
Learning Response Time for WebSources using Query Feedbackand Application in Query Optimization �Jean-Robert GruserNetforce, Levallois-Perret, Francegruser@netforce.frLouiqa RaschidInstitute for Advanced Computer StudiesUniversity of Maryland, College Park, MD 20742louiqa@umiacs.umd.eduVladimir ZadorozhnyInstitute for Advanced Computer StudiesUniversity of Maryland, College Park, MD 20742vladimir@umiacs.umd.eduAbstractThe rapid growth of the Internet and support for interoperability protocols has increased the numberof Web accessible sources, WebSources. Current optimization technology for wrapper mediator architec-tures needs to be extended to estimate the response time (delays) to access WebSources and to use thisdelay in query optimization. In this paper, we present a Multi-Dimensional Table (MDT), a tool thatis based on learning using query feedback from WebSources. We describe the MDT learning algorithms,and report on the MDT learning for WebSources. The MDT uses dimensions Time of day, Day, andQuantity of data, to learn response times from a particular WebSource, and to predict the expected re-sponse time (delay), and a con�dence in this prediction, for some query. Experiment data was collectedfrom several WebSources and analyzed, to determine those dimensions that were signi�cant in estimatingthe response time for particular WebSources. Our research shows that we can improve the quality oflearning by tuning the MDT features, e.g., including signi�cant dimensions in the MDT, or changingthe ordering of dimensions. We then demonstrate how the MDT prediction of delay may be used by ascrambling enabled optimizer. A scrambling algorithm identi�es some critical points of delay, where itmakes a decision to scramble (modify) a plan, to attempt to hide the expected delay by computing someother part of the plan that is una�ected by the delay. We explore the space of real delay at a WebSource,versus the MDT prediction of this delay, with respect to critical points of delay in speci�c plans. Weidentify those cases where MDT overestimation or underestimation of the real delay results in a penaltyin the scrambling enabled optimizer, and those cases where there is no penalty. Using the experimentaldata and MDT learning, we test how good the MDT is in minimizing these penalties.1 IntroductionArchitectures based on wrappers and mediators [27] have been proposed in [1, 6, 13, 17, 18, 19], to provideaccess to data in heterogeneous sources. In such an architecture, wrappers handle query processing onindividual sources. The mediator solves the task of capability based rewriting (CBR) to determine the�This research has been partially supported by the Defense Advanced Research Project Agency under grant 01-5-28838; theNational Science Foundation under grant IRI9630102, and INRIA Rocquencourt, France.1

(sub)query to be sent to a source, depending on the capability of each source. A mediator also handlesquery optimization for wrapper (sub)queries and the mediator (composition) query. The rapid growth ofthe Internet and Intranets, vendor support of database interoperability protocols such as JDBC [14], andOLE/DB [4], and the emergence of formats such as XML-Data [12], that facilitate the exchange of datavia the WWW and the HTTP protocol, has dramatically increased the number of available Web accessiblesources, WebSources.Scaling a mediator architecture to deal with WebSources introduces the challenge of correctly estimatingthe response time, or delay, in accessing data from a WebSource. Developing a cost model for WebSourcesmust deal with the following drawback: there is a lack of accurate statistics, e.g., selectivity estimates forqueries; knowledge about load on the server, access paths, and the cost of physical algorithms executed onWebSources. There is also little knowledge about the impact that dimensions such as time of day, day,network topology, etc., can have on the time to transfer the results.There has been some research on wide area tra�c patterns for the Internet [21]. In [26], statistical modelsare applied to measurements of service requests at proxy servers, to detect failure patterns. Models usingmetrics such as number of hops, ping timing, and http request service times have been studied, to compareperformance among replication servers [20]. Our research is in a similar spirit; we use learning based on queryfeedback, to predict response times from a particular WebSource. There is increasing interest in developingbenchmarks to compare WebSource performance [8, 23]. The parameters that are used here are low levelnetwork and system parameters, and are speci�c to the server. They do not model the client or predictdelays at the client. The Network Weather Service, NWS [28], is a general facility that provides dynamicresource performance forecasts for wide area networks. It uses intrusive resource monitoring; a distributedset of sensors gather data on current network and server conditions. Such data could also be used to predictresponse time (delay) at WebSources.Several solutions have been proposed for mediator query optimization; however they have not consideredthe characteristics of WebSources. Research reported in [5, 7] assumes that calibration databases can beconstructed on remote sources, i.e. they accept updates. A generic cost-model is calibrated by experimentson a calibrating database created in each source. Unfortunately, most WebSources do not accept updates.The DISCO project [22] contacts wrappers to get the cost of each plan. DISCO assumes that the wrapperfor each source provides a description of the available physical operators and their corresponding costs.However, most WebSources do not model or communicate such information. Research reported in [25] alsoassumes that costs for accessing data from sources is known a priori. The approach used by the HERMESsystem [1] can be adapted to model WebSources, since their model uses only query feedback. However, theydo not develop a robust model for learning and prediction that can handle the unpredictable nature of widearea networks. To summarize, all these solutions for developing mediator cost models have the drawbackthat they either expect unavailable information from WebSources, or they do not deal with the somewhatunpredictable behavior of WebSources, due to unpredictable loads on the source and network, noise, etc.2

There are two main contributions of our research, to solve the problem of query optimization in a mediatorwith WebSources. The �rst contribution is the development of a tool, a Multi-Dimensional Table or MDT,that uses learning based on query feedback (response time) to predict the response time for a query in aparticularWebSource. Unlike models based on low level network and server parameters, the MDT learning isat a high level, using dimensions Time of day, Day, and Quantity of data transferred, to predict the responsetime for a particular query on a particular WebSource, and to determine a con�dence in this prediction. TheMDT approach has some advantages over other learning based techniques such as regression techniques orneural networks. One advantage is the simplicity of the MDT prediction model. The second is the exibilityprovided by the MDT to manipulate a number of parameters that control learning. The third advantage isthat while the dimensions chosen may reect the e�ects of source and network usage, a (lack of) con�dencereects the unpredictable nature of prediction for WebSources.Query feedback was obtained from a number of WebSources. Statistical tests were used to determinethose dimensions that were indeed signi�cant in predicting the response time (delay) for a particular source.The MDT was then trained on the collected data. Our experimental study shows two signi�cant resultswith respect to MDT learning. The �rst result is that the MDT does learn, and that as it is trained, the(cumulative) error decreases, and the con�dence in the prediction increases. The second result is that wecan improve the quality of learning by tuning the MDT features, such as including signi�cant dimensions inthe MDT, or changing the ordering of signi�cant dimensions in the MDT.The second contribution of our research is a study of how the delay or response time prediction by theMDT, and the con�dence in the prediction, may be used to enhance a traditional query optimizer. Wenote that in this research, we do not distinguish between initial delay and response time (time to get the�rst answer); we hope to do so in future work. If an optimizer had perfect knowledge of the delay, then itwill always identify the best plan. However, this knowledge is typically unavailable. A scrambling enabledoptimizer makes optimization decisions during run-time, using estimated delays [24]. Such an optimizer hassome critical points for each plan, where it makes a decision to scramble (modify) the plan, to attempt tocover the expected delay at a WebSource, by computing some other part of the plan that is una�ected bythe delay. We explore the space of real delay versus the MDT prediction of this delay, with respect to criticalpoints of delay in speci�c plans. We identify those cases where MDT overestimation or underestimation ofthe real delay is unsafe, and incurs a penalty by the scrambling enabled optimizer, and those cases wherethe prediction error is safe, and there is no penalty. Using the experimental data and MDT learning, we testhow good the MDT is in minimizing these penalties.This paper is organized as follows: In section 2, we describe the MDT structure and features to tune itslearning. We then describe the MDT learning process; and the technique for predicting the response timeand the con�dence in the prediction. In section 3, we describe the experimental data collection task, and theanalysis of the data, to determine those dimensions that are signi�cant for particular WebSources. In section4, we report on training the MDT, and the results of MDT learning on WebSources. We also compare with3

