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The topic of this thesis is estimation of a location parameter in small samples.

Chapter 1 is an overview of the general theory of statistical estimates of parame-

ters, with a special attention on the Fisher information, Pitman estimator and their

polynomial versions. The new results are in Chapters 2 and 3 where the following

inequality is proved for the variance of the Pitman estimator tn from a sample of

size n from a population F (x− θ): nVar(tn) ≥ (n+ 1)Var(tn+1) for any n ≥ 1, only

under the condition
∫
x2dF (x) < ∞ (even the absolute continuity of F is not as-

sumed). The result is much stronger than the known Var(tn) ≥ Var(tn+1). Among

other new results are (i) superadditivity of 1/Var(tn) with respect to the sample

size: 1/Var(tm+n) ≥ 1/Var(tm) + 1/Var(tn), proved as a corollary of a more general

result; (ii) superadditivity of Var(tn) for a fixed n with respect to additive perturba-

tions; (iii) monotonicity of Var(tn) with respect to the scale parameter of an additive

perturbation when the latter belongs to the class of self-decomposable random vari-

ables. The technically most difficult result is an inequality for Var(tn), which is a



stronger version of the classical Stam inequality for the Fisher information. As a

corollary, an interesting property of the conditional expectation of the sample mean

given the residuals is discovered. Some analytical problems arising in connection

with the Pitman estimators are studied. Among them, a new version of the Cauchy

type functional equation is solved. All results are extended to the case of polyno-

mial Pitman estimators and to the case of multivariate parameters. In Chapter 4

we collect some open problems related to the theory of location parameters.
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Foreword

In this thesis, I worked on a series of interesting mathematical problems aris-

ing from a bunch of classical, in other words well studied, topics of statistics and

information theory. Some of the solutions to those problems may lead to immediate

applications such as the estimate of information contained in a sensoring network.

Some of them can be considered of mere methodological interest so far. I hope to

find a position in the “real world” for these theories in my future research.

On the other hand, some of the problems discussed in this thesis are far from

closed. For example, in Chapter 3 I studied the characteristic function of those mul-

tivariate distributions admitting a linear Pitman estimator for a univariate location

parameter. It is not clear how large a family is associated with these characteristic

functions of a very special form. It seems difficult but very likely to work out some

nontrivial solutions on these problems. I am glad that this thesis is opening another

gate to me besides leaving me a title of PhD degree.

After finishing the editorial work, I think for a moment and decided not to

dedicate this thesis to anybody because in this world there are too many people I

love so deeply that I can not afford to dedicate anything of mine to only a few of

them. My parents are always in the first position to receive my honor and gratitude.

Next is my advisor, Professor Kagan, who has led me into this field and given me

almost every piece of motivations throughout the work of this thesis. I am not a

smart student. I always need supports on my back either in studies or researches.

To me, Professor Kagan is the best source of knowledge and strength. Without
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the help of all these professors including Grace Yang, Paul Smith and Eric Slud,

it would have been impossible for me to survive these years in the University of

Maryland and finally finish successfully. Moreover, during the writing of this thesis,

I owe much, in material or spirit, to Yu-Ru Huang, Yabing Mai, Linbao Zhang, Bo

Li, Weiran Sun, Denise Sam, Ning Jiang and Ziliang Li. There are too many other

names I should mention here to express my gratitude for their friendship and love.

I will keep their names in my mind.

Tinghui Yu

College Park, Maryland

April, 13 2008
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Chapter 1

Introduction

The topic of the thesis is estimation of a location parameter in small samples.

Though a location parameter is rather special, many results proved for location pa-

rameter families can be extended to the linear regression setups that are of practical

importance. Moreover, due to its special character, the theory of estimation of a

location parameter in small samples can be developed much further than that of a

general parameter. Besides having a mathematical statistical interest, the results

obtained for a location parameter can show the direction of research for estimating

a general parameter, both in small samples and asymptotically.

1.1 Basic concepts of statistical estimation of parameters

To make the presentation self-contained, here basic concepts of parameter

estimation theory are briefly discussed. For details see Bahadur’s notes (2002) and

Lehmann (1983).

Let the data be represented as a random element X with values in a measurable

space (X,A ), where A is a σ-algebra. The distribution Pθ of X is assumed to belong

to a family P = {Pθ, θ ∈ Θ} parameterized by an abstract valued parameter. In

parametric (as opposed to nonparametric) problems, Θ is usually a subset of Rs.

The triple {X,A ,P} is called a statistical model.
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The goal is to use the data X to get information on the unknown value of θ.

For example, if γ : Θ 7→ R is a parametric function, what is the value of γ(θ)?

A statistic T (X) used as an “approximation” for γ(θ) is called an estimator

of γ(θ). Certainly, there are “good” and “poor” estimators. The former are distin-

guished from the latter by a loss function L : T (X)×γ(Θ) 7→ [0,+∞) that measures

the loss incurred from the approximation of γ(θ) by T (X). The expectation of the

loss is called the risk of T (X) as an estimator of γ(θ):

RL(T (X), γ(θ)) = Eθ[L(T (X), γ(θ))] =

∫
X

L(T (x), γ(θ))dPθ(x)1.

An estimator T1 of γ(θ) is better than T2 with respect to the loss L if

RL(T1(X), γ(θ)) ≤ RL(T2(X), γ(θ)), ∀θ ∈ Θ. (1.1)

An estimator T1 is optimal in class T of estimators of γ(θ) if (1.1) holds for any

T2 ∈ T . An estimator T2(X) of γ(θ) is called admissible if there is no T1(X)

such that (1.1) holds with a strict inequality for at least one θ ∈ Θ. Admissibility

per se does not justify using an estimator. For example, the constant estimator

T (X) = γ(θ0) that completely ignores the data can be admissible with respect

to some loss functions. Optimality in a natural class plus admissibility is what

statisticians are looking for.

Thus, the goal is not admissibility per se but admissibility of an estimator

T (X) of γ(θ) possessing some desirable properties, for example unbiasedness:

EθT (X) = γ(θ), ∀θ ∈ Θ.

1If no confusion in the notation should arise, from now on the integration region X will be

omitted without special note.
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In this thesis, we consider the case when X = (Rm)n, A is the σ-algebra

of Borel sets in Rmn, Pθ(A) =
∫
A
dFθ(x1) . . . dFθ(xn), ∀A ∈ A , where Fθ is a

distribution on Rm. In other words, the measure Pθ is generated by a sample

X = (X1, . . . , Xn) from an m-variate population Fθ.

1.2 Fisher information, Sufficiency and Cramér-Rao inequality

Assume Θ is an open set. If Pθ, θ ∈ Θ ⊂ R, are absolutely continuous with

respect to a measure µ on (X,A ), with densities

dPθ
dµ

= p(x; θ),

such that the Fisher score

J(X; θ) =
∂ ln p(X; θ)

∂θ

is well defined with

IX(θ) = Var(J(X; θ)) =

∫ +∞

−∞
|J(x; θ)|2p(x; θ)dµ < +∞,

then IX(θ) is called the Fisher information on θ contained in X. Under mild regu-

larity type conditions, (see e.g. Kagan, Linnik and Rao (1973)), it has the following

properties justifying the name “information”:

(i) Additivity. If for all θ, X1, X2 are independent random elements taking values

in (X1,A1) and (X2,A2) respectively with densities p1(x1, θ), p2(x2, θ) and

X = (X1, X2) ∈ (X,A ) = (X1 × X2,A1 ⊗A2)

with density p(x; θ) = p1(x1; θ)p2(x2; θ), then

IX(θ) = IX1(θ) + IX2(θ). (1.2)
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In particular, if X = (X1, . . . , Xn) is a sample from a population with density

p(x; θ), then IX(θ) = nIX1(θ), where IX1(θ) is, as the notation indicates, the Fisher

information on θ contained in a single observation X1.

(ii) Monotonicity. Let T : (X,A ) 7→ (T,B) be a statistic with density q(t; θ) with

respect to a measure ν on (T,B). Note that if Pθ << µ then the distributions Qθ

of T are absolutely continuous with respect to ν, where ν(B) = µ(T−1B), ∀B ∈ B.

In this case, the Fisher information in T never exceeds that in X

IT (θ) ≤ IX(θ), θ ∈ Θ.

A statistic S is called sufficient for a family P = {Pθ, θ ∈ Θ} (or briefly for θ when

it is clear what family P is under consideration), if for any bounded measurable

function ϕ there exists a version ϕ̃ of the conditional expectation Eθ(ϕ|S) such that

ϕ̃ is a statistic (i.e., does not involve θ):

ϕ̃ = Eθ(ϕ|S). (1.3)

If the family P is dominated, (1.3) is equivalent to the factorization

p(x; θ) = R(S(x); θ)h(x). (1.4)

This is a classical theorem due to Halmos and Savage (1949).

If S is sufficient, it preserves the Fisher information in the data:

IS(θ) = IX(θ), θ ∈ Θ. (1.5)

If p(x; θ) > 0 for all x ∈ X, θ ∈ Θ the converse holds: if a statistic T preserves the

Fisher information, T is sufficient (for P). Without positivity of p(x; θ) this is not
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true, as shown in Kagan and Shepp (2005). They constructed some distributions

with density p(x; θ) vanishing at a single point x = x(θ). Under this setting one can

find an insufficient statistic T preserving the Fisher information in X.

(iii) Reparametrization formula.

If g : Θ 7→ Θ′ for some open Θ′ is a differentiable into mapping, then for η = g(θ),

the Fisher information (on η) IX(η) is well defined and satisfies

IX(θ) = |g′(θ)|2IX(η)|η=g(θ). (1.6)

(iv) Cramér-Rao inequality.

If T (X) is an unbiased estimator of γ(θ), a differentiable function of the parameter.

Then under mild regularity conditions, such as ∂
∂θ

∫
T (x)p(x; θ)dx =

∫
T (x) ∂

∂θ
p(x; θ)dx,

the Cauchy-Schwarz inequality implies that

√
Var(J(X; θ))Var(T (X)) ≥ Cov(J, T ) = −γ′(θ).

Rearranging the terms, one gets the Cramér-Rao lower bound:

Var(T ) ≥ [γ
′
(θ)]2

Var(J)
=

[γ
′
(θ)]2

IX(θ)
. (1.7)

An unbiased estimator T (X) of γ(θ) for which (1.7) becomes an equality for all

θ ∈ Θ is called an efficient estimator or γ(θ). For a sample X = (X1, . . . , Xn) of size

n from a population with density p(x; θ) and information IX(θ), the Cramér-Rao

inequality by virtue of (i) takes the form

Var(T (X)) ≥ (γ
′
(θ))2

nIX1(θ)
.

The multivariate versions of the above properties are straightforward.
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1.3 Estimation in large samples

Large sample theory deals with asymptotic properties of estimators as n goes

to infinity. Let X1, X2, . . . , Xn, . . . be independent identically distributed random

variables with distribution function Fθ(x), θ ∈ Θ ⊂ R and let θ̃n = θ̃n(X1, . . . , Xn)

be an estimator of θ based on X1, . . . , Xn, n = 1, 2, . . .. A sequence of estimators

{θ̃n, n = 1, 2, . . .} of θ is called consistent if

θ̃n → θ, (1.8)

in Pθ-probability as n → ∞, and is called strongly consistent if the convergence in

(1.8) is with Pθ-probability one. Consistency is the minimal requirement demanded

from an estimator in large samples. Of more interest for statistical inference is the

limiting distribution of properly normalized estimators.

If the likelihood of Xi is given by a density p(x; θ) with θ ∈ Θ an open set in

Rs, a maximum likelihood estimator θ̂ = θ̂(X1, . . . , Xn) is defined as

arg max
θ∈Θ

n∏
i=1

p(Xi, θ),

and is usually obtained as a solution of the equation

n∑
i=1

∂ ln p(Xi, θ)

∂θ
= 0, θ ∈ Θ.

Under regularity type conditions (for conditions close to the minimal ones, see Ibrag-

imov and Has’minskii (1981)),

√
n(θ̂n − θ)−→dN(0, 1/IX1(θ)). (1.9)
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In view of (1.9), an asymptotic estimator θ̃n, n = 1, 2, . . . with the property

√
n(θ̃n − θ) −→d N(0, 1/IX1(θ))

is called asymptotically efficient. If
√
n(θ̃n − θ) −→d N(0, σ2(θ)), the ratio

aseffθ{θ̃n} =
1/IX1(θ)

σ2(θ)

is called the asymptotic efficiency of {θ̃n, n = 1, 2, . . .}. In “regular” cases, aseffθ{θ̃n}

is bounded above by 1.

The convergence in (1.9) does not guarantee the existence of Var(θ̂n). Ibragi-

mov and Has’minskii showed that under some additional conditions (beyond those

guaranteeing asymptotic normality)

Eθ(θ̂n − θ)2 =
1

nI(θ)
(1 + o(1)), (1.10)

and

Varθ(θ̂n) =
1

nI(θ)
(1 + o(1)). (1.11)

Certainly, (1.10) and (1.11) imply

Biasθ(θ̂n) = Eθ(θ̂n − θ) = o(1/
√
n),

whence the MLE is known as an asymptotically unbiased estimator.

1.4 Estimation in small samples

Estimation theory in small samples concentrates mainly on the structure of

the uniformly minimum variance unbiased estimators (known by their abbreviation

7



UMVUE). If S : (X,A ) 7→ (T,B) is sufficient for a family P = {Pθ, θ ∈ Θ}, the

classical Rao-Blackwell theorem says that any estimator T (X) (with finite second

moment) of a parameter function γ(θ) can be improved by an estimator T̃ depending

on X only through S:

T̃ (S) = Eθ(T |S). (1.12)

Sufficiency guarantees that T̃ is still a statistic. The operation (1.12), known as

Rao-Blackwellization, plainly preserves unbiasedness, that is,

Eθ(T ) = γ(θ) =⇒ Eθ(T̃ ) = γ(θ), and Varθ(T ) ≥ Varθ(T̃ ), θ ∈ Θ.

Rao-Blackwellization describes the structure of all UMVUEs for families possessing

complete sufficient statistics.

A sufficient statistic T is called complete if Eθ[h(T )] = 0 implies h(T ) ≡ 0

with Pθ-probability one for all θ ∈ Θ. If a family P possesses a complete sufficient

statistic, it is easy to see that a complete sufficient statistic is unique as a statistic.

In other words, two complete sufficient statistics generate the same σ-algebra. That

is, if T1, T2 are two complete sufficient statistics for P then there exists a one to

one measurable function g such that

Pθ[T1 = g(T2)] = 1, for almost all θ ∈ Θ.

In this case, the class of UMVUEs coincides with the class of statistics with fi-

nite second moments that are functions of the complete sufficient statistic, that is,

measurable with respect to the σ-algebra generated by T .

Bahadur (1955) showed that if a family P = {Pθ, θ ∈ Θ} is such that every

parameter function γ(θ) that possesses an unbiased estimator with finite variance
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also possesses a UMVUE, then P has a complete sufficient statistic. For a general

family P, some parameter functions possess UMVUEs while the others do not. For

a class of families with incomplete sufficient statistics, the structure of the UMVUEs

is known in a few cases (Kagan and Konikov (2005)).

1.5 Location parameter families

A family {F (x; θ), θ ∈ R} of distributions on R depends on a scalar valued

location parameter if

F (x; θ) = F (x− θ).

The main feature here is that the distribution function (or the density F
′

= p

when it exists) is not a function of two arguments x and θ as in the case of a

general univariate parameter, but of a single argument x − θ. This fact allows to

develop the theory of estimation of θ much farther than in the general case. Many

results obtained for the univariate location parameter can be extended to the case

of multivariate location parameter families

{F (x− θ),θ ∈ Rs},

where x ∈ Rs and θ ∈ Rs.

Also of interest is the case of a multivariate X and univariate θ when the

family under consideration is

F (x− θ) = F (x− θ · 1) = F (x1 − θ, . . . , xn − θ),

where 1 is the multivariate column vector of ones.
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1.6 Equivariance and the Pitman estimators

The concept of equivariance is due to Pitman (1938). Let X = (X1, . . . , Xn)

be a sample from population F (x− θ). A statistic T (X) is called equivariant if

T (X + c) = T (X) + c, ∀c ∈ R. (1.13)

Using an equivariant estimator of θ means that the estimator does not depend on

the choice of the origin.

The class of equivariant estimators is rather large. Examples are the sample

mean X̄, any convex combination of the order statistics, the MLE and even any

single observation Xi, i = 1, 2, . . .. Plainly, a statistic T (X) is equivariant if and

only if it can be written as

T (X) = T0(X) + g(Rn) (1.14)

for some Borel function g : Rn 7→ R, where T0(X) is an arbitrarily chosen equivariant

estimator and Rn = (r1, . . . , rn) = (X1 − X̄, . . . , Xn − X̄) is the vector of residuals.

Notice that the residuals rk = Xk − X̄, k = 1, . . . , n are linearly dependent so

that Rn ∈ Rn is actually a vector of (n− 1) functionally independent components.

There are different (but equivalent) forms of representing the residuals, for example

{X1 −Xn, X2 −Xn, . . . , Xn−1 −Xn}. They all lead to the same σ-algebra.

One may wish to find the (uniformly) best estimator among the class of equiv-

ariant estimators. It certainly depends on the choice of the loss function. Equiv-

ariance is a property that partitions the sample space Rn into equivalence classes

such that within each class the data points are not distinguishable in estimating θ

10



up to constant shifts. It seems natural to consider those loss functions satisfying

L(T (X + c); θ + c) = L(T (X); θ) for any constant c. Such a loss function must be

in the form

L(T (X); θ) = L(T (X)− θ). (1.15)

In this case, the risk of an equivariant estimator is a constant in θ:

RT (θ) =

∫
· · ·
∫

Rn

L(T (x)− θ)dF (x1 − θ) · · · dF (xn − θ)

=

∫
· · ·
∫

Rn

L[T (x− θ)]dF (x1 − θ)dF (xn − θ)

=

∫
· · ·
∫

Rn

L[T (u)]dF (u1) · · · dF (un) = RT .

The last equality here is due to a change in the variable u = x− θ · 1.

Under natural loss functions, comparing two equivariant estimators reduces to

comparing two numbers. Under mild conditions, there exists a best (with respect to

L) equivariant estimator attaining the infimum of the loss L. It is called the Pitman

estimator with respect to L.

We shall be dealing mainly with the quadratic loss:

LQ(T (X), θ) = (T (X)− θ)2.

Other frequently used loss functions are Laplacian loss:

LA(T (X), θ) = |T (X)− θ|,

and the confidence loss:

LC(T (X); θ) = I{|x|>∆}(T (X)− θ),

11



where IA(·) is the indicator function of the set A and ∆ is a positive number of the

user’s choice.

One can easily see that if µ2 =
∫
x2dF (x) < ∞, then the Pitman estimator

tn = tn(X) with respect to the quadratic loss can be written as

tn(X) = T0(X)− E0(T0(X)|Rn), (1.16)

where E0 denotes the (conditional) expectation calculated when θ = 0, and T0 is

an arbitrary equivariant estimator as in (1.14). The uniqueness of tn(X) is obvious

from its definition when the conditional expectation is considered as a projection

(in L2 sense) onto the space of square integrable functions of Rn.

For LA(T − θ) = |T − θ| and
∫
|x|dF (x) < ∞, the Pitman estimator can be

written as

tn(X) = T0(X)−Median0(T0(X)|Rn),

where Median0(T0(X)|Rn) is the median of the conditional distribution of T0(X)

given Rn calculated when θ = 0.

For LC(T ; θ) = I|x|>∆(T − θ), with ∆ > 0 given, the Pitman estimator can be

represented as

tn(X) = T0(X)− u0(T0(X)|Rn),

where u0(T0(X)|Rn) can be any number chosen according to the value of Rn such

that the conditional probability P{T0 ∈ (u0 −∆, u0 + ∆)|Rn} is maximized. Since

the loss function LC is not convex, the choice of u0 is usually not unique.

