1
2
λ100, a ratio that does not fulfill the Joulian tenet that

λ110 ≈ 1
4
λ100. Furthermore, the individual curve for the [100] direction in Fig. 2.4a

shows that λ010 = 0 6= −1
2
λ100, also clearly violating the Joulian relationship between

parallel and perpendicular response. Both results show that single crystals, either

quenched after homogenization at 1273 K, exhibit highly different magnetoelastic

properties, and one then must suppose the processing affects the material drastically.

Because much of the magnetostriction within our alloys is non-Joulian, re-

porting our measurements within the Joulian model would be misleading. It’s not

possible for a measured λ100 to characterize the response along different directions

in our alloys, and, as such, further saturation values contained in this thesis will be

reported as λs = λ‖−⊥ = λ‖ − λ⊥ to distinguish from the convention of λs = 3
2
λ100.

Torque for these FeGa alloys is shown in Figure 2.5, and is anomalously small

in light of its magnetostriction, at a little over 1000 J/m3. It has a dominant 4-fold

symmetry, with a small 2-fold shape anisotropy symmetry component causing the
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Figure 2.5: (a) Room temperature magnetic torque data shown for single crystal
Fe83Ga17 at saturation and (b) taken from [30],the variation in magnetic anisotropy
for FeGa (squares) and FeAl (pentagons) alloys as a function of composition.

peak amplitude to vary in height between 90◦ intervals. Such a value is indicative

of an extremely soft magnet, at an order of magnitude less than pure Fe which

has anisotropy constants of K1 = 4.8 × 104 J/m3 and K2 = −1.0 × 104 J/m3 [16].

The anisotropy energy for these alloys as a function of composition shown in Fig.

2.5b, taken from Rafique, Cullen, and Wuttig’s work in 2004 [20], demonstrates

a monotonic decrease towards conentrations of 20 at. % Ga, which stand in con-

trast to calculated values one obtains based on magnetoelastic constants reported

by other groups [19,21]. The decrease in anisotropy also does not reflect the simul-

taneous increase in magnetostriction for the same Ga concentrations seen in Fig.

2.3. That is, eq. 2.8 predicts an increase an anisotropy proportional to the increase

in magnetostriction, which is not exhibited at all in the Fe-Ga system.

In summation, both FePd and FeGa alloys we studied violate the tenets nec-

essary to describe their magnetostrictive responses with the classical Joulian theory,

namely that λ100 represents a material constant sufficient to describe the satura-

tion values for arbitrary crystalline direction. This makes their magnetostrictve
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response non-Joulian in nature, and a new theory must be developed to describe

their anomalous magnetic characteristics.
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Chapter 3: Hypothesis of Nanoscale, Adaptive Martensite

The differing values of magnetostriction for Fe83Ga17 single crystals reported

by different research groups suggests alloy processing has a substantial role on the

magnetic behavior, which is only recently being explored in the work of Rahman

et al. [2]. Taken from their work, Figure 3.1 shows a large enhancement of magne-

tostriction in Fe81Ga19 alloys based on quenching either from a high homogenizing

temperature of 1273 K versus a lower temperature of 773 K. The discrepancies across

measured values related to the magnetostrictive behavior of FeGa seem to imply that

researchers of different groups are studying different materials of different atomic-

and microstructures. The alloys of FeGa with extremely low anisotropy energy also

tend to sharper decreases in shear elastic constant c′ [20,32], depicted in Figure 3.2,

and these decreases are towards c′ values three orders of magnitude small than those

reported FeGa alloys exhibiting Joulian striction [19, 21]. Most groups agree large

magnetostriction comes from development of the D03 phase, and much work has

gone on to attemp structural idenfitication in these alloys to determine the crystal-

lographic origin of large magnetostriction. However, due to the fact that the D03

lattice parameter differs by only 0.2 % compared to the A2 structure [22,29], the D03

phase can only be uniquely identified by the presence of lower intensity reflections
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Figure 3.1: Taken from [2] shows magnetostriction data acquired from single crys-
tals of Fe81Ga19 either quenched from a homogenization temperature of 1273 K or
quenched after slow-cooling from 1273 to 773 K at 2 K /min.

Figure 3.2: (a) Taken from [31], variation in elastic constants c′( c11−c12
2

) and c44 for
FeGa quenched single crystals 0 - 25 at. % Ga, and (b), taken from [32] , variation
in magnetostriction values (open symbols) for FeGa quenched single crystals 0 -
25 at. % Ga reported in literature compared to measured variation in magnetic
anisotropy (solid symbols) of quenched single crystal FeGa alloys. The two plots in
tandem suggest a relationship between low c′, K1/K2, and λs values for quenched
FeGa alloys.

permitted by the ordering of the atoms which are otherwise forbidden in A2. This

makes crystallographic data difficult to interpret and correlate closely with the A2

or D03 phases. Elastic softening is a universal characteristic of martensitic materials

exhibiting shape memory properties, and the softening seen in the low anisotropy

energy alloys make the likelihood high that martensitic structures develop and have

some effect on magnetic anistoropy and magnetoelastic behavior. The reortienta-
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tion of tetragonal clusters 15 nm in size under critical stress and magnetic fields was

observed through small angle neutron scattering measurements reported by Laver

et al. in 2010 [23]. Very recently, Liu et al. found evidence of nanoscale martensitic

twin modulation of the D03 through TEM [33]. The structure of this martensite

corresponds to a 6M nanomodulations corresponding to orthorhombic martensites

based on stacking fault sequences as documented by Otsuka in 1976 [34].

Alloy Heat Treatment Cooling Crystallinity

Fe83Ga17 1273 K, 24 h, Ar atmosphere Slow-cooled 10 K/ min Single Crystal, [100] normal
Fe82Ga18 1273 K, 24 h, Ar atmosphere Slow-cooled 10 K/ min Single Crystal, [100] normal
Fe81Ga19 1273 K, 72 h, Ar atmosphere Ice-quenched Polycrystalline
Fe78Ga22 1273 K, 24 h, Ar atmosphere 10 K/ min Single Crystal, [100] normal
Fe74Ga26 Arc-melted and no anneal Furnace-cooled Polycrystalline

Table 3.1: A summary of the different alloys studied detailing their processing his-
tory and reported crystallinity.

The experimental evidence of non-Joulian magnetostriction for FeGa alloys

of low anisotropy energy, low shear constant, high saturation magnetostriction,

and anhysteretic and isotropic magnetization, in accompaniment with documented

tetragonal and martensitic structures [23, 33], makes the fact unassailable that the

departure from classical magnetization and magnetoelastic mechanisms come from

ferromagnetoelastic behavior. Still, this data stands at odds with that of other re-

search groups who do not measure the same characteristics for alloys of the same

composition and similar processing history. This can only be reconciled under the

assumption that the tendency of 15-30 at% FeGa alloys to form martensite is a conse-

quence of metastable kinetics of different phases’ evolution during the heat treatment

process. We hypothesize this martensite develops as a consequence of D03 precipita-
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tion during quenching or slow-cooling, and epitaxial strain across A2/D03 interfaces

locally-induces martensitic transformations at the nanoscale. Such martensite de-

velops adaptive qualities which accommodate variations in stress or magnetic field

in a near-reversible mechanism, exhibiting magnetic and magnetoelastic responses

which defy classical behavior. More details of such martensitic behavior are con-

tained in Appendices C and D, which document earlier work conducted on FePd

and FeNi alloys, respectively. To assess the extent and possible adaptive nature

of martensite in FeGa alloys, we carried out experiments on alloys of compositions

Fe100−xGax (x = 17, 18, 19, 22, and 26 at. %), characterizing their magnetic, magne-

toelastic, and nanoscale structural characteristics under an in situ applied magnetic

field in an attempt to connect the three together. Table I details the processing

history and reported crystallinity of these alloy, and Table II gives an overview of

experimental work carried out. Details of the specific measurement equipment, mea-

surement techniques, and sample preparation techniques employed in these studies

is expounded upon in Appendix E.
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Alloy ε(T ) M(H) λ(H,T ) L(H) SAD/NED v. H HRTEM v. H DFTEM

Fe83Ga17 X X X – – – –
Fe82Ga18 X X X X X X X
Fe81Ga19 X X X – X X –
Fe78Ga22 X X X – X X X
Fe74Ga26 X X X – – – –

Table 3.2: This table clarifies which experimental studies were carried out on each al-
loy, including measurements of thermal expansion (ε(T )), room temperature magne-
tization (M(H)), temperature dependent magnetostriction curves (λ(H,T )), room
temperature magnetic torque curves at different fields (L(H)), selected area and
nanoelectron diffraction studies versus magnetic field inside the TEM (SAD/NED
v. H), high resolution TEM imaging versus magnetic field inside the TEM (HRTEM
v. H), and dark field imaging under two-beam conditions at the nominal operating
field inside the TEM (DFTEM).
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Chapter 4: Studies on FeGa

4.1 Magnetic Characteristics of FeGa

Thermal expansion curves for the x = 17, 18, 19, 22, and 26 % alloys are

shown in Figure 4.1. The Fe83Ga17, Fe82Ga18, Fe81Ga19, and Fe78Ga22 samples

show slight non-linear responses towards higher temperatures in its expansion. The

deviation from linear behavior in both the 17 and 22 % Ga alloys occurs at the

same temperature, 327 K, which may be indicative of similar phase transition in

both alloys. There is a clear jump in the coefficient of thermal expansion from near

6.3-6 ppm/K at 18 at. % Ga to 8.23 ppm/K at 22 at. % Ga, likely attributable to

crystallographic differences expected from the phase diagram.

Room temperature magnetization curves for Fe82Ga18 and Fe78Ga22 are shown

in Figure 4.2, depicting isotropic, anhysteretic behavior as seen in FePd. We demon-

strated in previous work on FePd that the slope of the curve is determined by the

demagnetization factor of the samples [35], and the derivation of this result based

on an analysis of the magnetic energy in the system is found in Appendix C. Both

samples were disks with dimensions of 8mm diameter and 0.5 mm thickness, and

the demagnetization factor determined from the slope of the curve is measured at

0.270, closely corresponding to the theoretical demagnetization factor of 0.269 for

21



Figure 4.1: Thermal expansion measurements taken over a range of 233-378 K
for Fe100−xGax alloys (x = 17, 18, 19, 22, and 26) with corresponding thermal
expansion coefficients α reported in the plots. There’s a clear jump in α from 6.29
to 8.23 between the Fe81Ga19 and Fe78Ga22 alloys that might attest to fundamental
crystallographic differences between the 17,18, and 19 % compositions versus the 22
and 26 % ones. Anomalous bumps in the expansion occuring near 327 K are seen
in both the 17 and 22 at. % Ga alloys.

Figure 4.2: Magnetization curves for single crystal Fe82Ga18 and Fe78Ga22 alloys.
Both alloys exhibited linear, anhysteretic, and isotropic magnetization.

magnetic cylinders with a 16:1 aspect ratio [36]. In addition, the two curves are

nearly identical, meaning the magnetization remains independent of the crystallo-

graphic differences responsible for the change in thermal expansion behavior.

The magnetostriction data for these samples starts to paint a more complex

picture of magnetoelastic coupling in these alloys not reflected in the magnetization

behavior. Figure 4.3 shows λ‖−⊥ as a function of temperature for the x = 17, 18, 19,

22, 26 % alloys. The data shows very clearly that Fe83Ga17 and Fe78Ga22 have some

sort of magnetostrictive transition occurring near 325K which is liekly connected

to the anomalous bump in thermal expansion seen in their heating curves from
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Figure 4.3: Saturation magnetostriction, λ‖−⊥, values plotted as a function of tem-
perature for Fe100−xGax alloys (x = 17, 18, 19, 22, and 26). Large room temperature
magnetostriction of 250 and 300 ppm was observed for the 17 and 18 at. % Ga alloys,
respectively. Significant decreases are seen within the 17 and 22 at. % Ga alloys
near 325 K, corresponding to the same temperature at which an anomalous hump
in the thermal expansion data appears. Slight decreases are seen in the values for
19 and 26 at. % Ga alloys at 360 K that suggest magnetic transitions not reflected
in the thermal expansion data.

Fig. 4.1. The Fe81Ga19 sample has extremely low magnetostriction, but it has an

anomalous maximum in its value at 370K, indicating a transition not reflected at

all in the thermal expansion data. The Fe74Ga26 sample may be exhibiting a high

temperature transition near 370K as well, but the limits of the instrumentation make

this difficult to interpret. No such phenomena are seen in the Fe82Ga18 sample.

All alloys but the Fe74Ga26 composition exhibit anomalous magnetostriction

at room temperature, shown in Figure 4.4.The Fe74Ga26 alloy was also the only com-

posotion not subject to homogenization and quenching/slow cooling, which could ac-

count for it being the only material with typical Joulian behavior. The Fe83Ga17 and

Fe78Ga22 alloys have near zero λ010, and the linear approach to saturation in Fe78Ga22

suggests twin boundary motion, which has been modelled for FSMAs [37]. It has

been demonstrated that FeGa alloys exhibit large variation in values of Poisson’s

ratio for 〈110〉 directions as a consequence of their magnetic properties [25, 38, 39],

and this could account for the anomalous positive response for λ⊥ in the Fe81Ga19
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Figure 4.4: Magnetostriction measurements taken at room temperature showing
both λ‖ and λ⊥ for Fe100−xGax alloys (x = 17, 18, 19, 22, and 26). The 17, 18, and 22
at. % Ga single crystal alloys had strain gauges along [100] and [010] directions, and
all exhibit non-Joulian magnetostriction. Both Fe83Ga17 and Fe78Ga22 show λ010 ≈
0 at saturation. The Fe82Ga18 alloy shows very unusual non-linear behavior and
transitions to linear responses at 2300 Oe along both directions before saturation.
The Fe81Ga19 alloy show positive transverse magnetostriction which is atypical of
polycrystals. Only the Fe74Ga26 sample shows Joulian behavior.

alloy. There’s also the possibility of abnormal grain growth of 〈110〉 texturing dur-

ing the heat treatment, as seen in FeGa alloys studied by Na and Flatau [40–42].

This could explain the positive transverse striction as a λ11̄0 response. We adhered

the strain gauge to this Fe81Ga19 sample without regard to any known direction

under the assumption of non-textured polycrystallinity, which would mean that the

arbitrary placement coincidentally lay along an unknown [110] texturing, a possi-

bility we did not verify for this alloy. The Fe82Ga18 alloy has mixed quadratic and

linear characteristics in its magnetostrictive response, which suggests perhaps both

classical and twin-boundary movement responses contribute to the overall behavior

at different field strengths. The Fe82Ga18 sample sees this initiate near 2300 Oe, but

it is unknown what crystallographically and microstructurally may be occurring to

produce this magnetoelastic response. The process is reversible, indicating the re-

sponse demagnetizes the sample completely, in accordance with the magnetization

behavior. A plot of the magnetostriction values for Fe82Ga18 at an intermediate
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Figure 4.5: Magnetostriction values (λ‖ − λ⊥) obtained with an applied field of
1500 Oe plotted as a function of temperature for an Fe82Ga18 alloy. This data
shows a clear transition in intermediate magnetostriction values with temperature
variation that does not appear at all in the saturation magnetostriction values versus
temperature.

field of 1500 Oe, seen in Figure 4.5, reveals an anomalous transition near 325 K

not captured by the λ‖−⊥(T ) plot. There’s a large hysteresis between the values

obtained during the heating cycle as opposed to the cooling cycle for this alloy, but

at no point do the individual magnetostriction curves, not shown, indicate a loss of

reversibility for the sample at any temperature.

We carried out torque measurements as a function of field on the Fe82Ga18

sample in the attempt to probe structural characteristics indirectly and to gain a

better understanding of the origin of these magnetostrictive transitions. Reference

curves are shown in Figure 4.6 at low, intermediate, and saturation fields. Similar

to FePd, the torque possesses only 2-fold symmetry at lower fields, and a 4-fold

symmetry manifests at intermediates fields and ultimately comes to dominate the

torque. Unlike FePd, however, the 2-fold symmetry component exhibits hysteretic

switching between forward and reverse measurements, a phenomena corresponding

to an anisotropy response of hard, uniaxial magnetic materials like CoFe2O4 [43,44].
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Figure 4.6: Magnetic Torque measurements of Fe82Ga18 taken at 500, 1250, and
1800 Oe. Contrary to the magnetization, hysteresis appears corresponding to a 2-
fold uniaxial symmetry within the magnetic torque data at the low and intermediate
field values 500 and 1250 Oe before cubic 4-fold symmetry dominates the signal at
the higher field of 1800 Oe near saturation.

The presence of this uniaxial switching means the Fe82Ga18 sample is not single

crystalline but two-phase. The curves in Fig. 4.6 have fitted lines constructed from

a model superposing cubic (4-fold), uniaxial (2-fold), and shape anisotropy (2-fold)

through the following expression:

Ltotal(θ) = Ncubic sin(4θ)+Nuniaxial sin(2(ψ0(θ)−θuniaxial))+NdemagM
2 sin(2(θ−θdemag))

(4.1)

where Ltotal describes the total value of the anisotropy for a given applied field angle,

θ, Ncubic is the amplitude of the cubic anisotropy component, Nuniaxial is the ampli-

tude of the uniaxial anisotropy component, Ndemag is the demagnetization factor of

the sample, M is the sample magnetization at the applied field strength, θuniaxial is

the phase difference between the uniaxial and cubic components, and θdemag is the

phase difference between the cubic and shape anisotropy components. To capture

the switching behavior of the uniaxial component, equilibrium magnetization an-

gles, ψ0(θ) are determined by minimizing the anisotropy and Zeeman energy with

respect to the uniaxial phase’s own magnetization angle, ψ, which does not follow
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Figure 4.7: Several values as a function of field extracted from modelling the mag-
netic torque curves of Fe82Ga18 with eq. 4.1, including (a) Ncubic, (b) Nuniaxial, (c)
NdemagM

2, (d) θuniaxial, and (e) θdemag.

the angle of the applied field as the sample is magnetized along its hard axes below

a critical field value [44]. This minimization corresponds to two solution sets for

the equilibrium angle, which accounts for the hysteresis observed in the forward and

reverse measurements. Further details of this modelling are contained in Appendix

E.

The model was used to track the response of the different anisotropy compo-

nents as a function of field, shown in Figure 4.7. Most notably, the shape anisotropy

behavior shows very anomalous results after the cubic phase begins to manifest.