related work on learning and prediction. In section 5.1, we describe the technique of query scrambling, anddiscuss critical points during scrambling. In section 5.2, we discuss the impact of MDT overestimation andunderestimation of the delay; the cases in which this can be done safely without incurring a penalty; andthe cases in which there is a penalty. In section 5.3, we use the MDT prediction of delay, together with ourexperimental data, to determine how good the MDT is in minimizing these penalties. Section 6 concludes.2 The Multi-Dimensional Table (MDT)We use a parameterized Multi-Dimensions Table (MDT), to collect response times based on query feedback,and we use a simple learning technique to predict the response time for some query. For each prediction,the MDT will also determine the con�dence in that prediction. We describe the structure and dimensionsof the MDT, and the features that are used to tune the learning algorithm. We then describe the learningalgorithm and explain how the predicted response time and the con�dence in the prediction is determined.2.1 Structure of the MDT and Features for TuningThe structure of the MDT is determined by (1) a set of dimensions; (2) the ordering of these dimensions;and (3) the ranges / scales of these dimensions. The MDT that we use in this research has three dimensions,Quantity of data, Day and Time. The dimensions and their ranges / scale are as follows:� The Day of the week. This dimension has a range of seven days, and the minimum scale for thisdimension was chosen as one day.� The Time of day. This dimension has a range of 24 hours, and the minimum scale for this dimensionwas chosen as one hour.� The Quantity of data that is transferred. This dimension does not have a �xed range. Based on ourexperimental data, the minimum scale that we chose was multiples of 100 Kilobytes, and the rangewas from [0 - 800 Kilobytes].The MDT structure is determined by the ordering of these dimensions and in our experiments in a latersection, we will discuss the impact of the ordering on the MDT learning . The initial MDT consists of onecell, and the range of its dimensions correspond to the ranges described above. During the learning process,each query feedback qfb is represented by a value for Time, Day and Quantity, and response time QryRT .The values for Time, Day and Quantity will be matched to identify the corresponding cell of the MDT. Apredicted response time PredRT and a con�dence pred conf are also associated with that cell. The MDTlearning process may then decide, based on the query response time, QryRT of qfb, to either split this cell,into two or more cells, or to adjust the PredRT and the con�dence for this cell. Details of the learningalgorithm will be described shortly. For simplicity, we assume that except in the case of the dimension Day,4

Monday-Friday Saturday-Sunday8am-2pm 2pm-8pm 8pm-8 am 12am-12am<200K 200K-400K 400K-600K >600K <200K 200K-400K >400K 0-MAX 0-MAXFigure 1: An Intermediate MDT Structurethe cell splitting will divide the range of the selected dimension into two equal ranges1. The minimum scaleof each of the dimensions will determine the (�nal) MDT structure, when it can no longer split into morecells on any dimension. For example, when the Time dimension has been split into 24 cells, each with aone hour range, then no further splitting on that dimension is possible. An example of an MDT structure,at some intermediate point, is in Figure 1. Here the ordering is Day-Time-Quantity, where Day is mostsigni�cant.The ordering of dimensions and scale of the dimensions can be used to control (tune) the learning process.Three other features that are also used to control the learning are as follows:� The allowed deviation dev of the error in response time. This value of dev is speci�ed for each dimension.The error err = jQryRT�PredRT jQryRT , where PredRT is the MDT prediction for some cell, and QryRT isthe response time of some query feedback qfb that matches that cell. The allowed deviation for eachdimension is used to determine if the matching cell should be split on that dimension, when qfb isreceived, and will be explained later.� The precision prec for each dimension. The prec = 1 � Range:max�Range:minCell:max�Cell:min . The smaller the rangeof the individual cell, compared to the range of the dimension, the greater is the precision. The initialprecision for the initial single cell MDT is 0 for each dimension. The precision will be a factor indetermining the con�dence in the predicted response time for that cell.� The con�dence window confwin which is selected for each dimension. Con�dence is in the range [0.0 -1.0] and the con�dence window can be selected within that range. A typical window may be [0.3, 0.7].2.2 Learning in the MDT based on Query FeedbackFigure 2 describes the simple learning algorithm for the MDT. We now describe the learning algorithm.Each query feedback qfb is described by a value for Day, Time, and Quantity. It also has a response timeQryRT . The matching MDT cell whose dimensions match qfb is identi�ed; it is described by a currentprediction PredRT , and current con�dence pred conf , for each dimension. We determine the error, for thatcell. Recall that the MDT is described by an ordering ord of the dimensions, and each of these dimensionsis described by an allowed deviation dev and a precision prec and a con�dence window confwin.1In our implementation, cell splitting is often more complicated and the two cells may not always have equal ranges aftersplitting. 5