All these representations for different loss functions are special cases of defi-

nition (1.14). They assume very few or even no conditions on the moments. Even
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independence of the observations are not required, not to mention any smoothness

of the distribution function F . If the density function F
′
= p of Xi exists , then the

Pitman estimator under the quadratic loss (1.16) can be written as

tn(X) =

∫ +∞
−∞ t

∏n
i=1 p(Xi − t)dt∫ +∞

−∞
∏n

i=1 p(Xi − t)dt
, (1.17)

indicating that tn is the Bayesian estimator of θ corresponding to the (improper)

uniform prior on θ.

Simple explicit representations of tn are known in a few cases.

Example 1 Gaussian distribution with density p(x) = exp[−(x− θ)2/2σ2]/
√

2πσ2.

The conditional distribution of Xn given Rn = (r1, . . . , rn) is normal:

Xn|Rn ∼ N

(
−

n−1∑
i=1

ri
n
,
σ2

n

)
.

Thus under all three loss functions(LQ, LA and LC), the Pitman estimator remains

the same

tn(X) = X̄. 2

Example 2 Exponential distribution with density p(x) = λe−λ(x−θ)I{x>θ}. Given

the value of Rn, Xn has a shifted exponential distribution with the (conditional)

density pXn|Rn(x|Rn) = nλe−nλ(x−µ)I{x>µ}, where µ = max(0,−r1, . . . ,−rn−1). Un-

der the quadratic loss

tn(X) = X(1) −
1

nλ
,

where X(1) is the minimal observation from the sample X of size n. Under the

Laplace loss,

tn(X) = X(1) −
ln 2

nλ
.
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Under the confidence loss with an arbitrary choice of ∆ > 0,

tn(X) = X(1) −∆. 2

Example 3 Uniform distribution with density p(x) = I(θ,θ+1)(x). The conditional

distribution of Xn given Rn is again uniform on the interval (max(0,−r1, . . . ,−rn−1),

min(1, 1− r1, . . . , 1− rn−1)). Under either the quadratic or the Laplace loss, the Pit-

man estimators are the same:

tn(X) =
X(1) +X(n)

2
− 1

2
.

Under the confidence loss, the estimator is not unique if ∆ is small. For instance,

if ∆ ≤ 1/2− (X(n) −X(1))/2, a version of the Pitman estimator is

tn(X) = X(1) −∆.

In fact, given the sample X, any value in the interval [X(n)−1+∆, X(1)−∆] can be

taken as a version of the Pitman estimator under LC. All these estimators achieve

the minimal LC risk within the class of equivariant estimators. 2

The concepts of equivariance and Pitman estimators extend to the multivariate

case naturally. Let (X1, . . . ,Xn) be a sample from an s-variate population with

distribution F (x1 − θ1, . . . xs − θs), depending on an s-variate location parameter

θ = (θ1, . . . , θs). An s-variate statistic Tn(X1, . . . ,Xn) is called equivariant if for any

constant vector c ∈ Rs, Tn(X1 +c, . . . ,Xn+c) = Tn(X1, . . . ,Xn)+c. For instance,

X̄ = (X̄1, . . . , X̄s)
T = (1/n)(

∑
kXk1, . . . ,

∑
kXks)

T is an equivariant estimator of θ.

Define the joint residual

Rn = (R1n, . . . , Rsn) = (X11 − X̄1, . . . , Xns − X̄s) ∈ Rsn.
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Any equivariant estimator Tn(X1, . . . ,Xn) can be written into a form like (1.14):

Tn(X1, . . . ,Xn) = X̄ + [Tn(X1, . . . ,Xn)− X̄]

= X̄ + g(X1, . . . ,Xn), (1.18)

where g(X1, . . . ,Xn) ∈ Rs is an shift invariant vector function. That is, for any

shift c:

g(X1 + c, . . . ,Xn + c)

= Tn(X1 + c, . . . ,Xn + c)− (X̄ + c) = Tn(X1, . . . ,Xn)− X̄

= g(X1, . . . ,Xn).

In light of the above invariant property of the function g, one sees that g is a

measurable function of Rn by simply letting c = X̄:

g(X1, . . . ,Xn) = g(X1 − X̄, . . . ,Xn − X̄).

Hence definition (1.18) can be rewritten as

Tn(X1, . . . ,Xn) = X̄ + g(Rn). (1.19)

The Pitman estimator minimizes the covariance function of the estimators in the

class of equivariant estimators. As usual, we write A < B for matrices A and B

if B − A is positive definite. In (1.19), the covariance matrix depends only on the

function g if the population distribution of the samples Xi is considered known

up to only a location shift. Then it is easy to prove that under the least square

criterion the unique choice of g minimizing the covariance matrix of Tn must be

the projection of X̄ onto the space of square integrable functions of Rn, that is,
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E0[X̄|Rn]. Accordingly, a representation of the vector Pitman estimator similar to

(1.16) is:

tn(X1, . . . ,Xn) = X̄− E0[X̄|Rn] (1.20)

=


X̄1 − E0[X̄1|Rn]

...

X̄s − E0[X̄s|Rn]

 .

The conditional expectations are all calculated given the joint residual Rn. Unless all

the components of Xi are independent, the Pitman estimator of the i-th component

θi depends not only on the i-th components (X1i, . . . , Xni) of the data, but also on

the complete data set (X1, . . . ,Xn). It is interesting to see that the ordering of the

multivariate equivariant estimators in terms of their covariance matrices is linear.

But the same relation defined on all (unbiased) estimators of the location parameter

θ is not linear.

Sometimes statisticians are only interested in estimating a linear function of

θ, not the whole location parameter θ. Hence we need an equivariant estimator for

the p-variate (p ≤ s) vector Aθ ∈ Rp, where A ∈ Mp×s is a given matrix specifying

the linear transformation of interest. For any constant vector c ∈ Rs, an equivariant

(p-variate) estimator T̂ of Aθ must satisfy

T̂n(X1 + c, . . . ,Xn + c) = T̂n(X1, . . . ,Xn) + Ac.

Starting from the definition, it is easy to prove the following formula for the Pitman

estimator of Aθ:

t̂n(X1, . . . ,Xn) = AX̄− E0(AX̄|Rn). (1.21)
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If tn is the best equivariant estimator of θ, it is not surprising to find out

t̂n = Atn.

In the class of equivariant estimators, optimality is invariant under linear transfor-

mations provided the loss is location invariant.

1.7 Fisher information on a location parameter

If X is a random variable with cdf F (x − θ) such that F
′

= p exists and p

is differentiable with
∫

(p′(x)/p(x))2p(x)dx < ∞, then the Fisher information on θ

contained in X (briefly, the information on θ in X) is defined as

IX(θ) = Eθ[J(X)2] =

∫ +∞

−∞

p′(x− θ)2

p(x− θ)
dx =

∫ +∞

−∞

p′(u)2

p(u)
du, (1.22)

with a change of variable u = x− θ in the last equality. Plainly, the right hand side

of the equality is a quantity depending on the functional form of the distribution

F , but not on the parameter θ. Since it does not depend on θ, we shall write IX

instead of IX(θ).

If F is not absolutely continuous or if it is but the density p is such that

p′(x)/p(x) is not square integrable with respect to p(x)dx, then IX is set equal to

infinity. Under such a definition, it remains unclear if a sample (X1, . . . , Xn) from

a population F (x − θ) with IX = +∞ allows the construction of an estimator of θ

such that

√
n(θ̃n − θ) −→d N(0, σ2)

with arbitrarily small σ2.
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For instance, let F (x) be the cdf of the uniform distribution on (0, 1) with

density p(x) = I(0,1)(x). Singularity occurs only at the end points of the support of

p. The Lebesgue integral in (1.22) assigns a finite number to the Fisher information

in spite of such a singularity on the set {0, 1} of measure zero. On the other hand,

the MLE of θ is θ̂ = X(n) − 1, where X(n) is the largest observation from a sample

of size n. One can easily calculate that

Var(
√
nθ̂) = n2/[(n+ 1)2(n+ 2)] → 0.

For any finite number IX , there is a sufficiently large n admitting the inequality

Var(
√
nθ̂) < 1/IX , which is in the inverse direction of the Cramér-Rao inequality.

Without regularity conditions, the Cramér-Rao inequality may not hold.

We turn to another example. Let F (x) be the cdf of the Laplace (double

exponential) distribution whose density is p(x) = e−|x|/2. Note that p(x) is smooth

except when x = 0. Now (1.22) sets IX = 1, while the MLE of θ is the sample

median X(n/2) with Var(
√
nX(n/2)) → 1 = 1/IX . We have consistency with the

Cramér-Rao inequality here.

Both of these examples have a density p such that p′/p is undefined only on

a zero measure subset of supp{p}. But we may need to assume different values

for their Fisher information if we want to generalize their statistical interpretation

consistently. A better definition for IX should explain how a statistician can benefit

from observing a random variable with infinite information on θ. The following

definition is due to Huber (1964):

IX = sup
ψ∈C1

c (R)

[
∫
ψ
′
(x)dF (x)]2∫

ψ2(x)dF (x)
, (1.23)
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where C1
c (R) is the space of continuously differentiable functions with compact sup-

port. The equivalence between (1.23) and (1.22) is established by the following

theorem in Huber (1981):

Theorem 1.7.1 Let IX be defined by (1.23). The following statements are equiva-

lent:

(i) IX < +∞,

(ii) F has an absolutely continuous density p, and (ln p(X))
′
= p′(X)/p(X) ∈ L2

F ,

i.e.,
∫

(p′(x)/p(x))2dF (x) < +∞.

In either case, IX =
∫

(p′(x)/p(x))2p(x)dx.

If IX = +∞, from Huber’s definition there follows the existence of ψ(x) such

that the quotient in (1.23) can be made arbitrarily large. Therefore, in the theory

of estimating functions we can find an estimator associated with ψ(x) such that

arbitrarily small asymptotic variance can be achieved. The statistical corollary of

this fact will be discussed in Section 1.11.

To analyze Huber’s definition (1.23), one may define a linear functional on

C1
c (R):

Aψ = −
∫
ψ
′
(x)p(x)dx, ∀ψ ∈ C1

c (R).

By definition, the L2 operator norm of this functional is ‖A‖2
F = IX . One may

extend the integration by parts formula to the case in which p is not necessarily

absolutely continuous but only weakly differentiable. In particular, if there exists a

generalized function p′(x) satisfying the following equalities:

Aψ = −
∫
ψ
′
(x)p(x)dx =

∫
ψ(x)p′(x)dx, (1.24)
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then p′(x) is called the weak derivative of p(x) (see Ziemer (1989)). If p is absolutely

continuous, p′(x) coincide with the common definition of its derivative almost every-

where (with respect to the Lebesgue measure). Particularly, on the set of measure

zero where p is not differentiable, p′ can be set equal to any finite number. The

above definition imposes no difficulty in defining the Lebesgue integral

|Aψ|2 =

∣∣∣∣∫ ψ(x)p′(x)dx

∣∣∣∣2
=

∣∣∣∣∫
supp{p}

ψ(x)
p′(x)

p(x)
dF (x)

∣∣∣∣2 ≤ ‖ψ(X)‖2
F

∫
supp{p}

(
p′(x)

p(x)

)2

dF (x).

Therefore IX < +∞ if the Fisher score J(X) belongs to L2
F . We will demonstrate

this idea with the two examples we just mentioned earlier in this section.

Example 4 Let p(x) = e−|x|/2 be the PDF of the Laplace distribution. It can

be easily verified that p(x) is absolutely continuous with only one singular point at

x = 0. A version of its weak derivative is:

p′(x) =


−e−x/2 x > 0

0 x = 0

ex/2 x < 0.

(1.25)

By definition (1.24), Aψ =
∫ 0

−∞ ψ(x)ex/2dx−
∫ +∞

0
ψ(x)e−x/2dx. One may calculate

the norm of A associated with the Laplace distribution:

‖A‖2
F = sup

(∫ 0

−∞(ψ(x)ex/2)dx−
∫ +∞

0
(ψ(x)e−x/2)dx

)2

∫ +∞
−∞ (ψ2(x)e−|x|/2)dx

≤ sup
(
∫ 0

−∞(|ψ(x)|ex/2)dx+
∫ +∞

0
(|ψ(x)|e−x/2)dx)2

E[ψ2(X)]
= sup

(E|ψ(X)|)2

E[ψ2(X)]
≤ 1.

The last inequality is due to the Cauchy-Schwarz inequality. Moreover, (1.22) as-

signs the value 1 to IX . Therefore IX = 1 < +∞ by Theorem 1.7.1. 2
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If p is not absolutely continuous, then p′ has to be defined with the concept of

generalized functions.

Example 5 Let X be a random variable uniformly distributed on the unit interval

with density p(x) = I(0,1)(x), where I(0,1) is the indicator function of the set (0, 1).

One version of the weak derivative of p is p′(x) = δ0(x) − δ1(x), where δt(x) is the

Dirac delta function with a shift t. Then (1.24) becomes:

Aψ =

∫ +∞

−∞
ψ(x)[δ0(x)− δ1(x)]dx = ψ(0)− ψ(1).

Accordingly, the Fisher information contained in a uniformly distributed random

variable is IX = supψ((Aψ)2/E(ψ2)) = supψ((ψ(0) − ψ(1))2/E(ψ2). This func-

tional is obviously not bounded even if we only consider those ψ(x) with support on

(−1/2, 1/2) and E[ψ2] = 1. By (1.23), IX = +∞, as the density p is not absolutely

continuous. It is consistent with the Cramér-Rao inequality when we consider the

asymptotic variance of the MLE:

Var(
√
nθ̂) =

n2

(n+ 1)2(n+ 2)
→ 0 =

1

IX
. 2

The following remark is due to Vershik (see Fintushal (1975)). Under regular-

ity type conditions, for any arbitrary smooth function ψ,

∫
ψ(x)J(x)dF (x) = −

∫
ψ′(x)dF (x).

With an inner product < f, g >=
∫
f(x)g(x)dF (x) defined on the space L2

F (X), the

above equality can be rewritten as

< ψ(X), J(X) >= − < Dψ(X), 1 >= − < ψ(X), D∗1 >, ∀ψ ∈ L2
F , (1.26)
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where D is the operator of differentiation and D∗ its adjoint. The equations indicate

that J(X) = −D∗1, where 1 is the constant function defined on X. Following the

Cauchy-Schwarz inequality, (1.26) indicates

< Dψ(X), 1 >2=< ψ(X), D∗1 >2≤ ‖ψ(X)‖2‖D∗1‖2

⇒
(
∫
Dψ(x)dF (x))2

‖ψ(X)‖2
≤ ‖D∗1‖2,

Comparing (1.26) with (1.23), we see that IX ≤ ‖D∗1‖2. At the same time, the

Cauchy-Schwarz inequality guarantees the equality sign hold for some ψ, so that we

can conclude IX = ‖D∗1‖.

In summary, the Fisher information is finite if the constant function 1 belongs

to the domain of D∗, i.e., D∗1 ∈ L2
F (X). Since D is an unbounded operator on

L2
F (X), this condition is a restriction on F . Shlyakhtenko (2005) adopted this

definition when proving a parallel version of the monotonicity of Shannon’s Entropy

in the free probability theory.

1.8 Stam inequality

For independent random variables X and Y , let IX , IY and IX+Y be the Fisher

information in the observations shifted by an unknown parameter θ: X + θ, Y + θ

and X + Y + θ, respectively. Due to independence of X and Y , X + Y is “more

random” than X, so that one can expect an inequality

IX+Y ≤ IX .
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To sketch a rigorous proof of the inequality, suppose that the data is presented in a

pair: (X + θ, Y ). Then by the monotonicity of the Fisher information,

IX+θ+Y = IX+Y ≤ IX+θ,Y = IX ,

where the independent component Y provides no information for estimating θ.

A much less trivial inequality is due to Stam(1959):

1

IX+Y

≥ 1

IX
+

1

IY
. (1.27)

For iid X and Y , (1.27) becomes IX ≥ 2IX+Y . Barron and Madiman (2006) gen-

eralized the latter inequality. Let X1, X2, . . . be a sequence of iid random variables

with finite information IX1 . Under rather strong regularity type conditions, they

proved that

nIX1+...+Xn = I(X1+...+Xn)/
√
n decreases with n.

For a small sample version of this result, see Chapter 2.

1.9 Properties of the Pitman estimators

In this section, we consider the Pitman estimators with respect to the quadratic

loss LQ.

First, it is obvious from (1.16) that tn is an unbiased estimator of θ.

Second, if µ2 =
∫
|x|2dF (x) <∞, then for any n ≥ 1

Var(tn) ≤ Var(tn−1). (1.28)

It is almost trivial, since tn−1 is an equivariant estimator from a sample of size n,

while tn is the optimal equivariant estimator. Notice that for traditional estimators
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of a general parameter such as the MLE, analogs of (1.28), that is, monotonicity in

the sample size of a reasonable measure of accuracy, are not known.

If a sample comes from a population F (x− θ) with absolutely continuous F ,

F
′

= p exists almost everywhere and there exists an equivariant estimator T0(X)

with E[T0(X)3] < +∞ (in particular, if
∫
|x|3dF (x) <∞). Stein (1959) proved that

tn(X) is admissible (actually, a little more general result was proved). Brown (1966)

made a detailed discussion on the admissibility of t(X). He proved the admissibility

of tn(X) for different loss functions, when the best equivariant estimator is unique.

Some characterization results are proved for the Pitman estimator. For n ≥ 3,

tn = X̄ if and only if F is Gaussian, which is known as the Kagan-Linnik-Rao (KLR)

Theorem (see Kagan et al. (1973)). For n = 2, tn = X̄ for any symmetric F . If

X(1), X(n) are the minimum and maximum order statistics from a sample of size

n ≥ 3, then under some regularity type conditions on F , tn = (X(1) +X(n))/2 if and

only if F is the distribution function of a uniform random variable on (−a, a) for

any a > 0 (see Bondesson (1974)).

From the Bayesian representation (1.17), if S is sufficient for the family of

densities {
∏n

i=1 p(xi−θ), θ ∈ R}, then tn depends on X = (X1, . . . , Xn) only through

S. Certainly, this also follows from Stein’s result about admissibility cited above.

If tn is not a function of S, then Eθ(tn|S) is an estimator uniformly better than tn

contradicting the admissibility of tn. Besides, it is of some (at least, methodological)

interest to find out if the Pitman estimator depends on the data only through

sufficient statistics where F is not assumed absolutely continuous.

The above results hold in small samples. In large samples, as n → ∞, tn
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behaves like the MLE, though in small samples it is better since the MLE is an

equivariant estimator.

As shown in Ibragimov and Has’minskii (1981), under very mild regularity

type conditions

√
n[tn(X)− θ] −→d N(0, 1/IX1). (1.29)

Moreover, if we assume the additional condition
∫ +∞
−∞ |x|δdF (x) < +∞ for some

δ > 0, then

Eθ[
√
n(tn(X)− θ)]2 =

1

IX1

(1 + o(1)). (1.30)

1.10 Polynomial Pitman estimators

Pitman estimators are defined with conditional expectations, which are not

quite convenient for computations. In this section, we are going to look at a simpli-

fied polynomial version of Pitman estimators. Assume that for some integer k ≥ 1,

µ2k =

∫
|x|2kdF (x) <∞. (1.31)

Let Λk = span{rd11 . . . rdn
n | the di are nonnegative integers, d1 + . . .+ dn ≤ k} be the

space of polynomials of degree k in the residuals

Rn = (r1, . . . , rn) = (X1 − X̄, . . . , Xn − X̄).

Then Λk is a finite dimensional subspace of the Hilbert space L2
F (X1, . . . , Xn) of all

functions ψ(X1, . . . , Xn) with

‖ψ‖2
F = Eθ|ψ(X1, . . . , Xn)|2 =

∫
· · ·
∫
ψ2dF (x1 − θ) . . . dF (xn − θ) <∞,
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with standard inner product

< ψ1, ψ2 >= E0(ψ1ψ2).

