Learning Response Time for WebSources using Query Feedback
and Application in Query Optimization *

Jean-Robert Gruser
Netforce, Levallois-Perret, France

gruser@netforce.fr

Louiqa Raschid

Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742

louiqa@umiacs.umd.edu

Vladimir Zadorozhny
Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742

vladimir@umiacs.umd.edu

Abstract

The rapid growth of the Internet and support for interoperability protocols has increased the number
of Web accessible sources, WebSources. Current optimization technology for wrapper mediator architec-
tures needs to be extended to estimate the response time (delays) to access WebSources and to use this
delay in query optimization. In this paper, we present a Multi-Dimensional Table (MDT), a tool that
is based on learning using query feedback from WebSources. We describe the MDT learning algorithms,
and report on the MDT learning for WebSources. The MDT uses dimensions Time of day, Day, and
Quantity of data, to learn response times from a particular WebSource, and to predict the expected re-
sponse time (delay), and a confidence in this prediction, for some query. Experiment data was collected
from several WebSources and analyzed, to determine those dimensions that were significant in estimating
the response time for particular WebSources. Our research shows that we can improve the quality of
learning by tuning the MDT features, e.g., including significant dimensions in the MDT, or changing
the ordering of dimensions. We then demonstrate how the MDT prediction of delay may be used by a
scrambling enabled optimizer. A scrambling algorithm identifies some critical points of delay, where it
makes a decision to scramble (modify) a plan, to attempt to hide the expected delay by computing some
other part of the plan that is unaffected by the delay. We explore the space of real delay at a WebSource,
versus the MDT prediction of this delay, with respect to critical points of delay in specific plans. We
identify those cases where MDT overestimation or underestimation of the real delay results in a penalty
in the scrambling enabled optimizer, and those cases where there is no penalty. Using the experimental
data and MDT learning, we test how good the MDT is in minimizing these penalties.

1 Introduction

Architectures based on wrappers and mediators [27] have been proposed in [1, 6, 13, 17, 18, 19], to provide
access to data in heterogeneous sources. In such an architecture, wrappers handle query processing on

individual sources. The mediator solves the task of capability based rewriting (CBR) to determine the

*This research has been partially supported by the Defense Advanced Research Project Agency under grant 01-5-28838; the
National Science Foundation under grant IR19630102, and INRIA Rocquencourt, France.

(sub)query to be sent to a source, depending on the capability of each source. A mediator also handles
query optimization for wrapper (sub)queries and the mediator (composition) query. The rapid growth of
the Internet and Intranets, vendor support of database interoperability protocols such as JDBC [14], and
OLE/DB [4], and the emergence of formats such as XML-Data [12], that facilitate the exchange of data
via the WWW and the HT'TP protocol, has dramatically increased the number of available Web accessible
sources, WebSources.

Scaling a mediator architecture to deal with WebSources introduces the challenge of correctly estimating
the response time, or delay, in accessing data from a WebSource. Developing a cost model for WebSources
must deal with the following drawback: there is a lack of accurate statistics, e.g., selectivity estimates for
queries; knowledge about load on the server, access paths, and the cost of physical algorithms executed on
WebSources. There is also little knowledge about the impact that dimensions such as time of day, day,
network topology, etc., can have on the time to transfer the results.

There has been some research on wide area traffic patterns for the Internet [21]. In [26], statistical models
are applied to measurements of service requests at proxy servers, to detect failure patterns. Models using
metrics such as number of hops, ping timing, and http request service times have been studied, to compare
performance among replication servers [20]. Our research is in a similar spirit; we use learning based on query
feedback, to predict response times from a particular WebSource. There is increasing interest in developing
benchmarks to compare WebSource performance [8, 23]. The parameters that are used here are low level
network and system parameters, and are specific to the server. They do not model the client or predict
delays at the client. The Network Weather Service, NWS [28], is a general facility that provides dynamic
resource performance forecasts for wide area networks. It uses intrusive resource monitoring; a distributed
set of sensors gather data on current network and server conditions. Such data could also be used to predict
response time (delay) at WebSources.

Several solutions have been proposed for mediator query optimization; however they have not considered
the characteristics of WebSources. Research reported in [5, 7] assumes that calibration databases can be
constructed on remote sources, i.e. they accept updates. A generic cost-model is calibrated by experiments
on a calibrating database created in each source. Unfortunately, most WebSources do not accept updates.
The DISCO project [22] contacts wrappers to get the cost of each plan. DISCO assumes that the wrapper
for each source provides a description of the available physical operators and their corresponding costs.
However, most WebSources do not model or communicate such information. Research reported in [25] also
assumes that costs for accessing data from sources is known a priori. The approach used by the HERMES
system [1] can be adapted to model WebSources, since their model uses only query feedback. However, they
do not develop a robust model for learning and prediction that can handle the unpredictable nature of wide
area networks. To summarize, all these solutions for developing mediator cost models have the drawback
that they either expect unavailable information from WebSources, or they do not deal with the somewhat

unpredictable behavior of WebSources, due to unpredictable loads on the source and network, noise, etc.

There are two main contributions of our research, to solve the problem of query optimization in a mediator
with WebSources. The first contribution is the development of a tool, a Multi-Dimensional Table or MDT,
that uses learning based on query feedback (response time) to predict the response time for a query in a
particular WebSource. Unlike models based on low level network and server parameters, the MDT learning is
at a high level, using dimensions Time of day, Day, and Quantity of data transferred, to predict the response
time for a particular query on a particular WebSource, and to determine a confidence in this prediction. The
MDT approach has some advantages over other learning based techniques such as regression techniques or
neural networks. One advantage is the simplicity of the MDT prediction model. The second is the flexibility
provided by the MDT to manipulate a number of parameters that control learning. The third advantage is
that while the dimensions chosen may reflect the effects of source and network usage, a (lack of) confidence
reflects the unpredictable nature of prediction for WebSources.

Query feedback was obtained from a number of WebSources. Statistical tests were used to determine
those dimensions that were indeed significant in predicting the response time (delay) for a particular source.
The MDT was then trained on the collected data. Our experimental study shows two significant results
with respect to MDT learning. The first result is that the MDT does learn, and that as it is trained, the
(cumulative) error decreases, and the confidence in the prediction increases. The second result is that we
can improve the quality of learning by tuning the MDT features, such as including significant dimensions in
the MDT, or changing the ordering of significant dimensions in the MDT.

The second contribution of our research is a study of how the delay or response time prediction by the
MDT, and the confidence in the prediction, may be used to enhance a traditional query optimizer. We
note that in this research, we do not distinguish between initial delay and response time (time to get the
first answer); we hope to do so in future work. If an optimizer had perfect knowledge of the delay, then it
will always identify the best plan. However, this knowledge is typically unavailable. A scrambling enabled
optimizer makes optimization decisions during run-time, using estimated delays [24]. Such an optimizer has
some critical points for each plan, where it makes a decision to scramble (modify) the plan, to attempt to
cover the expected delay at a WebSource, by computing some other part of the plan that is unaffected by
the delay. We explore the space of real delay versus the MDT prediction of this delay, with respect to critical
points of delay in specific plans. We identify those cases where MDT overestimation or underestimation of
the real delay is unsafe, and incurs a penalty by the scrambling enabled optimizer, and those cases where
the prediction error is safe, and there 1s no penalty. Using the experimental data and MDT learning, we test
how good the MDT is in minimizing these penalties.