Learning Algorithm(qfb[day,time,qty,QryRT))For the cell[PredRT,pred conf] of the MDT whose dimensions match Day, Time and Qty values of qfbFor each dimension dim[dev,prec,confwin] in the ordering ordIf Within Deviation(qfb,cell,dim) correct(cell.PredRT , cell.pred conf)Else split MDT(qfb,cell,dim)Figure 2: The Learning AlgorithmStarting from the most signi�cant dimension in ord, we compare the error err of that qfb, with theallowed deviation dev, for that dimension. Suppose err is more than dev, for that dimension. Then, if itis possible, i.e., the cell is not at the minimum scale for that dimension, the cell is split on that dimension.Recall that for simplicity, we assume that the split is into two cells, and each cell has equal range. Onlyone of the (split) cells will now match the dimensions of the qfb. The new PredRT for this new cell is setto QryRT and the new pred conf is 0. The values of PredRT and pred conf of the other split cell remainunchanged since the qfb no longer matches that cell.If indeed there is a split on the dimension, then the learning algorithm will be called recursively,for each subsequent dimension, in decreasing order of ord. Again, depending on dev for each dimen-sion, a decision must be made whether to split the new cell, on the next most signi�cant dimension,into further new cells. Consider the MDT structure of Figure 1. Suppose there is a qfb on Satur-day at 1am, and the calculated err is greater than dev for both Day and Time. Then, the learningalgorithm will �rst split the cell [(Saturday-Sunday),(12am-12am)] on the dimension Day, and cre-ate two new cells, [(Saturday),(12am-12am)] and [(Sunday),(12am-12am)]. Next, the algorithm willsplit the dimension Time of the �rst new cell, and create two new cells [(Saturday),(12am-12pm)] and[(Saturday),(12pm-12am)].Suppose instead that err is less than the allowed deviation dev of some dimension of that cell, or thatthe cell cannot be split any further on that dimension. In this case, we adjust the PredRT and pred conffor that cell to reect the qfb. First, we calculate the con�dence in the new QryRT of qfb.Each MDT cell will have a bu�er that stores the last N values of qfb that matched this cell. Using thevalue of err for the current dimension, we count the number of matching qfb in the bu�er. A matching qfbis one such that the di�erence in QryRT between qfb in the bu�er and the new qfb, normalized by QryRTfor new qfb, = jbufferqfb:QryRT�newqfb:QrtRT jnewqfb:QryRT is less than err. This count is NumMatchingBuffer. Then,the con�dence in QryRT = (NumMatchingBuffer � precision).Once this qry conf is determined, then the PredRT and the pred conf for the cell must be recalculatedto reect the new qfb values. We discuss several cases as follows:� Both pred conf and qry conf are low and below confwin, the con�dence window for the dimension.This typically occurs in the initial learning stages or when there is noise. The adjusted value of6

PredRT = pred conf�PredRT+qry conf�QryRTpred conf+qry conf is calculated.If err is large, then there is little con�dence in the estimated value PredRT or the new value QryRT .So the con�dence for that cell is adjusted to the min(pred conf ,qry conf).However, if the err is small, then both QryRT and PredRT are close to each other, and the con�dencein that cell's prediction should be increased. The con�dence pred conf is increased using a weightedaverage and pred conf = pred conf�NumberOfV alues+qry confNumberOfV alues+1 , where NumberOfV alues is the numberof prior qfb values that were used to learn the old PredRT and con�dence. Using a weighted averageslows MDT learning, but has the advantage of making the MDT less sensitive to noise.� The qry conf is below confwin and pred conf is in confwin or higher. This occurs when there issome spurious noise, after some learning. We say there has been learning since pred conf is high. ThePredRT and pred conf are adjusted using the formula described previously, where err is small. Wenote that since qry conf is below confwin, the adjusted pred conf will be lower than before receivingqfb. However, if this new qfb is indeed noise, then few values in the bu�er for that cell will matchthis new qfb and so NumMatchingBuffer and qry conf will be low. Thus, pred conf will reduceslowly and PredRT will also change slowly. However, if there has been a long burst of noise, then theNumMatchingBuffer may be higher, and qry conf may be low. This has the potential to interferewith MDT learning.� Both pred conf and qry conf are high and within or above confwin. This is a re�ning stage of thelearning and the new pred conf will be increased. The PredRT and pred conf are adjusted using theformula described previously for small err.� There are several cases that should not occur. For example, it cannot be the case that both pred confand qry conf are high and within or above confwin, but err is large. This would indicate that theMDT has entered an unstable state. We do not provide details here but refer the reader to [9].The learning behavior of the MDT was studied using simulation, based on various distributions for theresponse time of qfb. For lack of space we do not include the results here, and refer the reader to [9].3 Experiment Data Collection and Analysis for WebSourcesExperimental qfb were collected from various sources, to be used in an experimental evaluation of the MDT.Our experiment used the Java URLConnection class [15], and this class used the http protocol to download�les from WebSources. We set the ag setUseCaches to false, so that the �le would always be loaded fromthe WebSource. We used the Java class Calendar to time the experiment. We accessed two kinds of sources.One class was university servers; their country location, server URL, and the label to refer this WebSourceis as follows: fBrazil www.lbd.dcc.ufmg.br (BR), Australia broncho.ct.monash.edu.au (OZ), Canadawww.cs.toronto.edu (UT), France www-rodin.inria.fr (INR), USA www.umiacs.umd.edu (UM)g. For7

these servers, the impact of network load was typically more severe, compared to the number of users on theservers. Brazil and Australia had typically much longer response times. From these servers, we were able torequest �les of pre-selected size ranging from 100 Kilobytes to 800 Kilobytes. The second class of server wascommercial servers. They included the NBC news server, www.msnbc.com (NBC), which is aliased to fourservers on the same subnet; the news server for the Le Monde French daily, www.lemonde.fr (LeM); and aweather server, www.weather.com (WTH), which is aliased to two servers on di�erent networks. Althoughthese URLs were sometimes aliased to multiple physical servers, we made a decision to treat a server URLas a single WebSource, and estimate the response time at the client, for the single logical WebSource2. Forthe commercial servers, user load was also a factor that could a�ect response time. Since we were not ableto place pre-selected �les on these servers, we identi�ed gif �les varying in size from 50 Kilobytes to 800Kilobytes. However, on some servers, e.g., www.lemonde.fr, we could not locate many large �les, and thisis reected in our analysis of the data.The data collection experiment was straightforward. At timed intervals, our data collection programrandomly selected one or more �les located at the source, downloaded the �le, and recorded the response time,i.e., the elapsed time to download the page, using the http protocol, and to stream the page into programmemory. The client was a machine within the University of Maryland network cluster umiacs.umd.edu.The data was collected over several weeks, from June - October 1998.Figure 3 shows some sample response time data collected from OZ for some 3100+ qfb. It has been sortedby (increasing) Quantity. The emerging pattern indicates that the dimension Quantity is signi�cant withrespect to the response time.We analyzed the collected data using the �2 contingency test for categorical data, to determine if thedimensions Day, Quantity and Time, were signi�cant, with respect to the response time. We performed thetest on the pairs of variables, Day and response time, Quantity and response time, etc. We briey describehow the data was pre-analyzed to prepare it for testing, and then present the summarized results of ouranalysis in Figure 4.The test required us to prepare contingency tables, where one axis of the table was the response timeand the other axis was the MDT dimension. Since the �2 test is applied to categorical data, we needed toidentify appropriate categories for each dimension and for the response time. The number of categories forthe MDT dimension Day was 7, and it was 8 for Time, where we considered contiguous 3 hour blocks from12 am to midnight 3. Determining the categories for Quantity was more complex. In some sites, we had8 categories, [less than 100 Kilobyes, 100 to 200 KiloBytes,� � �, greater than 700 Kilobytes]. In other sites,where all the �les were less than 100 Kilobytes, we could not test the e�ect of this dimension.The most critical task was identifying the categories for the response time, since the response times variedwidely among all the sources. Our �rst step in identifying the categories was eliminating outlier data. This2This appeared to be reasonable since most clients do not di�erentiate the various physical servers aliased to a URL.3We chose a 3 hour block for the dimension Time in order to have a similar number of categories in each dimension.8

Experiment RT

Response Time (ms) x 103

3Query x 100.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00Figure 3: Response Time Sorted by Quantity for WebSource OZ
Source

Dimension

Day Time Quantity

BR

LeM

OZ

UM

UT

WTH

INR

Source Day Time

BR

INR

LeM

OZ

UM

UT

WTH

N/A -- The sample data set is too small to determine significance
? -- May be significant

O1 O2 O1 O2 O1 O2

O3 O4 O3 O4

NO YES

? ? YES

YES N/A

NO NO YES

NO NO YES

NO NO YES

? YES N/A

YES

?