In Kagan (1966) a version of tn, called the polynomial (of degree k) Pitman estimator

was introduced as

t(k)n = X̄ − Ê0(X̄|Λk), (1.32)

where Ê0(·|Λk) is the operator of projection into the Hilbert subspace Λk, while

assuming θ = 0.

Similar to tn, t
(k)
n is the best polynomial of degree k equivariant estimator of

θ. Since t
(k)
n is an equivariant estimator,

Var(t(k)n ) ≥ Var(tn).

In return, t
(k)
n depends not on the entire function F but only on its first 2k moments.

Under the same condition (1.31), one can define the polynomial Fisher score

J (k) and hence the polynomial Fisher information. Denote by L2
F (X) the space of

functions ψ(X) (of one argument) with
∫
|ψ(x)|2dF (x) < ∞ and standard inner

product

< ψ1, ψ2 >= E0[ψ1(X)ψ2(X)].

Let Pk = span{Xj|j = 0, . . . , k} be the subspace of L2
F (X) of all polynomials of

degree k, set

J (k)(X) = Êθ(J(X)|Pk). (1.33)

Clearly, Eθ[J
(k)(X)] ≡ 0, and the expected square

I
(k)
X = Eθ[J

(k)(X)]2 = E0[J
(k)(X)]2. (1.34)
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now has the meaning (and properties) of the Fisher information. The polynomial

score depends only on the first 2k moments of F and can be defined without reference

to J(X), and without assuming absolute continuity of F :

< ψk(X), J (k)(X) >= − < ψ′k(X), 1 >, ∀ψk(X) ∈ Pk. (1.35)

The properties of the polynomial Pitman estimators t
(k)
n are similar to those

of tn:

(i) t
(k)
n is an unbiased estimator of θ,

(ii) Var(t
(k)
n ) ≤ Var(t

(k)
n−1),

(iii) Var(t
(k)
n ) ≤ Var(t

(k−1)
n ),

(iv) t
(k)
n = X̄ for n ≥ 3 if and only if the first (k + 1) moments of the distribution

function F (x) coincide with the corresponding moments of some normal distribution:

µ` =


(`− 1)(`− 3) · · · 1 · σ` if ` is odd, 1 ≤ ` ≤ k + 1

0 if ` is even, 1 ≤ ` ≤ k + 1

In fact X̄ is an admissible estimator of θ in the class of polynomial equivariant

estimators of order up to k if and only if the above condition is satisfied.

The asymptotic behavior of t
(k)
n was studied in Kagan et. al. (1973). Assuming

that µ2k < +∞ and F (x) has at least k points of increase,

√
n(t(k)n − θ)

d→ N(0, 1/I
(k)
X1

), as n→∞. (1.36)

Also in this case,

Eθ(
√
n(t(k)n − θ))2 =

1

I
(k)
X1

(1 + o(1)). (1.37)
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There is a useful modification of t
(k)
n . Namely, let mj =

∑n
i=1(Xi − X̄)j/n

denote the sample central moment of order j (m0 = 1,m1 = 0). Set

τ (k)
n (X) = X̄ −

k∑
j=0

Aj,nmj. (1.38)

where Aj,n are the optimal coefficients, i.e.,

Var0(X̄ −
∑

Aj,nmj) = min
a0n ,...,akn

Var(X̄ −
∑

ajnmj).

Certainly,

τ (k)
n = X̄ − Ê0(X̄|span(1,m2, . . . ,mk)).

In small samples, Var(τ
(k)
n ) ≥ Var(t

(k)
n ). However, τ

(k)
n has much simpler structure

than t
(k)
n and moreover, asymptotically it behaves like t

(k)
n (see Kagan (1986)). Under

the same condition as required for (1.36),

√
n(τ (k)

n − θ) −→d N(0, 1/I
(k)
X1

), n→∞. (1.39)

Besides, under no extra conditions

Eθ(
√
n(τ (k)

n − θ))2 =
1

I
(k)
X1

(1 + o(1)). (1.40)

1.11 Estimating functions and the Fisher information

Let X be a random element with values in (X,A ) and a probability distri-

bution Pθ, θ ∈ Θ ⊂ R. A function ψ(x; θ) is called an estimating function for

P = {Pθ, θ ∈ Θ} (or briefly for θ if P is assumed) if

(i) Eθψ(X; θ) ≡ 0, ∀θ ∈ Θ,

(ii) Eθ[
∂
∂θ
ψ(X; θ)] 6= 0, ∀θ ∈ Θ,
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(iii) Varθψ(X; θ) = Eθ[ψ(X; θ)]2 <∞, ∀θ ∈ Θ.

The concept is due to Godambe (1970) and is justified by the following analysis.

If (X1, . . . , Xn) is a sample from P, then under mild regularity type conditions,

the estimating equation
n∑
i=1

ψ(Xi; θ) = 0

has a solution

θ̌n = θ̌(X1, . . . , Xn)

such that

√
n(θ̌ − θ)−→dN(0, σ2

ψ(θ)), n→∞

where σ2
ψ(θ) = Varθ[ψ(X; θ)]/[Eθ(

∂
∂θ
ψ(X; θ))]2. Its reciprocal Iψ(θ) = 1/σ2

ψ(θ) is

called the information associated with ψ.

If Pθ are absolutely continuous with respect to a measure µ on (X,A ) with

density p(x; θ) = dPθ/dµ and the Fisher information IX is finite, then the Fisher

score J(X; θ) is an estimating function. By definition, the MLE is a solution of the

corresponding estimating equation
∑n

i=1 J(Xi, θ) = 0. The information associated

with the estimating function J is the Fisher information on θ in X: IJ(θ) = IX(θ).

From the asymptotic optimality of the MLE, it follows that IJ(θ) ≥ Iψ(θ) for any

estimating function ψ. In other words, J(X; θ) maximizes the information in the

theory of estimating functions.

Let now X be a random variable with distribution function F (x−θ) depending

on a location parameter. If ψ(x; θ) = ψ(x − θ) is an estimating function, the
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corresponding estimating equation

n∑
i=1

ψ(Xi − θ) = 0 (1.41)

generates an equivariant estimator θ̂n. Hence (1.41) is called an equivariant esti-

mating equation and ψ in such a special form is an equivariant estimating function.

Following the asymptotic analysis on the general estimating function theory,

we now have

√
n(θ̂n − θ) −→d N(0, σ2

ψ),

where σ2
ψ = E0[ψ

2(X)]/[E0(ψ
′
(X))]2 does not depend on θ. The information asso-

ciated with ψ is Iψ = 1/σ2
ψ = [E0(ψ

′
(X))]2/E0[ψ

2(X)].

Comparing Iψ with (1.23), we see that IX = supψ Iψ. If supψ Iψ = ∞, then

there exists an (equivariant) estimating function ψ̃(x−θ) with arbitrarily large value

of

Iψ̃ =
Eθ[ψ̃

′(X − θ)]2

Varθψ̃(X − θ)
=
E0[ψ̃

′(X)]2

Var0ψ̃(X)
.

It means that there is an estimating equation
∑
ψ̃(Xi−θ) = 0 , the solution of which

leads to an estimator θ̃(X1, . . . , Xn) with arbitrarily small asymptotic variance. In

other words, for observations with infinite Fisher information there exists an es-

timator (obtained by a regular method of estimating equations) with asymptotic

variance ≤ ε2/n for any ε > 0.

Assume that for some integer k ≥ 1, µ2k =
∫
x2kdF < ∞. One can consider

the (equivariant) polynomial estimating functions ψk(x− θ) ∈ Pk. Here

ψk(x) = a0 + a1x+ . . .+ akx
k
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is a polynomial of degree k. The corresponding polynomial estimating equation∑n
i=1 ψk(Xi − θ) = 0 generates an equivariant estimator θ̌

(k)
n (in a neighborhood of

the true θ), which is not a polynomial, such that

√
n(θ̌(k)

n − θ)−→dN

(
0,

Var0[ψk(X)]

E0[ψ′k(X)]2

)
.

One can see that the optimal polynomial estimating function, i.e., that minimizes

Var0[ψk(X)]/E0[ψ
′
k(X)]2 over all k-th order polynomials ψk is the polynomial Fisher

score J (k)(X) as defined in (1.35).

Theorem 1.11.1 Suppose µ2k <∞. Then

sup
ψk∈Pk

(
∫
ψ
′

k(x)dF (x))2∫
ψ2
k(x)dF (x)

= ‖J (k)(X)‖2 = I
(k)
X . (1.42)

Proof. Define a linear functional Aψk = −
∫
ψ
′

k(x)dF (x) = − < ψ
′

k, 1 > for arbitrary

ψk(x) ∈ Pk. Now compare it with definition (1.35). One can see Aψk =< ψk, J
(k) >,

while J (k) is the only element in Pk that satisfies the equation. By Cauchy-Schwarz

inequality,

|Aψk|2 ≤ ‖ψk‖2‖J (k)‖2 = E[ψ2
k(X)]I

(k)
X

⇒ |Aψk|2

E(ψ2
k)
≤ I

(k)
X

Take the supremum over all ψk’s on both sides. Then (1.42) follows because

the supremum of I
(k)
X can be attained when ψk = J (k):

(
∫

(J (k)(x))
′
dF (x))2∫

(J (k)(x))2dF (x)
=

[
∫

(J (k)(x))2dF (x)]2∫
(J (k)(x))2dF (x)

= I
(k)
X . 2

Notice that on the right hand side of (1.42), I
(k)
X is the polynomial Fisher

information in X. Its reciprocal 1/I
(k)
X is the asymptotic variance of

√
n(t

(k)
n − θ) as
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indicated by (1.37). It is worthwhile to emphasize that the same number serves as

the asymptotic variance of the estimators
√
n(θ̌

(k)
n − θ) as well, though θ̌

(k)
n is not a

polynomial estimator.
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Chapter 2

Behavior of the Pitman estimators in small samples

In this chapter we will study some fine small sample properties of the Pitman

estimators tn with respect to quadratic loss.

Consider the setup of direct measurements when independent identically dis-

tributed observations X1, . . . , Xn are of the form

Xi = θ + εi, i = 1, . . . , n.

Here θ ∈ R is a (location) parameter of interest and ε1, . . . , εn are iid errors, εi ∼ F

so that Xi ∼ F (x− θ).

Certainly, the setup of direct measurements is very special but many results

obtained here can be extended to the setup of linear regression when independent

(but not identically distributed) observations are of the form

Xi = ai1θ1 + . . .+ aisθs + εi, i = 1, . . . , n

with θ ∈ Rs as a parameter and a design matrix (air) assumed known.

Let Rn = (X1−X̄, . . . , Xn−X̄) be the vector of residuals. As shown in (1.16),

if Var(Xi) < ∞ then tn = tn(X1, . . . , Xn), the Pitman estimator of θ with respect

to the quadratic loss, is

tn = X̄ − E0(X̄|Rn).

As mentioned in Section 1.9, under some additional regularity type conditions, from

33



(1.30) it follows

1

nVar(tn)
−→IX1 , n→∞.

The two quantities IX1 and Var(tn) are closely connected, not only in large samples,

but we shall see that in small samples, the properties of Var(tn) are similar to those

of the Fisher information.

2.1 Monotonicity of nVar(tn)

The first property to be proved is the monotone decrease of nVar(tn) in n,

which is much deeper than the decrease of Var(tn). Notice in passing that, to the

best of author’s knowledge, there is no general proof of monotone decrease in n of

Var(θ̂n) for the MLE θ̂n. Let us start with an example.

Example 6 If F is Gaussian N(0, σ2), nVar(tn) = σ2 for all n and this constancy

is a characteristic property of the Gaussian distribution.

If F is the distribution function of an exponential distribution with parameter λ,

nVar(tn) = nVar

[
X(1) −

1

nλ

]
=

1

nλ2
.

If F is the distribution function of a uniform distribution on (0, 1),

nVar(tn) = nVar

[
X(1) +X(n)

2
− 1

2

]
=

n

2(n+ 1)(n+ 2)
. 2

Our proof of the monotonicity of nVar(tn), is based on a fundamental lemma

whose idea goes back to Hoeffding (1948), Efron and Stein (1981) and in the stated

form by Artstein, Ball, Barthe and Noar (2004).
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Let S be an arbitrary collection of subsets of the index set {1, 2, . . . , n}. Set

r(S) = max
i∈{1,...,n}

∑
s∈S

Is(i), (2.1)

where Is is the indicator of the index set s. In other words, r(S) is the maximum

number of times an index i∈ {1, . . . , n} appears in the elements of S. For example,

if S is the collection of all unordered sets s of m (1 ≤ m ≤ n) elements from

{1, . . . , n}, then for any fixed i there are exactly
(
n−1
m−1

)
elements in S containing

this index i, hence r(S) =
(
n−1
m−1

)
.

Lemma 2.1.1 (Artstein et al. (2004)) Let X1, . . . , Xn be independent random vari-

ables and S a given collection of subsets of {1, . . . , n}. Suppose that with every

s ∈ S, a measurable function ψs = ψs(Xi; i ∈ s) with E(ψ2
s) < ∞ is associated.

Then for any probability distribution {ws|
∑

s∈Sws = 1} on the set S, we have

Var

(∑
s∈S

wsψs

)
≤ r(S)

∑
s∈S

w2
sVar(ψs). (2.2)

If the maximum in the right hand side of (2.1) is attained at only one index i, the

equality sign in (2.2) holds only if for all s ∈ S, ψs is additively decomposable, that

is, ψs =
∑

i∈s φsi(Xi) for some measurable functions φsi.

The following proof of Lemma 2.1.1 is due to Madiman and Barron (2006),

where it is called Variance Drop Lemma. First of all we need another lemma.

Lemma 2.1.2 Let ξ be a random variable and let η1, η2 be random elements with

E|ξ| <∞. Suppose that (ξ, η1) and η2 are independent. Then

E(ξ|η1, η2) = E(ξ|η1) a.s. (2.3)
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Proof. See Shao (2003), page 41. 2

Proof of Lemma 2.1.1: The proof is divided into three parts.

(i) We need an orthogonal decomposition of the ψs. For this purpose, fix s for

a moment, and set Es\t(·) = E(·|Xi; i ∈ s\t) for any t, a subset of s. Notice that for

independent X1, . . . , Xn, these conditional expectation operators are commutative.

For any t1 ⊂ s, t2 ⊂ s and any function ϕ with E|ϕ| <∞,

Es\t1{Es\t2 [ϕ(X1, . . . , Xn)]} = Es\t2{Es\t1 [ϕ(X1, . . . , Xn)]}

= Es\(t1∪t2)[ϕ(X1, . . . , Xn)].

Note that the conditional expectation operators can be viewed as projections onto

some properly defined Hilbert spaces. It is known that projections are commutative

if and only if their composites are also projections, as the above equation implies.

To verify the equation, the following two properties of the conditional expectation

are used. First, for any function ϕ and index sets s, s′ with s ⊂ s′

E[E(ϕ|Xi; i ∈ s′)|Xi; i ∈ s] = E(ϕ|Xi; i ∈ s).

Second, if ϕ = ϕ(Xi; i ∈ s) for some index set s then

E(ϕ|Xj, Xi; i ∈ s) = E(ϕ|Xi; i ∈ s),

for any j /∈ s by Lemma 2.1.2.

Combining the conditional expectation operators in the proper order, one can

rewrite ψs as
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ψs =
∏
j∈s

[Es\{j} + (I − Es\{j})]ψs

=
∑
t⊂s

∏
j /∈t

Es\{j}
∏
j∈t

(I − Es\{j})

ψs

=
∑
t⊂s

[
Es\t

∏
j∈t

(I − Es\{j})

]
ψs,

where I is the identity operator. On setting

φst =

[
Es\t

∏
j∈t

(I − Es\{j})

]
ψs,

one obtains a decomposition of the function ψs:

ψs =
∑
t⊂s

φst, (2.4)

where φst corresponding to different t are orthogonal (uncorrelated). Indeed, for any

two distinct index sets t1, t2 ⊂ s, there is at least one index j distinguishing them

from each other, that is, j is in exactly one of t1, t2. Without loss in generality, let

j ∈ t1, j /∈ t2. Then

Cov(φst1 , φst2) = Cov[Es\{j}φst1 , (I − Es\{j})φst2 ] = 0.

Thus, (2.4) is an orthogonal decomposition. Even further, for index sets s1 6= s2,

one may have orthogonal decompositions for ψs1 and ψs2 , respectively:

ψs1 =
∑
t1⊂s1

φs1t1 , ψs2 =
∑
t2⊂s2

φs2t2 .

Then following the same argument,

Cov(φs1t1 , φs2t2) = 0, (2.5)
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for any t1, t2 with t1 6= t2.

(ii) Turn now to the proof of (2.2). The left hand side is

Var

(∑
s∈S

wsψs

)
= Var

[∑
s∈S

(
ws

∑
t⊂s

φst

)]

= Var

[∑
t

∑
s⊃t,s∈S

wsφst

]

=
∑

t

Var

[ ∑
s⊃t,s∈S

wsφst

]
. (2.6)

The last line is due to the mutual orthogonality of φst with fixed s and different

t indices, as shown in (2.5). Notice that for any fixed t, there are at most r(S)

different s from S containing t. Therefore there are at most r(S) terms in the inner

sum of (2.6).

The inequality (EX)2 ≤ E(X2) implies(
1

k

k∑
i=1

Yi

)2

≤ 1

k

k∑
i=1

Y 2
i

⇒

(
k∑
i=1

Yi

)2

≤ k
k∑
i=1

Y 2
i . (2.7)

On setting k = r(S) and Ys = ws(φst − Eφst), (2.7) becomes:[ ∑
s⊃t,s∈S

ws(φst − Eφst)

]2

≤ r(S)
∑

s⊃t,s∈S

w2
s(φst − Eφst)

2 (2.8)

⇒ Var

[ ∑
s⊃t,s∈S

wsφst

]
≤ r(S)

∑
s⊃t,s∈S

w2
sVar(φst).

Taking the summation over all t, one gets an upper bound for (2.6), thus completing

the proof of (2.2):
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Var

[∑
s∈S

wsψs

]
≤

∑
t

r(S)
∑

s⊃t,s∈S

w2
sVar(φst) (2.9)

= r(S)
∑

t

∑
s⊃t,s∈S

w2
sVar(φst)

= r(S)
∑
s∈S

w2
s

∑
t⊂s

Var(φst)

= r(S)
∑
s∈S

w2
sVar(ψs). (2.10)

(iii) Now we shall prove that additive decomposability of the functions ψs

is necessary for the equality sign in (2.2) to hold. Suppose that for an s′, the

corresponding choice of function ψs′ is not additively decomposable. Then on the

right hand side of (2.4), there must exist some t′ consisting of at least two indices.

Fixing this choice of t′, the inner sum of (2.6) runs over all s containing t′. Due

to the assumption that r(S) is attained at only one index, that is, no two distinct

indices can be found simultaneously in r(S) elements of S. This implies that the

number of terms in the sum is equal to some number m, m < r(S). Through (2.7),

one sees

Var

( ∑
s⊃t′,s∈S

wsφst′

)
≤ m

∑
s⊃t′,s∈S

w2
sVar(φst′) < r(S)

∑
s⊃t′,s∈S

w2
sVar(φst′).

Since the inequality is strict, the equality sign in (2.9) can not hold. This proves

the last claim of the Lemma. 2

It is worthwhile to make a few remarks:

Remark 1. In Lemma 2.1.1, X1, . . . , Xn are assumed independent, not necessarily

identically distributed.