This paper is organized as follows: In section 2, we describe the MDT structure and features to tune its
learning. We then describe the MDT learning process; and the technique for predicting the response time
and the confidence in the prediction. In section 3, we describe the experimental data collection task, and the
analysis of the data, to determine those dimensions that are significant for particular WebSources. In section

4, we report on training the MDT, and the results of MDT learning on WebSources. We also compare with

related work on learning and prediction. In section 5.1, we describe the technique of query scrambling, and
discuss critical points during scrambling. In section 5.2, we discuss the impact of MDT overestimation and
underestimation of the delay; the cases in which this can be done safely without incurring a penalty; and
the cases in which there is a penalty. In section 5.3, we use the MDT prediction of delay, together with our

experimental data, to determine how good the MDT is in minimizing these penalties. Section 6 concludes.

2 The Multi-Dimensional Table (MDT)

We use a parameterized Multi-Dimensions Table (MDT), to collect response times based on query feedback,
and we use a simple learning technique to predict the response time for some query. For each prediction,
the MDT will also determine the confidence in that prediction. We describe the structure and dimensions
of the MDT, and the features that are used to tune the learning algorithm. We then describe the learning

algorithm and explain how the predicted response time and the confidence in the prediction is determined.

2.1 Structure of the MDT and Features for Tuning

The structure of the MDT is determined by (1) a set of dimensions; (2) the ordering of these dimensions;
and (3) the ranges / scales of these dimensions. The MDT that we use in this research has three dimensions,

Quantity of data, Day and Time. The dimensions and their ranges / scale are as follows:

e The Day of the week. This dimension has a range of seven days, and the minimum scale for this

dimension was chosen as one day.

e The Twime of day. This dimension has a range of 24 hours, and the minimum scale for this dimension

was chosen as one hour.

e The Quantity of data that is transferred. This dimension does not have a fixed range. Based on our
experimental data, the minimum scale that we chose was multiples of 100 Kilobytes, and the range

was from [0 - 800 Kilobytes].

The MDT structure is determined by the ordering of these dimensions and in our experiments in a later
section, we will discuss the impact of the ordering on the MDT learning . The initial MDT consists of one
cell, and the range of its dimensions correspond to the ranges described above. During the learning process,
each query feedback ¢ fb is represented by a value for Time, Day and Quantity, and response time QryRT.
The values for Time, Day and Quantity will be matched to identify the corresponding cell of the MDT. A
predicted response time PredRT and a confidence pred_conf are also associated with that cell. The MDT
learning process may then decide, based on the query response time, QryRT of qfb, to either split this cell,
into two or more cells, or to adjust the PredRT and the confidence for this cell. Details of the learning

algorithm will be described shortly. For simplicity, we assume that except in the case of the dimension Day,

Monday-Friday Saturday-Sunday

8am-2pm 2pm-8pm 8pm-8 am 12am-12am

<200K | 200K-400K | 400K-600K | >600K | <200K | 200K-400K | >400K | 0-MAX 0-MAX

Figure 1: An Intermediate MDT Structure

the cell splitting will divide the range of the selected dimension into two equal ranges'. The minimum scale
of each of the dimensions will determine the (final) MDT structure, when it can no longer split into more
cells on any dimension. For example, when the Time dimension has been split into 24 cells, each with a
one hour range, then no further splitting on that dimension is possible. An example of an MDT structure,
at some intermediate point, is in Figure 1. Here the ordering is Day-Time-Quantity, where Day is most
significant.

The ordering of dimensions and scale of the dimensions can be used to control (tune) the learning process.

Three other features that are also used to control the learning are as follows:

e The allowed deviation dev of the error in response time. This value of dev is specified for each dimension.

r= %#RT', where PredRT is the MDT prediction for some cell, and QryRT is

The error er
the response time of some query feedback ¢fb that matches that cell. The allowed deviation for each
dimension 1s used to determine if the matching cell should be split on that dimension, when ¢fb is

received, and will be explained later.

Range.maz—Range.min
Cell. maxr—Cell.min

e The precision prec for each dimension. The prec = 1 — . The smaller the range
of the individual cell, compared to the range of the dimension, the greater is the precision. The initial
precision for the initial single cell MDT is 0 for each dimension. The precision will be a factor in

determining the confidence in the predicted response time for that cell.

e The confidence window con fwin which is selected for each dimension. Confidence is in the range [0.0 -

1.0] and the confidence window can be selected within that range. A typical window may be [0.3, 0.7].

2.2 Learning in the MDT based on Query Feedback

Figure 2 describes the simple learning algorithm for the MDT. We now describe the learning algorithm.
Each query feedback ¢fb is described by a value for Day, Time, and Quantity. It also has a response time
QryRT. The matching MDT cell whose dimensions match ¢fb is identified; it is described by a current
prediction PredRT, and current confidence pred_conf, for each dimension. We determine the error, for that
cell. Recall that the MDT 1s described by an ordering ord of the dimensions, and each of these dimensions

is described by an allowed deviation dev and a precision prec and a confidence window con fwin.

1In our implementation, cell splitting is often more complicated and the two cells may not always have equal ranges after

splitting.

Learning Algorithm/(gfb[day,time,qty,QryRT))
For the cell[PredRT,pred_conf] of the MDT whose dimensions match Day, Time and Qty values of gfb
For each dimension dim[dev,prec,confwin] in the ordering ord
If Within_Deviation(qfb,cell,dim) correct(cell. Pred RT', cell.pred_con f)
Else split_MDT(qfb,cell,dim)

Figure 2: The Learning Algorithm

Starting from the most significant dimension in ord, we compare the error err of that ¢fb, with the
allowed deviation dewv, for that dimension. Suppose err is more than dev, for that dimension. Then, if it
is possible, i.e., the cell is not at the minimum scale for that dimension, the cell is split on that dimension.
Recall that for simplicity, we assume that the split is into two cells, and each cell has equal range. Only
one of the (split) cells will now match the dimensions of the ¢fb. The new PredRT for this new cell is set
to QryRT and the new pred_conf is 0. The values of PredRT and pred_conf of the other split cell remain
unchanged since the ¢fb no longer matches that cell.

If indeed there is a split on the dimension, then the learning algorithm will be called recursively,
for each subsequent dimension, in decreasing order of ord. Again, depending on dev for each dimen-
sion, a decision must be made whether to split the new cell, on the next most significant dimension,
into further new cells. Consider the MDT structure of Figure 1. Suppose there is a ¢fb on Satur-
day at lam, and the calculated err is greater than dev for both Day and Time. Then, the learning
algorithm will first split the cell [(Saturday-Sunday), (12am-12am)] on the dimension Day, and cre-
ate two new cells, [(Saturday), (12am-12am)] and [(Sunday), (12am-12am)]. Next, the algorithm will
split the dimension Time of the first new cell, and create two new cells [(Saturday), (12am-12pm)] and
[(Saturday), (12pm-12am)].

Suppose instead that err is less than the allowed deviation dev of some dimension of that cell, or that
the cell cannot be split any further on that dimension. In this case, we adjust the PredRT and pred_conf
for that cell to reflect the ¢fb. First, we calculate the confidence in the new QryRT of ¢fb.