Shape anisotropy is proportional to the square of the sample magnetization, as ex-

pressed in eq. 4.1, which holds true up to 1000 Oe, but at higher fields it shows

a steady decrease. Furthermore, the phase of the shape anisotropy, which depends

only on the sample geometry and thus should not show field dependence, begins

to change as a function of field after 1000 Oe. Shape anisotropy originates from
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the slight ellipticity of circular samples, causing preferred magnetization directions

along one axis over its transverse counterpart. The factor Ndemag is determined by

the difference in length between these axes, N‖ − N⊥, and the magnitude of the

shape anisotropy at 1000 Oe has an energy of ∼140 J/m3, corresponding to a de-

magnetization of approximately 0.00342. This represents an ellipticity of ∼0.24 %

or roughly 20 µm around the disk perimeter. The magnetostriction, in comparison,

introduces a 4 µm variation around the disk parameter, so it is believed that the

magnetostriction is responsible for the departure of both the amplitude and phase

of the shape anisotropy from typical behavior.

The critical field at which the uniaxial hysteresis is overcome is determined

by the uniaxial anisotropy constant and magnetization through the relation Hk =

2Ku/Ms [44]. The critical field extracted from the modelling is 2300 Oe, which cor-

responds to a uniaxial anisotropy of ∼ 1.66 ×106 J/m3. This field value matches the

same field strength where the magnetostriction behavior of Fe82Ga18 switches from

quadratic to linear behavior as well, which could imply exceeding this critical field

activates a mangetostrictive effect of the uniaxial phase. Considering the magnitude

of the uniaxial anisotropy, which exhibits an amplitude of 46 dyne-cm or 183 J/m3

in the actual data, one can obtain a volume fraction estimate of ∼0.11 % for this

uniaxial phase.
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Figure 4.8: Diffraction patterns obtained for an Fe82Ga18 alloy along (a) [001] and
(b) [011] zone axis, an Fe81Ga19 alloy along (c) [110] and (d) [110] zone axes, and
an Fe78Ga22 alloy along (e) [001] and (f) [111] zone axes.

4.2 TEM Studies of FeGa

The extremely small volume fraction for a uniaxial magnetic phase within

the Fe82Ga18 sample meant bulk diffraction probes could not be trusted to provide

accurate structural information for the sample, and most likely other samples. Thus,

TEM measurements have been carried out on [100] and [110] slices of Fe82Ga18, [100]

and [111] slices of Fe78Ga22 alloys, and sample cut of arbitrary orientation from

polycrystalline Fe81Ga19. Characteristic diffraction patterns are shown in Figure

4.8 for the respective zone axes of the slices from Fe82Ga18 and Fe78Ga22. The

dominant phases apparent in both alloys are A2 (disordered-BCC) and D03 (ordered

BCC), with aA2 ≈ 2aD03 , and no clear evidence of twinning in any of these patterns

can be seen. The near-equivalent lattice parameters of these two structures make
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separation of their contribution to the diffraction patterns difficult; only the fact

that ordering in D03 permits otherwise forbidden reflections for the A2 structure in

h+k+l =odd values lets one understand both phases are present. For the [111] zone

axis, distinctions between the two structures is impossible, seen in Fig. 4.8d and

4.8f. It can be seen that the Fe81Ga19 pattern appears to have brighter, less diffuse

D03 reflections than that of Fe82Ga18, such that it must possess a large volume

fraction of D03 through its bulk, as one would expect from the phase diagram.

The Fe78Ga22 alloy also possesses faint ring-like patterning for the 〈110〉 reflections,

indicating the alloy may not be as single crystalline or homogeneous as determined

by the manufacturer of the material. The Fe82Ga18 crystal demonstrates heavily

diffuse streaking along 〈211〉 directions in its [011] zone axis pattern as well as non-

uniform intensity distribution among its many reflections, which may be interpreted

as twin-like distortions for a BCC crystal, but evidence of these structures was not

seen in any micrographs.

In order to attempt to distinguish the D03 phase from the A2 in these mate-

rials, dark field imaging was attempted for [200]A2 and [100]D03 reflections, shown

in Figures 4.9 for Fe82Ga18 and 4.10 for Fe78Ga22. In both cases, dislocations were

nowhere found throughout the bulk of the TEM samples; bright spots highlighted by

the technique seem to indicate the presence of substantial precipitates nanoscopic in

size towards the edges. The nanoscopic size of these precipitates requires extremely

thin portions of the samples to even observe their presence, which explains why they

resolve most clearly near the thin edges of the samples.

High resolution (HR) imaging for the alloys are shown in Figures 4.11, 4.12,
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Figure 4.9: (a) Bright field and (b) dark field images TEM micrographs taken un-
der two-beam conditions for a [020]A2 reflection in [001] oriented Fe82Ga18 sample.
(c)Bright field and (d) dark field TEM micrographs taken under two-beam condi-
tions for a [100] D03 reflection in the same [001] oriented Fe82Ga18 sample. Btoh
dark field images illuminate a distribution of nano-sized precipitates towards the
thinner edge of the sample.

and 4.13. Both samples can be seen to possess a curious texturing at lower magnifi-

cations which seems to be caused by the presence of these nanoscopic precipitates.

Upon closer inspection, one sees this contrast definitely comes not from thickness,

stress, or compositional variation, but by the presence of an extremely large amount

of nanoscopic crystallites misoriented with respect to each other, best seen in high-

est magnification images from the figures. The crystallites average around 5 nm

in size, and their overlap also gives rise to Moiré fringes in certain places. Phase

identification of these precipitates, as well as twinning, are hard to evaluate, and

as it stands, Fourier analysis cannot overcome the signal-to-noise ratio to clearly

identify to what extent these precipitates are D03 or A2.

One thing that is clear is that neither of the Fe82Ga18 or Fe78Ga22 alloys are
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Figure 4.10: (a) Bright field TEM micrograph under two-beam conditions for a
[020]A2 reflection of a [001] oreinted Fe78Ga22 sample, along with dark field micro-
graphs under (b) [020]A2 and (c) [200]D03 two-beam conditions. These images
again illuminate a distribution of nano-sized precipitates.

single crystal, but the extent to which these precipitates are distributed in the bulk is

also unknown. Even the polyrcrystalline Fe81Ga19 possesses nanocrystallites within

the bulk of single crystalline grains. Because the grains average roughly 5 nm in size,

one cannot resolve them properly once the sample thickness exceeds this dimension.

The diffraction pattern, too, tends to become dominated by an A2 single crystal

pattern if it is taken from thicker areas, which could cause one measuring the phase

via XRD or neutron diffraction to assume the samples are both single-phase, single

crystal. An example of this is shown for Fe81Ga19 in Figure 4.14, which displays

[110] zone axis diffraction patterns obtained over the same area using an aperture

1 µm in diameter versus 0.15 µm in diameter. The second pattern shows a much

greater enhancement of D03 reflections from the smaller area, as well as numerous

off-axis reflections around the transmitted beam corresponding to the variety of
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Figure 4.11: A series of high contrast images taken of an Fe82Ga18 alloy at several
different magnifications, up to higher resolution using a JEM2100FEG TEM.

Figure 4.12: A series of high contrast images taken of an Fe81Ga19 alloy at several
different magnifications, up to higher resolution using a JEM2100FEG TEM.

orientations the nanocrystallites possess. The local structure for these alloys now

must be understood as a heterogeneous two phase mixture of A2 and D03. It could

be perhaps that single crystal growth causes some degree of texturing, but this

remains an open question.

The key to understanding the magnetoelastic mechanisms for large magne-

tostriction in these alloys must then involve local diffraction probes of the alloys as

a function of field. All results shown thus far were taken at high magnification in

TEM, which necessitates maintaining a high current in the objective lens, placing

the sample in a field of approximately 3.15 T. Thus, most images correspond to the

structural state of the sample close to magnetic saturation. Preliminary attempts

to obtain patterns at lower objective lens voltages (VOLs) of a JEOL 2100 LaB6
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Figure 4.13: A series of high contrast images taken of an Fe78Ga22 alloy at several
different magnifications, up to higher resolution using a JEM2100FEG TEM.

Figure 4.14: Selected Area Diffraction patterns taken of the same area in Fe81Ga19

using a (a) 1 µm size aperture and (b) 0.15 µm size aperture. The use of a smaller
aperture leads to enhanced brightness in off-axis reflections showing the distribution
in orientation amongst nanocrystallites.

TEM for the Fe78Ga22 sample are shown in Figure 4.15, with corresponding HR

images in Figure 4.16. Lowering the objective lens lowers the magnetic field sur-

rounding the sample, and we fabricated a Hall Probe to measure the field inside

the TEM to assess the magnitude of the field changes. Despite the relatively small

decrease in field, one can see the local structure changes drastically, with a large

broadening of the A2 reflections, sharpening of the D03 reflections, and emergence

of a significant distribution of differently oriented crystallites for both phases. The

HR images focus on a single grain with inset fast Fourier transforms (FFT) to give

an approximate look into reciprocal space for the crystallite. The crystallites lattice
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Figure 4.15: A series of selected area diffraction patterns taken over a roughly 150
nm diameter circular area for an Fe78Ga22 alloy at different strengths of objective
lens voltage using a JEOL 2100 LaB6 TEM. The sensitivity of the magnetic field
reported is 0.1 mT. Lowering the field yields brighter D03 reflections and shows
crystalline reorientation through emergence of differently rotated [001] zone axis
reflections.

planes appear to go through severe distortions as VOL decreases; the FFTs attest

to a rhombohedrally distorted symmetry that forms twin-like reflection patterns at

VOL = 3.68 V and VOL = 3.45 V. These interpretations are not definitive, however,

as lowering VOL changes alignment and focus conditions in ways unaccounted for.

Below VOL = 3.20 V, it becomes impossible within the limitations of the microscope

to move the sample back to the image plane for focus.

Similar measurements were conducted on a Fe82Ga18 and Fe81Ga19 samples

using a JEOL 2100 FEG TEM, which has considerably improved resolution than

that of the LaB6 due to the nature of the electron source [45], and those results are

shown in Figures 4.17 and 4.18 for the 18 % alloy and Figures 4.19 and 4.20 for the

19 % alloy. Just as in Fe78Ga22 even the slight lowering of the field from 3.15 to 3.07

T, a difference of about 0.08 T or 800 Oe, causes a substantial change in intensity

of reflections corresponding to the D03 phase for both alloys. The high resolution

images in Figs. 4.18a-d and 4.20a-d are all of the same area for their respective sam-

ple, but locally the structure appears to vary as the field decreases. This may be
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Figure 4.16: A series of high resolution images for a single 5 nm-sized crystallite
in an Fe78Ga22 alloy at different strengths of objective lens voltage. The sensitivity
of the magnetic field reported is 0.1 mT. The nanocrystallite region in considera-
tion is highlighted in red, with fast Fourier transforms of the nanocrystallite region
shown below, exhibiting different reflections as the field decreases. This suggests
the crystallite reorients its structure in response to the field.

due to changes in focusing caused by re-alignment after each incremental decrease

in VOL, so filtered images were prepared in Figs. 4.18e-h and 4.20e-h by applying

an artificial mask on the D03 [100] reflection in the Fast Fourier Transforms (FFTs)

of the parent images. This FFT-filtering enhances the contrast for portions of the

image that contribute to the intensity of the reflections, and therefore the regions

where wave-like striations appear clearest correspond to regions of local D03 order-

ing. The size and location of these regions varies greatly in the Fe82Ga18 sample,

where one can see a larger cluster of D03 orientation break into three pieces between

the 3.10 and 3.07 T field increments in Fig. 4.18g and h. The interface between

the light contrast in the edge of the sample and darker contrast of a 111 oriented

portion of the crystal appears to shift greatly between the 3.12 and 3.10 T incre-
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Figure 4.17: A series of selected area diffraction patterns taken over a roughly 150
nm diameter circular area for an Fe82Ga18 alloy at different strengths of objective
lens voltage. The sensitivity of the magnetic field reported is 0.1 mT. These patterns
also show brighter D03 reflections and the emergence of new reflections as the field
decreases.

ments as well (Fig. 4.18f and g), further demonstrating wide-spread reorientation of

the nanocrystalline regions. In the Fe81Ga19 sample, one sees a large spread of such

clusters near 2.5 nm in size at 3.15 T (Fig. 4.20e), but at 3.07 T (Fig. 4.20e), the

clusters appear larger and even spread across a much larger sized area of ∼10 nm.

The use of SAD allows one to see clearer diffraction information from the 5

nm-sized crystallites, but it is of interest to characterize the structure of individual

grains that differ to some extent from the overall diffraction patterns obtained within

the 150 nm diameter aperture probe. Thus, we employed NED in a JEOL 2100 FEG

TEM under scanning conditions (STEM) to condense the electron beam to probe

sizes of 1 nm or less. The beam probes in NED are completely coherent due to the

use of a converged electron beam acting as an idealized point source of scattering

at the sample surface [46–48], and its usage necessitates a very thin area of sample

to limit dynamical scattering events which lead to incoherence. The usage of the

technique for non-saturated VOL is not documented in the literature, but operating

in STEM mode allows for decreases in VOL to be compensated by adjustment of the
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Figure 4.18: A series of high resolution images (a-d) of the same area within an
Fe82Ga18 alloy at different strengths of objective lens voltage. The images (e-h)
show enhanced contrast areas contributing to D03 [100] reflections in the Fast Fourier
Transforms of images (a-d), obtained through filtering software in Digital Micro-
graph. The images shows substantial displacement of a light/dark contrast interface
that suggests large reorientation between field values of (b) 3.12 and (c) 3.10 T.
The FFT-filtered images show regions of local D03 orientation shifting as the field
decreases.

CL3 condenser lens to readjust the movement of the focal plane back to the plane of

the screen or CCD camera [49], thereby permitting diffraction data to be collected

at substantially lower magnetic fields.

Examples of patterns as well as dark fields images obtained for an Fe82Ga19

sample through NED are shown in Figure 4.21. The compensation of the CL3 lens

while lowering VOL allows dark field images to remain in focus and permit accu-

rate placement of the beam in the same position of the sample to ensure the same

structure is being measured throughout. Scale bars are intentionally removed from

the images, as the various adjustments to lens voltages make calibrations difficult.

The diffraction patterns at the low end of VOL show significant distortions in various
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Figure 4.19: A series of selected area diffraction patterns taken over a roughly 150
nm diameter circular area for an Fe81Ga19 alloy at different strengths of objective
lens voltage. The sensitivity of the magnetic field reported is 0.1 mT. These patterns
also show brighter D03 reflections and the emergence of new reflections as the field
decreases.

cubic reflections in Fe82Ga18, meaning exact interplanar distances at lower objec-

tive lens voltages are difficult to measure. While not shown, calibrations were first

attempted on single crystal Si as proof of concept, but even in Si the distortions at

lower VOL cannot be overcome. Below a VOL of 1.92 V, obtaining usable NED pat-

terns for the FeGa samples became extremely difficult, and thus the measurements

on these samples were carried out only from 4.54 V, the nominal operating voltage,

to 1.92 V in intervals of approximately 0.155 V. The calibration between VOL and

the magnetic field in the instrument is contained in Appendix E, which corresponds

to a field range of 2.38 to 3.15 T. Because the FIB samples are fabricated with

dimensions of approximately 20 µm × 5 µm × 0.01 µm, the demagnetization factor

of the sample out of plane, or along the direction of the field inside the TEM, is

approximately equal to 1. This means the demagnetization field of the sample is

approximately twice that of the samples’ saturation magnetization, which comes to

about 3.64 T based on a magnetization of 185 emu/g. The samples therefore are not

fully magnetized in the TEM, and the NED probes the local structure from about
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Figure 4.20: A series of high resolution images (a-d) of the same area within an
Fe81Ga19 alloy at different strengths of objective lens voltage. The images (e-h)
show enhanced contrast areas contributing to D03 [100] reflections in the Fast Fourier
Transforms of images (a-d), obtained through filtering software in Digital Micro-
graph. The FFT-filtered images show regions of local D03 orientation shifting as
the field decreases.

65-85 % magnetization.

Because of inaccuracy in assessing lattice parameters, the presence of D03

was assessed through intensity comparisons of D03 forbidden reflections to those

of A2+D03 reflections, which serve as a measure of the relevant volume fraction

of D03 in probe. More details of this analysis are contained in Appendix E, but

the results are shown in Figure 4.22. For the Fe82Ga18 and Fe78Ga22 samples, the

D03 signal quickly decreases upon initial lowering of the field, and the 18 % sample

shows a significant increase in signal at the intermediate values before shrinking back

down at the lower end. The Fe81Ga19 sample shows little variation in D03 signal

before exhibiting a decrease such as at lower fields seen in the other samples. The

data demonstrates the D03 fraction does not remain stagnant, which could be an
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Figure 4.21: Dark field images and nanodiffraction patterns of an Fe82Ga18 crystal
obtained in STEM mode taken at VOL of (a) (b) 4.54, (c) (d) 3.06V, and (e) (f)
1.92 V. These images demonstrate the ability to keep a sample in focus and obtain
nanoelectron diffraction patterns from the same location while decreasing VOL.

indication of short-range ordering in response to the changing magnetic field. How

and why this occurs is not exactly clear just from these measurements, since they

suggest considerable atomic rearrangement through diffusive mechanisms must be

responsible for the change in phase fraction of D03.

The Fe81Ga19 sample also exhibited twin-like [210] reflections for D03 crystals

in the nanodiffraction patterns across A2211 planes. These reflections had extremely

defuse scattering across the 〈211〉 trace rather than isolated peaks. Analysis of this

intensity as a function of field showed a dependence, and these results are shown in

Figure 4.23. The measurements suggest not only does the fraction of D03 change

with respect the to the field, but martensite variants thereof take place in twin-

ning/detwinning mechanisms as well, pointing to a rather complex magnetization
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Figure 4.22: Plots of the D03 signal intensity versus magnetic field for(a) Fe82Ga18,
(b) Fe81Ga19, and (c) Fe78Ga22 samples as analyzed through nanodiffraction pat-
terns taken at each voltage. All three plots show variation in D03 reflection intensity
with the field, with more drastic responses in the 18 and 22 at. % Ga alloys.

and magnetostriction response for the alloy.
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Figure 4.23: Nanodiffraction patterns collected for Fe81Ga19 at (a) 3.13 and (b)
3.04 T, with respective (c) and (d) intensitity line profiles along 〈211〉 directions
across 〈210〉 D03 twin-reflections. The results of intensity analysis as a function of
field for the twin reflection intensity compared to the stronger D03 is shown in (e).
This analysis suggests de-twinning occurs within Fe81Ga19 in response to the field.
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Figure 4.24: Magnetic torque measurements on the same Fe82Ga18 under a 1300 Oe
applied field taken in (a) 2011 and (b) 2018, after an estimated 12 temperature
cycles from 233 to 373 K and 455 magnetic cycles from zero field to saturation. A
strong 2-fold uniaxial torque signal manifests in the latter data.