Remark 2. The inequality (2.2) is stronger than what the Cauchy-Schwarz in-
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equality directly implies in this setting. For S = {s|s ⊂ {1, . . . , n}, |s| = m}, the

collection of all index sets of size m, 0 < m < n, one has

r(S) =

(
n− 1

m− 1

)
< |S| =

(
n

m

)
.

Compare (2.2) with the Cauchy-Schwarz inequality. The former provides a tighter

bound on Var(
∑

s∈Swsψs):

Var

(∑
s∈S

wsψs

)
≤ r(S)

∑
s∈S

w2
sVar(ψs) < |S|

∑
s∈S

w2
sVar(ψs).

Remark 3. The inequality (2.2) is actually a property of projection operators in

Hilbert spaces. Suppose {e1, . . . , en}, n ≥ 1, is an orthonormal basis set, the span of

which is a Hilbert space with some properly defined inner product. If {v1, . . . , vk}

is a set of arbitrary vectors chosen from the space span{e1, . . . , en}, then there is an

obvious inequality ∥∥∥∥∥
k∑
i=1

vi

∥∥∥∥∥
2

≤ k
k∑
i=1

‖vi‖2.

Following the idea of Lemma 2.1.1, the above inequality can be sharpened if vi’s do

not depend on the whole set of bases. As in the Lemma, given a family of index sets

S = {s|s ⊂ {1, . . . , n}}, and the vectors vs ∈ span{ei|i ∈ s}, then the inequality

becomes ∥∥∥∥∥∑
s∈S

vs

∥∥∥∥∥
2

≤ r(S)
∑
s∈S

‖vs‖2.

We turn now to the main result of this section.

Theorem 2.1.1 Let tn, n = 1, 2, . . ., be the Pitman estimators of θ from a sample

of size n from a population F (x − θ). If for some m, Var(tm) < ∞, then for all
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n ≥ m,

nVar(tn) ≥ (n+ 1)Var(tn+1). (2.11)

For n ≥ 2, the equality sign holds if and only if F is Gaussian.

Proof. Let (X1, . . . , Xn) be a sample from a population F (x − θ) and assume that

Var(tm) < ∞ for some m. Denote by tn\j, j = 1, . . . , n the Pitman estimator of θ

from (X1, . . . , Xj−1, Xj+1, . . . , Xn) (so that, for example tn\1 is the Pitman estimator

from (X2, . . . , Xn)). Plainly, all tn\j are equidistributed with tn−1 and, in particular,

Var(tn\j) = Var(tn−1).

Following Hoeffding’s idea to define an equivariant U-statistic, the estimator∑n
j=1 tn\j/n is equivariant and thus

Var(tn) ≤
1

n2
Var

(
n∑
j=1

tn\j

)
. (2.12)

Let now S be the collection of all the index sets of size n− 1. Then r(S) = n− 1

and by virtue of Lemma 2.1.1,

Var

(
n∑
j=1

tn\j

)
≤ (n− 1)

n∑
j=1

Var(tn\j) = n(n− 1)Var(tn−1).

Combining this with (2.12) proves (2.11).

When F is Gaussian,

nVar(tn) = (n+ 1)Var(tn+1) = Var(X1).

Conversely, suppose that for some n ≥ m, nVar(tn) = (n+1)Var(tn+1). By part (iii)

of the proof of Lemma 2.1.1, the tn\j are additively decomposable for all j = 1, . . . , n:

tn\j = φ1(X1) + . . .+ φj−1(Xj−1) + φj+1(Xj+1) + . . .+ φn(Xn).
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As a Pitman estimator, tn\j is symmetric in the Xi’s, and since it is equivariant, the

φi are linear: φj(Xj) = t1(Xj)/(n− 1) = Xj/(n− 1). In (2.12) we also need

tn =
1

n

n∑
j=1

tn\j = X̄, with probability 1

for the assumption to hold because the Pitman estimator tn is unique. The Kagan-

Linnik-Rao Theorem asserts that for sample size n ≥ 3, tn = X̄ only when F is

Gaussian, and for n = 2, it holds true trivially for any symmetric F . 2

If F is a distribution with finite variance, the condition of Theorem 2.1.1 is

fulfilled for m = 1 (and thus for any m). But Var(tn) < ∞ holds for many popu-

lations with infinite second moment, for example, Cauchy. Note that in Theorem

2.1.1 even absolute continuity of F is not required, not to mention the finiteness of

the Fisher information.

One can classify F as regular if

lim
n→∞

nVar(tn) > 0

and nonregular if the limit (which always exists) is zero. Under very mild conditions

on F , if the Fisher information IX1 is finite,

nVar(tn) ↘
1

IX1

, as n→∞.

Port and Stone (1974) proved that in case of IX1 = ∞, the same relation still holds.

According to the above result, the convergence here is monotone.

The generalization of (2.11) to the multivariate case is straightforward. Let

(X1,X2, . . .) be an infinite iid sequence of s-vectors from a population with unknown

location parameters F (x1 − θ1, . . . , xs − θs) with finite covariance matrix Var(X1).
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Given an arbitrary constant s-vector v = (v1, . . . , vs)
T , the Pitman estimator of the

linear function v1θ1 + . . .+ vsθs is defined as in (1.21):

t̂n = vT tn,

where tn is the s-variate Pitman estimator of (θ1, . . . , θs)
T . By virtue of Theorem

2.1.1,

nVar(t̂n) = nVar(vT tn) = nvTVar(tn)v

decreases with n. Since v is arbitrary, the conclusion of Theorem 2.1.1 for t̂n implies

nVar(tn) ≥ (n+ 1)Var(tn+1), (2.13)

where the inequality is understood in the sense of positive definiteness.

Return to the discussion on the univariate θ setup. Under the condition∫
x2kdF (x) <∞ for some integer k ≥ 1, the above arguments are extended word for

word to the polynomial Pitman estimators t
(k)
n . The polynomial Pitman estimator

t
(k)
n\j of degree k from (X1, . . . , Xj−1, Xj+1, . . . , Xn) is equidistributed with t

(k)
n−1 and

thus

Var(t
(k)
n\j) = Var(t

(k)
n−1).

The above inequalities hold with tn, tn−1, tn\j replaced with t
(k)
n , t

(k)
n−1, t

(k)
n\j. Hence,

nVar(t
(k)
n ) decreases with n. The family of estimators under consideration grows

with k. For fixed n, Var(t
(k)
n ) decrease with k. Therefore, for any increasing infinite

sequence {k1, k2, . . .}, we have nVar(t
(kn)
n ) monotonically decrease with n.

The above proof of monotonicity is due to the fact that the classes in which tn

and t
(k)
n are optimal are rather large. To illustrate this, consider a simplified version
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of the polynomial Pitman estimator (1.38):

τ (k)
n = X̄ − Ê0(X̄|1,m2, . . . ,mk),

where mj = (1/n)
∑n

1 (Xi − X̄)j. Of the two estimators τ
(k)
n and

∑n
j=1 τ

(k)
n\j/n, the

latter is a polynomial equivariant estimator but not of the form X̄ −
∑k

j=0 aj,nmj.

The inequality (2.12) is not guaranteed in this case. It seems not very likely that

nVar(τ
(k)
n ) monotonically decreases in n.

The proof of the last claim of Theorem 2.1.1 used the fact that tn (n ≥ 3)

is additively decomposable if and only if the underlying distribution is Gaussian.

Combined with Theorem 2.1.1, this characterization property of the Gaussian dis-

tribution can be refined.

Corollary 2.1.1 Let both X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym), n, m ≥ 2,

be independent samples from the same population distribution F (x − θ). Then the

Pitman estimator from the pooled sample (X,Y) is a linear combination of the

Pitman estimators from X and Y, i.e.,

tX,Y = w1tX + w2tY, w1 + w2 = 1

if and only if F is Gaussian.

Proof. For sufficiency, simply notice that when F is Gaussian

tX = X̄, tY = Ȳ ,

and

tX,Y =
n

n+m
X̄ +

m

n+m
Ȳ .
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To prove the necessity, we start with the following fact

Var(tX) ≥ n+m

n
Var(tX,Y), Var(tY) ≥ n+m

m
Var(tX,Y), (2.14)

by Theorem 2.1.1. Combined together they imply

w2
1Var(tX) + w2

2Var(tY) ≥
[
w2

1

n+m

n
+ (1− w1)

2n+m

m

]
Var(tX,Y).

The right hand side of the inequality is maximized with respect to w1 when

w1 = n/(m+ n)

such that

w2
1Var(tX) + w2

2Var(tY) ≥ Var(tX,Y).

The equality sign holds only if both inequalities in (2.14) become equalities. By

Theorem 2.1.1 F is Gaussian. 2

The coefficients (w1, w2) are not specified in the statement of the corollary.

Nevertheless, the choice that minimizes Var(w1tX + w2tY) is uniquely determined

by the variances of tX and tY:

w1 =
1/Var(tX)

1/Var(tX) + 1/Var(tY)
.

When F is Gaussian, the above equality gives w1 = n/(n+m).

2.2 Superadditivity of 1/Var(tn)

In this section an inequality for 1/Var(tn) is proved, a special case of which

is a small sample version of additivity of the Fisher information. Additivity of the
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Fisher information (see (1.2)) means that for independent random vectors X1 and

X2 with distributions F1(x− θ · 1) and F2(x− θ · 1),

IX1,X2 = IX1 + IX2 .

Consider a more general setup: let Xk = (Xk1, . . . , Xknk
), k = 1, . . . , N , be

independent samples from populations Fk(x − θ) with a common (but unknown)

location parameter θ. For an arbitrary index set s ⊂ {1, . . . , N}, denote by ts

the Pitman estimator of θ constructed from the pooled sample {Xi, i ∈ s}, and

by t[N ] the Pitman estimator from the complete data set (X11, . . . , XNnN
). The

monotonicity of Var(ts) in its index s is obvious:

Var(ts1) ≤ Var(ts2), s1 ⊂ s2,

so that trivially the best equivariant estimator of θ from the data is t[N ]. The

following result is much stronger.

Theorem 2.2.1 Suppose S is an arbitrary collection of index sets. Then

1

Var(t[N ])
≥ 1

r(S)

∑
s∈S

1

Var(ts)
. (2.15)

Note that no regularity condition is required.

Proof. Set ψs = ts in Lemma 2.1.1. For any choice of weights
∑

sws = 1, one has

r(S)
∑

s

w2
sVar(ts) ≥ Var

(∑
s

wsts

)
. (2.16)

To minimize the expression on the left, one needs to choose the weights

ws =
πs∑

c∈S πc
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where πs = 1/Var(ts). Hence the inequality becomes

r(S)
1∑

s 1/Var(ts)
≥ Var

(∑
s

wsts

)
.

Finally, note that
∑

swsts is an equivariant estimator of θ from the complete data

set (X1, . . . ,XN), and thus its variance is not less than Var(t[N ]):

Var

(∑
s

wsts

)
≥ Var(t[N ]).

Combining the last two inequalities gives (2.15). 2

For disjoint index sets, for example s1 = {1}, . . ., sN = {N}, (2.15) reduces to

1

Var(t[N ])
≥ 1

Var(tX1)
+ . . .+

1

Var(tXN
)
.

It is a small sample counterpart of the additivity of the Fisher information (1.2).

When all the samples come from the same population Fk(x− θ) = F (x− θ),

k = 1, . . . , N , (2.15) means superadditivity of 1/Var(tn) with respect to the sample

size.

Corollary 2.2.1 Let tn be the Pitman estimator from a sample of size n from pop-

ulation F (x− θ). If Var(t1) <∞, in particular, if
∫
x2dF (x) <∞, then for any n1

and n2 with n1, n2 ≥ 2

1

Var(tn1+n2)
≥ 1

Var(tn1)
+

1

Var(tn2)
. (2.17)

The equality sign holds if and only if F is Gaussian.

Proof. Inequality (2.17) is a special case of (2.15), when N = 2 and the two samples

X1 = (X1, . . . , Xn1), X2 = (Xn1+1, . . . , Xn1+n2) are independently drawn from the

same population.
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For the equality sign in (2.17) to hold, the equality sign must hold in (2.16):

Var[w1tX1 + w2tX2 ] = Var(tX1+X2),

where w1 = Var(tn2)/(Var(tn1)+Var(tn2)), w2 = 1−w1. By virtue of the uniqueness

of the Pitman estimator,

w1tX1 + w2tX2 = tX1+X2

with probability 1. According to Corollary 2.1.1, this equation holds only if F is

Gaussian.

Conversely, for samples from a Gaussian population with variance σ2 and

Var(tn) = σ2/n so that

1

Var(tn1+n2)
=
n1

σ2
+
n2

σ2
=

1

Var(tn1)
+

1

Var(tn2)
. 2

The same arguments work for the polynomial Pitman estimators. Indeed, from

the definition of t
(k)
n one can see that it is the best in the class of estimators

X̄ + q(X1 − X̄, . . . , Xn − X̄)

where q(u1, . . . , un) is a polynomial of degree k.

Both t
(k)
m and t

(k)
n are equivariant polynomials and thus for w1, w2 satisfying

w1 + w2 = 1, one has

Var(t
(k)
m+n) ≤ w2

1Var(t(k)m ) + w2
2Var(t(k)n )

so that the optimal choice of w1, w2 leads to

1

Var(t
(k)
m+n)

≥ 1

Var(t
(k)
m )

+
1

Var(t
(k)
n )

.
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The results are easily extended to the case of a multivariate parameter. If Vn

is the covariance matrix of the Pitman estimator of a multivariate parameter θ from

a sample of size n with distribution F (x− θ), then

V −1
m+n ≥ V −1

m + V −1
n .

Note that commutativity of Vm and Vn is not assumed. Moreover, the covariance

matrix Vn is invertible for any n if the information matrix IX1 is well defined as the

Cramér-Rao inequality indicates:

nVn ≥ I−1
X1

> 0.

2.3 Additive perturbations

We first compare the variance of the Pitman estimators from samples from

populations F1(x − θ), . . . , FN(x − θ) and F (x − θ) where F = F1 ∗ . . . ∗ FN , and

then turn to some generalizations of this setup.

2.3.1 Superadditivity of Var(tn)

First we discuss the superadditivity of Var(tn) with respect to the “addition

in the samples”. Let F1, F2 be distribution functions with finite second moments;

set F = F1 ∗F2. Denote by t′n, t
′′
n the Pitman estimators from independent samples

(X ′
1, . . . , X

′
n), (X ′′

1 , . . . , X
′′
n) with distributions F1(x− θ), F2(x− θ) respectively, and

by tn the Pitman estimator from a sample (X1, . . . , Xn) from population F (x− θ).

We have the following result:
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Theorem 2.3.1 Suppose
∫
x2dF (x) < +∞. For any n ≥ 2

Var(tn) ≥ Var(t′n) + Var(t′′n). (2.18)

Proof. To simplify the notations, we define the residuals

Rn = (X1 − X̄, . . . , Xn − X̄),

R′
n = (X ′

1 − X̄ ′, . . . , X ′
n − X̄ ′),

R′′
n = (X ′′

1 − X̄ ′′, . . . , X ′′
n − X̄ ′′).

From (1.16),

Var(tn) = Var(X̄)− Var{E0[X̄|Rn]}.

The variances do not depend on θ so that one may assume θ = 0.

Var(tn) = Var(X̄)− Var{E0[X̄|Rn]}

= Var(X̄ ′) + Var(X̄ ′′)− Var{E0[X̄|Rn]},

Var(t′n) = Var(X̄ ′)− Var{E0[X̄
′|R′

n]},

Var(t′′n) = Var(X̄ ′′)− Var{E0[X̄
′′|R′′

n]}.

Since F = F1 ∗ F2,

X1 − X̄
d
= X ′

1 − X̄ ′ +X ′′
1 − X̄ ′′, . . . , Xn − X̄ = X ′

n − X̄ ′ +X ′′
n − X̄ ′′,

that is, Rn = R′
n + R′′

n. Here
d
= means “equidistributed”. The σ-algebra generated

by Rn, R = σ{Rn} = σ{R′
n + R′′

n} = σ{X1 − X̄, . . . , Xn − X̄}, is a subalgebra of

R̃ = σ{R′
n, R

′′
n} = σ{X ′

1 − X̄ ′, X ′′
1 − X̄ ′′, . . . , X ′

n − X̄ ′, X ′′
n − X̄ ′′}.
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That is why

E0(X̄|R) = E0{E0(X̄|R̃)|R}.

By virtue of a well known property of the conditional expectation,

Var[E0(X̄|R)] ≤ Var[E0(X̄|R̃)].

Applying Lemma 2.1.2 first to

ξ = X̄ ′, η1 = R′
n, η2 = R′′

n

and second to

ξ = X̄ ′′, η1 = R′′
n, η2 = R′′

n

we get

Var[E0(X̄|Rn)] = Var[E0(X̄
′ + X̄ ′′|R)]

≤ Var[E0(X̄
′ + X̄ ′′|R̃)]

= Var[E0(X̄
′|R′

n, R
′′
n)] + Var[E0(X̄

′′|R′
n, R

′′
n)]

= Var[E0(X̄
′|R′

n)] + Var[E0(X̄
′′|R′′

n)],

since R′
n and R′′

n are independent. Hence,

Var(tn) ≥ Var(X̄ ′) + Var(X̄ ′′)− Var[E0(X̄
′|R′

n)]− Var[E0(X
′′|R′′

n)]

= Var(t′n) + Var(t′′n). 2

This is a result for small samples that requires only the existence of the second

moments of the observations (even the absolute continuity of distributions is not

assumed).
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It is worthwhile to notice that (2.18) follows directly from a general property

of the Pitman estimator of a multivariate parameter. Suppose the random elements

remain the same, that is, ε′i ∼ F1, ε
′′
i ∼ F2, but the location parameters in the first

and second samples are different:

X ′
i = θ1 + ε′i, ε

′
i ∼ F1,

X ′′
i = θ2 + ε′′i , ε

′′
i ∼ F2.

Let t′n be the Pitman estimator of θ1 from the sample (X ′
1, . . . , X

′
n), and let t′′n be

the Pitman estimator of θ2 from (X ′′
1 , . . . , X

′′
n). By definition (1.20) one can easily

see that (t′n, t
′′
n) is the Pitman estimator of the bivariate parameter (θ1, θ2). That

is, (t′n, t
′′
n) minimizes the covariance matrix in the class. By virtue of (1.21) t′n + t′′n

is the best equivariant estimator of the sum θ1 + θ2, while tn is an equivariant

estimator of θ1 + θ2 from the same data {(X ′
1, X

′′
1 ), . . . , (X ′

n, X
′′
n)}. Thus (2.18)

follows immediately:

Var(t′n + t′′n) = Var(t′n) + Var(t′′n) ≤ Var(tn).

The Pitman estimator of θ1 + θ2 is unique with probability 1. If the equality

sign in the above inequality holds true so that

Var[t′n(X
′
1, . . . , X

′
n) + t′′n(X

′′
1 , . . . , X

′′
n)] = Var(tn(X

′
1 +X ′′

1 , . . . , X
′
n +X ′′

n)),

then

t′n(X
′
1, . . . , X

′
n) + t′′n(X

′′
1 , . . . , X

′′
n) = tn(X

′
1 +X ′′

1 , . . . , X
′
n +X ′′

n) a.s. (2.19)

This is a Cauchy type functional equation. If the equality sign holds for all real values

X ′
i and X ′′

i , then the traditional theory of functional equations guarantees that the
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functions t′n, t
′′
n and tn are all linear in their arguments (see Aczél (1966)). However,

the Cauchy type functional equations for random variables have special features.

Let X, Y be independent random variables having continuous distributions. The

question of whether an equation

f(X) + g(Y ) = h(X + Y ) (2.20)

holding with probability 1 where f , g and h are measurable functions implies

P{f(X) = a1X + b1} = 1, P{g(Y ) = a2Y + b2} = 1

for some constants a1, b1, a2, b2 has a negative answer.