Each MDT cell will have a buffer that stores the last N values of ¢fb that matched this cell. Using the
value of err for the current dimension, we count the number of matching ¢ fb in the buffer. A matching ¢fb
is one such that the difference in @ryRT between ¢fb in the buffer and the new ¢fb, normalized by QryRT
for new ¢ fb, = lbufferqfb.-QryRT—newqfb.QriRT| jojooq than err. This count is NumM atchingBuf fer. Then,

newqfb.QryRT
the confidence in QryRT = (NumMatchingBuf fer x precision).

Once this gry_conf is determined, then the Pred RT and the pred_conf for the cell must be recalculated

to reflect the new ¢ fb values. We discuss several cases as follows:

e Both pred_conf and qry_conf are low and below confwin, the confidence window for the dimension.

This typically occurs in the initial learning stages or when there is noise. The adjusted value of

PredRT = pred_conf*PredRT+qry_conf+QryRT is calculated.
pred_conf4qry_conf

If err is large, then there is little confidence in the estimated value Pred RT or the new value QryRT.
So the confidence for that cell is adjusted to the min(pred_conf,qry_conf).
However, if the err i1s small, then both QryRT and PredRT are close to each other, and the confidence

in that cell’s prediction should be increased. The confidence pred_conf is increased using a weighted

_ pred_confxNumberOfValues+qry_conf
- NumberOfV alues+1

average and pred_conf , where NumberO fV alues is the number
of prior ¢ fb values that were used to learn the old PredRT and confidence. Using a weighted average

slows MDT learning, but has the advantage of making the MDT less sensitive to noise.

e The gry_conf is below confwin and pred_conf is in confwin or higher. This occurs when there is
some spurious noise, after some learning. We say there has been learning since pred_conf is high. The
PredRT and pred_conf are adjusted using the formula described previously, where err i1s small. We
note that since gry_conf is below con fwin, the adjusted pred_conf will be lower than before receiving
qfb. However, if this new ¢fb 1s indeed noise, then few values in the buffer for that cell will match
this new ¢fb and so NumMatchingBuffer and ¢ry_conf will be low. Thus, pred_conf will reduce
slowly and PredRT will also change slowly. However, if there has been a long burst of noise, then the
NumMatchingBuf fer may be higher, and ¢ry_conf may be low. This has the potential to interfere
with MDT learning.

e Both pred_conf and gqry_conf are high and within or above confwin. This is a refining stage of the
learning and the new pred_conf will be increased. The PredRT and pred_conf are adjusted using the

formula described previously for small err.

e There are several cases that should not occur. For example, it cannot be the case that both pred_conf
and gry_conf are high and within or above confwin, but err is large. This would indicate that the

MDT has entered an unstable state. We do not provide details here but refer the reader to [9].

The learning behavior of the MDT was studied using simulation, based on various distributions for the

response time of ¢fb. For lack of space we do not include the results here, and refer the reader to [9].

3 Experiment Data Collection and Analysis for WebSources

Experimental ¢ fb were collected from various sources, to be used in an experimental evaluation of the MDT.
Our experiment used the Java URLConnection class [15], and this class used the http protocol to download
files from WebSources. We set the flag setUseCaches to false, so that the file would always be loaded from
the WebSource. We used the Java class Calendar to time the experiment. We accessed two kinds of sources.
One class was university servers; their country location, server URL, and the label to refer this WebSource
is as follows: {Brazil www.lbd.dcc.ufmg.br (BR), Australia broncho.ct.monash.edu.au (OZ), Canada

www.cs.toronto.edu (UT), France www-rodin.inria.fr (INR), USA www.umiacs.umd.edu (UM)}. For

these servers, the impact of network load was typically more severe, compared to the number of users on the
servers. Brazil and Australia had typically much longer response times. From these servers, we were able to
request files of pre-selected size ranging from 100 Kilobytes to 800 Kilobytes. The second class of server was
commercial servers. They included the NBC news server, www.msnbc.com (NBC), which is aliased to four
servers on the same subnet; the news server for the Le Monde French daily, www.lemonde.fr (LeM); and a
weather server, www.weather.com (WTH), which is aliased to two servers on different networks. Although
these URLs were sometimes aliased to multiple physical servers, we made a decision to treat a server URL
as a single WebSource, and estimate the response time at the client, for the single logical WebSource?. For
the commercial servers, user load was also a factor that could affect response time. Since we were not able
to place pre-selected files on these servers, we identified gif files varying in size from 50 Kilobytes to 800
Kilobytes. However, on some servers, e.g., www.lemonde.fr, we could not locate many large files, and this
is reflected in our analysis of the data.

The data collection experiment was straightforward. At timed intervals, our data collection program
randomly selected one or more files located at the source, downloaded the file, and recorded the response time,
i.e., the elapsed time to download the page, using the http protocol, and to stream the page into program
memory. The client was a machine within the University of Maryland network cluster umiacs.umd.edu.
The data was collected over several weeks, from June - October 1998.

Figure 3 shows some sample response time data collected from 0Z for some 3100+ ¢ fb. It has been sorted
by (increasing) Quantity. The emerging pattern indicates that the dimension Quantity is significant with
respect to the response time.

We analyzed the collected data using the y? contingency test for categorical data, to determine if the
dimensions Day, Quantity and Time, were significant, with respect to the response time. We performed the
test on the pairs of variables, Day and response time, Quantity and response time, etc. We briefly describe
how the data was pre-analyzed to prepare it for testing, and then present the summarized results of our
analysis in Figure 4.

The test required us to prepare contingency tables, where one axis of the table was the response time
and the other axis was the MDT dimension. Since the y? test is applied to categorical data, we needed to
identify appropriate categories for each dimension and for the response time. The number of categories for
the MDT dimension Day was 7, and it was 8 for Time, where we considered contiguous 3 hour blocks from
12 am to midnight 3. Determining the categories for Quantity was more complex. In some sites, we had
8 categories, [less than 100 Kilobyes, 100 to 200 KiloBytes,- - -, greater than 700 Kilobytes]. In other sites,
where all the files were less than 100 Kilobytes, we could not test the effect of this dimension.

The most critical task was identifying the categories for the response time, since the response times varied

widely among all the sources. Our first step in identifying the categories was eliminating outlier data. This

2This appeared to be reasonable since most clients do not differentiate the various physical servers aliased to a URL.

3We chose a 3 hour block for the dimension Time in order to have a similar number of categories in each dimension.

Response Time (ms) x 103
160.00 Experiment RT

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00 1

60.00

50.00 t

40.00 T

30.00 T —

20.00 —

10.00 —

0.00 } Query x 103
0.00 050 1.00 1.50 2.00 250 3.00

Figure 3: Response Time Sorted by Quantity for WebSource 0Z

Dimension
Source Day Time Quantity

o1 02 o1 02 o1 02
BR NO NO YES YES YES YES
INR ? YES ? YES YES YES
LeM YES YES ? YES N/A N/A
oz NO YES NO NO YES YES
UM NO NO NO NO YES YES
uT NO NO NO YES YES YES
WTH ? YES YES YES N/A N/A

Dimension
Source Day Time

o3 04 o3 04
BR YES NO YES YES
INR YES YES YES YES
LeM N/A YES N/A YES
oz YES YES ? NO
um NO ? NO NO
uT ? NO ? YES
WTH NO YES YES YES

? -- May be significant
N/A -- The sample data set is too small to determine significance

Figure 4: Table Summarizing the Statistical Analysis of Experiment Data

was either the very small or the very large values. We had a large number of cases where the http request
timed out. The outlier data was eliminated recursively, starting from both the largest and the smallest
values. Once the typical range [min, max] was identified for that source, we divided the response time into
3 categories, small, medium and large. The division of the range is identified by 3 integers, e.g., 30-30-40.
Thus, the small response time are values in the range [0, min + (max-min)*.3], etc. We tested our data
with a variety of ranges for the integers, e.g., 25-50-25, to determine sensitivity to this choice. The degrees
of freedom for the contingency tables varied, depending on the dimension. We used an « of 0.01 to make a
determination of significance, i.e., a level of 99% confidence in the test, and we tested that we had sufficient
sample size in each cell of the contingency table.