NO

YES YES YES

YES YES N/A

YES NO YES

NO NO YES

NO YES YES

YES YES

YESYES

N/A

YES YES

YES YES

N/A N/A

YES ?

NO

? ?

NO YES

NO YES

YES YES

YES YES

YES NO

NO

YES

YES YES

NO

NO

?

Dimension

Figure 4: Table Summarizing the Statistical Analysis of Experiment Data9

was either the very small or the very large values. We had a large number of cases where the http requesttimed out. The outlier data was eliminated recursively, starting from both the largest and the smallestvalues. Once the typical range [min, max] was identi�ed for that source, we divided the response time into3 categories, small, medium and large. The division of the range is identi�ed by 3 integers, e.g., 30-30-40.Thus, the small response time are values in the range [0, min + (max-min)*.3], etc. We tested our datawith a variety of ranges for the integers, e.g., 25-50-25, to determine sensitivity to this choice. The degreesof freedom for the contingency tables varied, depending on the dimension. We used an � of 0.01 to make adetermination of signi�cance, i.e., a level of 99% con�dence in the test, and we tested that we had su�cientsample size in each cell of the contingency table.We performed four analyses of the data, leading to four sets of observations, labeled O1 to O4 in Figure4. In observations O1, we did not consider outlier data outside the typical range of [min,max] for theWebSource. However, in many cases, when the request timed out, it implied that the response time wasindeed very large. Thus, in the observations labeled O2, we considered all the timed out instances as largeresponse times. In Figure 4, we identify when a dimension is signi�cant (YES) or is not signi�cant (NO), inpredicting the response time, for the source. A symbol ? in the table indicates that we could not determineif the dimension was signi�cant. A N/A value indicates that this test could not be performed due to lack ofsu�cient data4.For all of the sources, the dimension Quantity was signi�cant 5. In observation O1, Time was signi�cantfor BR and WTH. Day was not signi�cant for any of the WebSources. When we also considered outlier data inO2, additional dimensions became signi�cant. The dimension Day was signi�cant for INR, LeM, OZ and WTH,and Time was signi�cant for all WebSources except OZ and UM. The �2 test value for Quantity indicated thatthe signi�cance of this dimension could overshadow the other dimensions. Thus, in O3, we only consideredresponse times for large �les, and in O4, we only considered response times for small �les. The results indicatethat when we minimized the e�ect of Quantity, the signi�cance of Time and Day was more clearly identi�ed,e.g, for INRIA, a may be signi�cant result for dimension Day and Time in O1 was proved to be a yes in O3and O4. For OZ a not signi�cant result on Day in O1 became signi�cant in O3 and O4.Details of the �2 contingency test values from which we drew our conclusions, for observation O2 are inAppendix A. Details of the complete data analysis are in [9].4 Results of MDT Learning with Experimental DataWe describe the results of MDT learning, to predict the response time, for the WebSources described above.Our experimental study shows two signi�cant results. The �rst result is that the MDT does learn, and that asit is trained, the prediction error decreases, and the con�dence in the prediction increases. The second result4We omit the analysis of data from NBC since the sample size was too small.5For LeM we could not perform this analysis, since the �les were small.10

is that we can improve the quality of learning by tuning the MDT features. The MDT learning is improvedwith the inclusion of those dimensions that are found to be signi�cant, for some source, determined in theprevious analysis of the data, or a good ordering of those dimensions that are signi�cant. Conversely, theMDT learning is worse when signi�cant dimensions are not included, or with a poor ordering. We summarizethe more interesting results, and details are in [9].We use the (absolute) relative error jQryRT�PredRT jQryRT to track MDT learning. A better indicator tocharacterize the learning process is the cumulative mean squared relative error (msre). This expression is�(QryRT�PredRTQryRT)2N , where N is the number of predictions. We also use the con�dence in the predictionpred conf , which was discussed previously.4.1 MDT LearningOur �rst result that the MDT does learn is shown in Figure 5a, which shows relative error, and in Figure5b, which shows cumulativemsre. The MDT is trained on approximately 3100+ experimental qfb from theWebSource labeled OZ, i.e., queries from the United States to Australia. Figure 6a has the correspondingcon�dence values for the MDT learning on these queries. As can be seen, both relative error and cumulativemsre are initially quite signi�cant, as the MDT starts learning. The corresponding con�dence in the predic-tion also swings very rapidly, indicating that the MDT predictions are not in a stable state. However, afterabout a 1000 qfb, the cumulative msre gradually stabilizes. The con�dence in the prediction correspond-ingly increases and does not vary as much. After about 2500 qfb, the con�dence in the prediction variesbetween [0.90 - 0.95], indicating that the MDT is very con�dent in its prediction. The cumulative msre hasalmost leveled o�, indicating that learning is occurring very slowly at this point and the MDT learning hasstabilized. Figure 6b shows cumulative msre during MDT learning for WebSources UT and UM. A similarpattern of MDT learning is observed.In the OZ experiment, the MDT used two dimensions, Quantity and Day. We note that an MDT withthree dimensions, and the range and scale used in our experiments, has a maximum of 1344 cells, in theinnermost dimension or the ordering, if the (deviation of the) value of qfb response time had led to maximumsplitting on all dimensions. With a training set of approximately 3100+ qfb, as in OZ, there is an averageof less than three qfb per cell, and this a sparse training set. Typically, the MDT does not split to themaximum number of cells.4.2 E�ect of Ordering of the Dimensions on LearningWe now show that a correct ordering of dimensions, that matches those dimensions found to be signi�cant forsome WebSource, can improve MDT learning. Omission of those dimensions that are found to be signi�cant,or a poor ordering, has a negative impact on MDT learning.We consider the WebSource OZ, for which Quantity and Day were the most signi�cant dimensions. Figure7a shows the MDT learning, using the cumulative msre, for ordering Q-D, i.e., when Quantity is the most11

(a)

 Relative Error

Relative Error

3Query x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

(b)

 Cummulative msre

Cummulative msre

3Query x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

0.00 1.00 2.00 3.00Figure 5: Relative Error and Cumulative msre during MDT Learning for WebSource OZ
(a)

 Estimation Confidence

Confidence

3Query x 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 1.00 2.00 3.00

(b)