4.3 Evidence of Trained Fe82Ga18 Samples

The Fe82Ga18 alloy studied in these various measurements came from Ames

Laboratory over 7 years ago as a single crystal rod homogenized at 1273 K for 72

h followed by 10 K/min slow cooling to room temperature. The various studies

reported in this thesis lasted over the span of a year. Through this timeframe, it

became clear that the same measurements repeated on the same samples started

to yield different results, suggesting a form of training through growth of both D03

and tetragonal precipitates that was hitherto unanticipated. As such, the training

history for the alloy cannot be exactly quantified, but it can be estimated based on

the timeline of measurements taken. We classify training between either thermal

cycling between 233 and 373 K as well as field cycling from 0 field to saturation,

and the estimates for such cycles are reported in Table III.

Torque measurements carried out at 1300 Oe seven years ago are shown side-

by-side with measurements taken at the same field this year for the same Fe82Ga18
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Figure 4.25: Room temperature magnetostriction curves measured on the same
Fe82Ga18 sample in (a) June 2017 and (b) February 2018. The magnetostriction
changes in non-linear response substantially and λ010 increases from -50 to -300 ppm
to change the λ‖−⊥ from 300 to 570 ppm after having gone through 6 additional
temperature cycles from 233 to 373 K and 168 magnetic cycles from zero field to
saturation.

disk in Figure 4.24. The sample would have undergone an estimated 12 thermal

cycles and 455 magnetic cycles between these two measurements, and while the

magnitude of the torque remained constant, the hysteretic switching attributable

to a uniaxial tetragonal phase grew substantially, exhibiting approximately a 10×

increase in magnitude from 5 to 50 dyne-cm.

Magnetostriction measurements taken eight months apart on the same sam-

ple also revealed a substantial increase in saturation, shown in Figure 4.25. The

value of λ‖−⊥ changed from 300 to 570 ppm, almost doubling in magnitude, after

having undergone an estimated 6 thermal cycles and 224 magnetic cycles. One can

see from the curve that this enhancement comes from a substantial change of the

λ010,⊥ response, and considered in tandem with the torque measurements, it may be

attributable to the large increase in a tetragonal symmetry phase. Furthermore, the

response at intermediate fields loses its unusual shape and becomes purely quadratic

in nature before exhibiting linear behavior shortly before saturation. This could sug-
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Figure 4.26: Several SAD patterns taken of Fe82Ga18 samples fabricated in June
2017 and January 2018 along (a) and (b) [002] zone axes and fabricated in January
2018 and May 2018 along (c) and (d) [210] zone axes. A greater number of [001]
superlattice reflections emerges, which is attributable to a 6M martensite variant of
D03 likely stabilized by the large amount of thermal and magnetic cycles reported
in the patterns.

gest that the repeated magnetization cycles on the sample had the effect of trained

specific growth of the tetragonal symmetry phase to select variants more favorably

aligned in [100] and [010] directions.

TEM measurements were made on samples cut through FIB at different times:

one in May 2017, one in January 2018, and one in May 2018, corresponding to cu-

mulative thermal cycles of 6, 11, and 13 and cumulative magnetic cycles of 231,

399, and 512, respectively. Several SAD patterns are shown of these samples in

Figure 4.26. Between June 2017 and January 2018, D03 spots grew in intensity,
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Figure 4.27: (a) The results of intensity analysis of NED patterns as a function
of field for Fe82Ga18 FIB samples fabricated in June 2017 (6 thermal cycles, 231
magnetic cycles), January 2018 (12 thermal cycles, 399 magnetic cycles) and May
2018 (13 thermal cycles, 512 magnetic cycles), and (b) the variation in intensity
of superlattice reflections as a function of field for the May 2018 sample. The
data suggests that increased numbers of temperatures cycles from 233 to 373 K
and magnetic cycles from zero field to saturation enhance D03 phase fraction and
martensitic activity in the sample.

and in addition, superlattice reflections appear along 〈002〉 directions, which be-

come even more apparent in diffraction on the January sample for a [01̄2] zone

axis. Such superlattice reflections were also observed for Fe79Ga21 along the same

zone axis by Liu et al. and were identified as nano-modulated martensitic phase

of D03 [33].The sample fabricated in May showed these same superlattice reflec-

tions, and it also demonstrated a significant tetragonal distortion with a c/a ratio

of 0.823. However, this distortion was found only in a thin area of the sample,

which exhibited a typical cubic SAD pattern when taken over the thicker bulk. The

same NED analysis was performed on each sample, and the results are shown in

Figure 4.27. Fig. 4.27b shows the change in the superlattice reflection intensity

versus the field in the microscope. These results reveal a substantial increase in D03

intensity measured, yet demonstrate a similar response to the magnetic field within
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each sample. The increase in superlattice intensity as the field decreased is similar

to the change in martensite intensity observed in the Fe81Ga19 sample, which could

be related to twinning/de-twinning processes as well. Magnetization remained un-

changed throughout, but a larger fraction of D03 and martensitic behavior causes

larger magnetostriction to manifest. With these results in mind, it is clear that

such training in Fe82Ga18 occurs over the course of thermal (over ten) and magnetic

field cycling (over several hundred) and must be accounted for when studying the

magnetostrictive behavior.
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Measurement Date Cum. Thermal cycles Cum. Magnetic Cycles

[100] and [110] M(H) 2011 0 (as-prepared) 2
L(H, θ) 2011 0 (as-prepared) 3
λ100, λ110 2011 0 (as-prepared) 5

[100] and [110] M(H) May 2017 0 7
[100] ε(T ) May 2017 2 7

λ100(T ) (four attempts) June 2017 6 231
First FIB Preparation June 2017 6 231

[110] ε(T ) June 2017 8 231
λ110(T ) (three attempts) July 2017 11 399
Second FIB Preparation January 2018 11 399

λ100(T ) February 2018 12 455
L(H, θ) February 2018 12 456
λ110(T ) March 2018 13 512

Third FIB Preparation May 2018 13 512

Table 4.1: This table enumerates the dates of different measurements performed
on an Fe82Ga18 alloy, including room temperature magnetization M(H), field-
dependent magnetic torque L(H, θ), magnetostriction as a function of temperature
λhkl(T ), thermal expansion ε(T ), and FIB-preparation for the samples for TEM
studies. This results in estimated cumulative tallies for thermal cycling between
233 and 373 K and magnetic field cycling from 0 field to saturation over the course
of those measurements.
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Chapter 5: Summary and Outlook

5.1 Discussion of completed studies

The structural evidence observed in the TEM studies demonstrates these al-

loys possess much more complex microstructures than previously detailed in the

literature. The majority of studies are performed on supposed single crystal al-

loys, but the TEM results of such single crystals such as the Fe82Ga18 and Fe78Ga22

alloys studied demonstrate that these alloys are polycrystalline at the nanoscale,

exhibiting overall single crystal diffraction patterns in bulk probes which differ from

the local structural data. There remains a possibility as to whether the prepara-

tion of samples through the FIB may have caused developed the nanocrystalline

microstructures rather than reveal them. The use of a Ga-source focused ion beam

carries risks of structural damage and Ga implantation at the nanoscale [45,51], but

final thinning of the FIB samples was carried out in using low-energy, low current

beam settings to minimize this risk. One would have to prepare further TEM sam-

ples of the crystals using conventional ion milling methods to assess the extent of

FIB-related influence on the samples, which we elected not to carry out since doing

so would render the specimen destroyed for any further analysis.

However, indications of nanocrystallinity within FeGa alloys can be inferred
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Figure 5.1: Taken from [50], (a) shows in situ applied stress XRD data taken
on Ni49.1Ti50.9 polycrystals of 1500 and 18 nm grain sizes, and, taken from [22],
(b) shows XRD data taken on single crystal FeGa alloys of different composition
either slow-cooled (sc) or quenched (q) from 1273K. The broadening of the peaks is
attributed to the nanocrystal grain size in (a), and the cause of broadening in (b)
was reported as unknown.

from past XRD and neutron diffraction results, which manifests through substan-

tial broadening of major diffraction peaks due to larger amorphous volume fractions

from increased grain boundary surface area, as well as increased stress transferred

throughout the bulk of nanocrystals [50]. This has been demonstrated both in

nanocrystal NiTi alloys [50], and XRD studies of single crystal FeGa conducted by

Xing et al. in 2008 also show substantial peak broadening [22], with results taken

from both papers shown in Figure 5.1 for illustration. Neutron diffraction exper-
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Figure 5.2: Room temperature magnetostriction plots for (a) Fe82Ga18 (June 2017),
(b) Fe81Ga19, and (c) Fe78Ga22 plotted versus their internal magnetization with the
range covered by the STEM NED analysis highlighted in red.

iments carried out by Laver et al. on quenched Fe81Ga19 single crystals provided

evidence for the existence of ∼ 15 nm-sized tetragonal precipitates [23]. This sup-

ports the TEM results and suggests FIB-preparation revealed the nanocrystallinity

rather than caused it.

Not only are the alloys nanocrystalline, but the TEM results also demonstrate

the presence of A2, D03, and a martensite variant of D03 within the alloys. This

martensite variant corresponds to an orthorhombic phase created by shear 〈110〉

stacking faults off the [100] projection in the sequence ABCBCBA, first classified

as a rare 6M martensite found in ordered Cu3(Al,Ni) alloys by Otsuka in the 70s

and identified in FeGa alloys by Liu et al. last year [33,34,52]. Because of the large

grain boundary volume fraction, one must also consider a substantial presence of an

amorphous fourth phase.

The challenge now becomes to connect the microstructural characteristics of

the different alloys to their magnetostrictive responses. With the existence of three

crystalline phases and a substantial amorphous phase, low anisotropy, and unusual
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magnetostrictive responses, one must conclude that the behavior for these particular

materials is definitively non-Joulian. The phase fractions change in response to the

field, seen through both the in situ high resolution TEM images and NED studies.

To compare the magnetostriction to the NED analysis, Figure 5.2 shows the studied

alloys’ magnetostriction responses with the magnetic field range probed in the TEM

highlighted in red. The 18 % Ga alloy has the most abnormal magnetostrictive

behavior within this range, transferring from a quadratic-like response to a linear

response, and during this transition one sees the D03 intensity peaks in Fig. 4.22a for

the material. This suggests that the D03 may possibly possess a critical activation

field after which it begins contributing more heavily to the magnetostriction, and

this critical field may be tied to the 2300 Oe anisotropy field needed to overcome

magnetic pinning within uniaxial precipitates. In the 19 % Ga alloy, the D03 does

not show as much variation as the 18 % alloy in response to the field, but the twin

reflections seen in the NED demonstrate the twinning/de-twinning processes may

occur. This would explain the linear magnetostrictive behavior, which occurs as a

de-twinning mechanism in FSMAs [37].The 22 % Ga sample showed a linear response

as well, but the NED analysis did not reveal evidence of martensite or twins in this

alloy. However, the preliminary in situ experiments shown in Figs. 4.15 and 4.16

demonstrated distortion and crystallite reorientation at the nanoscale, and the NED

analysis showed variation of D03 signal intensity through this range. In addition,

the NED analysis of the 22 % Ga sample had been done on a [100] zone axis,

which would have not shown clear martensite or twin reflections, so it’s possible the

analysis overlooked these features. In addition, the 6M phase is orthorhombic, with
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Figure 5.3: Taken from [53], (a) and (b) show strain profiles across the length of
a stressed grain 100× and 4× larger than their grain boundary, respectively. The
strain in (b) becomes smooth and less localized because the smaller grain cannot
accommodate an austenite/martensite interface. (c) and (d) show corresponding
stress-strain curves, demonstrating that hysteresis vanishes for the nanosized grain
as well.

a larger c-axis of 13.364 Å, and the small size of the nanocrystallites may prevent

a sufficient diffraction signal to build up from coherent scattering of only few such

planes.

The evidence makes clear that the microstructure and the mechanism of mag-

netostriction for these alloys is much more complex than previously believed, and

these results therefore have serious implications towards accurate modelling of these

materials. Brinson developed a method to evaluate the stress-strain characteristics

of shape memory alloys as a function of temperature based on constitutive laws of

thermodynamics and the kinetics of the transformation [54], and Kabir and Tehrani

have demonstrated how one can use Brinson’s model to capture the stress-strain
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behavior of materials with varying volume fraction of a SMA phase [55]. Such tech-

niques have also been extended to polycrystalline SMAs, which require resolving

the applied stress onto differently oriented SMA grains, detailed in a microplane

model by Brocca, Brinson, and Bazant in 2002 [56]. However, the nanocrystalline

microstructure changes the mechanical responses of materials drastically, resulting

in a loss of strength beyond a critical grain size due to enhanced slip shear and

plasticity of the grain boundaries themselves [57]. Furthermore, it has been deter-

mined in recent years that nanocrystalline shape memory alloys lose hysteresis in

their phase transformation below a critical size scale [50, 53]. Li and Sun demon-

strated just this year how this is achieved through continuum mechanics modelling

of nanocrystal NiTi as a core-shell structure with an SMA core and grain boundary

as amorphous shell [53]. Their model takes into account the modulus of the grain,

E, the grain boundary, Eg, the ratio of the grain size to its boundary, l̄g, the trans-

formation strain, εtr, and the gradient strain energy α, and some of their results

are shown in Figure 5.3. The main conclusions drawn from their work predict a

critical grain size of 10 nm, below which hysteresis in the stress-strain curve van-

ishes and, in addition, the elimination of any possible two-phase coexistence. That

is, the transformation cannot possibly introduce an austenite/martensite interface

below a critical size of 40 nm, and the martensite develops in a second-order like

fashion with increasing stress as a result. One can imagine this type of stress-strain

behavior also has a magnetic equivalent by modelling the strain in response to an

effective magnetic stress, and this could provide a valuable explanation for the lack

of magnetic hysteresis in Fe-based FSMAs.
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If these alloys possessed high magnetic anisotropy, one would expect to see

large hysteresis reflected in the magnetization curves, and furthermore, one would

see a substantial difference upon magnetization of an easy crystalline axis versus a

hard one, i.e. [100] versus [111]. However, it may be the case that these FSMAs

compensate for conventional magnetic anisotropy with their elastic softness, and

that their nanocrystalline microstructure coupled with this softness allows them to

reorient easily as well. The HRTEM results indicate that these nanoscopic precip-

itates distort easily in response to a magnetic field, and these distortions exhibit a

unique magnetic response inherent to this class of materials. From Khachaturyan’s

PFM work [58], one understands that the martensite present in these systems is an

adaptive response of each system to external stimuli in the form of its thermal and

processing history as well as applied stress or magnetic field at constant tempera-

ture. His PFM work even extends towards understanding the growth of martensitic

embryos in response to an applied magnetic field. Because the magnetic torque

data suggests the martensite in FeGa possesses significant magnetic anisotropy, its

magnetic response dictates the magnetization of the soft magnetic phases surround-

ing it within the material. From Khachaturyan [59], the magnetization of a single

martensite embryo, Mp, may be expressed as

Mp = M0
pω(H)p (5.1)

where the p uniquely identifies the embryo, M0
p is a constant magnetization density

inherent to the martensite phase of the embryo, and ω(H)p is the volume of that
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embryo as a function of the applied field. This volume possesses a constant value in

the demagnetized state, ω(0)p = ω0, and the volume will change to accommodate

the field according to the following approximation:

ω(H)p = ω0 + γ(ap ·H) (5.2)

where ap is a positioning vector corresponding to the p-th embryo and γ is a mag-

netoelastic coefficient linking the volume change of the particle with respect to the

applied field. The total magnetization is then expressed by the sum of magnetiza-

tions for all such embryos:

M =
∑
p

M0
pω(H)p =

∑
p

M0
p(ω0 + γ(ap ·H)) (5.3)

In this expression, assuming a non-preferential orientation of embryos, the first term∑
pM

0
pω0 sums to zero, a reflection of the martensite embryos settling into a state

that eliminates the internal magnetization field when no external field is applied.

In the second term, one can introduce tensor notation and simplify in the following

manner:

M = γ
∑
p

(M0
p)i(ap)jHj (5.4)

M = γ

(∑
p

(M0
p)i(ap)j)

)
Hj = χijHj (5.5)

This simplification demonstrates (1) a natural linear response to the magnetic
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Figure 5.4: A schematic to illustrate how non-Joulian magnetostriction is achieved
in Fe82Ga18 through an adaptive martensitic response. The sample is fully demag-
netized at zero field (Stage I) through the inhomogeneous distribution of randomly
oriented nanoscale martensite embryos. As the field increases (Stage II), variants
aligned with the field grow while those unfavorably aligned shrink. At a critical field
(Stage III), only favorably aligned variants are left and begin to de-twin to rotate
their magnetic moments further towards the field. At saturation (Stage IV), the
sample is fully de-twinned and magnetically saturated.

field on the basis of growing and shrinking martensite embryos as well as (2) a

magnetic susceptibility χij uniquely defined by the magnetoelastic response of these

embryos based on their position with respect to the field. This result, however,

stands in contrast to the evidence that the demagnetization factor determines the

slope of the magnetization in response to the field. Whether χij reflects an intrinsic

value or extrinsic geometry is unknown, and more theoretical work must be done to

establish such a connection to the PFM model.

A schematic for how the adaptive martensitic causes non-Joulian magnetostric-
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tion is depicted in Figure 5.4. At zero field, labelled Stage I, the sample possesses in-

homogeneously distributed and randomly oriented martensite embryos configured to

isotropically demagnetize the material. As the field increases, the magnetostriction

becomes non-linear within Stage II, during which the martensite embryos reorient

as variants aligned with the field grow while others unfavorably aligned shrink. At

Stage III, the magnetostriction transitions to a linear response as favorably aligned

martensite variants begin to de-twin, rotating their overall magnetic moment to-

wards the applied field. At Stage IV, the sample becomes fully de-twinned as mag-

netic/magnetoelastic saturation is achieved.

5.2 Future Work

The evidence of training through repeated thermal/magnetic cycles in Fe82Ga18

makes imperative further study into the processing of these materials. Initial pro-

cessing effects on the magnetostriction have been acknowledged since the first report

on large magnetostriction in FeGa in 2003 by Clark et al. [19], but thorough evalu-

ation of these effects has been limited. Typically, the only consideration in studies

is between quenching or slow-cooling alloys from a homogenizing heat treatment

at 1273 K [2, 22, 24, 25], and only very recently has Rahman et al. demonstrated

that annealing at a different temperature of 773 K also affects the magnetostriction

substantially [2]. The initial microstructure developed by different processes likely

affects the tendency of these alloys to exhibit growth of nanoscopic precipitates, but

the drastic effect that training has on FeGa alloys suggests that groups looking at
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supposed single crystals of equivalent composition may in actuality be studying fun-

damentally different materials. That is to say, the discrepancy in magnetostriction

values, elastic constants, magnetization, and magnetic anisotropy from different re-

search groups is the result of studying FeGa alloys with different metastable phases

achieved from variations in processing before study at room temperature.