We performed four analyses of the data, leading to four sets of observations, labeled Of to 04 in Figure
4. In observations OI, we did not consider outlier data outside the typical range of [min,max] for the
WebSource. However, in many cases, when the request timed out, it implied that the response time was
indeed very large. Thus, in the observations labeled 02, we considered all the timed out instances as large
response times. In Figure 4, we identify when a dimension is significant (YES) or is not significant (NO), in
predicting the response time, for the source. A symbol ? in the table indicates that we could not determine
if the dimension was significant. A N/A value indicates that this test could not be performed due to lack of
sufficient data*.

For all of the sources, the dimension Quantity was significant °. In observation 01, Time was significant
for BR and WTH. Day was not significant for any of the WebSources. When we also considered outlier data in
02, additional dimensions became significant. The dimension Day was significant for INR, LeM, 0Z and WTH,
and Time was significant for all WebSources except 0Z and UM. The y? test value for Quantity indicated that
the significance of this dimension could overshadow the other dimensions. Thus, in 03, we only considered
response times for large files, and in 04, we only considered response times for small files. The results indicate
that when we minimized the effect of Quantity, the significance of Time and Day was more clearly identified,
e.g, for INRIA, a may be significant result for dimension Day and Time in 01 was proved to be a yes in 03
and 04. For 0Z a not significant result on Day in 01 became significant in 03 and 04.

Details of the y? contingency test values from which we drew our conclusions, for observation 02 are in

Appendix A. Details of the complete data analysis are in [9].

4 Results of MDT Learning with Experimental Data

We describe the results of MDT learning, to predict the response time, for the WebSources described above.
Our experimental study shows two significant results. The first result is that the MDT does learn, and that as

it 1s trained, the prediction error decreases, and the confidence in the prediction increases. The second result

4We omit the analysis of data from IBC since the sample size was too small.

5For LeM we could not perform this analysis, since the files were small.

10

is that we can improve the quality of learning by tuning the MDT features. The MDT learning is improved
with the inclusion of those dimensions that are found to be significant, for some source, determined in the
previous analysis of the data, or a good ordering of those dimensions that are significant. Conversely, the
MDT learning is worse when significant dimensions are not included, or with a poor ordering. We summarize

the more interesting results, and details are in [9].

|QryRT — PredRT)|

Qry AT to track MDT learning. A better indicator to

We use the (absolute) relative error
characterize the learning process is the cumulative mean squared relative error (msre). This expression is
QryRT—PredRT \2
E(QryRT)

N 9

where N is the number of predictions. We also use the confidence in the prediction

pred_conf, which was discussed previously.

4.1 MDT Learning

Our first result that the MDT does learn is shown in Figure ba, which shows relative error, and in Figure
5b, which shows cumulative msre. The MDT is trained on approximately 31004 experimental ¢ fb from the
WebSource labeled 0Z, i.e., queries from the United States to Australia. Figure 6a has the corresponding
confidence values for the MDT learning on these queries. As can be seen, both relative error and cumulative
msre are initially quite significant, as the MDT starts learning. The corresponding confidence in the predic-
tion also swings very rapidly, indicating that the MDT predictions are not in a stable state. However, after
about a 1000 ¢fb, the cumulative msre gradually stabilizes. The confidence in the prediction correspond-
ingly increases and does not vary as much. After about 2500 ¢fb, the confidence in the prediction varies
between [0.90 - 0.95], indicating that the MDT is very confident in its prediction. The cumulative msre has
almost leveled off, indicating that learning is occurring very slowly at this point and the MDT learning has
stabilized. Figure 6b shows cumulative msre during MDT learning for WebSources UT and UM. A similar
pattern of MDT learning is observed.

In the 0Z experiment, the MDT used two dimensions, Quantity and Day. We note that an MDT with
three dimensions, and the range and scale used in our experiments, has a maximum of 1344 cells, in the
innermost dimension or the ordering, if the (deviation of the) value of ¢ fb response time had led to maximum
splitting on all dimensions. With a training set of approximately 31004 ¢fb, as in 0Z, there 1s an average
of less than three ¢fb per cell, and this a sparse training set. Typically, the MDT does not split to the

maximum number of cells.

4.2 Effect of Ordering of the Dimensions on Learning

We now show that a correct ordering of dimensions, that matches those dimensions found to be significant for
some WebSource, can improve MDT learning. Omission of those dimensions that are found to be significant,
or a poor ordering, has a negative impact on MDT learning.

We consider the WebSource 0Z, for which Quantity and Day were the most significant dimensions. Figure

Ta shows the MDT learning, using the cumulative msre, for ordering Q-D, i.e., when Quantity is the most

11

(@) (b)

Relative Error Cummulative msre
Relative Error 9.00 Cummulative msre
7.00 850
6.50 8.00
7.50
6.00
7.00
550
6.50
5.00 6.00
4.50 550
4.00 5.00
4.50
3.50
4.00 l
300 3.50 u\
2.50 3.00 I \
2.00 2.50 \\
2.
150 L 00
1.50
100 N | I
1.00 —
0.50 0.50 =
0.00 0.00
Query x 103 Query x 103
0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.00 1.00 2.00 3.00
Figure 5: Relative Error and Cumulative msre during MDT Learning for WebSource OZ
(@ (b)
Confidence Cummulative msre
Estimation Confidence UT WebSource
7.00 —f# “UM WebSource ™
650 —}:
6.00 —I-
i
550 —{H
5.00
4.50
4.00
350
3.00
2.50
2.00
150
1.00
050 ., . |
0.00
Query x 103 Query x 103
0.00 1.00 2.00 3.00 0.00 0.50 1.00 1.50 2.00 250 3.00

Figure 6: Confidence in MDT Prediction for WebSource OZ (a) and Cumulative msre for WebSources UT
and UM (b)

12

significant dimension, and then for D-Q. As is clearly indicated, the ordering Q-D is superior. Our statistical
analysis of the data indicates that Quantity is the most significant dimension, and has the greatest impact
on predicting the response time, in particular for sources 0Z and BR, where response times are often very
large. This figure shows that the poor ordering D-Q, with respect to the significant dimension Quantity, had

a negative impact on the MDT learning.