Indeed, let ξ be a uniform random variable on (0, 1). Consider its dyadic

expression

ξ =
∞∑
k=1

ξk
2k
,

where ξ1, ξ2, . . . are independent binary random variables with P (ξk = 0) = P (ξk =

1) = 1/2. Now set

X =
∑
k even

ξk
2k
, Y =

∑
k odd

ξk
2k
.

Then X and Y are independent random variables with continuous (though singular)

distributions and they both are functions of X + Y = ξ (X and Y are strong

components of ξ in terminology of Hoffmann-Jorgensen et al. (2007)). Thus, for

any measurable functions f and g, the relation (2.20) holds.

On the other hand, if both X and Y have almost everywhere positive (with

respect to the Lebesgue measure) densities and if f , g and h are measurable locally

integrable functions, then the equation (2.20) has only linear solutions f , g (and

certainly h). The proof is as follows.
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Under the above assumptions, one has

f(x) + g(y) = h(x+ y) (2.21)

almost everywhere with respect to the Lebesgue measure. Take a smooth function

k(x) with compact support, multiply both sides of (2.21) by k(x) and integrate over

x. Then

∫ +∞

−∞
f(x)k(x)dx+g(y)

∫ +∞

−∞
k(x)dx =

∫ +∞

−∞
h(x+y)k(x)dx =

∫ +∞

−∞
h(u)k(u−y)du,

where the right hand side is continuous in y. Thus, g(y) is continuous, and so is f(x),

implying that (2.21) holds everywhere. It becomes the classical Cauchy equation

that has only linear solutions. This idea is due to Hillel Furstenberg.

Returning to (2.19) and noticing that E|t′n| < ∞, E|t′′n| < ∞, one concludes

that if F1 and F2 are absolutely continuous with positive densities, then for almost

all fixed values X ′
2 = x′2, . . ., X

′′
n = x′′n

t′n(X
′
1, x

′
2, . . . , x

′
n) + t′′n(X

′′
1 , x

′′
2, . . . , x

′′
n) = tn(X

′
1 +X ′′

1 , x
′
2 + x′′2, . . . , x

′
n + x′′n)

with probability 1 in terms of X ′
1 and X ′′

1 . This implies

t′n(X
′
1, x

′
2, . . . , x

′
n) = CX ′

1 +D′,

t′′n(X
′′
1 , x

′′
2, . . . , x

′′
n) = CX ′′

1 +D′′,

for some constants C, D′ = D′(x′2, . . . , x
′
n) and D′′ = D′′(x′′2, . . . , x

′′
n). Due to the

symmetry within t′n and t′′n with respect to the arguments, the above equations

imply the linearity of these Pitman estimators. Thus, (2.19) holding for n ≥ 3

characterizes the Gaussian distributions F1 and F2.
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Similar results hold for the polynomial versions of the Pitman estimators

( see Section 1.10). Assuming that for some positive integer k,

µ2k =

∫
x2kdFi(x) <∞, i = 1, 2.

The polynomial degree k Pitman estimators are defined as

t(k)n = X̄ − Ê0(X̄|Λk(Rn))

where Ê0(·|Λk(Rn)) is the projector into the space of all polynomials of degree k in

the residuals Rn with obvious changes for t
(k)′
n and t

(k)′′
n . With these definitions, we

see the following facts:

(i) Λk(Rn) = Λk(R
′
n +R′′

n) ⊂ Λk(R
′
n, R

′′
n).

Hence for any random variable ξ with E|ξ|2 < ∞, its projection into the smaller

(Hilbert) space has a smaller norm:

Var[Ê0(ξ|Λk(R
′
n +R′′

n))] ≤ Var[Ê0(ξ|Λk(R
′
n, R

′′
n))]. (2.22)

(ii) Let ξ be a random variable such that the pair (ξ, R′
n) is independent of R′′

n.

Then

Ê0[ξ|Λk(R
′
n, R

′′
n)] = Ê0[ξ|Λk(R

′
n)]. (2.23)

This is a linear analog of Lemma 2.1.2 and its proof follows directly from the defi-

nition of the projection.

Based on (i), (ii), the key step in the proof of Theorem 2.3.1 can be repeated:

Var[Ê0(X̄|Λk(Rn))] = Var[Ê0(X̄
′ + X̄ ′′|Λk(Rn))]

≤ Var[Ê0(X̄
′ + X̄ ′′|Λk(R

′
n, R

′′
n))]

= Var[E0(X̄
′|Λk(R

′
n))] + Var[E0(X̄

′′|Λk(R
′′
n))],
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resulting in

Var(t(k)n ) ≥ Var(t(k)
′

n ) + Var(t(k)
′′

n )

and

1

I
(k)
X1

≥ 1

I
(k)

X′
1

+
1

I
(k)

X′′
1

where I(k) is the polynomial Fisher information defined in (1.34).

2.3.2 Another proof of the Stam inequality

Let us see what it gives in large samples assuming that the Fisher information

IX′ , IX′′ and IX on θ in X ′
i, X

′′
i and Xi, respectively, is finite. According to (1.30),

Var(t′n) =
1

IX′
(1 + o(1)),

Var(t′′n) =
1

IX′′
(1 + o(1)),

Var(tn) =
1

IX
(1 + o(1)).

Thus, combining this with the result of Theorem 2.3.1, one gets the Stam inequality

(1.27): for independent X ′, X ′′ and X = X ′ +X ′′

1

IX
≥ 1

IX′
+

1

IX′′
.

The original proof of the Stam inequality is based on the following property of the

Fisher score J : for independent X ′ and X ′′

J(X ′|X ′ +X ′′) = J(X ′ +X ′′), (2.24)

as one can see from

E[J(X ′)eit(X
′+X′′)] = E[J(X ′)eitX

′
]E[eitX

′′
] = −E[iteitX

′
]E[eitX

′′
]

= −E[iteit(X
′+X′′)] = E[J(X ′ +X ′′)eit(X

′+X′′)],
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which holds for any t.

There is a simple and elegant proof by Zamir (1998) where the Stam inequality

is obtained directly from the basic properties of the Fisher information (monotonic-

ity, additivity and the reparametrization formula (1.6)).

Zamir’s proof of (1.27): Let w1, w2 be positive numbers with w1 +w2 = 1 and take

independent observations X ′
i of the form

X ′
i = wiθ +Xi, i = 1, 2

with θ ∈ R as a parameter and X1, X2 independent. Due to the reparametrization

formula (1.6),

IX′
i
(θ) = w2

i IXi
(θ), i = 1, 2.

Consider now a statistic

T (X ′
1, X

′
2) = X ′

1 +X ′
2 = θ +X1 +X2.

Due to monotonicity and additivity of the Fisher information,

IX1+X2 = IX′
1+X′

2
≤ IX′

1
+ IX′

2
= w2

1IX1 + w2
2IX2 .

On choosing

wi =
1/IXi

1/IX1 + 1/IX2

, i = 1, 2,

one immediately gets the Stam inequality

1

IX1+X2

≥ 1

IX1

+
1

IX2

. 2

Kagan generalized the proof to the multivariate case when X = (X1, . . . , Xs) is

an s-variate random vector with density p(x− θ) = p(x1−θ1, . . . , xs−θs) depending
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on an s-variate location parameter θ∈ Rs. The matrix ĨX of Fisher information on

θ in X does not depend on θ:

ĨX = (Irq)r,q=1,...,s, Irq =

∫
x:p(x)>0

1

p

(
∂p

∂xr

)(
∂p

∂xq

)
dx. (2.25)

Note that ĨX is positive definite (the matrix ĨX(θ) of Fisher information on a general

s-variate parameter, not necessarily location, is non-negative definite).

Indeed, take a nonzero c ∈ Rs and consider a random vector X̃ with density

p(x1 − c1θ, . . . , xs − csθ). Plainly, IX̃(θ) = cT ĨXc and due to monotonicity, one has

IX̃(θ) ≥ IX̃r
(θ). The density of the r-th component X̃r of X̃ is pr(xr − crθ) so that

IX̃r
(θ) > 0 if cr 6= 0. Hence ĨX is positive definite.

Now let W1, W2 be (s × s) matrices with W1 +W2 = Is, the (s × s) identity

matrix. Set

X′
i = Wiθ + Xi, i = 1, 2,

where X1, X2 are independent s-variate random vectors and θ∈ Rs. Using the basic

properties of the Fisher information, one gets

ĨX1+X2 = ĨX′
1+X′

2
≤ ĨX′

1
(θ) + ĨX′

2
(θ) = WT

1 ĨX1W1 +WT
2 ĨX2W2.

Choosing

Wi = (ĨXi
)−1{(ĨX1)

−1 + (ĨX2)
−1}−1, i = 1, 2,

results in

ĨX1+X2 ≤ {(ĨX1)
−1 + (ĨX2)

−1}−1

whence, by taking the inverse of both sides, one obtains the multivariate Stam
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inequality

(ĨX1+X2)
−1 ≥ (ĨX1)

−1 + (ĨX2)
−1.

On analyzing Zamir’s proof of the Stam inequality, one can see that actually

the following two properties were used:

(i) The Fisher information on θi contained in an observation of Xi with density

pi(x; θi), i = 1, 2 does not depend on θi ∈ Θ = (a, b), a ≤ 0, b > 0 (one needs

αΘ ⊂ Θ for any α, 0 < α < 1),

0 < IXi
(θi) = Ii <∞, i = 1, 2.

This condition plainly holds in case of location parameters θ1, θ2 but it is much

more general. If X has a density p(x; η) and a new parameter θ is introduced by

η = g(θ) so that p̃(x; θ) = p(x; g(θ)), then IX(θ) = |g′(θ)|2IX(η)|η=g(θ), whence one

can construct many families with constant Fisher information. For example, if X

has a Poisson distribution with mean η, the reparametrization η = Cθ2 stabilizes

the information on θ.

(ii) The distribution of a statistic T = T (X1, X2) depends on (θ1, θ2) only through

θ1 + θ2, i. e., if its distribution is given by a density p(t; θ1, θ2), then

p(t; θ1, θ2) = p(t; θ1 + θ2), t ∈ T .

If pi(x; θi) = pi(x− θi), i = 1, 2 and T (X1 +X2) = X1 +X2, (ii) is plainly satisfied.

Theorem 2.3.2 Assume X1, X2 are independent and conditions (i), (ii) are sat-

isfied. Then the following Stam’s type inequality holds for the Fisher information
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IT (θ) on θ in T :

1

IT (θ)
≥ 1

I1
+

1

I2
.

Proof. Take positive w1, w2 with w1 + w2 = 1 and set θ1 = w1θ, θ2 = w2θ. Then

θ1 + θ2 = θ. One has IXi
(θ) = w2

i Ii, i = 1, 2 and due to monotonicity and additivity

of the Fisher information,

IT (θ) ≤ IX1(θ) + IX2(θ) = w2
1I1 + w2

2I2.

Choosing

wi =
1/Ii

1/I1 + 1/I2
, i = 1, 2

leads to the claim of Theorem 2.3.2. 2

The idea of Theorem 2.3.2 works in various setups, as the following example

demonstrates.

Let independent random variables X1, X2 have densities θ1p1(θ1x), θ2p2(θ2x)

depending on scale parameters θ1, θ2 ∈ R+. If the distributions of X1 and X2 are

concentrated on R+ or R−, the setup is reduced to that of location parameters. This

assumption is not made here.

Let T (X1, X2) = X1X2. It is easily seen that the distribution of T depends

on θ1, θ2 only through the scale parameter θ = θ1θ2,

p(t; θ) = θp(θx).

Simple calculations show that

IXi
(θi) = θ−2

i IXi
(1), i = 1, 2;
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IT (θ) = θ−2IT (1).

Now set θ1 = θγ1 , θ2 = θγ2 with γi > 0, γ1 + γ2 = 1. Then θ1θ2 = θ and

IXi
(θ) = (γiθ

γi−1)2IXi
(θi) = γ2

i θ
−2IXi

(1), i = 1, 2.

One has

IT (θ) ≤ IX1(θ) + IX2(θ)

whence

IT (1) ≤ γ2
1IX1(1) + γ2

2IX2(1).

Recently Madiman and Barron (2006) proved a much stronger version of the

Stam inequality: for independent (not necessarily identically) distributedX1, . . . , Xn

1

IX1+...+Xn

≥ 1(
n−1
m−1

)∑
s∈S

1

I∑
i∈s Xi

, (2.26)

where S is the set of all combinations of m elements chosen from {1, . . . , n}.

One of the corollaries of (2.26) is monotone decreasing in n of the informa-

tion I(X1+...+Xn)/
√
n = nIX1+...+Xn in the normalized sum of independent identically

distributed X1, X2, . . .. For m = n− 1 (2.26) becomes

1

IX1+...+Xn

≥ n

n− 1

1

IX1+...+Xn−1

whence for those Xi’s with finite Fisher information IX ,

(n− 1)IX1+...+Xn−1 ≥ nIX1+...+Xn , as n→∞, (2.27)

a much stronger result than simple monotone decreasing in n of IX1+...+Xn . Even

further, the equality sign in (2.27) holds true if and only if the observations Xi are

Gaussian.
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As corollary of (2.26) the following facts are worth mentioning.

Fact 1. It provides an alternative (“Fisher information”) proof of the Central Limit

Theorem (See Barron (1986)).

Fact 2. Suppose H(X) is the (Shannon’s) entropy in a random variable X with

Var(X) = σ2, and Xt = X+
√
tZ, where t is an arbitrary constant and Z ∼ N(0, σ2)

is independent ofX. Then de Bruijn’s identity holds (see, e.g., Madiman and Barron

(2005))

H(X) =
1

2
ln(2πe)− 1

2

∫ +∞

0

[
IXt −

1

1 + t

]
dt.

Combine this with (2.26), one has the monotonicity in the entropy

H

(
X1 + . . .+Xn√

n

)
≥ H

(
X1 + . . .+Xn−1√

n− 1

)
.

This inequality with n replaced by 2k, and n− 1 by 2k−1, k = 2, 3, . . . was proved in

Shannon (1948). However, a proof for an arbitrary n was obtained only in Artstein,

Ball, Barthe and Noar (2004).

2.3.3 Fisher score under additive perturbations

As mentioned in the last section, the Stam inequality is based on the relation

(2.24)

J(X + Y ) = E[J(X)|X + Y ], (2.28)

where X ∼ F1(x − θ) is independent of Y ∼ F2(y), and J(X), J(X + Y ) are the

Fisher scores from F1 and F1 ∗ F2, respectively. In order to generalize the Stam

inequality to the case of polynomial information, one needs to find a similar relation

for the polynomial score.

62



Recall that in (1.33) the polynomial score of X is defined as the projection of

the Fisher score J(X) onto the polynomial space Pk(X) = span{Xj|j = 0, . . . , k}:

J (k)(X) = Ê[J(X)|Pk(X)] =
k∑
i=0

aiX
i,

so that for any integer n, 0 ≤ n ≤ k

E[J (k)(X) ·Xn] = −E
[
d

dX
Xn

]
.

Following (1.33), it is straightforward to define the polynomial score in the sum

J (k)(X + Y ) = Ê[J(X + Y )|Pk(X + Y )].

Kagan (2002) proved the polynomial version of (2.28)

J (k)(X + Y ) = Ê[J (k)(X)|Pk(X + Y )]

by verifying the equality

E[J (k)(X) · (X + Y )n] = E[J (k)(X + Y ) · (X + Y )n]

for any n, 0 ≤ n ≤ k. All these relations can be demonstrated in the following

diagram

J(X)
Ê[ · |Pk(X)] //

E[ · |X+Y ]

��

Ê[ · |Pk(X+Y )]
RRRRRRRRRRRRRR

((RRRRRRRRRRRR

J (k)(X)

Ê[ · |Pk(X+Y )]

��
J(X + Y )

Ê[ · |Pk(X+Y )]

// J (k)(X + Y )

Notice that in this diagram, the arrows are commutative.
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It is interesting to see that the relation shown in the diagram does not only

hold in the polynomial space, but is also true in many other finite dimensional

spaces. For instance, in the space spanned by trigonometric functions up to order k

Tk(X) = span{1, sinX, cosX, sin 2X, cos 2X, . . . , sin kX, cos kX},

the trigonometric score is defined as

J
(k)
T (X) = Ê[J(X)|Tk(X)] =

k∑
i=0

ai sin(iX) + bi cos(iX), (2.29)

so that E[J
(k)
T (X)] = 0 and for any integer n, 1 ≤ n ≤ k

E[J
(k)
T (X) · sin(nX)] = −nE[cos(nX)],

E[J
(k)
T (X) · cos(nX)] = nE[sin(nX)].

According to definition (2.29), one may calculate

E[J
(k)
T (X) · sinn(X + Y )]

= E[J
(k)
T (X)(sinnX cosnY + cosnX sinnY )]

= E[J
(k)
T (X) · sinnX]E[cosnY ] + E[J

(k)
T (X) · cosnX]E[sinnY ]

= −nE[cosnX]E[cosnY ] + nE[sinnX]E[sinnY ]

= −nE[cosn(X + Y )]

= E[J
(k)
T (X + Y ) · sinn(X + Y )],

and similarly
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E[J
(k)
T (X) · cosn(X + Y )]

= E[J
(k)
T (X) · cosnX]E[cosnY ]− E[J

(k)
T (X) · sinnX]E[sinnY ]

= nE[sinnX]E[cosnY ] + nE[cosnX]E[sinnY ]

= nE[sinn(X + Y )]

= E[J
(k)
T (X + Y ) · cosn(X + Y )],

whence the trigonometric version of (2.28):

J
(k)
T (X + Y ) = Ê[J

(k)
T (X)|Tk(X + Y )].

It is very likely that the Stam inequality holds for the information ITrig = Var[J
(k)
T (X)].

Another example is the space Ek(X) spanned by functions of the form emX sinnX

and emX cosnX, with 0 ≤ m ≤ M, 0 ≤ n ≤ N for some fixed M, N . It is easy to

verify the relation

Ê[J(X + Y )|Ek(X + Y )] = Ê{Ê[J(X)|Ek(X)]|Ek(X + Y )}.

2.3.4 A strong version of superadditivity of tn

Let εk = (εk1, . . . , εkn), k = 1, . . . , N , be independent n-variate random vectors

with distribution Fk(x1, . . . , xn) respectively. When these random vectors are shifted

by an unknown location parameter θ, a statistician can observe

Xk = (Xk1, . . . , Xkn) = (εk1 + θ, . . . , εkn + θ), k = 1, . . . , N.

Or even worse, one can only pick up the information after these sources are summed

together. Let ε = (ε1, . . . , εn)
d
=
∑N

k=1 εk ∼ F (x1, . . . , xn), then the observations
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enter as

X = (X1, . . . , Xn) = (ε1 + θ, . . . , εn + θ).

Assuming

σ2
k =

∫
(x1 + . . .+ xn)

2dFk(x1, . . . , xn) <∞, k = 1, . . . , N

(then plainly σ2 =
∫

(x1 + . . . + xn)
2dF (x1, . . . , xn) < ∞), the Pitman estimator

tk,n = tk,n(Xk1, . . . , Xkn) of θ from the k-th sample can be written as

tk,n = X̄k − E0(X̄k|Rk),

where X̄k = 1
n

∑n
i=1Xki, Rk = (Xk1 − X̄k, . . . , Xkn − X̄k) is the vector of residuals

and E0 stands for the expectation taken for θ = 0. One can easily see that

Var(tk,n) = σ2
k/n

2 − VarE0(X̄k|Rk).

Similarly, for the Pitman estimator

tn = X̄ − E0(X̄|R)

of θ from (X1, . . . , Xn) one has

Var(tn) = σ2/n2 − VarE0(X̄|R)

where X̄ and R stand for the sample mean and vector of residuals from (X1, . . . , Xn).

For an index set s ⊂ {1, . . . , N} we set

X̄s =
∑
k∈s

X̄k, Rs =
∑
k∈s

Rk (componentwise) (2.30)

and

ts,n = X̄s − E0(X̄s|Rs).
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(Plainly, (2.30) makes sense for any subset u ⊂ {1, . . . , N}; we will need this later).