An end to the debate around the origin of high magnetostriction in FeGa

alloys, and whether the behavior is Joulian or non-Joulian, must first come from ac-

knowledging the inherent metastability that comes from bypassing the evolution of

equilbrium phases in the Fe-Ga binary system due to processing. Pure A2, A2+D03,

Pure D03, and martensitic 6M transformations from the D03 are all non-equilibrium

structures in consideration with 15-30 at. % Ga region in the phase diagram, yet no

systematic study exists which attempts to assess which processing conditions yield a

particular metastable state. Our group is currently conducting preliminary studies

in regards to this by measuring magnetostriction for Fe81Ga19 polycrystals subject to

30 minute heat treatments followed by ice-quenching at 50 K temperature intervals

from 200 - 500 K. The goal of such studies is to demonstrate the variation in magne-

toelastic characteristics through low temperature anneals of an already metastable

alloy, and ultimately we plan to relate the results to structural measurements car-

ried out with either high-resolution synchrotron XRD or TEM SAD. Such studies

will form the foundation of research into the phase and magnetoelastic evolution of

highly magnetostrictive FeGa alloys attributable to processing.

In addition to experimental studies assessing processing effects, theoretical

research based on first principles, such as Density Functional Theory (DFT), repre-
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sents a second avenue to evaluate the metastable characteristics of the A2, D03, and

6M phases of FeGa. Such DFT calculations carried out by Gruner et al. on FePd

alloys demonstrated that premartensitic tweed develops as a metastable structure

that twins on the nanoscale to reduce magnetostatic energy [60]. The difference

in formation energy between parent disordered FCC and nano-twinned martensitic

FCT is between 1-2 meV/atom in Fe68Pd32. Evaluating the formation energies of

the A2, D03, and 6M martensites with considerations of their magnetostatic energies

would allow one to better assess the metastable formation of these phases in FeGa

alloys of composition 15-30 at. %.

The second major direction for future work relating to FeGa alloys will be

quantitative modelling of the non-Joulian response. Such research should come

after more reliable processing techniques are established to reliably fabricate FeGa

alloys exhibiting such characteristics. Ultimately, an accurate model would have to

take into account the influence of the non-martensitic cubic phase as well as the

size effects of the nanocrystalline microstructure. Such models do not exist in the

current literature. In a simple assumption of superposition, one could imagine a

magnetostrictive model as

λ(H) = χA2(H)λA2(H) + χD03(H)λD03(H) + χ6M(H)λ6M(H) + χGB(H)λGB(H)

(5.6)

where λ(H) represents the total magnetostriction, χi(H) represents the phase frac-

tion of phase i with respect to field, and λi(H) represents that phase’s distinct

magnetostriction behavior. Owing to the fact that phase fractions evidently change

61



with respect to the field, one must also append this expression with interaction

terms between the phases:

λ(H) = χA2(H)λA2(H) + χD03(H)λD03(H) + χ6M(H)λ6M(H) + χGB(H)λGB(H)

+
∂χA2↔D03

∂H
εA2↔D03 +

∂χA2↔GB

∂H
εA2↔GB +

∂χD03↔6M

∂H
εD03↔6M +

∂χD03↔GB

∂H
εD03↔GB

+
∂χ6M↔GB

∂H
ε6M↔GB

(5.7)

where
∂χi↔j
∂H

represents the change in phase fraction i with respect to phase j due

to the change in field and εi↔j is the amount of strain introduced by the change

in phase. For such a model to prove effective, one would have to determine the

equilibrium evolution of the different phase fractions based on thermodynamic prin-

ciples and intrinsic magnetic, elastic, and magnetoelastic properties inherent to each

phase, such as Ms,i, Ei, and Bi. However, acquiring data pertaining to all of the

different phase fractions and magnetoelastic responses is what makes it imperative

to develop first a better understanding of how the phase fractions develop under

metastable processing conditions in these alloys.

5.3 Conclusion

The work contained in this thesis sought to connect the structural properties

of Fe100−xGax (x = 17, 18, 19, 22, and 26) alloys to their anomalous magnetic and

magnetoelastic behavior. Extensive debate has ensued over the years regarding the

extent to which the presence of disordered BCC A2, ordered BCC D03, or possible
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nanoprecipitate martensite influences these properties, and this thesis suggests the

debate has stemmed from attributing the same magnetoelastic properties to fun-

damentally different FeGa alloys with variations in metastable phase evolution due

to processing. For our alloys, large magnetostriction coupled with low anisotropy

defies the classical Joule framework of magnetostriction, and diffraction carried out

through TEM measurements was elected to assess whether nanoprecipitate phases

may be account for this behavior. To assess whether structural changes occur in

response to a change in magnetic field, in situ high resolution and nanoelectron

diffraction studies were carried out in the TEM while modulating the objective lens

voltage. The main results from the thesis are as follows:

1. The three alloys, Fe82Ga18, Fe81Ga19, Fe78Ga22, possess a nanocrystalline mi-

crostructure of ∼5 nm crystallites, revealed through high-resolution imaging

of extremely thin areas of FIB-prepared samples.

2. Each alloy possessed at least the presence of A2 and D03, with clear evidence

of 6M martensite in both the Fe82Ga18 and Fe81Ga19 alloys.

3. Each alloy appears to exhibit a change in the amount of D03 as a function

of field inside the TEM, based on analysis of the intensity of D03 reflections

observed in the NED patterns.

4. The Fe82Ga18 alloy showed clear signs of training after roughly 13 temperature

cycles from 233 to 373K and 512 magnetic field cycles from 0 field to saturation.

A significant uniaxial anisotropy developed in the magnetic torque data after

seven years between measurements. The saturation magnetostriction, λ‖−⊥
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increased from 300 to 570 ppm, as a result of training the sample during eight

months of repeated measurements. Significant increase in D03 signal intensity

in the NED patterns was observed as well.

5. The results suggest future research should systematically evaluate phase and

magnetoelastic evolution within Fe-Ga alloys based on their processing his-

tory. DFT calculations of formation energies for possible metastable phases

in the Fe-Ga system could support such studies and lead to a much improved

understanding of fabricating high magnetostriction FeGa alloys which display

either Joulian or non-Joulian magnetostriction.

6. Aspects of modelling nanocrystalline SMAs were discussed. Recent modelling

done by Li and Sun demonstrate that hysteresis in stress-strain behavior van-

ishes below a critical grain size in Ni49.1Ti50.9 [53], and a simple model of

an adaptive martensite under an applied magnetic field demonstrates that

growth/shrinking of martensite embryos can yield an isotropic, linear magne-

tization response [59].

7. A conceptualized model for the non-Joulian magnetostriction was put forth.

Future work must be done to quantify such behavior with a model which can

capture the differing magnetoelastic responses of the A2, D03, and 6M phases

reorienting at the nanoscale.

The fundamental origin of non-Joulian magnetostriction in FeGa, as well as

other related alloys like FePd and FeAl, is related to the tendency of these materials

to form metastable, adaptive martensites at the nanoscale. The results contained
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in this thesis make clearer that models must move away from assumptions of single

crystal, single phase microstructures, and, while the problem thus becomes more

complex to solve, the experimental results provide new evidence to guide future

research into these materials’ unique behavior.
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Appendix A: Martensitic materials and the shape memory effect

The characteristics of phase transformations which give rise to the shape mem-

ory effect have been well-documented and can be traced back to early studies of a

body-centered tetragonal (BCT) crystal phase called martensite, after Martens [61],

that manifests in steel alloys when quenching from the high temperature face-

centered cubic (FCC) phase to room temperature. To accommodate the sudden

thermal compression of the large temperature gradient induced by quenching, the

metal system relaxes by distorting some of the FCC structure into a BCT structure

irreversibly, shown in Figure A.1. Such a transformation occurs rapidly, approach-

ing the speed of sound in the metal, spreading through the material as a soliton [62].

Because of the time scale, there exists no opportunity for the equilibrium diffusion-

controlled eutectic separation of iron into body-centered cubic (BCC) α-ferrite phase

and ordered Fe3C cementite. Thus, the martensitic transformation is termed dis-

placive, only involving a rearrangement of atoms within the crystal rather than

movement of atoms towards structures of differing compositions, and it exists as an

alternative to mitigate the evolution of large strain in the material.

Possessing a martensitic transformation satisfies only one requirement for a

material to exhibit the shape memory effect. The second requirement is that the dis-
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Figure A.1: A schematic depicting how the martensitic body-centered tetragonal
structure forms from displacing atoms contained in the austenitic face-centered cubic
structure.

placive transformation be reversible, which was not recognized until discovery of the

first shape memory alloy NiTi, or nitinol, by the US Naval Ordnance Laboratory in

1959 [63]. Reversibility implies that the martensitic alloy may be transformed back

and forth between its higher temperature, higher symmetry parent, or austenitic,

phase and its lower temperature, lower symmetry martensitic phase through the

application of stress or temperature. The manifestation of reversibility exists within

a subset of martensitic alloys, and it emerges for those materials whose parent and

martensitic phases possessing a softening of their shear elastic constant c′ (C11−C12

2
)

about a transformation temperature [64]. Below the transformation temperature,

the martensite transforms to the lower symmetry martensite, and the strain between

the austenite and martensite is accommodated throughout the crystal by twinning

within the microstructure. This twinning allows the material to retain its original

shape, but when in this twinned state, the application of a stress well-below the

threshold for plastic deformation allows the material to deform through shear mo-

tion of the twins about their boundaries. If heat is then supplied to the material,
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Figure A.2: A diagram depicting the shape memory effect made possible through a
reversible martensitic transformation.

it will transform back to the parent phase and its original shape, earning the name

shape memory. A diagram of this is shown in Figure A.2.

Mathematically, martensite transformations are typically modelled using the

Landau-Ginsburg theory, which explains the transformation through a power series

approximation of the free energy as a function of the strain physically reflected in the

shape change between austenite and martensite phases. These strains are mapped

to tensors which express both the longitudinal and shear strains in reference to the

parent phase. For a cubic to tetragonal transformation, the symmetry change is

described by two major strain components: elongation/compression along the c-

axis of the new tetragonal crystal, εc, and the transverse strains for the new a-axis

lattice constants, εa. The crystal transformation is then clearly expressed through

the following relations:

εc =
ct − ac
ac

, εa =
at − ac
ac

(A.1)
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Et
1 =


εc 0 0

0 εa 0

0 0 εa

 , E
t
2 =


εa 0 0

0 εc 0

0 0 εa

 , E
t
3 =


εa 0 0

0 εa 0

0 0 εc

 (A.2)

where the subscripts t and c correspond to the tetragonal and cubic phase, respec-

tively, and c and a refer to their respective crystallographic axes. Based on symmetry

between parent and martensite, one observes three distinct possible transformations

in equation A.2, depending on the axis the parent crystal distorts towards the new

tetragonal c-axis. Applying these strains to the Landau-Ginsburg model requires

reducing the tensor components to six strain-order parameters: e1, the dilatation

strain; e2 and e3, the deviatoric strains; and e4,e5, and e6, the shear strains. These

are mapped according to the following relations:

e1 =
1√
3

(ε11 + ε22 + ε33)

e2 =
1√
2

(ε11 − ε22)

e3 =
1√
6

(ε11 + ε22 − 2ε33)

e4 = ε23

e5 = ε13

e6 = ε12

(A.3)

The Landau-Ginsburg model is then expressed fully as

F t
L = A(e2

2 + e2
3) +Be3(e2

3 − 3e2
2) + C(e1 − E0(e2

2 + e2
3))2 +D(e2

2 + e2
3)2 (A.4)

69



where F t
L is the free energy, and A, B, C, D, and E0 are temperature-dependent

coefficients empirically fitted to mimic the elastic constants as a function of temper-

ature of the material being modelled. The temperature dependence for the coeffi-

cients is consistent, following a T−T0
T0

relation in consideration of the transformation

temperature T0, though some coefficients exhibit stronger dependence on this than

others. A thorough, applied use of this type of model can be found in reference [65].

Within the model, the quadratic terms associated with coefficient A represent a

harmonic potential that keeps the crystal stable in a cubic state (i.e. ε = 0) above

T0. As the temperature approaches T0, this initial well becomes shallower. The

anharmonic term associated with the B coefficient causes a secondary potential well

to begin forming below T0 with a local minimum reflecting the martensite invari-

ant strain e0 εc. Once this well falls below the harmonic minimum, the material

itself strains towards the new equilibrium state, thus completing the martensitic

transformation. The quartic terms associated with C, E0, and D close the poten-

tial well and tend to have weaker temperature dependence. To capture the distinct

variants that can form, angular dependences can be introduced to the free energy

term. For a cubic to tetragonal transformation, this dependence is introduced to

the anharmonic term, transforming B into B(θ) such that B = B(T )sin(3θ). The

results of Landau-Ginsburg analysis are shown in Figure A.3, showing free energy

contour plots at different temperatures along with the phenomenology of the crystal

structure transformation.

The characterization of a material’s martensitic transformation thus requires

extensive understanding of the mechanical properties for the various structures pos-
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Figure A.3: Energy contour plots using Landau-Ginsburg theory to show the devel-
opment of three tetragonal variants as temperature decreases from (a) above the
transformation temperature to (b) below it.

sible in these materials. The first thing to characterize are the crystal structures of

the parent and the martensite phase, as well as identifying the temperature at which

the transition occurs. The twinning that occurs in shape memory alloys (SMAs)

give these materials complex microstructures as well. To understand how these

microstructures develop, one must take the knowledge of parent and martensite

crystal structure to analyze the symmetry relations between the two. These sym-

metry relations dictate the different variants, or unique crystalline configurations,

of martensite which develop out of the parent phase. These different twins intersect

at boundaries of shared planes, wherein the twins exist as stress-free domains and

the twinning planes contain the strain induced by the transformation. From this,

one can conduct mathematical evaluations of the twins, characterized by matrices of

their crystal structure, and examine their compatibility with other twins and eval-

uate the strains therein to predict more energetically stable combinations of twins

which then give rise to the material’s microstructure. This technique was developed
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heavily by the work of James’ and his group [64, 66, 67], allowing one to condense

the complexity of the microstructure into a quantifiable mathematical understand-

ing. As an example, not only can one determine that three tetragonal variants

arise in a cubic to tetragonal transition, but also that these variants themselves give

rise to either type I or type II twins, depending on the commensurability of the

shared twinning plane. Type I twins for cubic to tetragonal transitions typically

have commensurate {110} twinning planes. Furthermore, because these operations

essentially quantify how well the twins fit, one can build a correlation between SMAs

which possess better fits and the extent of reversibility in the alloy. This is more so

being seen in development of high-fatigue SMAs [68] which necessarily require very

low hysteresis in the transformation to permit an extremely high number of stress

cycling. In a similar vein, it is important to measure the various elastic constants of

the parent and martensitic phase as a function of temperature, which can give one

another way to gauge how reversible the transition is.

From an elastic point of view, one can see that SMAs require much to fully

characterize their behavior. Fundamentally, however, all of this behavior reflects

changes in thermodynamic equilibrium for a material undergoing drastic changes

in internal stress that cannot be released through diffusion-controlled mechanisms.

This gives rise to complex microstructures which minimize the strain by transforming

and twinning, turning the energetics into a competition between strain mitigation

and energy increased by the surface energy of twinning interfaces. The introduction

of magnetism to these alloys may then be seen as an extension to this approach of

energy minimization, meaning FSMAs not only will twin to minimize their internal
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stress but also their internal magnetic field.
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Appendix B: Classical magnetization, magnetostriction, and mag-

netic anisotropy

B.1 Origins and classification of magnetism in materials

All materials possess magnetism due to the charge nature of electrons which

continuously move around their orbits in materials. The type of magnetism depends

on whether constituent elements of a material have unpaired electrons whose angular

momentum induces an internal magnetic field not cancelled out by a paired counter-

spin. These types of magnetic materials can be expected to have elements from the

d- or f-block groups of the periodic table, the most common of which are Fe, Co,

and Ni. Materials possessing unpaired electrons enhance the magnetic flux through

their bulk when an external field is applied as opposed to those possessing solely

paired electrons, which reject it in accordance with Faraday’s Law. Regardless of

the type of magnetism, all magnetic materials thus follow a proportional relation

between their induced flux, B and the applied field H:

B = µH (B.1)
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where µ is the permeability of that material. This flux is a combined result of both

the contribution of the field to the flux as well as the material’s enhancement of the

flux, so the relation is often expanded to segregate the material’s response to that

of a vacuum:

µ = µ0µr (B.2)

B = µ0µrH (B.3)

µr = 1 + χ (B.4)

B = µ0(1 + χ)H (B.5)

B = µ0H + µ0χH = µ0(H + M) (B.6)

χ =
∂M

∂H
(B.7)

These relations form the basis of magnetism in all materials, and new material-

dependent terms have been introduced: µr is the relative permeability of a material,

χ is the magnetic susceptibility of a material, and M is the magnetization vector of

a material. These parameters distinguish the expected flux from applying a field in

a vacuum, µ0H.

Materials have three major classes of magnetism defined by magnitude and

sign of χ. Diamagnetic materials possess paired electrons throughout their bulk,

and these materials have no internal magnetic fields of their own. They lightly expel

magnetic flux in accordance with Faraday’s Law, possessing susceptibilities on the

order of −10−5 [69]. Paramagnetic materials possess unpaired electrons throughout
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their buk, and these materials have internal magnetic fields that lightly enhance

the magnetic flux, with χ ranging from 10−5 − 10−2 [69]. In terms of practical

applications, one would not say a diamagnet or paramagnet has much practical use

due to the extremely small magnitude of χ in each case. Thus, these two classes

belong to materials typically thought of as non-magnetic.

The third class of magnetism is called ferromagnetism, and the magnetic be-

havior of materials in this class is subdivided into three further categories: ferro-

magnetism, ferrimagnetism, and antiferromagnetism. Each material in this class

possesses collective spin alignment or anti-alignment throughout their bulk that is

explained by the introduction of a new contribution to the free energy of the system

with roots in the quantum mechanical behavior of electron spin between neighboring

atoms within a crystal [70]. This contribution is called the exchange interaction,

Eexchange, and it is defined by the following relation:

Eexchange = −1

2

n∑
i 6=k

Jiksi · sk (B.8)

where i and k subscripts represent distinct atoms in the material, Jik is a propor-

tionality constant called the exchange constant for the atom pair, and si and sk

are the spin angular momentum numbers of those atoms. The exchange constant is

closely tied to the change in electrostatic potential from overlap of wavefunctions be-

tween bonded atoms in a material [70]. It thus takes significant values only between

nearest neighboring and, occasionally, next nearest neighboring atoms, so often one
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might see the relation reduced to

Eexchange = −Jexchange
N∑
i=1

si · si+1

Eexchange = −NJexchange(s1 · s2)

(B.9)

where the summation now is performed over only nearest neighbors, Jexchange is

the exchange constant for nearest neighbors, N is the total number of atoms in the

material, and s1 and s2 are a single dot product evaluated only for nearest neighbors.