 UT WebSource

 UM WebSource

Cummulative msre

3Query x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00Figure 6: Con�dence in MDT Prediction for WebSource OZ (a) and Cumulative msre for WebSources UTand UM (b) 12

signi�cant dimension, and then for D-Q. As is clearly indicated, the ordering Q-D is superior. Our statisticalanalysis of the data indicates that Quantity is the most signi�cant dimension, and has the greatest impacton predicting the response time, in particular for sources OZ and BR, where response times are often verylarge. This �gure shows that the poor ordering D-Q, with respect to the signi�cant dimension Quantity, hada negative impact on the MDT learning.
(a)

 Q-D order

 D-Q order

Cummulative msre

3Query x 10-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

(b)

 Q-D order

 Q-T order

Cummulative msre

3Query x 10-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00Figure 7: Comparison of Ordering Q-D, D-Q (a) and Q-D, Q-T (b) on MDT Prediction for OZFigure 7b shows the MDT learning for the ordering Q-D and compares it with the ordering Q-T, using thecumulative msre. Recall that Day was also a signi�cant dimension for the dataset OZ. Thus, the predictionof ordering Q-T, which does not consider the dimension Day, is somewhat poor, compared to the MDT withordering Q-D, which does consider the dimension Day. This indicates that omitting a signi�cant dimension,Day, has a negative impact on the MDT learning. We further note that compared to Figure 7a, the MDTwith ordering Q-T performs better than the MDT with ordering D-Q. This shows that the omission of asigni�cant dimension, Day, appears to have less impact, compared to the error of a poor ordering D-Q, withrespect to the very signi�cant dimension, Quantity. This is consistent with our understanding of signi�canceof the dimensions in prediction.Finally, in Figure 8, we display the MDT with orderings Q-D-T, Q-T-D and Q-D. The MDT withordering Q-D-T performed better than Q-D. While our statistical tests did not provide a clear indicationthat the dimension Time was signi�cant for OZ, our MDT learning seems to indicate that the inclusion ofthis dimension does provide a slight bene�t in the learning. We also see the e�ect of a poor ordering. Whilethe ordering Q-T-D includes the two signi�cant dimensions Quantity and Day, there is a poor ordering of13

Day with respect to Time, i.e., Q-T-D instead of Q-D-T, since Day is more signi�cant. This has a negativee�ect on the learning. Thus, the MDT with ordering Q-D performed better than the MDT with orderingQ-T-D, since the ordering Q-D is superior to Q-T.
 Q-D order

 Q-D-T order

 Q-T-D order

Cummulative msre

3Query x 10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

0.00 0.50 1.00 1.50 2.00 2.50 3.00Figure 8: Comparison of Ordering Q-D, Q-D-T and Q-T-D on MDT for OZ4.3 Evaluation of the Trained MDTFinally, we tested the MDT performance on test data, after training it on some training data. Both testand training data were obtained in a similar manner during our data collection. For this experiment, wetrained the MDT by sending it some initial qfb from the WebSource. Once the MDT is trained, we no longerallowed the MDT to learn by sending it qfb. Figure 9a shows the relative error after the MDT was trainedon 3100+ qfb. Figure 9b shows the cumulative msre for di�erent sizes (approximately 300, 1400 and 2900qfb) of training data.As indicated in Figure 9b, when the training data was fairly small, e.g., 300 qfb, the MDT is notstable and the error is greater. Our previous experiment indicated that the MDT started stabilizing afterapproximately 1000 qfb. Thus, the MDT prediction improves after training it on larger sets of qfb.4.4 Comparison with other Learning TechniquesWe now consider other learning techniques. Compared to the MDT learning, neural networks [10] typicallyexhibit sophisticated learning behavior. However, a neural network is very sensitive to the training data, sinceit does not allow direct manipulation of the training process. In contrast, the MDT learning, while simple,14

(a)

 Relative Error

Error

Query

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.00 50.00 100.00 150.00 200.00 250.00 300.00

(b)

 MDT trained on 300 queries

 MDT trained on 1400 queries

 MDT trained on 2900 queries

Cummulative msre x 10-3

Query-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

400.00

100.00 200.00 300.00Figure 9: Testing the MDT Prediction After Learning - Relative Error and Cumulative msreallowed us to directly manipulate features that controlled the learning, enabling us to better understandthe behavior of the experimental data itself. In future work, we plan to train a standard back propagationneural network with our experimental data, to make an empirical comparison with MDT learning.CART [3] is a classi�cation and regression algorithm. Using a set of classi�cation variables, it adopts abinary recursive splitting, and successively partitions the data into discrete subgroups, based on each possiblyrelevant variable, until further splitting is infeasible. CART is also sensitive to the ordering of variables.In comparison, the MDT learning is less complex, since it identi�es a split directly, using a �xed alloweddeviation value for each dimension. This is less costly than the regression that is performed by CART todetermine the split. We further note that the MDT can split a range into multiple subranges (cells), and itprovides other tuning features such as precision of each dimension. In addition, the MDT uses the con�dencewindow, and the bu�er of qfb in each cell, to overcome the e�ects of noise.The MDT learning resembles the classi�cation task to some extent, in that the splitting tends to clusterthe data on the di�erent dimensions. However, we note that the MDT does not really perform clustering.For example, suppose there were several qfb in a cell, whose range for Time was 0 to 3am, and supposeall the qfb were actually collected between 2 am and 3 am, and there was no qfb at other times. Then,the MDT, unlike a clustering algorithm, would not form a cell with range 2 am to 3 am for Time, sinceit would have no qfb to split this cell. MDT learning resembles the learning in HERMES [1]. HERMESperforms o�-line summarization of query response times, using information on the domain of attributes,query bindings and selectivity. HERMES does not model the unpredictable nature of WebSources, where15

user loads and network loads impact the response time. Finally, while the NWS facility collects data in anintrusive manner, i.e., each server is monitored internally, such statistics could be used when available toaugment the MDT prediction.5 Query Scrambling using the MDT PredictionIn this section, we �rst introduce the query scrambling (QS) technique for optimization. We then describehow the MDT prediction of delay (response time) can be used in the QS algorithm. Next, we present anumber of experiments demonstrating how well the MDT prediction bene�ts QS.5.1 Query ScramblingQuery Scrambling [2, 24] is a query optimization technique to combat the unexpected delay problem in widearea networks; such delay results in the unavailability of data residing at a remote site. Reasons for the delayinclude network congestion, overload at the server, a physical disconnection, etc. Modern query optimizersproduce plans statically, and cannot account for unexpected delays. The delay may linearly increase thequery response time (RT), compared to the statically determined RT.QS tries to modify a plan dynamically, to perform other work which does not directly depend on thedelayed relation, so as to hide the e�ect of delay. The QS algorithm �rst looks for query plan subtrees whichare una�ected by the delay, and tries to reschedule the current plan to execute the una�ected subtree �rst;this is the Rescheduling Phase. In the case that there are no una�ected subtrees identi�ed in the currentplan, the QS algorithm may create new operators, for example joins of relations which were not joined inthe original plan; this is the Operator Synthesis Phase. The QS algorithm proceeds in several iterations, orscrambling steps. Each step may produce a new, and commonly more expensive plan, but whose responsetime may be less, in the presence of delay. In [24], they only consider initial delays on one relation. Howeverthe approach can be generalized to more complex cases.The general behavior of RT, when QS is utilized, is shown in Figure 10, which plots response time (RT)versus delay6. RTi is the response time of the initial plan with no delay. With delay and no QS, RTiwill increase linearly with delay. Each vertical step in the graph labeled QS corresponds to a scramblingstep and switches to a new plan. All lines parallel to the line labeled RT = Delay, e.g., the line labeledRT = RTi +Delay indicates that no scrambling occurs, and the QS algorithm preserves the current plan.5.2 Impact of MDT Delay Prediction on Query ScramblingAt each scrambling step, the QS algorithm must base its decision on knowledge of the expected delay. Thedelay when a scrambling decision is made is a critical point with a critical delay CrD. The value of the MDTprediction of the expected delay, ED, the real delay RD, and the critical delay CrD, all play a signi�cant6We consider the ED optimization strategy for QS which we felt was best suited for our study[24].16