(@ (b)
Cummulative msre Cummulative msre
\‘ z«‘ Q-D order Q-D order
4,00 — D-Qorder 4.00 Q-Torder
380 380
3.60 3.60 !
W, i
3.40 e 3.40 L
3.20 320 i
. K
3.00 ,\\ 3.00 :
2.80 \ 2.80 \ :
"‘«‘._ H
260 \ 260 \ :
2.40 \ 2.40 \ :
2.20 \ 2.20 \
2,00 \ 2,00 \
1.80 \ 1.80 \
160 160
1.40 1.40
120 120
1.00 1.00
0.80 0.80
0.60 0.60
\ \
0.40 0.40
020 020
0.00 0.00
-0.20 Queryx103 -0.20 Query x 103
0.00 050 1.00 150 2.00 250 3.00 0.00 050 1.00 150 2.00 250 3.00

Figure 7: Comparison of Ordering Q-D, D-Q (a) and Q-D, Q-T (b) on MDT Prediction for OZ

Figure 7b shows the MDT learning for the ordering Q-D and compares it with the ordering Q-T, using the
cumulative msre. Recall that Day was also a significant dimension for the dataset OZ. Thus, the prediction
of ordering Q-T, which does not consider the dimension Day, is somewhat poor, compared to the MDT with
ordering Q-D, which does consider the dimension Day. This indicates that omitting a significant dimension,
Day, has a negative impact on the MDT learning. We further note that compared to Figure 7a, the MDT
with ordering Q-T performs better than the MDT with ordering D-Q. This shows that the omission of a
significant dimension, Day, appears to have less impact, compared to the error of a poor ordering D-Q, with
respect to the very significant dimension, Quantity. This is consistent with our understanding of significance
of the dimensions in prediction.

Finally, in Figure 8, we display the MDT with orderings Q-D-T, Q-T-D and Q-D. The MDT with
ordering Q-D-T performed better than Q-D. While our statistical tests did not provide a clear indication
that the dimension Time was significant for 0Z, our MDT learning seems to indicate that the inclusion of
this dimension does provide a slight benefit in the learning. We also see the effect of a poor ordering. While

the ordering Q-T-D includes the two significant dimensions Quantity and Day, there is a poor ordering of

13

Day with respect to Time, i.e., Q-T-D instead of Q-D-T, since Day is more significant. This has a negative
effect on the learning. Thus, the MDT with ordering Q-D performed better than the MDT with ordering
Q-T-D, since the ordering Q-D is superior to Q-T.

Cummulative msre

220

Q-T-D order

2.00

1.80

1.60

1.40

120

1.00

0.80

0.60

- B S

0.20

0.00

Query x 103
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Figure 8: Comparison of Ordering Q-D, Q-D-T and Q-T-D on MDT for OZ

4.3 Evaluation of the Trained MDT

Finally, we tested the MDT performance on test data, after training it on some training data. Both test
and training data were obtained in a similar manner during our data collection. For this experiment, we
trained the MDT by sending it some initial ¢ f6 from the WebSource. Once the MDT is trained, we no longer
allowed the MDT to learn by sending it ¢fb. Figure 9a shows the relative error after the MDT was trained
on 31004 ¢fb. Figure 9b shows the cumulative msre for different sizes (approximately 300, 1400 and 2900
qfb) of training data.

As indicated in Figure 9b, when the training data was fairly small, e.g., 300 ¢fb, the MDT is not
stable and the error is greater. Our previous experiment indicated that the MDT started stabilizing after

approximately 1000 ¢ fb. Thus, the MDT prediction improves after training it on larger sets of ¢ fb.

4.4 Comparison with other Learning Techniques

We now consider other learning techniques. Compared to the MDT learning, neural networks [10] typically
exhibit sophisticated learning behavior. However, a neural network is very sensitive to the training data, since

it does not allow direct manipulation of the training process. In contrast, the MDT learning, while simple,

14

Error

0.90

0.80

0.70 260.00

0.60

0.10 i l‘ f “ ' (ik

0.00 0.00

1.00 360.00 l 1y

(@) (b)

Cummulative msre x 1073

Relative Error MDT trained on 300 queries

1.10 400.00 MDT trained on 1400 queries

380.00 | MDT trained on 2900 queries

” 340.00 \ T
320.00
300.00
280.00

240.00
] 22000 i
ﬂ 20000
180,00

16000 —
140,00
120,00
100,00
80.00
60.00
40,00
20,00

Query -20.00
0.00 50.00 100.00 150.00 200.00 250.00 300.00 100.00 200.00 300.00

Figure 9: Testing the MDT Prediction After Learning - Relative Error and Cumulative msre

allowed us to directly manipulate features that controlled the learning, enabling us to better understand
the behavior of the experimental data itself. In future work, we plan to train a standard back propagation
neural network with our experimental data, to make an empirical comparison with MDT learning.

CART [3] is a classification and regression algorithm. Using a set of classification variables, it adopts a
binary recursive splitting, and successively partitions the data into discrete subgroups, based on each possibly
relevant variable, until further splitting is infeasible. CART is also sensitive to the ordering of variables.
In comparison, the MDT learning is less complex, since it identifies a split directly, using a fixed allowed
deviation value for each dimension. This is less costly than the regression that is performed by CART to
determine the split. We further note that the MDT can split a range into multiple subranges (cells), and it
provides other tuning features such as precision of each dimension. In addition, the MDT uses the confidence
window, and the buffer of ¢fb in each cell, to overcome the effects of noise.

The MDT learning resembles the classification task to some extent, in that the splitting tends to cluster
the data on the different dimensions. However, we note that the MDT does not really perform clustering.
For example, suppose there were several ¢fb in a cell, whose range for Time was 0 to 3am, and suppose
all the qfb were actually collected between 2 am and 3 am, and there was no ¢fb at other times. Then,
the MDT, unlike a clustering algorithm, would not form a cell with range 2 am to 3 am for Time, since
it would have no ¢fb to split this cell. MDT learning resembles the learning in HERMES [1]. HERMES
performs off-line summarization of query response times, using information on the domain of attributes,

query bindings and selectivity. HERMES does not model the unpredictable nature of WebSources, where

15

Query

user loads and network loads impact the response time. Finally, while the NWS facility collects data in an
intrusive manner, i.e., each server is monitored internally, such statistics could be used when available to

augment the MDT prediction.

5 Query Scrambling using the MDT Prediction

In this section, we first introduce the query scrambling (QS) technique for optimization. We then describe
how the MDT prediction of delay (response time) can be used in the QS algorithm. Next, we present a

number of experiments demonstrating how well the MDT prediction benefits QS.

5.1 Query Scrambling

Query Scrambling [2, 24] is a query optimization technique to combat the unexpected delay problem in wide
area networks; such delay results in the unavailability of data residing at a remote site. Reasons for the delay
include network congestion, overload at the server, a physical disconnection, etc. Modern query optimizers
produce plans statically, and cannot account for unexpected delays. The delay may linearly increase the
query response time (RT), compared to the statically determined RT.

QS tries to modify a plan dynamically, to perform other work which does not directly depend on the
delayed relation, so as to hide the effect of delay. The QS algorithm first looks for query plan subtrees which
are unaffected by the delay, and tries to reschedule the current plan to execute the unaffected subtree first;
this 1s the Rescheduling Phase. In the case that there are no unaffected subtrees identified in the current
plan, the QS algorithm may create new operators, for example joins of relations which were not joined in
the original plan; this is the Operator Synthesis Phase. The QS algorithm proceeds in several iterations, or
scrambling steps. Each step may produce a new, and commonly more expensive plan, but whose response
time may be less, in the presence of delay. In [24], they only consider initial delays on one relation. However
the approach can be generalized to more complex cases.