The result from eq. B.9 demonstrates that magnetic materials collectively

align all spins or anti-align all spins depending on the sign of Jexchange. If Jexchange >

0, the material will align its magnetic spins such that s1 ·s2 = 1
4
, thereby lowering the

free energy of the system. Such materials are called ferromagnetic, and their collec-

tive spin arrangements enhance the internal magnetic flux considerably, possessing

χ values between 102 − 106. If Jexchange < 0, the material anti-aligns its magnetic

spins such that s1 · s2 = −1
4

in order to lower the free energy. These materials are

called antiferromagnetic, and they have zero magnetization with no external field.

Unlike diamagnets, antiferromagnets do possess positive χ values typically on the

order of 102. Supplied magnetic energy causes the spins to slowly align, and high

fields, greater than 3-4 T, can yield greatly enhanced χ mimicking ferromagnetic-like

behavior [71,72].

Ferrimagnets possess more nuanced exchange interactions that must take into

account both nearest neighbor and next nearest neighbor interactions. These ma-

terials are typically oxides possessing ions of differing charges, the most common
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example of which is magnetite Fe3O4. In Fe3O4, two Fe3+ atoms on octahedral sites

order antiferromagnetically in their exchange, but the Fe2+ atoms on tetrahedral

sites order ferromagnetically across unit cells, resulting in net ferromagnetic-like be-

havior whose magnitude is reduced comparatively if all spins were aligned. These

materials possess χ values between 102 − 103 in magnitude.

B.2 Overview of Magnetic Anisotropy

The majority of ferromagnetic materials have appreciable magnetic anisotropy,

preferred directions the individual moments point towards with respect to the crystal

structure. For pure Fe, the ”easy,” or preferred directions are 〈100〉, while in pure

Ni, the easy directions are 〈111〉 [16]. Hexagonal ferromagnets like pure Co possess

uniaxial magnetic anisotropy, having moments pointed solely along the c-axis with a

strong aversion to pointing in the basal plane. For uniaxial magnets, the anisotropy

typically is expressed as a power series with respect to the direction of the magnetic

moment, θ, keeping only the first three terms:

Ua,uniaxial =
∑
n

Kn sin2n θ = K0 +K1 sin2 θ +K2 sin4 θ + . . . (B.10)

where Ua,uniaxial is the anisotropy energy density and Kn are anisotropy constants

typically obtained empirically. Cubic ferromagnets tend not to have uniaxial anisotropy,

but the expression for Ua,cubic is obtained similarly through a power series expan-

sion, taking into account the direction cosines of the magnetic moment direction
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with respect to each axis:

Ua,cubic = K0 +K1(α2
1α

2
2 + α2

2α
2
3 + α2

1α
2
3) +K2(α2

1α
2
2α

2
3) (B.11)

where α1, α2, and α3 corresponds to the [100], [010], and [001] axes, respectively.

The nature of the magnetic anisotropy is determined by the sign and magnitude of

the anisotropy constants. For instance, Fe has K1 = 4.8 × 104 J/m3 while Ni has

K1 = −4.5 × 103 J/m3, which accounts for the change in easy axes from 〈100〉 to

〈111〉 between the two materials [16]. For uniaxial materials like Co, K1 > 0, but a

uniaxial material could also have K1 < 0, causing the c-axis to become the ”hard” to

magnetize direction while xy-basal plane becomes easy for any direction it contains.

Cubic materials can also possess 〈110〉 easy directions if the anisotropy constants

satisfy the condition that K1 < 0 and 9|K1|
4

< K2 < 9|K1| [73]. Lower symmetry

crystal structures tend to display uniaxial-like behavior depending on how the c/a

distortion and its effects on the anisotropy along the c-axis [74], but the formulation

differs from Eq. B.10 since one must take develop the formula in accordance with

the crystal symmetry [16,75]:

Ua,tetragonal = K0 +K1 cos2 ϕ− 1

2
K2,c cos4 ϕ− 1

8
K2,a(3 + cos 4θ) sin4 ϕ (B.12)

where the fourth-order constant splits into two terms for the c-axis, K2,c, and the

two equivalent a-axes, K2,a, and a new angular dependence, ϕ, describes the azimuth

between the a and c-axes.
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Figure B.1: Taken from [16], an illustration of how the crystal electric field accom-
modates differently shaped orbitals with 〈Lz〉 6= 0.

Magnetic anisotropy comes from a separation of energy between electron or-

bital states as they couple to the crystalline electric field of the lattice. If valence

electrons of an atom are unpaired and have nonzero angular momentum (Lz 6= 0),

then the electron orbital will have a non-spherical charge distribution which must

assume a preferred orientation with respect to the crystal field. The concept is

illustrated in Figure B.1, taken from [16], where electron orbitals of non-zero Lz

assume the proper placement into the crystal, like puzzle pieces. The spin can also

have a preferred orientation coupled to the orbital provided ξL · S 6= 0, where ξ

is a proportionality constant to evaluate the magnitude of the spin-orbit coupling

energy. Given a crystal field energy D, a material may exhibit a weak anisotropic

response to an external field Hext with strong dependence on the crystal symmetry if

D > ξL·S, or it may exhibit a strong anisotropic response as the spin rotates against

both the crystalline and orbital charge distribution if D < ξL ·S. Precisely evaluat-

ing the anisotropy based on D, Lz, L, and S is neither straightforward nor trivial,

since evaluating D itself in bulk materials becomes complicated by the emergence
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of energy bands. The values of Lz also change as a result of crystal field splitting

for 3d transition metal ions whereby the five 3d wavefunctions for a bonding ion

split into two groups: t2g, which contains dxy, dyz, and dxz; and eg, which contains

dz2 and dx2−y2 . The difference in energy between t2g and eg orbital configurations

is proportional to the crystal field energy, and the valence electron configuration

of the transition metal ion in question dictates whether filling in t2g or eg states is

more favorable. Fe2+ ions have 3d6 configuration and prefer eg occupation whereas

Cr4+ ions have 3d4 configuration and prefer t2g occupation [16]. Qualitatively, an

applied field Hext must overcome energy barriers between such states to re-orient

the magnetization, and that these barriers represent the basis of magnetocrystalline

anisotropy.

B.3 Domain Structures

The dipole nature of the magnetic field means its field lines can never terminate

at a point source, a fact enshrined by Gauss’ theorem ∇ ·B = 0. The integral form

of this equation,
∫ ∫

B · dA = 0, implies that a magnetic material cannot generate

excess magnetic flux outside of its surface; otherwise the magnet would act as the

equivalent of a point charge, of which no example has been found in nature [16]. This

condition leads to two important relations which describe how magnetic materials
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influence the magnetic field surrounding them:

(B2 −B1) · n = 0 (B.13)

(H2 −H1) · n = (M1 −M2) · n (B.14)

where the subscripts 1 and 2 refer to the material’s and environment’s surfaces,

respectively, and n is the surface normal. Equation B.13 states that the magnetic

flux across an interface must maintain a continuous normal component, and Eq. B.14

specifically describes how the field H2 outside of a magnetic material is influenced

by the magnetization M1 at the surface. In the center of magnetically charged

surfaces, the magnetization aligns with the surface normal. Assuming the second

surface is a vacuum, such that M2 = 0, the field outside the material is enhanced by

|M1|
2

while inside the material an equal and opposite field develops. This opposing

field is called the demagnetization field, Hd, and it is generally expressed as

Hd = M · n = −NM (B.15)

where N is called the demagnetization factor, a tensor relating the sample

geometry to the internal field. The tensor is defined such that its trace equals 1;

or, to put it another way, if the tensor can be defined by three principal orthogonal

directions, then Nx+Ny +Nz = 1. A value of N = 1 for a position on the surface of

a magnetic material implies the magnetization at that point is parallel to the surface

normal. It costs energy to align magnetic dipoles along a surface in this manner,
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Figure B.2: Taken from [16], (a) side-by-side magnetic dipole configuration as com-
pared to a (b) line of magnetic dipoles. The configuration in (a) has many un-
favorable north-north interactions that are eliminated within a configuration like
(b).

energy which becomes stored in the demagnetization field surrounding the material,

depicted in Figure B.2. These fields have potential U = −µm · B0. A material’s

magnetization influences this energy such that (N
V

)U = u = −1
2
M ·B0. The factor

of 1
2

is needed because this energy is a result of dipole pair interactions, meaning

summation must only count each unique pair once. Recognizing that outside of an

external field, B0 = µ0Hd, a material’s magnetostatic energy is expressed by

ums = −µ0

2
M ·Hd =

µ0

2
NM2 (B.16)

Saturated magnetic materials thus store considerable energy which they are

able to reduce by dividing segments of themselves into regions of opposing mag-

netization, called magnetic domains. Within a domain, all magnetic moments are

aligned along an easy axis, and domains are separated by special interfaces called

domain walls. This phenomenon is shown in Figure B.3, taken from [76], and the
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Figure B.3: Taken from [76], a series of magnetic domain configurations which better
eliminate their magnetostatic energy through (a)-(e).

splitting of the magnetization into separate domains reduces the magnetostatic en-

ergy approximately by a factor of 1/n, where n is the number of domains formed in

the system [77].This energy mitigation then comes into competition with the added

energy to the system for creating a domain wall. The exchange energy (Eq. B.9)

prevents spins from aligning antiparallel across neighboring atoms; otherwise the en-

ergy increase would be on the order of JS2. Materials instead introduce very small

rotations, θ � 1 such that ∆Eex = JS2 cos θ ≈ JS2θ2. These rotations, however,

now add anisotropy energy into the system as they move off axis, proportional to

the number of rotations introduced to mitigate the cost in exchange energy.

A thorough analytical model of this behavior was first developed by Landau

and Lifshitz in 1935 [78] to minimize the free energy of a domain wall by considering

an anisotropy density, fa(θ), and macroscopic exchange energy density, A
(
∂θ
∂z

)2

,

where A is called the exchange stiffness (A = JS2

a
), in the following expression:

f = fa(θ) + A
(∂θ
∂z

)2

(B.17)
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The surface energy density, σdw of a wall can be obtained by integrating this expres-

sion over the wall thickness:

σdw =

∫ [
fa(θ) + A

(∂θ
∂z

)2
]
dz (B.18)

Minimizing this term means one must find the values of θ(z) which give ∂σdw = 0.

With some arithmetic manipulation, the solution for this condition is solved using

the general differential equation

∂fa(θ)

∂θ
− 2A

∂2θ

∂z2
= 0 (B.19)

The analytical solution can be obtained by using either the uniaxial or cubic ex-

pressions for anisotropy, Eqs. B.10 or B.11, respectively. For the uniaxial case, the

solution for the spin angle across the boundary is

θ(z) = arctan

[
sinh

(
z

√
A

K

)]
+
π

2
, (B.20)

and equilibrium domain wall thickness, δdw, and domain wall energy now have def-

inite values of

δdw = π

√
A

K
(B.21)

σdw = 4
√
AK (B.22)

These expressions hold true for uniaxial magnetic materials and apply specifically
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to the formation of a 180◦ wall, but materials of cubic anisotropy can also form 90◦

walls which have a rotation of θ from 0 to π
2

rather than 0 to π. This reduces δdw

and σdw by 1
2
. With 90◦ walls, it is possible to form closure domains at the material

surface which completely eliminate all magnetostatic energy. This elimination of

the magnetostatic energy also faces competition with another energy contribution,

the magnetoelastic energy, which will be addressed in the following section.

B.4 Joule Magnetostriction

The observation of elastic strain under an applied field was first published by

Joule in 1847 [14], and much of its description was phenomenologically characterized

by material parameter λs, the saturation coefficient. For isotropic materials, one can

determine the magnetostriction for any angle θ relative to a hard magnetization axis

with the relation

λ =
3

2
λs
(

cos2−1

3

)
, (B.23)

which, in turn, is proportional to H2. The strain is uniaxially isotropic, possessing

longitudinal strain e‖ = λs and transverse strain e⊥ = −λs
2

. Randomly oriented

polycrystalline ferromagnets possess such magnetostrictive behavior, as was the case

for the first iron and steel samples studied for this phenomenon. The coupling

between magnetic and elastic energy allows one to formulate new magnetoelastic

relations by expanding terms for the magnetization, specified by direction cosines
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αi, and the strain tensor, eij in a MacLaurin series:

um =f0 +K1α
2
iα

2
j +K2α

2
iα

2
jα

2
k + · · ·+ cijkleijekl +Hijklmneijeklemn + . . .

+Bijeijαiαj +Dijkleijeklαiαjαkαl + . . .

(B.24)

where the Ki terms represent magnetocrystalline anisotropy constants, cijkl and and

Hijklmn describe the first- and second-order elastic stiffness constants, and Bij and

Dijkl describe the first- and second-order magnetoelastic coupling coefficients which

characterize the magnitude of elongation a material undergoes in response to an

applied field.

It was not until 1954 that a microscopic origin for this coupling was put forth

by Néel [15]. The interaction energy between two atoms in a solid can be expanded

in Legendre polynomials as a function of the bond direction r and angle ψ between

this direction and the magnetization:

uaa(r, ψ) = g(r) + l(r)(cos2 ψ − 1

3
) + q(r)(cos4 ψ − 6

7
cos2 ψ) +

3

35
) + . . . , (B.25)

where uaa refers to the energy for a single bond, g(r) describes spatially isotropic

effects such as the exchange interaction, l(r) describes dipole-dipole interactions and

is called the dipolar term, and q(r) in turn describes quadrupolar effects. Given a

magnetization vector M = Ms(α1, α2, α3) and a direction vector r = r(β1, β2, β3),

where α andβ represent direction cosines, one obtains

ψ = cos−1

(
M · r
|M ||r|

)
= α1β1 + α2β2 + α1β3 (B.26)
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One can now write an expression for a reference state of energy in terms of the

magnetization angle, considering only first the dipole-dipole interactions:

uaa(r0, ψ0) = g(r0) + l(r0)
[
(α1β1 + α2β2 + α3β3)2 − 1

3

]
+ . . .

≈ g(r0) + l(r0)
[
(α1β1 + α2β2 + α3β3)2 − 1

3

] (B.27)

For a simple cubic crystal, whose bonds may be represented by three orthogonal

vectors rx = r0(1, 0, 0), ry = r0(0, 1, 0), and rz = r0(0, 0, 1), under uniaxial strain

such that rxx = rx(1 + exx)(1, exy/2, exz/2), Eq. B.27 expands into

uaa(rxx, ψxx) = g(r0(1 + exx)) +
[
l(r0) + l′(r0)exx

][(
α1 +

α2exy
2

+
α3exz

2

)2− 1

3

]
+ . . .

(B.28)

If one subtracts Eq. B.27 from Eq. B.28, one obtains change in magnetic energy

due to strain, or the magnetoelastic energy:

ume = uaa(rxx, ψxx)− uaa(r0, ψ0)

= g′(r0)exx + l′(r0)exx(α
2
1 −

1

3
) + l(r0)[α1α2exy + α1α3exz] + . . .

(B.29)

Similar expressions would be obtained for uaa(ryy, ψyy) and uaa(rzz, ψzz), and when

summing over all nearest neighbor interactions, one can fully express the magnetoe-

lastic energy as

ume =B1

[
exxα

2
1 + eyyα

2
2 + ezzα

2
3 −

1

3
(exx + eyy + ezz)

]
+B2

[
exyα1α2 + eyzα2α3 + exzα1α3

]
,

(B.30)
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where, for a given atomic density number ρa, B1 = ρal
′(r0) and B2 = 2ρal(r0).

The magnetoelastic constants to a material’s equilibrium dipole-dipole interaction

l(r0). More complex structures such as BCC or FCC crystals will have constants

B1 and B2 in some linear combination of l(r0) and l′(r0) [16]. By substituting this

expression into Eq. B.24 and minimizing the energy with respect to strain, yields

the equilibrium magnetostrictive tensor

λij =


− B1

c11−c22

(
α2

1 − 1
3

)
−B2

c44
α1α2 −B2

c44
α1α3

−B2

c44
α1α2 − B1

c11−c22

(
α2

2 − 1
3

)
−B2

c44
α2α3

−B2

c44
α1α3 −B2

c44
α2α3 − B1

c11−c22

(
α2

3 − 1
3

)


(B.31)

These values represent the various strains that develop in a cubic crystal under a

saturation magnetization direction α. The strain for a specific direction β is found

by evaluating

λ =− B1

c11 − c22

(
α2

1β
2
1 + α2

2β
2
2 + α3

3β
3
3 −

1

3

)
− B2

c44

(α1α2β1β2 + α2α3β2β3 + α1α3β1β3)

(B.32)

One can obtain characteristic saturation strictions along major cubic directions using
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Eq. B.32:

λ100 = −2

3

B1

c11 − c12

(B.33)

λ111 = −1

3

B2

c44

(B.34)

λ110 =
1

4
λ100 +

3

4
λ111 (B.35)

More generalized expressions can be obtained for crystals of other symmetry by

selecting special coefficients that possess symmetry-invariance, as detailed in the

work by Callen and Callen [79].

B.4.1 Preliminary modelling of FSMA Magnetostriction

The discovery of large magnetostriction of Ni2MnGa in 1996 demonstrates a

newer kind of magnetoelastic coupling that involves the motion of twin boundaries

as a response to the magnetic field [8]. The Zeeman energy of a crystal is the energy

introduced into it by application of an external field, and is expressed by

uZeeman = −µ0M ·Hext = −µ0MsH cos θ (B.36)

O’Handley put forth a simplified model for the motion of twin boundaries by eval-

uating energy differences across twin boundaries as a function of field according

to different relative strengths of the Zeeman energy to the anisotropy and elastic

energies [37]. His model uses twin geometry, defined by the angle of one vari-

ant with respect to the field, θ, by the angle of that variant with respect to the
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other, φ. Given a 2D material of two 90◦ twin variants, magnetized along the

direction of variant 1 such that θ = 0, an effective twin boundary stiffness C, a

transformation strain e0, and strains corresponding to differing twin volume frac-

tions of f1 = 1
2

+ δf , and f2 = 1
2
− δf such that ex = e0f2 sinφ = e0(1

2
− δf) and

ey = e0(f1 + f2 cosφ) = e0(1
2

+ δf), the relevant free energy of the terms become

u = uZeeman + uelastic + uanisotropy (B.37)

u = −µ0MsH[f1 cos θ + f2 cos(θ + φ)]

+
1

2
Ce2

0[(
1

2
− δ)2 + (

1

2
+ δf)2] + f2Ku cos2(θ + φ)

(B.38)

which reduces to

u = −µ0MsH

[
1

2
+ δf +

(1

2
− δf

)
cosφ

]
+

1

2
Ce2

0

[
1

2
+ 2δf 2

]
+
(1

2
− δf

)
Ku cos2 φ

(B.39)

Equilibrating with respect to the magnetization angle φ and the changing volume

fraction δf gives

cosψ =
µ0MsH

2Ku

(B.40)

δf =
µ0MsH − µ0MsH cosψ +Ku cos2 ψ

2Ce2
0

(B.41)
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One can introduced reduced field terms ha = µ0MsH
2Ku

and he = µ0MsH
Ce20

to simplify the

expressions to

cosψ = ha (B.42)

δf =
he
2

(1− ha
2

) (B.43)

These equations can be used in reduced expressions of the magnetization and strain

such that

m =
M

Ms

= f1 + f2 cosψ

=
1

2

[
1 + ha + he(1− ha)

(
1− ha

2

)] (B.44)

ex =
e0

2

[
1− he

(
1− ha

2

)]
(B.45)

ey =
e0

2

[
1 + he

(
1− ha

2

)]
(B.46)

These relations depict strong non-linear relationships for the magnetization and

strain as a function of field characterized by the reduced field terms ha and he,

which represent the ratio of the Zeeman energy to that of the anisotropy and elastic

energy, respectively. The physical interpretation is that a material of low anisotropy,

ha � 1, magnetizes easily and at low fields. The low strength of these fields typ-

ically does not generate enough Zeeman energy to induce twin boundary motion;

thus he,s and e tend to be low. Materials of large anisotropy, ha � 1, cause the ha

terms to vanish, at which point he dictates the extent to which a field is resisted

by the stiffness of the twin boundary. In this case, the strain e has approximately
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Figure B.4: Taken from [37], theoretical magnetization and magnetostriction curves
generated by O’Handley’s model for various chosen values of the anisotropy, Ku,
and elastic constants, 1/2 Ce2

0.

linear dependence of the field. For intermediate anisotropies, non-linear behavior

develops and depends strongly on the ratio between the anisotropy and elastic en-

ergy, he/ha, and several examples of what can be expected are shown in Figure B.4.