The latter is the Pitman estimator of θ from

Xs = (Xs1, . . . , Xsn) =

(∑
k∈s

εk1 + θ, . . . ,
∑
k∈s

εkn + θ

)
.

Theorem 2.3.3 Under only the condition σ2
1 < ∞, . . . , σ2

N < ∞, for any n ≥ 1

and 1 ≤ m ≤ N ,

Var(tn) ≥
1(

N−1
m−1

)∑
s

Var(ts,n). (2.31)

where the summation on the right is extended over all unordered sets (combinations)

s of m elements from {1, . . . , N}.

Proof. To simplify notations, set r =
(
N−1
m−1

)
. One has

Var(tn) = σ2/n2 − Var[E0(X̄|R)]

=
N∑
k=1

σ2
k/n

2 − Var

[
E0

(
N∑
k=1

X̄k|R

)]

for X̄ =
∑N

k=1 X̄k, and independence is assumed between the different groups. Also

the right hand side of (2.31) can be decomposed as

1

r

∑
s

Var(ts,n) =
1

r

∑
s

[
∑
k∈s

σ2
k/n

2 − Var(E0(X̄s|Rs))]

=
1

r

∑
s

∑
k∈s

σ2
k/n

2 − 1

r

∑
s

Var[E0(X̄s|Rs)]

=
N∑
k=1

σ2
k/n

2 − 1

r

∑
s

Var[E0(X̄s|Rs)] (2.32)

The third equality is due to the fact that each vector Xk, k = 1, . . . , N , is used in

exactly r =
(
N−1
m−1

)
Pitman estimators ts,n (in other words, each number k, 1 ≤ k ≤ N

appears in exactly r combinations s of m elements from {1, . . . , N}.
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From (2.32) one sees that (2.31) is equivalent to

Var

[
E0

(
N∑
k=1

X̄k|R

)]
≤ 1

r

∑
s

Var[E0(X̄s|Rs)]. (2.33)

On setting ψs = E0(X̄s|Rs) and ws = 1/
(
N
m

)
for all s and noticing that ψs so defined

depends only on Xk, k ∈ s, one has by virtue of Lemma 2.1.1

r
∑
s

Var[E0(X̄s|Rs)] ≥ Var[
∑
s

E0(X̄s|Rs)]. (2.34)

Denote by s̄ the complement of s in {1, . . . , N}. Then Rs and Rs̄ depend on

disjoint sets {Xk, k ∈ s} and {Xl, l ∈ s̄} of independent random vectors X1, . . . ,XN

and thus are independent.

By virtue of Lemma 2.1.2,

ψs = E0(X̄s|Rs, Rs̄).

From the definition (2.30) of n-variate vectors Rs and Rs̄ one has R = Rs+Rs̄.

Now due to a well known property of the conditional expectation,

E0(X̄s|R) = E0[E0(X̄s|Rs, Rs̄)|R] = E0[E0(X̄s|Rs)|R].

Since for any random variable ξ and random element η

Var(ξ) ≥ Var(E(ξ|η),

the previous relation results in
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Var[
∑

s

E0(X̄s|Rs)] ≥ Var[E0(
∑

s

E0(X̄s|Rs)|R)]

= Var[E0(
∑

s

E0(X̄s|Rs, Rs̄)|R)]

= Var[
∑

s

E0(X̄s|R)]

= Var[E0(
∑

s

X̄s|R)]

= Var[E0(r
N∑
k=1

X̄k|R)]

= r2Var[E0(X̄|R)]. (2.35)

The first three equalities follow from the properties of the conditional expectation

discussed above and the fourth is due to the fact that each k appears in exactly r

combinations s. Combining (2.34) with (2.35) gives (2.33). �

It is of special interest to study the simpler setting where independence is also

assumed within the Xk’s. Let Xk = (Xk1, . . . , Xkn) be a sample of iid observations

from Gk(x − θ) with Var(Xk1) < ∞, k = 1, . . . , N . Combining Theorem 2.3.3

with Ibragimov and Has’minskii’s asymptotic formula (1.30) for the variance of

the Pitman estimators, one gets from (2.33) the strong version (2.26) of the Stam

inequality.

Particularly when G1 = . . . = GN = H, we have the monotonicity of Var(t
(N)
n )

with respect to the group number N , in contrast to (2.11) whose monotonicity is

with respect to the sample size n.

Corollary 2.3.1 Let σ2
H =

∫
x2dH(x) < ∞. If t

(N)
n is the Pitman estimator of θ
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from a sample of size n from H∗N(x− θ) where H∗N = H ∗ · · · ∗H, then

Var[t
(N)
n ]

N
≥ Var[t

(N−1)
n ]

N − 1
. (2.36)

Here n and N are independent parameters. The inequality (2.36) may be considered

a small sample version of inequality (2.27) for the Fisher information.

Proof of Corollary. Choose m = N − 1 in Theorem 1. Under the conditions of the

corollary, Var(ts,n) are the same for all N combinations s of N − 1 elements so that

(2.33) becomes

Var[t(N)
n ] ≥ N

N − 1
Var[t(N−1)

n ]. 2

Assuming
∫
|x|δdH(x) < +∞ for a positive δ, (1.30) asserts

nVar[t(N)
n ]

n→∞−→ 1

IX11+...+XN1

.

For n → ∞, (2.36) becomes Madiman and Barron’s inequality (2.27). That is, the

monotonicity of Fisher information

(N − 1)IX11+...+X(N−1),1
≥ NIX11+...+XN1

.

Now that (X11, . . . , XNn) is a set of iid data, for any n and N , one has

Var[t(N)
n ] = Var

[
N∑
k=1

X̄k − E0

(
N∑
k=1

X̄k|R1 + . . .+RN

)]

= Var

[
N∑
k=1

X̄k

]
− Var

[
E0

(
N∑
k=1

X̄k|R1 + . . .+RN

)]
= Nσ2

H/n− Var[NE0(X̄1|R1 + . . .+RN)].

Apply this calculation to (2.36), one easily sees a dissipative property of the condi-

tional expectation.
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Corollary 2.3.2 Suppose σ2
H =

∫
x2dH(x) <∞. For arbitrary N > 1

(N − 1)Var[E0(X̄1|R1 + . . .+RN−1)] ≥ NVar[E0(X̄1|R1 + . . .+RN)]. (2.37)

Since (X̄1, R1, . . . , RN−1) and XN , from which RN is defined, are independent,

monotonicity of Var(X̄1|R1 + . . .+RN) follows from

Var[E0(X̄1|R1 + . . .+RN−1)] = Var[E0(X̄1|R1 + . . .+RN−1, RN)]

≥ Var[E0(X11|R1 + . . .+RN)].

Corollary 2.3.2 is much stronger than this.

2.3.5 Variance of tX ′+λX ′′ as a function of λ

Let X ′, X ′′ be independent random variables. Set X = X ′ + λX ′′ and denote

by F (x;λ) the distribution function of X. Hence X ′′ is viewed as a source of noise

with a scalar λ. We are interested in studying the behavior of the variance of the

Pitman estimator of θ as a function of λ.

Let (X1, . . . , Xn) be a sample from population F (x − θ;λ) with θ ∈ R as

a parameter, λ > 0 known, and construct the Pitman estimator tn,λ of θ from

(X1, . . . , Xn). One would expect that Var(tn,λ) monotonically decreases as a function

of λ on (−∞, 0) and increases on (0, ∞). We can prove this for the so called self-

decomposable X ′′. It seems likely that the property does not hold for arbitrary X ′′

(even when X ′ is Gaussian) though at the moment we do not have an example.

Recall that a random variable Y is self-decomposable if for any c, 0 < c < 1,
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Y is equidistributed with cY + Zc, written

Y
d
= cY + Zc

where Zc is independent of Y . If f(t) is the characteristic function of Y , self-

decomposability is equivalent to a factorization

f(t) = f(ct)gc(t)

where gc(t) is a characteristic function. All random variables having stable distri-

butions are self-decomposable. A self-decomposable random variable is necessarily

infinitely divisible. Lukacs (1970) gave necessary and sufficient conditions for self-

decomposability in terms of the Lévy spectral functions.

Theorem 2.3.4 Let X ′ be an arbitrary random variable with E(X ′)2 <∞ and let

X ′′ be a self-decomposable random variable with E(X ′′)2 < ∞ independent of X ′.

Let F (x;λ) be the distribution function of X ′ + λX ′′. Then the variance Var(tn,λ)

of the Pitman estimator of θ from a sample of size n from F (x− θ;λ) is increasing

in λ on (0,∞) and decreasing on (−∞, 0).

The proof of Theorem 2.3.4 is similar to that of Theorem 2.3.1.

Proof. We start with the definition of the residuals

R′
n = (X ′

1 − X̄ ′, . . . , X ′
n − X̄ ′),

R′′
n = (X ′′

1 − X̄ ′′, . . . , X ′′
n − X̄ ′′).

By definition (1.16)

tn,λ = X̄ ′ + λX̄ ′′ − E0[X̄
′ + λX̄ ′′|R′

n + λR′′
n]
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and

Var(tn,λ) = Var(X̄ ′ + λX̄ ′′)− Var{E0[X̄
′ + λX̄ ′′|R′

n + λR′′
n]}.

If λ1 > λ2 > 0, then λ2 = cλ1 for some c, 0 < c < 1. Due to self-decomposability of

X ′′, there exist random variables Zc,1 . . . , Zc,n such that

X ′′
i − X̄ ′′ d

= c(X ′′
i − X̄ ′′) + (Zc,i − Z̄c)

and the random variables X ′
1, . . . , X

′
n, X

′′
1 , . . . , X

′′
n, Zc,1, . . . , Z̄c are independent.

Define RZc the vector of residuals for Zc in the traditional way. The σ-algebra

σ{R′
n + λ1R

′′
n} = σ{R′

n + λ1cR
′′
n + λ1RZc}

is smaller than σ-algebra

σ{R′
n + λ1cR

′′
n, RZc}

and thus

Var{E0[X̄
′ + λ1X̄

′′|R′
n + λ1R

′′
n]} ≤ Var{E0[X̄

′ + λ1cX̄
′′ + λ1Z̄c|R′

n + λ1cR
′′
n, RZc ]}.

The rest of the proof is the same as that of Theorem 2.3.1. 2

The result can be considered a small sample version of the following property

of the Fisher information. Let Iλ = IX′+λX′′ denote the Fisher information on θ in

an observation of θ + X ′ + λX ′′. If X ′, X ′′ are independent, I(X ′) < ∞ and X ′′

self-decomposable, then Iλ as a function of λ increases monotonically on (−∞, 0)

and decreases monotonically on (0,∞).

There is an example of nonself-decomposable X ′′ when Iλ is not monotone; in

the example that follows X ′ is Gaussian and IX′′ = ∞.
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Example 7 Let X ′ be from a Gaussian distribution N(θ, 1) and X ′′ be a Bernoulli

random variable with P (X ′′ = 1) = P (X ′′ = 0) = 1/2. Then

IX′ = 1,

IX′+λX′′−→1, λ→ +∞.

Since IX′+λX′′ is not a constant in λ, the two relations indicate that it can not be

monotone in λ. 2
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Chapter 3

Multivariate observations with a univariate location parameter

In this chapter we discuss estimating θ ∈ R based on samples (X1, . . . ,Xn)

from an s-variate population F (x−1 · θ). Here Xi = [Xi1, . . . , Xis]
T , 1 = [1, . . . , 1]T

so that F (x− 1 · θ) = F (x1 − θ, . . . , xs − θ).

Though some results are similar to those in Chapters 1, 2, some others differ

from their counterparts obtained for univariate observations depending on a uni-

variate location parameter. For the sake of simplicity of notations, we consider the

case of s = 2. The generalization to higher dimensions is straightforward.

3.1 Linearity of the Pitman estimator

Let (X,Y) = (X1, Y1; . . . ;Xn, Yn) be a sample from population F (x−θ, y−θ)

with finite variances E(X1 + Y1)
2 < ∞. Notice that definition (1.16) does not re-

quire independence between the observations. Following this definition, the Pitman

estimator of θ is

tn(X,Y) = T0(X,Y)−E0[T0(X,Y)|X1 − Ȳ , . . . , Xn − Ȳ , . . . , Y1 − X̄, . . . , Yn − X̄],

where X̄ =
∑

iXi/n, Ȳ =
∑

i Yi/n and T0(X,Y) is an arbitrary equivariant estima-

tor of θ. Notice that the residual vector RX,Y = (X1− Ȳ , . . . , Yn−X̄), as a statistic,

is equivalent to (X1 − (X̄ + Ȳ )/2, . . . , Yn − (X̄ + Ȳ )/2). Also it is worth noticing

that the σ-algebra σ{X1 − Ȳ , . . . , Yn − X̄} is bigger than the one used in definition
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(1.20) for multivariate parameters: σ{X1 − X̄, . . . , Xn − X̄, Y1 − Ȳ , . . . , Yn − Ȳ }.

On noticing that for a bivariate Gaussian F (x, y), the Pitman estimator of θ

is

tn(X1, . . . , Yn) = w1X̄ + w2Ȳ ,

where

w1 = arg min
w1

Var[w1X̄ + (1− w1)Ȳ ]

=
Var(Y1)− Cov(X1, Y1)

Var(X1) + Var(Y1)− 2Cov(X1, Y1)
, and

w2 = 1− w1,

and having in mind the problem to be discussed, let us represent tn(X,Y) as

tn(X,Y) = w1X̄ + w2Ȳ − E0(w1X̄ + w2Ȳ |RX,Y)

The first question to be answered about tn(X,Y) is when it is linear in

X1, . . . , Yn. In other words, when does the relation

tn(X,Y) = w1X̄ + w2Ȳ (3.1)

hold? By definition, (3.1) is equivalent to the zero regression of w1X̄ +w2Ȳ against

the residual

E0(w1X̄ + w2Ȳ |RX,Y) = 0. (3.2)

In the univariate case it was answered by the KLR theorem (see Section 1.9)

claiming that for n ≥ 3 the relation

E(X̄|X1 − X̄, . . . , Xn − X̄) = const
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holds if and only if Xi is Gaussian (for n = 2, it holds for any symmetric Xi). In the

bivariate case, by virtue of the KLR theorem, the relation (3.1) for n ≥ 3 implies

that w1Xi + w2Yi = Zi is Gaussian. Indeed, since

σ{Z1 − Z̄, . . . , Zn − Z̄} ⊂ σ{X1 − Ȳ , . . . , Yn − X̄},

from (3.1) one has

E(Z̄|Z1 − Z̄, . . . , Zn − Z̄) = const,

whence Zi is Gaussian. But unless Xi, Yi are independent, Gaussianity of the linear

transformation w1Xi+w2Yi does not imply (bivariate) Gaussianity of (Xi, Yi). And

as one sees in the following theorem, in the multivariate case linearity of the Pitman

estimator is no longer a characteristic property of the Gaussian distribution.

Theorem 3.1.1 Let (X1, Y1; . . . ;Xn, Yn) with n ≥ 3 be a sample from population

F (x − θ, y − θ) with finite variances E(X1 + Y1)
2 < ∞. Denote the characteristic

function of F by ϕ(u1, u2) =
∫

exp(iu1x+ iu2y)dF (x, y). Then (3.1) or (3.2) holds

if and only if the following relation holds in a neighborhood of (0, 0)

ϕ(u1, u2) = exp(Q(u1, u2) + V (w2u1 − w1u2)), (3.3)

where V is an arbitrary function and Q is a quadratic form

Q(u1, u2) ∝ [u1 u2]

 −5w2
1 + 4w3

1 + 2w1 3w2
1 − 3w1 + 1

3w2
1 − 3w1 + 1 −4w3

1 + 7w2
1 − 4w1 + 1


 u1

u2

 . (3.4)

Proof. Without loss of generality, we may assume θ = 0 throughout the proof. For

any t, s ∈ Rn, (3.2) is equivalent to

E{(w1X̄ + w2Ȳ ) exp(i(
∑
j

tj(Xj − Ȳ ) +
∑
j

sj(Yj − X̄)))} = 0.
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Rewrite the left hand side by separating the independent variables

E{(w1X̄ + w2Ȳ ) exp(i(
∑
j

tj(Xj − Ȳ ) +
∑
j

sj(Yj − X̄)))}

= E{(w1X̄ + w2Ȳ ) exp(i(
∑
j

Xj(tj − s̄) +
∑
j

Yj(sj − t̄)))}

=
1

n

∑
k

E{w1Xk exp(i(
∑
j

Xj(tj − s̄) +
∑
j

Yj(sj − t̄))) +

. w2Yk exp(i(
∑
j

Xj(tj − s̄) +
∑
j

Yj(sj − t̄)))}

=
1

n

∑
k

{E[w1Xk exp(i(Xk(tk − s̄) + Yk(sk − t̄))) +

w2Yk exp(i(Xk(tk − s̄) + Yk(sk − t̄)))]
∏
j 6=k

ϕ(tj − s̄, sj − t̄)}

=
1

n

∏
j

ϕ(tj − s̄, sj − t̄)
∑
k

1

ϕ(tk − s̄, sk − t̄)
{w1E[Xk exp(i(Xk(tk − s̄) +

Yk(sk − t̄)))] + w2E[Yk exp(i(Xk(tk − s̄) + Yk(sk − t̄)))]}

=
1

n

∏
j

ϕ(tj − s̄, sj − t̄)
∑
k

[w1∂1 lnϕ(tk − s̄, sk − t̄) + w2∂2 lnϕ(tk − s̄, sk − t̄)]/i,

where the subscripts of the partial differentiation denote the component to which

the differentiation is applied.

By assumption the distribution F admits finite second moments, and the char-

acteristic function does not vanish in a neighborhood of (0, 0). The function lnϕ is

at least twice continuously differentiable. The above calculation implies

n∑
k=1

w1∂1 lnϕ(tk − s̄, sk − t̄) + w2∂2 lnϕ(tk − s̄, sk − t̄) = 0, ∀s, t. (3.5)

Denote h(a, b) = w1∂1 lnϕ(a, b)+w2∂2 lnϕ(a, b). (3.5) becomes a Cauchy type

functional equation after a substitution ak = tk − s̄, bk = sk − t̄:

n∑
k=1

h(ak, bk) = 0, (3.6)
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for any (a1, . . . , bn) with
∑

k ak +
∑

k bk = 0. To solve for the function h, we notice

the following facts:

(i)
∑n

k=1 h(0, 0) = 0 ⇒ h(0, 0) = 0.

(ii) Fix all bk = B. Then (3.6) implies

n∑
k=1

h(Ak −B,B) = 0,

for any (A1, . . . , An) with
∑n

k=1Ak = 0. When n ≥ 3 and B fixed, this is a Cauchy

functional equation (see Aczél (1966)). Its only (measurable) solution is linear in A.

h(A−B,B) = CBA,

for some constant CB. Change the variables by taking a = A−B, b = B. We have

a solution to (3.6)

h(a, b) = Cb(a+ b),

though the functional form of Cb is to be determined. By virtue of the symmetry

in the notations a and b, we have

h(a, b) = Cb(a+ b) = Ca(a+ b),

where Ca is supposedly a function of a. The above equation holds true for all a, b.

Hence Ca ≡ Cb is a constant independent of the choices of a and b.

Combined with (i) and (ii), (3.5) indicates

w1∂1 lnϕ(u1, u2) + w2∂2 lnϕ(u1, u2) = C(u1 + u2), ∀u1, u2 ∈ R

for some constant C. The PDE can be solved by making the following substitutions
x1 = w1u1 + w2u2

x2 = w2u1 − w1u2

,
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which is a rotation of the axis such that the direction of the derivative w1∂1 +w2∂2

lies on the x1 axis:

∂x1 lnϕ

(
w1x1 + w2x2

w2
1 + w2

2

,
w2x− w1x2

w2
1 + w2

2

)
= C[(w1 + w2)x1 + (w2 − w1)x2].