The general behavior of RT, when QS is utilized, is shown in Figure 10, which plots response time (RT)
versus delay®. RT} is the response time of the initial plan with no delay. With delay and no QS, RT;
will increase linearly with delay. Each vertical step in the graph labeled QS corresponds to a scrambling
step and switches to a new plan. All lines parallel to the line labeled RT = Delay, e.g., the line labeled
RT = RT; + Delay indicates that no scrambling occurs, and the QS algorithm preserves the current plan.

5.2 Impact of MDT Delay Prediction on Query Scrambling

At each scrambling step, the QS algorithm must base its decision on knowledge of the expected delay. The
delay when a scrambling decision i1s made is a critical point with a critical delay CrD. The value of the MDT

prediction of the expected delay, E D, the real delay RD, and the critical delay C'rD, all play a significant

8We consider the ED optimization strategy for QS which we felt was best suited for our study[24].

16

RT A /\\XQ . O%)

RTi

Delay

Figure 10: Behavior of Response Time (RT) with Query Scrambling (QS)

role in determining how the MDT prediction can affect the choice of the QS algorithm. To simplify our
presentation, we consider a simple query with two alternative plans and one point of critical delay, as seen
in Figure 11(a). We can generalize to more complex queries in a straightforward manner as is seen later.

Consider an initial (optimal) query plan P;, and a new plan Py, which is suboptimal but can hide some delay.

RT
RT
RTs RTS|
RTi
RTi
“Delay ED1 RD1 RD2 ED2 ;p RD3 ED3 ED4 RD4'De|ay

Figure 11: Critical Delay (a) and Safe Prediction Error for the MDT (b)

RT; is the response time of P; assuming no delay, and RT7 is the initial response time for Ps. In general,
CrD 1s a function of R7s and RT;, and can be determined to be RT; — RT;, where we ignore the relative
costs of the plans.

A perfect prediction scenario is the case when £D = RD. When prediction is imperfect, i.e., ED # RD,
we may expect to make a poor scrambling decision. However, what is significant, is that even though the
prediction is imperfect, the prediction error could be safe, with no penalty associated with an imperfect pre-
diction. Conversely, the prediction error could be unsafe and could lead to underestimation or overestimation
penalties. This distinction is crucial in evaluating the quality of MDT prediction in the context of Query
Scrambling.

We now describe the relationship between ED, RD and CrD), and their influence on the choice of the
QS algorithm. The first case is when the prediction error | RD — ED | is safe, and there is no penalty. The
situation is portrayed in Figure 11(b), and is the case when ED and RD occur on the same side of CrD.

e ED< RD. WED <CrD & RD < CrD,or RD > CrD & ED > CrD, the scrambler is insensitive

to the prediction error. In the first case, QS chooses the initial plan P;, and in the second case, QS

17

chooses P;.

e ED>RD.IfED >CrD & RD >CrD,or RD<CrD & ED < CrD, QS is insensitive to prediction

error. In the first case, QS chooses the new plan Ps, and in the second case QS chooses initial plan F;.
Next, we discuss the case where the prediction error is unsafe and there is a penalty.

e ED < RD (Figure 12a). ED < CrD & RD > CrD. This is an underestimation error of the MDT
prediction which causes an underestimation penalty of prediction. The value of the penalty Fynder 18
equal to (RT; + RD) — RT; = RD — (RT, — RT;) = RD — CrD. For a delay RD, the better plan is
P, but due to MDT prediction of £D, the QS algorithm chooses P; and incurs a penalty.

RT RT

RTs

RTi RTi

Delay

Figure 12: Underestimation and Overestimation Penalties due to Prediction Error

e ED > RD (Figure 12b). RD < CrD & ED > CrD. This is an overestimation error of the MDT
prediction, which causes an overestimation penalty of prediction. The value of the penalty Eoyer =
RT, — (RT; + RD) = (RT; — RT;) — RD = CrD — RD. For a delay of RD, the better plan is P;, but
due to MDT prediction of £D, the QS algorithm chooses P, and incurs the penalty.

Note that the values of both penalties Fypnger and Eoyer depend on CrD and RD, and is independent of
RT; and RT;. We will use this property later, in section 5.3, to estimate the quality of MDT prediction.

We can characterize the quality of MDT delay prediction in the context of query scrambling as follows:
a good MDT prediction has to minimize both underestimation and overestimation penalties. In the next
section, we consider how well the MDT performs on experiment data. What is critical is that while the

MDT prediction may be imperfect, the prediction error could be safe and there could be no penalty.

5.3 Experimental Evaluation of the MDT Prediction

The experimental evaluation was performed using a simulator of a distributed query processing environment,
with a two-phase randomized query optimizer [11]. The simulator is described in [24]. The QS algorithm

is implemented on top of the simulator. The query processing environment has a query site, which execute

18

queries, and data sites, that store relations used in queries. It assumes each relation is located in a different
data site. All joins are executed using the hybrid hash join method [16]. The query site has 300 pages of

memory and the page size is 4096 bytes. All simulation parameters are defined as in [24].

5.3.1 Result of MDT Prediction on Query Qx2 (Small Sample)

Consider a simple join query Qx2 on two relations SMALL (50000 tuples with tuple size of 180K) and LARGE
(2000000 tuples of 180K each), over a single join attribute and a projectivity of 0.2 for each relation, i.e.,
20% of the tuple is projected in the result.

We assume the SMALL relation is delayed. The initial plan with cost of 673.61 seconds, is a hash join,
where the left (inner) relation is SMALL. The alternative and suboptimal plan with cost of 690.73 seconds,
has the left (inner) relation as LARGE. The cost difference for the two plans, for the simulation environment

described above is around 17 seconds, and this is the only scrambling opportunity, 1.e., CrD = 17sec.
@ (b)

Response Time (ms) x 103 Response Time (ms) x 103
69100 ED=RD 714.00 EDRD
VDT based ED
712.00
690.00
710.00
689.00 708.00
706.00
688.00
704.00
687.00 702.00
700.00
686.00
698.00
685.00 696.00
694.00
684.00
692.00
683.00 690.00
688.00
682.00
686.00
681.00 684.00
682.00
680.00
680.00
679.00 678.00
676.00
678.00
Real Delay (ms) x 103 674.00 Real Delay (ms) x 103
5.00 1000 1500 2000 2500 3000 3500 10,00 20.00 30,00 40,00

Figure 13: Critical Delay (a) and small MDT sample quality (b) for Qx2 query

Table 1 has 16 MDT predictions, using the data collection BR. We report on the result of the QS algorithms
using the MDT prediction of real delay, i.e., if the prediction error was safe, or lead to a penalty of either
overestimation or underestimation. We purposefully obtained this sample of MDT prediction in an early
stage of learning, when the prediction error was significant, to give us an opportunity to study the penalties of
MDT prediction error. Figure 13a represents the critical delay for this query. Figure 13b plots two response
time curves. For the first curve, labeled ED = RD), the simulator uses the perfect prediction. For the second
curve, labeled M DT — based E D, the simulator uses the MDT prediction of ED. Referring to Table 1, test
#5 leads to an underestimation penalty, and tests #6, #7 and #12 lead to overestimation penalties. In all
other tests, the prediction errors were safe and there were no penalties. In Figure 13b, the 4 predictions

that incurred penalties are shown as deviations from the curve labeled £ED = RD.