This model does well illustrating the concepts of enhanced magnetostriction through

twin boundary motions, but the simplifications made which ignore strain in the z-

direction, the possibility of several twin variants, and temperature dependence of the

material parameters make it unsuitable to accurately simulate all FSMA behavior.

93



Appendix C: Studies on FePd

C.1 Background on FePd - Premartensitic Phenomena

The elastic properties of Fe-Pd binary alloys near the 30-35 atomic % Pd range

were extensively studied in the late 1980s and early 1990s for unusual martensitic

shape memory properties. The martensite was first discovered in 1980 [10], devel-

oping as a metastable twinned disordered face-centered tetragonal (FCT) crystal

structure when quenching from a high temperature homogeneous disordered FCC

γ-phase rather than the more thermally stable BCT phase as shown in the phase di-

agram in Figure C.1 [80]. The transformation temperature has a large dependence

on the atomic concentration of Pd, and near-room temperature transformations

can ben expected in the 30-32 atomic % Pd range. What garnered specific inter-

est in the elastic properties of these FePd alloys was first documented in 1986 by

Sugiyama through TEM studies of the evolution of the martensite, shown in Fig-

ure C.2 [11]. Through these micrographs, it was noted that while in the nominal

parent FCC austenite, striations along 〈110〉 directions appear in a cross-hatched

pattern, earning the nickname tweed for its resemblance to the jacket fabric. This

premartensitic behavior also imparts pseudo-second order transformation behavior

to the martensite, and this can more readily be seen in the X-ray data of Seto [12],
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Figure C.1: Taken from [80], the binary phase diagram of Fe-Pd.

shown in Figure C.3, or the smearing peak reflections seen in synchrotron radiation

measurements [18]. The measurements show how the trace of the cubic lattice pa-

rameter continuously changes in second-order fashion before an abrupt transition

at the transformation temperature. Additionally, one can also observe in the XRD

an intermediate phase emerges in a small temperature range of about 5 K, which

Khachaturyan established as an adaptive martensite phase, whereby twins coalesce

into nano-modulations with a 2:1 ratio to accommodate larger lattice strains be-

tween the parent FCC and martensite FCT phase [13]. These modulations give

rise to a superlattice reflection in the XRD, making it appear as if a orthorhombic

phase manifests, and this phenomenon only occurs in those martensites possessing

unusually low surface energy across twin boundaries.

The magnetic behavior of FePd was ignored in these early studies, however,

and only recently has the connection between the magnetic contributions to the

martensitic behavior of FePd been looked into. In 2014, Gruner published DFT

results that highlighted that the magnetic contributions to the binding energies of
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Figure C.2: Taken from [11], a series of TEM micrographs taken of FePd as it
changes through its martensitic transformation temperature.

the twinned FCT crystal are what serve to stabilize this phase through a lower

energy barrier transformation path over the more stable BCT phase, shown in the

Bain path diagram in Figure C.4 [60]. Furthermore, it was found that the twinning

is a natural consequence of these magnetic contributions as a means to minimize the

magnetostatic energy of the crystal. These results suggest that the elastic softening

assists the material in minimizing the surface energy across twin boundaries needed

to contain the magnetic energy, and that elastically twinned domains are in actuality

magnetoelastic domains separating magnetic and elastic information simultaneously.
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C.2 Past results on FePd

Understanding the importance of the magnetic contributions to the develop-

ment of the unusual martensitic properties of FePd, it became clear the magnetic

properties must be properly characterized. All studies were performed on single

crystals of composition Fe68.8Pd31.2. Thermal expansion curves in a temperature

range from 233 to 343 K were taken by mounting a [100] disk with a strain gauge

along the [010] direction atop a PID-controlled Peltier device in a custom-made

evacuated stage suspended in an electromagnet. This same set-up was used to mea-

sure magnetostriction through a series of temperatures as well on a [100] disk with

strain gauge mounted along either [010/001] and [011/011̄] directions. Magnetiza-

tion curves along different crystalline directions: [010],[11̄0], and [11̄1] were taken

of the crystal with a [110] normal using a vibrating sample magnetometer (VSM).

Magnetic anisotropy measurements as a function of field at room temperature and

at a saturation field as a function of temperature were taken on a [110] disk mounted

to a controlled-rotation platform within a VSM.

The thermal expansion results are shown in Figure C.5. From them, one can

see a clear transition occurring near 250K, with a transition region approximately

5K wide. The data itself closely resembles the change in the cubic lattice parameter

ac seen in the XRD data of Figure C.3. The transition is a clear sign for the

FCC to FCT martensitic transformation. In addition, there exists an extensive

invar region from 260-300 K temperature range which can be attributed to the

presence of premartensitic tweed giving rise to complex expansion-accommodating
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Figure C.3: Taken from [12], the measured lattice parameters of FePd as a function
of temperature.

Figure C.4: Taken from [60], a binding energy evaluation of FePd along Bain strains
corresponding to different crystal of lower symmetry.

microstructures, such as has been observed in FeNi [81].

The magnetostrictive response of Fe68.8Pd31.2 is again shown in Figure C.6 for

a series of temperatures moving through the phase transformation, from 258 to 240

K, with transformation temperatures at 250 and 245 K. The data shown in figure

2.1d, with the field applied along the [011] direction shows the transformation very

clearly, with an intermediary value of saturation magnetostriction λ‖−⊥ demonstrat-

ing the emergence of the adaptive martensite. The slight discrepancy between these

temperatures and the transformation temperature from the thermal expansion arises
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Figure C.5: Thermal expansion data taken along a 〈100〉 direction in a single crystal
of Fe68.8Pd31.2 with different phases labelled in their respective temperature region.

from instrumental error. The values of the magnetostriction reach quite large values

of 300 ppm in the austenitic state as compared to other FSMAs, an attribute due

to the presence of the premartensitic tweed. In the austenitic state, the saturation

magnetostriction is also isotropic with respect to a field applied either along a [010]

or [011] direction. It can be also seen that the values of magnetostriction change

close to the transition temperatures, indicating the possibility of short-range strain

ordering occurring within the structure in anticipation of the displacive transfor-

mation. This is related to distortions caused by nano-platelet precipitates of the

tetragonal phase beginning to coalesce and drive the transformation [82]. The data

for magnetic saturation shown in Figure C.6d is fitted with an exponential decay

function with an adjusted R2 value of 0.967. The quality of this fit serves as an

indication of short-range ordering leading up to the phase transformation.

Magnetization curves taken at room temperature along [010],[11̄0], and [11̄1]

directions are shown in Figure C.7. The behavior is linear approaching saturation,
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Figure C.6: Magnetostriction data shown for single crystal Fe68.8Pd31.2 at several
different temperatures along the (a) 〈100〉 and (b) 〈110〉 crystalline directions as
a function of field. The same data is shown as a function of temperature at select
fields ` 1900 Oe, e 2500 Oe, and a 4000 Oe, along the (c) 100 and (d) 110
crystalline directions. An exponential fit with adjusted R2 of 0.967 is shown in (d)
for the 4000 Oe data above 247 K.

possesses no hysteresis, and is independent of crystalline direction. The coercive

force is very small and measures 0.05 Oe. Curves were measured in a temperature

range from 255-360 K, though these are not shown since the behavior along this

region shows no appreciable changes. That is to say, the behavior is persistent up

to 100 K above the transformation temperature, and furthermore, the plot in Fig.

C.7b shows the behavior also remains unchanged with cycling. Typically, a magnetic

response such as this reflects a mechanism by which all ferromagnetic domains in the

sample are pinned, meaning the spins can only rotate towards the applied field, a

fact which could only be true if the material lacked crystallinity, e.g. metglass. This

is not the case for Fe68.8Pd31.2. Instead, the evidence points towards an isotropic
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Figure C.7: Magnetization curves taken at 293K for (a) several crystal directions
and (b) over several hysteresis loops, 1a, 2a,and 3a, of increasing (up) and decreasing
(down) field, offset for clarity, for single crystal Fe68.8Pd31.2.

demagnetization field, and we propose this is a consequence of ultra-low anisotropy

caused by the manifestation of premartensitic tweed.

As such, it became important to gauge the anisotropy as a function of field

and temperature, with results of magnetic torque data shown again in Figure C.8.

From the data, the magnetocrystalline anisotropy energy density equals less than

102 J/m3 in the linear region and is about 425 J/m3 at saturation, a value smaller

than some metglasses. At low fields, the torque characteristic of Fe68.8Pd31.2 exhibits

a 2-fold symmetry, which develops into a superposition of 2- and 4-fold symmetry

at higher fields. That is, the premartensitic tweed likely gives rise to a tetragonal

2-fold symmetry, and it’s possible that by de-twinning in response to the field,

some of the tweed reforms back into a cubic structure, causing a stronger 4-fold

symmetry component to appear, indirectly supporting that the magnetization and

magnetostriction are a result of a twinning/de-twinning mechanism. We fitted the

data using an A sin 4(θ + ϕ1) + B sin 2(θ + ϕ2) model and Origin software to look

at the relative contribution of each symmetry component to the overall torque,
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Figure C.8: (a) Magnetic torque data of several field strengths taken at 293K
for single crystal Fe68.8Pd31.2, (b) change of torque amplitudes A and B fitted to
A sin 4(θ + ϕ1) +B sin 2(θ + ϕ2) for curves of (a) to separate the anisotropy behav-

ior of the `2-fold symmetry and e4-fold symmetry, (c) temperature dependence
of the 2-fold symmetry with applied field of 3000 Oe, and (d) change in phase angles
ϕ1 and ϕ2 as a function of field for curves in (a).

shown in Fig. C.8b. The 2-fold symmetry is a superposition of both the shape

anisotropy and an intrinsic 2-fold symmetry. Shape anisotropy accounts for slight

differences in the demagnetization factor for orthogonal axes of a non-perfect circle.

That is, any amount of ellipticity will contribute a shape anisotropy to the overall

system, but for disk-shaped samples it is often negligible. However, Fe68.8Pd31.2

possesses an unusually low anisotropy energy which means it would be erroneous to

discount the contribution of shape anisotropy. We believe this is the case because

the response of the amplitude for the 2-fold symmetry as a function of field follows a

quadratic pattern, fitted with an adjusted R2 value of 0.992. This shape anisotropy

is independent of temperature, but we also show in Fig. C.8c that the amplitude of

the 2-fold symmetry has strong temperature dependence, exhibiting a sharp drop
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before the phase transformation temperature of this material. Such behavior is

also seen in a cubic to monoclinic transition for Fe3O4 [83]. Hence we conclude

some premartensitic 2-fold crystal symmetry contributes strongly to the magnetic

behavior of the system even in the austenitic phase. We assume the remnant 2-fold

component of anisotropy at the drop at 271 K accounts for the shape anisotropy

of our system, totaling ∼ 120 J/m3. This corresponds to a difference of 1.40×10−3

in the biaxial demagnetization factors, which amounts to a deviation of 0.1% or 5

µm around the perimeter of the disk. It is unusual for a material to exhibit an

anisotropy so highly dependent on the magnetic field, but this can be reconciled by

considering the anisotropy is a manifestation of both a regular magnetic component,

Km and a magnetoelastic component Kme. We also show the change in phase angles

ϕ1 and ϕ2 in Figure C.8d as a function of field. The cubic phase angle ϕ1 remains

constant whereas the tetragonal phase angle ϕ2 experiences a continuous shift from

43◦ to 30◦ as the field increases from 1000 to 2000 Oe, at which point it becomes

constant due to magnetic saturation. This shift is another sign of the magnetic field

rearranging and ordering the premartensitic tweed.

The magnetization behavior in FePd is closely tied to the microstructural rear-

rangements that come from these twinning and de-twinning processes in response to

the magnetic field. The fact that this behavior is isotropic with respect to crystalline

direction means that the twins, carrying magnetic information, arrange themselves

in such a manner as to perfectly magnetize and demagnetize themselves to any ap-

plied field. FePd is unique in that this behavior exists in the austenitic state due to

premartensitic tweed acting as twin-like entities in the material. An additional mag-
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Figure C.9: Magnetization curves for single crystal Fe68.8Pd31.2 taken along in-plane
directions of [001] (black `) and [11̄1] (blue a) as well as the out-of-plane [110]

normal (red e).

netization curve is shown in Figure C.9, demonstrating that the crystalline isotropic

response may be broken by applying a field out of plane or normal to the disk rather

than in the plane. In fact, this reveals that sample geometry almost entirely deter-

mines the slope of the magnetization curve. This comes back to the fact that this

behavior perfectly mimics the classical theory for the magnetization of a pinned, sin-

gle domain with a perpendicularly applied field [84] whose magnetization behavior

is modelled through the expression

M = Ms cosα =
H

2N
,H < Hd (C.1)

,

where M denotes the magnetization vector, Ms is the saturation magneti-

zation, H is the applied field, N is the demagnetization factor–dictated by sample

geometry–and Hd is the demagnetization field, below which the sample is unsatu-

rated. This equation describes the magnetic response of FePd quite well. The slope

of the magnetization curves give a demagnetization factor of 0.071, which matches
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closely to the theoretical value of 0.081 for our disks with aspect ratio 5:1 [36].

Since materials which exhibit solely rotational magnetic responses typically

possess no crystalline structure, the de-twinning magnetic response of crystalline

Fe68.8Pd31.2 is a mechanism that mimics domain rotation. This is made possible

through highly mobile twins in premartensitic tweed clusters which exist to minimize

the magnetostatic energy and demagnetize the material when no external field is

applied. Without any field applied, the twins within these clusters are arranged

such that the average magnetization angle, 〈cosα〉, equals 0. Twin rearrangement

and detwinning induced by an external field causes this average to deviate between

0 and 1 until saturation, upon which these magnetoelastic twins are eliminated from

the cluster and the bulk of the sample fully magnetizes. If each twin is separated by

a boundary of γme surface energy, one can formulate the energetics of the material

system with the expression

E = nAγme + V (Eelastic + Emagnetostatic

+ Emagnetoelastic + Eanisotropy)

(C.2)

where n is the number of interfaces in the system, A is the interfacial area of each

twin, and V is the volume of a twin. Assuming the anisotropy energy is very low

and therefore negligible, along with a sample with total volume L3, subdivided into
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n twins of thickness t each, this becomes

E = nL2γme +
L3

n
(Eelastic + Emagnetostatic + Emagnetoelastic) (C.3)

To simplify, we factor out the area L2. We approximate the magnetoelastic energy

as some elastic constant multiplied by the strain induced by destroying an interface,

or detwinning, caused during magnetization. The magnetostatic energy is the dot

product of the magnetization with both its internal field and the applied external

field, and the resultant expression becomes

E = nγme +
L

n
(−µ0M · (Hd + Hext) +G(λ2) (C.4)

where µ0 is the permittivity of free space, Hext is the applied external field, G is

an elastic constant, and λ is a magnetoelastic strain. The demagnetization field is

equal to the negative of the saturation magnetization Ms, modified by the demag-

netization factor N depending on the sample geometry. The overall magnetization

may be expressed as the saturation magnetization with respect to the angle of mag-

netization, α, as well, resulting in

E = nγme +
L

n
(−µ0Ms(−NMs cosα +Hext) cosα +G(λ2). (C.5)
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Rearranging terms and equilibrating with respect to n and α gives

n =

√
L(Gλ2 +Nµ0M2

s cos2 α− µ0MsHext cosα)

γme
(C.6)

and

2NMs cosα = Hext. (C.7)

If there is no applied field, and assuming a random starting distribution of magne-

tization angles such that 〈cos2 α〉 = 1/2, then

n0 =

√
L(Gλ2 + 1

2
Nµ0M2

s )

γme
, (C.8)

Recognizing that Ms cosα is simply M , the equilibrium condition of equation (6)

tells us that

M =
Hext

2N
, if Hext < Hd, (C.9)

which again is the same expression as in (C.1).
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Appendix D: Studies on FeNi

D.1 Background on FeNi - Adaptive Martensite

FeNi alloys fabricated within the 30-38 atomic % Ni range representing an in-

teresting parallel to the magnetostriction of FePd and FeGa in terms of their invar

expansion properties. The invar effect, a temperature region with near-zero thermal

expansion, has origins tied to magnetic anomalies [85] as well as complex ordered

and martensitic microstructures that provide a compensatory thermal contraction to

compete against linear thermal expansion coefficients of constituent phases present

in these alloys [58, 81]. Achieving the invar effect in these alloys requires careful

annealing in a two-phase α and γ phase region, followed by quenching and low-

temperature tempering treatments to tailor the compensatory effect. The γ phase

becomes unstable below the α/L12 eutectic, and a quench induces a γ−α′ marten-

sitic transformation. Cold-working these alloys also affects the thermal expansivity

behavior and offers an alternative method to tailor the invar properties.