.
Delay

RTi

RT

RT=Dela
y

RT=RTi+
Dela

y

QS

Figure 10: Behavior of Response Time (RT) with Query Scrambling (QS)role in determining how the MDT prediction can a�ect the choice of the QS algorithm. To simplify ourpresentation, we consider a simple query with two alternative plans and one point of critical delay, as seenin Figure 11(a). We can generalize to more complex queries in a straightforward manner as is seen later.Consider an initial (optimal) query plan Pi, and a new plan Ps, which is suboptimal but can hide some delay.
DelayCrD

RT

Delay

RT

CrD

RT=Dela
y

RTs

 RTi

RTs

RTi

ED1 RD1 RD2 ED2 RD3 ED3 ED4 RD4Figure 11: Critical Delay (a) and Safe Prediction Error for the MDT (b)RTi is the response time of Pi assuming no delay, and RTs is the initial response time for Ps. In general,CrD is a function of RTs and RTi, and can be determined to be RTs � RTi, where we ignore the relativecosts of the plans.A perfect prediction scenario is the case when ED = RD. When prediction is imperfect, i.e., ED 6= RD,we may expect to make a poor scrambling decision. However, what is signi�cant, is that even though theprediction is imperfect, the prediction error could be safe, with no penalty associated with an imperfect pre-diction. Conversely, the prediction error could be unsafe and could lead to underestimation or overestimationpenalties. This distinction is crucial in evaluating the quality of MDT prediction in the context of QueryScrambling.We now describe the relationship between ED, RD and CrD, and their inuence on the choice of theQS algorithm. The �rst case is when the prediction error j RD�ED j is safe, and there is no penalty. Thesituation is portrayed in Figure 11(b), and is the case when ED and RD occur on the same side of CrD.� ED < RD. If ED < CrD & RD < CrD, or RD � CrD & ED � CrD, the scrambler is insensitiveto the prediction error. In the �rst case, QS chooses the initial plan Pi, and in the second case, QS17

chooses Ps.� ED > RD. If ED > CrD & RD > CrD, or RD � CrD & ED � CrD, QS is insensitive to predictionerror. In the �rst case, QS chooses the new plan Ps, and in the second case QS chooses initial plan Pi.Next, we discuss the case where the prediction error is unsafe and there is a penalty.� ED < RD (Figure 12a). ED < CrD & RD � CrD. This is an underestimation error of the MDTprediction which causes an underestimation penalty of prediction. The value of the penalty Eunder isequal to (RTi + RD) � RTs = RD � (RTs � RTi) = RD � CrD. For a delay RD, the better plan isPs, but due to MDT prediction of ED, the QS algorithm chooses Pi and incurs a penalty.

(b)(a)

Eunder

CrD RD
.

ED Delay

RT

CrD
.

RD ED Delay

RT

EoverRTs

RTi

RTs

RTi

} }Figure 12: Underestimation and Overestimation Penalties due to Prediction Error� ED > RD (Figure 12b). RD � CrD & ED > CrD. This is an overestimation error of the MDTprediction, which causes an overestimation penalty of prediction. The value of the penalty Eover =RTs � (RTi +RD) = (RTs �RTi)�RD = CrD �RD. For a delay of RD, the better plan is Pi, butdue to MDT prediction of ED, the QS algorithm chooses Ps and incurs the penalty.Note that the values of both penalties Eunder and Eover depend on CrD and RD, and is independent ofRTi and RTs. We will use this property later, in section 5.3, to estimate the quality of MDT prediction.We can characterize the quality of MDT delay prediction in the context of query scrambling as follows:a good MDT prediction has to minimize both underestimation and overestimation penalties. In the nextsection, we consider how well the MDT performs on experiment data. What is critical is that while theMDT prediction may be imperfect, the prediction error could be safe and there could be no penalty.5.3 Experimental Evaluation of the MDT PredictionThe experimental evaluation was performed using a simulator of a distributed query processing environment,with a two-phase randomized query optimizer [11]. The simulator is described in [24]. The QS algorithmis implemented on top of the simulator. The query processing environment has a query site, which execute18

queries, and data sites, that store relations used in queries. It assumes each relation is located in a di�erentdata site. All joins are executed using the hybrid hash join method [16]. The query site has 300 pages ofmemory and the page size is 4096 bytes. All simulation parameters are de�ned as in [24].5.3.1 Result of MDT Prediction on Query Qx2 (Small Sample)Consider a simple join query Qx2 on two relations SMALL (50000 tuples with tuple size of 180K) and LARGE(2000000 tuples of 180K each), over a single join attribute and a projectivity of 0.2 for each relation, i.e.,20% of the tuple is projected in the result.We assume the SMALL relation is delayed. The initial plan with cost of 673.61 seconds, is a hash join,where the left (inner) relation is SMALL. The alternative and suboptimal plan with cost of 690.73 seconds,has the left (inner) relation as LARGE. The cost di�erence for the two plans, for the simulation environmentdescribed above is around 17 seconds, and this is the only scrambling opportunity, i.e., CrD = 17sec.
(a)

ED=RD

Response Time (ms) x 103

3Real Delay (ms) x 10
678.00

679.00

680.00

681.00

682.00

683.00

684.00

685.00

686.00

687.00

688.00

689.00

690.00

691.00

5.00 10.00 15.00 20.00 25.00 30.00 35.00

(b)