Take x2 as a parameter and solve the first order ODE. Finally we have a formula

for the characteristic function

lnϕ(u1, u2)

= C[
(w1u1 + w2u2)

2

2
+ (w2 − w1)(w1u1 + w2u2)(w2u1 − w1u2)] + V (w2u1 − w1u2).

The first term is a quadratic form in u1, u2. Simply expand the quantity within the

parentheses, and substitute w2 = 1− w1. Then (3.4) follows immediately. 2

Remark 1. If ϕ does not vanish, then under this assumption the representation

(3.3) holds not only in a neighborhood of (0, 0) but also for every (u1, u2).

Remark 2. We pointed out that (3.1) implies Gaussianity of w1Xi+w2Yi. Certainly,

this follows directly from Theorem 3.1.1 since

E[eit(w1X1+w2X2)] = ϕ(w1t, w2t)

= exp[Q(w1, w2)t
2 + V (w2w1t− w1w2t)]

= exp[Q(w1, w2)t
2],

which is a characteristic function of a Gaussian distribution.

Remark 3. Not every function V makes (3.3) a characteristic function. Trivially,

V ≡ 1 is such a counterexample. It is necessary to have V (0) = 0 in order that
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ϕ(0, 0) = 1. Beyond this, we hardly have any criterion in pointing out the complete

class of distributions defined by (3.3). The characteristic functions of bivariate

Gaussian random vectors are plainly of the form (3.3). But there are non-Gaussian

random vectors whose characteristic functions are of this form. Here is a simple

example.

Example 8 Let Z1 ∼ N(0, σ2
1) be independent of Z2 ∼ N(0, σ2

2), and W a non-

Gaussian random variable independent of the pair (Z1, Z2). Suppose W has a char-

acteristic function ϕW (t) = eV (t). Then the random vector (Z1 +W,Z2 −W ) has a

joint characteristic function

ϕ(u1, u2) = exp(−1

2
(u2

1 + u2
2) + V (u1 − u2)).

Theorem 3.1.1 asserts that a sample of random copies of this vector with a location

shift θ admits a linear Pitman estimator with w1 = w2 = 1/2. 2

Naturally one may try to break the characteristic function into a Gaussian

component exp(Q(u1, u2)), which needs a little technical modification to become

a characteristic function of a Gaussian distribution, and an independent additive

noise exp(V (w2u1 − w1u2)). However, these are not all the distributions with their

characteristic functions in the form of (3.3). There may exist some characteristic

functions of the form (3.3) which can not be represented as exp(Q′(u1, u2))f(u),

such that Q′ is a nonpositive definite quadratic form and f is a valid characteristic

function.

Remark 4. A few comments were given on the quadratic form Q in the proof.

We put aside all the details with the fact that ϕ(u1, u2) has to be a characteristic

81



function. Denote Q(u1, u2) =
∑

i,j=1,2 qijuiuj. One sees from (3.4) that

q11 = C · w1(4w
2
1 − 5w1 + 2),

det

 q11 q12

q21 q22

 = −C2(2w1 − 1)2(2w2
1 − 2w1 + 1)2.

For all choices of C and w1, Q is non definite. We need to modify the definition of

Q and V in order to justify the normal characteristic in the factor exp(Q(u1, u2)).

For some constant C ′, we can write

Q(u1, u2) + V (w2u1 − w1u2)

= [Q(u1, u2)− C ′(w2u1 − w1u2)
2] + [C ′(w2u1 − w1u2)

2 + V (w2u1 − w1u2)]

∆
= Q′(u1, u2) + V ′(w2u1 − w1u2).

Now that there are three independent variables C, C ′ and w1 in the definition of the

quadratic form Q′, on choosing them in an appropriate way one can get an arbitrary

(particularly nonpositive definite) quadratic form Q′.

It is also interesting to see the following fact about Q:

q22 − q12

q22 + q11 − 2 ∗ q12

= w1 (3.7)

=
Var(Y1)− Cov(X1, Y1)

Var(X1) + Var(Y1)− 2Cov(X1, Y1)
.

The coefficient w1 (and accordingly w2) is simultaneously defined by the the popu-

lation variance and the “partial variance” from the Gaussian component in a similar

way. This observation leads to the answer to a characterization problem in the next

section.

Remark 5. Generally for arbitrary s ≥ 2, let (X1, . . . ,Xn) be a sample of s-variate

82



observations, Xi = (Xi1, . . . , Xis)
T , i = 1, . . . , n, and hence X̄i =

∑n
k=1Xki/n. One

can generalize Theorem 3.1.1 and show that

tn(X1, . . . ,Xn) = w1X̄1 + . . .+ wsX̄s,

for some w1, . . . , ws with w1 + . . .+ws = 1 if and only if the characteristic function

of Xi is in the following form:

ϕ(u1, . . . , us) = exp(uTQu + V (uT [b1, . . . ,bs−1])),

for some symmetric s × s matrix Q and measurable function V . In particular, bi,

i = 1, . . . , s − 1, are s-variate vectors chosen according to w = (w1, . . . , ws)
T such

that they are mutually orthogonal and [w,b1, . . . ,bs−1] is a projection matrix.

Remark 6. In Kagan and Rao (2005), a problem similar to (3.1) was studied. Let

(X1, Y1; . . . ;Xn, Yn), n ≥ 3 be a sample from F (x− θ, y) with finite second moment∫
x2dF (x) <∞. The components Yi are ancillary with respect to of θ. They studied

the linear condition of the Pitman estimator

tn(X,Y) = X̄ − CȲ − C0, (3.8)

where C and C0 are constants. They showed that (3.8) implies the following equation

for the characteristic function of (Xi, Yi):

u1ϕ(u1, u2) = C1
∂ϕ(u1, u2)

∂u1

+ C2
∂ϕ(u1, u2)

∂u2

+ iC3ϕ(u1, u2),

for some constants C1, C2 and C3. Moreover, if F is absolutely continuous and the

density function f is differentiable, then

f(x, y) = exp(A1x+ A2x
2 +Bxy + C(y)),

where A1, A2 and B are constants and C is an arbitrary function.
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3.2 Some related characterization problems for the linear Pitman

estimator

Nice results of characterization problems, particularly those associated with

the Gaussian distribution, are abundant in the classic univariate setting. It turns

out that those distributions defined by (3.3) play the same role in the multivariate

setting as the univariate Gaussian distribution does in one dimension.

Given a univariate sample (X1, . . . , Xn), n ≥ 3, it is well known that the

independence between the sample mean X̄ and the residual RX characterizes the

Gaussian distribution. The following corollary of Theorem 3.1.1 is an analog of this

fact in the multivariate setting.

Corollary 3.2.1 Let (X1, Y1; . . . ;Xn, Yn), n ≥ 3, be a sample from F (x− θ, y− θ).

Then the linear combination w1X̄+w2Ȳ , w1 +w2 = 1 is independent of the residual

RX,Y if and only if the characteristic function of F is in the form (3.3).

Proof. Necessity of the condition trivially follows the fact that the independence

between w1X̄ +w2Ȳ and RX,Y implies the zero regression equation (3.2) and hence

(3.3) by Theorem 3.1.1. We only prove the sufficiency.

Assume θ = 0 throughout this proof. Then look at the joint characteristic

function of w1X̄ + w2Ȳ and RX,Y

E[exp(i((w1X̄ + w2Ȳ )r +
∑
k

(Xk − Ȳ )tk + (Yk − X̄)sk))]

= E[exp(i(
∑
k

(
w1

n
r + tk − s̄) + Yk(

w2

n
r + sk − t̄)))]

=
n∏
k=1

ϕ
(w1

n
r + tk − s̄,

w2

n
r + sk − t̄

)
, (3.9)
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where ϕ as defined in (3.3) is the characteristic function of F . Then w1X̄ + w2Ȳ

is independent of RX,Y if and only if the above expression can be factored into a

product of two functions in r and (t, s) respectively.

Denote uk = w1r/n + tk − s̄, vk = w2r/n + sk − t̄. Then (3.9) can be written

explicitly according to (3.3):

n∏
k=1

exp(Q(uk, vk) + V (w2uk − w1vk)). (3.10)

Note that w2uk − w1vk = w2(w1r/n + tk − s̄) − w1(w2r/n + sk − t̄) is independent

of r. Hence
∏

k exp{V (w2uk − w1vk)} is plainly a function of the pair (t, s). (3.10)

can be factored properly if and only if there are no cross terms between r and (t, s)

in the quadratic form Q(uk, vk). Expand the definition

∑
k

q11

(w1

n
r + tk − s̄

)2

+2q12

(w1

n
r + tk − s̄

)(w2

n
r + sk − t̄

)
+q22

(w2

n
r + sk − t̄

)2

.

The only cross terms are

(q11w1 − q12w1 + q12w2 − q22w2)rt̄+ (q12w1 − q11w1 − q12w2 + q22w2)rs̄.

Recall that w1 is defined by the matrix Q in (3.7). Substitute both w1 and w2

with their definitions then both terms in the above expression vanish. The proof is

complete. 2

Next, we will show that sufficiency of a linear statistic w1X̄+w2Ȳ characterizes

those distributions with characteristic function (3.3).

Corollary 3.2.2 Suppose that n ≥ 2 and the distribution of w1X̄+w2Ȳ is absolutely

continuous. Then w1X̄ + w2Ȳ is sufficient for θ only if F has a characteristic

function (3.3).
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Proof. Sufficiency of w1X̄ + w2Ȳ for θ means that the conditional distribution of

(X1, Y1; . . . ;Xn, Yn) given w1X̄+w2Ȳ is independent of θ. In terms of the character-

istic function, the conditional characteristic function of the sample is independent

of θ:

Eθ[e
i(t·X+s·Y)|w1X̄ + w2Ȳ ] = φt,s(w1X̄ + w2Ȳ ), (3.11)

for some measurable function φt,s. Setting ξk = Xk − θ and ηk = Yk − θ. Equality

(3.11) leads to a functional equation for φt,s

φt,s(w1ξ̄ + w2η̄)

= E[exp(i(t · ξ + s · η))|w1ξ̄ + w2η̄]

= E[. exp(i(t ·X−
∑
k

tkθ + s ·Y −
∑
k

skθ))|w1X̄ + w2Ȳ − θ]

= exp(−i
∑
k

(tk + sk)θ)E[exp(i(t ·X + s ·Y))|w1X̄ + w2Ȳ ]

= exp(−i
∑
k

(tk + sk)θ)φt,s(w1ξ̄ + w2η̄ + θ).

Substituting u = w1ξ̄ + w2η̄ on both ends

φt,s(u) exp(i
∑
k

(tk + sk)θ) = φt,s(u+ θ).

Fix the value of θ. The equality may hold only on a set of probability 1, and the

exceptional set actually depends on θ. It was shown in Kagan et al. (1973) page

284 that if w1X̄ + w2Ȳ has an absolutely continuous distribution, then there exist

a set of probability 1 on which the above equality holds for all θ.

Fix u for some value in its domain, and let v = u+ θ. Due to the arbitrariness

of θ, one may get the following relation for all v ∈ R
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φt,s(v) = φt,s(u) exp(i
∑

(tk + sk)(v − u))

= Ct,s exp(i
∑

(tk + sk)v),

where Ct,s = φt,s(u) exp (−i
∑

(tk + sk)u) is a function of (t, s).

The joint characteristic function of (X1, Y1; . . . ;Xn, Yn) and w1X̄ + w2Ȳ is

E[exp(ir(w1X̄ + w2Ȳ ) + i(t ·X + s ·Y))]

= E[exp(
∑
k

i(w1r/n+ tk)Xk + i(w2r/n+ sk)Yk)] (3.12)

=
n∏
k=1

ϕ
(w1r

n
+ tk,

w2r

n
+ sk

)
,

where ϕ is the characteristic function of the distribution F . On the other hand,

rewrite the expectation in (3.12) by conditioning on w1X̄ + w2Ȳ :

E[exp(ir(w1X̄ + w2Ȳ ) + i(t ·X + s ·Y))]

= E{E[exp(ir(w1X̄ + w2Ȳ )) exp(i(t ·X + s ·Y))|w1X̄ + w2Ȳ ]}

= E[exp(ir(w1X̄ + w2Ȳ ))φ(w1X̄ + w2Ȳ )]

= E[exp(ir(w1X̄ + w2Ȳ ))Ct,s exp(i(
∑
k

tk + sk)(w1X̄ + w2Ȳ ))]

= Ct,sE[exp(i(r +
∑
k

tk + sk)(w1X̄ + w2Ȳ ))]

= Ct,sϕ[w1(r +
∑
k

tk + sk)/n, w2(r +
∑
k

tk + sk)/n]n. (3.13)

Combining (3.12) and (3.13) gives a functional equation for ϕ

n∏
k=1

ϕ
(w1r

n
+ tk,

w2r

n
+ sk

)
= Ct,sϕ

[
w1

n

(
r +

∑
k

tk + sk

)
,
w2

n

(
r +

∑
k

tk + sk

)]n
.

(3.14)
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For shorter notations, we denote

uk =
w1

n
r + tk, vk =

w2

n
r + sk.

Hence

w1

n

(
r +

∑
k

tk + sk

)
= w1 (ū+ v̄) ,

w2

n

(
r +

∑
k

tk + sk

)
= w2 (ū+ v̄) .

In a neighborhood of (0, 0), ϕ does not vanish. Take logarithms on both sides of

(3.14) and then differentiate with respect to r:

n{w1∂1 lnϕ[w1(ū+ v̄), w2(ū+ v̄)] + w2∂2 lnϕ[w1(ū+ v̄), w2(ū+ v̄)]}

=
∑
k

[w1∂1 lnϕ(uk, vk) + w2∂2 lnϕ(uk, vk)].

Denote h(u, v) = w1∂1 lnϕ(u, v)+w2∂2 lnϕ(u, v). We have a Cauchy type functional

equation

nh[w1(ū+ v̄), w2(ū+ v̄)] =
n∑
k=1

h(uk, vk), ∀u1, . . . , vn. (3.15)

By definition, h(0, 0) = 0. Then fix u2 = . . . = un = v2 = . . . = vn = 0. We have

h(u1, v1) = nh

(
w1
u1 + v1

n
,w2

u1 + v1

n

)
;

that is, for arbitrary (u, v), h(u, v) = h̃(u + v) is a measurable function in u + v.

It is sufficient to consider only the sums zk = uk + vk, k = 1, . . . , n. Then (3.15)

becomes

nh̃(z̄) =
n∑
k=1

h̃(zk), ∀z1, . . . , zn.

Differentiate both sides with respect to z1. For arbitrary z1 and z̄ we have

h̃′(z1) = h̃′(z̄).
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Therefore h̃′ =constant. We get a differential equation defining the characteristic

function ϕ

w1∂1 lnϕ(u, v) + w2∂2 lnϕ(u, v) = h̃(u+ v) = C(u+ v),

for some constant C. It is the same differential equation as in the proof of Theorem

3.1.1, leading to the unique solution (3.3). 2

The converse of Corollary 3.2.2 is proved in the next section when F has a

positive density p(x−θ, y−θ) and finite information IX,Y . In Theorem 3.3.1, we will

show that if F is given by (3.3), then the Fisher information in the linear function

Iw1X̄+w2Ȳ is equal to that in the complete sample IX,Y. As mentioned in Chapter

1, under the assumption of positive density, only sufficient statistics preserve the

Fisher information. Therefore w1X̄+w2Ȳ is sufficient if F is given by (3.3) and has

a positive density.

3.3 Linearity of the Fisher score

Suppose F has an absolutely continuous density p(x − θ, y − θ). Then the

Fisher score is

J(X,Y ) =
∂

∂θ
ln p(X − θ, Y − θ),

and hence the Fisher information is

IX,Y = Var[J(X, Y )2] =

∫ ∫
[∂1p(x, y) + ∂2p(x, y)]

2

p(x, y)
dxdy.
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Denote by ĨX1,Y1 the matrix of Fisher information on (θ1, θ2) associated with an

observation (X, Y ) ∼ F (x− θ1, y − θ2), (θ1, θ2) ∈ R2. One can easily see that

IX,Y = 1T ĨX,Y 1, (3.16)

where 1 = (1, 1)T .

As shown in Section 1, if the Pitman estimator of θ from a sample (X1, Y1; . . .;

Xn, Yn) from population F (x− θ, y − θ) is linear:

tn(X,Y) = w1X̄ + w2Ȳ ,

then is in a neighborhood of zero the characteristic function of F , of the form (3.3),

and if the characteristic function does not vanish, it is of the form (3.3) for all t, s.

Here a similar property of the Fisher score is proved.

Theorem 3.3.1 The Fisher score in the setup (X, Y ) ∼ F (x− θ, y − θ) with finite

second moments E(X + Y )2 <∞ is linear. That is,

J(X, Y ) =
w1X + w2Y − θ

c
(3.17)

for some constant c if and only if F has a characteristic function (3.3).

Proof. Assuming E(X+Y )2 <∞, the characteristic function ϕ of F is differentiable.

One has (for θ = 0)

E[exp(iu1X + iu2Y )
w1X + w2Y

c
] = − i

c
[w1∂1ϕ(u1, u2) + w2∂2ϕ(u1, u2)]. (3.18)

On the other hand, by virtue of a well known property of the Fisher score, the

covariance between the Fisher score and an arbitrary random element is equivalent
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to the negative derivative of the expected value of the same random element:

E[exp(iu1X + iu2Y )J(X, Y )]

= −i(u1 + u2)E(exp(iu1X + iu2Y ))

= −i(u1 + u2)ϕ(u1, u2). (3.19)

Now (3.17) holds if and only if (3.18) and (3.19) are equal. Divide both equations

by ϕ(u1, u2). One gets a differential equation for ϕ:

w1∂1 lnϕ(u1, u2) + w2∂2 lnϕ(u1, u2) = c(u1 + u2).

Recall that in the proof of Theorem 3.1.1, this same differential equation led to the

characteristic function (3.3). 2

The linear form in (3.17) is uniquely determined by the underlying distribution

F , particularly by the covariance matrix of (X, Y ). Since w1X+w2Y is an unbiased

estimator of θ, one has

E[(w1X + w2Y )J(X, Y )] = 1.

Combined with (3.17),

{E[(w1X + w2Y )J(X, Y )]}2 = Var(w1X + w2Y )Var[J(X, Y )]

=
[Var(w1X + w2Y )]2

c2
= 1.

Hence the constant c is

c = Var(w1X + w2Y ),

so that from (3.17), one may calculate the Fisher information

IX,Y = Var[J(X, Y )] =
1

Var(w1X + w2Y )
. (3.20)
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Moreover, if we consider an arbitrary linear estimator λ1X + λ2Y with λ1 + λ2 = 1,

then by the Cramér-Rao inequality and (3.20)

Var(λ1X + λ2Y ) ≥ 1

IX,Y
= Var(w1X + w2Y ).

It turns out that w1 and w2 depends on F as in (3.7):

(w1, w2) = arg min
λ1+λ2=1

Var(λ1X + λ2Y ).

Next we will study the Fisher information associated with the linear function

w1X̄ + w2Ȳ . For (X, Y ) ∼ F (x − θ, y − θ), the distribution function of the sum

w1X̄+w2Ȳ ∼ H(z− θ) depends on a location parameter, and the Fisher score from

H is a projection of the score from F :

J(w1X + w2Y ) = E[J(X, Y )|w1X + w2Y ].

Assuming (3.17), J(X, Y ) is a function of w1X + w2Y . Therefore

J(w1X + w2Y ) = J(X, Y )

and it leads to the following result

IX,Y = Var[J(X, Y )] = Var[J(w1X + w2Y )] = Iw1X+w2Y . (3.21)

When we have a sample of size n, (X1, Y1; . . . ;Xn, Yn), (3.21) becomes

IX,Y = nIX,Y = Iw1X̄+w2Ȳ

because w1X + w2Y is normally distributed as Theorem 3.3.1 claims.