Recently, Rao et al. demonstrated the applicability of phase field microelastic-

ity (PFM) modelling towards the Fe-Ni system as proof of concept in explaining the

invar effect [58]. PFM is a thermodynamic computational technique that evaluates

elastic contributions to the free energy from such sources as point-defects, dislo-
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Figure D.1: Taken from [58], simulated microstructure of an Fe65Ni35 alloy obtained
through phase field microelasticity calculations based on a randomly generated ini-
tial state of dislocations and applied stress proportional to the elastic constant C ′.

cations, second-phase precipitates, and martensitic transformations. It takes into

account size-dependent parameters, and because of this, it is possible to calculate

theoretical microstructures for a material wholly on the basis of energy minimiza-

tion. The results of Rao et al.’s work indicate that stress-generating defects naturally

present in martensitic materials such as Fe-Ni tend to induce local martensitic trans-

formations around the defect sources. The phenomenon is, in essence, a localized

application of the Clausius-Clapeyron equation raising TMS inhomogeneously and

preferentially about these stress-centers. The formation of these nanoscale marten-

sitic embryos facilitates adaptive growth and shrinkage in response to external stim-

uli, such as stress or a magnetic field. An example of this is shown in Figure D.1,

where the introduction of external stress term shows reversible growth and shrinkage

of the martensite through a theoretical stress cycle. In terms of PFM, a change in

temperature or application of a magnetic field has an equivalent elastic energy term

reflected within the model, meaning similar microstructures develop in response to
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thermal or magnetic environmental changes. This they claim implies the invar ef-

fect is an adaptive response of FeNi to resist elastic energy changes during thermal

expansion by instead growing martensite to maintain constant volume. This section

contains experimental studies done on differently processed FeNi alloys to provide

experimental evidence verifying this theory.

D.2 Completed studies of FeNi

Knowing the importance of processing conditions in generating adaptive marten-

site structures within FeNi, we have carried out studies on differently processed

samples from a single sheet of polycrystalline Fe65Ni35: one in the as-received (AR)

state, one cold-rolled to a 50% reduction in thickness (CR), and one quenched from

room temperature to liquid nitrogen temperatures (LN). For each sample, thermal

expansion, magnetization at room temperature and above, magnetostriction as a

function of temperature, and SEM micrography have been carried out. Because

these samples are polycrystalline with no known pre-texture, isotropic behavior for

the magnetization and magnetostriction is expected, and an enhancement of the

magnetization and magnetostriction is expected for the FeNi-CR and FeNi-LN sam-

ples as compared to the FeNi-AR one.

The thermal expansion results for the three alloys are shown in Figure D.2

over a temperature range fof 233-378K. In each case, a strong thermal contraction

with increasing temperature is seen, which attests to a crystal possessing excess

premartensite reverting back to a more thermally stabilized cubic state [58]. No
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Figure D.2: Thermal expansion curves within a range of 233-378 K taken for as-
received (AR), cold-rolled (CR), and liquid N2 quenched (LN) Fe65Ni35 polycrys-
talline alloys.

well-defined first-order martensitic transformation occurs, which would otherwise be

captured by a sharp jump in the data, as seen for Fe68.8Pd31.2 in Fig. C.5. Only the

FeNi-LN sample shows a region of significant invar expansion, from 308-378 K, but

all alloys show extensive hysteresis when cooling from 378 K to room temperature.

The cause of the hysteresis is nebulous, since it is expected that the formation of

nanoscopic premartensites leads to highly reversible transformations, which should

imply the same forward and reverse paths when cycling the temperature. Instead,

it may be the case that the microstructure evolves unpredictably when cooling from

a higher temperature, such that premartensite might be eliminated through heat-

ing and reform in a different configuration when it becomes restabilized at colder

temperatures. These data are also at odds with Rao’s, as a higher amount of plas-

tic strain as in the case of FeNi-CR should lead to a sharper thermal contraction

from the increase in plastic strain, but the contraction is about equal. Furthermore,

a contraction this sharp below room temperature would indicate alloys of > 10%

pre-applied plastic strain which, in turn, is predicted to increase TMS to near 330K,

none of which is evidenced by these results.
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Figure D.3: (a) Magnetization curves taken at room temperature for the as-received
(AR) and cold-rolled (CR) Fe65Ni35 polycrystalline alloys along with (b) a zoomed
in scaling to observe the anhysteretic approach to and from saturation. (c) Mag-
netization curves for two FeNi-AR disks of different geometries with a comparison
between the theoretical demagnetization for those samples and the factor obtained
from the slope of the curves. (d) Saturation magnetization measurements taken as
a function of temperature for the FeNi-AR and FeNi-CR samples.

Several different magnetization measurements are shown in Figure D.3, with

data omitted for the FeNi-LN sample. The reason for this omission is that the FeNi-

LN sample showed no appreciable difference in behavior as compared to the FeNi-

AR sample, which is a sign the quench did not affect the magnetic behavior of the

sample in any way despite affecting the thermal expansion. Also omitted were data

for longitudinal and transverse magnetization for the FeNi-CR sample with respect

to the rolling direction; these data showed no appreciable difference, indicating that

the possibility of texturing due to rolling did not affect the isotropic magnetization.

Both the FeNi-AR and -CR sample exhibit magnetization remarkable similar to

Fe68.8Pd31.2, linear until saturation and anhysteretic within the sensitivity limit of

the VSM. The ultimate magnetic saturation is less for the CR sample than for
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Figure D.4: Overall (λ‖ − λ⊥) magnetostriction curves taken at room temperature
for as-received (AR), cold-rolled (CR), and liquid N2 quenched (LN) Fe65Ni35 poly-
crystalline alloys.

the AR, contrary to expectations, though the difference is about 3.5% between 134

emu/g opposed to 130 emu/g. The data in Fig. D.3c also demonstrates that the

shape of the magnetization curve depends heavily on the demagnetization factor for

the applied field direction. The slopes of the curves for an in-plane magnetized 3

mm diameter disk and 5 mm diameter disk, both 1 mm in thickness corresponding

very closely with theoretical demagnetization factor values estimated from [36]. This

alludes to a significantly reduced magnetic anisotropy as observed in Fe68.8Pd31.2.

The magnetization as a function of temperature, shown in Fig. D.3d, has a very

gentle approach towards zero with an anomalous slope change near 550K , similar

to behavior seen by Gorŕıa et al. for a Fe64Ni36 alloy which had a Tc of 500 K [86].

Their work demonstrated considerable enhancement of Tc to 620 K by high energy

ball milling, of which we observe no similar phenomenon for the FeNi-CR sample.

The small tail of weak magnetization for T >550 K indicates short range magnetic

ordering in the paramagnetic phase [16].

The magnetostriction data at room temperature for the three alloys are shown

in Figure D.4, and the saturation magnetostriction λ‖−⊥ as a function of temperature
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Figure D.5: Saturation magnetostriction data plotted as a function of tempera-
ture for as-received (AR), cold-rolled (CR), and liquid N2 quenched (LN) Fe65Ni35

polycrystalline alloys.

is shown in Figure D.5. From Fig. D.4, no apparent difference is seen between the

magnetostrictive response of the AR and LN sample, having a magnitude of 28

ppm, not significantly higher than that found in pure Fe of 20 ppm [16]. The CR

sample shows a significantly higher magnetostriction of 35 ppm, or a 25% increase,

which may be attributable to a larger presence of premartensite in the alloy formed

from the cold-rolling process, though this observation is at odds with the lack of such

a significant change seen for the sample in the thermal expansion data. All samples

exhibit a quadratic dependence of λ with respect to field, and, though not shown,

the majority of magnetostriction curves show λ‖ = 2
3
λs and λ⊥ = −1

3
λs. This

suggests Joule magnetostriction responses for these materials, not one of strong

magnetoelastic coupling to martensitic structures. The temperature dependence

of magnetostriction for the three samples is quite different. Both the AR and LN

sample experience anomalous slope changes near 350 K that aren’t readily accounted

for in either the thermal expansion or magnetization versus temperature data. This

makes it difficult to say whether the origin is due to structural changes, magnetic

changes, or microstructural changes. However, the LN sample has no hysteresis

between measurements made during cooling or heating cycles, as opposed to the
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Figure D.6: SEM micrographs obtained at low (1000x) and high (10000x) magnifi-
cations for the (a)(b) as-received (AR), (c)(d) cold-rolled (CR), and (e)(f) liquid
N2 quenched Fe65Ni35 polycrystalline alloys.

AR sample, indicating perhaps the LN sample has more ’frozen’-in premartensite

such that its microstructure between the thermal cycling remains more constant

than that of the AR sample’s. The CR sample does not show this slope change,

meaning the extra plastic deformation has some sort of quenching effect whatever

the transition mechanism may be.

SEM micrographs for the samples at 1000x and 10000x magnifications are

shown in Figure D.6. Each sample was mechanically polished and etched with 3

successive 20s applications of aqua regia to elucidate the microstructure. All sam-

ples show a similar size distribution of grains, averaging 20 µm in size. The AR and

LN microstructures exhibit a large quantity of coherent boundaries, while the CR

structure shows substantial deformation along similar pre-coherent interfaces. In

higher magnifications, one actually sees these deformed interfaces resolve into a net-

work of coherent twinning structures. For the FeNi-CR sample, there is near 100%
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coverage of the surface with such structures, and EDS measurements, not shown,

could not find compositional heterogeneity between them. Their exact structure

is to be determined. All samples possessed varying degrees of these structures, all

100 nm in size, but accurate estimates for the volume fraction are difficult due to

the inability to resolve them at lower magnifications. In the LN sample, the struc-

tures however seem much less apparent throughout the bulk than the AR sample,

meaning the quench may have suppressed their formation.

The data obtained so far on these FeNi alloys seem at odds with one another.

Plastic strain seems to have increased the amount of nanoscopic twinning structures

in the FeNi-CR sample, as predicted by Rao [58], but this increase in supposed

premartensite seems not to have affected either thermal expansion or magnetization

behavior significantly. It did, however, increase the magnetostriction, implying there

must be, to some extent, an increase in magnetoelastic coupling. In comparison, the

FeNi-LN sample appeared to have less amounts of these structures, which imparted

invar like behavior in the thermal expansion, yet neither the magnetostriction nor

magnetization seemed too affected compared to the AR sample. As seen in the SEM,

however, the martensite developed in these FeNi alloys is significantly larger in size

than those structures observed in either FePd or FeGa, which attests to the drastic

effect reduction in size of the martensites imparts on the overall magnetostriction.

A large missing piece in these studies of FeNi so far is crystallographic data

as a function of temperature within the range of the thermal expansion and mag-

netostriction measurements. The nanoscopic nature of these martensites requires

high resolution XRD equipment or TEM capable of detecting their presence distinct
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from the cubic parent, a phenomenon responsible for streaking of diffraction spots

in TEM for these premartensitic materials [12,22].
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Appendix E: Measurement and Analyses Details

E.1 Sample Preparation

Three FeGa alloys studied were ordered from Ames Laboratory in Iowa State

University. Crystals were prepared of composition 18, 19, and 22 at. % Ga from

arc melting of 99.999% pure Fe and 99.99% pure Ga sources. The crystals were

grown using the Bridgman technique, and single crystals were ordered only for the

18 and 22 % Ga alloys with a [100] normal. The crystallinity was confirmed at Ames

through Laue back-scattering. Each alloy was prepared as a rod 5-7 cm in length

with a diameter of 8 mm. All of the alloys were subject to a heat treatment of

1273 K in inert atmosphere for 3 days for homogenization followed by an ice-quench

to room temperature. The 26 at. % Ga alloy came from AJA International in

Massachusetts, prepared by hot pressing pellets of 99.99 % pure Fe and 99.9 % pure

Ga into a target. Disks of each alloy were cut 0.5-1 mm thickness using electro-

discharge machining (EDM) in a programmable wire-cutting machine, using a wire

of 0.5 mm diameter. Compositions were confirmed through wavelength dependent

spectrometry carried out with the JAX 8900R Microprobe in the AIM lab at the

University of Maryland. Disks cut from the top and bottom of the 18 % single

crystal rod revealed that the rod itself possessed a composition gradient, yielding
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samples 17 and 18 at. % from the same rod.

A polycrystalline FeNi alloy of 35.6 at. % Ni also came ordered from Ames

Laboratory, prepared in a similar procedure. The rod was machined into a 1.5

mm thick sheet and sent to us as a 1.5 in.2 cut-out, but the exact process was not

revealed to us. A number of disks of 3, 5 , and 10 mm diameters were cut using the

same EDM procedure as for the FeGa alloys. Some of these disks were subject to a

liquid-N2 quench from room temperature by immersion in a Dewar flask followed by

subsequently allowing for them to again reach room temperature. Remnants of the

FeNi sheet were cold-rolled to a 50 % reduction in thickness after several iterations

through a mechanical roller. A further number of disks 3, 5, and 10 mm in diameter

were cut from the cold-rolled sheet.

The Fe68.8Pd31.2 single crystal was prepared by Takashi Fukuda of Osaka Uni-

versity, who used a high purity Fe rod (99.999%) and a Pd sheet (99.9%) source

elements. The ingot was first prepared via arc melting, and a [100] single crystal was

grown using the floating zone method The crystalline orientation was determined

by a back-reflection Laue method. The alloy was heat treated at 1373K for 24h

followed by quenching into ice water. Disks of 5mm diameter and 1mm thickness

were cut via EDM with both [100] and [110] normals.

Microscope specimens were each prepared first through mounting the disks in

epoxy, followed by mechanical polishing down to a 0.3 µm finish using an alumina-

powder colloid. The Fe64.4Ni35.6 samples examined in SEM underwent three succes-

sive 20 s applications of aqua regia for etching. TEM samples of the FeGa alloys

were created using focused ion-beam microscopes (FIB). Rough machining was per-
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Figure E.1: The circuit configuration of a Wheatstone Bridge to measure strain.

formed in the XEIA-FIB in the AIM lab facilities to create a 20 x 5 µm sized lamella

roughly 2 µm thick. A ∼1 µm thick platinum coating was deposited on each sample

for support and protection during this procedure. Samples were then transferred to

the GAIA-FIB in the AIM lab, where samples were glued with tungsten deposition

onto a fine-tipped probe, after which the lamella were liberated from the bulk alloy

via milling. The lamella was transferred from the probe to Cu support grids, glued

to the side of the supports with tungsten, followed by subsequent milling to remove

their attachment to the probe. Fine polishing of these mounted lamella was car-

ried out with iterative milling of the samples with small currents (40-80 pA) of the

ion beam. These iterations were performed until the protective Pt layer had been

completely destroyed, and the sample revealed itself to have extremely thin electron

transparent areas revealed through SEM micrographs taken in the GAIA-FIB.

E.2 Strain Measurements: Thermal Expansion and Magnetostriction

All strain measurements came from measuring the voltage drop across a Wheat-

stone Bridge circuit. The Wheatstone Bridge is depicted in figure E.1, and it involves

a connection of a voltage source to two equivalent resistors connected in parallel with

a another equivalent resistor and an unknown, with a voltage probe connected across

the parallel ’bridge.’ The unknown resistance comes from a strain gauge designed
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to have the same resistance at zero strain, and, when attached to a sample, any

change in length causes a proportional change in resistance which is detected by the

voltage across the bridge. The measurements were taken using a PXIe-4330 data

acquisition (DAQ) card interfaced with an NI PXIe-1073 Chassis, and we connected

this to WK-06-030WT-120 specification strain gauges from Vishay Precision Group,

mounted to samples with M-Bond 200 epoxy. When possible, gauges were adhered

along specific crystalline orientations determined by rotating samples in a saturated

magnetic field to identify easy magnetic axes.

The temperature was controlled using Laird Technologies multi-stage Peltier

device with PID control outputted by a Keithley 2200 Power Supply and pro-

grammed through LabVIEW software. Temperature itself was monitored using

T-type thermocouples from Omega, interfaced to the computer with a TC01-USB

adapter possessing internal calibrations. To improve performance of the device, a

stainless steel apparatus was constructed to fit between the poles of the electro-

magnet contained in our lab. The Peltier device rested atop a custom-machined

CuBe flange, which had teflon flanges secured above and below to improve thermal

insulation. The apparatus was sealed by inserting a glass dome into the top teflon

flange. A Cu tube fitting was silver-brazed around the outside of the CuBe flange,

and hosing was attached to water cool the flange and the Peltier device to prevent

overheating and strong thermal drift. The hosing had an additional fitting to a

secondary LC-200 Peltier device from TE Technology Inc., and this reduced the

base temperature of the Laird Peltier device to make lower temperatures attainable

for measurements. The stainless steel apparatus possessed a fitting on the back to
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attach to a mechanical floor pump to evacuate the measurement chamber to prevent

condensation. When running the vacuum and water cooling, the stage could reach

temperatures of 233 to 378 K (-40 to 105
◦C) and maintain a fidelity of ± 0.1 K to

the set temperature.

The magnetic field of the electromagnet was controlled using a second Keithley

2200 Power Supply connected directly to the power supply of the magnet. Field

calibrations with respect to the output voltage of the power supply were carried

out using a Model 455 Gaussmeter from Lake Shore Cryotronics, Inc. LabVIEW

programs were developed using these calibrations to develop set-point as well as

magnetic cycling protocols.

With tight control of both temperature and magnetic field, LabVIEW pro-

grams were created to carry out three types of measurements: (1) thermal expansion,

(2) magnetostriction, and (3) magnetostriction at different temperatures. These

programs outputted measurement files containing temperature, magnetic field, and

strain data directly. These files would contain up to 10,000 individual data points,

and macros were created through Microsoft Excel to condense the data by averag-

ing measurements rounded to either specified temperature or field targets. To assess

the expansion and magnetostriction of the strain gauges/epoxy, measurements on

a Ti-silicate bar possessing near zero thermal expansion and zero magnetostriction

were carried out and subtracted from measurements on the Fe-alloys to improve the

accuracy.
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Figure E.2: Magnetic torque measurements along with simulated fits to the ex-
perimental data taken on Fe82Ga18 at applied fields of 400, 800, 1200, and 1800
Oe.

E.3 Magnetization and Magnetic Torque

All magnetization measurements were carried out using a Lake Shore Cry-

otronics 7400 Series Vibrating Sample Magnetometer (VSM). Without going into

finer detail, a VSM measures sample magnetization through the principles of Lenz’s

Law. Pick-up coils of a known geometry are attached to the poles of an electromag-

net while the measured sample is kept suspended between the poles and mounted

to a rod driven into rapid oscillation by piezoelectrics in a vibrating head. When

a field is applied, the rapid vibration of the sample causes an AC induced electro-

motive force in the pick coils due to the moving magnetic flux. The magnitude of

this induced voltage is linearly proportional to the magnetization of the sample.

Nearly all magnetization measurements were carried out through a magnetic field

cycle of 1 T to -1 T back to 1 T. The magnetization versus temperature measure-

ments carried out on FeNi samples were completed using a 74034 High Temperature

Oven attachment and PID control through a 741-VTA Instrument, both produced

by Lake Shore Cryotronics for use with their instrument.