ED=RD

MDT-based ED

Response Time (ms) x 103

3Real Delay (ms) x 10674.00

676.00

678.00

680.00

682.00

684.00

686.00

688.00

690.00

692.00

694.00

696.00

698.00

700.00

702.00

704.00

706.00

708.00

710.00

712.00

714.00

10.00 20.00 30.00 40.00Figure 13: Critical Delay (a) and small MDT sample quality (b) for Qx2 queryTable 1 has 16 MDT predictions, using the data collection BR. We report on the result of the QS algorithmsusing the MDT prediction of real delay, i.e., if the prediction error was safe, or lead to a penalty of eitheroverestimation or underestimation. We purposefully obtained this sample of MDT prediction in an earlystage of learning, when the prediction error was signi�cant, to give us an opportunity to study the penalties ofMDT prediction error. Figure 13a represents the critical delay for this query. Figure 13b plots two responsetime curves. For the �rst curve, labeled ED = RD, the simulator uses the perfect prediction. For the secondcurve, labeled MDT � based ED, the simulator uses the MDT prediction of ED. Referring to Table 1, test#5 leads to an underestimation penalty, and tests #6, #7 and #12 lead to overestimation penalties. In allother tests, the prediction errors were safe and there were no penalties. In Figure 13b, the 4 predictionsthat incurred penalties are shown as deviations from the curve labeled ED = RD.19

Table 1: Results of Testing the Prediction of an Initial MDT SampleTest# 1 2 3 4 5 6 7 8RD 2499.0 12236.0 14020.0 15942.0 39869.0 14781.0 16460.0 17621.0ED 12565.0 12565.0 12565.0 14020.0 14020.0 39869.0 39869.0 39869.0Error safe safe safe safe over under under safeTest# 9 10 11 12 13 14 15 16RD 28968.0 26926.0 26517.0 13804.0 25734.0 25852.0 26825.0 26181.0ED 39869.0 29959.0 26926.0 26517.0 20649.0 22729.0 23705.0 24448.0Error safe safe safe under safe safe safe safe5.3.2 Large Scale Testing of the MDT Prediction PenaltyTo facilitate the ease of large scale testing, with thousands of MDT predictions, we exploit the fact thatonce the critical delay is obtained for a plan, then the safe MDT prediction error, and the values for Eunderand Eover, for an unsafe prediction error, can be directly calculated, based on the value of CrD and RD.This was discussed in section 5.2. Thus, we used the simulator to generate plans, performs scrambling, andevaluate the critical delay points. We could then determine the quality of MDT prediction directly, usingthe RD and MDT prediction. In the following tests, we used the MDT prediction for the data collection OZ.5.3.3 Result of the MDT Prediction Penalty on Query Qx4We consider a 4-way join query, Qx4, whose statistics, initial plan Pi, and �rst scrambled plan Ps are inFigure 14. We also assume a projectivity of 0.2 for each relation. The cost of the initial plan for Qx4 is1527.03 seconds. The cost of the scrambled plan is 1559.07 seconds. Thus the �rst critical delay CrD occursat approximately 32 seconds.
H

L

S M

H

L

MS

Table

SMALL

MEDIUM

LARGE

HUGE

#Tuples

10000

500000

2000000

3000000

Tuple Size

180

180

180

180

Ps:Pi:

Figure 14: Statistics, Pi and Ps for Qx4 queryTable 2 represents the results of testing the MDT prediction penalty. The �rst row represents the entiresample of 3100+ predictions. There were 657 cases that resulted in penalty, 111 were unsafe underestima-tion errors, and 546 were unsafe overestimation errors. We note that the total underestimation penalty iscomparable to the overestimation penalty. When we consider the �rst 1000 predictions, we note that thetotal penalty incurred is a signi�cant proportion of the total penalty for the total sample. Thus, when we20

consider either the last 500 MDT predictions, or the last 250, we see that the number of errors is small,and the total penalty is a small fraction of the total penalty for the total sample. This indicates that as theMDT learns, the total penalty due to unsafe estimation error decreases signi�cantly.Table 2: Results of MDT Prediction for Query Qx4# of unsafe Total #underest. Underest. #overest. Overerest. Sampleerrors penalty (ms) penalty (ms) penalty (ms) size657 5935589.0 111 2733440.0 546 3202149.0 3100+90 2200697.0 47 1570113.0 43 630584.0 �rst 100025 59078.0 0 0.0 25 59078.0 last 5002 875.0 0 0.0 2 875.0 last 2505.3.4 Result of the MDT Prediction on Query Q8.modFinally, we considered a modi�ed version of the TPC-D benchmark query Q8, the National Market ShareQuery. The SQL query statement, the statistics for the relations, the initial plan Pi, and the �rst scrambledplan Ps, is in in Appendix B. As before, we consider that there is one delayed relation PART. The criticaldelay at the �rst scrambling step that is considered by the simulator occurs at approximately 21 seconds.Table 6 presents the results of the MDT predictions. As in the previous example, the penalty due tooverestimation was dominant. While 222 of the 511 unsafe predictions occurred in the �rst 1000 predictions,the total penalty for the �rst 1000 predictions is signi�cant, compared to the total penalty for the total sample.Further, there were no unsafe predictions in the last 500 MDT predictions.We conclude that the MDT learning can be characterized as very good, from the perspective of minimizingthe total penalty incurred by the QS algorithm, when QS uses the MDT prediction for the real delay.Table 3: Result of MDT Prediction for Query Q8.mod# of unsafe Total #underest. Underest. #overest. Overerest. Sampleerrors penalty (ms) penalty (ms) penalty (ms) size511 3631717.0 88 1717749.0 423 1913968.0 3100+222 2705800.0 71 1633942.0 151 1071858.0 �rst 10000 0.0 0 0.0 0 0.0 last 5006 ConclusionIn this paper, we report on the MDT, a tool which uses query feedback fromWebSources to predict responsetime (delay) and con�dence in the prediction. We report on the features of MDT training, which improveswith the correct ordering of signi�cant dimensions such as Quantity, Day and Time, and also improves with21

inclusion of signi�cant dimensions. We test the MDT on experiment data collected from several WebSources.We then use the MDT prediction of delay in a scrambling enabled optimizer. We identify when MDToverestimation or underestimation of the real delay is unsafe and results in a penalty, and when the predictionerror is safe, and there is no penalty. We test how good the MDT prediction is in minimizing these penalties,for the experiment data.In future work, we will re�ne the idea of initial delay versus response time, and we will investigate tuningthe scrambling algorithm using the MDT con�dence in its prediction. We will augment the MDT qfb withperformance data collected from other monitoring techniques, and we plan to study MDT performance inan experimental environment. We also plan to compare the MDT learning with neural network learning.AcknowledgementsWe thank Mar��a Esther Vidal, Michael Franklin and Tolga Urhan for their many comments and insightsinto this study; we thank Tolga for the use of his scrambling enabled optimizer, and we thank Tao Zhan andPyuonguk Cho for their assistance in data analysis.References[1] S. Adali et al. Query caching and optimization in distributed mediator systems. Proc. of the ACMSigmod Conference, 1996.[2] L. Amsaleg, M. Franklin, A. Tomasic, and T. Urhan. Scrambling query plans to cope with unexpecteddelays. Proc. of PDIS Conference, 1996.[3] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classi�cation and Regression Trees.Wadsworth and Brooks/Cole, 1984.[4] Microsoft Corporation. OLE2 Programmer's Reference. Microsoft Press, Redmond WA, 1996.[5] W. Du et al. Query optimization in a heterogeneous dbms. Proc. of the Very Large Data BasesConference (VLDB), 1992.[6] D. Florescu et al. A methodology for query reformulation in cis using semantic knowledge. Intl. Journalof Intelligent and Cooperative Information Systems, special issue on Formal Methods in CooperativeInformation Systems, 1996.[7] G. Gardarin et al. IRO-DB: A Distributed System Federating Object and Relational Databases, InObject-Oriented Multidatabase Systems : A solution for Advanced Applications, Bukhres, O. and Elma-garmid,A. Prentice Hall, 1996.[8] Open System Group. An explanation of the specweb96 benchmark.http://www.specbench.org/osg/web96/webpaper.html, 1996.[9] J.R. Gruser, L. Raschid, and V. Zadorozhny. Learning from query feedback to predict response time ofweb sources. Technical Report, UMIACS, University of Maryland, 1998 (in preparation).[10] J. A. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, CA, 1991.[11] Y. Ioanidis and Y. Kang. Randomized algorithms for optimizing large join queries. Proc. of the ACMSigmod Conference, 1990. 22