19

Table 1: Results of Testing the Prediction of an Initial MDT Sample

Test# 1 2 3 4 5 6 7 8

RD 2499.0 12236.0 | 14020.0 | 15942.0 | 39869.0 | 14781.0 | 16460.0 | 17621.0

ED 12565.0 | 12565.0 | 12565.0 | 14020.0 | 14020.0 | 39869.0 | 39869.0 | 39869.0

Error safe safe safe safe over under under safe

Test# 9 10 11 12 13 14 15 16

RD 28968.0 | 26926.0 | 26517.0 | 13804.0 | 25734.0 | 25852.0 | 26825.0 | 26181.0

ED 39869.0 | 29959.0 | 26926.0 | 26517.0 | 20649.0 | 22729.0 | 23705.0 | 24448.0

Error safe safe safe under safe safe safe safe

5.3.2 Large Scale Testing of the MDT Prediction Penalty

To facilitate the ease of large scale testing, with thousands of MDT predictions, we exploit the fact that
once the critical delay is obtained for a plan, then the safe MDT prediction error, and the values for Fy,der
and Egyer, for an unsafe prediction error, can be directly calculated, based on the value of C'rD and RD.
This was discussed in section 5.2. Thus, we used the simulator to generate plans, performs scrambling, and
evaluate the critical delay points. We could then determine the quality of MDT prediction directly, using
the RD and MDT prediction. In the following tests, we used the MDT prediction for the data collection 0Z.

5.3.3 Result of the MDT Prediction Penalty on Query Qx4

We consider a 4-way join query, Qx4, whose statistics, initial plan P;, and first scrambled plan P, are in
Figure 14. We also assume a projectivity of 0.2 for each relation. The cost of the initial plan for Qx4 is
1527.03 seconds. The cost of the scrambled plan is 1559.07 seconds. Thus the first critical delay C'rD occurs

at approximately 32 seconds.

Table #Tuples Tuple Size
SMALL 10000 180
MEDIUM 500000 180
LARGE 2000000 180
HUGE 3000000 180

Figure 14: Statistics, P; and P, for Qz4 query

Table 2 represents the results of testing the MDT prediction penalty. The first row represents the entire
sample of 3100+ predictions. There were 657 cases that resulted in penalty, 111 were unsafe underestima-
tion errors, and 546 were unsafe overestimation errors. We note that the total underestimation penalty is
comparable to the overestimation penalty. When we consider the first 1000 predictions, we note that the

total penalty incurred is a significant proportion of the total penalty for the total sample. Thus, when we

20

consider either the last 500 MDT predictions, or the last 250, we see that the number of errors is small,

and the total penalty is a small fraction of the total penalty for the total sample. This indicates that as the

MDT learns, the total penalty due to unsafe estimation error decreases significantly.

Table 2: Results of MDT Prediction for Query Qx4

of unsafe Total #underest. Underest. F#overest. Overerest. Sample
errors penalty (ms) penalty (ms) penalty (ms) size
657 5935589.0 111 2733440.0 546 3202149.0 3100+

90 2200697.0 47 1570113.0 43 630584.0 first 1000

25 59078.0 0 0.0 25 59078.0 last 500

2 875.0 0 0.0 2 875.0 last 250

5.3.4 Result of the MDT Prediction on Query Q8.mod

Finally, we considered a modified version of the TPC-D benchmark query Q8, the National Market Share
Query. The SQL query statement, the statistics for the relations, the initial plan P;, and the first scrambled
plan P, is in in Appendix B. As before, we consider that there is one delayed relation PART. The critical
delay at the first scrambling step that is considered by the simulator occurs at approximately 21 seconds.

Table 6 presents the results of the MDT predictions. As in the previous example, the penalty due to
overestimation was dominant. While 222 of the 511 unsafe predictions occurred in the first 1000 predictions,
the total penalty for the first 1000 predictions is significant, compared to the total penalty for the total sample.
Further, there were no unsafe predictions in the last 500 MDT predictions.

We conclude that the MDT learning can be characterized as very good, from the perspective of minimizing

the total penalty incurred by the QS algorithm, when QS uses the MDT prediction for the real delay.

Table 3: Result of MDT Prediction for Query Q8.mod

of unsafe Total #underest. Underest. F#overest. Overerest. Sample
errors penalty (ms) penalty (ms) penalty (ms) size
511 3631717.0 88 1717749.0 423 1913968.0 3100+

222 2705800.0 71 1633942.0 151 1071858.0 first 1000

0 0.0 0 0.0 0 0.0 last 500

6 Conclusion

In this paper, we report on the MDT, a tool which uses query feedback from WebSources to predict response
time (delay) and confidence in the prediction. We report on the features of MDT training, which improves

with the correct ordering of significant dimensions such as Quantity, Day and Time, and also improves with

21

inclusion of significant dimensions. We test the MDT on experiment data collected from several WebSources.
We then use the MDT prediction of delay in a scrambling enabled optimizer. We identify when MDT
overestimation or underestimation of the real delay is unsafe and results in a penalty, and when the prediction
error is safe, and there is no penalty. We test how good the MDT prediction is in minimizing these penalties,
for the experiment data.

In future work, we will refine the idea of initial delay versus response time, and we will investigate tuning
the scrambling algorithm using the MDT confidence in its prediction. We will augment the MDT ¢ fb with
performance data collected from other monitoring techniques, and we plan to study MDT performance in

an experimental environment. We also plan to compare the MDT learning with neural network learning.

Acknowledgements

We thank Maria Esther Vidal, Michael Franklin and Tolga Urhan for their many comments and insights
into this study; we thank Tolga for the use of his scrambling enabled optimizer, and we thank Tao Zhan and

Pyuonguk Cho for their assistance in data analysis.

References

[1] S. Adali et al. Query caching and optimization in distributed mediator systems. Proc. of the ACM
Sigmod Conference, 1996.

[2] L. Amsaleg, M. Franklin, A. Tomasic, and T. Urhan. Scrambling query plans to cope with unexpected
delays. Proc. of PDIS Conference, 1996.

[3] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
Wadsworth and Brooks/Cole, 1984.

[4] Microsoft Corporation. OLE2 Programmer’s Reference. Microsoft Press, Redmond WA, 1996.

[65] W. Du et al. Query optimization in a heterogeneous dbms. Proc. of the Very Large Data Bases
Conference (VLDB), 1992.

[6] D. Florescu et al. A methodology for query reformulation in cis using semantic knowledge. Intl. Journal
of Intelligent and Cooperative Information Systems, special issue on Formal Methods in Cooperative
Information Systems, 1996.

[7] G. Gardarin et al. TRO-DB: A Distribulted System Federating Object and Relational Databases, In
Object-Oriented Multidatabase Systems : A solution for Advanced Applications, Bukhres, O. and Elma-
garmid, A. Prentice Hall, 1996.

[8] Open System Group. An explanation of the specweb96 benchmark.
hitp://www.specbench.org/osg/web96 /webpaper. html, 1996.

[9] J.R. Gruser, L. Raschid, and V. Zadorozhny. Learning from query feedback to predict response time of
web sources. Technical Report, UMIACS, University of Maryland, 1998 (in preparation).

[10] J. A. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. Addison-
Wesley, Redwood City, CA, 1991.

[11] Y. Toanidis and Y. Kang. Randomized algorithms for optimizing large join queries. Proc. of the ACM
Sigmod Conference, 1990.