Magnetic torque measurements were completed at Morgan State University
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with the help of Dr. Abdellah Lisfi and his student Sabin Pokharel. They developed

a custom-stage capable of holding rotating samples in the middle of an electromag-

net. Their instrumentation includes a calibrated spring force sensor to measure the

force the sample exerts when rotated a specified angle away from its easy axes. They

helped perform measurements with and without the use of a cryostat to measure

the magnetic torque at different temperatures in addition to different fields.

Figure E.2 shows the evolution of magnetic torque in the Fe82Ga18 sample

which exhibited hysteretic switching behavior due to the presence of a uniaxial

anisotropy component. The torque initially has a hysteretic 2-fold symmetry, and

the switching changes phase abruptly when a 4-fold symmetry starts to manifest

at higher fields before ultimately dominating the overall signal. In order to extract

anisotropy information corresponding to the uniaxial and 4-fold component, the

data has to be simulated and fitted with an appropriate model. Unlike FePd, which

had a 2-fold symmetry component possessing substantially lower anisotropy, FeGa

could not be easily modelled with a A sin(2θ)+B sin(4θ) function. For materials with

high enough uniaxial anisotropy, there are certain angles along the hard axis that the

Zeeman energy from the external field must overcome, and for weak applied fields,

it may be impossible to magnetize the sample along these angles [44]. Over these

rotation angles, the magnetization becomes pinned and the torque stagnates until

such rotation occurs that the magnetization spontaneously switches to the opposite

direction. The anisotropy energy for this process has to be described then in terms

of both the applied field angle θ and the material’s actual angle of magnetization
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relative to the easy axis, ψ, resulting in the expression

ua = Ku sin2(ψ)−HMs cos(θ − ψ) (E.1)

where the first term represents the uniaxial anisotropy with constant Ku, and

the second term represents the Zeeman energy for a material with magnetization

Ms cos(θ − ψ) under applied field H. To determine the magnetization angle and

ultimately the torque a uniaxial material exhibits for an applied field angle θ, the

energy must be minimized:

∂ua
∂ψ

= 0 = 2Ku sin(ψ) cos(ψ)−HMs sin(θ − ψ) (E.2)

Ku sin(2ψ) = HMs sin(θ − ψ) (E.3)

The relation defined in E.3 represent the solutions for ψ in terms of θ, but the relation

itself is non-linear and cannot be solved analytically. To determine ψ0(θ), numerical

methods must be used, and this was achieved by creating scripts in MATLAB which

generated expressions of ua as a function of both ψ and θ from 0 to 2π and sifting

through the resulting energy surface to identify local minima of ψ at constant θ. For

each value of θ, there exists either one or two equilibrium magnetization angles, ψ

that correspond to local energy minima, and an additional script was developed to

properly index two solution functions as a results ψ0,1(θ) and ψ0,2(θ) which physically

represent how the uniaxial component rotating the material clock-wise (increasing

θ) or counter-clockwise (decreasing θ), respectively.
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The total anisotropy was then modelled as a superposition of the 4-fold sym-

metry, the shape anisotropy, and the uniaxial anisotropy. Each data set contained

clockwise and counter-clockwise measurements, which are labelled as forward and

reverse in Fig. E.2. The expressions for modelling this data are

L1(θ) = K1 sin(4θ) +Ku sin(2ψ0,1(θ − θu) +NM2 sin(2(θ − θd)) (E.4)

L2(θ) = K1 sin(4θ) +Ku sin(2ψ0,2(θ − θu) +NM2 sin(2(θ − θd)) (E.5)

where L1 and L2 are the overall torques for the two solutions, K1 is the 4-fold

anisotropy constant, NM2 is the shape anisotropy which grows quadratically in

proportion to the magnetization, and θu and θd are phase shifts which adjust the

placement of the uniaxial and shape anisotropy curves with respect to the 4-fold com-

ponent. These expressions are intrinsic by nature, but the data taken on Fe82Ga18

was extrinsic, which meant that the amplitude of the 4-fold and uniaxial compo-

nents had been recorded in proportion to the volume of material responsible for

each respective signal. Without knowing the phase fraction for the two components

within the material, it is not possible to convert the extrinsic experimental data to

intrinsic values without additional assumptions. The modelling itself then, in some

sense, captures the volume-modified results of the intrinsic model, and it is more

accurate to state the model followed the expressions

L1(θ) = Nc sin(4θ) +Nu sin(2ψ0,1(θ − θu) +Nd sin(2(θ − θd)) (E.6)

L2(θ) = Nc sin(4θ) +Nu sin(2ψ0,2(θ − θu) +Nd sin(2(θ − θd)) (E.7)
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where Nc, Nu, and Nd have replaced the intrinsic proportionality constants and

simply correspond to the relative amplitude of the different components.

It also became clear throughout the simulation process that these expres-

sions lacked the ability to capture the hysteretic switching regions perfectly when

the 4-fold fold anisotropy began to take larger values. For instance, in the 1200

Oe torque measurement shown in Fig. E.2, the switching area has a non-uniform

shape, possessing convex curvature in the forward direction and concave curvature

in the reverse. The data itself suggested that the 4-fold anisotropy in these regions

exponentially decays to near zero, causing the uniaxial anisotropy to strongly man-

ifest rather than simply superposing on top of a regular sin(4θ) curve. The physical

reasons for this are not exactly clear, but careful analysis of the simulation showed

that the phase difference θu often caused the hysteretic switching to occur at angles

where the cubic anisotropy passed through 0. In other words, the uniaxial com-

ponent’s hard axis lay along the cubic 4-fold component’s easy axis, meaning the

4-fold anisotropy in this region is at an energy minimum, since magnetic torque is

the derivative of the anisotropy with respect to angle. With this in mind, the model

was modified to exponentially decay to 0 in the first half of the switching region

and then to exponentially grow from 0 in the second half. Physically, this implies

that the pinning of the uniaxial component also affects the magnetization angle of

the 4-fold component, keeping the 4-fold magnetization angle confined to near 0

anisotropy during the switching process. Thus, the complete model used to simu-

late these curves involved breaking the data into piece-wise functions, with critical

switching angles, θ1,s, θ1,f , θ2,s, and θ2,f , defining the respective pieces, with the
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subscripts 1 referring to the first switching region, 2 referring to the second switch

region, s referring to the starting angle of switching, and f referring to the final

angle of switching. For brevity, only the forward model is expressed:

L1(θ) =



Nc sin(4θ) +Nu sin(2ψ0,1(θ − θu) +Nd sin(2(θ − θd)), for [0, θ1,s]

Nce
2ψ0,1(θ)−(θ1,s+θ1,f )

2C sin(4θ) +Nu sin(2ψ0,1(θ − θu) +Nd sin(2(θ − θd)), for [θ1,s, θ1,f ]

Nc sin(4θ) +Nu sin(2ψ0,1(θ − θu) +Nd sin(2(θ − θd)), for [θ1,f , θ2,s]

Nce
2ψ0,1(θ)−(θ2,s+θ2,f )

2C sin(4θ) +Nu sin(2ψ0,1(θ − θu) +Nd sin(2(θ − θd)), for [θ2,s, θ2,f ]

Nc sin(4θ) +Nu sin(2ψ0,1(θ − θu) +Nd sin(2(θ − θd)), for [θ2,f , 2π]

(E.8)

where C was introduced as a decay constant to improve the fit to the data.

The numerical simulation needed to evaluate the complex torque express of eq.

E.8 made it difficult to create scripts which automatically generated the best fit for a

given set of experimental data, and, as such, most of the simulations were evaluated

manually with scripts plotting numerous iterations of eq. E.8 for comparison with

the data. Overall, the model effectively could reproduce the torque curves, and the

parameters extracted from the fit presented in Fig. 4.7 demonstrate the interesting

characteristics of these torque curves as a function of field.

E.4 Hall Probe Measurements in the TEM

The Hall Effect refers to the creation of a transverse electric field, EH , when a

material carrying a current density J is placed in a perpendicular applied magnetic
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Figure E.3: A schematic representation for the Hall Effect in materials.

Figure E.4: The design of the nose piece to hold the Hall Probe for insertion into
the TEM.

field H. This occurs due to the Lorentz force of travelling electrons (or holes) in

the conducting material, F = µ0q(v×H), deflecting them transverse to the current

carrying direction. A schematic of the effect is shown in Figure E.3. The voltage

generated is ideally linearly proportional to the applied field moderated by a so-

called Hall coefficient, RH , which depends on the mobility and density of charge

carriers of the material. It is generally higher for semiconductors, which possess

high mobility but lower conductivity than metals, preventing a short circuiting of

the effect [16].
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An AS-NTP Transverse Hall Probe was obtained from Projekt Elektronik,

calibrated to sense fields up to 2 T with a sensitivity of approximately 0.1 mT in

this range. The probe itself has dimension of 5 x 3 x 0.9 mm, and a custom nose

piece for the TEM was machined to support the probe and facilitate its insertion

into the JEOL 2100 LaB6 and JEOL 2100 FEG TEMs in the AIMLab facilities at

the university. A schematic of this nose piece is shown in Figure E.4. The probe

itself was laid within a hole designed to oversize the probe by about 0.1 mm and

glued into place with a minimal amount of epoxy so as to minimize any possible

stress on the probe. Since the probe itself is a brittle semiconductor, minimal stress

is crucial to prevent any influence on the conductive properties or possible fracture.

After successively gluing the probe, its wires were fed through the nose piece and

secured into a specialized TEM rod with vacuum feedthroughs for the electronics.

The objective lens (OL) within a TEM column controls the strength of the

magnetic field used to focus electrons into a collimated beam, and the current passing

through the coils in the lens can be controlled in ”Fren Lens Control” mode using

the software installed to operate the instrument. There are two main options to

adjust this voltage, subdivided into a ‘coarse’ and ‘fine’ control, differentiated by

the magnitude in which the lens voltage is increased by an equivalent increase in

output of the function. To use a quantitative example, adjusting the Free Lens

Control value of the coarse OL from a hexadecimal code of 1000 to 2000 adjusts

VOL from 0.62 to 0.94 V whereas the equivalent adjustment in fine OL changes VOL

from 0.01 to 0.03 V. These voltages are nominal in nature and do not reflect the true

voltage drops over the OL lens, as standardized practices in software design for TEM
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instruments keeps these adjustments to span a range of 0 to 5 V across different

lens designs, whereas different lenses require additional resistors and transformers

to generate the proper current output to sustain the high fields needed to focus the

electron beam [87]. For instance, the JEOL 2100 FEG TEM can sustain a maximum

current of 13.4053 A, and possesses 5.8 Ω, meaning the 5 V output reported by the

software at this current in reality corresponds to an actual voltage of 77.75 V across

the lens. However, the reported software voltages are useful to measure the magnetic

field against since they can be directly controlled with the software. Obtaining actual

voltage readings across the lens would prove a more difficult effort that would require

extra calibrations between the software readings and real voltages at any rate.

Measurements taken for the magnetic field using coarse and fine OL adjust-

ment for both the LaB6 and FEG TEMs are shown in Figure E.5. The figure makes

clear that the FEG TEM is capable of operating at a much higher field, which is

to be expected owing to the instrument’s superior resolution limits over the LaB6

TEM, but this unfortunately means the voltage range from 2.16 to 5 V cannot

be measured currently by the Hall Probe without adapting its electronics to inter-

face with a lock-in amplifier to obtain accurate results outside the specifications

manufactured by Projekt Elektronik. Current efforts are underway to carry out

such measurements. The current sensor cannot detect fields above 2.5 T, and it is

even possible that the values from 2.0-.5 T possess unaccounted for errors due to

non-linear deviations of the current sensor calibration. These results also suggest

that the LaB6 may be more suitable for studying low field magnetic behavior in

Lorentz microscopy because it can achieve tighter control of low field values due to
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Figure E.5: Magnetic field data as a function of objective lens voltage for the JEOL
2100 FEG and JEOL 2100 LaB6 TEMS using coarse, (a) (b), and fine, (c) (d),
control.

its reduced sensitivity to the OL voltage.

The STEM analysis conducted on the FeGa samples spanned a VOL range

of 1.92 to 4.56 V, meaning the Hall Probe could not obtain field data the upper

end of voltages used in the in situ structural studies. To extend the measurement

capabilities of the Hall Probe, custom wires were created to acquire readings of the

Hall voltage using an SR830 Lock-In Amplifier. A 500 kΩ resistor was introduced

to lower the current across the Hall Bar from a 2.5 V, 100 kHz AC signal of the

lock-in. A second measurement was taken in the FEG TEM for taking simultaneous

probe sensor and lock-in voltage readings as a function of VOL, and an interpolation
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Figure E.6: Magnetic field data as a function of objective lens voltage for the JEOL
2100 FEG with a calibrated interpolation of Lock-In Amplifier measurements shown
for voltages which generated a field outside the sensitivity range of the Hall Probe
sensor.

of the calibration between the two readings was done to estimate the field for VOL

values which exceeded the probe sensor’s capabilities.The interpolation from which

field values are reported in the body of the thesis is shown in Figure E.6.

E.5 TEM Measurements and STEM analysis

The use of TEM makes possible an enormous amount of material analysis at

the nanoscale, including diffraction, chemical mapping, defect analysis, and, perhaps

most importantly, high resolution imaging of atomic columns and even individual

atoms in special cases. Employing such techniques requires an intimate understand-

ing of the physical interactions between electrons and material solids, and much of

these measurements involve detecting different angular regions of scattering experi-

enced by electrons passing through solid materials and correct interpretation of the

mechanisms responsible for such scattering. Transmission Electron Microscopy, by
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Williams and Carter, is a comprehensive textbook which covers the various science

made possible through the use of TEM and should be referred to for more in depth

explanation of the physics and materials science covered in this section [45].

The majority of TEM analysis covered in this thesis focuses on diffraction, or

coherent scattering of electrons along the transmitted beam into strong intensity

reflections which relate to the structure of the atomic lattices through which the

electrons pass. In great simplification, the sample in the TEM acts as a diffrac-

tion grating with slits created by the periodic spacing of atoms in a crystal lattice,

and diffraction patterns can be obtained over areas of a TEM sample by placing

an aperture through the back focal plane of the objective lens and adjusting the

lens currents to bring the pattern into focus on the image plane. Such selected area

diffraction (SAD) has advantages over bulk diffraction probes such as X-ray or neu-

tron diffraction, since localized diffraction patterns can be obtained over extremely

small areas, allowing one to distinguish distinct crystalline phases at the nanoscale

by focusing the aperture onto areas corresponding to those phases. Even amongst

differently oriented grains, SAD can allow one to characterize differently oriented

grains, and high resolution imaging can allow one to study interfaces and bound-

aries between crystallites. The introduction of a second aperture, often called a High

Contrast aperture, can allow a user to focus specifically on a single diffraction spot

and highlight areas of a sample which contribute to the scattering of this specific

diffraction peak. It’s possible to tilt a sample in a TEM to enhance the brightness

of just a single peak and the transmitted beam to minimize interference of other

scattering, such as effects of double diffraction, and this technique, called the Two-
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Figure E.7: (a) A NED diffraction pattern of Fe78Ga22 taken at an objective lens
voltage of 3.22 V, with corresponding peak profiles for (b) the A2 phase and (c)
the D03 phase.

Beam Condition, allows one to obtain dark field images. Such images allow for clear

contrast differences to highlight the presence of different crystal structures as well as

defects such as dislocation and stacking faults within a material. For instance, the

dark field images reported on FeGa in the body of this thesis highlighted the lack

of dislocations in supposed single crystal alloys and instead revealed a large amount

of nanocrystalline precipitates dispersed throughout the bulk of these alloys (Figs.

4.9 and 4.10).

Scanning transmission electron microscopy (STEM) involves condensing the

electron beam into a coherent, focused probe less than 1 nm in size, which allows one

to surpass the localized probe of SAD, which has a smallest probe size of roughly
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150 nm. This makes it possible to obtain nanoelectron diffraction patterns (NED)

which correspond to the local structure of individual nano-sized grains, and the elec-

tron beam in STEM has tightly controlled placement through the use of specialized

scanning coils which induce magnetic fields to deflect the beam to a desired posi-

tion. This technique become necessary to attempt to identify the structure of the

nanocrystalline precipitates observed through dark field imaging and high resolution

imaging of the FeGa alloys. Because images in the TEM are always obtained from

scattered electrons, one must understand that focused images are essentially formu-

lated through the magnification of diffracted electrons onto the image plane. The

TEM always detects both real space and diffracted information simultaneously, and

depending on the focus, one can switch from one set of information to the other.

This is the principle through which NED works. Free Lens Control in the TEM

allows one to modify the strength of the condenser lens which affects the focus of

the scanning beam and bring sharp diffraction peaks into focus while in scanning

mode [46–48, 88]. The in situ STEM analysis involved acquiring NED patterns at

different objective lens voltages, which in turn affects the strength of the focusing

magnetic field in the instrument. In optical terms, adjusting the objective lens volt-

age changes the focal length of the lens itself, and NED patterns can be brought

back into focus by compensating with adjustments to the strength of the condenser

lens [49].

The analysis of these NED patterns focuses on the intensity of diffraction peaks

corresponding to an ordered BCC D03 crystal compared to the peaks of disordered

BCC A2. In FeGa, the lattice difference between these two crystals is about 0.2
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% [29]. Allowed reflections in disordered BCC correspond to crystal directions with

Miller indices h, k, and l such that h+k+l =an even number. In D03, the ordering of

Ga atoms allows for more reflections due to the difference in structure factor between

Fe and Ga. Even odd summations of h, k, and l give rise to weak reflections for this

structure, which allows one to distinguish D03 from A2. An example [100] zone

axis NED pattern for Fe78Ga22 is shown in Figure E.7, along with intensity profiles

for an A2 and D03 peak in E.7b and E.7c. The analysis of these peaks focused on

recording the maximum intensity of the peaks for the respective phases as well as

the noise level surrounding the peaks. For each NED pattern, 4 intensities for the

A2 structure, 4 for the D03 structure, and 8 intensities for the noise were recorded.

An average was taken for each of these intensity groups as well as a standard of

deviation. The calculation of the D03 intensity used the expression

%D03 =
(D03,average − naverage)

(D03,average − naverage) + (A2average − naverage)
∗ 100 (E.9)

where n represents the noise intensity. Error estimates were obtained in quadrature,

and this method of error estimation has the generic form

∆f(x, y, ...) =

√(
∆x

∂f

∂x

)2

+

(
∆y

∂f

∂y

)2

+ . . . (E.10)
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First this was done for the error of intensity for each respective phase, such that

∆x =
√
D02

3,STD + n2
STD (E.11)

∆y =
√
A22

STD + n2
STD (E.12)

If one simplifies eq. E.9 such that x = D03,average − naverage and y = A2average −

naverage, then one determines the error expression for %D03 as

∆%D03 = 100

√(
∆x ∗ y

(x+ y)2

)2

+

(
∆y

(x+ y)2

)2

(E.13)
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