[12] A. Layman et al. The xml- data home page. http://www.microsoft.com/standards/xml/xmldata-f.htm.[13] A.Y. Levy et al. Querying heterogeneous information sources using source descriptions. Proc. of VLDB,1996.[14] Sun Microsystems. Java (tm): Programming for the internet. http://java.sun.com.[15] Sun Microsystems. Java (tm): Programming for the internet. http://java.sun.com.[16] P. Mishra and M. Eich. Join processing in relational databases. ACM Computing Surveys, Vol. 24, N.1, 1992.[17] H. Naacke, G. Gardarin, and A. Tomasic. Leveraging mediator cost models with heterogeneous datasources. Proc. of ICDE, 1998.[18] Y. Papakonstantinou et al. Capabilities-based query rewriting in mediator systems. Proc. of the Con-ference on Parallel and Distributed Information Systems, 1996.[19] M.T. Roth and P. Schwarz. Don,t scrap it, wrap it! a wrapper architecture for legacy data sources.Proc. of VLDB, 1997.[20] A. Sayal, P. Scheuermann, and P. Vingralek. Selection algorithms for replicated web servers. Proc. ofthe Internet Server Performance Workshop (in conjunction with SIGMETRICS'98), 1998.[21] K. Thompson, G. Miller, and R. Wilder. Wide-area internet tra�c patterns and characteristics. IEEENetwork, November/December, 1997.[22] A. Tomasic et al. Scaling heterogeneous databases and the design of disco. Proceedings of the Intl. Conf.on Distributed Computing Systems, 1996.[23] G. Trent and M. Sake. Webstone: The �rst generation in http server benchmarking.http://www.mindcraft.com/webstone/paper.html, 1995.[24] T. Urhan, M. Franklin, and L. Amsaleg. Cost-based query scrambling for initial delays. Proc. of theACM Sigmod Conference, 1998.[25] V. Vassalos and Y. Papakonstantinou. Using knowledge of redundancy for query optimization in medi-ators. Proc. of the AAAI Symposium on AI and Data Integration, 1998.[26] A. Ward, P. Glynn, and K. Richardson. Internet service performance failure detection. Proc. of theInternet Server Performance Workshop (in conjunction with SIGMETRICS'98), 1998.[27] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer, pages38{49, March 1992.[28] R. Wolski. Dynamically forecasting network performance to support dynamic scheduling using thenetwork weather service. Proc. of the 6th High-Performance Distributed Computing Conference, 1997.
23

A Contingency Tables for �2 Analysis for Observation O2 (� of0.01)
Source

BR

INR

LeM

OZ

UM

UT

WTH

URL Sample Size

3163

5154

3051

5314

9661

9397

2411

Dim - Dimension

EV - Expected Value

OV - Observed Value

BR

EV Range

26.217 30-30-40 16.195

20.45725-25-50

50-25-25 12.768

25-50-25 22.014

30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

Quantity

Time

Date

Dim

29.141

29.141

128.38

108.135

122.446

128.893

1519.686

1638.261

1271.302

1761.313

EV Range

26.217 30-30-40

25-25-50

50-25-25 108.053

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

Quantity

Time

Date

Dim

29.141

29.141

INR

85.983

65.387

107.11

89.872

58.421

123.59

127.392

3609.475

4192.21

2634.512

3265.805

EV Range

26.217 30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

Quantity

Time

Date

Dim

29.141

29.141

LeM

100.322

83.02

101.231

113.875

57.873

41.403

79.784

74.307

OZ

EV Range

26.217 30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

Quantity

Time

Date

Dim

29.141

29.141

36.224

37.074

53.797

56.893

10.151

8.516

13.985

13.34

4139.476

4220.134

3128.405

3860.471

OV OV

OV OV

http://www.lbd.dcc.ufmg.br

http://www-rodin.inria.fr

http://www.lemonde.fr

http://broncho.ct.monash.edu.au

http://www.umiacs.umd.edu

http://www.cs.toronto.edu

http://www.weather.com

24

EV Range

26.217 30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

Quantity

Time

Date

Dim

29.141

29.141

UM

35.6

35.335

37.063

32.112

14.312

17.274

17.67

12.705

4404.131

5321.17

2112.307

4826.418

EV Range

26.217 30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

Quantity

Time

Date

Dim

29.141

29.141

18.529

19.474

25.896

29.346

38.927

36.976

38.108

32.085

5334.823

6465.84

3326.436

5011.74

UT

EV Range

26.217 30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

30-30-40

25-25-50

50-25-25

25-50-25

Quantity

Time

Date

Dim

29.141

29.141

WTH

12.14

16.526

14.016

15.81

168.109

175.286

141.931

184.193

328.125

294.25

225.294

298.533

OV OV

OV

25

B Query Q8.modSELECT O ORDERDATE, L EXTENDEDPRICE, N2.NAMEFROM PART, CUSTOMER, ORDER, LINEITEM, SUPPLIER, NATION N1, NATION N2, REGIONWHERE P.PARTKEY = L.PARTKEYAND L.SUPPKEY = S.SUPPKEY AND O.ORDERKEY = L.ORDERKEYAND C.CUSTKEY = O.CUSTKEY AND C.NATIONKEY = N1.NATIONKEYAND N1.REGIONKEY = R.REGIONKEY AND R.NAME = 'EUROPE'AND S.NATIONKEY = N2.NATIONKEY AND O.ORDERDATE BETWEEN '97-01-01' AND '98-12-31'AND P TYPE = 'SMALL PLATED STEEL'
O

C P L SRN N1

N1

S

C

O

LP

NR

Ps: Pi:Table

CUSTOMER
ORDER
LINEITEM
SUPPLIER
NATION1
NATION2
REGION
PART

#Tuples

150000
1500000
1000000
10000
25
25
5
200000

Tuple Size

180
100
120
160
40
40
40
160Figure 15: Statistics, Pi and Ps for Query Q8.mod

26