22

[12]
[13]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Layman et al. The xml- data home page. hitp://www.microsoft.com/standards/zml/zmldata-f. him.

AY. Levy et al. Querying heterogeneous information sources using source descriptions. Proc. of VLDB,

1996.
Sun Microsystems. Java (tm): Programming for the internet. http://java.sun.com.
Sun Microsystems. Java (tm): Programming for the internet. http://java.sun.com.

P. Mishra and M. Eich. Join processing in relational databases. ACM Computing Surveys, Vol 24, N.
1, 1992.

H. Naacke, G. Gardarin, and A. Tomasic. Leveraging mediator cost models with heterogeneous data
sources. Proc. of ICDE, 1998.

Y. Papakonstantinou et al. Capabilities-based query rewriting in mediator systems. Proc. of the Con-
ference on Parallel and Distributed Information Systems, 1996.

M.T. Roth and P. Schwarz. Don,t scrap it, wrap it! a wrapper architecture for legacy data sources.

Proc. of VLDB, 1997.

A. Sayal, P. Scheuermann, and P. Vingralek. Selection algorithms for replicated web servers. Proc. of
the Internet Server Performance Workshop (in conjunction with SIGMETRICS’98), 1998.

K. Thompson, G. Miller, and R. Wilder. Wide-area internet traffic patterns and characteristics. /TEEFE
Network, November/December, 1997.

A. Tomasic et al. Scaling heterogeneous databases and the design of disco. Proceedings of the Intl. Conf.
on Distributed Computing Systems, 1996.

G. Trent and M. Sake. Webstone: ~ The first generation in http server benchmarking.
hitp://www.mindcraft. com/webstone/paper.html, 1995.

T. Urhan, M. Franklin, and L. Amsaleg. Cost-based query scrambling for initial delays. Proc. of the
ACM Sigmod Conference, 1998.

V. Vassalos and Y. Papakonstantinou. Using knowledge of redundancy for query optimization in medi-
ators. Proc. of the AAAT Symposium on Al and Data Integration, 1998.

A. Ward, P. Glynn, and K. Richardson. Internet service performance failure detection. Proc. of the
Internet Server Performance Workshop (in conjunction with SIGMETRICS’98), 1998.

G. Wiederhold. Mediators in the architecture of future information systems. TEEE Computer, pages
38-49, March 1992.

R. Wolski. Dynamically forecasting network performance to support dynamic scheduling using the
network weather service. Proc. of the 6th High-Performance Distributed Computing Conference, 1997.

23

Contingency Tables for \? Analysis for Observation 02 (o of
0.01)

Source URL Sample Size
BR http://www.lbd.dcc.ufmg.br 3163
INR http://www-rodin.inria.fr 5154 Dim - Dimension
LeM http://www.lemonde.fr 3051 EV - Expected Vaue
0oz http://broncho.ct.monash.edu.au 5314 OV - Observed Value
UM http://www.umiacs.umd.edu 9661
uT http://www.cs.toronto.edu 9397
WTH | http://www.weather.com 2411
BR INR
Dim EV Range ov Dim EV Range ov
Date 26.217 | 30-30-40 16.195 Date 26.217 |30-30-40 | 85.983
25-25-50 | 20.457 25-25-50 | 65.387
50-25-25 12.768 50-25-25 108.053
25-50-25 | 22.014 25-50-25 107.11
Time 29.141 | 30-30-40 128.38 Time 29.141 |30-30-40 | 89.872
25-25-50 108.135 25-25-50 | 58.421
50-25-25 122.446 50-25-25 123.59
25-50-25 128.893 25-50-25 127.392
Quantity| 29.141 | 30-30-40 | 1519.686 Quantity| 29.141 | 30-30-40 | 3609.475
25-25-50 | 1638.261 25-25-50 | 4192.21
50-25-25 | 1271.302 50-25-25 | 2634.512
25-50-25 | 1761.313 25-50-25 | 3265.805
LeM oz
Dim EV Range ov Dim EV Range ov
Date 26.217 | 30-30-40 100.322 Date 26.217 |30-30-40 | 36.224
25-25-50 | 83.02 25-25-50 | 37.074
50-25-25 101.231 50-25-25 | 53.797
25-50-25 113.875 25-50-25 | 56.893
Time 29.141 |30-30-40 | 57.873 Time 29.141 | 30-30-40 10.151
25-25-50 | 41.403 25-25-50 | 8.516
50-25-25 | 79.784 50-25-25 13.985
25-50-25 | 74.307 25-50-25 13.34
Quantity| 29.141 | 30-30-40 Quantity| 29.141 | 30-30-40 | 4139.476
25-25-50 25-25-50 | 4220.134
50-25-25 50-25-25 | 3128.405
25-50-25 25-50-25 | 3860.471

UM)
Dim EV Range ov Dim EV Range ov
Date 26.217 |30-30-40 | 356 Date 26.217 |30-30-40 | 18.529
25-25-50 | 35.335 25-25-50 | 19.474
50-25-25 | 37.063 50-25-25 | 25.896
25-50-25 | 32112 25-50-25 | 29.346
Time 29.141 |30-30-40 | 14.312 Time 29.141 |30-30-40 | 38.927
25-25-50 | 17.274 25-25-50 | 36.976
50-25-25 | 17.67 50-25-25 | 38.108
25-50-25 | 12.705 25-50-25 | 32.085
Quantity| 29.141 | 30-30-40 | 4404.131 Quantity| 29.141 | 30-30-40 | 5334.823
25-25-50 | 5321.17 25-25-50 | 6465.84
50-25-25 | 2112.307 50-25-25 | 3326.436
25-50-25 | 4826.418 25-50-25 | 5011.74
WTH
Dim EV Range ov
Date 26.217 |30-30-40 | 12.14
25-25-50 | 16.526
50-25-25 | 14.016
25-50-25 | 1581
Time 29.141 |30-30-40 | 168.109
25-25-50 | 175.286
50-25-25 141.931
25-50-25 | 184.193
Quantity| 29.141 | 30-30-40 | 328.125
25-25-50 | 294.25
50-25-25 | 225.294
25-50-25 | 298.533

B Query Q8.mod

SELECT O_ORDERDATE, LLEXTENDEDPRICE, N2NAME
FROM PART, CUSTOMER, ORDER, LINEITEM, SUPPLIER, NATION N1, NATION N2, REGION
WHERE P.PARTKEY = L.PARTKEY
AND L.SUPPKEY = S.SUPPKEY AND O.ORDERKEY = L.ORDERKEY
AND C.CUSTKEY = O.CUSTKEY AND C.NATIONKEY = N1.NATIONKEY
AND N1.REGIONKEY = R.REGIONKEY AND R.NAME = "EUROPFE’
AND S.NATIONKEY = N2.NATIONKEY AND O.ORDERDATE BETWEEN °97-01-01° AND ’98-12-31°
AND P_.TYPE =’SMALL PLATED STEEL’

Table #Tuples Tuple Size Ps:

CUSTOMER 150000 180

ORDER 1500000 100

LINEITEM 1000000 120

SUPPLIER 10000 160 (O]

NATION1 25 40 [RN | Lc] [P] [t] [N] [s]
NATION2 25 40

REGION 5 40

PART 200000 160

Figure 15: Statistics, P; and P for Query @Q8.mod