Conversely, (3.21) is not sufficient to characterize the linear score (3.17) or the

distributions given by (3.3). IX,Y = Iw1X+w2Y implies that J(X, Y ) is a function of

w1X + w2Y , but not necessarily linear.
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Corollary 3.3.1 Suppose (X, Y ) ∼ F (x − θ, y − θ) with finite second moments

E(X + Y )2 <∞. If

IX,Y = Iw1X+w2Y

and w1X+w2Y is normally distributed, then the characteristic function of F satisfies

(3.3) in a neighborhood of (0, 0).

3.4 Different versions of the Stam inequalities

Let X1, X2, X be s-variate random vectors. If

X1 ∼ F1(x− θ), X2 ∼ F2(x− θ), X ∼ F (x− θ)

with a location vector θ ∈ Rs, where F = F1 ∗ F2 , and Ĩ1, Ĩ2, Ĩ are the matrices

of Fisher information on θ in X1, X2, X respectively, then the multivariate Stam

inequality claims (see Section 2.3.2)

Ĩ−1 ≥ Ĩ−1
1 + Ĩ−1

2 . (3.22)

Suppose now that X1, X2, X are vectors whose distribution depends on a

univariate location parameter θ. That is,

X1 ∼ F1(x− θ · 1), X2 ∼ F2(x− θ · 1), X ∼ F (x− θ · 1).

The Fisher information on θ in X1 is

I1 = 1T Ĩ11,

and similarly for X2 and X

I2 = 1T Ĩ21, I = 1T Ĩ1.
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Repeating verbatim the proof of (1.27) in Section 2.3.2, one gets the Stam inequality

1

1T Ĩ1
≥ 1

1T Ĩ11
+

1

1T Ĩ21
. (3.23)

Notice that this inequality differs from a special case of (3.22)

1T Ĩ−11 ≥ 1T Ĩ−1
1 1 + 1T Ĩ−1

2 1, (3.24)

in light of the fact that

1

1T Ĩ1
≤ 1T Ĩ−11.

Indeed, due to the Cauchy-Schwarz inequality, for any vector w = (w1, . . . , ws)
T

with wTw = 1 and symmetric positive definite matrix Ĩ

1 = wTw = wT Ĩ1/2Ĩ−1/2w ≤ |wT Ĩ1/2(Ĩ1/2)Tw|1/2|wT Ĩ−1/2(Ĩ−1/2)Tw|1/2,

whence

1

wT Ĩw
≤ wT Ĩ−1w. (3.25)

Here Ĩ1/2 is the (unique) square root matrix of Ĩ. Both of these two matrices are

positive definite because of the definiteness in Ĩ.

The inequality (3.25) has a simple statistical interpretation. Let the sample be

from F (x1−w1θ1, . . . , xs−wsθs). Then Ĩ−1 is the asymptotic variance matrix of the

Pitman estimator for (w1θ1, . . . , wsθs). In case of θ1 = . . . = θs = θ, wT tn estimates

θ with variance wT Ĩ−1w. On the other hand, if starting with the distribution

F (x1 − w1θ, . . . , xs − wsθ), the information on θ is wT Ĩw. Hence the asymptotic

variance of the Pitman estimator becomes 1/wT Ĩw. In summary, (3.25) implies

that there is no advantage to estimate a (location) parameter with a model of a

dimension higher than necessary.

94



3.5 An analog of Huber’s definition of the Fisher information

Our goal here is developing a definition of the Fisher information IX,Y on θ

contained in (X, Y ) with distribution F (x− θ, y− θ) that does not require absolute

continuity of F .

For X ∼ F (x − θ), such a definition was suggested in Huber (1964) (see

Section 1.7 (1.23)), who proved, in particular, that for IX <∞ F must be absolutely

continuous. In the setup considered in this chapter, this is not true any more as the

following example demonstrates.

Example 9 Let ξ be an arbitrary random variable. Set

(X, Y ) = (ξ + θ, ξ + θ).

The random vector (X, Y ) takes values on the diagonal X = Y and, thus, is not

absolutely continuous while the Fisher information on θ in (X, Y ) is the same as

that in X and is finite if the density p(x) of ξ is such that

∫ [
p′(x)

p(x)

]2

p(x)dx <∞. 2

The definition of IX,Y for (X, Y ) ∼ F (x− θ, y− θ) is inspired by Huber’s idea

of considering smooth estimating functions to which a little modification is added

(borrowed from Port and Stone (1974)). Set

IX,Y = sup
ψ∈C1

c (R2)

{E0[∂Xψ(X, Y ) + ∂Y ψ(X,Y )]}2

E0[ψ(X,Y )]2
, (3.26)

where C1
c (R2) is the space of test functions, that is, the collection of continuously

differentiable functions with compact support and E0ψ
2 > 0. It is a dense subset of
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the complete space of square integrable functions

L2(F ) = {ψ(X, Y )|E[ψ(X, Y )2] <∞}.

Let ψ(X − θ, Y − θ) ∈ C1
c (R2) be an estimating function for θ. If (X1, Y1; . . .;

Xn, Yn) is a sample from population F (x− θ, y − θ), the estimating equation

n∑
k=1

ψ(Xk − θ, Yk − θ) = 0 (3.27)

has a solution θ̃n = θ̃n(X1, . . . , Yn) such that

√
n(θ̃ − θ)−→dN(0, σ2

ψ), n→∞

where 1/σ2
ψ = {E0[∂Xψ(X, Y ) + ∂Y ψ(X, Y )]}2/E0[ψ(X, Y )]2 is, in a sense, the in-

formation associated with the estimating function ψ, and (3.26) is the information

associated with the optimal estimating equation (its solutions are equivariant).

It is convenient to consider the following one-to-one transformation of (X, Y ),

U =
X + Y

2
, V =

X − Y

2
.

The distribution function of (U, V ) is H(u−θ, v) so that V is ancillary for θ and this

is the principal reason for replacing (X, Y ) with (U, V ). One can consider estimating

functions φ(U − θ, V ) and estimating equations

n∑
k=1

φ(Uk − θ, Vk) = 0,

whose solution behaves similarly to the solution of (3.27). There is one-to-one cor-

respondence between estimating functions ψ(X − θ, Y − θ) and φ(U − θ, V ) that
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preserves the property of having compact supports. As a statistic, (U, V ) is equiva-

lent to (X,Y ) so that

IX,Y = IU,V = sup
φ∈C1

c (R2)

{E0[∂Uφ(U, V )]}2

E0[φ(U, V )]2
. (3.28)

Theorem 3.5.1 Let (U, V ) be a pair of random variables with a distribution func-

tion H(u− θ, v). The Fisher information IU,V on θ contained in the pair is defined

as in (3.28). Then IU,V < ∞ if and only if the conditional distribution HU |V (u|V )

of U given V has an absolutely continuous density p(u|V ) with probability 1:

HU |V (du) = p(u|V )du a.s. [HV], (3.29)

and ∫ ∫
R2

[∂u ln p(u|v)]2dHU |V (u, v)dHV (v) < +∞, (3.30)

where HV is the marginal distribution function of V . In this case,

IU,V = E(IU |V ) =

∫ ∫
R2

[∂u ln p(u|v)]2dHU |V (u, v)dHV (v). (3.31)

Proof. In (3.28), it is sufficient to consider the supremum over all those φ’s with

fixed second moments E0[φ(U, V )]2 = 1. Assuming (3.29) and (3.30), we have

IX,Y = sup
E0(φ2)=1

[∫∫
∂uφ(u, v)HU,V (dudv)

]2

= sup
E0(φ2)=1

[∫∫
∂uφ(u, v)p(u|v)duHV (dv)

]2

= sup
E0(φ2)=1

[∫∫
φ(u, v)∂up(u|v)duHV (dv)

]2

= sup
E0(φ2)=1

[∫∫
φ(u, v)

∂up(u|v)
p(u|v)

HU |V (du)HV (dv)

]2

≤
∫∫

φ(u, v)2HU,V (dudv)

∫∫
(∂u ln p(u|v))2HU,V (dudv) < +∞.
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The third equality is obtained by integration by parts, and the fact that ψ has

compact support. The inequality sign in the last row follows the Cauchy-Schwarz

inequality. An equality sign holds, so that the supremum is attained, if and only if

φ(U, V ) is proportional to ∂U ln p(U |V ):

φ(U, V ) =
∂U ln p(U |V )

{E0[∂U ln p(U |V )]2}1/2
.

Implying (3.31).

Conversely, define a linear operator A on the set of test functions C1
c (R2):

Aφ =

∫∫
∂uφ(u, v)HU,V (dudv). (3.32)

Consider the norm induced by the inner product

< φ1, φ2 >=

∫∫
φ1(u, v)φ2(u, v)HU,V (dudv).

Hence the information IU,V can be viewed as the operator norm of A:

‖A‖2 = sup
φ

|Aφ|2

‖φ‖2
= sup

φ

[
∫∫
∂uφ(u, v)HU,V (dudv)]2∫∫
φ(u, v)2HU,V (dudv)

.

Provided IU,V < ∞, A is a bounded linear operator defined on the dense subset

C1
c (R2) of the Banach space L2(F ). Extend A continuously onto the whole L2

space. By the Riesz representation Theorem there exists (with probability 1) a

unique function g ∈ L2(F ) such that A can be written into an integral

Aφ =

∫∫
φ(u, v)g(u, v)HU,V (dudv). (3.33)

For almost all V , g is square integrable with respect to the conditional distribution

HU |V . It remains to show that g(u, v) = ∂u ln p(u|v). On setting

f(u, v) =

∫ u

−∞
g(t, v)HU |V (dt). (3.34)
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Then proceed to check the following integral

∫ +∞

−∞

∫ +∞

−∞
∂uφ(u, v)f(u, v)duHV (dv)

=

∫ +∞

−∞

∫ +∞

−∞
∂uφ(u, v)

∫ u

−∞
g(t, v)HU |V (dt)duHV (dv)

=

∫ +∞

−∞

∫ +∞

−∞

∫ t

−∞
∂uφ(u, v)g(t, v)duHU |V (dt)HV (dv)

=

∫ +∞

−∞

∫ +∞

−∞
φ(t, v)g(t, v)HU,V (dudv).

By (3.33), the last row becomes Aψ. Combining the above computation with the

original definition (3.32), one obtains

∫ +∞

−∞

∫ +∞

−∞
∂uφ(u, v)f(u, v)duHV (dv) =

∫ +∞

−∞

∫ +∞

−∞
∂uφ(u, v)HU,V (dudv),

for an arbitrary test function φ. It implies the equivalence between the measures on

which the integrals are taken on both sides:

f(u, v)duHV (dv) = HU,V (dudv) = HU |V (du)HV (dv).

Now (3.29) follows immediately from the above equation, implying

f(u, V ) = p(u|V ) a.s [FV ].

By (3.33), p(u|V ) is absolutely continuous in u, such that g is explicitly defined

g(u, V ) = ∂u ln p(u|V ) a.s. [HV ].

This completes the proof. 2

Remark 1. Suppose (U, V ) is a pair of random variables with an absolutely con-

tinuous joint density p(u, v; θ) depending on a general (not necessarily location)
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parameter θ. If the Fisher information IU,V (θ) on θ in the pair (U, V ) is finite, i.e.,

the Fisher score ∂θ ln p(U, V ; θ) has finite variance, then simple calculations give

IU,V (θ) = IV (θ) + E(IU |V (θ|V )). (3.35)

If p(u, v; θ) = p(u − θ, v), then IV = 0 since V is ancillary for θ. Thus, (3.31) is

a special case of (3.35) when θ is a location parameter and the Fisher score is well

defined. However, (3.31) also covers the case when the joint distribution of (U, V )

is not absolutely continuous.

Remark 2. One may consider the original setting (X, Y ) = (U + V, U − V ) ∼

FX,Y (x − θ, y − θ). Theorem 3.5.1 claims that the information IX,Y is finite only

if the conditional distribution of X + Y given X − Y has (with probability 1)

an absolutely continuous density whose logarithm is square integrable. It means

that IX,Y < ∞ does not necessarily imply absolute continuity of (X, Y ) but the

conditional distributions of (X, Y ) on the straight lines parallel to the main diagonal

X = Y must be absolutely continuous (with respect to the linear Lebesgue measure)

with probability 1.

This observation can be generalized to a higher dimensional setting. Suppose

that X = (X1, . . . , Xn) is a random vector with distribution F (x1 − θ, . . . , xn − θ).

Then the Fisher information is finite

IX1,...,Xn <∞

only if the conditional distributions of (X1, . . . , Xn) on the straight lines parallel to

the main diagonal

X1 = X2 = . . . = Xn
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have absolutely continuous densities admitting finite information with probability

1.

Kagan (unpublished manuscript) studied the case of X ∼ Nn(θ · 1,V) with a

singular variance-covariance matrix V, and got a necessary and sufficient condition

for IX = ∞, in which case there exists some unbiased constant estimator of θ. In

terms of V, IX = ∞ if and only if

rank(C) < rank(C̃), (3.36)

where C = [ci,j]i,j=1,...,n is the root matrix such that V = (C)TC and

C̃ =



1 . . . 1

c11 . . . cn1

...

c1n . . . cnn


.

Notice that (3.36) holds true if and only if the vector [1, . . . , 1] is not in the row

space of C, say, the probability of X concentrates on a hyperplane not parallel to

the main diagonal. It is an example demonstrating Theorem 3.5.1

Remark 3. Port and Stone(1974) also dealt with the Fisher information IU,V as

defined in (3.28). In order to eliminate the singularity, they started with the pair

(U+σZ, V ), where σ is a positive constant and Z is an independent standard normal

random variable. By adding this smoothing factor, U + σZ always contains finite

Fisher information on θ, and they proved that

lim
σ→0+

IU+σZ,V = sup
φ∈C1

c (R2)

{E0[∂Uφ(U, V )]}2

E0[φ(U, V )]2
.
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They also proved the following important properties of the information:

(i) Additivity. If (Ui, Vi) ∼ Fi(u− θ, v), i = 1, . . . , n, is an independent sequence of

random vectors, then

IU1,V1,...,Un,Vn =
n∑
i=1

IUi,Vi
.

(ii) Monotonicity. If W is independent of (U, V ) and does not depend on θ, then

IU,V,W = IU,V .

Additionally, if W is a measurable function of V , then

IU+W,V = IU,V and IU,W ≤ IU,V .

It remains an open problem to prove the classic monotonicity formula of the infor-

mation. That is, if (U ′, V ′) is a measurable function of (U, V ), then IU ′,V ′(θ) ≤ IU,V .

The inequality becomes an equality if (U ′, V ′) is a sufficient statistic of θ.

(iii) Reparametrization formula. If c 6= 0 and (U ′, V ′) ∼ H((u − θ)/c, v), then

c2IU ′,V ′ = IU,V , where (U, V ) ∼ H(u − θ, v). When the reparametrization is not

linear, the formula is not known to us.

(iv) Cramér-Rao inequality. Notice that the information in (3.26) and (3.28) are

both defined as the reciprocal of the variance of the optimal equivariant estimator.

It remains an open problem whether the variance of an arbitrary, not necessarily

equivariant, estimator is also bounded by the same quantity. Port and Stone proved

the following inequality, which casts some light on the question: if Var(U) <∞ and

θ̂(σ) is an unbiased estimator of θ from the observation (U + σZ, V ), then for any

σ > 0

Var[θ̂(σ)] ≥ 1

IU+σZ,V

.
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It is unknown whether a similar inequality holds true for the limiting case where

σ = 0.
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Chapter 4

Unsolved Problems

There are some open problems related to the above results. All those problems

of certain interest will be formulated in this chapter.

1. If X1, . . . , Xn is a sample of size n from F (x− θ) with an unknown location

parameter θ, then there is no general proof of monotone decrease in n of Var(θ̂n) for

the MLE θ̂n. Is there a proof in situations like F belongs to a (natural) exponential

family?

2. If F is absolutely continuous, and S(X1, . . . , Xn) is a sufficient statistic for

θ, then one can easily prove that tn is a measurable function of S. Give a proof of

the same statement when F is not absolutely continuous.

3. Given a sample of size 1: X ∼ F (x− θ), X is the Pitman estimator of θ. Is

X also the UMVUE for θ? Moreover, one may wonder if X is a complete statistic

for θ. By definition, X is complete sufficient for θ if and only if

∫ +∞

−∞
f(x)dF (x− θ) = 0, ∀θ

⇒ Pθ{f(X) = 0} = 1 ∀θ.

Is this statement true for any probability distribution F? If not, how can one

characterize those F admitting such a statement? This analytical problem itself is

of some independent interest in real function theory.

4. In the setup of linear regression, independent (but no longer identically
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distributed) observations are of the form

Xi = ai1θ1 + . . .+ aisθs + εi, i = 1, . . . , n

with a design matrix (air) assumed known. Then θ ∈ Rs can be considered, in a

sense, a multivariate location parameter. Extend the idea of equivariance to the

regression problems.

5. In Section 2.1, it is shown that if Var(tn) < ∞ for some n and IX1 < ∞,

then

nVar(tn)−→
1

IX1

, n→∞.

Does it still hold in the case of IX = ∞?

6. In Corollary 2.1.1, the result is proved for samples X and Y from the same

population distribution. Is it possible to be generalized to the case where X and Y

are from two independent but not necessarily identically distributed populations?

7. In Theorem 2.3.1, it is proved that for independent samples (X ′
1, . . . , X

′
n)

and (X ′′
1 , . . . , X

′′
n)

Var[tn(X
′
1 +X ′′

1 , . . .)] ≥ Var[t′n(X
′
1, . . .)] + Var[t′′n(X

′′
1 , . . .)].

A stronger version of the same inequality (2.31) allows dependence between the

samples in the following way:

X ′
k = Uk +Wk, X

′′
k = Vk +Wk, 1 ≤ k ≤ n,

where Uk, Vk and Wk are some independent random variables. Can we strengthen

the inequality such that it requires only certain conditions in the moments of the

samples?
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8. In section 2.3.3, we studied the linear approximations of the Fisher score

J(X + Y ) in some finite dimensional spaces. They possess a property similar to

equation (2.28), which is the basis of the classical Stam inequality. Does the Stam

inequality holds true for the information associated with these approximate scores?

9. In Theorem 2.3.4, it is proved that Var(tX′+λX′′) is monotone in λ when

X ′′ is self-decomposable. Prove or disprove the statement when X ′′ is not self-

decomposable.

When X ′′ is Gaussian, Port and Stone (1974) proved that

IX′+λX′′ −→ IX′ , λ→ 0+,

where IX′ on the right hand side is Huber’s information defined in (1.23). Try to

analyze the expression when X ′′ is self-decomposable, but not necessarily Gaussian.

10. In Chapter 3, the characteristic function (3.3) defines a family of distribu-

tions. Describe these distributions in terms of their distribution functions.

11. In Remark 3, Section 3.5, there is a list of open problems associated with

the information IX,Y defined in (3.26). IX,Y shares some common properties with

the classical Fisher information. The proof to some of them are not obvious.

12. Extend the conclusions from this thesis to the case of a general parameter.
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Sankhyā, 18, 211-224.

[6] Balakrishnan, N. and Cohen, A.C. (1990) Order statistics and inference - esti-
mation methods, Academic Press.

[7] Barron, A. (1986) Entropy and the Central Limit Theorem, Ann. Prob. 14(1),
336-342.

[8] Billingsley, P. (1986) Probability and measure, 2nd ed., Wiley, New York.

[9] Blachman, N. (1965) The convolution inequality for entropy powers, IEEE
Trans. Inform. Theo., IT-11:267-271.

[10] Bondesson, L. (1974) A characterization of the normal law, Sankhyā, A36,
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